WorldWideScience

Sample records for affects dna damage

  1. Alpha-phellandrene-induced DNA damage and affect DNA repair protein expression in WEHI-3 murine leukemia cells in vitro.

    Science.gov (United States)

    Lin, Jen-Jyh; Wu, Chih-Chung; Hsu, Shu-Chun; Weng, Shu-Wen; Ma, Yi-Shih; Huang, Yi-Ping; Lin, Jaung-Geng; Chung, Jing-Gung

    2015-11-01

    Although there are few reports regarding α-phellandrene (α-PA), a natural compound from Schinus molle L. essential oil, there is no report to show that α-PA induced DNA damage and affected DNA repair associated protein expression. Herein, we investigated the effects of α-PA on DNA damage and repair associated protein expression in murine leukemia cells. Flow cytometric assay was used to measure the effects of α-PA on total cell viability and the results indicated that α-PA induced cell death. Comet assay and 4,6-diamidino-2-phenylindole dihydrochloride staining were used for measuring DNA damage and condensation, respectively, and the results indicated that α-PA induced DNA damage and condensation in a concentration-dependent manner. DNA gel electrophoresis was used to examine the DNA damage and the results showed that α-PA induced DNA damage in WEHI-3 cells. Western blotting assay was used to measure the changes of DNA damage and repair associated protein expression and the results indicated that α-PA increased p-p53, p-H2A.X, 14-3-3-σ, and MDC1 protein expression but inhibited the protein of p53, MGMT, DNA-PK, and BRCA-1. PMID:24861204

  2. DNA Damage Response

    OpenAIRE

    Giglia-Mari, Giuseppina; Zotter, Angelika; Vermeulen, Wim

    2011-01-01

    Structural changes to DNA severely affect its functions, such as replication and transcription, and play a major role in age-related diseases and cancer. A complicated and entangled network of DNA damage response (DDR) mechanisms, including multiple DNA repair pathways, damage tolerance processes, and cell-cycle checkpoints safeguard genomic integrity. Like transcription and replication, DDR is a chromatin-associated process that is generally tightly controlled in time and space. As DNA damag...

  3. DNA Repair and the Accumulation of Oxidatively Damaged DNA Are Affected by Fruit Intake in Mice

    DEFF Research Database (Denmark)

    Croteau, Deborah L; de Souza-Pinto, Nadja C; Harboe, Charlotte;

    2010-01-01

    were fed for 14 weeks a control diet or a diet with 8% peach or nectarine extract. The activities of DNA repair enzymes, the level of DNA damage, and gene expression changes were measured. Our study showed that repair of various oxidative DNA lesions was more efficient in liver extracts derived from...... mice fed fruit-enriched diets. In support of these findings, gas chromatography-mass spectrometry analysis revealed that there was a decrease in the levels of formamidopyrimidines in peach-fed mice compared with the controls. Additionally, microarray analysis revealed that NTH1 was upregulated in peach...

  4. DNA damage response

    NARCIS (Netherlands)

    G. Giglia-Mari (Giuseppina); A. Zotter (Angelika); W. Vermeulen (Wim)

    2011-01-01

    textabstractStructural changes to DNA severely affect its functions, such as replication and transcription, and play a major role in age-related diseases and cancer. A complicated and entangled network ofDNA damage response (DDR) mechanisms, including multiple DNA repair pathways, damage tolerance p

  5. DNA damage

    OpenAIRE

    Kumari, Sunita; Rastogi, Rajesh P.; Singh, Kanchan L.; Singh, Shailendra P; Sinha, Rajeshwar P.

    2008-01-01

    Even under the best of circumstances, DNA is constantly subjected to chemical modifications. Several types of DNA damage such as SSB (single strand break), DSB (double strand break), CPDs (cyclobutane pyrimidine dimers), 6-4PPs (6-4 photoproducts) and their Dewar valence isomers have been identified that result from alkylating agents, hydrolytic deamination, free radicals and reactive oxygen species formed by various photochemical processes including UV radiation. There are a n...

  6. DNA damage evaluated by the comet assay on children form areas affected by the Chernobyl accident

    International Nuclear Information System (INIS)

    Full text: The health effects of the Chernobyl accident and particularly the long-term effects continue to be interesting and significant for the international scientific community. The DNA damages caused by radiation exposure are considered responsible for the effects at cellular level and in the whole organism. The comet assay is one of the current tools with greatest application and sensitivity to evaluate DNA damages, particularly in chronic exposures. The preliminary results with the application of the comet assay to blood lymphocytes of 30 Ukrainian children from territories affected by the Chernobyl accident are shown in our study. The children were in Cuba at the moment of the study. 137Cs internal contamination was measured in a whole body counter and correlated with DNA damages, children blood was taken by fingerprick. Factors like illnesses, medical treatments, or the external doses by surface contamination were also considered in the study. Until the present the radiological factor has not shown influence in the levels of observed DNA damages. (orig.)

  7. DNA damage during G2 phase does not affect cell cycle progression of the green alga Scenedesmus quadricauda.

    Directory of Open Access Journals (Sweden)

    Monika Hlavová

    Full Text Available DNA damage is a threat to genomic integrity in all living organisms. Plants and green algae are particularly susceptible to DNA damage especially that caused by UV light, due to their light dependency for photosynthesis. For survival of a plant, and other eukaryotic cells, it is essential for an organism to continuously check the integrity of its genetic material and, when damaged, to repair it immediately. Cells therefore utilize a DNA damage response pathway that is responsible for sensing, reacting to and repairing damaged DNA. We have studied the effect of 5-fluorodeoxyuridine, zeocin, caffeine and combinations of these on the cell cycle of the green alga Scenedesmus quadricauda. The cells delayed S phase and underwent a permanent G2 phase block if DNA metabolism was affected prior to S phase; the G2 phase block imposed by zeocin was partially abolished by caffeine. No cell cycle block was observed if the treatment with zeocin occurred in G2 phase and the cells divided normally. CDKA and CDKB kinases regulate mitosis in S. quadricauda; their kinase activities were inhibited by Wee1. CDKA, CDKB protein levels were stabilized in the presence of zeocin. In contrast, the protein level of Wee1 was unaffected by DNA perturbing treatments. Wee1 therefore does not appear to be involved in the DNA damage response in S. quadricauda. Our results imply a specific reaction to DNA damage in S. quadricauda, with no cell cycle arrest, after experiencing DNA damage during G2 phase.

  8. Transient p53 suppression increases reprogramming of human fibroblasts without affecting apoptosis and DNA damage

    DEFF Research Database (Denmark)

    Rasmussen, Mikkel Aabech; Holst, Bjørn; Tümer, Zeynep;

    2014-01-01

    The discovery of human-induced pluripotent stem cells (iPSCs) has sparked great interest in the potential treatment of patients with their own in vitro differentiated cells. Recently, knockout of the Tumor Protein 53 (p53) gene was reported to facilitate reprogramming but unfortunately also led to...... genomic instability. Here, we report that transient suppression of p53 during nonintegrative reprogramming of human fibroblasts leads to a significant increase in expression of pluripotency markers and overall number of iPSC colonies, due to downstream suppression of p21, without affecting apoptosis and...... DNA damage. Stable iPSC lines generated with or without p53 suppression showed comparable expression of pluripotency markers and methylation patterns, displayed normal karyotypes, contained between 0 and 5 genomic copy number variations and produced functional neurons in vitro. In conclusion...

  9. DNA damage and autophagy

    International Nuclear Information System (INIS)

    Both exogenous and endogenous agents are a threat to DNA integrity. Exogenous environmental agents such as ultraviolet (UV) and ionizing radiation, genotoxic chemicals and endogenous byproducts of metabolism including reactive oxygen species can cause alterations in DNA structure (DNA damage). Unrepaired DNA damage has been linked to a variety of human disorders including cancer and neurodegenerative disease. Thus, efficient mechanisms to detect DNA lesions, signal their presence and promote their repair have been evolved in cells. If DNA is effectively repaired, DNA damage response is inactivated and normal cell functioning resumes. In contrast, when DNA lesions cannot be removed, chronic DNA damage triggers specific cell responses such as cell death and senescence. Recently, DNA damage has been shown to induce autophagy, a cellular catabolic process that maintains a balance between synthesis, degradation, and recycling of cellular components. But the exact mechanisms by which DNA damage triggers autophagy are unclear. More importantly, the role of autophagy in the DNA damage response and cellular fate is unknown. In this review we analyze evidence that supports a role for autophagy as an integral part of the DNA damage response.

  10. Chalcone-imidazolone conjugates induce apoptosis through DNA damage pathway by affecting telomeres

    Directory of Open Access Journals (Sweden)

    Kamal Ahmed

    2011-04-01

    Full Text Available Abstract Background Breast cancer is one of the most prevalent cancers in the world and more than one million women are diagnosed leading to 410,000 deaths every year. In our previous studies new chalcone-imidazolone conjugates were prepared and evaluated for their anticancer activity in a panel of 53 human tumor cell lines and the lead compounds identified were 6 and 8. This prompted us to investigate the mechanism of apoptotic event. Results Involvement of pro-apoptotic protein (Bax, active caspase-9 and cleavage of retinoblastoma protein was studied. Interestingly, the compounds caused upregulation of p21, check point proteins (Chk1, Chk2 and as well as their phosphorylated forms which are known to regulate the DNA damage pathway. Increased p53BP1 foci by immunolocalisation studies and TRF1 suggested the possible involvement of telomere and associated proteins in the apoptotic event. The telomeric protein such as TRF2 which is an important target for anticancer therapy against human breast cancer was extensively studied along with proteins involved in proper functioning of telomeres. Conclusions The apoptotic proteins such as Bax, active caspase-9 and cleaved RB are up-regulated in the compound treated cells revealing the apoptotic nature of the compounds. Down regulation of TRF2 and upregulation of the TRF1 as well as telomerase assay indicated the decrease in telomeric length revealing telomeric dysfunction and thereby controlling the rapid rate of cell proliferation. In summary, chalcone-imidazolone conjugates displayed significant DNA damage activity particularly at telomeres and caused both apoptosis and senescence-like growth arrest which suggested that these compounds have potential activity against breast carcinoma.

  11. DNA damage in neurodegenerative diseases

    Energy Technology Data Exchange (ETDEWEB)

    Coppedè, Fabio, E-mail: fabio.coppede@med.unipi.it; Migliore, Lucia, E-mail: lucia.migliore@med.unipi.it

    2015-06-15

    Highlights: • Oxidative DNA damage is one of the earliest detectable events in the neurodegenerative process. • The mitochondrial DNA is more vulnerable to oxidative attack than the nuclear DNA. • Cytogenetic damage has been largely documented in Alzheimer's disease patients. • The question of whether DNA damage is cause or consequence of neurodegeneration is still open. • Increasing evidence links DNA damage and repair with epigenetic phenomena. - Abstract: Following the observation of increased oxidative DNA damage in nuclear and mitochondrial DNA extracted from post-mortem brain regions of patients affected by neurodegenerative diseases, the last years of the previous century and the first decade of the present one have been largely dedicated to the search of markers of DNA damage in neuronal samples and peripheral tissues of patients in early, intermediate or late stages of neurodegeneration. Those studies allowed to demonstrate that oxidative DNA damage is one of the earliest detectable events in neurodegeneration, but also revealed cytogenetic damage in neurodegenerative conditions, such as for example a tendency towards chromosome 21 malsegregation in Alzheimer's disease. As it happens for many neurodegenerative risk factors the question of whether DNA damage is cause or consequence of the neurodegenerative process is still open, and probably both is true. The research interest in markers of oxidative stress was shifted, in recent years, towards the search of epigenetic biomarkers of neurodegenerative disorders, following the accumulating evidence of a substantial contribution of epigenetic mechanisms to learning, memory processes, behavioural disorders and neurodegeneration. Increasing evidence is however linking DNA damage and repair with epigenetic phenomena, thereby opening the way to a very attractive and timely research topic in neurodegenerative diseases. We will address those issues in the context of Alzheimer's disease

  12. DNA damage in neurodegenerative diseases

    International Nuclear Information System (INIS)

    Highlights: • Oxidative DNA damage is one of the earliest detectable events in the neurodegenerative process. • The mitochondrial DNA is more vulnerable to oxidative attack than the nuclear DNA. • Cytogenetic damage has been largely documented in Alzheimer's disease patients. • The question of whether DNA damage is cause or consequence of neurodegeneration is still open. • Increasing evidence links DNA damage and repair with epigenetic phenomena. - Abstract: Following the observation of increased oxidative DNA damage in nuclear and mitochondrial DNA extracted from post-mortem brain regions of patients affected by neurodegenerative diseases, the last years of the previous century and the first decade of the present one have been largely dedicated to the search of markers of DNA damage in neuronal samples and peripheral tissues of patients in early, intermediate or late stages of neurodegeneration. Those studies allowed to demonstrate that oxidative DNA damage is one of the earliest detectable events in neurodegeneration, but also revealed cytogenetic damage in neurodegenerative conditions, such as for example a tendency towards chromosome 21 malsegregation in Alzheimer's disease. As it happens for many neurodegenerative risk factors the question of whether DNA damage is cause or consequence of the neurodegenerative process is still open, and probably both is true. The research interest in markers of oxidative stress was shifted, in recent years, towards the search of epigenetic biomarkers of neurodegenerative disorders, following the accumulating evidence of a substantial contribution of epigenetic mechanisms to learning, memory processes, behavioural disorders and neurodegeneration. Increasing evidence is however linking DNA damage and repair with epigenetic phenomena, thereby opening the way to a very attractive and timely research topic in neurodegenerative diseases. We will address those issues in the context of Alzheimer's disease

  13. DNA Damage and Repair in Vascular Disease.

    Science.gov (United States)

    Uryga, Anna; Gray, Kelly; Bennett, Martin

    2016-01-01

    DNA damage affecting both genomic and mitochondrial DNA is present in a variety of both inherited and acquired vascular diseases. Multiple cell types show persistent DNA damage and a range of lesions. In turn, DNA damage activates a variety of DNA repair mechanisms, many of which are activated in vascular disease. Such DNA repair mechanisms either stall the cell cycle to allow repair to occur or trigger apoptosis or cell senescence to prevent propagation of damaged DNA. Recent evidence has indicated that DNA damage occurs early, is progressive, and is sufficient to impair function of cells composing the vascular wall. The consequences of persistent genomic and mitochondrial DNA damage, including inflammation, cell senescence, and apoptosis, are present in vascular disease. DNA damage can thus directly cause vascular disease, opening up new possibilities for both prevention and treatment. We review the evidence for and the causes, types, and consequences of DNA damage in vascular disease. PMID:26442438

  14. Wedging out DNA damage

    OpenAIRE

    Schärer, Orlando D.; Campbell, Arthur J

    2009-01-01

    The DNA-repair machinery is faced with the significant challenge of differentiating DNA lesions from unmodified DNA. Two recent publications, one in this issue of Nature Structural & Molecular Biology, uncover a new way of recognizing minimally distorting DNA lesions: insertion of a 3- or 4-amino-acid wedge into DNA to extrude the lesion into a shallow binding pocket that can accommodate various damaged bases.

  15. Homologous and non-homologous recombination differentially affect DNA damage repair in mice.

    NARCIS (Netherlands)

    J. Essers (Jeroen); H. van Steeg (Harry); J. de Wit (Jan); M. Vermeij (Marcel); J.H.J. Hoeijmakers (Jan); R. Kanaar (Roland); S.M.A. Swagemakers (Sigrid)

    2000-01-01

    textabstractIonizing radiation and interstrand DNA crosslinking compounds provide important treatments against cancer due to their extreme genotoxicity for proliferating cells. Both the efficacies of such treatments and the mutagenic potential of these agents are modulated by the a

  16. DNA damage tolerance.

    Science.gov (United States)

    Branzei, Dana; Psakhye, Ivan

    2016-06-01

    Accurate chromosomal DNA replication is fundamental for optimal cellular function and genome integrity. Replication perturbations activate DNA damage tolerance pathways, which are crucial to complete genome duplication as well as to prevent formation of deleterious double strand breaks. Cells use two general strategies to tolerate lesions: recombination to a homologous template, and trans-lesion synthesis with specialized polymerases. While key players of these processes have been outlined, much less is known on their choreography and regulation. Recent advances have uncovered principles by which DNA damage tolerance is regulated locally and temporally - in relation to replication timing and cell cycle stage -, and are beginning to elucidate the DNA dynamics that mediate lesion tolerance and influence chromosome structure during replication. PMID:27060551

  17. Cisplatin-Induced DNA Damage Activates Replication Checkpoint Signaling Components that Differentially Affect Tumor Cell SurvivalS⃞

    OpenAIRE

    Wagner, Jill M.; Karnitz, Larry M.

    2009-01-01

    Cisplatin and other platinating agents are some of the most widely used chemotherapy agents. These drugs exert their antiproliferative effects by creating intrastrand and interstrand DNA cross-links, which block DNA replication. The cross-links mobilize signaling and repair pathways, including the Rad9-Hus1-Rad1-ATR-Chk1 pathway, a pathway that helps tumor cells survive the DNA damage inflicted by many chemotherapy agents. Here we show that Rad9 and ATR play critical r...

  18. Keratin23 (KRT23 knockdown decreases proliferation and affects the DNA damage response of colon cancer cells.

    Directory of Open Access Journals (Sweden)

    Karin Birkenkamp-Demtröder

    Full Text Available Keratin 23 (KRT23 is strongly expressed in colon adenocarcinomas but absent in normal colon mucosa. Array based methylation profiling of 40 colon samples showed that the promoter of KRT23 was methylated in normal colon mucosa, while hypomethylated in most adenocarcinomas. Promoter methylation correlated with absent expression, while increased KRT23 expression in tumor samples correlated with promoter hypomethylation, as confirmed by bisulfite sequencing. Demethylation induced KRT23 expression in vitro. Expression profiling of shRNA mediated stable KRT23 knockdown in colon cancer cell lines showed that KRT23 depletion affected molecules of the cell cycle and DNA replication, recombination and repair. In vitro analyses confirmed that KRT23 depletion significantly decreased the cellular proliferation of SW948 and LS1034 cells and markedly decreased the expression of genes involved in DNA damage response, mainly molecules of the double strand break repair homologous recombination pathway. KRT23 knockdown decreased the transcript and protein expression of key molecules as e.g. MRE11A, E2F1, RAD51 and BRCA1. Knockdown of KRT23 rendered colon cancer cells more sensitive to irradiation and reduced proliferation of the KRT23 depleted cells compared to irradiated control cells.

  19. Chromatin structure and DNA damage

    International Nuclear Information System (INIS)

    This dissertation examines the structure and structural transitions of chromatin in relation to DNA damage. The ability of intact and histone H1 depleted chromatin fibers to fold into higher ordered structures in vitro was examined following DNA photodamage introduced by two different agents. (1) 254-nm UV radiation and (2) trimethylpsoralen (plus near-UV radiation). Both agents are highly specific for DNA and form adducts predicted to cause different degrees of distortion in the DNA helix. The salt-induced structural transitions of intact and histone H1 depleted chromatin fibers were monitored by both analytical ultracentrifugation and light scattering. Our results show that even in the presence of extremely large, nonphysiological amounts of photodamage by either agent the ability of chromatin to fold into higher ordered structures is not affected. The compact, 30 nm fiber must therefore be able to accommodate a large amount of DNA damage without any measurable changes in the overall size or degree of compaction of this structure. The distribution of pyrimidine dimers was mapped at the single nucleotide level in nucleosome core DNA from UV-irradiated mononucleosomes, chromatin fibers, and human cells in culture using the 3' → 5' exonuclease activity of T4 DNA polymerase

  20. Commonly consumed and naturally occurring dietary substances affect biomarkers of oxidative stress and DNA damage in healthy rats

    DEFF Research Database (Denmark)

    Farombi, E. O.; Hansen, Max; Ravn-Haren, Gitte;

    2004-01-01

    The influence of black currant juice, Bowman-Birk protease inhibitor (BBI), kolaviron (a biflavonoid fraction of Garcinia kola seed), sugars, vitamin C and tert-butyl hydroperoxide on a wide range of biomarkers for oxidative stress, DNA damage and sugar or lipid metabolism has been investigated...

  1. TH-C-18A-09: Exam and Patient Parameters Affecting the DNA Damage Response Following CT Studies

    International Nuclear Information System (INIS)

    Purpose: To identify exam and patient parameters affecting the biological response to CT studies using in vivo and ex vivo blood samples. Methods: Blood samples were collected under IRB approval from 16 patients undergoing clinically-indicated CT exams. Blood was procured prior to, immediately after and 30minutes following irradiation. A sample of preexam blood was placed on the patient within the exam region for ex vivo analysis. Whole blood samples were fixed immediately following collection and stained for γH2AX to assess DNA damage response (DDR). Median fluorescence of treated samples was compared to non-irradiated control samples for each patient. Patients were characterized by observed biological kinetic response: (a) fast — phosphorylation increased by 2minutes and fell by 30minutes, (b) slow — phosphorylation continued to increase to 30minutes and (c) none — little change was observed or irradiated samples fell below controls. Total dose values were normalized to exam time for an averaged dose-rate in dose/sec for each exam. Relationships between patient biological responses and patient and exam parameters were investigated. Results: A clearer dose response at 30minutes is observed for young patients (<61yoa; R2>0.5) compared to old patients (>61yoa; R2<0.11). Fast responding patients were significantly younger than slow responding patients (p<0.05). Unlike in vivo samples, age did not significantly affect the patient response ex vivo. Additionally, fast responding patients received exams with significantly smaller dose-rate than slow responding patients (p<0.05). Conclusion: Age is a significant factor in the biological response suggesting that DDR may be more rapid in a younger population and slower as the population ages. Lack of an agerelated response ex vivo suggests a systemic response to radiation not present when irradiated outside the body. Dose-rate affects the biological response suggesting that patient response may be related to scan

  2. TH-C-18A-09: Exam and Patient Parameters Affecting the DNA Damage Response Following CT Studies

    Energy Technology Data Exchange (ETDEWEB)

    Elgart, S; Adibi, A; Bostani, M; Ruehm, S; Enzmann, D; McNitt-Gray, M; Iwamoto, K [UCLA School of Medicine, Los Angeles, CA (United States)

    2014-06-15

    Purpose: To identify exam and patient parameters affecting the biological response to CT studies using in vivo and ex vivo blood samples. Methods: Blood samples were collected under IRB approval from 16 patients undergoing clinically-indicated CT exams. Blood was procured prior to, immediately after and 30minutes following irradiation. A sample of preexam blood was placed on the patient within the exam region for ex vivo analysis. Whole blood samples were fixed immediately following collection and stained for γH2AX to assess DNA damage response (DDR). Median fluorescence of treated samples was compared to non-irradiated control samples for each patient. Patients were characterized by observed biological kinetic response: (a) fast — phosphorylation increased by 2minutes and fell by 30minutes, (b) slow — phosphorylation continued to increase to 30minutes and (c) none — little change was observed or irradiated samples fell below controls. Total dose values were normalized to exam time for an averaged dose-rate in dose/sec for each exam. Relationships between patient biological responses and patient and exam parameters were investigated. Results: A clearer dose response at 30minutes is observed for young patients (<61yoa; R2>0.5) compared to old patients (>61yoa; R{sup 2}<0.11). Fast responding patients were significantly younger than slow responding patients (p<0.05). Unlike in vivo samples, age did not significantly affect the patient response ex vivo. Additionally, fast responding patients received exams with significantly smaller dose-rate than slow responding patients (p<0.05). Conclusion: Age is a significant factor in the biological response suggesting that DDR may be more rapid in a younger population and slower as the population ages. Lack of an agerelated response ex vivo suggests a systemic response to radiation not present when irradiated outside the body. Dose-rate affects the biological response suggesting that patient response may be related to

  3. DNA Repair by Reversal of DNA Damage

    OpenAIRE

    Yi, Chengqi; He, Chuan

    2013-01-01

    Endogenous and exogenous factors constantly challenge cellular DNA, generating cytotoxic and/or mutagenic DNA adducts. As a result, organisms have evolved different mechanisms to defend against the deleterious effects of DNA damage. Among these diverse repair pathways, direct DNA-repair systems provide cells with simple yet efficient solutions to reverse covalent DNA adducts. In this review, we focus on recent advances in the field of direct DNA repair, namely, photolyase-, alkyltransferase-,...

  4. Nuclear α Spectrin Differentially Affects Monoubiquitinated Versus Non-Ubiquitinated FANCD2 Function After DNA Interstrand Cross-Link Damage.

    Science.gov (United States)

    Zhang, Pan; Sridharan, Deepa; Lambert, Muriel W

    2016-03-01

    Nonerythroid α spectrin (αIISp) and the Fanconi anemia (FA) protein, FANCD2, play critical roles in DNA interstrand cross-link (ICL) repair during S phase. Both are needed for recruitment of repair proteins, such as XPF, to sites of damage and repair of ICLs. However, the relationship between them in ICL repair and whether αIISp is involved in FANCD2's function in repair is unclear. The present studies show that, after ICL formation, FANCD2 disassociates from αIISp and localizes, before αIISp, at sites of damage in nuclear foci. αIISp and FANCD2 foci do not co-localize, in contrast to our previous finding that αIISp and the ICL repair protein, XPF, co-localize and follow a similar time course for formation. Knock-down of αIISp has no effect on monoubiquitination of FANCD2 (FANCD2-Ub) or its localization to chromatin or foci, though it leads to decreased ICL repair. Studies using cells from FA patients, defective in ICL repair and αIISp, have elucidated an important role for αIISp in the function of non-Ub FANCD2. In FA complementation group A (FA-A) cells, in which FANCD2 is not monoubiquitinated and does not form damage-induced foci, we demonstrate that restoration of αIISp levels to normal, by knocking down the protease μ-calpain, leads to formation of non-Ub FANCD2 foci after ICL damage. Since restoration of αIISp levels in FA-A cells restores DNA repair and cell survival, we propose that αIISp is critical for recruitment of non-Ub FANCD2 to sites of damage, which has an important role in the repair response and ICL repair. PMID:26297932

  5. Mechanism of DNA damage tolerance

    Institute of Scientific and Technical Information of China (English)

    Xin; Bi

    2015-01-01

    DNA damage may compromise genome integrity and lead to cell death. Cells have evolved a variety of processes to respond to DNA damage including damage repair and tolerance mechanisms, as well as damage checkpoints. The DNA damage tolerance(DDT) pathway promotes the bypass of single-stranded DNA lesions encountered by DNA polymerases during DNA replication. This prevents the stalling of DNA replication. Two mechanistically distinct DDT branches have been characterized. One is translesion synthesis(TLS) in which a replicative DNA polymerase is temporarily replaced by a specialized TLS polymerase that has the ability to replicate across DNA lesions. TLS is mechanistically simple and straightforward, but it is intrinsically error-prone. The other is the error-free template switching(TS) mechanism in which the stalled nascent strand switches from the damaged template to the undamaged newly synthesized sister strand for extension past the lesion. Error-free TS is a complex but preferable process for bypassing DNA lesions. However, our current understanding of this pathway is sketchy. An increasing number of factors are being found to participate or regulate this important mechanism, which is the focus of this editorial.

  6. Chronic restraint stress in rats causes sustained increase in urinary corticosterone excretion without affecting cerebral or systemic oxidatively generated DNA/RNA damage

    DEFF Research Database (Denmark)

    Jorgensen, Anders; Maigaard, Katrine; Wörtwein, Gitta;

    2013-01-01

    of nucleic acid damage from oxidation were affected by stress. In contrast, cerebral DNA repair enzymes exhibited a general trend towards an induction, which was significant for hippocampal Nudt1. The results and their implications for stress sensitivity and resilience are discussed.......Increased oxidatively generated damage to nucleic acids (DNA/RNA) may be a common mechanism underlying accelerated aging in psychological stress states and mental disorders. In the present study, we measured the urinary excretion of corticosterone and markers of systemic oxidative stress on nucleic...... acids, 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and 8-oxo-7,8-dihydroguanosine (8-oxoGuo), respectively, in rats subjected to chronic restraint stress. To reliably collect 24h urine samples, the full 3-week restraint stress paradigm was performed in metabolism cages. We further determined frontal...

  7. The DNA damage response during mitosis

    Energy Technology Data Exchange (ETDEWEB)

    Heijink, Anne Margriet; Krajewska, Małgorzata; Vugt, Marcel A.T.M. van, E-mail: m.vugt@umcg.nl

    2013-10-15

    Cells are equipped with a cell-intrinsic signaling network called the DNA damage response (DDR). This signaling network recognizes DNA lesions and initiates various downstream pathways to coordinate a cell cycle arrest with the repair of the damaged DNA. Alternatively, the DDR can mediate clearance of affected cells that are beyond repair through apoptosis or senescence. The DDR can be activated in response to DNA damage throughout the cell cycle, although the extent of DDR signaling is different in each cell cycle phase. Especially in response to DNA double strand breaks, only a very marginal response was observed during mitosis. Early on it was recognized that cells which are irradiated during mitosis continued division without repairing broken chromosomes. Although these initial observations indicated diminished DNA repair and lack of an acute DNA damage-induced cell cycle arrest, insight into the mechanistic re-wiring of DDR signaling during mitosis was only recently provided. Different mechanisms appear to be at play to inactivate specific signaling axes of the DDR network in mitosis. Importantly, mitotic cells not simply inactivate the entire DDR, but appear to mark their DNA damage for repair after mitotic exit. Since the treatment of cancer frequently involves agents that induce DNA damage as well as agents that block mitotic progression, it is clinically relevant to obtain a better understanding of how cancer cells deal with DNA damage during interphase versus mitosis. In this review, the molecular details concerning DDR signaling during mitosis as well as the consequences of encountering DNA damage during mitosis for cellular fate are discussed.

  8. Replication licensing and the DNA damage checkpoint

    OpenAIRE

    Cook, Jeanette Gowen

    2009-01-01

    Accurate and timely duplication of chromosomal DNA requires that replication be coordinated with processes that ensure genome integrity. Significant advances in determining how the earliest steps in DNA replication are affected by DNA damage have highlighted some of the mechanisms to establish that coordination. Recent insights have expanded the relationship between the ATM and ATR-dependent checkpoint pathways and the proteins that bind and function at replication origins. These findings sug...

  9. The ERCC2/XPD Lys751Gln polymorphism affects DNA repair of benzo[a]pyrene induced damage, tested in an in vitro model.

    Science.gov (United States)

    Xiao, Sha; Cui, Su; Lu, Xiaobo; Guan, Yangyang; Li, Dandan; Liu, Qiufang; Cai, Yuan; Jin, Cuihong; Yang, Jinghua; Wu, Shengwen; van der Straaten, Tahar

    2016-08-01

    Nucleotide excision repair (NER) is an important defense mechanism of the body to exogenous carcinogens and mutagens, such as benzo[a]pyrene (B[a]P). Genetic polymorphisms in ERCC2/XPD, a critical element in NER, are thought to be associated with individual's cancer susceptibility. Although ERCC2/XPD Lys751Gln (rs13181) is the most studied polymorphism, the impact of this polymorphism on DNA repair capacity to carcinogen remains unclear. In the present study, cDNA clones carrying different genotypes of ERCC2/XPD (Lys751Gln) were introduced into an ERCC2/XPD deficient cell line (UV5) in a well-controlled biological system. After B[a]P treatment, cell growth inhibition rates and DNA damage levels in all cells were detected respectively. As expected, we found that the DNA repair capacity in UV5 cells was restored to levels similar to wildtype parent AA8 cells upon introduction of the cDNA clone of ERCC2/XPD (Lys751). Interestingly, after B[a]P treatment, transfected cells expressing variant ERCC2/XPD (751Gln) showed an enhanced cellular sensitivity and a diminished DNA repair capacity. The wildtype genotype AA (Lys) was found to be associated with a higher DNA repair capacity as compared to its polymorphic genotype CC (Gln). These data indicate that ERCC2/XPD Lys751Gln polymorphism affects DNA repair capacity after exposure to environmental carcinogens such as B[a]P in this well-controlled in vitro system and could act as a biomarker to increase the predictive value to develop cancer. PMID:27139774

  10. DNA damage and carcinogenesis

    International Nuclear Information System (INIS)

    Although cancer may arise as a result of many different types of molecular changes, there is little reason to doubt that changes to DNA are one of the more important ones in cancer initiation. Although DNA repair mechanisms seem able to eliminate a very large fraction of deleterious changes to DNA, we not only have little insight into the molecular mechanisms involved in such repair, but have a negligible amount of information to permit us to estimate the shape of dose response relations at low doses. The case of skin cancer is a special one, in that the average population is exposed to sufficient solar uv so that the effects of small increments in uv dose may be estimated. An approximate 85% reduction in DNA repair increases skin cancer incidence 104 fold

  11. Sperm DNA oxidative damage and DNA adducts.

    Science.gov (United States)

    Jeng, Hueiwang Anna; Pan, Chih-Hong; Chao, Mu-Rong; Lin, Wen-Yi

    2015-12-01

    The objective of this study was to investigate DNA damage and adducts in sperm from coke oven workers who have been exposed to polycyclic aromatic hydrocarbons. A longitudinal study was conducted with repeated measurements during spermatogenesis. Coke-oven workers (n=112) from a coke-oven plant served the PAH-exposed group, while administrators and security personnel (n=67) served the control. Routine semen parameters (concentration, motility, vitality, and morphology) were analyzed simultaneously; the assessment of sperm DNA integrity endpoints included DNA fragmentation, bulky DNA adducts, and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dGuo). The degree of sperm DNA fragmentation was measured using the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay and sperm chromatin structure assay (SCSA). The PAH-exposed group had a significant increase in bulky DNA adducts and 8-oxo-dGuo compared to the control subjects (Ps=0.002 and 0.045, respectively). Coke oven workers' percentages of DNA fragmentation and denaturation from the PAH-exposed group were not significantly different from those of the control subjects (Ps=0.232 and 0.245, respectively). Routine semen parameters and DNA integrity endpoints were not correlated. Concentrations of 8-oxo-dGuo were positively correlated with percentages of DNA fragmentation measured by both TUNEL and SCSA (Ps=0.045 and 0.034, respectively). However, the concentrations of 8-oxo-dGuo and percentages of DNA fragmentation did not correlate with concentrations of bulky DNA adducts. In summary, coke oven workers with chronic exposure to PAHs experienced decreased sperm DNA integrity. Oxidative stress could contribute to the degree of DNA fragmentation. Bulky DNA adducts may be independent of the formation of DNA fragmentation and oxidative adducts in sperm. Monitoring sperm DNA integrity is recommended as a part of the process of assessing the impact of occupational and environmental toxins on sperm

  12. Autophagy in DNA Damage Response

    Directory of Open Access Journals (Sweden)

    Piotr Czarny

    2015-01-01

    Full Text Available DNA damage response (DDR involves DNA repair, cell cycle regulation and apoptosis, but autophagy is also suggested to play a role in DDR. Autophagy can be activated in response to DNA-damaging agents, but the exact mechanism underlying this activation is not fully understood, although it is suggested that it involves the inhibition of mammalian target of rapamycin complex 1 (mTORC1. mTORC1 represses autophagy via phosphorylation of the ULK1/2–Atg13–FIP200 complex thus preventing maturation of pre-autophagosomal structures. When DNA damage occurs, it is recognized by some proteins or their complexes, such as poly(ADPribose polymerase 1 (PARP-1, Mre11–Rad50–Nbs1 (MRN complex or FOXO3, which activate repressors of mTORC1. SQSTM1/p62 is one of the proteins whose levels are regulated via autophagic degradation. Inhibition of autophagy by knockout of FIP200 results in upregulation of SQSTM1/p62, enhanced DNA damage and less efficient damage repair. Mitophagy, one form of autophagy involved in the selective degradation of mitochondria, may also play role in DDR. It degrades abnormal mitochondria and can either repress or activate apoptosis, but the exact mechanism remains unknown. There is a need to clarify the role of autophagy in DDR, as this process may possess several important biomedical applications, involving also cancer therapy.

  13. UV-induced DNA damage in humans

    OpenAIRE

    Bykov, Vladimir J.

    1999-01-01

    Ultraviolet radiation is considered to be the most harmful part of solar energy affecting man. The depletion of the ozone layer around the Earth increases the total exposure to UV-light. The incidence of skin cancer in man has been shown to be associated with exposure to solar radiation, especially to UV-light. UV is capable of initiating skin carcinogenesis through DNA damage, particularly by formation of DNA photoproducts. The major products formed by UV irradiation are di...

  14. Radiation damage to DNA-binding proteins

    International Nuclear Information System (INIS)

    The DNA-binding properties of proteins are strongly affected upon irradiation. The tetrameric lactose repressor (a dimer of dimers) losses its ability to bind operator DNA as soon as at least two damages per protomer of each dimer occur. The monomeric MC1 protein losses its ability to bind DNA in two steps : i) at low doses only the specific binding is abolished, whereas the non-specific one is still possible; ii) at high doses all binding vanishes. Moreover, the DNA bending induced by MC1 binding is less pronounced for a protein that underwent the low dose irradiation. When the entire DNA-protein complexes are irradiated, the observed disruption of the complexes is mainly due to the damage of the proteins and not to that of DNA. The doses necessary for complex disruption are higher than those inactivating the free protein. This difference, larger for MC1 than for lactose repressor, is due to the protection of the protein by the bound DNA. The oxidation of the protein side chains that are accessible to the radiation-induced hydroxyl radicals seems to represent the inactivating damage

  15. The DNA-Damage Response to γ-Radiation Is Affected by miR-27a in A549 Cells

    Directory of Open Access Journals (Sweden)

    Lucia Celotti

    2013-09-01

    Full Text Available Perturbations during the cell DNA-Damage Response (DDR can originate from alteration in the functionality of the microRNA-mediated gene regulation, being microRNAs (miRNAs, small non-coding RNAs that act as post-transcriptional regulators of gene expression. The oncogenic miR-27a is over-expressed in several tumors and, in the present study, we investigated its interaction with ATM, the gene coding for the main kinase of DDR pathway. Experimental validation to confirm miR-27a as a direct regulator of ATM was performed by site-direct mutagenesis of the luciferase reporter vector containing the 3'UTR of ATM gene, and by miRNA oligonucleotide mimics. We then explored the functional miR-27a/ATM interaction under biological conditions, i.e., during the response of A549 cells to ionizing radiation (IR exposure. To evaluate if miR-27a over-expression affects IR-induced DDR activation in A549 cells we determined cell survival, cell cycle progression and DNA double-strand break (DSB repair. Our results show that up-regulation of miR-27a promotes cell proliferation of non-irradiated and irradiated cells. Moreover, increased expression of endogenous mature miR-27a in A549 cells affects DBS rejoining kinetics early after irradiation.

  16. DNA damage and repair mechanism. [DNA damage and repair mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Grossman, L.

    1976-01-01

    The ability of cells to survive in an environment specifically damaging to its DNA can be attributed to a variety of inherent repair mechanisms. This is a form of repair in which alterations are directly reversed to their original form. This reversibility is exemplified by the photoreactivation of ultraviolet-induced pyrimidine dimers. This phenomenon is attributable to the action of an enzyme, photolyase (photoreactivating enzyme), which is able to monomerize the uv-induced pyrimidine dimers in the presence of 320 to 370 nm light. Dilution of damage can be effected through a series of sister chromatid exchanges, controlled by recombinational mechanisms as a postreplication event. In this form of repair, replication proceeds to the point of damage, stops and resumes at the point of the next initiation site resulting in a gap in the newly synthesized daughter strand. It is presumed that those strands containing damaged regions exchange with undamaged regions of other DNA, strands, resulting in the eventual dilution of such damage.

  17. Vitamin C for DNA damage prevention

    Energy Technology Data Exchange (ETDEWEB)

    Sram, Radim J., E-mail: sram@biomed.cas.cz [Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14220 Prague 4 (Czech Republic); Binkova, Blanka; Rossner, Pavel [Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14220 Prague 4 (Czech Republic)

    2012-05-01

    The ability of vitamin C to affect genetic damage was reviewed in human studies that used molecular epidemiology methods, including analysis of DNA adducts, DNA strand breakage (using the Comet assay), oxidative damage measured as levels of 8-oxo-7,8-dihydroxy-2 Prime -deoxyguanosine (8-oxodG), cytogenetic analysis of chromosomal aberrations and micronuclei, and the induction of DNA repair proteins. The protective effect of vitamin C was observed at plasma levels > 50 {mu}mol/l. Vitamin C supplementation decreased the frequency of chromosomal aberrations in groups with insufficient dietary intake who were occupationally exposed to mutagens, and also decreased the sensitivity to mutagens as assessed using the bleomycin assay. High vitamin C levels in plasma decreased the frequency of genomic translocations in groups exposed to ionizing radiation or c-PAHs in polluted air. The frequency of micronuclei was decreased by vitamin C supplementation in smokers challenged with {gamma}-irradiation, and higher vitamin C levels in plasma counteracted the damage induced by air pollution. The prevalence of DNA adducts inversely correlated with vitamin C levels in groups environmentally exposed to high concentrations of c-PAHs. Increased vitamin C levels decreased DNA strand breakage induced by air pollution. Oxidative damage (8-oxodG levels) was decreased by vitamin C supplementation in groups with plasma levels > 50 {mu}mol/l exposed to PM2.5 and c-PAHs. Modulation of DNA repair by vitamin C supplementation was observed both in poorly nourished subjects and in groups with vitamin C plasma levels > 50 {mu}mol/l exposed to higher concentrations of c-PAHs. It is possible that the impact of vitamin C on DNA damage depends both on background values of vitamin C in the individual as well as on the level of exposure to xenobiotics or oxidative stress.

