WorldWideScience

Sample records for affects endothelial progenitor

  1. Endothelial progenitor cells in cardiovascular diseases

    Institute of Scientific and Technical Information of China (English)

    Poay; Sian; Sabrina; Lee; Kian; Keong; Poh

    2014-01-01

    Endothelial dysfunction has been associated with the development of atherosclerosis and cardiovascular diseases. Adult endothelial progenitor cells(EPCs) are derived from hematopoietic stem cells and are capable of forming new blood vessels through a process of vas-culogenesis. There are studies which report correlations between circulating EPCs and cardiovascular risk fac-tors. There are also studies on how pharmacotherapies may influence levels of circulating EPCs. In this review, we discuss the potential role of endothelial progenitor cells as both diagnostic and prognostic biomarkers. In addition, we look at the interaction between cardio-vascular pharmacotherapies and endothelial progenitor cells. We also discuss how EPCs can be used directly and indirectly as a therapeutic agent. Finally, we evalu-ate the challenges facing EPC research and how these may be overcome.

  2. Aberrant lymphatic endothelial progenitors in lymphatic malformation development.

    Directory of Open Access Journals (Sweden)

    June K Wu

    Full Text Available Lymphatic malformations (LMs are vascular anomalies thought to arise from dysregulated lymphangiogenesis. These lesions impose a significant burden of disease on affected individuals. LM pathobiology is poorly understood, hindering the development of effective treatments. In the present studies, immunostaining of LM tissues revealed that endothelial cells lining aberrant lymphatic vessels and cells in the surrounding stroma expressed the stem cell marker, CD133, and the lymphatic endothelial protein, podoplanin. Isolated patient-derived CD133+ LM cells expressed stem cell genes (NANOG, Oct4, circulating endothelial cell precursor proteins (CD90, CD146, c-Kit, VEGFR-2, and lymphatic endothelial proteins (podoplanin, VEGFR-3. Consistent with a progenitor cell identity, CD133+ LM cells were multipotent and could be differentiated into fat, bone, smooth muscle, and lymphatic endothelial cells in vitro. CD133+ cells were compared to CD133- cells isolated from LM fluids. CD133- LM cells had lower expression of stem cell genes, but expressed circulating endothelial precursor proteins and high levels of lymphatic endothelial proteins, VE-cadherin, CD31, podoplanin, VEGFR-3 and Prox1. CD133- LM cells were not multipotent, consistent with a differentiated lymphatic endothelial cell phenotype. In a mouse xenograft model, CD133+ LM cells differentiated into lymphatic endothelial cells that formed irregularly dilated lymphatic channels, phenocopying human LMs. In vivo, CD133+ LM cells acquired expression of differentiated lymphatic endothelial cell proteins, podoplanin, LYVE1, Prox1, and VEGFR-3, comparable to expression found in LM patient tissues. Taken together, these data identify a novel LM progenitor cell population that differentiates to form the abnormal lymphatic structures characteristic of these lesions, recapitulating the human LM phenotype. This LM progenitor cell population may contribute to the clinically refractory behavior of LMs.

  3. Endothelial progenitor cell biology in ankylosing spondylitis.

    Science.gov (United States)

    Verma, Inderjeet; Syngle, Ashit; Krishan, Pawan

    2015-03-01

    Endothelial progenitor cells (EPCs) are unique populations which have reparative potential in overcoming endothelial damage and reducing cardiovascular risk. Patients with ankylosing spondylitis (AS) have increased risk of cardiovascular morbidity and mortality. The aim of this study was to investigate the endothelial progenitor cell population in AS patients and its potential relationships with disease variables. Endothelial progenitor cells were measured in peripheral blood samples from 20 AS and 20 healthy controls by flow cytometry on the basis of CD34 and CD133 expression. Disease activity was evaluated by using Bath Ankylosing Spondylitis Disease Activity Index (BASDAI). Functional ability was monitored by using Bath Ankylosing Spondylitis Functional Index (BASFI). EPCs were depleted in AS patients as compared to healthy controls (CD34(+) /CD133(+) : 0.027 ± 0.010% vs. 0.044 ± 0.011%, P < 0.001). EPC depletions were significantly associated with disease duration (r = -0.52, P = 0.01), BASDAI (r = -0.45, P = 0.04) and C-reactive protein (r = -0.5, P = 0.01). This is the first study to demonstrate endothelial progenitor cell depletion in AS patients. EPC depletions inversely correlate with disease duration, disease activity and inflammation, suggesting the pivotal role of inflammation in depletion of EPCs. EPC would possibly also serve as a therapeutic target for preventing cardiovascular disease in AS. © 2014 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  4. Endothelial progenitor cells: Exploring the pleiotropic effects of statins

    Science.gov (United States)

    Sandhu, Kully; Mamas, Mamas; Butler, Robert

    2017-01-01

    Statins have become a cornerstone of risk modification for ischaemic heart disease patients. A number of studies have shown that they are effective and safe. However studies have observed an early benefit in terms of a reduction in recurrent infarct and or death after a myocardial infarction, prior to any significant change in lipid profile. Therefore, pleiotropic mechanisms, other than lowering lipid profile alone, must account for this effect. One such proposed pleiotropic mechanism is the ability of statins to augment both number and function of endothelial progenitor cells. The ability to augment repair and maintenance of a functioning endothelium may have profound beneficial effect on vascular repair and potentially a positive impact on clinical outcomes in patients with cardiovascular disease. The following literature review will discuss issues surrounding endothelial progenitor cell (EPC) identification, role in vascular repair, factors affecting EPC numbers, the role of statins in current medical practice and their effects on EPC number. PMID:28163831

  5. Enhancing endothelial progenitor cell for clinical use

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Circulating endothelial progenitor cells (EPCs) havebeen demonstrated to correlate negatively with vascularendothelial dysfunction and cardiovascular risk factors.However, translation of basic research into the clinicalpractice has been limited by the lack of unambiguousand consistent definitions of EPCs and reduced EPCcell number and function in subjects requiring them forclinical use. This article critically reviews the definitionof EPCs based on commonly used protocols, their valueas a biomarker of cardiovascular risk factor in subjectswith cardiovascular disease, and strategies to enhanceEPCs for treatment of ischemic diseases.

  6. Endothelial progenitor cells with Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    KONG Xiao-dong; ZHANG Yun; LIU Li; SUN Ning; ZHANG Ming-yi; ZHANG Jian-ning

    2011-01-01

    Background Endothelial dysfunction is thought to be critical events in the pathogenesis of Alzheimer's disease (AD).Endothelial progenitor cells (EPCs) have provided insight into maintaining and repairing endothelial function. To study the relation between EPCs and AD, we explored the number of circulating EPCs in patients with AD.Methods A total of 104 patients were recruited from both the outpatients and inpatients of the geriatric neurology department at General Hospital, rianjin Medical University. Consecutive patients with newly diagnosed AD (n=30),patients with vascular dementia (VaD, n=34), and healthy elderly control subjects with normal cognition (n=40) were enrolled after matching for age, gender, body mass index, medical history, current medication and Mini Mental State Examination. Middle cerebral artery flow velocity was examined with transcranial Doppler. Endothelial function was evaluated according to the level of EPCs, and peripheral blood EPCs was counted by flow cytometry.Results There were no significant statistical differences of clinical data in AD, VaD and control groups (P >0.05). The patients with AD showed decreased CD34-positive (CD34+) or CD133-positive (CD133+) levels compared to the control subjects, but there were no significant statistical differences in patients with AD. The patients with AD had significantly lower CD34+CD133+ EPCs(CD34 and CD133 double positive endothelial progenitor cells) than the control subjects (P <0.05). In the patients with AD, a lower CD34+CD133+ EPCs count was independently associated with a lower Mini-Mental State Examination score (r=0.514, P=0.004). Patients with VaD also showed a significant decrease in CD34+CD133+ EPCs levels, but this was not evidently associated with the Mini-Mental State Examination score. The changes of middle cerebral artery flow velocity were similar between AD and VaD. Middle cerebral artery flow velocity was decreased in the AD and VaD groups and significantly lower than

  7. Endothelial Progenitor Cells Enter the Aging Arena.

    Directory of Open Access Journals (Sweden)

    Kate eWilliamson

    2012-02-01

    Full Text Available Age is a significant risk factor for the development of vascular diseases, such as atherosclerosis. Although pharmacological treatments, including statins and anti-hypertensive drugs, have improved the prognosis for patients with cardiovascular disease, it remains a leading cause of mortality in those aged 65 years and over. Furthermore, given the increased life expectancy of the population in developed countries, there is a clear need for alternative treatment strategies. Consequently, the relationship between aging and progenitor cell-mediated repair is of great interest. Endothelial progenitor cells (EPCs play an integral role in the cellular repair mechanisms for endothelial regeneration and maintenance. However, EPCs are subject to age-associated changes that diminish their number in circulation and function, thereby enhancing vascular disease risk. A great deal of research is aimed at developing strategies to harness the regenerative capacity of these cells.In this review, we discuss the current understanding of the cells termed ‘EPCs’, examine the impact of age on EPC-mediated repair and identify therapeutic targets with potential for attenuating the age-related decline in vascular health via beneficial actions on EPCs.

  8. Circulating Endothelial Cells and Endothelial Progenitor Cells in Pediatric Sepsis.

    Science.gov (United States)

    Zahran, Asmaa Mohamad; Elsayh, Khalid Ibrahim; Mohamad, Ismail Lotfy; Hassan, Gamal Mohamad; Abdou, Madleen Adel A

    2016-03-01

    The aim of the study was to measure the number of circulating endothelial cells (CECs) and circulating endothelial progenitor cells (CEPs) in pediatric patients with sepsis and correlating it with the severity of the disease and its outcome. The study included 19 children with sepsis, 26 with complicated sepsis, and 30 healthy controls. The patients were investigated within 48 hours of pediatric intensive care unit admission together with flow cytometric detection of CECs and CEPs. The levels of both CECs and CEPs were significantly higher in patient with sepsis and complicated sepsis than the controls. The levels of CECs were higher in patients with complicated sepsis, whereas the levels of CEPs were lower in patients with complicated sepsis. Comparing the survival and nonsurvival septic patients, the levels of CEPs were significantly higher in the survival than in nonsurvival patients, whereas the levels of CECs were significantly lower in the survival than in nonsurvival patients. Serum albumin was higher in survival than in nonsurvival patients. Estimation of CECs and CEPs and their correlation with other parameters such as serum albumen could add important information regarding prognosis in septic pediatric patients.

  9. Endothelial Progenitor Cells for Diagnosis and Prognosis in Cardiovascular Disease

    OpenAIRE

    2015-01-01

    Objective. To identify, evaluate, and synthesize evidence on the predictive power of circulating endothelial progenitor cells (EPCs) in cardiovascular disease, through a systematic review of quantitative studies. Data Sources. MEDLINE was searched using keywords related to “endothelial progenitor cells” and “endothelium” and, for the different categories, respectively, “smoking”; “blood pressure”; “diabetes mellitus” or “insulin resistance”; “dyslipidemia”; “aging” or “elderly”; “angina p...

  10. Endothelial progenitor cells and integrins: adhesive needs

    Directory of Open Access Journals (Sweden)

    Caiado Francisco

    2012-03-01

    Full Text Available Abstract In the last decade there have been multiple studies concerning the contribution of endothelial progenitor cells (EPCs to new vessel formation in different physiological and pathological settings. The process by which EPCs contribute to new vessel formation in adults is termed postnatal vasculogenesis and occurs via four inter-related steps. They must respond to chemoattractant signals and mobilize from the bone marrow to the peripheral blood; home in on sites of new vessel formation; invade and migrate at the same sites; and differentiate into mature endothelial cells (ECs and/or regulate pre-existing ECs via paracrine or juxtacrine signals. During these four steps, EPCs interact with different physiological compartments, namely bone marrow, peripheral blood, blood vessels and homing tissues. The success of each step depends on the ability of EPCs to interact, adapt and respond to multiple molecular cues. The present review summarizes the interactions between integrins expressed by EPCs and their ligands: extracellular matrix components and cell surface proteins present at sites of postnatal vasculogenesis. The data summarized here indicate that integrins represent a major molecular determinant of EPC function, with different integrin subunits regulating different steps of EPC biology. Specifically, integrin α4β1 is a key regulator of EPC retention and/or mobilization from the bone marrow, while integrins α5β1, α6β1, αvβ3 and αvβ5 are major determinants of EPC homing, invasion, differentiation and paracrine factor production. β2 integrins are the major regulators of EPC transendothelial migration. The relevance of integrins in EPC biology is also demonstrated by many studies that use extracellular matrix-based scaffolds as a clinical tool to improve the vasculogenic functions of EPCs. We propose that targeted and tissue-specific manipulation of EPC integrin-mediated interactions may be crucial to further improve the usage of

  11. Differential Effects of Isoxazole-9 on Neural Stem/Progenitor Cells, Oligodendrocyte Precursor Cells, and Endothelial Progenitor Cells.

    Directory of Open Access Journals (Sweden)

    Seong-Ho Koh

    Full Text Available Adult mammalian brain can be plastic after injury and disease. Therefore, boosting endogenous repair mechanisms would be a useful therapeutic approach for neurological disorders. Isoxazole-9 (Isx-9 has been reported to enhance neurogenesis from neural stem/progenitor cells (NSPCs. However, the effects of Isx-9 on other types of progenitor/precursor cells remain mostly unknown. In this study, we investigated the effects of Isx-9 on the three major populations of progenitor/precursor cells in brain: NSPCs, oligodendrocyte precursor cells (OPCs, and endothelial progenitor cells (EPCs. Cultured primary NSPCs, OPCs, or EPCs were treated with various concentrations of Isx-9 (6.25, 12.5, 25, 50 μM, and their cell numbers were counted in a blinded manner. Isx-9 slightly increased the number of NSPCs and effectively induced neuronal differentiation of NSPCs. However, Isx-9 significantly decreased OPC number in a concentration-dependent manner, suggesting cytotoxicity. Isx-9 did not affect EPC cell number. But in a matrigel assay of angiogenesis, Isx-9 significantly inhibited tube formation in outgrowth endothelial cells derived from EPCs. This potential anti-tube-formation effect of Isx-9 was confirmed in a brain endothelial cell line. Taken together, our data suggest that mechanisms and targets for promoting stem/progenitor cells in the central nervous system may significantly differ between cell types.

  12. Endothelial Progenitor Cell Dysfunction in Polycystic Ovary Syndrome: Implications for The Genesis of Cardiovascular Diseases

    OpenAIRE

    Yu-Hsun Kao; Wan-Chun Chiu; Ming-I Hsu; Yi-Jen Chen

    2013-01-01

    Polycystic ovary syndrome (PCOS), the most common endocrine disorder affecting women of reproductive age, is characterized by hyperandrogenism and insulin resistance. Women with PCOS have a higher risk for cardiovascular diseases (CVDs) and endothelial dysfunction. The mechanisms underlying these risks are unclear. Human peripheral blood contains circulating endothelial progenitor cells (EPCs) derived from bone marrow that have the ability to proliferate and differentiate into mature endothel...

  13. Synergistic effects of telmisartan and simvastatin on endothelial progenitor cells

    OpenAIRE

    Steinmetz, Martin; Brouwers, Caroline; Nickenig, Georg; Wassmann, Sven

    2009-01-01

    Abstract Circulating endothelial progenitor cells (EPC) contribute to endothelial replenishment. Telmisartan is an angiotensin-receptor blocker with PPARγ-agonistic properties. PPARγ-agonists and HMG-CoA reductase inhibitors have been shown to enhance EPC number and function. We focused on the effects of telmisartan alone or in combination with simvastatin on EPC. EPC were isolated from healthy human volunteers, cultured and stimulated with telmisartan, simvastatin, or the combination of telm...

  14. Endothelial progenitor cell-based neovascularization : implications for therapy

    NARCIS (Netherlands)

    Krenning, Guido; van Luyn, Marja J. A.; Harmsen, Martin C.

    2009-01-01

    Ischemic cardiovascular events are a major cause of death globally. Endothelial progenitor cell (EPC)-based approaches can result in improvement of vascular perfusion and might offer clinical benefit. However, although functional improvement is observed, the lack of long-term engraftment of EPCs int

  15. Characterization of vascular endothelial progenitor cells from chicken bone marrow

    Directory of Open Access Journals (Sweden)

    Bai Chunyu

    2012-05-01

    Full Text Available Abstract Background Endothelial progenitor cells (EPC are a type of stem cell used in the treatment of atherosclerosis, vascular injury and regeneration. At present, most of the EPCs studied are from human and mouse, whereas the study of poultry-derived EPCs has rarely been reported. In the present study, chicken bone marrow-derived EPCs were isolated and studied at the cellular level using immunofluorescence and RT-PCR. Results We found that the majority of chicken EPCs were spindle shaped. The growth-curves of chicken EPCs at passages (P 1, -5 and -9 were typically “S”-shaped. The viability of chicken EPCs, before and after cryopreservation was 92.2% and 81.1%, respectively. Thus, cryopreservation had no obvious effects on the viability of chicken EPCs. Dil-ac-LDL and FITC-UAE-1 uptake assays and immunofluorescent detection of the cell surface markers CD34, CD133, VEGFR-2 confirmed that the cells obtained in vitro were EPCs. Observation of endothelial-specific Weibel-Palade bodies using transmission electron microscopy further confirmed that the cells were of endothelial lineage. In addition, chicken EPCs differentiated into endothelial cells and smooth muscle cells upon induction with VEGF and PDGF-BB, respectively, suggesting that the chicken EPCs retained multipotency in vitro. Conclusions These results suggest that chicken EPCs not only have strong self-renewal capacity, but also the potential to differentiate into endothelial and smooth muscle cells. This research provides theoretical basis and experimental evidence for potential therapeutic application of endothelial progenitor cells in the treatment of atherosclerosis, vascular injury and diabetic complications.

  16. Erythropoietin improves cardiac function through endothelial progenitor cell and vascular endothelial growth factor mediated neovascularization

    NARCIS (Netherlands)

    Westenbrink, B. Daan; Lipsic, Erik; van der Meer, Peter; van der Harst, Pirn; Oeseburg, Hisko; Sarvaas, Gideon J. Du Marchie; Koster, Johan; Voors, Adriaan A.; van Veldhuisen, Dirk J.; van Gilst, Wiek H.; Schoemaker, Regien G.

    2007-01-01

    Aims Erythropoietin (EPO) improves cardiac function and induces neovascutarization in chronic heart failure (CHF), although the exact mechanism has not been elucidated. We studied the effects of EPO on homing and incorporation of endothelial progenitor cells (EPC) into the myocardial microvasculatur

  17. End-stage renal disease causes an imbalance between endothelial and smooth muscle progenitor cells

    NARCIS (Netherlands)

    Westerweel, Peter E; Hoefer, Imo E; Blankestijn, Peter J; de Bree, Petra; Groeneveld, Dafna; van Oostrom, Olivia; Braam, Branko; Koomans, Hein A; Verhaar, Marianne C

    2007-01-01

    Patients with end-stage renal disease (ESRD) on hemodialysis have an increased risk of cardiovascular disease (CVD). Circulating endothelial progenitor cells (EPC) contribute to vascular regeneration and repair, thereby protecting against CVD. However, circulating smooth muscle progenitor cells (SPC

  18. Microvesicles Derived from Indoxyl Sulfate Treated Endothelial Cells Induce Endothelial Progenitor Cells Dysfunction.

    Science.gov (United States)

    Carmona, Andres; Guerrero, Fatima; Buendia, Paula; Obrero, Teresa; Aljama, Pedro; Carracedo, Julia

    2017-01-01

    Cardiovascular disease is a major cause of mortality in chronic kidney disease patients. Indoxyl sulfate (IS) is a typical protein-bound uremic toxin that cannot be effectively cleared by conventional dialysis. Increased IS is associated with the progression of chronic kidney disease and development of cardiovascular disease. After endothelial activation by IS, cells release endothelial microvesicles (EMV) that can induce endothelial dysfunction. We developed an in vitro model of endothelial damage mediated by IS to evaluate the functional effect of EMV on the endothelial repair process developed by endothelial progenitor cells (EPCs). EMV derived from IS-treated endothelial cells were isolated by ultracentrifugation and characterized for miRNAs content. The effects of EMV on healthy EPCs in culture were studied. We observed that IS activates endothelial cells and the generated microvesicles (IsEMV) can modulate the classic endothelial roles of progenitor cells as colony forming units and form new vessels in vitro. Moreover, 23 miRNAs were contained in IsEMV including four (miR-181a-5p, miR-4454, miR-150-5p, and hsa-let-7i-5p) that were upregulated in IsEMV compared with control endothelial microvesicles. Other authors have found that miR-181a-5p, miR-4454, and miR-150-5p are involved in promoting inflammation, apoptosis, and cellular senescence. Interestingly, we observed an increase in NFκB and p53, and a decrease in IκBα in EPCs treated with IsEMV. Our data suggest that IS is capable of inducing endothelial vesiculation with different membrane characteristics, miRNAs and other molecules, which makes maintaining of vascular homeostasis of EPCs not fully functional. These specific characteristics of EMV could be used as novel biomarkers for diagnosis and prognosis of vascular disease.

  19. Development of Endothelial-Specific Single Inducible Lentiviral Vectors for Genetic Engineering of Endothelial Progenitor Cells.

    Science.gov (United States)

    Yang, Guanghua; Kramer, M Gabriela; Fernandez-Ruiz, Veronica; Kawa, Milosz P; Huang, Xin; Liu, Zhongmin; Prieto, Jesus; Qian, Cheng

    2015-11-27

    Endothelial progenitor cells (EPC) are able to migrate to tumor vasculature. These cells, if genetically modified, can be used as vehicles to deliver toxic material to, or express anticancer proteins in tumor. To test this hypothesis, we developed several single, endothelial-specific, and doxycycline-inducible self-inactivating (SIN) lentiviral vectors. Two distinct expression cassettes were inserted into a SIN-vector: one controlled by an endothelial lineage-specific, murine vascular endothelial cadherin (mVEcad) promoter for the expression of a transactivator, rtTA2S-M2; and the other driven by an inducible promoter, TREalb, for a firefly luciferase reporter gene. We compared the expression levels of luciferase in different vector constructs, containing either the same or opposite orientation with respect to the vector sequence. The results showed that the vector with these two expression cassettes placed in opposite directions was optimal, characterized by a robust induction of the transgene expression (17.7- to 73-fold) in the presence of doxycycline in several endothelial cell lines, but without leakiness when uninduced. In conclusion, an endothelial lineage-specific single inducible SIN lentiviral vector has been developed. Such a lentiviral vector can be used to endow endothelial progenitor cells with anti-tumor properties.

  20. Endothelial Progenitor Cells for Diagnosis and Prognosis in Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Caterina Oriana Aragona

    2016-01-01

    Full Text Available Objective. To identify, evaluate, and synthesize evidence on the predictive power of circulating endothelial progenitor cells (EPCs in cardiovascular disease, through a systematic review of quantitative studies. Data Sources. MEDLINE was searched using keywords related to “endothelial progenitor cells” and “endothelium” and, for the different categories, respectively, “smoking”; “blood pressure”; “diabetes mellitus” or “insulin resistance”; “dyslipidemia”; “aging” or “elderly”; “angina pectoris” or “myocardial infarction”; “stroke” or “cerebrovascular disease”; “homocysteine”; “C-reactive protein”; “vitamin D”. Study Selection. Database hits were evaluated against explicit inclusion criteria. From 927 database hits, 43 quantitative studies were included. Data Syntheses. EPC count has been suggested for cardiovascular risk estimation in the clinical practice, since it is currently accepted that EPCs can work as proangiogenic support cells, maintaining their importance as regenerative/reparative potential, and also as prognostic markers. Conclusions. EPCs showed an important role in identifying cardiovascular risk conditions, and to suggest their evaluation as predictor of outcomes appears to be reasonable in different defined clinical settings. Due to their capability of proliferation, circulation, and the development of functional progeny, great interest has been directed to therapeutic use of progenitor cells in atherosclerotic diseases. This trial is registered with registration number: Prospero CRD42015023717.

  1. ENDOTHELIAL PROGENITOR CELLS AS SHUTTLE OF ANTICANCER AGENTS.

    Science.gov (United States)

    Laurenzana, Anna; Margheri, Francesca; Chilla', Anastasia; Biagioni, Alessio; Margheri, Giancarlo; Calorini, Lido; Fibbi, Gabriella; Del Rosso, Mario

    2016-08-08

    Cell therapies are treatments in which stem or progenitor cells are induced to differentiate into the specific cell type required to repair damaged or destroyed tissues. Following their discovery, endothelial progenitor cells (EPCs) have stimulated a worldwide interest as possible vehicles to perform an autologous cell-therapy of tumors. Taking into account the tumor-homing properties of EPCs, two different approaches to control cancer progression have been pursued by combining the cell-based therapy with gene therapy or with nanomedicine. The first one is based on the possibility to engineer EPCs to express different transgenes, the second one on the capacity of EPCs to uptake nanomaterials. Here we will review the most important progresses covering the following issues: the characterization of bona fide endothelial progenitor cells, their role in tumor vascularisation and metastasis, and preclinical data about their use in cell-based tumor therapy, considering anti-angiogenic, suicide, immune-stimulating and oncolytic virus gene-therapy. The mixed approach of EPC cell therapy and nanomedicine will be discussed in terms of plasmonic-dependent thermoablation and molecular imaging.

  2. Effect of endothelial progenitor cells in neovascularization and their application in tumor therapy

    Institute of Scientific and Technical Information of China (English)

    DONG Fang; HA Xiao-qin

    2010-01-01

    Objective To review the effect of endothelial progenitor cells in neovascularization as well as their application to the therapy of tumors.Data sources The data used in this review were mainly from PubMed for relevant English language articles published from 1997 to 2009. The search term was "endothelial progenitor cells".Study selection Articles regarding the role of endothelial progenitor cells in neovascularization and their application to the therapy of tumors were selected.Results Endothelial progenitor cells isolated from bone marrow, umbilical cord blood and peripheral blood can proliferate, mobilize and differentiate into mature endothelial cells. Experiments suggest endothelial progenitor cells take part in forming the tumor vascular through a variety of mechanisms related to vascular endothelial growth factor, matrix metalloproteinases, chemokine stromal cell-derived factor 1 and its receptor C-X-C receptor-4, erythropoietin, Notchsignal pathway and so on. Evidence demonstrates that the number and function change of endothelial progenitor cells in peripheral blood can be used as a biomarker of the response of cancer patients to anti-tumor therapy and predict the prognosis and recurrence. In addition, irradiation temporarily increased endothelial cells number and decreased the endothelial progenitor cell counts in animal models. Meanwhile, in preclinical experiments, therapeutic gene-modified endothelial progenitor cells have been approved to attenuate tumor growth and offer a novel strategy for cell therapy and gene therapy of cancer.Conclusions Endothelial progenitor cells play a particular role in neovascularization and have attractively potential prognostic and therapeutic applications to malignant tumors. However, a series of problems, such as the definitive biomarkers of endothelial progenitor cells, their interrelationship with radiotherapy and their application in cell therapy and gene therapy of tumors, need further investigation.

  3. Growth factor-and cytokine-stimulated endothelial progenitor cells in post-ischemic cerebral neovascularization

    Institute of Scientific and Technical Information of China (English)

    Philip V.Peplow

    2014-01-01

    Endothelial progenitor cells are resident in the bone marrow blood sinusoids and circulate in the peripheral circulation. They mobilize from the bone marrow after vascular injury and home to the site of injury where they differentiate into endothelial cells. Activation and mobilization of endothelial progenitor cells from the bone marrow is induced via the production and release of endothelial progenitor cell-activating factors and includes speciifc growth factors and cytokines in response to peripheral tissue hypoxia such as after acute ischemic stroke or trauma. Endotheli-al progenitor cells migrate and home to speciifc sites following ischemic stroke via growth factor/cytokine gradients. Some growth factors are less stable under acidic conditions of tissue isch-emia, and synthetic analogues that are stable at low pH may provide a more effective therapeutic approach for inducing endothelial progenitor cell mobilization and promoting cerebral neovas-cularization following ischemic stroke.

  4. Angiogenic potential of endothelial progenitor cells and embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Rae Peter C

    2011-05-01

    Full Text Available Abstract Background Endothelial progenitor cells (EPCs are implicated in a range of pathological conditions, suggesting a natural therapeutic role for EPCs in angiogenesis. However, current angiogenic therapies involving EPC transplantation are inefficient due to rejection of donor EPCs. One solution is to derive an expanded population of EPCs from stem cells in vitro, to be re-introduced as a therapeutic transplant. To demonstrate the therapeutic potential of EPCs we performed in vitro transplantation of EPCs into endothelial cell (EC tubules using a gel-based tubule formation assay. We also described the production of highly angiogenic EPC-comparable cells from pluripotent embryonic stem cells (ESCs by direct differentiation using EC-conditioned medium (ECCM. Results The effect on tubule complexity and longevity varied with transplantation quantity: significant effects were observed when tubules were transplanted with a quantity of EPCs equivalent to 50% of the number of ECs originally seeded on to the assay gel but not with 10% EPC transplantation. Gene expression of the endothelial markers VEGFR2, VE-cadherin and CD31, determined by qPCR, also changed dynamically during transplantation. ECCM-treated ESC-derived progenitor cells exhibited angiogenic potential, demonstrated by in vitro tubule formation, and endothelial-specific gene expression equivalent to natural EPCs. Conclusions We concluded the effect of EPCs is cumulative and beneficial, relying on upregulation of the angiogenic activity of transplanted cells combined with an increase in proliferative cell number to produce significant effects upon transplantation. Furthermore, EPCs derived from ESCs may be developed for use as a rapidly-expandable alternative for angiogenic transplantation therapy.

  5. Endothelial progenitor cell subsets and preeclampsia: Findings and controversies

    Directory of Open Access Journals (Sweden)

    Armin Attar

    2017-10-01

    Full Text Available Vascular remodeling is an essential component of gestation. Endothelial progenitor cells (EPCs play an important role in the regulation of vascular homeostasis. The results of studies measuring the number of EPCs in normal pregnancies and in preeclampsia have been highly controversial or even contradictory because of some variations in technical issues and different methodologies enumerating three distinct subsets of EPCs: circulating angiogenic cells (CAC, colony forming unit endothelial cells (CFU-ECs, and endothelial colony-forming cells (ECFCs. In general, most studies have shown an increase in the number of CACs in the maternal circulation with a progression in the gestational age in normal pregnancies, while functional capacities measured by CFU-ECs and ECFCs remain intact. In the case of preeclampsia, mobilization of CACs and ECFCs occurs in the peripheral blood of pregnant women, but the functional capacities shown by culture of the derived colony-forming assays (CFU-EC and ECFC assays are altered. Furthermore, the number of all EPC subsets will be reduced in umbilical cord blood in the case of preeclampsia. As EPCs play an important role in the homeostasis of vascular networks, the difference in their frequency and functionality in normal pregnancies and those with preeclampsia can be expected. In this review, there was an attempt to provide a justification for these controversies.

  6. Endothelial progenitor cells as a new marker of endothelial function with respect to risk of cardiovascular disorders

    Directory of Open Access Journals (Sweden)

    Barbara Głowińska-Olszewska

    2011-01-01

    Full Text Available The discovery of endothelial progenitor cells (EPC, over a decade ago, has refuted the previous belief that vasculogenesis only occurs during embryogenesis. The results of several studies revealed altered number and impaired function of EPC in hyperlipidemia, hypertension, diabetes, obesity as well as in rheumatoid arthritis. The population of developmental age is characterized by higher counts of EPC compared to adults. However, among young patients with chronic disorders that affect the vascular system, the number of EPC decreases. The reduced circulating concentration of EPC has become a surrogate marker of endothelial function and has been implicated in the pathogenesis of many vascular diseases. This article aims to review the biology and pathophysiology of EPC in the conditions of cardiovascular risk factors. The potential possibilities of increasing EPC number and function as well as the use of EPC in the treatment of vascular pathology will also be discussed.

  7. Pharmacologically active microcarriers for endothelial progenitor cell support and survival.

    Science.gov (United States)

    Musilli, Claudia; Karam, Jean-Pierre; Paccosi, Sara; Muscari, Claudio; Mugelli, Alessandro; Montero-Menei, Claudia N; Parenti, Astrid

    2012-08-01

    The regenerative potential of endothelial progenitor cell (EPC)-based therapies is limited due to poor cell viability and minimal retention following application. Neovascularization can be improved by means of scaffolds supporting EPCs. The aim of the present study was to investigate whether human early EPCs (eEPCs) could be efficiently cultured on pharmacologically active microcarriers (PAMs), made with poly(d,l-lactic-coglycolic acid) and coated with adhesion/extracellular matrix molecules. They may serve as a support for stem cells and may be used as cell carriers providing a controlled delivery of active protein such as the angiogenic factor, vascular endothelial growth factor-A (VEGF-A). eEPC adhesion to fibronectin-coated PAMs (FN-PAMs) was assessed by means of microscopic evaluation and by means of Alamar blue assay. Phospho ERK(1/2) and PARP-1 expression was measured by means of Western blot to assess the survival effects of FN-PAMs releasing VEGF-A (FN-VEGF-PAMs). The Alamar blue assay or a modified Boyden chamber assay was employed to assess proliferative or migratory capacity, respectively. Our data indicate that eEPCs were able to adhere to empty FN-PAMs within a few hours. FN-VEGF-PAMs increased the ability of eEPCs to adhere to them and strongly supported endothelial-like phenotype and cell survival. Moreover, the release of VEGF-A by FN-PAMs stimulated in vitro HUVEC migration and proliferation. These data strongly support the use of PAMs for supporting eEPC growth and survival and for stimulating resident mature human endothelial cells.

  8. Folic acid supplementation normalizes the endothelial progenitor cell transcriptome of patients with type 1 diabetes: a case-control pilot study

    Directory of Open Access Journals (Sweden)

    Stubbs Andrew

    2009-08-01

    development, such as the transcription factors ID1 and MAFF. Few oxidative-stress related genes were affected by folic acid. Conclusion Folic acid normalizes endothelial progenitor cell gene expression profiles of patients with type 1 diabetes. Signaling pathways modulated by folic acid may be potential therapeutic targets to improve endothelial progenitor cell function.

  9. Endothelial Progenitor Cells in Sprouting Angiogenesis: Proteases Pave the Way.

    Science.gov (United States)

    Laurenzana, A; Fibbi, G; Margheri, F; Biagioni, A; Luciani, C; Del Rosso, M; Chillà, A

    2015-01-01

    Sprouting angiogenesis consists of the expansion and remodelling of existing vessels, where the vascular sprouts connect each other to form new vascular loops. Endothelial Progenitor Cells (EPCs) are a subtype of stem cells, with high proliferative potential, able to differentiate into mature Endothelial Cells (ECs) during the neovascularization process. In addition to this direct structural role EPCs improve neovascularization, also secreting numerous pro-angiogenic factors able to enhance the proliferation, survival and function of mature ECs, and other surrounding progenitor cells. While sprouting angiogenesis by mature ECs involves resident ECs, the vasculogenic contribution of EPCs is a high hurdle race. Bone marrowmobilized EPCs have to detach from the stem cell niche, intravasate into bone marrow vessels, reach the hypoxic area or tumour site, extravasate and incorporate into the new vessel lumen, thus complementing the resident mature ECs in sprouting angiogenesis. The goal of this review is to highlight the role of the main protease systems able to control each of these steps. The pivotal protease systems here described, involved in vascular patterning in sprouting angiogenesis, are the matrix-metalloproteinases (MMPs), the serineproteinases urokinase-type plasminogen activator (uPA) associated with its receptor (uPAR) and receptorassociated plasminogen/plasmin, the neutrophil elastase and the cathepsins. Since angiogenesis plays a critical role not only in physiological but also in pathological processes, such as in tumours, controlling the contribution of EPCs to the angiogenic process, through the regulation of the protease systems involved, could yield new opportunities for the therapeutic prospect of efficient control of pathological angiogenesis.

  10. Endothelial Progenitor Cell Dysfunction in Polycystic Ovary Syndrome: Implications for The Genesis of Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Yu-Hsun Kao

    2013-01-01

    Full Text Available Polycystic ovary syndrome (PCOS, the most common endocrine disorder affecting women ofreproductive age, is characterized by hyperandrogenism and insulin resistance. Women withPCOS have a higher risk for cardiovascular diseases (CVDs and endothelial dysfunction. Themechanisms underlying these risks are unclear. Human peripheral blood contains circulatingendothelial progenitor cells (EPCs derived from bone marrow that have the ability to proliferate anddifferentiate into mature endothelial cells, which may contribute to vessel homeostasis and repair.PCOS is associated with insulin resistance, hyperinsulinemia, and dyslipidemia, which may resultin EPC dysfunction. In this review, we summarize the potential mechanisms of EPC dysfunction inPCOS, which possibly result in a higher genesis of CVDs in PCOS-affected subjects.

  11. Adhesion of endothelial cells and endothelial progenitor cells on peptide-linked polymers in shear flow.

    Science.gov (United States)

    Wang, Xin; Cooper, Stuart

    2013-05-01

    The initial adhesion of human umbilical vein endothelial cells (HUVECs), cord blood endothelial colony-forming cells (ECFCs), and human blood outgrowth endothelial cells (HBOECs) was studied under radial flow conditions. The surface of a variable shear-rate device was either coated with polymer films or covered by synthetic fibers. Spin-coating was applied to produce smooth polymer films, while fibrous scaffolds were generated by electrospinning. The polymer was composed of hexyl methacrylate, methyl methacrylate, poly(ethylene glycol) methacrylate (PEGMA), and CGRGDS peptide. The peptide was incorporated into the polymer system by coupling to an acrylate-PEG-N-hydroxysuccinimide comonomer. A shear-rate-dependent increase of the attached cells with time was observed with all cell types. The adhesion of ECs increased on RGD-linked polymer surfaces compared to polymers without adhesive peptides. The number of attached ECFCs and HBOECs are significantly higher than that of HUVECs within the entire shear-rate range and surfaces examined, especially on RGD-linked polymers at low shear rates. Their superior adhesion ability of endothelial progenitor cells under flow conditions suggests they are a promising source for in vivo seeding of vascular grafts and shows the potential to be used for self-endothelialized implants.

  12. Ginsenoside Rg1 promotes endothelial progenitor cell migration and proliferation

    Institute of Scientific and Technical Information of China (English)

    Ai-wu SHI; Xiao-bin WANG; Feng-xiang LU; Min-min ZHU; Xiang-qing KONG; Ke-jiang CAO

    2009-01-01

    Aim: To investigate the effect of ginsenoside Rgl on the migration, adhesion, proliferation, and VEGF expression of endothe-lial progenitor cells (EPCs).Methods: EPCs were isolated from human peripheral blood and incubated with different concentrations of ginsenoside Rgl (0.1, 0.5, 1.0, and 5.0 μmol/L) and vehicle controls. EPC migration was detected with a modified Boyden chamber assay. EPC adhesion was determined by counting adherent cells on fibronectin-coated culture dishes. EPC proliferation was analyzed with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. In vitro vasculogenesis was assayed using an in vitro vasculogenesis detection kit. A VEGF-ELISA kit was used to measure the amount of VEGF protein in the cell culture medium.Results: Ginsenoside Rgl promoted EPC adhesionp proliferation, migration and in vitro vasculogenesis in a dose- and time-dependent manner. Cell cycle analysis showed that 5.0 μmol/L of ginsenoside Rgl significantly increased the EPC prolifera-tive phase (S phase) and decreased the resting phase (G0/G1 phase). Ginsenoside Rgl increased vascular endothelial growth factor production.Conclusion: The results indicate that ginsenoside Rgl promotes proliferation, migration, adhesion and in vitro vasculogen-esis.

  13. Role of NADPH Oxidase-4 in Human Endothelial Progenitor Cells

    Science.gov (United States)

    Hakami, Nora Y.; Ranjan, Amaresh K.; Hardikar, Anandwardhan A.; Dusting, Greg J.; Peshavariya, Hitesh M.

    2017-01-01

    Introduction: Endothelial progenitor cells (EPCs) display a unique ability to promote angiogenesis and restore endothelial function in injured blood vessels. NADPH oxidase 4 (NOX4)-derived hydrogen peroxide (H2O2) serves as a signaling molecule and promotes endothelial cell proliferation and migration as well as protecting against cell death. However, the role of NOX4 in EPC function is not completely understood. Methods: EPCs were isolated from human saphenous vein and mammary artery discarded during bypass surgery. NOX4 gene and protein expression in EPCs were measured by real time-PCR and Western blot analysis respectively. NOX4 gene expression was inhibited using an adenoviral vector expressing human NOX4 shRNA (Ad-NOX4i). H2O2 production was measured by Amplex red assay. EPC migration was evaluated using a transwell migration assay. EPC proliferation and viability were measured using trypan blue counts. Results: Inhibition of NOX4 using Ad-NOX4i reduced Nox4 gene and protein expression as well as H2O2 formation in EPCs. Inhibition of NOX4-derived H2O2 decreased both proliferation and migration of EPCs. Interestingly, pro-inflammatory cytokine tumor necrosis factor alpha (TNFα) decreased NOX4 expression and reduced survival of EPCs. However, the survival of EPCs was further diminished by TNF-α in NOX4-knockdown cells, suggesting that NOX4 has a protective role in EPCs. Conclusion: These findings suggest that NOX4-type NADPH oxidase is important for proliferation and migration functions of EPCs and protects against pro-inflammatory cytokine induced EPC death. These properties of NOX4 may facilitate the efficient function of EPCs which is vital for successful neovascularization.

  14. Effects of olmesartan on endothelial progenitor cell mobilization and function in carotid atherosclerosis.

    Science.gov (United States)

    Gong, Xin; Shao, Li; Fu, Yi-Min; Zou, Yong

    2015-04-26

    Olmesartan is a type of angiotensin II receptor inhibitor that can reduce the incidence of cardiovascular events. However, its role in the function of endothelial progenitor cells in atherosclerosis patients is still unclear. Our study aimed to explore the effects and mechanism of olmesartan on endothelial progenitor cell mobilization and function in carotid atherosclerosis. Forty carotid atherosclerosis patients were enrolled. Patients were administrated olmesartan 20 mg/day for 3 months. Flow cytometry was used for counting circulating endothelial progenitor cells; colorimetric method was used to measure the serum levels of endothelial nitric oxide synthase and nitric oxide. Cell migration, adhesion, and proliferation capacity, and related signaling pathway were also analyzed. Spearman rank correlation analysis was used to investigate the influence of olmesartan on endothelial progenitor cells and clinical characteristics (e.g., sex, age, blood pressure). Compared with the control group, the number of circulating endothelial progenitor cells was significantly decreased. Olmesartan can increase circulating endothelial progenitor cells number and the serum levels of eNOS and NO. Furthermore, it can improve cell migration, adhesion, and proliferation capacities. Spearman rank correlation analysis showed there is no relationship between olmesartan promotion effects on endothelial progenitor cell mobilization and the clinical characteristics (P>0.05). P-eNOS and P-Akt expression can be unregulated by RNH-6270 treatment and blocked by LY294002. Olmesartan can effectively promote the endothelial progenitor cells mobilization and improve their function in patients with carotid atherosclerosis, independent of basic characteristics. This process relies on the PI3K/Akt/eNOS signaling pathway.

  15. Infection of hepatitis B virus in extrahepatic endothelial tissues mediated by endothelial progenitor cells

    Directory of Open Access Journals (Sweden)

    Zhang Lili

    2007-04-01

    Full Text Available Abstract Background Hepatitis B virus (HBV replication has been reported to be involved in many extrahepatic viral disorders; however, the mechanism by which HBV is trans-infected into extrahepatic tissues such as HBV associated myocarditis remains largely unknown. Results In this study, we showed that human cord blood endothelial progenitor cells (EPCs, but not human umbilical vein endothelial cells (HUVECs could be effectively infected by uptake of HBV in vitro. Exposure of EPCs with HBV resulted in HBV DNA and viral particles were detected in EPCs at day 3 after HBV challenge, which were peaked around day 7 and declined in 3 weeks. Consistently, HBV envelope surface and core antigens were first detected in EPCs at day 3 after virus challenge and were retained to be detectable for 3 weeks. In contrast, HBV covalently closed circular DNA was not detected in EPCs at any time after virus challenge. Intravenous transplantation of HBV-treated EPCs into myocardial infarction and acute renal ischemia mouse model resulted in incorporation of HBV into injured heart, lung, and renal capillary endothelial tissues. Conclusion These results strongly support that EPCs serve as virus carrier mediating HBV trans-infection into the injured endothelial tissues. The findings might provide a novel mechanism for HBV-associated myocarditis and other HBV-related extrahepatic diseases as well.

  16. The Hemogenic Competence of Endothelial Progenitors Is Restricted by Runx1 Silencing during Embryonic Development

    Directory of Open Access Journals (Sweden)

    Alexia Eliades

    2016-06-01

    Full Text Available It is now well-established that hematopoietic stem cells (HSCs and progenitor cells originate from a specialized subset of endothelium, termed hemogenic endothelium (HE, via an endothelial-to-hematopoietic transition. However, the molecular mechanisms determining which endothelial progenitors possess this hemogenic potential are currently unknown. Here, we investigated the changes in hemogenic potential in endothelial progenitors at the early stages of embryonic development. Using an ETV2::GFP reporter mouse to isolate emerging endothelial progenitors, we observed a dramatic decrease in hemogenic potential between embryonic day (E7.5 and E8.5. At the molecular level, Runx1 is expressed at much lower levels in E8.5 intra-embryonic progenitors, while Bmi1 expression is increased. Remarkably, the ectopic expression of Runx1 in these progenitors fully restores their hemogenic potential, as does the suppression of BMI1 function. Altogether, our data demonstrate that hemogenic competency in recently specified endothelial progenitors is restrained through the active silencing of Runx1 expression.

  17. Interactions between endothelial progenitor cells (EPC) and titanium implant surfaces.

    Science.gov (United States)

    Ziebart, Thomas; Schnell, Anne; Walter, Christian; Kämmerer, Peer W; Pabst, Andreas; Lehmann, Karl M; Ziebart, Johanna; Klein, Marc O; Al-Nawas, Bilal

    2013-01-01

    Endothelial cells play an important role in peri-implant angiogenesis during early bone formation. Therefore, interactions between endothelial progenitor cells (EPCs) and titanium dental implant surfaces are of crucial interest. The aim of our in vitro study was to investigate the reactions of EPCs in contact with different commercially available implant surfaces. EPCs from buffy coats were isolated by Ficoll density gradient separation. After cell differentiation, EPC were cultured for a period of 7 days on different titanium surfaces. The test surfaces varied in roughness and hydrophilicity: acid-etched (A), sand-blasted-blasted and acid-etched (SLA), hydrophilic A (modA), and hydrophilic SLA (modSLA). Plastic and fibronectin-coated plastic surfaces served as controls. Cell numbers and morphology were analyzed by confocal laser scanning microscopy. Secretion of vascular endothelial growth factor (VEGF)-A was measured by enzyme-linked immunosorbent assay and expressions of iNOS and eNOS were investigated by real-time polymerase chain reaction. Cell numbers were higher in the control groups compared to the cells of titanium surfaces. Initially, hydrophilic titanium surfaces (modA and modSLA) showed lower cell numbers than hydrophobic surfaces (A and SLA). After 7 days smoother surfaces (A and modA) showed increased cell numbers compared to rougher surfaces (SLA and modSLA). Cell morphology of A, modA, and control surfaces was characterized by a multitude of pseudopodia and planar cell soma architecture. SLA and modSLA promoted small and plump cell soma with little quantity of pseudopodia. The lowest VEGF level was measured on A, the highest on modSLA. The highest eNOS and iNOS expressions were found on modA surfaces. The results of this study demonstrate that biological behaviors of EPCs can be influenced by different surfaces. The modSLA surface promotes an undifferentiated phenotype of EPCs that has the ability to secrete growth factors in great quantities. In

  18. Endothelial progenitor cells regenerate infracted myocardium with neovascularisation development

    Directory of Open Access Journals (Sweden)

    M.T. Abd El Aziz

    2015-03-01

    Full Text Available We achieved possibility of isolation, characterization human umbilical cord blood endothelial progenitor cells (EPCs, examination potency of EPCs to form new blood vessels and differentiation into cardiomyoctes in canines with acute myocardial infarction (AMI. EPCs were separated and cultured from umbilical cord blood. Their phenotypes were confirmed by uptake of double stains dioctadecyl tetramethylindocarbocyanine-labeled acetylated LDL and FITC-labeled Ulex europaeus agglutinin 1 (DILDL-UEA-1. EPCs of cord blood were counted. Human VEGFR-2 and eNOS from the cultured EPCs were assessed by qPCR. Human EPCs was transplanted intramyocardially in canines with AMI. ECG and cardiac enzymes (CK-MB and Troponin I were measured to assess severity of cellular damage. Histopathology was done to assess neovascularisation. Immunostaining was done to detect EPCs transdifferentiation into cardiomyocytes in peri-infarct cardiac tissue. qPCR for human genes (hVEGFR-2, and eNOS was done to assess homing and angiogenic function of transplanted EPCs. Cultured human cord blood exhibited an increased number of EPCs and significant high expression of hVEGFR-2 and eNOS genes in the culture cells. Histopathology showed increased neovascularization and immunostaining showed presence of EPCs newly differentiated into cardiomyocyte-like cells. Our findings suggested that hEPCs can mediate angiogenesis and differentiate into cardiomyoctes in canines with AMI.

  19. Endothelial Progenitor Cells in Peripheral Blood of Cardiac Catheterization Personnel

    Directory of Open Access Journals (Sweden)

    Soheir Korraa1, Tawfik M.S.1, Mohamed Maher 2 and Amr Zaher

    2014-07-01

    Full Text Available Background: The aim of the present study was to evaluate the rejuvenation capacity among cardiac catheterization technicians occupationally exposed to ionizing radiation. Subjects and methods: The individual annual collective dose information was measured by thermoluminscent personal dosimeters (TLD for those technicians and found to be ranging between 2.16 and 8.44 mSv/y. Venous blood samples were obtained from 30 cardiac catheterization technicians exposed to X-ray during fluoroscopy procedures at the National Heart Institute in Embaba. The control group involved 25 persons not exposed to ionizing radiation and not working in hospitals in addition to 20 persons not exposed to ionizing radiation and working in hospitals. Blood samples were assayed for total and differential blood counts, micronucleus formation (FMN plasma stromal derived growth factor-1α (SDF-1 α and cell phenotype of circulating endothelial progenitor cells (EPCs, whose surface markers were identified as the CD34, CD133 and kinase domain receptors (KDR. Results: SDF-1α (2650± 270 vs. 2170 ± 430 pg/ml and FMN (19.9 ± 5.5 vs. 2.8 ± 1.4/1000 cells were significantly higher among cardiac catheterization staff compared to those of the controls respectively. Similarly, EPCs: CD34 (53 ± 3.9 vs. 48 ± 8.5/105 mononuclear cells, CD133 (62.4 ± 4.8 vs. 54.2 ± 10.6 /105 mononuclear cells KDR (52.7 ± 10.6 vs.43.5± 8.2 /105 mononuclear cells were also significantly higher among cardiac catheterization staff compared to the values of controls respectively. Smoking seemed to have a positive effect on the FMN and SDF-1 but had a negative effect on EPCs. It was found that among cardiac catheterization staff, the numbers of circulating progenitor cells had increased and accordingly there was an increased capacity for tissue repair. Conclusion: In conclusion, the present work shows that occupational exposure to radiation, well within permissible levels, leaves a genetic mark on the

  20. Endothelial progenitor cells display clonal restriction in multiple myeloma

    Directory of Open Access Journals (Sweden)

    Dai Kezhi

    2006-06-01

    Full Text Available Abstract Background In multiple myeloma (MM, increased neoangiogenesis contributes to tumor growth and disease progression. Increased levels of endothelial progenitor cells (EPCs contribute to neoangiogenesis in MM, and, importantly, covary with disease activity and response to treatment. In order to understand the mechanisms responsible for increased EPC levels and neoangiogenic function in MM, we investigated whether these cells were clonal by determining X-chromosome inactivation (XCI patterns in female patients by a human androgen receptor assay (HUMARA. In addition, EPCs and bone marrow cells were studied for the presence of clonotypic immunoglobulin heavy-chain (IGH gene rearrangement, which indicates clonality in B cells; thus, its presence in EPCs would indicate a close genetic link between tumor cells in MM and endothelial cells that provide tumor neovascularization. Methods A total of twenty-three consecutive patients who had not received chemotherapy were studied. Screening in 18 patients found that 11 displayed allelic AR in peripheral blood mononuclear cells, and these patients were further studied for XCI patterns in EPCs and hair root cells by HUMARA. In 2 patients whose EPCs were clonal by HUMARA, and in an additional 5 new patients, EPCs were studied for IGH gene rearrangement using PCR with family-specific primers for IGH variable genes (VH. Results In 11 patients, analysis of EPCs by HUMARA revealed significant skewing (≥ 77% expression of a single allele in 64% (n = 7. In 4 of these patients, XCI skewing was extreme (≥ 90% expression of a single allele. In contrast, XCI in hair root cells was random. Furthermore, PCR amplification with VH primers resulted in amplification of the same product in EPCs and bone marrow cells in 71% (n = 5 of 7 patients, while no IGH rearrangement was found in EPCs from healthy controls. In addition, in patients with XCI skewing in EPCs, advanced age was associated with poorer clinical status

  1. Norepinephrine stimulates mobilization of endothelial progenitor cells after limb ischemia.

    Directory of Open Access Journals (Sweden)

    Qijun Jiang

    Full Text Available OBJECTIVE: During several pathological processes such as cancer progression, thermal injury, wound healing and hindlimb ischemia, the mobilization of endothelial progenitor cells (EPCs mobilization was enhanced with an increase of sympathetic nerve activity and norepinephrine (NE secretion, yet the cellular and molecular mechanisms involved in the effects of NE on EPCs has less been investigated. METHODS AND RESULTS: EPCs from BMs, peripheral circulation and spleens, the VEGF concentration in BM, skeletal muscle, peripheral circulation and spleen and angiogenesis in ischemic gastrocnemius were quantified in mice with hindlimbs ischemia. Systemic treatment of NE significantly increased EPCs number in BM, peripheral circulation and spleen, VEGF concentration in BM and skeletal muscle and angiogenesis in ischemic gastrocnemius in mice with hind limb ischemia, but did not affair VEGF concentration in peripheral circulation and spleen. EPCs isolated from healthy adults were cultured with NE in vitro to evaluate proliferation potential, migration capacity and phosphorylations of Akt and eNOS signal moleculars. Treatment of NE induced a significant increase in number of EPCs in the S-phase in a dose-dependent manner, as well as migrative activity of EPCs in vitro (p<0.05. The co-treatment of Phentolamine, I127, LY294002 and L-NAME with NE blocked the effects of NE on EPCs proliferation and migration. Treatment with NE significantly increased phosphorylation of Akt and eNOS of EPCs. Addition of phentolamine and I127 attenuated the activation of Akt/eNOS pathway, but metoprolol could not. Pretreatment of mice with either Phentolamine or I127 significantly attenuated the effects of NE on EPCs in vivo, VEGF concentration in BM, skeletal muscle and angiogenesis in ischemic gastrocnemius, but Metoprolol did not. CONCLUSION: These results unravel that sympathetic nervous system regulate EPCs mobilization and their pro-angiogenic capacity via α adrenoceptor

  2. The Novel Methods for Analysis of Exosomes Released from Endothelial Cells and Endothelial Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Jinju Wang

    2016-01-01

    Full Text Available Exosomes (EXs are cell-derived vesicles that mediate cell-cell communication and could serve as biomarkers. Here we described novel methods for purification and phenotyping of EXs released from endothelial cells (ECs and endothelial progenitor cells (EPCs by combining microbeads and fluorescence quantum dots (Q-dots® techniques. EXs from the culture medium of ECs and EPCs were isolated and detected with cell-specific antibody conjugated microbeads and second antibody conjugated Q-dots by using nanoparticle tracking analysis (NTA system. The sensitivities of the cell origin markers for ECs (CD105, CD144 and EPCs (CD34, KDR were evaluated. The sensitivity and specificity were determined by using positive and negative markers for EXs (CD63, platelets (CD41, erythrocytes (CD235a, and microvesicles (Annexin V. Moreover, the methods were further validated in particle-free plasma and patient samples. Results showed that anti-CD105/anti-CD144 and anti-CD34/anti-KDR had the highest sensitivity and specificity for isolating and detecting EC-EXs and EPC-EXs, respectively. The methods had the overall recovery rate of over 70% and were able to detect the dynamical changes of circulating EC-EXs and EPC-EXs in acute ischemic stroke. In conclusion, we have developed sensitive and specific microbeads/Q-dots fluorescence NTA methods for EC-EX and EPC-EX isolation and detection, which will facilitate the functional study and biomarker discovery.

  3. Directing migration of endothelial progenitor cells with applied DC electric fields.

    Science.gov (United States)

    Zhao, Zhiqiang; Qin, Lu; Reid, Brian; Pu, Jin; Hara, Takahiko; Zhao, Min

    2012-01-01

    Naturally-occurring, endogenous electric fields (EFs) have been detected at skin wounds, damaged tissue sites and vasculature. Applied EFs guide migration of many types of cells, including endothelial cells to migrate directionally. Homing of endothelial progenitor cells (EPCs) to an injury site is important for repair of vasculature and also for angiogenesis. However, it has not been reported whether EPCs respond to applied EFs. Aiming to explore the possibility to use electric stimulation to regulate the progenitor cells and angiogenesis, we tested the effects of direct-current (DC) EFs on EPCs. We first used immunofluorescence to confirm the expression of endothelial progenitor markers in three lines of EPCs. We then cultured the progenitor cells in EFs. Using time-lapse video microscopy, we demonstrated that an applied DC EF directs migration of the EPCs toward the cathode. The progenitor cells also align and elongate in an EF. Inhibition of vascular endothelial growth factor (VEGF) receptor signaling completely abolished the EF-induced directional migration of the progenitor cells. We conclude that EFs are an effective signal that guides EPC migration through VEGF receptor signaling in vitro. Applied EFs may be used to control behaviors of EPCs in tissue engineering, in homing of EPCs to wounds and to an injury site in the vasculature.

  4. Decreased Number of Circulating Endothelial Progenitor Cells (CD133+/KDR+) in Patients with Psoriatic Arthritis.

    Science.gov (United States)

    Batycka-Baran, Aleksandra; Paprocka, Maria; Baran, Wojciech; Szepietowski, Jacek C

    2016-08-23

    Cardiovascular diseases are a major cause of mortality in patients with psoriatic arthritis (PsA), but the precise mechanism of increased cardiovascular risk is unknown. Endothelial dysfunction plays a crucial role in the development of atherosclerosis. Circulating endothelial progenitor cells (CEPCs) contribute to endothelial regeneration and their level may be affected by chronic inflammation. The aim of this study was to evaluate the number of CEPCs in patients with PsA (n = 24) compared with controls (n = 26). CEPCs were identified as CD133+/ KDR+ cells in peripheral blood, using flow cytometry. A significantly decreased number of CEPCs was observed in patients with PsA (p number of these cells was significantly, inversely correlated with the severity of skin and joint involvement (Psoriasis Area and Severity Index (PASI), DAS28) and the level of C-reactive protein. We hypothesize that the reduced number of CEPCs may indicate and contribute to the increased cardiovascular risk in patients with PsA.

  5. A Fermented Whole Grain Prevents Lipopolysaccharides-Induced Dysfunction in Human Endothelial Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Laura Giusti

    2017-01-01

    Full Text Available Endogenous and exogenous signals derived by the gut microbiota such as lipopolysaccharides (LPS orchestrate inflammatory responses contributing to development of the endothelial dysfunction associated with atherosclerosis in obesity, metabolic syndrome, and diabetes. Endothelial progenitor cells (EPCs, bone marrow derived stem cells, promote recovery of damaged endothelium playing a pivotal role in cardiovascular repair. Since healthy nutrition improves EPCs functions, we evaluated the effect of a fermented grain, Lisosan G (LG, on early EPCs exposed to LPS. The potential protective effect of LG against LPS-induced alterations was evaluated as cell viability, adhesiveness, ROS production, gene expression, and NF-kB signaling pathway activation. Our results showed that LPS treatment did not affect EPCs viability and adhesiveness but induced endothelial alterations via activation of NF-kB signaling. LG protects EPCs from inflammation as well as from LPS-induced oxidative and endoplasmic reticulum (ER stress reducing ROS levels, downregulating proinflammatory and proapoptotic factors, and strengthening antioxidant defense. Moreover, LG pretreatment prevented NF-kB translocation from the cytoplasm into the nucleus caused by LPS exposure. In human EPCs, LPS increases ROS and upregulates proinflammatory tone, proapoptotic factors, and antioxidants. LG protects EPCs exposed to LPS reducing ROS, downregulating proinflammatory and proapoptotic factors, and strengthening antioxidant defenses possibly by inhibiting NF-κB nuclear translocation.

  6. The chemotactic activity of beta-carotene in endothelial cell progenitors and human umbilical vein endothelial cells: A microarray analysis

    NARCIS (Netherlands)

    Polus, A.; Kiec-wilk, B.; Hartwich, J.; Balwierz, A.; Stachura, J.; Dyduch, G.; Laidler, P.; Zagajewski, J.; Langman, T.; Schmitz, G.; Goralcsky, R.; Wertz, K.; Riss, G.; Keijer, J.; Dembinska-Kiec, A.

    2006-01-01

    Objectives: Endothelial cells and their progenitors play an important role in angiogenesis that is essential for organogenesis and tissue remodelling, as well as for inflammatory responses and carcinogenesis in all periods of life. In the present study, the authors concentrated on the direct effect

  7. Human endothelial progenitor cells internalize high-density lipoprotein.

    Science.gov (United States)

    Srisen, Kaemisa; Röhrl, Clemens; Meisslitzer-Ruppitsch, Claudia; Ranftler, Carmen; Ellinger, Adolf; Pavelka, Margit; Neumüller, Josef

    2013-01-01

    Endothelial progenitor cells (EPCs) originate either directly from hematopoietic stem cells or from a subpopulation of monocytes. Controversial views about intracellular lipid traffic prompted us to analyze the uptake of human high density lipoprotein (HDL), and HDL-cholesterol in human monocytic EPCs. Fluorescence and electron microscopy were used to investigate distribution and intracellular trafficking of HDL and its associated cholesterol using fluorescent surrogates (bodipy-cholesterol and bodipy-cholesteryl oleate), cytochemical labels and fluorochromes including horseradish peroxidase and Alexa Fluor® 568. Uptake and intracellular transport of HDL were demonstrated after internalization periods from 0.5 to 4 hours. In case of HDL-Alexa Fluor® 568, bodipy-cholesterol and bodipy-cholesteryl oleate, a photooxidation method was carried out. HDL-specific reaction products were present in invaginations of the plasma membrane at each time of treatment within endocytic vesicles, in multivesicular bodies and at longer periods of uptake, also in lysosomes. Some HDL-positive endosomes were arranged in form of "strings of pearl"- like structures. HDL-positive multivesicular bodies exhibited intensive staining of limiting and vesicular membranes. Multivesicular bodies of HDL-Alexa Fluor® 568-treated EPCs showed multilamellar intra-vacuolar membranes. At all periods of treatment, labeled endocytic vesicles and organelles were apparent close to the cell surface and in perinuclear areas around the Golgi apparatus. No HDL-related particles could be demonstrated close to its cisterns. Electron tomographic reconstructions showed an accumulation of HDL-containing endosomes close to the trans-Golgi-network. HDL-derived bodipy-cholesterol was localized in endosomal vesicles, multivesicular bodies, lysosomes and in many of the stacked Golgi cisternae and the trans-Golgi-network Internalized HDL-derived bodipy-cholesteryl oleate was channeled into the lysosomal intraellular

  8. Human endothelial progenitor cells internalize high-density lipoprotein.

    Directory of Open Access Journals (Sweden)

    Kaemisa Srisen

    Full Text Available Endothelial progenitor cells (EPCs originate either directly from hematopoietic stem cells or from a subpopulation of monocytes. Controversial views about intracellular lipid traffic prompted us to analyze the uptake of human high density lipoprotein (HDL, and HDL-cholesterol in human monocytic EPCs. Fluorescence and electron microscopy were used to investigate distribution and intracellular trafficking of HDL and its associated cholesterol using fluorescent surrogates (bodipy-cholesterol and bodipy-cholesteryl oleate, cytochemical labels and fluorochromes including horseradish peroxidase and Alexa Fluor® 568. Uptake and intracellular transport of HDL were demonstrated after internalization periods from 0.5 to 4 hours. In case of HDL-Alexa Fluor® 568, bodipy-cholesterol and bodipy-cholesteryl oleate, a photooxidation method was carried out. HDL-specific reaction products were present in invaginations of the plasma membrane at each time of treatment within endocytic vesicles, in multivesicular bodies and at longer periods of uptake, also in lysosomes. Some HDL-positive endosomes were arranged in form of "strings of pearl"- like structures. HDL-positive multivesicular bodies exhibited intensive staining of limiting and vesicular membranes. Multivesicular bodies of HDL-Alexa Fluor® 568-treated EPCs showed multilamellar intra-vacuolar membranes. At all periods of treatment, labeled endocytic vesicles and organelles were apparent close to the cell surface and in perinuclear areas around the Golgi apparatus. No HDL-related particles could be demonstrated close to its cisterns. Electron tomographic reconstructions showed an accumulation of HDL-containing endosomes close to the trans-Golgi-network. HDL-derived bodipy-cholesterol was localized in endosomal vesicles, multivesicular bodies, lysosomes and in many of the stacked Golgi cisternae and the trans-Golgi-network Internalized HDL-derived bodipy-cholesteryl oleate was channeled into the lysosomal

  9. Cerebral malaria is associated with low levels of circulating endothelial progenitor cells in African children.

    Science.gov (United States)

    Gyan, Ben; Goka, Bamenla Quarm; Adjei, George O; Tetteh, John K A; Kusi, Kwadwo Asamoah; Aikins, Anastasia; Dodoo, Daniel; Lesser, Martin L; Sison, Cristina P; Das, Sanchita; Howard, Marion E; Milbank, Elizabeth; Fischer, Kimberly; Rafii, Shahin; Jin, David; Golightly, Linnie M

    2009-04-01

    Damage to the cerebral microvasculature is a feature of cerebral malaria. Circulating endothelial progenitor cells are needed for microvascular repair. Based on this knowledge, we hypothesized that the failure to mobilize sufficient circulating endothelial progenitor cells to the cerebral microvasculature is a pathophysiologic feature of cerebral malaria. To test this hypothesis, we compared peripheral blood levels of CD34 (+)/VEGFR2(+) and CD34 (+)/CD133(+) cells and plasma levels of the chemokine stromal cell-derived growth factor 1 (SDF-1) in 214 children in Accra, Ghana. Children with cerebral malaria had lower levels of CD34 (+)/VEGFR2(+) and CD34 (+)/CD133(+) cells compared with those with uncomplicated malaria, asymptomatic parasitemia, or healthy controls. SDF-1 levels were higher in children with acute malaria compared with healthy controls. Together, these results uncover a potentially novel role for endothelial progenitor cell mobilization in the pathophysiology of cerebral malaria.

  10. Mouse lung contains endothelial progenitors with high capacity to form blood and lymphatic vessels

    Directory of Open Access Journals (Sweden)

    Barleon Bernhard

    2010-07-01

    Full Text Available Abstract Background Postnatal endothelial progenitor cells (EPCs have been successfully isolated from whole bone marrow, blood and the walls of conduit vessels. They can, therefore, be classified into circulating and resident progenitor cells. The differentiation capacity of resident lung endothelial progenitor cells from mouse has not been evaluated. Results In an attempt to isolate differentiated mature endothelial cells from mouse lung we found that the lung contains EPCs with a high vasculogenic capacity and capability of de novo vasculogenesis for blood and lymph vessels. Mouse lung microvascular endothelial cells (MLMVECs were isolated by selection of CD31+ cells. Whereas the majority of the CD31+ cells did not divide, some scattered cells started to proliferate giving rise to large colonies (> 3000 cells/colony. These highly dividing cells possess the capacity to integrate into various types of vessels including blood and lymph vessels unveiling the existence of local microvascular endothelial progenitor cells (LMEPCs in adult mouse lung. EPCs could be amplified > passage 30 and still expressed panendothelial markers as well as the progenitor cell antigens, but not antigens for immune cells and hematopoietic stem cells. A high percentage of these cells are also positive for Lyve1, Prox1, podoplanin and VEGFR-3 indicating that a considerabe fraction of the cells are committed to develop lymphatic endothelium. Clonogenic highly proliferating cells from limiting dilution assays were also bipotent. Combined in vitro and in vivo spheroid and matrigel assays revealed that these EPCs exhibit vasculogenic capacity by forming functional blood and lymph vessels. Conclusion The lung contains large numbers of EPCs that display commitment for both types of vessels, suggesting that lung blood and lymphatic endothelial cells are derived from a single progenitor cell.

  11. Histone Deacetylase (HDAC Inhibitors Down-Regulate Endothelial Lineage Commitment of Umbilical Cord Blood Derived Endothelial Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Horia Maniu

    2012-11-01

    Full Text Available To test the involvement of histone deacetylases (HDACs activity in endothelial lineage progression, we investigated the effects of HDAC inhibitors on endothelial progenitors cells (EPCs derived from umbilical cord blood (UCB. Adherent EPCs, that expressed the endothelial marker proteins (PCAM-1, CD105, CD133, and VEGFR2 revealed by flow cytometry were treated with three HDAC inhibitors: Butyrate (BuA, Trichostatin A (TSA, and Valproic acid (VPA. RT-PCR assay showed that HDAC inhibitors down-regulated the expression of endothelial genes such as VE-cadherin, CD133, CXCR4 and Tie-2. Furthermore, flow cytometry analysis illustrated that HDAC inhibitors selectively reduce the expression of VEGFR2, CD117, VE-cadherin, and ICAM-1, whereas the expression of CD34 and CD45 remained unchanged, demonstrating that HDAC is involved in endothelial differentiation of progenitor cells. Real-Time PCR demonstrated that TSA down-regulated telomerase activity probably via suppression of hTERT expression, suggesting that HDAC inhibitor decreased cell proliferation. Cell motility was also decreased after treatment with HDAC inhibitors as shown by wound-healing assay. The balance of acethylation/deacethylation kept in control by the activity of HAT (histone acetyltransferases/HDAC enzymes play an important role in differentiation of stem cells by regulating proliferation and endothelial lineage commitment.

  12. Perioperative iloprost and endothelial progenitor cells in uremic patients with severe limb ischemia undergoing peripheral revascularization.

    Science.gov (United States)

    Coppolino, Giuseppe; Buemi, Antoine; Bolignano, Davide; Lacquaniti, Antonio; La Spada, Michele; Stilo, Francesco; De Caridi, Giovanni; Benedetto, Francesco; Loddo, Saverio; Buemi, Michele; Spinelli, Francesco

    2009-11-01

    The incidence of severe limb ischemia (SLI) is high among haemodialysis (HD) patients. Limb rescue rate after surgical revascularization is relatively poor compared with patients with normal renal function. Prostanoids are an interesting category as adjuvants to revascularization. New vessel growth develops not exclusively by proliferation of endothelial cells in vascular extremities but also by cells mobilized from the bone marrow (HSC), transformed into endothelial progenitor cells (EPC) contributing to both re-endothelialization and neovascularization. Basal number of HSC and EPC is significantly reduced in HD patients and correlated with a subsequent defective neovascularization. The aim of this study was to evaluate the effects of perioperative treatment with iloprost in uremic patients with acute ischemia of lower limbs, undergoing surgical revascularization, on endothelial progenitor cells, hypothesizing a possible biological mechanism induced by the prostanoids. A search was also made for vascular remodeling processes through the analysis of the concentrations of soluble adhesion molecules (i-CAM, v-CAM, e-selectin), biochemical markers of endothelial activation. Thirty HD patients with SLI undergoing peripheral revascularization were enrolled (15 were treated with iloprost and 15 with a placebo). Iloprost was administered as an intra-arterial bolus of 3000 ng over 1 to 3 min immediately after revascularization and in the same affected artery. Serum samples were taken before revascularization (T0), at 6 (T6) and 24 h (T24) after infusion to measure sICAM-1, sE-selectin, and sVCAM-1, and for quantification of HSC and EPC. Progenitors were identified by specific surface markers CD34+, CD133+ and VEGFR2+. Count was conducted using PROCOUNT performed in a TRUCOUNT tube and with a FACSort flow cytometer. Before revascularization, all patients showed a decreased number of HSC and EPC. After 6 h, HSC augmented significantly compared with T0 in both groups. The

  13. Oxidized low-density lipoprotein and β-glycerophosphate synergistically induce endothelial progenitor cell ossification

    Institute of Scientific and Technical Information of China (English)

    Li LIU; Zhi-zhong LIU; Hui CHEN; Guo-jun ZHANG; Yu-hua KONG; Xi-xiong KANG

    2011-01-01

    To investigate the ability of ox-LDL to induce ossification of endothelial progenitor cells (EPCs) in vitro and explored whether oxidative stress,especially hypoxia inducible factor-1α (HIF-1α) and reactive oxygen species (ROS),participate in the ossific process.Methods:Rat bone marrow-derived endothelial progenitor cells (BMEPCs) were cultured in endothelial growth medium supplemented with VEGF (40 ng/mL) and bFGF (10 ng/mL).The cells were treated with oxidized low-density lipoprotein (ox-LDL,5 μg/mL) and/or β-glycerophosphate (β-GP,10 mmol/L).Calcium content and Von Kossa staining were used as the measures of calcium deposition.Ossific gene expression was determined using RT-PCR.The expression of osteocalcin (OCN) was detected with immunofluorescence.Alkaline phosphatase (ALP) activity was analyzed using colorimetric assay.Intercellular reactive oxygen species (ROS) were measured with flow cytometry.Results:BMEPCs exhibited a spindle-like shape.The percentage of cells that expressed the cell markers of EPCs CD34,CD133,and kinase insert domain-containing receptor (KDR) were 46.2%+5.8%,23.5%+4.0%,and 74.3%+8.8%,respectively.Among the total cells,78.3%+4.2% were stained with endothelial-specific fluorescence.Treatment of BMEPCs with ox-LDL significantly promoted calcium deposition,which was further significantly enhanced by co-treatment with β-GP.The same treatments significantly increased the gene expression of core-binding factor a-1 (cbfa-1) and OCN,while decreased the gene expression of osteoprotegerin (OPG).The treatments also significantly enhanced the activity of ALP,but did not affect the number of OCN+ cells.Furthermore,the treatments significantly increased ROS and activated the hypoxia inducible factor-1α (HIF-1α).In all these effects,ox-LDL acted synergistically with β-GP.Conclusion:Ox-LDL and β-GP synergistically induce ossification of BMEPCs,in which an oxidizing mechanism is involved.

  14. Multifactorial treatment increases endothelial progenitor cells in patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Reinhard, H; Jacobsen, P Karl; Lajer, Marianne

    2010-01-01

    Endothelial progenitor cells (EPC) augment vascular repair and neovascularisation. Patients with type 2 diabetes have reduced EPC and increased risk of cardiovascular disease (CVD), which is reduced by multifactorial intervention. Our aim, therefore, was to evaluate in type 2 diabetic patients wh...

  15. Effect of endothelial progenitor cell on hematopoietic reconstitution in allogeneic hematopoietic stem cell transplantation mouse model

    Institute of Scientific and Technical Information of China (English)

    化静

    2013-01-01

    Objective To examine the effects of endothelial progenitor cell (EPC) on hematopoietic reconsititution in allogeneic hematopoietic stem cell transplantation (alloHSCT) mouse model.Methods Allo-HSCT mouse model was established with condition of BU/CY,in which C57BL/6 (H-2b) and BABL/c (H-2d) mice were used

  16. Smooth muscle progenitor cells from peripheral blood promote the neovascularization of endothelial colony-forming cells

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Hyung Joon; Seo, Ha-Rim [Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul (Korea, Republic of); Jeong, Hyo Eun [Department of Mechanical Engineering, Korea University, Seoul (Korea, Republic of); Choi, Seung-Cheol; Park, Jae Hyung; Yu, Cheol Woong; Hong, Soon Jun [Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul (Korea, Republic of); Chung, Seok [Department of Mechanical Engineering, Korea University, Seoul (Korea, Republic of); Lim, Do-Sun, E-mail: dslmd@kumc.or.kr [Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul (Korea, Republic of)

    2014-07-11

    Highlights: • Two distinct vascular progenitor cells are induced from adult peripheral blood. • ECFCs induce vascular structures in vitro and in vivo. • SMPCs augment the in vitro and in vivo angiogenic potential of ECFCs. • Both cell types have synergistic therapeutic potential in ischemic hindlimb model. - Abstract: Proangiogenic cell therapy using autologous progenitors is a promising strategy for treating ischemic disease. Considering that neovascularization is a harmonized cellular process that involves both endothelial cells and vascular smooth muscle cells, peripheral blood-originating endothelial colony-forming cells (ECFCs) and smooth muscle progenitor cells (SMPCs), which are similar to mature endothelial cells and vascular smooth muscle cells, could be attractive cellular candidates to achieve therapeutic neovascularization. We successfully induced populations of two different vascular progenitor cells (ECFCs and SMPCs) from adult peripheral blood. Both progenitor cell types expressed endothelial-specific or smooth muscle-specific genes and markers, respectively. In a protein array focused on angiogenic cytokines, SMPCs demonstrated significantly higher expression of bFGF, EGF, TIMP2, ENA78, and TIMP1 compared to ECFCs. Conditioned medium from SMPCs and co-culture with SMPCs revealed that SMPCs promoted cell proliferation, migration, and the in vitro angiogenesis of ECFCs. Finally, co-transplantation of ECFCs and SMPCs induced robust in vivo neovascularization, as well as improved blood perfusion and tissue repair, in a mouse ischemic hindlimb model. Taken together, we have provided the first evidence of a cell therapy strategy for therapeutic neovascularization using two different types of autologous progenitors (ECFCs and SMPCs) derived from adult peripheral blood.

  17. Mobilization of endothelial progenitors by recurrent bacteremias with a periodontal pathogen.

    Directory of Open Access Journals (Sweden)

    Moritz Kebschull

    Full Text Available BACKGROUND: Periodontal infections are independent risk factors for atherosclerosis. However, the exact mechanisms underlying this link are yet unclear. Here, we evaluate the in vivo effects of bacteremia with a periodontal pathogen on endothelial progenitors, bone marrow-derived cells capable of endothelial regeneration, and delineate the critical pathways for these effects. METHODS: 12-week old C57bl6 wildtype or toll-like receptor (TLR-2 deficient mice were repeatedly intravenously challenged with 10⁹ live P. gingivalis 381 or vehicle. Numbers of Sca1+/flk1+ progenitors, circulating angiogenic cells, CFU-Hill, and late-outgrowth EPC were measured by FACS/culture. Endothelial function was assessed using isolated organ baths, reendothelization was measured in a carotid injury model. RANKL/osteoprotegerin levels were assessed by ELISA/qPCR. RESULTS: In wildtype mice challenged with intravenous P.gingivalis, numbers of Sca1+/flk1+ progenitors, CAC, CFU-Hill, and late-outgrowth EPC were strongly increased in peripheral circulation and spleen, whereas Sca1+/flk1+ progenitor numbers in bone marrow decreased. Circulating EPCs were functional, as indicated by improved endothelial function and improved reendothelization in infected mice. The osteoprotegerin/RANKL ratio was increased after P. gingivalis challenge in the bone marrow niche of wildtype mice and late-outgrowth EPC in vitro. Conversely, in mice deficient in TLR2, no increase in progenitor mobilization or osteoprotegerin/RANKL ratio was detected. CONCLUSION: Recurrent transient bacteremias, a feature of periodontitis, increase peripheral EPC counts and decrease EPC pools in the bone marrow, thereby possibly reducing overall endothelial regeneration capacity, conceivably explaining pro-atherogenic properties of periodontal infections. These effects are seemingly mediated by toll-like receptor (TLR-2.

  18. The level of circulating endothelial progenitor cells may be associated with the occurrence and recurrence of chronic subdural hematoma

    Directory of Open Access Journals (Sweden)

    Yan Song

    2013-01-01

    Full Text Available OBJECTIVES: The onset of chronic subdural hematoma may be associated with direct or indirect minor injuries to the head or a poorly repaired vascular injury. Endothelial progenitor cells happen to be one of the key factors involved in hemostasis and vascular repair. This study was designed to observe the levels of endothelial progenitor cells, white blood cells, platelets, and other indicators in the peripheral blood of patients diagnosed with chronic subdural hematoma to determine the possible relationship between the endothelial progenitor cells and the occurrence, development, and outcomes of chronic subdural hematoma. METHOD: We enrolled 30 patients with diagnosed chronic subdural hematoma by computer tomography scanning and operating procedure at Tianjin Medical University General Hospital from July 2009 to July 2011. Meanwhile, we collected 30 cases of peripheral blood samples from healthy volunteers over the age of 50. Approximately 2 ml of blood was taken from veins of the elbow to test the peripheral blood routine and coagulation function. The content of endothelial progenitor cells in peripheral blood mononuclear cells was determined by flow cytometry. RESULTS: The level of endothelial progenitor cells in peripheral blood was significantly lower in preoperational patients with chronic subdural hematomas than in controls. There were no significant differences between the two groups regarding the blood routine and coagulation function. However, the levels of circulating endothelial progenitor cells were significantly different between the recurrent group and the non-recurrent group. CONCLUSIONS: The level of circulating endothelial progenitor cells in chronic subdural hematoma patients was significantly lower than the level in healthy controls. Meanwhile, the level of endothelial progenitor cells in recurrent patients was significantly lower than the level in patients without recurrence. Endothelial progenitor cells may be related to the

  19. Fractalkine expression induces endothelial progenitor cell lysis by natural killer cells.

    Directory of Open Access Journals (Sweden)

    Dilyana Todorova

    Full Text Available BACKGROUND: Circulating CD34(+ cells, a population that includes endothelial progenitors, participate in the maintenance of endothelial integrity. Better understanding of the mechanisms that regulate their survival is crucial to improve their regenerative activity in cardiovascular and renal diseases. Chemokine-receptor cross talk is critical in regulating cell homeostasis. We hypothesized that cell surface expression of the chemokine fractalkine (FKN could target progenitor cell injury by Natural Killer (NK cells, thereby limiting their availability for vascular repair. METHODOLOGY/PRINCIPAL FINDINGS: We show that CD34(+-derived Endothelial Colony Forming Cells (ECFC can express FKN in response to TNF-α and IFN-γ inflammatory cytokines and that FKN expression by ECFC stimulates NK cell adhesion, NK cell-mediated ECFC lysis and microparticles release in vitro. The specific involvement of membrane FKN in these processes was demonstrated using FKN-transfected ECFC and anti-FKN blocking antibody. FKN expression was also evidenced on circulating CD34(+ progenitor cells and was detected at higher frequency in kidney transplant recipients, when compared to healthy controls. The proportion of CD34(+ cells expressing FKN was identified as an independent variable inversely correlated to CD34(+ progenitor cell count. We further showed that treatment of CD34(+ circulating cells isolated from adult blood donors with transplant serum or TNF-α/IFN-γ can induce FKN expression. CONCLUSIONS: Our data highlights a novel mechanism by which FKN expression on CD34(+ progenitor cells may target their NK cell mediated killing and participate to their immune depletion in transplant recipients. Considering the numerous diseased contexts shown to promote FKN expression, our data identify FKN as a hallmark of altered progenitor cell homeostasis with potential implications in better evaluation of vascular repair in patients.

  20. Isolation of Human Fetal Liver Progenitors and Their Enhanced Proliferation by Three-Dimensional Coculture with Endothelial Cells

    Science.gov (United States)

    Xiong, Anming; Austin, Timothy W.; Lagasse, Eric; Uchida, Nobuko; Tamaki, Stanley; Bordier, Bruno B.; Weissman, Irving L.; Glenn, Jeffrey S.; Millan, Maria T.

    2008-01-01

    Liver progenitor cells, characterized by the coexpression of biliary and hepatocyte lineage markers and the ability to form colonies in culture, were isolated by flow cytometry from primary human fetal livers. These prospectively isolated liver progenitor cells supported hepatitis D virus infection, expressed, and produced albumin and α-fetoprotein, as tracked by albumin-and α-fetoprotein–driven lentiviral promoter reporter constructs and measured by ELISA, respectively. Coculture in three-dimensional (3D) fibrin gel with endothelial cells resulted in the formation of vascular structures by the endothelial cells and increased proliferation of liver progenitors. The enhanced proliferation of liver progenitors that was observed when liver progenitors and endothelial cells were cultured in direct contact was not achieved when liver progenitors and endothelial cells were cultured on adjacent but separate matrices and when they were cultured across transwell membranes. In conclusion, coculture of liver progenitors and endothelial cells in three-dimensional matrix resulted in enhanced liver progenitor proliferation and function. This coculture methodology offers a novel coculture system that could be applied for the development of engineered liver tissues. PMID:19230124

  1. Endothelial progenitor cell differentiation using cryopreserved, umbilical cord blood-derived mononuclear cells

    Institute of Scientific and Technical Information of China (English)

    Jun-ho JANG; Hugh C KIM; Sun-kyung KIM; Jeong-eun CHOI; Young-jin KIM; Hyun-woo LEE; Seok-yun KANG; Joon-seong PARK; Jin-hyuk CHOI; Ho-yeong LIM

    2007-01-01

    Aim: To investigate the endothelial differentiation potentiality of umbilical cord blood (UCB), we induced the differentiation of endothelial progenitor cells (EPC)from cryopreserved UCB-derived mononuclear cells (MNC). Methods: MNC from cryopreserved UCB and peripheral blood (PB) were cultured in M199 medium with endothelial cell growth supplements for 14 d. EPC were characterized by RT-PCR,flow cytometry, and immunocytochemistry analysis. The proliferation of differen-tiated EPC was studied by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTI') assay, and vascular endothelial growth factor (VEGF) concentra-tion was measured using an ELISA kit. Characteristics of UCB-derived EPC were compared with those of PB-derived EPC. Results: A number of round-shaped cells were loosely attached to the bottom after 24 h culture, and numerous spindle-shaped cells began to appear from the round-shaped ones on d 7. Those cells expressed endothelial markers such as, Fit-1/VEGFR-1, ecNOS, VE-cadherin, yon Willebrand factor, and secreted VEGF. The patterns of endothelial markers of EPC from PB and UCB did not show striking differences. The results of the prolifera-tion and secretion of VEGF were also similar. Conclusion: We successfully cul-tured UCB cells stored at -196 ℃ into cells with the quality of endothelial cells.Those EPC could be used for angiogenic therapeutics by activating adjacent endothelial cells and enhancing angiogenesis.