  18. Radiation-induced DNA damage and DNA repair

    International Nuclear Information System (INIS)

    Although DNA undergoes various types of damage from radiation, active oxygen, and the like, a living body has a plurality of DNA repair mechanisms responding to the types of DNA damage. On the other hand, there are a system that results in cell death if the repair is impossible and a mechanism to lead to concretization if further repair is not accurately made. This paper explains the following items as the basic researches on these types of DNA damage and the repair mechanisms: (1) biological effects of DNA damage, (2) effect of DNA damage on DNA synthesis, and (3) effects of DNA damage on cells. It also explains the effects of radiation on cells with a focus on specific mechanism for (1) DNA damage caused by direct action due to radiation and by indirect action due mainly to active oxygen, and (2) DNA repair mechanism that works on DNA double-strand break (DSB). (A.O.)

  19. Radiation damage to DNA constituents

    International Nuclear Information System (INIS)

    The molecular changes of the DNA molecule, in various systems exposed to inoizing radiation, have been the subject of a great number of studies. In the present work electron spin resonance spectroscopy (ESR) has been applied to irradiated crystalline systems, in particular single crystals of DNA subunits and their derivatives. The main conclusions about the molecular damage are based on this technique in combination with molecular orbital calculations. It should be emphasized that the ESR technique is restricted to damage containing unpaired electrons. These unstable intermediates called free radicals seem, however, to be involved in all molecular models describing the action of radiation on DNA. One of the premises for a detailed theory of the radiation induced reactions at the physico-chemical level seems to involve exact knowledge of the induced free radicals as well as the modes of their formation and fate. For DNA, as such, it is hardly possible to arrive at such a level of knowledge since the molecular complexity prevents selective studies of the many different radiation induced products. One possible approach is to study the free radicals formed in the constituents of DNA. In the present work three lines of approach should be mentioned. The first is based on the observation that radical formation in general causes only minor structural alterations to the molecule in question. The use of isotopes with different spin and magnetic moment (in particular deuterium) may also serve a source of information. Deuteration leads to a number of protons, mainly NH - and OH, becoming substituted, and if any of these are involved in interactions with unpaired protons the resonance pattern is influeneed. The third source of information is molecular orbital calculation. The electron spin density distribution is a function in the three dimensional space based on the system's electronic wave functions. This constitutes the basis for the idea that ESR data can be correlated with

  20. Application of the comet assay and detection of DNA damage in haemocytes of medicinal leech affected by aluminium pollution: A case study

    International Nuclear Information System (INIS)

    This report describes an investigation of genotoxic effects in medicinal leech (Hirudo verbana) exposed to water and sediment of Lake Njivice (Krk Island, Croatia) contaminated by aluminium compounds. The levels of primary DNA damage in leech haemocytes and loss of DNA integrity caused by acute and chronic exposure to contaminated water and sediment were investigated using the alkaline comet assay. Genotoxic effects induced by acute exposure to contaminants were evaluated on leech haemocytes and blood cells of fish and mouse treated ex vivo. The effects of chronic exposure were assessed on haemocytes sampled from an animal kept under laboratory conditions on contaminated water and sediment for 180 days. The results indicate the DNA damaging potential of aluminium compounds present in an excess amount in tested samples. - The alkaline comet assay applied on Hirudo verbana haemocytes can be a useful tool in determining the potential genotoxicity of water and sediment pollutants.

  1. Application of the comet assay and detection of DNA damage in haemocytes of medicinal leech affected by aluminium pollution: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Mihaljevic, Zlatko, E-mail: zmihalj@biol.pmf.h [Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10 000 Zagreb (Croatia); Ternjej, Ivancica, E-mail: ivancica@biol.pmf.h [Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10 000 Zagreb (Croatia); Stankovic, Igor, E-mail: igor.stankovic@voda.h [Central Water Management Laboratory, Hrvatske vode, Ulica grada Vukovara 220, 10 000 Zagreb (Croatia); Kerovec, Mladen, E-mail: mkerovec@biol.pmf.h [Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10 000 Zagreb (Croatia); Kopjar, Nevenka, E-mail: nkopjar@imi.h [Mutagenesis Unit, Institute for Medical Research and Occupational Health, Ksaverska c. 2, 10 000 Zagreb (Croatia)

    2009-05-15

    This report describes an investigation of genotoxic effects in medicinal leech (Hirudo verbana) exposed to water and sediment of Lake Njivice (Krk Island, Croatia) contaminated by aluminium compounds. The levels of primary DNA damage in leech haemocytes and loss of DNA integrity caused by acute and chronic exposure to contaminated water and sediment were investigated using the alkaline comet assay. Genotoxic effects induced by acute exposure to contaminants were evaluated on leech haemocytes and blood cells of fish and mouse treated ex vivo. The effects of chronic exposure were assessed on haemocytes sampled from an animal kept under laboratory conditions on contaminated water and sediment for 180 days. The results indicate the DNA damaging potential of aluminium compounds present in an excess amount in tested samples. - The alkaline comet assay applied on Hirudo verbana haemocytes can be a useful tool in determining the potential genotoxicity of water and sediment pollutants.

  2. DNA Damage in Plant Herbarium Tissue

    OpenAIRE

    Martijn Staats; Argelia Cuenca; Richardson, James E.; Ria Vrielink-van Ginkel; Gitte Petersen; Ole Seberg; Bakker, Freek T

    2011-01-01

    Dried plant herbarium specimens are potentially a valuable source of DNA. Efforts to obtain genetic information from this source are often hindered by an inability to obtain amplifiable DNA as herbarium DNA is typically highly degraded. DNA post-mortem damage may not only reduce the number of amplifiable template molecules, but may also lead to the generation of erroneous sequence information. A qualitative and quantitative assessment of DNA post-mortem damage is essential to determine the ac...

  3. The DNA damage response during mitosis

    NARCIS (Netherlands)

    Heijink, Anne Margriet; Krajewska, Malgorzata; van Vugt, Marcel A. T. M.

    2013-01-01

    Cells are equipped with a cell-intrinsic signaling network called the DNA damage response (DDR). This signaling network recognizes DNA lesions and initiates various downstream pathways to coordinate a cell cycle arrest with the repair of the damaged DNA. Alternatively, the DDR can mediate clearance

  4. Using DNA damage to monitor water environment

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    DNA damage of aquatic organisms living in polluted environments can be used as a biomarker of the genotoxicity of toxic agents to organisms. This technique has been playing an important role in ecotoxicological study and environmental risk assessment. In this article, main types of DNA damage caused by pollutants in water environments were reviewed; methods of detecting DNA damage were also documented for water environmental monitoring.

  5. DNA damage and repair in plants

    International Nuclear Information System (INIS)

    The biological impact of any DNA damaging agent is a combined function of the chemical nature of the induced lesions and the efficiency and accuracy of their repair. Although much has been learned frommicrobes and mammals about both the repair of DNA damage and the biological effects of the persistence of these lesions, much remains to be learned about the mechanism and tissue-specificity of repair in plants. This review focuses on recent work on the induction and repair of DNA damage in higher plants, with special emphasis on UV-induced DNA damage products. (author)

  6. Loss of CCDC6, the first identified RET partner gene, affects pH2AX S139 levels and accelerates mitotic entry upon DNA damage.

    Directory of Open Access Journals (Sweden)

    Francesco Merolla

    Full Text Available CCDC6 was originally identified in chimeric genes caused by chromosomal translocation involving the RET proto-oncogene in some thryoid tumors mostly upon ionizing radiation exposure. Recognised as a pro-apoptotic phosphoprotein that negatively regulates CREB1-dependent transcription, CCDC6 is an ATM substrate that is responsive to genotoxic stress. Here we report that following genotoxic stress, loss or inactivation of CCDC6 in cancers that carry the CCDC6 fusion, accelerates the dephosphorylation of pH2AX S139, resulting in defective G2 arrest and premature mitotic entry. Moreover, we show that CCDC6 depleted cells appear to repair DNA damaged in a shorter time compared to controls, based on reporter assays in cells. High-troughput proteomic screening predicted the interaction between the CCDC6 gene product and the catalytic subunit of Serin-Threonin Protein Phosphatase 4 (PP4c recently identified as the evolutionarily conserved pH2AX S139 phosphatase that is activated upon DNA Damage. We describe the interaction between CCDC6 and PP4c and we report the modulation of PP4c enzymatic activity in CCDC6 depleted cells. We discuss the functional significance of CCDC6-PP4c interactions and hypothesize that CCDC6 may act in the DNA Damage Response by negatively modulating PP4c activity. Overall, our data suggest that in primary tumours the loss of CCDC6 function could influence genome stability and thereby contribute to carcinogenesis.

  7. Mechanisms for radiation damage in DNA

    International Nuclear Information System (INIS)

    Radiation damage to DNA results from the direct interaction of radiation with DNA where positive ions, electrons and excited states are formed in the DNA, and the indirect effect where radical species formed in the surrounding medium by the radiation attack the DNA. The primary mechanism proposed for radiation damage, by the direct effect, is that positive and negative ions formed within the DNA strand migrate through the stacked DNA bases. The ions can then recombine, react with the DNA bases most likely to react by protonation of the anion and deprotonation or hydroxylation of the cation or transfer out of the DNA chain to the surrounding histone protein. This work as aimed at understanding the possible reactions of the DNA base ion radicals, as well as their initial distribution in the DNA strand. 31 refs

  8. DNA oligonucleotides damage in charge transport context

    Czech Academy of Sciences Publication Activity Database

    Kratochvílová, Irena; Bunček, M.; Šebera, Jakub; Záliš, Stanislav; Sychrovský, Vladimír; Mojzeš, P.; Schneider, Bohdan

    Prague: -, 2012. s. 22-22. [International Workshop on Radiation Damage to DNA /12./. 02.06.2012-06.06.2012, Prague] Institutional support: RVO:61388963 ; RVO:68378271 ; RVO:86652036 ; RVO:61388955 Keywords : charge transport * DNA damage Subject RIV: CC - Organic Chemistry

  9. Cellular responses to environmental DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    This volume contains the proceedings of the conference entitled Cellular Responses to Environmental DNA Damage held in Banff,Alberta December 1--6, 1991. The conference addresses various aspects of DNA repair in sessions titled DNA repair; Basic Mechanisms; Lesions; Systems; Inducible Responses; Mutagenesis; Human Population Response Heterogeneity; Intragenomic DNA Repair Heterogeneity; DNA Repair Gene Cloning; Aging; Human Genetic Disease; and Carcinogenesis. Individual papers are represented as abstracts of about one page in length.

  10. Visualization of DNA damage in individual cells

    International Nuclear Information System (INIS)

    A simple technique of micro-agarose gel electrophoresis has been developed to permit an evaluation of DNA damage in individual cells. Cells are embeded in agarose gel on microscope slides, lysed by detergents and then electrophoresed for a short time. In damaged cells, DNA migrated from the nuclei toward the anode, displaying 'comets' visualized by staining with a DNA-specific fluorochrome, acridine orange. The technique was applicable to quantifying DNA damage in individual cells exposed to Gy level of reactor radiation. (author)

  11. DNA Damage Signals and Space Radiation Risk

    Science.gov (United States)

    Cucinotta, Francis A.

    2011-01-01

    Space radiation is comprised of high-energy and charge (HZE) nuclei and protons. The initial DNA damage from HZE nuclei is qualitatively different from X-rays or gamma rays due to the clustering of damage sites which increases their complexity. Clustering of DNA damage occurs on several scales. First there is clustering of single strand breaks (SSB), double strand breaks (DSB), and base damage within a few to several hundred base pairs (bp). A second form of damage clustering occurs on the scale of a few kbp where several DSB?s may be induced by single HZE nuclei. These forms of damage clusters do not occur at low to moderate doses of X-rays or gamma rays thus presenting new challenges to DNA repair systems. We review current knowledge of differences that occur in DNA repair pathways for different types of radiation and possible relationships to mutations, chromosomal aberrations and cancer risks.

  12. Apoptosis and DNA damage in human spermatozoa

    Institute of Scientific and Technical Information of China (English)

    R John Aitken; Adam J Koppers

    2011-01-01

    DNA damage is frequently encountered in spermatozoa of subfertile males and is correlated with a range of adverse clinical outcomes including impaired fertilization, disrupted preimplantation embryonic development, increased rates of miscarriage and an enhanced risk of disease in the progeny. The etiology of DNA fragmentation in human spermatozoa is closely correlated with the appearance of oxidative base adducts and evidence of impaired spermiogenesis. We hypothesize that oxidative stress impedes spermiogenesis,resulting in the generation of spermatozoa with poorly remodelled chromatin. These defective cells have a tendency to default to an apoptotic pathway associated with motility loss, caspase activation, phosphatidylserine exteriorization and the activation of free radical generation by the mitochondria. The latter induces lipid peroxidation and oxidative DNA damage, which then leads to DNA fragmentation and cell death. The physical architecture of spermatozoa prevents any nucleases activated as a result of this apoptotic process from gaining access to the nuclear DNA and inducing its fragmentation. It is for this reason that a majority of the DNA damage encountered in human spermatozoa seems to be oxidative. Given the important role that oxidative stress seems to have in the etiology of DNA damage, there should be an important role for antioxidants in the treatment of this condition. If oxidative DNA damage in spermatozoa is providing a sensitive readout of systemic oxidative stress, the implications of these findings could stretch beyond our immediate goal of trying to minimize DNA damage in spermatozoa as a prelude to assisted conception therapy.

  13. PCR-Based Analysis of Mitochondrial DNA Copy Number, Mitochondrial DNA Damage, and Nuclear DNA Damage.

    Science.gov (United States)

    Gonzalez-Hunt, Claudia P; Rooney, John P; Ryde, Ian T; Anbalagan, Charumathi; Joglekar, Rashmi; Meyer, Joel N

    2016-01-01

    Because of the role that DNA damage and depletion play in human disease, it is important to develop and improve tools to assess these endpoints. This unit describes PCR-based methods to measure nuclear and mitochondrial DNA damage and copy number. Long amplicon quantitative polymerase chain reaction (LA-QPCR) is used to detect DNA damage by measuring the number of polymerase-inhibiting lesions present based on the amount of PCR amplification; real-time PCR (RT-PCR) is used to calculate genome content. In this unit, we provide step-by-step instructions to perform these assays in Homo sapiens, Mus musculus, Rattus norvegicus, Caenorhabditis elegans, Drosophila melanogaster, Danio rerio, Oryzias latipes, Fundulus grandis, and Fundulus heteroclitus, and discuss the advantages and disadvantages of these assays. PMID:26828332

  14. Chromatin dynamics during cell cycle mediate conversion of DNA damage into chromatid breaks and affect formation of chromosomal aberrations: Biological and clinical significance

    Energy Technology Data Exchange (ETDEWEB)

    Terzoudi, Georgia I.; Hatzi, Vasiliki I. [Institute of Radioisotopes and Radiodiagnostic Products, National Centre for Scientific Research ' Demokritos' , 15310 Ag. Paraskevi Attikis, Athens (Greece); Donta-Bakoyianni, Catherine [Oral Diagnosis and Radiology, University of Athens Dental School, Athens (Greece); Pantelias, Gabriel E., E-mail: gabriel@ipta.demokritos.gr [Institute of Radioisotopes and Radiodiagnostic Products, National Centre for Scientific Research ' Demokritos' , 15310 Ag. Paraskevi Attikis, Athens (Greece)

    2011-06-03

    The formation of diverse chromosomal aberrations following irradiation and the variability in radiosensitivity at different cell-cycle stages remain a long standing controversy, probably because most of the studies have focused on elucidating the enzymatic mechanisms involved using simple DNA substrates. Yet, recognition, processing and repair of DNA damage occur within the nucleoprotein complex of chromatin which is dynamic in nature, capable of rapid unfolding, disassembling, assembling and refolding. The present work reviews experimental work designed to investigate the impact of chromatin dynamics and chromosome conformation changes during cell-cycle in the formation of chromosomal aberrations. Using conventional cytogenetics and premature chromosome condensation to visualize interphase chromatin, the data presented support the hypothesis that chromatin dynamic changes during cell-cycle are important determinants in the conversion of sub-microscopic DNA lesions into chromatid breaks. Consequently, the type and yield of radiation-induced chromosomal aberrations at a given cell-cycle-stage depends on the combined effect of DNA repair processes and chromatin dynamics, which is cell-cycle-regulated and subject to up- or down-regulation following radiation exposure or genetic alterations. This new hypothesis is used to explain the variability in radiosensitivity observed at various cell-cycle-stages, among mutant cells and cells of different origin, or among different individuals, and to revisit unresolved issues and unanswered questions. In addition, it is used to better understand hypersensitivity of AT cells and to provide an improved predictive G2-assay for evaluating radiosensitivity at individual level. Finally, experimental data at single cell level obtained using hybrid cells suggest that the proposed hypothesis applies only to the irradiated component of the hybrid.

  15. DNA damage induced by radionuclide internal irradiation

    International Nuclear Information System (INIS)

    Objective: To study the DNA damage of peripheral blood mononuclear cell (PBMC) in rats exposed to radionuclide internal irradiation. Methods: The radionuclides were injected into the rats and single cell get electrophoresis (SCGE) was performed to detect the length of DNA migration in the rat PBMC. Results: DNA migration in the rat PBMC increased with accumulative dose or dose-rate. It showed good relationship of dose vs. response and of dose-rate vs. response, both relationship could be described as linear models. Conclusion: Radionuclide internal irradiation could cause DNA damage in rat PBMC. (authors)

  16. Mechanisms for radiation damage in DNA

    International Nuclear Information System (INIS)

    In this project the author has proposed several mechanisms for radiation damage to DNA and its constituents, and has detailed a series of experiments utilizing electron spin resonance spectroscopy, HPLC, GC-mass spectroscopy and ab initio molecular orbital calculations to test the proposed mechanisms. In this years work he has completed several experiments on the role of hydration water on DNA radiation damage, continued the investigation of the localization of the initial charges and their reactions on DNA, investigated protonation reactions in DNA base anions, and employed ab initio molecular orbital theory to gain insight into the initial events of radiation damage to DNA. Ab initio calculations have provided an understanding of the energetics evolved in anion and cation formation, ion radical transfer in DNA as well as proton transfer with DNA base pair radical ions. This has been extended in this years work to a consideration of ionization energies of various components of the DNA deoxyribose backbone and resulting neutral sugar radicals. This information has aided the formation of new radiation models for the effect of radiation on DNA. During this fiscal year four articles have been published, four are in press, one is submitted and several more are in preparation. Four papers have been presented at scientific meetings. This years effort will include another review article on the open-quotes Electron Spin Resonance of Radiation Damage to DNAclose quotes

  17. DNA damage responses in mammalian oocytes.

    Science.gov (United States)

    Collins, Josie K; Jones, Keith T

    2016-07-01

    DNA damage acquired during meiosis can lead to infertility and miscarriage. Hence, it should be important for an oocyte to be able to detect and respond to such events in order to make a healthy egg. Here, the strategies taken by oocytes during their stages of growth to respond to DNA damaging events are reviewed. In particular, recent evidence of a novel pathway in fully grown oocytes helps prevent the formation of mature eggs with DNA damage. It has been found that fully grown germinal vesicle stage oocytes that have been DNA damaged do not arrest at this point in meiosis, but instead undergo meiotic resumption and stall during the first meiotic division. The Spindle Assembly Checkpoint, which is a well-known mitotic pathway employed by somatic cells to monitor chromosome attachment to spindle microtubules, appears to be utilised by oocytes also to respond to DNA damage. As such maturing oocytes are arrested at metaphase I due to an active Spindle Assembly Checkpoint. This is surprising given this checkpoint has been previously studied in oocytes and considered to be weak and ineffectual because of its poor ability to be activated in response to microtubule attachment errors. Therefore, the involvement of the Spindle Assembly Checkpoint in DNA damage responses of mature oocytes during meiosis I uncovers a novel second function for this ubiquitous cellular checkpoint. PMID:27069010

  18. DNA DAMAGE QUANTITATION BY ALKALINE GEL ELECTROPHORESIS.

    Energy Technology Data Exchange (ETDEWEB)

    SUTHERLAND,B.M.; BENNETT,P.V.; SUTHERLAND, J.C.

    2004-03-24

    Physical and chemical agents in the environment, those used in clinical applications, or encountered during recreational exposures to sunlight, induce damages in DNA. Understanding the biological impact of these agents requires quantitation of the levels of such damages in laboratory test systems as well as in field or clinical samples. Alkaline gel electrophoresis provides a sensitive (down to {approx} a few lesions/5Mb), rapid method of direct quantitation of a wide variety of DNA damages in nanogram quantities of non-radioactive DNAs from laboratory, field, or clinical specimens, including higher plants and animals. This method stems from velocity sedimentation studies of DNA populations, and from the simple methods of agarose gel electrophoresis. Our laboratories have developed quantitative agarose gel methods, analytical descriptions of DNA migration during electrophoresis on agarose gels (1-6), and electronic imaging for accurate determinations of DNA mass (7-9). Although all these components improve sensitivity and throughput of large numbers of samples (7,8,10), a simple version using only standard molecular biology equipment allows routine analysis of DNA damages at moderate frequencies. We present here a description of the methods, as well as a brief description of the underlying principles, required for a simplified approach to quantitation of DNA damages by alkaline gel electrophoresis.

  19. DDB2 (Damaged DNA binding protein 2) in nucleotide excision repair and DNA damage response

    OpenAIRE

    Stoyanova, Tanya; Roy, Nilotpal; Kopanja, Dragana; Raychaudhuri, Pradip; Bagchi, Srilata

    2009-01-01

    DDB2 was identified as a protein involved in the Nucleotide Excision Repair (NER), a major DNA repair mechanism that repairs UV damage to prevent accumulation of mutations and tumorigenesis. However, recent studies indicated additional functions of DDB2 in the DNA damage response pathway. Herein, we discuss the proposed mechanisms by which DDB2 activates NER and programmed cell death upon DNA damage through its E3 ligase activity.

  20. Carcinogen-induced damage to DNA

    International Nuclear Information System (INIS)

    Human cells respond to carcinogen-induced damage in their DNA in at least two ways. The first response, excision repair, proceeds by at least three variations, depending on the nature of the damage. Nucleotide excision results in relatively large repair patches but few free DNA breaks, since the endonuclease step is limiting. Apurinic repair is characterized by the appearance of numerous breaks in the DNA and by short repair patches. The pathways behave as though they function independently. Lymphoic cells derived from a xeroderma pigmentosum complementation group C patient are deficient in their ability to perform nucleotide excision and also to excise 6 methoxyguanine adducts, but they are apurinic repair competent. Organisms may bypass damage in their DNA. Lymphoblastoid cells, including those derived from xeroderma pigmentosum treated with 3H-anti-BPDE, can replicate their DNA at low doses of carcinogen. Unexcised 3H is found in the light or parental strand of the resulting hybrid DNA when replication occurs in medium with BrdUrd. This observation indicates a bypass reaction occurring by a mechanism involving branch migration at DNA growing points. Branch migration in DNA preparations have been observed, but the evidence is that most occurs in BrdUrd-containing DNA during cell lysis. The measurement of the bifilarly substituted DNA resulting from branch migration is a convenient method of estimating the proportion of new synthesis remaining in the vicinity of the DNA growing point. Treatment with carcinogens or caffeine results in accumulation of DNA growing points accompanied by the synthesis of shortened pieces of daughter DNA

  1. Polyomavirus interaction with the DNA damage response

    Institute of Scientific and Technical Information of China (English)

    Joshua; L.Justice; Brandy; Verhalen; Mengxi; Jiang

    2015-01-01

    Viruses are obligate intracellular parasites that subvert cellular metabolism and pathways to mediate their own replication—normally at the expense of the host cell. Polyomaviruses are a group of small DNA viruses, which have long been studied as a model for eukaryotic DNA replication. Polyomaviruses manipulate host replication proteins, as well as proteins involved in DNA maintenance and repair, to serve as essential cofactors for productive infection. Moreover, evidence suggests that polyomavirus infection poses a unique genotoxic threat to the host cell. In response to any source of DNA damage, cells must initiate an effective DNA damage response(DDR) to maintain genomic integrity, wherein two protein kinases, ataxia telangiectasia mutated(ATM) and ATM- and Rad3-related(ATR), are major regulators of DNA damage recognition and repair. Recent investigation suggests that these essential DDR proteins are required for productive polyomavirus infection. This review will focus on polyomaviruses and their interaction with ATMand ATR-mediated DNA damage responses and the effect of this interaction on host genomic stability.

  2. DNA damage and repair in age-related macular degeneration

    Energy Technology Data Exchange (ETDEWEB)

    Szaflik, Jacek P. [Department of Ophthalmology, Medical University of Warsaw and Samodzielny Publiczny Szpital Okulistyczny, Sierakowskiego 13, 03-710 Warsaw (Poland); Janik-Papis, Katarzyna; Synowiec, Ewelina; Ksiazek, Dominika [Department of Molecular Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz (Poland); Zaras, Magdalena [Department of Ophthalmology, Medical University of Warsaw and Samodzielny Publiczny Szpital Okulistyczny, Sierakowskiego 13, 03-710 Warsaw (Poland); Wozniak, Katarzyna [Department of Molecular Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz (Poland); Szaflik, Jerzy [Department of Ophthalmology, Medical University of Warsaw and Samodzielny Publiczny Szpital Okulistyczny, Sierakowskiego 13, 03-710 Warsaw (Poland); Blasiak, Janusz, E-mail: januszb@biol.uni.lodz.pl [Department of Molecular Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz (Poland)

    2009-10-02

    Age-related macular degeneration (AMD) is a retinal degenerative disease that is the main cause of vision loss in individuals over the age of 55 in the Western world. Clinically relevant AMD results from damage to the retinal pigment epithelial (RPE) cells thought to be mainly caused by oxidative stress. The stress also affects the DNA of RPE cells, which promotes genome instability in these cells. These effects may coincide with the decrease in the efficacy of DNA repair with age. Therefore individuals with DNA repair impaired more than average for a given age may be more susceptible to AMD if oxidative stress affects their RPE cells. This may be helpful in AMD risk assessment. In the present work we determined the level of basal (measured in the alkaline comet assay) endogenous and endogenous oxidative DNA damage, the susceptibility to exogenous mutagens and the efficacy of DNA repair in lymphocytes of 100 AMD patients and 110 age-matched individuals without visual disturbances. The cells taken from AMD patients displayed a higher extent of basal endogenous DNA damage without differences between patients of dry and wet forms of the disease. DNA double-strand breaks did not contribute to the observed DNA damage as checked by the neutral comet assay and pulsed field gel electrophoresis. The extent of oxidative modification to DNA bases was grater in AMD patients than in the controls, as probed by DNA repair enzymes NTH1 and Fpg. Lymphocytes from AMD patients displayed a higher sensitivity to hydrogen peroxide and UV radiation and repaired lesions induced by these factors less effectively than the cells from the control individuals. We postulate that the impaired efficacy of DNA repair may combine with enhanced sensitivity of RPE cells to blue and UV lights, contributing to the pathogenesis of AMD.

  3. DNA damage and repair in age-related macular degeneration

    International Nuclear Information System (INIS)

    Age-related macular degeneration (AMD) is a retinal degenerative disease that is the main cause of vision loss in individuals over the age of 55 in the Western world. Clinically relevant AMD results from damage to the retinal pigment epithelial (RPE) cells thought to be mainly caused by oxidative stress. The stress also affects the DNA of RPE cells, which promotes genome instability in these cells. These effects may coincide with the decrease in the efficacy of DNA repair with age. Therefore individuals with DNA repair impaired more than average for a given age may be more susceptible to AMD if oxidative stress affects their RPE cells. This may be helpful in AMD risk assessment. In the present work we determined the level of basal (measured in the alkaline comet assay) endogenous and endogenous oxidative DNA damage, the susceptibility to exogenous mutagens and the efficacy of DNA repair in lymphocytes of 100 AMD patients and 110 age-matched individuals without visual disturbances. The cells taken from AMD patients displayed a higher extent of basal endogenous DNA damage without differences between patients of dry and wet forms of the disease. DNA double-strand breaks did not contribute to the observed DNA damage as checked by the neutral comet assay and pulsed field gel electrophoresis. The extent of oxidative modification to DNA bases was grater in AMD patients than in the controls, as probed by DNA repair enzymes NTH1 and Fpg. Lymphocytes from AMD patients displayed a higher sensitivity to hydrogen peroxide and UV radiation and repaired lesions induced by these factors less effectively than the cells from the control individuals. We postulate that the impaired efficacy of DNA repair may combine with enhanced sensitivity of RPE cells to blue and UV lights, contributing to the pathogenesis of AMD.

  4. Epigenome Maintenance in Response to DNA Damage.

    Science.gov (United States)

    Dabin, Juliette; Fortuny, Anna; Polo, Sophie E

    2016-06-01

    Organism viability relies on the stable maintenance of specific chromatin landscapes, established during development, that shape cell functions and identities by driving distinct gene expression programs. Yet epigenome maintenance is challenged during transcription, replication, and repair of DNA damage, all of which elicit dynamic changes in chromatin organization. Here, we review recent advances that have shed light on the specialized mechanisms contributing to the restoration of epigenome structure and function after DNA damage in the mammalian cell nucleus. By drawing a parallel with epigenome maintenance during replication, we explore emerging concepts and highlight open issues in this rapidly growing field. In particular, we present our current knowledge of molecular players that support the coordinated maintenance of genome and epigenome integrity in response to DNA damage, and we highlight how nuclear organization impacts genome stability. Finally, we discuss possible functional implications of epigenome plasticity in response to genotoxic stress. PMID:27259203

  5. Mechanisms for radiation damage in DNA

    International Nuclear Information System (INIS)

    In this project we have proposed several mechanisms for radiation damage and recently radiation protection to DNA and its constituents, and have detailed a series of experiments utilizing electron spin resonance spectroscopy, HPLC and GC-mass spectroscopy to test the proposed mechanisms. In this years' work we have continued the investigation of the localization of the initial charges on DNA after irradiation through experiment and through the use of ab initio molecular orbital theory. The experimental results and MO calculations are in agreement that cytosine, not thymine, is likely the principal locus for excess charge; whereas guanine is confirmed as the initial site for the cationic charge. The mechanism for the anion localization on cytosine is clarified by MO calculations of DNA base pair and stacked base pair (GC/AT) ion radicals. In addition predictions made from a new model of ion transfer in DNA are tested and confirmed by an ESR investigation of irradiated single stranded DNA. In this years' effort in joint work with Wake Forest University we have also made excellent progress in the study of products produced from the direct effect of radiation on DNA. The release of unaltered bases and DNA base damage products are shown to be a function of hydration layer and evidence for a demarcation between the direct and indirect effect of radiation is presented. DNA base products from irradiations at ambient temperatures are shown to be those that would be predicted from ESR studies at low temperatures. In addition initial studies of radiation effects on DNA-protein complexes and certain sensitive amino acids have been initiated to shed light on the role of histones on DNA radiation damage. 16 refs., 2 figs., 1 tab

  6. The RNA Response to DNA Damage.

    Science.gov (United States)

    Giono, Luciana E; Nieto Moreno, Nicolás; Cambindo Botto, Adrián E; Dujardin, Gwendal; Muñoz, Manuel J; Kornblihtt, Alberto R

    2016-06-19

    Multicellular organisms must ensure genome integrity to prevent accumulation of mutations, cell death, and cancer. The DNA damage response (DDR) is a complex network that senses, signals, and executes multiple programs including DNA repair, cell cycle arrest, senescence, and apoptosis. This entails regulation of a variety of cellular processes: DNA replication and transcription, RNA processing, mRNA translation and turnover, and post-translational modification, degradation, and relocalization of proteins. Accumulated evidence over the past decades has shown that RNAs and RNA metabolism are both regulators and regulated actors of the DDR. This review aims to present a comprehensive overview of the current knowledge on the many interactions between the DNA damage and RNA fields. PMID:26979557

  7. DNA damage response during mouse oocyte maturation

    Czech Academy of Sciences Publication Activity Database

    Mayer, Alexandra; Baran, Vladimír; Sakakibara, Y.; Brzáková, Adéla; Ferencová, Ivana; Motlík, Jan; Kitajima, T.; Schultz, R. M.; Šolc, Petr

    2016-01-01

    Roč. 15, č. 4 (2016), s. 546-558. ISSN 1538-4101 R&D Projects: GA MŠk LH12057; GA MŠk ED2.1.00/03.0124 Institutional support: RVO:67985904 Keywords : double strand DNA breaks * DNA damage * MRE11 * meiotic maturation * mouse oocytes Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.565, year: 2014

  8. Homologous recombination in DNA repair and DNA damage tolerance

    Institute of Scientific and Technical Information of China (English)

    Xuan Li; Wolf-Dietrich Heyer

    2008-01-01

    Homologous recombination (HR) comprises a series of interrelated pathways that function in the repair of DNA double-stranded breaks (DSBs) and interstrand crosslinks (ICLs). In addition, recombination provides critical sup-port for DNA replication in the recovery of stalled or broken replication forks, contributing to tolerance of DNA damage. A central core of proteins, most critically the RecA homolog Rad51, catalyzes the key reactions that typify HR: homology search and DNA strand invasion. The diverse functions of recombination are reflected in the need for context-specific factors that perform supplemental functions in conjunction with the core proteins. The inability to properly repair complex DNA damage and resolve DNA replication stress leads to genomic instability and contributes to cancer etiology. Mutations in the BRCA2 recombination gene cause predisposition to breast and ovarian cancer as well as Fanconi anemia, a cancer predisposition syndrome characterized by a defect in the repair of DNA interstrand crosslinks. The cellular functions of recombination are also germane to DNA-based treatment modaUties of cancer, which target replicating cells by the direct or indirect induction of DNA lesions that are substrates for recombination pathways. This review focuses on mechanistic aspects of HR relating to DSB and ICL repair as well as replication fork support.

  9. Involvement of DNA Damage Response Pathways in Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Sheau-Fang Yang

    2014-01-01

    Full Text Available Hepatocellular carcinoma (HCC has been known as one of the most lethal human malignancies, due to the difficulty of early detection, chemoresistance, and radioresistance, and is characterized by active angiogenesis and metastasis, which account for rapid recurrence and poor survival. Its development has been closely associated with multiple risk factors, including hepatitis B and C virus infection, alcohol consumption, obesity, and diet contamination. Genetic alterations and genomic instability, probably resulted from unrepaired DNA lesions, are increasingly recognized as a common feature of human HCC. Dysregulation of DNA damage repair and signaling to cell cycle checkpoints, known as the DNA damage response (DDR, is associated with a predisposition to cancer and affects responses to DNA-damaging anticancer therapy. It has been demonstrated that various HCC-associated risk factors are able to promote DNA damages, formation of DNA adducts, and chromosomal aberrations. Hence, alterations in the DDR pathways may accumulate these lesions to trigger hepatocarcinogenesis and also to facilitate advanced HCC progression. This review collects some of the most known information about the link between HCC-associated risk factors and DDR pathways in HCC. Hopefully, the review will remind the researchers and clinicians of further characterizing and validating the roles of these DDR pathways in HCC.

  10. Oxidation of DNA: damage to nucleobases.

    Science.gov (United States)

    Kanvah, Sriram; Joseph, Joshy; Schuster, Gary B; Barnett, Robert N; Cleveland, Charles L; Landman, Uzi

    2010-02-16

    All organisms store the information necessary to maintain life in their DNA. Any process that damages DNA, causing a loss or corruption of that information, jeopardizes the viability of the organism. One-electron oxidation is such a process. In this Account, we address three of the central features of one-electron oxidation of DNA: (i) the migration of the radical cation away from the site of its formation; (ii) the electronic and structural factors that determine the nucleobases at which irreversible reactions most readily occur; (iii) the mechanism of reaction for nucleobase radical cations. The loss of an electron (ionization) from DNA generates an electron "hole" (a radical cation), located most often on its nucleobases, that migrates reversibly through duplex DNA by hopping until it is trapped in an irreversible chemical reaction. The particular sequence of nucleobases in a DNA oligomer determines both the efficiency of hopping and the specific location and nature of the damaging chemical reaction. In aqueous solution, DNA is a polyanion because of the negative charge carried by its phosphate groups. Counterions to the phosphate groups (typically Na(+)) play an important role in facilitating both hopping and the eventual reaction of the radical cation with H(2)O. Irreversible reaction of a radical cation with H(2)O in duplex DNA occurs preferentially at the most reactive site. In normal DNA, comprising the four common DNA nucleobases G, C, A, and T, reaction occurs most commonly at a guanine, resulting in its conversion primarily to 8-oxo-7,8-dihydroguanine (8-OxoG). Both electronic and steric effects control the outcome of this process. If the DNA oligomer does not contain a suitable guanine, then reaction of the radical cation occurs at the thymine of a TT step, primarily by a tandem process. The oxidative damage of DNA is a complex process, influenced by charge transport and reactions that are controlled by a combination of enthalpic, entropic, steric, and

  11. Spectrum of complex DNA damages depends on the incident radiation

    Science.gov (United States)

    Hada, M.; Sutherland, B.

    Ionizing radiation induces clustered DNA damages in DNA-two or more abasic sites oxidized bases and strand breaks on opposite DNA strands within a few helical turns Clustered damages are considered to be difficult to repair and therefore potentially lethal and mutagenic damages Although induction of single strand breaks and isolated lesions has been studied extensively little is known of factors affecting induction of clusters other than double strand breaks DSB The aim of the present study was to determine whether the type of incident radiation could affect yield or spectra of specific clusters Genomic T7 DNA a simple 40 kbp linear blunt-ended molecule was irradiated in non-scavenging buffer conditions with Fe 970 MeV n Ti 980 MeV n C 293 MeV n Si 586 MeV n ions or protons 1 GeV n at the NASA Space Radiation Laboratory or with 100 kVp X-rays Irradiated DNA was treated with homogeneous Fpg or Nfo proteins or without enzyme treatment for DSB quantitation then electrophoresed in neutral agarose gels DSB Fpg-OxyPurine clusters and Nfo-Abasic clusters were quantified by number average length analysis The results show that the yields of all these complex damages depend on the incident radiation Although LETs are similar protons induced twice as many DSBs than did X-rays Further the spectrum of damage also depends on the radiation The yield damage Mbp Gy of all damages decreased with increasing linear energy transfer LET of the radiation The relative frequencies of DSBs to Abasic- and OxyBase clusters were higher

  12. Radiation-induced damage to DNA

    International Nuclear Information System (INIS)

    This short survey focuses on the main radiation-induced base lesions that have been identified within cellular DNA. For this purpose, sensitive assays that are aimed at measuring a few modifications per 107 normal bases were set-up. In that respect high performance liquid chromatography - tandem mass spectrometry (CLHP-MS/MS) was found to be able to single out the formation of 9 oxidized nucleosides and two modified nucleo-bases out of the 70 oxidative base lesions that have been identified in model systems. As a striking result, it was found that in the DNA of γ-irradiated human monocytes, the formamide-pyrimidine derivative of guanine is produced in a higher yield than the ubiquitous 8-oxo-7,8-dihydro-guanine damage, both arising from the same radical precursor. However, relatively high doses of ionizing radiation (> 20 Gy) have to be applied in order to detect an increase in the level of the damage. This is due to the low efficiency for both low and high LET radiations to generate oxidative damage to DNA on one hand and the occurrence of artifactual oxidation of the overwhelming normal bases during DNA extraction on the other hand. Interestingly, a modified comet assays that involves the combined use of the alkaline single gel electrophoretic technique and DNA repair N-glycosylases has allowed the detection of three main types of radiation-induced damage within the dose range 0.3 Gy -10 Gy. It appears that the total of frank DNA strand breaks and alkali-labile sites is similar to the sum of oxidized pyrimidine bases and modified purine bases that are recognized by the endonuclease Ill protein and the formamide-pyrimidine DNA N-glycosylase respectively. (author)

  13. Targeting DNA Damage and Repair by Curcumin

    OpenAIRE

    Ji, Zhenyu

    2010-01-01

    Curcumin is a compound with anti-tumor effects in a tolerable dose. A recent paper by Rowe et al described that curcumin induced DNA damage in triple negative breast cancer cells and regulated BRCA1 protein expression and modification.1 Related research and potential use of curcumin will be discussed in this article.

  14. FIBER OPTIC BIOSENSOR FOR DNA DAMAGE

    Science.gov (United States)

    This paper describes a fiber optic biosensor for the rapid and sensitive detection of radiation-induced or chemically-induced oxidative DNA damage. The assay is based on the hybridization and temperature-induced dissociation (melting curves) of synthetic oligonucleotides. The...