  2. HMG-CoA reductase inhibitors (statins), inflammation, and endothelial progenitor cells-New mechanistic insights of atherosclerosis.

    Science.gov (United States)

    Blum, Arnon

    2014-01-01

    Statins have been shown to favorably affect the prognosis of patients with risk factors to atherosclerosis-both as a primary and a secondary prevention. The beneficial effects observed with statin therapy are not merely related to changes in lipid profile but also are due to a positive effect on vascular inflammation and on immune-modulation of T lymphocytes and endothelial progenitor stem cells (EPCs). This dual effect has been demonstrated mainly in clinical trials where a change in endothelial function was observed within hours, much earlier than the effects of statins on the lipid profile (weeks). Based on all the knowledge that we have today questions were raised as to the mechanistic pathways that may explain the process of atherosclerosis and through this pathway to find better solutions and therapies to prevent and fight atherosclerosis. Our review will focus on the new updates in the field of inflammation and stem cells in vascular biology-in relation with atherosclerosis.

  3. Endothelial progenitor cells in mothers of low-birthweight infants: a link between defective placental vascularization and increased cardiovascular risk?

    LENUS (Irish Health Repository)

    King, Thomas F J

    2013-01-01

    Offspring birthweight is inversely associated with future maternal cardiovascular mortality, a relationship that has yet to be fully elucidated. Endothelial progenitor cells (EPCs) are thought to play a key role in vasculogenesis, and EPC numbers reflect cardiovascular risk.

  4. Dysregulation of Vascular Endothelial Progenitor Cells Lung-Homing in Subjects with COPD

    Directory of Open Access Journals (Sweden)

    Brittany M. Salter

    2016-01-01

    Full Text Available Chronic obstructive pulmonary disease (COPD is characterized by fixed airflow limitation and progressive decline of lung function and punctuated by occasional exacerbations. The disease pathogenesis may involve activation of the bone marrow stimulating mobilization and lung-homing of progenitor cells. We investigated the hypothesis that lower circulating numbers of vascular endothelial progenitor cells (VEPCs are a consequence of increased lung-sequestration in COPD. Nonatopic, current or ex-smokers with diagnosed COPD and nonatopic, nonsmoking normal controls were enrolled. Blood and induced sputum extracted primitive hemopoietic progenitors (HPCs and VEPC were enumerated by flow cytometry. Migration and adhesive responses to fibronectin were assessed. In sputum, VEPC numbers were significantly greater in COPD compared to normal controls. In blood, VEPCs were significantly lower in COPD versus normal controls. There were no differences in HPC levels between the two groups in either compartment. Functionally, there was a greater migrational responsiveness of progenitors from COPD subjects to stromal cell-derived factor-1alpha (SDF-1α compared to normal controls. This was associated with greater numbers of CXCR4+ progenitors in sputum from COPD. Increased migrational responsiveness of progenitor cells may promote lung-homing of VEPC in COPD which may disrupt maintenance and repair of the airways and contribute to COPD disease pathogenesis.

  5. Androgen Modulates Functions of Endothelial Progenitor Cells through Activated Egr1 Signaling

    Directory of Open Access Journals (Sweden)

    Yizhou Ye

    2016-01-01

    Full Text Available Researches show that androgens have important effects on migration of endothelial cells and endothelial protection in coronary heart disease. Endothelial progenitor cells (EPCs as a progenitor cell type that can differentiate into endothelial cells, have a critical role in angiogenesis and endothelial protection. The relationship between androgen and the functions of EPCs has animated much interest and controversy. In this study, we investigated the angiogenic and migratory functions of EPCs after treatment by dihydrotestosterone (DHT and the molecular mechanisms as well. We found that DHT treatment enhanced the incorporation of EPCs into tubular structures formed by HUVECs and the migratory activity of EPCs in the transwell assay dose dependently. Moreover, microarray analysis was performed to explore how DHT changes the gene expression profiles of EPCs. We found 346 differentially expressed genes in androgen-treated EPCs. Angiogenesis-related genes like Egr-1, Vcan, Efnb2, and Cdk2ap1 were identified to be regulated upon DHT treatment. Furthermore, the enhanced angiogenic and migratory abilities of EPCs after DHT treatment were inhibited by Egr1-siRNA transfection. In conclusion, our findings suggest that DHT markedly enhances the vessel forming ability and migration capacity of EPCs. Egr1 signaling may be a possible pathway in this process.

  6. Endothelial Progenitor Cells Predict Cardiovascular Events after Atherothrombotic Stroke and Acute Myocardial Infarction. A PROCELL Substudy.

    Directory of Open Access Journals (Sweden)

    Elisa Cuadrado-Godia

    Full Text Available The aim of this study was to determine prognostic factors for the risk of new vascular events during the first 6 months after acute myocardial infarction (AMI or atherothrombotic stroke (AS. We were interested in the prognostic role of endothelial progenitor cells (EPC and circulating endothelial cells (CEC.Between February 2009 and July 2012, 100 AMI and 50 AS patients were consecutively studied in three Spanish centres. Patients with previously documented coronary artery disease or ischemic strokes were excluded. Samples were collected within 24h of onset of symptoms. EPC and CEC were studied using flow cytometry and categorized by quartiles. Patients were followed for up to 6 months. NVE was defined as new acute coronary syndrome, transient ischemic attack (TIA, stroke, or any hospitalization or death from cardiovascular causes. The variables included in the analysis included: vascular risk factors, carotid intima-media thickness (IMT, atherosclerotic burden and basal EPC and CEC count. Multivariate survival analysis was performed using Cox regression analysis.During follow-up, 19 patients (12.66% had a new vascular event (5 strokes; 3 TIAs; 4 AMI; 6 hospitalizations; 1 death. Vascular events were associated with age (P = 0.039, carotid IMT≥0.9 (P = 0.044, and EPC count (P = 0.041 in the univariate analysis. Multivariate Cox regression analysis showed an independent association with EPC in the lowest quartile (HR: 10.33, 95%CI (1.22-87.34, P = 0.032] and IMT≥0.9 [HR: 4.12, 95%CI (1.21-13.95, P = 0.023].Basal EPC and IMT≥0.9 can predict future vascular events in patients with AMI and AS, but CEC count does not affect cardiovascular risk.

  7. Impaired endothelial progenitor cell mobilization and dysfunctional bone marrow stroma in diabetes mellitus.

    Directory of Open Access Journals (Sweden)

    Peter E Westerweel

    Full Text Available BACKGROUND: Circulating Endothelial Progenitor Cell (EPC levels are reduced in diabetes mellitus. This may be a consequence of impaired mobilization of EPC from the bone marrow. We hypothesized that under diabetic conditions, mobilization of EPC from the bone marrow to the circulation is impaired -at least partly- due to dysfunction of the bone marrow stromal compartment. METHODS: Diabetes was induced in mice by streptozotocin injection. Circulating Sca-1(+Flk-1(+ EPC were characterized and quantified by flow cytometry at baseline and after mobilization with G-CSF/SCF injections. In vivo hemangiogenic recovery was tested by 5-FU challenge. Interaction within the bone marrow environment between CD34(+ hematopoietic progenitor cells (HPC and supporting stroma was assessed by co-cultures. To study progenitor cell-endothelial cell interaction under normoglycemic and hyperglycemic conditions, a co-culture model using E4Orf1-transfected human endothelial cells was employed. RESULTS: In diabetic mice, bone marrow EPC levels were unaffected. However, circulating EPC levels in blood were lower at baseline and mobilization was attenuated. Diabetic mice failed to recover and repopulate from 5-FU injection. In vitro, primary cultured bone marrow stroma from diabetic mice was impaired in its capacity to support human CFU-forming HPC. Finally, hyperglycemia hampered the HPC supportive function of endothelial cells in vitro. CONCLUSION: EPC mobilization is impaired under experimental diabetic conditions and our data suggest that diabetes induces alterations in the progenitor cell supportive capacity of the bone marrow stroma, which could be partially responsible for the attenuated EPC mobilization and reduced EPC levels observed in diabetic patients.

  8. Impaired Endothelial Progenitor Cell Mobilization and Dysfunctional Bone Marrow Stroma in Diabetes Mellitus

    Science.gov (United States)

    Rafii, Shahin; Jaspers, Janneke E.; White, Ian A.; Hooper, Andrea T.; Doevendans, Pieter A.; Verhaar, Marianne C.

    2013-01-01

    Background Circulating Endothelial Progenitor Cell (EPC) levels are reduced in diabetes mellitus. This may be a consequence of impaired mobilization of EPC from the bone marrow. We hypothesized that under diabetic conditions, mobilization of EPC from the bone marrow to the circulation is impaired –at least partly– due to dysfunction of the bone marrow stromal compartment. Methods Diabetes was induced in mice by streptozotocin injection. Circulating Sca-1+Flk-1+ EPC were characterized and quantified by flow cytometry at baseline and after mobilization with G-CSF/SCF injections. In vivo hemangiogenic recovery was tested by 5-FU challenge. Interaction within the bone marrow environment between CD34+ hematopoietic progenitor cells (HPC) and supporting stroma was assessed by co-cultures. To study progenitor cell–endothelial cell interaction under normoglycemic and hyperglycemic conditions, a co-culture model using E4Orf1-transfected human endothelial cells was employed. Results In diabetic mice, bone marrow EPC levels were unaffected. However, circulating EPC levels in blood were lower at baseline and mobilization was attenuated. Diabetic mice failed to recover and repopulate from 5-FU injection. In vitro, primary cultured bone marrow stroma from diabetic mice was impaired in its capacity to support human CFU-forming HPC. Finally, hyperglycemia hampered the HPC supportive function of endothelial cells in vitro. Conclusion EPC mobilization is impaired under experimental diabetic conditions and our data suggest that diabetes induces alterations in the progenitor cell supportive capacity of the bone marrow stroma, which could be partially responsible for the attenuated EPC mobilization and reduced EPC levels observed in diabetic patients. PMID:23555959

  9. Oct-4+/Tenascin C+ neuroblastoma cells serve as progenitors of tumor-derived endothelial cells

    Institute of Scientific and Technical Information of China (English)

    Annalisa Pezzolo; Silvia Deaglio; Fabio Malavasi; Vito Pistoia; Federica Parodi; Danilo Marimpietri; Lizzia Raffaghello; Claudia Cocco; Angela Pistorio; Manuela Mosconi; Claudio Gambini; Michele Cillj

    2011-01-01

    Neuroblastoma (NB)-associated endothelial microvessels (EMs) may be lined by tumor-derived endothelial cells (TECs),that are genetically unstable and chemoresistant.Here we have addressed the identification of TEC progenitors in NB by focusing on Octamer-binding transcription factor 4 (Oct-4) as a putative marker.Oct-4+ cells were detected in primary NB samples (n = 23),metastatic bone marrow aspirates (n = 10),NB cell lines (n = 4),and orthotopic tumors (n = 10) formed by the HTLA-230 NB cell line in immunodeficient mice.Most Oct-4+ cells showed a perivascular distribution,with 5% of them homing in perinecrotic areas.All Oct-4+ cells were tumor-derived since they shared amplification of MYCN oncogene with malignant cells.Perivascular Oct-4+ cells expressed stem cellrelated,neural progenitor-related and NB-related markers,including surface Tenascin C (TNC),that was absent from perinecrotic Oct-4+ cells and bulk tumor cells.TNC+ but not TNC- HTLA-230 cells differentiated in vitro into endothelial-like cells expressing vascular-endothellal-cadherin,prostate-specific membrane antigen and CD31 upon culture in medium containing vascular endothelial growth factor (VEGF).TNC+ but not TNC- HTLA-230 cells formed neurospheres when cultured in serum-free medium.Both cell fractions were tumorigenic,but only tumors formed by TNC+ cegs contained EMs fined by TECs.In conclusion,we have identified in NB tumors two putative niches containing Oct-4+ tumor cells.Oct-4+/TNC+ perivascular NB cells displayed a high degree of plasticity and served as progenitors of TECs.Therapeutic targeting of Oct4+/TNC+ progenitors may counteract the contribution of NB-derived ECs to tumor relapse and chemoresistance.

  10. Type 2 diabetes mellitus is associated with an imbalance in circulating endothelial and smooth muscle progenitor cell numbers

    NARCIS (Netherlands)

    van Ark, J.; Moser, J.; Lexis, C. P. H.; Bekkema, F.; Pop, I.; van der Horst, I. C. C.; Zeebregts, C. J.; van Goor, H.; Wolffenbuttel, B. H. R.; Hillebrands, J. L.

    2012-01-01

    Individuals with type 2 diabetes mellitus have increased rates of macrovascular disease (MVD). Endothelial progenitor cells (EPCs), circulating angiogenic cells (CACs) and smooth muscle progenitor cells (SMPCs) are suggested to play a role in the pathogenesis of MVD. The relationship between vasoreg

  11. Apoptosis of endothelial progenitor cells in a metabolic syndrome experimental model

    Science.gov (United States)

    Lembo, Carina; Lopez-Aguilera, Francisco; Diez, Emiliano R.; Renna, Nicolás; Vazquez-Prieto, Marcela; Miatello, Roberto M.

    2012-01-01

    Aim: This study tests the hypothesis postulating that metabolic syndrome induced by chronic administration of fructose to spontaneously hypertensive rats (FFHR) generates impairment in vascular repair by endothelial progenitor cells (EPC). Materials and Methods: To characterize the vascular adverse environment present in this experimental model we measured: NAD(P)H oxidase activity, eNOS activity, presence of apoptosis in the arterial wall, all these parameters were most affected in the FFHR group. Also, we found decreased level and proliferative capacity of EPC measured by flow cytometry and colonies forming units assay in cultured cells, respectively, in both groups treated with fructose; FFHR (SHR fructose fed rats) and FFR (WKY fructose fed rats) compared with their controls; SHR and WKY. Results: The fructose-fed groups FFR and SHR also showed an incremented number of apoptotic (annexinV+/7AADdim) EPC measured by flow cytometry that returns to almost normal values after eliminating fructose administration. Conclusion: Our findings suggest that increased apoptosis levels of EPC generated in this experimental model could bein part the underlying cause for the impaired vascular repair by in EPC. PMID:23233774

  12. Effects of simvastatin/ezetimibe on microparticles, endothelial progenitor cells and platelet aggregation in subjects with coronary heart disease under antiplatelet therapy

    Energy Technology Data Exchange (ETDEWEB)

    Camargo, L.M.; França, C.N.; Izar, M.C.; Bianco, H.T.; Lins, L.S.; Barbosa, S.P.; Pinheiro, L.F.; Fonseca, F.A.H. [Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Medicina, São Paulo, SP, Brasil, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil)

    2014-04-15

    It is not known whether the addition of ezetimibe to statins adds cardiovascular protection beyond the expected changes in lipid levels. Subjects with coronary heart disease were treated with four consecutive 1-week courses of therapy (T) and evaluations. The courses were: T1, 100 mg aspirin alone; T2, 100 mg aspirin and 40 mg simvastatin/10 mg ezetimibe; T3, 40 mg simvastatin/10 mg ezetimibe, and 75 mg clopidogrel (300 mg initial loading dose); T4, 75 mg clopidogrel alone. Platelet aggregation was examined in whole blood. Endothelial microparticles (CD51), platelet microparticles (CD42/CD31), and endothelial progenitor cells (CD34/CD133; CDKDR/CD133, or CD34/KDR) were quantified by flow cytometry. Endothelial function was examined by flow-mediated dilation. Comparisons between therapies revealed differences in lipids (T2 and T3endothelial function (T2>T1 and T4, P=0.001). Decreased platelet aggregation was observed after aspirin (arachidonic acid, T1endothelial and platelet microparticles, or endothelial progenitor cells. Cardiovascular protection following therapy with simvastatin/ezetimibe seems restricted to lipid changes and improvement of endothelial function not affecting the release of microparticles, mobilization of endothelial progenitor cells or decreased platelet aggregation.

  13. Reverse-D-4F Increases the Number of Endothelial Progenitor Cells and Improves Endothelial Progenitor Cell Dysfunctions in High Fat Diet Mice.

    Science.gov (United States)

    Nana, Yang; Peng, Jiao; Jianlin, Zhang; Xiangjian, Zhang; Shutong, Yao; Enxin, Zhan; Bin, Li; Chuanlong, Zong; Hua, Tian; Yanhong, Si; Yunsai, Du; Shucun, Qin; Hui, Wang

    2015-01-01

    Although high density lipoprotein (HDL) improves the functions of endothelial progenitor cells (EPCs), the effect of HDL ApoAI mimetic peptide reverse-D-4F (Rev-D4F) on EPC mobilization and repair of EPC dysfunctions remains to be studied. In this study, we investigated the effects of Rev-D4F on peripheral blood cell subpopulations in C57 mice treated with a high fat diet and the mechanism of Rev-D4F in improving the function of EPCs impaired by tumor necrosis factor-α (TNF-α). The high fat diet significantly decreased the number of EPCs, EPC migratory functions, and the percentage of lymphocytes in the white blood cells. However, it significantly increased the number of white blood cells, the percentage of monocytes in the white blood cells, and the level of vascular endothelial growth factor (VEGF) and TNF-α in the plasma. Rev-D4F clearly inhibited the effect of the high fat diet on the quantification of peripheral blood cell subpopulations and cytokine levels, and increased stromal cell derived factor 1α (SDF-1α) in the plasma. We provided in vitro evidence that TNF-α impaired EPC proliferation, migration, and tube formation through inactive AKT and eNOS, which was restored by Rev-D4F treatment. In contrast, both the PI3-kinase (PI3K) inhibitor (LY294002) and AKT inhibitor (perifosine) obviously inhibited the restoration of Rev-4F on EPCs impaired by TNF-α. Our results suggested that Rev-D4F increases the quantity of endothelial progenitor cells through increasing the SDF-1α levels and decreasing the TNF-α level of peripheral blood in high fat diet-induced C57BL/6J mice, and restores TNF-α induced dysfunctions of EPCs partly through stimulating the PI3K/AKT signal pathway.

  14. Endothelial progenitor cells induce a phenotype shift in differentiated endothelial cells towards PDGF/PDGFRβ axis-mediated angiogenesis.

    Directory of Open Access Journals (Sweden)

    Moritz Wyler von Ballmoos

    Full Text Available BACKGROUND: Endothelial Progenitor Cells (EPC support neovascularization and regeneration of injured endothelium both by providing a proliferative cell pool capable of differentiation into mature vascular endothelial cells and by secretion of angiogenic growth factors. OBJECTIVE: The aim of this study was to investigate the role of PDGF-BB and PDGFRβ in EPC-mediated angiogenesis of differentiated endothelial cells. METHODS AND RESULTS: Conditioned medium from human EPC (EPC-CM cultured in hypoxic conditions contained substantially higher levels of PDGF-BB as compared to normoxic conditions (P<0.01. EPC-CM increased proliferation (1.39-fold; P<0.001 and migration (2.13-fold; P<0.001 of isolated human umbilical vein endothelial cells (HUVEC, as well as sprouting of vascular structures from ex vivo cultured aortic rings (2.78-fold increase; P = 0.01. The capacity of EPC-CM to modulate the PDGFRβ expression in HUVEC was assessed by western blot and RT-PCR. All the pro-angiogenic effects of EPC-CM on HUVEC could be partially inhibited by inactivation of PDGFRβ (P<0.01. EPC-CM triggered a distinct up-regulation of PDGFRβ (2.5±0.5; P<0.05 and its phosphorylation (3.6±0.6; P<0.05 in HUVEC. This was not observed after exposure of HUVEC to recombinant human PDGF-BB alone. CONCLUSION: These data indicate that EPC-CM sensitize endothelial cells and induce a pro-angiogenic phenotype including the up-regulation of PDGFRβ, thereby turning the PDGF/PDGFRβ signaling-axis into a critical element of EPC-induced endothelial angiogenesis. This finding may be utilized to enhance EPC-based therapy of ischemic tissue in future.

  15. Interactions of primary neuroepithelial progenitor and brain endothelial cells: distinct effect on neural progenitor maintenance and differentiation by soluble factors and direct contact

    Institute of Scientific and Technical Information of China (English)

    Miguel A Gama Sosa; Rita De Gasperi; Anne B Rocher; Gissel M Perez; Keila Simons; Daniel E Cruz; Patrick R Hof; Gregory A Elder

    2007-01-01

    Neurovascular interactions are crucial for the normal development of the central nervous system. To study such interactions in primary cultures, we developed a procedure to simultaneously isolate neural progenitor and endothelial cell fractions from embryonic mouse brains. Depending on the culture conditions endothelial cells were found to favor maintenance of the neuroprogenitor phenotype through the production of soluble factors, or to promote neuronal differentiation of neural progenitors through direct contact. These apparently opposing effects could reflect differential cellular interactions needed for the proper development of the brain.

  16. Erythropoietin Receptor Positive Circulating Progenitor Cells and Endothelial Progenitor Cells in Patients with Different Stages of Diabetic Retinopathy

    Institute of Scientific and Technical Information of China (English)

    Liu-mei Hu; Guo-xu Xu; Guo-tong XU; Wei-ye Li; Xia Lei; Bo Ma; Yu Zhang; Yan Yan; Ya-lan Wu; Ge-zhi Xu; Wen Ye; Ling Wang

    2011-01-01

    Objective To investigate the possible involvement of erythropoietin (EPO)/erythropoietin receptor(EPOR) system in neovascularization and vascular regeneration in diabetic retinopathy (DR).Methods EPOR positive circulating progenitor cells (CPCs: CD34+) and endothelial progenitor cells (EPCs: CD34+KDR+) were assessed by flow cytometry in type 2 diabetic patients with different stages of DR. The cohort consisted of age- and sex-matched control patients without diabetes (n=7), non-prolif-erative DR (NPDR, n=7), proliferative DR (PDR, n=8), and PDR complicated with diabetic nephropathy (PDR-DN, n=7). Results The numbers of EPOR+ CPCs and EPOR+ EPCs were reduced remarkably in NPDR compared with the control group (both P<0.01), whereas rebounded in PDR and PDR-DN groups in varying degrees. Similar changes were observed in respect of the proportion of EPOR+ CPCs in CPCs (NPDR vs.control, P< 0.01) and that of EPOR+ EPCs in EPCs (NPDR vs. control, P< 0.05). Conclusion Exogenous EPO, mediated via the EPO/EPOR system of EPCs, may alleviate the im-paired vascular regeneration in NPDR, whereas it might aggravate retinal neovascularization in PDR due to a rebound of EPOR+ EPCs associated with ischemia.

  17. Late Release of Circulating Endothelial Cells and Endothelial Progenitor Cells after Chemotherapy Predicts Response and Survival in Cancer Patients

    Directory of Open Access Journals (Sweden)

    Jeanine M. Roodhart

    2010-01-01

    Full Text Available We and others have previously demonstrated that the acute release of progenitor cells in response to chemotherapy actually reduces the efficacy of the chemotherapy. Here, we take these data further and investigate the clinical relevance of circulating endothelial (progenitor cells (CE(PCs and modulatory cytokines in patients after chemotherapy with relation to progression-free and overall survival (PFS/OS. Patients treated with various chemotherapeutics were included. Blood sampling was performed at baseline, 4 hours, and 7 and 21 days after chemotherapy. The mononuclear cell fraction was analyzed for CE(PC by FACS analysis. Plasma was analyzed for cytokines by ELISA or Luminex technique. CE(PCs were correlated with response and PFS/OS using Cox proportional hazard regression analysis. We measured CE(PCs and cytokines in 71 patients. Only patients treated with paclitaxel showed an immediate increase in endothelial progenitor cell 4 hours after start of treatment. These immediate changes did not correlate with response or survival. After 7 and 21 days of chemotherapy, a large and consistent increase in CE(PC was found (P < .01, independent of the type of chemotherapy. Changes in CE(PC levels at day 7 correlated with an increase in tumor volume after three cycles of chemotherapy and predicted PFS/OS, regardless of the tumor type or chemotherapy. These findings indicate that the late release of CE(PC is a common phenomenon after chemotherapeutic treatment. The correlation with a clinical response and survival provides further support for the biologic relevance of these cells in patients' prognosis and stresses their possible use as a therapeutic target.

  18. Oligonucleotide biofunctionalization enhances endothelial progenitor cell adhesion on cobalt/chromium stents.

    Science.gov (United States)

    Barsotti, Maria Chiara; Al Kayal, Tamer; Tedeschi, Lorena; Dinucci, Dinuccio; Losi, Paola; Sbrana, Silverio; Briganti, Enrica; Giorgi, Rodorico; Chiellini, Federica; Di Stefano, Rossella; Soldani, Giorgio

    2015-10-01

    As the endothelium still represents the ideal surface for cardiovascular devices, different endothelialization strategies have been attempted for biocompatibility and nonthrombogenicity enhancement. Since endothelial progenitor cells (EPCs) could accelerate endothelialization, preventing thrombosis and restenosis, the aim of this study was to use oligonucleotides (ONs) to biofunctionalize stents for EPC binding. In order to optimize the functionalization procedure before its application to cobalt-chromium (Co/Cr) stents, discs of the same material were preliminarily used. Surface aminosilanization was assessed by infrared spectroscopy and scanning electron microscopy. A fluorescent endothelial-specific ON was immobilized on aminosilanized surfaces and its presence was visualized by confocal microscopy. Fluorescent ON binding to porcine blood EPCs was assessed by flow cytometry. Viability assay was performed on EPCs cultured on unmodified, nontargeting ON or specific ON-coated discs; fluorescent staining of nuclei and F-actin was then performed on EPCs cultured on unmodified or specific ON-coated discs and stents. Disc biofunctionalization significantly increased EPC viability as compared to both unmodified and nontargeting ON-coated surfaces; cell adhesion was also significantly increased. Stents were successfully functionalized with the specific ON, and EPC binding was confirmed by confocal microscopy. In conclusion, stent biofunctionalization for EPC binding was successfully achieved in vitro, suggesting its use to obtain in vivo endothelialization, exploiting the natural regenerative potential of the human body. © 2015 Wiley Periodicals, Inc.

  19. Cord blood-circulating endothelial progenitors for treatment of vascular diseases.

    Science.gov (United States)

    Lavergne, M; Vanneaux, V; Delmau, C; Gluckman, E; Rodde-Astier, I; Larghero, J; Uzan, G

    2011-04-01

    Adult peripheral blood (PB) endothelial progenitor cells (EPC) are produced in the bone marrow and are able to integrate vascular structures in sites of neoangiogenesis. EPCs thus represent a potential therapeutic tool for ischaemic diseases. However, use of autologous EPCs in cell therapy is limited by their rarity in adult PB. Cord blood (CB) contains more EPCs than PB, and they are functional after expansion. They form primary colonies that give rise to secondary colonies, each yielding more than 10(7) cells after few passages. The number of endothelial cells obtained from one unit of CB is compatible with potential clinical application. EPC colonies can be securely produced, expanded and cryopreserved in close culture devices and endothelial cells produced in these conditions are functional as shown in different in vitro and in vivo assays. As CB EPC-derived endothelial cells would be allogeneic to patients, it would be of interest to prepare them from ready-existing CB banks. We show that not all frozen CB units from a CB bank are able to generate EPC colonies in culture, and when they do so, number of colonies is lower than that obtained with fresh CB units. However, endothelial cells derived from frozen CB have the same phenotypical and functional properties than those derived from fresh CB. This indicates that CB cryopreservation should be improved to preserve integrity of stem cells other than haematopoietic ones. Feasibility of using CB for clinical applications will be validated in porcine models of ischaemia.

  20. The angiogenic gene profile of circulating endothelial progenitor cells from ischemic stroke patients

    Directory of Open Access Journals (Sweden)

    Navarro-Sobrino Míriam

    2013-02-01

    Full Text Available Abstract Background The identification of circulating endothelial progenitor cells (EPCs has introduced new possibilities for cell-based treatments for stroke. We tested the angiogenic gene expression of outgrowth endothelial cells (OECs, an EPC subtype capable to shape vessel structures. Methods OECs (at colony or mature stages from ischemic stroke patients (n=8 were characterized using the RT2 ProfilerTM human angiogenesis PCR Array, and human microvascular endothelial cells (hCMEC/D3 were used as an expression reference of endothelial cells. Results Colony-OECs showed higher expression of CCL2, ID3, IGF-1, MMP9, TGFBR1, TNFAIP2, TNF and TGFB1. However, BAI-1, NRP2, THBS1, MMP2 and VEGFC expression was increased in mature-OECs (p Conclusion Our study shows that OECs from stroke patients present higher levels of pro-angiogenic factors at early stages, decreasing in mature OECs when they become more similar to mature microvascular endothelial cells.

  1. Macrophage-Mediated Lymphangiogenesis: The Emerging Role of Macrophages as Lymphatic Endothelial Progenitors

    Energy Technology Data Exchange (ETDEWEB)

    Ran, Sophia, E-mail: sran@siumed.edu; Montgomery, Kyle E. [Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, 801 N. Rutledge, Springfield, IL 62794 (United States)

    2012-06-27

    It is widely accepted that macrophages and other inflammatory cells support tumor progression and metastasis. During early stages of neoplastic development, tumor-infiltrating macrophages (TAMs) mount an immune response against transformed cells. Frequently, however, cancer cells escape the immune surveillance, an event that is accompanied by macrophage transition from an anti-tumor to a pro-tumorigenic type. The latter is characterized by high expression of factors that activate endothelial cells, suppress immune response, degrade extracellular matrix, and promote tumor growth. Cumulatively, these products of TAMs promote tumor expansion and growth of both blood and lymphatic vessels that facilitate metastatic spread. Breast cancers and other epithelial malignancies induce the formation of new lymphatic vessels (i.e., lymphangiogenesis) that leads to lymphatic and subsequently, to distant metastasis. Both experimental and clinical studies have shown that TAMs significantly promote tumor lymphangiogenesis through paracrine and cell autonomous modes. The paracrine effect consists of the expression of a variety of pro-lymphangiogenic factors that activate the preexisting lymphatic vessels. The evidence for cell-autonomous contribution is based on the observed tumor mobilization of macrophage-derived lymphatic endothelial cell progenitors (M-LECP) that integrate into lymphatic vessels prior to sprouting. This review will summarize the current knowledge of macrophage-dependent growth of new lymphatic vessels with specific emphasis on an emerging role of macrophages as lymphatic endothelial cell progenitors (M-LECP)

  2. Myocardial regeneration by transplantation of modified endothelial progenitor cells expressing SDF-1 in a rat model

    DEFF Research Database (Denmark)

    Schuh, A.; Kroh, A.; Konschalla, S.

    2012-01-01

    Cell based therapy has been shown to attenuate myocardial dysfunction after myocardial infarction (MI) in different acute and chronic animal models. It has been further shown that stromal-cell derived factor-1a (SDF-1a) facilitates proliferation and migration of endogenous progenitor cells...... into injured tissue. The aim of the present study was to investigate the role of exogenously applied and endogenously mobilized cells in a regenerative strategy for MI therapy. Lentivirally SDF-1a-infected endothelial progenitor cells (EPCs) were injected after 90 min. of ligation and reperfusion of the left...... anterior descending artery (LAD) intramyocardial and intracoronary using a new rodent catheter system. Eight weeks after transplantation, echocardiography and isolated heart studies revealed a significant improvement of LV function after intramyocardial application of lentiviral with SDF-1 infected EPCs...

  3. Expression of parathyroid-specific genes in vascular endothelial progenitors of normal and tumoral parathyroid glands.

    Science.gov (United States)

    Corbetta, Sabrina; Belicchi, Marzia; Pisati, Federica; Meregalli, Mirella; Eller-Vainicher, Cristina; Vicentini, Leonardo; Beck-Peccoz, Paolo; Spada, Anna; Torrente, Yvan

    2009-09-01

    Parathyroid tissue is able to spontaneously induce angiogenesis, proliferate, and secrete parathyroid hormone when autotransplanted in patients undergoing total parathyroidectomy. Angiogenesis is also involved in parathyroid tumorigenesis. Here we investigated the anatomical and molecular relationship between endothelial and parathyroid cells within human parathyroid glands. Immunohistochemistry for CD34 antigen identified two subpopulations in normal and tumoral parathyroid glands: one constituted by cells lining small vessels that displayed endothelial antigens (factor VIII, isolectin, laminin, CD146) and the other constituted of single cells scattered throughout the parenchyma that did not express endothelial markers. These parathyroid-derived CD34(+) cells were negative for the hematopoietic and mesenchymal markers CD45, Thy-1/CD90, CD105, and CD117/c-kit; however, a subset of CD34(+) cells co-expressed the parathyroid specific genes glial cell missing B, parathyroid hormone, and calcium sensing receptor. When cultured, these cells released significant amount of parathyroid hormone. Parathyroid-derived CD34(+) cells, but not CD34(-) cells, proliferated slowly and differentiated into mature endothelial cells. CD34(+) cells from parathyroid tumors differed from those derived from normal parathyroid glands as: 1) they were more abundant and mainly scattered throughout the parenchyma; 2) they rarely co-expressed CD146; and 3) a fraction co-expressed nestin. In conclusion, we identified cells expressing endothelial and parathyroid markers in human adult parathyroid glands. These parathyroid/endothelial cells were more abundant and less committed in parathyroid tumors compared with normal glands, showing features of endothelial progenitors, which suggests that they might be involved in parathyroid tumorigenesis.

  4. Endothelial progenitor cells as a new cardiovascular risk factor in Klinefelter's syndrome.

    Science.gov (United States)

    Di Mambro, A; Ferlin, A; De Toni, L; Selice, R; Caretta, N; Foresta, C

    2010-06-01

    Klinefelter syndrome (KS) is associated with a significant reduced life expectancy (2.1 years) including greater mortality from cardiovascular diseases. Underlying causes that may involve low levels of testosterone as well as the extra X chromosome are not fully understood. Low testosterone may have a direct affect on vascular tissue or act indirectly via metabolic effects. Testosterone levels may act genomically on cardiac function via the androgen receptor (AR) or non-genomically. Recently, it has been demonstrated that a reduced number of circulating endothelial progenitor cells (EPCs) is an independent predictor of morbidity and mortality from cardiovascular diseases. Because EPCs have never been studied in KS, we evaluated the number of circulating EPCs in 68 adult 47,XXY Klinefelter men and 46 healthy males. Patients and controls were divided into two groups, according to the absence or presence of cardiovascular risk factors (CRFs). Controls without CRFs had significantly higher levels of EPCs than controls with CRFs; on the contrary, KS patients without CRFs had EPCs levels similar to KS men with risk factors and significantly lower with respect to controls without CRFs. The number of EPCs in patients with hypogonadism was not different from that of those with normal testosterone levels. Twenty-two hypogonadal patients were re-evaluated after 6 months of androgen therapy, but we did not observe any modification in the number of EPCs. These primary hypothesis-generating data suggest that factors involved in KS, whether hypogonadism, CRFs or other genetically determined factors related to the supernumerary X chromosome might contribute to a reduction in EPCs number and that this could be considered another CRF contributing to the increased mortality of these subjects.

  5. Endothelial Progenitor Cell Mobilization in Preterm Infants With Sepsis Is Associated With Improved Survival.

    Science.gov (United States)

    Siavashi, Vahid; Asadian, Simin; Taheri-Asl, Masoud; Keshavarz, Samaneh; Zamani-Ahmadmahmudi, Mohamad; Nassiri, Seyed Mahdi

    2017-10-01

    Microvascular dysfunction plays a key role in the pathology of sepsis, leading to multi-organ failure, and death. Circulating endothelial progenitor cells (cEPCs) are critically involved in the maintenance of the vascular homeostasis in both physiological and pathological contexts. In this study, concentration of cEPCs in preterm infants with sepsis was determined to recognize whether the EPC mobilization would affect the clinical outcome of infantile sepsis. One hundred and thirty-three preterm infants (81 with sepsis and 52 without sepsis) were enrolled in this study. The release of EPCs in circulation was first quantified. Thereafter, these cells were cultivated and biological features of these cells such as, proliferation and colony forming efficiency were analyzed. The levels of chemoattractant cytokines were also measured in infants. In mouse models of sepsis, effects of VEGF and SDF-1 as well as anti-VEGF and anti-SDF-1 were evaluated in order to shed light upon the role which the EPC mobilization plays in the overall survival of septic animals. Circulating EPCs were significantly higher in preterm infants with sepsis than in the non-sepsis group. Serum levels of VEGF, SDF-1, and Angiopoietin-2 were also higher in preterm infants with sepsis than in control non-sepsis. In the animal experiments, injection of VEGF and SDF-1 prompted the mobilization of EPCs, leading to an improvement in survival whereas injection of anti-VEGF and anti-SDF-1 was associated with significant deterioration of survival. Overall, our results demonstrated the beneficial effects of EPC release in preterm infants with sepsis, with increased mobilization of these cells was associated with improved survival. J. Cell. Biochem. 118: 3299-3307, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Role of endothelial progenitor cells and inflammatory cytokines in healing of diabetic foot ulcers.

    Directory of Open Access Journals (Sweden)

    Francesco Tecilazich

    Full Text Available BACKGROUND: To evaluate changes in endothelial progenitor cells (EPCs and cytokines in patients with diabetic foot ulceration (DFU in association with wound healing. METHODS: We studied healthy subjects, diabetic patients not at risk of DFU, at risk of DFU and with active DFU. We prospectively followed the DFU patients over a 12-week period. We also investigated similar changes in diabetic rabbit and mouse models of wound healing. RESULTS: All EPC phenotypes except the kinase insert domain receptor (KDR(+CD133(+ were reduced in the at risk and the DFU groups compared to the controls. There were no major EPC differences between the control and not at risk group, and between the at risk and DFU groups. Serum stromal-cell derived factor-1 (SDF-1 and stem cell factor (SCF were increased in DFU patients. DFU patients who healed their ulcers had lower CD34(+KDR(+ count at visits 3 and 4, serum c-reactive protein (CRP and granulocyte-macrophage colony-stimulating factor (GM-CSF at visit 1, interleukin-1 (IL-1 at visits 1 and 4. EPCs tended to be higher in both diabetic animal models when compared to their non-diabetic counterparts both before and ten days after wounding. CONCLUSIONS: Uncomplicated diabetes does not affect EPCs. EPCs are reduced in patients at risk or with DFU while complete wound healing is associated with CD34(+KDR(+ reduction, suggesting possible increased homing. Low baseline CRP, IL-1α and GM-CSF serum levels were associated with complete wound healing and may potentially serve as prognostic markers of DFU healing. No animal model alone is representative of the human condition, indicating the need for multiple experimental models.

  7. The Beneficial Effects of Cardiac Rehabilitation on the Function and Levels of Endothelial Progenitor Cells.

    Science.gov (United States)

    Guo, Yuan; Ledesma, Robert Andre; Peng, Ran; Liu, Qiong; Xu, Danyan

    2017-01-01

    Cardiac rehabilitation (CR) is a comprehensive program, which mainly focusses on exercise training, disease evaluation, cardiovascular risk factors control, medication therapy, psychosocial intervention, and patient education. Although the beneficial properties of CR have been widely evidenced, its mechanism is still not completely clarified. To date, endothelial progenitor cells (EPCs) have been explored by emerging studies, and evidence has suggested that CR, especially exercise training, significantly increases the function and levels of EPCs, which is likely to elucidate the profiting mechanism of CR. Thus, this review summarises the potential relationship between CR and EPCs with an aim of providing novel directions for future CR research. Copyright © 2016. Published by Elsevier B.V.

  8. Isolation of Cultured Endothelial Progenitor Cells in vitro from PBMCs and CD133~+ Enriched Cells

    Institute of Scientific and Technical Information of China (English)

    郑伟红; 万亚峰; 马小鹏; 李兴睿; 杨志芳; 殷茜; 易继林

    2010-01-01

    Two isolation methods for sorting of endothelial progenitor cells(EPCs):from peripheral blood mononuclear cells(PBMCs)and CD133+ enriched cells were compared,by defining the cell morphology,phenotype,reproductive activities and function in vitro,to provide a reference for clinical application of EPCs.PBMCs from healthy subjects were used either directly for cell culture or for CD133+ sorting.The two groups of cells were cultured in complete medium 199(M199)for 7 to 14 days and the phenotypes of EPCs were an...

  9. Testosterone replacement therapy can increase circulating endothelial progenitor cell number in men with late onset hypogonadism.

    Science.gov (United States)

    Liao, C-H; Wu, Y-N; Lin, F-Y; Tsai, W-K; Liu, S-P; Chiang, H-S

    2013-07-01

    Circulating endothelial progenitor cells (EPCs) are bone marrow-derived cells required for endothelial repair. A low EPC number can be considered as an independent predictor of endothelial dysfunction and future cardiovascular events. Recent evidence shows that patients with hypogonadal symptoms without other confounding risk factors have a low number of circulating progenitor cells (PCs) and EPCs, thus highlighting the role of testosterone in the proliferation and differentiation of EPCs. Here, we investigate if testosterone replacement therapy (TRT) can increase circulating EPC number in men with late onset hypogonadism. Forty-six men (age range, 40-73 years; mean age, 58.3 years) with hypogonadal symptoms were recruited, and 29 men with serum total testosterone (TT) levels less than 350 ng/dL received TRT using transdermal testosterone gel (Androgel; 1% testosterone at 5 g/day) for 12 months. Circulating EPC numbers (per 100 000 monocytes) were calculated using flow cytometry. There was no significant association between serum TT levels and the number of circulating EPCs before TRT. Compared with the number of mean circulating EPCs at baseline (9.5 ± 6.2), the number was significantly higher after 3 months (16.6 ± 11.1, p = 0.027), 6 months (20.3 ± 15.3, p = 0.006) and 12 months (27.2 ± 15.5, p = 0.017) of TRT. Thus, we conclude that serum TT levels before TRT are not significantly associated with the number of circulating EPCs in men with late onset hypogonadism. However, TRT can increase the number of circulating EPCs, which implies the benefit of TRT on endothelial function in hypogonadal men.

  10. Glycosaminoglycan mimetic improves enrichment and cell functions of human endothelial progenitor cell colonies.

    Science.gov (United States)

    Chevalier, Fabien; Lavergne, Mélanie; Negroni, Elisa; Ferratge, Ségolène; Carpentier, Gilles; Gilbert-Sirieix, Marie; Siñeriz, Fernando; Uzan, Georges; Albanese, Patricia

    2014-05-01

    Human circulating endothelial progenitor cells isolated from peripheral blood generate in culture cells with features of endothelial cells named late-outgrowth endothelial colony-forming cells (ECFC). In adult blood, ECFC display a constant quantitative and qualitative decline during life span. Even after expansion, it is difficult to reach the cell dose required for cell therapy of vascular diseases, thus limiting the clinical use of these cells. Glycosaminoglycans (GAG) are components from the extracellular matrix (ECM) that are able to interact and potentiate heparin binding growth factor (HBGF) activities. According to these relevant biological properties of GAG, we designed a GAG mimetic having the capacity to increase the yield of ECFC production from blood and to improve functionality of their endothelial outgrowth. We demonstrate that the addition of [OTR(4131)] mimetic during the isolation process of ECFC from Cord Blood induces a 3 fold increase in the number of colonies. Moreover, addition of [OTR(4131)] to cell culture media improves adhesion, proliferation, migration and self-renewal of ECFC. We provide evidence showing that GAG mimetics may have great interest for cell therapy applied to vascular regeneration therapy and represent an alternative to exogenous growth factor treatments to optimize potential therapeutic properties of ECFC.

  11. TNFα-Damaged-HUVECs Microparticles Modify Endothelial Progenitor Cell Functional Activity

    Science.gov (United States)

    Luna, Carlos; Carmona, Andrés; Alique, Matilde; Carracedo, Julia; Ramirez, Rafael

    2015-01-01

    Endothelial progenitor cells (EPCs) have an important role in the maintenance of vascular integrity and homeostasis. While there are many studies that explain EPCs mechanisms action, there are few studies that demonstrate how they interact with other emerging physiological elements such as Endothelial Microparticles (EMPs). EMPs are membranous structures with a size between 100 and 1000 nm that act as molecular information transporter in biological systems and are known as an important elements in develop different pathologies; moreover a lot of works explains that are novel biomarkers. To elucidate these interactions, we proposed an in vitro model of endothelial damage mediated by TNFalpha, in which damaged EMPs and EPCs are in contact to assess EPCs functional effects. We have observed that damaged EMPs can modulate several EPCs classic factors as colony forming units (CFUs), contribution to repair a physically damaged endothelium (wound healing), binding to mature endothelium, and co-adjuvants to the formation of new vessels in vitro (angiogenesis). All of these in a dose-dependent manner. Damaged EMPs at a concentration of 103 MPs/ml have an activating effect of these capabilities, while at concentrations of 105 MPs/ml these effects are attenuated or reduced. This in vitro model helps explain that in diseases where there is an imbalance between these two elements (EPCs and damaged EMPs), the key cellular elements in the regeneration and maintenance of vascular homeostasis (EPCs) are not fully functional, and could explain, at least in part, endothelial dysfunction associated in various pathologies. PMID:26733886

  12. Fabrication of endothelial progenitor cell capture surface via DNA aptamer modifying dopamine/polyethyleneimine copolymer film

    Science.gov (United States)

    Li, Xin; Deng, Jinchuan; Yuan, Shuheng; Wang, Juan; Luo, Rifang; Chen, Si; Wang, Jin; Huang, Nan

    2016-11-01

    Endothelial progenitor cells (EPCs) are mainly located in bone marrow and circulate, and play a crucial role in repairmen of injury endothelium. One of the most promising strategies of stents designs were considered to make in-situ endothelialization in vivo via EPC-capture biomolecules on a vascular graft to capture EPCs directly from circulatory blood. In this work, an EPC specific aptamer with a 34 bases single strand DNA sequence was conjugated onto the stent surface via dopamine/polyethyleneimine copolymer film as a platform and linker. The assembled density of DNA aptamer could be regulated by controlling dopamine percentage in this copolymer film. X-ray photoelectron spectroscopy (XPS), water contact angle (WCA) and fluorescence test confirmed the successful immobilization of DNA aptamer. To confirm its biofunctionality and cytocompatibility, the capturing cells ability of the aptamer modified surface and the effects on the growth behavior of human umbilical vein endothelial cells (HUVECs), smooth muscle cells (SMCs) were investigated. The aptamer functionalized sample revealed a good EPC-capture ability, and had a cellular friendly feature for both EPC and EC growth, while not stimulated the hyperplasia of SMCs. And, the co-culture experiment of three types of cells confirmed the specificity capturing of EPCs to aptamer modified surface, rather than ECs and SMCs. These data suggested that this aptamer functionalized surface may have a large potentiality for the application of vascular grafts with targeted endothelialization.

  13. Fetal exposure to a diabetic intrauterine environment resulted in a failure of cord blood endothelial progenitor cell adaptation against chronic hypoxia

    Science.gov (United States)

    Dincer, U Deniz

    2015-01-01

    Gestational diabetes mellitus (GDM) has long-term health consequences, and fetal exposure to a diabetic intrauterine environment increases cardiovascular risk for her adult offspring. Some part of this could be related to their endothelial progenitor cells (EPCs). Understanding the vessel-forming ability of human umbilical cord blood (HUCB)-derived endothelial colony-forming cells (ECFCs) against pathological stress such as GDM response to hypoxia could generate new therapeutic strategies. This study aims to investigate the role of chronic hypoxia in EPCs functional and vessel-forming ability in GDM subjects. Each ECFC was expressed in endothelial and pro-angiogenic specific markers, namely endothelial nitric oxide synthase (eNOS), platelet (PECAM-1) endothelial cell adhesion molecule 1, vascular endothelial-cadherin CdH5 (Ca-dependent cell adhesion molecule), vascular endothelial growth factor A, (VEGFA) and insulin-like growth factor 1 (IGF1). Chronic hypoxia did not affect CdH5, but PECAM1 MRNA expressions were increased in control and GDM subjects. Control hypoxic and GDM normoxic VEGFA MRNA expressions and hypoxia-inducible factor 1-alpha (HIF1α) protein expressions were significantly increased in HUCB ECFCs. GDM resulted in most failure of HUCB ECFC adaptation and eNOS protein expressions against chronic hypoxia. Chronic hypoxia resulted in an overall decline in HUCB ECFCs’ proliferative ability due to reduction of clonogenic capacity and diminished vessel formation. Furthermore, GDM also resulted in most failure of cord blood ECFC adaptation against chronic hypoxic environment. PMID:25565870

  14. Cathepsin L is required for endothelial progenitor cell-induced neovascularization

    Energy Technology Data Exchange (ETDEWEB)

    Urbich, Carmen; Heeschen, Christopher; Aicher, Alexandra; Sasaki, Ken-ichiro; Bruhl, Thomas; Hofmann, Wolf K.; Peters, Christoph; Reinheckel, Thomas; Pennacchio, Len A.; Abolmaali, Nasreddin D.; Chavakis, Emmanouil; Zeiher, Andreas M.; Dimmeler, Stefanie

    2004-01-15

    Infusion of endothelial progenitor cells (EPCs), but not of mature endothelial cells (ECs), promotes neovascularization after ischemia. We performed a gene expression profiling of EPCs and ECs to identify genes, which might be important for the neovascularization capacity of EPCs. Intriguingly, the protease cathepsin L (CathL) was highly expressed in EPCs as opposed to ECs and is essential for matrix degradation and invasion by EPCs in vitro. CathL deficient mice showed impaired functional recovery after hind limb ischemia supporting the concept for an important role of CathL in postnatal neovascularization. Infused CathL deficient progenitor cells failed to home to sites of ischemia and to augment neovascularization. In contrast, over expression of CathL in mature ECs significantly enhanced their invasive activity and induced their neovascularization capacity in vivo. Taken together, CathL plays a crucial role for the integration of circulating EPCs into the ischemic tissue and is required for neovascularization mediated by EPCs.

  15. Folic acid supplementation normalizes the endothelial progenitor cell transcriptome of patients with type 1 diabetes: A case-control pilot study

    NARCIS (Netherlands)

    O. van Oostrom (Olivia); D.P.V. de Kleijn (Dominique); J.O. Fledderus (Joost); M. Pescatori (Mario); A. Stubbs (Andrew); A. Tuinenburg (Attie); S.K. Lim (Sai Kiang); M.C. Verhaar (Marianne)

    2009-01-01

    textabstractBackground: Endothelial progenitor cells play an important role in vascular wall repair. Patients with type 1 diabetes have reduced levels of endothelial progenitor cells of which their functional capacity is impaired. Reduced nitric oxide bioavailability and increased oxidative stress

  16. Circulating endothelial cells and circulating endothelial progenitors in kidney disease--victims, witnesses, or accomplices?

    Science.gov (United States)

    Závada, J; Kideryová, L; Pytlík, R; Tesar, V

    2008-01-01

    Nephrologists deal with a host of pathologic conditions involving renal and systemic endothelium. Both in native and transplanted kidneys, often the insult to the renal endothelium initiates the pathogenic process ultimately leading to the loss of organ function. Also, systemic atherosclerosis is accelerated in patients with renal dysfunction. In this review we would like to cover the possible role of CECs and their counterparts--circulating EPCs in the pathogenesis of endothelial dysfunction associated with chronic renal failure, ANCA-associated vasculitis, and progression of chronic renal disease.

  17. Mobilization of endothelial progenitor cells in acute cardiovascular events in the PROCELL study: time-course after acute myocardial infarction and stroke.

    Science.gov (United States)

    Regueiro, Ander; Cuadrado-Godia, Elisa; Bueno-Betí, Carlos; Diaz-Ricart, Maribel; Oliveras, Anna; Novella, Susana; Gené, Gemma González; Jung, Carole; Subirana, Isaac; Ortiz-Pérez, Jose Tomás; Roqué, Mercè; Freixa, Xavier; Núñez, Julio; Escolar, Gines; Marrugat, Jaume; Hermenegildo, Carlos; Valverde, Miguel Angel; Roquer, Jaume; Sanchis, Juan; Heras, Magda

    2015-03-01

    The mobilization pattern and functionality of endothelial progenitor cells after an acute ischemic event remain largely unknown. The aim of our study was to characterize and compare the short- and long-term mobilization of endothelial progenitor cells and circulating endothelial cells after acute myocardial infarction or atherothrombotic stroke, and to determine the relationship between these cell counts and plasma concentrations of vascular cell adhesion molecule (VCAM-1) and Von Willebrand factor (VWF) as surrogate markers of endothelial damage and inflammation. In addition, we assessed whether endothelial progenitor cells behave like functional endothelial cells. We included 150 patients with acute myocardial infarction or atherothrombotic stroke and 145 controls. Endothelial progenitor cells [CD45-, CD34+, KDR+, CD133+], circulating endothelial cells [CD45-, CD146+, CD31+], VWF, and VCAM-1 levels were measured in controls (baseline only) and in patients within 24h (baseline) and at 7, 30, and 180 days after the event. Myocardial infarction patients had higher counts of endothelial progenitor cells and circulating endothelial cells than the controls (201.0/mL vs. 57.0/mL; pstroke patients, the number of endothelial progenitor cells - but not circulating endothelial cells - was higher than in controls (90.0/mL vs. 37.0/mL; p=0.01; 105.0/mL vs. 71.0/mL; p=0.11). At 30 days after stroke, however, VCAM-1 peaked (628.1/mL vs. 869.1/mL; pafter stroke, circulating endothelial cells and VWF decreased, compared to baseline. Cultured endothelial progenitor cells from controls and myocardial infarction patients had endothelial phenotype characteristics and exhibited functional differences in adhesion and Ca(2+) influx, but not in proliferation and vasculogenesis. In myocardial infarction patients, VCAM-1 levels and mobilization of endothelial progenitor cells peaked at 30 days after the ischemic event. Although a similar VCAM-1 kinetic was observed in stroke patients

  18. Endothelial progenitor cells and estrogen%内皮祖细胞与雌激素

    Institute of Scientific and Technical Information of China (English)

    刘腾; 赵倩; 王雯

    2011-01-01

    BACKGROUND: Estrogen has obviously protective effect on vascular endothelium. Endothelial progenitor cells (EPCs), asprecursors of endothelial cells, take an important role in endothelial recovery.OBJECTIVE: To summarize the characteristics of EPCs as well as the effect of estrogen on EPCs.METHODS: A computer search of PubMed database and CNKI database was performed using the keywords of "endothelialprogenitor cells, estrogen" in English and Chinese, respectively, in the titles and abstracts. All articles related to the characteristicsof endothelial progenitor cells and studies about the effect of estrogen on EPCs were selected.RESULTS AND CONCLUSION: EPCs are the precursors of endothelial cells which have the capacity of proliferation, migration,adhesion and differentiation into vascular endothelial cells. EPCs are existing in both bone marrow and peripheral blood, whichhas become a new therapy target of cardiovascular diseases. Studies have shown that estrogen has protective effect on EPCs:estrogen can improve the proliferation, migration, adhesion and other bioactivities of EPCs, and EPCs senescence are delayedand apoptosis of EPCs are reduced by estrogen treatment. Further research is needed to clarify the specific targets andmechanisms involved in the effect of estrogen on EPCs.%背景:研究发现雌激素对血管内皮具有明显的保护作用,而内皮祖细胞作为内皮细胞的前体细胞参与内皮的修复.目的:总结内皮祖细胞生物特点及雌激素对内皮祖细胞作用的研究进展.方法:应用计算机检索PubMed数据库及CNKI数据库,在标题和摘要中以"内皮祖细胞,雌激素"或"Endothelial progenitor cells,estrogen"为检索词进行检索.选择与内皮祖细胞生物学特点及雌激素对其作用研究相关的文献.结果与结论:内皮祖细胞存在于骨髓和外周血中,是具有增殖、迁移、黏附能力并分化为血管内皮细胞潜能的原始细胞,可作为未来治疗心血管疾病的

  19. A PEDF-Derived Peptide Inhibits Retinal Neovascularization and Blocks Mobilization of Bone Marrow-Derived Endothelial Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Richard Longeras

    2012-01-01

    Full Text Available Proliferative diabetic retinopathy is characterized by pathological retinal neovascularization, mediated by both angiogenesis (involving mature endothelial cells and vasculogenesis (involving bone marrow-derived circulating endothelial progenitor cells (EPCs. Pigment epithelium-derived factor (PEDF contains an N-terminal 34-amino acid peptide (PEDF-34 that has antiangiogenic properties. Herein, we present a novel finding that PEDF-34 also possesses antivasculogenic activity. In the oxygen-induced retinopathy (OIR model using transgenic mice that have Tie2 promoter-driven GFP expression, we quantified Tie2GFP+ cells in bone marrow and peripheral blood by fluorescence-activated cell sorting (FACS. OIR significantly increased the number of circulating Tie2-GFP+ at P16, correlating with the peak progression of neovascularization. Daily intraperitoneal injections of PEDF-34 into OIR mice decreased the number of Tie2-GFP+ cells in the circulation at P16 by 65% but did not affect the number of Tie2-GFP+ cells in the bone marrow. These studies suggest that PEDF-34 attenuates EPC mobilization from the bone marrow into the blood circulation during retinal neovascularization.

  20. Homing of circulating blood endothelial progenitor cells after myocardial infarction is mediated by Akt-SDF-1-signal pathway

    Institute of Scientific and Technical Information of China (English)

    赵岚

    2013-01-01

    Objective To investigate the expressions of protein kinase B(Akt) and stromal cell-derived factor-1(SDF-1) and their relations with circulating blood endothelial progenitor cell homing after myocardial infarction(MI). Methods MI was induced in the

  1. TNFα-DAMAGED-HUVECs MICROPARTICLES MODIFY ENDOTHELIAL PROGENITOR CELL FUNCTIONAL ACTIVITY

    Directory of Open Access Journals (Sweden)

    Carlos eLuna Ruiz

    2015-12-01

    Full Text Available Endothelial progenitor cells (EPCs have an important role in the maintenance of vascular integrity and homeostasis. While there are many studies that explain EPCs mechanisms action, there are few studies that demonstrate how they interact with other emerging physiological elements such as Endothelial Microparticles (EMPs. EMPs are membranous structures with a size between 100-1000nm that act as molecular information transporter in biological systems and are known as an important elements in develop of different pathologies; moreover a lot of works explains that are novel biomarkers. To elucidate these interactions, we proposed an in vitro model of endothelial damage mediated by TNF-alpha, in which damaged EMPs and EPCs are in contact to assess EPCs functional effects. We have observed that damaged EMPs can modulate several EPCs classic factors as colony forming units (CFUs, contribution to repair a physically damaged endothelium (wound healing, binding to mature endothelium, and co-adjuvants to the formation of new vessels in vitro (angiogenesis. All of these in a dose-dependent manner. Damaged EMPs at a concentration of 103 MPs/ml have an activating effect of these capabilities, while at concentrations of 105 MPs/ml these effects are attenuated or reduced. This in vitro model helps explain that in diseases where there is an imbalance between these two elements (EPCs and damaged EMPs, the key cellular elements in the regeneration and maintenance of vascular homeostasis (EPCs are not fully functional, and could explain, at least in part, endothelial dysfunction associated in various pathologies.

  2. Fabrication of endothelial progenitor cell capture surface via DNA aptamer modifying dopamine/polyethyleneimine copolymer film

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xin; Deng, Jinchuan; Yuan, Shuheng; Wang, Juan; Luo, Rifang; Chen, Si [Key Lab. of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031 (China); School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Wang, Jin, E-mail: jinxxwang@263.net [Key Lab. of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031 (China); Huang, Nan [Key Lab. of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031 (China); School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China)

    2016-11-15

    Highlights: • The dopamine/PEI film with controlled amine density was successfully prepared. • The DNA aptamer was assembled onto the film via electrostatic incorporation. • The A@DPfilmscanspecificallyandeffectivelycaptureEPCs. • The A@DP film can support the survival of ECs, control the hyperplasia of SMCs. • The dynamic/co-culture models are useful for studying cells competitive adhesion. - Abstract: Endothelial progenitor cells (EPCs) are mainly located in bone marrow and circulate, and play a crucial role in repairmen of injury endothelium. One of the most promising strategies of stents designs were considered to make in-situ endothelialization in vivo via EPC-capture biomolecules on a vascular graft to capture EPCs directly from circulatory blood. In this work, an EPC specific aptamer with a 34 bases single strand DNA sequence was conjugated onto the stent surface via dopamine/polyethyleneimine copolymer film as a platform and linker. The assembled density of DNA aptamer could be regulated by controlling dopamine percentage in this copolymer film. X-ray photoelectron spectroscopy (XPS), water contact angle (WCA) and fluorescence test confirmed the successful immobilization of DNA aptamer. To confirm its biofunctionality and cytocompatibility, the capturing cells ability of the aptamer modified surface and the effects on the growth behavior of human umbilical vein endothelial cells (HUVECs), smooth muscle cells (SMCs) were investigated. The aptamer functionalized sample revealed a good EPC-capture ability, and had a cellular friendly feature for both EPC and EC growth, while not stimulated the hyperplasia of SMCs. And, the co-culture experiment of three types of cells confirmed the specificity capturing of EPCs to aptamer modified surface, rather than ECs and SMCs. These data suggested that this aptamer functionalized surface may have a large potentiality for the application of vascular grafts with targeted endothelialization.

  3. Endothelial Progenitor Cells for Ischemic Stroke: Update on Basic Research and Application

    Directory of Open Access Journals (Sweden)

    Shaohua Liao

    2017-01-01

    Full Text Available Ischemic stroke is one of the leading causes of human death and disability worldwide. So far, ultra-early thrombolytic therapy is the most effective treatment. However, most patients still live with varying degrees of neurological dysfunction due to its narrow therapeutic time window. It has been confirmed in many studies that endothelial progenitor cells (EPCs, as a kind of adult stem cells, can protect the neurovascular unit by repairing the vascular endothelium and its secretory function, which contribute to the recovery of neurological function after an ischemic stroke. This paper reviews the basic researches and clinical trials of EPCs especially in the field of ischemic stroke and addresses the combination of EPC application with new technologies, including neurovascular intervention, synthetic particles, cytokines, and EPC modification, with the aim of shedding some light on the application of EPCs in treating ischemic stroke in the future.

  4. Decellularization and Recellularization of Rat Livers With Hepatocytes and Endothelial Progenitor Cells.

    Science.gov (United States)

    Zhou, Pengcheng; Huang, Yan; Guo, Yibing; Wang, Lei; Ling, Changchun; Guo, Qingsong; Wang, Yao; Zhu, Shajun; Fan, Xiangjun; Zhu, Mingyan; Huang, Hua; Lu, Yuhua; Wang, Zhiwei

    2016-03-01

    Whole-organ decellularization has been identified as a promising choice for tissue engineering. The aim of the present study was to engineer intact whole rat liver scaffolds and repopulate them with hepatocytes and endothelial progenitor cells (EPCs) in a bioreactor. Decellularized liver scaffolds were obtained by perfusing Triton X-100 with ammonium hydroxide. The architecture and composition of the original extracellular matrix were preserved, as confirmed by morphologic, histological, and immunolabeling methods. To determine biocompatibility, the scaffold was embedded in the subcutaneous adipose layer of the back of a heterologous animal to observe the infiltration of inflammatory cells. Hepatocytes were reseeded using a parenchymal injection method and cultured by continuous perfusion. EPCs were reseeded using a portal vein infusion method. Morphologic and functional examination showed that the hepatocytes and EPCs grew well in the scaffold. The present study describes an effective method of decellularization and recellularization of rat livers, providing the foundation for liver engineering and the development of bioartificial livers.

  5. Circulating endothelial progenitor cells in traumatic brain injury: an emerging therapeutic target?

    Institute of Scientific and Technical Information of China (English)

    WEI Hui-jie; JIANG Rong-cai; LIU Li; ZHANG Jian-ning

    2010-01-01

    Traumatic brain injury (TBI) is a major cause ofmortality and morbidity in the world. Recent clinical investigations and basic researches suggest that strategies to improve angiogenesis following TBI may provide promising opportunities to improve clinical outcomes and brain functional recovery. More and more evidences show that circulating endothelial progenitor cells (EPCs), which have been identified in the peripheral blood, may play an important role in the pathologic and physiological angiogenesis in adults. Moreover, impressive data demonstrate that EPCs are mobilized from bone marrow to blood circulation in response to traumatic or inflammatory stimulations.In this review, we discussed the role of EPCs in the repair of brain injury and the possible therapeutic implication for functional recovery of TBl in the future.

  6. Endothelial progenitor cells at the interface of chronic kidney disease: from biology to therapeutic advancement.

    Science.gov (United States)

    Coppolino, Giuseppe; Cernaro, Valeria; Placida, Giordano; Leonardi, Giuseppe; Basile, Giorgio; Bolignano, Davide

    2017-09-20

    The 'epidemic' diffusion of chronic kidney disease (CKD) needs the development of new therapeutic approaches to slow down the progression to end-stage renal disease. Endothelial Progenitor Cells (EPCs) are promising tools for the treatment of many human diseases as they promote the repair of damaged tissues. They were also suggested as therapy to repair renal tissue after an injury. Strategies using EPCs to induce a reparative process with functional restoring of a diseased kidney or to delay CKD are of two types: direct stem cells infusion or stimulating endogenous release of EPCs. Extensive and targeted controlled clinical trials should be encouraged by the data to date available from pre-clinical and clinical models of EPCs mobilization during CKD. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Optical characterization of colloidal CdSe quantum dots in endothelial progenitor cells

    Directory of Open Access Journals (Sweden)

    Fu Ying

    2010-02-01

    Full Text Available Abstract We have quantitatively analyzed the confocal spectra of colloidal quantum dots (QDs in rat endothelial progenitor cells (EPCs by using Leica TCS SP5 Confocal Microscopy System. Comparison of the confocal spectra of QDs located inside and outside EPCs revealed that the interaction between the QDs and EPCs effectively reduces the radius of the exciton confinement inside the QDs so that the excitonic energy increases and the QD fluorescence peak blueshifts. Furthermore, the EPC environment surrounding the QDs shields the QDs so that the excitation of the QDs inside the cells is relatively weak, whereas the QDs outside the cells can be highly excited. At high excitations, the occupation of the ground excitonic state in the QD outside the cells becomes saturated and high-energy states excited, resulting in a large relaxation energy and a broad fluorescence peak. This permits, in concept, to use QD biomarkers to monitor EPCs by characterizing QD fluorescence spectra.

  8. Adlayer-mediated antibody immobilization to stainless steel for potential application to endothelial progenitor cell capture.

    Science.gov (United States)

    Benvenuto, Pasquale; Neves, Miguel A D; Blaszykowski, Christophe; Romaschin, Alexander; Chung, Timothy; Kim, Sa Rang; Thompson, Michael

    2015-05-19

    This work describes the straightforward surface modification of 316L stainless steel with BTS, S-(11-trichlorosilylundecanyl)-benzenethiosulfonate, a thiol-reactive trichlorosilane cross-linker molecule designed to form intermediary coatings with subsequent biofunctionalization capability. The strategy is more specifically exemplified with the immobilization of intact antibodies and their Fab' fragments. Both surface derivatization steps are thoroughly characterized by means of X-ray photoelectron spectroscopy. The antigen binding capability of both types of biofunctionalized surfaces is subsequently assessed by fluorescence microscopy. It was determined that BTS adlayers achieve robust immobilization of both intact and fragmented antibodies, while preserving antigen binding activity. Another key finding was the observation that the Fab' fragment immobilization strategy would constitute a preferential option over that involving intact antibodies in the context of in vivo capture of endothelial progenitor cells in stent applications.

  9. Overexpression of LOXIN Protects Endothelial Progenitor Cells From Apoptosis Induced by Oxidized Low Density Lipoprotein.

    Science.gov (United States)

    Veas, Carlos; Jara, Casandra; Willis, Naomi D; Pérez-Contreras, Karen; Gutierrez, Nicolas; Toledo, Jorge; Fernandez, Paulina; Radojkovic, Claudia; Zuñiga, Felipe A; Escudero, Carlos; Aguayo, Claudio

    2016-04-01

    Human endothelial progenitor cells (hEPC) are adult stem cells located in the bone marrow and peripheral blood. Studies have indicated that hEPC play an important role in the recovery and repair of injured endothelium, however, their quantity and functional capacity is reduced in several diseases including hypercholesterolemia. Recently, it has been demonstrated that hEPC express lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) and its activation by oxidized low-density lipoprotein (ox-LDL) induces cellular dysfunction and apoptosis. This study aimed to investigate whether overexpression of LOXIN, a truncated isoform of LOX-1 that acts as a dominant negative, plays a protective role against ox-LDL-induced apoptosis in hEPC. Human endothelial progenitor cells exposed to ox-LDL showed a significant increase in LOX-1 expression, and apoptosis began at ox-LDL concentrations above 50 μg/mL. All hEPC apoptosed at 200 μg/mL ox-LDL. High LOXIN expression was generated using adenoviral systems in hEPC and SiHa cells transduced with 100 colony-forming units per cell. Transduced LOXIN localized to the plasma membrane and blocked ox-LDL uptake mediated by LOX-1. Overexpression of LOXIN protected hEPC from ox-LDL-induced apoptosis, and therefore maybe a novel way of improving hEPC function and quantity. These results suggest that adenoviral vectors of LOXIN may provide a possible treatment for diseases related to ox-LDL and vascular endothelium dysfunction, including atherosclerosis.

  10. Endothelial reconstitution by CD34+ progenitors derived from baboon embryonic stem cells.

    Science.gov (United States)

    Shi, Qiang; Schatten, Gerald; Hodara, Vida; Simerly, Calvin; VandeBerg, John L

    2013-02-01

    In this study, we used a large non-human primate model, the baboon, to establish a step-wise protocol to generate CD34+ endothelial progenitor cells (EPCs) from embryonic stem cells (ESCs) and to demonstrate their reparative effects. Baboon ESCs were sequentially differentiated from embryoid body cultures for 9 days and then were specified into EPCs by culturing them in monolayer for 12 days. The resulting EPCs expressed CD34, CXCR4 and UEA-1, but neither CD31 nor CD117. The EPCs were able to form intact lumen structures when seeded on Matrigel, took up Dil-LDL, and responded to TNF-α. Angioblasts specified in EGM-2 medium and ECGS medium had 6.41 ± 1.16% (n = 3) and 9.32 ± 3.73% CD34+ cells (n = 3). The efficiency of generating CD34+ EPCs did not differ significantly from ECGS to EGM-2 culture media, however, angioblasts specified in ECGS medium expressed a higher percentage of CD34+/CXCR4+ cells (3.49 ± 1.32%, n = 3) than those specified in EGM-2 medium (0.49 ± 0.52%, n = 3). To observe their reparative capacity, we purified CD34+ progenitors after specification by EGM-2 medium; inoculated fluorescently labelled CD34+ EPCs into an arterial segment denuded of endothelium in an ex vivo system. After 14 days of ex vivo culture, the grafted cells had attached and integrated to the denuded surface; in addition, they had matured further and expressed terminally differentiated endothelial markers including CD31 and CD146. In conclusion, we have proved that specified CD34+ EPCs are promising therapeutic agents for repairing damaged vasculature.

  11. Endothelial and cardiac progenitors: boosting, conditioning and (re)programming for cardiovascular repair.

    Science.gov (United States)

    Pesce, Maurizio; Burba, Ilaria; Gambini, Elisa; Prandi, Francesca; Pompilio, Giulio; Capogrossi, Maurizio C

    2011-01-01

    Preclinical studies performed in cell culture and animal systems have shown the outstanding ability of stem cells to repair ischemic heart and lower limbs by promoting the formation of new blood vessels and new myocytes. In contrast, clinical studies of stem cell administration in patients with myocardial ischemia have revealed only modest, although promising, results. Basic investigations have shown the feasibility of adult cells reprogramming into pluripotent cells by defined factors, thus opening the way to the devise of protocols to ex vivo derive virtually unexhausted cellular pools. In contrast, cellular and molecular studies have indicated that risk factors limit adult-derived stem cell survival, proliferation and engraftment in ischemic tissues. The use of fully reprogrammed cells raises safety concerns; therefore, adult cells remain a primary option for clinicians interested in therapeutic cardiovascular repair. Pharmacologic approaches have been devised to restore the cardiovascular repair ability of failing progenitors from patients at risk. In the present contribution, the most advanced pharmacologic approaches to (re)program, boost, and condition endothelial and cardiac progenitor cells to enhance cardiovascular regeneration are discussed.

  12. O2 level controls hematopoietic circulating progenitor cells differentiation into endothelial or smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Nicolas Berthelemy

    Full Text Available BACKGROUND: Recent studies showed that progenitor cells could differentiate into mature vascular cells. The main physiological factors implicated in cell differentiation are specific growth factors. We hypothesized that simply by varying the oxygen content, progenitor cells can be differentiated either in mature endothelial cells (ECs or contractile smooth muscle cells (SMCs while keeping exactly the same culture medium. METHODOLOGY/PRINCIPAL FINDINGS: Mononuclear cells were isolated by density gradient were cultivated under hypoxic (5% O2 or normoxic (21% O2 environment. Differentiated cells characterization was performed by confocal microscopy examination and flow cytometry analyses. The phenotype stability over a longer time period was also performed. The morphological examination of the confluent obtained cells after several weeks (between 2 and 4 weeks showed two distinct morphologies: cobblestone shape in normoxia and a spindle like shape in hypoxia. The cell characterization showed that cobblestone cells were positive to ECs markers while spindle like shape cells were positive to contractile SMCs markers. Moreover, after several further amplification (until 3(rd passage in hypoxic or normoxic conditions of the previously differentiated SMC, immunofluorescence studies showed that more than 80% cells continued to express SMCs markers whatever the cell environmental culture conditions with a higher contractile markers expression compared to control (aorta SMCs signature of phenotype stability. CONCLUSION/SIGNIFICANCE: We demonstrate in this paper that in vitro culture of peripheral blood mononuclear cells with specific angiogenic growth factors under hypoxic conditions leads to SMCs differentiation into a contractile phenotype, signature of their physiological state. Moreover after amplification, the differentiated SMC did not reverse and keep their contractile phenotype after the 3rd passage performed under hypoxic and normoxic conditions

  13. Circulating endothelial progenitor cells and depression: a possible novel link between heart and soul.

    Science.gov (United States)

    Dome, P; Teleki, Z; Rihmer, Z; Peter, L; Dobos, J; Kenessey, I; Tovari, J; Timar, J; Paku, S; Kovacs, G; Dome, B

    2009-05-01

    Although depression is known to be an independent risk factor for cardiovascular disorders, the mechanisms behind this connection are not well understood. However, the reduction in the number of endothelial progenitor cells (EPCs) in patients with cardiovascular risk factors has led us to hypothesize that depression influences the number of EPCs. EPCs labeled with CD34, CD133 and vascular endothelial growth factor receptor-2 (VEGFR2) antibodies were counted by flow cytometry in the peripheral blood (PB) of 33 patients with a current episode of major depression and of 16 control subjects. Mature (CD34+/VEGFR2+) and immature (CD133+/VEGFR2+) EPC counts were decreased in patients (vs controls; Pdepressive symptoms (Pquantitative RT-PCR approach, we measured CD34, CD133 and VEGFR2 mRNA levels of PB samples and found a net trend toward a decrease in all the investigated EPC-specific mRNA levels in patients as compared with controls. However, statistical significance was reached only for VEGFR2 and CD133 levels (Pdepression.

  14. Therapeutic Potential of Endothelial Progenitor Cells in the Field of Orthopaedics.

    Science.gov (United States)

    Kawakami, Yohei; Matsumoto, Tomoyuki; Mifune, Yutaka; Fukui, Tomoaki; Patel, Kunj G; Walker, Garth N; Kurosaka, Masahiro; Kuroda, Ryosuke

    2017-01-01

    Inadequate blood supply frequently impedes the viability of tissue-engineered constructs in the initial phase after implantation, and can lead to improper cell integration or cell death. Vascularization using stem cells has continued to evolve as a potential solution to this problem. In this review, we summarize studies that utilize endothelial progenitor cells (EPCs) for musculoskeletal regeneration. This review will also highlight recent concepts for EPC identification in conjunction with the development of EPC biology research. EPCs promote bone regeneration in animal models through a variety of mechanisms. By differentiating toward endothelial cell lineages and osteoblasts, EPCs stimulate vasculogenesis, angiogenesis and osteogenesis. Moreover, EPCs influence supporting cells through the secretion of growth factors and cytokines. Phase I/II clinical trials have applied circulating CD34+ cells/EPCs to nonunion bone fractures and have exhibited promising results including accelerated bone healing. Similar mechanisms of angiogenesis and osteogenesis are proposed for anterior cruciate ligament (ACL) ruptured tissue derived CD34+ cells, and thus EPCs have implied a critical role at the site of tendon-bone integration. EPCs are an emerging strategy among other cell-based therapies in the field of orthopaedics for the promotion of musculoskeletal regeneration.

  15. A comparison of the tube forming potentials of early and late endothelial progenitor cells.

    Science.gov (United States)

    Mukai, Nana; Akahori, Taichi; Komaki, Motohiro; Li, Qin; Kanayasu-Toyoda, Toshie; Ishii-Watabe, Akiko; Kobayashi, Akiko; Yamaguchi, Teruhide; Abe, Mayumi; Amagasa, Teruo; Morita, Ikuo

    2008-02-01

    The identification of circulating endothelial progenitor cells (EPCs) has revolutionized approaches to cell-based therapy for injured and ischemic tissues. However, the mechanisms by which EPCs promote the formation of new vessels remain unclear. In this study, we obtained early EPCs from human peripheral blood and late EPCs from umbilical cord blood. Human umbilical vascular endothelial cells (HUVECs) were also used. Cells were evaluated for their tube-forming potential using our novel in vitro assay system. Cells were seeded linearly along a 60 mum wide path generated by photolithographic methods. After cells had established a linear pattern on the substrate, they were transferred onto Matrigel. Late EPCs formed tubular structures similar to those of HUVECs, whereas early EPCs randomly migrated and failed to form tubular structures. Moreover, late EPCs participate in tubule formation with HUVECs. Interestingly, late EPCs in Matrigel migrated toward pre-existing tubular structures constructed by HUVECs, after which they were incorporated into the tubules. In contrast, early EPCs promote sprouting of HUVECs from tubular structures. The phenomena were also observed in the in vivo model. These observations suggest that early EPCs cause the disorganization of pre-existing vessels, whereas late EPCs constitute and orchestrate vascular tube formation.

  16. Endothelial Progenitor Cells in Tumor Angiogenesis: Another Brick in the Wall

    Directory of Open Access Journals (Sweden)

    Marina Marçola

    2015-01-01

    Full Text Available Until 15 years ago, vasculogenesis, the formation of new blood vessels from undifferentiated cells, was thought to occur only during embryonic development. The discovery of circulating cells that are able to promote vascular regeneration and repair—the so-called endothelial progenitor cells (EPCs—changed that, and EPCs have since been studied extensively. It is already known that EPCs include many subtypes of cells that play a variety of roles in promoting vascular growth. Some EPCs are destined to differentiate into endothelial cells, whereas others are capable of promoting and sustaining angiogenesis through paracrine mechanisms. Vasculogenesis and angiogenesis might constitute complementary mechanisms for postnatal neovascularization, and EPCs could be at the core of this process. Although the formation of new blood vessels from preexisting vasculature plays a beneficial role in many physiological processes, such as wound healing, it also contributes to tumor growth and metastasis. However, many aspects of the role played by EPCs in tumor angiogenesis remain unclear. This review aims to address the main aspects of EPCs differentiation and certain characteristics of their main function, especially in tumor angiogenesis, as well as the potential clinical applications.

  17. Effect of antihypertensive treatment on circulating endothelial progenitor cells in patients with mild essential hypertension.

    Science.gov (United States)

    de Ciuceis, Carolina; Pilu, Annamaria; Rizzoni, Damiano; Porteri, Enzo; Muiesan, Maria Lorenza; Salvetti, Massimo; Paini, Anna; Belotti, Eugenia; Zani, Francesca; Boari, Gianluca E M; Rosei, Claudia Agabiti; Rosei, Enrico Agabiti

    2011-04-01

    It has been reported that the number of circulating endothelial progenitor cells (EPCs) reflects the endogenous vascular repair ability, with the EPCs pool declining in the presence of cardiovascular risk factors. However, their relationship with hypertension and the effects of anti-hypertensive treatment remain unclear. We randomized 29 patients with mild essential hypertension to receive barnidipine up to 20 mg or hydrochlorothiazide (HCT) up to 25 mg. Circulating EPCs were isolated from peripheral blood at baseline and after 3 and 6 months of treatment. Mononuclear cells were cultured with endothelial basal medium supplemented with EGM SingleQuots. EPCs were identified by positive double staining for both FITC-labeled Ulex europaeus agglutinin I and Dil-labeled acethylated low-density lipoprotein. After 3 and 6 months of treatment, systolic and diastolic blood pressure (BP) were significantly reduced. No difference was observed between drugs. An increase in the number of EPCs was observed after 3 and 6 months of anti-hypertensive treatment (p Barnidipine significantly increased EPCs after 3 and 6 months of treatment, whereas no effect was observed with HCT. No statistically significant correlation was observed between EPCs and clinical BP values. Our data suggest that antihypertensive treatment may increase the number of EPCs. However, we observed a different effect of barnidipine and HCT on EPCs, suggesting that, beyond its BP lowering effect, barnidipine may elicit additional beneficial properties, related to a healthier vasculature.

  18. Expansion of Endothelial Progenitor Cells in High Density Dot Culture of Rat Bone Marrow Cells

    Science.gov (United States)

    Wang, Ling; Kretlow, James D.; Zhou, Guangdong; Cao, Yilin; Liu, Wei; Zhang, Wen Jie

    2014-01-01

    In vitro expansion of endothelial progenitor cells (EPCs) remains a challenge in stem cell research and its application. We hypothesize that high density culture is able to expand EPCs from bone marrow by mimicking cell-cell interactions of the bone marrow niche. To test the hypothesis, rat bone marrow cells were either cultured in high density (2×105 cells/cm2) by seeding total 9×105 cells into six high density dots or cultured in regular density (1.6×104 cells/cm2) with the same total number of cells. Flow cytometric analyses of the cells cultured for 15 days showed that high density cells exhibited smaller cell size and higher levels of marker expression related to EPCs when compared to regular density cultured cells. Functionally, these cells exhibited strong angiogenic potentials with better tubal formation in vitro and potent rescue of mouse ischemic limbs in vivo with their integration into neo-capillary structure. Global gene chip and ELISA analyses revealed up-regulated gene expression of adhesion molecules and enhanced protein release of pro-angiogenic growth factors in high density cultured cells. In summary, high density cell culture promotes expansion of bone marrow contained EPCs that are able to enhance tissue angiogenesis via paracrine growth factors and direct differentiation into endothelial cells. PMID:25254487

  19. Hepatocyte growth factor improves direct reprogramming of fibroblasts towards endothelial progenitor cells via ETV2 transduction

    Directory of Open Access Journals (Sweden)

    Phuc Van Pham

    2016-09-01

    Full Text Available Human fibroblasts can be differentiated into endothelial progenitor cells by direct reprogramming via ETV-2 transfection. Previously, we have shown that the efficacy of direct reprogramming can be enhanced by hypoxia treatment. In this study, we aim to investigate whether the efficacy of direct reprogramming of fibroblasts into EPCs via Ets variant gene 2 (ETV2 transfection can be increased with hepatocyte growth factor (HGF treatment. Foreskin-derived fibroblasts were cultured in standard medium (DMEM/F12 supplemented with fetal bovine serum. They were then transduced with a viral vector expressing ETV2 in culture medium supplemented with HGF. The transduced fibroblasts were cultured in endothelial cell medium supplemented with HGF for 28 days. The efficacy of direct reprogramming was evaluated based on expression of CD31 and VEGFR2 markers by transduced cells. Phenotypic and functional characterization of induced EPCs were also confirmed by expression of particular genes and in vitro angiogenesis assays. Our results showed that HGF significantly increased the efficacy of direct reprogramming of fibroblasts towards EPCs via ETV2 transcription factors; efficiency increased from 5.41+/-1.51% for ETV2 transduction alone to 12.31+/-2.15% for ETV2 transduction combined with HGF treatment. These findings suggest the rationale for combined use of ETV2 and HGF in direct in vitro reprogramming of fibroblasts into EPCs. [Biomed Res Ther 2016; 3(9.000: 836-843

  20. A Novel Molecular and Functional Stemness Signature Assessing Human Cord Blood-Derived Endothelial Progenitor Cell Immaturity.