  15. DNA damage induces p53-dependent BRCA1 nuclear export

    International Nuclear Information System (INIS)

    Full text: Carriers of BRCA1 mutations have an 85% risk of developing breast cancer by age 70. This risk is about 20-fold higher than the general population. BRCA1 functions in multiple DNA damage response pathways, and its functions are regulated by a variety of mechanisms including transcription control, phosphorylation, and protein-protein interactions. Given the critical role of BRCA1 in nucleus, its sub-cellular localization could be an important mechanism in regulating its function. Recent studies showed that BRCA1 is a nuclear-cytoplasmic shuttle protein. It is imported to the nucleus through a nuclear localization signal (NLS)-mediated importing receptor pathway, and exported to cytoplasm via a nuclear export signal (NES)-facilitated CRM1 pathway. However, little is known on how BRCA1 shuttling between the nucleus and cytoplasm is controlled, what cellular process(s) or environmental insult(s) triggers cell to import BRCA1 protein to nucleus and verse visa. In view of the fact that BRCA1 plays critical roles in several DNA damage response pathways, we hypothesized that ionizing radiation-induced DNA damage may affect BRCA1 shuttling. We found that ionizing radiation-induced DNA damage promotes BRCA1 nuclear export in human breast cancer cells through a CRM1-dependent mechanism. We further found that DNA damage-induced BRCA1 nuclear export is dependent on wild-type p53 function. These results suggest that p53-dependent BRCA1 nucleus export might be an alternative mechanism for BRCA1 functional regulation in cellular response to DNA damage. Interruption of BRCA1 shuttling in breast cancer cells that do not have functional p53 may compromise the precise regulation of BRCA1 function timely and spatially, resulting in aberrant DNA repair and increased genetic instability in surviving cells

  16. Are glutathione S transferases involved in DNA damage signalling? Interactions with DNA damage and repair revealed from molecular epidemiology studies

    Energy Technology Data Exchange (ETDEWEB)

    Dusinska, Maria, E-mail: Maria.DUSINSKA@nilu.no [CEE-Health Effects Group, NILU - Norwegian Institute for Air Research, Kjeller (Norway); Staruchova, Marta; Horska, Alexandra [Department of Experimental and Applied Genetics, Slovak Medical University, Bratislava (Slovakia); Smolkova, Bozena [Laboratory of Cancer Genetics, Cancer Research Institute of the Slovak Academy of Sciences, Bratislava (Slovakia); Collins, Andrew [Department of Nutrition, Faculty of Medicine, University of Oslo (Norway); Bonassi, Stefano [Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, Rome (Italy); Volkovova, Katarina [Department of Experimental and Applied Genetics, Slovak Medical University, Bratislava (Slovakia)

    2012-08-01

    Glutathione S-transferases (GSTs) are members of a multigene family of isoenzymes that are important in the control of oxidative stress and in phase II metabolism. Acting non-enzymically, GSTs can modulate signalling pathways of cell proliferation, cell differentiation and apoptosis. Using a molecular epidemiology approach, we have investigated a potential involvement of GSTs in DNA damage processing, specifically the modulation of DNA repair in a group of 388 healthy adult volunteers; 239 with at least 5 years of occupational exposure to asbestos, stone wool or glass fibre, and 149 reference subjects. We measured DNA damage in lymphocytes using the comet assay (alkaline single cell gel electrophoresis): strand breaks (SBs) and alkali-labile sites, oxidised pyrimidines with endonuclease III, and oxidised purines with formamidopyrimidine DNA glycosylase. We also measured GST activity in erythrocytes, and the capacity for base excision repair (BER) in a lymphocyte extract. Polymorphisms in genes encoding three GST isoenzymes were determined, namely deletion of GSTM1 and GSTT1 and single nucleotide polymorphism Ile105Val in GSTP1. Consumption of vegetables and wine correlated negatively with DNA damage and modulated BER. GST activity correlated with oxidised bases and with BER capacity, and differed depending on polymorphisms in GSTP1, GSTT1 and GSTM1. A significantly lower BER rate was associated with the homozygous GSTT1 deletion in all asbestos site subjects and in the corresponding reference group. Multifactorial analysis revealed effects of sex and exposure in GSTP1 Ile/Val heterozygotes but not in Ile/Ile homozygotes. These variants affected also SBs levels, mainly by interactions of GSTP1 genotype with exposure, with sex, and with smoking habit; and by an interaction between sex and smoking. Our results show that GST polymorphisms and GST activity can apparently influence DNA stability and repair of oxidised bases, suggesting a potential new role for these

  17. Are glutathione S transferases involved in DNA damage signalling? Interactions with DNA damage and repair revealed from molecular epidemiology studies

    International Nuclear Information System (INIS)

    Glutathione S-transferases (GSTs) are members of a multigene family of isoenzymes that are important in the control of oxidative stress and in phase II metabolism. Acting non-enzymically, GSTs can modulate signalling pathways of cell proliferation, cell differentiation and apoptosis. Using a molecular epidemiology approach, we have investigated a potential involvement of GSTs in DNA damage processing, specifically the modulation of DNA repair in a group of 388 healthy adult volunteers; 239 with at least 5 years of occupational exposure to asbestos, stone wool or glass fibre, and 149 reference subjects. We measured DNA damage in lymphocytes using the comet assay (alkaline single cell gel electrophoresis): strand breaks (SBs) and alkali-labile sites, oxidised pyrimidines with endonuclease III, and oxidised purines with formamidopyrimidine DNA glycosylase. We also measured GST activity in erythrocytes, and the capacity for base excision repair (BER) in a lymphocyte extract. Polymorphisms in genes encoding three GST isoenzymes were determined, namely deletion of GSTM1 and GSTT1 and single nucleotide polymorphism Ile105Val in GSTP1. Consumption of vegetables and wine correlated negatively with DNA damage and modulated BER. GST activity correlated with oxidised bases and with BER capacity, and differed depending on polymorphisms in GSTP1, GSTT1 and GSTM1. A significantly lower BER rate was associated with the homozygous GSTT1 deletion in all asbestos site subjects and in the corresponding reference group. Multifactorial analysis revealed effects of sex and exposure in GSTP1 Ile/Val heterozygotes but not in Ile/Ile homozygotes. These variants affected also SBs levels, mainly by interactions of GSTP1 genotype with exposure, with sex, and with smoking habit; and by an interaction between sex and smoking. Our results show that GST polymorphisms and GST activity can apparently influence DNA stability and repair of oxidised bases, suggesting a potential new role for these

  18. DNA damage checkpoint recovery and cancer development

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haiyong [First affiliated hospital, Zhejiang University, School of medicine, Cancer Center, 79 Qingchun Road, Hangzhou 310003 (China); Zhang, Xiaoshan [Department of Genetics, University of Texas M.D. Anderson Cancer Center, Department of Genetics Unit 1010, 1515 Holcombe Blvd. Houston, TX 77030 (United States); Teng, Lisong, E-mail: lsteng@zju.edu.cn [First affiliated hospital, Zhejiang University, School of medicine, Cancer Center, 79 Qingchun Road, Hangzhou 310003 (China); Legerski, Randy J., E-mail: rlegersk@mdanderson.org [Department of Genetics, University of Texas M.D. Anderson Cancer Center, Department of Genetics Unit 1010, 1515 Holcombe Blvd. Houston, TX 77030 (United States)

    2015-06-10

    Cell cycle checkpoints were initially presumed to function as a regulator of cell cycle machinery in response to different genotoxic stresses, and later found to play an important role in the process of tumorigenesis by acting as a guard against DNA over-replication. As a counterpart of checkpoint activation, the checkpoint recovery machinery is working in opposition, aiming to reverse the checkpoint activation and resume the normal cell cycle. The DNA damage response (DDR) and oncogene induced senescence (OIS) are frequently found in precancerous lesions, and believed to constitute a barrier to tumorigenesis, however, the DDR and OIS have been observed to be diminished in advanced cancers of most tissue origins. These findings suggest that when progressing from pre-neoplastic lesions to cancer, DNA damage checkpoint barriers are overridden. How the DDR checkpoint is bypassed in this process remains largely unknown. Activated cytokine and growth factor-signaling pathways were very recently shown to suppress the DDR and to promote uncontrolled cell proliferation in the context of oncovirus infection. In recent decades, data from cell line and tumor models showed that a group of checkpoint recovery proteins function in promoting tumor progression; data from patient samples also showed overexpression of checkpoint recovery proteins in human cancer tissues and a correlation with patients' poor prognosis. In this review, the known cell cycle checkpoint recovery proteins and their roles in DNA damage checkpoint recovery are reviewed, as well as their implications in cancer development. This review also provides insight into the mechanism by which the DDR suppresses oncogene-driven tumorigenesis and tumor progression. - Highlights: • DNA damage checkpoint works as a barrier to cancer initiation. • DDR machinary response to genotoxic and oncogenic stress in similar way. • Checkpoint recovery pathways provide active signaling in cell cycle control. • Checkpoint

  19. DNA damage checkpoint recovery and cancer development

    International Nuclear Information System (INIS)

    Cell cycle checkpoints were initially presumed to function as a regulator of cell cycle machinery in response to different genotoxic stresses, and later found to play an important role in the process of tumorigenesis by acting as a guard against DNA over-replication. As a counterpart of checkpoint activation, the checkpoint recovery machinery is working in opposition, aiming to reverse the checkpoint activation and resume the normal cell cycle. The DNA damage response (DDR) and oncogene induced senescence (OIS) are frequently found in precancerous lesions, and believed to constitute a barrier to tumorigenesis, however, the DDR and OIS have been observed to be diminished in advanced cancers of most tissue origins. These findings suggest that when progressing from pre-neoplastic lesions to cancer, DNA damage checkpoint barriers are overridden. How the DDR checkpoint is bypassed in this process remains largely unknown. Activated cytokine and growth factor-signaling pathways were very recently shown to suppress the DDR and to promote uncontrolled cell proliferation in the context of oncovirus infection. In recent decades, data from cell line and tumor models showed that a group of checkpoint recovery proteins function in promoting tumor progression; data from patient samples also showed overexpression of checkpoint recovery proteins in human cancer tissues and a correlation with patients' poor prognosis. In this review, the known cell cycle checkpoint recovery proteins and their roles in DNA damage checkpoint recovery are reviewed, as well as their implications in cancer development. This review also provides insight into the mechanism by which the DDR suppresses oncogene-driven tumorigenesis and tumor progression. - Highlights: • DNA damage checkpoint works as a barrier to cancer initiation. • DDR machinary response to genotoxic and oncogenic stress in similar way. • Checkpoint recovery pathways provide active signaling in cell cycle control. • Checkpoint

  20. Delayed chromosomal instability induced by DNA damage.

    OpenAIRE

    Marder, B A; Morgan, W. F.

    1993-01-01

    DNA damage induced by ionizing radiation can result in gene mutation, gene amplification, chromosome rearrangements, cellular transformation, and cell death. Although many of these changes may be induced directly by the radiation, there is accumulating evidence for delayed genomic instability following X-ray exposure. We have investigated this phenomenon by studying delayed chromosomal instability in a hamster-human hybrid cell line by means of fluorescence in situ hybridization. We examined ...

  1. Immunochemical detection of oxidatively damaged DNA

    Czech Academy of Sciences Publication Activity Database

    Rössner ml., Pavel; Šrám, Radim

    2012-01-01

    Roč. 46, č. 4 (2012), s. 492-522. ISSN 1071-5762 R&D Projects: GA MŽP(CZ) SP/1B3/50/07; GA MŠk 2B08005; GA ČR GAP503/11/0084 Institutional research plan: CEZ:AV0Z50390703 Institutional support: RVO:68378041 Keywords : oxidative DNA damage * ELISA * immunohistochemistry Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 3.279, year: 2012

  2. Cyclooxygenase- and Lipoxygenase-Mediated DNA Damage

    OpenAIRE

    Speed, N; Blair, I. A.

    2011-01-01

    Cancer is a disease of aging and so with the increasing age of the US population, the incidence of cancer is also increasing. Furthermore the global burden of cancer continues to increase largely because of aging and growth of the world population together with increasing smoking rates in economically developing countries. Tumor formation is critically dependent upon two processes – initiation and progression. The initiation step is mediated by DNA damage, which causes activating mutations in...

  3. Arsenate and dimethylarsinic acid in drinking water did not affect DNA damage repair in urinary bladder transitional cells or micronuclei in bone marrow

    Science.gov (United States)

    Arsenic is a recognized human skin, lung, and urinary bladder carcinogen, and may act as a cocarcinogen in the urinary bladder (with cigarette smoking) and skin (with UV light exposure). Possible modes of action of arsenic carcinogenesis/cocarcinogenesis include induction of DNA ...

  4. The role of NIPA in DNA damage response

    OpenAIRE

    Kulinski, Michal Andrzej

    2014-01-01

    DNA damage response (DDR) is a highly sophisticated process composed of coordinated activation of cell cycle checkpoints and DNA repair. NIPA, a member of E3 ubiquitin ligase family, was shown important in maintaining proper DNA damage repair. Its loss was manifested with aberrant localization of repair factors to the sites of DNA breaks after induction of DNA damage. NIPA was identified as a nuclear pore (NPC) associated protein by the interaction with the nuclear basket protein TPR. This st...

  5. DNA damages induced by Ar F laser

    International Nuclear Information System (INIS)

    The photo ablation process used in corneal refractive surgery by the Argon Fluoride (Ar F) laser emitting in ultraviolet C at 193 nm, exposes viable cells round the irradiated zone to sub ablative doses (< 400 joules.m -2). Despite that DNA absorption is higher at 193 nm than 254 nm, cytotoxicity of 193 nm laser radiation is lower than radiation emitted by 254 nm UV-C lamps. In situ, DNA could be protected of laser radiation by cellular components. Consequently, some authors consider that this radiation does not induce genotoxic effect whereas others suspect it to be mutagenic. These lasers are used for fifteen years but many questions remain concerning the long term effects on adjacent cells to irradiated area. The purpose of this study is to describe the effect of 193 nm laser radiation on DNA of stromal keratocytes which are responsible of the corneal structure. The 193 nm laser irradiation induces directly DNA breakage in keratocytes as it has been shown by the comet assay under alkaline conditions. Two hours post irradiation, damages caused by the highest exposure (150 J.m-2) are not repaired as it has been measured with the Olive Tail Moment (product of tail length and tail DNA content). They give partly evidence of induction of an apoptotic process in cells where DNA could be too damaged. In order to characterize specifically double strand breaks, a comparative analysis by immunofluorescence of the H2 Ax histone phosphorylation (H2 Ax) has been performed on irradiated keratocytes and unirradiated keratocytes. Results show a dose dependent increase of the number of H2 Ax positive cells. Consequences of unrepaired DNA lesions could be observed by the generation of micronuclei in cells. Results show again an increase of micronuclei in laser irradiated cells. Chromosomal aberrations have been pointed out by cytogenetic methods 30 mn after irradiation. These aberrations are dose dependent (from 10 to 150 J.m-2). The number of breakage decreases in the long run

  6. Mechanisms of dealing with DNA damage in terminally differentiated cells

    Energy Technology Data Exchange (ETDEWEB)

    Fortini, P. [Department of Environment and Primary Prevention, Istituto Superiore di Sanita, Viale Regina Elena 299, 00161 Rome (Italy); Dogliotti, E., E-mail: eugenia.dogliotti@iss.it [Department of Environment and Primary Prevention, Istituto Superiore di Sanita, Viale Regina Elena 299, 00161 Rome (Italy)

    2010-03-01

    To protect genomic integrity living cells that are continuously exposed to DNA-damaging insults are equipped with an efficient defence mechanism termed the DNA damage response. Its function is to eliminate DNA damage through DNA repair and to remove damaged cells by apoptosis. The DNA damage response has been investigated mainly in proliferating cells, in which the cell cycle machinery is integrated with the DNA damage signalling. The current knowledge of the mechanisms of DNA repair, DNA damage signalling and cell death of post-mitotic cells that have undergone irreversible cell cycle withdrawal will be reviewed. Evidence will be provided that the protection of the genome integrity in terminally differentiated cells is achieved by different strategies than in proliferating cells.

  7. Human longevity and variation in DNA damage response and repair

    DEFF Research Database (Denmark)

    Debrabant, Birgit; Soerensen, Mette; Flachsbart, Friederike;

    2014-01-01

    others. Data were applied on 592 SNPs from 77 genes involved in nine sub-processes: DNA-damage response, base excision repair (BER), nucleotide excision repair, mismatch repair, non-homologous end-joining, homologous recombinational repair (HRR), RecQ helicase activities (RECQ), telomere functioning...... and mitochondrial DNA processes. The study population was 1089 long-lived and 736 middle-aged Danes. A self-contained set-based test of all SNPs displayed association with longevity (P-value=9.9 × 10-5), supporting that the overall pathway could affect longevity. Investigation of the nine sub-processes using...

  8. DNA damage and repair in Stylonychia lemnae (Ciliata, Protozoa)

    International Nuclear Information System (INIS)

    Irradiation with X rays, UV irradiation after incorporation of bromodeoxyuridine (BU) into the DNA, and cis-platinum (cis-Pt) treatment each cause the loss of micronuclei of Stylonychia lemnae while the macronuclei are not severely affected. The abilities of both nuclei to repair DNA were investigated. Unscheduled DNA synthesis could not be demonstrated after X-ray irradiation, but it was found after treatment with BU/UV and cis-Pt in macro- and micronuclei. The extent of the repair process in the micro- and macronuclei was alike, as indicated by grain counts of [6-3H]thymidine-treated cells. One reason for the different sensitivity of both nuclei to DNA-damaging treatment may be the different number of gene copies in the macro- and micronuclei

  9. DNA damage by reactive species: Mechanisms, mutation and repair

    Indian Academy of Sciences (India)

    N R Jena

    2012-07-01

    DNA is continuously attacked by reactive species that can affect its structure and function severely. Structural modifications to DNA mainly arise from modifications in its bases that primarily occur due to their exposure to different reactive species. Apart from this, DNA strand break, inter- and intra-strand crosslinks and DNA–protein crosslinks can also affect the structure of DNA significantly. These structural modifications are involved in mutation, cancer and many other diseases. As it has the least oxidation potential among all the DNA bases, guanine is frequently attacked by reactive species, producing a plethora of lethal lesions. Fortunately, living cells are evolved with intelligent enzymes that continuously protect DNA from such damages. This review provides an overview of different guanine lesions formed due to reactions of guanine with different reactive species. Involvement of these lesions in inter- and intra-strand crosslinks, DNA–protein crosslinks and mutagenesis are discussed. How certain enzymes recognize and repair different guanine lesions in DNA are also presented.

  10. ATM and ATR:Sensing DNA damage

    Institute of Scientific and Technical Information of China (English)

    Jun Yang; Zheng-Ping Xu; Yun Huang; Hope E. Hamrick; Penelope J. Duerksen-Hughes; Ying-Nian Yu

    2004-01-01

    Cellular response to genotoxic stress is a very complex process, and it usually starts with the "sensing" or "detection" of the DNA damage, followed by a series of events that include signal transduction and activation of transcription factors. The activated transcription factors induce expressions of many genes which are involved in cellular functions such as DNA repair, cell cycle arrest, and cell death. There have been extensive studies from multiple disciplines exploring the mechanisms of cellular genotoxic responses, which have resulted in the identification of many cellular components involved in this process, including the mitogen-activated protein kinases (MAPKs) cascade. Although the initial activation of protein kinase cascade is not fully understood,human protein kinases ATM (ataxia-telangiectasia, mutated) and ATR (ATM and Rad3-related) are emerging as potential sensors of DNA damage. Current progresses in ATM/ATR research and related signaling pathways are discussed in this review, in an effort to facilitate a better understanding of genotoxic stress response.

  11. DNA Repair Decline During Mouse Spermiogenesis Results in the Accumulation of Heritable DNA Damage

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, Francesco; Marchetti, Francesco; Wyrobek, Andrew J.

    2007-12-01

    The post-meiotic phase of mouse spermatogenesis (spermiogenesis) is very sensitive to the genomic effects of environmental mutagens because as male germ cells form mature sperm they progressively lose the ability to repair DNA damage. We hypothesized that repeated exposures to mutagens during this repair-deficient phase result in the accumulation of heritable genomic damage in mouse sperm that leads to chromosomal aberrations in zygotes after fertilization. We used a combination of single or fractionated exposures to diepoxybutane (DEB), a component of tobacco smoke, to investigate how differential DNA repair efficiencies during the three weeks of spermiogenesis affected the accumulation of DEB-induced heritable damage in early spermatids (21-15 days before fertilization, dbf), late spermatids (14-8 dbf) and sperm (7-1 dbf). Analysis of chromosomal aberrations in zygotic metaphases using PAINT/DAPI showed that late spermatids and sperm are unable to repair DEB-induced DNA damage as demonstrated by significant increases (P<0.001) in the frequencies of zygotes with chromosomal aberrations. Comparisons between single and fractionated exposures suggested that the DNA repair-deficient window during late spermiogenesis may be less than two weeks in the mouse and that during this repair-deficient window there is accumulation of DNA damage in sperm. Finally, the dose-response study in sperm indicated a linear response for both single and repeated exposures. These findings show that the differential DNA repair capacity of post-meioitic male germ cells has a major impact on the risk of paternally transmitted heritable damage and suggest that chronic exposures that may occur in the weeks prior to fertilization because of occupational or lifestyle factors (i.e, smoking) can lead to an accumulation of genetic damage in sperm and result in heritable chromosomal aberrations of paternal origin.

  12. DNA repair decline during mouse spermiogenesis results in the accumulation of heritable DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, Francesco; Marchetti, Francesco; Wryobek, Andrew J

    2008-02-21

    The post-meiotic phase of mouse spermatogenesis (spermiogenesis) is very sensitive to the genomic effects of environmental mutagens because as male germ cells form mature sperm they progressively lose the ability to repair DNA damage. We hypothesized that repeated exposures to mutagens during this repair-deficient phase result in the accumulation of heritable genomic damage in mouse sperm that leads to chromosomal aberrations in zygotes after fertilization. We used a combination of single or fractionated exposures to diepoxybutane (DEB), a component of tobacco smoke, to investigate how differential DNA repair efficiencies during the three weeks of spermiogenesis affected the accumulation of DEB-induced heritable damage in early spermatids (21-15 days before fertilization, dbf), late spermatids (14-8 dbf) and sperm (7- 1 dbf). Analysis of chromosomalaberrations in zygotic metaphases using PAINT/DAPI showed that late spermatids and sperm are unable to repair DEB-induced DNA damage as demonstrated by significant increases (P<0.001) in the frequencies of zygotes with chromosomal aberrations. Comparisons between single and fractionated exposures suggested that the DNA repair-deficient window during late spermiogenesis may be less than two weeks in the mouse and that during this repair-deficient window there is accumulation of DNA damage in sperm. Finally, the dose-response study in sperm indicated a linear response for both single and repeated exposures. These findings show that the differential DNA repair capacity of post-meioitic male germ cells has a major impact on the risk of paternally transmitted heritable damage and suggest that chronic exposures that may occur in the weeks prior to fertilization because of occupational or lifestyle factors (i.e, smoking) can lead to an accumulation of genetic damage in sperm and result in heritable chromosomal aberrations of paternal origin.

  13. Ion irradiation induced direct damage to DNA

    CERN Document Server

    Wang, Wei; Su, Wenhui

    2008-01-01

    Ion beams have been widely applied in a few biological research fields such as radioactive breeding, health protection, and tumor therapy. Up to now many interesting and impressive achievements in biology and agriculture have been made. Over the past several decades, scientists in biology, physics, and chemistry have pursued investigations focused on understanding the mechanisms of these radiobiological effects of ion beams. From the chemical point of view, these effects are due to the ion irradiation induced biomolecular damage, direct or indirect. In this review, we will present a chemical overview of the direct effects of ion irradiation upon DNA and its components, based on a review of literature combined with recent experimental results. It is suggested that, under ion bombardment, a DNA molecule undergoes a variety of processes, including radical formation, atomic displacement, intramolecular bond-scissions, emission of fragments, fragment recombination and molecular crosslink, which may lead to genetic...

  14. Protection of DNA damage by radiation exposure

    International Nuclear Information System (INIS)

    The SOS response of Escherichia coli is positively regulated by RecA. To examine the effects of polyamines on The SOS response of E. Coli, we investigated the expression of recA gene in polyamine-deficient mutant and wild type carrying recA'::lacZ fusion gene. As a result, recA expression by mitomycin C is higher in wild type than that of polyamine-deficient mutant, but recA expression by UV radiation is higher in wild type than of mutant. We also found that exogenous polyamines restored the recA expression in the polyamine-deficient mutant to the wild type level. These results proposed that polyamines play an important role in mechanism of intracellular DNA protection by DNA damaging agents

  15. Protection of DNA damage by radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Ho; Kim, In Gyu; Lee, Kang Suk; Kim, Kug Chan; Oh, Tae Jung

    1998-12-01

    The SOS response of Escherichia coli is positively regulated by RecA. To examine the effects of polyamines on The SOS response of E. Coli, we investigated the expression of recA gene in polyamine-deficient mutant and wild type carrying recA'::lacZ fusion gene. As a result, recA expression by mitomycin C is higher in wild type than that of polyamine-deficient mutant, but recA expression by UV radiation is higher in wild type than of mutant. We also found that exogenous polyamines restored the recA expression in the polyamine-deficient mutant to the wild type level. These results proposed that polyamines play an important role in mechanism of intracellular DNA protection by DNA damaging agents.

  16. A system for evaluating the Dna damage

    OpenAIRE

    Janežič, Jernej

    2013-01-01

    The thesis describes the development and implementation of the system for the analysis of the comet assay. The first part describes the comet assay. It is a fast and simple process that enables the quantification of the damage of DNA molecules. We present the parameters needed for a precise analy¬sis of the comet assay. The system requirements are presented along with the currently available tools for comet assay analysis. Then we describe the technologies used during the development of the sys...

  17. The role of SOG1, a plant-specific transcriptional regulator, in the DNA damage response

    OpenAIRE

    Yoshiyama, Kaoru O.; Kimura, Seisuke; Maki, Hisaji; Britt, Anne B.; Umeda, Masaaki

    2014-01-01

    Plants are inescapably exposed to environmental stress because of their sessile lifestyle. Such stress induces the production of reactive oxygen species (ROS), which are in turn a source of genotoxic stress. ROS are also generated intrinsically during photosynthesis in the chloroplasts. Furthermore, plants are affected by the UV component of sunlight, which damages their genomes. To protect their genomic integrity from DNA damage, plants activate a DNA damage response (DDR) system that regula...

  18. Nucleotide Salvage Deficiencies, DNA Damage and Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Michael Fasullo

    2015-04-01

    Full Text Available Nucleotide balance is critically important not only in replicating cells but also in quiescent cells. This is especially true in the nervous system, where there is a high demand for adenosine triphosphate (ATP produced from mitochondria. Mitochondria are particularly prone to oxidative stress-associated DNA damage because nucleotide imbalance can lead to mitochondrial depletion due to low replication fidelity. Failure to maintain nucleotide balance due to genetic defects can result in infantile death; however there is great variability in clinical presentation for particular diseases. This review compares genetic diseases that result from defects in specific nucleotide salvage enzymes and a signaling kinase that activates nucleotide salvage after DNA damage exposure. These diseases include Lesch-Nyhan syndrome, mitochondrial depletion syndromes, and ataxia telangiectasia. Although treatment options are available to palliate symptoms of these diseases, there is no cure. The conclusions drawn from this review include the critical role of guanine nucleotides in preventing neurodegeneration, the limitations of animals as disease models, and the need to further understand nucleotide imbalances in treatment regimens. Such knowledge will hopefully guide future studies into clinical therapies for genetic diseases.

  19. Sequence Affects the Cyclization of DNA Minicircles.

    Science.gov (United States)

    Wang, Qian; Pettitt, B Montgomery

    2016-03-17

    Understanding how the sequence of a DNA molecule affects its dynamic properties is a central problem affecting biochemistry and biotechnology. The process of cyclizing short DNA, as a critical step in molecular cloning, lacks a comprehensive picture of the kinetic process containing sequence information. We have elucidated this process by using coarse-grained simulations, enhanced sampling methods, and recent theoretical advances. We are able to identify the types and positions of structural defects during the looping process at a base-pair level. Correlations along a DNA molecule dictate critical sequence positions that can affect the looping rate. Structural defects change the bending elasticity of the DNA molecule from a harmonic to subharmonic potential with respect to bending angles. We explore the subelastic chain as a possible model in loop formation kinetics. A sequence-dependent model is developed to qualitatively predict the relative loop formation time as a function of DNA sequence. PMID:26938490

  20. Analysis of chromatin integrity and DNA damage of buffalo spermatozoa.

    Science.gov (United States)

    Mahmoud, K Gh M; El-Sokary, A A E; Abdel-Ghaffar, A E; Abou El-Roos, M E A; Ahmed, Y F

    2015-01-01

    This study was conducted to determine chromatin integrity and DNA damage by DNA electrophoresis and comet assays of buffalo fresh and frozen semen. Semen samples were collected from four buffalo bulls and evaluated after freezing for semen motility, viability, sperm abnormalities, chromatin integrity and DNA damage. A significant variation was found in semen parameters after thawing. Highly significant differences (Partificial insemination. PMID:27175169

  1. The dynamic behavior of Ect2 in response to DNA damage

    OpenAIRE

    Dan He; Jinnan Xiang; Baojie Li; Huijuan Liu

    2016-01-01

    Ect2 is a BRCT-containing guanidine exchange factor for Rho GTPases. It is essential for cytokinesis and is also involved in tumorigenesis. Since most BRCT-containing proteins are involved in DNA damage response and/or DNA repair, we tested whether Ect2 plays similar roles. We report that in primary mouse embryonic fibroblasts (MEFs), DNA damage quickly led to Ect2 relocalization to the chromatin and DNA damage foci-like structures. Ect2 knockdown did not affect foci localization of γH2AX, To...

  2. Nile blue can photosensitize DNA damage through electron transfer.

    Science.gov (United States)

    Hirakawa, Kazutaka; Ota, Kazuhiro; Hirayama, Junya; Oikawa, Shinji; Kawanishi, Shosuke

    2014-04-21

    The mechanism of DNA damage photosensitized by Nile blue (NB) was studied using (32)P-5'-end-labeled DNA fragments. NB bound to the DNA strand was possibly intercalated through an electrostatic interaction. Photoirradiated NB caused DNA cleavage at guanine residues when the DNA fragments were treated with piperidine. Consecutive guanines, the underlined G in 5'-GG and 5'-GGG, were selectively damaged through photoinduced electron transfer. The fluorescence lifetime of NB was decreased by guanine-containing DNA sequence, supporting this mechanism. Single guanines were also slightly damaged by photoexcited NB, and DNA photodamage by NB was slightly enhanced in D2O. These results suggest that the singlet oxygen mechanism also partly contributes to DNA photodamage by NB. DNA damage photosensitized by NB via electron transfer may be an important mechanism in medicinal applications of photosensitizers, such as photodynamic therapy in low oxygen. PMID:24576317

  3. Mitochondrial and Nuclear DNA Damage and Repair in Age-Related Macular Degeneration

    Directory of Open Access Journals (Sweden)

    Janusz Blasiak

    2013-01-01

    Full Text Available Aging and oxidative stress seem to be the most important factors in the pathogenesis of age-related macular degeneration (AMD, a condition affecting many elderly people in the developed world. However, aging is associated with the accumulation of oxidative damage in many biomolecules, including DNA. Furthermore, mitochondria may be especially important in this process because the reactive oxygen species produced in their electron transport chain can damage cellular components. Therefore, the cellular response to DNA damage, expressed mainly through DNA repair, may play an important role in AMD etiology. In several studies the increase in mitochondrial DNA (mtDNA damage and mutations, and the decrease in the efficacy of DNA repair have been correlated with the occurrence and the stage of AMD. It has also been shown that mitochondrial DNA accumulates more DNA lesions than nuclear DNA in AMD. However, the DNA damage response in mitochondria is executed by nucleus-encoded proteins, and thus mutagenesis in nuclear DNA (nDNA may affect the ability to respond to mutagenesis in its mitochondrial counterpart. We reported that lymphocytes from AMD patients displayed a higher amount of total endogenous basal and oxidative DNA damage, exhibited a higher sensitivity to hydrogen peroxide and UV radiation, and repaired the lesions induced by these factors less effectively than did cells from control individuals. We postulate that poor efficacy of DNA repair (i.e., is impaired above average for a particular age when combined with the enhanced sensitivity of retinal pigment epithelium cells to environmental stress factors, contributes to the pathogenesis of AMD. Collectively, these data suggest that the cellular response to both mitochondrial and nuclear DNA damage may play an important role in AMD pathogenesis.

  4. Melanogenesis: a photoprotective response to DNA damage?

    Energy Technology Data Exchange (ETDEWEB)

    Agar, Nita [St. John' s Institute of Dermatology, Guy' s, Kings and St. Thomas' School of Medicine, Kings College London, London (United Kingdom); Young, Antony R. [St. John' s Institute of Dermatology, Guy' s, Kings and St. Thomas' School of Medicine, Kings College London, London (United Kingdom)]. E-mail: antony.r.young@kcl.ac.uk

    2005-04-01

    Exposure to ultra violet radiation (UVR) is associated with significant long-term deleterious effects such as skin cancer. A well-recognised short-term consequence of UVR is increased skin pigmentation. Pigmentation, whether constitutive or facultative, has widely been viewed as photoprotective, largely because darkly pigmented skin is at a lower risk of photocarcinogenesis than fair skin. Research is increasingly suggesting that the relationship between pigmentation and photoprotection may be far more complex than previously assumed. For example, photoprotection against erythema and DNA damage has been shown to be independent of level of induced pigmentation in human white skin types. Growing evidence now suggests that UVR induced DNA photodamage, and its repair is one of the signals that stimulates melanogenesis and studies suggest that repeated exposure in skin type IV results in faster DNA repair in comparison to skin type II. These findings suggest that tanning may be a measure of inducible DNA repair capacity, and it is this rather than pigment per se which results in the lower incidence skin cancer observed in darker skinned individuals. This evokes the notion that epidermal pigmentation may in fact be the mammalian equivalent of a bacterial SOS response. Skin colour is one of most conspicuous ways in which humans vary yet the function of melanin remains controversial. Greater understanding of the role of pigmentation in skin is vital if one is to be able to give accurate advice to the general public about both the population at risk of skin carcinogenesis and also public perceptions of a tan as being healthy.

  5. Melanogenesis: a photoprotective response to DNA damage?

    International Nuclear Information System (INIS)

    Exposure to ultra violet radiation (UVR) is associated with significant long-term deleterious effects such as skin cancer. A well-recognised short-term consequence of UVR is increased skin pigmentation. Pigmentation, whether constitutive or facultative, has widely been viewed as photoprotective, largely because darkly pigmented skin is at a lower risk of photocarcinogenesis than fair skin. Research is increasingly suggesting that the relationship between pigmentation and photoprotection may be far more complex than previously assumed. For example, photoprotection against erythema and DNA damage has been shown to be independent of level of induced pigmentation in human white skin types. Growing evidence now suggests that UVR induced DNA photodamage, and its repair is one of the signals that stimulates melanogenesis and studies suggest that repeated exposure in skin type IV results in faster DNA repair in comparison to skin type II. These findings suggest that tanning may be a measure of inducible DNA repair capacity, and it is this rather than pigment per se which results in the lower incidence skin cancer observed in darker skinned individuals. This evokes the notion that epidermal pigmentation may in fact be the mammalian equivalent of a bacterial SOS response. Skin colour is one of most conspicuous ways in which humans vary yet the function of melanin remains controversial. Greater understanding of the role of pigmentation in skin is vital if one is to be able to give accurate advice to the general public about both the population at risk of skin carcinogenesis and also public perceptions of a tan as being healthy

  6. Estrogen signalling and the DNA damage response in hormone dependent breast cancers

    Directory of Open Access Journals (Sweden)

    C Elizabeth Caldon

    2014-05-01

    Full Text Available Estrogen is necessary for the normal growth and development of breast tissue, but high levels of estrogen are a major risk factor for breast cancer. One mechanism by which estrogen could contribute to breast cancer is via the induction of DNA damage. This perspective discusses the mechanisms by which estrogen alters the DNA damage response (DDR and DNA repair through the regulation of key effector proteins including ATM, ATR, CHK1, BRCA1 and p53 and the feedback on estrogen receptor signalling from these proteins. We put forward the hypothesis that estrogen receptor signalling converges to suppress effective DNA repair and apoptosis in favour of proliferation. This is important in hormone-dependent breast cancer as it will affect processing of estrogen-induced DNA damage, as well as other genotoxic insults. DDR and DNA repair proteins are frequently mutated or altered in estrogen responsive breast cancer which will further change the processing of DNA damage. Finally the action of estrogen signalling on DNA damage is also relevant to the therapeutic setting as the suppression of a DNA damage response by estrogen has the potential to alter the response of cancers to anti-hormone treatment or chemotherapy that induces DNA damage.

  7. DNA Damage and L1 Retrotransposition

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available Barbara McClintock was the first to suggest that transposons are a source of genome instability and that genotoxic stress assisted in their mobilization. The generation of double-stranded DNA breaks (DSBs is a severe form of genotoxic stress that threatens the integrity of the genome, activates cell cycle checkpoints, and, in some cases, causes cell death. Applying McClintock's stress hypothesis to humans, are L1 retrotransposons, the most active autonomous mobile elements in the modern day human genome, mobilized by DSBs? Here, evidence that transposable elements, particularly retrotransposons, are mobilized by genotoxic stress is reviewed. In the setting of DSB formation, L1 mobility may be affected by changes in the substrate for L1 integration, the DNA repair machinery, or the L1 element itself. The review concludes with a discussion of the potential consequences of L1 mobilization in the setting of genotoxic stress.

  8. Single Molecule Scanning of DNA Radiation Oxidative Damage Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal will develop an assay to map genomic DNA, at the single molecule level and in a nanodevice, for oxidative DNA damage arising from radiation exposure;...

  9. Damages to DNA that result in neoplastic transformation

    International Nuclear Information System (INIS)

    Some topics discussed are: correlation between carcinogens and mutagens; defective DNA repair in uv-damaged xeroderma pigmentosum cells; analysis of nucleotide damage to DNA following exposure to chemicals or radiations; photoreactivation in uv-irradiated Escherichia coli; tumor development in fish; excision repair as an aid in identifying damage; detection of excision repair; role of endonucleases in repair of uv damage; and alkylation products and tumors

  10. Synthetic lethal approaches exploiting DNA damage in aggressive myeloma

    OpenAIRE

    Cottini, Francesca; Hideshima, Teru; Suzuki, Rikio; Tai, Yu-Tzu; Bianchini, Giampaolo; Richardson, Paul G.; Anderson, Kenneth C.; Tonon, Giovanni

    2015-01-01

    Ongoing DNA damage is a common feature of epithelial cancers. Here we show that tumor cells derived from multiple myeloma (MM), a disease of clonal plasma cells, demonstrate DNA replicative stress leading to DNA damage. We identified a poor prognosis subset of MM with extensive chromosomal instability and replicative stress which rely on ATR to compensate for DNA replicative stress; conversely, silencing of ATR or treatment with a specific ATR inhibitor triggers MM cell apoptosis. We show tha...

  11. Activation of the DNA Damage Response by RNA Viruses

    OpenAIRE

    Ryan, Ellis L.; Robert Hollingworth; Grand, Roger J.

    2016-01-01

    RNA viruses are a genetically diverse group of pathogens that are responsible for some of the most prevalent and lethal human diseases. Numerous viruses introduce DNA damage and genetic instability in host cells during their lifecycles and some species also manipulate components of the DNA damage response (DDR), a complex and sophisticated series of cellular pathways that have evolved to detect and repair DNA lesions. Activation and manipulation of the DDR by DNA viruses has been extensively ...

  12. UV Damage in DNA Promotes Nucleosome Unwrapping*

    OpenAIRE

    Duan, Ming-Rui; Smerdon, Michael J.

    2010-01-01

    The association of DNA with histones in chromatin impedes DNA repair enzymes from accessing DNA lesions. Nucleosomes exist in a dynamic equilibrium in which portions of the DNA molecule spontaneously unwrap, transiently exposing buried DNA sites. Thus, nucleosome dynamics in certain regions of chromatin may provide the exposure time and space needed for efficient repair of buried DNA lesions. We have used FRET and restriction enzyme accessibility to study nucleosome dynamics following DNA dam...

  13. Quantification of DNA damage by single-cell electrophoresis

    International Nuclear Information System (INIS)

    A simple technique of micro-agarose gel electrophoresis has been developed to quantify DNA damage in individual cells. Cells are embedded in agarose gel on microscope slides, lysed by detergents and then electrophoresed for a short time under neutral or alkaline condition. In irradiated cells, DNA migrates from the nucleus toward the anode, displaying commet-like pattern by staining with DNA-specific fluorescence dye. DNA damage is evaluated by measuring the distance of DNA migration. The technique was applied for measuring DNA damage in single cells exposed to 60Co γ-rays, or to KUR radiation in the presence or absence of 10B-enriched boric acid. The enhanced production of double-stranded DNA breaks by 10B(n,α)7Li reaction was demonstrated here. The significant increase in the length of DNA migration was observed in single cells exposed to such a low dose as 20 cGy after alkaline micro electrophoresis. (author)

  14. Maintaining Genome Stability in Defiance of Mitotic DNA Damage

    Science.gov (United States)

    Ferrari, Stefano; Gentili, Christian

    2016-01-01

    The implementation of decisions affecting cell viability and proliferation is based on prompt detection of the issue to be addressed, formulation and transmission of a correct set of instructions and fidelity in the execution of orders. While the first and the last are purely mechanical processes relying on the faithful functioning of single proteins or macromolecular complexes (sensors and effectors), information is the real cue, with signal amplitude, duration, and frequency ultimately determining the type of response. The cellular response to DNA damage is no exception to the rule. In this review article we focus on DNA damage responses in G2 and Mitosis. First, we set the stage describing mitosis and the machineries in charge of assembling the apparatus responsible for chromosome alignment and segregation as well as the inputs that control its function (checkpoints). Next, we examine the type of issues that a cell approaching mitosis might face, presenting the impact of post-translational modifications (PTMs) on the correct and timely functioning of pathways correcting errors or damage before chromosome segregation. We conclude this essay with a perspective on the current status of mitotic signaling pathway inhibitors and their potential use in cancer therapy. PMID:27493659

  15. Ultraviolet induced DNA damage and hereditary skin cancer

    International Nuclear Information System (INIS)

    Clearly, cells from normal individuals possess the ability to repair a variety of damage to DNA. Numerous studies indicate that defects in DNA repair may increase an individual's susceptibility to cancer. It is hoped that continued studies of the exact structural changes produced in the DNA by environmental insults, and the correlation of specific DNA changes with particulr cellular events, such as DNA repair, will lead to a better understanding of cell-killing, mutagenesis and carbinogenesis. 1 figure, 2 tables

  16. Oxidation by DNA Charge Transport Damages Conserved Sequence Block II, a Regulatory Element in Mitochondrial DNA

    OpenAIRE

    Merino, Edward J.; Barton, Jacqueline K.

    2007-01-01

    Sites of oxidative damage in mitochondrial DNA have been identified on the basis of DNA-mediated charge transport. Our goal is to understand which sites in mitochondrial DNA are prone to oxidation at long range and whether such oxidative damage correlates with cancerous transformation. Here we show that a primer extension reaction can be used to monitor directly oxidative damage to authentic mitochondrial DNA through photoreactions with a rhodium intercalator. The complex [Rh(phi)_2bpy]Cl_3 (...

  17. DNA Damage among Wood Workers Assessed with the Comet Assay

    Science.gov (United States)

    Bruschweiler, Evin Danisman; Wild, Pascal; Huynh, Cong Khanh; Savova-Bianchi, Dessislava; Danuser, Brigitta; Hopf, Nancy B.

    2016-01-01

    Exposure to wood dust, a human carcinogen, is common in wood-related industries, and millions of workers are occupationally exposed to wood dust worldwide. The comet assay is a rapid, simple, and sensitive method for determining DNA damage. The objective of this study was to investigate the DNA damage associated with occupational exposure to wood dust using the comet assay (peripheral blood samples) among nonsmoking wood workers (n = 31, furniture and construction workers) and controls (n = 19). DNA damage was greater in the group exposed to composite wood products compared to the group exposed to natural woods and controls (P < 0.001). No difference in DNA damage was observed between workers exposed to natural woods and controls (P = 0.13). Duration of exposure and current dust concentrations had no effect on DNA damage. In future studies, workers’ exposures should include cumulative dust concentrations and exposures originating from the binders used in composite wood products. PMID:27398027

  18. Quantifying clustered DNA damage induction and repair by gel electrophoresis, electronic imaging and number average length analysis

    Science.gov (United States)

    Sutherland, Betsy M.; Georgakilas, Alexandros G.; Bennett, Paula V.; Laval, Jacques; Sutherland, John C.; Gewirtz, A. M. (Principal Investigator)

    2003-01-01

    Assessing DNA damage induction, repair and consequences of such damages requires measurement of specific DNA lesions by methods that are independent of biological responses to such lesions. Lesions affecting one DNA strand (altered bases, abasic sites, single strand breaks (SSB)) as well as damages affecting both strands (clustered damages, double strand breaks) can be quantified by direct measurement of DNA using gel electrophoresis, gel imaging and number average length analysis. Damage frequencies as low as a few sites per gigabase pair (10(9)bp) can be quantified by this approach in about 50ng of non-radioactive DNA, and single molecule methods may allow such measurements in DNA from single cells. This review presents the theoretical basis, biochemical requirements and practical aspects of this approach, and shows examples of their applications in identification and quantitation of complex clustered damages.

  19. Quantifying clustered DNA damage induction and repair by gel electrophoresis, electronic imaging and number average length analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, Betsy M.; Georgakilas, Alexandros G.; Bennett, Paula V.; Laval, Jacques; Sutherland, John C

    2003-10-29

    Assessing DNA damage induction, repair and consequences of such damages requires measurement of specific DNA lesions by methods that are independent of biological responses to such lesions. Lesions affecting one DNA strand (altered bases, abasic sites, single strand breaks (SSB)) as well as damages affecting both strands (clustered damages, double strand breaks) can be quantified by direct measurement of DNA using gel electrophoresis, gel imaging and number average length analysis. Damage frequencies as low as a few sites per gigabase pair (10{sup 9} bp) can be quantified by this approach in about 50 ng of non-radioactive DNA, and single molecule methods may allow such measurements in DNA from single cells. This review presents the theoretical basis, biochemical requirements and practical aspects of this approach, and shows examples of their applications in identification and quantitation of complex clustered damages.

  20. Cellular Responses to Cisplatin-Induced DNA Damage

    Directory of Open Access Journals (Sweden)

    Alakananda Basu

    2010-01-01

    Full Text Available Cisplatin is one of the most effective anticancer agents widely used in the treatment of solid tumors. It is generally considered as a cytotoxic drug which kills cancer cells by damaging DNA and inhibiting DNA synthesis. How cells respond to cisplatin-induced DNA damage plays a critical role in deciding cisplatin sensitivity. Cisplatin-induced DNA damage activates various signaling pathways to prevent or promote cell death. This paper summarizes our current understandings regarding the mechanisms by which cisplatin induces cell death and the bases of cisplatin resistance. We have discussed various steps, including the entry of cisplatin inside cells, DNA repair, drug detoxification, DNA damage response, and regulation of cisplatin-induced apoptosis by protein kinases. An understanding of how various signaling pathways regulate cisplatin-induced cell death should aid in the development of more effective therapeutic strategies for the treatment of cancer.

  1. Synthetic lethal approaches exploiting DNA damage in aggressive myeloma

    Science.gov (United States)

    Cottini, Francesca; Hideshima, Teru; Suzuki, Rikio; Tai, Yu-Tzu; Bianchini, Giampaolo; Richardson, Paul G.; Anderson, Kenneth C.; Tonon, Giovanni

    2015-01-01

    Ongoing DNA damage is a common feature of epithelial cancers. Here we show that tumor cells derived from multiple myeloma (MM), a disease of clonal plasma cells, demonstrate DNA replicative stress leading to DNA damage. We identified a poor prognosis subset of MM with extensive chromosomal instability and replicative stress which rely on ATR to compensate for DNA replicative stress; conversely, silencing of ATR or treatment with a specific ATR inhibitor triggers MM cell apoptosis. We show that oncogenes such as MYC induce DNA damage in MM cells not only by increased replicative stress, but also via increased oxidative stress, and that ROS-inducer piperlongumine triggers further DNA damage and apoptosis. Importantly, ATR inhibition combined with piperlongumine triggers synergistic MM cytotoxicity. This synthetic lethal approach, enhancing oxidative stress while concomitantly blocking replicative stress response, provides a novel combination targeted therapy to address an unmet medical need in this subset of MM. PMID:26080835

  2. Urinary excretion of 8-oxo-7,8-dihydroguanine as biomarker of oxidative damage to DNA.

    OpenAIRE

    Loft, Steffen; Danielsen, Pernille; Løhr, Mille; Jantzen, Kim; Hemmingsen, Jette G.; Roursgaard, Martin; Karotki, Dorina Gabriela; Møller, Peter

    2012-01-01

    Oxidatively damaged DNA may be important in carcinogenesis. 8-Oxo-7,8-dihydroguanine (8-oxoGua) is an abundant and mutagenic lesion excised by oxoguanine DNA glycosylase 1 (OGG1) and measurable in urine or plasma by chromatographic methods with electrochemical or mass spectrometric detectors, reflecting the rate of damage in steady state. A common genetic OGG1 variant may affect the activity and was associated with increased levels of oxidized purines in leukocytes without apparent effect on ...

  3. DNA damage in peripheral blood leukocytes in tobacco users

    OpenAIRE

    Venkateswara Rao Guttikonda; Rekha Patil; G S Kumar

    2014-01-01

    Aim : To Quantify the DNA single-stranded breaks in the peripheral blood leukocytes (PBLs) of tobacco-habituated individuals with clinically normal mucosa and patients with oral carcinoma. Objectives: To evaluate DNA damage levels in PBLs of tobacco-habituated individuals with clinically normal mucosa and patients with oral carcinoma and compare with a control group of healthy volunteers. To evaluate the extent of DNA damage in PBLs using Single Cell Gel Electrophoresis (SCGE) in the above gr...

  4. Effect of DNA damaging agents on Bac. stearothermophilus

    International Nuclear Information System (INIS)

    A thermophilic micro-organism Bac. stearothermophilus showes a high resistance to the effect of such DNA damaging agents as NMM, UV- and γ-radiation. Due to adaptation to high temperatures, at which intensive depurinization and depyrimidinization of DNA take place, thermophilic micro-organisms are suggested to acquire evolutionary a powerful system of repair of DNA damages, particularly, of apurine and apyrimidine sites

  5. Docosahexaenoic Acid Induces Oxidative DNA Damage and Apoptosis, and Enhances the Chemosensitivity of Cancer Cells

    Directory of Open Access Journals (Sweden)

    Eun Ah Song

    2016-08-01

    Full Text Available The human diet contains low amounts of ω-3 polyunsaturated fatty acids (PUFAs and high amounts of ω-6 PUFAs, which has been reported to contribute to the incidence of cancer. Epidemiological studies have shown that a high consumption of fish oil or ω-3 PUFAs reduced the risk of colon, pancreatic, and endometrial cancers. The ω-3 PUFA, docosahexaenoic acid (DHA, shows anticancer activity by inducing apoptosis of some human cancer cells without toxicity against normal cells. DHA induces oxidative stress and oxidative DNA adduct formation by depleting intracellular glutathione (GSH and decreasing the mitochondrial function of cancer cells. Oxidative DNA damage and DNA strand breaks activate DNA damage responses to repair the damaged DNA. However, excessive DNA damage beyond the capacity of the DNA repair processes may initiate apoptotic signaling pathways and cell cycle arrest in cancer cells. DHA shows a variable inhibitory effect on cancer cell growth depending on the cells’ molecular properties and degree of malignancy. It has been shown to affect DNA repair processes including DNA-dependent protein kinases and mismatch repair in cancer cells. Moreover, DHA enhanced the efficacy of anticancer drugs by increasing drug uptake and suppressing survival pathways in cancer cells. In this review, DHA-induced oxidative DNA damage, apoptotic signaling, and enhancement of chemosensitivity in cancer cells will be discussed based on recent studies.

  6. Direct visualization of a DNA glycosylase searching for damage.

    Science.gov (United States)

    Chen, Liwei; Haushalter, Karl A; Lieber, Charles M; Verdine, Gregory L

    2002-03-01

    DNA glycosylases preserve the integrity of genetic information by recognizing damaged bases in the genome and catalyzing their excision. It is unknown how DNA glycosylases locate covalently modified bases hidden in the DNA helix amongst vast numbers of normal bases. Here we employ atomic-force microscopy (AFM) with carbon nanotube probes to image search intermediates of human 8-oxoguanine DNA glycosylase (hOGG1) scanning DNA. We show that hOGG1 interrogates DNA at undamaged sites by inducing drastic kinks. The sharp DNA bending angle of these non-lesion-specific search intermediates closely matches that observed in the specific complex of 8-oxoguanine-containing DNA bound to hOGG1. These findings indicate that hOGG1 actively distorts DNA while searching for damaged bases. PMID:11927259

  7. Plasmid DNA damage induced by helium atmospheric pressure plasma jet

    Science.gov (United States)

    Han, Xu; Cantrell, William A.; Escobar, Erika E.; Ptasinska, Sylwia

    2014-03-01

    A helium atmospheric pressure plasma jet (APPJ) is applied to induce damage to aqueous plasmid DNA. The resulting fractions of the DNA conformers, which indicate intact molecules or DNA with single- or double-strand breaks, are determined using agarose gel electrophoresis. The DNA strand breaks increase with a decrease in the distance between the APPJ and DNA samples under two working conditions of the plasma source with different parameters of applied electric pulses. The damage level induced in the plasmid DNA is also enhanced with increased plasma irradiation time. The reactive species generated in the APPJ are characterized by optical emission spectra, and their roles in possible DNA damage processes occurring in an aqueous environment are also discussed.

  8. Chimeric Proteins to Detect DNA Damage and Mismatches

    Energy Technology Data Exchange (ETDEWEB)

    McCutchen-Maloney, S; Malfatti, M; Robbins, K M

    2002-01-14

    The goal of this project was to develop chimeric proteins composed of a DNA mismatch or damage binding protein and a nuclease, as well as methods to detect DNA mismatches and damage. We accomplished this through protein engineering based on using polymerase chain reactions (PCRs) to create chimeras with novel functions for damage and mismatch detection. This project addressed fundamental questions relating to disease susceptibility and radiation-induced damage in cells. It also supported and enhanced LLNL's competency in the emerging field of proteomics. In nature, DNA is constantly being subjected to damaging agents such as exposure to ultraviolet (UV) radiation and various environmental and dietary carcinogens. If DNA damage is not repaired however, mutations in DNA result that can eventually manifest in cancer and other diseases. In addition to damage-induced DNA mutations, single nucleotide polymorphisms (SNPs), which are variations in the genetic sequence between individuals, may predispose some to disease. As a result of the Human Genome Project, the integrity of a person's DNA can now be monitored. Therefore, methods to detect DNA damage, mutations, and SNPs are useful not only in basic research but also in the health and biotechnology industries. Current methods of detection often use radioactive labeling and rely on expensive instrumentation that is not readily available in many research settings. Our methods to detect DNA damage and mismatches employ simple gel electrophoresis and flow cytometry, thereby alleviating the need for radioactive labeling and expensive equipment. In FY2001, we explored SNP detection by developing methods based on the ability of the chimeric proteins to detect mismatches. Using multiplex assays with flow cytometry and fluorescent beads to which the DNA substrates where attached, we showed that several of the chimeras possess greater affinity for damaged and mismatched DNA than for native DNA. This affinity was

  9. Experimental Investigation of DNA Damage Induced by Heavy Ions

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    DNA is considered the critical target for radiobiological effects. It is highly important to study DNAdamage induced by ionizing radiation. Especially DNA double strand breaks have been identified as themost initial damage. In this experiment, DNA double strand breaks induced by heavy ions wereinvestigated with atomic force microscopy (AFM).

  10. Chromatin perturbations during the DNA damage response in higher eukaryotes.

    Science.gov (United States)

    Bakkenist, Christopher J; Kastan, Michael B

    2015-12-01

    The DNA damage response is a widely used term that encompasses all signaling initiated at DNA lesions and damaged replication forks as it extends to orchestrate DNA repair, cell cycle checkpoints, cell death and senescence. ATM, an apical DNA damage signaling kinase, is virtually instantaneously activated following the introduction of DNA double-strand breaks (DSBs). The MRE11-RAD50-NBS1 (MRN) complex, which has a catalytic role in DNA repair, and the KAT5 (Tip60) acetyltransferase are required for maximal ATM kinase activation in cells exposed to low doses of ionizing radiation. The sensing of DNA lesions occurs within a highly complex and heterogeneous chromatin environment. Chromatin decondensation and histone eviction at DSBs may be permissive for KAT5 binding to H3K9me3 and H3K36me3, ATM kinase acetylation and activation. Furthermore, chromatin perturbation may be a prerequisite for most DNA repair. Nucleosome disassembly during DNA repair was first reported in the 1970s by Smerdon and colleagues when nucleosome rearrangement was noted during the process of nucleotide excision repair of UV-induced DNA damage in human cells. Recently, the multi-functional protein nucleolin was identified as the relevant histone chaperone required for partial nucleosome disruption at DBSs, the recruitment of repair enzymes and for DNA repair. Notably, ATM kinase is activated by chromatin perturbations induced by a variety of treatments that do not directly cause DSBs, including treatment with histone deacetylase inhibitors. Central to the mechanisms that activate ATR, the second apical DNA damage signaling kinase, outside of a stalled and collapsed replication fork in S-phase, is chromatin decondensation and histone eviction associated with DNA end resection at DSBs. Thus, a stress that is common to both ATM and ATR kinase activation is chromatin perturbations, and we argue that chromatin perturbations are both sufficient and required for induction of the DNA damage response

  11. Stress-induced DNA Damage biomarkers: Applications and limitations

    Science.gov (United States)

    Nikitaki, Zacharenia; Hellweg, Christine; Georgakilas, Alexandros; Ravanat, Jean-Luc

    2015-06-01

    A variety of environmental stresses like chemicals, UV and ionizing radiation and organism’s endogenous processes like replication stress and metabolism can lead to the generation of reactive oxygen and nitrogen species (ROS/RNS) that can attack cellular vital components like DNA, proteins and lipid membranes. Among them, much attention has been focused on DNA since DNA damages play a role in several biological disorders and aging processes. Thus, DNA damage can be used as a biomarker in a reliable and accurate way to quantify for example radiation exposure and can indicate its possible long term effects and cancer risk. Based on the type of DNA lesions detected one can hypothesize on the most probable mechanisms involved in the formation of these lesions for example in the case of UV and ionizing radiation (e.g. X- or α-, γ-rays, energetic ions, neutrons). In this review we describe the most accepted chemical pathways for DNA damage induction and the different types of DNA lesions, i.e. single, complex DNA lesions etc. that can be used as biomarkers. We critically compare DNA damage detection methods and their limitations. In addition to such DNA damage products, we suggest possible gene inductions that can be used to characterize responses to different types of stresses i.e. radiation, oxidative and replication stress, based on bioinformatic approaches and stringent meta-analysis of literature data.

  12. Cells Lacking mtDNA Display Increased dNTP Pools upon DNA Damage

    DEFF Research Database (Denmark)

    Skovgaard, Tine; Rasmussen, Lene Juel; Munch-Petersen, Birgitte

    mitochondrial function we have examined the effect of DNA damage on dNTP pools in cells deficient of mtDNA. We show that DNA damage induced by UV irradiation, in a dose corresponding to LD50, induces cell cycle synchronization in different human osteosarcoma cell lines. The UV pulse also has a destabilizing...

  13. Cells Lacking mtDNA Display Increased dNTP Pools upon DNA Damage

    DEFF Research Database (Denmark)

    Skovgaard, Tine; Rasmussen, Lene Juel; Munch-Petersen, Birgitte

    mitochondrial function we have examined the effect of DNA damage on dNTP pools in cells deficient of mtDNA. We show that DNA damage induced by UV irradiation, in a dose corresponding to LD50, induces an S phase delay in different human osteosarcoma cell lines. The UV pulse also has a destabilizing effect on the...

  14. MicroRNAs: new players in the DNA damage response

    Institute of Scientific and Technical Information of China (English)

    Hailiang Hu; Richard A. Gatti

    2011-01-01

    The DNA damage response (DDR) is a signal transduction pathway that decides the cell's fate either to repair DNA damage or to undergo apoptosis if there is too much damage. Post-translational modifications modulate the assembly and activity of protein complexes during the DDR pathways. MicroRNAs (miRNAs) are emerging as a class of endogenous gene modulators that control protein levels, thereby adding a new layer of regulation to the DDR. In this review, we describe a new role for miRNAs in regulating the cellular response to DNA damage with a focus on DNA double-strand break damage. We also discuss the implications of miRNA's role in the DDR to stem cells, including embryonic stem cells and cancer stem cells, stressing the potential applications for miRNAs to be used as sensitizers for cancer radiotherapy and chemotherapy.

  15. Damage and repair of ancient DNA

    DEFF Research Database (Denmark)

    Mitchell, David; Willerslev, Eske; Hansen, Anders

    2005-01-01

    Under certain conditions small amounts of DNA can survive for long periods of time and can be used as polymerase chain reaction (PCR) substrates for the study of phylogenetic relationships and population genetics of extinct plants and animals, including hominids. Because of extensive DNA...... degradation, these studies are limited to species that lived within the past 10(4)-10(5) years (Late Pleistocene), although DNA sequences from 10(6) years have been reported. Ancient DNA (aDNA) has been used to study phylogenetic relationships of protists, fungi, algae, plants, and higher eukaryotes such as...... early native Americans. Hence, ancient DNA contains information pertinent to numerous fields of study including evolution, population genetics, ecology, climatology, medicine, archeology, and behavior. The major obstacles to the study of aDNA are its extremely low yield, contamination with modern DNA...

  16. Aging and oxidatively damaged nuclear DNA in animal organs

    DEFF Research Database (Denmark)

    Møller, Peter; Løhr, Mille; Folkmann, Janne K;

    2010-01-01

    Oxidative stress is considered to contribute to aging and is associated with the generation of oxidatively damaged DNA, including 8-oxo-7,8-dihydroguanine. We have identified 69 studies that have measured the level of oxidatively damaged DNA in organs of animals at various ages. In general, organs...... with limited cell proliferation, i.e., liver, kidney, brain, heart, pancreas, and muscle, tended to show accumulation of DNA damage with age, whereas organs with highly proliferating cells, such as intestine, spleen, and testis, showed more equivocal or no effect of age. A restricted analysis of studies...

  17. Hydroxytyrosol Protects against Oxidative DNA Damage in Human Breast Cells

    Directory of Open Access Journals (Sweden)

    José J. Gaforio

    2011-10-01

    Full Text Available Over recent years, several studies have related olive oil ingestion to a low incidence of several diseases, including breast cancer. Hydroxytyrosol and tyrosol are two of the major phenols present in virgin olive oils. Despite the fact that they have been linked to cancer prevention, there is no evidence that clarifies their effect in human breast tumor and non-tumor cells. In the present work, we present hydroxytyrosol and tyrosol’s effects in human breast cell lines. Our results show that hydroxytyrosol acts as a more efficient free radical scavenger than tyrosol, but both fail to affect cell proliferation rates, cell cycle profile or cell apoptosis in human mammary epithelial cells (MCF10A or breast cancer cells (MDA-MB-231 and MCF7. We found that hydroxytyrosol decreases the intracellular reactive oxygen species (ROS level in MCF10A cells but not in MCF7 or MDA-MB-231 cells while very high amounts of tyrosol is needed to decrease the ROS level in MCF10A cells. Interestingly, hydroxytyrosol prevents oxidative DNA damage in the three breast cell lines. Therefore, our data suggest that simple phenol hydroxytyrosol could contribute to a lower incidence of breast cancer in populations that consume virgin olive oil due to its antioxidant activity and its protection against oxidative DNA damage in mammary cells.

  18. mapDamage: testing for damage patterns in ancient DNA sequences

    DEFF Research Database (Denmark)

    Ginolhac, Aurelien; Rasmussen, Morten; Gilbert, M Thomas P;

    2011-01-01

    Ancient DNA extracts consist of a mixture of contaminant DNA molecules, most often originating from environmental microbes, and endogenous fragments exhibiting substantial levels of DNA damage. The latter introduce specific nucleotide misincorporations and DNA fragmentation signatures in sequencing...... embedded R script in order to detect typical patterns of genuine ancient DNA sequences. Availability and implementation: The Perl script mapDamage is freely available with documentation and example files at http://geogenetics.ku.dk/all_literature/mapdamage/. The script requires prior installation of the...

  19. Inhibition of the mitochondrial respiratory chain function abrogates quartz induced DNA damage in lung epithelial cells

    International Nuclear Information System (INIS)

    Respirable quartz dust has been classified as a human carcinogen by the International Agency for Research on Cancer. The aim of our study was to investigate the mechanisms of DNA damage by DQ12 quartz in RLE-6TN rat lung epithelial type II cells (RLE). Transmission electron microscopy and flow-cytometry analysis showed a rapid particle uptake (30 min to 4 h) of quartz by the RLE cells, but particles were not found within the cell nuclei. This suggests that DNA strand breakage and induction of 8-hydroxydeoxyguanosine - as also observed in these cells during these treatment intervals - did not result from direct physical interactions between particles and DNA, or from short-lived particle surface-derived reactive oxygen species. DNA damage by quartz was significantly reduced in the presence of the mitochondrial inhibitors rotenone and antimycin-A. In the absence of quartz, these inhibitors did not affect DNA damage, but they reduced cellular oxygen consumption. No signs of apoptosis were observed by quartz. Flow-cytometry analysis indicated that the reduced DNA damage by rotenone was not due to a possible mitochondria-mediated reduction of particle uptake by the RLE cells. Further proof of concept for the role of mitochondria was shown by the failure of quartz to elicit DNA damage in mitochondria-depleted 143B (rho-0) osteosarcoma cells, at concentrations where it elicited DNA damage in the parental 143B cell line. In conclusion, our data show that respirable quartz particles can elicit oxidative DNA damage in vitro without entering the nuclei of type II cells, which are considered to be important target cells in quartz carcinogenesis. Furthermore, our observations indicate that such indirect DNA damage involves the mitochondrial electron transport chain function, by an as-yet-to-be elucidated mechanism

  20. Calculation of complex DNA damage induced by ions

    CERN Document Server

    Surdutovich, Eugene; Solov'yov, Andrey V

    2011-01-01

    This paper is devoted to the analysis of the complex damage of DNA irradiated by ions. The analysis and assessment of complex damage is important because cells in which it occurs are less likely to survive because the DNA repair mechanisms may not be sufficiently effective. We studied the flux of secondary electrons through the surface of nucleosomes and calculated the radial dose and the distribution of clustered damage around the ion's track. The calculated radial dose distribution is compared to simulations. The radial distribution of the complex damage is found to be different from that of the dose. Comparison with experiments may solve the question of what is more lethal for the cell, damage complexity or absorbed energy. We suggest a way to calculate the probability of cell death based on the complexity of the damage. This work is done within the framework of the phenomenon-based multiscale approach to radiation damage by ions.

  1. DNA damage and repair in human cells exposed to sunlight

    International Nuclear Information System (INIS)

    Cultured human cells were treated with direct sunlight under conditions which minimised the hypertonic, hyperthermic and fixative effects of solar radiation. Sunlight produced similar levels of DNA strand breaks as equitoxic 254 nm UV in two fibroblast strains and a melanoma cell line, but DNA repair synthesis and inhibition of semiconservative DNA synthesis and of DNA chain elongation were significantly less for sunlight-exposed cells. DNA breaks induced by sunlight were removed more rapidly. Thus, the repair of solar damage differs considerably from 254 nm UV repair. Glass-filtered sunlight (>320 nm) was not toxic to cells and did not induce repair synthesis but gave a low level of short-lived DNA breaks and some inhibition of DNA chain elongation; thymidine uptake was enhanced. Filtered sunlight slightly enhanced UV-induced repair synthesis and UV toxicity; photoreactivation of UV damage was not found. Attempts to transform human fibroblasts using sunlight, with or without phorbol ester, were unsuccessful. (author)

  2. DNA damage caused by UV- and near UV-irradiation

    International Nuclear Information System (INIS)

    Much work with mutants deficient in DNA repair has been performed concerning UV-induced DNA damage under the condition where there is no artificial stimulation. In an attempt to infer the effects of solar wavelengths, the outcome of the work is discussed in terms of cellular radiation sensitivity, unscheduled DNA synthesis, and mutation induction, leading to the conclusion that some DNA damage occurs even by irradiation of the shorter wavelength light (270 - 315 nm) and is repaired by excision repair. It has been thought to date that pyrimidine dimer (PD) plays the most important role in UV-induced DNA damage, followed by (6 - 4) photoproducts. As for DNA damage induced by near UV irradiation, the yield of DNA single-strand breaks and of DNA-protein crosslinking, other than PD, is considered. The DNA-protein crosslinking has proved to be induced by irradiation at any wavelength of UV ranging from 260 to 425 nm. Near UV irradiation causes the inhibition of cell proliferation to take place. (Namekawa, K.)

  3. Oxidatively damaged DNA in animals exposed to particles

    DEFF Research Database (Denmark)

    Møller, Peter; Danielsen, Pernille Høgh; Jantzen, Kim;

    2013-01-01

    Exposure to combustion-derived particles, quartz and asbestos is associated with increased levels of oxidized and mutagenic DNA lesions. The aim of this survey was to critically assess the measurements of oxidatively damaged DNA as marker of particle-induced genotoxicity in animal tissues....... Publications based on non-optimal assays of 8-oxo-7,8-dihydroguanine by antibodies and/or unrealistically high levels of 8-oxo-7,8-dihydroguanine (suggesting experimental problems due to spurious oxidation of DNA) reported more induction of DNA damage after exposure to particles than did the publications based...... from animal experimental models that both pulmonary and gastrointestinal tract exposure to particles are associated with elevated levels of oxidatively damaged DNA in the lung and internal organs. However, there is a paucity of studies on pulmonary exposure to low doses of particles that are relevant...

  4. Biomarkers of oxidative damage to DNA and repair

    DEFF Research Database (Denmark)

    Loft, Steffen; Høgh Danielsen, Pernille; Mikkelsen, Lone;

    2008-01-01

    Oxidative-stress-induced damage to DNA includes a multitude of lesions, many of which are mutagenic and have multiple roles in cancer and aging. Many lesions have been characterized by MS-based methods after extraction and digestion of DNA. These preparation steps may cause spurious base oxidation...... environmental factors, including particulate air pollution, cause oxidative damage to DNA, whereas diets rich in fruit and vegetables or antioxidant supplements may reduce the levels and enhance repair. Urinary excretion of 8-oxodG, genotype and expression of OGG1 have been associated with risk of cancer in......, which is less likely to occur with methods such as the comet assay, which are based on nicking of the DNA strand at modified bases, but offer less specificity. The European Standards Committee on Oxidative DNA Damage has concluded that the true levels of the most widely studied lesion, 8-oxodG (8-oxo-7...

  5. Roles of RNA-Binding Proteins in DNA Damage Response.

    Science.gov (United States)

    Kai, Mihoko

    2016-01-01

    Living cells experience DNA damage as a result of replication errors and oxidative metabolism, exposure to environmental agents (e.g., ultraviolet light, ionizing radiation (IR)), and radiation therapies and chemotherapies for cancer treatments. Accumulation of DNA damage can lead to multiple diseases such as neurodegenerative disorders, cancers, immune deficiencies, infertility, and also aging. Cells have evolved elaborate mechanisms to deal with DNA damage. Networks of DNA damage response (DDR) pathways are coordinated to detect and repair DNA damage, regulate cell cycle and transcription, and determine the cell fate. Upstream factors of DNA damage checkpoints and repair, "sensor" proteins, detect DNA damage and send the signals to downstream factors in order to maintain genomic integrity. Unexpectedly, we have discovered that an RNA-processing factor is involved in DNA repair processes. We have identified a gene that contributes to glioblastoma multiforme (GBM)'s treatment resistance and recurrence. This gene, RBM14, is known to function in transcription and RNA splicing. RBM14 is also required for maintaining the stem-like state of GBM spheres, and it controls the DNA-PK-dependent non-homologous end-joining (NHEJ) pathway by interacting with KU80. RBM14 is a RNA-binding protein (RBP) with low complexity domains, called intrinsically disordered proteins (IDPs), and it also physically interacts with PARP1. Furthermore, RBM14 is recruited to DNA double-strand breaks (DSBs) in a poly(ADP-ribose) (PAR)-dependent manner (unpublished data). DNA-dependent PARP1 (poly-(ADP) ribose polymerase 1) makes key contributions in the DNA damage response (DDR) network. RBM14 therefore plays an important role in a PARP-dependent DSB repair process. Most recently, it was shown that the other RBPs with intrinsically disordered domains are recruited to DNA damage sites in a PAR-dependent manner, and that these RBPs form liquid compartments (also known as "liquid-demixing"). Among the

  6. Inhibitors of histone deacetylases enhance neurotoxicity of DNA damage.

    Science.gov (United States)

    Vashishta, A; Hetman, M

    2014-12-01

    The nonselective inhibitors of class I/II histone deacetylases (HDACs) including trichostatin A and the clinically used suberoylanilide hydroxamic acid (SAHA, vorinostat) are neuroprotective in several models of neuronal injury. Here, we report that in cultured cortical neurons from newborn rats and in the cerebral cortex of whole neonate rats, these HDAC inhibitors exacerbated cytotoxicity of the DNA double-strand break (DSB)-inducing anticancer drug etoposide by enhancing apoptosis. Similar neurotoxic interactions were also observed in neurons that were treated with other DNA damaging drugs including cisplatin and camptothecin. In addition, in rat neonates, SAHA increased cortical neuron apoptosis that was induced by a single injection of the NMDA receptor antagonist dizocilpine (MK801). In etoposide-treated neurons, the nonselective HDAC inhibition resulted in more DSBs. It also potentiated etoposide-induced accumulation and phosphorylation of the pro-apoptotic transcription factor p53. Moreover, nonselective HDAC inhibition exacerbated neuronal apoptosis that was induced by the overexpressed p53. Importantly, such effects cannot be fully explained by inhibition of HDAC1, which is known to play a role in DSB repair and regulation of p53. The specific HDAC1 inhibitor MS275 only moderately enhanced etoposide-induced neuronal death. Although in etoposide-treated neurons MS275 increased DSBs, it did not affect activation of p53. Our findings suggest that besides HDAC1, there are other class I/II HDACs that participate in neuronal DNA damage response attenuating neurotoxic consequences of genotoxic insults to the developing brain. PMID:25063076

  7. Radiation damage to DNA: the effect of LET

    Energy Technology Data Exchange (ETDEWEB)

    Ward, J.F.; Milligan, J.R. [California Univ., San Diego, La Jolla, CA (United States). School of Medicine

    1997-03-01

    Mechanisms whereby ionizing radiation induced damage are introduced into cellular DNA are discussed. The types of lesions induced are summarized and the rationale is presented which supports the statement that radiation induced singly damaged sites are biologically unimportant. The conclusion that multiply damaged sites are critical is discussed and the mechanisms whereby such lesions are formed are presented. Structures of multiply damaged sites are summarized and problems which they present to cellular repair systems are discussed. Lastly the effects of linear energy transfer on the complexity of multiply damaged sites are surveyed and the consequences of this increased complexity are considered in terms of cell survival and mutation. (author)

  8. Oxidative Damage to DNA and Its Relationship With Diabetic Complications

    Institute of Scientific and Technical Information of China (English)

    HONG-ZHI PAN; DONG CHANG; LEI-GUANG FENG; FENG-JUAN XU; HONG-YU KUANG; MING-JUN LU

    2007-01-01

    Objective To detect the oxidative DNA damage in diabetic patients and to investigate the relationship of oxidative DNA damage with diabetes and diabetic nephropathy. Methods Single cell gel electrophoresis (SCGE) was used to detect the DNA strand breaks in peripheral blood lymphocytes, and oxidative DNA damage product and serum 8-OHdG were determined by a competitive ELISA in 47 cases, including 25 patients without diabetic complications, 22 patients with diabetic nephropathy and 25 normal control subjects. Results Diabetic patients showed greater oxidative damage to DNA. The percentage of comet cells and the length of DNA migration (comet tail length) of peripheral blood lymphocytes were significantly increased in patients with diabetes, and significantly higher in patients with diabetic nephropathy than in diabetic patients without vascular complications (P<0.05). There was a significant increase in serum 8-OHdG in diabetic patients compared with normal subjects (P<0.05). Moreover, serum 8-OHdG was much higher in patients with diabetic nephropathy than in diabetic patients without vascular complications (P<0.05). Conclusion There is severe oxidative DNA damage in diabetic patients. Enhanced oxidative stress may be associated with diabetes, especially in patients with diabetic nephropathy.

  9. Genetics of repair of radiation damage to DNA in bacteria

    International Nuclear Information System (INIS)

    The goal of this project is to study the consequences to bacterial DNA of damage by radiation and chemical agents. By correlating the extent of physical and biological damage to DNA, as expressed in various mutants defective in specific DNA repair pathways, we hope to determine mechanisms of biological inactivation of DNA and ways in which the damage can be repaired. We have measured physical damage to DNA in Bacillus subtilis and Escherichia coli by use of alkaline sucrose gradient centrifugation, which indicates the distance between breaks or alkali-labile lesions in single strands of DNA. Biological damage is measured by loss of viability or by loss of transforming activity in treated DNA from B. subtilis, and by the production of sites for DNA repair synthesis by DNA polymerase I (Pol I) in toluene-treated E. coli. We have investigated effects of ultraviolet light (both far-uv and near-uv), ionizing radiation, and selected chemical agents, in the presence or absence of sensitizing or protective agents. A major goal was to characterize DNA repair processes in vivo in B. subtilis. A number of radiation-sensitive mutants were studied, with the result that we have learned a great many details about the repair of DNA in uv-irradiated cells: We have now also studied the induction of methyltransferase in B. subtilis exposed to low concentrations of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). In collaboration with Sankar Mitra and R.S. Foote (Biology Division), we have shown that the basal level of methyltransferase in B. subtilis is about ten-fold higher than in E. coli and that there is about a ten-fold increase during adaptation. Our future studies will focus on the radioprotective effects of alcohols that act as OH radical scavengers but also react to irradiation by the formation of a radical on the carbon alpha to the hydroxyl

  10. DNA damage induced by the direct effect of radiation

    Science.gov (United States)

    Yokoya, A.; Shikazono, N.; Fujii, K.; Urushibara, A.; Akamatsu, K.; Watanabe, R.

    2008-10-01

    We have studied the nature of DNA damage induced by the direct effect of radiation. The yields of single- (SSB) and double-strand breaks (DSB), base lesions and clustered damage were measured using the agarose gel electrophoresis method after exposing to various kinds of radiations to a simple model DNA molecule, fully hydrated closed-circular plasmid DNA (pUC18). The yield of SSB does not show significant dependence on linear energy transfer (LET) values. On the other hand, the yields of base lesions revealed by enzymatic probes, endonuclease III (Nth) and formamidopyrimidine DNA glycosylase (Fpg), which excise base lesions and leave a nick at the damage site, strongly depend on LET values. Soft X-ray photon (150 kVp) irradiation gives a maximum yield of the base lesions detected by the enzymatic probes as SSB and clustered damage, which is composed of one base lesion and proximate other base lesions or SSBs. The clustered damage is visualized as an enzymatically induced DSB. The yields of the enzymatically additional damages strikingly decrease with increasing levels of LET. These results suggest that in higher LET regions, the repair enzymes used as probes are compromised because of the dense damage clustering. The studies using simple plasmid DNA as a irradiation sample, however, have a technical difficulty to detect multiple SSBs in a plasmid DNA. To detect the additional SSBs induced in opposite strand of the first SSB, we have also developed a novel technique of DNA-denaturation assay. This allows us to detect multiply induced SSBs in both strand of DNA, but not induced DSB.

  11. Sperm DNA damage-the effect of stress and everyday life factors.

    Science.gov (United States)

    Radwan, M; Jurewicz, J; Merecz-Kot, D; Sobala, W; Radwan, P; Bochenek, M; Hanke, W

    2016-07-01

    The clinical significance of sperm DNA damage lies in its association with natural conception rates and also might have a serious consequence on developmental outcome of the newborn. The aim of the present study is to determine whether stress and everyday life factors are associated with sperm DNA damage in adult men. The study population consisted of 286 men who attended the infertility clinic for diagnostic purposes and who had normal semen concentration of 20-300 m ml(-1) or with slight oligozoospermia (semen concentration of 15-20 m ml(-1)) (WHO, 1999). Participants were interviewed and provided a semen sample. The sperm chromatin structure assay was assessed using flow cytometry. In the present study, we found evidence for a relationship between sperm DNA damage parameters and everyday life factors. High and medium level of occupational stress and age increase DNA fragmentation index (P=0.03, P=0.004 and P=0.03, respectively). Other lifestyle factors that were positively associated with percentage of immature sperms (high DNA stainability index) included: obesity and cell phone use for more than 10 years (P=0.02 and P=0.04, respectively). Our findings indicate that stress and lifestyle factor may affect sperm DNA damage. Data from the present study showed a significant effect of age, obesity, mobile phone radiation and occupational stress on sperm DNA damage. As DNA fragmentation represents an extremely important parameter indicative of infertility and potential outcome of assisted reproduction treatment, and most of the lifestyle factors are easily modifiable, the information about factors that may affect DNA damage are important. PMID:27076112

  12. Space Radiation Effects on Human Cells: Modeling DNA Breakage, DNA Damage Foci Distribution, Chromosomal Aberrations and Tissue Effects

    Science.gov (United States)

    Ponomarev, A. L.; Huff, J. L.; Cucinotta, F. A.

    2011-01-01

    Future long-tem space travel will face challenges from radiation concerns as the space environment poses health risk to humans in space from radiations with high biological efficiency and adverse post-flight long-term effects. Solar particles events may dramatically affect the crew performance, while Galactic Cosmic Rays will induce a chronic exposure to high-linear-energy-transfer (LET) particles. These types of radiation, not present on the ground level, can increase the probability of a fatal cancer later in astronaut life. No feasible shielding is possible from radiation in space, especially for the heavy ion component, as suggested solutions will require a dramatic increase in the mass of the mission. Our research group focuses on fundamental research and strategic analysis leading to better shielding design and to better understanding of the biological mechanisms of radiation damage. We present our recent effort to model DNA damage and tissue damage using computational models based on the physics of heavy ion radiation, DNA structure and DNA damage and repair in human cells. Our particular area of expertise include the clustered DNA damage from high-LET radiation, the visualization of DSBs (DNA double strand breaks) via DNA damage foci, image analysis and the statistics of the foci for different experimental situations, chromosomal aberration formation through DSB misrepair, the kinetics of DSB repair leading to a model-derived spectrum of chromosomal aberrations, and, finally, the simulation of human tissue and the pattern of apoptotic cell damage. This compendium of theoretical and experimental data sheds light on the complex nature of radiation interacting with human DNA, cells and tissues, which can lead to mutagenesis and carcinogenesis later in human life after the space mission.

  13. Biomarkers of oxidative damage to DNA and repair.

    Science.gov (United States)

    Loft, Steffen; Høgh Danielsen, Pernille; Mikkelsen, Lone; Risom, Lotte; Forchhammer, Lykke; Møller, Peter

    2008-10-01

    Oxidative-stress-induced damage to DNA includes a multitude of lesions, many of which are mutagenic and have multiple roles in cancer and aging. Many lesions have been characterized by MS-based methods after extraction and digestion of DNA. These preparation steps may cause spurious base oxidation, which is less likely to occur with methods such as the comet assay, which are based on nicking of the DNA strand at modified bases, but offer less specificity. The European Standards Committee on Oxidative DNA Damage has concluded that the true levels of the most widely studied lesion, 8-oxodG (8-oxo-7,8-dihydro-2'-deoxyguanosine), in cellular DNA is between 0.5 and 5 lesions per 10(6) dG bases. Base excision repair of oxidative damage to DNA can be assessed by nicking assays based on oligonucleotides with lesions or the comet assay, by mRNA expression levels or, in the case of, e.g., OGG1 (8-oxoguanine DNA glycosylase 1), responsible for repair of 8-oxodG, by genotyping. Products of repair in DNA or the nucleotide pool, such as 8-oxodG, excreted into the urine can be assessed by MS-based methods and generally reflects the rate of damage. Experimental and population-based studies indicate that many environmental factors, including particulate air pollution, cause oxidative damage to DNA, whereas diets rich in fruit and vegetables or antioxidant supplements may reduce the levels and enhance repair. Urinary excretion of 8-oxodG, genotype and expression of OGG1 have been associated with risk of cancer in cohort settings, whereas altered levels of damage, repair or urinary excretion in case-control settings may be a consequence rather than the cause of the disease. PMID:18793191

  14. Role of oxidative DNA damage in genome instability and cancer

    International Nuclear Information System (INIS)

    Inactivation of mismatch repair (MMR) is associated with a dramatic genomic instability that is observed experimentally as a mutator phenotype and micro satellite instability (MSI). It has been implicit that the massive genetic instability in MMR defective cells simply reflects the accumulation of spontaneous DNA polymerase errors during DNA replication. We recently identified oxidation damage, a common threat to DNA integrity to which purines are very susceptible, as an important cofactor in this genetic instability

  15. Spatially localized generation of nucleotide sequence-specific DNA damage

    OpenAIRE

    Oh, Dennis H.; King, Brett A.; Boxer, Steven G.; Hanawalt, Philip C.