    Directory of Open Access Journals (Sweden)

    Oriane Guillevic

    Full Text Available Endothelial Colony Forming Cells (ECFCs, a distinct population of Endothelial Progenitor Cells (EPCs progeny, display phenotypic and functional characteristics of endothelial cells while retaining features of stem/progenitor cells. Cord blood-derived ECFCs (CB-ECFCs have a high clonogenic and proliferative potentials and they can acquire different endothelial phenotypes, this requiring some plasticity. These properties provide angiogenic and vascular repair capabilities to CB-ECFCs for ischemic cell therapies. However, the degree of immaturity retained by EPCs is still confused and poorly defined. Consequently, to better characterize CB-ECFC stemness, we quantified their clonogenic potential and demonstrated that they were reprogrammed into induced pluripotent stem cells (iPSCs more efficiently and rapidly than adult endothelial cells. Moreover, we analyzed the transcriptional profile of a broad gene panel known to be related to stem cells. We showed that, unlike mature endothelial cells, CB-ECFCs expressed genes involved in the maintenance of embryonic stem cell properties such as DNMT3B, GDF3 or SOX2. Thus, these results provide further evidence and tools to appreciate EPC-derived cell stemness. Moreover this novel stem cell transcriptional signature of ECFCs could help better characterizing and ranging EPCs according to their immaturity profile.

  1. Kinetics of circulating endothelial progenitor cells in patients undergoing carotid artery surgery

    Directory of Open Access Journals (Sweden)

    Kalender G

    2016-12-01

    Full Text Available G Kalender,1 A Kornberger,2 M Lisy,1 Andres Beiras-Fernandez,2 UA Stock2 1Deparment of General, Thoracic and Vascular Surgery, Hoechst Hospital, 2Department of Thoracic and Cardiovascular Surgery, University Hospital Frankfurt, Frankfurt am Main, Germany Aim: Endothelial progenitor cells (EPCs are primitive cells found in the bone marrow and peripheral blood (PB. In particular, the potential of EPCs to differentiate into mature endothelial cells remains of high interest for clinical applications such as bio-functionalized patches for autologous seeding after implantation. The objective of this study was to determine EPCs’ kinetics in patients undergoing carotid artery thromboendarterectomy (CTEA and patch angioplasty. Methods: Twenty CTEA patients were included (15 male, mean age 76 years. PB samples were taken at 1 day preoperatively, and at 1, 3, and 5 days postoperatively. Flow cytometric analysis was performed for CD34, CD133, KDR, and CD45. Expression of KDR, SDF-1α, and G-CSF was analyzed by means of enzyme-linked immunosorbent assay. Results: Fluorescence-activated cell sorting analysis revealed 0.031%±0.016% (% of PB mononuclear cells KDR+ cells and 0.052%±0.022% CD45-/CD34+/CD133+ cells, preoperatively. A 33% decrease of CD45–/CD34+/CD133+ cells was observed at day 1 after surgery. However, a relative number (compared to initial preoperative values of CD45-/CD34+/CD133+ cells was found on day 3 (82% and on day 5 (94% postoperatively. More profound upregulated levels of CD45–CD34+/CD133+ cells were observed for diabetic (+47% compared to nondiabetic and male (+38% compared to female patients. No significant postoperative time-dependent differences were found in numbers of KDR+ cells and the concentrations of the cytokines KDR and G-CSF. However, the SDF-1α levels decreased significantly on day 1 postoperatively but returned to preoperative levels by day 3. Conclusion: CTEA results in short-term downregulation of circulating

  2. Impaired endothelial progenitor cell activity is associated with reduced arterial elasticity in patients with essential hypertension.

    Science.gov (United States)

    Yang, Zhen; Chen, Long; Su, Chen; Xia, Wen-Hao; Wang, Yan; Wang, Jie-Mei; Chen, Fei; Zhang, Yuan-Yuan; Wu, Fang; Xu, Shi-Yue; Zhang, Xiao-Lin; Tao, Jun

    2010-01-01

    Endothelial dysfunction is related to reduced arterial elasticity in patients with essential hypertension. Circulating endothelial progenitor cells (EPCs), an important endogenous repair approach for endothelial injury, is altered in hypertensive patients. However, the association between alteration in circulating EPCs and hypertension-related reduced arterial elasticity has not been reported. The purpose of this study is to investigate the association between alteration in circulating EPCs and hypertension-related reduced arterial elasticity. We measured the artery elasticity profiles including brachial-ankle PWV (baPWV) and C1 large and C2 small artery elasticity indices in patients with essential hypertension (n = 20) and age-matched normotensive subjects (n = 21). The number and activity of circulating EPCs isolated from peripheral blood were determined. Compared to normotensive subjects, the patients with hypertension exhibited decreased C1 large and C2 small artery elasticity indices, as well as increased baPWV. The number of circulating EPCs did not differ between the two groups. The migratory and proliferative activities of circulating EPCs in hypertensive patients were lower than those in normotensive subjects. Both proliferatory and migratory activities of circulating EPCs closely correlated with arterial elasticity profiles, including baPWV and C1 large and C2 small artery elasticity indices. Multivariate analysis identified both proliferative and migratory activities of circulating EPCs as independent predictors of the artery elasticity profiles. The present study demonstrates for the first time that impaired activity of circulating EPCs is associated with reduced arterial elasticity in patients with hypertension. The fall in endogenous repair capacity of vascular endothelium may be involved in the pathogenesis of hypertension-related vascular injury.

  3. Endothelial progenitor cells in systemic sclerosis: their possible role in angiogenesis

    Directory of Open Access Journals (Sweden)

    N. Fracchiolla

    2011-09-01

    Full Text Available Background: Recently, several studies have demonstrated the presence of circulating endothelial progenitors (CEPs responsable for angiogenesis. Notably, these cells are able to migrate to ischemic tissues and differentiate in situ in mature endothelial cells. Aim of this study was to assess the presence of CEPs in the peripheral blood of patients with Sistemic Sclerosis (SSc and evaluate their significance as an attempt of re-vascularization Material and methods: Samples of peripheral blood from 40 healthy subjects and 56 patients with SSc were studied. Five-parameter, 3-color flow cytometry was performed with a FACScan. CEPs were defined as CD45 negative, CD34 and CD133 positive. In addition, plasma levels of vascular endothelial growth factor (VEGF and basic fibroblast growth factor (bFGF were detected by commercial ELISA (R&D Systems. Results: Levels of CEPs (CD133+/CD34+/CD45- were significantly higher in patients with SSc in comparison to HC (P = 0.01. No correlation was found between CEPs and any clinical parameter of disease neither activity score. CEPs were significantly higher in the group of patients with early disease, while their number decreased in the late phases of disease. Plasma levels of VEGF, but not bFGF, were significantly higher in SSc in comparison to HC (P<0.001 but no correlation was found between VEGF concentrations and CEP number. Conclusions: The presence of CEPs in patients with SSc suggest that sclerodermic hypoxic tissues could induce the mobilization of bone-marrow derived cells in an attempt to provided new vessels, in the early phase of the disease, at least.

  4. Endothelial progenitor cell mediates transport of hepatitis B virus into myocardial tissue

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Background Hepatitis B virus (HBV) replication has been reported to be involved in many extrahepatic viral disorders;however,the mechanism by which HBV is transinfected into extrahepatic tissues such as myocardium and causes HBV associated myocarditis remains largely unknown.Methods In this study,endothelial progenitor cells (EPCs) were infected by HBV and then transfused into ischemic model of mice.HBV surface and core antigen as well as mutation of HBV particles were detected by immunonistochemistry,fluorescent activated cell sorter and transmission electron microscopy in vitro and in vivo.Results Human cord blood EPCs, but not human umbilical vein endothelial cells (HUVECs) could be effectively infected by taking up HBV in vitro.HBV envelope surface and core antigen expressions were first detectable in EPCs at day 3 after virus challenge,sustained for up to 11 days,and decreased thereafter.Similarly,the virus particles were the most abundant in EPCs ln the first week observed by a transmission electron microscope,and declined in 3 weeks after HBV infection.HBV DNA but not HBV cccDNA in EPCs were detectable even 3 weeks after virus challenge,as shown by PCR analysis.Furthermore,intravenous transplantation of HBV-treated EPCs into myocardial infarction Sprague & Dawley rats model resulted in incorporation of both EPCs and HBV into injured endothelial tissues of capillaries in the ischemic border zone.Conclusions These results strongly support that EPCs serve as virus carrier mediating HBV trans-infection into the injured myocardial tissues.The findings might suggest a novel mechanism for HBV-associated myocarditis.

  5. Increased expression of microRNA-221 inhibits PAK1 in endothelial progenitor cells and impairs its function via c-Raf/MEK/ERK pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaoping; Mao, Haian [Department of Nuclear Medicine, Shanghai 10th People’s Hospital, Tongji University School of Medicine, Shanghai 200072 (China); Chen, Jin-yuan [Department of Gastrointestinal Surgery, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001 (China); Wen, Shengjun [Department of Anatomy and neurobiology, School of Medicine, Tongji University, Shanghai 200072 (China); Li, Dan; Ye, Meng [Department of Nuclear Medicine, Shanghai 10th People’s Hospital, Tongji University School of Medicine, Shanghai 200072 (China); Lv, Zhongwei, E-mail: zhongweilv126@126.com [Department of Nuclear Medicine, Shanghai 10th People’s Hospital, Tongji University School of Medicine, Shanghai 200072 (China)

    2013-02-15

    Highlights: ► MicroRNA-221 is upregulated in the endothelial progenitor cells of atherosclerosis patients. ► PAK1 is a direct target of microRNA-221. ► MicroRNA-221 inhibits EPCs proliferation through c-Raf/MEK/ERK pathway. -- Abstract: Coronary artery disease (CAD) is associated with high mortality and occurs via endothelial injury. Endothelial progenitor cells (EPCs) restore the integrity of the endothelium and protect it from atherosclerosis. In this study, we compared the expression of microRNAs (miRNAs) in EPCs in atherosclerosis patients and normal controls. We found that miR-221 expression was significantly up-regulated in patients compared with controls. We predicted and identified p21/Cdc42/Rac1-activated kinase 1 (PAK1) as a novel target of miR-221 in EPCs. We also demonstrated that miR-221 targeted a putative binding site in the 3′UTR of PAK1, and absence of this site was inversely associated with miR-221 expression in EPCs. We confirmed this relationship using a luciferase reporter assay. Furthermore, overexpression of miR-221 in EPCs significantly decreased EPC proliferation, in accordance with the inhibitory effects induced by decreased PAK1. Overall, these findings demonstrate that miR-221 affects the MEK/ERK pathway by targeting PAK1 to inhibit the proliferation of EPCs.

  6. Promotion of adhesion and proliferation of endothelial progenitor cells on decellularized valves by covalent incorporation of RGD peptide and VEGF.

    Science.gov (United States)

    Zhou, Jianliang; Ding, Jingli; Nie, Bin'en; Hu, Shidong; Zhu, Zhigang; Chen, Jia; Xu, Jianjun; Shi, Jiawei; Dong, Nianguo

    2016-09-01

    Tissue engineered heart valve is a promising alternative to current heart valve surgery, for its capability of growth, repair, and remodeling. However, extensive development is needed to ensure tissue compatibility, durability and antithrombotic potential. This study aims to investigate the biological effects of multi-signal composite material of polyethyl glycol-cross-linked decellularized valve on adhesion and proliferation of endothelial progenitor cells. Group A to E was decellularized valve leaflets, composite material of polyethyl glycol-cross-linked decellularized valves leaflets, vascular endothelial growth factor-composite materials, Arg-Gly-Asp peptide-composite materials and multi-signal modified materials of polyethyl glycol-cross-linked decellularized valve leaflets, respectively. The endothelial progenitor cells were seeded for each group, cell adhesion and proliferation were detected and neo-endothelium antithrombotic function of the multi-signal composite materials was evaluated. At 2, 4, and 8 h after the seeding, the cell numbers and 3H-TdR incorporation in group D were the highest. At 2, 4, and 8 days after the seeding, the cell numbers and 3H-TdR incorporation were significantly higher in groups C, D, and E compared with groups A and B (P composite material of PEG-crosslinked decellularized valve leaflets synergistically promoted the adhesion and proliferation of endothelial progenitor cells on the composite material, which may help in tissue engineering of heart valves.

  7. Manipulating Endothelial Progenitor Cell Homing with Sphingosine-1-Phosphate for Terapeutic Angiogenesis

    Science.gov (United States)

    Williams, Priscilla Anne

    Ischemic vascular diseases are the main cause of mortality worldwide and yet current therapies only delay disease progression and improve quality of life without addressing the fundamental problem of tissue loss. Within the field of tissue engineering, therapeutic angiogenesis provides a promising approach to alternatively provide new blood vessel formation via spatiotemporally controlled delivery of proangiogenic agents. Sphingosine-1-phosphate (S1P), a bioactive lysophospholipid that is upregulated under ischemic conditions, has recently gained great enthusiasm as a potential mediator in neovascularization strategies given its essential roles in promoting both neovessel formation and stabilization, and cellular trafficking along highly regulated endogenous gradients. Herein, the governing hypothesis guiding this dissertation is that local biomaterial-controlled delivery of S1P may be used to enhance migration and recruitment of vascular progenitor cells for enhanced therapeutic angiogenesis within ischemic tissue. The initial work in this dissertation investigated the effect of hypoxia on the angiogenic response of both mature and progenitor endothelial cells to S1P stimulation in vitro. Outgrowth endothelial cells (OECs) were isolated from human umbilical cord blood to provide a clinically relevant source of vascular progenitor cells for the studies conducted within this dissertation. S1P stimulation promoted angiogenic activity of both ECs and OECs under both ambient and hypoxic (1%) oxygen tensions. Furthermore, dual therapy with the combination of S1P and vascular endothelial growth factor (VEGF) further enhanced cellular responses. Interestingly, hypoxia substantially augmented the functional response of OECs to S1P, resulting in 25-fold and 6.5-fold increases in directed migration and sprouting, respectively. Thus, these studies highlighted the potential for S1P as a therapeutic agent for treatment of ischemic diseases. An injectable biomaterial system

  8. Culture materials affect ex vivo expansion of hematopoietic progenitor cells.

    Science.gov (United States)

    LaIuppa, J A; McAdams, T A; Papoutsakis, E T; Miller, W M

    1997-09-01

    Ex vivo expansion of hematopoietic cells is important for applications such as cancer treatment, gene therapy, and transfusion medicine. While cell culture systems are widely used to evaluate the biocompatibility of materials for implantation, the ability of materials to support proliferation of primary human cells in cultures for reinfusion into patients has not been addressed. We screened a variety of commercially available polymer (15 types), metal (four types), and glass substrates for their ability to support expansion of hematopoietic cells when cultured under conditions that would be encountered in a clinical setting. Cultures of peripheral blood (PB) CD34+ cells and mononuclear cells (MNC) were evaluated for expansion of total cells and colony-forming unit-granulocyte monocyte (CFU-GM; progenitors committed to the granulocyte and/or monocyte lineage). Human hematopoietic cultures in serum-free medium were found to be extremely sensitive to the substrate material. The only materials tested that supported expansion at or near the levels of polystyrene were tissue culture polystyrene, Teflon perfluoroalkoxy, Teflon fluorinated ethylene propylene, cellulose acetate, titanium, new polycarbonate, and new polymethylpentene. MNC were less sensitive to the substrate materials than the primitive CD34+ progenitors, although similar trends were seen for expansion of the two cell populations on the substrates tested. CFU-GM expansion was more sensitive to substrate materials than was total cell expansion. The detrimental effects of a number of the materials on hematopoietic cultures appear to be caused by protein adsorption and/or leaching of toxins. Factors such as cleaning, sterilization, and reuse significantly affected the performance of some materials as culture substrates. We also used PB CD34+ cell cultures to examine the biocompatibility of gas-permeable cell culture and blood storage bags and several types of tubing commonly used with biomedical equipment

  9. Advanced glycation end products impair the migration, adhesion and secretion potentials of late endothelial progenitor cells

    Directory of Open Access Journals (Sweden)

    Li Hong

    2012-04-01

    Full Text Available Abstract Background Endothelial progenitor cells (EPCs, especially late EPCs, play a critical role in endothelial maintenance and repair, and postnatal vasculogenesis. Advanced glycation end products (AGEs have been shown to impair EPC functions, such as proliferation, migration and adhesion. However, their role in the regulation of the production of vasoactive substances in late EPCs is less well defined. Methods Passages of 3~5 EPCs, namely late EPCs, were cultured with different concentrations (0~500 μg/ml of AGEs, and the apoptosis, adhesion and migration were subsequently determined. The release of vasoactive substances, such as stromal cell-derived factor-1 (SDF-1, nitric oxide (NO, prostaglandin I2 (PGI2, plasminogen activator inhibitor-1 (PAI-1, tissue plasminogen activator (tPA, and in addition the activity of superoxide dismutase (SOD, were evaluated by ELISA. At the same time, the gene and protein expressions of CXCR4 were assayed by real-time RT-PCR and western-blot. Results AGEs promoted late EPC apoptosis. Moreover, AGEs impaired late EPC migration and adhesion in a concentration-dependent manner. Accordingly, the production of SDF-1 was decreased by AGEs. Although the CXCR4 expressions of late EPCs were up-regulated for AGE concentrations of 50, 100 or 200 μg/ml, a marked decrease was observed for the higher concentration of 500 μg/ml. Furthermore, co-culturing with AGEs decreased the levels of NO, t-PA, PGI2, and the activity of SOD but up-regulated the production of PAI-1. Conclusion Our data provide evidence that AGEs play an important role in impairing late EPC functions, which could contribute to the development of vascular diseases in diabetes.

  10. Postischemic microvasculopathy and endothelial progenitor cell-based therapy in ischemic AKI: update and perspectives.

    Science.gov (United States)

    Patschan, D; Kribben, A; Müller, G A

    2016-08-01

    Acute kidney injury (AKI) dramatically increases mortality of hospitalized patients. Incidences have been increased in recent years. The most frequent cause is transient renal hypoperfusion or ischemia which induces significant tubular cell dysfunction/damage. In addition, two further events take place: interstitial inflammation and microvasculopathy (MV). The latter evolves within minutes to hours postischemia and may result in permanent deterioration of the peritubular capillary network, ultimately increasing the risk for chronic kidney disease (CKD) in the long term. In recent years, our understanding of the molecular/cellular processes responsible for acute and sustained microvasculopathy has increasingly been expanded. The methodical approaches for visualizing impaired peritubular blood flow and increased vascular permeability have been optimized, even allowing the depiction of tissue abnormalities in a three-dimensional manner. In addition, endothelial dysfunction, a hallmark of MV, has increasingly been recognized as an inductor of both vascular malfunction and interstitial inflammation. In this regard, so-called regulated necrosis of the endothelium could potentially play a role in postischemic inflammation. Endothelial progenitor cells (EPCs), represented by at least two major subpopulations, have been shown to promote vascular repair in experimental AKI, not only in the short but also in the long term. The discussion about the true biology of the cells continues. It has been proposed that early EPCs are most likely myelomonocytic in nature, and thus they may simply be termed proangiogenic cells (PACs). Nevertheless, they reliably protect certain types of tissues/organs from ischemia-induced damage, mostly by modulating the perivascular microenvironment in an indirect manner. The aim of the present review is to summarize the current knowledge on postischemic MV and EPC-mediated renal repair. Copyright © 2016 the American Physiological Society.

  11. Significance and therapeutic implications of endothelial progenitor cells in angiogenic-mediated tumour metastasis.

    Science.gov (United States)

    Flamini, Valentina; Jiang, Wen G; Lane, Jane; Cui, Yu-Xin

    2016-04-01

    Cancer conveys profound social and economic consequences throughout the world. Metastasis is responsible for approximately 90% of cancer-associated mortality and, when it occurs, cancer becomes almost incurable. During metastatic dissemination, cancer cells pass through a series of complex steps including the establishment of tumour-associated angiogenesis. The human endothelial progenitor cells (hEPCs) are a cell population derived from the bone marrow which are required for endothelial tubulogenesis and neovascularization. They also express abundant inflammatory cytokines and paracrine angiogenic factors. Clinically hEPCs are highly correlated with relapse, disease progression, metastasis and treatment response in malignancies such as breast cancer, ovarian cancer and non-small-cell lung carcinoma. It has become evident that the hEPCs are involved in the angiogenesis-required progression and metastasis of tumours. However, it is not clear in what way the signalling pathways, controlling the normal cellular function of human BM-derived EPCs, are hijacked by aggressive tumour cells to facilitate tumour metastasis. In addition, the actual roles of hEPCs in tumour angiogenesis-mediated metastasis are not well characterised. In this paper we reviewed the clinical relevance of the hEPCs with cancer diagnosis, progression and prognosis. We further summarised the effects of tumour microenvironment on the hEPCs and underlying mechanisms. We also hypothesized the roles of altered hEPCs in tumour angiogenesis and metastasis. We hope this review may enhance our understanding of the interaction between hEPCs and tumour cells thus aiding the development of cellular-targeted anti-tumour therapies.

  12. Changes of Number and Function of Late Endothelial Progenitor Cells in Peripheral Blood of COPD Patients Combined with Pulmonary Hypertension.

    Science.gov (United States)

    Liu, Pei; Zhang, Hongmei; Liu, Jianxin; Sheng, Chunfeng; Zhang, Linlin; Zeng, Yanjun

    2016-06-01

    Objective The objective of this study was to investigate the changes of number and function of late endothelial progenitor cells (EPCs) in peripheral blood of chronic obstructive pulmonary disease (COPD) patients combined with pulmonary hypertension. Subjects and Methods The study enrolled 120 cases including 40 non-COPD and pulmonary arterial hypertension (PAH) patients (non-COPD group), 40 COPD non-PAH patients (COPD group), and 40 COPD patients combined with PAH (COPD + PAH group). Peripheral blood mononuclear cells were separated by density gradient centrifugation, cultured for 21 days, and then identified as late endothelial progenitor cells. The cell colonies were counted. MTT assay, modified Boyden chamber assay, and human fibronectin plates were used to measure the proliferation, migration, and adhesion functions of the late endothelial progenitor cells, respectively. Results Compared with non-COPD and COPD groups, the number of peripheral blood late EPCs in COPD + PAH group was significantly reduced, and the proliferation, adhesion, and migration capacities were significantly lowered; the differences were statistically significant (p number and function of late EPCs decreased with the increase of pulmonary artery pressure (p number of late EPCs in COPD patients combined with pulmonary hypertension was reduced, which implies the impaired cell functions. The changes of number and function were negatively correlated with the severity of pulmonary hypertension.

  13. Trichostatin A enhances vascular repair by injected human endothelial progenitors through increasing the expression of TAL1-dependent genes.

    Science.gov (United States)

    Palii, Carmen G; Vulesevic, Branka; Fraineau, Sylvain; Pranckeviciene, Erinija; Griffith, Alexander J; Chu, Alphonse; Faralli, Hervé; Li, Yuhua; McNeill, Brian; Sun, Jie; Perkins, Theodore J; Dilworth, F Jeffrey; Perez-Iratxeta, Carol; Suuronen, Erik J; Allan, David S; Brand, Marjorie

    2014-05-01

    A major goal of cell therapy for vascular diseases is to promote revascularization through the injection of endothelial stem/progenitor cells. The gene regulatory mechanisms that underlie endothelial progenitor-mediated vascular repair, however, remain elusive. Here, we identify the transcription factor TAL1/SCL as a key mediator of the vascular repair function of primary human endothelial colony-forming cells (ECFCs). Genome-wide analyses in ECFCs demonstrate that TAL1 activates a transcriptional program that promotes cell adhesion and migration. At the mechanistic level, we show that TAL1 upregulates the expression of migratory and adhesion genes through recruitment of the histone acetyltransferase p300. Based on these findings, we establish a strategy that enhances the revascularization efficiency of ECFCs after ischemia through ex vivo priming with the histone deacetylase inhibitor TSA. Thus, small molecule epigenetics drugs are effective tools for modifying the epigenome of stem/progenitor cells prior to transplantation as a means to enhance their therapeutic potential.

  14. Factors secreted by endothelial progenitor cells enhance neurorepair responses after cerebral ischemia in mice.

    Directory of Open Access Journals (Sweden)

    Anna Rosell

    Full Text Available Cell therapy with endothelial progenitor cells (EPCs has emerged as a promising strategy to regenerate the brain after stroke. Here, we aimed to investigate if treatment with EPCs or their secreted factors could potentiate angiogenesis and neurogenesis after permanent focal cerebral ischemia in a mouse model of ischemic stroke. BALB/C male mice were subjected to distal occlusion of the middle cerebral artery, and EPCs, cell-free conditioned media (CM obtained from EPCs, or vehicle media were administered one day after ischemia. Magnetic resonance imaging (MRI was performed at baseline to confirm that the lesions were similar between groups. Immunohistochemical and histological evaluation of the brain was performed to evaluate angio-neurogenesis and neurological outcome at two weeks. CM contained growth factors, such as VEGF, FGF-b and PDGF-bb. A significant increase in capillary density was noted in the peri-infarct areas of EPC- and CM-treated animals. Bielschowsky's staining revealed a significant increase in axonal rewiring in EPC-treated animals compared with shams, but not in CM-treated mice, in close proximity with DCX-positive migrating neuroblasts. At the functional level, post-ischemia forelimb strength was significantly improved in animals receiving EPCs or CM, but not in those receiving vehicle media. In conclusion, we demonstrate for the first time that the administration of EPC-secreted factors could become a safe and effective cell-free option to be considered in future therapeutic strategies for stroke.

  15. Acidic Fibroblast Growth Factor Promotes Endothelial Progenitor Cells Function via Akt/FOXO3a Pathway.

    Directory of Open Access Journals (Sweden)

    Liya Huang

    Full Text Available Acidic fibroblast growth factor (FGF1 has been suggested to enhance the functional activities of endothelial progenitor cells (EPCs. The Forkhead homeobox type O transcription factors (FOXOs, a key substrate of the survival kinase Akt, play important roles in regulation of various cellular processes. We previously have shown that FOXO3a is the main subtype of FOXOs expressed in EPCs. Here, we aim to determine whether FGF1 promotes EPC function through Akt/FOXO3a pathway. Human peripheral blood derived EPCs were transduced with adenoviral vectors either expressing a non-phosphorylable, constitutively active triple mutant of FOXO3a (Ad-TM-FOXO3a or a GFP control (Ad-GFP. FGF1 treatment improved functional activities of Ad-GFP transduced EPCs, including cell viability, proliferation, antiapoptosis, migration and tube formation, whereas these beneficial effects disappeared by Akt inhibitor pretreatment. Moreover, EPC function was declined by Ad-TM-FOXO3a transduction and failed to be attenuated even with FGF1 treatment. FGF1 upregulated phosphorylation levels of Akt and FOXO3a in Ad-GFP transduced EPCs, which were repressed by Akt inhibitor pretreatment. However, FGF1 failed to recover Ad-TM-FOXO3a transduced EPCs from dysfunction. These data indicate that FGF1 promoting EPC function is at least in part mediated through Akt/FOXO3a pathway. Our study may provide novel ideas for enhancing EPC angiogenic ability and optimizing EPC transplantation therapy in the future.

  16. Circulating endothelial progenitor cells, microvascular density and fibrosis in obesity before and after bariatric surgery.

    Science.gov (United States)

    De Ciuceis, Carolina; Rossini, Claudia; Porteri, Enzo; La Boria, Elisa; Corbellini, Claudia; Mittempergher, Francesco; Di Betta, Ernesto; Petroboni, Beatrice; Sarkar, Annamaria; Agabiti-Rosei, Claudia; Casella, Claudio; Nascimbeni, Riccardo; Rezzani, Rita; Rodella, Luigi F; Bonomini, Francesca; Agabiti-Rosei, Enrico; Rizzoni, Damiano

    2013-06-01

    It is not known whether, in obesity, the capillary density or the number of circulating endothelial progenitor cells (EPCs) are reduced, or whether fibrosis of small vessels is also present. In addition, possible effects of weight reduction on these parameters have never been evaluated. Therefore, we investigated EPCs and capillary density in 25 patients with severe obesity, all submitted to bariatric surgery, and in 18 normotensive lean subjects and 12 hypertensive lean patients as controls. All patients underwent a biopsy of subcutaneous fat during bariatric surgery. In five patients, a second biopsy was obtained after consistent weight loss, about 1 year later, during a surgical intervention for abdominoplasty. EPCs and capillary density were reduced in obesity, and EPCs were significantly increased after weight reduction. Vascular collagen content was clearly increased in obese patients. No significant difference in vascular collagen was observed between normotensive obese patients and hypertensive obese patients. After pronounced weight reduction, collagen content was nearly normalized. No difference in stress-strain relation was observed among groups or before and after weight loss. In conclusion, our data suggest that microvascular rarefaction occurs in obesity. EPCs were significantly reduced in obese patients. Pronounced weight loss induced by bariatric surgery seems to induce a significant improvement of EPC number, but not of capillary rarefaction. A pronounced fibrosis of subcutaneous small resistance arteries is present in obese patients, regardless of the presence of increased blood pressure values. Consistent weight loss induced by bariatric surgery may induce an almost complete regression of microvascular fibrosis.

  17. Obesity suppresses circulating level and function of endothelial progenitor cells and heart function

    Directory of Open Access Journals (Sweden)

    Tsai Tzu-Hsien

    2012-07-01

    Full Text Available Abstract Background and aim This study tested the hypothesis that obesity suppresses circulating number as well as the function of endothelial progenitor cells (EPCs and left ventricular ejection fraction (LVEF. Methods High fat diet (45 Kcal% fat was given to 8-week-old C57BL/6 J mice (n = 8 for 20 weeks to induce obesity (group 1. Another age-matched group (n = 8 were fed with control diet for 20 weeks as controls (group 2. The animals were sacrificed at the end of 20 weeks after obesity induction. Results By the end of study period, the heart weight, body weight, abdominal fat weight, serum levels of total cholesterol and fasting blood sugar were remarkably higher in group 1 than in group 2 (all p Conclusions Obesity diminished circulating EPC level, impaired the recovery of damaged endothelium, suppressed EPC angiogenesis ability and LVEF, and increased LV remodeling.

  18. Processing of CXCL12 impedes the recruitment of endothelial progenitor cells in diabetic wound healing.

    Science.gov (United States)

    Feng, Guang; Hao, Daifeng; Chai, Jiake

    2014-11-01

    High blood sugar levels result in defective wound healing processes in diabetic patients. Endothelial progenitor cells (EPCs) play an important role in vasculogenesis, and thereby contribute to reconstitution of the microcirculation and healing. This study aimed to determine the possible mechanism by which the numbers of circulating EPCs are regulated in response to tissue wounding. In the streptozotocin-induced diabetic mouse model, we found that phagocytes activated by local inflammatory cytokines in the wound interfere with the mobilization and recruitment of EPCs to the lesion area. Specifically, the activated macrophages inactivate CXCL12, the major chemokine for EPC recruitment, via matrix metalloproteinases (MMPs), and thereby prevent local chemotaxis and subsequent homing of EPCs to the wound. The wound healing process is delayed by local administration of inflammatory cytokines, and its rate is increased by MMP inhibitors. This study indicates that local inhibition of MMPs is beneficial for regeneration of damaged vessels, and may explain poor wound healing in diabetic patients, thus demonstrating its potential utility as a local treatment therapy to promote diabetic wound healing.

  19. Id1 restrains p21 expression to control endothelial progenitor cell formation.

    Directory of Open Access Journals (Sweden)

    Alessia Ciarrocchi

    Full Text Available Loss of Id1 in the bone marrow (BM severely impairs tumor angiogenesis resulting in significant inhibition of tumor growth. This phenotype has been associated with the absence of circulating endothelial progenitor cells (EPCs in the peripheral blood of Id1 mutant mice. However, the manner in which Id1 loss in the BM controls EPC generation or mobilization is largely unknown. Using genetically modified mouse models we demonstrate here that the generation of EPCs in the BM depends on the ability of Id1 to restrain the expression of its target gene p21. Through a series of cellular and functional studies we show that the increased myeloid commitment of BM stem cells and the absence of EPCs in Id1 knockout mice are associated with elevated p21 expression. Genetic ablation of p21 rescues the EPC population in the Id1 null animals, re-establishing functional BM-derived angiogenesis and restoring normal tumor growth. These results demonstrate that the restraint of p21 expression by Id1 is one key element of its activity in facilitating the generation of EPCs in the BM and highlight the critical role these cells play in tumor angiogenesis.

  20. The role of endothelial progenitor cells in transient ischemic attack patients for future cerebrovascular events

    Directory of Open Access Journals (Sweden)

    Rokhsareh Meamar

    2016-01-01

    Full Text Available Background: The role of endothelial progenitor cells (EPCs in the maintenance of vascularization following ischemic brain after experimental stroke has been established. Accordingly, in this study, we evaluated the role of circulating EPCs in transient ischemic attack (TIA patients for future cerebrovascular (CV events. Materials and Methods: The level of circulating EPCs (staining markers: CD34, CD309 were determined using flow cytometry at 24 h after TIA in thirty consecutive patients. The EPCs level was also evaluated once in thirty healthy volunteers. Over a period of 12 months, all patients were evaluated by an experienced neurologist for recurrent TIA, stroke or death induced by CV disorders. Results: Circulating EPCs increased in patients group following the first attack of TIA when compared with controls. By analysis of covariance, cardiovascular event history, hyperlipidemia, and statin therapy remained significant independent predictors of EPCs. The mean (standard deviation duration of follow-up was 10.5 (3.1 months (range, 2–12 months. During follow-up, a total of three patients died due to CV accident and four patients experienced again recurrent TIA. By analyzing data with Cox regression, EPC did not predict the future CV events in TIA patients. Conclusion: Increased incidence of future CV events did not occur in those patients with elevated EPCs in the first attack of TIA. The significant predicting factors of EPCs were cardiovascular event history, hyperlipidemia, and statin therapy.

  1. TNFα Regulates Endothelial Progenitor Cell Migration via CADM1 and NF-kB

    Science.gov (United States)

    Prisco, Anthony R.; Hoffmann, Brian R.; Kaczorowski, Catherine C.; McDermott-Roe, Chris; Stodola, Timothy J.; Exner, Eric C.; Greene, Andrew S.

    2016-01-01

    Shortly after the discovery of endothelial progenitor cells (EPCs) in 1997, many clinical trials were conducted using EPCs as a cellular based therapy with the goal of restoring damaged organ function by inducing growth of new blood vessels (angiogenesis). Results were disappointing, largely because the cellular and molecular mechanisms of EPC-induced angiogenesis were not clearly understood. Following injection, EPCs must migrate to the target tissue and engraft prior to induction of angiogenesis. In this study EPC migration was investigated in response to tumor necrosis factor α (TNFα), a pro-inflammatory cytokine, to test the hypothesis that organ damage observed in ischemic diseases induces an inflammatory signal that is important for EPC homing. In this study, EPC migration and incorporation were modeled in vitro using a co-culture assay where TNFα treated EPCs were tracked while migrating towards vessel-like structures. It was found that TNFα treatment of EPCs increased migration and incorporation into vessel-like structures. Using a combination of genomic and proteomic approaches, NF-kB mediated upregulation of CADM1 was identified as a mechanism of TNFα induced migration. Inhibition of NF-kB or CADM1 significantly decreased migration of EPCs in vitro suggesting a role for TNFα signaling in EPC homing during tissue repair. PMID:26867147

  2. Endothelial progenitor cell transplantation ameliorates elastin breakdown in a Kawasaki disease mouse model

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhi; DU Zhong-dong; LIU Jun-feng; LU Dun-xiang; LI Li; GUAN Yun-qian; WAN Sui-gui

    2012-01-01

    Background Coronary artery damage from Kawasaki disease (KD) is closely linked to the dysfunction of endothelial progenitor cells (EPCs).The aim of the present study was to evaluate the therapeutic effect of EPCs transplantation in KD model.Methods Lactobacillus casei cell wall extract (LCWE)-induced KD model in C57BL/6 mice was established.The model mice were injected intravenously with bone marrow-derived in vitro expanded EPCs.Histological evaluation,number of circulating EPCs and the function of bone marrow EPCs were examined at day 56.Results Inflammation was found around the coronary artery of the model mice after 14 days,Elastin breakdown was observed after 56 days.CM-Dil labeled EPCs incorporated into vessel repairing foci was found.At day 56,the number of peripheral EPCs in the KD model group was lower than in EPCs transplanted and control group.The functional index of bone marrow EPCs from the KD model group decreased in proliferation,adhesion and migration.Increased number of circulating EPCs and improved function were observed on the EPCs transplanted group compared with model group.Conclusion Exogenously administered EPCs,which represent a novel strategy could prevent the dysfunction of EPCs,accelerate the repair of coronary artery endothelium lesion and decrease the occurrence of aneurysm.

  3. Influence of porcine-derived collagen matrix on endothelial progenitor cells: an in vitro study.

    Science.gov (United States)

    Pabst, Andreas Max; Lehmann, Karl-Martin; Walter, Christian; Krüger, Maximilian; Stratul, Stefan-Ioan; Kasaj, Adrian

    2016-01-01

    Porcine-derived collagen matrix (PDCM) has been reported as a promising alternative to autogenous soft tissue grafts in periodontal plastic surgery. The aim of this study was to analyze the influence of a novel PDCM on endothelial progenitor cells (EPC) in vitro. EPC were isolated from human peripheral blood, cultured and transferred on the PDCM (mucoderm®). Tissue culture polystyrene surface (TCPS) served as control. Cell viability of EPC on PDCM was measured by a MTT and PrestoBlue® assay. Migration ability was tested using a Boyden migration assay. A ToxiLight® assay was performed to analyze the influence of PDCM on adenylate kinase (ADK) release and apoptosis rate of EPC. Using the MTT assay, EPC cultured on PDCM demonstrated a significantly increased cell viability compared to the control group at days 3, 6 and 12 (p each 0.05). Overall, our results suggest a good biocompatibility of PDCM without any cytotoxic effects on EPC, which might support a rapid revascularization and therefore a sufficient ingrowth of the PDCM.

  4. Serial explant culture provides novel insights into the potential location and phenotype of corneal endothelial progenitor cells.

    Science.gov (United States)

    Walshe, Jennifer; Harkin, Damien G

    2014-10-01

    The routine cultivation of human corneal endothelial cells, with the view to treating patients with endothelial dysfunction, remains a challenging task. While progress in this field has been buoyed by the proposed existence of progenitor cells for the corneal endothelium at the corneal limbus, strategies for exploiting this concept remain unclear. In the course of evaluating methods for growing corneal endothelial cells, we have noted a case where remarkable growth was achieved using a serial explant culture technique. Over the course of 7 months, a single explant of corneal endothelium, acquired from cadaveric human tissue, was sequentially seeded into 7 culture plates and on each occasion produced a confluent cell monolayer. Sample cultures were confirmed as endothelial in origin by positive staining for glypican-4. On each occasion, small cells, closest to the tissue explant, developed into a highly compact layer with an almost homogenous structure. This layer was resistant to removal with trypsin and produced continuous cell outgrowth during multiple culture periods. The small cells gave rise to larger cells with phase-bright cell boundaries and prominent immunostaining for both nestin and telomerase. Nestin and telomerase were also strongly expressed in small cells immediately adjacent to the wound site, following transfer of the explant to another culture plate. These findings are consistent with the theory that progenitor cells for the corneal endothelium reside within the limbus and provide new insights into expected expression patterns for nestin and telomerase within the differentiation pathway.

  5. Statins, HMG-CoA Reductase Inhibitors, Improve Neovascularization by Increasing the Expression Density of CXCR4 in Endothelial Progenitor Cells.

    Science.gov (United States)

    Chiang, Kuang-Hsing; Cheng, Wan-Li; Shih, Chun-Ming; Lin, Yi-Wen; Tsao, Nai-Wen; Kao, Yung-Ta; Lin, Chih-Ting; Wu, Shinn-Chih; Huang, Chun-Yao; Lin, Feng-Yen

    2015-01-01

    Statins, inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, are used to reduce cholesterol biosynthesis in the liver. Accordingly, statins regulate nitric oxide (NO) and glutamate metabolism, inflammation, angiogenesis, immunity and endothelial progenitor cells (EPCs) functions. The function of EPCs are regulated by stromal cell-derived factor 1 (SDF-1), vascular endothelial growth factor (VEGF), and transforming growth factor β (TGF-β), etc. Even though the pharmacologic mechanisms by which statins affect the neovasculogenesis of circulating EPCs, it is still unknown whether statins affect the EPCs function through the regulation of CXCR4, a SDF-1 receptor expression. Therefore, we desired to explore the effects of statins on CXCR4 expression in EPC-mediated neovascularization by in vitro and in vivo analyses. In animal studies, we analyzed the effects of atorvastatin or rosuvastatin treatments in recovery of capillary density and blood flow, the expression of vWF and CXCR4 at ischemia sites in hindlimb ischemia ICR mice. Additionally, we analyzed whether the atorvastatin or rosuvastatin treatments increased the mobilization, homing, and CXCR4 expression of EPCs in hindlimb ischemia ICR mice that underwent bone marrow transplantation. The results indicated that statins treatment led to significantly more CXCR4-positive endothelial progenitor cells incorporated into ischemic sites and in the blood compared with control mice. In vivo, we isolated human EPCs and analyzed the effect of statins treatment on the vasculogenic ability of EPCs and the expression of CXCR4. Compared with the control groups, the neovascularization ability of EPCs was significantly improved in the atorvastatin or rosuvastatin group; this improvement was dependent on CXCR4 up-regulation. The efficacy of statins on improving EPC neovascularization was related to the SDF-1α/CXCR4 axis and might be regulated by the NO. In conclusion, atorvastatin and rosuvastatin improved

  6. Suppressed increase in blood endothelial progenitor cell content as result of single exhaustive exercise bout in male revascularised coronary artery disease patients.

    Science.gov (United States)

    Rummens, J L; Daniëls, A; Dendale, P; Hensen, K; Hendrikx, M; Berger, J; Koninckx, R; Hansen, D

    2012-01-01

    Endothelial progenitor cells (EPCs) significantly affect endothelial repair capacity and, hence, cardiovascular disease incidence. In healthy subjects, blood EPC content increases significantly as result of a single maximal exercise test, hereby stimulating endothelial repair capacity. It remains to be shown whether a single exercise positively affects blood EPCs in revascularised coronary artery disease (CAD) patients. From male revascularised CAD patients (n = 60) and healthy volunteers (n = 25) blood samples were collected before and immediately after a maximal cardiopulmonary exercise test. Blood samples were analyzed by optimised flow cytometry methodology for EPC content (CD34+, CD34+ CD133+, CD34+VEGFR2+, CD34+CD133+VEGFR2+, and CD34+CD133-VEGFR2+ cells) and compared between groups. CFU-Hill colonies were additionally assessed. As a result of a maximal exercise test, blood CD34+, CD34+VEGFR2+ (all EPCs), CD34+CD133+, and CD34+ CD133-VEGFR2+ (mature EPCs) cells increased significantly in CAD patients (p result of exercise (p > 0.05). No changes in CFU-Hill colonies as result of exercise were observed. This study shows that blood mature EPCs (CD34+CD133-VEGFR2+) increase significantly as result of a single exercise bout in revascularised CAD patients, but with smaller magnitude compared to healthy subjects. Blood immature EPCs (CD34+CD133+VEGFR2+) did not change significantly as result of exercise.

  7. Reversal of endothelial progenitor cell dysfunction in patients with type 2 diabetes using a conditioned medium of human embryonic stem cell-derived endothelial cells.

    Science.gov (United States)

    Ho, Jenny C Y; Lai, Wing-Hon; Li, Ming-Fang; Au, Ka-Wing; Yip, Mei-Chu; Wong, Navy L Y; Ng, Ethel S K; Lam, Francis F Y; Siu, Chung-Wah; Tse, Hung-Fat

    2012-07-01

    The potential clinical application of bone marrow or peripheral blood-derived progenitor cells for cardiovascular regeneration in patients with diabetes mellitus (DM) is limited by their functional impairment. We sought to determine the mechanisms of impaired therapeutic efficacy of peripheral blood-derived progenitor cells in type 2 DM patients and evaluated the use of cell-free conditioned medium obtained from human embryonic stem cell-derived endothelial-like cells (ESC-ECs) to reverse their functional impairment. The angiogenic potential of late outgrowth endothelial cells (OECs) and cytokine profile of the conditional medium of proangiogenic cells (PACs) derived from peripheral blood-mononuclear cells of healthy control and DM patients and ESC-ECs was compared by in vitro tube formation assay and a multiplex bead-based immunoassay kit, respectively. The in vivo angiogenic potential of ESC-ECs derived conditioned medium in rescuing the functional impairment of PB-PACs in DM patients was investigated using a hindlimb ischemia model. Human ESC-ECs had similar functional and phenotypic characteristics as OECs in healthy controls. Cytokine profiling showed that vascular endothelial growth factor, stromal cell-derived factor 1 and placental growth factor were down-regulated in PACs from DM patients. Tube formation assay that revealed functional impairment of OECs from DM patients could be rescued by ESC-ECs conditioned medium. Administration of ESC-ECs conditioned medium restored the therapeutic efficacy of PB-PACs from DM patients in a mouse model of hindlimb ischemia. Our results showed that peripheral blood-derived progenitor cells from DM patients have impaired function because of defective secretion of angiogenic cytokines, which could be restored by supplementation of ESC-ECs conditioned medium. Copyright © 2012 John Wiley & Sons, Ltd.

  8. Circulating endothelial progenitor cells in castration resistant prostate cancer: a randomized, controlled, biomarker study.

    Directory of Open Access Journals (Sweden)

    Thorsten Fuereder

    Full Text Available BACKGROUND: Endothelial progenitor cells (CEPs and circulating endothelial cells (CECs are potential biomarkers of response to anti-angiogenic treatment regimens. In the current study, we investigated the effect of docetaxel and sunitinib on CEP/CEC kinetics and clinical response in castration resistant prostate cancer (CRPC patients. PATIENTS AND METHODS: Chemonaive patients with CRPC were enrolled in this study to receive either sunitinib (37.5 mg/d, in combination with docetaxel (75 mg/m2 or docetaxel alone. CEP and CEC kinetics were analyzed for every cycle. The primary objective was to compare CEP/CEC pharmacodynamics between both treatment arms. We also investigated if CEC/CEP spikes, induced by MTD docetaxel, are suppressed by sunitinib in patients treated with docetaxel/sunitinib relative to docetaxel monotherapy. RESULTS: A total of 27 patients were enrolled. We observed a significant increase of CEP/CEC (total/viable counts over time within each cycle (coefficients 0.29233, 0.22092 and 0.26089, respectively; p<0.001. However, no differences between the treatment groups, in terms of CEP and CEC kinetics, were detected. In the docetaxel monotherapy arm 4 (30% patients responded to therapy with a 50% PSA decline, while 9 (64% patients showed a PSA decline in the combination group (n.s.. The median PFS in the docetaxel monotherapy group was 3.1 months (2.6-3.6 months, 95% CI and 6.2 months (4.9-7.4 months, 95% CI; p = 0.062 in the combination arm. Sunitinib/docetaxel was reasonably well tolerated and toxicity manageable. CONCLUSION: In summary, no significant differences in CEC and CEP kinetics between the treatment arms were observed, although a highly significant increase of CEPs/CECs within each cycle over time was detected. These results mirror the challenge we have to face when employing anti-angiogenic strategies in CRPC. Additional preclinical research is needed to elucidate the underlying molecular mechanisms. However

  9. Quantification of circulating endothelial progenitor cells using the modified ISHAGE protocol.

    Directory of Open Access Journals (Sweden)

    Caroline Schmidt-Lucke

    Full Text Available AIMS: Circulating endothelial progenitor cells (EPC, involved in endothelial regeneration, neovascularisation, and determination of prognosis in cardiovascular disease can be characterised with functional assays or using immunofluorescence and flow cytometry. Combinations of markers, including CD34+KDR+ or CD133+KDR+, are used. This approach, however may not consider all characteristics of EPC. The lack of a standardised protocol with regards to reagents and gating strategies may account for the widespread inter-laboratory variations in quantification of EPC. We, therefore developed a novel protocol adapted from the standardised so-called ISHAGE protocol for enumeration of haematopoietic stem cells to enable comparison of clinical and laboratory data. METHODS AND RESULTS: In 25 control subjects, 65 patients with coronary artery disease (CAD; 40 stable CAD, 25 acute coronary syndrome/acute myocardial infarction (ACS, EPC were quantified using the following approach: Whole blood was incubated with CD45, KDR, and CD34. The ISHAGE sequential strategy was used, and finally, CD45(dimCD34(+ cells were quantified for KDR. A minimum of 100 CD34(+ events were collected. For comparison, CD45(+CD34(+ and CD45(-CD34(+ were analysed simultaneously. The number of CD45(dimCD34(+KDR(+ cells only were significantly higher in healthy controls compared to patients with CAD or ACS (p = 0.005 each, p<0.001 for trend. An inverse correlation of CD45(dimCD34(+KDR(+ with disease activity (r = -0.475, p<0.001 was confirmed. Only CD45(dimCD34(+KDR(+ correlated inversely with the number of diseased coronaries (r = -0.344; p<0.005. In a second study, a 4-week de-novo treatment of atorvastatin in stable CAD evoked an increase only of CD45(dimCD34(+KDR(+ EPC (p<0.05. CD45(+CD34(+KDR(+ and CD45(-CD34(+KDR(+ were indifferent between the three groups. CONCLUSION: Our newly established protocol adopted from the standardised ISHAGE protocol achieved higher accuracy in

  10. Impaired function of bone marrow-derived endothelial progenitor cells in murine liver fibrosis.

    Science.gov (United States)

    Shirakura, Katsuya; Masuda, Haruchika; Kwon, Sang-Mo; Obi, Syotaro; Ito, Rie; Shizuno, Tomoko; Kurihara, Yusuke; Mine, Tetsuya; Asahara, Takayuki

    2011-01-01

    Liver fibrosis (LF) caused by chronic liver damage has been considered as an irreversible disease. As alternative therapy for liver transplantation, there are high expectations for regenerative medicine of the liver. Bone marrow (BM)- or peripheral blood-derived stem cells, including endothelial progenitor cells (EPCs), have recently been used to treat liver cirrhosis. We investigated the biology of BM-derived EPC in a mouse model of LF. C57BL/6J mice were subcutaneously injected with carbon tetrachloride (CCl(4)) every 3 days for 90 days. Sacrificed 2 days after final injection, whole blood (WB) was collected for isolation of mononuclear cells (MNCs) and biochemical examination. Assessments of EPC in the peripheral blood and BM were performed by flow cytometry and EPC colony-forming assay, respectively, using purified MNCs and BM c-KIT(+), Sca-1(+), and Lin(-) (KSL) cells. Liver tissues underwent histological analysis with hematoxylin/eosin/Azan staining, and spleens were excised and weighed. CCl(4)-treated mice exhibited histologically bridging fibrosis, pseudolobular formation, and splenomegaly, indicating successful induction of LF. The frequency of definitive EPC-colony-forming-units (CFU) as well as total EPC-CFU at the equivalent cell number of 500 BM-KSL cells decreased significantly (p changes in primitive EPC-CFU occurred in LF mice. The frequency of WB-MNCs of definitive EPC-CFU decreased significantly (p < 0.01) in LF mice compared with control mice. Together, these findings indicated the existence of impaired EPC function and differentiation in BM-derived EPCs in LF mice and might be related to clinical LF.

  11. Carbamylated low-density lipoprotein induces oxidative stress and accelerated senescence in human endothelial progenitor cells.

    Science.gov (United States)

    Carracedo, Julia; Merino, Ana; Briceño, Carolina; Soriano, Sagrario; Buendía, Paula; Calleros, Laura; Rodriguez, Mariano; Martín-Malo, Alejandro; Aljama, Pedro; Ramírez, Rafael

    2011-04-01

    Carbamylated low-density lipoprotein (cLDL) plays a role in atherosclerosis. In this study we evaluate the effect of uremia on LDL carbamylation and the effect of cLDL and oxidized LDL (oxLDL; 200 μg/ml) on number, function, and genomic stability of endothelial progenitor cells (EPCs) obtained from healthy volunteers. cLDL was generated after incubation of native LDL (nLDL) with uremic serum from patients with chronic kidney disease (CKD) stages 2-4. Oxidative stress was measured by flow cytometry and fluorescent microscopy, mitochondrial depolarization by flow cytometry, senescence by β-galactosidase activity and telomere length, and DNA damage by phosphorylated histone H2AX (γH2AX). The percentage of cLDL by uremic serum was related to the severity of CKD. Compared with nLDL, cLDL induced an increase in oxidative stress (62±5 vs. 8±3%, P<0.001) and cells with mitochondrial depolarization (73±7 vs. 9±5%, P<0.001), and a decrease in EPC proliferation and angiogenesis. cLDL also induced accelerated senescence (73±16 vs. 12±9%, P<0.001), which was associated with a decrease in the expression of γH2AX (62±9 vs. 5±3%, P<0.001). The degree of injury induced by cLDL was comparable to that observed with oxLDL. This study supports the hypothesis that cLDL triggers genomic damage in EPCs, resulting in premature senescence. We can, therefore, hypothesize that EPCs injury by cLDL contributes to an increase in atherosclerotic disease in CKD.

  12. Mobilization of endothelial progenitor cells after endovascular interventions in patients with type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Marina Sergeevna Michurova

    2014-12-01

    Full Text Available AimTo investigate the mobilisation of endothelial progenitor cells (EPC in patients with type 2 diabetes mellitus (T2DM after endovascular interventions for coronary and peripheral arteries.Materials and MethodsThe levels of EPC in peripheral blood were determined by flow cytometry in 42 patients prior to endovascular intervention and 2–4 days after surgery. EPC were defined as CD34+ VEGFR2+ CD45- and CD34+ CD133+CD45- cells. Twenty-three patients with T2DM were included in group 1, and 19 patients without metabolic disorders were included in group 2.ResultsThe levels of EPC in the peripheral blood of patients with T2DM before and after endovascular interventions were not significantly different. In the subgroup of patients without TDM2, the levels of CD34+VEGFR2 +CD45- cells increased after surgery to 55,5% (p <0,01, and the levels of CD34 + CD133 + CD45- cells increased to 27,7% (p <0,05. After endovascular intervention for the subgroup of patients with T2DM and with the levels of HbA1c ≤7,5%, the levels of CD34+VEGFR2+CD45- cells increased to 46,6% (p=0,01, and the levels of CD34+CD133+CD45- cells increased to 40,3 % (p=0,006 compared with the subgroup of patients with T2DM and with HbA1c levels of ≥7,5%.ConclusionThe patients with T2DM displayed alterations in EPC mobilisation after endovascular interventions. In addition, the EPC level changes were dependent on glycaemic control. Thus, in the subgroup of patients with T2DM and with good glycaemic control (HbA1c ≤7,5%, the EPC levels were significantly higher after endovascular interventions.

  13. Endothelial progenitor cell down-regulation in a mouse model of Kawasaki disease

    Institute of Scientific and Technical Information of China (English)

    LIU Jun-feng; DU Zhong-dong; CHEN Zhi; LU Dun-xiang; LI Li; GUAN Yun-qian; WAN Sui-gui

    2012-01-01

    Background Cardiovascular complications of Kawasaki disease (KD) are a common cause of heart disease in pediatric populations.Previous studies have suggested a role for endothelial progenitor cells (EPCs) in coronary artery lesions associated with KD.However,long-term observations of EPCs during the natural progression of this disorder are lacking.Using an experimental model of KD,we aimed to determine whether the coronary artery lesions are associated with down-regulation of EPCs.Methods To induce KD,C57BL/6 mice were administered an intraperitoneal injection of Lactobacillus casei cell wall extract (LCWE; phosphate buffered saline used as control vehicle).Study groups included:group A (14 days following LCWE injection),group B (56 days following LCWE injection) and group C (controls).Numbers of circulating EPCs (positively staining for both CD34 and FIk-1 while staining negative for CD45) were evaluated using flow cytometry.Bone marrow mononuclear cells were cultured in vitro to expand EPCs for functional analysis.In vitro EPC proliferation,adhesion and migration were assessed.Results The model was shown to exhibit similar coronary artery lesions to KD patients with coronary aneurysms.Numbers of circulating EPCs decreased significantly in the KD models (groups A and B) compared to controls ((0.017±0.008)% VS.(0.028±0.007)%,P<0.05 and (0.016±0.007)% vs.(0.028±0.007)%,P <0.05).Proliferative,adhesive and migratory properties of EPCs were markedly impaired in groups A and B.Conclusion Coronary artery lesions in KD occur as a consequence of impaired vascular injury repair,resulting from excess consumption of EPCs together with a functional impairment of bone marrow EPCs and their precursors.

  14. Nitric oxide and superoxide dismutase modulate endothelial progenitor cell function in type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Brenner Benjamin

    2009-10-01

    Full Text Available Abstract Background The function of endothelial progenitor cells (EPCs, which are key cells in vascular repair, is impaired in diabetes mellitus. Nitric oxide (NO and reactive oxygen species can regulate EPC functions. EPCs tolerate oxidative stress by upregulating superoxide dismutase (SOD, the enzyme that neutralizes superoxide anion (O2-. Therefore, we investigated the roles of NO and SOD in glucose-stressed EPCs. Methods The functions of circulating EPCs from patients with type 2 diabetes were compared to those from healthy individuals. Healthy EPCs were glucose-stressed, and then treated with insulin and/or SOD. We assessed O2- generation, NO production, SOD activity, and their ability to form colonies. Results EPCs from diabetic patients generated more O2-, had higher NAD(PH oxidase and SOD activity, but lower NO bioavailability, and expressed higher mRNA and protein levels of p22-phox, and manganese SOD and copper/zinc SOD than those from the healthy individuals. Plasma glucose and HbA1c levels in the diabetic patients were correlated negatively with the NO production from their EPCs. SOD treatment of glucose-stressed EPCs attenuated O2- generation, restored NO production, and partially restored their ability to form colonies. Insulin treatment of glucose-stressed EPCs increased NO production, but did not change O2- generation and their ability to form colonies. However, their ability to produce NO and to form colonies was fully restored after combined SOD and insulin treatment. Conclusion Our data provide evidence that SOD may play an essential role in EPCs, and emphasize the important role of antioxidant therapy in type 2 diabetic patients.

  15. Dietary intervention with Okinawan vegetables increased circulating endothelial progenitor cells in healthy young women.

    Science.gov (United States)

    Mano, Rieko; Ishida, Akio; Ohya, Yusuke; Todoriki, Hidemi; Takishita, Shuichi

    2009-06-01

    Circulating endothelial progenitor cells (EPCs) play a critical role in maintaining the integrity of vascular vessels. The number of EPCs inversely correlates with the number of atherosclerotic risk factors. Although nonpharmacological treatment represents the first approach to the primary prevention of atherosclerotic diseases, little is known about the effects of diet on EPCs. We investigated the effect of a dietary intervention with vegetables that are commonly eaten in Okinawa on the number of EPCs. Forty-five healthy young women were employed and randomized to a dietary intervention group (n=24) or a control group (n=21). Subjects in the intervention group received typical Okinawan vegetables through home-parcel delivery for 2 weeks. After the dietary intervention, urinary potassium and magnesium excretion increased only in the intervention group and changes were greater than in the control group (p=0.007, 0.010, respectively). The consumption of total vegetables correlated with changes in both urinary potassium and magnesium excretion. Serum folic acid increased and plasma homocysteine decreased in both groups but the change was significant only in the intervention group. The EPCs number significantly increased in the intervention group but did not in the control group. An inverse correlation was observed between EPC number and plasma homocysteine level (r=-0.272, p=0.016). Changes in the EPC number inversely correlated with changes in both serum total cholesterol and low-density lipoprotein cholesterol level (r=-0.555, p=0.0002; r=-0.626, p<0.0001, respectively). The consumption of vegetables increased the number of circulating EPCs; this change might be associated with a homocysteine-lowering effect.

  16. Resveratrol-induced augmentation of telomerase activity delays senescence of endothelial progenitor cells

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-bin; ZHU Li; HUANG Jun; YIN Yi-gang; KONG Xiang-qing; RONG Qi-fei; SHI Ai-wu; CAO Ke-jiang

    2011-01-01

    Background Previous studies have shown that resveratrol increases endothelial progenitor cell (EPC) numbers and functional activity.Increased EPC numbers and activity are associated with the inhibition of EPC senescence.In this study,we investigated the effect of resveratrol on the senescence of EPCs,leading to potentiation of cellular function.Methods EPCs were isolated from human peripheral blood and identified immunocytochemically.EPCs were incubated with resveratrol (1,10,and 50 μmol/L) or control for specified times.After in vitro cultivation,acidic β-galactosidase staining revealed the extent of senescence in the cells.To gain further insight into the underlying mechanism of the effect of resveratrol,we measured telomerase activity using a polymerase chain reaction (PCR)-enzyme-linked immunosorbent assay (ELISA) technique.Furthermore,we measured the expression of human telomerase reverse transcriptase (hTERT) and the phosphorylation of Akt by immunoblotting.Results Resveratrol dose-dependently inhibited the onset of EPC senescence in culture.Resveratrol also significantly increased telomerase activity.Interestingly,quantitative real-time PCR analysis demonstrated that resveratrol dose-dependently increased the expression of the catalytic subunit,hTERT,an effect that was significantly inhibited by pharmacological phosphatidylinositol 3-kinase (PI3-K) blockers (wortmannin).The expression of hTERT is regulated by the PI3-K/Akt pathway; therefore,we examined the effect of resveratrol on Akt activity in EPCs.Immunoblotting analysis revealed that resveratrol led to dose-dependent phosphorylation and activation of Akt in EPCs.Conclusion Resveratrol delayed EPCs senescence in vitro,which may be dependent on telomerase activation.

  17. Tracking of CFSE-labeled endothelial progenitor cells in laser-injured mouse retina

    Institute of Scientific and Technical Information of China (English)

    SHI Hui; YANG Wei; CUI Zhi-hua; LU Cheng-wei; LI Xiao-hong; LIANG Ling-ling; SONG E

    2011-01-01

    Background Endothelial progenitor cells (EPCs) transplantation is a promising therapeutic strategy for ischemic retinopathy. The current study aimed to establish a simple, reliable and fluorescent labeling method for tracking EPCs with 5-(and-6)-carboxyfluorescein diacetate succinimidyl ester (CFSE) in laser-injured mouse retina.Methods EPCs were isolated from human umbilical cord blood mononuclear cells, cultivated, and labeled with various concentrations of CFSE. Based on fluorescence intensity and cell morphology, a 15 minutes incubation with 5 μmol/L CFSE at 37℃ was selected as the optimal labeling condition. The survival capability and the apoptosis rate of CFSE-labeled EPCs were measured by Trypan blue staining and Annexin V/PI staining assay respectively. Fluorescence microscopy was used to observe the label stability during the extended culture period. Labeled EPCs were transplanted into the vitreous cavity of pigmented mice injured by retinal laser photocoagulation. Evans Blue angiography and flat mounted retinas were examined to track the labeled cells.Results EPCs labeled with 5 μmol/L CFSE presented an intense green fluorescence and maintained normal morphology, with no significant changes in the survival capability or apoptosis rate after being labeled for 2 days, 1 and 4 weeks. The fluorescence intensity gradually decreased in the cells at the end of 4 weeks. Evans Blue angiography of the retina displayed the retinal capillarity network clearly and fluorescence leakage was observed around photocoagulated spots in the laser-injured mouse model. One week after transplantation of labeled EPCs, the fluorescent cells were identified around the photocoagulated lesions. Four weeks after transplantation, fluorescent tube-like structures were observed in the retinal vascular networks.Conclusion EPCs could be labeled by CFSE in vitro and monitored in vivo for at least 4 weeks, and participate in the repair of injured retinal vessels.

  18. Effects of mesenchymal stem cell-derived cytokines on the functional properties of endothelial progenitor cells.

    Science.gov (United States)

    Kamprom, Witchayaporn; Kheolamai, Pakpoom; U-Pratya, Yaowalak; Supokawej, Aungkura; Wattanapanitch, Methichit; Laowtammathron, Chuti; Issaragrisil, Surapol

    2016-01-01

    Human mesenchymal stem cell (hMSC) is a potential source for cell therapy due to its property to promote tissue repair. Although, it has been known that hMSCs promote tissue repair via angiogenic cytokines, the interaction between hMSC-derived cytokines and the endothelial progenitor cells (EPCs), which play an important role in tissue neovascularization, is poorly characterized. We investigate the effect of cytokine released from different sources of hMSCs including bone marrow and gestational tissues on the EPC functions in vitro. The migration, extracellular matrix invasion and vessel formation of EPCs were studied in the presence or absence of cytokines released from various sources of hMSCs using transwell culture system. The migration of EPCs was highest when co-culture with secretory factors from placenta-derived hMSCs (PL-hMSCs) compared to those co-culture with other sources of hMSCs. For invasion and vessel formation, secretory factors from bone marrow-derived hMSCs (BM-hMSCs) could produce the maximal enhancement compared to other sources. We further identified the secreted cytokines and found that the migratory-enhancing cytokine from PL-hMSCs was PDGF-BB while the enhancing cytokine from BM-hMSCs on invasion was IGF-1. For vessel formation, the cytokines released from BM-hMSCs were IGF1 and SDF-1. In conclusion, hMSCs can release angiogenic cytokines which increase the migration, invasion and vessel forming capacity of EPCs. We can then use hMSCs as a source of angiogenic cytokines to induce neovascularization in injured/ischemic tissues.

  19. ARA290, a Specific Agonist of Erythropoietin/CD131 Heteroreceptor, Improves Circulating Endothelial Progenitors' Angiogenic Potential and Homing Ability.

    Science.gov (United States)

    Hache, Guillaume; Garrigue, Philippe; Bennis, Youssef; Stalin, Jimmy; Moyon, Anais; Cerami, Anthony; Brines, Michael; Blot-Chabaud, Marcel; Sabatier, Florence; Dignat-George, Francoise; Guillet, Benjamin

    2016-10-01

    Alternate erythropoietin (EPO)-mediated signaling via the EPOR/CD131 heteromeric receptor exerts the tissue-protective actions of EPO in a wide spectrum of injuries, especially ischemic diseases. Circulating endothelial progenitor cells contribute to endothelial repair and post-natal angiogenesis after chronic ischemic injury. This work aims to investigate the effects of ARA290, a specific agonist of EPOR/CD131 complex, on a subpopulation of endothelial progenitor cells named endothelial colony-forming cells (ECFCs) and to characterize its contribution to ECFCs-induced angiogenesis after peripheral ischemia. ARA290 effects on ECFCs properties were studied using cell cultures in vitro. We injected ARA290 to mice undergoing chronic hindlimb ischemia (CLI) in combination with ECFC transplantation. The homing of transplanted ECFC to ischemic tissue in vivo was assessed by SPECT/CT imaging. In vitro, ARA290 enhanced the proliferation, migration, and resistance to H2O2-induced apoptosis of ECFCs. After ECFC transplantation to mice with CLI, a single ARA290 injection enhanced the ischemic/non-ischemic ratio of hindlimb blood flow and capillary density after 28 days and the homing of radiolabeled transplanted cells to the ischemic leg 4 h after transplantation. Prior neutralization of platelet-endothelial cell adhesion molecule-1 (CD31) expressed by the transplanted cells inhibited ARA290-induced improvement of homing. ARA290 induces specific improvement of the biological activity of ECFCs. ARA290 administration in combination with ECFCs has a synergistic effect on post-ischemic angiogenesis in vivo. This potentiation appears to rely, at least in part, on a CD31-dependent increase in homing of the transplanted cells to the ischemic tissue.

  20. Architectural organization and functional features of early endothelial progenitor cells cultured in a hyaluronan-based polymer scaffold.

    Science.gov (United States)

    Pasquinelli, Gianandrea; Vinci, Maria Cristina; Gamberini, Chiara; Orrico, Catia; Foroni, Laura; Guarnieri, Carlo; Parenti, Astrid; Gargiulo, Mauro; Ledda, Fabrizio; Caldarera, Claudio Marcello; Muscari, Claudio

    2009-09-01

    Neovascularization can be improved using polymer scaffolds supporting endothelial progenitor cells (EPCs). The aim of the present study was to investigate whether human early EPCs (eEPCs) could be efficiently cultured in a hyaluronan-based non-woven mesh (HYAFF-11). eEPCs were seeded on HYAFF-11 at the density of 1 x 10(6)/cm(2) and cultured with endothelial differentiating factors for 3 weeks. After 24 h, nearly 90% of EPCs were adherent. Cell viability, evaluated by methyltetrazolium test, was greater in HYAFF-11 than on the most commonly used fibronectin-coated dishes, even if a progressive decline in viability was observed starting from approximately the second week of culture. eEPCs easily migrated to and aggregated on the scaffold. Evidence of active protein synthesis and features of endothelial differentiation, including cellular transcytotic channels and micropinocytotic vesicles, was revealed using electron microscopy, immunofluorescence, and reverse transcriptase polymerase chain reaction analysis. eEPCs cultured in the scaffold also showed a certain angiogenic activity, as demonstrated by hepatocyte growth factor transcription and vascular endothelial growth factor secretion. In conclusion, eEPCs can migrate and adhere inside HYAFF-11, maintain their pre-endothelial phenotype, and express angiogenic factors, especially within the first week of growth. These results indicate that non-woven HYAFF-11 could be a promising candidate as a vehicle for eEPCs for regenerative medicine applications.

  1. Cigarette Smoke Extract Changes Expression of Endothelial Nitric Oxide Synthase (eNOS) and p16(INK4a) and is Related to Endothelial Progenitor Cell Dysfunction.

    Science.gov (United States)

    He, Zhihui; Chen, Yan; Hou, Can; He, Wenfang; Chen, Ping

    2017-07-02

    BACKGROUND Endothelial dysfunction is an important pathophysiologic feature in many smoke-related diseases. Endothelial progenitor cells (EPCs) are the precursors of endothelial cells and play a fundamental role in the maintenance of endothelial integrity and function. Endothelial nitric oxide synthase (eNOS) is the dominant NOS isoform in the vasculature and plays a central role in the maintenance of endothelial homeostasis. p16(INK4a) is a cyclin-dependent kinase inhibitor and could be regarded as a major dominant senescence gene. The present study aimed to determine whether the expression of eNOS and p16(INK4a) in EPCs is related to EPCs function and the possible epigenetic mechanism, if any. MATERIAL AND METHODS We investigated EPCs capacity for proliferation, adhesion, and secretion, and the expression of eNOS and p16(INK4a) in EPCs which were altered by cigarette smoke extract (CSE) in vitro. Furthermore, Decitabine (Dec), an agent of demethylation, was used to examine whether it could alter the changes induced by CSE. RESULTS The present study demonstrated that EPCs altered by CSE in vitro displayed decreased capacities of proliferation, adhesion, and secretion, which was accompanied by decreased eNOS expression and increased p16(INK4a) expression in EPCs. Furthermore, Dec could alleviate the changes in the expression of eNOS and p16(INK4a), and protect against the EPCs dysfunction caused by CSE. CONCLUSIONS The decreased eNOS expression and increased p16(INK4a) expression was associated with dysfunction of EPCs caused by CSE. The mechanism of methylation, one of the most common epigenetic mechanism, may be involved in the EPCs dysfunction caused by CSE.

  2. Effect of Intracoronary Infusion of Bone Marrow Mononuclear Cells or Peripheral Endothelial Progenitor Cells on Myocardial Ischemia-reperfusion Injury in Mini-swine

    Institute of Scientific and Technical Information of China (English)

    Chong-jian Li; Ji-lin Chen; Jian-jun Li; Run-lin Gao; Yue-jin Yang; Feng-huan Hu; Wei-xian Yang; Shi-jie You; Lai-feng Song; Ying-mao Ruan; Shu-bin Qiao

    2010-01-01

    Objective To simulate and assess the clinical effect of intracoronary infusion of bone marrow mono-nuclear cells or peripheral endothelial progenitor cells on myocardial reperfusion injury in mini-swine model.Methods Twenty-three mini-swine with myocardial reperfusion injury were used as designed in the study protocol. About (3.54+0.90)x108 bone marrow mononudear cells (MNC group, n=9) or (1.16± 1.07)×10 endothelial progenitor cells (EPC group, n=7) was infused into the affected coronary segment of the swine. The other mini-swine were infused with phosphate buffered saline as control (n=7). Echocardio-graphy and hemodynamic studies were performed before and 4 weeks after cell infusion. Myocardium infarc-tion size was calculated. Stem cell differentiation was analyzed under a transmission electromicroscope.Results Left ventricular ejection fraction dropped by 0% in EPC group, 2% in MNC group, and 10% in the control group 4 weeks after cell infusion, respectively (P0.05). EPC decreased total infarction size more than MNC did (1.60±0.26 cm vs. 3.71±1.38 cm, P<0.05). Undermature endothelial cells and myocytes were found under transmission electromicroscope.Conclusions Transplantation of either MNC or EPC may be beneficial to cardiac systolic function, but might not has obvious effect on diastolic function, Intracoronary infusion of EPC might be better than MNC in controlling infarction size. Both MNC and EPC may stimulate angiogenesis, inhibit fibrogenesis, and differentiate into myocardial cells.

  3. Intravenous administration of human umbilical cord blood-derived AC133+ endothelial progenitor cells in rat stroke model reduces infarct volume: magnetic resonance imaging and histological findings.

    Science.gov (United States)

    Iskander, Asm; Knight, Robert A; Zhang, Zheng Gang; Ewing, James R; Shankar, Adarsh; Varma, Nadimpalli Ravi S; Bagher-Ebadian, Hassan; Ali, Meser M; Arbab, Ali S; Janic, Branislava

    2013-09-01

    Endothelial progenitor cells (EPCs) hold enormous therapeutic potential for ischemic vascular diseases. Previous studies have indicated that stem/progenitor cells derived from human umbilical cord blood (hUCB) improve functional recovery in stroke models. Here, we examined the effect of hUCB AC133+ EPCs on stroke development and resolution in a middle cerebral artery occlusion (MCAo) rat model. Since the success of cell therapies strongly depends on the ability to monitor in vivo the migration of transplanted cells, we also assessed the capacity of magnetic resonance imaging (MRI) to track in vivo the magnetically labeled cells that were administered. Animals were subjected to transient MCAo and 24 hours later injected intravenously with 10(7) hUCB AC133+ EPCs. MRI performed at days 1, 7, and 14 after the insult showed accumulation of transplanted cells in stroke-affected hemispheres and revealed that stroke volume decreased at a significantly higher rate in cell-treated animals. Immunohistochemistry analysis of brain tissues localized the administered cells in the stroke-affected hemispheres only and indicated that these cells may have significantly affected the magnitude of endogenous proliferation, angiogenesis, and neurogenesis. We conclude that transplanted cells selectively migrated to the ischemic brain parenchyma, where they exerted a therapeutic effect on the extent of tissue damage, regeneration, and time course of stroke resolution.

  4. Cilostazol activates function of bone marrow-derived endothelial progenitor cell for re-endothelialization in a carotid balloon injury model.

    Directory of Open Access Journals (Sweden)

    Rie Kawabe-Yako

    Full Text Available BACKGROUND: Cilostazol(CLZ has been used as a vasodilating anti-platelet drug clinically and demonstrated to inhibit proliferation of smooth muscle cells and effect on endothelial cells. However, the effect of CLZ on re-endothelialization including bone marrow (BM-derived endothelial progenitor cell (EPC contribution is unclear. We have investigated the hypothesis that CLZ might accelerate re-endothelialization with EPCs. METHODOLOGY/PRINCIPAL FINDINGS: Balloon carotid denudation was performed in male Sprague-Dawley rats. CLZ group was given CLZ mixed feed from 2 weeks before carotid injury. Control group was fed normal diet. CLZ accelerated re-endothelialization at 2 weeks after surgery and resulted in a significant reduction of neointima formation 4 weeks after surgery compared with that in control group. CLZ also increased the number of circulating EPCs throughout the time course. We examined the contribution of BM-derived EPCs to re-endothelialization by BM transplantation from Tie2/lacZ mice to nude rats. The number of Tie2-regulated X-gal positive cells on injured arterial luminal surface was increased at 2 weeks after surgery in CLZ group compared with that in control group. In vitro, CLZ enhanced proliferation, adhesion and migration activity, and differentiation with mRNA upregulation of adhesion molecule integrin αvβ3, chemokine receptor CXCR4 and growth factor VEGF assessed by real-time RT-PCR in rat BM-derived cultured EPCs. In addition, CLZ markedly increased the expression of SDF-1α that is a ligand of CXCR4 receptor in EPCs, in the media following vascular injury. CONCLUSIONS/SIGNIFICANCE: CLZ promotes EPC mobilization from BM and EPC recruitment to sites of arterial injury, and thereby inhibited neointima formation with acceleration of re-endothelialization with EPCs as well as pre-existing endothelial cells in a rat carotid balloon injury model. CLZ could be not only an anti-platelet agent but also a promising tool for

  5. Vascular Endothelial Growth Factor (VEGF) Bioavailability Regulates Angiogenesis and Intestinal Stem and Progenitor Cell Proliferation during Postnatal Small Intestinal Development

    Science.gov (United States)

    Holoyda, Kathleen A.; Hou, Xiaogang; Fowler, Kathryn L.; Grikscheit, Tracy C.

    2016-01-01

    Background Vascular endothelial growth factor (VEGF) is a highly conserved, master regulatory molecule required for endothelial cell proliferation, organization, migration and branching morphogenesis. Podocoryne carnea and drosophila, which lack endothelial cells and a vascular system, express VEGF homologs, indicating potential roles beyond angiogenesis and vasculogenesis. The role of VEGF in the development and homeostasis of the postnatal small intestine is unknown. We hypothesized regulating VEGF bioavailability in the postnatal small intestine would exhibit effects beyond the vasculature and influence epithelial cell stem/progenitor populations. Methods VEGF mutant mice were created that overexpressed VEGF in the brush border of epithelium via the villin promotor following doxycycline treatment. To decrease VEGF bioavailability, sFlt-1 mutant mice were generated that overexpressed the soluble VEGF receptor sFlt-1 upon doxycycline administration in the intestinal epithelium. Mice were analyzed after 21 days of doxycycline administration. Results Increased VEGF expression was confirmed by RT-qPCR and ELISA in the intestine of the VEGF mutants compared to littermates. The VEGF mutant duodenum demonstrated increased angiogenesis and vascular leak as compared to littermate controls. The VEGF mutant duodenum revealed taller villi and increased Ki-67-positive cells in the transit-amplifying zone with reduced Lgr5 expression. The duodenum of sFlt-1 mutants revealed shorter villi and longer crypts with reduced proliferation in the transit-amplifying zone, reduced expression of Dll1, Bmp4 and VE-cadherin, and increased expression of Sox9 and EphB2. Conclusions Manipulating VEGF bioavailability leads to profound effects on not only the intestinal vasculature, but epithelial stem and progenitor cells in the intestinal crypt. Elucidation of the crosstalk between VEGF signaling in the vasculature, mesenchyme and epithelial stem/progenitor cell populations may direct future

  6. Hydrogen Sulfide-Preconditioning of Human Endothelial Progenitor Cells Transplantation Improves Re-Endothelialization in Nude Mice with Carotid Artery Injury

    Directory of Open Access Journals (Sweden)

    Xiao Ke

    2017-08-01

    Full Text Available Background/Aims: The aim of present study was to test the hypothesis that preconditioning with sodium hydrosulfide (NaHS could enhance the capacity of migration, adhesion and proliferation of endothelial progenitor cells (EPCs in vitro, and also could improve the efficacy of EPCs transplantation for re-endothelialization in nude mice with carotid artery injury. The paper further addressed the underlying mechanisms. Methods: EPCs were isolated from peripheral blood mononuclear cells of healthy male volunteers and the markers of EPCs were analyzed by flow cytometry. Thereafter, different concentrations of NaHS (25, 50, 100, 200 and 500 uM were used for preconditioning EPCs. In vitro and in vivo migration, adhesion and proliferation as well as nitric oxide (NO production of EPCs were evaluated. Carotid artery injury model was produced in nude mice and thereafter, NaHS-preconditioned EPCs were transplanted in order to evaluate their capacity of re-endothelialization. Results: Cellular immuno-staining showed that isolated cells expressed the key markers of EPCs. In vitro, EPCs proliferation rates and NO production were gradually increased in a NaHS-concentration dependent manner, while these benefits were blocked at a concentration of 500 uM NaHS. Similarly, the migration and adhesion rates of EPCs were also increased the most prominently at a concentration of 200 µM NaHS. In vivo, compared to the control group, treatment with NaHS-preconditioned EPCs significantly enhanced the capacity of re-endothelialization of EPCs. Fluorescent microscope revealed that there were more EPCs homing to the injury vessels in the NaHS-preconditioned EPCs group than the non-preconditioned group. With the administration of AMPK or eNOS inhibitors respectively, the above benefits of NaHS-preconditioning were abrogated. Conclusion: These results suggested that NaHS-preconditioning enhanced the biological function and re-endothelialization of EPCs through the AMPK

  7. Proliferation, migration and apoptosis activities of endothelial progenitor cells in acute coronary syndrome

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li-jie; LIU Wen-xian; CHEN Yun-dai; SONG Xian-tao; JIN Ze-ning; L(U) Shu-zheng

    2010-01-01

    Background There are numerous articles on the endothelial progenitor cells (EPCs) in different disease conditions.However, the functional properties of EPCs in acute coronary syndrome (ACS) are still uncertain. Here we aimed to study the number and functions of EPCs in ACS patients.Methods Patients were enrolled with admitted ACS (n=25) and another 25 gender-, age-, atherosclerotic risk factors-matched stable coronary artery disease (CAD) controls. EPCs were defined as CD34+/CD133+/VEGFR-2+ and quantified by flow cytometry. Moreover, functional properties of EPCs including colony-forming unit (CFU), proliferation,migration as well as apoptosis were evaluated and compared between the two groups. Plasma matrix metalloproteinase-9 (MMP-9) was detected in all patients as well.Results The two groups had similar medication and clinical characteristics on admission. The EPCs in ACS patients were more than 2.6 times that in stable CAD subjects (15.6±2.7 vs. 6.0±0.8/100 000 events, P <0.01). CFU was not statistically different between the two groups (10.8±2.9 vs. 8.2±1.8, number/well, P >0.05). Furthermore, EPCs isolated from ACS patients were significantly impaired in their proliferation (0.498±0.035 vs. 0.895±0.067, OD value, P <0.01) and migration capacity (20.5±3.4 vs. 30.7±4.3, number/well, P <0.01) compared with controls. Moreover, the apoptosis cell in cultured EPCs was drastically increased in ACS group ((18.3 ±2.1 )% vs. (7.8±0.4)%, P <0.01 ).Conclusions Patients with ACS exhibited apparently increased circulating EPCs as well as cultured apoptosis percentage together with a remarkable impairment of proliferation and migration activities compared with stable CAD subjects.

  8. Zoledronate inhibits ischemia-induced neovascularization by impairing the mobilization and function of endothelial progenitor cells.

    Directory of Open Access Journals (Sweden)

    Shih-Hung Tsai

    Full Text Available BACKGROUND: Bisphosphonates are a class of pharmacologic compounds that are commonly used to treat postmenopausal osteoporosis and malignant osteolytic processes. Studies have shown that bone marrow-derived endothelial progenitor cells (EPCs play a significant role in postnatal neovascularization. Whether the nitrogen-containing bisphosphonate zoledronate inhibits ischemia-induced neovascularization by modulating EPC functions remains unclear. METHODOLOGY/PRINCIPAL FINDINGS: Unilateral hindlimb ischemia was surgically induced in wild-type mice after 2 weeks of treatment with vehicle or zoledronate (low-dose: 30 μg/kg; high-dose: 100 μg/kg. Doppler perfusion imaging demonstrated that the ischemic limb/normal side blood perfusion ratio was significantly lower in wild-type mice treated with low-dose zoledronate and in mice treated with high-dose zoledronate than in controls 4 weeks after ischemic surgery (control vs. low-dose vs. high-dose: 87±7% vs. *61±18% vs. **49±17%, *p<0.01, **p<0.005 compared to control. Capillary densities were also significantly lower in mice treated with low-dose zoledronate and in mice treated with high-dose zoledronate than in control mice. Flow cytometry analysis showed impaired mobilization of EPC-like cells (Sca-1(+/Flk-1(+ after surgical induction of ischemia in mice treated with zoledronate but normal levels of mobilization in mice treated with vehicle. In addition, ischemic tissue from mice that received zoledronate treatment exhibited significantly lower levels of the active form of MMP-9, lower levels of VEGF, and lower levels of phosphorylated eNOS and phosphorylated Akt than ischemic tissue from mice that received vehicle. Results of the in vitro studies showed that incubation with zoledronate inhibited the viability, migration, and tube-forming capacities of EPC. CONCLUSIONS/SIGNIFICANCE: Zoledronate inhibited ischemia-induced neovascularization by impairing EPC mobilization and angiogenic functions

  9. The Effects of Smoking on Levels of Endothelial Progenitor Cells and Microparticles in the Blood of Healthy Volunteers

    Science.gov (United States)

    Mobarrez, Fariborz; Antoniewicz, Lukasz; Bosson, Jenny A.; Kuhl, Jeanette; Pisetsky, David S.; Lundbäck, Magnus

    2014-01-01

    Background Cigarette smoking, both active and passive, is one of the leading causes of morbidity and mortality in cardiovascular disease. To assess the impact of brief smoking on the vasculature, we determined levels of circulating endothelial progenitor cells (EPCs) and circulating microparticles (MPs) following the smoking of one cigarette by young, healthy intermittent smokers. Materials and Methods 12 healthy volunteers were randomized to either smoking or not smoking in a crossover fashion. Blood sampling was performed at baseline, 1, 4 and 24 hours following smoking/not smoking. The numbers of EPCs and MPs were determined by flow cytometry. MPs were measured from platelets, leukocytes and endothelial cells. Moreover, MPs were also labelled with anti-HMGB1 and SYTO 13 to assess the content of nuclear molecules. Results Active smoking of one cigarette caused an immediate and significant increase in the numbers of circulating EPCs and MPs of platelet-, endothelial- and leukocyte origin. Levels of MPs containing nuclear molecules were increased, of which the majority were positive for CD41 and CD45 (platelet- and leukocyte origin). CD144 (VE-cadherin) or HMGB1 release did not significantly change during active smoking. Conclusion Brief active smoking of one cigarette generated an acute release of EPC and MPs, of which the latter contained nuclear matter. Together, these results demonstrate acute effects of cigarette smoke on endothelial, platelet and leukocyte function as well as injury to the vascular wall. PMID:24587320

  10. Differentiation of Human Embryonic Stem Cells to Endothelial Progenitor Cells on Laminins in Defined and Xeno-free Systems

    Directory of Open Access Journals (Sweden)

    Mien T.X. Nguyen

    2016-10-01

    Full Text Available A major hurdle for in vitro culturing of primary endothelial cells (ECs is that they readily dedifferentiate, hampering their use for therapeutic applications. Human embryonic stem cells (hESCs may provide an unlimited cell source; however, most current protocols deriving endothelial progenitor cells (EPCs from hESCs use direct differentiation approaches albeit on undefined matrices, yet final yields are insufficient. We developed a method to culture monolayer hESCs on stem cell niche laminin (LN LN511 or LN521 matrix. Here, we report a chemically defined, xeno-free protocol for differentiation of hESCs to EPCs using LN521 as the main culture substrate. We were able to generate ∼95% functional EPCs defined as VEGFR2+CD34+CD31+VE-Cadherin+. RNA-sequencing analyses of hESCs, EPCs, and primary human umbilical vein endothelial cells showed differentiation-related EC expression signatures, regarding basement membrane composition, cell-matrix interactions, and changes in endothelial lineage markers. Our results may facilitate production of stable ECs for the treatment of vascular diseases and in vitro cell modeling.