    2001-01-01

    Psoralens linked to triplex-forming oligonucleotides (psoTFOs) have been used in conjunction with laser-induced two-photon excitation (TPE) to damage a specific DNA target sequence. To demonstrate that TPE can initiate photochemistry resulting in psoralen–DNA photoadducts, target DNA sequences were incubated with psoTFOs to form triple-helical complexes and then irradiated in liquid solution with pulsed 765-nm laser light, which is half the quantum energy required for ...

  16. Viral Carcinogenesis: Factors Inducing DNA Damage and Virus Integration

    OpenAIRE

    Yan Chen; Vonetta Williams; Maria Filippova; Valery Filippov; Penelope Duerksen-Hughes

    2014-01-01

    Viruses are the causative agents of 10%–15% of human cancers worldwide. The most common outcome for virus-induced reprogramming is genomic instability, including accumulation of mutations, aberrations and DNA damage. Although each virus has its own specific mechanism for promoting carcinogenesis, the majority of DNA oncogenic viruses encode oncogenes that transform infected cells, frequently by targeting p53 and pRB. In addition, integration of viral DNA into the human genome can also play a...

  17. T7 replisome directly overcomes DNA damage

    Science.gov (United States)

    Sun, Bo; Pandey, Manjula; Inman, James T.; Yang, Yi; Kashlev, Mikhail; Patel, Smita S.; Wang, Michelle D.

    2015-12-01

    Cells and viruses possess several known `restart' pathways to overcome lesions during DNA replication. However, these `bypass' pathways leave a gap in replicated DNA or require recruitment of accessory proteins, resulting in significant delays to fork movement or even cell division arrest. Using single-molecule and ensemble methods, we demonstrate that the bacteriophage T7 replisome is able to directly replicate through a leading-strand cyclobutane pyrimidine dimer (CPD) lesion. We show that when a replisome encounters the lesion, a substantial fraction of DNA polymerase (DNAP) and helicase stay together at the lesion, the replisome does not dissociate and the helicase does not move forward on its own. The DNAP is able to directly replicate through the lesion by working in conjunction with helicase through specific helicase-DNAP interactions. These observations suggest that the T7 replisome is fundamentally permissive of DNA lesions via pathways that do not require fork adjustment or replisome reassembly.

  18. Visualization of DNA clustered damage induced by heavy ion exposure

    International Nuclear Information System (INIS)

    Full text: DNA double-strand breaks (DSBs) are the most lethal damage induced by ionizing radiations. Accelerated heavy-ions have been shown to induce DNA clustered damage, which is two or more DNA lesions induced within a few helical turns. Higher biological effectiveness of heavy-ions could be provided predominantly by induction of complex DNA clustered damage, which leads to non-repairable DSBs. DNA-dependent protein kinase (DNA-PK) is composed of catalytic subunit (DNA-PKcs) and DNA-binding heterodimer (Ku70 and Ku86). DNA-PK acts as a sensor of DSB during non-homologous end-joining (NHEJ), since DNA-PK is activated to bind to the ends of double-stranded DNA. On the other hand, NBS1 and histone H2AX are essential for DSB repair by homologous recombination (HR) in higher vertebrate cells. Here we report that phosphorylated H2AX at Ser139 (named γ-H2AX) and NBS1 form large undissolvable foci after exposure to accelerated Fe ions, while DNA-PKcs does not recognize DNA clustered damage. NBS1 and γ-H2AX colocalized with forming discrete foci after exposure to X-rays. At 0.5 h after Fe ion irradiation, NBS1 and γ-H2AX also formed discrete foci. However, at 3-8 h after Fe ion irradiation, highly localized large foci turned up, while small discrete foci disappeared. Large NBS1 and γ-H2AX foci were remained even 16 h after irradiation. DNA-PKcs recognized Ku-binding DSB and formed foci shortly after exposure to X-rays. DNA-PKcs foci were observed 0.5 h after 5 Gy of Fe ion irradiation and were almost completely disappeared up to 8 h. These results suggest that NBS1 and γ-H2AX can be utilized as molecular marker of DNA clustered damage, while DNA-PK selectively recognizes repairable DSBs by NHEJ

  19. Association of DNA damage and dyslipidemia with polycystic ovarian syndrome

    Directory of Open Access Journals (Sweden)

    Manikkumar R

    2013-02-01

    Full Text Available Polycystic ovary syndrome (PCOS is associated with hyperinsuli-nemia and insulin resistance which may lead to cardiovascular diseases. Evidence for cardiovascular events in women who were affected by PCOS during fertile age is limited. The pathogenesis is unknown; however, it is a complex multigenetic disorder. The present study was undertaken to evaluate the various cardiovas-cular risk factors and their DNA repair efficiency in women with PCOS by investigating the biochemical, endocrinological and mo-lecular cytogenetic alterations. These investigations were carried out in 116 women in the age group of 15-35 years clinically diag-nosed with PCOS. Data were compared with that of 50 age-matched healthy normal women. Fasting blood sugar (FBS, Lipid profile, Follicle-Stimulating Hormone (FSH and Luteinizing Hor-mone (LH, Prolactin and Estradiol were estimated after getting the informed consent. Mutagen induced chromosome sensitivity analysis was carried out in the lymphocytes of the subjects to as-sess the DNA repair proficiency. Fasting Blood Sugar, total cho-lesterol and LDL cholesterol were found to be elevated whereas HDL cholesterol was found to be lowered in the test subjects. FSH, LH and prolactin were also found to be significantly elevated in the test subjects. Change in the estradiol concentration in the test subjects was not significant. The mutagen sensitivity analysis revealed a significant elevation in break per cell (b/c values indi-cating a deficiency in the DNA repair mechanism / DNA damage in PCOS patients. Modification of life style by changing the dietary habit and sedentary life style will help to reduce the oxidative stress and may increase the ovarian function and a sensible life-style management is recommended for reducing the risk for CVD.

  20. Vitamin C for DNA damage prevention

    Czech Academy of Sciences Publication Activity Database

    Šrám, Radim; Binková, B.; Rössner ml., Pavel

    2012-01-01

    Roč. 733, 1-2 (2012), s. 39-49. ISSN 0027-5107 R&D Projects: GA MŠk 2B08005; GA MŽP(CZ) SP/1B3/50/07 Institutional research plan: CEZ:AV0Z50390703 Keywords : Chromosomal aberrations * DNA adducts * DNA repair Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 3.902, year: 2012

  1. CDK2 Is Required for the DNA Damage Response During Porcine Early Embryonic Development.

    Science.gov (United States)

    Wang, HaiYang; Kim, Nam-Hyung

    2016-08-01

    Cyclin-dependent kinase (CDK) 2 inhibition plays a central role in DNA damage-induced cell cycle arrest and DNA repair. However, whether CDK2 also influences early porcine embryo development is unknown. In this study, we examined whether CDK2 is involved in the regulation of oocyte meiosis and early embryonic development of porcine embryos. We found that disrupting CDK2 activity with RNAi or an inhibitor did not affect meiotic resumption or meiosis II arrest. However, CDK2 inhibitor-treated embryos showed delayed cleavage and ceased development before the blastocyst stage. Disrupting CDK2 activity is able to induce sustained DNA damage, as demonstrated by the formation of distinct gammaH2AX foci in nuclei of Day-3 and Day-5 embryos. Inhibiting CDK2 triggers a DNA damage checkpoint by activation of the ataxia telangiectasia mutated (ATM)-P53-P21 pathway. However, the mRNA expression of genes involved in nonhomologous end joining or homologous recombination pathways for double-strand break repair were reduced after administering CDK2 inhibitor to 5-day-old embryos. Furthermore, CDK2 inhibition caused apoptosis in Day-7 blastocysts. Thus, our results indicate that an ATM-P53-P21 DNA damage checkpoint is intact in the absence of CDK2; however, CDK2 is important for proper repair of the damaged DNA by either directly or indirectly influencing DNA repair-related gene expression. PMID:27307074

  2. Induction of DNA damage by deguelin is mediated through reducing DNA repair genes in human non-small cell lung cancer NCI-H460 cells

    OpenAIRE

    JI, BIN-CHUAN; Chien-chih YU; YANG, SU-TSO; Hsia, Te-Chun; Yang, Jai-Sing; Lai, Kuang-Chi; Ko, Yang-Ching; Lin, Jen-Jyh; Lai, Tung-Yuan; Chung, Jing-Gung

    2012-01-01

    It has been shown that deguelin, one of the compounds of rotenoids from flavonoid family, induced cytotoxic effects through induction of cell cycle arrest and apoptosis in many types of human cancer cell lines, but deguelin-affected DNA damage and repair gene expression (mRNA) are not clarified yet. We investigated the effects of deguelin on DNA damage and associated gene expression in human lung cancer NCI-H460 cells in vitro. DNA damage was assayed by using the comet assay and DNA gel elect...

  3. DICER, DROSHA and DNA damage response RNAs are necessary for the secondary recruitment of DNA damage response factors

    Science.gov (United States)

    Francia, Sofia; Cabrini, Matteo; Matti, Valentina; Oldani, Amanda; d'Adda di Fagagna, Fabrizio

    2016-01-01

    ABSTRACT The DNA damage response (DDR) plays a central role in preserving genome integrity. Recently, we reported that the endoribonucleases DICER and DROSHA contribute to DDR activation by generating small non-coding RNAs, termed DNA damage response RNA (DDRNA), carrying the sequence of the damaged locus. It is presently unclear whether DDRNAs act by promoting the primary recognition of DNA lesions or the secondary recruitment of DDR factors into cytologically detectable foci and consequent signal amplification. Here, we demonstrate that DICER and DROSHA are dispensable for primary recruitment of the DDR sensor NBS1 to DNA damage sites. Instead, the accumulation of the DDR mediators MDC1 and 53BP1 (also known as TP53BP1), markers of secondary recruitment, is reduced in DICER- or DROSHA-inactivated cells. In addition, NBS1 (also known as NBN) primary recruitment is resistant to RNA degradation, consistent with the notion that RNA is dispensable for primary recognition of DNA lesions. We propose that DICER, DROSHA and DDRNAs act in the response to DNA damage after primary recognition of DNA lesions and, together with γH2AX, are essential for enabling the secondary recruitment of DDR factors and fuel the amplification of DDR signaling. PMID:26906421

  4. DNA Damage Caused By Pesticide-contaminated Soil

    Institute of Scientific and Technical Information of China (English)

    K.KRISHNAMURTHI; S. SARAVANA DEVI; T. CHAKRABARTI

    2006-01-01

    Objective To determine the DNA damaging potential and the genotoxicity of individual compounds in pesticide contaminated soil. Methods In the present study, DNA damaging potential of pesticide-contaminated soil and the genotoxicity of individual compounds present in the soil were assessed using fluorimetric analysis of DNA unwinding assay. Results The contaminated soil sample showed 79% (P<0.001) of DNA strand break, whereas technical grade of major carbaryl and α-naphthol constituents of the contaminated soil showed 64% (P<0.01) and 60% (P<0.02) damage respectively. Conclusion Our results indicate that the toxicity caused by contaminated soil is mainly due to carbaryl and α -napthol, which are the major constituents of the soil sample analyzed by GC-MS.

  5. Mouse zygotes respond to severe sperm DNA damage by delaying paternal DNA replication and embryonic development.

    Directory of Open Access Journals (Sweden)

    Joanna E Gawecka

    Full Text Available Mouse zygotes do not activate apoptosis in response to DNA damage. We previously reported a unique form of inducible sperm DNA damage termed sperm chromatin fragmentation (SCF. SCF mirrors some aspects of somatic cell apoptosis in that the DNA degradation is mediated by reversible double strand breaks caused by topoisomerase 2B (TOP2B followed by irreversible DNA degradation by a nuclease(s. Here, we created zygotes using spermatozoa induced to undergo SCF (SCF zygotes and tested how they responded to moderate and severe paternal DNA damage during the first cell cycle. We found that the TUNEL assay was not sensitive enough to identify the breaks caused by SCF in zygotes in either case. However, paternal pronuclei in both groups stained positively for γH2AX, a marker for DNA damage, at 5 hrs after fertilization, just before DNA synthesis, while the maternal pronuclei were negative. We also found that both pronuclei in SCF zygotes with moderate DNA damage replicated normally, but paternal pronuclei in the SCF zygotes with severe DNA damage delayed the initiation of DNA replication by up to 12 hrs even though the maternal pronuclei had no discernable delay. Chromosomal analysis of both groups confirmed that the paternal DNA was degraded after S-phase while the maternal pronuclei formed normal chromosomes. The DNA replication delay caused a marked retardation in progression to the 2-cell stage, and a large portion of the embryos arrested at the G2/M border, suggesting that this is an important checkpoint in zygotic development. Those embryos that progressed through the G2/M border died at later stages and none developed to the blastocyst stage. Our data demonstrate that the zygote responds to sperm DNA damage through a non-apoptotic mechanism that acts by slowing paternal DNA replication and ultimately leads to arrest in embryonic development.

  6. The DNA damage-induced cell death response: a roadmap to kill cancer cells.

    Science.gov (United States)

    Matt, Sonja; Hofmann, Thomas G

    2016-08-01

    Upon massive DNA damage cells fail to undergo productive DNA repair and trigger the cell death response. Resistance to cell death is linked to cellular transformation and carcinogenesis as well as radio- and chemoresistance, making the underlying signaling pathways a promising target for therapeutic intervention. Diverse DNA damage-induced cell death pathways are operative in mammalian cells and finally culminate in the induction of programmed cell death via activation of apoptosis or necroptosis. These signaling routes affect nuclear, mitochondria- and plasma membrane-associated key molecules to activate the apoptotic or necroptotic response. In this review, we highlight the main signaling pathways, molecular players and mechanisms guiding the DNA damage-induced cell death response. PMID:26791483

  7. Non coding RNA: sequence-specific guide for chromatin modification and DNA damage signaling

    Directory of Open Access Journals (Sweden)

    Sofia eFrancia

    2015-11-01

    Full Text Available Chromatin conformation shapes the environment in which our genome is transcribed into RNA. Transcription is a source of DNA damage, thus it often occurs concomitantly to DNA damage signaling. Growing amounts of evidence suggest that different types of RNAs can, independently from their protein-coding properties, directly affect chromatin conformation, transcription and splicing, as well as promote the activation of the DNA damage response (DDR and DNA repair. Therefore, transcription paradoxically functions to both threaten and safeguard genome integrity. On the other hand, DNA damage signaling is known to modulate chromatin to suppress transcription of the surrounding genetic unit. It is thus intriguing to understand how transcription can modulate DDR signaling while, in turn, DDR signaling represses transcription of chromatin around the DNA lesion. An unexpected player in this field is the RNA interference (RNAi machinery, which play roles in transcription, splicing and chromatin modulation in several organisms. Non-coding RNAs (ncRNAs and several protein factors involved in the RNAi pathway are well known master regulators of chromatin while only recent reports suggest that ncRNAs are involved in DDR signaling and homology-mediated DNA repair. Here, we discuss the experimental evidence supporting the idea that ncRNAs act at the genomic loci from which they are transcribed to modulate chromatin, DDR signaling and DNA repair.

  8. Repair of DNA damage induced by ultraviolet radiation

    International Nuclear Information System (INIS)

    Studies documenting the depletion of the ozone layer and the resulting increases in UV-B radiation (280-320 nm) at the Earth's surface have served to focus attention on the biological effects of UV light. One obvious target for UVB- induced damage is DNA. Although a11 biological tissues are rich in UV-absorbing agents (largely nucleic acids and proteins) and plants produce additional UV-absorbing pigments, no DNA in superficial tissue can completely avoid UV exposure. Plants, like a11 living organisms, must have some capacity for the repair of UV-induced DNA damage. Because plants are unique in the obligatory nature of their exposure to UV, it is also conceivable that they may have evolved particularly efficient mechanisms for the elimination of UV-induced DNA damage. This review will summarize what we know about DNA repair mechanisms in higher plants. Readers interested in broader aspects of UV-induced damage and UV filters are directed to recent reviews (Middleton and Teramura, 1994; Strid et al., 1994; Fiscus and Booker, 1995). Our knowledge of DNA repair mechanisms in plants lags far behind our understanding of these pathways in animals, and a significant number of questions concerning the basic phenomenology of DNA repair in plants remain to be addressed

  9. Zinc protects HepG2 cells against the oxidative damage and DNA damage induced by ochratoxin A

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Juanjuan; Zhang, Yu [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); Xu, Wentao, E-mail: xuwentaoboy@sina.com [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China); Luo, YunBo [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China); Hao, Junran [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); Shen, Xiao Li [The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China); Yang, Xuan [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); Li, Xiaohong [The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China); Huang, Kunlun, E-mail: hkl009@163.com [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China)

    2013-04-15

    Oxidative stress and DNA damage are the most studied mechanisms by which ochratoxin A (OTA) induces its toxic effects, which include nephrotoxicity, hepatotoxicity, immunotoxicity and genotoxicity. Zinc, which is an essential trace element, is considered a potential antioxidant. The aim of this paper was to investigate whether zinc supplement could inhibit OTA-induced oxidative damage and DNA damage in HepG2 cells and the mechanism of inhibition. The results indicated that that exposure of OTA decreased the intracellular zinc concentration; zinc supplement significantly reduced the OTA-induced production of reactive oxygen species (ROS) and decrease in superoxide dismutase (SOD) activity but did not affect the OTA-induced decrease in the mitochondrial membrane potential (Δψ{sub m}). Meanwhile, the addition of the zinc chelator N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) strongly aggravated the OTA-induced oxidative damage. This study also demonstrated that zinc helped to maintain the integrity of DNA through the reduction of OTA-induced DNA strand breaks, 8-hydroxy-2′-deoxyguanosine (8-OHdG) formation and DNA hypomethylation. OTA increased the mRNA expression of metallothionein1-A (MT1A), metallothionein2-A (MT2A) and Cu/Zn superoxide dismutase (SOD1). Zinc supplement further enhanced the mRNA expression of MT1A and MT2A, but it had no effect on the mRNA expression of SOD1 and catalase (CAT). Zinc was for the first time proven to reduce the cytotoxicity of OTA through inhibiting the oxidative damage and DNA damage, and regulating the expression of zinc-associated genes. Thus, the addition of zinc can potentially be used to reduce the OTA toxicity of contaminated feeds. - Highlights: ► OTA decreased the intracellular zinc concentration. ► OTA induced the formation of 8-OHdG in HepG2 cells. ► It was testified for the first time that OTA induced DNA hypomethylation. ► Zinc protects against the oxidative damage and DNA damage induced by

  10. Zinc protects HepG2 cells against the oxidative damage and DNA damage induced by ochratoxin A

    International Nuclear Information System (INIS)

    Oxidative stress and DNA damage are the most studied mechanisms by which ochratoxin A (OTA) induces its toxic effects, which include nephrotoxicity, hepatotoxicity, immunotoxicity and genotoxicity. Zinc, which is an essential trace element, is considered a potential antioxidant. The aim of this paper was to investigate whether zinc supplement could inhibit OTA-induced oxidative damage and DNA damage in HepG2 cells and the mechanism of inhibition. The results indicated that that exposure of OTA decreased the intracellular zinc concentration; zinc supplement significantly reduced the OTA-induced production of reactive oxygen species (ROS) and decrease in superoxide dismutase (SOD) activity but did not affect the OTA-induced decrease in the mitochondrial membrane potential (Δψm). Meanwhile, the addition of the zinc chelator N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) strongly aggravated the OTA-induced oxidative damage. This study also demonstrated that zinc helped to maintain the integrity of DNA through the reduction of OTA-induced DNA strand breaks, 8-hydroxy-2′-deoxyguanosine (8-OHdG) formation and DNA hypomethylation. OTA increased the mRNA expression of metallothionein1-A (MT1A), metallothionein2-A (MT2A) and Cu/Zn superoxide dismutase (SOD1). Zinc supplement further enhanced the mRNA expression of MT1A and MT2A, but it had no effect on the mRNA expression of SOD1 and catalase (CAT). Zinc was for the first time proven to reduce the cytotoxicity of OTA through inhibiting the oxidative damage and DNA damage, and regulating the expression of zinc-associated genes. Thus, the addition of zinc can potentially be used to reduce the OTA toxicity of contaminated feeds. - Highlights: ► OTA decreased the intracellular zinc concentration. ► OTA induced the formation of 8-OHdG in HepG2 cells. ► It was testified for the first time that OTA induced DNA hypomethylation. ► Zinc protects against the oxidative damage and DNA damage induced by OTA in

  11. Oxidative Stress Induces Mitochondrial DNA Damage and Cytotoxicity through Independent Mechanisms in Human Cancer Cells

    OpenAIRE

    Yue Han; Chen, Junjian Z.

    2013-01-01

    Intrinsic oxidative stress through increased production of reactive oxygen species (ROS) is associated with carcinogenic transformation, cell toxicity, and DNA damage. Mitochondrial DNA (mtDNA) is a natural surrogate to oxidative DNA damage. MtDNA damage results in the loss of its supercoiled structure and is readily detectable using a novel, supercoiling-sensitive real-time PCR method. Our studies have demonstrated that mtDNA damage, as measured by DNA strand breaks and copy number depletion...

  12. Triplex technology in studies of DNA damage, DNA repair, and mutagenesis.

    Science.gov (United States)

    Mukherjee, Anirban; Vasquez, Karen M

    2011-08-01

    Triplex-forming oligonucleotides (TFOs) can bind to the major groove of homopurine-homopyrimidine stretches of double-stranded DNA in a sequence-specific manner through Hoogsteen hydrogen bonding to form DNA triplexes. TFOs by themselves or conjugated to reactive molecules can be used to direct sequence-specific DNA damage, which in turn results in the induction of several DNA metabolic activities. Triplex technology is highly utilized as a tool to study gene regulation, molecular mechanisms of DNA repair, recombination, and mutagenesis. In addition, TFO targeting of specific genes has been exploited in the development of therapeutic strategies to modulate DNA structure and function. In this review, we discuss advances made in studies of DNA damage, DNA repair, recombination, and mutagenesis by using triplex technology to target specific DNA sequences. PMID:21501652

  13. Histone modifications in response to DNA damage

    International Nuclear Information System (INIS)

    The packaging of the eukaryotic genome into highly condensed chromatin makes it inaccessible to the factors required for gene transcription, DNA replication, recombination and repair. Eukaryotes have developed intricate mechanisms to overcome this repressive barrier imposed by chromatin. Histone modifying enzymes and ATP-dependent chromatin remodeling complexes play key roles here as they regulate many nuclear processes by altering the chromatin structure. Significantly, these activities are integral to the process of DNA repair where histone modifications act as signals and landing platforms for various repair proteins. This review summarizes the recent developments in our understanding of histone modifications and their role in the maintenance of genome integrity

  14. DNA Damage in Chronic Kidney Disease: Evaluation of Clinical Biomarkers

    Science.gov (United States)

    Schupp, Nicole; Stopper, Helga; Heidland, August

    2016-01-01

    Patients with chronic kidney disease (CKD) exhibit an increased cancer risk compared to a healthy control population. To be able to estimate the cancer risk of the patients and to assess the impact of interventional therapies thereon, it is of particular interest to measure the patients' burden of genomic damage. Chromosomal abnormalities, reduced DNA repair, and DNA lesions were found indeed in cells of patients with CKD. Biomarkers for DNA damage measurable in easily accessible cells like peripheral blood lymphocytes are chromosomal aberrations, structural DNA lesions, and oxidatively modified DNA bases. In this review the most common methods quantifying the three parameters mentioned above, the cytokinesis-block micronucleus assay, the comet assay, and the quantification of 8-oxo-7,8-dihydro-2′-deoxyguanosine, are evaluated concerning the feasibility of the analysis and regarding the marker's potential to predict clinical outcomes. PMID:27313827

  15. Connecting the Dots: From DNA Damage and Repair to Aging.

    Science.gov (United States)

    Pan, Mei-Ren; Li, Kaiyi; Lin, Shiaw-Yih; Hung, Wen-Chun

    2016-01-01

    Mammalian cells evolve a delicate system, the DNA damage response (DDR) pathway, to monitor genomic integrity and to prevent the damage from both endogenous end exogenous insults. Emerging evidence suggests that aberrant DDR and deficient DNA repair are strongly associated with cancer and aging. Our understanding of the core program of DDR has made tremendous progress in the past two decades. However, the long list of the molecules involved in the DDR and DNA repair continues to grow and the roles of the new "dots" are under intensive investigation. Here, we review the connection between DDR and DNA repair and aging and discuss the potential mechanisms by which deficient DNA repair triggers systemic effects to promote physiological or pathological aging. PMID:27164092

  16. Connecting the Dots: From DNA Damage and Repair to Aging

    Directory of Open Access Journals (Sweden)

    Mei-Ren Pan

    2016-05-01

    Full Text Available Mammalian cells evolve a delicate system, the DNA damage response (DDR pathway, to monitor genomic integrity and to prevent the damage from both endogenous end exogenous insults. Emerging evidence suggests that aberrant DDR and deficient DNA repair are strongly associated with cancer and aging. Our understanding of the core program of DDR has made tremendous progress in the past two decades. However, the long list of the molecules involved in the DDR and DNA repair continues to grow and the roles of the new “dots” are under intensive investigation. Here, we review the connection between DDR and DNA repair and aging and discuss the potential mechanisms by which deficient DNA repair triggers systemic effects to promote physiological or pathological aging.

  17. Bisbenzimidazole - DMA: a potential radioprotector mitigates DNA damage in radiotherapy

    International Nuclear Information System (INIS)

    Ionizing radiation causes radiolysis of cellular water, generating reactive oxygen species (ROS), causing DNA damage. Radioprotectors protect the normal cells from the unwanted radiation damage. Since the beginning of the nuclear era, despite extensive research on the development of radioprotectors from natural and synthetic compounds, success has been limited. The only clinically acceptable radioprotector, amifostine, has inherent dose-limiting toxicities and has therefore stimulated extensive search for nontoxic, effective, and alternative radioprotectors. We have developed a cytoprotective radioprotector DMA, having a bisbenzimidazole nucleus. Relative quantitation of gene expression of the identified proteins and their interacting partners led to the identification of MAP3K14 (NFB inducing kinase) as one of the plausible target. Subsequently, over expression and knock down of MAP3K14 suggested that DMA affects NFB inducing kinase mediated phosphorylation of IKKα and IKK both alone and in the presence of ionizing radiation. Our results demonstrated 3.62 fold increase in NFB activation in DMA treated cells as compared to control cells. This activation was further increased by 5.8 fold in drug + radiation (50 μM + 8.5 Gy) treated cells in comparison to control. We observed 51% radioprotection in untreated cells that attenuated to 17% in siRNA NIK treated U87 cells at 24h. In addition we studied the effects of DMA on the radiation and transcriptional response of HEK293 cell lines also. Our results, suggested that the treatment of DMA increased the level of phosphorylated AKT in HEK cells in presence of radiation, and this was consistent with the alteration of DNA-PKcs. Our findings were further confirmed by the increased phosphorylation levels of GSK3, a substrate of activated AKT in DMA treated cells. (author)

  18. Telomeric Allelic Imbalance Indicates Defective DNA Repair and Sensitivity to DNA-Damaging Agents

    DEFF Research Database (Denmark)

    Birkbak, Nicolai J.; Wang, Zhigang C.; Kim, Ji-Young;

    2012-01-01

    DNA repair competency is one determinant of sensitivity to certain chemotherapy drugs, such as cisplatin. Cancer cells with intact DNA repair can avoid the accumulation of genome damage during growth and also can repair platinum-induced DNA damage. We sought genomic signatures indicative of...... defective DNA repair in cell lines and tumors and correlated these signatures to platinum sensitivity. The number of subchromosomal regions with allelic imbalance extending to the telomere (NtAI) predicted cisplatin sensitivity in vitro and pathologic response to preoperative cisplatin treatment in patients...... mutation. Thus, accumulation of telomeric allelic imbalance is a marker of platinum sensitivity and suggests impaired DNA repair. SIGNIFICANCE: Mutations in BRCA genes cause defects in DNA repair that predict sensitivity to DNA damaging agents, including platinum; however, some patients without BRCA...

  19. DNA damage induced by subexcitation electrons

    International Nuclear Information System (INIS)

    Full text: The passage of ionizing radiation (β-, X-, or γ rays) through a living cell produces about 40 x 103 electrons/MeV, with more than 50% having energies well below the excitation threshold for water (M. Michaud et al, Physical Review, 44(9), 5623-5627, (1991)). We have previously shown that 5-20 eV electrons cause DNA strand breaks via a resonant process with a maximum at 10 eV (B. Boudaiffa et al, Science 287, 1658-1660, (2000)). The present results demonstrate that very low energy electrons in the range of 1 to 5 eV cause single strand breaks (SSB) in DNA. Plasmid DNA [pGEM 3zf(-), 3199pb] is extracted from the host bacteria [ E.coli, JM109 ] purified and resuspended in distilled and deionised water. It is deposited on a clean chemically tantalum substrate, lyophilised and placed in an UHV chamber for 24 hours before irradiation. After irradiation, plasmid DNA is retrieved from the UHV chamber and the samples are dissolved in buffer (Tris-EDTA, 10mM/1mM, pH 8). The different topological forms of DNA resulting from single strand break formation are separated by electrophoresis gel, stained by SYBR Green 1 (Molecular Probes), scanned by laser (Storm, Molecular Dynamics) and quantified using the imageQuant program (Molecular Dynamics). The quantification protocol has been optimized to maximize both sensitivity and linearity. The effective cross section for inducing SSB by the impact of 2 eV electrons is estimated to be 2.3 x 10-13 cm2

  20. Oxidative stress and DNA damages induced by cadmium accumulation

    Institute of Scientific and Technical Information of China (English)

    LIN Ai-jun; ZHANG Xu-hong; CHEN Mei-mei; CAO Qing

    2007-01-01

    Experimental evidence shows that cadmium (Cd) could induce oxidative stress and then causes DNA damage in animal cells, however, whether such effect exists in plants is still unclear. In the present study, Vicia faba plants was exposed to 5 and 10 mg/L Cd for 4 d to investigate the distribution of Cd in plant, the metal effects on the cell lipids, antioxidative enzymes and DNA damages in leaves. Cd induced an increase in Cd concentrations in plants. An enhanced level of lipid peroxidation in leaves and an enhanced concentration of H2O2 in root tissues suggested that Cd caused oxidative stress in Vicia faba. Compared with control, Cd-induced enhancement in superoxide dismutase activity was significant at 5 mg/L than at 10 mg/kg in leaves, by contrast, catalase and peroxidaseactivities were significantly suppressed by Cd addition. DNA damage was detected by neutral/neutral, alkaline/neutral and alkaline/alkaline Comet assay. Increased levels of DNA damages induced by Cd occurred with reference to oxidative stress in leaves, therefore, oxidative stress induced by Cd accumulation in plants contributed to DNA damages and was possibly an important mechanism of Cd-phytotoxicity in Vicia faba plants.

  1. Assessment of DNA damage in radiation workers by using single cell gel electrophoresis

    International Nuclear Information System (INIS)

    Objective: To assess the DNA damage of radiation workers in different grade hospitals, and to explore the correlation between the types of work or work time and the levels of DNA damage. Methods: DNA single strand break were detected by using alkaline single cell gel electrophoresis (SCGE), and the comet was analyzed with CASP (Comet Assay Software Project). TDNA%, TL, TM and OTM were calculated. Results: The parameters of SCGE in the radiation group were higher than those of control group (F=3.93, P<0.01). The significant difference was found not only among the different types of work or different work time, but also among the different grade hospitals (F=1.83, 1.91, P<0.05). Conclusions: Various levels of DNA damage could be detected in the radiation workers of the two hospitals. DNA damage of radiation workers is less serious in the higher-grade hospital than the lower grade one. Different types of work or work time might affect the DNA damage level. (authors)

  2. Repair of damaged DNA in vivo: Final technical report

    International Nuclear Information System (INIS)

    This contract was initiated in 1962 with the US Atomic Energy Commission to carry out basic research on the effects of radiation on the process of DNA replication in bacteria. Within the first contract year we discovered repair replication at the same time that Setlow and Carrier discovered pyrimidine dimer excision. These discoveries led to the elucidation of the process of excision-repair, one of the most important mechanisms by which living systems, including humans, respond to structural damage in their genetic material. We improved methodology for distinguishing repair replication from semiconservative replication and instructed others in these techniques. Painter then was the first to demonstrate repair replication in ultraviolet irradiated human cells. He, in turn, instructed James Cleaver who discovered that skin fibroblasts from patients with xeroderma pigmentosum were defective in excision-repair. People with this genetic defect are extremely sensitive to sunlight and they develop carcinomas and melanomas of the skin with high frequency. The existence of this hereditary disease attests to the importance of DNA repair in man. We certainly could not survive in the normal ultraviolet flux from the sun if our DNA were not continuously monitored for damage and repaired. Other hereditary diseases such as ataxia telangiectasia, Cockayne's syndrome, Blooms syndrome and Fanconi's anemia also involve deficiencies in DNA damage processing. The field of DNA repair has developed rapidly as we have learned that most environmental chemical carcinogens as well as radiation produce repairable damage in DNA. 251 refs

  3. Increased oxidative DNA damage in mononuclear leukocytes in vitiligo

    Energy Technology Data Exchange (ETDEWEB)

    Giovannelli, Lisa [Department of Preclinical and Clinical Pharmacology, University of Florence, Viale Pieraccini 6, 50139 Florence (Italy)]. E-mail: lisag@pharm.unifi.it; Bellandi, Serena [Department of Dermatological Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence (Italy); Pitozzi, Vanessa [Department of Preclinical and Clinical Pharmacology, University of Florence, Viale Pieraccini 6, 50139 Florence (Italy); Fabbri, Paolo [Department of Dermatological Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence (Italy); Dolara, Piero [Department of Preclinical and Clinical Pharmacology, University of Florence, Viale Pieraccini 6, 50139 Florence (Italy); Moretti, Silvia [Department of Dermatological Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence (Italy)

    2004-11-22

    Vitiligo is an acquired pigmentary disorder of the skin of unknown aetiology. The autocytotoxic hypothesis suggests that melanocyte impairment could be related to increased oxidative stress. Evidences have been reported that in vitiligo oxidative stress might also be present systemically. We used the comet assay (single cell alkaline gel electrophoresis) to evaluate DNA strand breaks and DNA base oxidation, measured as formamidopyrimidine DNA glycosylase (FPG)-sensitive sites, in peripheral blood cells from patients with active vitiligo and healthy controls. The basal level of oxidative DNA damage in mononuclear leukocytes was increased in vitiligo compared to normal subjects, whereas DNA strand breaks (SBs) were not changed. This alteration was not accompanied by a different capability to respond to in vitro oxidative challenge. No differences in the basal levels of DNA damage in polymorphonuclear leukocytes were found between patients and healthy subjects. Thus, this study supports the hypothesis that in vitiligo a systemic oxidative stress exists, and demonstrates for the first time the presence of oxidative alterations at the nuclear level. The increase in oxidative DNA damage shown in the mononuclear component of peripheral blood leukocytes from vitiligo patients was not particularly severe. However, these findings support an adjuvant role of antioxidant treatment in vitiligo.

  4. A dual role of Cdk2 in DNA damage response

    Directory of Open Access Journals (Sweden)

    Kaldis Philipp

    2009-05-01

    Full Text Available Abstract Once it was believed that Cdk2 was the master regulator of S phase entry. Gene knockout mouse studies of cell cycle regulators revealed that Cdk2 is dispensable for S phase initiation and progression whereby Cdk1 can compensate for the loss of Cdk2. Nevertheless, recent evidence indicates that Cdk2 is involved in cell cycle independent functions such as DNA damage repair. Whether these properties are unique to Cdk2 or also being compensated by other Cdks in the absence of Cdk2 is under extensive investigation. Here we review the emerging new role of Cdk2 in DNA damage repair and also discuss how the loss of Cdk2 impacts the G1/S phase DNA damage checkpoint.

  5. Triplex technology in studies of DNA damage, DNA repair, and mutagenesis

    OpenAIRE

    Mukherjee, Anirban; Vasquez, Karen M.

    2011-01-01

    Triplex-forming oligonucleotides (TFOs) can bind to the major groove of homopurine-homopyrimidine stretches of double-stranded DNA in a sequence-specific manner through Hoogsteen hydrogen bonding to form DNA triplexes. TFOs by themselves or conjugated to reactive molecules can be used to direct sequence-specific DNA damage, which in turn results in the induction of several DNA metabolic activities. Triplex technology is highly utilized as a tool to study gene regulation, molecular mechanisms ...

  6. Radiation damage to DNA-protein complexes

    Czech Academy of Sciences Publication Activity Database

    Spotheim-Maurizot, M.; Davídková, Marie

    2011-01-01

    Roč. 261, zima (2011), s. 1-10. ISSN 1742-6588. [COST Chemistry CM0603-MELUSYN Joint Meeting Damages Induced in Biomolecules by Low and High Energy Radiations. Paříž, 09.03.2010-12.03.2010] R&D Projects: GA AV ČR IAA1048103; GA AV ČR KJB4048401; GA MŠk 1P05OC085; GA MŠk OC09012; GA AV ČR IAB1048901 Institutional research plan: CEZ:AV0Z10480505 Keywords : radiolysis * molecular-dynamics simulation * hydroxyl radical attack * induced strand breakage Subject RIV: BO - Biophysics

  7. Natural transformation of bacteria by fragmented, damaged and ancient DNA

    DEFF Research Database (Denmark)

    Overballe-Petersen, Søren

    Organisms release DNA both when they live and die. Eventually the DNA disintegrates entirely or it is re-metabolized. There is a constant deposition and decomposition that maintains an environmental pool with large quantities of extracellular DNA, some of which can be thousands of years old. The...... which cells can acquire functional genetic signatures of the deeper past. Moreover, not only can old DNA revert microbes to past genotypes, but damaged DNA can also produce new variants of already functional sequences. Besides, DNA fragments carry potential to combine functional domains in new ways. The...... identified novel pathway of natural transformation represents a basal evolutionary process that only requires growing cells that feed on oligonucleotides; a process that possibly is a primeval type of horizontal gene transfer. In extension, our results also provide mechanistic support to hypotheses of...

  8. Gold nanoparticle DNA damage in radiotherapy: A Monte Carlo study

    Directory of Open Access Journals (Sweden)

    Chun He

    2016-07-01

    Full Text Available This study investigated the DNA damage due to the dose enhancement of using gold nanoparticles (GNPs as a radiation sensitizer in radiotherapy. Nanodosimetry of a photon irradiated GNP was performed with Monte Carlo simulations using Geant4-DNA (ver. 10.2 in the nanometer scale. In the simulation model, GNP spheres (with diameters of 30, 50, and 100 nm and a DNA model were placed in a water cube (1 µm3. The GNPs were irradiated by photon beams with varying energies (50, 100, and 150 keV, which produced secondary electrons, enhancing the dose to the DNA. To investigate the dose enhancement effect at the DNA level, energy deposition to the DNA with and without the GNP were determined in simulations for calculation of the dose enhancement ratio (DER. The distance between the GNP and the DNA molecule was varied to determine its effect on the DER. Monte Carlo results were collected for three variables; GNP size, distances between the GNP and DNA molecule, and the photon beam energy. The DER was found to increase with the size of GNP and decrease with the distance between the GNP and DNA molecule. The largest DER was found to be 3.7 when a GNP (100 nm diameter was irradiated by a 150 keV photon beam set at 30 nm from the DNA molecule. We conclude that there is significant dependency of the DER on GNP size, distance to the DNA and photon energy and have simulated those relationships.

  9. Oxidative damage to 5-methylcytosine in DNA.

    OpenAIRE

    Zuo, S; Boorstein, R J; Teebor, G.W.

    1995-01-01

    Exposure of pyrimidines of DNA to ionizing radiation under aerobic conditions or oxidizing agents results in attack on the 5,6 double bond of the pyrimidine ring or on the exocyclic 5-methyl group. The primary product of oxidation of the 5,6 double bond of thymine is thymine glycol, while oxidation of the 5-methyl group yields 5-hydroxymethyluracil. Oxidation of the 5,6 double bond of cytosine yields cytosine glycol, which decomposes to 5-hydroxycytosine, 5-hydroxyuracil and uracil glycol, al...

  10. ERK3 regulates TDP2-mediated DNA damage response and chemoresistance in lung cancer cells

    OpenAIRE

    Bian, Ka; Muppani, Naveen Reddy; Elkhadragy, Lobna; Wang, Wei; Zhang, Cheng; Chen, Tenghui; Jung, Sungyun; Seternes, Ole Morten; Long, Weiwen

    2015-01-01

    Posttranslational modifications (PTMs), such as phosphorylation and ubiquitination, play critical regulatory roles in the assembly of DNA damage response proteins on the DNA damage site and their activities in DNA damage repair. Tyrosyl DNA phosphodiesterase 2 (TDP2) repairs Topoisomerase 2 (Top2)-linked DNA damage, thereby protecting cancer cells against Top2 inhibitors-induced growth inhibition and cell death. The regulation of TDP2 activity by post-translational modifications in DNA repair...