  11. Endothelial progenitor cell-dependent angiogenesis requires localization of the full-length form of uPAR in caveolae.

    Science.gov (United States)

    Margheri, Francesca; Chillà, Anastasia; Laurenzana, Anna; Serratì, Simona; Mazzanti, Benedetta; Saccardi, Riccardo; Santosuosso, Michela; Danza, Giovanna; Sturli, Niccolò; Rosati, Fabiana; Magnelli, Lucia; Papucci, Laura; Calorini, Lido; Bianchini, Francesca; Del Rosso, Mario; Fibbi, Gabriella

    2011-09-29

    Endothelial urokinase-type plasminogen activator receptor (uPAR) is thought to provide a regulatory mechanism in angiogenesis. Here we studied the proangiogenic role of uPAR in endothelial colony-forming cells (ECFCs), a cell population identified in human umbilical blood that embodies all of the properties of an endothelial progenitor cell matched with a high proliferative rate. By using caveolae-disrupting agents and by caveolin-1 silencing, we have shown that the angiogenic properties of ECFCs depend on caveolae integrity and on the presence of full-length uPAR in such specialized membrane invaginations. Inhibition of uPAR expression by antisense oligonucleotides promoted caveolae disruption, suggesting that uPAR is an inducer of caveolae organization. Vascular endothelial growth factor (VEGF) promoted accumulation of uPAR in ECFC caveolae in its undegraded form. We also demonstrated that VEGF-dependent ERK phosphorylation required integrity of caveolae as well as caveolar uPAR expression. VEGF activity depends on inhibition of ECFC MMP12 production, which results in impairment of MMP12-dependent uPAR truncation. Further, MMP12 overexpression in ECFC inhibited vascularization in vitro and in vivo. Our data suggest that intratumor homing of ECFCs suitably engineered to overexpress MMP12 could have the chance to control uPAR-dependent activities required for tumor angiogenesis and malignant cells spreading.

  12. The effects of smoking on levels of endothelial progenitor cells and microparticles in the blood of healthy volunteers.

    Directory of Open Access Journals (Sweden)

    Fariborz Mobarrez

    Full Text Available BACKGROUND: Cigarette smoking, both active and passive, is one of the leading causes of morbidity and mortality in cardiovascular disease. To assess the impact of brief smoking on the vasculature, we determined levels of circulating endothelial progenitor cells (EPCs and circulating microparticles (MPs following the smoking of one cigarette by young, healthy intermittent smokers. MATERIALS AND METHODS: 12 healthy volunteers were randomized to either smoking or not smoking in a crossover fashion. Blood sampling was performed at baseline, 1, 4 and 24 hours following smoking/not smoking. The numbers of EPCs and MPs were determined by flow cytometry. MPs were measured from platelets, leukocytes and endothelial cells. Moreover, MPs were also labelled with anti-HMGB1 and SYTO 13 to assess the content of nuclear molecules. RESULTS: Active smoking of one cigarette caused an immediate and significant increase in the numbers of circulating EPCs and MPs of platelet-, endothelial- and leukocyte origin. Levels of MPs containing nuclear molecules were increased, of which the majority were positive for CD41 and CD45 (platelet- and leukocyte origin. CD144 (VE-cadherin or HMGB1 release did not significantly change during active smoking. CONCLUSION: Brief active smoking of one cigarette generated an acute release of EPC and MPs, of which the latter contained nuclear matter. Together, these results demonstrate acute effects of cigarette smoke on endothelial, platelet and leukocyte function as well as injury to the vascular wall.

  13. Proteomic identification of VEGF-dependent protein enrichment to membrane caveolar-raft microdomains in endothelial progenitor cells.

    Science.gov (United States)

    Chillà, Anastasia; Magherini, Francesca; Margheri, Francesca; Laurenzana, Anna; Gamberi, Tania; Bini, Luca; Bianchi, Laura; Danza, Giovanna; Mazzanti, Benedetta; Serratì, Simona; Modesti, Alessandra; Del Rosso, Mario; Fibbi, Gabriella

    2013-07-01

    Endothelial cell caveolar-rafts are considered functional platforms that recruit several pro-angiogenic molecules to realize an efficient angiogenic program. Here we studied the differential caveolar-raft protein composition of endothelial colony-forming cells following stimulation with VEGF, which localizes in caveolae on interaction with its type-2 receptor. Endothelial colony-forming cells are a cell population identified in human umbilical blood that show all the properties of an endothelial progenitor cell and a high proliferative rate. Two-dimensional gel electrophoresis analysis was coupled with mass spectrometry to identify candidate proteins. The twenty-eight differentially expressed protein spots were grouped according to their function using Gene Ontology classification. In particular, functional categories relative to cell death inhibition and hydrogen peroxide metabolic processes resulted enriched. In these categories, Peroxiredoxin-2 and 6, that control hydrogen peroxide metabolic processes, are the main enriched molecules together with the anti-apoptotic 78 kDa glucose regulated protein. Some of the proteins we identified had never before identified as caveolar-raft components. Other identified proteins include calpain small subunit-1, known to mediates angiogenic response to VEGF, gelsolin, which regulates stress fiber assembly, and annexin A3, an angiogenic mediator that induces VEGF production. We validated the functional activity of the above proteins, showing that the siRNA silencing of these resulted in the inhibition of capillary morphogenesis. Overall, our data show that VEGF stimulation triggers the caveolar-raft recruitment of proteins that warrant a physiological amount of reactive oxygen species to maintain a proper angiogenic function of endothelial colony-forming cells and preserve the integrity of the actin cytoskeleton.

  14. Angiotensin II impairs endothelial progenitor cell number and function in vitro and in vivo: implications for vascular regeneration.

    Science.gov (United States)

    Endtmann, Cathleen; Ebrahimian, Talin; Czech, Thomas; Arfa, Omar; Laufs, Ulrich; Fritz, Mathias; Wassmann, Kerstin; Werner, Nikos; Petoumenos, Vasileios; Nickenig, Georg; Wassmann, Sven

    2011-09-01

    Endothelial progenitor cells (EPCs) contribute to endothelial regeneration. Angiotensin II (Ang II) through Ang II type 1 receptor (AT(1)-R) activation plays an important role in vascular damage. The effect of Ang II on EPCs and the involved molecular mechanisms are incompletely understood. Stimulation with Ang II decreased the number of cultured human early outgrowth EPCs, which express both AT(1)-R and Ang II type 2 receptor, mediated through AT(1)-R activation and induction of oxidative stress. Ang II redox-dependently induced EPC apoptosis through increased apoptosis signal-regulating kinase 1, c-Jun N-terminal kinase, and p38 mitogen-activated protein kinase phosphorylation; decreased Bcl-2 and increased Bax expression; and activation of caspase 3 but had no effect on the low cell proliferation. In addition, Ang II impaired colony-forming and migratory capacities of early outgrowth EPCs. Ang II infusion diminished numbers and functional capacities of EPCs in wild-type (WT) but not AT(1)a-R knockout mice (AT(1)a(-/-)). Reendothelialization after focal carotid endothelial injury was decreased during Ang II infusion. Salvage of reendothelialization by intravenous application of spleen-derived progenitor cells into Ang II-treated WT mice was pronounced with AT(1)a(-/-) cells compared with WT cells, and transfusion of Ang II-pretreated WT cells into WT mice without Ang II infusion was associated with less reendothelialization. Transplantation of AT(1)a(-/-) bone marrow reduced atherosclerosis development in cholesterol-fed apolipoprotein E-deficient mice compared with transplantation of apolipoprotein E-deficient or WT bone marrow. Randomized treatment of patients with stable coronary artery disease with the AT(1)-R blocker telmisartan significantly increased the number of circulating CD34/KDR-positive EPCs. Ang II through AT(1)-R activation, oxidative stress, and redox-sensitive apoptosis signal-regulating kinase 1-dependent proapoptotic pathways impairs EPCs in

  15. Self-Renewal and High Proliferative Colony Forming Capacity of Late-Outgrowth Endothelial Progenitors Is Regulated by Cyclin-Dependent Kinase Inhibitors Driven by Notch Signaling.

    Science.gov (United States)

    Patel, Jatin; Wong, Ho Yi; Wang, Weili; Alexis, Josue; Shafiee, Abbas; Stevenson, Alexander J; Gabrielli, Brian; Fisk, Nicholas M; Khosrotehrani, Kiarash

    2016-04-01

    Since the discovery of endothelial colony forming cells (ECFC), there has been significant interest in their therapeutic potential to treat vascular injuries. ECFC cultures display significant heterogeneity and a hierarchy among cells able to give rise to high proliferative versus low proliferative colonies. Here we aimed to define molecularly this in vitro hierarchy. Based on flow cytometry, CD34 expression levels distinguished two populations. Only CD34 + ECFC had the capacity to reproduce high proliferative potential (HPP) colonies on replating, whereas CD34- ECFCs formed only small clusters. CD34 + ECFCs were the only ones to self-renew in stringent single-cell cultures and gave rise to both CD34 + and CD34- cells. Upon replating, CD34 + ECFCs were always found at the centre of HPP colonies and were more likely in G0/1 phase of cell cycling. Functionally, CD34 + ECFC were superior at restoring perfusion and better engrafted when injected into ischemic hind limbs. Transcriptomic analysis identified cyclin-dependent kinase (CDK) cell cycle inhibiting genes (p16, p21, and p57), the Notch signaling pathway (dll1, dll4, hes1, and hey1), and the endothelial cytokine il33 as highly expressed in CD34 + ECFC. Blocking the Notch pathway using a γ-secretase inhibitor (DAPT) led to reduced expression of cell cycle inhibitors, increased cell proliferation followed by a loss of self-renewal, and HPP colony formation capacity reflecting progenitor exhaustion. Similarly shRNA knockdown of p57 strongly affected self-renewal of ECFC colonies. ECFC hierarchy is defined by Notch signalling driving cell cycle regulators, progenitor quiescence and self-renewal potential.

  16. Paracrine effects of bone marrow-derived endothelial progenitor cells: cyclooxygenase-2/prostacyclin pathway in pulmonary arterial hypertension.

    Directory of Open Access Journals (Sweden)

    Dong-Mei Jiang

    Full Text Available BACKGROUND: Endothelial dysfunction is the pathophysiological characteristic of pulmonary arterial hypertension (PAH. Some paracrine factors secreted by bone marrow-derived endothelial progenitor cells (BMEPCs have the potential to strengthen endothelial integrity and function. This study investigated whether BMEPCs have the therapeutic potential to improve monocrotaline (MCT-induced PAH via producing vasoprotective substances in a paracrine fashion. METHODS AND RESULTS: Bone marrow-derived mononuclear cells were cultured for 7 days to yield BMEPCs. 24 hours or 3 weeks after exposure to BMEPCs in vitro or in vivo, the vascular reactivity, cyclooxygenase-2 (COX-2 expression, prostacyclin (PGI2 and cAMP release in isolated pulmonary arteries were examined respectively. Treatment with BMEPCs could improve the relaxation of pulmonary arteries in MCT-induced PAH and BMEPCs were grafted into the pulmonary bed. The COX-2/prostacyclin synthase (PGIS and its progenies PGI2/cAMP were found to be significantly increased in BMEPCs treated pulmonary arteries, and this action was reversed by a selective COX-2 inhibitor, NS398. Moreover, the same effect was also observed in conditioned medium obtained from BMEPCs culture. CONCLUSIONS: Implantation of BMEPCs effectively ameliorates MCT-induced PAH. Factors secreted in a paracrine fashion from BMEPCs promote vasoprotection by increasing the release of PGI2 and level of cAMP.

  17. Vascular progenitor cells isolated from human embryonic stem cells give rise to endothelial and smooth muscle like cells and form vascular networks in vivo.

    Science.gov (United States)

    Ferreira, Lino S; Gerecht, Sharon; Shieh, Hester F; Watson, Nicki; Rupnick, Maria A; Dallabrida, Susan M; Vunjak-Novakovic, Gordana; Langer, Robert

    2007-08-03

    We report that human embryonic stem cells contain a population of vascular progenitor cells that have the ability to differentiate into endothelial-like and smooth muscle (SM)-like cells. Vascular progenitor cells were isolated from EBs grown in suspension for 10 days and were characterized by expression of the endothelial/hematopoietic marker CD34 (CD34+ cells). When these cells are subsequently cultured in EGM-2 (endothelial growth medium) supplemented with vascular endothelial growth factor-165 (50 ng/mL), they give rise to endothelial-like cells characterized by a cobblestone cell morphology, expression of endothelial markers (platelet endothelial cell-adhesion molecule-1, CD34, KDR/Flk-1, vascular endothelial cadherin, von Willebrand factor), incorporation of acetylated low-density lipoprotein, and formation of capillary-like structures when placed in Matrigel. In contrast, when CD34+ cells are cultured in EGM-2 supplemented with platelet-derived growth factor-BB (50 ng/mL), they give rise to SM-like cells characterized by spindle-shape morphology, expression of SM cell markers (alpha-SM actin, SM myosin heavy chain, calponin, caldesmon, SM alpha-22), and the ability to contract and relax in response to common pharmacological agents such as carbachol and atropine but rarely form capillary-like structures when placed in Matrigel. Implantation studies in nude mice show that both cell types contribute to the formation of human microvasculature. Some microvessels contained mouse blood cells, which indicates functional integration with host vasculature. Therefore, the vascular progenitors isolated from human embryonic stem cells using methods established in the present study could provide a means to examine the mechanisms of endothelial and SM cell development, and they could also provide a potential source of cells for vascular tissue engineering.

  18. SU5416 induces premature senescence in endothelial progenitor cells from patients with age-related macular degeneration

    Science.gov (United States)

    Berna, Marc J.; Kunst, Frank; Wege, Henning; Strunnikova, Natalya V.; Gordiyenko, Natalya; Grierson, Rebecca; Richard, Gisbert; Csaky, Karl G.

    2011-01-01

    Purpose We recently demonstrated increased frequency and growth potential of late outgrowth endothelial progenitor cells (OECs) in patients with neovascular age-related macular degeneration (nvAMD). This study investigated the effects of short- and long-term in vitro inhibition of vascular endothelial growth factor (VEGF) Receptor-2 (VEGFR-2) signaling by SU5416 and other inhibitors of the VEGF signaling pathway in OECs. Methods OECs, from the peripheral blood of patients with nvAMD, and human umbilical vein endothelial cells were grown in the presence of SU5416, other VEGFR-2 tyrosine kinase inhibitors (TKIs), and inhibitors of phosphatidylinositol 3′-Kinase (PI3K)/protein kinase B (Akt) and protein kinase C (PKC) in complete angiogenic medium. Apotosis was assessed after 48 h using the fluorescein isothiocyanate Annexin V method. Cell counts were performed for 10 days, and features of senescence were analyzed using senescence-associated β-galactosidase staining, the telomeric repeat amplification protocol for telomerase activity, Southern blot analysis for mean telomere length, flow cytometric analysis for cell-cycle arrest, and western blot for p53 and p21. Control OECs, cells treated for 7 days with inhibitors, as well as naturally senescent OECs were analyzed for expression of different endothelial antigens, including VEGFR-2 and the receptor for stromal cell-derived factor 1, chemokine receptor 4 (CXCR-4). Migration in vitro to VEGF and stromal cell-derived factor 1 of OECs was assessed. Results SU5416, other VEGFR-2 TKIs, and inhibitors of PI3K, Akt, and PKC induced apoptosis, inhibited long-term proliferation, reduced telomerase activity, and induced premature senescence and cell-cycle arrest in OECs as well as in human umbilical vein endothelial cells. Naturally senescent cells and cells rendered senescent by VEGFR-2 TKIs had reduced VEGFR-2 and CXCR-4 expression and demonstrated reduced migratory ability to VEGF. Conclusions This study demonstrates

  19. Bone Marrow-Derived Endothelial Progenitor Cells Protect Against Scopolamine-Induced Alzheimer-Like Pathological Aberrations.

    Science.gov (United States)

    Safar, Marwa M; Arab, Hany H; Rizk, Sherine M; El-Maraghy, Shohda A

    2016-04-01

    Vascular endothelial dysfunction plays a key role in the pathogenesis of Alzheimer's disease (AD). Patients with AD have displayed decreased circulating endothelial progenitor cells (EPCs) which repair and maintain the endothelial function. Transplantation of EPCs has emerged as a promising approach for the management of cerebrovascular diseases including ischemic stroke, however, its impact on AD has been poorly described. Thus, the current study aimed at investigating the effects of bone marrow-derived (BM) EPCs transplantation in repeated scopolamine-induced cognitive impairment, an experimental model that replicates biomarkers of AD. Intravenously transplanted BM-EPCs migrated into the brain of rats and improved the learning and memory deficits. Meanwhile, they mitigated the deposition of amyloid plaques and associated histopathological alterations. At the molecular levels, BM-EPCs blunted the increase of hippocampal amyloid beta protein (Aβ), amyloid precursor protein (APP) and reinstated the Aβ-degrading neprilysin together with downregulation of p-tau and its upstream glycogen synthase kinase-3β (GSK-3β). They also corrected the perturbations of neurotransmitter levels including restoration of acetylcholine and associated esterase along with dopamine, GABA, and the neuroexitatory glutamate. Furthermore, BM-EPCs induced behavioral recovery via boosting of vascular endothelial growth factor (VEGF), nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and its upstream cAMP response element binding (CREB), suppression of the proinflammatory tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), and upregulation of interleukin-10 (IL-10). BM-EPCs also augmented Nrf2 and seladin-1. Generally, these actions were analogous to those exerted by adipose tissue-derived mesenchymal stem cells (AT-MSCs) and the reference anti-Alzheimer donepezil. For the first time, these findings highlight the beneficial actions of BM-EPCs against the memory

  20. Human endothelial stem/progenitor cells, angiogenic factors and vascular repair

    OpenAIRE

    Watt, Suzanne M.; Athanassopoulos, Athanasios; Harris, Adrian L.; Tsaknakis, Grigorios

    2010-01-01

    Neovascularization or new blood vessel formation is of utmost importance not only for tissue and organ development and for tissue repair and regeneration, but also for pathological processes, such as tumour development. Despite this, the endothelial lineage, its origin, and the regulation of endothelial development and function either intrinsically from stem cells or extrinsically by proangiogenic supporting cells and other elements within local and specific microenvironmental niches are stil...

  1. Impact of obesity control on circulating level of endothelial progenitor cells and angiogenesis in response to ischemic stimulation

    Directory of Open Access Journals (Sweden)

    Chen Yung-Lung

    2012-07-01

    Full Text Available Abstract Background and aim We tested the hypothesis that obesity reduced circulating number of endothelial progenitor cells (EPCs, angiogenic ability, and blood flow in ischemic tissue that could be reversed after obesity control. Methods 8-week-old C57BL/6J mice (n = 27 were equally divided into group 1 (fed with 22-week control diet, group 2 (22-week high fat diet, and group 3 (14-week high fat diet, followed by 8-week control diet. Critical limb ischemia (CLI was induced at week 20 in groups 2 and 3. The animals were sacrificed at the end of 22 weeks. Results Heart weight, body weight, abdominal fat weight, serum total cholesterol level, and fasting blood sugar were highest in group 2 (all p  Conclusion Obesity suppressed abilities of angiogenesis and recovery from CLI that were reversed by obesity control.

  2. Endothelial progenitor cells in long-standing asymptomatic type 1 diabetic patients with or without diabetic nephropathy

    DEFF Research Database (Denmark)

    Reinhard, Henrik; Jacobsen, Peter Karl; Lajer, Maria

    2011-01-01

    A decrease in the number and dysfunction of endothelial progenitor cells (EPC) may increase the risk for progression of cardiovascular disease (CVD) in type 1 diabetic patients with diabetic nephropathy (DN). Our aim was to evaluate EPC numbers in asymptomatic CVD type 1 diabetic patients...... with or without DN and to study the effect of CVD and medication on EPC numbers. Methods: We examined EPC numbers in 37 type 1 diabetic patients with DN and 35 type 1 diabetic patients with long-standing normoalbuminuria. Patients were without symptoms of CVD and the prevalence of CVD was previously shown...... with CVD (p > 0.05). Conventional risk factors were significantly higher in patients with DN and they received more CVD-preventive treatment. All patients receiving simvastatin or calcium-channel blockers had higher numbers of EPC compared to patients not treated with these drugs. Conclusions: Asymptomatic...

  3. 内皮祖细胞动员、归巢与白血病研究进展%Progression of endothelial progenitor cells and leukemia

    Institute of Scientific and Technical Information of China (English)

    周佐霖; 何明生(通讯作者)

    2013-01-01

    内皮祖细胞(Endothelial progenitor cel s,EPCs)是一种多功能干细胞,也是内皮细胞的前体。EPCs参与了肿瘤血管新生,从而促进肿瘤增殖、侵袭、转移。本文就近年来EPCs的动员归巢与白血病关系方面的研究进展作一综述。%Endothelial progenitor cells(EPCs)is not a kind of pluripotent stem cells,but also a precursor of the endothelial cells. EPCs involved in tumor angiogenesis, then promotes invasion and metastasis or proliferation of tumor. We summary reviewed the recent progress about the mobilization and homing of EPCs for treatment of leukemia .

  4. Sonic hedgehog improves ischemia-induced neovascularization by enhancing endothelial progenitor cell function in type 1 diabetes.

    Science.gov (United States)

    Qin, Yuan; He, Yan-Huan; Hou, Ning; Zhang, Gen-Shui; Cai, Yi; Zhang, Gui-Ping; Xiao, Qing; He, Li-Shan; Li, Su-Juan; Yi, Quan; Luo, Jian-Dong

    2016-03-05

    The Sonic hedgehog (Shh) pathway is downregulated in type 1 diabetes, and it has been reported that augmentation of this pathway may alleviate diabetic complications. However, the cellular mechanisms underlying these protective effects are poorly understood. Recent studies indicate that impaired function of endothelial progenitor cells (EPCs) may contribute to cardiovascular problems in diabetes. We hypothesized that impaired Shh signaling contribute to endothelial progenitor cell dysfunction and that activating the Shh signaling pathway may rescue EPC function and promote diabetic neovascularization. Adult male C57/B6 mice and streptozotocin (STZ)-induced type 1 diabetic mice were used. Gli1 and Ptc1 protein levels were reduced in EPCs from diabetic mice, indicating inhibition of the Shh signaling pathway. EPC migration, tube formation ability, and mobilization were impaired in diabetic mice compared with non-diabetic controls (p < 0.05 vs control), and all were improved by in vivo administration of the Shh pathway receptor agonist SAG (p < 0.05 vs diabetes). SAG significantly increased capillary density and blood perfusion in the ischemic hindlimbs of diabetic mice (p < 0.05 vs diabetes). The AKT activity was lower in EPCs from diabetic mice than those from non-diabetic controls (p < 0.05 vs control). This decreased AKT activity led to an increased GSK-3β activity and degradation of the Shh pathway transcription factor Gli1/Gli2. SAG significantly increased the activity of AKT in EPCs. Our data clearly demonstrate that an impaired Shh pathway mediated by the AKT/GSK-3β pathway can contribute to EPC dysfunction in diabetes and thus activating the Shh signaling pathway can restore both the number and function of EPCs and increase neovascularization in type 1 diabetic mice.

  5. Mobilization of endogenous bone marrow derived endothelial progenitor cells and therapeutic potential of parathyroid hormone after ischemic stroke in mice.

    Directory of Open Access Journals (Sweden)

    Li-Li Wang

    Full Text Available Stroke is a major neurovascular disorder threatening human life and health. Very limited clinical treatments are currently available for stroke patients. Stem cell transplantation has shown promising potential as a regenerative treatment after ischemic stroke. The present investigation explores a new concept of mobilizing endogenous stem cells/progenitor cells from the bone marrow using a parathyroid hormone (PTH therapy after ischemic stroke in adult mice. PTH 1-34 (80 µg/kg, i.p. was administered 1 hour after focal ischemia and then daily for 6 consecutive days. After 6 days of PTH treatment, there was a significant increase in bone marrow derived CD-34/Fetal liver kinase-1 (Flk-1 positive endothelial progenitor cells (EPCs in the peripheral blood. PTH treatment significantly increased the expression of trophic/regenerative factors including VEGF, SDF-1, BDNF and Tie-1 in the brain peri-infarct region. Angiogenesis, assessed by co-labeled Glut-1 and BrdU vessels, was significantly increased in PTH-treated ischemic brain compared to vehicle controls. PTH treatment also promoted neuroblast migration from the subventricular zone (SVZ and increased the number of newly formed neurons in the peri-infarct cortex. PTH-treated mice showed significantly better sensorimotor functional recovery compared to stroke controls. Our data suggests that PTH therapy improves endogenous repair mechanisms after ischemic stroke with functional benefits. Mobilizing endogenous bone marrow-derived stem cells/progenitor cells using PTH and other mobilizers appears an effective and feasible regenerative treatment after ischemic stroke.

  6. Advanced glycation end products, carotid atherosclerosis, and circulating endothelial progenitor cells in patients with end-stage renal disease.

    Science.gov (United States)

    Ueno, Hiroki; Koyama, Hidenori; Fukumoto, Shinya; Tanaka, Shinji; Shoji, Takuhito; Shoji, Tetsuo; Emoto, Masanori; Tahara, Hideki; Inaba, Masaaki; Kakiya, Ryusuke; Tabata, Tsutomu; Miyata, Toshio; Nishizawa, Yoshiki

    2011-04-01

    Numbers of endothelial progenitor cells (EPCs) have been shown to be decreased in subjects with end-stage renal disease (ESRD), the mechanism of which remained poorly understood. In this study, mutual association among circulating EPC levels, carotid atherosclerosis, serum pentosidine, and skin autofluorescence, a recently established noninvasive measure of advanced glycation end products accumulation, was examined in 212 ESRD subjects undergoing hemodialysis. Numbers of circulating EPCs were measured as CD34+ CD133+ CD45(low) VEGFR2+ cells and progenitor cells as CD34+ CD133+ CD45(low) fraction by flow cytometry. Skin autofluorescence was assessed by the autofluorescence reader; and serum pentosidine, by enzyme-linked immunosorbent assay. Carotid atherosclerosis was determined as intimal-medial thickness (IMT) measured by ultrasound. Circulating EPCs were significantly and inversely correlated with skin autofluorescence in ESRD subjects (R = -0.216, P = .002), but not with serum pentosidine (R = -0.079, P = .25). Circulating EPCs tended to be inversely associated with IMT (R = -0.125, P = .069). Intimal-medial thickness was also tended to be correlated positively with skin autofluorescence (R = 0.133, P = .054) and significantly with serum pentosidine (R = 0.159, P = .019). Stepwise multiple regression analyses reveal that skin autofluorescence, but not serum pentosidine and IMT, was independently associated with low circulating EPCs. Of note, skin autofluorescence was also inversely and independently associated with circulating progenitor cells. Thus, tissue accumulated, but not circulating, advanced glycation end products may be a determinant of a decrease in circulating EPCs in ESRD subjects.

  7. Circulating endothelial progenitor cells: a new approach to anti-aging medicine?

    Directory of Open Access Journals (Sweden)

    Patel Amit N

    2009-12-01

    Full Text Available Abstract Endothelial dysfunction is associated with major causes of morbidity and mortality, as well as numerous age-related conditions. The possibility of preserving or even rejuvenating endothelial function offers a potent means of preventing/treating some of the most fearful aspects of aging such as loss of mental, cardiovascular, and sexual function. Endothelial precursor cells (EPC provide a continual source of replenishment for damaged or senescent blood vessels. In this review we discuss the biological relevance of circulating EPC in a variety of pathologies in order to build the case that these cells act as an endogenous mechanism of regeneration. Factors controlling EPC mobilization, migration, and function, as well as therapeutic interventions based on mobilization of EPC will be reviewed. We conclude by discussing several clinically-relevant approaches to EPC mobilization and provide preliminary data on a food supplement, Stem-Kine, which enhanced EPC mobilization in human subjects.

  8. The role of bone marrow-derived endothelial progenitor cells and angiogenic responses in chronic obstructive pulmonary disease.

    Science.gov (United States)

    Salter, Brittany; Sehmi, Roma

    2017-07-01

    Increased vascularity of the bronchial sub-mucosa is a cardinal feature of chronic obstructive pulmonary disease (COPD) and is associated with disease severity. Capillary engorgement, leakage, and vasodilatation can directly increase airway wall thickness resulting in airway luminal narrowing and facilitate inflammatory cell trafficking, thereby contributing to irreversible airflow obstruction, a characteristic of COPD. Airway wall neovascularisation, seen as increases in both the size and number of bronchial blood vessels is a prominent feature of COPD that correlates with reticular basement membrane thickening and airway obstruction. Sub-epithelial vascularization may be an important remodelling event for airway narrowing and airflow obstruction in COPD. Post-natal angiogenesis is a complex process, whereby new blood vessels sprouting from extant microvasculature, can arise from the proliferation of resident mature vascular endothelial cells (ECs). In addition, this may arise from increased turnover and lung-homing of circulating endothelial progenitor cells (EPCs) from the bone marrow (BM). Following lung-homing, EPCs can differentiate locally within the tissue into ECs, further contributing to vascular repair, maintenance, and expansion under pathological conditions, governed by a locally elaborated milieu of growth factors (GFs). In this article, we will review evidence for the role of BM-derived EPCs in the development of angiogenesis in the lug and discuss how this may relate to the pathogenesis of COPD.

  9. Effects of bone marrow-derived endothelial progenitor cell transplantation on vein microenvironment in a rat model of chronic thrombosis

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-qiang; MENG Qing-you; WU Hao-rong

    2007-01-01

    Background Endothelial progenitor cells(EPCs) have been used in both experimental studies and clinical treatments of limb ischemia,as well as in the construction of engineered vascular tissue.The objective of this study was to investigate the effects of transplanted bone marrow-derived EPCs on the vein microenvironment in a rat model of chronic vein thrombosis.Methods Mononuclear cells were isolated from the bone marrow of immature rats by density gradient centrifugation,cultured,and then transplanted into experimentally induced thrombi into inferior vena cava through the femoral vein.Vascular endothelial growth factor(VEGF),angiopoietin-1(ANG-1) and monocyte chemotactic protein-1(MCP-1) mRNA and protein expression levels were measured by real-time quantitative polymerase chain reaction and Western blotting of thrombi and adjacent caval walls 28 days post-transplantation.Results Levels of VEGF,ANG-1,and MCP-1 mRNA in EPC-transplanted thrombi were 100%,230.7%,and 212.5% of levels detected in the sham-operated group(P<0.01),and 99.9%,215.4%,and 177.8% of levels detected in the experimental control group(P<0.01).VEGF,ANG-1 and MCP-1 protein levels exhibited a similar trend.Conclusions Transplanted bone marrow-derived EPCs appear to alter the vein microenvironment in experimentally induced chronic vein thrombosis by upregulating cytokines associated with thrombic organization and recanalization.

  10. Indoxyl Sulfate Impairs Endothelial Progenitor Cells and Might Contribute to Vascular Dysfunction in Patients with Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Cheng-Jui Lin

    2016-12-01

    Full Text Available Background/Aims: Indoxyl sulfate (IS is a protein-bound uremic toxin that accumulates in patients with chronic kidney disease (CKD. We explored the effect of IS on human early endothelial progenitor cells (EPCs and analyzed the correlation between serum IS levels and parameters of vascular function, including endothelial function in a CKD-based cohort. Methods: A cross-sectional study with 128 stable CKD patients was conducted. Flow-mediated dilation (FMD, pulse wave velocity (PWV, ankle brachial index, serum IS and other biochemical parameters were measured and analyzed. In parallel, the activity of early EPCs was also evaluated after exposure to IS. Results: In human EPCs, a concentration-dependent inhibitory effect of IS on chemotactic motility and colony formation was observed. Additionally, serum IS levels were significantly correlated with CKD stages. The total IS (T-IS and free IS (F-IS were strongly associated with age, hypertension, cardiovascular disease, blood pressure, PWV, blood urea nitrogen, creatine and phosphate but negatively correlated with FMD, the estimated glomerular filtration rate (eGFR, hemoglobin, hematocrit, and calcium. A multivariate linear regression analysis also showed that FMD was significantly associated with IS after adjusting for other confounding factors. Conclusions: In humans, IS impairs early EPCs and was strongly correlated with vascular dysfunction. Thus, we speculate that this adverse effect of IS may partly result from the inhibition of early EPCs.

  11. Microvesicles derived from endothelial progenitor cells protect the kidney from ischemia-reperfusion injury by microRNA-dependent reprogramming of resident renal cells.

    Science.gov (United States)

    Cantaluppi, Vincenzo; Gatti, Stefano; Medica, Davide; Figliolini, Federico; Bruno, Stefania; Deregibus, Maria C; Sordi, Andrea; Biancone, Luigi; Tetta, Ciro; Camussi, Giovanni

    2012-08-01

    Endothelial progenitor cells are known to reverse acute kidney injury by paracrine mechanisms. We previously found that microvesicles released from these progenitor cells activate an angiogenic program in endothelial cells by horizontal mRNA transfer. Here, we tested whether these microvesicles prevent acute kidney injury in a rat model of ischemia-reperfusion injury. The RNA content of microvesicles was enriched in microRNAs (miRNAs) that modulate proliferation, angiogenesis, and apoptosis. After intravenous injection following ischemia-reperfusion, the microvesicles were localized within peritubular capillaries and tubular cells. This conferred functional and morphologic protection from acute kidney injury by enhanced tubular cell proliferation, reduced apoptosis, and leukocyte infiltration. Microvesicles also protected against progression of chronic kidney damage by inhibiting capillary rarefaction, glomerulosclerosis, and tubulointerstitial fibrosis. The renoprotective effect of microvesicles was lost after treatment with RNase, nonspecific miRNA depletion of microvesicles by Dicer knock-down in the progenitor cells, or depletion of pro-angiogenic miR-126 and miR-296 by transfection with specific miR-antagomirs. Thus, microvesicles derived from endothelial progenitor cells protect the kidney from ischemic acute injury by delivering their RNA content, the miRNA cargo of which contributes to reprogramming hypoxic resident renal cells to a regenerative program.

  12. Interruption of CD40 Pathway Improves Efficacy of Transplanted Endothelial Progenitor Cells in Monocrotaline Induced Pulmonary Arterial Hypertension

    Directory of Open Access Journals (Sweden)

    YanYun Pan

    2015-05-01

    Full Text Available Background/Aims: Transplantation of endothelial progenitor cells (EPCs plays a therapeutic role in pulmonary arterial hypertension (PAH. Meanwhile, recruitment of progenitors has potential inflammatory effects and exaggerates vascular injury. CD40 pathway is identified as a major player in vascular inflammatory events. In this study, we investigated the role of CD40 pathway in regulating early outgrowth EPC functions, and searched for improvements in PAH cell therapy. Methods: EPCs were isolated from rat bone marrow and cultured for 7 days. After treatment with soluble CD40 ligand (sCD40L for 24 hours, EPC migration, adhesion, proliferation, paracrine and vasculogenesis functions were tested. Rat PAH model was founded by subcutaneous injection of monocrotaline (MCT. Control EPCs or lentivirus vectors (Lv-shRNA-CD40 EPCs were infused via tail vein at day 7, 14, and 21 after MCT injection. Therapeutic effects were evaluated at day 28. Results: sCD40L dose-dependently impaired EPC migration, adhesion, proliferation, and vasculogenesis functions. However, paracrine effects of soluble intercellular adhesion molecule-1, vascular endothelial growth factor and interleukin-6 were dose-dependently improved by sCD40L. Control EPC-derived conditioned medium protected endothelial cell in vitro vasculogenesis, while sCD40L-pretreated ones showed detrimental effects. After MCT injection, sCD40L levels in rat serum increased gradually. Other than in vitro results, benefits of both two EPC treatments were obvious, even taken at day 21. Benefits of control EPCs wore off over time, but those of Lv-shRNA-CD40 EPCs were more effective and enduring, as characterized by both ameliorated rat hemodynamic and reversed vascular remodeling. Furthermore, Lv-shRNA-CD40 EPCs integrated into endothelium better, rather than into adventitia and media. Conclusion: sCD40L impaired protective effects of EPCs. Traditional EPC treatments were limited in PAH, while interruption of CD

  13. Extracellular DNA affects NO content in human endothelial cells.

    Science.gov (United States)

    Efremova, L V; Alekseeva, A Yu; Konkova, M S; Kostyuk, S V; Ershova, E S; Smirnova, T D; Konorova, I L; Veiko, N N

    2010-08-01

    Fragments of extracellular DNA are permanently released into the blood flow due to cell apoptosis and possible de novo DNA synthesis. To find out whether extracellular DNA can affect the synthesis of nitric oxide (NO), one of key vascular tone regulators, we studied in vitro effects of three artificial DNA probes with different sequences and 10 samples of extracellular DNA (obtained from healthy people and patients with hypertension and atherosclerosis) on NO synthesis in endothelial cell culture (HUVEC). For detection of NO in live cells and culture medium, we used a NO-specific agent CuFL penetrating into the cells and forming a fluorescent product FL-NO upon interaction with NO. Human genome DNA fragments affected the content of NO in endothelial cells; this effect depended on both the base sequence and concentration of DNA fragments. Addition of artificial DNA and extracellular DNA from healthy people into the cell culture in a low concentration (5 ng/ml) increased the detected NO concentration by 4-fold at most. Cytosine-guanine (CG)-rich fragment of the transcribed sequence of ribosomal repeat was the most powerful NO-inductor. The effect of DNA fragments on NO synthesis was comparable with that of low doses of oxidizing agents, H(2)O(2) and 17β-estradiol. Extracellular DNA samples obtained from patients with hypertension and atherosclerosis decreased NO content in cells and medium by 1.3-28 times compared to the control; the effect correlated with the content of CG-rich sequences.

  14. Development of serum-free quality and quantity control culture of colony-forming endothelial progenitor cell for vasculogenesis.

    Science.gov (United States)

    Masuda, Haruchika; Iwasaki, Hiroto; Kawamoto, Atsuhiko; Akimaru, Hiroshi; Ishikawa, Masakazu; Ii, Masaaki; Shizuno, Tomoko; Sato, Atsuko; Ito, Rie; Horii, Miki; Ishida, Hideyuki; Kato, Shunichi; Asahara, Takayuki

    2012-02-01

    Quantitative and qualitative impairment of endothelial progenitor cells (EPCs) limits the efficacy of autologous cell therapy in patients with cardiovascular diseases. Here, we developed a serum-free quality and quantity control culture system for colony-forming EPCs to enhance their regenerative potential. A culture with serum-free medium containing stem cell factor, thrombopoietin, vascular endothelial growth factor, interleukin-6, and Flt-3 ligand was determined as optimal quality and quantity culture (QQc) in terms of the most vasculogenic colony-forming EPC expansion, evaluated by the newly established EPC colony formation assay. The QQc of umbilical cord blood-CD133(+) cells for 7 days produced a 52.9-fold increase in total cell number and 3.28-fold frequency in definitive EPC colony development, resulting in a 203.9-fold increase in estimated total definitive EPC colony number in vitro. Pre- or post-QQc cells were intramyocardially transplanted into nude rats with myocardial infarction (MI). Echocardiographic and micromanometer-tipped conductance catheter examinations 28 days post-MI revealed significant preservation of left ventricular (LV) function in rats receiving pre- or post-QQc cells compared with those receiving phosphate-buffered saline. Assessments of global LV contractility indicated a dose-dependent effect of pre- or post-QQc cells and the superior potency of post-QQc cells over pre-QQc cells. Furthermore, immunohistochemistry showed more abundant formation of both human and rat endothelial cells and cardiomyocytes in the infarcted myocardium following transplantation of post-QQc cells compared with pre-QQc cells. Our optimal serum-free quality and quantity culture may enhance the therapeutic potential of EPCs in both quantitative and qualitative aspects for cardiovascular regeneration.

  15. Ischemic preconditioning increases endothelial progenitor cell number to attenuate partial nephrectomy-induced ischemia/reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Hao Liu

    Full Text Available OBJECTIVES: The objective of this study was to investigate the role of endothelial progenitor cells (EPCs in the modulation of ischemia-reperfusion injury (IRI in a partial nephrectomy (PN rat model using early-phase ischemic preconditioning (IPC. MATERIALS AND METHODS: Ninety male Sprague-Dawley rats were randomly divided into three groups following right-side nephrectomy: Sham-operated rats (surgery without vascular clamping; PN rats (renal blood vessels were clamped for 40 min and PN was performed; and IPC rats (pretreated with 15 min ischemia and 10 min reperfusion. At 1, 3, 6, 12, 24 h, and 3 days after reperfusion, the pool of circulating EPCs and kidneys were harvested. The extent of renal injury was assessed, along with EPC number, cell proliferation, angiogenesis, and vascular growth factor expression. RESULTS: Pretreated rats exhibited significant improvements in renal function and morphology. EPC numbers in the kidneys were increased at 12 h following reperfusion in the IPC group as compared to the PN or Sham groups. Cell proliferation (including endothelial and tubular epithelial cells and angiogenesis in peritubular capillaries were markedly increased in kidneys treated with IPC. In addition, vascular endothelial growth factor-A (VEGF-A and stromal cell-derived factor-1α (SDF-1α expression in the kidneys of pretreated rats was increased compared to rats subjected to PN. CONCLUSIONS: OUR INVESTIGATION SUGGESTED THAT: (1 the early phase of IPC may attenuate renal IRI induced by PN; (2 EPCs play an important role in renal protection, involving promotion of cell proliferation and angiogenesis through release of several angiogenic factors.

  16. Alcohol consumption negates estrogen-mediated myocardial repair in ovariectomized mice by inhibiting endothelial progenitor cell mobilization and function.

    Science.gov (United States)

    Mackie, Alexander R; Krishnamurthy, Prasanna; Verma, Suresh K; Thorne, Tina; Ramirez, Veronica; Qin, Gangjian; Abramova, Tatiana; Hamada, Hiromichi; Losordo, Douglas W; Kishore, Raj

    2013-06-21

    We have shown previously that estrogen (estradiol, E2) supplementation enhances voluntary alcohol consumption in ovariectomized female rodents and that increased alcohol consumption impairs ischemic hind limb vascular repair. However, the effect of E2-induced alcohol consumption on post-infarct myocardial repair and on the phenotypic/functional properties of endothelial progenitor cells (EPCs) is not known. Additionally, the molecular signaling of alcohol-estrogen interactions remains to be elucidated. This study examined the effect of E2-induced increases in ethanol consumption on post-infarct myocardial function/repair. Ovariectomized female mice, implanted with 17β-E2 or placebo pellets were given access to alcohol for 6 weeks and subjected to acute myocardial infarction. Left ventricular functions were consistently depressed in mice consuming ethanol compared with those receiving only E2. Alcohol-consuming mice also displayed significantly increased infarct size and reduced capillary density. Ethanol consumption also reduced E2-induced mobilization and homing of EPCs to injured myocardium compared with the E2-alone group. In vitro, exposure of EPCs to ethanol suppressed E2-induced proliferation, survival, and migration and markedly altered E2-induced estrogen receptor-dependent cell survival signaling and gene expression. Furthermore, ethanol-mediated suppression of EPC biology was endothelial nitric oxide synthase-dependent because endothelial nitric oxide synthase-null mice displayed an exaggerated response to post-acute myocardial infarction left ventricular functions. These data suggest that E2 modulation of alcohol consumption, and the ensuing EPC dysfunction, may negatively compete with the beneficial effects of estrogen on post-infarct myocardial repair.

  17. 内皮祖细胞与动脉瘤的发生与发展%Endothelial progenitor cells and occurrence and development of aneurysm

    Institute of Scientific and Technical Information of China (English)

    梁超杰; 闵国文; 郭庚

    2013-01-01

    背景:内皮祖细胞具有修复血管损伤及预测早期血管损伤程度的功能。这一生物学特性被引入到动脉瘤的研究之中,为动脉瘤的发生、发展、早期诊断及治疗提供新的思路。  目的:从内皮祖细胞的生物学特性(增殖、迁移、黏附、衰老)及其在外周循环血中的数量和内皮祖细胞用于动脉瘤的相关临床实验资料进行总结分析。  方法:以“内皮祖细胞、前体细胞、动脉瘤、干细胞”,“ endothelial progenitor cel s、precursor、aneurysm、stem cel”为检索词,应用计算机检索期刊万方数据库、中国知网(CNKI)数据库及Pubmed数据库、Springer数据库,Sciencedirect数据库、Ovid数据库。排除与动脉瘤研究无关或内容重复的文献,对纳入文献做进一步分析。  结果与结论:动脉瘤患者的外周循环血中内皮祖细胞数量减少并伴有功能受损。在接受动脉瘤的相关治疗后内皮祖细胞数量上升。内皮祖细胞可早期预测动脉瘤的发生、发展和破裂,也可作为一种治疗方法去阻止动脉瘤的发生。如何将内皮祖细胞广泛的应用到临床当中去预防和防止动脉瘤的发生发展是亟待解决的问题。%BACKGROUND:Endothelial progenitor cells can be used to repair vascular injuries and predict severity of early vascular injuries. These biological characteristics have been recommended to the research of aneurysm, which provide new ideas for studying the occurrence, expansion and early staging diagnosis of aneurysm. OBJECTIVE:To elaborate the effects of endothelial progenitor cells on the aneurysm in the clinical trials based on the biological characteristics of endothelial progenitor cells, including proliferation, migration, adherence and senescence. METHODS:A computer-based search of Wanfang, CNKI, Springer, PubMed, ScienceDirect, and Ovid was performed using the keywords of“endothelial progenitor cells

  18. The balance of positive and negative effects of TGF-β signaling regulates the development of hematopoietic and endothelial progenitors in human pluripotent stem cells.

    Science.gov (United States)

    Bai, Hao; Xie, Yin-Liang; Gao, Yong-Xing; Cheng, Tao; Wang, Zack Z

    2013-10-15

    Derived from mesoderm precursors, hemangioblasts are bipotential common progenitors of hematopoietic cells and endothelial cells. The regulatory events controlling hematopoietic and endothelial lineage specification are largely unknown, especially in humans. In this study, we establish a serum-free and feeder-free system with a high-efficient embryoid body (EB) generation to investigate the signals that direct differentiation of human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs). Consistent with previous studies, the CD34(+)CD31(+)VE-cadherin(+) (VEC(+)) cells derived from hPSCs contain hematopoietic and endothelial progenitors. In the presence of hematopoietic and endothelial growth factors, some of CD34(+)CD31(+)VEC(+) cells give rise to blast colony-forming cells (BL-CFCs), which have been used to characterize bipotential hemangioblasts. We found that the level of the transforming growth factor beta (TGF-β) 1 protein is increased during hPSC differentiation, and that TGF-β signaling has the double-edged effect on hematopoietic and endothelial lineage differentiation in hPSCs. An addition of TGF-β to hPSC differentiation before mesoderm induction promotes the development of mesoderm and the generation of CD34(+)CD31(+)VEC(+) cells. An addition of TGF-β inhibitor, SB431542, before mesoderm induction downregulates the expression of mesodermal markers and reduces the number of CD34(+)CD31(+)VEC(+) progenitor cells. However, inhibition of TGF-β signaling after mesoderm induction increases CD34(+)CD31(+)VEC(+) progenitors and BL-CFCs. These data provide evidence that a balance of positive and negative effects of TGF-β signaling at the appropriate timing is critical, and potential means to improve hematopoiesis and vasculogenesis from hPSCs.

  19. A vascular endothelial growth factor activating transcription factor increases the endothelial progenitor cells population and induces therapeutic angiogenesis in a type 1 diabetic mouse with hindlimb ischemia

    Institute of Scientific and Technical Information of China (English)

    Diao Yongpeng; Lian Lishan; Guo Lilong; Chen Houzao; Chen Yuexin; Song Xiaojun; Li Yongjun

    2014-01-01

    Background Therapeutic angiogenesis has been shown to promote blood vessel growth and improve tissue perfusion.Vascular endothelial growth factor (VEGF) plays an important role in angiogenesis.However,it has side effects that limit its therapeutic utility in vivo,especially at high concentrations.This study aimed to investigate whether an intramuscular injection of a genetically engineered zinc finger VEGF-activating transcription factor modulates the endothelial progenitor cells (EPC) and promotes therapeutic angiogenesis in a hindlimb ischemia model with type 1 diabetes.Methods Alloxan (intravenous injection) was used to induce type Ⅰ diabetes in C57BL/6 mice (n=58).The ischemic limb received ZFP-VEGF (125 μg ZFP-VEGF plasmid in 1% poloxamer) or placebo (1% poloxamer) intramuscularly.Mice were sacrificed 3,5,10,or 20 days post-injection.Limb blood flow was monitored using laser Doppler perfusion imaging.VEGF mRNA and protein expression were examined using real-time PCR and ELISA,respectively.Capillary density,proliferation,and apoptosis were examined using immunohistochemistry techniques.Flow cytometry was used to detect the EPC population in bone marrow.Two-tailed Student's paired t test and repeated-measures analysis of variance were used for statistical analysis.Results ZFP-VEGF increased VEGF mRNA and protein expression at 3 and 10 days post-injection,and increased EPC in bone marrow at day 5 and 20 post-injection compared with controls (P<0.05).ZFP-VEGF treatment resulted in better perfusion recovery,a higher capillary density and proliferation,and less apoptosis compared with controls (P<0.05).Conclusions Intramuscular ZFP-VEGF injection promotes therapeutic angiogenesis in an ischemic hindlimb model with type 1 diabetes.This might be due to the effects of VEGF on cell survival and EPC recruitment.

  20. Amyloid β induces adhesion of erythrocytes to endothelial cells and affects endothelial viability and functionality.

    Science.gov (United States)

    Nakagawa, Kiyotaka; Kiko, Takehiro; Kuriwada, Satoko; Miyazawa, Taiki; Kimura, Fumiko; Miyazawa, Teruo

    2011-01-01

    It has been suggested that amyloid β-peptide (Aβ) might mediate the adhesion of erythrocytes to the endothelium which could disrupt the properties of endothelial cells. We provide evidence here that Aβ actually induced the binding of erythrocytes to endothelial cells and decreased endothelial viability, perhaps by the generation of oxidative and inflammatory stress. These changes are likely to contribute to the pathogenesis of Alzheimer's disease.

  1. Sympathetic predominance is associated with impaired endothelial progenitor cells and tunneling nanotubes in controlled-hypertensive patients.

    Science.gov (United States)

    de Cavanagh, Elena M V; González, Sergio A; Inserra, Felipe; Forcada, Pedro; Castellaro, Carlos; Chiabaut-Svane, Jorge; Obregón, Sebastián; Casarini, María Jesús; Kempny, Pablo; Kotliar, Carol

    2014-07-15

    Early endothelial progenitor cells (early EPC) and late EPC are involved in endothelial repair and can rescue damaged endothelial cells by transferring organelles through tunneling nanotubes (TNT). In rodents, EPC mobilization from the bone marrow depends on sympathetic nervous system activity. Indirect evidence suggests a relation between autonomic derangements and human EPC mobilization. We aimed at testing whether hypertension-related autonomic imbalances are associated with EPC impairment. Thirty controlled-essential hypertensive patients [systolic blood pressure/diastolic blood pressure = 130(120-137)/85(61-88) mmHg; 81.8% male] and 20 healthy normotensive subjects [114(107-119)/75(64-79) mmHg; 80% male] were studied. Mononuclear cells were cultured on fibronectin- and collagen-coated dishes for early EPC and late EPC, respectively. Low (LF)- and high (HF)-frequency components of short-term heart rate variability were analyzed during a 5-min rest, an expiration/inspiration maneuver, and a Stroop color-word test. Modulations of cardiac sympathetic and parasympathetic activities were evaluated by LF/HF (%) and HF power (ms(2)), respectively. In controlled-hypertensive patients, the numbers of early EPC, early EPC that emitted TNT, late EPC, and late EPC that emitted TNT were 41, 77, 50, and 88% lower than in normotensive subjects (P hypertensive patients, late EPC number was positively associated with cardiac parasympathetic reserve during the expiration/inspiration maneuver (rho = 0.45, P = 0.031) and early EPC with brachial flow-mediated dilation (rho = 0.655; P = 0.049); also, late TNT number was inversely related to cardiac sympathetic response during the stress test (rho = -0.426, P = 0.045). EPC exposure to epinephrine or norepinephrine showed negative dose-response relationships on cell adhesion to fibronectin and collagen; both catecholamines stimulated early EPC growth, but epinephrine inhibited late EPC growth. In controlled-hypertensive patients

  2. Absence of a relationship between immunophenotypic and colony enumeration analysis of endothelial progenitor cells in clinical haematopoietic cell sources

    Directory of Open Access Journals (Sweden)

    Turner Marc L

    2007-07-01

    Full Text Available Abstract Background The discovery of adult endothelial progenitor cells (EPC offers potential for vascular regenerative therapies. The expression of CD34 and VEGFR2 by EPC indicates a close relationship with haematopoietic progenitor cells (HPC, and HPC-rich sources have been used to treat cardiac and limb ischaemias with apparent clinical benefit. However, the laboratory characterisation of the vasculogenic capability of potential or actual therapeutic cell autograft sources is uncertain since the description of EPC remains elusive. Various definitions of EPC based on phenotype and more recently on colony formation (CFU-EPC have been proposed. Methods We determined EPC as defined by proposed phenotype definitions (flow cytometry and by CFU-EPC in HPC-rich sources: bone marrow (BM; cord blood (CB; and G-CSF-mobilised peripheral blood (mPB, and in HPC-poor normal peripheral blood (nPB. Results As expected, the highest numbers of cells expressing the HPC markers CD34 or CD133 were found in mPB and least in nPB. The proportions of CD34+ cells co-expressing CD133 is of the order mPB>CB>BM≈nPB. CD34+ cells co-expressing VEGFR2 were also most frequent in mPB. In contrast, CFU-EPC were virtually absent in mPB and were most readily detected in nPB, the source lowest in HPC. Conclusion HPC sources differ in their content of putative EPC. Normal peripheral blood, poor in HPC and in HPC-related phenotypically defined EPC, is the richest source of CFU-EPC, suggesting no direct relationship between the proposed EPC immunophenotypes and CFU-EPC potential. It is not apparent whether either of these EPC measurements, or any, is an appropriate indicator of the therapeutic vasculogenic potential of autologous HSC sources.

  3. Taurine and magnesium supplementation enhances the function of endothelial progenitor cells through antioxidation in healthy men and spontaneously hypertensive rats.

    Science.gov (United States)

    Katakawa, Mayumi; Fukuda, Noboru; Tsunemi, Akiko; Mori, Mari; Maruyama, Takashi; Matsumoto, Taro; Abe, Masanori; Yamori, Yukio

    2016-12-01

    Endothelial damage is repaired by endothelial progenitor cells (EPCs), which are pivotal in preventing cardiovascular diseases and prolonging lifespan. The WHO Cardiovascular Diseases and Alimentary Comparison Study demonstrated that dietary taurine and magnesium (Mg) intake suppresses cardiovascular diseases. We herein evaluate the effects of taurine and Mg supplementation on EPC function and oxidative stress in healthy men and spontaneously hypertensive rats (SHRs). Healthy men received taurine (3 g per day) or Mg (340 mg per day) for 2 weeks. SHRs and Wistar-Kyoto (WKY) rats were housed with high-salt drinking water (1% NaCl). The SHRs received 3% taurine solution and/or a high-Mg (600 mg per 100 g) diet for 4 weeks. Their peripheral blood mononuclear cells were separated to quantify EPC colony formation. Oxidative stress markers in their peripheral blood were evaluated using a free radical analytical system and a thiobarbituric acid reactive substance (TBARS) assay. Taurine and Mg supplementation significantly increased EPC colony numbers and significantly decreased free radical levels and TBARS scores in healthy men. Taurine and Mg supplementation significantly increased EPC colony numbers and significantly decreased TBARS scores and free radical levels in SHRs. Nicotinamide adenine dinucleotide phosphate oxidase component mRNA expression was significantly higher in the renal cortex of salt-loaded SHRs than in WKY rats, in which it was suppressed by taurine and Mg supplementation. Taurine and Mg supplementation increased EPC colony formation in healthy men and improved impaired EPC function in SHRs through antioxidation, indicating that the dietary intake of taurine and Mg may prolong lifespan by preventing the progression of cardiovascular diseases.

  4. GTP cyclohydrolase I prevents diabetic-impaired endothelial progenitor cells and wound healing by suppressing oxidative stress/thrombospondin-1.

    Science.gov (United States)

    Tie, Lu; Chen, Lu-Yuan; Chen, Dan-Dan; Xie, He-Hui; Channon, Keith M; Chen, Alex F

    2014-05-15

    Endothelial progenitor cell (EPC) dysfunction is a key contributor to diabetic refractory wounds. Endothelial nitric oxide synthase (eNOS), which critically regulates the mobilization and function of EPCs, is uncoupled in diabetes due to decreased cofactor tetrahydrobiopterin (BH4). We tested whether GTP cyclohydrolase I (GTPCH I), the rate-limiting enzyme of BH4 synthesis, preserves EPC function in type 1 diabetic mice. Type 1 diabetes was induced in wild-type (WT) and GTPCH I transgenic (Tg-GCH) mice by intraperitoneal injection of streptozotocin (STZ). EPCs were isolated from the peripheral blood and bone marrow of WT, Tg-GCH, and GTPCH I-deficient hph-1 mice. The number of EPCs was significantly lower in STZ-WT mice and hph-1 mice and was rescued in STZ Tg-GCH mice. Furthermore, GTPCH I overexpression improved impaired diabetic EPC migration and tube formation. EPCs from WT, Tg-GCH, and STZ-Tg-GCH mice were administered to diabetic excisional wounds and accelerated wound healing significantly, with a concomitant augmentation of angiogenesis. Flow cytometry measurements showed that intracellular nitric oxide (NO) levels were reduced significantly in STZ-WT and hph-1 mice, paralleled by increased superoxide anion levels; both were rescued in STZ-Tg-GCH mice. Western blot analysis revealed that thrombospondin-1 (TSP-1) was significantly upregulated in the EPCs of STZ-WT mice and hph-1 mice and suppressed in STZ-treated Tg-GCH mice. Our results demonstrate that the GTPCH I/BH4 pathway is critical to preserve EPC quantity, function, and regenerative capacity during wound healing in type 1 diabetic mice at least partly through the attenuation of superoxide and TSP-1 levels and augmentation of NO level.

  5. Severe Type 2 Diabetes Induces Reversible Modifications of Endothelial Progenitor Cells Which are Ameliorate by Glycemic Control

    Science.gov (United States)

    De Pascale, Maria Rosaria; Bruzzese, Giuseppe; Crimi, Ettore; Grimaldi, Vincenzo; Liguori, Antonio; Brongo, Sergio; Barbieri, Michelangela; Picascia, Antonietta; Schiano, Concetta; Sommese, Linda; Ferrara, Nicola; Paolisso, Giuseppe; Napoli, Claudio

    2016-01-01

    Background Circulating endothelial progenitors cells (EPCs) play a critical role in neovascularization and endothelial repair. There is a growing evidence that hyperglycemia related to Diabetes Mellitus (DM) decreases EPC number and function so promoting vascular complications. Aim of the Study This study investigated whether an intensive glycemic control regimen in Type 2 DM can increase the number of EPCs and restores their function. Methods Sixty-two patients with Type 2 DM were studied. Patients were tested at baseline and after 3 months of an intensive regimen of glycemic control. The Type 2 DM group was compared to control group of subjects without diabetes. Patients with Type 2 DM (mean age 58.2±5.4 years, 25.6% women, disease duration of 15.4±6.3 years) had a baseline HgA1c of 8.7±0.5% and lower EPC levels (CD34+/KDR+) in comparison to healthy controls (p<0.01). Results The intensive glycemic control regimen (HgA1c decreased to 6.2±0.3%) was coupled with a significant increase of EPC levels (mean of 18%, p<0.04 vs. baseline) and number of EPCs CFUs (p<0.05 vs. baseline). Conclusion This study confirms that number and bioactivity of EPCs are reduced in patients with Type 2 DM and, most importantly, that the intensive glycemic control in Type 2 DM promotes EPC improvement both in their number and in bioactivity. PMID:27426095

  6. GroEL1, a heat shock protein 60 of Chlamydia pneumoniae, impairs neovascularization by decreasing endothelial progenitor cell function.

    Directory of Open Access Journals (Sweden)

    Yi-Wen Lin

    Full Text Available The number and function of endothelial progenitor cells (EPCs are sensitive to hyperglycemia, hypertension, and smoking in humans, which are also associated with the development of atherosclerosis. GroEL1 from Chlamydia pneumoniae has been found in atherosclerotic lesions and is related to atherosclerotic pathogenesis. However, the actual effects of GroEL1 on EPC function are unclear. In this study, we investigate the EPC function in GroEL1-administered hind limb-ischemic C57BL/B6 and C57BL/10ScNJ (a toll-like receptor 4 (TLR4 mutation mice and human EPCs. In mice, laser Doppler imaging, flow cytometry, and immunohistochemistry were used to evaluate the degree of neo-vasculogenesis, circulating level of EPCs, and expression of CD34, vWF, and endothelial nitric oxide synthase (eNOS in vessels. Blood flow in the ischemic limb was significantly impaired in C57BL/B6 but not C57BL/10ScNJ mice treated with GroEL1. Circulating EPCs were also decreased after GroEL1 administration in C57BL/B6 mice. Additionally, GroEL1 inhibited the expression of CD34 and eNOS in C57BL/B6 ischemic muscle. In vitro, GroEL1 impaired the capacity of differentiation, mobilization, tube formation, and migration of EPCs. GroEL1 increased senescence, which was mediated by caspases, p38 MAPK, and ERK1/2 signaling in EPCs. Furthermore, GroEL1 decreased integrin and E-selectin expression and induced inflammatory responses in EPCs. In conclusion, these findings suggest that TLR4 and impaired NO-related mechanisms could contribute to the reduced number and functional activity of EPCs in the presence of GroEL1 from C. pneumoniae.

  7. Klinefelter综合征患者睾酮水平与内皮祖细胞的相关性分析%Testosterone level not significantly correlates to endothelial progenitor cells in Klinefelter's syndrome patients

    Institute of Scientific and Technical Information of China (English)

    茹伯战; 高兴成; 岳巍巍; 胡鹏

    2012-01-01

    目的:分析Klinefelter综合征患者的睾酮水平与循环内皮祖细胞间的相关性及其临床意义.方法:选取在本院就诊的36例非嵌合体核型47,XXY的患者,且患者均伴有一个或多个心血管危险因素.放免法检测相关激素水平,并测定循环内皮祖细胞含量;予以睾酮替代疗法6个月后,复查激素水平及循环内皮祖细胞含量.结果:予以睾酮替代治疗后,患者睾酮水平由(8 ±3) nmol/L升高至(24±10) nmol/L,循环内皮祖细胞含量为(41±48) cells/ml,未见明显升高.结论:Klinefelter综合征患者睾酮水平与循环内皮祖细胞含量无明显相关性.%Objective-. To explore the correlation of the testosterone level with circulated endothelial progenitor cells in patients with Klinefelters syndrome ( KS) and its clinical significance. Methods-. This study included 36 patients affected by non-mosaic 47, XXY KS, each with one or more cardiovascular risk factors. Serum hormone levels and the content of circulated endothelial progenitor cells were determined by radioimmunology and cell culture methods, respectively, and the measurement was repeated after6 months of testosterone replacement therapy. Results; After testosterone replacement therapy, the testosterone level was increased from (8 ± 3) to (24 ± 10) nmol/L, while the content of endothelial progenitor cells ([41 ±48] cells/ml) showed no significant rise. Conclusion;There is no obvious correlation between the testosterone level and the content of endothelial progenitor cells in KS patients.

  8. Human umbilical cord-derived endothelial progenitor cells promote growth cytokines-mediated neorevascularization in rat myocardial infarction

    Institute of Scientific and Technical Information of China (English)

    HU Cheng-heng; LI Zhi-ming; DU Zhi-min; ZHANG Ai-xia; YANG Da-ya; WU Gui-fu

    2009-01-01

    Background Cell-based vascular therapies of endothelial progenitor cells (EPCs) mediated neovascularization is still a novel but promising approach for the treatment of ischemic disease. The present study was designed to investigate the therapeutic potentials of human umbilical cord blood-derived EPCs (hUCB-EPCs) in rat with acute myocardial infarction.Methods Human umbilical cord blood (hUCB) mononuclear cells were isolated using density gradient centrifugation from the fresh human umbilical cord in healthy delivery woman, and cultured in M199 medium for 7 days. The EPCs were identified by double-positive staining with 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine percholorate-labeled acetylated low-density lipoprotein (Dil-Ac-LDL) and fluorescein isothiocyanate-conjugated Ulex europaeus lectin (FITC-UEA-I). The rat acute myocardial infarction model was established by the ligation of the left anterior descending artery. The hUCB-EPCs were intramyocardially injected into the peri-infarct area. Four weeks later, left ventricular function was assessed by a pressure-volume catheter. The average capillary density (CAD) was evaluated by anti-VⅢ immunohistochemistry staining to reflect the development of neovascularization at the peri-infarct area. The graft cells were identified by double immunofluorescence staining with human nuclear antigen (HNA) and CD31 antibody,representing human origin of EPCs and vascular endothelium, respectively. Expressions of cytokines, proliferating cell nuclear angigen (PCNA), platelet endothelial cell adhesion molecule (PECAM) and vascular endothelial growth factor (VEGF) were detected to investigate the underlying mechanisms of cell differentiation and revascularization.Results The donor EPCs were detectable and integrated into the host myocardium as confirmed by double-positive immunofluorescence staining with HNA and CD31. And the anti-VⅢ staining demonstrated a higher degree of microvessel formation in EPCs transplanted

  9. Endothelial progenitor cells in mothers of low-birthweight infants: a link between defective placental vascularization and increased cardiovascular risk?

    Science.gov (United States)

    King, Thomas F J; Bergin, David A; Kent, Etaoin M; Manning, Fiona; Reeves, Emer P; Dicker, Patrick; McElvaney, Noel G; Sreenan, Seamus; Malone, Fergal D; McDermott, John H

    2013-01-01

    Offspring birthweight is inversely associated with future maternal cardiovascular mortality, a relationship that has yet to be fully elucidated. Endothelial progenitor cells (EPCs) are thought to play a key role in vasculogenesis, and EPC numbers reflect cardiovascular risk. Our objective was to ascertain whether EPC number or function was reduced in mothers of low-birthweight infants. This was a prospective cohort study in a general antenatal department of a university maternity hospital. Twenty-three mothers of small for gestational age (SGA) infants (birthweight mothers of appropriate for gestational age (AGA) infants (birthweight ≥ 10th centile) were recruited. Maternal EPC number and function, conventional cardiovascular risk markers, and cord blood adiponectin were measured. Median EPC count was lower (294 vs. 367, P = 0.005) and EPC migration was reduced (0.91 vs. 1.59, P < 0.001) in SGA compared with AGA infants, with no difference in EPC adhesion (0.221 vs. 0.284 fluorescence units, P = 0.257). Maternal triglyceride levels were higher in SGA than AGA infants (0.98 vs. 0.78 mmol/liter, P = 0.006), but there was no difference in cholesterol, glucose, insulin, glycosylated hemoglobin, adiponectin, or blood pressure. There was a moderate monotone (increasing) relationship between birthweight and umbilical cord blood adiponectin (r = 0.475, P = 0.005). Giving birth to an SGA infant was associated with lower maternal EPC number and reduced migratory function. Cord blood adiponectin was significantly correlated with birthweight.

  10. Melanoma cell therapy: Endothelial progenitor cells as shuttle of the MMP12 uPAR-degrading enzyme

    Science.gov (United States)

    Laurenzana, Anna; Biagioni, Alessio; D'Alessio, Silvia; Bianchini, Francesca; Chillà, Anastasia; Margheri, Francesca; Luciani, Cristina; Mazzanti, Benedetta; Pimpinelli, Nicola; Torre, Eugenio; Danese, Silvio; Calorini, Lido; Rosso, Mario Del; Fibbi, Gabriella

    2014-01-01

    The receptor for the urokinase-type plasminogen activator (uPAR) accounts for many features of cancer progression, and is therefore considered a target for anti-tumoral therapy. Only full length uPAR mediates tumor progression. Matrix-metallo-proteinase-12 (MMP12)-dependent uPAR cleavage results into the loss of invasion properties and angiogenesis. MMP12 can be employed in the field of “targeted therapies” as a biological drug to be delivered directly in patient's tumor mass. Endothelial Progenitor Cells (EPCs) are selectively recruited within the tumor and could be used as cellular vehicles for delivering anti-cancer molecules. The aim of our study is to inhibit cancer progression by engeneering ECFCs, a subset of EPC, with a lentivirus encoding the anti-tumor uPAR-degrading enzyme MMP12. Ex vivo manipulated ECFCs lost the capacity to perform capillary morphogenesis and acquired the anti-tumor and anti-angiogenetic activity. In vivo MMP12-engineered ECFCs cleaved uPAR within the tumor mass and strongly inhibited tumor growth, tumor angiogenesis and development of lung metastasis. The possibility to exploit tumor homing and activity of autologous MMP12-engineered ECFCs represents a novel way to combat melanoma by a “personalized therapy”, without rejection risk. The i.v. injection of radiolabelled MMP12-ECFCs can thus provide a new theranostic approach to control melanoma progression and metastasis. PMID:25003596

  11. Adiponectin levels are associated with the number and activity of circulating endothelial progenitor cells in patients with coronary artery disease

    Institute of Scientific and Technical Information of China (English)

    Zhi-qiang YING; Dan-dan ZHONG; Geng XU; Miao-yan CHEN; Qing-yu CHEN

    2009-01-01

    Objective: To study the relationship between plasma adiponectin concentration and the functional activities of circulating endothelial progenitor cells (EPCs) in patients with coronary artery disease (CAD). Methods: Circulating EPCs were enumerated as AC133+/KDR+ cells via flow cytometry and identified by co-staining with Dii-acLDL and fluorescein isothiocy-anate (FITC)-conjugated lectin under a fluorescent microscope. The migratory capacity of EPCs was measured by modified Boyden chamber assay. Adhesion capacity was performed to count adherent cells after replating EPCs on six-well culture dishes coated with fibronectin. Results: The number of circulating EPCs (AC133+/KDR+ cells) decreased significantly in CAD patients, compared with control subjects [(74.2±12.3) vs (83.5±12.9) cells/ml blood, P<0.0\\]. In addition, the number of EPCs also decreased in CAD patients after ex vivo cultivation [(54.4±8.6) vs (71.9±11.6) EPCs/field, P<0.01]. Both circulating EPCs and differentiated EPCs were positively correlated with plasma adiponectin concentration. The functional activities of EPCs from CAD patients, such as migratory and adherent capacities, were also impaired, compared with control subjects, and positively correlated with plasma adiponectin concentration. Conclusion: The study demonstrates that the impairment of the number and functional activities of EPCs in CAD patients is correlated with their lower plasma adiponectin concentrations.

  12. Myocardial dysfunction in patients with type 2 diabetes mellitus: role of endothelial progenitor cells and oxidative stress

    Directory of Open Access Journals (Sweden)

    Zhao Chun

    2012-12-01

    Full Text Available Abstract Background Endothelial progenitor cells (EPCs are responsible for angiogenesis and maintenance of microvascular integrity, the number of EPCs is correlated with oxidative stress. Their relation to myocardial dysfunction in patients with type 2 diabetes mellitus (T2DM is nonetheless unknown. Methods Eighty-seven patients with T2DM and no history of coronary artery disease were recruited. Transthoracic echocardiography and detailed evaluation of left ventricular (LV systolic function by 2-dimensional (2D speckle tracking derived strain analysis in 3 orthogonal directions was performed. Four subpopulations of EPCs, including CD34+, CD133+, CD34+/kinase insert domain-containing receptor (KDR + and CD133+/KDR + EPCs, were measured by flow cytometry. Oxidative stress was assessed by superoxide dismutase (SOD. Results The mean age of the patients was 62 ± 9 years and 39.6% were male. Those with an impaired longitudinal strain had a lower number of CD34+ EPCs (2.82 ± 1.87% vs. 3.74 ± 2.12%, P  Conclusions LV global circumferential strain was independently associated with number of CD34+ EPCs and SOD. These findings suggest that myocardial dysfunction in patients with T2DM is related to depletion of EPCs and increased oxidative stress.

  13. Construction of a multifunctional coating consisting of phospholipids and endothelial progenitor cell-specific peptides on titanium substrates

    Science.gov (United States)

    Chen, Huiqing; Li, Xiaojing; Zhao, Yuancong; Li, Jingan; Chen, Jiang; Yang, Ping; Maitz, Manfred F.; Huang, Nan

    2015-08-01

    A phospholipid/peptide polymer (PMMDP) with phosphorylcholine groups, endothelial progenitor cell (EPC)-specific peptides and catechol groups was anchored onto a titanium (Ti) surface to fabricate a biomimetic multifunctional surface. The PMMDP coating was characterized by X-ray photoelectron spectroscopy (XPS), water contact angle measurements and atomic force microscopy (AFM), respectively. The amount of PMMDP coating on the Ti surface was quantified by using the quartz crystal microbalance with dissipation (QCM-D). Interactions between blood components and the coated and bare Ti substrates were evaluated by platelet adhesion and activation assays and fibrinogen denaturation test using platelet rich plasma (PRP). The results revealed that the PMMDP-modified surface inhibited fibrinogen denaturation and reduced platelet adhesion and activation. EPC cell culture on the PMMDP-modified surface showed increased adhesion and proliferation of EPCs when compared to the cells cultured on untreated Ti surface. The inhibition of fibrinogen denaturation and platelet adhesion and support of EPCs attachment and proliferation indicated that this coating might be beneficial for future applications in blood-contacting implants, such as vascular stents.

  14. Endothelial progenitor cells and cardiovascular events in patients with chronic kidney disease--a prospective follow-up study.

    Directory of Open Access Journals (Sweden)

    Johan Lorenzen

    Full Text Available BACKGROUND: Endothelial progenitor cells (EPCs mediate vascular repair and regeneration. Their number in peripheral blood is related to cardiovascular events in individuals with normal renal function. METHODS: We evaluated the association between functionally active EPCs (cell culture and traditional cardiovascular risk factors in 265 patients with chronic kidney disease stage V receiving hemodialysis therapy. Thereafter, we prospectively assessed cardiovascular events, e.g. myocardial infarction, percutaneous transluminal coronary angioplasty (including stenting, aorto-coronary bypass, stroke and angiographically verified stenosis of peripheral arteries, and cardiovascular death in this cohort. RESULTS: In our patients EPCs were related only to age (r=0.154; p=0.01. During a median follow-up period of 36 months 109 (41% patients experienced a cardiovascular event. In a multiple Cox regression analysis, we identified EPCs (p=0.03 and patient age (p=0.01 as the only independent variables associated with incident cardiovascular events. Moreover, a total of 70 patients died during follow-up, 45 of those due to cardiovascular causes. Log rank test confirmed statistical significance for EPCs concerning incident cardiovascular events (p=0.02. CONCLUSIONS: We found a significant association between the number of functionally active EPCs and cardiovascular events in patients with chronic kidney disease. Thus, defective vascular repair and regeneration may be responsible, at least in part, for the enormous cardiovascular morbidity in this population.

  15. Melanoma cell therapy: Endothelial progenitor cells as shuttle of the MMP12 uPAR-degrading enzyme.

    Science.gov (United States)

    Laurenzana, Anna; Biagioni, Alessio; D'Alessio, Silvia; Bianchini, Francesca; Chillà, Anastasia; Margheri, Francesca; Luciani, Cristina; Mazzanti, Benedetta; Pimpinelli, Nicola; Torre, Eugenio; Danese, Silvio; Calorini, Lido; Del Rosso, Mario; Fibbi, Gabriella

    2014-06-15

    The receptor for the urokinase-type plasminogen activator (uPAR) accounts for many features of cancer progression, and is therefore considered a target for anti-tumoral therapy. Only full length uPAR mediates tumor progression. Matrix-metallo-proteinase-12 (MMP12)-dependent uPAR cleavage results into the loss of invasion properties and angiogenesis. MMP12 can be employed in the field of "targeted therapies" as a biological drug to be delivered directly in patient's tumor mass. Endothelial Progenitor Cells (EPCs) are selectively recruited within the tumor and could be used as cellular vehicles for delivering anti-cancer molecules. The aim of our study is to inhibit cancer progression by engeneering ECFCs, a subset of EPC, with a lentivirus encoding the anti-tumor uPAR-degrading enzyme MMP12. Ex vivo manipulated ECFCs lost the capacity to perform capillary morphogenesis and acquired the anti-tumor and anti-angiogenetic activity. In vivo MMP12-engineered ECFCs cleaved uPAR within the tumor mass and strongly inhibited tumor growth, tumor angiogenesis and development of lung metastasis. The possibility to exploit tumor homing and activity of autologous MMP12-engineered ECFCs represents a novel way to combat melanoma by a "personalized therapy", without rejection risk. The i.v. injection of radiolabelled MMP12-ECFCs can thus provide a new theranostic approach to control melanoma progression and metastasis.

  16. A critical role of CXCR2 PDZ-mediated interactions in endothelial progenitor cell homing and angiogenesis

    Directory of Open Access Journals (Sweden)

    Yuning Hou

    2015-03-01

    Full Text Available Bone marrow-derived endothelial progenitor cells (EPCs contribute to neovessel formation in response to growth factors, cytokines, and chemokines. Chemokine receptor CXCR2 and its cognate ligands are reported to mediate EPC recruitment and angiogenesis. CXCR2 possesses a consensus PSD-95/DlgA/ZO-1 (PDZ motif which has been reported to modulate cellular signaling and functions. Here we examined the potential role of the PDZ motif in CXCR2-mediated EPC motility and angiogenesis. We observed that exogenous CXCR2 C-tail significantly inhibited in vitro EPC migratory responses and angiogenic activities, as well as in vivo EPC angiogenesis. However, the CXCR2 C-tail that lacks the PDZ motif (ΔTTL did not cause any significant changes of these functions in EPCs. In addition, using biochemical assays, we demonstrated that the PDZ scaffold protein NHERF1 specifically interacted with CXCR2 and its downstream effector, PLC-β3, in EPCs. This suggests that NHERF1 might cluster CXCR2 and its relevant signaling molecules into a macromolecular signaling complex modulating EPC cellular functions. Taken together, our data revealed a critical role of a PDZ-based CXCR2 macromolecular complex in EPC homing and angiogenesis, suggesting that targeting this complex might be a novel and effective strategy to treat angiogenesis-dependent diseases.

  17. Erythropoietin-enhanced endothelial progenitor cell recruitment in peripheral blood and renal vessels during experimental acute kidney injury in rats.

    Science.gov (United States)

    Cakiroglu, Figen; Enders-Comberg, Sora Maria; Pagel, Horst; Rohwedel, Jürgen; Lehnert, Hendrik; Kramer, Jan

    2016-03-01

    Beneficial effects of erythropoietin (EPO) have been reported in acute kidney injury (AKI) when administered prior to induction of AKI. We studied the effects of EPO administration on renal function shortly after ischemic AKI. For this purpose, rats were subjected to renal ischemia for 30 min and EPO was administered at a concentration of 500 U/kg either i.v. as a single shot directly after ischemia or with an additional i.p. dose until 3 days after surgery. The results were compared with AKI rats without EPO application and a sham-operated group. Renal function was assessed by measurement of serum biochemical markers, histological grading, and using an isolated perfused kidney (IPK) model. Furthermore, we performed flow cytometry to analyze the concentration of endothelial progenitor cells (EPCs) in the peripheral blood and renal vessels. Following EPO application, there was only a statistically non-significant tendency of serum creatinine and urea to improve, particularly after daily EPO application. Renal vascular resistance and the renal perfusion rate were not significantly altered. In the histological analysis, acute tubular necrosis was only marginally ameliorated following EPO administration. In summary, we could not demonstrate a significant improvement in renal function when EPO was applied after AKI. Interestingly, however, EPO treatment resulted in a highly significant increase in CD133- and CD34-positive EPC both in the peripheral blood and renal vessels.

  18. SDF-1α-induced dual pairs of E-selectin/ligand mediate endothelial progenitor cell homing to critical ischemia.

    Science.gov (United States)

    Liu, Zhao-Jun; Tian, Runxia; Li, Yan; Zhang, Leiming; Shao, Hongwei; Yang, Cuixia; Velazquez, Omaida C

    2016-10-07

    Homing of endothelial progenitor cells (EPC) to the ischemic tissues is a key event in neovascularization and tissue regeneration. In response to ischemic insult, injured tissues secrete several chemo-cytokines, including stromal cell-derived factor-1α (SDF-1α), which triggers mobilization and homing of bone marrow-derived EPC (BMD-EPC). We previously reported that SDF-1α-induced EPC homing is mediated by a panel of adhesion molecules highly or selectively expressed on the activated endothelium in ischemic tissues, including E-selectin. Elevated E-selectin on wound vasculature serve as docking sites for circulating EPC, which express counterpart E-selectin ligands. Here, we show that SDF-1α presented in wound tissue and released into circulation can act both locally and remotely to induce ischemic tissue endothelium and BMD-EPC to express both E-selectin and its ligands. By performing BM transplantation using E-selectin(-/-) and E-selectin(+/+) mice as the donors and recipients respectively, we demonstrate that upregulated dual E-selectin/ligand pairs reciprocally expressed on ischemic tissue endothelium and BMD-EPC act as double-locks to secure targeted EPC- endothelium interactions by which to facilitate EPC homing and promote neovascularization and tissue repair. These findings describe a novel mechanism for BMD-EPC homing and indicate that dual E-selectin/ligand pairs may be effective targets/tools for therapeutic neovascularization and targeted cell delivery.

  19. PSGL-1-mediated activation of EphB4 increases the proangiogenic potential of endothelial progenitor cells.

    Science.gov (United States)

    Foubert, Philippe; Silvestre, Jean-Sébastien; Souttou, Boussad; Barateau, Véronique; Martin, Coralie; Ebrahimian, Téni G; Leré-Déan, Carole; Contreres, Jean Olivier; Sulpice, Eric; Levy, Bernard I; Plouët, Jean; Tobelem, Gérard; Le Ricousse-Roussanne, Sophie

    2007-06-01

    Endothelial progenitor cell (EPC) transplantation has beneficial effects for therapeutic neovascularization; however, only a small proportion of injected cells home to the lesion and incorporate into the neocapillaries. Consequently, this type of cell therapy requires substantial improvement to be of clinical value. Erythropoietin-producing human hepatocellular carcinoma (Eph) receptors and their ephrin ligands are key regulators of vascular development. We postulated that activation of the EphB4/ephrin-B2 system may enhance EPC proangiogenic potential. In this report, we demonstrate in a nude mouse model of hind limb ischemia that EphB4 activation with an ephrin-B2-Fc chimeric protein increases the angiogenic potential of human EPCs. This effect was abolished by EphB4 siRNA, confirming that it is mediated by EphB4. EphB4 activation enhanced P selectin glycoprotein ligand-1 (PSGL-1) expression and EPC adhesion. Inhibition of PSGL-1 by siRNA reversed the proangiogenic and adhesive effects of EphB4 activation. Moreover, neutralizing antibodies to E selectin and P selectin blocked ephrin-B2-Fc-stimulated EPC adhesion properties. Thus, activation of EphB4 enhances EPC proangiogenic capacity through induction of PSGL-1 expression and adhesion to E selectin and P selectin. Therefore, activation of EphB4 is an innovative and potentially valuable therapeutic strategy for improving the recruitment of EPCs to sites of neovascularization and thereby the efficiency of cell-based proangiogenic therapy.