  11. Cellular Response to Bleomycin-Induced DNA Damage in Human Fibroblast Cells in Space

    Science.gov (United States)

    Lu, Tao; Zhang, Ye; Wong, Michael; Stodieck, Louis; Karouia, Fathi; Wu, Honglu

    2015-01-01

    Outside the protection of the geomagnetic field, astronauts and other living organisms are constantly exposed to space radiation that consists of energetic protons and other heavier charged particles. Whether spaceflight factors, microgravity in particular, have effects on cellular responses to DNA damage induced by exposure to radiation or cytotoxic chemicals is still unknown, as is their impact on the radiation risks for astronauts and on the mutation rate in microorganisms. Although possible synergistic effects of space radiation and other spaceflight factors have been investigated since the early days of the human space program, the published results were mostly conflicting and inconsistent. To investigate effects of spaceflight on cellular responses to DNA damages, human fibroblast cells flown to the International Space Station (ISS) were treated with bleomycin for three hours in the true microgravity environment, which induced DNA damages including double-strand breaks (DSB) similar to the ionizing radiation. Damages in the DNA were measured by the phosphorylation of a histone protein H2AX (g-H2AX), which showed slightly more foci in the cells on ISS than in the ground control. The expression of genes involved in DNA damage response was also analyzed using the PCR array. Although a number of the genes, including CDKN1A and PCNA, were significantly altered in the cells after bleomycin treatment, no significant difference in the expression profile of DNA damage response genes was found between the flight and ground samples. At the time of the bleomycin treatment, the cells on the ISS were found to be proliferating faster than the ground control as measured by the percentage of cells containing positive Ki-67 signals. Our results suggested that the difference in g-H2AX focus counts between flight and ground was due to the faster growth rate of the cells in space, but spaceflight did not affect initial transcriptional responses of the DNA damage response genes to

  12. DNA damage and repair in human skin in situ

    International Nuclear Information System (INIS)

    Understanding the molecular and cellular origins of sunlight-induced skin cancers in man requires knowledge of the damages inflicted on human skin during sunlight exposure, as well as the ability of cells in skin to repair or circumvent such damage. Although repair has been studied extensively in procaryotic and eucaryotic cells - including human cells in culture - there are important differences between repair by human skin cells in culture and human skin in situ: quantitative differences in rates of repair, as well as qualitative differences, including the presence or absence of repair mechanisms. Quantitation of DNA damage and repair in human skin required the development of new approaches for measuring damage at low levels in nanogram quantities of non-radioactive DNA. The method allows for analysis of multiple samples and the resulting data should be related to behavior of the DNA molecules by analytic expressions. Furthermore, it should be possible to assay a variety of lesions using the same methodology. The development of new analysis methods, new technology, and new biochemical probes for the study of DNA damage and repair are described. 28 refs., 4 figs

  13. Radiation damage to DNA in DNA-protein complexes

    Czech Academy of Sciences Publication Activity Database

    Spotheim Maurizot, M.; Davídková, Marie

    2011-01-01

    Roč. 711, 1-2 (2011), s. 41-48. ISSN 0027-5107 Institutional research plan: CEZ:AV0Z10480505 Keywords : DNA-protein complex * ionizing radiation * molecular structure Subject RIV: BO - Biophysics Impact factor: 2.850, year: 2011

  14. DNA damage under simulated extraterrestrial conditions in bacteriophage T7

    Science.gov (United States)

    Fekete, A.; Módos, K.; Hegedüs, M.; Kovács, G.; Rontó, Gy.; Péter, Á.; Lammer, H.; Panitz, C.

    The experiment "Phage and Uracil response" will be accommodated in the EXPOSE facility of the International Space Station. Its objective is to examine and quantify the effect of specific space conditions on nucleic acid models, especially on bacteriophage T7 and isolated T7 DNA thin films. In order to define the environmental and technical requirements of the EXPOSE, the samples were subjected to the experiment verification test (EVT). During EVT, the samples were exposed to vacuum (10 -4-10 -6 Pa) and polychromatic UV-radiation (200-400 nm) in air, in inert atmosphere, as well as in simulated space vacuum. The effect of extreme temperature in vacuum and the influence of temperature fluctuations around 0 °C were also studied. The total intraphage/isolated DNA damage was determined by quantitative PCR using 555 and 3826 bp fragments of T7 DNA. The type of the damage was resolved using a combination of enzymatic probes and neutral and alkaline agarose gel electrophoresis; the structural/chemical effects were analyzed by spectroscopic and microscopical methods. We obtained substantial evidence that DNA lesions accumulate throughout exposure, but the amount of damage depends on the thickness of the layers. According to our preliminary results, the damages by exposure to conditions of dehydration and UV-irradiation are larger than the sum of vacuum alone, or radiation alone case, suggesting a synergistic action of space vacuum and UV radiation with DNA being the critical target.

  15. Viral Carcinogenesis: Factors Inducing DNA Damage and Virus Integration

    Directory of Open Access Journals (Sweden)

    Yan Chen

    2014-10-01

    Full Text Available Viruses are the causative agents of 10%–15% of human cancers worldwide. The most common outcome for virus-induced reprogramming is genomic instability, including accumulation of mutations, aberrations and DNA damage. Although each virus has its own specific mechanism for promoting carcinogenesis, the majority of DNA oncogenic viruses encode oncogenes that transform infected cells, frequently by targeting p53 and pRB. In addition, integration of viral DNA into the human genome can also play an important role in promoting tumor development for several viruses, including HBV and HPV. Because viral integration requires the breakage of both the viral and the host DNA, the integration rate is believed to be linked to the levels of DNA damage. DNA damage can be caused by both endogenous and exogenous factors, including inflammation induced by either the virus itself or by co-infections with other agents, environmental agents and other factors. Typically, cancer develops years to decades following the initial infection. A better understanding of virus-mediated carcinogenesis, the networking of pathways involved in transformation and the relevant risk factors, particularly in those cases where tumorigenesis proceeds by way of virus integration, will help to suggest prophylactic and therapeutic strategies to reduce the risk of virus-mediated cancer.

  16. Diagnosis of Lung Cancer by Fractal Analysis of Damaged DNA

    Directory of Open Access Journals (Sweden)

    Hamidreza Namazi

    2015-01-01

    Full Text Available Cancer starts when cells in a part of the body start to grow out of control. In fact cells become cancer cells because of DNA damage. A DNA walk of a genome represents how the frequency of each nucleotide of a pairing nucleotide couple changes locally. In this research in order to study the cancer genes, DNA walk plots of genomes of patients with lung cancer were generated using a program written in MATLAB language. The data so obtained was checked for fractal property by computing the fractal dimension using a program written in MATLAB. Also, the correlation of damaged DNA was studied using the Hurst exponent measure. We have found that the damaged DNA sequences are exhibiting higher degree of fractality and less correlation compared with normal DNA sequences. So we confirmed this method can be used for early detection of lung cancer. The method introduced in this research not only is useful for diagnosis of lung cancer but also can be applied for detection and growth analysis of different types of cancers.

  17. Static magnetic fields modulate X-ray-induced DNA damage in human glioblastoma primary cells

    International Nuclear Information System (INIS)

    Although static magnetic fields (SMFs) are used extensively in the occupational and medical fields, few comprehensive studies have investigated their possible genotoxic effect and the findings are controversial. With the advent of magnetic resonance imaging-guided radiation therapy, the potential effects of SMFs on ionizing radiation (IR) have become increasingly important. In this study we focused on the genotoxic effect of 80 mT SMFs, both alone and in combination with (i.e. preceding or following) X-ray (XR) irradiation, on primary glioblastoma cells in culture. The cells were exposed to: (1) SMFs alone; (2) XRs alone; (3) XR, with SMFs applied during recovery; (4) SMFs both before and after XR irradiation. XR-induced DNA damage was analyzed by Single Cell Gel Electrophoresis assay (comet assay) using statistical tools designed to assess the tail DNA (TD) and tail length (TL) as indicators of DNA fragmentation. Mitochondrial membrane potential, known to be affected by IR, was assessed using the JC-1 mitochondrial probe. Our results showed that exposure of cells to 5 Gy of XR irradiation alone led to extensive DNA damage, which was significantly reduced by post-irradiation exposure to SMFs. The XR-induced loss of mitochondrial membrane potential was to a large extent averted by exposure to SMFs. These data suggest that SMFs modulate DNA damage and/or damage repair, possibly through a mechanism that affects mitochondria. (author)

  18. DNA damage responses in cancer stem cells: Implications for cancer therapeutic strategies

    Institute of Scientific and Technical Information of China (English)

    Qi-En; Wang

    2015-01-01

    The identification of cancer stem cells(CSCs) that are responsible for tumor initiation, growth, metastasis, and therapeutic resistance might lead to a new thinking on cancer treatments. Similar to stem cells,CSCs also display high resistance to radiotherapy and chemotherapy with genotoxic agents. Thus, conventional therapy may shrink the tumor volume but cannot eliminate cancer. Eradiation of CSCs represents a novel therapeutic strategy. CSCs possess a highly efficient DNA damage response(DDR) system, which is considered as a contributor to the resistance of these cells from exposures to DNA damaging agents. Targeting of enhanced DDR in CSCs is thus proposed to facilitate the eradication of CSCs by conventional therapeutics. To achieve this aim, a better understanding of the cellular responses to DNA damage in CSCs is needed. In addition to the protein kinases and enzymes that are involved in DDR, other processes that affect the DDR including chromatin remodeling should also be explored.

  19. Low-dose formaldehyde delays DNA damage recognition and DNA excision repair in human cells.

    Directory of Open Access Journals (Sweden)

    Andreas Luch

    Full Text Available OBJECTIVE: Formaldehyde is still widely employed as a universal crosslinking agent, preservative and disinfectant, despite its proven carcinogenicity in occupationally exposed workers. Therefore, it is of paramount importance to understand the possible impact of low-dose formaldehyde exposures in the general population. Due to the concomitant occurrence of multiple indoor and outdoor toxicants, we tested how formaldehyde, at micromolar concentrations, interferes with general DNA damage recognition and excision processes that remove some of the most frequently inflicted DNA lesions. METHODOLOGY/PRINCIPAL FINDINGS: The overall mobility of the DNA damage sensors UV-DDB (ultraviolet-damaged DNA-binding and XPC (xeroderma pigmentosum group C was analyzed by assessing real-time protein dynamics in the nucleus of cultured human cells exposed to non-cytotoxic (<100 μM formaldehyde concentrations. The DNA lesion-specific recruitment of these damage sensors was tested by monitoring their accumulation at local irradiation spots. DNA repair activity was determined in host-cell reactivation assays and, more directly, by measuring the excision of DNA lesions from chromosomes. Taken together, these assays demonstrated that formaldehyde obstructs the rapid nuclear trafficking of DNA damage sensors and, consequently, slows down their relocation to DNA damage sites thus delaying the excision repair of target lesions. A concentration-dependent effect relationship established a threshold concentration of as low as 25 micromolar for the inhibition of DNA excision repair. CONCLUSIONS/SIGNIFICANCE: A main implication of the retarded repair activity is that low-dose formaldehyde may exert an adjuvant role in carcinogenesis by impeding the excision of multiple mutagenic base lesions. In view of this generally disruptive effect on DNA repair, we propose that formaldehyde exposures in the general population should be further decreased to help reducing cancer risks.

  20. Genomics and radical mediated DNA damage: major differences between ionizing radiation and DNA-cleaving enediynes

    International Nuclear Information System (INIS)

    While the evidence is strong for radical-mediated oxidative processes in the pathophysiology of cancer and aging, the mechanisms by which cells respond to oxidative stress have eluded definition. To this end, we have undertaken genomic studies comparing the response of S. cerevisiae to DNA-specific oxidizing agents, the enediynes calicheamicin (CAL), esperamicin (ESP), and neocarzinostatin (NCS), and the non-specific gamma-radiation (RAD). While RAD results in relatively indiscriminate oxidation of cellular molecules, the enediynes are highly specific to DNA and produce damage by a common mechanism involving radical-mediated oxidation of deoxyribose. Transcriptional profiling in response to these agents (80% survival; 15 min exposure; Affymetrix) revealed unexpected differences between RAD and the enediynes and among the three enediynes. Only 2 genes responded in common to all agents, while 9 genes were regulated in common for the 3 enediynes (no DNA repair genes altered in common). The limited common gene expression changes for the 3 enediynes may result from differences in deoxyribose oxidation chemistry, DNA and chromatin targets or the proportions of single- and double-strand DNA lesions. RAD produced a more robust response than the enediynes, altering expression of 195 and 52 genes by more than 2- and 5-fold, respectively, compared to 16-44 and *2 genes, respectively, for the enediynes. This suggests that the transcriptional response varies in intensity according to the number of cellular features affected by the toxin. Genes showing the strongest up-regulation with RAD: ribonucleotide reductase, multidrug resistance, DS break repair/RAD51, GSH transferase; strongly reduced gene expression: TEL1 (damage signaling), NAT2 (acetyltransferase). Genomic phenotyping studies, using a subset of the Research Genetics deletion library, revealed that loss of apn1, the major AP endonuclease, caused resistance to NCS, possibly due to reduced formation of protein-DNA cross

  1. Repair of DNA damage in light sensitive human skin diseases

    Energy Technology Data Exchange (ETDEWEB)

    Horkay, I.; Varga, L.; Tam' asi P., Gundy, S.

    1978-12-01

    Repair of uv-light induced DNA damage and changes in the semiconservative DNA synthesis were studied by in vitro autoradiography in the skin of patients with lightdermatoses (polymorphous light eruption, porphyria cutanea tarda, erythropoietic protoporphyria) and xeroderma pigmentosum as well as in that of healthy controls. In polymorphous light eruption the semiconservative DNA replication rate was more intensive in the area of the skin lesions and in the repeated phototest site, the excision repair synthesis appeared to be unaltered. In cutaneous prophyrias a decreased rate of the repair incorporation could be detected. Xeroderma pigmentosum was characterized by a strongly reduced repair synthesis.

  2. HSV-I and the cellular DNA damage response

    OpenAIRE

    Smith, Samantha; Weller, Sandra K.

    2015-01-01

    Peter Wildy first observed genetic recombination between strains of HSV in 1955. At the time, knowledge of DNA repair mechanisms was limited, and it has only been in the last decade that particular DNA damage response (DDR) pathways have been examined in the context of viral infections. One of the first reports addressing the interaction between a cellular DDR protein and HSV-1 was the observation by Lees-Miller et al. that DNA-dependent protein kinase catalytic subunit levels were depleted i...

  3. Dietary Berries and Ellagic Acid Prevent Oxidative DNA Damage and Modulate Expression of DNA Repair Genes

    Directory of Open Access Journals (Sweden)

    Ramesh C. Gupta

    2008-03-01

    Full Text Available DNA damage is a pre-requisite for the initiation of cancer and agents that reduce this damage are useful in cancer prevention. In this study, we evaluated the ability of whole berries and berry phytochemical, ellagic acid to reduce endogenous oxidative DNA damage. Ellagic acid was selected based on > 95% inhibition of 8-oxodeoxyguosine (8-oxodG and other unidentified oxidative DNA adducts induced by 4-hydroxy-17B;-estradiol and CuCl2 in vitro. Inhibition of the latter occurred at lower concentrations (10 u(microM than that for 8-oxodG (100 u(microM. In the in vivo study, female CD-1 mice (n=6 were fed either a control diet or diet supplemented with ellagic acid (400 ppm and dehydrated berries (5% w/w with varying ellagic acid contents -- blueberry (low, strawberry (medium and red raspberry (high, for 3 weeks. Blueberry and strawberry diets showed moderate reductions in endogenous DNA adducts (25%. However, both red raspberry and ellagic acid diets showed a significant reduction of 59% (p < 0.001 and 48% (p < 0.01, respectively. Both diets also resulted in a 3-8 fold over-expression of genes involved in DNA repair such as xeroderma pigmentosum group A complementing protein (XPA, DNA excision repair protein (ERCC5 and DNA ligase III (DNL3. These results suggest that red raspberry and ellagic acid reduce endogenous oxidative DNA damage by mechanisms which may involve increase in DNA repair.

  4. DNA Mismatch Repair and Oxidative DNA Damage: Implications for Cancer Biology and Treatment

    International Nuclear Information System (INIS)

    Many components of the cell, including lipids, proteins and both nuclear and mitochondrial DNA, are vulnerable to deleterious modifications caused by reactive oxygen species. If not repaired, oxidative DNA damage can lead to disease-causing mutations, such as in cancer. Base excision repair and nucleotide excision repair are the two DNA repair pathways believed to orchestrate the removal of oxidative lesions. However, recent findings suggest that the mismatch repair pathway may also be important for the response to oxidative DNA damage. This is particularly relevant in cancer where mismatch repair genes are frequently mutated or epigenetically silenced. In this review we explore how the regulation of oxidative DNA damage by mismatch repair proteins may impact on carcinogenesis. We discuss recent studies that identify potential new treatments for mismatch repair deficient tumours, which exploit this non-canonical role of mismatch repair using synthetic lethal targeting

  5. DNA Mismatch Repair and Oxidative DNA Damage: Implications for Cancer Biology and Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Bridge, Gemma; Rashid, Sukaina; Martin, Sarah A., E-mail: sarah.martin@qmul.ac.uk [Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ (United Kingdom)

    2014-08-05

    Many components of the cell, including lipids, proteins and both nuclear and mitochondrial DNA, are vulnerable to deleterious modifications caused by reactive oxygen species. If not repaired, oxidative DNA damage can lead to disease-causing mutations, such as in cancer. Base excision repair and nucleotide excision repair are the two DNA repair pathways believed to orchestrate the removal of oxidative lesions. However, recent findings suggest that the mismatch repair pathway may also be important for the response to oxidative DNA damage. This is particularly relevant in cancer where mismatch repair genes are frequently mutated or epigenetically silenced. In this review we explore how the regulation of oxidative DNA damage by mismatch repair proteins may impact on carcinogenesis. We discuss recent studies that identify potential new treatments for mismatch repair deficient tumours, which exploit this non-canonical role of mismatch repair using synthetic lethal targeting.

  6. Cell cycle control after DNA damage: arrest, recovery and adaptation

    International Nuclear Information System (INIS)

    DNA damage triggers surveillance mechanisms, the DNA checkpoints, that control the genome integrity. The DNA checkpoints induce several responses, either cellular or transcriptional, that favor DNA repair. In particular, activation of the DNA checkpoints inhibits cell cycle progression in all phases, depending on the stage when lesions occur. These arrests are generally transient and cells ultimately reenter the cell division cycle whether lesions have been repaired (this process is termed 'recovery') or have proved un-repairable (this option is called 'adaptation'). The mechanisms controlling cell cycle arrests, recovery and adaptation are largely conserved among eukaryotes, and much information is now available for the yeast Saccharomyces cerevisiae, that is used as a model organism in these studies. (author)

  7. Effect of increased intake of dietary animal fat and fat energy on oxidative damage, mutation frequency, DNA adduct level and DNA repair in rat colon and liver

    DEFF Research Database (Denmark)

    Vogel, Ulla Birgitte; Danesvar, B.; Autrup, H.;

    2003-01-01

    liver, colon, or urine. Thus, lard intake at the expense of other nutrients and a large increase in the fat energy consumption affects the redox state locally in the liver cytosol, but does not induce DNA-damage, systemic oxidative stress or a dose-dependent increase in mutation frequency in rat colon...... was observed. Intake of lard fat resulted in increased ascorbate synthesis and affected markers of oxidative damage to proteins in liver cytosol, but not in plasma. The effect was observed at all lard doses and was not dose-dependent. However, no evidence of increased oxidative DNA damage was found in...

  8. SUMO boosts the DNA damage response barrier against cancer

    Czech Academy of Sciences Publication Activity Database

    Bartek, Jiří; Hodný, Zdeněk

    2010-01-01

    Roč. 17, č. 1 (2010), s. 9-11. ISSN 1535-6108 R&D Projects: GA ČR GA301/08/0353 Institutional research plan: CEZ:AV0Z50520514 Keywords : DNA damage response * ubiquitylation * sumoylation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 26.925, year: 2010

  9. The AID-induced DNA damage response in chromatin

    DEFF Research Database (Denmark)

    Daniel, Jeremy A; Nussenzweig, André

    2013-01-01

    formation of oncogenic chromosomal translocations. In this review, we focus the discussion on how chromatin-modifying activities and -binding proteins contribute to the native chromatin environment in which AID-induced DNA damage is targeted and repaired. Outstanding questions remain regarding the direct...

  10. UV Radiation Damage and Bacterial DNA Repair Systems

    Science.gov (United States)

    Zion, Michal; Guy, Daniel; Yarom, Ruth; Slesak, Michaela

    2006-01-01

    This paper reports on a simple hands-on laboratory procedure for high school students in studying both radiation damage and DNA repair systems in bacteria. The sensitivity to ultra-violet (UV) radiation of both "Escherichia coli" and "Serratia marcescens" is tested by radiating them for varying time periods. Two growth temperatures are used in…

  11. CLUSTERED DNA DAMAGE INDUCED BY PROTON AND HEAVY ION IRRADIATION

    Czech Academy of Sciences Publication Activity Database

    Davídková, Marie; Pachnerová Brabcová, Kateřina; Štěpán, Václav; Vyšín, Luděk; Sihver, L.; Incerti, S.

    Vol. 34. Bratislava : SMU - Faculty of Public Health, 2014. s. 20-20. ISBN 978-80-89384-08-2. [XXXVI.Dny radiační ochrany. 10.11.2014-14.11.2014, Poprad] R&D Projects: GA MŠk LD12008 Institutional support: RVO:61389005 Keywords : DNA damage * irradiation * DBS Subject RIV: BO - Biophysics

  12. Endogenous melatonin and oxidatively damaged guanine in DNA

    DEFF Research Database (Denmark)

    Davanipour, Zoreh; Poulsen, Henrik E; Weimann, Allan;

    2009-01-01

    BACKGROUND: A significant body of literature indicates that melatonin, a hormone primarily produced nocturnally by the pineal gland, is an important scavenger of hydroxyl radicals and other reactive oxygen species. Melatonin may also lower the rate of DNA base damage resulting from hydroxyl radic...

  13. DETECTION OF DNA DAMAGE USING A FIBEROPTIC BIOSENSOR

    Science.gov (United States)

    A rapid and sensitive fiber optic biosensor assay for radiation-induced DNA damage is reported. For this assay, a biotin-labeled capture oligonucleotide (38 mer) was immobilized to an avidin-coated quartz fiber. Hybridization of a dye-labeled complementary sequence was observed...

  14. Modeling the Study of DNA Damage Responses in Mice

    Science.gov (United States)

    Specks, Julia; Nieto-Soler, Maria; Lopez-Contreras, Andres J; Fernandez-Capetillo, Oscar

    2016-01-01

    Summary Damaged DNA has a profound impact on mammalian health and overall survival. In addition to being the source of mutations that initiate cancer, the accumulation of toxic amounts of DNA damage can cause severe developmental diseases and accelerate ageing. Therefore, understanding how cells respond to DNA damage has become one of the most intense areas of biomedical research in the recent years. However, whereas most mechanistic studies derive from in vitro or in cellulo work, the impact of a given mutation on a living organism is largely unpredictable. For instance, why BRCA1 mutations preferentially lead to breast cancer whereas mutations compromising mismatch repair drive colon cancer is still not understood. In this context, evaluating the specific physiological impact of mutations that compromise genome integrity has become crucial for a better dimensioning of our knowledge. We here describe the various technologies that can be used for modeling mutations in mice, and provide a review of the genes and pathways that have been modeled so far in the context of DNA damage responses. PMID:25636482

  15. Phase resetting of the mammalian circadian clock by DNA damage

    NARCIS (Netherlands)

    Oklejewicz, Malgorzata; Destici, Eugin; Tamanini, Filippo; Hut, Roelof A.; Janssens, Roel; van der Horst, Gijsbertus T. J.

    2008-01-01

    To anticipate the momentum of the day, most organisms have developed an internal clock that drives circadian rhythms in metabolism, physiology, and behavior [1]. Recent studies indicate that cell-cycle progression and DNA-damage-response pathways are under circadian control [2-4]. Because circadian

  16. Mechanism study of goldenseal-associated DNA damage.

    Science.gov (United States)

    Chen, Si; Wan, Liqing; Couch, Letha; Lin, Haixia; Li, Yan; Dobrovolsky, Vasily N; Mei, Nan; Guo, Lei

    2013-07-31

    Goldenseal has been used for the treatment of a wide variety of ailments including gastrointestinal disturbances, urinary tract disorders, and inflammation. The five major alkaloid constituents in goldenseal are berberine, palmatine, hydrastine, hydrastinine, and canadine. When goldenseal was evaluated by the National Toxicology Program (NTP) in the standard 2-year bioassay, goldenseal induced an increase in liver tumors in rats and mice; however, the mechanism of goldenseal-associated liver carcinogenicity remains unknown. In this study, the toxicity of the five goldenseal alkaloid constituents was characterized, and their toxic potencies were compared. As measured by the Comet assay and the expression of γ-H2A.X, berberine, followed by palmatine, appeared to be the most potent DNA damage inducer in human hepatoma HepG2 cells. Berberine and palmatine suppressed the activities of both topoisomerase (Topo) I and II. In berberine-treated cells, DNA damage was shown to be directly associated with the inhibitory effect of Topo II, but not Topo I by silencing gene of Topo I or Topo II. In addition, DNA damage was also observed when cells were treated with commercially available goldenseal extracts and the extent of DNA damage was positively correlated to the berberine content. Our findings suggest that the Topo II inhibitory effect may contribute to berberine- and goldenseal-induced genotoxicity and tumorigenicity. PMID:23747414

  17. The DNA-damage response in human biology and disease

    Czech Academy of Sciences Publication Activity Database

    Jackson, S.P.; Bartek, Jiří

    2009-01-01

    Roč. 461, č. 7267 (2009), s. 1071-1078. ISSN 0028-0836 Institutional research plan: CEZ:AV0Z50520514 Keywords : DNA damage response * human disease * cancer Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 34.480, year: 2009

  18. The DNA-damage response in human biology and disease

    DEFF Research Database (Denmark)

    Jackson, Stephen P; Bartek, Jiri

    2009-01-01

    , signal its presence and mediate its repair. Such responses, which have an impact on a wide range of cellular events, are biologically significant because they prevent diverse human diseases. Our improving understanding of DNA-damage responses is providing new avenues for disease management....

  19. Systemic oxidatively generated DNA/RNA damage in clinical depression

    DEFF Research Database (Denmark)

    Jorgensen, Anders; Krogh, Jesper; Miskowiak, Kamilla; Bolwig, Tom G; Kessing, Lars V; Fink-Jensen, Anders; Nordentoft, Merete; Henriksen, Trine; Weimann, Allan; Poulsen, Henrik E; Jorgensen, Martin B

    dementia and type 2 diabetes. We hypothesized that increased severity of depression is associated with increased systemic oxidatively generated DNA and RNA damage, and that this increase is attenuated by an effective antidepressant treatment. METHODS: The urinary excretion of markers of systemic...

  20. DNA-damage foci to detect and characterize DNA repair alterations in children treated for pediatric malignancies.

    Directory of Open Access Journals (Sweden)

    Nadine Schuler

    Full Text Available PURPOSE: In children diagnosed with cancer, we evaluated the DNA damage foci approach to identify patients with double-strand break (DSB repair deficiencies, who may overreact to DNA-damaging radio- and chemotherapy. In one patient with Fanconi anemia (FA suffering relapsing squamous cell carcinomas of the oral cavity we also characterized the repair defect in biopsies of skin, mucosa and tumor. METHODS AND MATERIALS: In children with histologically confirmed tumors or leukemias and healthy control-children DSB repair was investigated by counting γH2AX-, 53BP1- and pATM-foci in blood lymphocytes at defined time points after ex-vivo irradiation. This DSB repair capacity was correlated with treatment-related normal-tissue responses. For the FA patient the defective repair was also characterized in tissue biopsies by analyzing DNA damage response proteins by light and electron microscopy. RESULTS: Between tumor-children and healthy control-children we observed significant differences in mean DSB repair capacity, suggesting that childhood cancer is based on genetic alterations affecting DNA repair. Only 1 out of 4 patients with grade-4 normal-tissue toxicities revealed an impaired DSB repair capacity. The defective DNA repair in FA patient was verified in irradiated blood lymphocytes as well as in non-irradiated mucosa and skin biopsies leading to an excessive accumulation of heterochromatin-associated DSBs in rapidly cycling cells. CONCLUSIONS: Analyzing human tissues we show that DSB repair alterations predispose to cancer formation at younger ages and affect the susceptibility to normal-tissue toxicities. DNA damage foci analysis of blood and tissue samples allows one to detect and characterize DSB repair deficiencies and enables identification of patients at risk for high-grade toxicities. However, not all treatment-associated normal-tissue toxicities can be explained by DSB repair deficiencies.

  1. DNA damage response and DNA repair – dog as a model?

    International Nuclear Information System (INIS)

    Companion animals like dogs frequently develop tumors with age and similarly to human malignancies, display interpatient tumoral heterogeneity. Tumors are frequently characterized with regard to their mutation spectra, changes in gene expression or protein levels. Among others, these changes affect proteins involved in the DNA damage response (DDR), which served as a basis for the development of numerous clinically relevant cancer therapies. Even though the effects of different DNA damaging agents, as well as DDR kinetics, have been well characterized in mammalian cells in vitro, very little is so far known about the kinetics of DDR in tumor and normal tissues in vivo. Due to (i) the similarities between human and canine genomes, (ii) the course of spontaneous tumor development, as well as (iii) common exposure to environmental agents, canine tumors are potentially an excellent model to study DDR in vivo. This is further supported by the fact that dogs show approximately the same rate of tumor development with age as humans. Though similarities between human and dog osteosarcoma, as well as mammary tumors have been well established, only few studies using canine tumor samples addressed the importance of affected DDR pathways in tumor progression, thus leaving many questions unanswered. Studies in humans showed that misregulated DDR pathways play an important role during tumor development, as well as in treatment response. Since dogs are proposed to be a good tumor model in many aspects of cancer research, we herein critically investigate the current knowledge of canine DDR and discuss (i) its future potential for studies on the in vivo level, as well as (ii) its possible translation to veterinary and human medicine

  2. Radiation damage to DNA: The importance of track structure

    CERN Document Server

    Hill, M A

    1999-01-01

    A wide variety of biological effects are induced by ionizing radiation, from cell death to mutations and carcinogenesis. The biological effectiveness is found to vary not only with the absorbed dose but also with the type of radiation and its energy, i.e., with the nature of radiation tracks. An overview is presented of some of the biological experiments using different qualities of radiation, which when compared with Monte Carlo track structure studies, have highlighted the importance of the localized spatial properties of stochastic energy deposition on the nanometer scale at or near DNA. The track structure leads to clustering of damage which may include DNA breaks, base damage etc., the complexity of the cluster and therefore its biological repairability varying with radiation type. The ability of individual tracks to produce clustered damage, and the subsequent biological response are important in the assessment of the risk associated with low-level human exposure. Recent experiments have also shown that...

  3. Oxidatively generated DNA/RNA damage in psychological stress states

    DEFF Research Database (Denmark)

    Jørgensen, Anders

    2013-01-01

    age-related somatic disorders. The overall aim of the PhD project was to investigate the relation between psychopathology, psychological stress, stress hormone secretion and oxidatively generated DNA and RNA damage, as measured by the urinary excretion of markers of whole-body DNA/RNA oxidation (8......-oxodG and 8-oxoGuo, respectively). The main hypothesis was that psychological stress states are associated with increased DNA/RNA damage from oxidation. In a study of 40 schizophrenia patients and 40 healthy controls matched for age and gender, we found that 8-oxodG/8-oxoGuo excretion was increased in...... schizophrenia patients, providing a possible molecular link between schizophrenia and its associated signs of accelerated aging. We found no association between psychopathology, perceived stress or cortisol secretion and 8-oxodG/8-oxoGuo excretion in the patients. In the controls, there were positive...

  4. DNA precipitation assay: a rapid and simple method for detecting DNA damage in mammalian cells

    International Nuclear Information System (INIS)

    When mammalian cells are lysed in 2% sodium dodecyl sulphate detergent followed by addition of an equal volume of 0.12 M potassium chloride, a precipitate forms that can be collected by low-speed centrifugation. This precipitate contains the cell protein and nucleic acid in close association with protein. In the absence of DNA damage, most of the DNA precipitates, but when DNA strand breaks are created by exposing cells to ionizing radiation or toxic chemicals, DNA is released from the protein and remains in the supernatant after centrifugation. The proportion of DNA remaining in the supernatant is thus a measure of the amount of DNA damage. This assay is characterized in terms of optimum cell number and pH and dose-response curves for DNA damage and cell survival following ionizing radiation, MNNG, BCNU, and VP-16 are shown. Sensitivity, simplicity, speed, and large sample handling capacity should allow wide application of this new assay to a variety of questions concerning DNA damage and repair

  5. The DNA damage and the DNA replication checkpoints converge at the MBF transcription factor

    Science.gov (United States)

    Ivanova, Tsvetomira; Alves-Rodrigues, Isabel; Gómez-Escoda, Blanca; Dutta, Chaitali; DeCaprio, James A.; Rhind, Nick; Hidalgo, Elena; Ayté, José

    2013-01-01

    In fission yeast cells, Cds1 is the effector kinase of the DNA replication checkpoint. We previously showed that when the DNA replication checkpoint is activated, the repressor Yox1 is phosphorylated and inactivated by Cds1, resulting in activation of MluI-binding factor (MBF)–dependent transcription. This is essential to reinitiate DNA synthesis and for correct G1-to-S transition. Here we show that Cdc10, which is an essential part of the MBF core, is the target of the DNA damage checkpoint. When fission yeast cells are treated with DNA-damaging agents, Chk1 is activated and phosphorylates Cdc10 at its carboxy-terminal domain. This modification is responsible for the repression of MBF-dependent transcription through induced release of MBF from chromatin. This inactivation of MBF is important for survival of cells challenged with DNA-damaging agents. Thus Yox1 and Cdc10 couple normal cell cycle regulation in unperturbed conditions and the DNA replication and DNA damage checkpoints into a single transcriptional complex. PMID:24006488

  6. The DNA damage and the DNA replication checkpoints converge at the MBF transcription factor.

    Science.gov (United States)

    Ivanova, Tsvetomira; Alves-Rodrigues, Isabel; Gómez-Escoda, Blanca; Dutta, Chaitali; DeCaprio, James A; Rhind, Nick; Hidalgo, Elena; Ayté, José

    2013-11-01

    In fission yeast cells, Cds1 is the effector kinase of the DNA replication checkpoint. We previously showed that when the DNA replication checkpoint is activated, the repressor Yox1 is phosphorylated and inactivated by Cds1, resulting in activation of MluI-binding factor (MBF)-dependent transcription. This is essential to reinitiate DNA synthesis and for correct G1-to-S transition. Here we show that Cdc10, which is an essential part of the MBF core, is the target of the DNA damage checkpoint. When fission yeast cells are treated with DNA-damaging agents, Chk1 is activated and phosphorylates Cdc10 at its carboxy-terminal domain. This modification is responsible for the repression of MBF-dependent transcription through induced release of MBF from chromatin. This inactivation of MBF is important for survival of cells challenged with DNA-damaging agents. Thus Yox1 and Cdc10 couple normal cell cycle regulation in unperturbed conditions and the DNA replication and DNA damage checkpoints into a single transcriptional complex. PMID:24006488

  7. Both genetic and dietary factors underlie individual differences in DNA damage levels and DNA repair capacity

    Czech Academy of Sciences Publication Activity Database

    Slyšková, Jana; Lorenzo, Y.; Karlsen, A.; Carlsen, M. H.; Novosadová, Vendula; Blomhoff, R.; Vodička, Pavel; Collins, A. R.

    2014-01-01

    Roč. 16, APR 2014 (2014), s. 66-73. ISSN 1568-7864 R&D Projects: GA ČR(CZ) GAP304/12/1585 Institutional support: RVO:68378041 ; RVO:86652036 Keywords : DNA damage * DNA repair capacity * diet Subject RIV: EB - Genetics ; Molecular Biology; EI - Biotechnology ; Bionics (BTO-N) Impact factor: 3.111, year: 2014

  8. Acute hypoxia and hypoxic exercise induce DNA strand breaks and oxidative DNA damage in humans

    DEFF Research Database (Denmark)

    Møller, P; Loft, S; Lundby, C;

    2001-01-01

    The present study investigated the effect of a single bout of exhaustive exercise on the generation of DNA strand breaks and oxidative DNA damage under normal conditions and at high-altitude hypoxia (4559 meters for 3 days). Twelve healthy subjects performed a maximal bicycle exercise test......; lymphocytes were isolated for analysis of DNA strand breaks and oxidatively altered nucleotides, detected by endonuclease III and formamidipyridine glycosylase (FPG) enzymes. Urine was collected for 24 h periods for analysis of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), a marker of oxidative DNA damage....... Urinary excretion of 8-oxodG increased during the first day in altitude hypoxia, and there were more endonuclease III-sensitive sites on day 3 at high altitude. The subjects had more DNA strand breaks in altitude hypoxia than at sea level. The level of DNA strand breaks further increased immediately after...

  9. DNA Damage: A Main Determinant of Vascular Aging.

    Science.gov (United States)

    Bautista-Niño, Paula K; Portilla-Fernandez, Eliana; Vaughan, Douglas E; Danser, A H Jan; Roks, Anton J M

    2016-01-01

    Vascular aging plays a central role in health problems and mortality in older people. Apart from the impact of several classical cardiovascular risk factors on the vasculature, chronological aging remains the single most important determinant of cardiovascular problems. The causative mechanisms by which chronological aging mediates its impact, independently from classical risk factors, remain to be elucidated. In recent years evidence has accumulated that unrepaired DNA damage may play an important role. Observations in animal models and in humans indicate that under conditions during which DNA damage accumulates in an accelerated rate, functional decline of the vasculature takes place in a similar but more rapid or more exaggerated way than occurs in the absence of such conditions. Also epidemiological studies suggest a relationship between DNA maintenance and age-related cardiovascular disease. Accordingly, mouse models of defective DNA repair are means to study the mechanisms involved in biological aging of the vasculature. We here review the evidence of the role of DNA damage in vascular aging, and present mechanisms by which genomic instability interferes with regulation of the vascular tone. In addition, we present potential remedies against vascular aging induced by genomic instability. Central to this review is the role of diverse types of DNA damage (telomeric, non-telomeric and mitochondrial), of cellular changes (apoptosis, senescence, autophagy), mediators of senescence and cell growth (plasminogen activator inhibitor-1 (PAI-1), cyclin-dependent kinase inhibitors, senescence-associated secretory phenotype (SASP)/senescence-messaging secretome (SMS), insulin and insulin-like growth factor 1 (IGF-1) signaling), the adenosine monophosphate-activated protein kinase (AMPK)-mammalian target of rapamycin (mTOR)-nuclear factor kappa B (NFκB) axis, reactive oxygen species (ROS) vs. endothelial nitric oxide synthase (eNOS)-cyclic guanosine monophosphate (c

  10. Role of Nicotinamide in DNA Damage, Mutagenesis, and DNA Repair

    Directory of Open Access Journals (Sweden)

    Devita Surjana

    2010-01-01

    Full Text Available Nicotinamide is a water-soluble amide form of niacin (nicotinic acid or vitamin B3. Both niacin and nicotinamide are widely available in plant and animal foods, and niacin can also be endogenously synthesized in the liver from dietary tryptophan. Nicotinamide is also commercially available in vitamin supplements and in a range of cosmetic, hair, and skin preparations. Nicotinamide is the primary precursor of nicotinamide adenine dinucleotide (NAD+, an essential coenzyme in ATP production and the sole substrate of the nuclear enzyme poly-ADP-ribose polymerase-1 (PARP-1. Numerous in vitro and in vivo studies have clearly shown that PARP-1 and NAD+ status influence cellular responses to genotoxicity which can lead to mutagenesis and cancer formation. This paper will examine the role of nicotinamide in the protection from carcinogenesis, DNA repair, and maintenance of genomic stability.