  20. Platelet lysate gel and endothelial progenitors stimulate microvascular network formation in vitro: tissue engineering implications.

    Science.gov (United States)

    Fortunato, Tiago M; Beltrami, Cristina; Emanueli, Costanza; De Bank, Paul A; Pula, Giordano

    2016-05-04

    Revascularisation is a key step for tissue regeneration and complete organ engineering. We describe the generation of human platelet lysate gel (hPLG), an extracellular matrix preparation from human platelets able to support the proliferation of endothelial colony forming cells (ECFCs) in 2D cultures and the formation of a complete microvascular network in vitro in 3D cultures. Existing extracellular matrix preparations require addition of high concentrations of recombinant growth factors and allow only limited formation of capillary-like structures. Additional advantages of our approach over existing extracellular matrices are the absence of any animal product in the composition hPLG and the possibility of obtaining hPLG from patients to generate homologous scaffolds for re-implantation. This discovery has the potential to accelerate the development of regenerative medicine applications based on implantation of microvascular networks expanded ex vivo or the generation of fully vascularised organs.

  1. Genetic engineering with endothelial nitric oxide synthase improves functional properties of endothelial progenitor cells from patients with coronary artery disease: an in vitro study.

    Science.gov (United States)

    Kaur, Savneet; Kumar, T R Santhosh; Uruno, Akira; Sugawara, Akira; Jayakumar, Karunakaran; Kartha, Chandrasekharan Cheranellore

    2009-11-01

    Recent studies have reported a marked impairment in the number and functions of endothelial progenitor cells (EPCs) in patients with coronary artery disease (CAD). In view of an important role of eNOS in angiogenesis, in the present study, we evaluated the effects of eNOS gene transfer in ex vivo expanded EPCs isolated from patients with CAD. The expanded EPCs were transfected with mammalian expression vector pcDNA3.1-eNOS containing the full-length human eNOS gene using lipofectamine. About 35-40% of the eNOS-EPCs had higher expression of eNOS as compared to untransfected EPCs. EPCs transfected with pcDNA3.0-EGFP, the plasmid vector expressing green fluorescent protein (GFP) were used as control. The untransfected, GFP-transfected and eNOS-transfected EPCs were compared in terms of important functional attributes of angiogenesis such as proliferation, migration, differentiation and adhesion/integration into tube-like structures in vitro. Functional studies revealed that in the presence of defined growth conditions, compared to the untransfected and GFP-transfected cells, eNOS-EPCs from patients with CAD have a significant increase in [3H] thymidine-labeled DNA (P < 0.01), migration (14.6 +/- 1.8 and 16.5 +/- 1.9 vs. 23.5 +/- 3.4 cells/field, P < 0.01), ability to differentiate into endothelial-like spindle-shaped cells (46 +/- 4.5 and 56.5 +/- 2.1 vs. 93.2 +/- 6.6 cells/field, P < 0.001) and also incorporation into tube-like structures on the matrigel (GFP-EPCs: 21.25 +/- 2.9 vs. GFP-eNOS-EPCs: 34.5 +/- 5.5 cells/field, P < 0.05). We conclude that eNOS gene transfection is a valuable approach to augment angiogenic properties of ex vivo expanded EPCs and eNOS-modified EPCs may offer significant advantages than EPCs alone in terms of their clinical use in patients with myocardial ischemia.

  2. Indium-111 oxine labelling affects the cellular integrity of haematopoietic progenitor cells

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, Bernd; Reinartz, Patrick; Schaefer, Wolfgang M.; Buell, Ulrich [University Hospital, RWTH Aachen University, Department of Nuclear Medicine, Aachen (Germany); Weber, Christian; Schober, Andreas; Zeiffer, Ute; Liehn, Elisa A.; Hundelshausen, Philipp von [University Hospital, RWTH Aachen University, Department of Molecular Cardiovascular Research, Aachen (Germany)

    2007-05-15

    Cell-based therapy by transplantation of progenitor cells has emerged as a promising development for organ repair, but non-invasive imaging approaches are required to monitor the fate of transplanted cells. Radioactive labelling with {sup 111}In-oxine has been used in preclinical trials. This study aimed to validate {sup 111}In-oxine labelling and subsequent in vivo and ex vivo detection of haematopoietic progenitor cells. Murine haematopoietic progenitor cells (10{sup 6}, FDCPmix) were labelled with 0.1 MBq (low dose) or 1.0 MBq (high dose) {sup 111}In-oxine and compared with unlabelled controls. Cellular retention of {sup 111}In, viability and proliferation were determined up to 48 h after labelling. Labelled cells were injected into the cavity of the left or right cardiac ventricle in mice. Scintigraphic images were acquired 24 h later. Organ samples were harvested to determine the tissue-specific activity. Labelling efficiency was 75 {+-} 14%. Cellular retention of incorporated {sup 111}In after 48 h was 18 {+-} 4%. Percentage viability after 48 h was 90 {+-} 1% (control), 58 {+-} 7% (low dose) and 48 {+-} 8% (high dose) (p<0.0001). Numbers of viable cells after 48 h (normalised to 0 h) were 249 {+-} 51% (control), 42 {+-} 8% (low dose) and 32 {+-} 5% (high dose) (p<0.0001). Cells accumulated in the spleen (86.6 {+-} 27.0% ID/g), bone marrow (59.1 {+-} 16.1% ID/g) and liver (30.3 {+-} 9.5% ID/g) after left ventricular injection, whereas most of the cells were detected in the lungs (42.4 {+-} 21.8% ID/g) after right ventricular injection. Radiolabelling of haematopoietic progenitor cells with {sup 111}In-oxine is feasible, with high labelling efficiency but restricted stability. The integrity of labelled cells is significantly affected, with substantially reduced viability and proliferation and limited migration after systemic transfusion. (orig.)

  3. Endothelial Progenitor Cell Dysfunction in Myelodysplastic Syndromes: Possible Contribution of a Defective Vascular Niche to Myelodysplasia

    Directory of Open Access Journals (Sweden)

    Luciana Teofili

    2015-05-01

    Full Text Available We set a model to replicate the vascular bone marrow niche by using endothelial colony forming cells (ECFCs, and we used it to explore the vascular niche function in patients with low-risk myelodysplastic syndromes (MDS. Overall, we investigated 56 patients and we observed higher levels of ECFCs in MDS than in healthy controls; moreover, MDS ECFCs were found variably hypermethylated for p15INK4b DAPK1, CDH1, or SOCS1. MDS ECFCs exhibited a marked adhesive capacity to normal mononuclear cells. When normal CD34+ cells were co-cultured with MDS ECFCs, they generated significant lower amounts of CD11b+ and CD41+ cells than in co-culture with normal ECFCs. At gene expression profile, several genes involved in cell adhesion were upregulated in MDS ECFCs, while several members of the Wingless and int (Wnt pathways were underexpressed. Furthermore, at miRNA expression profile, MDS ECFCs hypo-expressed various miRNAs involved in Wnt pathway regulation. The addition of Wnt3A reduced the expression of intercellular cell adhesion molecule-1 on MDS ECFCs and restored the defective expression of markers of differentiation. Overall, our data demonstrate that in low-risk MDS, ECFCs exhibit various primary abnormalities, including putative MDS signatures, and suggest the possible contribution of the vascular niche dysfunction to myelodysplasia.

  4. Lung-homing of endothelial progenitor cells and airway vascularization is only partially dependant on eosinophils in a house dust mite-exposed mouse model of allergic asthma.

    Directory of Open Access Journals (Sweden)

    Nirooya Sivapalan

    Full Text Available Asthmatic responses involve a systemic component where activation of the bone marrow leads to mobilization and lung-homing of progenitor cells. This traffic may be driven by stromal cell derived factor-1 (SDF-1, a potent progenitor chemoattractant. We have previously shown that airway angiogenesis, an early remodeling event, can be inhibited by preventing the migration of endothelial progenitor cells (EPC to the lungs. Given intranasally, AMD3100, a CXCR4 antagonist that inhibits SDF-1 mediated effects, attenuated allergen-induced lung-homing of EPC, vascularization of pulmonary tissue, airway eosinophilia and development of airway hyperresponsiveness. Since SDF-1 is also an eosinophil chemoattractant, we investigated, using a transgenic eosinophil deficient mouse strain (PHIL whether EPC lung accumulation and lung vascularization in allergic airway responses is dependent on eosinophilic inflammation.Wild-type (WT BALB/c and eosinophil deficient (PHIL mice were sensitized to house dust mite (HDM using a chronic exposure protocol and treated with AMD3100 to modulate SDF-1 stimulated progenitor traffic. Following HDM challenge, lung-extracted EPCs were enumerated along with airway inflammation, microvessel density (MVD and airway methacholine responsiveness (AHR.Following Ag sensitization, both WT and PHIL mice exhibited HDM-induced increase in airway inflammation, EPC lung-accumulation, lung angiogenesis and AHR. Treatment with AMD3100 significantly attenuated outcome measures in both groups of mice. Significantly lower levels of EPC and a trend for lower vascularization were detected in PHIL versus WT mice.This study shows that while allergen-induced lung-homing of endothelial progenitor cells, increased tissue vascularization and development lung dysfunction can occur in the absence of eosinophils, the presence of these cells worsens the pathology of the allergic response.

  5. Beta2-adrenergic signaling affects the phenotype of human cardiac progenitor cells through EMT modulation.

    Science.gov (United States)

    Pagano, Francesca; Angelini, Francesco; Siciliano, Camilla; Tasciotti, Julia; Mangino, Giorgio; De Falco, Elena; Carnevale, Roberto; Sciarretta, Sebastiano; Frati, Giacomo; Chimenti, Isotta

    2017-01-15

    Human cardiac progenitor cells (CPCs) offer great promises to cardiac cell therapy for heart failure. Many in vivo studies have shown their therapeutic benefits, paving the way for clinical translation. The 3D model of cardiospheres (CSs) represents a unique niche-like in vitro microenvironment, which includes CPCs and supporting cells. CSs have been shown to form through a process mediated by epithelial-to-mesenchymal transition (EMT). β2-Adrenergic signaling significantly affects stem/progenitor cells activation and mobilization in multiple tissues, and crosstalk between β2-adrenergic signaling and EMT processes has been reported. In the present study, we aimed at investigating the biological response of CSs to β2-adrenergic stimuli, focusing on EMT modulation in the 3D culture system of CSs. We treated human CSs and CS-derived cells (CDCs) with the β2-blocker butoxamine (BUT), using either untreated or β2 agonist (clenbuterol) treated CDCs as control. BUT-treated CS-forming cells displayed increased migration capacity and a significant increase in their CS-forming ability, consistently associated with increased expression of EMT-related genes, such as Snai1. Moreover, long-term BUT-treated CDCs contained a lower percentage of CD90+ cells, and this feature has been previously correlated with higher cardiogenic and therapeutic potential of the CDCs population. In addition, long-term BUT-treated CDCs had an increased ratio of collagen-III/collagen-I gene expression levels, and showed decreased release of inflammatory cytokines, overall supporting a less fibrosis-prone phenotype. In conclusion, β2 adrenergic receptor block positively affected the stemness vs commitment balance within CSs through the modulation of type1-EMT (so called "developmental"). These results further highlight type-1 EMT to be a key process affecting the features of resident cardiac progenitor cells, and mediating their response to the microenvironment.

  6. Endothelial progenitor cells (EPCs as gene carrier system for rat model of human glioma.

    Directory of Open Access Journals (Sweden)

    Nadimpalli Ravi S Varma

    Full Text Available BACKGROUND: Due to their unique property to migrate to pathological lesions, stem cells are used as a delivery vehicle for therapeutic genes to tumors, especially for glioma. It is critically important to track the movement, localization, engraftment efficiency and functional capability or expression of transgenes of selected cell populations following transplantation. The purposes of this study were to investigate whether 1 intravenously administered, genetically transformed cord blood derived EPCs can carry human sodium iodide symporter (hNIS to the sites of tumors in rat orthotopic model of human glioma and express transgene products, and 2 whether accumulation of these administered EPCs can be tracked by different in vivo imaging modalities. METHODS AND RESULTS: Collected EPCs were cultured and transduced to carry hNIS. Cellular viability, differential capacity and Tc-99m uptake were determined. Five to ten million EPCs were intravenously administered and Tc-99-SPECT images were acquired on day 8, to determine the accumulation of EPCs and expression of transgenes (increase activity of Tc-99m in the tumors. Immunohistochemistry was performed to determine endothelial cell markers and hNIS positive cells in the tumors. Transduced EPCs were also magnetically labeled and accumulation of cells was confirmed by MRI and histochemistry. SPECT analysis showed increased activity of Tc-99m in the tumors that received transduced EPCs, indicative of the expression of transgene (hNIS. Activity of Tc-99m in the tumors was also dependent on the number of administered transduced EPCs. MRI showed the accumulation of magnetically labeled EPCs. Immunohistochemical analysis showed iron and hNIS positive and, human CD31 and vWF positive cells in the tumors. CONCLUSION: EPC was able to carry and express hNIS in glioma following IV administration. SPECT detected migration of EPCs and expression of the hNIS gene. EPCs can be used as gene carrier/delivery system for

  7. Improvement of endothelial progenitor outgrowth cell (EPOC)-mediated vascularization in gelatin-based hydrogels through pore size manipulation.

    Science.gov (United States)

    Fu, Jiayin; Wiraja, Christian; Muhammad, Hamizan B; Xu, Chenjie; Wang, Dong-An

    2017-08-01

    In addition to chemical compositions, physical properties of scaffolds, such as pore size, can also influence vascularization within the scaffolds. A larger pore has been shown to improve host vascular tissue invasion into scaffolds. However, the influence of pore sizes on vascularization by endothelial cells directly encapsulated in hydrogels remains unknown. In this study, micro-cavitary hydrogels with different pore sizes were created in gelatin-methacrylate hydrogels with dissolvable gelatin microspheres (MS) varying in sizes. The effect of pore sizes on vascular network formation by endothelial progenitor outgrowth cells (EPOCs) encapsulated in hydrogels was then investigated both in vitro and in vivo. When cultured in vitro, vascular networks were formed around pore structures in micro-cavitary hydrogels. The middle pore size supported best differentiation of EPOCs and thus best hydrogel vascularization in vitro. When implantation in vivo, functional connections between encapsulated EPOCs and host vasculature micro-cavitary hydrogels were established. Vascularization in vivo was promoted best in hydrogels with the large pore size due to the increased vascular tissue invasion. These results highlight the difference between in vitro and in vivo culture conditions and indicate that pore sizes shall be designed for in vitro and in vivo hydrogel vascularization respectively. Pore sizes for hydrogel vascularization in vitro shall be middle ones and pore sizes for hydrogel vascularization in vivo shall be large ones. This study reveals that the optimal pore size for hydrogel vascularization in vitro and in vivo is different. The middle pore size supported best differentiation of EPOCs and thus best hydrogel vascularization in vitro, while vascularization in vivo was promoted best in hydrogels with the large pore size due to the increased vascular tissue invasion. These results highlight the difference between in vitro and in vivo culture conditions and indicate that

  8. Aromatic Hydrocarbon Receptor Suppresses Prostate Cancer Bone Metastasis Cells-Induced Vasculogenesis of Endothelial Progenitor Cells under Hypoxia

    Directory of Open Access Journals (Sweden)

    Shuai Huang

    2016-07-01

    Full Text Available Background/Aims: Hypoxia leads to the development of neovascularization in solid tumor by regulating VEGF expression. Aromatic hydrocarbon receptor (AHR, a receptor for dioxin-like compounds, functions as a transcription factor through dimerization with hypoxia-inducible factors 1β (HIF-1β and inhibits the secretion of vascular endothelial growth factor (VEGF. The purpose of this study was to explore whether AHR can suppress hypoxia-induced VEGF production in prostate bone metastasis cells and repress neovascularization in endothelial progenitor cells (EPCs, and, if so, through what mechanisms. Methods: PC-3 or LNCaP cells induced angiogenesis was detected by Matrigel-based tube formation assay, mRNA expression levels was measured by qRT-PCR, VEGF secretion level was determined by ELISA assay, respectively. Results: AHR activation inhibits hypoxia-induced adhesiveness and vasculogenesis of EPCs induced by PC-3 or LNCaP cells under hypoxia. Moreover, AHR activation suppressed hypoxia-induced VEGF production in PC-3 and LNCaP cells (48 ± 14% in PC-3, p = 0.000; 41 ± 14% in LNCaP, p = 0.000 by attenuating HIF-1α and HIF-1β level that in turn diminished the angiogenic ability of EPCs in vitro. Furthermore, we found the mRNA level of hypoxia-inducible factors 1α (HIF-1α (1.54 ± 0.13 fold in PC-3, p = 0.002, 1.62 ± 0.12 fold in LNCaP, p = 0.001 and HIF-1β (1.67 ± 0.23 fold in PC-3, p = 0.007; 1.75 ± 0.26 fold in LNCaP, p=0.008 were upregulated in prostate cancer bone metastasis PC-3 and LNCaP cell lines in response to hypoxia, and revealed that the regulation of VEGF by HIF-1α and HIF-1β was possibly mediated by the activation of phosphatidylinositol 3-kinase pathway. Conclusion: By providing a mechanistic insight into the modulation of neovascularization by AHR ligand, we suggest that AHR ligand has a strong potential of being a new therapeutic agent with applications in the field of bone metastatic prostate cancer.

  9. SDF-1/CXCR4 axis in Tie2-lineage cells including endothelial progenitor cells contributes to bone fracture healing.

    Science.gov (United States)

    Kawakami, Yohei; Ii, Masaaki; Matsumoto, Tomoyuki; Kuroda, Ryosuke; Kuroda, Tomoya; Kwon, Sang-Mo; Kawamoto, Atsuhiko; Akimaru, Hiroshi; Mifune, Yutaka; Shoji, Taro; Fukui, Tomoaki; Kurosaka, Masahiro; Asahara, Takayuki

    2015-01-01

    CXC chemokine receptor 4 (CXCR4) is a specific receptor for stromal-derived-factor 1 (SDF-1). SDF-1/CXCR4 interaction is reported to play an important role in vascular development. On the other hand, the therapeutic potential of endothelial progenitor cells (EPCs) in fracture healing has been demonstrated with mechanistic insight of vasculogenesis/angiogenesis and osteogenesis enhancement at sites of fracture. The purpose of this study was to investigate the influence of the SDF-1/CXCR4 pathway in Tie2-lineage cells (including EPCs) in bone formation. We created CXCR4 gene conditional knockout mice using the Cre/loxP system and set two groups of mice: Tie2-Cre(ER) CXCR4 knockout mice (CXCR4(-/-) ) and wild-type mice (WT). We report here that in vitro, EPCs derived from of CXCR4(-/-) mouse bone marrow demonstrated severe reduction of migration activity and EPC colony-forming activity when compared with those derived from WT mouse bone marrow. In vivo, radiological and morphological examinations showed fracture healing delayed in the CXCR4(-/-) group and the relative callus area at weeks 2 and 3 was significantly smaller in CXCR4(-/-) group mice. Quantitative analysis of capillary density at perifracture sites also showed a significant decrease in the CXCR4(-/-) group. Especially, CXCR4(-/-) group mice demonstrated significant early reduction of blood flow recovery at fracture sites compared with the WT group in laser Doppler perfusion imaging analysis. Real-time RT-PCR analysis showed that the gene expressions of angiogenic markers (CD31, VE-cadherin, vascular endothelial growth factor [VEGF]) and osteogenic markers (osteocalcin, collagen 1A1, bone morphogenetic protein 2 [BMP2]) were lower in the CXCR4(-/-) group. In the gain-of-function study, the fracture in the SDF-1 intraperitoneally injected WT group healed significantly faster with enough callus formation compared with the SDF-1 injected CXCR4(-/-) group. We demonstrated that an EPC SDF-1/CXCR4 axis plays an

  10. Grain and bean lysates improve function of endothelial progenitor cells from human peripheral blood: involvement of the endogenous antioxidant defenses.

    Directory of Open Access Journals (Sweden)

    Daniela Lucchesi

    Full Text Available Increased oxidative stress contributes to the functional impairment of endothelial progenitor cells (EPCs, the pivotal players in the servicing of the endothelial cell lining. Several evidences suggest that decreasing oxidative stress by natural compounds with antioxidant properties may improve EPCs bioactivity. Here, we investigated the effects of Lisosan G (LG, a Triticum Sativum grain powder, and Lady Joy (LJ, a bean lysate, on function of EPCs exposed to oxidative stress. Peripheral blood mononuclear cells were isolated and plated on fibronectin-coated culture dishes; adherent cells, identified as early EPCs, were pre-treated with different concentrations of LG and LJ and incubated with hydrogen peroxide (H2O2. Viability, senescence, adhesion, ROS production and antioxidant enzymes gene expression were evaluated. Lysate-mediated Nrf-2 (nuclear factor (erythroid-derived 2-like 2/ARE (antioxidant response element activation, a modulator of oxidative stress, was assessed by immunocytochemistry. Lady Joy 0.35-0.7 mg/ml increases EPCs viability; pre-treatment with either LG 0.7 mg/ml and LJ 0.35-0.7 mg/ml protect EPCs viability against H2O2-induced injury. LG 0.7 and LJ 0.35-0.7 mg/ml improve EPCs adhesion; pre-treatment with either LG 0.35 and 0.7 mg/ml or LJ 0.35, 0.7 and 1.4 mg/ml preserve adhesiveness of EPCs exposed to H2O2. Senescence is attenuated in EPCs incubated with lysates 0.35 mg/ml. After exposure to H2O2, LG pre-treated cells show a lower senescence than untreated EPCs. Lysates significantly decrease H2O2-induced ROS generation. Both lysates increase glutathione peroxidase-1 and superoxide dismutase-2 (SOD-2 expression; upon H2O2 exposure, pre-treatment with LJ allows higher SOD-2 expression. Heme oxigenase-1 increases in EPCs pre-treated with LG even upon H2O2 exposure. Finally, incubation with LG 0.7 mg/ml results in Nrf-2 translocation into the nucleus both at baseline and after the oxidative challenge. Our data suggest a

  11. 内皮祖细胞与慢性阻塞性肺疾病%Endothelial progenitor cells and chronic obstructive pulmonary disease

    Institute of Scientific and Technical Information of China (English)

    叶吉如; 何智辉; 陈燕; 陈平

    2012-01-01

    内皮祖细胞(endothelial progenitor cells,EPCs)是造血干细胞一支骨髓衍生群.目前EPCs的鉴定是结合多方面的综合鉴定.在慢性阻塞性肺疾病(chronic obstructive pulmonary disease,COPD)中,低氧刺激、正常迁移的趋化因子增加、外周循环过度消耗、反应性凋亡、营养缺乏,以及炎症因子刺激等综合因素导致EPCs数量改变,最终使组织修复能力和血管再生能力耗竭.干/祖细胞治疗在COPD中拥有一定的运用前景,其移植过程中的安全性评估意义重大.%Endothelial progenitor cells(EPCs) are bone marrow-derived hematopoietic stem cells.Now the identification of EPCs is multi-disciplinary identification.In chronic obstructive pulmonary disease(COPD),hypoxia stimulation,chenmokine increasing,over-consumption,reactive apoptosis,nutritional deficiencies,and inflammatory cytokines lead to the changes in the number of EPCs,finally tissue repair capacity and blood vessel regeneration exhaust.Stem/progenitor cell therapy in COPD has a bright prospect.The safety assessment in transplantation is significant.

  12. Changes in circulating endothelial progenitor cells predict responses of multiple myeloma patients to treatment with bortezomib and dexamethasone

    Directory of Open Access Journals (Sweden)

    L. Wang

    2015-08-01

    Full Text Available Four cycles of chemotherapy are required to assess responses of multiple myeloma (MM patients. We investigated whether circulating endothelial progenitor cells (cEPCs could be a biomarker for predicting patient response in the first cycle of chemotherapy with bortezomib and dexamethasone, so patients might avoid ineffective and costly treatments and reduce exposure to unwanted side effects. We measured cEPCs and stromal cell-derived factor-1α (SDF-1α in 46 MM patients in the first cycle of treatment with bortezomib and dexamethasone, and investigated clinical relevance based on patient response after four 21-day cycles. The mononuclear cell fraction was analyzed for cEPC by FACS analysis, and SDF-1α was analyzed by ELISA. The study population was divided into 3 groups according to the response to chemotherapy: good responders (n=16, common responders (n=12, and non-responders (n=18. There were no significant differences among these groups at baseline day 1 (P>0.05. cEPC levels decreased slightly at day 21 (8.2±3.3 cEPCs/μL vs day 1 (8.4±2.9 cEPCs/μL in good responders (P>0.05. In contrast, cEPC levels increased significantly in the other two groups (P<0.05. SDF-1α changes were closely related to changes in cEPCs. These findings indicate that change in cEPCs at day 21 in the first cycle might be considered a noninvasive biomarker for predicting a later response, and extent of change could help decide whether to continue this costly chemotherapy. cEPCs and the SDF-1α/CXCR4 axis are potential therapeutic targets for improved response and outcomes in MM patients.

  13. Adenosine stimulates the migration of human endothelial progenitor cells. Role of CXCR4 and microRNA-150.

    Directory of Open Access Journals (Sweden)

    Magali Rolland-Turner

    Full Text Available BACKGROUND: Administration of endothelial progenitor cells (EPC represents a promising option to regenerate the heart after myocardial infarction, but is limited because of low recruitment and engraftment in the myocardium. Mobilization and migration of EPC are mainly controlled by stromal cell-derived factor 1α (SDF-1α and its receptor CXCR4. We hypothesized that adenosine, a cardioprotective molecule, may improve the recruitment of EPC to the heart. METHODS: EPC were obtained from peripheral blood mononuclear cells of healthy volunteers. Expression of chemokines and their receptors was evaluated using microarrays, quantitative PCR, and flow cytometry. A Boyden chamber assay was used to assess chemotaxis. Recruitment of EPC to the infarcted heart was evaluated in rats after permanent occlusion of the left anterior descending coronary artery. RESULTS: Microarray analysis revealed that adenosine modulates the expression of several members of the chemokine family in EPC. Among these, CXCR4 was up-regulated by adenosine, and this result was confirmed by quantitative PCR (3-fold increase, P<0.001. CXCR4 expression at the cell surface was also increased. This effect involved the A(2B receptor. Pretreatment of EPC with adenosine amplified their migration towards recombinant SDF-1α or conditioned medium from cardiac fibroblasts. Both effects were abolished by CXCR4 blocking antibodies. Adenosine also increased CXCR4 under ischemic conditions, and decreased miR-150 expression. Binding of miR-150 to the 3' untranslated region of CXCR4 was verified by luciferase assay. Addition of pre-miR-150 blunted the effect of adenosine on CXCR4. Administration of adenosine to rats after induction of myocardial infarction stimulated EPC recruitment to the heart and enhanced angiogenesis. CONCLUSION: Adenosine increases the migration of EPC. The mechanism involves A(2B receptor activation, decreased expression of miR-150 and increased expression of CXCR4. These

  14. Effects of aspirin on number,activity and inducible nitric oxide synthase of endothelial progenitor cells from peripheral blood

    Institute of Scientific and Technical Information of China (English)

    Tu-gang CHEN; Jun-zhu CHEN; Xu-dong XIE

    2006-01-01

    Aim:To investigate whether aspirin has an influence on endothelial progenitor cells (EPC).Methods:Total mononuclear cells (MNC) were isolated from peripheral blood by Ficoll density gradient centrifugation,then cells were plated on fibronectin-coated culture dishes.After 7 d of culture,attached cells were stimulated with aspirin (to achieve final concentrations of 1,2,5,and 10 mmol/L) for 3,6,12,and 24 h.EPC were characterized as adherent cells that were double positive for 1,1-dioctadecyl-3,3,3,3-tetramethylindocarbocyanine low density lipoprotein (DiLDL) uptake and lectin binding by direct fluorescent staining.EPC proliferation and migration were assayed using a 3- (4,5-dimethyl-2 thiazoyl) -2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and a modified Boyden chamber assay.respectively.An EPC adhesion assay was performed by replating the EPC on fibronectin-coated dishes,and then adherent cells were counted.In vitro vasculogenesis activity was assayed by using an in vitro vasculogenesis kit. Inducible nitric oxide synthase (iNOS) was assayed by Westem blotting.Results:Incubation of isolated human MNC with aspirin decreased the number of EPC.Aspirin also decreased the proliferative,migratory,adhesive,and in vitro Vasculogenesis capacity of EPC,and also their iNOS levels in a concentration-and time-dependent manner.Conclusion:Aspirin decreases (1) the number of EPC; (2) the proliferative,migratory,adhesive and in vitro vasculogenesis capacities of EPC;and (3) iNOS levels in EPC.

  15. [In vitro MR imaging of Fe(2)O(3)-PLL labelled rabbit peripheral blood endothelial progenitor cells].

    Science.gov (United States)

    Mai, Xiao-li; Teng, Gao-jun; Ma, Zhan-long; Sun, Jun-hui; Zhang, Yu; Gu, Ning

    2007-09-01

    To perform in vitro magnetic resonance imaging on magnetic iron oxide (Fe(2)O(3)-PLL) labeled rabbit peripheral blood endothelial progenitor cells (EPCs). Fe(2)O(3) was incubated with PLL for 2 hours to form Fe(2)O(3)-PLL. Rabbit peripheral blood mononuclear cells (MNCs) were isolated and EPCs were selected by adherence method, expanded and incubated with Fe(2)O(3)-PLL. Intracellular iron was detected by Prussian blue stain and under electron microscope. MTT assay was used to evaluate cell survival and proliferation of Fe(2)O(3)-PLL labeled EPCs. Flow cytometry was used to analysis cell cycle and apoptosis. The cells underwent in vitro MR imaging with various sequences. Iron-containing intracytoplasmatic vesicles could be observed clearly with Prussian blue staining and electron microscope observation. Survival, life cycle and apoptosis values obtained by MTT and flow cytometry analysis were similar among unlabelled EPCs and EPCs labeled with various concentrations Fe(2)O(3)-PLL. The signal intensity on MRI was significantly decreased in labeled cells compared with that in unlabeled cells. The percentage change in signal intensity (DeltaSI) was most significant on T(2)*WI and DeltaSI was significantly lower in cells labeled for 7 days than that labeled for 1 day. The rabbit peripheral blood EPCs can be labeled with Fe(2)O(3)-PLL without significant change in viability and proliferation. The labeled EPCs can be imaged with standard 1.5 T MR equipment. The degree of MR signal decreasing may indirectly reflect the cells count, growth state and division.

  16. In vivo serial MR imaging of magnetically labeled endothelial progenitor cells homing to the endothelium injured artery in mice.

    Directory of Open Access Journals (Sweden)

    Jun Chen

    Full Text Available BACKGROUND: Emerging evidence of histopathological analyses suggests that endothelial progenitor cells (EPCs play an important role in vascular diseases. Neointimal hyperplasia can be reduced by intravenous transfusion of EPCs after vascular injury in mice. Therefore, it would be advantageous to develop an in vivo technique that can explore the temporal and spatial migration of EPCs homing to the damaged endothelium noninvasively. METHODOLOGY/PRINCIPAL FINDINGS: The left carotid common artery (LCCA was injured by removal of endothelium with a flexible wire in Kunming mice. EPCs were collected by in vitro culture of spleen-derived mouse mononuclear cells (MNCs. EPCs labeling was carried out in vitro using Fe₂O₃-poly-L-lysine (Fe₂O₃-PLL. In vivo serial MR imaging was performed to follow-up the injured artery at different time points after intravenous transfusion of EPCs. Vessel wall areas of injured artery were computed on T₂WI. Larger MR signal voids of vessel wall on T₂WI was revealed in all 6 mice of the labeled EPC transfusion group 15 days after LCCA injury, and it was found only in 1 mouse in the unlabeled EPC transfusion group (p = 0.015. Quantitative analyses of vessel wall areas on T₂WI showed that the vessel wall areas of labeled EPC transfusion group were less than those of unlabeled EPC transfusion group and control group fifteen days after artery injury (p<0.05. Histopathological analyses confirmed accumulation and distribution of transfused EPCs at the injury site of LCCA. CONCLUSIONS/SIGNIFICANCE: These data indicate that MR imaging might be used as an in vivo method for the tracking of EPCs homing to the endothelium injured artery.

  17. Coenzyme Q10 Attenuates High Glucose-Induced Endothelial Progenitor Cell Dysfunction through AMP-Activated Protein Kinase Pathways

    Science.gov (United States)

    Tsai, Hsiao-Ya; Lin, Chih-Pei; Huang, Po-Hsun; Li, Szu-Yuan; Chen, Jia-Shiong; Lin, Feng-Yen; Chen, Jaw-Wen; Lin, Shing-Jong

    2016-01-01

    Coenzyme Q10 (CoQ10), an antiapoptosis enzyme, is stored in the mitochondria of cells. We investigated whether CoQ10 can attenuate high glucose-induced endothelial progenitor cell (EPC) apoptosis and clarified its mechanism. EPCs were incubated with normal glucose (5 mM) or high glucose (25 mM) enviroment for 3 days, followed by treatment with CoQ10 (10 μM) for 24 hr. Cell proliferation, nitric oxide (NO) production, and JC-1 assay were examined. The specific signal pathways of AMP-activated protein kinase (AMPK), eNOS/Akt, and heme oxygenase-1 (HO-1) were also assessed. High glucose reduced EPC functional activities, including proliferation and migration. Additionally, Akt/eNOS activity and NO production were downregulated in high glucose-stimulated EPCs. Administration of CoQ10 ameliorated high glucose-induced EPC apoptosis, including downregulation of caspase 3, upregulation of Bcl-2, and increase in mitochondrial membrane potential. Furthermore, treatment with CoQ10 reduced reactive oxygen species, enhanced eNOS/Akt activity, and increased HO-1 expression in high glucose-treated EPCs. These effects were negated by administration of AMPK inhibitor. Transplantation of CoQ10-treated EPCs under high glucose conditions into ischemic hindlimbs improved blood flow recovery. CoQ10 reduced high glucose-induced EPC apoptosis and dysfunction through upregulation of eNOS, HO-1 through the AMPK pathway. Our findings provide a potential treatment strategy targeting dysfunctional EPC in diabetic patients. PMID:26682233

  18. Erythropoietin attenuates pulmonary vascular remodeling in experimental pulmonary arterial hypertension through interplay between endothelial progenitor cells and heme-oxygenase

    Directory of Open Access Journals (Sweden)

    Rosa L.E. Loon

    2015-08-01

    Full Text Available BackgroundPulmonary arterial hypertension (PAH is a pulmonary vascular disease with a high mortality, characterized by typical angio-proliferative lesions. Erythropoietin (EPO attenuates pulmonary vascular remodeling in PAH. We postulated that EPO acts through mobilization of endothelial progenitor cells (EPCs and activation of the cytoprotective enzyme heme oxygenase-1 (HO1.MethodsRats with flow-associated PAH, resembling pediatric PAH, were treated with HO-1 inducer EPO in the presence or absence of the selective HO-activity-inhibitor tin-mesoporphyrin (SnMP. HO-activity, circulating EPCs and pulmonary vascular lesions were assessed after 3 weeks.ResultsIn PAH-rats, circulating EPCs were decreased and HO-activity was increased compared to control. EPO-treatment restored circulating EPCs and improved pulmonary vascular remodeling, as shown by a reduced wall thickness and occlusion rate of the intra-acinar vessels. Inhibition of HO-activity with SnMP aggravated PAH. Moreover, SnMP treatment abrogated EPO-induced amelioration of pulmonary vascular remodeling, while surprisingly further increasing circulating EPCs as compared with EPO alone.ConclusionsIn experimental PAH, EPO treatment restored the number of circulating EPC’s to control level, improved pulmonary vascular remodeling, and showed important interplay with HO-activity. Inhibition of increased HO-activity in PAH-rats exacerbated progression of pulmonary vascular remodeling, despite the presence of restored numbers of circulating EPC’s. We suggest that both EPO-induced HO1 and EPCs are promising targets to ameliorate the pulmonary vasculature in PAH.

  19. Insulin sensitizers prevent fine particulate matter-induced vascular insulin resistance and changes in endothelial progenitor cell homeostasis.

    Science.gov (United States)

    Haberzettl, Petra; McCracken, James P; Bhatnagar, Aruni; Conklin, Daniel J

    2016-06-01

    Exposure to fine particular matter (PM2.5) increases the risk of developing cardiovascular disease and Type 2 diabetes. Because blood vessels are sensitive targets of air pollutant exposure, we examined the effects of concentrated ambient PM2.5 (CAP) on vascular insulin sensitivity and circulating levels of endothelial progenitor cells (EPCs), which reflect cardiovascular health. We found that CAP exposure for 9 days decreased insulin-stimulated Akt phosphorylation in the aorta of mice maintained on control diet. This change was accompanied by the induction of IL-1β and increases in the abundance of cleaved IL-18 and p10 subunit of Casp-1, consistent with the activation of the inflammasome pathway. CAP exposure also suppressed circulating levels of EPCs (Flk-1(+)/Sca-1(+) cells), while enhancing the bone marrow abundance of these cells. Although similar changes in vascular insulin signaling and EPC levels were observed in mice fed high-fat diet, CAP exposure did not exacerbate diet-induced changes in vascular insulin resistance or EPC homeostasis. Treatment with an insulin sensitizer, metformin or rosiglitazone, prevented CAP-induced vascular insulin resistance and NF-κB and inflammasome activation and restored peripheral blood and bone marrow EPC levels. These findings suggest that PM2.5 exposure induces diet-independent vascular insulin resistance and inflammation and prevents EPC mobilization, and that this EPC mobilization defect could be mediated by vascular insulin resistance. Impaired vascular insulin sensitivity may be an important mechanism underlying PM2.5-induced vascular injury, and pharmacological sensitization to insulin action could potentially prevent deficits in vascular repair and mitigate vascular inflammation due to exposure to elevated levels of ambient air pollution. Copyright © 2016 the American Physiological Society.

  20. Construction of a multifunctional coating consisting of phospholipids and endothelial progenitor cell-specific peptides on titanium substrates

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Huiqing; Li, Xiaojing [Key Lab. of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Zhao, Yuancong, E-mail: zhaoyc7320@163.com [Key Lab. of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Li, Jingan; Chen, Jiang [Key Lab. of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Yang, Ping, E-mail: yangping8@263.net [Key Lab. of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Maitz, Manfred F. [Key Lab. of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Max Bergmann Center of Biomaterials Dresden, Leibniz of Polymer Research Dresden, 01069 Dresden (Germany); Huang, Nan [Key Lab. of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China)

    2015-08-30

    Graphical abstract: The phospholipid groups of PMMDP can inhibit platele adhesion, and the EPCs-specific peptide of the PMMDP showed special recognition and capture for EPCs. The catechol groups of PMMDP play a critical role as molecular anchor for balancing the binding between the coating and the substrate. - Highlights: • The uniform coating of PMMDP can be constructed on titanium surface successfully through the catechol groups. • The phospholipid groups of PMMDP can inhibit platele adhesion, fibrinogen denaturation and improve the hydrophilicity of substrate. • The EPCs-specific peptide of the PMMDP showed special recognition and capture for EPCs. - Abstract: A phospholipid/peptide polymer (PMMDP) with phosphorylcholine groups, endothelial progenitor cell (EPC)-specific peptides and catechol groups was anchored onto a titanium (Ti) surface to fabricate a biomimetic multifunctional surface. The PMMDP coating was characterized by X-ray photoelectron spectroscopy (XPS), water contact angle measurements and atomic force microscopy (AFM), respectively. The amount of PMMDP coating on the Ti surface was quantified by using the quartz crystal microbalance with dissipation (QCM-D). Interactions between blood components and the coated and bare Ti substrates were evaluated by platelet adhesion and activation assays and fibrinogen denaturation test using platelet rich plasma (PRP). The results revealed that the PMMDP-modified surface inhibited fibrinogen denaturation and reduced platelet adhesion and activation. EPC cell culture on the PMMDP-modified surface showed increased adhesion and proliferation of EPCs when compared to the cells cultured on untreated Ti surface. The inhibition of fibrinogen denaturation and platelet adhesion and support of EPCs attachment and proliferation indicated that this coating might be beneficial for future applications in blood-contacting implants, such as vascular stents.

  1. Effect of low-dose methylprednisolone on peripheral blood endothelial progenitor cells and its significance in rats after brain injury

    Directory of Open Access Journals (Sweden)

    Bin ZHANG

    2011-05-01

    Full Text Available Objective To explore the effects of low-dose methylprednisolone(MP treatment after traumatic brain injury(TBI in rats on the number of peripheral blood endothelial progenitor cells(EPCs and injury area of the brain.Methods One hundred and fifty-four adult male Wistar rats were involved in the present study,and they were randomly divided into normal control group(n=18,TBI control group(n=38,MP control group(n=30,MP+TBI group(n=30 and TBI+MP group(n=38.The TBI model was reproduced by fluid percussion injury(FPI.MP(5mg/kg was intraperitoneally administered once a day for 4 days.Peripheral venous blood samples were taken on day 1,3,7 and 14,and the counts of EPCs were determined by flow cytometry.The rats were sacrificed on day 1 and 3,brain edema was estimated by dry-wet weight method,and the blood-brain barrier(BBB permeability was determined by Evans-blue extravasation.Results The counts of peripheral blood EPCs were significantly higher in MP control group,MP+TBI group and TBI+MP group on day 1,3 and 7 than that in normal control and TBI control group,and it returned to the level of normal control group on day 14.The BBB permeability was improved and brain edema alleviated in MP+TBI and TBI+MP group on day 3.Conclusion The administration of low-dose MP may increase the count of peripheral blood EPCs in rats,decrease BBB damage,and alleviate brain edema.

  2. PSGL-1–mediated activation of EphB4 increases the proangiogenic potential of endothelial progenitor cells

    Science.gov (United States)

    Foubert, Philippe; Silvestre, Jean-Sébastien; Souttou, Boussad; Barateau, Véronique; Martin, Coralie; Ebrahimian, Téni G.; Leré-Déan, Carole; Contreres, Jean Olivier; Sulpice, Eric; Levy, Bernard I.; Plouët, Jean; Tobelem, Gérard; Le Ricousse-Roussanne, Sophie

    2007-01-01

    Endothelial progenitor cell (EPC) transplantation has beneficial effects for therapeutic neovascularization; however, only a small proportion of injected cells home to the lesion and incorporate into the neocapillaries. Consequently, this type of cell therapy requires substantial improvement to be of clinical value. Erythropoietin-producing human hepatocellular carcinoma (Eph) receptors and their ephrin ligands are key regulators of vascular development. We postulated that activation of the EphB4/ephrin-B2 system may enhance EPC proangiogenic potential. In this report, we demonstrate in a nude mouse model of hind limb ischemia that EphB4 activation with an ephrin-B2–Fc chimeric protein increases the angiogenic potential of human EPCs. This effect was abolished by EphB4 siRNA, confirming that it is mediated by EphB4. EphB4 activation enhanced P selectin glycoprotein ligand-1 (PSGL-1) expression and EPC adhesion. Inhibition of PSGL-1 by siRNA reversed the proangiogenic and adhesive effects of EphB4 activation. Moreover, neutralizing antibodies to E selectin and P selectin blocked ephrin-B2–Fc–stimulated EPC adhesion properties. Thus, activation of EphB4 enhances EPC proangiogenic capacity through induction of PSGL-1 expression and adhesion to E selectin and P selectin. Therefore, activation of EphB4 is an innovative and potentially valuable therapeutic strategy for improving the recruitment of EPCs to sites of neovascularization and thereby the efficiency of cell-based proangiogenic therapy. PMID:17510705

  3. Effect of antihypertensive treatment with lercanidipine on endothelial progenitor cells and inflammation in patients with mild to moderate essential hypertension.

    Science.gov (United States)

    De Ciuceis, Carolina; Rossini, Claudia; Tincani, Angela; Airò, Paolo; Scarsi, Mirco; Agabiti-Rosei, Claudia; Ruggeri, Giuseppina; Caimi, Luigi; Ricotta, Doris; Agabiti-Rosei, Enrico; Rizzoni, Damiano

    2016-12-01

    It has been demonstrated that circulating endothelial progenitor cells (EPCs) number reflects the endogenous vascular repair ability, with the EPCs pool declining in presence of cardiovascular risk factors. Several drugs, including dihydropyridine calcium channel blockers, have been reported to elicit antioxidant and anti-inflammatory properties, as well as to improve vascular remodeling and dysfunction. However, no data are available about the effects of lercanidipine on EPCs. The aim of the present study was therefore to investigate the effects of short-term treatment with lercanidipine on circulating EPCs, as well as on indices of inflammation and oxidative stress. Twenty essential hypertensive patients were included in the study and treated for 4 weeks with lercanidipine 20 mg per day orally. Investigations were performed in basal condition, after appropriate wash out of previous treatments, and after 4 weeks of lercanidipine treatment. Inflammatory and oxidative stress markers were assessed by ELISA technique. Lin-/7AAD-/CD34+/CD133+/VEGFR-2 + and Lin-/7AAD-/CD34+/VEGFR-2 + cells were identified by flow cytometry and considered as EPCs. EPCs cells were expressed as number of cells per million Lin-mononuclear cells. Circulating EPCs were significantly increased after lercanidipine treatment (CD34+/CD133+/VEGFR-2 + cells: 78.3 ± 64.5 vs 46.6 ± 32.8; CD34+/VEGFR-2+: 87996 ± 165116 vs 1026 ± 1559, respectively, p < 0.05). A modest reduction in circulating indices of inflammation was also observed. In conclusion, lercanidipine is able to increase the number of circulating EPCs, possibly through a reduction of low-grade inflammation.

  4. The Ape-1/Ref-1 redox antagonist E3330 inhibits the growth of tumor endothelium and endothelial progenitor cells: therapeutic implications in tumor angiogenesis.

    Science.gov (United States)

    Zou, Gang-Ming; Karikari, Collins; Kabe, Yasuaki; Handa, Hiroshi; Anders, Robert A; Maitra, Anirban

    2009-04-01

    The apurinic/apyrimidinic endonuclease 1/redox factor-1 (Ape-1/Ref-1) is a multi-functional protein, involved in DNA repair and the activation of redox-sensitive transcription factors. The Ape-1/Ref-1 redox domain acts as a cytoprotective element in normal endothelial cells, mitigating the deleterious effects of apoptotic stimuli through induction of survival signals. We explored the role of the Ape-1/Ref-1 redox domain in the maintenance of tumor-associated endothelium, and of endothelial progenitor cells (EPCs), which contribute to tumor angiogenesis. We demonstrate that E3330, a small molecule inhibitor of the Ape-1/Ref-1 redox domain, blocks the in vitro growth of pancreatic cancer-associated endothelial cells (PCECs) and EPCs, which is recapitulated by stable expression of a dominant-negative redox domain mutant. Further, E3330 blocks the differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) into CD31(+) endothelial progeny. Exposure of PCECs to E3330 results in a reduction of H-ras expression and intracellular nitric oxide (NO) levels, as well as decreased DNA-binding activity of the hypoxia-inducible transcription factor, HIF-1alpha. E3330 also reduces secreted and intracellular vascular endothelial growth factor expression by pancreatic cancer cells, while concomitantly downregulating the cognate receptor Flk-1/KDR on PCECs. Inhibition of the Ape-1/Ref-1 redox domain with E3330 or comparable angiogenesis inhibitors might be a potent therapeutic strategy in solid tumors.

  5. Functional convergence of Akt protein with VEGFR-1 in human endothelial progenitor cells exposed to sera from patient with type 2 diabetes mellitus.

    Science.gov (United States)

    Hassanpour, Mehdi; Rezabakhsh, Aysa; Rahbarghazi, Reza; Nourazarian, Alireza; Nouri, Mohammad; Avci, Çığır Biray; Ghaderi, Shahrooz; Alidadyani, Neda; Bagca, Bakiye Goker; Bagheri, Hesam Saghaei

    2017-11-01

    Diabetes mellitus type 2 predisposes patients to various microvascular complications. In the current experiment, the potent role of diabetes mellitus was investigated on the content of VEGFR-1, -2, Tie-1 and -2, and Akt in human endothelial progenitor cells. The gene expression profile of mTOR and Hedgehog signaling pathways were measured by PCR array. The possible crosstalk between RTKs, mTOR and Hedgehog signaling was also studied by bioinformatic analysis. Endothelial progenitor cells were incubated with serum from normal and diabetic for 7days. Compared to non-treated cells, diabetic serum-induced cell apoptosis (~2-fold) and prohibited cell migration toward bFGF (p<0.001). ELISA analysis showed that diabetes exposed cells had increased abundance of Tie-1, -2 and VEGFR-2 and reduced amount of VEGFR-1 (p<0.0001) in diabetic cells. Western blotting showed a marked reduction in the protein level of Akt after cells exposure to serum from diabetic subjects (p<0.0001). PCR array revealed a significant stimulation of both mTOR and Hedgehog signaling pathways in diabetic cells (p<0.05). According to data from bioinformatic datasets, we showed VEGFR-1, -2 and Tie-2, but not Tie-1, are master regulators of angiogenesis. There is a crosstalk between RTKs and mTOR signaling by involving P62, GABARAPL1, and HTT genes. It seems that physical interaction and co-expression of Akt decreased the level of VEGFR-1 in diabetic cells. Regarding data from the present experiment, diabetic serum contributed to uncontrolled induction of both mTOR and Hedgehog signaling in endothelial progenitor cells. Diabetes mellitus induces mTOR pathway by involving receptor tyrosine kinases while Hedgehog stimulation is independent of these receptors. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Murine tribbles homolog 2 deficiency affects erythroid progenitor development and confers macrocytic anemia on mice.

    Science.gov (United States)

    Lin, Kou-Ray; Yang-Yen, Hsin-Fang; Lien, Huang-Wei; Liao, Wei-Hao; Huang, Chang-Jen; Lin, Liang-In; Li, Chung-Leung; Yen, Jeffrey Jong-Young

    2016-08-23

    Tribbles homolog 2 (Trib2) is a member of Tribbles protein pseudokinases and involves in apoptosis, autoimmunity, cancer, leukemia and erythropoiesis, however, the physiological function of Trib2 in hematopoietic system remains to be elucidated. Here, we report that Trib2 knockout (KO) mice manifest macrocytic anemia and increase of T lymphocytes. Although Trib2 deficient RBCs have similar half-life as the control RBCs, Trib2 KO mice are highly vulnerable to oxidant-induced hemolysis. Endogenous Trib2 mRNA is expressed in early hematopoietic progenitors, erythroid precursors, and lymphoid lineages, but not in mature RBCs, myeloid progenitors and granulocytes. Consistently, flow cytometric analysis and in vitro colony forming assay revealed that deletion of Trib2 mainly affected erythroid lineage development, and had no effect on either granulocyte or megakaryocyte lineages in bone marrow. Furthermore, a genetic approach using double knockout of Trib2 and C/ebpα genes in mice suggested that Trib2 promotes erythropoiesis independent of C/ebpα proteins in vivo. Finally, ectopic expression of human Trib2 in zebrafish embryos resulted in increased expression of erythropoiesis-related genes and of hemoglobin. Taking all data together, our results suggest that Trib2 positively promotes early erythrocyte differentiation and is essential for tolerance to hemolysis.

  7. Lipid lowering and HDL raising gene transfer increase endothelial progenitor cells, enhance myocardial vascularity, and improve diastolic function.

    Directory of Open Access Journals (Sweden)

    Stephanie C Gordts

    Full Text Available BACKGROUND: Hypercholesterolemia and low high density lipoprotein (HDL cholesterol contribute to coronary heart disease but little is known about their direct effects on myocardial function. Low HDL and raised non-HDL cholesterol levels carried increased risk for heart failure development in the Framingham study, independent of any association with myocardial infarction. The objective of this study was to test the hypothesis that increased endothelial progenitor cell (EPC number and function after lipid lowering or HDL raising gene transfer in C57BL/6 low density lipoprotein receptor deficient (LDLr(-/- mice may be associated with an enhanced relative vascularity in the myocardium and an improved cardiac function. METHODOLOGY/PRINCIPAL FINDINGS: Lipid lowering and HDL raising gene transfer were performed using the E1E3E4-deleted LDLr expressing adenoviral vector AdLDLr and the human apolipoprotein A-I expressing vector AdA-I, respectively. AdLDLr transfer in C57BL/6 LDLr(-/- mice resulted in a 2.0-fold (p<0.05 increase of the circulating number of EPCs and in an improvement of EPC function as assessed by ex vivo EPC migration and EPC adhesion. Capillary density and relative vascularity in the myocardium were 28% (p<0.01 and 22% (p<0.05 higher, respectively, in AdLDLr mice compared to control mice. The peak rate of isovolumetric relaxation was increased by 12% (p<0.05 and the time constant of isovolumetric relaxation was decreased by 14% (p<0.05 after AdLDLr transfer. Similarly, HDL raising gene transfer increased EPC number and function and raised both capillary density and relative vascularity in the myocardium by 24% (p<0.05. The peak rate of isovolumetric relaxation was increased by 16% (p<0.05 in AdA-I mice compared to control mice. CONCLUSIONS/SIGNIFICANCE: Both lipid lowering and HDL raising gene transfer have beneficial effects on EPC biology, relative myocardial vascularity, and diastolic function. These findings raise concerns over the

  8. Synergy of endothelial and neural progenitor cells from adipose-derived stem cells to preserve neurovascular structures in rat hypoxic-ischemic brain injury.

    Science.gov (United States)

    Hsueh, Yuan-Yu; Chang, Ya-Ju; Huang, Chia-Wei; Handayani, Fitri; Chiang, Yi-Lun; Fan, Shih-Chen; Ho, Chien-Jung; Kuo, Yu-Min; Yang, Shang-Hsun; Chen, Yuh-Ling; Lin, Sheng-Che; Huang, Chao-Ching; Wu, Chia-Ching

    2015-10-08

    Perinatal cerebral hypoxic-ischemic (HI) injury damages the architecture of neurovascular units (NVUs) and results in neurological disorders. Here, we differentiated adipose-derived stem cells (ASCs) toward the progenitor of endothelial progenitor cells (EPCs) and neural precursor cells (NPCs) via microenvironmental induction and investigated the protective effect by transplanting ASCs, EPCs, NPCs, or a combination of EPCs and NPCs (E+N) into neonatal HI injured rat pups. The E+N combination produced significant reduction in brain damage and cell apoptosis and the most comprehensive restoration in NVUs regarding neuron number, normal astrocytes, and vessel density. Improvements in cognitive and motor functions were also achieved in injured rats with E+N therapy. Synergistic interactions to facilitate transmigration under in vitro hypoxic microenvironment were discovered with involvement of the neuropilin-1 (NRP1) signal in EPCs and the C-X-C chemokine receptor 4 (CXCR4) and fibroblast growth factor receptor 1 (FGFR1) signals in NPCs. Therefore, ASCs exhibit great potential for cell sources in endothelial and neural lineages to prevent brain from HI damage.

  9. GenousTM endothelial progenitor cell capturing stent vs. the Taxus Liberte stent in patients with de novo coronary lesions with a high-risk of coronary restenosis: a randomized, single-centre, pilot study

    NARCIS (Netherlands)

    M.A.M. Beijk; M. Klomp; N.J.W. Verouden; N. van Geloven; K.T. Koch; J.P.S. Henriques; J. Baan; M.M. Vis; E. Scheunhage; J.J. Piek; J.G.P. Tijssen; R.J. de Winter

    2010-01-01

    Aims The purpose of this study was to evaluate the Genous(TM) endothelial progenitor cell capturing stent vs. the Taxus Liberté paclitaxel-eluting stent in patients with de novo coronary lesions with a high-risk of coronary restenosis. Methods and results We randomly assigned 193 patients with lesio

  10. Erythropoietin Attenuates Pulmonary Vascular Remodeling in Experimental Pulmonary Arterial Hypertension through Interplay between Endothelial Progenitor Cells and Heme Oxygenase

    NARCIS (Netherlands)

    van Loon, Rosa Laura E; Bartelds, Beatrijs; Wagener, Frank A D T G; Affara, Nada; Mohaupt, Saffloer; Wijnberg, Hans; Pennings, Sebastiaan W C; Takens, Janny; Berger, Rolf M F

    2015-01-01

    BACKGROUND: Pulmonary arterial hypertension (PAH) is a pulmonary vascular disease with a high mortality, characterized by typical angio-proliferative lesions. Erythropoietin (EPO) attenuates pulmonary vascular remodeling in PAH. We postulated that EPO acts through mobilization of endothelial progeni

  11. The acute impact of high-dose lipid-lowering treatment on endothelial progenitor cells in patients with coronary artery disease—The REMEDY-EPC early substudy

    Science.gov (United States)

    Madonna, Rosalinda; Renna, Francesca Vera; Lanuti, Paola; Perfetti, Matteo; Marchisio, Marco; Briguori, Carlo; Condorelli, Gerolama; Manzoli, Lamberto

    2017-01-01

    Rationale and objective Endothelial progenitor cells (EPCs) play a role in vascular repair, while circulating endothelial cells (CECs) are biomarkers of vascular damage and regeneration. Statins may promote EPC/CEC mobilization in the peripheral blood. We evaluated whether pre-procedural exposure to different lipid-lowering drugs (statins±ezetimibe) can acutely increase levels/activity of EPCs/CECs in patients with stable coronary artery disease (CAD). Methods In a planned sub-analysis of the Rosuvastatin For REduction Of Myocardial DamagE During Coronary AngioplastY (REMEDY) trial, 38 patients with stable CAD on chronic low-dose statin therapy were randomized, in a double-blind, placebo-controlled design, into 4 groups before PCI: i. placebo (n = 11); ii. atorvastatin (80 mg+40 mg, n = 9); iii. rosuvastatin (40 mg twice, n = 9); and iv. rosuvastatin (5 mg) and ezetimibe (10 mg) twice, (n = 9). At baseline and 24 h after treatment–before PCI–, patients underwent blinded analyses of EPCs [colony forming units-endothelial cells (CFU-ECs), endothelial colony-forming cells (ECFCs) and tubulization activity] and CECs in peripheral blood. Results We found no significant treatment effects on parameters investigated such as number of CECs [Median (IQR): i. 0(0), ii. 4.5(27), iii. 1.9(2.3), iv. 1.9(2.3)], CFU-ECs [Median (IQR): i. 27(11), ii. 19(31), iii. 47(36), iv. 30(98)], and ECFCs [Median (IQR): i. 86(84), ii. 7(84), iii. 8/(42.5), iv. 5(2)], as well as tubulization activity [total tubuli (well), Median (IQR): i. 19(7), ii. 5(4), iii. 25(13), iv. 15(24)]. Conclusions In this study, we found no evidence of acute changes in levels or activity of EPCs and CECs after high-dose lipid-lowering therapy in stable CAD patients. PMID:28394933

  12. The acute impact of high-dose lipid-lowering treatment on endothelial progenitor cells in patients with coronary artery disease-The REMEDY-EPC early substudy.

    Science.gov (United States)

    Madonna, Rosalinda; Renna, Francesca Vera; Lanuti, Paola; Perfetti, Matteo; Marchisio, Marco; Briguori, Carlo; Condorelli, Gerolama; Manzoli, Lamberto; De Caterina, Raffaele

    2017-01-01

    Endothelial progenitor cells (EPCs) play a role in vascular repair, while circulating endothelial cells (CECs) are biomarkers of vascular damage and regeneration. Statins may promote EPC/CEC mobilization in the peripheral blood. We evaluated whether pre-procedural exposure to different lipid-lowering drugs (statins±ezetimibe) can acutely increase levels/activity of EPCs/CECs in patients with stable coronary artery disease (CAD). In a planned sub-analysis of the Rosuvastatin For REduction Of Myocardial DamagE During Coronary AngioplastY (REMEDY) trial, 38 patients with stable CAD on chronic low-dose statin therapy were randomized, in a double-blind, placebo-controlled design, into 4 groups before PCI: i. placebo (n = 11); ii. atorvastatin (80 mg+40 mg, n = 9); iii. rosuvastatin (40 mg twice, n = 9); and iv. rosuvastatin (5 mg) and ezetimibe (10 mg) twice, (n = 9). At baseline and 24 h after treatment-before PCI-, patients underwent blinded analyses of EPCs [colony forming units-endothelial cells (CFU-ECs), endothelial colony-forming cells (ECFCs) and tubulization activity] and CECs in peripheral blood. We found no significant treatment effects on parameters investigated such as number of CECs [Median (IQR): i. 0(0), ii. 4.5(27), iii. 1.9(2.3), iv. 1.9(2.3)], CFU-ECs [Median (IQR): i. 27(11), ii. 19(31), iii. 47(36), iv. 30(98)], and ECFCs [Median (IQR): i. 86(84), ii. 7(84), iii. 8/(42.5), iv. 5(2)], as well as tubulization activity [total tubuli (well), Median (IQR): i. 19(7), ii. 5(4), iii. 25(13), iv. 15(24)]. In this study, we found no evidence of acute changes in levels or activity of EPCs and CECs after high-dose lipid-lowering therapy in stable CAD patients.

  13. Data regarding association between serum osteoprotegerin level, numerous of circulating endothelial-derived and mononuclear-derived progenitor cells in patients with metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Alexander E. Berezin

    2016-09-01

    Full Text Available Metabolic syndrome (MetS is defined as cluster of multiple metabolic and cardiovascular (CV abnormalities included abdominal obesity, high-normal blood pressure, dyslipidaemia, and impaired fasting glucose tolerance that exhibits has a growing prevalence worldwide. We investigated whether an elevated level of osteoprotegerin (OPG predicts imbalance between different phenotypes of circulating endothelial (EPCs and mononuclear (MPCs progenitor cells in MetS patients. We have analyzed data regarding dysmetabolic disorder subjects without known CV disease, as well as with known type two diabetes mellitus. All patients have given their informed written consent for participation in the study. This article contains data on the independent predictors of depletion in numerous of circulating EPCs and MPCs in MetS patients. The data are supplemental to our original research article describing detailed associations of elevated OPG level in MetS patients with numerous of EPCs and MPCs beyond traditional CV risk factors.

  14. TGFβ inhibition enhances the generation of hematopoietic progenitors from human ES cell-derived hemogenic endothelial cells using a stepwise strategy

    Institute of Scientific and Technical Information of China (English)

    Chengyan Wang; Liying Du; Yang Gao; Ming Yin; Mingxiao Ding; Hongkui Deng; Xuming Tang; Xiaomeng Sun; Zhenchuan Miao; Yaxin Lv; Yanlei Yang; Huidan Zhang; Pengbo Zhang; Yang Liu

    2012-01-01

    Embryonic hematopoiesis is a complex process.Elucidating the mechanism regulating hematopoietic differentiation from pluripotent stem cells would allow us to establish a strategy to efficiently generate hematopoietic cells.However,the mechanism governing the generation of hematopoietic progenitors from human embryonic stem cells (hESCs)remains unknown.Here,on the basis of the emergence of CD43+ hematopoietic cells from hemogenic endothelial (HE) cells,we demonstrated that VEGF was essential and sufficient,and that bFGF was synergistic with VEGF to specify the HE cells and the subsequent transition into CD43+ hematopoietic cells.Significantly,we identified TGFβ as a novel signal to regulate hematopoietic development,as the TGFβ inhibitor SB 431542 significantly promoted the transition from HE cells into CD43+ hematopoietic progenitor cells (HPCs) during hESC differentiation.By defining these critical signaling factors during hematopoietic differentiation,we can efficiently generate HPCs from hESCs.Our strategy could offer an in vitro model to study early human hematopoietic development.

  15. TGF-β-Operated Growth Inhibition and Translineage Commitment into Smooth Muscle Cells of Periodontal Ligament-Derived Endothelial Progenitor Cells through Smad- and p38 MAPK-Dependent Signals

    Directory of Open Access Journals (Sweden)

    Mariko Yoshida, Naoto Okubo, Naoyuki Chosa, Tomokazu Hasegawa, Miho Ibi, Masaharu Kamo, Seiko Kyakumoto, Akira Ishisaki

    2012-01-01

    Full Text Available The periodontal ligament (PDL is a fibrous connective tissue that attaches the tooth to the alveolar bone. We previously demonstrated the ability of PDL fibroblast-like cells to construct an endothelial cell (EC marker-positive blood vessel-like structure, indicating the potential of fibroblastic lineage cells in PDL tissue as precursors of endothelial progenitor cells (EPCs to facilitate the construction of a vascular system around damaged PDL tissue. A vascular regeneration around PDL tissue needs proliferation of vascular progenitor cells and the subsequent differentiation of the cells. Transforming growth factor-β (TGF-β is known as an inducer of endothelial-mesenchymal transition (EndMT, however, it remains to be clarified what kinds of TGF-β signals affect growth and mesenchymal differentiation of PDL-derived EPC-like fibroblastic cells. Here, we demonstrated that TGF-β1 not only suppressed the proliferation of the PDL-derived EPC-like fibroblastic cells, but also induced smooth muscle cell (SMC markers expression in the cells. On the other hand, TGF-β1 stimulation suppressed EC marker expression. Intriguingly, overexpression of Smad7, an inhibitor for TGF-β-induced Smad-dependent signaling, suppressed the TGF-β1-induced growth inhibition and SMC markers expression, but did not the TGF-β1-induced downregulation of EC marker expression. In contrast, p38 mitogen-activated protein kinase (MAPK inhibitor SB 203580 suppressed the TGF-β1-induced downregulation of EC marker expression. In addition, the TGF-β1-induced SMC markers expression of the PDL-derived cells was reversed upon stimulation with fibroblast growth factor (FGF, suggesting that the TGF-β1 might not induce terminal SMC differentiation of the EPC-like fibroblastic cells. Thus, TGF-β1 not only negatively controls the growth of PDL-derived EPC-like fibroblastic cells via a Smad-dependent manner but also positively controls the SMC-differentiation of the cells possibly at

  16. Vasculoprotective effects of combined endothelial progenitor cells and mesenchymal stem cells in diabetic wound care: their potential role in decreasing wound-oxidative stress.

    Science.gov (United States)

    Sukpat, Supakanda; Isarasena, Nipan; Wongphoom, Jutamas; Patumraj, Suthiluk

    2013-01-01

    To investigate whether the combined endothelial progenitor cells (EPCs) and mesenchymal stem cells (MSCs) could enhance angiogenesis and wound healing in diabetic mice. Balb/c nude mice were divided into five groups, including a control group, diabetic group (DM), DM injected with 1 × 10(6) cells MSCs, DM injected with 1 × 10(6) cells EPCs, and DM injected with combined 0.5 × 10(6) cells MSCs and 0.5 × 10(6) cells EPCs. After seven weeks, the mice were anesthetized, and bilateral full-thickness excision skin wounds were made on the dorsorostral back. The percentage of wound closure in DM group decreased significantly than in control and all other treated groups on day 7 and day 14 (P < 0.005). On day 14, the percentage of capillary vascularity in combine-treated group was significantly higher than in DM (P < 0.005). In the present study, we have demonstrated that the combined EPCs and MSCs can increase vascular endothelial growth factor (VEGF) level and angiogenesis which resulted in reduced neutrophil infiltration, decreased malondialdehyde (MDA) levels, and enhanced wound healing in diabetic mice model.

  17. Vasculoprotective Effects of Combined Endothelial Progenitor Cells and Mesenchymal Stem Cells in Diabetic Wound Care: Their Potential Role in Decreasing Wound-Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Supakanda Sukpat

    2013-01-01

    Full Text Available To investigate whether the combined endothelial progenitor cells (EPCs and mesenchymal stem cells (MSCs could enhance angiogenesis and wound healing in diabetic mice. Balb/c nude mice were divided into five groups, including a control group, diabetic group (DM, DM injected with 1 × 106  cells MSCs, DM injected with 1 × 106  cells EPCs, and DM injected with combined 0.5 × 106  cells MSCs and 0.5 × 106  cells EPCs. After seven weeks, the mice were anesthetized, and bilateral full-thickness excision skin wounds were made on the dorsorostral back. The percentage of wound closure in DM group decreased significantly than in control and all other treated groups on day 7 and day 14 (P<0.005. On day 14, the percentage of capillary vascularity in combine-treated group was significantly higher than in DM (P<0.005. In the present study, we have demonstrated that the combined EPCs and MSCs can increase vascular endothelial growth factor (VEGF level and angiogenesis which resulted in reduced neutrophil infiltration, decreased malondialdehyde (MDA levels, and enhanced wound healing in diabetic mice model.

  18. Black Raspberry Extract Increased Circulating Endothelial Progenitor Cells and Improved Arterial Stiffness in Patients with Metabolic Syndrome: A Randomized Controlled Trial.

    Science.gov (United States)

    Jeong, Han Saem; Kim, Sohyeon; Hong, Soon Jun; Choi, Seung Cheol; Choi, Ji-Hyun; Kim, Jong-Ho; Park, Chi-Yeon; Cho, Jae Young; Lee, Tae-Bum; Kwon, Ji-Wung; Joo, Hyung Joon; Park, Jae Hyoung; Yu, Cheol Woong; Lim, Do-Sun

    2016-04-01

    Administration of black raspberry (Rubus occidentalis) is known to improve vascular endothelial function in patients at a high risk for cardiovascular (CV) disease. We investigated short-term effects of black raspberry on circulating endothelial progenitor cells (EPCs) and arterial stiffness in patients with metabolic syndrome. Patients with metabolic syndrome (n = 51) were prospectively randomized into the black raspberry group (n = 26, 750 mg/day) and placebo group (n = 25) during the 12-week follow-up. Central blood pressure, augmentation index, and EPCs, such as CD34/KDR(+), CD34/CD117(+), and CD34/CD133(+), were measured at baseline and at 12-week follow-up. Radial augmentation indexes were significantly decreased in the black raspberry group compared to the placebo group (-5% ± 10% vs. 3% ± 14%, P raspberry group compared to the placebo group (19 ± 109/μL vs. -28 ± 57/μL, P raspberry group compared to the placebo group (-0.5 ± 1.4 pg/mL vs. -0.1 ± 1.1 pg/mL, P raspberry group. The use of black raspberry significantly lowered the augmentation index and increased circulating EPCs, thereby improving CV risks in patients with metabolic syndrome during the 12-week follow-up.

  19. Successful bone marrow transplantation reveals the lack of endothelial progenitor cells mobilization in a patient with critical limb ischemia: a case report.

    Science.gov (United States)

    Cobellis, G; Botti, C; Taddeo, A; Silvestroni, A; Lillo, S; Da Ponte, A; Villa, M L; Sica, V; Della Bella, S

    2010-09-01

    Restoring blood flow to ischemic tissue is a prerequisite for treatment of ischemic diseases. Cell-based therapy based on bone marrow transplantation is a promising option for patients with critical limb ischemia (CLI). The efficacy of cell therapies to augment neovascularization seems to involve endothelial progenitor cells (EPCs); however, the mechanisms underlying the efficacy have not been fully elucidated. Herein we have described the case of a young patient with severe CLI, who experienced a 24-month beneficial clinical response to autologous bone marrow transplantation. The exceptional amelioration enabled him to perform standardized maximal treadmill exercise test that demonstrated lack of exercise-induced EPC mobilization, despite adequate stromal-derived factor 1 and vascular endothelial growth factor responses. Therefore, tissue ischemia is not sufficient to promote the recruitment of EPCs that have been demonstrated to be involved in the recovery from ischemia. The local implantation of marrow-derived elements may provide cells and/or trophic factors, which have the capacity to augment angiogenesis, opening new approaches to the etiopathogenesis of the disease. 2010 Elsevier Inc. All rights reserved.

  20. Microvesicles of women with gestational hypertension and preeclampsia affect human trophoblast fate and endothelial function.

    Science.gov (United States)

    Shomer, Einat; Katzenell, Sarah; Zipori, Yaniv; Sammour, Rami N; Isermann, Berend; Brenner, Benjamin; Aharon, Anat

    2013-11-01

    Microvesicles shedding from cell membrane affect inflammation, apoptosis, and angiogenesis. We hypothesize that microvesicles of women with gestational vascular complications reflect pathophysiological state of the patients and affect their endothelial and trophoblast cell function. Microvesicles of healthy pregnant women, women with gestational hypertension, mild, or severe preeclampsia/toxemia, were characterized, and their effects on early-stage or term trophoblasts and endothelial cells were evaluated using apoptosis, migration, and tube formation assays. Patient subgroups differed significantly only in proteinuria levels, therefore their microvesicles were assessed as 1 group, demonstrating higher levels of inflammatory and angiogenic proteins compared with those of healthy pregnant women. In endothelial cells, microvesicles of healthy pregnant women reduced caspase 3/7 activity, increased migration, and induced tube formation. These processes were suppressed by microvesicles of women with gestational vascular complications. In early-stage trophoblasts, microvesicles of healthy pregnant women decreased apoptosis compared with untreated cells (6±5% versus 13.8±5.8%; Pmicrovesicles of women with gestational vascular complications increased term trophoblast apoptosis compared with cells exposed to microvesicles of healthy pregnant women (15.1±3.3% versus 6.5±2.1%; Pmicrovesicle content and effects on endothelial and trophoblast cells vary according to the physiological/pathological state of a pregnant woman. Microvesicles seem to play a pivotal role in the course of pregnancy, which could potentially result in gestational vascular complications.

  1. A novel and feasible way to cultivate and purify endothelial progenitor cells from bone marrow of children with congenital heart diseases

    Institute of Scientific and Technical Information of China (English)

    WU Yong-tao; LI Jing-xing; LIU Shuo; XIN Yi; WANG Zi-jian; GAO Jin; JI Bing-yang; FAN Xiang-ming; ZHOU Qi-wen

    2012-01-01

    Background Endothelial progenitor cells (EPCs) are used in vascular tissue engineering and clinic therapy.Some investigators get EPCs from the peripheral blood for clinic treatment,but the number of EPCs is seldom enough.We have developed the cultivation and purification of EPCs from the bone marrow of children with congenital heart disease,to provide enough seed cells for a small calibre vascular tissue engineering study.Methods The 0.5-ml of bone marrow was separated from the sternum bone,and 5-ml of peripheral blood was collected from children with congenital heart diseases who had undergone open thoracic surgery.CD34+ and CD34+/VEGFR+cells in the bone marrow and peripheral blood were quantified by flow cytometry.CD34+NEGFR+ cells were defined as EPCs.Mononuclear cells in the bone marrow were isolated by Ficoll(R) density gradient centrifugation and cultured by the EndoCult Liquid Medium KitTM.Colony forming endothelial cells was detected.Immunohistochemistry staining for Dil-ac-LDL and FITC-UEA-1 confirmed the endothelial lineage of these cells.Results CD34+ and CD34+NEGFR+ cells in peripheral blood were (0.07±0.05)% and (0.05±0.02)%,respectively.The number of CD34+ and CD34+NEGFR+ cells in bone marrow were significantly higher than in blood,(4.41±1.47)% and (0.98±0.65)%,respectively (P <0.0001).Many colony forming units formed in the culture.These cells also expressed high levels of Dil-ac-LDL and FITC-UEA-1.Conclusion This is a novel and feasible approach that can cultivate and purify EPCs from the bone marrow of children with congenital heart disease,and provide seed cells for small calibre vascular tissue engineering.

  2. Evidence that platelet-derived microvesicles may transfer platelet-specific immunoreactive antigens to the surface of endothelial cells and CD34+ hematopoietic stem/ progenitor cells--implication for the pathogenesis of immune thrombocytopenias.

    Directory of Open Access Journals (Sweden)

    Mariusz Z Ratajczak

    2007-03-01

    Full Text Available The pathogenesis and tissue damage that accompanies destruction of platelets in immune thrombocytopenias (IT is still not understood very well and in addition to platelets, other cells (e.g. endothelial cells, CD34+ hematopoietic stem/progenitors may also become affected. Based on our previous work that platelet antigens (e.g., CD41 may be transferred by platelet-derived microvesicles (PMV to the surface of other cells, we asked if platelet derived-antigens, especially those that are involved in the formation of anti-platelet antibodies in IT (e.g., against antigen HPA 1 a could be also transferred by similar mechanism. To address this issue normal human CD34+ cells, human umbilical vein-endothelial cells (HUVEC and monocytic cell line THP-1 were incubated with PMV derived from HPA1a+ donors. We noticed that the HPA1a antigen is highly expressed on PMV-derived from the HPAla positive platelets and is transferred in PMV-dependent manner to the surface of CD34+ cells, HUVEC and monocytic THP-1 cells. These cells covered with HPA1a positive PMV but not by PMV derived from HPAla negative platelets reacted with anti-HPA1a antibodies derived from the alloimmunized pregnant women. More importantly, human hematopoietic cells that were preincubated with HPA1a+ PMV and subsequently exposed to anti-HPA 1 a serum and human NK cells, become subject to elimination by antibody dependent cell cytotoxicity ADCC. Thus, we postulate that PMV-dependent transfer of antigens may playing an important role in "expanding" the population of target cells that may be affected by anti-platelet antibodies and explain several pathologies that accompany IT (e.g. damage of endothelium, cytopenias.

  3. Study on the function of circulating endothelial progenitor cell in the patients with pregnancy induced hypertension syndrome%妊娠高血压综合征患者循环内皮祖细胞功能的研究

    Institute of Scientific and Technical Information of China (English)

    王莉莉; 黄军华; 刘俊峰; 温秋玉

    2013-01-01

    Objective To study the changes of circulating endothelial progenitor cell's function in the patients with pregnancy induced hypertension syndrome. Methods 12 patients suffered from pregnancy induced hypertension syndrome hospitalized in the department of obstetrics of our hospital from October 2010 to August 2011 were selected as study objects (pregnancy induced hypertension syndrome group),12 hospitalized normal pregnant women at the corresponding time period were selected as control group. The peripheral blood mononuclear cells were separated and cultured in vitro to obtain endothelial progenitor cells in each group. The abilities of endothelial progenitor cell' s proliferation,adhesion,migration were assessed. Results Endothelial progenitor cells could be attained from peripheral blood mononuclear cells when cultured in vitro in each group. The abilities of endothelial progenitor cell' s proliferation,adhesion,migration in the pregnancy induced hypertension syndrome group were down -regulation compared with the control group. Conclusion The occurrence of pregnancy induced hypertension syndrome is associated with the down-regulation of circulating endothelial progenitor cell's function evidently.%目的 研究妊娠高血压综合征患者循环内皮祖细胞功能的变化.方法 选择2010年10月~2011年8月于我院产科住院的妊娠高血压综合征患者12例作为研究对象(妊娠高血压综合征组),同时选取12例正常妊娠的同期入院患者作为对照组.分离两组患者外周血单个核细胞进行体外诱导培养以获得内皮祖细胞,并对其增殖、黏附、迁移能力进行检测.结果 各组骨髓单个核细胞在体外培养下均能够获得内皮祖细胞,与对照组比较,妊娠高血压综合征组内皮祖细胞增殖、黏附、迁移能力均有不同程度的下降.结论 妊娠高血压综合征的发生与循环内皮祖细胞功能的下调存在明显的相关性.

  4. A Nano-Inspired Multifunctional POSS-PCU Covered Stent: Endothelial Progenitor Cell Capture with Stealth Liposomal Drug Release

    OpenAIRE

    Tan, A. J. K.

    2014-01-01

    The 2 main unresolved issues inherent in coronary stents are in-stent restenosis (ISR) and late stent thrombosis (ST). ISR is largely due to vascular smooth muscle cell (VSMC) proliferation, and ST is attributed to a lack of re-endothelialization. This thesis describes the conceptualization and development of a biofunctionalized polyhedral oligomeric silsesquioxane poly(carbonate-urea) urethane (POSS-PCU) platform, for the express purpose of circumventing ISR and ST. A bare-metal stent is emb...

  5. Effects of a 12-week alpine skiing intervention on endothelial progenitor cells, peripheral arterial tone and endothelial biomarkers in the elderly

    DEFF Research Database (Denmark)

    Niederseer, David; Steidle-Kloc, Eva; Mayr, Matthias

    2016-01-01

    OBJECTIVE: Endothelial dysfunction occurs early during atherogenesis and it can be normalized by exercise training. Unfortunately, patients' compliance with exercise prescription remains low, often because the given choices do not appeal to them. In Alpine regions, skiing is a popular mode...... of exercise, and therefore we set out to assess whether it can induce antiatherogenic effects. METHODS: We randomized 42 subjects into a group of 12weeks of guided skiing (intervention group, IG, n=22; 12 males/10 females; age: 66.6±2.1years) or a control group (CG, n=20; 10 males/10 females; age: 67......, peripheral arterial tone and homocysteine. Our findings suggest that recreational alpine skiing may serve as a further mode of preventive exercise training, which might result in improved compliance with current recommendations....

  6. Changes of circulating progenitor cells and circulating endothelial progenitor cells in patients With sepsis%脓毒症患者外周血祖细胞和内皮祖细胞数量的变化

    Institute of Scientific and Technical Information of China (English)

    童朝阳; 宋振举; 姚晨玲; 邵勉; 黄培志

    2009-01-01

    目的 检测脓毒症患者外周血单个核细胞(peripheral blood mononuelear cell,PBMC)中祖细胞和血管内皮祖细胞(endothelial progenitor cells,EPC)相对数量的变化,探讨感染性休克和非休克患者外周血EPC变化的特点.方法 收集2007年8月至2008年2月复大学附属中山医院急诊科收治的脓毒症患者27例进行前瞻性研究,其中感染性休克患者12例、非休克患者15例,另选10例健康成年人作为正常对照,ICU非脓毒症患者10例作为ICU对照.Ficoll梯度离心法分离外周血PBMC,通过流式细胞仪检测外周血PBMC标记的CDl33,CIY34和血管内皮牛长因子受体-2(vascular endothelialgrowth factor receptor-2.VEGFR-2)的表达情况,计算祖细胞以及内皮祖细胞的相对数量.组间比较采用单因素方差分析.结果 健康成年人外周血祖细胞、EPC数量较少,分别占PBMC的0.25%.4-0.14%和0.09%.4-0.02%;ICU非脓毒症患者祖细胞和EPC数量分别占PBMC的0.38%.4-0.29%和0.12%.4-O.02%,与正常对照组相比无明显的变化(P>0.05);脓毒症非休克组患者外周血祖细胞、EPC的数量明显增加,分别占PBMC的0.57%±0.12%和0.22%±0.10%,与正常对照组相比差异具有统计学意义(P<0.05);感染性休克患者外周血祖细胞和EPE的数量明显减少,分别占PBMC的0.20%.4-0.12%和0.04%±O.01%,与非休克组、ICU对照组和正常对照组相比差异均具有统计学意义(Pprogenitor cells and endothelial progenitor cells(EPCs)in non-septic and septic shock patients using flow cytometry.Method A total of 27 sepsis patients hospitalized in emergency

  7. Advanced glycation endproducts alter functions and promote apoptosis in endothelial progenitor cells through receptor for advanced glycation endproducts mediate overpression of cell oxidant stress.