  11. The latest progress in single cell gel electrophoresis (SCGE) based on DNA damage detection

    International Nuclear Information System (INIS)

    DNA damage detection can detect DNA damage caused by the pesticide and irradiation. With the increasing demands of DNA damage detection, the development of a rapid, high throughput and straight forward DNA damage detecting technique has critical biological significance for Single Cell Gel Electrophoresis (SCGE) is a straight and accurate way to detect the DNA damage. In recent years, the throughput and accuracy of the detection SCGE method have been improved significantly by applying new materials and new technologies. This paper reviewed the most recently reported SCGE based DNA damage detection technique-microwell array method and conventional SCGE method, and the prospect were also discussed. (authors)

  12. Endogenous melatonin and oxidatively damaged guanine in DNA

    Directory of Open Access Journals (Sweden)

    Poulsen Henrik E

    2009-10-01

    Full Text Available Abstract Background A significant body of literature indicates that melatonin, a hormone primarily produced nocturnally by the pineal gland, is an important scavenger of hydroxyl radicals and other reactive oxygen species. Melatonin may also lower the rate of DNA base damage resulting from hydroxyl radical attack and increase the rate of repair of that damage. This paper reports the results of a study relating the level of overnight melatonin production to the overnight excretion of the two primary urinary metabolites of the repair of oxidatively damaged guanine in DNA. Methods Mother-father-daughter(s families (n = 55 were recruited and provided complete overnight urine samples. Total overnight creatinine-adjusted 6-sulphatoxymelatonin (aMT6s/Cr has been shown to be highly correlated with total overnight melatonin production. Urinary 8-oxo-7,8-dihydro-guanine (8-oxoGua results from the repair of DNA or RNA guanine via the nucleobase excision repair pathway, while urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG may possibly result from the repair of DNA guanine via the nucleotide excision repair pathway. Total overnight urinary levels of 8-oxodG and 8-oxoGua are therefore a measure of total overnight guanine DNA damage. 8-oxodG and 8-oxoGua were measured using a high-performance liquid chromatography-electrospray ionization tandem mass spectrometry assay. The mother, father, and oldest sampled daughter were used for these analyses. Comparisons between the mothers, fathers, and daughters were calculated for aMT6s/Cr, 8-oxodG, and 8-oxoGua. Regression analyses of 8-oxodG and 8-oxoGua on aMT6s/Cr were conducted for mothers, fathers, and daughters separately, adjusting for age and BMI (or weight. Results Among the mothers, age range 42-80, lower melatonin production (as measured by aMT6s/CR was associated with significantly higher levels of 8-oxodG (p Conclusion Low levels of endogenous melatonin production among older individuals may lead to

  13. The involvement of XPC protein in the cisplatin DNA damaging treatment-mediated cellular response

    Institute of Scientific and Technical Information of China (English)

    Gan WANG; Alan DOMBKOWSKI; Lynn CHUANG; Xiao Xin S XU

    2004-01-01

    Recognition of DNA damage is a critical step for DNA damage-mediated cellular response. XPC is an important DNA damage recognition protein involved in nucleotide excision repair (NER). We have studied the XPC protein in cisplatin DNA damaging treatment-mediated cellular response. Comparison of the microarray data from both normal and XPCdefective human fibroblasts identified 861 XPC-responsive genes in the cisplatin treatment (with minimum fold change≥1.5).The cell cycle and cell proliferation-related genes are the most affected genes by the XPC defect in the treatment. Many other cellular function genes, especially the DNA repair and signal transduction-related genes, were also affected by the XPC defect in the treatment. To validate the microarray data, the transcription levels of some microarray-identified genes were also determined by an RT-PCR based real time PCR assay. The real time PCR results are consistent with the microarray data for most of the tested genes, indicating the reliability of the microarray data. To further validate the microarray data, the cisplatin treatment-mediated caspase-3 activation was also determined. The Western blot hybridization results indicate that the XPC defect greatly attenuates the cisplatin treatment-mediated Caspase-3 activation. We elucidated the role of p53 protein in the XPC protein DNA damage recognition-mediated signaling process. The XPC defect reduces the cisplatin treatment-mediated p53 response. These results suggest that the XPC protein plays an important role in the cisplatin treatment-mediated cellular response. It may also suggest a possible mechanism of cancer cell drug resistance.

  14. DNA damage and radiocesium in channel catfish from Chernobyl

    International Nuclear Information System (INIS)

    The explosion of the Chernobyl Nuclear Power Plant resulted in some of the most radioactively contaminated habitats on earth. Despite evacuation of all human inhabitants from the most contaminated areas, animals and plants continue to thrive in these areas. This study examines the levels of contamination and genetic damage associated with cesium-137 in catfish (Ictalurus punctatus) from the cooling pond and a control site. In general, catfish from the cooling pond exhibit greater genetic damage, and the amount of damage is related to the concentration of radiocesium in individual fish. Genetic damage is primarily in the form of DNA strand breaks, with few micronuclei being observed in contaminated fish. The possible roles that acclimation and adaption play in the response to high levels of radiation exposure are discussed

  15. Damage to plasmid DNA induced by low energy carbon ions

    International Nuclear Information System (INIS)

    The damage induced in supercoiled plasmid DNA molecules by 1-6 keV carbon ions has been investigated as a function of ion exposure, energy and charge state. The production of short linear fragments through multiple double strand breaks has been demonstrated and exponential exposure responses for each of the topoisomers have been found. The cross section for the loss of supercoiling was calculated to be (2.2 ± 0.5) x 10-14 cm2 for 2 keV C+ ions. For singly charged carbon ions, increased damage was observed with increasing ion energy. In the case of 2 keV doubly charged ions, the damage was greater than for singly charged ions of the same energy. These observations demonstrate that ion induced damage is a function of both the kinetic and potential energies of the ion

  16. DNA repair and the evolution of transformation in Bacillus subtilis. 3. Sex with damaged DNA

    International Nuclear Information System (INIS)

    Natural genetic transformation in the bacterium Bacillus subtilis provides an experimental system for studying the evolutionary function of sexual recombination. The repair hypothesis proposes that during transformation the exogenous DNA taken up by cells is used as template for recombinational repair of damages in the recipient cell's genome. Earlier results demonstrated that the population density of transformed cells (i.e., sexual cells) increases, relative to nontransformed cells (primarily asexual cells), with increasing dosage of ultraviolet irradiation, provided that the cells are transformed with undamaged homologous DNA after they have become damaged. In nature, however, donor DNA for transformation is likely to come from cells that are as damaged as the recipient cells. In order to better simulate the effects of transformation in natural populations we conducted similar experiments as those just described using damaged donor DNA. The authors document in this report that transformants continue to increase in relative density even if they are transformed with damaged donor DNA. These results suggest that sites of transformation are often damaged sites in the recipient cell's genome

  17. SUMO-2 Orchestrates Chromatin Modifiers in Response to DNA Damage

    Directory of Open Access Journals (Sweden)

    Ivo A. Hendriks

    2015-03-01

    Full Text Available Small ubiquitin-like modifiers play critical roles in the DNA damage response (DDR. To increase our understanding of SUMOylation in the mammalian DDR, we employed a quantitative proteomics approach in order to identify dynamically regulated SUMO-2 conjugates and modification sites upon treatment with the DNA damaging agent methyl methanesulfonate (MMS. We have uncovered a dynamic set of 20 upregulated and 33 downregulated SUMO-2 conjugates, and 755 SUMO-2 sites, of which 362 were dynamic in response to MMS. In contrast to yeast, where a response is centered on homologous recombination, we identified dynamically SUMOylated interaction networks of chromatin modifiers, transcription factors, DNA repair factors, and nuclear body components. SUMOylated chromatin modifiers include JARID1B/KDM5B, JARID1C/KDM5C, p300, CBP, PARP1, SetDB1, and MBD1. Whereas SUMOylated JARID1B was ubiquitylated by the SUMO-targeted ubiquitin ligase RNF4 and degraded by the proteasome in response to DNA damage, JARID1C was SUMOylated and recruited to the chromatin to demethylate histone H3K4.

  18. p53 in the DNA-Damage-Repair Process.

    Science.gov (United States)

    Williams, Ashley B; Schumacher, Björn

    2016-01-01

    The cells in the human body are continuously challenged by a variety of genotoxic attacks. Erroneous repair of the DNA can lead to mutations and chromosomal aberrations that can alter the functions of tumor suppressor genes or oncogenes, thus causing cancer development. As a central tumor suppressor, p53 guards the genome by orchestrating a variety of DNA-damage-response (DDR) mechanisms. Already early in metazoan evolution, p53 started controlling the apoptotic demise of genomically compromised cells. p53 plays a prominent role as a facilitator of DNA repair by halting the cell cycle to allow time for the repair machineries to restore genome stability. In addition, p53 took on diverse roles to also directly impact the activity of various DNA-repair systems. It thus appears as if p53 is multitasking in providing protection from cancer development by maintaining genome stability. PMID:27048304

  19. Reduction in oxidatively generated DNA damage following smoking cessation

    Directory of Open Access Journals (Sweden)

    Freund Harold G

    2011-05-01

    Full Text Available Abstract Background Cigarette smoking is a known cause of cancer, and cancer may be in part due to effects of oxidative stress. However, whether smoking cessation reverses oxidatively induced DNA damage unclear. The current study sought to examine the extent to which three DNA lesions showed significant reductions after participants quit smoking. Methods Participants (n = 19 in this study were recruited from an ongoing 16-week smoking cessation clinical trial and provided blood samples from which leukocyte DNA was extracted and assessed for 3 DNA lesions (thymine glycol modification [d(TgpA]; formamide breakdown of pyrimidine bases [d(TgpA]; 8-oxo-7,8-dihydroguanine [d(Gh] via liquid chromatography tandem mass spectrometry (LC-MS/MS. Change in lesions over time was assessed using generalized estimating equations, controlling for gender, age, and treatment condition. Results Overall time effects for the d(TgpA (χ2(3 = 8.068, p fpA (χ2(3 = 8.477, p h (χ2(3 = 37.599, p gpA and d(PfpA lesions show relatively greater rebound at Week 16 compared to the d(Gh lesion (88% of baseline for d(TgpA, 64% of baseline for d(PfpA, vs 46% of baseline for d(Gh. Conclusions Overall, results from this analysis suggest that cigarette smoking contributes to oxidatively induced DNA damage, and that smoking cessation appears to reduce levels of specific damage markers between 30-50 percent in the short term. Future research may shed light on the broader array of oxidative damage influenced by smoking and over longer durations of abstinence, to provide further insights into mechanisms underlying carcinogenesis.

  20. Biomarkers of radiation or oxidative damage to DNA in cells

    International Nuclear Information System (INIS)

    Major efforts have been devoted during the last two decades to the development of chemical and biochemical assays aimed at monitoring oxidized bases within DNA. Until recently, the level of oxidized bases in cellular DNA was overestimated by factors varying from one to three orders of magnitude. The reasons of these inconsistencies are now identified. Thus, artifactual oxidation of nucleobases may occur during the silylation reaction prior to gas chromatography mass spectrometry analysis and to a lesser extent during DNA extraction. The use of the so-called chaotropic DNA extraction method together with chelating agents was found to significantly prevent spurious DNA oxidation to occur. HPLC separations coupled to either electrochemical detection or versatile electrospray ionization tandem-mass spectrometry appear to be appropriate analytical tools when at least 20 μg of DNA is available. Interestingly, up to 11 modified nucleosides and nucleobases including the four cis and trans diastereomers of 5,6- dihydroxy-5,6-dihydrothymidine, 5-formyl-2'-deoxyuridine, 5-(hydroxymethyl)-2'-deoxyuridine, and 5-hydroxy-2'-deoxyuridine, 8-oxo-7,8-dihydro-2'-deoxyguanosine, 8-oxo-7,8-dihydro-2'-deoxyadenosine together with related formamidopyrimidine derivatives were measured in the DNA of neoplastic human monocytes exposed to ionizing radiation using the latter assay. The association of base excision DNA repair enzymes including bacterial formamidopyrimidine glycosylase (Fpg) and endonuclease III (endo III) with the comet assay represents a better alternative for assessing low levels of base damage. The basal level of Fpg- and endo III-sensitive sites was found to be similar, close to 2.1 per 107 bases, within the DNA of human monocytes. The yields of the different classes of damage per Gy and 107 bases are the following: 0.48 Fpg-sensitive sites, 0.53 endo III-sensitive sites and 1.30 strand breaks (direct nicks and alkali-labile sites). Interestingly, the above three classes

  1. DNA polymerase III requirement for repair of DNA damage caused by methyl methanesulfonate and hydrogen peroxide

    International Nuclear Information System (INIS)

    The pcbA1 mutation allows DNA replication dependent on DNA polymerase I at the restrictive temperature in polC(Ts) strains. Cells which carry pcbA1, a functional DNA polymerase I, and a temperature-sensitive DNA polymerase III gene were used to study the role of DNA polymerase III in DNA repair. At the restrictive temperature for DNA polymerase III, these strains were more sensitive to the alkylating agent methyl methanesulfonate (MMS) and hydrogen peroxide than normal cells. The same strains showed no increase in sensitivity to bleomycin, UV light, or psoralen at the restrictive temperature. The sensitivity of these strains to MMS and hydrogen peroxide was not due to the pcbAl allele, and normal sensitivity was restored by the introduction of a chromosomal or cloned DNA polymerase III gene, verifying that the sensitivity was due to loss of DNA polymerase III alpha-subunit activity. A functional DNA polymerase III is required for the reformation of high-molecular-weight DNA after treatment of cells with MMS or hydrogen peroxide, as demonstrated by alkaline sucrose sedimentation results. Thus, it appears that a functional DNA polymerase III is required for the optimal repair of DNA damage by MMS or hydrogen peroxide

  2. Protection of cadmium chloride induced DNA damage by Lamiaceae plants

    Institute of Scientific and Technical Information of China (English)

    Ramaraj Thirugnanasampandan; Rajarajeswaran Jayakumar

    2011-01-01

    Objective: To analyze the total phenolic content, DNA protecting and radical scavenging activity of ethanolic leaf extracts of three Lamiaceae plants, i.e. Anisomelos malabarica (A. malabarica), Leucas aspera (L. aspera) and Ocimum basilicum (O. basilicum). Methods: The total polyphenols and flavonoids were analyzed in the ethanolic leaf extracts of the lamiaceae plants. To determine the DNA protecting activity, various concentrations of the plant extracts were prepared and treated on cultured HepG2 human lung cancer cells. The pretreated cells were exposed to H2O2 to induce DNA damage through oxidative stress. Comet assay was done and the tail length of individual comets was measured. Nitric oxide and superoxide anion scavenging activities of lamiaceae plants were analyzed. Results: Among the three plant extracts, the highest amount of total phenolic content was found in O. basilicum (189.33 mg/g), whereas A. malabarica showed high levels of flavonoids (10.66 mg/g). O. basilicum also showed high levels of DNA protecting (85%) and radical scavenging activity. Conclusions: The results of this study shows that bioactive phenols present in lamiaceae plants may prevent carcinogenesis through scavenging free radicals and inhibiting DNA damage.

  3. Statistical analysis of post mortem DNA damage-derived miscoding lesions in Neandertal mitochondrial DNA

    DEFF Research Database (Denmark)

    Vives, Sergi; Gilbert, M Thomas; Arenas, Conchita;

    2008-01-01

    the Heavy strand could explain the observed bias, a phenomenon that could be further tested with non-PCR based approaches. The characterization of the HVS1 hotspots will be of use to future Neandertal mtDNA studies, with specific regards to assessing the authenticity of new positions previously......ABSTRACT: BACKGROUND: We have analysed the distribution of post mortem DNA damage derived miscoding lesions from the datasets of seven published Neandertal specimens that have extensive cloned sequence coverage over the mitochondrial DNA (mtDNA) hypervariable region 1 (HVS1). The analysis was......-->A miscoding lesions (observed ratio of 67:2 compared to an expected ratio of 7:2), implying that the mtDNA Light strand molecule suffers proportionally more damage-derived miscoding lesions than the Heavy strand. CONCLUSION: The clustering of Cs in the Light strand as opposed to the singleton pattern of Cs in...

  4. Cancer risk and oxidative DNA damage in man

    DEFF Research Database (Denmark)

    Loft, Steffen; Poulsen, H E

    1996-01-01

    although moderate exercise appeared to have no immediate effect. So far, cross-sectional study of diet composition and intervention studies, including energy restriction and antioxidant supplements, have generally failed to show an influence on the oxidative DNA modification. However, a diet rich...... with a mechanistically based increased risk of cancer, including Fanconi anemia, chronic hepatitis, cystic fibrosis, and various autoimmune diseases, the biomarker studies indicate an increased rate of oxidative DNA damage or in some instances deficient repair. Human studies support the experimentally based notion...

  5. The DNA damage and the DNA replication checkpoints converge at the MBF transcription factor

    OpenAIRE

    Ivanova, Tsvetomira Georgieva, 1978-; Alves-Rodrigues, Isabel; G??mez Escoda, Blanca; Dutta, Chaitali; DeCaprio, James A.; Rhind, Nick; Hidalgo Hernando, Elena; Ayt?? del Olmo, Jos??

    2013-01-01

    In fission yeast cells, Cds1 is the effector kinase of the DNA replication checkpoint. We previously showed that when the DNA replication checkpoint is activated, the repressor Yox1 is phosphorylated and inactivated by Cds1, resulting in activation of MluI-binding factor (MBF)-dependent transcription. This is essential to reinitiate DNA synthesis and for correct G1-to-S transition. Here we show that Cdc10, which is an essential part of the MBF core, is the target of the DNA damage checkpoint....

  6. Hypochlorite-induced damage to DNA, RNA, and polynucleotides

    DEFF Research Database (Denmark)

    Hawkins, Clare L; Davies, Michael Jonathan

    2002-01-01

    Stimulated monocytes and neutrophils generate hypochlorite (HOCl) via the release of the enzyme myeloperoxidase and hydrogen peroxide. HOCl is a key bactericidal agent, but can also damage host tissue. As there is a strong link between chronic inflammation and some cancers, we have investigated...... nature of the nucleobase on which they are formed, with chloramines formed from ring heterocyclic amine groups being less stable than those formed on exocyclic amines (RNH2 groups). Evidence is presented for chlorine transfer from the former, kinetically favored, sites to the more thermodynamically...... rationalize the preferential formation of chlorinated 2'-deoxycytidine and 2'-deoxyadenosine in DNA and suggest that DNA damage induced by HOCl, and preformed chloramines, occurs at sequence-specific sites....

  7. Novel bisbenzimidazole a potential radioprotector mitigates DNA damage in radiotherapy

    International Nuclear Information System (INIS)

    Ionizing radiations cause radiolysis of cellular water, generating reactive oxygen species (ROS), causing DNA damage. Radioprotectors protect the normal cells from the unwanted radiation damage. Since the beginning of the nuclear era, despite extensive research on the development of radioprotectors from natural and synthetic compounds, success has been limited. We have developed a cytoprotective radioprotector DMA, having a bisbenzimidazole nucleus. It has been observed 51% radioprotection in untreated cells that attenuated to 17% in siRNA NIK treated U87 cells at 24h. In addition the work has studied the effects of DMA on the radiation and transcriptional response of HEK293 cell lines also. The results suggested that the treatment of DMA increased the level of phosphorylated AKT in HEK cells in presence of radiation, and this was consistent with the alteration of DNA-PKcs

  8. Endogenous DNA Damage and Risk of Testicular Germ Cell Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Cook, M B; Sigurdson, A J; Jones, I M; Thomas, C B; Graubard, B I; Korde, L; Greene, M H; McGlynn, K A

    2008-01-18

    Testicular germ cell tumors (TGCT) are comprised of two histologic groups, seminomas and nonseminomas. We postulated that the possible divergent pathogeneses of these histologies may be partially explained by variable endogenous DNA damage. To assess our hypothesis, we conducted a case-case analysis of seminomas and nonseminomas using the alkaline comet assay to quantify single-strand DNA breaks and alkali-labile sites. The Familial Testicular Cancer study and the U.S. Radiologic Technologists cohort provided 112 TGCT cases (51 seminomas & 61 nonseminomas). A lymphoblastoid cell line was cultured for each patient and the alkaline comet assay was used to determine four parameters: tail DNA, tail length, comet distributed moment (CDM) and Olive tail moment (OTM). Odds ratios (OR) and 95% confidence intervals (95%CI) were estimated using logistic regression. Values for tail length, tail DNA, CDM and OTM were modeled as categorical variables using the 50th and 75th percentiles of the seminoma group. Tail DNA was significantly associated with nonseminoma compared to seminoma (OR{sub 50th percentile} = 3.31, 95%CI: 1.00, 10.98; OR{sub 75th percentile} = 3.71, 95%CI: 1.04, 13.20; p for trend=0.039). OTM exhibited similar, albeit statistically non-significant, risk estimates (OR{sub 50th percentile} = 2.27, 95%CI: 0.75, 6.87; OR{sub 75th percentile} = 2.40, 95%CI: 0.75, 7.71; p for trend=0.12) whereas tail length and CDM showed no association. In conclusion, the results for tail DNA and OTM indicate that endogenous DNA damage levels are higher in patients who develop nonseminoma compared with seminoma. This may partly explain the more aggressive biology and younger age-of-onset of this histologic subgroup compared with the relatively less aggressive, later-onset seminoma.

  9. Ultraviolet radiation-mediated damage to cellular DNA

    Energy Technology Data Exchange (ETDEWEB)

    Cadet, Jean [Laboratoire Lesions des Acides Nucleiques, Service de Chimie Inorganique et Biologique, CEA/DSM/Departement de Recherche Fondamentale sur la Matiere Condensee, CEA-Grenoble, 17, Av. des Martyrs, Grenoble Cedex 9 F-38054 (France)]. E-mail: jcadet@cea.fr; Sage, Evelyne [Institut Curie, CNRS/IC UMR 2027, Centre Universitaire, Orsay (France); Douki, Thierry [Laboratoire Lesions des Acides Nucleiques, Service de Chimie Inorganique et Biologique, CEA/DSM/Departement de Recherche Fondamentale sur la Matiere Condensee, CEA-Grenoble, 17, Av. des Martyrs, Grenoble Cedex 9 F-38054 (France)

    2005-04-01

    Emphasis is placed in this review article on recent aspects of the photochemistry of cellular DNA in which both the UVB and UVA components of solar radiation are implicated individually or synergistically. Interestingly, further mechanistic insights into the UV-induced formation of DNA photoproducts were gained from the application of new accurate and sensitive chromatographic and enzymic assays aimed at measuring base damage. Thus, each of the twelve possible dimeric photoproducts that are produced at the four main bipyrimidine sites can now be singled out as dinucleoside monophosphates that are enzymatically released from UV-irradiated DNA. This was achieved using a recently developed high-performance liquid chromatography-tandem mass spectrometry assay (HPLC-MS/MS) assay after DNA extraction and appropriate enzymic digestion. Interestingly, a similar photoproduct distribution pattern is observed in both isolated and cellular DNA upon exposure to low doses of either UVC or UVB radiation. This applies more specifically to the DNA of rodent and human cells, the cis-syn cyclobutadithymine being predominant over the two other main photolesions, namely thymine-cytosine pyrimidine (6-4) pyrimidone adduct and the related cyclobutyl dimer. UVA-irradiation was found to generate cyclobutane dimers at TT and to a lower extent at TC sites as a likely result of energy transfer mechanism involving still unknown photoexcited chromophore(s). Oxidative damage to DNA is also induced although less efficiently by UVA-mediated photosensitization processes that mostly involved {sup 1}O{sub 2} together with a smaller contribution of hydroxyl radical-mediated reactions through initially generated superoxide radicals.

  10. Proton-induced direct and indirect damage of plasmid DNA

    Czech Academy of Sciences Publication Activity Database

    Vyšín, Luděk; Pachnerová Brabcová, Kateřina; Štěpán, V.; Moretto-Capelle, P.; Bugler, B.; Legube, G.; Cafarelli, P.; Casta, R.; Champeaux, J. P.; Sence, M.; Vlk, M.; Wagner, Richard; Štursa, Jan; Zach, Václav; Incerti, S.; Juha, Libor; Davídková, Marie

    2015-01-01

    Roč. 54, č. 3 (2015), s. 343-352. ISSN 0301-634X R&D Projects: GA ČR GA13-28721S; GA MŠk LD12008; GA MŠk LM2011019 Institutional support: RVO:68378271 ; RVO:61389005 Keywords : proton radiation * DNA plasmid * direct and indirect effects * clustered damage * repair enzymes Subject RIV: BO - Biophysics Impact factor: 1.528, year: 2014

  11. Single Cell Gel Electrophoresis in DNA Damage Detection (Comet Assay)

    OpenAIRE

    Aysen Durmaz; Nurten Dikmen; Cumhur Gunduz

    2010-01-01

    “Single cell gel electrophoresis (SCGE)”, also called “Comet Assay”, is a sensitive, reliable and rapid technique for quantifying and analyzing DNA damage in individual cells. The comet assay is widely used in living cells, researches and the applications on comet assay is becoming broader day by day. To date, the comet assay has been used for a variety of applications, including genotoxic and cytotoxic agent analyses, environmental toxicology, cancer research, and radiati...

  12. Astaxanthin : a putative modulator of DNA damage and repair

    OpenAIRE

    2010-01-01

    Dietary antioxidants are thought to be beneficial for human health. They can prevent damage to biomolecules such as DNA by removing free radicals and consequently prevent oxidative stress. However, several large scale intervention studies have found no beneficial effects or even harmful effects of antioxidant supplementation. More studies are therefore needed to sort out whether, how or when antioxidants improve health. Astaxanthin is a marine carotenoid synthesised by algae, which gives s...

  13. Linking abnormal mitosis to the acquisition of DNA damage

    OpenAIRE

    Ganem, Neil J.; Pellman, David

    2012-01-01

    Cellular defects that impair the fidelity of mitosis promote chromosome missegregation and aneuploidy. Increasing evidence reveals that errors in mitosis can also promote the direct and indirect acquisition of DNA damage and chromosome breaks. Consequently, deregulated cell division can devastate the integrity of the normal genome and unleash a variety of oncogenic stimuli that may promote transformation. Recent work has shed light on the mechanisms that link abnormal mitosis with the develop...

  14. Alternative splicing of DNA damage response genes and gastrointestinal cancers

    OpenAIRE

    Rahmutulla, Bahityar; Matsushita, Kazuyuki; Nomura, Fumio

    2014-01-01

    Alternative splicing, which is a common phenomenon in mammalian genomes, is a fundamental process of gene regulation and contributes to great protein diversity. Alternative splicing events not only occur in the normal gene regulation process but are also closely related to certain diseases including cancer. In this review, we briefly demonstrate the concept of alternative splicing and DNA damage and describe the association of alternative splicing and cancer pathogenesis, focusing on the pote...

  15. Significant increase in residual DNA damage as a possible mechanism of radiosensitization by gemcitabine

    International Nuclear Information System (INIS)

    Purpose: To investigate the effect of gemcitabine (dFdC), a promising radiosensitizing nucleoside analog, on the induction and repair of DNA double-strand breaks (dsbs) after ionizing radiation (RT) in a pancreatic tumor cell line. Material and Methods: BxPC3 pancreatic tumor cells were treated using different concentrations of gemcitabine with and without subsequent irradiation. DNA dsbs were detected by constant-field gel electrophoresis under neutral conditions. Results: With the addition of gemcitabine (0.5-1,000 μmol/l for 2 h prior to RT) to RT (0-75 Gy), a considerable and dose-dependent increase of remaining DNA damage after 24 h (5.4-fold for 0.5 μmol/l dFdC, 12.2-fold for 1,000 μmol/l dFdC at 25 Gy) was noted. Enhancement factors were inversely correlated with increasing X-ray dose (7.8-fold for 0.5 μmol/l dFdC at 1 Gy decreasing to 1.6-fold at 75 Gy). Conversely, the induction of DNA dsbs was not affected. Gemcitabine alone lead to a slight increase of initial DNA dsbs and only a modest elevation of residual DNA damage. Conclusion: These findings strengthen the hypothesis of DNA repair inhibition as a major mechanism of radiosensitization by gemcitabine. (orig.)

  16. Metformin (dimethyl-biguanide induced DNA damage in mammalian cells

    Directory of Open Access Journals (Sweden)

    Rubem R. Amador

    2012-01-01

    Full Text Available Metformin (dimethyl-biguanide is an insulin-sensitizing agent that lowers fasting plasma-insulin concentration, wherefore it's wide use for patients with a variety of insulin-resistant and prediabetic states, including impaired glucose tolerance. During pregnancy it is a further resource for reducing first-trimester pregnancy loss in women with the polycystic ovary syndrome. We tested metformin genotoxicity in cells of Chinese hamster ovary, CHO-K1 (chromosome aberrations; comet assays and in mice (micronucleus assays. Concentrations of 114.4 µg/mL and 572 µg/mL were used in in vitro tests, and 95.4 mg/kg, 190.8 mg/kg and 333.9 mg/kg in assaying. Although the in vitro tests revealed no chromosome aberrations in metaphase cells, DNA damage was detected by comet assaying after 24 h of incubation at both concentrations. The frequency of DNA damage was higher at concentrations of 114.4 µg/mL. Furthermore, although mortality was not observed in in vitro tests, the highest dose of metformin suppressed bone marrow cells. However, no statistically significant differences were noted in micronuclei frequencies between treatments. In vitro results indicate that chronic metformin exposure may be potentially genotoxic. Thus, pregnant woman undergoing treatment with metformin should be properly evaluated beforehand, as regards vulnerability to DNA damage.

  17. Reversal of DNA damage induced Topoisomerase 2 DNA-protein crosslinks by Tdp2.

    Science.gov (United States)

    Schellenberg, Matthew J; Perera, Lalith; Strom, Christina N; Waters, Crystal A; Monian, Brinda; Appel, C Denise; Vilas, Caroline K; Williams, Jason G; Ramsden, Dale A; Williams, R Scott

    2016-05-01

    Mammalian Tyrosyl-DNA phosphodiesterase 2 (Tdp2) reverses Topoisomerase 2 (Top2) DNA-protein crosslinks triggered by Top2 engagement of DNA damage or poisoning by anticancer drugs. Tdp2 deficiencies are linked to neurological disease and cellular sensitivity to Top2 poisons. Herein, we report X-ray crystal structures of ligand-free Tdp2 and Tdp2-DNA complexes with alkylated and abasic DNA that unveil a dynamic Tdp2 active site lid and deep substrate binding trench well-suited for engaging the diverse DNA damage triggers of abortive Top2 reactions. Modeling of a proposed Tdp2 reaction coordinate, combined with mutagenesis and biochemical studies support a single Mg(2+)-ion mechanism assisted by a phosphotyrosyl-arginine cation-π interface. We further identify a Tdp2 active site SNP that ablates Tdp2 Mg(2+) binding and catalytic activity, impairs Tdp2 mediated NHEJ of tyrosine blocked termini, and renders cells sensitive to the anticancer agent etoposide. Collectively, our results provide a structural mechanism for Tdp2 engagement of heterogeneous DNA damage that causes Top2 poisoning, and indicate that evaluation of Tdp2 status may be an important personalized medicine biomarker informing on individual sensitivities to chemotherapeutic Top2 poisons. PMID:27060144

  18. BMI1 Is Recruited to DNA Breaks and Contributes to DNA Damage-Induced H2A Ubiquitination and Repair ▿ †

    OpenAIRE

    Ginjala, Vasudeva; Nacerddine, Karim; Kulkarni, Atul; Oza, Jay; Hill, Sarah J.; Yao, Ming; Citterio, Elisabetta; van Lohuizen, Maarten; Ganesan, Shridar

    2011-01-01

    DNA damage activates signaling pathways that lead to modification of local chromatin and recruitment of DNA repair proteins. Multiple DNA repair proteins having ubiquitin ligase activity are recruited to sites of DNA damage, where they ubiquitinate histones and other substrates. This DNA damage-induced histone ubiquitination is thought to play a critical role in mediating the DNA damage response. We now report that the polycomb protein BMI1 is rapidly recruited to sites of DNA damage, where i...

  19. Effects of Spaceflight on Molecular and Cellular Responses to Bleomycin-Induced DNA Damages in Confluent Human Fibroblasts

    Science.gov (United States)

    Lu, Tao; Zhang, Ye; Wong, Michael; Stodieck, Louis; Karouia, Fathi; Wu, Honglu

    2016-01-01

    Spaceflights expose human beings to various risk factors. Among them are microgravity related physiological stresses in immune, cytoskeletal, and cardiovascular systems, and space radiation related elevation of cancer risk. Cosmic radiation consists of energetic protons and other heavier charged particles that induce DNA damages. Effective DNA damage response and repair mechanism is important to maintain genomic integrity and reduce cancer risk. There were studies on effects of spaceflight and microgravity on DNA damage response in cell and animal models, but the published results were mostly conflicting and inconsistent. To investigate effects of spaceflight on molecular and cellular responses to DNA damages, bleomycin, an anti-cancer drug and radiomimetic reagent, was used to induce DNA damages in confluent human fibroblasts flown to the International Space Station (ISS) and on ground. After exposure to 1.0 µg/ml bleomycin for 3 hours, cells were fixed for immunofluorescence assays and for RNA preparation. Extents of DNA damages were quantified by foci and pattern counting of phosphorylated histone protein H2AX (?-H2AX). The cells on the ISS showed modestly increased average foci counts per nucleus while the distribution of patterns was similar to that on the ground. PCR array analysis showed that expressions of several genes, including CDKN1A and PCNA, were significantly changed in response to DNA damages induced by bleomycin in both flight and ground control cells. However, there were no significant differences in the overall expression profile of DNA damage response genes between the flight and ground samples. Analysis of cellular proliferation status with Ki-67 staining showed a slightly higher proliferating population in cells on the ISS than those on ground. Our results suggested that the difference in ?-H2AX focus counts between flight and ground was due to the higher percentage of proliferating cells in space, but spaceflight did not significantly affect

  20. Measurement of oxidative damage to DNA in nanomaterial exposed cells and animals

    DEFF Research Database (Denmark)

    Møller, Peter; Jensen, Ditte Marie; Christophersen, Daniel Vest;

    2015-01-01

    -reactivity with other molecules in cells. This review provides an overview of efforts to reliably detect oxidatively damaged DNA and a critical assessment of the published studies on DNA damage levels. Animal studies with high baseline levels of oxidatively damaged DNA are more likely to show positive associations...

  1. Genomic approaches for identifying DNA damage response pathways in S. cerevisiae

    NARCIS (Netherlands)

    Chang, Michael; Parsons, Ainslie B; Sheikh, Bilal H; Boone, Charles; Brown, Grant W

    2006-01-01

    DNA damage response pathways have been studied extensively in the budding yeast Saccharomyces cerevisiae, yet new genes with roles in the DNA damage response are still being identified. In this chapter we describe the use of functional genomic approaches in the identification of DNA damage response

  2. Quercetin enhances UVA-induced DNA damage in a rat fibroblast cell line

    OpenAIRE

    De Castro, M. F.; Basto, Diana; Silva, João P.; Coutinho, O P

    2007-01-01

    Ultraviolet A (UVA) radiation from sunlight induces the production of reactive oxygen species (ROS), affecting a variety of cellular targets including the DNA. Quercetin, a flavonol present in many fruits, vegetables and beverages has been reported as a powerful antioxidant with an important role in prevention of carcinogenesis. The use of this compound, in topical formulations, could be of benefit in the prevention of skin damage produced by sunlight exposure. We investigated the effec...

  3. Reconstitution of the cellular response to DNA damage in vitro using damage-activated extracts from mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Roper, Katherine; Coverley, Dawn, E-mail: dc17@york.ac.uk

    2012-03-10

    In proliferating mammalian cells, DNA damage is detected by sensors that elicit a cellular response which arrests the cell cycle and repairs the damage. As part of the DNA damage response, DNA replication is inhibited and, within seconds, histone H2AX is phosphorylated. Here we describe a cell-free system that reconstitutes the cellular response to DNA double strand breaks using damage-activated cell extracts and naieve nuclei. Using this system the effect of damage signalling on nuclei that do not contain DNA lesions can be studied, thereby uncoupling signalling and repair. Soluble extracts from G1/S phase cells that were treated with etoposide before isolation, or pre-incubated with nuclei from etoposide-treated cells during an in vitro activation reaction, restrain both initiation and elongation of DNA replication in naieve nuclei. At the same time, H2AX is phosphorylated in naieve nuclei in a manner that is dependent upon the phosphatidylinositol 3-kinase-like protein kinases. Notably, phosphorylated H2AX is not focal in naieve nuclei, but is evident throughout the nucleus suggesting that in the absence of DNA lesions the signal is not amplified such that discrete foci can be detected. This system offers a novel screening approach for inhibitors of DNA damage response kinases, which we demonstrate using the inhibitors wortmannin and LY294002. -- Highlights: Black-Right-Pointing-Pointer A cell free system that reconstitutes the response to DNA damage in the absence of DNA lesions. Black-Right-Pointing-Pointer Damage-activated extracts impose the cellular response to DNA damage on naieve nuclei. Black-Right-Pointing-Pointer PIKK-dependent response impacts positively and negatively on two separate fluorescent outputs. Black-Right-Pointing-Pointer Can be used to screen for inhibitors that impact on the response to damage but not on DNA repair. Black-Right-Pointing-Pointer LY294002 and wortmannin demonstrate the system's potential as a pathway focused screening

  4. Reconstitution of the cellular response to DNA damage in vitro using damage-activated extracts from mammalian cells

    International Nuclear Information System (INIS)

    In proliferating mammalian cells, DNA damage is detected by sensors that elicit a cellular response which arrests the cell cycle and repairs the damage. As part of the DNA damage response, DNA replication is inhibited and, within seconds, histone H2AX is phosphorylated. Here we describe a cell-free system that reconstitutes the cellular response to DNA double strand breaks using damage-activated cell extracts and naïve nuclei. Using this system the effect of damage signalling on nuclei that do not contain DNA lesions can be studied, thereby uncoupling signalling and repair. Soluble extracts from G1/S phase cells that were treated with etoposide before isolation, or pre-incubated with nuclei from etoposide-treated cells during an in vitro activation reaction, restrain both initiation and elongation of DNA replication in naïve nuclei. At the same time, H2AX is phosphorylated in naïve nuclei in a manner that is dependent upon the phosphatidylinositol 3-kinase-like protein kinases. Notably, phosphorylated H2AX is not focal in naïve nuclei, but is evident throughout the nucleus suggesting that in the absence of DNA lesions the signal is not amplified such that discrete foci can be detected. This system offers a novel screening approach for inhibitors of DNA damage response kinases, which we demonstrate using the inhibitors wortmannin and LY294002. -- Highlights: ► A cell free system that reconstitutes the response to DNA damage in the absence of DNA lesions. ► Damage-activated extracts impose the cellular response to DNA damage on naïve nuclei. ► PIKK-dependent response impacts positively and negatively on two separate fluorescent outputs. ► Can be used to screen for inhibitors that impact on the response to damage but not on DNA repair. ► LY294002 and wortmannin demonstrate the system's potential as a pathway focused screening approach.

  5. Differential DNA damage, can we measure it, can we model it?

    International Nuclear Information System (INIS)

    Differential DNA damage has three levels of complexity; number of lesions per site, identity of lesions, and distances apart of individual lesions. Modelling of such damage is severely limited by the lack of information on parameters of damage induction. Measurement of damage will be difficult in DNA extracted from irradiated cells, while it may be accomplished by use of a valid model system. (author)

  6. Heavy ion induced damage to plasmid DNA : plateau region vs. spread out Bragg-peak

    NARCIS (Netherlands)

    Dang, H.M.; van Goethem, M.J.; van der Graaf, E.R.; Brandenburg, S.; Hoekstra, R.A.; Schlathölter, T.A.

    2011-01-01

    We have investigated the damage of synthetic plasmid pBR322 DNA in dilute aqueous solutions induced by fast carbon ions. The relative contribution of indirect damage and direct damage to the DNA itself is expected to vary with linear energy transfer along the ion track, with the direct damage contri

  7. On the consistency of Monte Carlo track structure DNA damage simulations

    International Nuclear Information System (INIS)

    Purpose: Monte Carlo track structures (MCTS) simulations have been recognized as useful tools for radiobiological modeling. However, the authors noticed several issues regarding the consistency of reported data. Therefore, in this work, they analyze the impact of various user defined parameters on simulated direct DNA damage yields. In addition, they draw attention to discrepancies in published literature in DNA strand break (SB) yields and selected methodologies. Methods: The MCTS code Geant4-DNA was used to compare radial dose profiles in a nanometer-scale region of interest (ROI) for photon sources of varying sizes and energies. Then, electron tracks of 0.28 keV–220 keV were superimposed on a geometric DNA model composed of 2.7 × 106 nucleosomes, and SBs were simulated according to four definitions based on energy deposits or energy transfers in DNA strand targets compared to a threshold energy ETH. The SB frequencies and complexities in nucleosomes as a function of incident electron energies were obtained. SBs were classified into higher order clusters such as single and double strand breaks (SSBs and DSBs) based on inter-SB distances and on the number of affected strands. Results: Comparisons of different nonuniform dose distributions lacking charged particle equilibrium may lead to erroneous conclusions regarding the effect of energy on relative biological effectiveness. The energy transfer-based SB definitions give similar SB yields as the one based on energy deposit when ETH ≈ 10.79 eV, but deviate significantly for higher ETH values. Between 30 and 40 nucleosomes/Gy show at least one SB in the ROI. The number of nucleosomes that present a complex damage pattern of more than 2 SBs and the degree of complexity of the damage in these nucleosomes diminish as the incident electron energy increases. DNA damage classification into SSB and DSB is highly dependent on the definitions of these higher order structures and their implementations. The authors

  8. Radiation damage to specific complexes of DNA with proteins: estrogen response element DNA - estrogen receptor

    Czech Academy of Sciences Publication Activity Database

    Štísová, Viktorie; Běgusová, Marie; Goffinont, S.; Spotheim-Maurizot, M.

    Legnaro-Padova: INFN - Laboratori Nazionali di Legnaro, 2005. [International Symposium on Microdosimetry /14./. 13.11.2005-18.11.2005, Venezia] R&D Projects: GA MŠk(CZ) 1P05OC085; GA ČR(CZ) GA202/05/H031 Institutional research plan: CEZ:AV0Z10480505 Keywords : DNA-protein complex * radiation damage * estrogen receptor * estrogen response element DNA Subject RIV: BO - Biophysics

  9. Mechanical force-induced DNA damage during AFM single-molecule manipulation

    International Nuclear Information System (INIS)

    Many environmental factors can cause DNA damage, such as radiation, heat, oxygen free radical, etc., which can induce mutation during DNA replication. Meanwhile, DNA molecules are subjected to various mechanical forces in numerous biological processes. However, it is unknown whether the mechanical force would induce DNA damage and introduce mutation during DNA replication, With the combination of single-molecule manipulation based on atomic force microscopy (AFM), single molecular polymerase chain reaction (SM-PCR) and Sanger's sequencing, we investigated the effect of mechanical force on DNA. The results show that mechanical force can cause DNA damage and induce DNA mutation during amplification. (authors)

  10. Evidence for DNA Damage as a Biological Link Between Diabetes and Cancer

    Directory of Open Access Journals (Sweden)

    Shao Chin Lee

    2015-01-01

    Full Text Available Objective: This review examines the evidence that: Diabetes is a state of DNA damage; pathophysiological factors in diabetes can cause DNA damage; DNA damage can cause mutations; and DNA mutation is linked to carcinogenesis. Data Sources: We retrieved information from the PubMed database up to January, 2014, using various search terms and their combinations including DNA damage, diabetes, cancer, high glucose, hyperglycemia, free fatty acids, palmitic acid, advanced glycation end products, mutation and carcinogenesis. Study Selection: We included data from peer-reviewed journals and a textbook printed in English on relationships between DNA damage and diabetes as well as pathophysiological factors in diabetes. Publications on relationships among DNA damage, mutagenesis, and carcinogenesis, were also reviewed. We organized this information into a conceptual framework to explain the possible causal relationship between DNA damage and carcinogenesis in diabetes. Results: There are a large amount of data supporting the view that DNA mutation is a typical feature in carcinogenesis. Patients with type 2 diabetes have increased production of reactive oxygen species, reduced levels of antioxidant capacity, and increased levels of DNA damage. The pathophysiological factors and metabolic milieu in diabetes can cause DNA damage such as DNA strand break and base modification (i.e., oxidation. Emerging experimental data suggest that signal pathways (i.e., Akt/tuberin link diabetes to DNA damage. This collective evidence indicates that diabetes is a pathophysiological state of oxidative stress and DNA damage which can lead to various types of mutation to cause aberration in cells and thereby increased cancer risk. Conclusions: This review highlights the interrelationships amongst diabetes, DNA damage, DNA mutation and carcinogenesis, which suggests that DNA damage can be a biological link between diabetes and cancer.