    Science.gov (United States)

    Chen, Jianfei; Song, Minbao; Yu, Shiyong; Gao, Pan; Yu, Yang; Wang, Hong; Huang, Lan

    2010-02-01

    Endothelial progenitor cells (EPCs) play an important role in preventing atherosclerosis. The factors that regulate the function of EPCs are not completely clear. Increased formation of advanced glycation endproducts (AGEs) is generally regarded as one of the main mechanisms responsible for vascular damage in patients with diabetes and atherosclerosis. AGEs lead to the generation of reactive oxygen species (ROS) and part of the regenerative capacity of EPCs seems to be due to their low baseline ROS levels and reduced sensitivity to ROS-induced cell apoptosis. Therefore, we tested the hypothesis that AGEs can alter functions and promote apoptosis in EPCs through overpress cell oxidant stress. EPCs, isolated from bone marrow, were cultured in the absence or presence of AGEs (50, 100, and 200 microg/ml). A modified Boyden's chamber was used to assess the migration of EPCs and the number of recultured EPCs was counted to measure the adhesiveness function. MTT assay was used to determine the proliferation function. ROS were analyzed using the ROS assay kit. A spectrophotometer was used to assess superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) activity, and PCR was used to test mRNA expression of SOD and GSH-PX. SiRNA was used to block receptor for advanced glycation endproducts (RAGEs) expression. Apoptosis was evaluated by Annexin V immunostaining and TUNEL staining. Co-culturing with AGEs increases ROS production, decreases anti-oxidant defenses, overpresses oxidant stress, inhibits the proliferation, migration, and adhesion of EPCs, and induces EPCs apoptosis. In addition, these effects were attenuated during block RAGE protein expression by siRNA. AGEs may serve to impair EPCs functions through RAGE-mediate oxidant stress, and promote EPCs sensitivity toward oxidative-stress-mediated apoptosis, which indicates a new pathophysiological mechanism of disturbed vascular adaptation in atherosclerosis and suggests that lower levels of AGEs might improve the

  8. Dual role of circulating endothelial progenitor cells in stent struts endothelialisation and neointimal regrowth: A substudy of the IN-PACT CORO trial

    Energy Technology Data Exchange (ETDEWEB)

    De Maria, Giovanni Luigi [Institute of Cardiology, Catholic University of the Sacred Heart, Rome (Italy); Porto, Italo, E-mail: italo.porto@gmail.com [Institute of Cardiology, Catholic University of the Sacred Heart, Rome (Italy); Interventional Cardiology Unit, San Donato Hospital, Arezzo (Italy); Burzotta, Francesco; Brancati, Marta Francesca; Trani, Carlo; Pirozzolo, Giancarlo; Leone, Antonio Maria; Niccoli, Giampaolo [Institute of Cardiology, Catholic University of the Sacred Heart, Rome (Italy); Prati, Francesco [Department of Interventional Cardiology, San Giovanni Hospital, Rome (Italy); Crea, Filippo [Institute of Cardiology, Catholic University of the Sacred Heart, Rome (Italy)

    2015-01-15

    Background: Endothelialisation is a crucial event after percutaneous coronary intervention (PCI). Endothelial progenitor cells (EPCs) are bone marrow derived elements with reparative properties. We aimed to assess the relationship between circulating EPC levels and stent neointimal hyperplasia (NIH) using frequency domain optical coherence tomography (FD-OCT). Methods: Patients undergoing elective PCI to native vessels and randomised to bare metal stent (BMS) alone versus BMS plus drug coated balloon (DCB) were included. At six months, angiographic follow-up and FD-OCT were performed to measure percentage neointimal hyperplasia volume obstruction (%NIHV), and percentage of uncovered stent struts (%US). Venous blood samples were obtained before the procedure and at six months to detect CD34+CD45dimKDR + EPC levels. Results: Twenty patients were enrolled. A significant relationship was observed between baseline EPC levels and %NIHV (R: 0.63, p: 0.03) and %US (R: − 0.56, p: 0.01) at follow-up. Both EPC levels and DCB use were independently related to %NIHV (β: 0.55; p < 0.001 and β: − 0.51; p: 0.001, respectively), while only EPC levels were independently associated to %US (β: − 0.52; p: 0.01). Higher %NIHV (p: 0.004) and lower %US (p: 0.005) were observed in patients with stable or increasing EPC level. Conclusion: Our study shows a relationship between EPC levels and stent strut coverage, supporting a dual role for these cells in favouring stent endothelialisation but also NIH growth. - Highlights: • Substudy of IN-PACT CORO trial comparing, by adoption of optical coherence tomography, the amount of neointimal growth and stent struts coverage at six months of follow up, in elective patients randomised to conventional PCI with bare metal stent implantation (BMS group) or to stent implantation with pre or postdilation with a drug coated balloon (BMS + DCB group) • Lower neointimal regrowth observed in BMS + DCB group • First in vivo demonstration that

  9. Inhibitory Effect of Thymoquinone on Endothelial Progenitor Cells%百里醌对内皮祖细胞的抑制作用

    Institute of Scientific and Technical Information of China (English)

    木海琦; 杨森; 王怡君; 陈映鹤

    2012-01-01

    Objective To investigate the anti - angiogenic effect of thymoquinone on the endothelial progenitor cells. Methods The endothelial progenitor cells (EPCs) derived from human umbilical cord blood were cultured in vitro through adhesion selection and were differentiated into endothelial cells under the induction of special cytokines. The endothelial cell lineage was confirmed by Dil - ac - LDL up - taking and immunocytochemistry of VEGFR -2, VI factor and CD34. After EPCs was treated with thymoquinone, the cellular proliferation was detected by cell counting kit -8 (CCK -8) assay. The effect of thymoquinone on the invasion of EPCs was examined by using matrigel counting. A tube formation assay was performed after EPCs were cultured with thymoquinone. Western blot was used to detect the protein expression of MMP -2 and MMP -9 in EPCs. Results The EPCs derived from human umbilical cord blood were cultured in vitro successfully. The proliferation of EPCs was inhibited significantly by thymoquinone with IC50 being 51. 2nmol/L. Thymoquinone significantly suppressed the invasion of EPCs. Furthermore, incubation of EPCs with thymoquinone decreased EPCs' tube formation capacity in a concentration - dependent manner. Western bolt assay indicated that thymoquinone down - regulates the expression of MMP - 2 and MMP -9 proteins in EPCs. Conclusion Thymoquinone exerts anti - angiogenic activity in EPCs, which may be related to down - regulation of MMP - 2 and MMP - 9 protein, could be developed as an effective anti - angiogenic drug.%目的 探讨百里醌对人脐血来源的内皮祖细胞血管生成的抑制作用及其可能机制.方法 采用贴壁选择法培养人脐血内皮祖细胞(EPCs),DiI - ac - LDL吞噬试验及VEGFR-2、Ⅷ因子和CD34细胞免疫组化证实细胞属性;百里醌作用EPCs后,CCK-8法检测细胞增殖;Transwell小室实验测定EPCs体外侵袭能力;小管形成实验检测EPCs体外小管形成能力;Western blotting

  10. Mesenchymal stem cells and endothelial progenitor cells accelerate intra-aneurysmal tissue organization after treatment with SDF-1α-coated coils.

    Science.gov (United States)

    Gao, Yuyuan; Lu, Ziming; Chen, Chengwei; Cui, Xubo; Liu, Yaqi; Zheng, Tao; Jiang, Xiaodan; Zeng, Chi; Quan, Daping; Wang, Qiujing

    2016-04-01

    Recurrences of aneurysms remain the major drawback of detachable coils for the endovascular treatment of intracranial aneurysms. The aim of the present study is to develop new modified coils, coating the surface of platinum coils with silk fibroin (SF) consisting of stromal cell-derived factor-1α (SDF-1α), and evaluate its acceleration of organization of cavities and reduction of lumen size in a rat aneurysm model. The morphological characteristics of SDF-1α-coated coils were examined using scanning electron microscopy (SEM). Fifty experimental aneurysms were created and randomly divided into five groups: three groups were embolized with SDF-1α-coated coils (8 mm) and two of these groups need transplantation of mesenchymal stem cells (MSCs) or endothelial progenitor cells (EPCs); one group was embolized with bare coils (8 mm) and another group severed as control. After coil implantation for 14 or 28 days, the coils were harvested and histological analysis was performed. SEM photographs showed that SF/SDF-1α-coated coils have uniform size and a thin film compared with bare coils. In the group treated with SDF-1α-coated coils, tissue organization was accelerated and the proliferation of α-smooth muscle actin positive cells was promoted in the aneurysmal sac. Compared with unmodified coils, on day 28, tissue organization was significantly greater in the group treated with SDF-1α-coated coils and MSC or EPC transplantation. These results suggest that SDF-1α-coated coils with MSC or EPC transplantation may be beneficial in the aneurysm healing and endothelialization at the orifice of embolized aneurysm.

  11. Sonic hedgehog protein promotes bone marrow-derived endothelial progenitor cell proliferation, migration and VEGF production via PI 3-kinase/ Akt signaling pathways

    Institute of Scientific and Technical Information of China (English)

    Jin-rong FU; Wen-li LIU; Jian-feng ZHOU; Han-ying SUN; Hui-zhen XU; Li LUO; Heng ZHANG; Yu-feng ZHOU

    2006-01-01

    Aim: To investigate the effects of Sonic hedgehog (shh) protein on bone marrowderived endothelial progenitor cells (BM-EPC) proliferation, migration and vascular endothelial growth factor (VEGF) production, and the potential signaling pathways involved in these effects. Methods: Bone marrow-derived Flk-l+ cells were enriched using the MACS system from adult Kunming mice and then BM-EPC was cultured in gelatin-coated culture dishes. The effects of shh N-terminal peptide on BM-EPC proliferation were evaluated using the MTT colorimetric assay. Cell migration was assayed using a modified Boyden chamber technique. The production of VEGF was determined by ELIS A and immunofluorescence analysis. The potential involvement of PKC and PI3K signaling pathways was explored using selective inhibitor or Western blot. Results: The proliferation, migration and VEGF production in BM-EPC could be promoted by endogenous shh Nterminal peptide at concentrations of 0.1 μg/mL to 10 ug/mL, and could be inhibited by anti-shh antibodies. Shh-mediated proliferation and migration in BM-EPC could be partly attenuated by anti-VEGF. Phospho-PI3-kinase expression in newly separated BM-EPC was low, and it increased significantly when exogenous shh N-terminal peptide was added, but could be attenuated by anti-human/mouse shh N-terminal peptide antibody. Moreover, the inhibitor of the PI3-kinase, but not the inhibitor of the PKC, significantly inhibited the shh-mediated proliferation, migration and VEGF production. Conclusion: Shh protein can stimulate bone marrow-derived BM-EPC proliferation, migration and VEGF production, which may promote neovascularization to ischemic tissues. This results also suggests that the PI3-kinase/Akt signaling pathways are involved in the angiogenic effects of shh.

  12. Circulating endothelial progenitor cells in metronomic chemotherapy using irinotecan and/or bevacizumab for colon carcinoma: Study of their clinical significance

    Science.gov (United States)

    MURAKAMI, HIDETSUGU; OGATA, YUTAKA; AKAGI, YOSHITO; ISHIBASHI, NOBUYA; SHIROUZU, KAZUO

    2011-01-01

    The aim of the present study was to clarify the antitumor efficacy of metronomic chemotherapy using irinotecan (CPT-11) combined with or without bevacizumab against colon cancer, and the significance of circulating endothelial cell (CECs) and endothelial progenitor cells (CEPs) as a surrogate marker for metronomic chemotherapy. KM12SM cells were implanted into the subcutis of nude mouse. After confirming that the implanted tumors had grown 5 mm in size, group A received an intraperitoneal injection of 40 mg/kg CPT-11 every two weeks for 4 weeks [conventional maximum-tolerated dose (MTD)], group B received 10 mg/kg twice weekly (metronomic), group C received 10 mg/kg twice weekly combined with 5 mg/kg bevacizumab twice weekly (metronomic + anti-angiogenic), and the control group received 0.2 ml of PBS every week. Serial changes of CECs and CEPs in peripheral blood and microvessel density (MVD) in the tumor tissues were evaluated. The results showed that the antitumor activity in group B and in group C was significantly higher than that in group A. A significant inhibition in CEPs on day 15 in the metronomic therapy groups B and C was noted when compared to that in the control group, while there was no significant difference in CECs and CEPs between the groups on days 4 and 8. The MVD on day 15 in metronomic groups was significantly lower than that in group A. In conclusion, metronomic chemotherapy of CPT-11 with or without bevacizumab for colon cancer was more effective than the MTD therapy via anti-angiogenic effects. Sequential measurement of CEPs may be a predictive factor for the efficacy and a decisive factor for the optimal dose of metronomic therapy in colon cancer. PMID:22977546

  13. Berberine protects endothelial progenitor cell from damage of TNF-α via the PI3K/AKT/eNOS signaling pathway.

    Science.gov (United States)

    Xiao, Min; Men, Li Na; Xu, Ming Guo; Wang, Guo Bing; Lv, Hai Tao; Liu, Cong

    2014-11-15

    Endothelial progenitor cells (EPCs) dysfunction is closely correlated with the coronary artery injury induced by Kawasaki disease (KD). The level of tumor necrosis factor-α (TNF-α) elevated significantly in acute phase of KD which can damage the functions of EPCs. The aim of this study was to investigate whether berberine (BBR) can protect EPCs from the inhibition caused by TNF-α via the PI3K (Phosphatidyl Inositol 3-kinase) /AKT (Serine/threonine protein kinase B) /eNOS (endothelial Nitric Oxide synthase) signaling pathway. The cell proliferative ability of EPCs was determined by MTT (methyl thiazolyl tetrazolium) assays. Nitric oxide (NO) level was determined in supernatants. The mRNA level of eNOS, PI3K and AKT were measured by Real Time-Polymerase Chain Reaction (RT-PCR), and the protein levels of eNOS, phospho-eNOS (p-eNOS), Akt, phospho-Akt (p-Akt) and PI3K were analyzed using Western-blot. The results demonstrated that TNF-α inhibits the proliferative ability of EPCs. However, BBR improves the proliferative activity of EPCs inhibited by TNF-α. Blockade of PI3K by 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (Ly294002) and blockade of eNOS by l-NAME (NG-Nitroarginine Methyl Ester) attenuates the effect of BBR. BBR can increase the level of PI3K/Akt/eNOS mRNA and the protein level of PI3K, p-Akt, eNOS and p-eNOS, which can be blocked by PI3K inhibitor (LY294002) and eNOS inhibitor (l-NAME). Therefore, we concluded that impaired EPCs proliferation could be reversed by BBR via the PI3K/AKT/eNOS signaling pathway.

  14. Diverse contribution of bone marrow-derived late-outgrowth endothelial progenitor cells to vascular repair under pulmonary arterial hypertension and arterial neointimal formation.

    Science.gov (United States)

    Ikutomi, Masayasu; Sahara, Makoto; Nakajima, Toshiaki; Minami, Yoshiyasu; Morita, Toshihiro; Hirata, Yasunobu; Komuro, Issei; Nakamura, Fumitaka; Sata, Masataka

    2015-09-01

    It is still controversial whether bone marrow (BM)-derived endothelial progenitor cells (EPCs) can contribute to vascular repair and prevent the progression of vascular diseases. We aimed to characterize BM-derived EPC subpopulations and to evaluate their therapeutic efficacies to repair injured vascular endothelium of systemic and pulmonary arteries. BM mononuclear cells of Fisher-344 rats were cultured under endothelial cell-conditions. Early EPCs appeared on days 3-6. Late-outgrowth and very late-outgrowth EPCs (LOCs and VLOCs) were defined as cells forming cobblestone colonies on days 9-14 and 17-21, respectively. Among EPC subpopulations, LOCs showed the highest angiogenic capability with enhanced proliferation potential and secretion of proangiogenic proteins. To investigate the therapeutic effects of these EPCs, Fisher-344 rats underwent wire-mediated endovascular injury in femoral artery (FA) and were concurrently injected intraperitoneally with 60mg/kg monocrotaline (MCT). Injured rats were then treated with six injections of one of three EPCs (1×10(6) per time). After 4weeks, transplanted LOCs, but not early EPCs or VLOCs, significantly attenuated neointimal lesion formation in injured FAs. Some of CD31(+) LOCs directly replaced the injured FA endothelium (replacement ratio: 11.7±7.0%). In contrast, any EPC treatment could neither replace MCT-injured endothelium of pulmonary arterioles nor prevent the progression of pulmonary arterial hypertension (PAH). LOCs modified protectively the expression profile of angiogenic and inflammatory genes in injured FAs, but not in MCT-injured lungs. BM-derived LOCs can contribute to vascular repair of injured systemic artery; however, even they cannot rescue injured pulmonary vasculature under MCT-induced PAH. Copyright © 2015. Published by Elsevier Ltd.

  15. Mobilisation of endothelial progenitor cells: one of the possible mechanisms involved in the chronic administration of melatonin preventing erectile dysfunction in diabetic rats

    Institute of Scientific and Technical Information of China (English)

    Xue-Feng Qiu; Xiao-Xin Li; Yun Chen; Hao-Cheng Lin; Wen Yu; Run Wang; Yu-Tian Dai

    2012-01-01

    Diabetes-induced oxidative stress plays a critical role in the mobilisation of endothelial progenitor cells (EPCs) from the bone marrow to the circulation.This study was designed to explore the effects of chronic melatonin administration on the promotion of the mobilisation of EPCs and on the preservation of erectile function in type Ⅰ diabetic rats.Melatonin was administered to streptozotocin-induced type Ⅰdiabetic rats.EPCs levels were determined using flow cytometry,Oxidative stress in the bone marrow was indicated by the levels of superoxide dismutase and malondialdehyde.Erectile function was evaluated by measuring the intracavemous pressure during an electrostimulation of the cavernous nerve.The density of the endothelium and the proportions of smooth muscle and collagen in the corpus cavernosum were determined by immunohistochemistry.The administration of melatonin increased the superoxide dismutase level and decreased the malondiaidehyde level in the bone marrow,This effect was accompanied by an increased level of circulating EPCs in the diabetic rats.The intracavernous pressure to mean arterial pressure ratio of the rats in the treatment group was significantly greater,compared with diabetic control rats.The histological analysis demonstrated an increase in the endothelial density of the corpus cavernosum after the administration of melatonin.However,melatonin treatment did not change the proportions of smooth muscle and collagen in the corpus cavernosum of diabetic rats.Chronic administration of melatonin has a beneficial effect on preventing erectile dysfunction (ED) in type Ⅰ diabetic rats.Promoting the mobilisation of EPCs is one of the possible mechanisms involved in the improvement of ED.

  16. Exercise training with dietary restriction enhances circulating irisin level associated with increasing endothelial progenitor cell number in obese adults: an intervention study

    Directory of Open Access Journals (Sweden)

    Junhao Huang

    2017-08-01

    Full Text Available Objective Circulating endothelial progenitor cells (EPCs correlate negatively with obesity. Previous studies have shown that exercise significantly restores circulating EPC levels in obese people; however, the underlying mechanisms have not been elucidated. Recently, irisin has been reported to have a critical role in the regulation of EPCs. This exercise-induced myokine has been demonstrated to play a therapeutic role in obesity. In this study, we hypothesized that the increase in circulating irisin may form a link with increasing EPC levels in obese people after exercise. Methods Seventeen obese adults completed an 8-week program of combined exercise and dietary intervention. Clinical characteristics, blood biochemistry, and circulating irisin levels of subjects were measured before and after eight weeks of training. EPC levels were evaluated via flow cytometry, and EPC migratory and adhesive functions were also determined. Results Circulating irisin levels significantly increased following the 8-week training program (P < 0.05. We furthermore observed an improvement in EPC numbers (P < 0.05, and EPC migratory and adhesive functions (P < 0.001 and P < 0.05, respectively after the intervention. Additionally, we detected a positive correlation between changes in irisin and changes in EPC number (r = 0.52, P < 0.05. Discussion For the first time, a positive correlation between increasing irisin levels and increasing EPC levels has been reported after an 8-week program, consisting of exercise and dietary intervention. This result suggests a novel effect of irisin on the regulation of EPC mobilization, which might contribute to improvement of endothelial function in obese people.

  17. Salidroside exerts angiogenic and cytoprotective effects on human bone marrowderived endothelial progenitor cells via Akt/mTOR/p70S6K and MAPK signalling pathways

    Science.gov (United States)

    Tang, Yubo; Vater, Corina; Jacobi, Angela; Liebers, Cornelia; Zou, Xuenong; Stiehler, Maik

    2014-01-01

    Background and Purpose With the increase of age, increased susceptibility to apoptosis and senescence may contribute to proliferative and functional impairment of endothelial progenitor cells (EPCs). The aim of this study was to investigate whether salidroside (SAL) can induce angiogenic differentiation and inhibit oxidative stress-induced apoptosis in bone marrow-derived EPCs (BM-EPCs), and if so, through what mechanism. Experimental Approach BM-EPCs were isolated and treated with different concentrations of SAL for up to 4 days. Cell proliferation, migration and tube formation ability were detected by DNA content quantification, transwell assay and Matrigel-based angiogenesis assay. Gene and protein expression were assessed by qRT-PCR and Western blot respectively. Key Results Treatment with SAL promoted cellular proliferation and angiogenic differentiation of BM-EPCs, and increased VEGF and NO secretion, which in turn mediated the enhanced angiogenic differentiation of BM-EPCs. Furthermore, SAL significantly attenuated hydrogen peroxide (H2O2)-induced cell apoptosis, reduced the intracellular level of reactive oxygen species and restored the mitochondrial membrane potential of BM-EPCs. Moreover, SAL stimulated the phosphorylation of Akt, mammalian target of rapamycin and p70 S6 kinase, as well as ERK1/2, which is associated with cell migration and capillary tube formation. Additionally, SAL reversed the phosphorylation of JNK and p38 MAPK induced by H2O2 and suppressed the changes in the Bax/Bcl-xL ratio observed after stimulation with H2O2. Conclusions and Implications These findings identify novel mechanisms that regulate EPC function and suggest that SAL has therapeutic potential as a new agent to enhance vasculogenesis as well as protect against oxidative endothelial injury. PMID:24471788

  18. Simulated Microgravity Exerts an Age-Dependent Effect on the Differentiation of Cardiovascular Progenitors Isolated from the Human Heart.

    Directory of Open Access Journals (Sweden)

    Tania I Fuentes

    Full Text Available Microgravity has a profound effect on cardiovascular function, however, little is known about the impact of microgravity on progenitors that reside within the heart. We investigated the effect of simulated microgravity exposure on progenitors isolated from the neonatal and adult human heart by quantifying changes in functional parameters, gene expression and protein levels after 6-7 days of 2D clinorotation. Utilization of neonatal and adult cardiovascular progenitors in ground-based studies has provided novel insight into how microgravity may affect cells differently depending on age. Simulated microgravity exposure did not impact AKT or ERK phosphorylation levels and did not influence cell migration, but elevated transcripts for paracrine factors were identified in neonatal and adult cardiovascular progenitors. Age-dependent responses surfaced when comparing the impact of microgravity on differentiation. Endothelial cell tube formation was unchanged or increased in progenitors from adults whereas neonatal cardiovascular progenitors showed a decline in tube formation (p<0.05. Von Willebrand Factor, an endothelial differentiation marker, and MLC2v and Troponin T, markers for cardiomyogenic differentiation, were elevated in expression in adult progenitors after simulated microgravity. DNA repair genes and telomerase reverse transcriptase which are highly expressed in early stem cells were increased in expression in neonatal but not adult cardiac progenitors after growth under simulated microgravity conditions. Neonatal cardiac progenitors demonstrated higher levels of MESP1, OCT4, and brachyury, markers for early stem cells. MicroRNA profiling was used to further investigate the impact of simulated microgravity on cardiovascular progenitors. Fifteen microRNAs were significantly altered in expression, including microRNAs-99a and 100 (which play a critical role in cell dedifferentiation. These microRNAs were unchanged in adult cardiac progenitors

  19. Endothelial RIG-I activation impairs endothelial function

    Energy Technology Data Exchange (ETDEWEB)

    Asdonk, Tobias, E-mail: tobias.asdonk@ukb.uni-bonn.de [Department of Medicine/Cardiology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany); Motz, Inga; Werner, Nikos [Department of Medicine/Cardiology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany); Coch, Christoph; Barchet, Winfried; Hartmann, Gunther [Institute for Clinical Chemistry and Clinical Pharmacology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany); Nickenig, Georg; Zimmer, Sebastian [Department of Medicine/Cardiology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer RIG-I activation impairs endothelial function in vivo. Black-Right-Pointing-Pointer RIG-I activation alters HCAEC biology in vitro. Black-Right-Pointing-Pointer EPC function is affected by RIG-I stimulation in vitro. -- Abstract: Background: Endothelial dysfunction is a crucial part of the chronic inflammatory atherosclerotic process and is mediated by innate and acquired immune mechanisms. Recent studies suggest that pattern recognition receptors (PRR) specialized in immunorecognition of nucleic acids may play an important role in endothelial biology in a proatherogenic manner. Here, we analyzed the impact of endothelial retinoic acid inducible gene I (RIG-I) activation upon vascular endothelial biology. Methods and results: Wild type mice were injected intravenously with 32.5 {mu}g of the RIG-ligand 3pRNA (RNA with triphosphate at the 5 Prime end) or polyA control every other day for 7 days. In 3pRNA-treated mice, endothelium-depended vasodilation was significantly impaired, vascular oxidative stress significantly increased and circulating endothelial microparticle (EMP) numbers significantly elevated compared to controls. To gain further insight in RIG-I dependent endothelial biology, cultured human coronary endothelial cells (HCAEC) and endothelial progenitor cells (EPC) were stimulated in vitro with 3pRNA. Both cells types express RIG-I and react with receptor upregulation upon stimulation. Reactive oxygen species (ROS) formation is enhanced in both cell types, whereas apoptosis and proliferation is not significantly affected in HCAEC. Importantly, HCAEC release significant amounts of proinflammatory cytokines in response to RIG-I stimulation. Conclusion: This study shows that activation of the cytoplasmatic nucleic acid receptor RIG-I leads to endothelial dysfunction. RIG-I induced endothelial damage could therefore be an important pathway in atherogenesis.

  20. [Single Fe(2)O(3)-PLL labeled mouse spleen-derived endothelial progenitor cell detection by 7.0T MR system].

    Science.gov (United States)

    Jia, Zhen-Yu; Chen, Jun; Teng, Gao-Jun

    2010-02-01

    To explore the feasibility of Single Fe(2)O(3)-PLL labeled mouse spleen-derived endothelial progenitor cells (EPCs) detection by 7.0T MR system. Mononuclear cells (MNCs) were isolated from mouse spleen by density gradient centrifugation and EPCs were obtained by the different adherence of cells.Immunocytochemistry and fluorescent staining were performed to identify EPCs. The EPCs were labeled with Fe(2)O(3)-PLL and the intracellular iron was identified with prussian blue staining. MTT assay was assessed to evaluate proliferation of Fe(2)O(3)-PLL labeled EPCs. The cells underwent MR imaging with different sequences. Cultured in vitro, mouse spleen-derived MNCs resulted in EC-like morphology. These cells expressed EPCs-specific antigens, such as CD31, CD34 and vWF, and had the ability to incorporate ac-LDL and bind UEA-1. Between Fe(2)O(3)-PLL labeled EPCs and unlabeled cells, MTT value of light absorption had no statistical significant difference (day4 t = 2.81, day5 t = -1.87, day6 t = -0.298, day7 t = -0.115, all P > 0.05). The signal void induced by labeled single cell is 20.2 pixels in MSME sequence, and 20.2 pixels in 3D-FLASH sequence (t = 15.2, P PLL efficiently. The labeled EPCs can be imaged as dispersed single cells.

  1. Additive effects of endothelial progenitor cells combined with ACE inhibition and beta-blockade on left ventricular function following acute myocardial infarction.

    Science.gov (United States)

    Boyle, Andrew J; Schuster, Michael; Witkowski, Piotr; Xiang, Guosheng; Seki, Tetsunori; Way, Kerrie; Itescu, Silviu

    2005-03-01

    Animal studies have demonstrated the efficacy of endothelial progenitor cells (EPCs) in preventing left ventricular (LV) remodelling following myocardial infarction (MI). Preliminary human studies are underway, yet no studies have demonstrated efficacy in combination with standard medical therapy, i.e. angiotensin-converting enzyme (ACE) inhibitors and beta-blockers. Nude rats underwent left anterior descending coronary artery ligation to induce MI. Animals were randomised to receive no treatment (MI, n = 5), quinapril 200 mg/L + metoprolol 2 g/L (ACE/BB, n = 5), two million EPCs intravenously (EPC, n = 5)or both (ACE/BB + EPC [n = 5]), then sacrificed after two weeks treatment. ACE/BB resulted in a 75% reduction in fibrosis in the region remote from the MI (p infarct rim, thereby preventing peri-infarct apoptosis by 81% (p < 0.05). Acting via different but complementary mechanisms, the combination of ACE/BB + EPCs resulted in a greater overall improvement in LV function on echocardiography than either therapy alone. Clinical trials using stem cell therapy in conjunction with standard medical treatment are warranted.

  2. NAMPT regulates senescence, proliferation, and migration of endothelial progenitor cells through the SIRT1 AS lncRNA/miR-22/SIRT1 pathway.

    Science.gov (United States)

    Ming, Guang-Feng; Wu, Kai; Hu, Kai; Chen, Yao; Xiao, Jian

    2016-09-23

    The importance of endothelial progenitor cells (EPCs) in cardiovascular diseases has been demonstrated by numerous studies. Previous studies have shown that Nicotinamide phosphoribosyltransferase (NAMPT) plays a role in EPC development by regulating Sirtuin 1 (SIRT1), but the specific mechanism has not yet been elucidated. After stimulating EPCs with NAMPT, expression of SIRT1 and SIRT1 antisense long non-coding RNA (AS lncRNA) was upregulated. Upon transfection of an SIRT1 AS lncRNA overexpression vector into EPCs, SIRT1 expression was upregulated. Upon transfection of a small interfering RNA (siRNA) that targets SIRT1 AS lncRNA along with NAMPT, SIRT1 AS lncRNA was downregulated and NAMPT-induced SIRT1 expression was reduced. We used software analyses and a dual-luciferase reporter assay to demonstrate that microRNA (miR)-22 regulated SIRT1 and SIRT1 AS lncRNA. Our data suggest that SIRT1 AS lncRNA relieves miR-22-induced SIRT1 downregulation by competitively sponging miR-22. By measuring EPC senescence, proliferation, and migration, we found that NAMPT inhibited EPC senescence through an SIRT1 AS lncRNA/miR-22/SIRT1 pathway and promoted EPC proliferation and migration. These findings provide a new theoretical basis for the prevention and treatment of atherosclerosis (AS) and other cardiovascular diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Notch-RBP-J signaling regulates the mobilization and function of endothelial progenitor cells by dynamic modulation of CXCR4 expression in mice.

    Directory of Open Access Journals (Sweden)

    Lin Wang

    Full Text Available Bone marrow (BM-derived endothelial progenitor cells (EPC have therapeutic potentials in promoting tissue regeneration, but how these cells are modulated in vivo has been elusive. Here, we report that RBP-J, the critical transcription factor mediating Notch signaling, modulates EPC through CXCR4. In a mouse partial hepatectomy (PHx model, RBP-J deficient EPC showed attenuated capacities of homing and facilitating liver regeneration. In resting mice, the conditional deletion of RBP-J led to a decrease of BM EPC, with a concomitant increase of EPC in the peripheral blood. This was accompanied by a down-regulation of CXCR4 on EPC in BM, although CXCR4 expression on EPC in the circulation was up-regulated in the absence of RBP-J. PHx in RBP-J deficient mice induced stronger EPC mobilization. In vitro, RBP-J deficient EPC showed lowered capacities of adhering, migrating, and forming vessel-like structures in three-dimensional cultures. Over-expression of CXCR4 could at least rescue the defects in vessel formation by the RBP-J deficient EPC. These data suggested that the RBP-J-mediated Notch signaling regulated EPC mobilization and function, at least partially through dynamic modulation of CXCR4 expression. Our findings not only provide new insights into the regulation of EPC, but also have implications for clinical therapies using EPC in diseases.

  4. SDF1 gene variation is associated with circulating SDF1alpha level and endothelial progenitor cell number: the Bruneck Study.

    Directory of Open Access Journals (Sweden)

    Qingzhong Xiao

    Full Text Available BACKGROUND: Stromal cell-derived factor-1 (SDF1 and its receptor CXC chemokine receptor 4 (CXCR4 play a critical role in progenitor cell homing, mobilization and differentiation. It would be interesting to assess the predictive value of SDF-1alpha level for EPC number, and to ascertain whether there is a relationship between SDF1 gene variation, plasma SDF-1alpha level, and the number and function of circulating EPCs. We also tested whether EPC number and function was related to CXCR4 gene variation. METHODOLOGY AND PRINCIPAL FINDINGS: We genotyped a cohort of individuals who participated in the Bruneck Study for single nucleotide polymorphisms (SNPs in the SDF1 and CXCR4 genes, and measured blood SDF1alpha level as well as EPC number and function. SDF1alpha levels were correlated with age, gender, alcohol consumption, circulating reticulocyte numbers, and concentrations of matrix metalloproteinase-9, C-reactive protein, cystatin C, fibrinogen and homocytein. In blood samples taken in 2005, EPC number was inversely associated with SDF1alpha level (p<0.001. EPC number in 2005 was also inversely associated with SDF1alpha level in 2000 (p = 0.009, suggesting a predictive value of plasma SDF1alpha level for EPC number. There was an association between the SDF1 gene rs2297630 SNP A/A genotype, increased SDF1alpha level (p = 0.002 and lower EPC number (p = 0.006. CONCLUSIONS: Our data indicate that a SDF1 gene variation (rs2297630 has an influence on SDF1alpha level and circulating EPC number, and that plasma SDF1alpha level is a predictor of EPC number.

  5. Neural progenitor cell apoptosis and differentiation were affected by activated microglia in spinal cord slice culture.

    Science.gov (United States)

    Liu, Xuqing; Chu, Tak-Ho; Su, Huanxing; Guo, Anchen; Wu, Wutian

    2014-03-01

    Neural progenitor cell (NPC) transplantation offers great potential to treat spinal cord injury (SCI). NPCs may replace lost neurons or oligodendrocytes and act as a source of neurotrophic factors to support survival of remaining cells. However, their efficiency was limited by poor survival after transplantation, and they tended more to differentiate into astrocytes, but not neurons and oligodendrocytes. This study investigated whether activated microglia is a factor that contributes to this phenomenon. Organotypic spinal cord slice (SCS) culture was used to mimic the local environment after SCI, and NPCs were co-cultured with them to share the culture medium. After specific depletion of microglia in the SCSs with clodronate loaded liposome, the apoptotic rate of NPCs decreased, more NPCs differentiated into neurons, and glial differentiation was impaired. This suggested that microglia may impair NPC survival, and neuronal differentiation, but improve astrocyte differentiation. In NPC transplantation strategy for SCI, microglia would be manipulated to improve the survival and neuronal differentiation of NPCs.

  6. Far infra-red therapy promotes ischemia-induced angiogenesis in diabetic mice and restores high glucose-suppressed endothelial progenitor cell functions

    Directory of Open Access Journals (Sweden)

    Huang Po-Hsun

    2012-08-01

    Full Text Available Abstract Background Far infra-red (IFR therapy was shown to exert beneficial effects in cardiovascular system, but effects of IFR on endothelial progenitor cell (EPC and EPC-related vasculogenesis remain unclear. We hypothesized that IFR radiation can restore blood flow recovery in ischemic hindlimb in diabetic mice by enhancement of EPCs functions and homing process. Materials and methods Starting at 4 weeks after the onset of diabetes, unilateral hindlimb ischemia was induced in streptozotocine (STZ-induced diabetic mice, which were divided into control and IFR therapy groups (n = 6 per group. The latter mice were placed in an IFR dry sauna at 34°C for 30 min once per day for 5 weeks. Results Doppler perfusion imaging demonstrated that the ischemic limb/normal side blood perfusion ratio in the thermal therapy group was significantly increased beyond that in controls, and significantly greater capillary density was seen in the IFR therapy group. Flow cytometry analysis showed impaired EPCs (Sca-1+/Flk-1+ mobilization after ischemia surgery in diabetic mice with or without IFR therapy (n = 6 per group. However, as compared to those in the control group, bone marrow-derived EPCs differentiated into endothelial cells defined as GFP+/CD31+ double-positive cells were significantly increased in ischemic tissue around the vessels in diabetic mice that received IFR radiation. In in-vitro studies, cultured EPCs treated with IFR radiation markedly augmented high glucose-impaired EPC functions, inhibited high glucose-induced EPC senescence and reduced H2O2 production. Nude mice received human EPCs treated with IFR in high glucose medium showed a significant improvement in blood flow recovery in ischemic limb compared to those without IFR therapy. IFR therapy promoted blood flow recovery and new vessel formation in STZ-induced diabetic mice. Conclusions Administration of IFR therapy promoted collateral flow recovery and new vessel formation in STZ

  7. Analysis of CD45- [CD34+/KDR+] endothelial progenitor cells as juvenile protective factors in a rat model of ischemic-hemorrhagic stroke.

    Directory of Open Access Journals (Sweden)

    Julius L Decano

    Full Text Available BACKGROUND: Identification of juvenile protective factors (JPFs which are altered with age and contribute to adult-onset diseases could identify novel pathways for reversing the effects of age, an accepted non-modifiable risk factor to adult-onset diseases. Since endothelial progenitor cells (EPCs have been observed to be altered in stroke, hypertension and hypercholesterolemia, said EPCs are candidate JPFs for adult-onset stroke. A priori, if EPC aging plays a 'master-switch JPF-role' in stroke pathogenesis, juvenile EPC therapy alone should delay stroke-onset. Using a hypertensive, transgenic-hyperlipidemic rat model of spontaneous ischemic-hemorrhagic stroke, spTg25, we tested the hypothesis that freshly isolated juvenile EPCs are JPFs that can attenuate stroke progression and delay stroke onset. METHODOLOGY/PRINCIPAL FINDINGS: FACS analysis revealed that CD45- [CD34+/KDR+] EPCs decrease with progression to stroke in spTg25 rats, exhibit differential expression of the dual endodthelin-1/VEGFsp receptor (DEspR and undergo differential DEspR-subtype specific changes in number and in vitro angiogenic tube-incorporation. In vivo EPC infusion of male, juvenile non-expanded cd45-[CD34+/KDR+] EPCs into female stroke-prone rats prior to stroke attenuated progression and delayed stroke onset (P<0.003. Detection of Y-chromosome DNA in brain microvessels of EPC-treated female spTg25 rats indicates integration of male EPCs into female rat brain microvessels. Gradient-echo MRI showed delay of ischemic-hemorrhagic lesions in EPC-treated rats. Real-time RT-PCR pathway-specific array-analysis revealed age-associated gene expression changes in CD45-[CD34+/KDR]EPC subtypes, which were accelerated in stroke-prone rats. Pro-angiogenic genes implicated in intimal hyperplasia were increased in stroke-prone rat EPCs (P<0.0001, suggesting a maladaptive endothelial repair system which acts like a double-edged sword repairing while predisposing to age

  8. Endothelial progenitor cells (CD34+KDR+) and monocytes may provide the development of good coronary collaterals despite the vascular risk factors and extensive atherosclerosis.

    Science.gov (United States)

    Kocaman, Sinan Altan; Yalçın, Mehmet Rıdvan; Yağcı, Münci; Sahinarslan, Asife; Türkoğlu, Sedat; Arslan, Uğur; Kurşunluoğlu, Nevruz; Ozdemir, Murat; Timurkaynak, Timur; Cemri, Mustafa; Abacı, Adnan; Boyacı, Bülent; Cengel, Atiye

    2011-06-01

    Endothelial progenitor cells (EPC) have a regenerative role in the vascular system. In this study, we aimed to evaluate simultaneously the effects of EPC and inflammatory cells on the presence and the extent of coronary artery disease (CAD) and the grade of coronary collateral growth in patients with clinical suspicion of CAD. This study has a cross-sectional and observational design. We enrolled 112 eligible patients who underwent coronary angiography consecutively (mean age: 59±9 years). The association of circulating inflammatory cells and EPC (defined by CD34+KDR+ in the lymphocyte and monocyte gate) with the presence, severity and extent of CAD and the degree of collateral growth were investigated. Logistic regression analysis was used to define the predictors of collateral flow. Of 112 patients 30 had normal coronary arteries (NCA, 27%, 55±9 years) and 82 had CAD (73%, 61±8 years). Among the patients with CAD, the percent degree of luminal stenosis was <50% in 12 patients; 50-90% in 35 patients; and ≥90% in the other 35 patients. Circulating inflammatory cells were higher (leukocytes, 7150±1599 vs 8163±1588 mm(-3), p=0.001; neutrophils, 4239±1280 vs 4827±1273 mm(-3), p=0.021; monocytes, 512±111 vs 636±192 mm(-3), p=0.001) and EPCs were lower (0.27±0.15% vs 0.17±0.14%, p<0.001; 21±15 vs 13±12 mm(-3), p=0.004) in CAD group than NCA group. When we investigated the collateral growth in patients having ≥90% stenosis in at least one major coronary artery, we found that the patients with good collateral growth had significantly higher EPC (0.22±0.17% vs 0.10±0.05%, p=0.009; 18±15 vs 7±3 mm(-3), p=0.003) in comparison to patients with poor collateral growth. Presence of EPC was associated with reduced risk for coronary artery disease (OR: 0.934, 95%CI: 0.883-0.998, p=0.018) and was an independent predictor for good collateral growth (OR: 1.295, 95%CI: 1.039-1.615, p=0.022). A sum of CD34+KDR-, CD34+KDR+ and CD34-KDR+ cells (192±98 mm(-3)), and a

  9. Differential uPAR recruitment in caveolar-lipid rafts by GM1 and GM3 gangliosides regulates endothelial progenitor cells angiogenesis

    Science.gov (United States)

    Margheri, Francesca; Papucci, Laura; Schiavone, Nicola; D'Agostino, Riccardo; Trigari, Silvana; Serratì, Simona; Laurenzana, Anna; Biagioni, Alessio; Luciani, Cristina; Chillà, Anastasia; Andreucci, Elena; Del Rosso, Tommaso; Margheri, Giancarlo; Del Rosso, Mario; Fibbi, Gabriella

    2015-01-01

    Gangliosides and the urokinase plasminogen activator receptor (uPAR) tipically partition in specialized membrane microdomains called lipid-rafts. uPAR becomes functionally important in fostering angiogenesis in endothelial progenitor cells (EPCs) upon recruitment in caveolar-lipid rafts. Moreover, cell membrane enrichment with exogenous GM1 ganglioside is pro-angiogenic and opposite to the activity of GM3 ganglioside. On these basis, we first checked the interaction of uPAR with membrane models enriched with GM1 or GM3, relying on the adoption of solid-supported mobile bilayer lipid membranes with raft-like composition formed onto solid hydrophilic surfaces, and evaluated by surface plasmon resonance (SPR) the extent of uPAR recruitment. We estimated the apparent dissociation constants of uPAR-GM1/GM3 complexes. These preliminary observations, indicating that uPAR binds preferentially to GM1-enriched biomimetic membranes, were validated by identifying a pro-angiogenic activity of GM1-enriched EPCs, based on GM1-dependent uPAR recruitment in caveolar rafts. We have observed that addition of GM1 to EPCs culture medium promotes matrigel invasion and capillary morphogenesis, as opposed to the anti-angiogenesis activity of GM3. Moreover, GM1 also stimulates MAPKinases signalling pathways, typically associated with an angiogenesis program. Caveolar-raft isolation and Western blotting of uPAR showed that GM1 promotes caveolar-raft partitioning of uPAR, as opposed to control and GM3-challenged EPCs. By confocal microscopy, we have shown that in EPCs uPAR is present on the surface in at least three compartments, respectively, associated to GM1, GM3 and caveolar rafts. Following GM1 exogenous addition, the GM3 compartment is depleted of uPAR which is recruited within caveolar rafts thereby triggering angiogenesis. PMID:25313007

  10. Dynamics of bone marrow-derived endothelial progenitor cell/mesenchymal stem cell interaction in co-culture and its implications in angiogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Aguirre, A.; Planell, J.A. [Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 15-21, 08028 Barcelona (Spain); Dept. of Material Science and Metallurgical Engineering, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); CIBER-BBN, Maria de Luna 11, Ed. CEEI, 50118 Zaragoza (Spain); Engel, E., E-mail: elisabeth.engel@upc.edu [Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 15-21, 08028 Barcelona (Spain); Dept. of Material Science and Metallurgical Engineering, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); CIBER-BBN, Maria de Luna 11, Ed. CEEI, 50118 Zaragoza (Spain)

    2010-09-17

    Research highlights: {yields} BM-EPCs and MSCs establish complex, self-organizing structures in co-culture. {yields} Co-culture decreases proliferation by cellular self-regulatory mechanisms. {yields} Co-cultured cells present an activated proangiogenic phenotype. {yields} qRT-PCR and cluster analysis identify new target genes playing important roles. -- Abstract: Tissue engineering aims to regenerate tissues and organs by using cell and biomaterial-based approaches. One of the current challenges in the field is to promote proper vascularization in the implant to prevent cell death and promote host integration. Bone marrow endothelial progenitor cells (BM-EPCs) and mesenchymal stem cells (MSCs) are bone marrow resident stem cells widely employed for proangiogenic applications. In vivo, they are likely to interact frequently both in the bone marrow and at sites of injury. In this study, the physical and biochemical interactions between BM-EPCs and MSCs in an in vitro co-culture system were investigated to further clarify their roles in vascularization. BM-EPC/MSC co-cultures established close cell-cell contacts soon after seeding and self-assembled to form elongated structures at 3 days. Besides direct contact, cells also exhibited vesicle transport phenomena. When co-cultured in Matrigel, tube formation was greatly enhanced even in serum-starved, growth factor free medium. Both MSCs and BM-EPCs contributed to these tubes. However, cell proliferation was greatly reduced in co-culture and morphological differences were observed. Gene expression and cluster analysis for wide panel of angiogenesis-related transcripts demonstrated up-regulation of angiogenic markers but down-regulation of many other cytokines. These data suggest that cross-talk occurs in between BM-EPCs and MSCs through paracrine and direct cell contact mechanisms leading to modulation of the angiogenic response.

  11. Endothelial progenitor cells, microvascular obstruction, and left ventricular remodeling in patients with ST elevation myocardial infarction undergoing primary percutaneous coronary intervention.

    Science.gov (United States)

    Porto, Italo; De Maria, Giovanni Luigi; Leone, Antonio Maria; Dato, Ilaria; D'Amario, Domenico; Burzotta, Francesco; Niccoli, Giampaolo; Trani, Carlo; Biasucci, Luigi Marzio; Bolognese, Leonardo; Crea, Filippo

    2013-09-15

    Endothelial progenitor cells (EPCs) are released from the bone marrow during cardiac ischemic events, potentially influencing vascular and myocardial repair. We assessed the clinical and angiographic correlates of EPC mobilization at the time of primary percutaneous coronary intervention in 78 patients with ST elevation myocardial infarction and the impact of both baseline and follow-up EPC levels on left ventricular (LV) remodeling. Blood samples were drawn from the aorta and the culprit coronary artery for cytofluorimetric EPC detection (CD34+CD45dimKDR+ cells, in percentage of cytofluorimetric counts). Area at risk was assessed by Bypass Angioplasty Revascularization Investigation myocardial jeopardy index, thrombotic burden as thrombus score and microvascular obstruction (MVO) as a combination of ST segment resolution and myocardial blush grade. Echocardiographic evaluation of LV remodeling was performed at 1-year follow-up in 54 patients, whereas peripheral EPC levels were reassessed in 40 patients. EPC levels during primary percutaneous coronary intervention were significantly higher in intracoronary than in aortic blood (0.043% vs 0.0006%, p <0.001). Both intracoronary and aortic EPC were related to area at risk extent, to intracoronary thrombus score (p <0.001), and inversely to MVO (p = 0.001). Peripheral EPC levels at 1-year follow-up were lower in patients with LV remodeling than in those without (0.001% [0.001 to 0.002] vs 0.003% [0.002 to 0.010]; p = 0.01) and independently predicted absence of remodeling at multivariate analysis. In conclusion, a rapid intracoronary EPC recruitment takes place in the early phases of ST elevation myocardial infarction, possibly reflecting an attempted reparative response. The extent of this mobilization seems to be correlated to the area at risk and to the amount of MVO. Persistently low levels of EPC are associated to LV remodeling.

  12. Magnetic Resonance Tracking of Endothelial Progenitor Cells Labeled with Alkyl-Polyethylenimine 2 kDa/Superparamagnetic Iron Oxide in a Mouse Lung Carcinoma Xenograft Model

    Directory of Open Access Journals (Sweden)

    Cong Chen

    2014-11-01

    Full Text Available The potential of using endothelial progenitor cells (EPCs in novel anticancer therapy and the repair of vascular injury has been increasingly recognized. In the present study, EPCs were labeled with N-alkyl-polyethylenimine 2 kDa (PEI2k-stabilized superparamagnetic iron oxide (SPIO to facilitate magnetic resonance imaging (MRI of EPCs in a mouse lung carcinoma xenograft model. EPCs derived from human peripheral blood were labeled with alkyl-PEI2k/SPIO. The viability and activity of labeled cells were evaluated using proliferation, migration, and tubulogenesis assays. Alkyl-PEI2k/SPIO-labeled EPCs were injected intravenously (group 1 or mixed and injected together with A549 cells subcutaneously (group 2 into groups of six mice with severe combined immunodeficiency. The labeling efficiency with alkyl-PEI2k/SPIO at 7 mg Fe/mL concentration was approximately 100%. Quantitative analysis of cellular iron was 6.062 ± 0.050 pg/cell. No significant effects on EPC proliferation, migration, or tubulogenesis were seen after labeling. Seventesla micro-MRI showed the presence of schistic or linear hypointense regions at the tumor margins starting from days 7 to 8 after EPC administration. This gradually extended into the inner tumor layers in group 1. In group 2, tumor growth was accompanied by dispersion of low-signal intensity regions inside the tumor. Iron-positive cells identified by Prussian blue dye were seen at the sites identified using MRI. Human CD31-positive cells and mouse CD31-positive cells were present in both groups. Labeling EPCs with alkyl-PEI2k/SPIO allows noninvasive magnetic resonance investigation of EPC involvement in tumor neovasculature and is associated with excellent biocompatibility and MRI sensitivity.

  13. Dual role of circulating endothelial progenitor cells in stent struts endothelialisation and neointimal regrowth: a substudy of the IN-PACT CORO trial.

    Science.gov (United States)

    De Maria, Giovanni Luigi; Porto, Italo; Burzotta, Francesco; Brancati, Marta Francesca; Trani, Carlo; Pirozzolo, Giancarlo; Leone, Antonio Maria; Niccoli, Giampaolo; Prati, Francesco; Crea, Filippo

    2015-01-01

    Endothelialisation is a crucial event after percutaneous coronary intervention (PCI). Endothelial progenitor cells (EPCs) are bone marrow derived elements with reparative properties. We aimed to assess the relationship between circulating EPC levels and stent neointimal hyperplasia (NIH) using frequency domain optical coherence tomography (FD-OCT). Patients undergoing elective PCI to native vessels and randomised to bare metal stent (BMS) alone versus BMS plus drug coated balloon (DCB) were included. At six months, angiographic follow-up and FD-OCT were performed to measure percentage neointimal hyperplasia volume obstruction (%NIHV), and percentage of uncovered stent struts (%US). Venous blood samples were obtained before the procedure and at six months to detect CD34+CD45dimKDR+ EPC levels. Twenty patients were enrolled. A significant relationship was observed between baseline EPC levels and %NIHV (R: 0.63, p: 0.03) and %US (R: -0.56, p: 0.01) at follow-up. Both EPC levels and DCB use were independently related to %NIHV (β: 0.55; p < 0.001 and β: -0.51; p: 0.001, respectively), while only EPC levels were independently associated to %US (β: -0.52; p: 0.01). Higher %NIHV (p: 0.004) and lower %US (p: 0.005) were observed in patients with stable or increasing EPC level. Our study shows a relationship between EPC levels and stent strut coverage, supporting a dual role for these cells in favouring stent endothelialisation but also NIH growth. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Effect of a Mediterranean diet on endothelial progenitor cells and carotid intima-media thickness in type 2 diabetes: Follow-up of a randomized trial.

    Science.gov (United States)

    Maiorino, Maria Ida; Bellastella, Giuseppe; Petrizzo, Michela; Gicchino, Maurizio; Caputo, Mariangela; Giugliano, Dario; Esposito, Katherine

    2017-03-01

    Background We assessed the long-term effects of a Mediterranean diet on circulating levels of endothelial progenitor cells (EPCs) and the carotid intima-media thickness (CIMT) in patients with type 2 diabetes. Design This was a parallel, two-arm, single-centre trial. Methods Two hundred and fifteen men and women with newly diagnosed type 2 diabetes were randomized to a Mediterranean diet ( n = 108) or a low-fat diet ( n = 107). The primary outcome measures were changes in the EPC count and the CIMT of the common carotid artery after the treatment period defined as the end of trial (EOT). Results At the EOT, both the CD34(+)KDR(+) and CD34(+)KDR(+)CD133(+) counts had increased with the Mediterranean diet compared with the low-fat diet ( p Mediterranean diet. Compared with the low-fat diet, the rate of regression in the CIMT was higher in the Mediterranean diet group (51 vs. 26%), whereas the rate of progression was lower (25 vs. 50%) ( p = 0.032 for both). Changes in the CIMT were inversely correlated with the changes in EPC levels (CD34(+)KDR(+), r = -0.24, p = 0.020; CD34(+)KDR(+)CD133(+), r = -0.28, p = 0.014). At the EOT, changes in levels of HbA1c, HOMA, total cholesterol, high-density lipoprotein cholesterol and systolic blood pressure were significantly greater with the Mediterranean diet than with the low-fat diet. Conclusion Compared with a low-fat diet, a long-term trial with Mediterranean diet was associated with an increase in circulating EPCs levels and prevention of the progression of subclinical atherosclerosis in patients with newly diagnosed type 2 diabetes.

  15. TNF-TNFR2/p75 signaling inhibits early and increases delayed nontargeted effects in bone marrow-derived endothelial progenitor cells.

    Science.gov (United States)

    Sasi, Sharath P; Song, Jin; Park, Daniel; Enderling, Heiko; McDonald, J Tyson; Gee, Hannah; Garrity, Brittany; Shtifman, Alexander; Yan, Xinhua; Walsh, Kenneth; Natarajan, Mohan; Kishore, Raj; Goukassian, David A

    2014-05-16

    TNF-α, a pro-inflammatory cytokine, is highly expressed after being irradiated (IR) and is implicated in mediating radiobiological bystander responses (RBRs). Little is known about specific TNF receptors in regulating TNF-induced RBR in bone marrow-derived endothelial progenitor cells (BM-EPCs). Full body γ-IR WT BM-EPCs showed a biphasic response: slow decay of p-H2AX foci during the initial 24 h and increase between 24 h and 7 days post-IR, indicating a significant RBR in BM-EPCs in vivo. Individual TNF receptor (TNFR) signaling in RBR was evaluated in BM-EPCs from WT, TNFR1/p55KO, and TNFR2/p75KO mice, in vitro. Compared with WT, early RBR (1-5 h) were inhibited in p55KO and p75KO EPCs, whereas delayed RBR (3-5 days) were amplified in p55KO EPCs, suggesting a possible role for TNFR2/p75 signaling in delayed RBR. Neutralizing TNF in γ-IR conditioned media (CM) of WT and p55KO BM-EPCs largely abolished RBR in both cell types. ELISA protein profiling of WT and p55KO EPC γ-IR-CM over 5 days showed significant increases in several pro-inflammatory cytokines, including TNF-α, IL-1α (Interleukin-1 alpha), RANTES (regulated on activation, normal T cell expressed and secreted), and MCP-1. In vitro treatments with murine recombinant (rm) TNF-α and rmIL-1α, but not rmMCP-1 or rmRANTES, increased the formation of p-H2AX foci in nonirradiated p55KO EPCs. We conclude that TNF-TNFR2 signaling may induce RBR in naïve BM-EPCs and that blocking TNF-TNFR2 signaling may prevent delayed RBR in BM-EPCs, conceivably, in bone marrow milieu in general.

  16. Transplantation of autologous endothelial progenitor cells in porous PLGA scaffolds create a microenvironment for the regeneration of hyaline cartilage in rabbits.

    Science.gov (United States)

    Chang, N-J; Lam, C-F; Lin, C-C; Chen, W-L; Li, C-F; Lin, Y-T; Yeh, M-L

    2013-10-01

    Repairing articular cartilage is clinically challenging. We investigated a simple, effective and clinically feasible cell-based therapeutic approach using a poly(lactide-co-glycolide) (PLGA) scaffold seeded with autologous endothelial progenitor cells (EPC) to repair a full-thickness osteochondral defect in rabbits using a one-step surgery. EPC obtained by purifying a small amount of peripheral blood from rabbits were seeded into a highly porous, biocompatible PLGA scaffold, namely, EPC-PLGA, and implanted into the osteochondral defect in the medial femoral condyle. Twenty two rabbits were randomized into one of three groups: the empty defect group (ED), the PLGA-only group or the EPC-PLGA group. The defect sites were evaluated 4 and 12 weeks after implantation. At the end of testing, only the EPC-PLGA group showed the development of new cartilage tissue with a smooth, transparent and integrated articular surface. Moreover, histological analysis showed obvious differences in cartilage regeneration. At week 4, the EPC-PLGA group showed considerably higher TGF-β2 and TGF-β3 expression, a greater amount of synthesized glycosaminoglycan (GAG) content, and a higher degree of osteochondral angiogenesis in repaired tissues. At week 12, the EPC-PLGA group showed enhanced hyaline cartilage regeneration with a normal columnar chondrocyte arrangement, higher SOX9 expression, and greater GAG and collagen type II (COLII) content. Moreover, the EPC-PLGA group showed organized osteochondral integration, the formation of vessel-rich tubercular bone and significantly higher bone volume per tissue volume and trabecular thickness (Tb.Th). The present EPC-PLGA cell delivery system generates a suitable in situ microenvironment for osteochondral regeneration without the supplement of exogenous growth factors. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  17. Differential uPAR recruitment in caveolar-lipid rafts by GM1 and GM3 gangliosides regulates endothelial progenitor cells angiogenesis.

    Science.gov (United States)

    Margheri, Francesca; Papucci, Laura; Schiavone, Nicola; D'Agostino, Riccardo; Trigari, Silvana; Serratì, Simona; Laurenzana, Anna; Biagioni, Alessio; Luciani, Cristina; Chillà, Anastasia; Andreucci, Elena; Del Rosso, Tommaso; Margheri, Giancarlo; Del Rosso, Mario; Fibbi, Gabriella

    2015-01-01

    Gangliosides and the urokinase plasminogen activator receptor (uPAR) tipically partition in specialized membrane microdomains called lipid-rafts. uPAR becomes functionally important in fostering angiogenesis in endothelial progenitor cells (EPCs) upon recruitment in caveolar-lipid rafts. Moreover, cell membrane enrichment with exogenous GM1 ganglioside is pro-angiogenic and opposite to the activity of GM3 ganglioside. On these basis, we first checked the interaction of uPAR with membrane models enriched with GM1 or GM3, relying on the adoption of solid-supported mobile bilayer lipid membranes with raft-like composition formed onto solid hydrophilic surfaces, and evaluated by surface plasmon resonance (SPR) the extent of uPAR recruitment. We estimated the apparent dissociation constants of uPAR-GM1/GM3 complexes. These preliminary observations, indicating that uPAR binds preferentially to GM1-enriched biomimetic membranes, were validated by identifying a pro-angiogenic activity of GM1-enriched EPCs, based on GM1-dependent uPAR recruitment in caveolar rafts. We have observed that addition of GM1 to EPCs culture medium promotes matrigel invasion and capillary morphogenesis, as opposed to the anti-angiogenesis activity of GM3. Moreover, GM1 also stimulates MAPKinases signalling pathways, typically associated with an angiogenesis program. Caveolar-raft isolation and Western blotting of uPAR showed that GM1 promotes caveolar-raft partitioning of uPAR, as opposed to control and GM3-challenged EPCs. By confocal microscopy, we have shown that in EPCs uPAR is present on the surface in at least three compartments, respectively, associated to GM1, GM3 and caveolar rafts. Following GM1 exogenous addition, the GM3 compartment is depleted of uPAR which is recruited within caveolar rafts thereby triggering angiogenesis.

  18. A plasma-based biomatrix mixed with endothelial progenitor cells and keratinocytes promotes matrix formation, angiogenesis, and reepithelialization in full-thickness wounds.

    Science.gov (United States)

    Vermeulen, Pieter; Dickens, Stijn; Degezelle, Karlien; Van den Berge, Stefaan; Hendrickx, Benoit; Vranckx, Jan Jeroen

    2009-07-01

    In search of an autologous vascularized skin substitute, we treated full-thickness wounds (FTWs) with autologous platelet-rich plasma gel (APG) in which we embedded endothelial progenitor cells (EPCs) and basal cell keratinocytes (KCs). We cultivated autologous KCs in low-serum conditions and expanded autologous EPCs from venous blood. FTWs (n = 55) were created on the backs of four pigs, covered with wound chambers, and randomly assigned to the following treatments: (1) APG, (2) APG + KCs, (3) APG + EPCs, (4) APG + KCs + EPCs, and (5) saline. All wounds were biopsied to measure neovascularization (lectin Bandeiraea Simplicifolia-1 (BS-1), alpha smooth muscle actin [alphaSMA], and membrane type 1 matrix metalloproteinase (MT1-MMP)), matrix deposition (fibronectin, collagen type I/III, and alphavbeta3), and reepithelialization. Wound fluids were analyzed for protein expression. All APG-treated wounds showed more vascular structures (p < 0.001), and the addition of EPCs further improved neovascularization, as confirmed by higher lectin, alphaSMA, and MT1-MMP. APG groups had higher collagen I/III (p < 0.05), alphavbeta3, and fibronectin content (p < 0.001), and they exhibited higher concentrations of platelet-derived growth factor subunit bb, basic fibroblast growth factor, hepatocyte growth factor, insulin growth factor-1, transforming growth factor-beta1 and -beta3, matrix metalloproteinase-1 and -z9, and tissue-inhibiting matrix metalloproteinase-1 and -2. Applying APG + KCs resulted in the highest reepithelialization rates (p < 0.001). No differences were found for wound contraction by planimetry. In this porcine FTW model, APG acts as a supportive biomatrix that, along with the embedded cells, improves extracellular matrix organization, promotes angiogenesis, and accelerates reepithelialization.

  19. Effect of PolyI:C on Quantity and Activity of Endothelial Progenitor Cells From Human Umbilical Cord Blood%PolyI:C对人脐血内皮祖细胞数量及功能的影响

    Institute of Scientific and Technical Information of China (English)

    杨梅; 肖智林; 吕青山; 陈美芳; 陈晓彬; 谢秀梅; 胡锦跃

    2011-01-01

    目的 观察Toll样受体3的配体聚肌胞(PolyI:C)对人脐血内皮祖细胞增殖、凋亡及炎性细胞因子表达的影响.方法 采用密度梯度离心法获取人脐静脉血单个核细胞,EBM-2细胞培养基进行培养,诱导单个核细胞向内皮祖细胞分化.以不同浓度的PolyI:C(0、0.01、0.1、1 g/L和10 g/L)干预人脐血内皮祖细胞,通过CCK-8细胞增殖试验检测PolyI:C对内皮祖细胞增殖的影响,流式细胞术检测PolyI:C对细胞凋亡的影响.通过逆转录聚合酶链反应对内皮祖细胞表达的Toll样受体进行检测,并检测不同浓度的PolyI:C对内皮祖细胞表达Toll样受体3、炎性细胞因子的影响.结果 静息状态下,内皮祖细胞表达较高水平的Toll样受体1、Toll样受体3、Toll样受体4、Toll样受体6,表达较低水平的Toll样受体2、Toll样受体5、Toll样受体7、Toll样受体8、Toll样受体10,不表达Toll样受体9.而PolyI:C能上调Toll样受体3 mRNA表达,并呈量效关系.与对照组相比,较高浓度PolyI:C(1 g/L和10 g/L)持续作用于脐血内皮祖细胞3天后显著抑制内皮祖细胞增殖(P<0.01),终浓度10 g/L的PolyI:C呈时间依赖性抑制内皮祖细胞增殖,且PolyI:C呈剂量依赖性诱导内皮祖细胞凋亡.同时,PolyI:C呈剂量依赖性上调炎性细胞因子白细胞介素1β、白细胞介素6、白细胞介素8、肿瘤坏死因子α、干扰素β的基因表达.结论 PolyI:C可能通过活化Toll样受体3诱导内皮祖细胞凋亡,从而抑制内皮祖细胞增殖,并促进内皮祖细胞表达相关炎性细胞因子.%Aim To investigate the effect of a synthetic dsRNA analog polyriboinosinic polyribocytidylic acid ( PolyI: C) on quantity and activity of endothelial progenitor cells from human umbilical cord blood in vitro. Methods Mononuclear cells were isolated from human cord blood by Ficoll density gradient centrifugation and then the cells were cultured in EBM-2 medium to differentiate into endothelial

  20. Bacterial c-di-GMP affects hematopoietic stem/progenitors and their niches through STING.

    Science.gov (United States)

    Kobayashi, Hiroshi; Kobayashi, Chiharu I; Nakamura-Ishizu, Ayako; Karigane, Daiki; Haeno, Hiroshi; Yamamoto, Kimiyo N; Sato, Taku; Ohteki, Toshiaki; Hayakawa, Yoshihiro; Barber, Glen N; Kurokawa, Mineo; Suda, Toshio; Takubo, Keiyo

    2015-04-01

    Upon systemic bacterial infection, hematopoietic stem and progenitor cells (HSPCs) migrate to the periphery in order to supply a sufficient number of immune cells. Although pathogen-associated molecular patterns reportedly mediate HSPC activation, how HSPCs detect pathogen invasion in vivo remains elusive. Bacteria use the second messenger bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) for a variety of activities. Here, we report that c-di-GMP comprehensively regulated both HSPCs and their niche cells through an innate immune sensor, STING, thereby inducing entry into the cell cycle and mobilization of HSPCs while decreasing the number and repopulation capacity of long-term hematopoietic stem cells. Furthermore, we show that type I interferon acted as a downstream target of c-di-GMP to inhibit HSPC expansion in the spleen, while transforming growth factor-β was required for c-di-GMP-dependent splenic HSPC expansion. Our results define machinery underlying the dynamic regulation of HSPCs and their niches during bacterial infection through c-di-GMP/STING signaling.

  1. 血管内皮祖细胞在人工血管移植后内皮化中的作用及其机制%Roles and mechanisms of endothelial progenitor cells in the post-transplant tacho-endothelialization of vascular prosthesis

    Institute of Scientific and Technical Information of China (English)

    李杰; 吕伟明; 李晓曦

    2007-01-01

    OBJECTIVE:To review the relationship between endothelial progenitor cells and the re-endothelialization of vascular prosthesis in order to find out some effective ways to solve the most frequent complications of asotransplantation,thrombogenesis and intima hyperplasia.DATA SOURCES:A computer-based online search was conducted to identify articles related to endothelial progenitor cells and the re-endothelialization of vascular prosthesis published in Pubmed,Ovid and MD Consult database from January 2000 to December 2006 using the key words of "endothelial progenitor cells,vascular prosthesis,endothelialization".Meanwhile,CNKI database was searched for related papers published between January 2000and December 2006,the keywords were "endothelial progenitor cells,vascular prosthesis,endothelialization" in Chinese.STUDY SELECTION:The literatures included all the related papers about the roles of endothelial progenitor cells in the re-endothelialization of vascular prosthesis.Inclusive criteria:the study types were randomized controlled trials,drug stress test and clinical drug effect test; the samples were both human and animals.Exclusive criteria:Reviews and literatures without controls were excluded.DATA EXTRACTION:Totally 115 related literatures were collected,and 24 were accorded with the inclusive criteria.The excluded were 91 papers of reviews and repeated trials or drug effect studies.DATA SYNTHESIS:These related literatures,including not only animal experiments but also clinical detections,analyzed the relationship between endothelial progenitor cells and the re-endothelialization of vascular prosthesis and correlative promoting mechanisms.CONCLUSION:It is concluded that endothelial progenitor cells play an important role in the endothelialization after vascular prosthesis is grafted in vivo.%目的:阐述近年来国内外关于血管内皮祖细胞促进人工血管移植后内皮化进程的机制,以期为l临床解决人工血管移植后血栓形成和内

  2. Visualisation of axolotl blastema cells and pig endothelial progenitor cells using very small super paramagnetic iron oxide particles in MRI: A technique with applications for non invasive visualisation of regenerative processes

    DEFF Research Database (Denmark)

    Lauridsen, Henrik; Kjær, N.B.; Bek, Maria

    oxide particles (VSOP) in animal cells enable non invasive cell tracking using magnetic resonance imaging (MRI) and can prove useful, when visualising regenerative processes. This study examines the possibility of labelling limited numbers of axolotl blastema cells (aBC) and pig endothelial progenitor...... implanted in live axolotl tail and dead porcine heart, respectively. Cellular iron uptake was determined using inductively coupled plasma optical emission spectrometry (ICP-OES). Results: T2*-weighted 2D gradient-echo sequences on samples of 10˄5 cells yielded at significant linear correlations between...

  3. Endothelial progenitor cells, cardiovascular risk factors, cytokine levels and atherosclerosis--results from a large population-based study.

    Directory of Open Access Journals (Sweden)

    Qingzhong Xiao

    Full Text Available BACKGROUND: EPC number and functionality are assumed to reflect the endogenous vascular repair capacity with the EPC pool declining in higher ages and being exhausted by unfavorable life-style and risk factors. This intriguing and clinically highly relevant concept, however, has so far been derived from small case-control studies and patient series. METHODOLOGY AND PRINCIPLE FINDINGS: In the population-based Bruneck Study EPC number and EPC-colony forming units (EPC-CFU were assessed as part of the fourth follow-up evaluation (2005 in 571 and 542 subjects, respectively. EPC number declined with age (p = 0.013, was significantly lower in women (p = 0.006 and higher in subjects on statin, hormone replacement or ACE inhibitor/angiotensin-receptor blockers, and correlated positively with moderate alcohol consumption. Unexpectedly, a positive relation between EPC number and several vascular risk factors emerged. In a step forward multivariate linear regression analysis EPC number was independently related with SDF1alpha, MMP-9, triglycerides, alcohol consumption, and Hba1c. EPC-CFU in turn was related to SDF1alpha and diastolic blood pressure. Moreover, EPC number showed a significant positive association with the Framingham risk score (P = 0.001. Finally, there was an inverse association between EPC number and common carotid artery intima-media thickness (p = 0.02 and the carotid artery atherosclerosis score (p = 0.059. CONCLUSIONS: Our population-based data confirm the decline of EPC number with advancing age and lend first epidemiological support to a role of SDF-1alpha and MMP9 in EPC differentiation, mobilization and homing, but are conflict with the view that EPC number is unfavorably affected by cardiovascular risk factors. EPC number increases with the cardiovascular risk estimated by the Framingham risk score (FRS, which in the absence of similar changes for EPC-CFU. Finally, we demonstrate a significant inverse association between EPC

  4. Transfusion of CXCR4-primed endothelial progenitor cells reduces cerebral ischemic damage and promotes repair in db/db diabetic mice.

    Directory of Open Access Journals (Sweden)

    Ji Chen

    Full Text Available This study investigated the role of stromal cell-derived factor-1α (SDF-1α/CXC chemokine receptor 4 (CXCR4 axis in brain and endothelial progenitor cells (EPCs, and explored the efficacy of CXCR4 primed EPCs in treating ischemic stroke in diabetes. The db/db diabetic and db/+ mice were used in this study. Levels of plasma SDF-1α and circulating CD34+CXCR4+ cells were measured. Brain SDF-1α and CXCR4 expression were quantified at basal and after middle cerebral artery occlusion (MCAO. In in vitro study, EPCs were transfected with adenovirus carrying null (Ad-null or CXCR4 (Ad-CXCR4 followed with high glucose (HG treatment for 4 days. For pathway block experiments, cells were pre-incubated with PI3K inhibitor or nitric oxide synthase (NOS inhibitor for two hours. The CXCR4 expression, function and apoptosis of EPCs were determined. The p-Akt/Akt and p-eNOS/eNOS expression in EPCs were also measured. In in vivo study, EPCs transfected with Ad-null or Ad-CXCR4 were infused into mice via tail vein. On day 2 and 7, the cerebral blood flow, neurologic deficit score, infarct volume, cerebral microvascular density, angiogenesis and neurogenesis were determined. We found: 1 The levels of plasma SDF-1α and circulating CD34+CXCR4+ cells were decreased in db/db mice; 2 The basal level of SDF-1α and MCAO-induced up-regulation of SDF-1α/CXCR4 axis were reduced in the brain of db/db mice; 3 Ad-CXCR4 transfection increased CXCR4 expression in EPCs and enhanced EPC colonic forming capacity; 4 Ad-CXCR4 transfection prevented EPCs from HG-induced dysfunction (migration and tube formation and apoptosis via activation of PI3K/Akt/eNOS signal pathway; 4 Ad-CXCR4 transfection enhanced the efficacy of EPC infusion in attenuating infarct volume and promoting angiogenesis and neurogenesis. Our data suggest that Ad-CXCR4 primed EPCs have better therapeutic effects for ischemia stroke in diabetes than unmodified EPCs do.

  5. Concurrent hypermulticolor monitoring of CD31, CD34, CD45 and CD146 endothelial progenitor cell markers for acute myocardial infarction

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Yumi [College of Pharmacy, Seoul National University, 1 Gwanak-Ro, Gwanak Gu, Seoul 151-742 (Korea, Republic of); Nam, Myung Hyun [Department of Laboratory Medicine, Korea University Ansan Hospital, Korea University College of Medicine (Korea, Republic of); Hyuk, Song Woo [Cardiology College of Medicine, Korea University (Korea, Republic of); Yoon, Soo Young [College of Medicine, Korea University, Seoul (Korea, Republic of); Song, Joon Myong, E-mail: jmsong@snu.ac.kr [College of Pharmacy, Seoul National University, 1 Gwanak-Ro, Gwanak Gu, Seoul 151-742 (Korea, Republic of)

    2015-01-01

    Highlights: • We observe EPCs and HPCs in patient for AMI diagnosis. • We detect two EPC subtypes using quantum dot and AOTF. • Quantum dot has narrower emission wavelength range than fluorescence dye. • AOTF provide smaller spectral interference than bandpass filters. • Quantum dot and AOTF are suitable for detecting large number of molecular markers concurrently. - Abstract: The circulating endothelial progenitor cells (EPCs) in blood of acute myocardial infarction (AMI) patient have been monitored in many previous studies. The number of circulating EPC increases in the blood of patients at onset of the AMI. EPC is originated from bone marrow. It performs vessel regeneration. There are many markers used for detecting EPC. Four of these markers, CD31, CD34, CD45, and CD146, were concurrently detected at the single cell level for the identification of EPC in the present preliminary study. The CD45 negative cell sorting was performed to peripheral blood mononuclear cells (PBMCs) acquired from four AMI patients with a magnetic bead sorter, since, EPCs expressed CD45 negative or dim. The resultant PBMC eluents were treated with quantum-antibody conjugates for the probing four different markers of EPCs and then applied to a high-content single cell imaging cytometer using acousto-optical tunable filter (AOTF). The use of quantum dot, with narrow emission wavelength range and AOTF enabling cellular image at a particular single wavelength, is very advantageous for accurate high-content AMI diagnosis based on simultaneous monitoring of many markers. The number of EPC increased as compared with control in three of four AMI patients. In this approach, two EPC subtypes were found, CD31(+), CD34(+), CD45(−/dim), CD146(−) as early outgrowth EPCs and CD31(+), CD34(+), CD45(−/dim), CD146(+) as late outgrowth EPCs. Patient 1 had CD31(+), CD34(+), CD45(−/dim), CD146(+) cells whose percentage was 4.21% of cells. Patient 2 had 2.38% of CD31(+), CD34(+), CD45(

  6. A comparison of umbilical cord blood-derived endothelial progenitor and mononuclear cell transplantation for the treatment of acute hindlimb ischemia

    Directory of Open Access Journals (Sweden)

    Phuc Van Pham

    2014-01-01

    Full Text Available Acute lower limb ischemia is a common peripheral artery disease whose treatment presents many difficulties. Stem cell transplantation is considered a novel and promising method of treating this disease. Umbilical cord blood (UCB is rich in stem cells, including hematopoietic stem cells (HSCs, mesenchymal stem cells (MSCs and endothelial progenitor cells (EPCs. However, historically, banked umbilical cord blood has been used mainly to treat blood-related diseases. Therefore, this study compared the efficacy of umbilical cord bloodderived mononuclear cells (UCB-MNCs with EPC transplantation for the treatment of acute hindlimb ischemia (ALI in mouse models. MNCs were isolated from UCB by Ficoll gradient centrifugation, after which the EPCs were sorted based on CD34+ and CD133+ markers and cultured according to a previously published protocol. To induce ALI, mice were immuno-suppressed using busulfan (BU and cyclophosphamide (CY, after which the femoral arteries were burned. Induction of ALI in the immune suppressed mice was confirmed by the grade of tissue damage, pedal frequency in water, tissue edema, changes in histology, total white blood cell count, and white blood cell composition. Model mice were injected with a dose of MNCs or EPCs and un-treated control mice were injected with phosphate buffered saline. The efficiency of treatment was evaluated by comparing the grade of tissue damage between the three groups of mice. Mice aged 6 and ndash;12 months were suitable for ALI, with 100% of mice exhibiting ischemia from grade I 10%, grade III 50%, grade IV 40%. For all ALI mice, a gradual increase in pedal frequency in water, increased tissue edema, necrosis of muscle tissue, and loss of hindlimb function were observed after 20 days. Transplanted MNCs and EPCs significantly improved hindlimb ischemia compared with control treatment. Moreover, EPC transplantation significantly improved hindlimb ischemia compared with MNC transplantation. Following

  7. Comparative analysis of circulating endothelial progenitor cells in age-related macular degeneration patients using automated rare cell analysis (ARCA and fluorescence activated cell sorting (FACS.

    Directory of Open Access Journals (Sweden)

    Emil Anthony T Say

    Full Text Available BACKGROUND: Patients with age-related macular degeneration (ARMD begin with non-neovascular (NNV phenotypes usually associated with good vision. Approximately 20% of NNV-ARMD patients will convert to vision debilitating neovascular (NV ARMD, but precise timing of this event is unknown. Developing a clinical test predicting impending conversion to NV-ARMD is necessary to prevent vision loss. Endothelial progenitor cells (EPCs, defined as CD34(+VEGR2(+ using traditional fluorescence activated cell sorting (FACS, are rare cell populations known to be elevated in patients with NV-ARMD compared to NNV-ARMD. FACS has high inter-observer variability and subjectivity when measuring rare cell populations precluding development into a diagnostic test. We hypothesized that automated rare cell analysis (ARCA, a validated and FDA-approved technology for reproducible rare cell identification, can enumerate EPCs in ARMD patients more reliably. This pilot study serves as the first step in developing methods for reproducibly predicting ARMD phenotype conversion. METHODS: We obtained peripheral venous blood samples in 23 subjects with NNV-ARMD or treatment naïve NV-ARMD. Strict criteria were used to exclude subjects with known angiogenic diseases to minimize confounding results. Blood samples were analyzed in masked fashion in two separate laboratories. EPCs were independently enumerated using ARCA and FACS within 24 hours of blood sample collection, and p<0.2 was considered indicative of a trend for this proof of concept study, while statistical significance was established at 0.05. RESULTS: We measured levels of CD34(+VEGFR2(+ EPCs suggestive of a trend with higher values in patients with NV compared to NNV-ARMD (p = 0.17 using ARCA. Interestingly, CD34(+VEGR2(+ EPC analysis using FACS did not produce similar results (p = 0.94. CONCLUSIONS: CD34(+VEGR2(+ may have predictive value for EPC enumeration in future ARCA studies. EPC measurements in a small sample

  8. R2* and R2 mapping for quantifying recruitment of superparamagnetic iron oxide-tagged endothelial progenitor cells to injured liver: tracking in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Wang Q

    2014-04-01

    Full Text Available Qingguo Wang, Kangan Li, Qimeng Quan, Guixiang ZhangDepartment of Radiology, Shanghai Jiaotong University Affiliated First People’s Hospital, Hongkou District, Shanghai, People’s Republic of ChinaObjective: To evaluate clinical 3.0T magnetic resonance for tracking and quantifying superparamagnetic iron oxide (SPIO–labeled endothelial progenitor cells (EPCs in vitro and homing to liver with acute injury in vivo.Methods: The bone marrow-derived EPCs were isolated and cultured for 4 days and examined in vitro for lineage markers. Then the cultured cells were labeled with a ferumoxides-protamine sulfate complex. Iron uptake was analyzed with an electron microscope and Prussian blue staining. Agarose gel phantoms containing different amounts of EPCs (0–2.5 × 106 cells per milliliter of 1.0% agarose gel were analyzed with 3.0T R2 and R2* relaxometry. For in vivo tracking, liver injury was induced in healthy C57 mice (female, 6 weeks old, weight 19–20 g by administration of carbon tetrachloride by single intraperitoneal injection. The R2* and R2 mapping of injured and normal livers of C57 mice were conducted by using 3.0T magnetic resonance on Days 0, 1, 4, and 8 after intravenous SPIO-tagged cells transplantation.Results: Electron microscope and Perls Prussian blue stain revealed the efficiency of SPIO particles uptake was more than 95% and no structural changes of labeled cells were found compared with control group. R2 and R2* values were linearly correlated with the number of iron-loaded cells in the agarose gel phantoms, and R2* values were significantly greater than R2 (P<0.01. R2* values in all groups were obviously greater than R2 (P<0.01. The R2* values of the injured livers were greater than normal on Days 1 and 4 (P<0.01. No significant difference of R2 values could be found among the three groups.Conclusion: Quantitative R2* mapping provides a useful method for quantifying intravascular administered SPIO-tagged EPCs homing to

  9. Persistent expression of activated notch in the developing hypothalamus affects survival of pituitary progenitors and alters pituitary structure.

    Science.gov (United States)

    Aujla, Paven K; Bogdanovic, Vedran; Naratadam, George T; Raetzman, Lori T

    2015-08-01

    As the pituitary gland develops, signals from the hypothalamus are necessary for pituitary induction and expansion. Little is known about the control of cues that regulate early signaling between the two structures. Ligands and receptors of the Notch signaling pathway are found in both the hypothalamus and Rathke's pouch. The downstream Notch effector gene Hes1 is required for proper pituitary formation; however, these effects could be due to the action of Hes1 in the hypothalamus, Rathke's pouch, or both. To determine the contribution of hypothalamic Notch signaling to pituitary organogenesis, we used mice with loss and gain of Notch function within the developing hypothalamus. We demonstrate that loss of Notch signaling by conditional deletion of Rbpj in the hypothalamus does not affect expression of Hes1 within the posterior hypothalamus or expression of Hes5. In contrast, expression of activated Notch within the hypothalamus results in ectopic Hes5 expression and increased Hes1 expression, which is sufficient to disrupt pituitary development and postnatal expansion. Taken together, our results indicate that Rbpj-dependent Notch signaling within the developing hypothalamus is not necessary for pituitary development, but persistent Notch signaling and ectopic Hes5 expression in hypothalamic progenitors affects pituitary induction and expansion. © 2015 Wiley Periodicals, Inc.

  10. Pre-Analytical Parameters Affecting Vascular Endothelial Growth Factor Measurement in Plasma: Identifying Confounders.

    Directory of Open Access Journals (Sweden)

    Johanna M Walz

    Full Text Available Vascular endothelial growth factor-A (VEGF-A is intensively investigated in various medical fields. However, comparing VEGF-A measurements is difficult because sample acquisition and pre-analytic procedures differ between studies. We therefore investigated which variables act as confounders of VEGF-A measurements.Following a standardized protocol, blood was taken at three clinical sites from six healthy participants (one male and one female participant at each center twice one week apart. The following pre-analytical parameters were varied in order to analyze their impact on VEGF-A measurements: analyzing center, anticoagulant (EDTA vs. PECT / CTAD, cannula (butterfly vs. neonatal, type of centrifuge (swing-out vs. fixed-angle, time before and after centrifugation, filling level (completely filled vs. half-filled tubes and analyzing method (ELISA vs. multiplex bead array. Additionally, intrapersonal variations over time and sex differences were explored. Statistical analysis was performed using a linear regression model.The following parameters were identified as statistically significant independent confounders of VEGF-A measurements: analyzing center, anticoagulant, centrifuge, analyzing method and sex of the proband. The following parameters were no significant confounders in our data set: intrapersonal variation over one week, cannula, time before and after centrifugation and filling level of collection tubes.VEGF-A measurement results can be affected significantly by the identified pre-analytical parameters. We recommend the use of CTAD anticoagulant, a standardized type of centrifuge and one central laboratory using the same analyzing method for all samples.

  11. Two-year follow-up of the Genous™ endothelial progenitor cell capturing stent versus the Taxus Liberté stent in patients with de novo coronary artery lesions with a high-risk of restenosis: a randomized, single-center, pilot study

    NARCIS (Netherlands)

    M.A.M. Beijk; M. Klomp; N. van Geloven; K.T. Koch; J.P.S. Henriques; J. Baan; M.M. Vis; J.G.P. Tijssen; J.J. Piek; R.J. de Winter

    2011-01-01

    In the prospective randomized TRIAS pilot study, the bio-engineered Genous™ endothelial progenitor cell capturing stent was compared with the Taxus Liberté™ SR paclitaxel-eluting stent. At 1 yr, a statistically nonsignificant difference in the rates of target vessel failure (cardiac death, myocardia

  12. Freezing adversely affects measurement of vascular endothelial growth factor levels in human aqueous samples

    Directory of Open Access Journals (Sweden)

    Sankarathi Balaiya

    2011-01-01

    Full Text Available Sankarathi Balaiya Sandeep Grover Ravi K Murthy Kakarla V ChalamDepartment of Ophthalmology, University of Florida College of Medicine, Jacksonville, FL, USAPurpose: Aqueous levels of vascular endothelial growth factor (VEGF can be a surrogate marker of intraocular VEGF activity and a measure of efficacy of anti-VEGF treatment in a variety of vasoproliferative retinal disorders, including diabetic retinopathy, age-related macular degeneration, and central retinal vein occlusion. Measurement of the VEGF level may be adversely affected by premeasurement variables, such as freezing and delay, in sample analysis. We aim to evaluate the effect of storage and delayed measurement of human aqueous VEGF levels in these conditions.Methods: Aqueous samples collected from patients receiving intravitreal injection of bevacizumab for various retinal diseases were divided into two groups. In Group 1, the VEGF levels were analyzed on the same day; in Group 2, the VEGF levels were analyzed after 21 days of freezer storage (-80°C using immunobead assay. Statistical comparison using a paired t-test was performed between the two groups.Results: Thirty-one aqueous humor samples were collected, and the VEGF concentration for fresh samples was 7.8 ± 5.9 pg/mL (mean ± SD compared to 6.5 ± 6.0 pg/mL in frozen samples, resulting in a statistically significant difference (P = 0.03.Conclusions: Accurate measurement of the VEGF level is a vital component of clinical decision-making. Delayed analysis of VEGF levels in aqueous samples may result in significant sample degradation and lower levels of measured VEGF.Keywords: VEGF level, aqueous humor, immunobead assay, VEGF storage

  13. An anti-CD34 antibody-functionalized clinical-grade POSS-PCU nanocomposite polymer for cardiovascular stent coating applications: a preliminary assessment of endothelial progenitor cell capture and hemocompatibility.

    Directory of Open Access Journals (Sweden)

    Aaron Tan

    Full Text Available In situ endothelialization of cardiovascular implants has emerged in recent years as an attractive means of targeting the persistent problems of thrombosis and intimal hyperplasia. This study aimed to investigate the efficacy of immobilizing anti-CD34 antibodies onto a POSS-PCU nanocomposite polymer surface to sequester endothelial progenitor cells (EPCs from human blood, and to characterize the surface properties and hemocompatibility of this surface. Amine-functionalized fumed silica was used to covalently conjugate anti-CD34 to the polymer surface. Water contact angle, fluorescence microscopy, and scanning electron microscopy were used for surface characterization. Peripheral blood mononuclear cells (PBMCs were seeded on modified and pristine POSS-PCU polymer films. After 7 days, adhered cells were immunostained for the expression of EPC and endothelial cell markers, and assessed for the formation of EPC colonies. Hemocompatibility was assessed by thromboelastography, and platelet activation and adhesion assays. The number of EPC colonies formed on anti-CD34-coated POSS-PCU surfaces was not significantly higher than that of POSS-PCU (5.0±1.0 vs. 1.7±0.6, p>0.05. However, antibody conjugation significantly improved hemocompatibility, as seen from the prolonged reaction and clotting times, decreased angle and maximum amplitude (p<0.05, as well as decreased platelet adhesion (76.8±7.8 vs. 8.4±0.7, p<0.05 and activation. Here, we demonstrate that POSS-PCU surface immobilized anti-CD34 antibodies selectively captured CD34+ cells from peripheral blood, although only a minority of these were EPCs. Nevertheless, antibody conjugation significantly improves the hemocompatibility of POSS-PCU, and should therefore continue to be explored in combination with other strategies to improve the specificity of EPC capture to promote in situ endothelialization.

  14. Mesenchymal progenitor cells differentiate into an endothelial phenotype, enhance vascular density and improve heart function in a rat cellular cardiomyoplasty model

    Institute of Scientific and Technical Information of China (English)

    SDAVANI; NMERSIN; BROYER; BKANTELIP; JPKANTELIP

    2004-01-01

    AIM: Cellular cardiomyoplasty is promising for improving postinfarcted cardiac function. Over the past decade, a variety of cell types have been proposed including mononuclear bone marrow cells. The latter contains different lineages including mesenchymal stem cells (MSCs). The aim of this study was to analyse the differentiation pathways of engrafted syngenic mesenchymal progenitor cells (MPCs) obtained in culture from bone marrow

  15. Research of endothelial progenitor cells and testosterone in the klinefelter syndrome with cardiovascular disease%内皮祖细胞及睾酮在klinefelter综合征伴心血管疾病中的研究

    Institute of Scientific and Technical Information of China (English)

    茹伯战

    2011-01-01

    Klinefelter综合征(Klinefelter syndrome KS)患者均有不同程度的睾酮水平低下,睾酮在心血管疾病发挥特定的作用;而内皮祖细胞(endothelial progenitor cells EPCs)在心血管疾病中同样有重要作用.Klinefelter综合征伴心血管疾病患者外周循环血中的内皮祖细胞的水平亦较低.本文就睾酮、EPCs及Klinefelter综合征伴心血管疾病中相关性作一综述.

  16. 内皮祖细胞在治疗下肢缺血性疾病中的研究进展%Endothelial progenitor cells in the treatment of lower extremity ischemic disease

    Institute of Scientific and Technical Information of China (English)

    葛新宝; 胡何节

    2010-01-01

    With the population aging, diet changing and incveasing risk factors on vascular disease, the lower extremity ischemic disease has become a frequently occurring disease of older person, and it is the main reason for amputation disability. In the 21st century the stem cells transplantation is one of the most advanced technologies and has been applied quickly to clinical therapy, regarded as a radical treatment of lower extremity ischemic disease. Endothelial progenitor cells have gradually become a new direction and a new research focus because of its unique biological characteristics in the treatment of this disease. This article focuses on endothelial progenitor cells in treating extremity ischemia lesions on the theoretical basis and research developments.%随着人口老龄化、饮食结构改变及引起血管疾病高危因素的增加,下肢缺血性疾病已成为老年人的多发病,是截肢致残的主要原因.作为21世纪最先进的技术,干细胞移植快速地应用于临床,并被认为可能是根治性治疗下肢缺血性疾病的方法之一,内皮祖细胞由于其独特的生物学特性逐渐成为治疗这一病变的新方向和新研究热点.本文着重介绍内皮祖细胞治疗肢体缺血性病变的理论基础和研究进展.

  17. Oxidative stress affects processing of amyloid precursor protein in vascular endothelial cells.

    Science.gov (United States)

    Muche, Abebe; Arendt, Thomas; Schliebs, Reinhard

    2017-01-01

    Oxidative stress is thought to be a key player in the pathogenesis of neurodegenerative dementia, including Alzheimer's disease (AD). It has been assumed that oxidative stress contributes to the ß-amyloid deposition in cerebral blood vessels. In order to prove this hypothesis, we examined the effect of oxidative stress on the processing of amyloid precursor protein (APP) in primary endothelial cells (EC) derived from cerebral cortical tissue of transgenic Tg2576 mice. Following exposure of EC by 1 μM hydrogen peroxide for up to 48 hours, formation and secretion of APP cleavage products sAPPα and sAPPß into the culture medium as well as the expression of endothelial APP were assessed. Oxidative stress resulted in enhanced secretion of sAPPß into the culture medium as compared to controls (absence of hydrogen peroxide), which was accompanied by an increased APP expression, induction of VEGF synthesis, nitric oxide and oxygen free radicals productions, and differential changes of endothelial phospo-p42/44 MAPK expression. The data suggest that oxidative stress may represent a major risk factor in causing Aß deposition in the brain vascular system by initiating the amyloidogenic route of endothelial APP processing. The enhanced β-secretase activity following oxidative stress exposure, possibly promoted by phosphorylation of p42/44 MAPK.

  18. Gene expression profiling in circulating endothelial cells from systemic sclerosis patients shows an altered control of apoptosis and angiogenesis that is modified by iloprost infusion

    Science.gov (United States)

    2010-01-01

    Introduction Circulating endothelial cells are increased in patients affected by systemic sclerosis (SSc) and their number strongly correlates with vascular damage. The effects of iloprost in systemic sclerosis are only partially known. We aimed at studying the gene expression profile of circulating endothelial cells and the effects of iloprost infusion and gene expression in patients with systemic sclerosis. Methods We enrolled 50 patients affected by systemic sclerosis, 37 patients without and 13 patients with digital ulcers. Blood samples were collected from all patients before and 72 hours after either a single day or five days eight hours iloprost infusion. Blood samples were also collected from 50 sex- and age-matched healthy controls. Circulating endothelial cells and endothelial progenitors cells were detected in the peripheral blood of patients with systemic sclerosis by flow cytometry with a four-colour panel of antibodies. Statistical analysis was performed with the SPSS 16 statistical package.Circulating endothelial cells were then isolated from peripheral blood by immunomagnetic CD45 negative selection for the gene array study. Results The number of both circulating endothelial cells and progenitors was significantly higher in patients affected by systemic sclerosis than in controls and among patients in those with digital ulcers than in patients without them. Circulating endothelial cells and progenitors number increased after iloprost infusion. Gene array analysis of endothelial cells showed a different transcriptional profile in patients compared to controls. Indeed, patients displayed an altered expression of genes involved in the control of apoptosis and angiogenesis. Iloprost infusion had a profound impact on endothelial cells gene expression since the treatment was able to modulate a very high number of transcripts. Conclusions We report here that circulating endothelial cells in patients with systemic sclerosis show an altered expression of

  19. 糖尿病引起内皮祖细胞损伤机制研究进展%The underlying mechanisms of dysfunction of endothelial progenitor cells caused by diabetes

    Institute of Scientific and Technical Information of China (English)

    侯沃霖; 刘芳

    2013-01-01

    Endothelial progenitor cells (EPCs) derived from bone marrow,play crucial roles in the maintenance of endothelial cell integrity and in the neovascularization of ischemic tissue.The mechanisms of EPCs impairment in diabetes include increased production of reactive oxygen species,reduced bioavailability of endothelial nitric oxide synthase,activated process of inflammation and inhibited signaling pathways of angiogenesis related proteins.These multiple abnormalities contribute to defective angiogenesis,resulting in cardiovascular complications,delayed wound healing and ascending risk of lower limb amputation in diabetes.By exploring new targets acting on dysfunction of diabetic EPCs,new approaches to prevent and cure cardiovascular events and foot disorders could be found through improving EPCs function in patients with diabetes.%内皮祖细胞来源于骨髓细胞,在维持内皮细胞完整性和缺血组织的血管新生方面起关键作用.糖尿病可引起内皮祖细胞功能障碍,其机制包括促进活性氧簇产生,降低内皮型一氧化氮合酶活性,刺激炎性反应,抑制与血管新生有关的蛋白信号通路等,最终导致血管新生障碍,这是糖尿病患者出现心血管并发症、伤口愈合延迟甚至面临截肢危险的重要原因.探索作用于受损糖尿病内皮祖细胞功能的新靶点,可通过改善内皮祖细胞功能,开拓治疗糖尿病心血管病变和足病的新途径.

  20. Hydrostatic pressure and shear stress affect endothelin-1 and nitric oxide release by endothelial cells in bioreactors.

    Science.gov (United States)

    Vozzi, Federico; Bianchi, Francesca; Ahluwalia, Arti; Domenici, Claudio

    2014-01-01

    Abundant experimental evidence demonstrates that endothelial cells are sensitive to flow; however, the effect of fluid pressure or pressure gradients that are used to drive viscous flow is not well understood. There are two principal physical forces exerted on the blood vessel wall by the passage of intra-luminal blood: pressure and shear. To analyze the effects of pressure and shear independently, these two stresses were applied to cultured cells in two different types of bioreactors: a pressure-controlled bioreactor and a laminar flow bioreactor, in which controlled levels of pressure or shear stress, respectively, can be generated. Using these bioreactor systems, endothelin-1 (ET-1) and nitric oxide (NO) release from human umbilical vein endothelial cells were measured under various shear stress and pressure conditions. Compared to the controls, a decrease of ET-1 production by the cells cultured in both bioreactors was observed, whereas NO synthesis was up-regulated in cells under shear stress, but was not modulated by hydrostatic pressure. These results show that the two hemodynamic forces acting on blood vessels affect endothelial cell function in different ways, and that both should be considered when planning in vitro experiments in the presence of flow. Understanding the individual and synergic effects of the two forces could provide important insights into physiological and pathological processes involved in vascular remodeling and adaptation.

  1. Pulsatile atheroprone shear stress affects the expression of transient receptor potential channels in human endothelial cells

    DEFF Research Database (Denmark)

    Thilo, Florian; Vorderwülbecke, Bernd J; Marki, Alex

    2012-01-01

    as measured by quantitative real-time RT-PCR and normalized to GAPDH expression. Thereby, TRPC6 and TRPV1 mRNA expressions were significantly increased after 24 hours of exposure to an atheroprone flow profile compared with an atheroprotective flow profile. Furthermore, the expression of transcription factors......The goal of the study was to assess whether pulsatile atheroprone shear stress modulates the expression of transient receptor potential (TRP) channels, TRPC3, TRPC6, TRPM7, and TRPV1 mRNA, in human umbilical vascular endothelial cells. Exposure of cultured vascular endothelial cells to defined...... shear stress, producing a constant laminar flow (generating a shear stress of 6 dyne/cm(2)), laminar pulsatile atheroprotective flow (with a mean shear stress of 20 dyne/cm(2)), or laminar atheroprone bidirectional flow (with a mean shear stress of 0 dyne/cm(2)) differentially induced TRPC6 and TRPV1 mRNA...

  2. The Interaction between Fluid Wall Shear Stress and Solid Circumferential Strain Affects Endothelial Gene Expression.

    Science.gov (United States)

    Amaya, Ronny; Pierides, Alexis; Tarbell, John M

    2015-01-01

    Endothelial cells lining the walls of blood vessels are exposed simultaneously to wall shear stress (WSS) and circumferential stress (CS) that can be characterized by the temporal phase angle between WSS and CS (stress phase angle - SPA). Regions of the circulation with highly asynchronous hemodynamics (SPA close to -180°) such as coronary arteries are associated with the development of pathological conditions such as atherosclerosis and intimal hyperplasia whereas more synchronous regions (SPA closer to 0°) are spared of disease. The present study evaluates endothelial cell gene expression of 42 atherosclerosis-related genes under asynchronous hemodynamics (SPA=-180 °) and synchronous hemodynamics (SPA=0 °). This study used a novel bioreactor to investigate the cellular response of bovine aortic endothelial cells (BAECS) exposed to a combination of pulsatile WSS and CS at SPA=0 or SPA=-180. Using a PCR array of 42 genes, we determined that BAECS exposed to non-reversing sinusoidal WSS (10±10 dyne/cm2) and CS (4 ± 4%) over a 7 hour testing period displayed 17 genes that were up regulated by SPA = -180 °, most of them pro-atherogenic, including NFκB and other NFκB target genes. The up regulation of NFκB p50/p105 and p65 by SPA =-180° was confirmed by Western blots and immunofluorescence staining demonstrating the nuclear translocation of NFκB p50/p105 and p65. These data suggest that asynchronous hemodynamics (SPA=-180 °) can elicit proatherogenic responses in endothelial cells compared to synchronous hemodynamics without shear stress reversal, indicating that SPA may be an important parameter characterizing arterial susceptibility to disease.

  3. The Interaction between Fluid Wall Shear Stress and Solid Circumferential Strain Affects Endothelial Gene Expression.

    Directory of Open Access Journals (Sweden)

    Ronny Amaya

    Full Text Available Endothelial cells lining the walls of blood vessels are exposed simultaneously to wall shear stress (WSS and circumferential stress (CS that can be characterized by the temporal phase angle between WSS and CS (stress phase angle - SPA. Regions of the circulation with highly asynchronous hemodynamics (SPA close to -180° such as coronary arteries are associated with the development of pathological conditions such as atherosclerosis and intimal hyperplasia whereas more synchronous regions (SPA closer to 0° are spared of disease. The present study evaluates endothelial cell gene expression of 42 atherosclerosis-related genes under asynchronous hemodynamics (SPA=-180 ° and synchronous hemodynamics (SPA=0 °. This study used a novel bioreactor to investigate the cellular response of bovine aortic endothelial cells (BAECS exposed to a combination of pulsatile WSS and CS at SPA=0 or SPA=-180. Using a PCR array of 42 genes, we determined that BAECS exposed to non-reversing sinusoidal WSS (10±10 dyne/cm2 and CS (4 ± 4% over a 7 hour testing period displayed 17 genes that were up regulated by SPA = -180 °, most of them pro-atherogenic, including NFκB and other NFκB target genes. The up regulation of NFκB p50/p105 and p65 by SPA =-180° was confirmed by Western blots and immunofluorescence staining demonstrating the nuclear translocation of NFκB p50/p105 and p65. These data suggest that asynchronous hemodynamics (SPA=-180 ° can elicit proatherogenic responses in endothelial cells compared to synchronous hemodynamics without shear stress reversal, indicating that SPA may be an important parameter characterizing arterial susceptibility to disease.

  4. Pericyte abundance affects sucrose permeability in cultures of rat brain microvascular endothelial cells.

    Science.gov (United States)

    Parkinson, Fiona E; Hacking, Cindy

    2005-07-05

    The blood-brain barrier is a physical and metabolic barrier that restricts diffusion of blood-borne substances into brain. In vitro models of the blood-brain barrier are used to characterize this structure, examine mechanisms of damage and repair and measure permeability of test substances. The core component of in vitro models of the blood-brain barrier is brain microvascular endothelial cells. We cultured rat brain microvascular endothelial cells (RBMEC) from isolated rat cortex microvessels. After 2-14 days in vitro (DIV), immunohistochemistry of these cells showed strong labeling for zona occludens 1 (ZO-1), a tight junction protein expressed in endothelial cells. Pericytes were also present in these cultures, as determined by expression of alpha-actin. The present study was performed to test different cell isolation methods and to compare the resulting cell cultures for abundance of pericytes and for blood-brain barrier function, as assessed by 14C-sucrose flux. Two purification strategies were used. First, microvessels were preabsorbed onto uncoated plastic for 4 h, then unattached microvessels were transferred to coated culture ware. Second, microvessels were incubated with an antibody to platelet-endothelial cell adhesion molecule 1 (PECAM-1; CD31) precoupled to magnetic beads, and a magnetic separation procedure was performed. Our results indicate that immunopurification, but not preadsorption, was an effective method to purify microvessels and reduce pericyte abundance in the resulting cultures. This purification significantly reduced 14C-sucrose fluxes across cell monolayers. These data indicate that pericytes can interfere with the development of blood-brain barrier properties in in vitro models that utilize primary cultures of RBMECs.

  5. ‘Short-term treatment with methotrexate does not affect microvascular endothelial function in patients with psoriasis’

    DEFF Research Database (Denmark)

    Gyldenløve, M; Jensen, Peter; Løvendorf, M B

    2015-01-01

    influences microvascular endothelial function (MEF), an early surrogate marker of atherosclerosis, in patients with psoriasis. METHODS: We prospectively studied a hospital cohort of patients with psoriasis. Measurements of MEF were performed with the Endo-PAT2000© device at baseline and after 8-10 weeks...... by 7 (from 9 to 2). No significant changes were observed in MEF, expressed by reactive hyperaemia index and augmentation index. Also, we saw no significant changes in BMI, waist-hip ratio, blood pressure and blood samples. CONCLUSION: Short-term treatment with methotrexate did not affect MEF...

  6. SDF1 Gene Variation Is Associated with Circulating SDF1 alpha Level and Endothelial Progenitor Cell Number-The Bruneck Study

    OpenAIRE

    Xiao, Q.; Ye, S.; Oberhollenzer, F; Mayr, A; Jahangiri, M; Willeit, J.; Kiechl, S; Xu, Q.

    2008-01-01

    BACKGROUND: Stromal cell-derived factor-1 (SDF1) and its receptor CXC chemokine receptor 4 (CXCR4) play a critical role in progenitor cell homing, mobilization and differentiation. It would be interesting to assess the predictive value of SDF-1alpha level for EPC number, and to ascertain whether there is a relationship between SDF1 gene variation, plasma SDF-1alpha level, and the number and function of circulating EPCs. We also tested whether EPC number and function was related to CXCR4 gene ...

  7. Loss of Pcgf5 Affects Global H2A Monoubiquitination but Not the Function of Hematopoietic Stem and Progenitor Cells.

    Directory of Open Access Journals (Sweden)

    Sha Si

    Full Text Available Polycomb-group RING finger proteins (Pcgf1-Pcgf6 are components of Polycomb repressive complex 1 (PRC1-related complexes that catalyze monoubiquitination of histone H2A at lysine 119 (H2AK119ub1, an epigenetic mark associated with repression of genes. Pcgf5 has been characterized as a component of PRC1.5, one of the non-canonical PRC1, consisting of Ring1a/b, Rybp/Yaf2 and Auts2. However, the biological functions of Pcgf5 have not yet been identified. Here we analyzed the impact of the deletion of Pcgf5 specifically in hematopoietic stem and progenitor cells (HSPCs. Pcgf5 is expressed preferentially in hematopoietic stem cells (HSCs and multipotent progenitors (MPPs compared with committed myeloid progenitors and differentiated cells. We transplanted bone marrow (BM cells from Rosa::Cre-ERT control and Cre-ERT;Pcgf5fl/fl mice into lethally irradiated recipient mice. At 4 weeks post-transplantation, we deleted Pcgf5 by injecting tamoxifen, however, no obvious changes in hematopoiesis were detected including the number of HSPCs during a long-term observation period following the deletion. Competitive BM repopulating assays revealed normal repopulating capacity of Pcgf5-deficient HSCs. Nevertheless, Pcgf5-deficient HSPCs showed a significant reduction in H2AK119ub1 levels compared with the control. ChIP-sequence analysis confirmed the reduction in H2AK119ub1 levels, but revealed no significant association of changes in H2AK119ub1 levels with gene expression levels. Our findings demonstrate that Pcgf5-containing PRC1 functions as a histone modifier in vivo, but its role in HSPCs is limited and can be compensated by other PRC1-related complexes in HSPCs.

  8. Statins affect the presentation of endothelial chemokines by targeting to multivesicular bodies.

    Directory of Open Access Journals (Sweden)

    Johanna Hol

    Full Text Available BACKGROUND: In addition to lowering cholesterol, statins are thought to beneficially modulate inflammation. Several chemokines including CXCL1/growth-related oncogene (GRO-α, CXCL8/interleukin (IL-8 and CCL2/monocyte chemoattractant protein (MCP-1 are important in the pathogenesis of atherosclerosis and can be influenced by statin-treatment. Recently, we observed that atorvastatin-treatment alters the intracellular content and subcellular distribution of GRO-α in cultured human umbilical vein endothelial cells (HUVECs. The objective of this study was to investigate the mechanisms involved in this phenomenon. METHODOLOGY/ PRINCIPAL FINDINGS: The effect of atorvastatin on secretion levels and subcellular distribution of GRO-α, IL-8 and MCP-1 in HUVECs activated by interleukin (IL-1β were evaluated by ELISA, confocal microscopy and immunoelectron microscopy. Atorvastatin increased the intracellular contents of GRO-α, IL-8, and MCP-1 and induced colocalization with E-selectin in multivesicular bodies. This effect was prevented by adding the isoprenylation substrate GGPP, but not the cholesterol precursor squalene, indicating that atorvastatin exerts these effects by inhibiting isoprenylation rather than depleting the cells of cholesterol. CONCLUSIONS/ SIGNIFICANCE: Atorvastatin targets inflammatory chemokines to the endocytic pathway and multivesicular bodies and may contribute to explain the anti-inflammatory effect of statins at the level of endothelial cell function.

  9. Inactivation of Geminin in neural crest cells affects the generation and maintenance of enteric progenitor cells, leading to enteric aganglionosis.

    Science.gov (United States)

    Stathopoulou, Athanasia; Natarajan, Dipa; Nikolopoulou, Pinelopi; Patmanidi, Alexandra L; Lygerou, Zoi; Pachnis, Vassilis; Taraviras, Stavros

    2016-01-15

    Neural crest cells comprise a multipotent, migratory cell population that generates a diverse array of cell and tissue types, during vertebrate development. Enteric Nervous System controls the function of the gastrointestinal tract and is mainly derived from the vagal and sacral neural crest cells. Deregulation on self-renewal and differentiation of the enteric neural crest cells is evident in enteric nervous system disorders, such as Hirschsprung disease, characterized by the absence of ganglia in a variable length of the distal bowel. Here we show that Geminin is essential for Enteric Nervous System generation as mice that lacked Geminin expression specifically in neural crest cells revealed decreased generation of vagal neural crest cells, and enteric neural crest cells (ENCCs). Geminin-deficient ENCCs showed increased apoptosis and decreased cell proliferation during the early stages of gut colonization. Furthermore, decreased number of committed ENCCs in vivo and the decreased self-renewal capacity of enteric progenitor cells in vitro, resulted in almost total aganglionosis resembling a severe case of Hirschsprung disease. Our results suggest that Geminin is an important regulator of self-renewal and survival of enteric nervous system progenitor cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Progenitors for the Corneal Endothelium and Trabecular Meshwork: A Potential Source for Personalized Stem Cell Therapy in Corneal Endothelial Diseases and Glaucoma

    Directory of Open Access Journals (Sweden)

    Wing Yan Yu

    2011-01-01

    Full Text Available Several adult stem cell types have been found in different parts of the eye, including the corneal epithelium, conjunctiva, and retina. In addition to these, there have been accumulating evidence that some stem-like cells reside in the transition area between the peripheral corneal endothelium (CE and the anterior nonfiltering portion of the trabecular meshwork (TM, which is known as the Schwalbe's Ring region. These stem/progenitor cells may supply new cells for the CE and TM. In fact, the CE and TM share certain similarities in terms of their embryonic origin and proliferative capacity in vivo. In this paper, we discuss the putative stem cell source which has the potential for replacement of lost and nonfunctional cells in CE diseases and glaucoma. The future development of personalized stem cell therapies for the CE and TM may reduce the requirement of corneal grafts and surgical treatments in glaucoma.

  11. A Chemokine Receptor, CXCR4, Which Is Regulated by Hypoxia-Inducible Factor 2α, Is Crucial for Functional Endothelial Progenitor Cells Migration to Ischemic Tissue and Wound Repair

    Science.gov (United States)

    Tu, Tran Cam; Nagano, Masumi; Yamashita, Toshiharu; Hamada, Hiromi; Ohneda, Kinuko; Kimura, Kenichi

    2016-01-01

    Endothelial progenitor cells (EPCs) have the ability to form new blood vessels and protect ischemic tissues from damage. We previously reported that EPCs with low activity of aldehyde dehydrogenase (Alde-Low EPCs) possess the greater ability to treat ischemic tissues compared with Alde-High EPCs. The expression level of the hypoxia-inducible factors (HIFs), HIF-1α and HIF-2α, was found to be greater in Alde-Low EPCs than in Alde-High EPCs. However, the precise role of the HIF factors in the regulation of EPC activity remains obscure. In this study, we demonstrate a critical role of HIF-2α and its target gene CXCR4 for controlling the migratory activity of EPC to ischemic tissue. We found that coculture of Alde-High EPCs with microvesicles derived from Alde-Low EPCs improved their ability to repair an ischemic skin flap, and the expression of CXCR4 and its ligand SDF1 was significantly increased following the coculture. In Alde-Low EPCs, the expression of CXCR4 was suppressed by short hairpin RNA (shRNA)-mediated HIF-2α, but not HIF-1α downregulation. Chromatin immunoprecipitation assays showed that HIF-2α, but not HIF-1α, binds to the promoter region of CXCR4 gene. The CXCR4 shRNA treatment in Alde-Low EPCs almost completely abrogated their migratory activity to ischemic tissues, whereas the reduction of vascular endothelial growth factor (VEGF) showed much less effect. The CXCR4 overexpression in Alde-High EPCs resulted in a partial, but significant improvement in their repairing ability in an ischemic skin flap. Collectively, these findings indicate that the CXCR4/SDF-1 axis, which is specifically regulated by HIF-2α, plays a crucial role in the regulation of EPC migration to ischemic tissues. PMID:26620723

  12. Shear stress-mediated changes in the expression of complement regulatory protein CD59 on human endothelial progenitor cells by ECM-integrinαVβ3-F-actin pathway in vitro.

    Science.gov (United States)

    Cui, Xiaodong; Zhang, Xiaoyun; Bu, Hongnan; Liu, Na; Li, Hong; Guan, Xiumei; Yan, Hong; Wang, Yuzhen; Zhang, Hua; Ding, Yuzhen; Cheng, Min

    2017-09-21

    Membrane regulatory proteins, such as CD46, CD55, and CD59, prevent excess complement activation and to protect cells from damage. Previous investigations confirmed that shear stress in the physiological range was more favorable for endothelial progenitor cells (EPCs) to repair injured vascular endothelial cells and operates mainly in atheroprotective actions. However, detailed events that contribute to shear stress-induced protection in EPCs, particularly the mechanisms of signal transduction, remain poorly understood. In this study, we observed shear stress-mediated changes in the expression of complement regulatory proteins CD46, CD55, and CD59 on human EPCs and focused on the mechanical transmission mechanism in transformed cells in response to the ECM-F-actin pathway in vitro. Shear stress was observed to promote the expression of complement regulatory protein CD59, but not CD46 or CD55, on EPCs. In addition, the shear stress-induced CD59 expression was confirmed to be associated with the ECM components and was alleviated in EPCs pretreated with GRGDSP, which inhibits ECM components-integrin interaction. Furthermore, shear stress also promotes the rearrangement and polymerization of F-actin. However, shear stress-induced CD59 expression was reduced when the F-actin stress fiber formation process was delayed by Gly-Arg-Gly-Asp-Ser-Pro (GRGDSP) or destroyed by cytochalasin D (Cyto D), while Jasplakinolide (JAS) reversed the expression of CD59 through promotion of F-actin polymerization and its stabilizing capacities. Our results indicates that shear stress is an important mediator in EPC expression of CD59 regulated by the ECM-F-actin pathway, which is a key factor in preventing membrane attack complex (MAC) -mediated cell autolysis. Copyright © 2017. Published by Elsevier Inc.

  13. Endothelial cell respiration is affected by the oxygen tension during shear exposure: role of mitochondrial peroxynitrite.

    Science.gov (United States)

    Jones, Charles I; Han, Zhaosheng; Presley, Tennille; Varadharaj, Saradhadevi; Zweier, Jay L; Ilangovan, Govindasamy; Alevriadou, B Rita

    2008-07-01

    Cultured vascular endothelial cell (EC) exposure to steady laminar shear stress results in peroxynitrite (ONOO(-)) formation intramitochondrially and inactivation of the electron transport chain. We examined whether the "hyperoxic state" of 21% O(2), compared with more physiological O(2) tensions (Po(2)), increases the shear-induced nitric oxide (NO) synthesis and mitochondrial superoxide (O(2)(*-)) generation leading to ONOO(-) formation and suppression of respiration. Electron paramagnetic resonance oximetry was used to measure O(2) consumption rates of bovine aortic ECs sheared (10 dyn/cm(2), 30 min) at 5%, 10%, or 21% O(2) or left static at 5% or 21% O(2). Respiration was inhibited to a greater extent when ECs were sheared at 21% O(2) than at lower Po(2) or left static at different Po(2). Flow in the presence of an endothelial NO synthase (eNOS) inhibitor or a ONOO(-) scavenger abolished the inhibitory effect. EC transfection with an adenovirus that expresses manganese superoxide dismutase in mitochondria, and not a control virus, blocked the inhibitory effect. Intracellular and mitochondrial O(2)(*-) production was higher in ECs sheared at 21% than at 5% O(2), as determined by dihydroethidium and MitoSOX red fluorescence, respectively, and the latter was, at least in part, NO-dependent. Accumulation of NO metabolites in media of ECs sheared at 21% O(2) was modestly increased compared with ECs sheared at lower Po(2), suggesting that eNOS activity may be higher at 21% O(2). Hence, the hyperoxia of in vitro EC flow studies, via increased NO and mitochondrial O(2)(*-) production, leads to enhanced ONOO(-) formation intramitochondrially and suppression of respiration.

  14. Black Tea Increases Circulating Endothelial Progenitor Cells and Improves Flow Mediated Dilatation Counteracting Deleterious Effects from a Fat Load in Hypertensive Patients: A Randomized Controlled Study

    Directory of Open Access Journals (Sweden)

    Davide Grassi

    2016-11-01

    Full Text Available (1 Background: Endothelial dysfunction predicts cardiovascular events. Circulating angiogenic cells (CACs maintain and repair the endothelium regulating its function. Tea flavonoids reduce cardiovascular risk. We investigated the effects of black tea on the number of CACs and on flow-mediated dilation (FMD before and after an oral fat in hypertensives; (2 Methods: In a randomized, double-blind, controlled, cross-over study, 19 patients were assigned to black tea (150 mg polyphenols or a placebo twice a day for eight days. Measurements were obtained in a fasted state and after consuming whipping cream, and FMD was measured at baseline and after consumption of the products; (3 Results: Compared with the placebo, black tea ingestion increased functionally active CACs (36 ± 22 vs. 56 ± 21 cells per high-power field; p = 0.006 and FMD (5.0% ± 0.3% vs. 6.6% ± 0.3%, p < 0.0001. Tea further increased FMD 1, 2, 3, and 4 h after consumption, with maximal response 2 h after intake (p < 0.0001. Fat challenge decreased FMD, while tea consumption counteracted FMD impairment (p < 0.0001; (4 Conclusions: We demonstrated the vascular protective properties of black tea by increasing the number of CACs and preventing endothelial dysfunction induced by acute oral fat load in hypertensive patients. Considering that tea is the most consumed beverage after water, our findings are of clinical relevance and interest.

  15. Patient condition affects the collection of peripheral blood progenitors after priming with recombinant granulocyte colony-stimulating factor.

    Science.gov (United States)

    Chabannon, C; Le Coroller, A G; Faucher, C; Novakovitch, G; Blaise, D; Moatti, J P; Maraninchi, D; Mannoni, P

    1995-06-01

    A total of 258 aphereses were performed in 79 patients with nonmyeloid malignancies after mobilization of peripheral blood stem cells (PBSC) with recombinant human granulocyte colony-stimulating factor (rhG-CSF). Apheresis products were examined for viable mononuclear cell (VMC), CD34+ cell, and clonogenic cell contents. The number of progenitors in aphereses differs in subgroups of patients with different diagnoses. However, the number of CD34+ or clonogenic cells is dependent on age and amount of chemotherapy delivered to patients before collection rather than on the nature of the disease itself. In addition, the actual dose of rhG-CSF used to mobilize PBSC and the number of VMC in aphereses influenced the clonogenicity of CD34+ cells, although the daily dose of rhG-CSF seems to play little role on the number of clonogenic cells in each individual apheresis product. CD34+ cell and CFU-C (or CFU-GM) numbers are related parameters, and the relation can be described as linear. However, the linear relation varies in different patient groups, and most of the linearity is induced by the highest sets of values. We conclude that mobilization with low doses of rhG-CSF alone is feasible and that the probability of collecting a high number of peripheral blood progenitors is increased in young patients undergoing apheresis early in the course of the disease. Although the relationship between CD34+ cells and CFUs can be described as linear in well-defined situations, its relevance may be limited because it is not a universal finding.

  16. Chondrogenic differentiation of human subchondral progenitor cells is affected by synovial fluid from donors with osteoarthritis or rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    Krüger Jan

    2012-03-01

    Full Text Available Abstract Background Microfracture is a first-line treatment option for cartilage repair. In microfracture, subchondral mesenchymal cortico-spongious progenitor cells (CSP enter the defect and form cartilage repair tissue. The aim of our study was to investigate the effects of joint disease conditions on the in vitro chondrogenesis of human CSP. Methods CSP were harvested from the subchondral bone marrow. CSP characterization was performed by analysis of cell surface antigen pattern and by assessing the chondrogenic, osteogenic and adipogenic differentiation potential, histologically. To assess the effect of synovial fluid (SF on chondrogenesis of CSP, micro-masses were stimulated with SF from healthy (ND, osteoarthritis (OA and rheumatoid arthritis donors (RA without transforming growth factor beta 3. Results CSP showed the typical cell surface antigen pattern known from mesenchymal stem cells and were capable of osteogenic, adipogenic and chondrogenic differentiation. In micro-masses stimulated with SF, histological staining as well as gene expression analysis of typical chondrogenic marker genes showed that SF from ND and OA induced the chondrogenic marker genes aggrecan, types II and IX collagen, cartilage oligomeric matrix protein (COMP and link protein, compared to controls not treated with SF. In contrast, the supplementation with SF from RA donors decreased the expression of aggrecan, type II collagen, COMP and link protein, compared to CSP treated with SF from ND or OA. Conclusion These results suggest that in RA, SF may impair cartilage repair by subchondral mesenchymal progenitor cells in microfracture, while in OA, SF may has no negative, but a delaying effect on the cartilage matrix formation.

  17. Effects of Angiotensin Ⅱ on Vascular Endothelial Growth Factor Expression in Early Endothelial Progenitor Cells from Human Peripheral Blood%血管紧张素Ⅱ对外周血早期内皮祖细胞血管内皮生长因子表达的影响

    Institute of Scientific and Technical Information of China (English)

    孙文文; 任国庆; 汪奕斌; 张浩

    2011-01-01

    Aim To investigate the effect of angiotensin Ⅱ on vascular endothelial growth factor expression of early endothelial progenitor cells. Methods Total mononuclear cells (MNCs) were isolated from peripheral blood by Ficoll density gradient centrifugation, and then the cells were plated on fibronectin-coated culture dishes. After 7 days of culture, several groups of attached cells were incubated with angiotensin Ⅱ (to make a series of concentrations: 10-3 mol/L, 10 -5 mol/L, 10-7 mol/L vehicle control for 24 h), angiotensin Ⅱ + valsartan, angiotensin Ⅱ + PD123319. The cells were observed under inverted microscope, and characterized as adherent cells double positive for DiL DL-uptake and lectin binding by direct fluorescent staining under a laser scanning confocal microscope. The early endothelial progenitor cells were further documented by demonstrating the expression of cell markers with flow cytometry. Enzyme-linked immunospecific assay (ELISA) were used to assess vascular endothelial growth factor expression. Results Our data indicated that angiotensin Ⅱ can significantly increase the vascular endothelial growth factor expression, with a maximum at 10-3 mol/L after 24 hours (P <0. 05); These effects can be attenuated by pre-treatment with valsartan but not PD123319.Conclusion It is suggested that angiotensin Ⅱ induces vascular endothelial growth factor protein secretion via the angiotensin Ⅱ receptor-1 but not angiotensin Ⅱ receptor-2.%目的 观察血管紧张素Ⅱ对外周血早期内皮祖细胞血管内皮生长因子表达的影响.方法 密度梯度离心法获取外周血单个核细胞,培养7天,收集贴壁细胞,随机分对照组、血管紧张素Ⅱ各浓度 (10-3 mol/L、10-5 mol/L、10-7 mol/L) 组、血管紧张素Ⅱ+缬沙坦组、血管紧张素Ⅱ+ PD123319组.多波长激光共聚焦显微镜鉴定FITC标记荆豆凝集素Ⅰ和 DiI标记的乙酰化低密度脂蛋白双染色阳性为早期内皮祖细胞,流式细胞仪

  18. Endothelial cells regulate neural crest and second heart field morphogenesis.

    Science.gov (United States)

    Milgrom-Hoffman, Michal; Michailovici, Inbal; Ferrara, Napoleone; Zelzer, Elazar; Tzahor, Eldad

    2014-07-04

    Cardiac and craniofacial developmental programs are intricately linked during early embryogenesis, which is also reflected by a high frequency of birth defects affecting both regions. The molecular nature of the crosstalk between mesoderm and neural crest progenitors and the involvement of endothelial cells within the cardio-craniofacial field are largely unclear. Here we show in the mouse that genetic ablation of vascular endothelial growth factor receptor 2 (Flk1) in the mesoderm results in early embryonic lethality, severe deformation of the cardio-craniofacial field, lack of endothelial cells and a poorly formed vascular system. We provide evidence that endothelial cells are required for migration and survival of cranial neural crest cells and consequently for the deployment of second heart field progenitors into the cardiac outflow tract. Insights into the molecular mechanisms reveal marked reduction in Transforming growth factor beta 1 (Tgfb1) along with changes in the extracellular matrix (ECM) composition. Our collective findings in both mouse and avian models suggest that endothelial cells coordinate cardio-craniofacial morphogenesis, in part via a conserved signaling circuit regulating ECM remodeling by Tgfb1.

  19. Endothelial cells regulate neural crest and second heart field morphogenesis

    Directory of Open Access Journals (Sweden)

    Michal Milgrom-Hoffman

    2014-07-01

    Full Text Available Cardiac and craniofacial developmental programs are intricately linked during early embryogenesis, which is also reflected by a high frequency of birth defects affecting both regions. The molecular nature of the crosstalk between mesoderm and neural crest progenitors and the involvement of endothelial cells within the cardio–craniofacial field are largely unclear. Here we show in the mouse that genetic ablation of vascular endothelial growth factor receptor 2 (Flk1 in the mesoderm results in early embryonic lethality, severe deformation of the cardio–craniofacial field, lack of endothelial cells and a poorly formed vascular system. We provide evidence that endothelial cells are required for migration and survival of cranial neural crest cells and consequently for the deployment of second heart field progenitors into the cardiac outflow tract. Insights into the molecular mechanisms reveal marked reduction in Transforming growth factor beta 1 (Tgfb1 along with changes in the extracellular matrix (ECM composition. Our collective findings in both mouse and avian models suggest that endothelial cells coordinate cardio–craniofacial morphogenesis, in part via a conserved signaling circuit regulating ECM remodeling by Tgfb1.

  20. Differentiation state determines neural effects on microvascular endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Muffley, Lara A., E-mail: muffley@u.washington.edu [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Pan, Shin-Chen, E-mail: pansc@mail.ncku.edu.tw [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Smith, Andria N., E-mail: gnaunderwater@gmail.com [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Ga, Maricar, E-mail: marga16@uw.edu [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Hocking, Anne M., E-mail: ahocking@u.washington.edu [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Gibran, Nicole S., E-mail: nicoleg@u.washington.edu [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States)

    2012-10-01

    Growing evidence indicates that nerves and capillaries interact paracrinely in uninjured skin and cutaneous wounds. Although mature neurons are the predominant neural cell in the skin, neural progenitor cells have also been detected in uninjured adult skin. The aim of this study was to characterize differential paracrine effects of neural progenitor cells and mature sensory neurons on dermal microvascular endothelial cells. Our results suggest that neural progenitor cells and mature sensory neurons have unique secretory profiles and distinct effects on dermal microvascular endothelial cell proliferation, migration, and nitric oxide production. Neural progenitor cells and dorsal root ganglion neurons secrete different proteins related to angiogenesis. Specific to neural progenitor cells were dipeptidyl peptidase-4, IGFBP-2, pentraxin-3, serpin f1, TIMP-1, TIMP-4 and VEGF. In contrast, endostatin, FGF-1, MCP-1 and thrombospondin-2 were specific to dorsal root ganglion neurons. Microvascular endothelial cell proliferation was inhibited by dorsal root ganglion neurons but unaffected by neural progenitor cells. In contrast, microvascular endothelial cell migration in a scratch wound assay was inhibited by neural progenitor cells and unaffected by dorsal root ganglion neurons. In addition, nitric oxide production by microvascular endothelial cells was increased by dorsal root ganglion neurons but unaffected by neural progenitor cells. -- Highlights: Black-Right-Pointing-Pointer Dorsal root ganglion neurons, not neural progenitor cells, regulate microvascular endothelial cell proliferation. Black-Right-Pointing-Pointer Neural progenitor cells, not dorsal root ganglion neurons, regulate microvascular endothelial cell migration. Black-Right-Pointing-Pointer Neural progenitor cells and dorsal root ganglion neurons do not effect microvascular endothelial tube formation. Black-Right-Pointing-Pointer Dorsal root ganglion neurons, not neural progenitor cells, regulate

  1. c-Myc affects mRNA translation, cell proliferation and progenitor cell function in the mammary gland

    Directory of Open Access Journals (Sweden)

    Trumpp Andreas

    2009-09-01

    Full Text Available Abstract Background The oncoprotein c-Myc has been intensely studied in breast cancer and mouse mammary tumor models, but relatively little is known about the normal physiological role of c-Myc in the mammary gland. Here we investigated functions of c-Myc during mouse mammary gland development using a conditional knockout approach. Results Generation of c-mycfl/fl mice carrying the mammary gland-specific WAPiCre transgene resulted in c-Myc loss in alveolar epithelial cells starting in mid-pregnancy. Three major phenotypes were observed in glands of mutant mice. First, c-Myc-deficient alveolar cells had a slower proliferative response at the start of pregnancy, causing a delay but not a block of alveolar development. Second, while milk composition was comparable between wild type and mutant animals, milk production was reduced in mutant glands, leading to slower pup weight-gain. Electron microscopy and polysome fractionation revealed a general decrease in translational efficiency. Furthermore, analysis of mRNA distribution along the polysome gradient demonstrated that this effect was specific for mRNAs whose protein products are involved in milk synthesis. Moreover, quantitative reverse transcription-polymerase chain reaction analysis revealed decreased levels of ribosomal RNAs and ribosomal protein-encoding mRNAs in mutant glands. Third, using the mammary transplantation technique to functionally identify alveolar progenitor cells, we observed that the mutant epithelium has a reduced ability to repopulate the gland when transplanted into NOD/SCID recipients. Conclusion We have demonstrated that c-Myc plays multiple roles in the mouse mammary gland during pregnancy and lactation. c-Myc loss delayed, but did not block proliferation and differentiation in pregnancy. During lactation, lower levels of ribosomal RNAs and proteins were present and translation was generally decreased in mutant glands. Finally, the transplantation studies suggest a role

  2. Endothelial nitric oxide: protector of a healthy mind.

    Science.gov (United States)

    Katusic, Zvonimir S; Austin, Susan A

    2014-04-01

    Endothelial nitric oxide (NO) is generated by constitutively active endothelial nitric oxide synthase (eNOS), an essential enzyme responsible for cardiovascular homeostasis. Historically, endothelial NO was first recognized as a major vasodilator involved in control of vasomotor function and local blood flow. In this review, our attention is focused on the emerging role of endothelial NO in linking cerebrovascular function with cognition. We will discuss the recognized ability of endothelial NO to modulate processing of amyloid precursor protein (APP), influence functional status of microglia, and affect cognitive function. Existing evidence suggests that the loss of NO in cultured human cerebrovascular endothelium causes increased expression of APP and β-site APP-cleaving enzyme 1 (BACE1) thereby resulting in increased secretion of amyloid β peptides (Aβ1-40 and Aβ1-42). Furthermore, increased expression of APP and BACE1 as well as increased production of Aβ peptides was detected in the cerebral microvasculature and brain tissue of eNOS-deficient mice. Since Aβ peptides are considered major cytotoxic molecules responsible for the pathogenesis of Alzheimer's disease, these observations support the concept that a loss of endothelial NO might significantly contribute to the initiation and progression of cognitive decline. In addition, genetic inactivation of eNOS causes activation of microglia and promotes a pro-inflammatory phenotype in the brain. Behavioural analysis revealed that eNOS-deficient mice exhibit impaired cognitive performance thereby indicating that selective loss of endothelial NO has a detrimental effect on the function of neuronal cells. Together with findings from prior studies demonstrating the ability of endothelial NO to affect synaptic plasticity, mitochondrial biogenesis, and function of neuronal progenitor cells, it is becoming apparent that the role of endothelial NO in the control of central nervous system function is very complex. We

  3. Atorvastatin prevents hypoxia-induced inhibition of endothelial nitric oxide synthase expression but does not affect heme oxygenase-1 in human microvascular endothelial cells

    NARCIS (Netherlands)

    Loboda, Agnieszka; Jazwa, Agnieszka; Jozkowicz, Alicj A.; Dorosz, Jerzy; Balla, Jozsef; Molema, Grietje; Dulak, Jozef

    2006-01-01

    Beneficial cardiovascular effects of statins, the inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, are particularly assigned to the modulation of inflammation. Endothelial nitric oxide synthase (eNOS) and heme oxygenase-1 (HO-1) are listed among the crucial protective, anti-i

  4. Bee Venom Accelerates Wound Healing in Diabetic Mice by Suppressing Activating Transcription Factor-3 (ATF-3) and Inducible Nitric Oxide Synthase (iNOS)-Mediated Oxidative Stress and Recruiting Bone Marrow-Derived Endothelial Progenitor Cells.

    Science.gov (United States)

    Badr, Gamal; Hozzein, Wael N; Badr, Badr M; Al Ghamdi, Ahmad; Saad Eldien, Heba M; Garraud, Olivier

    2016-10-01

    Multiple mechanisms contribute to impaired diabetic wound healing including impaired neovascularization and deficient endothelial progenitor cell (EPC) recruitment. Bee venom (BV) has been used as an anti-inflammatory agent for the treatment of several diseases. Nevertheless, the effect of BV on the healing of diabetic wounds has not been studied. Therefore, in this study, we investigated the impact of BV on diabetic wound closure in a type I diabetic mouse model. Three experimental groups were used: group 1, non-diabetic control mice; group 2, diabetic mice; and group 3, diabetic mice treated with BV. We found that the diabetic mice exhibited delayed wound closure characterized by a significant decrease in collagen production and prolonged elevation of inflammatory cytokines levels in wounded tissue compared to control non-diabetic mice. Additionally, wounded tissue in diabetic mice revealed aberrantly up-regulated expression of ATF-3 and iNOS followed by a marked elevation in free radical levels. Impaired diabetic wound healing was also characterized by a significant elevation in caspase-3, -8, and -9 activity and a marked reduction in the expression of TGF-β and VEGF, which led to decreased neovascularization and angiogenesis of the injured tissue by impairing EPC mobilization. Interestingly, BV treatment significantly enhanced wound closure in diabetic mice by increasing collagen production and restoring the levels of inflammatory cytokines, free radical, TGF-β, and VEGF. Most importantly, BV-treated diabetic mice exhibited mobilized long-lived EPCs by inhibiting caspase activity in the wounded tissue. Our findings reveal the molecular mechanisms underlying improved diabetic wound healing and closure following BV treatment. J. Cell. Physiol. 231: 2159-2171, 2016. © 2016 Wiley Periodicals, Inc.

  5. Determinants of neointimal proliferation and stent coverage after intracoronary therapy with drug-eluting devices in stable coronary artery disease: role of endothelial progenitor cells and interleukin-1 family cytokines.

    Science.gov (United States)

    Otto, Sylvia; Nitsche, Kristina; Jung, Christian; Gassdorf, Johannes; Janiak, Florian; Goebel, Björn; Figulla, Hans R; Poerner, Tudor C

    2014-12-01

    Endothelial progenitor cells (EPCs) and cytokines seem to play a pivotal role in arterial healing after stent implantation. Using optical coherence tomography (OCT) as a high-resolution imaging technique, we aimed to assess the influence of circulating EPCs and levels of Il-1 cytokines on stent coverage and in-stent proliferation. Eighty-nine patients were randomly treated with either Xience V drug-eluting stent (DES; n = 48) or bare-metal stent (BMS) postdilated with the SeQuent Please drug-eluting balloon (DEB; n = 41). EPC populations (CD34+/CD133+ and CD34+/CD133+/KDR+ EPC) and cytokines (Il-1ra, Il-18, and Il-1α) were measured before percutaneous coronary intervention using flow cytometry or immunoassay. Vessel remodeling was analyzed using coronary angiography and OCT at 6-month follow-up. Indexed neointimal volume and maximal proliferation thickness correlated inversely with EPC levels in the entire study population (r = -0.220; P=.04 and r = -0.253; P=.02) and the BMS + DEB subgroup (r = -0.344; P=.03 and r = -0.374; P=.02). Late lumen loss (LLL) was associated with the proatherogenic Il-18 concentration in the main population (r = 0.342; P=.01) and the BMS + DEB group (r = 0.471; P=.01). In the DES subgroup, associations with proliferation and LLL were lacking. Associations for stent strut coverage were not observed. A high EPC count seems to be a favorable individual patient factor, since it was associated with less instent proliferation. Contrarily, high Il-18 levels lead to more LLL, which emphasizes its proatherogenic properties.

  6. 纤维蛋白胶介导内皮祖细胞再生心肌梗死血管的可行性%Myocardial revascularization after myocardial infarction using endothelial progenitor cells combined with fibrin gel

    Institute of Scientific and Technical Information of China (English)

    阿迪拉·阿扎提; 赵龙; 周欣荣; 刘芬; 陈邦党; 马依彤

    2014-01-01

    背景:有研究显示纤维蛋白胶可促进成肌细胞移植物的保持和生存,减少梗死范围并在梗死区诱导新生血管化。目的:了解内皮祖细胞经可降解材料纤维蛋白胶移植到大鼠梗死心肌后的血管再生情况。方法:将27只SD大鼠随机均分为3组,非心肌梗死组9只、心肌梗死即刻移植组9只与心肌梗死1周移植组9只。每个大组又再分为两个亚组,即移植人脐带源内皮祖细胞-纤维蛋白胶复合物的实验组与移植纤维蛋白胶的对照组。移植后3,8周处死,通过显微镜、免疫组织化学和心脏超声观察其在梗死心肌的血管再生和心功能改善情况。结果与结论:显微镜观察到,实验组大鼠心脏和胸部之间有一些疏松的结缔组织,而其与对照组之间无明显差异。组织和免疫学观察发现,各实验组和对照组的心脏结构不易区分且相对正常,未发现血管瘤、血管畸形和肿瘤等。血管测量结果显示实验组和对照组之间,以及各实验组之间均无差异,并且实验组和对照组之间心功能检查也没有统计学意义。此次研究内皮祖细胞结果没有阳性表现,将修改并提高细胞通过纤维蛋白基质传递的方法策略,确信细胞传递系统提供的有益性和有效性将会进一步得到证实。%BACKGROUND:Studies have shown that fibrin glue can promote the survival of myoblast grafts, reduce infarct size and induce neovascularization of infarct zone. OBJECTIVE:To understand the condition of revascularization of infarcted heart muscle using endothelial progenitor cells combined with degradable fibrin glue materials. METHODS:A total of 27 Sprague-Dawley rats were randomized into three groups, 9 rats in each group:non-myocardial infarction group, immediate transplantation group and 1-week post-infarction transplantation group. Then, these three groups were sub-grouped into two groups, respectively:endothelial

  7. Progenitor cells in arteriosclerosis: good or bad guys?

    Science.gov (United States)

    Campagnolo, Paola; Wong, Mei Mei; Xu, Qingbo

    2011-08-15

    Accumulating evidence indicates that the mobilization and recruitment of circulating or tissue-resident progenitor cells that give rise to endothelial cells (ECs) and smooth muscle cells (SMCs) can participate in atherosclerosis, neointima hyperplasia after arterial injury, and transplant arteriosclerosis. It is believed that endothelial progenitor cells do exist and can repair and rejuvenate the arteries under physiologic conditions; however, they may also contribute to lesion formation by influencing plaque stability in advanced atherosclerotic plaque under specific pathologic conditions. At the same time, smooth muscle progenitors, despite their capacity to expedite lesion formation during restenosis, may serve to promote atherosclerotic plaque stabilization by producing extracellular matrix proteins. This profound evidence provides support to the hypothesis that both endothelial and smooth muscle progenitors may act as a double-edged sword in the pathogenesis of arteriosclerosis. Therefore, the understanding of the regulatory networks that control endothelial and smooth muscle progenitor differentiation is undoubtedly fundamental both for basic research and for improving current therapeutic avenues for atherosclerosis. We update the progress in progenitor cell study related to the development of arteriosclerosis, focusing specifically on the role of progenitor cells in lesion formation and discuss the controversial issues that regard the origins, frequency, and impact of the progenitors in the disease.

  8. Endothelial Dysfunction in Idiopathic Sudden Sensorineural Hearing Loss: A Review

    Science.gov (United States)

    Quaranta, Nicola; De Ceglie, Vincenzo; D’Elia, Alessandra

    2016-01-01

    An endothelial dysfunction has been described in idiopathic sudden sensorineural hearing loss (ISSHL) patients. The purpose of our review was to: i) identify, evaluate and review recent research about cardiovascular risk factors involvement and signs of endothelial dysfunction in ISSHL; ii) implication of these discovering in clinical practice and future research. A Medline literature search was conducted to identify any study on the involvement of endothelial dysfunction in ISSHL, published in the English language in the last decade. The following MEDLINE search terms were used: sudden sensorineural hearing loss (SSHL) and endothelial dysfunction (text words). Additional studies were identified by hand searching the references of original articles and review articles. Studies were not excluded on the basis of the qualitative or quantitative definitions of SSHL, treatment regimens, or outcome measures. Data were extracted from included papers by a reviewer. Information on the patients, investigations, methods, interventions, and outcomes were systematically analyzed. Characteristics and results of all included studies were reviewed systematically. High levels of adhesion molecules, hyperhomocysteinemia and lower folate levels, unbalanced oxidative status, a lower value of flow-mediated dilatation of brachial artery and a reduced percentage of circulating endothelial progenitor cells in patients affected by ISSHL support the hypothesis that this syndrome should be considered as a microcirculation disorder based on endothelial dysfunction and drive clinicians to implement all the traditional strategies used for preventing cardiovascular events, to also reduce the likelihood of ISSHL occurrence. PMID:27588164

  9. Endothelial dysfunction in idiopathic sudden sensorineural hearing loss: a review

    Directory of Open Access Journals (Sweden)

    Nicola Quaranta

    2016-07-01

    Full Text Available An endothelial dysfunction has been described in idiopathic sudden sensorineural hearing loss (ISSHL patients. The purpose of our review was to: i identify, evaluate and review recent research about cardiovascular risk factors involvement and signs of endothelial dysfunction in ISSHL; ii implication of these discovering in clinical practice and future research. A Medline literature search was conducted to identify any study on the involvement of endothelial dysfunction in ISSHL, published in the English language in the last decade. The following MEDLINE search terms were used: sudden sensorineural hearing loss (SSHL and endothelial dysfunction (text words. Additional studies were identified by hand searching the references of original articles and review articles. Studies were not excluded on the basis of the qualitative or quantitative definitions of SSHL, treatment regimens, or outcome measures. Data were extracted from included papers by a reviewer. Information on the patients, investigations, methods, interventions, and outcomes were systematically analyzed. Characteristics and results of all included studies were reviewed systematically. High levels of adhesion molecules, hyperhomocysteinemia and lower folate levels, unbalanced oxidative status, a lower value of flow-mediated dilatation of brachial artery and a reduced percentage of circulating endothelial progenitor cells in patients affected by ISSHL support the hypothesis that this syndrome should be considered as a microcirculation disorder based on endothelial dysfunction and drive clinicians to implement all the traditional strategies used for preventing cardiovascular events, to also reduce the likelihood of ISSHL occurrence.

  10. Endothelial Dysfunction in Idiopathic Sudden Sensorineural Hearing Loss: A Review.

    Science.gov (United States)

    Quaranta, Nicola; De Ceglie, Vincenzo; D'Elia, Alessandra

    2016-04-20

    An endothelial dysfunction has been described in idiopathic sudden sensorineural hearing loss (ISSHL) patients. The purpose of our review was to: i) identify, evaluate and review recent research about cardiovascular risk factors involvement and signs of endothelial dysfunction in ISSHL; ii) implication of these discovering in clinical practice and future research. A Medline literature search was conducted to identify any study on the involvement of endothelial dysfunction in ISSHL, published in the English language in the last decade. The following MEDLINE search terms were used: sudden sensorineural hearing loss (SSHL) and endothelial dysfunction (text words). Additional studies were identified by hand searching the references of original articles and review articles. Studies were not excluded on the basis of the qualitative or quantitative definitions of SSHL, treatment regimens, or outcome measures. Data were extracted from included papers by a reviewer. Information on the patients, investigations, methods, interventions, and outcomes were systematically analyzed. Characteristics and results of all included studies were reviewed systematically. High levels of adhesion molecules, hyperhomocysteinemia and lower folate levels, unbalanced oxidative status, a lower value of flow-mediated dilatation of brachial artery and a reduced percentage of circulating endothelial progenitor cells in patients affected by ISSHL support the hypothesis that this syndrome should be considered as a microcirculation disorder based on endothelial dysfunction and drive clinicians to implement all the traditional strategies used for preventing cardiovascular events, to also reduce the likelihood of ISSHL occurrence.

  11. PPAR Gamma and Angiogenesis: Endothelial Cells Perspective

    Directory of Open Access Journals (Sweden)

    Jerzy Kotlinowski

    2016-01-01

    Full Text Available We summarize the current knowledge concerning PPARγ function in angiogenesis. We discuss the mechanisms of action for PPARγ and its role in vasculature development and homeostasis, focusing on endothelial cells, endothelial progenitor cells, and bone marrow-derived proangiogenic cells.

  12. Serum From Advanced Heart Failure Patients Promotes Angiogenic Sprouting and Affects the Notch Pathway in Human Endothelial Cells.

    Science.gov (United States)

    Pannella, Micaela; Caliceti, Cristiana; Fortini, Francesca; Aquila, Giorgio; Vieceli Dalla Sega, Francesco; Pannuti, Antonio; Fortini, Cinzia; Morelli, Marco Bruno; Fucili, Alessandro; Francolini, Gloria; Voltan, Rebecca; Secchiero, Paola; Dinelli, Giovanni; Leoncini, Emanuela; Ferracin, Manuela; Hrelia, Silvana; Miele, Lucio; Rizzo, Paola

    2016-12-01

    It is unknown whether components present in heart failure (HF) patients' serum provide an angiogenic stimulus. We sought to determine whether serum from HF patients affects angiogenesis and its major modulator, the Notch pathway, in human umbilical vein endothelial cells (HUVECs). In cells treated with serum from healthy subjects or from patients at different HF stage we determined: (1) Sprouting angiogenesis, by measuring cells network (closed tubes) in collagen gel. (2) Protein levels of Notch receptors 1, 2, 4, and ligands Jagged1, Delta-like4. We found a higher number of closed tubes in HUVECs treated with advanced HF patients serum in comparison with cells treated with serum from mild HF patients or controls. Furthermore, as indicated by the reduction of the active form of Notch4 (N4IC) and of Jagged1, advanced HF patients serum inhibited Notch signalling in HUVECs in comparison with mild HF patients' serum and controls. The circulating levels of NT-proBNP (N-terminal of the pro-hormone brain natriuretic peptide), a marker for the detection and evalutation of HF, were positively correlated with the number of closed tubes (r = 0.485) and negatively with Notch4IC and Jagged1 levels in sera-treated cells (r = -0.526 and r = -0.604, respectively). In conclusion, we found that sera from advanced HF patients promote sprouting angiogenesis and dysregulate Notch signaling in HUVECs. Our study provides in vitro evidence of an angiogenic stimulus arising during HF progression and suggests a role for the Notch pathway in it. J. Cell. Physiol. 231: 2700-2710, 2016. © 2016 Wiley Periodicals, Inc.

  13. 尼氟酸对晚期内皮祖细胞生物学特性的影响%Effects of Niflumic Acid on Biological Characteristics of Late Endothelial Progenitor Cells

    Institute of Scientific and Technical Information of China (English)

    刘建华; 张晓芸; 崔晓栋; 王钢; 成敏

    2015-01-01

    目的:探讨ClCa通道抑制剂-尼氟酸(Niflumic,NFA)对大鼠骨髓来源的晚期内皮祖细胞(endothelial progenitor cells,EPCs)生物学特性的影响.方法:密度梯度离心法分离大鼠骨髓单核细胞,应用EGM-2完全培养液进行体外培养,以第三代或第四代的晚期EPCs作为靶细胞,应用RT-PCR检测晚期EPCs上是否存在ClCa通道标志基因TMEM16A和ClCa4的表达.采用CCK-8法、EdU标记法、划痕实验、Boyden小室实验及Matrigel法分别检测10 μmol/L NFA对细胞增殖、迁移及体外血管形成能力的影响;应用荧光定量PCR及流式细胞术检测内皮分化标志vWF和CD31基因及蛋白的表达.结果:晚期EPCs表达C1Ca通道标志基因TMEM16A和C1Ca4;NFA抑制晚期EPCs的迁移功能(P<0.05);但对EPCs的增殖、分化及成血管能力有促进作用.NFA上调了晚期EPCs的CD31和vWF基因和蛋白表达.结论:NFA能促进EPCs的增殖、分化及成血管能力,抑制EPCs的迁移能力.NFA对EPCs生物学特性的这类影响将为心血管疾病治疗药物选择方面提供一定的参考依据.

  14. 糖基化终末产物对人外周血内皮祖细胞生物学特性的影响%Effects of advanced glycation end products on endothelial progenitor cells in the blood

    Institute of Scientific and Technical Information of China (English)

    闫醒军; 施森; 姜隽; 何延政; 边忠平; 刘勇; 黄启荣; 崔驰; 周秀娟; 杨辉; 钟武; 曾宏

    2010-01-01

    Objective In addition to be involved in the angiogenesis, endothelial progenitor cells (EPCs) have roles in endothelium repairing, wound healing, and for protecting blood vessels from restenosis, Advanced glycation end products (AGEs) facilitate the development and progression of atherosclerosis, diabetes associated vascular complications and uremia through various mechanisms such as damaging the endothelium, promoting leukocyte adhension, increasing the aggregation of platelets, and stimulating the proliferation of vascular smooth muscles. This study was designed to explore whether AGEs have effects on biological characteristics of EPCs in cultured human peripheral blood cells. Methods Total mononuclear cells (MNCs), isolated from human peripheral blood by density gradient centrifugatian and adherence cells filtration, were incuba-ted in fibronectin-coated culture dishes. Endothelial cells were identified by means of the adsorption of ulex eurepaeus-aggluti-nin- Ⅰ (UEA- Ⅰ) labelled with fluorescein isothiacyanate (FITC) and Dil-acLDL internalization. Four days later,various con-centrations of AGEs were added to the adherent cells and remained for48 hours. MTT assay and Boyden chamber were used for observing the proliferation and migration of EPCs. Human fibronectin was used to examine the adhesion ability of EPCs. Apop-tosis was induced in the EPCs with formaldehyde and Dnase Ⅰ as a positive control group. Annexin V-FITC/PI and TUNEL method of flow cytometry were used for evaluating the effects of AGEs on the rate of apeptosis in the EPCs. Results AGEs at high concentration decreased the number of EPCs independently (P < 0.01) ; reduced the proliferation (P < 0.01), migration (P<0.001) and adhesive capacity (P<0.05) of EPCs significantly,as well as increasing the apoptasis rate of EPCs in the early stage (P < 0.001). Conclusion AGEs may have adverse effects on EPCs from cultured human peripheral MNCs, such as decreasing their numbers and impairing their

  15. 脂多糖对人脐血内皮祖细胞增殖及凋亡的影响%Effects of lipopolysaccharide on proliferation and apoptosis in human umbilical vein endothelial progeni-tor cells

    Institute of Scientific and Technical Information of China (English)

    李金海; 陈辉春; 戴华卫; 张海峰; 王烈

    2015-01-01

    目的:观察脂多糖(LPS)对体外培养的人脐血内皮祖细胞(EPCs)增殖及凋亡的影响。方法:以密度梯度离心法获取人脐血EPCs,体外诱导分化并鉴定。实验分对照组及不同浓度(2.5、5.0、10.0、20.0 mmol/L)LPS组。四氮唑蓝(MTT)法检测细胞增殖能力,流式细胞仪测凋亡率及细胞周期。结果:①10.0 mmol/L组促进EPCs增殖,20.0 mmol/L组抑制EPCs增殖,差异有统计学意义(P<0.05),其余2组对EPCs增殖能力无显著影响,与对照组比差异无统计学意义(P>0.05)。②20.0 mmol/L组促进EPCs凋亡,差异有统计学意义(P<0.05)。其余各组对EPCs凋亡率无明显影响,与对照组比较差异均无统计学意义(P>0.05)。③10.0、20.0 mmol/L组影响细胞周期,10.0 mmol/L组G0/G1期细胞减少,S和G2/M期增加;20.0 mmol/L组发生S期阻滞,G2/M期细胞减少,与对照组比差异有统计学意义(P<0.05)。结论:LPS对EPCs增殖能力及凋亡的影响与其浓度有关,当浓度为20.0 mmol/L时抑制增殖并促进凋亡。%Objective:To investigate the effect of proliferation, apoptosis and cell cycle of lipopolysac-charide (LPS) on human umbilical vein endothelial progenitor cells. Methods:mononuclear cells were isolated from human umbilical cord blood. Mononuclearcells (MNCs) were isolated from human umbilical cord blood in vitro by Ficoll density gradient centrifugation. EPCs were characterized as adherent cells with double positive to DiI-acLDL uptake and lectin binding by direct lfuorescent staining under a laser scanning confocal microscope. There were ifve groups. The control group and four LPS concentration groups:2.5, 5.0, 10.0, 20.0 mmol/L. MTT was used to detect cell apoptosis and cell cycle. Results:①10.0 mmol/L LPS promotes proliferation of EPCs, while 20.0 mmol/L LPS inhibits the proliferation of endothelial progenitor cells (P<0.05).②20.0 mmol/L LPS promotes apoptosis

  16. Autophagy regulation of rat bone marrow-derived endothelial progenitor cells and cell functions%调控内皮祖细胞自噬促进其功能的实验研究

    Institute of Scientific and Technical Information of China (English)

    胡楠; 钱爱民; 孔令尚; 李承龙; 于小滨; 陈弘; 杜晓龙; 李晓强

    2015-01-01

    Objective To investigate the effect of autophagy regulation of rat bone marrow-derived endothelial progenitor cells (EPCs) on cell functions.Methods EPCs isolated from rat bone marrow were treated with rapamycin (10 μg/L), 3-MA (5 mmol/L) or wortmannin (50 nmol/L) for 24 hours.Cell migration was assayed using a 24-well transwell cell culture chamber.Tube formation was assayed on GFR (growth factor-reduced)-Matrigel.Angiogenic cytokine was analyzed by using corresponding ELISA kits.Expression of the autophagy marker protein LC3-Ⅱ, LAMP2A and HSC70 were analyzed by Western blotting.Results 10 μg/L rapamycin treatment inhibited EPCs migration, tube formation and secretion of angiogenic cytokines.EPCs function significantly increased following 5 mmol/L 3-MA or 50 nmol/L wortmannin treatment.Western blotting showed that rapamycin increased LC3-Ⅱ protein expression, but reduced LAMP2A and HSC70 expression.3-MA or wortmannin treatment reduced LC3-Ⅱ protein expression (P < 0.05), while increased LAMP2A and HSC70 expression.Conclusions Moderate inhibition of autophagy promotes the function of EPCs probably by reducing LC3-Ⅱ protein levels.%目的 研究利用自噬促进剂雷帕霉素和抑制剂3-甲基腺嘌呤(3-methlyadenine,3-MA)或渥曼青霉素调控内皮祖细胞(endothelial progenitor cells,EPCs)自噬,观察对其迁移、成血管和分泌能力的影响以及微管相关蛋白1轻链3-Ⅱ(microtubule-associated protein 1 light chain3-Ⅱ,LC3-Ⅱ)、溶酶体相关膜蛋白2A(lysosome-associated membrane proteintype 2A,LAMP2A)和热休克蛋白70(heatshock protein 70,HSC70)的水平变化.方法 密度梯度离心法分离SD大鼠的骨髓单个核细胞,EGM-2MV培养基诱导、培养、扩增骨髓源性EPCs.分为四组,即雷帕霉素组,3-MA组,渥曼青霉素组和对照组,分别用10μg,/L雷帕霉素,5 mmol/L 3-MA,50 nmol/L渥曼青霉素处理EPCs 12 h,对照组加入等量培养基.分别用transwell实验及成血管实验检测EPCs迁

  17. 他汀类药物对外周血内皮祖细胞的影响%Statins contribute to enhancement of the number and the function of endothelial progenitor cells from peripheral blood

    Institute of Scientific and Technical Information of China (English)

    朱军慧; 陶谦民; 陈君柱; 王兴祥; 朱建华; 尚云鹏

    2004-01-01

    本文旨在探讨他汀类药物氟伐他汀对外周血内皮祖细胞(endothelial progenitor cells,EPCs)数量和功能的影响.用密度梯度离心从外周血获取单个核细胞,将其接种在人纤维连接蛋白(human fibronectin)包被的培养板中,培养7 d后,收集贴壁细胞,加入不同浓度氟伐他汀(分别为0.01、0.1、1、10μmol/L)和辛伐他汀(1 μmol/L),培养一定的时间(6、12、24、48 h).用激光共聚焦显微镜鉴定FITC-UEA-I和DiI-acLDL双染色阳性细胞为正在分化的EPCs,用流式细胞仪检测其表面标志进一步鉴定EPCs,在倒置荧光显微镜下计数.采用MTT比色法、改良的Boyden小室、粘附能力测定实验和体外血管生成试剂盒观察EPCs的增殖能力、迁移能力、粘附能力和体外血管生成能力.结果显示,氟伐他汀可显著增加外周血EPCs的数量,并且EPCs数量随氟伐他汀浓度增加及作用时间延长而增加,1 μmol/L浓度氟伐他汀作用24h对EPCs的数量影响最为显著(较对照组增加15倍,P<0.05).在动物实验中,喂养氟伐他汀3周后,大鼠的EPCs也较对照组增加2倍(P<0.05),进一步支持了体外实验的结果.氟伐他汀和辛伐他汀也显著改善外周血EPCs的粘附能力、迁移能力、增殖能力和体外血管生成的能力,相同浓度的氟伐他汀和辛伐他汀(1 μmol/L)对EPCs数量和功能的影响并无显著差异.上述观察结果提示他汀类药物可增加EPCs的数量,改善EPCs功能.%The aim of the present study was to investigate whether fluvastatin augments the number of endothelial progenitor cells (EPCs),and promotes EPCs proliferation, migration and adhesion. Total mononuclear cells (MNCs) were isolated from peripheral blood by Ficoll density gradient centrifugation. The cells were then plated on fibronectin-coated culture dishes. After being cultured for 7 d, the attached cells were stimulated with fiuvastatin (final concentrations: 0.01, 0.1, 1, 10 μmol/L), simvastatin

  18. Isolation, culture and identification of early and late endothelial progenitor cells from rat bone marrow and peripheral blood★◆%大鼠骨髓和外周血早晚期内皮祖细胞的分离培养和鉴定★◆

    Institute of Scientific and Technical Information of China (English)

    王红娟; 王娟; 李楠; 高航; 刘亢丁

    2013-01-01

      背景:旨在从大鼠外周血及骨髓中提取内皮祖细胞,培养晚期内皮祖细胞,为干细胞移植治疗或通过内皮祖细胞联合基因治疗使内皮祖细胞高表达血管新生诱导因子,达到促进缺血性脑血管病血管新生的目的。目的:从大鼠骨髓及外周血中分离出内皮祖细胞并对其进行鉴定。方法:使用密度梯度离心及贴壁筛选法从大鼠骨髓和外周血中分离获得单个核细胞,进行诱导培养,观察并记录贴壁细胞的生物学特征;选取内皮祖细胞特异性表面标志 CD133、CD34、KDR 对原代细胞进行免疫荧光检测,利用流式细胞学技术检测 KDR、CD34表达,并通过吞噬功能实验进一步鉴定培养细胞。结果与结论:大鼠骨髓和外周血能够分离获得早晚期内皮祖细胞;贴壁细胞免疫荧光检测 CD34、CD133、KDR 表达阳性;流式细胞学检测 CD34、KDR 表达阳性;贴壁细胞能够吞噬 ac-LDL,结合 UEA-1。实验成功从大鼠骨髓及外周血中分离出内皮祖细胞;并获得了增殖活性强的晚期内皮祖细胞,找到了更好的成血管干细胞的种子来源。%BACKGROUND: Our experiments intended to obtain bone marrow endothelial progenitor cells from rat peripheral blood and bone marrow, and culture the late endothelial progenitor cells to perform the stem cells transplantation or endothelial progenitor cells combined with gene therapy in order to highly express the angiogenic factors, thus to promote the angiogenesis after ischemic cerebrovascular disease. OBJECTIVE: To isolate and identify the endothelial progenitor cells from rat bone marrow and peripheral blood. METHODS: Mononuclear cells were obtained by using density gradient centrifugation and adherence screening method from bone marrow and peripheral blood of rats. Then the cells were induced, and the biological characteristics of the adherent cells were observed and recorded. Endothelial

  19. Developmental exposure to T-2 toxin reversibly affects postnatal hippocampal neurogenesis and reduces neural stem cells and progenitor cells in mice.

    Science.gov (United States)

    Tanaka, Takeshi; Abe, Hajime; Kimura, Masayuki; Onda, Nobuhiko; Mizukami, Sayaka; Yoshida, Toshinori; Shibutani, Makoto

    2016-08-01

    To determine the developmental exposure effects of T-2 toxin on postnatal hippocampal neurogenesis, pregnant ICR mice were provided a diet containing T-2 toxin at 0, 1, 3, or 9 ppm from gestation day 6 to day 21 on weaning after delivery. Offspring were maintained through postnatal day (PND) 77 without T-2 toxin exposure. In the hippocampal dentate gyrus of male PND 21 offspring, GFAP(+) and BLBP(+) type-1 stem cells and PAX6(+) and TBR2(+) type-2 progenitor cells decreased in the subgranular zone (SGZ) at 9 and ≥3 ppm, respectively, in parallel with increased apoptosis at ≥3 ppm. In the dentate hilus, reelin(+) γ-aminobutyric acid (GABA)-ergic interneurons increased at 9 ppm, suggesting reflection of neuronal mismigration. T-2 toxin decreased transcript levels of cholinergic and glutamate receptor subunits (Chrna4, Chrnb2 and Gria2) and glutamate transporter (Slc17a6) in the dentate gyrus, suggesting decreased cholinergic signals on hilar GABAergic interneurons innervating type-2 cells and decreased glutamatergic signals on type-1 and type-2 cells. T-2 toxin decreased SGZ cells expressing stem cell factor (SCF) and increased cells accumulating malondialdehydes. Neurogenesis-related changes disappeared on PND 77, suggesting that T-2 toxin reversibly affects neurogenesis by inducing apoptosis of type-1 and type-2 cells with different threshold levels. Decreased cholinergic and glutamatergic signals may decrease type-2 cells at ≥3 ppm. Additionally, decreased SCF/c-Kit interactions and increased oxidative stress may decrease type-1 and type-2 cells at 9 ppm. The no-observed-adverse-effect level for offspring neurogenesis was determined to be 1 ppm (0.14-0.49 mg/kg body weight/day).

  20. Circulating perivascular progenitors: a target of PDGFR inhibition.

    Science.gov (United States)

    Mancuso, Patrizia; Martin-Padura, Ines; Calleri, Angelica; Marighetti, Paola; Quarna, Jessica; Rabascio, Cristina; Braidotti, Paola; Bertolini, Francesco

    2011-09-15

    Cancer blood vessels consist of two interacting types of cells: inner lining endothelial cells (ECs) and surrounding perivascular cells (pericytes, vascular smooth muscle cells or mural cells). PDGFRbeta(CD140b)+ progenitor perivascular cells (PPC) can differentiate into pericytes and regulate vessel stability and vascular survival in tumors. Similarly to what we have done with circulating ECs and progenitors, we developed a flow cytometry procedure for the enumeration of circulating PPCs and the study of their viability in murine models of cancer and in cancer patients. DNA+CD45-CD31-CD140b+ cells were enumerated by six-colour flow cytometry, their morphology was studied by electron microscopy, PPC specificity confirmed by reverse trascription-PCR (RT-PCR) expression of CD140b mRNA, and viability assessed by Syto16 and 7AAD. In preclinical marrow transplantation studies, 9 ± 4% of circulating PPCs were derived from the marrow donor. PPCs were increased in cancer-bearing mice and in patients affected by some types of cancer. At variance with the kinetic of circulating endothelial progenitors, high-dose cyclophosphamide reduced the number of viable PPCs. The administration of sunitinib, a drug known to inhibit PDGFR, was associated in murine models and in cancer patients with an increase of apoptotic/necrotic circulating PPC, suggesting a direct targeting of these cells. PPC enumeration might be studied as a tool for the definition of the optimal biologic dose of anti-PDGFR drugs and investigated clinically as a possible predictive/prognostic tool in patients receiving anti-PDGFR drugs.

  1. Regulation of the nascent brain vascular network by neural progenitors.

    Science.gov (United States)

    Santhosh, Devi; Huang, Zhen

    2015-11-01

    Neural progenitors are central players in the development of the brain neural circuitry. They not only produce the diverse neuronal and glial cell types in the brain, but also guide their migration in this process. Recent evidence indicates that neural progenitors also play a critical role in the development of the brain vascular network. At an early stage, neural progenitors have been found to facilitate the ingression of blood vessels from outside the neural tube, through VEGF and canonical Wnt signaling. Subsequently, neural progenitors directly communicate with endothelial cells to stabilize nascent brain vessels, in part through down-regulating Wnt pathway activity. Furthermore, neural progenitors promote nascent brain vessel integrity, through integrin αvβ8-dependent TGFβ signaling. In this review, we will discuss the evidence for, as well as questions that remain, regarding these novel roles of neural progenitors and the underlying mechanisms in their regulation of the nascent brain vascular network.

  2. 转染VEGF165的内皮祖细胞移植恢复糖尿病ED大鼠的勃起功能%Transplantation of endothelial progenitor cells transfected with VEGF165 to restore erectile function in diabetic rats

    Institute of Scientific and Technical Information of China (English)

    Xin Gou; Yong Chen; Wei-Yang He; Ming-Zhao Xiao; Ming Qiu; Ming Wang; Yuan-Zhong Deng; Chao-Dong Liu; Zao-Sing Tang; Re Li

    2011-01-01

    The present study investigated the effect of transplanting endothelial progenitor cells (EPCs) transfected with the vascular endothelial growth factor gene (VEGF165) into the corpora cavernosa of rats with diabetic erectile dysfunction (ED). A rat model of diabetic ED was constructed via intraperitoneal injection of streptozotocin. After streptozotocin treatment, pre-treated EPCs from each of three groups of rats were transplanted into their corpora cavernosa. Our results, following intracavernosal pressure (ICP) monitoring, showed that ICP increased significantly among rats in the trial group when compared to the results from rats in the blank-plasmid and control groups during basal conditions and electrical stimulation (P<0.01 for both comparisons). Histological examination revealed extensive neovascularisation in the corpora cavernosa of rats in the trial group. Fluorescence microscopy indicated that many of the transplanted EPCs in the trial group survived, differentiated into endothelial cells and integrated into the sites of neovascularisation. Based on the results of this study, we conclude that transplantation of VEGF165-transfected EPCs into the corpora cavernosa of rats with diabetic ED restores erectile function.

  3. Reduced circulating endothelial progenitor cells is a risk factor of coronary slow flow%循环内皮祖细胞与冠状动脉慢血流的关系

    Institute of Scientific and Technical Information of China (English)

    李全忠; 韩金杰; 陈华; 莫新玲; 夏中华; 钱宗杰

    2013-01-01

    Objective To explore if reduced number of circulating endothelial progenitor cells (EPCs) is a risk factor for patients with coronary slow flow (CSF).Methods Thirty patients with CSF and 30 age and gender matched control subjects with normal coronary angiography were included in the study.Mononuclear cells were isolated from peripheral blood by Ficoll density gradient centrifugation and plated on fibronectin-coated culture dishes.EPCs were characterized as adherent cells double positive for DiI-AcLDLuptake and lectin-binding by converted fluorescence microscope (× 200).Results Smoking,diabetes mellitus,hypertension and the levels of plasma lipoprotein profile were similar between the two groups (all P > 0.05).The number of EPCs was significantly lower in patients with CSF compared with control subjects (35.7 ± 5.9 vs.53.2 ± 5.9,P < 0.01).TIMI frame counts was correlated with circulating EPCs number (OR =0.424,95% CI 0.358-0.621,P < 0.01) and not associated with gender,age,smoking,diabetes mellitus,hypertension and the levels of plasma lipoprotein profile.Conclusion Decreased circulating EPCs is an independent risk factor for CSF.%目的 观察冠状动脉慢血流(CSF)患者循环内皮祖细胞(EPC)数量与CSF之间的关系,探讨CSF发病的可能机制.方法 选择冠状动脉造影结果正常和CSF患者各30例,采用密度梯度离心法从外周血获取单个核细胞,通过FITC标记荆豆凝集素和DiI标记的乙酰化低密度脂蛋白双染色、倒置荧光显微镜(200倍视野)鉴定EPC并对EPC进行计数.应用t检验和卡方检验比较两组患者临床资料的差异,并采用logistic回归分析法对相关因素进行分析.结果 两组患者的年龄、性别、高血压、糖尿病、吸烟史所占比例及血脂水平差异均无统计学意义,CSF患者外周血EPC数量明显少于正常对照组(35.7±5.9比53,2±5.9,t=10.3,P<0.01).logistic回归分析显示,性别、年龄、吸烟史、高血压史、糖尿病

  4. 电磁辐射对大鼠内皮祖细胞和肾脏组织学的影响%The Effects of Electromagnetic Radiation on Endothelial Progenitor Cells and Renal Histology

    Institute of Scientific and Technical Information of China (English)

    赵洪雯; 张广斌; 王源; 杨学森; 余争平

    2011-01-01

    Objective: To investigate the effects of electromagnetic radiation on proliferation, migration, adhesion of endothelial progenitor cells (EPCs) cultured in vitro derived from rats bow marrow, and to investigate the relationship between electromagnetic radiation and kidney disease. Methods: Mononuclear cells (MNCs) were obtained from rats' bone marrow by density gradient centrifugation,cultured with EGM-2 complete medium on plate coated by fibronectin. After 6 days, the cells were identified by immunocytochemistry and immunofluorescence. The effects of electromagnetic radiation with 65 mW/cma2 for 20minutes on EPCs proliferation, migration,adhesion were detected by MTT colorimetric method, Transwell assay and adherence ability tests, and rats' kidney histological and ultrastructural changes of irradiating rats was detected. Results: EPCs could be obtained successfully by culture the MNCs form rats bone marrow. Compared with the control group, EPCs proliferation, migration and adhesion ability decreased remarkably. There was no obvious histological change when the rats received the irradiation at any time point. But the ultrastructure showed that there were podocytes swelling after irradiation of 3 hours and fusion after 12 hours in glomeruli capillary loops. Conclusions: Electromagnetic radiation can remarkably depress EPCs biological function and change glomeruli ultrastructure. Electromagnetic radiation probably caused the occurrence of kidney diseases.%目的:研究电磁辐射对体外培养骨髓来源的内皮祖细胞(EPCs)增殖、迁移、黏附能力的影响,并探讨其与肾脏疾病的可能关系.方法:密度梯度离心法获取大鼠骨髓单个核细胞(MNCs),接种至纤维连接素包被的培养板上,培养6d后进行免疫细胞化学和免疫荧光鉴定EPCs.采用MTT比色法、Transwell小室和黏附能力测定实验,观察平均功率密度为65 mW/cm2,时间20min的电磁辐射对EPCs的增殖、迁移、黏附能力的影响;同

  5. 人脐血内皮祖细胞治疗裸鼠心肌梗死%Transplantation of endothelial progenitor cells from human cord blood into ischemic myocardium of nude mice

    Institute of Scientific and Technical Information of China (English)

    董永强; 徐家行; 张晓明; 朱水波; 刘高利; 殷桂林

    2010-01-01

    目的 探讨人脐血内皮祖细胞(EPCs)移植治疗裸鼠心肌梗死的可行性.方法 采用淋巴细胞分离液提取人脐血单个核细胞(MNCs),应用添加诱导因子的培养基于体外诱导分化并于培养7 d后进行鉴定.采用20只裸鼠建立心肌梗死模型后,将体外诱导分化7 d并摄取CM-Dil的内皮祖细胞通过尾静脉注射进行细胞移植到实验组,对照组注射培养基.2周后计数心梗区域新生毛细m管密度及心梗面积并于荧光显微镜下观察新生血管的荧光.结果 体外诱导7 d后贴壁细胞CD34阳性率达(50.48±5.17)%,CDl33阳性率达(19.12±4.37)%.实验组平均梗死面积为(8.27±1.64)%,对照组为(14.30±2.84)%(t=-4.78,P<0.05);实验组每高倍视野平均新生血管密度为14.29±1.38,对照组为10.17±1.72(t=4.71,P<0.01);行荧光显微镜下观察实验组新生血管有红色荧光.讨论人脐血单个核细胞在体外诱导分化为内皮祖细胞,进行细胞移植到建立心梗模型的裸鼠后可在心梗区域形成新生血管,从而并改善梗死部位心脏功能.%Objective To investigate the possibility of endothelial progenitor cells (EPCs) trans-plantation for the treatment of myocardial infarction of nude mice. Methods Mononuclear cells (MNCs) were isolated by lymphocyte separating medium from human cord blood and were cultured in DMEM with proper inducing factors. After 7 days, the attached cells were identified by the characteristic of EPCs. After establishing myocardial infarction model of 20 nude mice the attached cells taking CM-Dil were injected into vena caudalis. The control group was injected with non-serum culture medium, nfarcted size, apillary den-sity and fluorescence of new capillaries were measured 2 weeks after operation. Results After 7 days, the CD34 positive rate in the attached cells was (50.48±5. 17)% and CD133 rate was (19. 12±4. 37)%, respectively. Two weeks after operations, infarcted sizes of transplantation group was

  6. Definition of the variables affecting efficacy of immunodepletion ex vivo of peripheral blood progenitor cell grafts by alemtuzumab (Campath in the bag).

    Science.gov (United States)

    Novitzky, Nicolas; Davison, Glenda; Abdulla, Rygana; Mowla, Shaheen

    2013-12-01

    The immunodepleting effects of alemtuzumab on peripheral blood progenitor cell (PBPC) grafts for stem cell transplantation need to be better defined. The optimal graft cell concentration, antibody dose, need for complement, and whether alemtuzumab is infused with the graft during transplantation remain unclear. PBPC from 6 normal allogeneic stem cell donors harvested by apheresis were first quantitated and the cellular content defined by flow cytometry. Mononuclear cells were then incubated with incremental concentrations of alemtuzumab (.00001, .0001, .001, and .01 mg/mL) for 30 minutes at 20°C or in cell dose responses with 1, 5, and 10 × 10(6) mononuclear cells/mL added to a fixed dose of .001 mg/mL of alemtuzumab with or without a source of complement. Cells were enumerated and analyzed by flow cytometry before and after exposure to alemtuzumab. To determine the presence of unbound anti-CD52, the supernatant of the cell dose responses were tested using the ELISA assay. Selected CD34+ lineage-negative cells were incubated with antibody at the same working concentrations and conditions and cultured in granulocyte-macrophage colony-forming unit assay. The colony numbers were compared with control cultures devoid of the antibody. Incremental concentrations of alemtuzumab led to a significant (2 log) reduction in CD3, CD4, and CD8 populations, which plateaued at .001 mg/mL. Addition of complement led to a further significant reduction in the CD4 and CD8 cells. The maximum CD4 (3 log) and CD8 (2 log) cell death was obtained at 10 × 10(6) cells/mL. Analysis of supernatants for soluble alemtuzumab by ELISA showed a significant reduction in the free antibody concentration when the cell number was increased from 1 to 10 × 10(6) cells/mL implying utilization/binding of the antibody by target cells. Incremental concentrations of alemtuzumab did not affect the number of granulocyte-macrophage colony-forming units. Alemtuzumab depletes all cells expressing the CD52

  7. Innovative Flow Cytometry Allows Accurate Identification of Rare Circulating Cells Involved in Endothelial Dysfunction

    Science.gov (United States)

    Boraldi, Federica; Bartolomeo, Angelica; De Biasi, Sara; Orlando, Stefania; Costa, Sonia; Cossarizza, Andrea; Quaglino, Daniela

    2016-01-01

    Introduction Although rare, circulating endothelial and progenitor cells could be considered as markers of endothelial damage and repair potential, possibly predicting the severity of cardiovascular manifestations. A number of studies highlighted the role of these cells in age-related diseases, including those characterized by ectopic calcification. Nevertheless, their use in clinical practice is still controversial, mainly due to difficulties in finding reproducible and accurate methods for their determination. Methods Circulating mature cells (CMC, CD45-, CD34+, CD133-) and circulating progenitor cells (CPC, CD45dim, CD34bright, CD133+) were investigated by polychromatic high-speed flow cytometry to detect the expression of endothelial (CD309+) or osteogenic (BAP+) differentiation markers in healthy subjects and in patients affected by peripheral vascular manifestations associated with ectopic calcification. Results This study shows that: 1) polychromatic flow cytometry represents a valuable tool to accurately identify rare cells; 2) the balance of CD309+ on CMC/CD309+ on CPC is altered in patients affected by peripheral vascular manifestations, suggesting the occurrence of vascular damage and low repair potential; 3) the increase of circulating cells exhibiting a shift towards an osteoblast-like phenotype (BAP+) is observed in the presence of ectopic calcification. Conclusion Differences between healthy subjects and patients with ectopic calcification indicate that this approach may be useful to better evaluate endothelial dysfunction in a clinical context. PMID:27560136

  8. Early and Late Endothelial Progenitor Cells Derived from Rabbit Bone Marrow Isolated and Cultured by An Improved Method%改良法分离培养兔骨髓源性早晚期内皮祖细胞

    Institute of Scientific and Technical Information of China (English)

    王佐; 张凯; 王仁; 苏维; 李爽; 杨简; 姜志胜

    2011-01-01

    目的 探索简单有效分离培养兔骨髓源性内皮祖细胞的方法,并比较两种内皮祖细胞生物学性状.方法 4周龄左右的新西兰兔,于每侧胫骨取骨髓2mL,密度梯度离心后取单个核细胞接种于培养瓶,48h后将悬浮的细胞收集再次贴壁,血管内皮生长因子诱导其向内皮祖细胞分化.免疫细胞化学鉴定其表面标志物、免疫荧光功能学测定,对比前后两种贴壁细胞生长状况.结果 早期获取的单个核细胞,半小时后就开始贴壁,3天左右即可长出长梭形的细胞,胞体较大,有血岛样克隆形成,随后培养可形成管腔样结构,10天左右即可呈漩涡状融合整个培养瓶,但这种细胞传代能力差,为早期内皮祖细胞;第2次贴壁的晚期细胞于贴壁后呈椭圆形生长,贴壁后5-7天即可出现集落,片状生长,最后呈铺路石样融合,并可连续传至10代以上,为晚期内皮祖细胞.第2次贴壁的内皮祖细胞在分化过程中明显失去CD133+,而CD34+表达有所升高,大部分第1次贴壁内皮祖细胞可以吞噬乙酰化低密度脂蛋白和荆豆凝集素1,第2次贴壁内皮祖细胞功能学鉴定结果与第1次贴壁的结果类似.结论 改良后的密度梯度离心法结合差速贴壁法能有效分离培养兔骨髓源性内皮祖细胞,第2次贴壁的内皮祖细胞生长能力更强.%Aim To establish an available and convenient method to isolate and culture the rabbit bone marrow-derived endothelial progenitor cells (EPC) and compare the characteristics of the two different EPC. Methods Obtained 2 mL bone marrow from each shinbone of about 4 weeks old New Zealand rabbit, mononuclear cells ( MNC) were I-solated by Ficoll density gradient centrifugation method and planted in the first culture flask, after incubated for 48 h, collecting the suspended cells into the second flask, supplemented with vascular endothelial growth factor ( VEGF) in order to induce cells differentiation into EPC. To

  9. Endothelial nuclear lamina is not required for glucocorticoid receptor nuclear import but does affect receptor-mediated transcription activation.

    Science.gov (United States)

    Nayebosadri, Arman; Ji, Julie Y

    2013-08-01

    The lamina serves to maintain the nuclear structure and stiffness while acting as a scaffold for heterochromatin and many transcriptional proteins. Its role in endothelial mechanotransduction, specifically how nuclear mechanics impact gene regulation under shear stress, is not fully understood. In this study, we successfully silenced lamin A/C in bovine aortic endothelial cells to determine its role in both glucocorticoid receptor (GR) nuclear translocation and glucocorticoid response element (GRE) transcriptional activation in response to dexamethasone and shear stress. Nuclear translocation of GR, an anti-inflammatory nuclear receptor, in response to dexamethasone or shear stress (5, 10, and 25 dyn/cm(2)) was observed via time-lapse cell imaging and quantified using a Bayesian image analysis algorithm. Transcriptional activity of the GRE promoter was assessed using a dual-luciferase reporter plasmid. We found no dependence on nuclear lamina for GR translocation from the cytoplasm into the nucleus. However, the absence of lamin A/C led to significantly increased expression of luciferase under dexamethasone and shear stress induction as well as changes in histone protein function. PCR results for NF-κB inhibitor alpha (NF-κBIA) and dual specificity phosphatase 1 (DUSP1) genes further supported our luciferase data with increased expression in the absence of lamin. Our results suggest that absence of lamin A/C does not hinder passage of GR into the nucleus, but nuclear lamina is important to properly regulate GRE transcription. Nuclear lamina, rather than histone deacetylase (HDAC), is a more significant mediator of shear stress-induced transcriptional activity, while dexamethasone-initiated transcription is more HDAC dependent. Our findings provide more insights into the molecular pathways involved in nuclear mechanotransduction.

  10. Vascular endothelial growth inhibitor affects the invasion, apoptosis and vascularisation in breast cancer cell line MDA-MB-231

    Institute of Scientific and Technical Information of China (English)

    Gao Yinguang; Ge Zhicheng; Zhang Zhongtao; Bai Zhigang; Ma Xuemei; Wang Yu

    2014-01-01

    Background Breast cancer is one of the most common malignant female diseases worldwide.It is a significant threat to every woman's health.Vascular endothelial growth inhibitor (VEGI) is known to be abundant in endothelial cells.According to previous literature,overexpression of VEGI has been shown to inhibit tumor neovascularisation and progression in cellular and animal models,but there has been limited research on the significance of VEGI in the breast cancer.Methods In our study,cell lines MDA-MB-231 were first constructed in which VEGI mediated by lentivirus over-expressed.The effects of VEGI over-expression on MDA-MB-231 cells were investigated both in vitro and in vivo.The expression of VEGI in the MDA-MB-231 cells after infection of lentivirus was analyzed using real-time PCR and Western blotting.The effect of the biological characteristics of MDA-MB-231 cells was assessed by growth,invasion,adhesion,and migration assay with subcutaneous tumor-bearing nude mice models.Then the growth curves of the subcutaneous tumors were studied.Expressions of VEGI,CD31 and CD34 in the tumors were analyzed by immunohistochemistry and apoptosis was detected by flow cytometry and immunohistochemistry.Results Infection of MDA-MB-231 cells within the lentivirus resulted in approximately a 1 000-fold increase in the expression of VEGI.As can be seen in the invasion,adhesion and migration assay,the over-expression of VEGI can inhibit the ability of MDA-MB-231 cells during migration,adhesion and invasion.The volume of the subcutaneous tumor in the over-expression group was distinctly and significantly less than that of the control groups.Immunohistochemistry analysis of the tumor biopsies cleady showed the expression of VEGI in the over-expression group increased while CD31 and CD34 decreased significantly.In vitro and in vivo,the early apoptosis rate and the apoptosis index were increased within the VEGI over-expression group as compared with the control group.Conclusions Taken

  11. Testosterone Enhances the Proliferation of Peripheral-Blood-Derived Endothelial Progenitor Cells by up-regulating Vascular Endothelial Growth Factor Expression%睾酮通过上调血管内皮生长因子表达促进外周血内皮祖细胞增殖

    Institute of Scientific and Technical Information of China (English)

    薛亚威; 任国庆; 王芝; 孙文文; 张浩

    2013-01-01

    目的 探讨雄激素对外周血内皮祖细胞(PB-EPC,)增殖能力的影响及其可能机制.方法 将健康志愿者外周血经密度梯度离心法分离的单个核细胞接种至人纤维连接蛋白包被的培养板中,EGM-2MV培养7天后,多波长激光共聚焦显微镜鉴定FITC标记的荆豆凝集素和Dil标记的乙酰化低密度脂蛋白双染色阳性为PB-EPC.将贴壁细胞分为5组,前4组分别加入0、1、10、100nmol/L睾酮,第5组加入10 nmol/L雄激素受体阻断剂氟他胺干预3h后,再加10 nmol/L睾酮干预.培养48 h后,MTT比色法检测各组PB-EPC的增殖能力.实时定量PCR检测血管内皮生长因子(VEGF) mRNA的表达变化,ELISA检测VEGF分泌量的变化.结果 睾酮呈浓度依赖性促进EPC增殖,雄激素受体阻断剂氟他胺完全阻断睾酮对EPC的促进作用.与空白对照组相比,睾酮在mRNA和蛋白水平上调PB-EPC的VEGF表达,氟他胺可阻断此作用.结论 睾酮通过雄激素受体途径上调VEGF的表达,促进PB-EPC增殖.%Aim To explore the effects and related mechanisms of testosterone on the proliferation of Peripheral-blood endothelial progenitor cells (PB-EPCs). Methods Total mononuclear cells(MNC) were isolated from peripheral blood of healthy volunteers by Ficoll density gradient centrifugation, culturing with EGM-2MV for 7 days in vitro. The adherent cells showed up taking of acetylated low-density ( ac-LDL-Dil) and binding of lectin ( FITC-UEA-I) , observing with confocal laser scanning microscopy. PB-EPC were dealt with four concentrations of testosterone, as 0 nmol/L, 1 nmol/L, 10 nmol/L,and 100 nmol/L respectively, and in another group PB-EPC were pretreated with 10 nmol/L flutamide (androgen receptor antagonist) for 3h and then stimulated with 10 nmol/L testosterone. After 48 h, the ability of cell proliferation was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diph-phenyltetrazolium bromide assay ( MTT). The VEGF expression was tested by quantitative real

  12. Iron oxide nanoparticles surface coating and cell uptake affect biocompatibility and inflammatory responses of endothelial cells and macrophages

    Science.gov (United States)

    Orlando, Antonina; Colombo, Miriam; Prosperi, Davide; Gregori, Maria; Panariti, Alice; Rivolta, Ilaria; Masserini, Massimo; Cazzaniga, Emanuela

    2015-09-01

    Engineered iron oxide nanoparticles (IONP) offer the possibility of a wide range of medical uses, from clinical imaging to magnetically based hyperthermia for tumor treatment. These applications require their systemic administration in vivo. An important property of nanoparticles is their stability in biological media. For this purpose, a multicomponent nanoconstruct combining high colloidal stability and improved physical properties was synthesized and characterized. IONP were coated with an amphiphilic polymer (PMA), which confers colloidal stability, and were pegylated in order to obtain the nanoconstruct PEG-IONP-PMA. The aim of this study was to utilize cultured human endothelial cells (HUVEC) and murine macrophages, taken as model of cells exposed to NP after systemic administration, to assess the biocompatibility of PEG-IONP-PMA (23.1 ± 1.4 nm) or IONP-PMA (15.6 ± 3.4 nm). PEG-IONP-PMA, tested at different concentrations as high as 20 μg mL-1, exhibited no cytotoxicity or inflammatory responses. By contrast, IONP-PMA showed a concentration-dependent increase of cytotoxicity and of TNF-α production by macrophages and NO production by HUVECs. Cell uptake analysis suggested that after PEGylation, IONP were less internalized either by macrophages or by HUVEC. These results suggest that the choice of the polymer and the chemistry of surface functionalization are a crucial feature to confer to IONP biocompatibility.

  13. Iron oxide nanoparticles surface coating and cell uptake affect biocompatibility and inflammatory responses of endothelial cells and macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Orlando, Antonina [University of Milano-Bicocca, Department of Health Sciences (Italy); Colombo, Miriam; Prosperi, Davide [University of Milano-Bicocca, Department of Biotechnology and Biosciences (Italy); Gregori, Maria; Panariti, Alice; Rivolta, Ilaria; Masserini, Massimo; Cazzaniga, Emanuela, E-mail: emanuela.cazzaniga@unimib.it [University of Milano-Bicocca, Department of Health Sciences (Italy)

    2015-09-15

    Engineered iron oxide nanoparticles (IONP) offer the possibility of a wide range of medical uses, from clinical imaging to magnetically based hyperthermia for tumor treatment. These applications require their systemic administration in vivo. An important property of nanoparticles is their stability in biological media. For this purpose, a multicomponent nanoconstruct combining high colloidal stability and improved physical properties was synthesized and characterized. IONP were coated with an amphiphilic polymer (PMA), which confers colloidal stability, and were pegylated in order to obtain the nanoconstruct PEG-IONP-PMA. The aim of this study was to utilize cultured human endothelial cells (HUVEC) and murine macrophages, taken as model of cells exposed to NP after systemic administration, to assess the biocompatibility of PEG-IONP-PMA (23.1 ± 1.4 nm) or IONP-PMA (15.6 ± 3.4 nm). PEG-IONP-PMA, tested at different concentrations as high as 20 μg mL{sup −1}, exhibited no cytotoxicity or inflammatory responses. By contrast, IONP-PMA showed a concentration-dependent increase of cytotoxicity and of TNF-α production by macrophages and NO production by HUVECs. Cell uptake analysis suggested that after PEGylation, IONP were less internalized either by macrophages or by HUVEC. These results suggest that the choice of the polymer and the chemistry of surface functionalization are a crucial feature to confer to IONP biocompatibility.

  14. 内皮祖细胞移植对脓毒症大鼠的治疗作用%Role of endothelial progenitor cell transplantation in rats with sepsis

    Institute of Scientific and Technical Information of China (English)

    徐喜媛; 杨敬平; 那仁格日勒; 乌日娜; 田红军; 宋慧芳; 王慧

    2015-01-01

    大鼠的肺、肝及肾组织,下调促炎因子,使机体恢复促炎/抗炎平衡,显著缓解肺、肝及肾组织损伤。%Objective To investigate the role of endothelial progenitor cells ( EPCs ) transplantation in rats with sepsis induced by endotoxin ( lipopolysaccharides, LPS ). Methods Sixty clean grade Sprague-Dawley ( SD ) rats with genetic background were divided into three groups according to random number table method:control group, model group, and EPCs transplantation group, with 20 rats in each group. The sepsis model was reproduced by intravenous delivery of LPS 5 mg/kg. Rats in control group were injected with the same amount of normal saline. EPCs were isolated, and cultured and identified were fluorescently labeled with the green fluorescent protein ( GFP ) adenoviral transfection method. The EPC transplantation group was injected with LPS, then a fluorescently labeled EPCs suspension was injected via the tail vein 1 hour later. The expression of fluorescent markers of EPCs was detected with both small animal in vivo imaging instrument and frozen section. Seven days after transplantation, abdominal aorta blood was collected to determine interleukins ( IL-6 and IL-10 ) in peripheral blood with enzyme linked immunosorbent assay ( ELISA ), and the lung, liver, and kidney tissues were harvested, the wet/dry ratio of the lung ( W/D ) was calculated, and hematoxylin and eosin ( HE ) staining was performed to observe, the change in histopathology. Toll-like receptor 4 ( TLR4 ) mRNA expression in lung, liver, and kidney tissues was determined with real-time reverse transcription-polymerase chain reaction ( RT-PCR ). Results The positive rate of EPCs cells with double marking of CD133 and CD34 was 99.0% at the 5th generation of subculture by using flow cytometry. After the transplantation of EPCs labeled with the green fluorescent protein, the appearance of fluorescence indicated that EPCs were mainly localized in the chest, and a stronger

  15. From progenitor to afterlife

    CERN Document Server

    Chevalier, R A

    2006-01-01

    The sequence of massive star supernova types IIP (plateau light curve), IIL (linear light curve), IIb, IIn (narrow line), Ib, and Ic roughly represents a sequence of increasing mass loss during the stellar evolution. The mass loss affects the velocity distribution of the ejecta composition; in particular, only the IIP's typically end up with H moving at low velocity. Radio and X-ray observations of extragalactic supernovae show varying mass loss properties that are in line with expectations for the progenitor stars. For young supernova remnants, pulsar wind nebulae and circumstellar interaction provide probes of the inner ejecta and higher velocity ejecta, respectively. Among the young remnants, there is evidence for supernovae over a range of types, including those that exploded with much of the H envelope present (Crab Nebula, 3C 58, 0540--69) and those that exploded after having lost most of their H envelope (Cas A, G292.0+1.8).

  16. Hypoxia Affects the Structure of Breast Cancer Cell-Derived Matrix to Support Angiogenic Responses of Endothelial Cells.

    Science.gov (United States)

    Hielscher, Abigail; Qiu, Connie; Porterfield, Josh; Smith, Quinton; Gerecht, Sharon

    2013-01-01

    Hypoxia, a common feature of the tumor environment and participant in tumor progression, is known to alter gene and protein expression of several Extracellular Matrix (ECM) proteins, many of which have roles in angiogenesis. Previously, we reported that ECM deposited from co-cultures of Neonatal Fibroblasts (NuFF) with breast cancer cells, supported 3-dimensional vascular morphogenesis. Here, we sought to characterize the hypoxic ECM and to identify whether the deposited ECM induce angiogenic responses in Endothelial Cells (ECs). NuFF and MDA-MB-231 breast cancer cells were co-cultured, subjected to alternating cycles of 24 hours of 1% (hypoxia) and 21% (atmospheric) oxygen and de-cellularized for analyses of deposited ECM. We report differences in mRNA expression profiles of matrix proteins and crosslinking enzymes relevant to angiogenesis in hypoxia-exposed co-cultures. Interestingly, overt differences in the expression of ECM proteins were not detected in the de-cellularized ECM; however, up-regulation of the cell-binding fragment of fibronecin was observed in the conditioned media of hypoxic co-cultures. Ultrastructure analyses of the de-cellularized ECM revealed differences in fiber morphology with hypoxic fibers more compact and aligned, occupying a greater percent area and having larger diameter fibers than atmospheric ECM. Examining the effect of hypoxic ECM on angiogenic responses of ECs, morphological differences in Capillary-Like Structures (CLS) formed atop de-cellularized hypoxic and atmospheric ECM were not evident. Interestingly, we found that hypoxic ECM regulated the expression of angiogenic factors and matrix metalloproteinases in CLS. Overall, we report that in vitro, hypoxia does not alter the composition of the ECM deposited by co-cultures of NuFF/MDA-MB-231, but rather alters fiber morphology, and induces vascular expression of angiogenic growth factors and metalloproteinases. Taken together, these results have important implications for

  17. Endothelialized ePTFE Graft by Nanobiotechnology

    Science.gov (United States)

    2013-11-29

    The Apparatus for Processing the Tubular Graft Modification Will be Designed and Evaluated.; The On-site Capturing of the Endothelial (Progenitor) Cells by Peptide-mediated Selective Adhesion in Vitro and in Vivo Will Also be Elucidated.; The Patency Rate of ITRI-made Artificial Blood Vessels Will be Evaluated by the Porcine Animal Model.

  18. 黄芪多糖对2型糖尿病患者外周血内皮祖细胞体外增殖的影响%Effect of Astragalus Polysaccharides on Proliferation of Endothelial Progenitor Cells from Peripheral Blood of Patients with Type 2 Diabetes

    Institute of Scientific and Technical Information of China (English)

    吴青; 徐寒松; 谢晓云; 陈文群

    2011-01-01

    目的:观察黄芪多糖(Astragalus Polysaccharides,APS)对2型糖尿病(T2DM)患者内皮祖细胞(EPCs)体外增殖的影响.方法:密度梯度离心法获取T2DM患者外周血单个核细胞,在鼠尾胶原包被的培养瓶中培养7 d后鉴定EPCs,MTT检测APS对T2DM患者EPCs增殖的影响.结果:T2DM外周血单个核细胞在鼠尾胶原包被的培养瓶中培养后呈梭形、铺路石样,表达内皮细胞的特异性抗原CD34和KDR,表达干/祖细胞抗原CD133;APS在一定剂量和时间范围内能促进T2DM外周血EPCs增殖(P<0.05).结论:鼠尾胶原可代替EPCs培养中常用的纤维连接蛋白,是体外分离培养外周血EPCs的更节省的一种方法,APS能促进EPCs增殖.%Objective: To investigate the methods of isolating and culturing endothelial progenitor cells (EPCs) from peripheral blood in patients with type 2 diabetes ( T2 DM), and to observe the effect of astragalus polysaccharides (APS) on proliferation of EPCs. Methods: Total mononuclear cells were isolated with density gradient centrifugation and put into the culture flasks previously coated by rat tail collagen. After 7 days of culture, EPCs were identifyed, and treated with various concentrations of APS for different durations. Proliferation of EPCs was measured by MTT. Results: Most of the cultured cells adhering to the culture flask displayed fibroblast-like and slabstone-like morphology. Endothelial cell specific antigen CD34 and KDR, and progenitor antigen CD133 were expressed. APS could promote the proliferation of EPCs in T2DM in certain ranges of dose and time (P < 0. 05 ). Conclusions: The rat tail collagen can be a cheaper replacement of fibronectin for the culture of EPCs from peripheral blood in T2 DM. APS could markedly promote the proliferation of EPCs in T2 DM.

  19. Acrylamide affects proliferation and differentiation of the neural progenitor cell line C17.2 and the neuroblastoma cell line SH-SY5Y.

    Science.gov (United States)

    Attoff, K; Kertika, D; Lundqvist, J; Oredsson, S; Forsby, A

    2016-09-01

    Acrylamide is a well-known neurotoxic compound and people get exposed to the compound by food consumption and environmental pollutants. Since acrylamide crosses the placenta barrier, the fetus is also being exposed resulting in a risk for developmental neurotoxicity. In this study, the neural progenitor cell line C17.2 and the neuroblastoma cell line SH-SY5Y were used to study proliferation and differentiation as alerting indicators for developmental neurotoxicity. For both cell lines, acrylamide reduced the number of viable cells by reducing proliferation and inducing cell death in undifferentiated cells. Acrylamide concentrations starting at 10fM attenuated the differentiation process in SH-SY5Y cells by sustaining cell proliferation and neurite outgrowth was reduced at concentrations from 10pM. Acrylamide significantly reduced the number of neurons starting at 1μM and altered the ratio between the different phenotypes in differentiating C17.2 cell cultures. Ten micromolar of acrylamide also reduced the expression of the neuronal and astrocyte biomarkers. Although the neurotoxic concentrations in the femtomolar range seem to be specific for the SH-SY5Y cell line, the fact that micromolar concentrations of acrylamide seem to attenuate the differentiation process in both cell lines raises the interest to further investigations on the possible developmental neurotoxicity of acrylamide. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Insights into the molecular mechanisms of diabetes-induced endothelial dysfunction

    DEFF Research Database (Denmark)

    Saad, Mohamed I.; Abdelkhalek, Taha M.; Saleh, Moustafa M.

    2015-01-01

    -associated metabolic disturbances (IR, subclinical inflammation, dyslipidemia, hyperglycemia, dysregulated production of adipokines, defective incretin and gut hormones production/action, and oxidative stress) and ED, focusing on oxidative stress and endothelial progenitor cells (EPCs). In addition, we re......Diabetes mellitus is a heterogeneous, multifactorial, chronic disease characterized by hyperglycemia owing to insulin insufficiency and insulin resistance (IR). Recent epidemiological studies showed that the diabetes epidemic affects 382 million people worldwide in 2013, and this figure is expected......-emphasize that oxidative stress is the final common pathway that transduces signals from other conditions-either directly or indirectly-leading to ED and CVD....

  1. The isolation and in vitro expansion of hepatic Sca-1 progenitor cells

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Elizabeth, E-mail: Elizabeth.Clayton@ed.ac.uk [Tissue Injury and Regeneration Laboratory, MRC/Centre for Inflammation Research, The Queen' s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ (United Kingdom); Forbes, Stuart J. [Tissue Injury and Regeneration Laboratory, MRC/Centre for Inflammation Research, The Queen' s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ (United Kingdom)

    2009-04-17

    The intra-hepatic population of liver progenitor cells expands during liver injury when hepatocyte proliferation is inhibited. These cells can be purified by density gradient centrifugation and cultured. Separated by size only this population contains small cells of hematopoietic, epithelial and endothelial lineages and is thought to contain liver stem cells. The identity of liver stem cells remains unknown although there is some evidence that tissue Sca1{sup +} CD45{sup -} cells display progenitor cell characteristics. We identified both intra-hepatic and gall bladder Sca1{sup +} cells following liver injury and expanded ex vivo Sca1 cells as part of heterogenous cell culture or as a purified population. We found significant difference between the proliferation of Sca-1 cells when plated on laminin or collagen I while proliferation of heterogenous population was not affected by the extracellular matrix indicating the necessity for culture of Sca1{sup +} cells with laminin matrix or laminin producing cells in long term liver progenitor cell cultures.

  2. The effect of bisphosphonates on the endothelial differentiation of mesenchymal stem cells.

    Science.gov (United States)

    Sharma, Dileep; Hamlet, Stephen Mark; Petcu, Eugen Bogdan; Ivanovski, Saso

    2016-02-09

    The contribution of the local stem cell niche to providing an adequate vascular framework during healing cannot be overemphasized. Bisphosphonates (BPs) are known to have a direct effect on the local vasculature, but their effect on progenitor cell differentiation is unknown. This in vitro study evaluated the effect(s) of various BPs on the differentiation of human placental mesenchymal stem cells (pMSCs) along the endothelial lineage and their subsequent functional and morphogenic capabilities. pMSC multipotency was confirmed by successful differentiation into cells of both the osteogenic and endothelial lineages, as demonstrated by positive Alizarin Red S staining and Ac-LDL uptake. pMSC differentiation in the presence of non-cytotoxic BP concentrations showed that nitrogen containing BPs had a significant inhibitory effect on cell migration and endothelial marker gene expression, as well as compromised endothelial differentiation as demonstrated using von Willebrand factor immunofluorescence staining and tube formation assay. This in vitro study demonstrated that at non-cytotoxic levels, nitrogen-containing BPs inhibit differentiation of pMSCs into cells of an endothelial lineage and affect the downstream functional capability of these cells supporting a multi-modal effect of BPs on angiogenesis as pathogenic mechanism contributing to bone healing disorders such as bisphosphonate related osteonecrosis of the jaws (BRONJ).

  3. Vascular smooth muscle cells for use in vascular tissue engineering obtained by endothelial-to-mesenchymal transdifferentiation (EnMT) on collagen matrices

    NARCIS (Netherlands)

    Krenning, Guido; Moonen, Jan-Renier A. J.; van Luyn, Marja J. A.; Harmsen, Martin C.

    2008-01-01

    The discovery of the endothelial progenitor cell (EPC) has led to an intensive research effort into progenitor cell-based tissue engineering of (small-diameter) blood vessels. Herein, EPC are differentiated to vascular endothelial cells and serve as the inner lining of bioartificial vessels. As yet,

  4. Epigallocatechin gallate inhibits endothelial exocytosis.

    Science.gov (United States)

    Yamakuchi, Munekazu; Bao, Clare; Ferlito, Marcella; Lowenstein, Charles J

    2008-07-01

    Consumption of green tea is associated with a decrease in cardiovascular mortality. The beneficial health effects of green tea are attributed in part to polyphenols, organic compounds found in tea that lower blood pressure, reduce body fat, decrease LDL cholesterol, and inhibit inflammation. We hypothesized that epigallocatechin gallate (EGCG), the most abundant polyphenol in tea, inhibits endothelial exocytosis, the initial step in leukocyte trafficking and vascular inflammation. To test this hypothesis, we treated human umbilical-vein endothelial cells with EGCG and other polyphenols, and then measured endothelial exocytosis. We found that EGCG decreases endothelial exocytosis in a concentration-dependent manner, with the effects most prominent after 4 h of treatment. Other catechin polyphenols had no effect on endothelial cells. By inhibiting endothelial exocytosis, EGCG decreases leukocyte adherence to endothelial cells. In searching for the mechanism by which EGCG affects endothelial cells, we found that EGCG increases Akt phosphorylation, eNOS phosphorylation, and nitric oxide (NO) production. NOS inhibition revealed that NO mediates the anti-inflammatory effects of EGCG. Our data suggest that polyphenols can decrease vascular inflammation by increasing the synthesis of NO, which blocks endothelial exocytosis.

  5. Exposure to GSM RF fields does not affect calcium homeostasis in human endothelial cells, rat pheocromocytoma cells or rat hippocampal neurons.

    Directory of Open Access Journals (Sweden)

    Rodney P O'Connor

    Full Text Available In the course of modern daily life, individuals are exposed to numerous sources of electromagnetic radiation that are not present in the natural environment. The strength of the electromagnetic fields from sources such as hairdryers, computer display units and other electrical devices is modest. However, in many home and office environments, individuals can experience perpetual exposure to an "electromagnetic smog", with occasional peaks of relatively high electromagnetic field intensity. This has led to concerns that such radiation can affect health. In particular, emissions from mobile phones or mobile phone masts have been invoked as a potential source of pathological electromagnetic radiation. Previous reports have suggested that cellular calcium (Ca2+ homeostasis is affected by the types of radiofrequency fields emitted by mobile phones. In the present study, we used a high-throughput imaging platform to monitor putative changes in cellular Ca2+ during exposure of cells to 900 MHz GSM fields of differing power (specific absorption rate 0.012-2 W/Kg, thus mimicking the type of radiation emitted by current mobile phone handsets. Data from cells experiencing the 900 Mhz GSM fields were compared with data obtained from paired experiments using continuous wave fields or no field. We employed three cell types (human endothelial cells, PC-12 neuroblastoma and primary hippocampal neurons that have previously been suggested to be sensitive to radiofrequency fields. Experiments were designed to examine putative effects of radiofrequency fields on resting Ca2+, in addition to Ca2+ signals evoked by an InsP(3-generating agonist. Furthermore, we examined putative effects of radiofrequency field exposure on Ca2+ store emptying and store-operated Ca2+ entry following application of the Ca2+ATPase inhibitor thapsigargin. Multiple parameters (e.g., peak amplitude, integrated Ca2+ signal, recovery rates were analysed to explore potential impact of

  6. Exposure to GSM RF fields does not affect calcium homeostasis in human endothelial cells, rat pheocromocytoma cells or rat hippocampal neurons.

    Science.gov (United States)

    O'Connor, Rodney P; Madison, Steve D; Leveque, Philippe; Roderick, H Llewelyn; Bootman, Martin D

    2010-07-27

    In the course of modern daily life, individuals are exposed to numerous sources of electromagnetic radiation that are not present in the natural environment. The strength of the electromagnetic fields from sources such as hairdryers, computer display units and other electrical devices is modest. However, in many home and office environments, individuals can experience perpetual exposure to an "electromagnetic smog", with occasional peaks of relatively high electromagnetic field intensity. This has led to concerns that such radiation can affect health. In particular, emissions from mobile phones or mobile phone masts have been invoked as a potential source of pathological electromagnetic radiation. Previous reports have suggested that cellular calcium (Ca2+) homeostasis is affected by the types of radiofrequency fields emitted by mobile phones. In the present study, we used a high-throughput imaging platform to monitor putative changes in cellular Ca2+ during exposure of cells to 900 MHz GSM fields of differing power (specific absorption rate 0.012-2 W/Kg), thus mimicking the type of radiation emitted by current mobile phone handsets. Data from cells experiencing the 900 Mhz GSM fields were compared with data obtained from paired experiments using continuous wave fields or no field. We employed three cell types (human endothelial cells, PC-12 neuroblastoma and primary hippocampal neurons) that have previously been suggested to be sensitive to radiofrequency fields. Experiments were designed to examine putative effects of radiofrequency fields on resting Ca2+, in addition to Ca2+ signals evoked by an InsP(3)-generating agonist. Furthermore, we examined putative effects of radiofrequency field exposure on Ca2+ store emptying and store-operated Ca2+ entry following application of the Ca2+ATPase inhibitor thapsigargin. Multiple parameters (e.g., peak amplitude, integrated Ca2+ signal, recovery rates) were analysed to explore potential impact of radiofrequency field

  7. HIF1α is a regulator of hematopoietic progenitor and stem cell development in hypoxic sites of the mouse embryo

    Directory of Open Access Journals (Sweden)

    Parisa Imanirad

    2014-01-01

    Full Text Available Hypoxia affects many physiologic processes during early stages of mammalian ontogeny, particularly placental and vascular development. In the adult, the hypoxic bone marrow microenvironment plays a role in regulating hematopoietic stem cell (HSC function. HSCs are generated from the major vasculature of the embryo, but whether the hypoxic response affects the generation of these HSCs is as yet unknown. Here we examined whether Hypoxia Inducible Factor1-alpha (HIF1α, a key modulator of the response to hypoxia, is essential for HSC development. We found hypoxic cells in embryonic tissues that generate and expand hematopoietic cells (aorta, placenta and fetal liver, and specifically aortic endothelial and hematopoietic cluster cells. A Cre/loxP conditional knockout (cKO approach was taken to delete HIF1α in Vascular Endothelial-Cadherin expressing endothelial cells, the precursors to definitive hematopoietic cells. Functional assays show that HSC and hematopoietic progenitor cells (HPCs are significantly reduced in cKO aorta and placenta. Moreover, decreases in phenotypic aortic hematopoietic cluster cells in cKO embryos indicate that HIF1α is necessary for generation and/or expansion of HPCs and HSCs. cKO adult BM HSCs are also affected under transplantation conditions. Thus, HIF1α is a regulator of HSC generation and function beginning at the earliest embryonic stages.

  8. 水飞蓟素对内皮祖细胞增殖、迁移功能的影响研究%Impact of silymarin on proliferation and migration function of endothelial progenitor cells

    Institute of Scientific and Technical Information of China (English)

    张鹏; 乔昆; 任雨笙; 梁春; 冷冰; 吴宗贵

    2014-01-01

    目的:通过体外培养、鉴定内皮祖细胞(EPCs),进一步研究水飞蓟素对 EPCs活性和功能的影响,为进一步优化EPCs治疗缺血性疾病提供重要的理论依据。方法通过密度梯度离心法分离、培养、鉴定得到EPCs;在EPCs中加入不同浓度(0、25、50、100μg/m L )水飞蓟素干预24 h后,检测细胞增殖、迁移和凋亡水平。结果与对照组比较,水飞蓟素干预24 h后,50~100μg/mL的水飞蓟素可明显增加EPCs的增殖和迁移能力(n=6,P<0.05),25~100μg/mL的水飞蓟素可明显抑制EPCs的凋亡(n=6,P<0.05),并呈浓度依赖性。结论水飞蓟素可呈浓度依赖性增强EPCs的活性和功能。%Objective Through culturing and identifying endothetial progenitor cells (EPCs) in vitro ,to study the impact of sily-marin on EPCs proliferation ,migration and apoptosis to proride the important theoretical basis for further optimizing the therapeutic effect of EPCs in treating ischemic diseases .Methods Peripheral blood was collected from human volunteer .Mononuclear cells (MNCs)were separated by density centrifugation and were induced to differentiate into EPCs in vitro .After the silymarin interven-tion with different concentrations(0 ,25 ,50 ,100 μg/mL)(50-100 μg/mL) for 24 h and the proliferation ,migration and apoptosis levels of EPCs were detected .Results Compared with the control group ,silymarin on EPCs could significantly enhance the prolifer-ation and migration ability of EPCs(n=6 ,P<0 .05) ,silymarin with the concentration of 25-100 μg/mL could significantly inhibit the apoptosis of EPCs in a concentration dependent manner (n=6 ,P<0 .05) .Conclusion Silymarin can enhance the activily and function EPCs in a concentration dependent manner .

  9. High Density Sphere Culture of Adult Cardiac Cells Increases the Levels of Cardiac and Progenitor Markers and Shows Signs of Vasculogenesis

    Directory of Open Access Journals (Sweden)

    Kristina Vukusic

    2013-01-01

    Full Text Available 3D environment and high cell density play an important role in restoring and supporting the phenotypes of cells represented in cardiac tissues. The aim of this study was therefore to investigate the suitability of high density sphere (HDS cultures for studies of cardiomyocyte-, endothelial-, and stem-cell biology. Primary adult cardiac cells from nine human biopsies were cultured using different media for up to 9 weeks. The possibilities to favor a certain cell phenotype and induce production of extra cellular matrix (ECM were studied by histology, immunohistochemistry, and quantitative real-time PCR. Defined media gave significant increase in both cardiac- and progenitor-specific markers and also an intraluminal position of endothelial cells over time. Cardiac media showed indication of differentiation and maturity of HDS considering the ECM production and activities within NOTCH regulation but no additional cardiac differentiation. Endothelial media gave no positive effects on endothelial phenotype but increased proliferation without fibroblast overgrowth. In addition, indications for early vasculogenesis were found. It was also possible to affect the Wnt signaling in HDS by addition of a glycogen synthase kinase 3 (GSK3 inhibitor. In conclusion, these findings show the suitability of HDS as in vitro model for studies of cardiomyocyte-, endothelial-, and stem-cell biology.

  10. Regenerative cell therapy and pharmacotherapeutic intervention in heart failure - Part 1 : Cardiovascular progenitor cells, their functions and sources

    NARCIS (Netherlands)

    Qian, C.; Schoemaker, R. G.; van Gilst, W. H.; Yu, B.; Roks, A. J. M.

    It has been postulated that bone marrow derived endothelial progenitor cells (BM-EPCs) are essential for neovascularisation and endothelial repair and arc involved in pharmacological treatment, and even its potential targets. There is no doubt that the ultimate success of angiogenic cell therapy

  11. Endothelial cell promotion of early liver and pancreas development.

    Science.gov (United States)

    Freedman, Deborah A; Kashima, Yasushige; Zaret, Kenneth S

    2007-01-01

    Different steps of embryonic pancreas and liver development require inductive signals from endothelial cells. During liver development, interactions between newly specified hepatic endoderm cells and nascent endothelial cells are crucial for the endoderm's subsequent growth and morphogenesis into a liver bud. Reconstitution of endothelial cell stimulation of hepatic cell growth with embryonic tissue explants demonstrated that endothelial signalling occurs independent of the blood supply. During pancreas development, midgut endoderm interactions with aortic endothelial cells induce Ptf1a, a crucial pancreatic determinant. Endothelial cells also have a later effect on pancreas development, by promoting survival of the dorsal mesenchyme, which in turn produces factors supporting pancreatic endoderm. A major goal of our laboratory is to determine the endothelial-derived molecules involved in these inductive events. Our data show that cultured endothelial cells induce Ptf1a in dorsal endoderm explants lacking an endogenous vasculature. We are purifying endothelial cell line product(s) responsible for this effect. We are also identifying endothelial-responsive regulatory elements in genes such as Ptf1a by genetic mapping and chromatin-based assays. These latter approaches will allow us to track endothelial-responsive signal pathways from DNA targets within progenitor cells. The diversity of organogenic steps dependent upon endothelial cell signalling suggests that cross-regulation of tissue development with its vasculature is a general phenomenon.

  12. MicroRNA-223-3p inhibits the angiogenesis of ischemic cardiac microvascular endothelial cells via affecting RPS6KB1/hif-1a signal pathway.

    Directory of Open Access Journals (Sweden)

    Guo-Hua Dai

    Full Text Available BACKGROUND: MicroRNAs (miRNAs are a recently discovered class of posttranscriptional regulators of gene expression with critical functions in the angiogenesis and cardiovascular diseases; however, the details of miRNAs regulating mechanism of angiogenesis of ischemic cardiac microvascular endothelial cells (CMECs are not yet reported. METHODS AND RESULTS: This study analyzes the changes of the dynamic expression of miRNAs during the process of angiogenesis of ischemic CMECs by applying miRNA chip and real-time PCR for the first time. Compared with normal CMECs, ischemic CMECs have a specific miRNAs expression profile, in which mir-223-3p has the most significant up-regulation, especially during the process of migration and proliferation, while the up-regulation is the most significant during migration, reaching 11.02 times. Rps6kb1 is identified as a potential direct and functional target of mir-223-3p by applying bioinformatic prediction, real-time PCR and Western blot. Pathway analysis report indicates Rps6kb1 regulates the angiogenesis by participating into hif-1a signal pathway. Further analysis reveals that both the gene and protein expression of the downstream molecules VEGF, MAPK, PI3K and Akt of Rps6kb1/hif-1a signal pathway decrease significantly during the process of migration and proliferation in the ischemic CMECs. Therefore, it is confirmed that mir-223-3p inhibits the angiogenesis of CMECs, at least partly, via intervening RPS6KB1/hif-1a signal pathway and affecting the process of migration and proliferation. CONCLUSION: This study elucidates the miRNA regulating law in the angiogenesis of CMECs; mir-223-3p inhibits the process of migration and proliferation of ischemic CMECs probably via affecting RPS6KB1/hif-1a signal pathway, which in turn suppresses the angiogenesis. It is highly possible that mir-223-3p becomes a novel intervention core target in the treatment of angiogenesis of ischemic heart diseases.

  13. 小窝蛋白-1在膜雌激素受体介导的内皮祖细胞增殖中的作用%Role of caveolin-I on membrane estrogen receptor mediated proliferation of endothelial progenitor cells

    Institute of Scientific and Technical Information of China (English)

    胡飞雪; 王庭槐; 谈智

    2011-01-01

    Objective To investigate the potential role of caveolin-1 ( CAV-1 ) on membrane estrogen receptor (mER) mediated proliferation of endothelial progenitor cells (EPCs).Methods Bone marrow (BM) -derived EPCs were cultured.The proliferation of EPCs induced by estradiol ( E2 ) -BSA in the absence or presence of ICI 182,780 (a pure ER inhibitor),MβCD and CAV-1 siRNA was determined by [3H]-thymidine incorporation.The expression of CAV-1 was detected by Western blot.Results Proliferation of EPC peaked after 10-8 mol/L E2-BSA culture for 24 h (87.5% increase vs.control),and this effect could be inhibited by estrogen receptor blocker ICI 182,780,indicating that mER-initiated membrane signaling pathways was involved in the proliferation effect of estrogen on EPC.Both cholesterol depletion and CAV-1 siRNA significantly attenuated E2-BSA induced [3H ]-thymidine incorporation.Western blot result confirmed that cholesterol depletion or CAV-1 siRNA significantly decreased CAV-1 protein expression ( - 18.6% or -41.2% vs.10-8 mol/L E2-BSA alone).Conclusion Our results suggested that estradiol promoted EPC proliferation through activating CAV-1 pathway.%目的 探讨微囊结构关键蛋白——小窝蛋白-1( caveolin-1,CAV-1)在膜雌激素受体介导的内皮祖细胞(endothelial progenitor cells,EPC)增殖中的作用.方法 培养的EPC分别用不同浓度( 10-9~10-6 mol/L)雌二醇-牛血清白蛋白复合物(E2-BSA)作用24h或10-8 mol/L E2-BSA作用不同时间,或加雌激素受体阻断剂ICI 182,780、环糊精(MβCD)以及CAV-1 siRNA处理,在DMDM培养基中培养的EPC(不加任何试剂)作为对照,使用3H-脱氧胸苷掺入法检测其对EPC增殖的影响.CAV-1 siRNA干扰的效果利用免疫印迹法检测CAV-1蛋白表达来验证.结果 10-8 mol/L E2-BSA作用24h促进EPC增殖作用最大(比对照组高了约87.5%),ICI 182,780可以抑制其增殖作用,表明膜雌激素受体介导的信号通路参与了雌激素对EPC的增殖作用.用环

  14. Intermittent Hypoxia Impairs Endothelial Function in Early Preatherosclerosis.

    Science.gov (United States)

    Tuleta, I; França, C N; Wenzel, D; Fleischmann, B; Nickenig, G; Werner, N; Skowasch, D

    2015-01-01

    Intermittent hypoxia seems to be a major pathomechanism of obstructive sleep apnea-associated progression of atherosclerosis. The goal of the present study was to assess the influence of hypoxia on endothelial function depending on the initial stage of vasculopathy. We used 16 ApoE-/- mice were exposed to a 6-week-intermittent hypoxia either immediately (early preatherosclerosis) or after 5 weeks of high-cholesterol diet (advanced preatherosclerosis). Another 16 ApoE-/- mice under normoxia served as corresponding controls. Endothelial function was measured by an organ bath technique. Blood plasma CD31+/annexin V+ endothelial microparticles as well as sca1/flk1+ endothelial progenitor cells in blood and bone marrow were analyzed by flow cytometry. The findings were that intermittent hypoxia impaired endothelial function (56.6±6.2% of maximal phenylephrine-induced vasoconstriction vs. 35.2±4.1% in control) and integrity (increased percentage of endothelial microparticles: 0.28±0.05% vs. 0.15±0.02% in control) in early preatherosclerosis. Peripheral repair capacity expressed as the number of endothelial progenitor cells in blood was attenuated under hypoxia (2.0±0.5% vs. 5.3±1.9% in control), despite the elevated number of these cells in the bone marrow (2.0±0.4% vs. 1.1±0.2% in control). In contrast, endothelial function, as well as microparticle and endothelial progenitor cell levels were similar under hypoxia vs. control in advanced preatherosclerosis. We conclude that hypoxia aggravates endothelial dysfunction and destruction in early preatherosclerosis.

  15. Neural progenitor cells regulate microglia functions and activity.

    Science.gov (United States)

    Mosher, Kira I; Andres, Robert H; Fukuhara, Takeshi; Bieri, Gregor; Hasegawa-Moriyama, Maiko; He, Yingbo; Guzman, Raphael; Wyss-Coray, Tony

    2012-11-01

    We found mouse neural progenitor cells (NPCs) to have a secretory protein profile distinct from other brain cells and to modulate microglial activation, proliferation and phagocytosis. NPC-derived vascular endothelial growth factor was necessary and sufficient to exert at least some of these effects in mice. Thus, neural precursor cells may not only be shaped by microglia, but also regulate microglia functions and activity.

  16. The RNA-binding protein quaking maintains endothelial barrier function and affects VE-cadherin and β-catenin protein expression.

    Science.gov (United States)

    de Bruin, Ruben G; van der Veer, Eric P; Prins, Jurriën; Lee, Dae Hyun; Dane, Martijn J C; Zhang, Huayu; Roeten, Marko K; Bijkerk, Roel; de Boer, Hetty C; Rabelink, Ton J; van Zonneveld, Anton Jan; van Gils, Janine M

    2016-02-24

    Proper regulation of endothelial cell-cell contacts is essential for physiological functioning of the endothelium. Interendothelial junctions are actively involved in the control of vascular leakage, leukocyte diapedesis, and the initiation and progression of angiogenesis. We found that the RNA-binding protein quaking is highly expressed by endothelial cells, and that its expression was augmented by prolonged culture under laminar flow and the transcription factor KLF2 binding to the promoter. Moreover, we demonstrated that quaking directly binds to the mRNA of VE-cadherin and β-catenin and can induce mRNA translation mediated by the 3'UTR of these genes. Reduced quaking levels attenuated VE-cadherin and β-catenin expression and endothelial barrier function in vitro and resulted in increased bradykinin-induced vascular leakage in vivo. Taken together, we report that quaking is essential in maintaining endothelial barrier function. Our results provide novel insight into the importance of post-transcriptional regulation in controlling vascular integrity.

  17. Red light, green light: Signals that control endothelial cell proliferation during embryonic vascular development

    Science.gov (United States)

    The proper regulation of endothelial cell proliferation is critical for vascular development in the embryo. VEGF-A and bFGF, which are important in the induction of mesodermal progenitors to form a capillary plexus, are also key mitogenic signals. Disruption in VEGF-A or bFGF decreases endothelial c...

  18. p-Cresol affects reactive oxygen species generation, cell cycle arrest, cytotoxicity and inflammation/atherosclerosis-related modulators production in endothelial cells and mononuclear cells.

    Directory of Open Access Journals (Sweden)

    Mei-Chi Chang

    Full Text Available AIMS: Cresols are present in antiseptics, coal tar, some resins, pesticides, and industrial solvents. Cresol intoxication leads to hepatic injury due to coagulopathy as well as disturbance of hepatic circulation in fatal cases. Patients with uremia suffer from cardiovascular complications, such as atherosclerosis, thrombosis, hemolysis, and bleeding, which may be partly due to p-cresol toxicity and its effects on vascular endothelial and mononuclear cells. Given the role of reactive oxygen species (ROS and inflammation in vascular thrombosis, the objective of this study was to evaluate the effect of p-cresol on endothelial and mononuclear cells. METHODS: EA.hy926 (EAHY endothelial cells and U937 cells were exposed to different concentrations of p-cresol. Cytotoxicity was evaluated by 3-(4,5-Dimethylthiazol-2-yl-2,5 -diphenyltetrazolium bromide (MTT assay and trypan blue dye exclusion technique, respectively. Cell cycle distribution was analyzed by propidium iodide flow cytometry. Endothelial cell migration was studied by wound closure assay. ROS level was measured by 2',7'-dichlorofluorescein diacetate (DCF fluorescence flow cytometry. Prostaglandin F2α (PGF2α, plasminogen activator inhibitor-1 (PAI-1, soluble urokinase plasminogen activator receptor (suPAR, and uPA production were determined by Enzyme-linked immunosorbant assay (ELISA. RESULTS: Exposure to 100-500 µM p-cresol decreased EAHY cell number by 30-61%. P-cresol also decreased the viability of U937 mononuclear cells. The inhibition of EAHY and U937 cell growth by p-cresol was related to induction of S-phase cell cycle arrest. Closure of endothelial wounds was inhibited by p-cresol (>100 µM. P-cresol (>50 µM also stimulated ROS production in U937 cells and EAHY cells but to a lesser extent. Moreover, p-cresol markedly stimulated PAI-1 and suPAR, but not PGF2α, and uPA production in EAHY cells. CONCLUSIONS: p-Cresol may contribute to atherosclerosis and thrombosis in patients with

  19. Serum-Free Generation of Multipotent Mesoderm (Kdr-positive) Progenitor Cells in Mouse Embryonic Stem Cells For Functional Genomics Screening

    OpenAIRE

    2012-01-01

    This unit describes a robust protocol for producing multipotent Kdr-expressing mesoderm progenitor cells in serum-free conditions and functional genomics screening using these cells. Kdr-positive cells are known to be able to differentiate into a wide array of mesoderm derivatives including, vascular endothelial cells, cardiomyocytes, hematopietic progenitors and smooth muscle cells. The efficient generation of such progenitor cells is of particular interest because it permits subsequent step...

  20. Complementary populations of human adipose CD34+ progenitor cells promote growth, angiogenesis, and metastasis of breast cancer.

    Science.gov (United States)

    Orecchioni, Stefania; Gregato, Giuliana; Martin-Padura, Ines; Reggiani, Francesca; Braidotti, Paola; Mancuso, Patrizia; Calleri, Angelica; Quarna, Jessica; Marighetti, Paola; Aldeni, Chiara; Pruneri, Giancarlo; Martella, Stefano; Manconi, Andrea; Petit, Jean-Yves; Rietjens, Mario; Bertolini, Francesco

    2013-10-01

    Obesity is associated with an increased frequency, morbidity, and mortality of several types of neoplastic diseases, including postmenopausal breast cancer. We found that human adipose tissue contains two populations of progenitors with cooperative roles in breast cancer. CD45(-)CD34(+)CD31(+)CD13(-)CCRL2(+) endothelial cells can generate mature endothelial cells and capillaries. Their cancer-promoting effect in the breast was limited in the absence of CD45(-)CD34(+)CD31(-)CD13(+)CD140b(+) mesenchymal progenitors/adipose stromal cells (ASC), which generated pericytes and were more efficient than endothelial cells in promoting local tumor growth. Both endothelial cells and ASCs induced epithelial-to-mesenchymal transition (EMT) gene expression in luminal breast cancer cells. Endothelial cells (but not ASCs) migrated to lymph nodes and to contralateral nascent breast cancer lesions where they generated new vessels. In vitro and in vivo, endothelial cells were more efficient than ASCs in promoting tumor migration and in inducing metastases. Granulocyte colony-stimulating factor (G-CSF) effectively mobilized endothelial cells (but not ASCs), and the addition of chemotherapy and/or of CXCR4 inhibitors did not increase endothelial cell or ASC blood mobilization. Our findings suggest that adipose tissue progenitor cells cooperate in driving progression and metastatic spread of breast cancer.

  1. Activating Sonic hedgehog pathway can improve the impaired function of endothelial progenitor cells in type 1 diabetic mice%激活Sonic hedgehog 通路改善1型糖尿病小鼠内皮祖细胞功能

    Institute of Scientific and Technical Information of China (English)

    覃媛; 何艳华; 张根水; 张贵平; 罗健东

    2015-01-01

    Aim To study the effect of activating Sonic hedgehog( Shh) pathway on the function of endothelial progenitor cells ( EPCs ) in type 1 diabetic mice. Methods EPCs were isolated and cultured by density gradient method from diabetic mice. The effects of Shh N-terminal peptide and agonist SAG on EPCs prolifera-tion were evaluated by using the MTT colorimetric as-say. EPCs migration was measured by Transwell meth-od. EPCs tube formation ability was estimated by Matrigel . EPCs senescence activity was determined by β-galactosidase staining. Results Compared with control mice, the function of EPCs in type 1 diabetic mice was impaired. The proliferation, migration and tube formation of diabetic EPCs could be promoted by Shh peptide and agonist SAG. The senescence of dia-betic EPCs could be decreased by Shh peptide and ag-onist SAG. Conclusion Activating Shh signaling pathway can improve the impared function of diabetic EPCs in type 1 diabetic mice.%目的:研究激活Sonic hedgehog通路对1型糖尿病小鼠内皮祖细胞( EPCs)生物学功能的影响。方法用链脲佐菌素( STZ)诱导建立1型糖尿病小鼠模型;采用密度梯度离心法分离并培养糖尿病小鼠骨髓 EPCs;体外给予 Sonic hedgehog( Shh)信号通路配体蛋白Shh和受体激动剂SAG,通过MTT法、改良Boyden小室、Matrigel和β-半乳糖苷酶分别检测各组EPCs的增殖、迁移、小管形成和衰老的功能性指标。结果1型糖尿病小鼠EPCs与正常对照组相比功能明显下降,体外给予Shh蛋白和受体激动剂SAG,可促进糖尿病EPCs增殖,减少衰老,改善迁移和小管形成能力。结论体外激活Sonic hedgehog通路可以改善1型糖尿病小鼠内皮祖细胞受损的功能。

  2. Progenitors of Supernovae Type Ia

    CERN Document Server

    Toonen, S; Bours, M; Zwart, S Portegies; Claeys, J; Mennekens, N; Ruiter, A

    2013-01-01

    Despite the significance of Type Ia supernovae (SNeIa) in many fields in astrophysics, SNeIa lack a theoretical explanation. The standard scenarios involve thermonuclear explosions of carbon/oxygen white dwarfs approaching the Chandrasekhar mass; either by accretion from a companion or by a merger of two white dwarfs. We investigate the contribution from both channels to the SNIa rate with the binary population synthesis (BPS) code SeBa in order to constrain binary processes such as the mass retention efficiency of WD accretion and common envelope evolution. We determine the theoretical rates and delay time distribution of SNIa progenitors and in particular study how assumptions affect the predicted rates.

  3. Characterization and comparison of embryonic stem cell-derived KDR+ cells with endothelial cells.

    Science.gov (United States)

    Sun, Xuan; Cheng, Lamei; Duan, Huaxin; Lin, Ge; Lu, Guangxiu

    2012-09-01

    Growing interest in utilizing endothelial cells (ECs) for therapeutic purposes has led to the exploration of human embryonic stem cells (hESCs) as a potential source for endothelial progenitors. In this study, ECs were induced from hESC lines and their biological characteristics were analyzed and compared with both cord blood endothelial progenitor cells (CBEPCs) and human umbilical vein endothelial cells (HUVECs) in vitro. The results showed that isolated embryonic KDR+ cells (EC-KDR+) display characteristics that were similar to CBEPCs and HUVECs. EC-KDR+, CBEPCs and HUVECs all expressed CD31 and CD144, incorporated DiI-Ac-LDL, bound UEA1 lectin, and were able to form tube-like structures on Matrigel. Compared with CBEPCs and HUVECs, the expression level of endothelial progenitor cell markers such as CD133 and KDR in EC-KDR+ was significantly higher, while the mature endothelial marker vWF was lowly expressed in EC-KDR+. In summary, the study showed that EC-KDR+ are primitive endothelial-like progenitors and might be a potential source for therapeutic vascular regeneration and tissue engineering.

  4. CMTM3 (CKLF-Like Marvel Transmembrane Domain 3) Mediates Angiogenesis by Regulating Cell Surface Availability of VE-Cadherin in Endothelial Adherens Junctions.

    Science.gov (United States)

    Chrifi, Ihsan; Louzao-Martinez, Laura; Brandt, Maarten; van Dijk, Christian G M; Burgisser, Petra; Zhu, Changbin; Kros, Johan M; Duncker, Dirk J; Cheng, Caroline

    2017-06-01

    Decrease in VE-cadherin adherens junctions reduces vascular stability, whereas disruption of adherens junctions is a requirement for neovessel sprouting during angiogenesis. Endocytosis plays a key role in regulating junctional strength by altering bioavailability of cell surface proteins, including VE-cadherin. Identification of new mediators of endothelial endocytosis could enhance our understanding of angiogenesis. Here, we assessed the function of CMTM3 (CKLF-like MARVEL transmembrane domain 3), which we have previously identified as highly expressed in Flk1(+) endothelial progenitor cells during embryonic development. Using a 3-dimensional coculture of human umbilical vein endothelial cells-GFP (green fluorescent protein) and pericytes-RFP (red fluorescent protein), we demonstrated that siRNA-mediated CMTM3 silencing in human umbilical vein endothelial cells impairs angiogenesis. In vivo CMTM3 inhibition by morpholino injection in developing zebrafish larvae confirmed that CMTM3 expression is required for vascular sprouting. CMTM3 knockdown in human umbilical vein endothelial cells does not affect proliferation or migration. Intracellular staining demonstrated that CMTM3 colocalizes with early endosome markers EEA1 (early endosome marker 1) and Clathrin(+) vesicles and with cytosolic VE-cadherin in human umbilical vein endothelial cells. Adenovirus-mediated CMTM3 overexpression enhances endothelial endocytosis, shown by an increase in Clathrin(+), EEA1(+), Rab11(+), Rab5(+), and Rab7(+) vesicles. CMTM3 overexpression enhances, whereas CMTM3 knockdown decreases internalization of cell surface VE-cadherin in vitro. CMTM3 promotes loss of endothelial barrier function in thrombin-induced responses, shown by transendothelial electric resistance measurements in vitro. In this study, we have identified a new regulatory function for CMTM3 in angiogenesis. CMTM3 is involved in VE-cadherin turnover and is a regulator of the cell surface pool of VE-cadherin. Therefore

  5. Effect of Reishi polysaccharides on human stem/progenitor cells.

    Science.gov (United States)

    Chen, Wan-Yu; Yang, Wen-Bin; Wong, Chi-Huey; Shih, Daniel Tzu-Bi

    2010-12-15

    The polysaccharide fraction of Ganoderma lucidum (F3) was found to benefit our health in many ways by influencing the activity of tissue stem/progenitor cells. In this study, F3 was found to promote the adipose tissue MSCs' aggregation and chondrosphere formation, with the increase of CAM (N-CAM, I-CAM) expressions and autokine (BMP-2, IL-11, and aggrecan) secretions, in an in vitro chondrogenesis assay. In a stem cell expansion culture, it possesses the thrombopoietin (TPO) and GM-CSF like functions to enhance the survival/renewal abilities of primitive hematopoietic stem/progenitor cells (HSCs). F3 was found to promote the dendrite growth of blood mononuclear cells (MNCs) and the expression of cell adhesion molecules in the formation of immature dendritic cells (DC). On the other hand, F3 exhibited inhibitory effects on blood endothelial progenitor (EPC) colony formation, with concomitant reduction of cell surface endoglin (CD105) and vascular endothelial growth factor receptor-3 (VEGFR-3) marker expressions, in the presence of angiogenic factors. A further cytokine array analysis revealed that F3 indeed inhibited the angiogenin synthesis and enhanced IL-1, MCP-1, MIP-1, RANTES, and GRO productions in the blood EPC derivation culture. Collectively, we have demonstrated that the polysaccharide fraction of G. lucidum F3 exhibits cytokine and chemokine like functions which are beneficial to human tissue stem/progenitor cells by modulating their CAM expressions and biological activities. These findings provide us a better the observation that F3 glycopolysaccharides indeed possesses anti-angiogenic and immune-modulating functions and promotes hematopoietic stem/progenitor cell homing for better human tissue protection, reducing disease progression and health.

  6. Effects of diabetic HDL on endothelial cell function.

    Science.gov (United States)

    He, Dan; Pan, Bing; Ren, Hui; Zheng, Lemin

    2014-01-01

    Type 2 diabetes mellitus (T2DM) is accompanied by dysfunctional high-density lipoprotein (HDL) and this is characterized by alterations in its composition and structure compared with HDL from normal subjects (N-HDL). HDL from diabetic subjects (D-HDL) has a diminished endothelial protective capacity including reducted ability to exert antioxidative activity, stimulate endothelial cell (EC) production of nitric oxide (NO) and endothelium-dependent vasomotion, promote endothelial progenitor cell (EPC)-mediated endothelial repair. In addition, D-HDL promotes EC proliferation, migration and adhesion to the matrix. The present review provides an overview of these effects of diabetic HDL on EC function, as well as the possible changes of D-HDL structure and composition which may be responsible for the diminished endothelial protective capacity of D-HDL.

  7. Epigenetic mechanisms of endothelial dysfunction in type 2 diabetes.

    Science.gov (United States)

    Prattichizzo, Francesco; Giuliani, Angelica; Ceka, Artan; Rippo, Maria Rita; Bonfigli, Anna Rita; Testa, Roberto; Procopio, Antonio Domenico; Olivieri, Fabiola

    2015-01-01

    The development of type-2 diabetes mellitus (T2DM) and its complications is largely due to the complex interaction between genetic factors and environmental influences, mainly dietary habits and lifestyle, which can either accelerate or slow down disease progression. Recent findings suggest the potential involvement of epigenetic mechanisms as a crucial interface between the effects of genetic predisposition and environmental factors. The common denominator of environmental factors promoting T2DM development and progression is that they trigger an inflammatory response, promoting inflammation-mediated insulin resistance and endothelial dysfunction. Proinflammatory stimuli, including hyperglycemia, oxidative stress, and other inflammatory mediators, can affect epigenetic mechanisms, altering the expression of specific genes in target cells without changes in underlying DNA sequences. DNA methylation and post-translational histone modifications (PTHMs) are the most extensively investigated epigenetic mechanisms. Over the past few years, non-coding RNA, including microRNAs (miRNAs), have also emerged as key players in gene expression modulation. MiRNAs can be actively released or shed by cells in the bloodstream and taken up in active form by receiving cells, acting as efficient systemic communication tools. The miRNAs involved in modulation of inflammatory pathways (inflammamiRs), such as miR-146a, and those highly expressed in endothelial lineages and hematopoietic progenitor cells (angiomiRs), such as miR-126, are the most extensively studied circulating miRNAs in T2DM. However, data on circulating miRNA signatures associated with specific diabetic complications are still lacking. Since immune cells and endothelial cells are primarily involved in the vascular complications of T2DM, their relative contribution to circulating miRNA signatures needs to be elucidated. An integrated approach encompassing different epigenetic mechanisms would have the potential to

  8. Protective effect of endothelial progenitor cells mediated by ischemic preconditioning on renal ischemic injury induced by nephron sparing surgery%缺血预适应介导的内皮祖细胞对保留肾单位手术后肾功能的保护作用

    Institute of Scientific and Technical Information of China (English)

    刘昊; 吴然; 贾瑞鹏; 朱佳庚; 吴剑平

    2013-01-01

    Objective To investigate the role of endothelial progenitor cells (EPCs) mediated by ischemic preconditioning (IPC) in renal ischemic injury in a nephron sparing surgery (NSS) rat model.Methods Ninety male Sprague-Dawley rats were randomly divided into three groups after right-side kidney nephrectomy.In sham-operated rats,lumbotomy without vascular clamping was performed; In NSS rats,renal blood vesses were clamped for 40 min and lower pole partial nephrectomy (PN) was performed; In NSS + IPC rats,besides pre-treatment with 15-min ischemia and 10-min reperfusion,the rest procedures were the same as those in NSS rats.At 1,3,6,12,24 h,and 3 days after reperfusion,the circulating pool and kidneys were harvested.The severity of renal injury,the home of EPCs,proliferation of endothelial cells as well as vascular growth factor expression was examined.Results Pretreated rats exhibited significant improvements in renal function and morphology.The histological score was significantly decreased in IPC group as compared with NSS group [(1.80 ± 0.45) vs.(3.00 ± 0.71),P < 0.05].The number of EPCs in the kidneys was increased at 12 h after reperfusion in IPC group as compared with NSS groups [(5.75 ± 0.71) % vs.(2.92 ± 0.71) %,P < 0.05].Proliferation of EPCs in peritubular capillaries was markedly increased in the kidneys treated with IPC.In addition,the expression of vascular endothelial growth factor,and stromal cell-derived factor-1α in the kidneys of pretreated rats was increased as compared with that in rats subjected to ischemic injury (P < 0.05).Conclusion IPC may attenuate renal ischemic injury induced by NSS; EPCs play an important role in renal protection,which involves promotion of endothelial cell proliferation through release of several angiogenic factors.%目的 探讨缺血预适应(IPC)介导的内皮祖细胞(EPCs)对保留肾单位手术(NSS)后肾功能的保护作用及其机制.方法 90只雄性SD大鼠随机分为对照组(Sham)、保留肾

  9. Melatonin affects the dynamic steady-state equilibrium of estrogen sulfates in human umbilical vein endothelial cells by regulating the balance between estrogen sulfatase and sulfotransferase.

    Science.gov (United States)

    González, Alicia; Martínez-Campa, Carlos; Alonso-González, Carolina; Cos, Samuel

    2015-12-01

    Melatonin is known to reduce the growth of endocrine-responsive breast cancers by interacting with estrogen signaling pathways. Estrogens play an important role in breast cancer, but also in various types of tissues, including vascular tissue. Estrogen sulfatase (STS) converts inactive estrogen sulfates into active estrogens, whereas estrogen sulfotransferase (EST) sulfonates estrogens to estrogen sulfates. Therefore, STS and EST are considered to be involved in the regulation of local estrogen levels in hormone‑dependent tumors and in non-pathologic tissues, such as those of the vascular system. Estrogens have a major impact on the vasculature, influencing vascular function, the expression of adhesion proteins, angiogenesis and the inflammatory state. In this study, we investigated the status of STS and EST in human umbilical vein endothelial cells (HUVECs) and the modulatory effects of melatonin. Both STS and EST were highly expressed in the HUVECs. The enzymatic activity correlated with the expression levels in these cells. Our findings also demonstrated that melatonin, at physiological concentrations, modulated the synthesis and transformation of biologically active estrogens in HUVECs through the inhibition of STS activity and expression, and the stimulation of EST activity and expression. Since melatonin decreased the STS levels and increased the EST levels, it modified the dynamic steady‑state equilibrium of estrogen sulfates by increasing the inactive estrogen levels and decreasing the active estrogen levels. Therefore, melatonin may modulate the known different biological actions of estrogens in endothelial cells, as well as in estrogen-dependent tumors and non-pathologic tissues.

  10. Fli-1 transcription factor affects glomerulonephritis development by regulating expression of monocyte chemoattractant protein-1 in endothelial cells in the kidney.

    Science.gov (United States)

    Suzuki, Eiji; Karam, Eva; Williams, Sarah; Watson, Dennis K; Gilkeson, Gary; Zhang, Xian K

    2012-12-01

    Expression of transcription factor Fli-1 is implicated in the development of glomerulonephritis. Fli-1 heterozygous knockout (Fli1(+/-)) NZM2410 mice, a murine model of lupus, had significantly improved survival and reduced glomerulonephritis. In this study, we found that infiltrated inflammatory cells were significantly decreased in the kidneys from Fli-1(+/-) NZM2410 mice. The expression of monocyte chemoattractant protein-1 (MCP-1) was significantly decreased in kidneys from Fli-1(+/-) NZM2410 mice. The primary endothelial cells isolated from the kidneys of Fli-1(+/-) NZM2410 mice produced significantly less MCP-1. In endothelial cells transfected with specific Fli-1 siRNA the production of MCP-1 was significantly reduced compared to cells transfected with negative control siRNA. By Chromatin Immunoprecipitation (ChIP) assay, we further demonstrated that Fli-1 directly binds to the promoter of the MCP-1 gene. Our data indicate that Fli-1 impacts glomerulonephritis development by regulating expression of inflammatory chemokine MCP-1 and inflammatory cell infiltration in the kidneys in the NZM2410 mice. Published by Elsevier Inc.

  11. Bone marrow-derived progenitor cells augment venous remodeling in a mouse dorsal skinfold chamber model.

    Directory of Open Access Journals (Sweden)

    Megan E Doyle

    Full Text Available The delivery of bone marrow-derived cells (BMDCs has been widely used to stimulate angiogenesis and arteriogenesis. We identified a progenitor-enriched subpopulation of BMDCs that is able to augment venular remodeling, a generally unexplored area in microvascular research. Two populations of BMDCs, whole bone marrow (WBM and Lin(-/Sca-1(+ progenitor cells, were encapsulated in sodium alginate and delivered to a mouse dorsal skinfold chamber model. Upon observation that encapsulated Sca-1(+ progenitor cells enhance venular remodeling, the cells and tissue were analyzed on structural and molecular levels. Venule walls were thickened and contained more nuclei after Sca-1(+ progenitor cell delivery. In addition, progenitors expressed mRNA transcript levels of chemokine (C-X-C motif ligand 2 (CXCL2 and interferon gamma (IFNγ that are over 5-fold higher compared to WBM. Tissues that received progenitors expressed significantly higher protein levels of vascular endothelial growth factor (VEGF, monocyte chemotactic protein-1 (MCP-1, and platelet derived growth factor-BB (PDGF-BB compared to tissues that received an alginate control construct. Nine days following cell delivery, tissue from progenitor recipients contained 39% more CD45(+ leukocytes, suggesting that these cells may enhance venular remodeling through the modulation of the local immune environment. Results show that different BMDC populations elicit different microvascular responses. In this model, Sca-1(+ progenitor cell-derived CXCL2 and IFNγ may mediate venule enlargement via modulation of the local inflammatory environment.

  12. Oxidative stress tolerance of early stage diabetic endothelial progenitor cell

    Directory of Open Access Journals (Sweden)

    Dewi Sukmawati

    2015-06-01

    Conclusions: Primitive BM-EPCs showed vasculogenic dysfunction in early diabetes. However the oxidative stress is not denoted as the major initiating factor of its cause. Our results suggest that primitive BM-KSL cell has the ability to compensate oxidative stress levels in early diabetes by increasing the expression of anti-oxidative enzymes.

  13. Study on the correlation between the number and function of endothelial progenitor cells and in-stent restenosis after stent-implantation for symptomatic intracranial atherosclerotic stenosis%症状性颅内动脉狭窄支架置入术后内皮祖细胞的数量及功能与再狭窄的相关性研究

    Institute of Scientific and Technical Information of China (English)

    苏江利; 亓立峰; 张锐; 曲怀谦

    2015-01-01

    目的探讨症状性动脉粥样硬化性颅内动脉狭窄( sICAS)患者颅内动脉支架置入术后内皮祖细胞( EPCs)数量、功能及血管内皮生长因子( VEGF)水平变化与术后颅内动脉再狭窄的关系。方法选择2008年1月—2012年10月聊城市人民医院神经内科因sICAS行颅内动脉支架置入术的87例患者进行前瞻性研究。87例患者中,男48例,女39例;年龄48~81岁。均采用颅内动脉支架置入术治疗,术后1年行头颈CTA检查,根据患者颅内动脉狭窄情况分为再狭窄组和无狭窄组,分别对两组患者术后1年外周血EPCs的数量、黏附能力、迁移能力,以及VEGF水平进行测定,并对结果进行对比分析。结果87例sICAS患者均成功行经皮血管内支架置入术。术后1年行头颈CTA检查显示,无狭窄组64例,再狭窄组23例,其中14例患者再狭窄>50%。再狭窄组与无狭窄组比较,术后1年外周血中 EPCs 数量分别为(36.5依4.8)个/mL、(65.6依6.7)个/mL,细胞黏附数量分别为(27.4依7.3)个/mL、(58.5依9.4)个/mL,迁移数量分别为(13.6依3.7)个/mL、(24.7依6.8)个/mL, VEGF的水平(57.79依13.53) pg/mL、(94.36依17.57) pg/mL,差异均有统计学意义(t值分别为19.110、14.376、7.425、9.051, P值均<0.05)。结论 sICAS患者采用颅内动脉支架置入术治疗后,EPCs数量、黏附能力、迁移能力及VEGF水平明显下降的患者,发生血管再狭窄的风险增加;术后检测EPCs、VEGF水平对预测发生血管再狭窄的可能性和判断患者的远期预后可能有一定的临床价值。%Objective To explore the relationship of endothelium progenitor cells( EPCs) number and function, the level of vascular endothelial growth factor ( VEGF ) with in-stent restenosis after stent implantation for symptomatic intracranial atherosclerotic stenosis. Methods From Jan 2008 to October 2012, a total of 87 patients stent-implantation with symptomatic intracranial atherosclerotic stenosis (s

  14. [Endothelial dysfunction in hypertension--clinical implications].

    Science.gov (United States)

    Kosmala, Wojciech

    2002-04-01

    Endothelial cells produce both vasodilatating compounds as nitric oxide, prostacycline, endothelial derived hyperpolarising factor and counteracting substances known as endothelial derived contracting factors: endothelin, tromboxan A2, prostaglandin H2, free oxygen radicals. Natural balance between both groups affects blood perfusion of various tissues and constitutes important element in blood pressure control. More and more attention is paid to endothelial dysfunction in patogenesis of hypertension. In a number of studies endothelial dysfunction in hypertensive patients was found out as decreased release of nitric oxide or increased production of endothelin. Principle mechanism of impaired function of endothelium in hypertension seems to be decreased production and increased degradation of nitric oxide mainly due to free oxygen radicals. Favorable effects in improvement of endothelial function were achieved by using ACE inhibitors, AT1 receptor blockers and calcium channel antagonists.

  15. 肾移植患者外周血来源的血管内皮祖细胞的促血管新生作用研究%The angiogenic mechanisms of endothelial progenitor cells from the peripheral circulation in kidney transplantation patients

    Institute of Scientific and Technical Information of China (English)

    宋一萌; 李明真; 马潞林

    2016-01-01

    Objective To explore the angiogenic function of EPC from peripheral blood in kidney transplanted patient and to reveal its regulative mechanism.Methods 23 chronic renal failure patients without diabetes were recruited in department of Urology Peking University Third Hospital from January 2014 to February 2015.Fasting peripheral blood mixed with heparin (20 U/mL) was collected one day before and 24 hours after kidney transplantation.We set preoperative blood as control and the postoperative blood as the experimental group.EPC from peripheral blood were isolated by density-gradient centrifugation.FACS was used to identify the EPC.The AA metabolites PGE2 in EPC cultured medium was measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS).Q-PCR and WB were used to detect the expression of endothelial markers in HUVEC cultured under the EPC conditional medium.Tube formation assay was performed to assess the angiogenic ability of HUVEC.Results EPC from kidney transplantation expressed c-kit and CD31 by FACS analysis.Multiple types of AA metabolites was detected in the conditional medium by LC-MS/MS and level of PGE2 increased into two folds after kidney transplantation, compared with that before operation(P < 0.05).HUVEC highly expressed CD31 and VE-cadherin cultured under conditional medium, which were 1.5 folds compared with that before operation (P < 0.01).And those cells formed more tubes than that in control group, which showed better angiogenic capacity.HUVEC, treated by PGE2, had the similar biological characteristics like the conditional culture.Conclusions EPCs in the peripheral blood form kidney transplantation patient secret the PGE2, which can enhance the capacity of angiogenesis in HUVEC.%目的 探讨肾移植患者术后外周血中血管内皮祖细胞(endothelial progenitor cell,EPC)间接调控内皮细胞血管新生过程的作用和机制.方法 2014年1月至2015年2月收治的23例不合并糖尿病的慢性肾衰

  16. Endothelial cells and the IGF system.

    Science.gov (United States)

    Bach, Leon A

    2015-02-01

    Endothelial cells line blood vessels and modulate vascular tone, thrombosis, inflammatory responses and new vessel formation. They are implicated in many disease processes including atherosclerosis and cancer. IGFs play a significant role in the physiology of endothelial cells by promoting migration, tube formation and production of the vasodilator nitric oxide. These actions are mediated by the IGF1 and IGF2/mannose 6-phosphate receptors and are modulated by a family of high-affinity IGF binding proteins. IGFs also increase the number and function of endothelial progenitor cells, which may contribute to protection from atherosclerosis. IGFs promote angiogenesis, and dysregulation of the IGF system may contribute to this process in cancer and eye diseases including retinopathy of prematurity and diabetic retinopathy. In some situations, IGF deficiency appears to contribute to endothelial dysfunction, whereas IGF may be deleterious in others. These differences may be due to tissue-specific endothelial cell phenotypes or IGFs having distinct roles in different phases of vascular disease. Further studies are therefore required to delineate the therapeutic potential of IGF system modulation in pathogenic processes. © 2015 Society for Endocrinology.

  17. On Measuring the Metallicity of Supernovae Type Ia Progenitors

    CERN Document Server

    Miles, Broxton J; Townsley, Dean M; Timmes, F X; Jackson, Aaron P; Calder, Alan C; Brown, Edward F

    2015-01-01

    In Type Ia Supernovae (\\sneia), the relative abundances of chemical elements are affected by the neutron excess in the composition of the progenitor white dwarf. Since these products leave signatures in the spectra near maximum light, spectral features may be used to constrain the composition of the progenitor. We calculate the nucleosynthetic yields for three \\snia simulations for a wide range of progenitor metallicities, and calculate synthetic light curves and spectra to explore correlations between progenitor metallicity and the strength of spectral features. We use two 2D simulations of the deflagration-detonation-transition scenario with different $^{56}$Ni yields and the W7 simulation to control for differences between explosion models and total yields. While the overall yields of intermediate mass elements (16 $<$ A $\\leq$ 40) differ between the three cases, trends in the yields are similar. With increasing metallicity, $^{28}$Si yields remain nearly constant, $^{40}$Ca yields decline, and Ti and $...

  18. Association among circulating endothelial progenitor cells, insulin resistance and severity of coronary lesions in patients with coronary artery disease%冠心病患者胰岛素水平与内皮祖细胞及冠状动脉病变的相关性

    Institute of Scientific and Technical Information of China (English)

    钱德慧; 黄岚; 赵晓辉; 周音频; 崔斌; 宋耀明; 李爱民; 付晓岚

    2008-01-01

    目的 探讨冠心病患者不同胰岛素水平与循环内皮祖细胞(EPC)数量、功能及冠状动脉病变程度的关系并探讨相关临床意义.方法 69例经选择性冠状动脉造影证实的冠心病患者,按胰岛素水平高低分为胰岛素抵抗(IR)组和胰岛素敏感(IS)组,另设25例健康对照者.采集研究对象外周血以激酶插入区域受体(KDR)和CD133双阳性为循环EPC标记行流式细胞分析,同时采血进行EPC的分离培养,7 d后鉴定并检测增殖及迁移能力,将各组的一般临床资料,循环EPC数量、迁移、增殖能力指标、稳态模型胰岛素抵抗指数(HOMA-IR)及冠状动脉病变Gensini评分进行统计学分析.结果 IR组循环EPC数量明显少于IS组[(0.34±0.08)‰比(0.47±0.09)‰,P<0.01],HOMA-IR自然对数与循环EPC数量呈负相关(r=-0.291,P=0.01),循环EPC数量与Gensini评分呈负相关(r=-0.3984,P=0.006).IR组的增殖能力和迁移能力均低于IS组减弱(P<0.05).结论 冠心病患者血清胰岛素水平与循环EPC数量呈负相关.循环EPC数量及功能与冠状动脉病变程度呈负相关;IR或高胰岛素血症可能部分通过损害循环EPC的数量及功能,从而影响冠状动脉病变程度.%Objective To investigate the correlation between the number and activity of circulating endothelial progenitor cells (EPCs), insulin resistance and severity of coronary lesions in patients with coronary artery disease (CAD). Methods Patients with coronary angiography evidenced CAD were divided in insulin resistance group ( IR, n = 25 ) and insulin sensitive group ( IS, n = 44) according to insulin level, 25 health volunteers served as control. Circulating EPCs were marked as KDR/CD133<'+ cells via fluorescence- activated cell sorter analysis. EPCs were also isolated from peripheral blood and cultured in vitro for 7 days, identified by DiI-acLDL uptake and lec