  11. Evidence for DNA Damage as a Biological Link Between Diabetes and Cancer

    Science.gov (United States)

    Lee, Shao Chin; Chan, Juliana CN

    2015-01-01

    Objective: This review examines the evidence that: Diabetes is a state of DNA damage; pathophysiological factors in diabetes can cause DNA damage; DNA damage can cause mutations; and DNA mutation is linked to carcinogenesis. Data Sources: We retrieved information from the PubMed database up to January, 2014, using various search terms and their combinations including DNA damage, diabetes, cancer, high glucose, hyperglycemia, free fatty acids, palmitic acid, advanced glycation end products, mutation and carcinogenesis. Study Selection: We included data from peer-reviewed journals and a textbook printed in English on relationships between DNA damage and diabetes as well as pathophysiological factors in diabetes. Publications on relationships among DNA damage, mutagenesis, and carcinogenesis, were also reviewed. We organized this information into a conceptual framework to explain the possible causal relationship between DNA damage and carcinogenesis in diabetes. Results: There are a large amount of data supporting the view that DNA mutation is a typical feature in carcinogenesis. Patients with type 2 diabetes have increased production of reactive oxygen species, reduced levels of antioxidant capacity, and increased levels of DNA damage. The pathophysiological factors and metabolic milieu in diabetes can cause DNA damage such as DNA strand break and base modification (i.e., oxidation). Emerging experimental data suggest that signal pathways (i.e., Akt/tuberin) link diabetes to DNA damage. This collective evidence indicates that diabetes is a pathophysiological state of oxidative stress and DNA damage which can lead to various types of mutation to cause aberration in cells and thereby increased cancer risk. Conclusions: This review highlights the interrelationships amongst diabetes, DNA damage, DNA mutation and carcinogenesis, which suggests that DNA damage can be a biological link between diabetes and cancer. PMID:26021514

  12. Mitochondrial DNA Damage and Animal Longevity: Insights from Comparative Studies

    Directory of Open Access Journals (Sweden)

    Reinald Pamplona

    2011-01-01

    Full Text Available Chemical reactions in living cells are under strict enzyme control and conform to a tightly regulated metabolic program. However, uncontrolled and potentially deleterious endogenous reactions occur, even under physiological conditions. Aging, in this chemical context, could be viewed as an entropic process, the result of chemical side reactions that chronically and cumulatively degrade the function of biological systems. Mitochondria are a main source of reactive oxygen species (ROS and chemical sidereactions in healthy aerobic tissues and are the only known extranuclear cellular organelles in animal cells that contain their own DNA (mtDNA. ROS can modify mtDNA directly at the sugar-phosphate backbone or at the bases, producing many different oxidatively modified purines and pyrimidines, as well as single and double strand breaks and DNA mutations. In this scenario, natural selection tends to decrease the mitochondrial ROS generation, the oxidative damage to mtDNA, and the mitochondrial mutation rate in long-lived species, in agreement with the mitochondrial oxidative stress theory of aging.

  13. A novel class of mutations that affect DNA replication in E. coli

    DEFF Research Database (Denmark)

    Nordman, Jared; Skovgaard, Ole; Wright, Andrew

    2007-01-01

    Over-initiation of DNA replication in cells containing the cold-sensitive dnaA(cos) allele has been shown to lead to extensive DNA damage, potentially due to head-to-tail replication fork collisions that ultimately lead to replication fork collapse, growth stasis and/or cell death. Based on the...... assumption that suppressors of the cold-sensitive phenotype of the cos mutant should include mutations that affect the efficiency and/or regulation of DNA replication, we subjected a dnaA(cos) mutant strain to transposon mutagenesis and selected mutant derivatives that could form colonies at 30°C. Four...... suppressors of the dnaA(cos)-mediated cold sensitivity were identified and further characterized. Based on origin to terminus ratios, chromosome content per cell, measured by flow cytometry, and sensitivity to the replication fork inhibitor hydroxyurea, the suppressors fell into two distinct categories: those...

  14. Pathophysiology of Bronchoconstriction: Role of Oxidatively Damaged DNA Repair

    Science.gov (United States)

    Bacsi, Attila; Pan, Lang; Ba, Xueqing; Boldogh, Istvan

    2016-01-01

    Purpose of review To provide an overview on the present understanding of roles of oxidative DNA damage repair in cell signaling underlying bronchoconstriction common to, but not restricted to various forms of asthma and chronic obstructive pulmonary disease Recent findings Bronchoconstriction is a tightening of smooth muscle surrounding the bronchi and bronchioles with consequent wheezing and shortness of breath. Key stimuli include air pollutants, viral infections, allergens, thermal and osmotic changes, and shear stress of mucosal epithelium, triggering a wide range of cellular, vascular and neural events. Although activation of nerve fibers, the role of G-proteins, protein kinases and Ca++, and molecular interaction within contracting filaments of muscle are well defined, the overarching mechanisms by which a wide range of stimuli initiate these events are not fully understood. Many, if not all, stimuli increase levels of reactive oxygen species (ROS), which are signaling and oxidatively modifying macromolecules, including DNA. The primary ROS target in DNA is guanine, and 8-oxoguanine is one of the most abundant base lesions. It is repaired by 8-oxoguanine DNA glycosylase1 (OGG1) during base excision repair processes. The product, free 8-oxoG base, is bound by OGG1 with high affinity, and the complex then functions as an activator of small GTPases, triggering pathways for inducing gene expression and contraction of intracellular filaments in mast and smooth muscle cells. Summary Oxidative DNA damage repair-mediated cell activation signaling result in gene expression that “primes” the mucosal epithelium and submucosal tissues to generate mediators of airway smooth muscle contractions. PMID:26694039

  15. Shortening of alkaline DNA unwinding time does not interfere with detecting DNA damage to mouse and human spermatozoa in the comet assay

    Institute of Scientific and Technical Information of China (English)

    Hirokazu Kusakabe; Hiroyuki Tateno

    2011-01-01

    The comet assay was performed on mouse and human spermatozoa to examine the effect of alkaline DNA unwinding time.The spermatozoa were treated in vitrowith the DNA-damaging agents,methyl methanesulfonate(MMS)or hydrogen peroxide(H2O2),and then embedded in agarose gel on glass slides.The slides were immersed in alkaline solution(>pH 1.3)for 1,5,10 and 20 min,and then subjected to the electrophoresis under neutral conditions.In mouse spermatozoa,comet tails seen in solvent controls became brighter and longer as the alkaline DNA unwinding time increased.However,in the MMS-treated mouse spermatozoa,a smaller difference in the damage from that in the solvent control was seen with time within a dose.DNA damage induced by H2O2 could also be detected accurately after alkali treatment for 1-20 min.In human spermatozoa,DNA damage induced by MMS and H2O2 could be detected in a dose-dependent manner after alkali treatment for 1 min.The ability of the comet assay to detect DNA damage was not adversely affected by the short period(1 min)of the alkaline DNA unwinding time.

  16. DNA damage in human endothelial cells after irradiation in anoxia

    International Nuclear Information System (INIS)

    Endothelial cells and fibroblasts have been reported to respond differently to oxidative stress. Both the effects of high oxygen tension and radiation involve the action of free radicals. DNA damage (single strand breaks, SSB, and double strand breaks, DSB) was assayed in human umbilical cord vein (HUV) cells and in Chinese hamster fibroblasts (V79) after irradiation under oxic or anoxic conditions. The cells were exposed to single doses in the range of 2-18 Gy of γ-radiation from 60Co. Significantly more DNA damage was induced in the V79 cells than in the HUV cells. As a consequence, a higher oxygen enhancement ratio was obtained for the HUV cells (6.3) as compared to the V79 cells (2.8). The repair of SSB was slower in the HUV cells than in the V79 cells, irrespective of oxic state. For the higher doses, the damage remaining at 60 min after anoxic irradiation, i.e. DSB, was only detected in the V79 cells. (orig.)

  17. Glutathione-deficient Plasmodium berghei parasites exhibit growth delay and nuclear DNA damage.

    Science.gov (United States)

    Padín-Irizarry, Vivian; Colón-Lorenzo, Emilee E; Vega-Rodríguez, Joel; Castro, María Del R; González-Méndez, Ricardo; Ayala-Peña, Sylvette; Serrano, Adelfa E

    2016-06-01

    Plasmodium parasites are exposed to endogenous and exogenous oxidative stress during their complex life cycle. To minimize oxidative damage, the parasites use glutathione (GSH) and thioredoxin (Trx) as primary antioxidants. We previously showed that disruption of the Plasmodium berghei gamma-glutamylcysteine synthetase (pbggcs-ko) or the glutathione reductase (pbgr-ko) genes resulted in a significant reduction of GSH in intraerythrocytic stages, and a defect in growth in the pbggcs-ko parasites. In this report, time course experiments of parasite intraerythrocytic development and morphological studies showed a growth delay during the ring to schizont progression. Morphological analysis shows a significant reduction in size (diameter) of trophozoites and schizonts with increased number of cytoplasmic vacuoles in the pbggcs-ko parasites in comparison to the wild type (WT). Furthermore, the pbggcs-ko mutants exhibited an impaired response to oxidative stress and increased levels of nuclear DNA (nDNA) damage. Reduced GSH levels did not result in mitochondrial DNA (mtDNA) damage or protein carbonylations in neither pbggcs-ko nor pbgr-ko parasites. In addition, the pbggcs-ko mutant parasites showed an increase in mRNA expression of genes involved in oxidative stress detoxification and DNA synthesis, suggesting a potential compensatory mechanism to allow for parasite proliferation. These results reveal that low GSH levels affect parasite development through the impairment of oxidative stress reduction systems and damage to the nDNA. Our studies provide new insights into the role of the GSH antioxidant system in the intraerythrocytic development of Plasmodium parasites, with potential translation into novel pharmacological interventions. PMID:26952808

  18. Protection of cisplatin-induced spermatotoxicity, DNA damage and chromatin abnormality by selenium nano-particles

    Energy Technology Data Exchange (ETDEWEB)

    Rezvanfar, Mohammad Amin; Rezvanfar, Mohammad Ali [Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences (TUMS), Tehran (Iran, Islamic Republic of); Shahverdi, Ahmad Reza [Department of Pharmaceutical Biotechnology and Biotechnology Research Centre, Faculty of Pharmacy, TUMS, Tehran (Iran, Islamic Republic of); Ahmadi, Abbas [Department of Histology and Embryology, Faculty of Veterinary Medicine, Urmia University, Urmia (Iran, Islamic Republic of); Baeeri, Maryam; Mohammadirad, Azadeh [Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences (TUMS), Tehran (Iran, Islamic Republic of); Abdollahi, Mohammad, E-mail: mohammad.abdollahi@utoronto.ca [Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences (TUMS), Tehran (Iran, Islamic Republic of)

    2013-02-01

    Cisplatin (CIS), an anticancer alkylating agent, induces DNA adducts and effectively cross links the DNA strands and so affects spermatozoa as a male reproductive toxicant. The present study investigated the cellular/biochemical mechanisms underlying possible protective effect of selenium nano-particles (Nano-Se) as an established strong antioxidant with more bioavailability and less toxicity, on reproductive toxicity of CIS by assessment of sperm characteristics, sperm DNA integrity, chromatin quality and spermatogenic disorders. To determine the role of oxidative stress (OS) in the pathogenesis of CIS gonadotoxicity, the level of lipid peroxidation (LPO), antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) and peroxynitrite (ONOO) as a marker of nitrosative stress (NS) and testosterone (T) concentration as a biomarker of testicular function were measured in the blood and testes. Thirty-two male Wistar rats were equally divided into four groups. A single IP dose of CIS (7 mg/kg) and protective dose of Nano-Se (2 mg/kg/day) were administered alone or in combination. The CIS-exposed rats showed a significant increase in testicular and serum LPO and ONOO level, along with a significant decrease in enzymatic antioxidants levels, diminished serum T concentration and abnormal histologic findings with impaired sperm quality associated with increased DNA damage and decreased chromatin quality. Coadministration of Nano-Se significantly improved the serum T, sperm quality, and spermatogenesis and reduced CIS-induced free radical toxic stress and spermatic DNA damage. In conclusion, the current study demonstrated that Nano-Se may be useful to prevent CIS-induced gonadotoxicity through its antioxidant potential. Highlights: ► Cisplatin (CIS) affects spermatozoa as a male reproductive toxicant. ► Effect of Nano-Se on CIS-induced spermatotoxicity was investigated. ► CIS-exposure induces oxidative sperm DNA damage

  19. DNA damage foci in mitosis are devoid of 53BP1.

    Science.gov (United States)

    Nelson, Glyn; Buhmann, Matthias; von Zglinicki, Thomas

    2009-10-15

    Nuclear DNA damage foci indicate ongoing DNA damage response, which is the major inducer of cell cycle arrest, cellular senescence and apoptosis. 53BP1 is one central mediator of the DNA damage response and a component of active DNA damage foci. Using an AcGFP-53BP1c fluorescent fusion protein that quantitatively reports DNA damage, we show that the recruitment of 53BP1 into gammaH2A.X-containing DNA damage foci was inhibited at G(2)/M. This suggests a possible mechanism for cells to continue through the G(2) checkpoint with gammaH2A.X-flagged double strand breaks via inhibition of 53BP1-mediated DNA damage signalling. PMID:19806024

  20. Maximiscin Induces DNA Damage, Activates DNA Damage Response Pathways, and Has Selective Cytotoxic Activity against a Subtype of Triple-Negative Breast Cancer.

    Science.gov (United States)

    Robles, Andrew J; Du, Lin; Cichewicz, Robert H; Mooberry, Susan L

    2016-07-22

    Triple-negative breast cancers are highly aggressive, and patients with these types of tumors have poor long-term survival. These breast cancers do not express estrogen or progesterone receptors and do not have gene amplification of human epidermal growth factor receptor 2; therefore, they do not respond to available targeted therapies. The lack of targeted therapies for triple-negative breast cancers stems from their heterogeneous nature and lack of a clear definition of driver defects. Studies have recently identified triple-negative breast cancer molecular subtypes based on gene expression profiling and representative cell lines, allowing for the identification of subtype-specific drug leads and molecular targets. We previously reported the identification of a new fungal metabolite named maximiscin (1) identified through a crowdsourcing program. New results show that 1 has selective cytotoxic efficacy against basal-like 1 MDA-MB-468 cells compared to cell lines modeling other triple-negative breast cancer molecular subtypes. This compound also exhibited antitumor efficacy in a xenograft mouse model. The mechanisms of action of 1 in MDA-MB-468 cells were investigated to identify potential molecular targets and affected pathways. Compound 1 caused accumulation of cells in the G1 phase of the cell cycle, suggesting induction of DNA damage. Indeed, treatment with 1 caused DNA double-strand breaks with concomitant activation of the DNA damage response pathways, indicated by phosphorylation of p53, Chk1, and Chk2. Collectively, these results suggest basal-like triple-negative breast cancer may be inherently sensitive to DNA-damaging agents relative to other triple-negative breast cancer subtypes. These results also demonstrate the potential of our citizen crowdsourcing program to identify new lead molecules for treating the subtypes of triple-negative breast cancer. PMID:27310425

  1. DNA damage in Human Limbal Epithelial Cells expanded ex vivo.

    Directory of Open Access Journals (Sweden)

    Yolanda Lorenzo Corrales

    2015-04-01

    Full Text Available Limbal stem cell deficiency, secondary to insults and diseases, may be treated by transplantation of ex vivo engineered epithelial grafts. We here present preliminary data on levels of cellular DNA damage in grafts produced in two different types of culture medium. Cultures were initiated using corneo-limbal donor tissue after removal of the central area for transplant purposes. Explants (approx. 2x2 mm were positioned epithelial side down on tissue culture treated polyester membranes and expanded for four weeks in Dulbecco’s Modified Eagle Medium F12 Nutrient Mixture (Ham [DMEM/F12 (1:1] with either (1 H. medium; 10% human serum or (2 COM; 5% fetal bovine serum (FBS, Epidermal Growth Factor (EGF, insulin-transferrin-sodiumselenzine (ITS , cholera toxin-A, dimethyl sulfoxide (DMSO and hydrocortisone. Cells were dissociated using Trypsin-EDTA (0.05% for 30 min., the enzyme activity was inhibited by medium and serum. The cell suspension was transferred to tubes on ice and processed using the Comet Assay. Duplicate samples from each culture were analyzed in each assay by visual scoring. Using a fluorescence microscope, 100 comets (50 from each gel were classified into five categories, 0-4, representing increasing relative tail intensities. Summing the scores (0-4 of 100 comets therefore gives an overall score of between 0 and 400 arbitrary units. Preliminary data show some levels of DNA damage in cells dissociated from the grafts regardless of the type of culture medium used. Anyway more experiments with other donors have to be done to have some conclusions. Recent studies have shown that medium with human serum equally support production of grafts containing differentiated as well as undifferentiated cells suitable for clinical transplantation. Preliminary data from our experiments indicate that levels of molecular damage to the DNA do not increase in cells cultured in H. medium despite its lacks of complexity.

  2. Effect of ATM heterozygosity on heritable DNA damage in mice following paternal F0 germline irradiation

    International Nuclear Information System (INIS)

    The ataxia telangiectasia mutated (ATM) gene product maintains genome integrity and initiates cellular DNA repair pathways following exposures to genotoxic agents. ATM also plays a significant role in meiotic recombination during spermatogenesis. Fertilization with sperm carrying damaged DNA could lead to adverse effects in offspring including developmental defects or increased cancer susceptibility. Currently, there is little information regarding the effect of ATM heterozygosity on germline DNA repair and heritable effects of paternal germline-ionizing irradiation. We used neutral pH comet assays to evaluate spermatozoa 45 days after acute whole-body irradiation of male mice (0.1 Gy, attenuated 137Cs γ rays) to determine the effect of ATM heterozygosity on delayed DNA damage effects of Type A/B spermatogonial irradiation. Using the neutral pH sperm comet assay, significant irradiation-related differences were found in comet tail length, percent tail DNA and tail extent moment, but there were no observed differences in effect between wild-type and ATM +/- mice. However, evaluation of spermatozoa from third generation descendants of irradiated male mice for heritable chromatin effects revealed significant differences in DNA electrophoretic mobility in the F3 descendants that were based upon the irradiated F0 sire's genotype. In this study, radiation-induced chromatin alterations to Type A/B spermatogonia, detected in mature sperm 45 days post-irradiation, led to chromatin effects in mature sperm three generations later. The early cellular response to and repair of DNA damage is critical and appears to be affected by ATM zygosity. Our results indicate that there is potential for heritable genetic or epigenetic changes following Type A/B spermatogonial irradiation and that ATM heterozygosity increases this effect

  3. Chk2-dependent phosphorylation of XRCC1 in the DNA damage response promotes base excision repair

    OpenAIRE

    Chou, Wen-Cheng; Wang, Hui-Chun; Wong, Fen-Hwa; Ding, Shian-ling; Wu, Pei-Ei; Shieh, Sheau-Yann; Shen, Chen-Yang

    2008-01-01

    The DNA damage response (DDR) has an essential function in maintaining genomic stability. Ataxia telangiectasia-mutated (ATM)-checkpoint kinase 2 (Chk2) and ATM- and Rad3-related (ATR)-Chk1, triggered, respectively, by DNA double-strand breaks and blocked replication forks, are two major DDRs processing structurally complicated DNA damage. In contrast, damage repaired by base excision repair (BER) is structurally simple, but whether, and how, the DDR is involved in repairing this damage is un...

  4. Oxidative and nitrative DNA damage: key events in opisthorchiasis-induced carcinogenesis.

    Science.gov (United States)

    Yongvanit, Puangrat; Pinlaor, Somchai; Bartsch, Helmut

    2012-03-01

    Chronic inflammation induced by liver fluke (Opisthorchis viverrini) infection is the major risk factor for cholangiocarcinoma (CCA) in Northeastern Thailand. Increased levels of proinflammatory cytokines and nuclear factor kappa B that control cyclooxygenase-2 and inducible nitric oxide activities, disturb the homeostasis of oxidants/anti-oxidants and DNA repair enzymes, all of which appear to be involved in O. viverrini-associated inflammatory processes and CCA. Consequently oxidative and nitrative stress-related cellular damage occurs due to the over production of reactive oxygen and nitrogen species in inflamed target cells. This is supported by the detection of high levels of oxidized DNA and DNA bases modified by lipid peroxidation products in both animal and human tissues affected by O. viverrini-infection. Treatment of opisthorchiasis patients with praziquantel, an anti- trematode drug was shown to reduce inflammation-mediated tissue damage and carcinogenesis. The principal mechanisms that govern the effects of inflammation and immunity in liver fluke-associated cholangiocarcinogenesis are reviewed. The validity of inflammation-related biomolecules and DNA damage products to serve as predictive biomarkers for disease risk evaluation and intervention is discussed. PMID:21704729

  5. Personal exposure to ultrafine particles and oxidative DNA damage

    DEFF Research Database (Denmark)

    Vinzents, Peter S; Møller, Peter; Sørensen, Mette;

    2005-01-01

    the morning after exposure measurement. Cumulated outdoor and cumulated indoor exposures to UFPs each were independent significant predictors of the level of purine oxidation in DNA but not of strand breaks. Ambient air concentrations of particulate matter with an aerodynamic diameter of < or = 10...... microm (PM10), nitrous oxide, nitrogen dioxide, carbon monoxide, and/or number concentration of UFPs at urban background or busy street monitoring stations was not a significant predictor of DNA damage, although personal UFP exposure was correlated with urban background concentrations of CO and NO2......, particularly during bicycling in traffic. The results indicate that biologic effects of UFPs occur at modest exposure, such as that occurring in traffic, which supports the relationship of UFPs and the adverse health effects of air pollution....

  6. Online imaging of initial DNA damages at the PTB microbeam

    International Nuclear Information System (INIS)

    In an inter-disciplinary collaboration of Physikalisch-Technische Bundesanstalt (PTB), German Collection of Microorganisms and Cell Cultures (DSMZ) and Heinrich-Heine Univ., live-cell imaging has been established at the charged-particle microbeam facility of PTB. Candidate genes participating in DNA strand-break repair pathways such as PARP-1, MRE11, MSH2, MDC1 and p53BP1 have been modified to generate fluorescent fusion proteins. Using multi-cistronic expression vectors, stable genomic integration was achieved in HT-1080 fibroblasts. The aim of this study is to characterise and use these highly reliable cell lines for studying initial steps of DNA damage responses and kinetics of repair after microbeam irradiation with high- and low-linear energy transfer (LET) particles in living cells at physiological conditions. (authors)

  7. Benzoyl peroxide-induced damage to DNA and its components

    DEFF Research Database (Denmark)

    Hazlewood, C; Davies, Michael Jonathan

    1996-01-01

    radical generation, though there is controversy as to which radicals are responsible for this damage; previous workers have variously implicated benzoyloxyl (PhCO2,) phenyl (Ph.), and hydroxyl radicals (HO.) as the initiating agent. In the present study a detailed examination of the radicals generated on......, sugars, nucleosides, nucleotides, RNA, and DNA have been examined and the intermediate species have been identified in many cases. Comparison of these data with those obtained with Ph. alone has allowed the reactions of PhCO2. and Ph. to be distinguished. Evidence has been obtained which is consistent...... with both the addition of these radicals to the C5-C6 double bond of the pyrimidines to give adduct species, and hydrogen abstraction from the sugar rings. The former process is the major reaction for nucleosides and nucleotides. Studies with RNA and DNA also provide strong evidence for the formation...

  8. Logical models of DNA damage induced pathways to cancer

    OpenAIRE

    Tian, Kun

    2013-01-01

    This thesis with the title:”Logical models of DNA damage induced pathways to cancer” was completed by Kun Tian for his PhD degree in the University of Manchester and submitted in October 2013. Chemotherapy is commonly used in cancer treatments, however only 25 % of cancers are responsive and a significant proportion develops resistance. The p53 tumour suppressor is crucial for cancer development and therapy, but has been less amenable to therapeutic applications due to the complexity of its a...

  9. Replication stress and oxidative damage contribute to aberrant constitutive activation of DNA damage signalling in human gliomas

    DEFF Research Database (Denmark)

    Bartkova, J; Hamerlik, P; Stockhausen, Marie;

    2010-01-01

    brain and grade II astrocytomas, despite the degree of DDR activation was higher in grade II tumors. Markers indicative of ongoing DNA replication stress (Chk1 activation, Rad17 phosphorylation, replication protein A foci and single-stranded DNA) were present in GBM cells under high- or low...... and indicate that replication stress, rather than oxidative stress, fuels the DNA damage signalling in early stages of astrocytoma development.......Malignant gliomas, the deadliest of brain neoplasms, show rampant genetic instability and resistance to genotoxic therapies, implicating potentially aberrant DNA damage response (DDR) in glioma pathogenesis and treatment failure. Here, we report on gross, aberrant constitutive activation of DNA...

  10. BMI1 is recruited to DNA breaks and contributes to DNA damage-induced H2A ubiquitination and repair.

    Science.gov (United States)

    Ginjala, Vasudeva; Nacerddine, Karim; Kulkarni, Atul; Oza, Jay; Hill, Sarah J; Yao, Ming; Citterio, Elisabetta; van Lohuizen, Maarten; Ganesan, Shridar

    2011-05-01

    DNA damage activates signaling pathways that lead to modification of local chromatin and recruitment of DNA repair proteins. Multiple DNA repair proteins having ubiquitin ligase activity are recruited to sites of DNA damage, where they ubiquitinate histones and other substrates. This DNA damage-induced histone ubiquitination is thought to play a critical role in mediating the DNA damage response. We now report that the polycomb protein BMI1 is rapidly recruited to sites of DNA damage, where it persists for more than 8 h. The sustained localization of BMI1 to damage sites is dependent on intact ATM and ATR and requires H2AX phosphorylation and recruitment of RNF8. BMI1 is required for DNA damage-induced ubiquitination of histone H2A at lysine 119. Loss of BMI1 leads to impaired repair of DNA double-strand breaks by homologous recombination and the accumulation of cells in G(2)/M. These data support a crucial role for BMI1 in the cellular response to DNA damage. PMID:21383063

  11. Urinary excretion of 8-oxo-7,8-dihydroguanine as biomarker of oxidative damage to DNA

    DEFF Research Database (Denmark)

    Loft, Steffen; Danielsen, Pernille Høgh; Løhr, Mille;

    2012-01-01

    Oxidatively damaged DNA may be important in carcinogenesis. 8-Oxo-7,8-dihydroguanine (8-oxoGua) is an abundant and mutagenic lesion excised by oxoguanine DNA glycosylase 1 (OGG1) and measurable in urine or plasma by chromatographic methods with electrochemical or mass spectrometric detectors...... air pollution, toxic metals, tobacco smoke and low plasma antioxidant levels, whereas fruit and vegetable intake or dietary interventions showed no association. In rodent studies some types of feed may be source of 8-oxoGua in collected urine. Of cancer therapies, cisplatin increased 8-oxo......, reflecting the rate of damage in steady state. A common genetic OGG1 variant may affect the activity and was associated with increased levels of oxidized purines in leukocytes without apparent effect on 8-oxoGua excretion or major change in cancer risk. 8-OxoGua excretion has been associated with exposure to...

  12. Quantification of damage in DNA recovered from highly degraded samples – a case study on DNA in faeces

    OpenAIRE

    Eveson J Paige; Deagle Bruce E; Jarman Simon N

    2006-01-01

    Abstract Background Poorly preserved biological tissues have become an important source of DNA for a wide range of zoological studies. Measuring the quality of DNA obtained from these samples is often desired; however, there are no widely used techniques available for quantifying damage in highly degraded DNA samples. We present a general method that can be used to determine the frequency of polymerase blocking DNA damage in specific gene-regions in such samples. The approach uses quantitativ...

  13. Voltammetric Detection of Damage to DNA by Arsenic Compounds at a DNA Biosensor

    Directory of Open Access Journals (Sweden)

    R. Wennrich

    2005-11-01

    Full Text Available DNA biosensor can serve as a powerfull tool for simple in vitro tests of chemicaltoxicity. In this paper, damage to DNA attached to the surface of screen-printed carbonelectrode by arsenic compounds in solution is described. Using the Co(III complex with1,10-phenanthroline, [Co(phen3]3+ , as an electrochemical DNA marker and the Ru(IIcomplex with bipyridyne, [Ru(bipy3]2+ , as a DNA oxidation catalyst, the portion of originaldsDNA which survives an incubation of the biosensor in the cleavage medium was evaluated.The model cleavage mixture was composed of an arsenic compound at 10-3 mol/Lconcentration corresponding to real contaminated water, 2x10-4 mol/L Fe(II or Cu(II ions asthe redox catalyst, and 1.5x10-2 mol/L hydrogen peroxide. DNA damage by arsenite,dimethylarsinic acid as the metabolic product of inorganic arsenic and widely used herbicide,as well as phenylarsonic acid and p-arsanilic acid as the representatives of feed additives wasfound in difference to arsenate.

  14. Repair of clustered DNA damage caused by high LET radiation in human fibroblasts

    Science.gov (United States)

    Rydberg, B.; Lobrich, M.; Cooper, P. K.; Chatterjee, A. (Principal Investigator)

    1998-01-01

    It has recently been demonstrated experimentally that DNA damage induced by high LET radiation in mammalian cells is non-randomly distributed along the DNA molecule in the form of clusters of various sizes. The sizes of such clusters range from a few base-pairs to at least 200 kilobase-pairs. The high biological efficiency of high LET radiation for induction of relevant biological endpoints is probably a consequence of this clustering, although the exact mechanisms by which the clustering affects the biological outcome is not known. We discuss here results for induction and repair of base damage, single-strand breaks and double-strand breaks for low and high LET radiations. These results are discussed in the context of clustering. Of particular interest is to determine how clustering at different scales affects overall rejoining and fidelity of rejoining of DNA double-strand breaks. However, existing methods for measuring repair of DNA strand breaks are unable to resolve breaks that are close together in a cluster. This causes problems in interpretation of current results from high LET radiation and will require new methods to be developed.

  15. Impact of sperm DNA damage and oocyte-repairing capacity on trout development.

    Science.gov (United States)

    Fernández-Díez, C; González-Rojo, S; Lombó, M; Herráez, M P

    2016-07-01

    Zygotic repair of paternal DNA is essential during embryo development. In spite of the interest devoted to sperm DNA damage, its combined effect with defect-repairing oocytes has not been analyzed. Modification of the breeding season is a common practice in aquaculture. This practice reduces developmental success and could affect the both factors: sperm DNA integrity and oocyte repair capacity. To evaluate the maternal role, we analyzed the progeny outcome after fertilizing in-season trout oocytes with untreated and with UV-irradiated sperm. We also analyzed the offspring obtained out of season with untreated sperm. The analysis of the number of lesions in 4 sperm nuclear genes revealed an increase of 1.22-11.18 lesions/10 kb in out-of-season sperm, similar to that obtained after sperm UV irradiation (400 µW/cm(2)5 min). Gene expression showed in out-of-season oocytes the overexpression of repair genes (ogg1, ung, lig3, rad1) and downregulation of tp53, indicating an enhanced repairing activity and reduced capacity to arrest development upon damage. The analysis of the progeny in out-of-season embryos revealed a similar profile tolerant to DNA damage, leading to a much lower apoptotic activity at organogenesis, lower hatching rates and increased rate of malformations. The effects were milder in descendants from in-season-irradiated sperm, showing an enhanced repairing activity at epibolia. Results point out the importance of the repairing machinery provided by the oocyte and show how susceptible it is to environmental changes. Transcripts related to DNA damage signalization and repair could be used as markers of oocyte quality. PMID:27071918

  16. Clusters of DNA damage induced by ionizing radiation: Formation of short DNA fragments. II. Experimental detection

    International Nuclear Information System (INIS)

    The basic 30-nm chromatin fiber in the mammalian cell consists of an unknown (possibly helical) arrangement of nucleosomes, with about 1.2 kb of DNA per 10-nm length of fiber. Track-structure considerations suggest that interactions of single δ rays or high-LET particles with the chromatin fiber might result in the formation of multiple lesions spread over a few kilobases of DNA. In particular, multiple DNA double-strand breaks and single-strand breaks may form. To test this experimentally, primary human fibroblasts were labeled with [3H]thymidine and exposed at 0 degrees C to X rays or accelerated nitrogen or iron ions in the LET range of 97-440 keV/pm. DNA was isolated inside agarose plugs and subjected to agarose gel electrophoresis under conditions that allowed good separation of 0.1-2 kb size DNA. The bulk of DNA remained in the well or migrated only a small distance into the gel. It was found that DNA fragments in the expected size range were formed linearly with dose with an efficiency that increased with LET. A comparison of the yield of such fragments with the yield of total DNA double-strand breaks suggests that for the high-LET ions a substantial proportion (20-90%) of DNA double-strand breaks are accompanied within 0.1-2 kb by at least one additional DNA double-strand break. It is shown that these results are in good agreement with theoretical calculations based on treating the 30-nm chromatin fiber as the target for ionizing particles. Theoretical considerations also predict that the clusters will contain numerous single-strand breaks and base damages. It is proposed that such clusters be designated open-quotes regionally multiply damaged sites.close quotes Postirradiation incubation at 37 degrees C resulted in a decline in the number of short DNA fragments, suggesting a repair activity. The biological significance of regionally multiply damaged sites is presently unknown. 34 refs., 6 figs., 1 tab

  17. Histone ubiquitylation and its roles in transcription and DNA damage response.

    Science.gov (United States)

    Meas, Rithy; Mao, Peng

    2015-12-01

    DNA in human cells is constantly assaulted by endogenous and exogenous DNA damaging agents. It is vital for the cell to respond rapidly and precisely to DNA damage to maintain genome integrity and reduce the risk of mutagenesis. Sophisticated reactions occur in chromatin surrounding the damaged site leading to the activation of DNA damage response (DDR), including transcription reprogramming, cell cycle checkpoint, and DNA repair. Histone proteins around the DNA damage play essential roles in DDR, through extensive post-translational modifications (PTMs) by a variety of modifying enzymes. One PTM on histones, mono-ubiquitylation, has emerged as a key player in cellular response to DNA damage. In this review, we will (1) briefly summarize the history of histone H2A and H2B ubiquitylation (H2Aub and H2Bub, respectively), (2) discuss their roles in transcription, and (3) their functions in DDR. PMID:26422137

  18. GC-Rich Extracellular DNA Induces Oxidative Stress, Double-Strand DNA Breaks, and DNA Damage Response in Human Adipose-Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Svetlana Kostyuk

    2015-01-01

    Full Text Available Background. Cell free DNA (cfDNA circulates throughout the bloodstream of both healthy people and patients with various diseases. CfDNA is substantially enriched in its GC-content as compared with human genomic DNA. Principal Findings. Exposure of haMSCs to GC-DNA induces short-term oxidative stress (determined with H2DCFH-DA and results in both single- and double-strand DNA breaks (comet assay and γH2AX, foci. As a result in the cells significantly increases the expression of repair genes (BRCA1 (RT-PCR, PCNA (FACS and antiapoptotic genes (BCL2 (RT-PCR and FACS, BCL2A1, BCL2L1, BIRC3, and BIRC2 (RT-PCR. Under the action of GC-DNA the potential of mitochondria was increased. Here we show that GC-rich extracellular DNA stimulates adipocyte differentiation of human adipose-derived mesenchymal stem cells (haMSCs. Exposure to GC-DNA leads to an increase in the level of RNAPPARG2 and LPL (RT-PCR, in the level of fatty acid binding protein FABP4 (FACS analysis and in the level of fat (Oil Red O. Conclusions. GC-rich fragments in the pool of cfDNA can potentially induce oxidative stress and DNA damage response and affect the direction of mesenchymal stem cells differentiation in human adipose—derived mesenchymal stem cells. Such a response may be one of the causes of obesity or osteoporosis.

  19. DNA repair efficiency in germ cells and early mouse embryos and consequences for radiation-induced transgenerational genomic damage

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, Francesco; Wyrobek, Andrew J.

    2009-01-18

    Exposure to ionizing radiation and other environmental agents can affect the genomic integrity of germ cells and induce adverse health effects in the progeny. Efficient DNA repair during gametogenesis and the early embryonic cycles after fertilization is critical for preventing transmission of DNA damage to the progeny and relies on maternal factors stored in the egg before fertilization. The ability of the maternal repair machinery to repair DNA damage in both parental genomes in the fertilizing egg is especially crucial for the fertilizing male genome that has not experienced a DNA repair-competent cellular environment for several weeks prior to fertilization. During the DNA repair-deficient period of spermatogenesis, DNA lesions may accumulate in sperm and be carried into the egg where, if not properly repaired, could result in the formation of heritable chromosomal aberrations or mutations and associated birth defects. Studies with female mice deficient in specific DNA repair genes have shown that: (i) cell cycle checkpoints are activated in the fertilized egg by DNA damage carried by the sperm; and (ii) the maternal genotype plays a major role in determining the efficiency of repairing genomic lesions in the fertilizing sperm and directly affect the risk for abnormal reproductive outcomes. There is also growing evidence that implicates DNA damage carried by the fertilizing gamete as a mediator of postfertilization processes that contribute to genomic instability in subsequent generations. Transgenerational genomic instability most likely involves epigenetic mechanisms or error-prone DNA repair processes in the early embryo. Maternal and embryonic DNA repair processes during the early phases of mammalian embryonic development can have far reaching consequences for the genomic integrity and health of subsequent generations.

  20. Monte Carlo simulation of DNA damage by low LET radiation using inhomogeneous higher order DNA targets

    International Nuclear Information System (INIS)

    To test possible effects of the heterogeneous nature of the cell nucleus on simulation results of radiation-induced DNA damage, inhomogeneous targets have been implemented in the biophysical code PARTRAC. The geometry of the DNA and the histones was defined by spheres around the constituent atoms. Electron cross sections in liquid water were scaled according to the mass density of the different materials, whereas photon cross sections were derived from the sum of the cross sections for the constituent atoms. In the case of higher energy electrons the simulations show an increase of energy deposition in the DNA proportional to its high mass density. For photons with energies in the range of the carbon and the oxygen K-shell (0.28-0.53 keV), cross sections of DNA are larger than those of water, leading to an increased yield of strand breaks per average absorbed dose in the cell nucleus. (author)

  1. Both Complexity and Location of DNA Damage Contribute to Cellular Senescence Induced by Ionizing Radiation

    Science.gov (United States)

    Zhang, Xurui; Ye, Caiyong; Sun, Fang; Wei, Wenjun; Hu, Burong; Wang, Jufang

    2016-01-01

    Persistent DNA damage is considered as a main cause of cellular senescence induced by ionizing radiation. However, the molecular bases of the DNA damage and their contribution to cellular senescence are not completely clear. In this study, we found that both heavy ions and X-rays induced senescence in human uveal melanoma 92–1 cells. By measuring senescence associated-β-galactosidase and cell proliferation, we identified that heavy ions were more effective at inducing senescence than X-rays. We observed less efficient repair when DNA damage was induced by heavy ions compared with X-rays and most of the irreparable damage was complex of single strand breaks and double strand breaks, while DNA damage induced by X-rays was mostly repaired in 24 hours and the remained damage was preferentially associated with telomeric DNA. Our results suggest that DNA damage induced by heavy ion is often complex and difficult to repair, thus presents as persistent DNA damage and pushes the cell into senescence. In contrast, persistent DNA damage induced by X-rays is preferentially associated with telomeric DNA and the telomere-favored persistent DNA damage contributes to X-rays induced cellular senescence. These findings provide new insight into the understanding of high relative biological effectiveness of heavy ions relevant to cancer therapy and space radiation research. PMID:27187621

  2. Both Complexity and Location of DNA Damage Contribute to Cellular Senescence Induced by Ionizing Radiation.

    Science.gov (United States)

    Zhang, Xurui; Ye, Caiyong; Sun, Fang; Wei, Wenjun; Hu, Burong; Wang, Jufang

    2016-01-01

    Persistent DNA damage is considered as a main cause of cellular senescence induced by ionizing radiation. However, the molecular bases of the DNA damage and their contribution to cellular senescence are not completely clear. In this study, we found that both heavy ions and X-rays induced senescence in human uveal melanoma 92-1 cells. By measuring senescence associated-β-galactosidase and cell proliferation, we identified that heavy ions were more effective at inducing senescence than X-rays. We observed less efficient repair when DNA damage was induced by heavy ions compared with X-rays and most of the irreparable damage was complex of single strand breaks and double strand breaks, while DNA damage induced by X-rays was mostly repaired in 24 hours and the remained damage was preferentially associated with telomeric DNA. Our results suggest that DNA damage induced by heavy ion is often complex and difficult to repair, thus presents as persistent DNA damage and pushes the cell into senescence. In contrast, persistent DNA damage induced by X-rays is preferentially associated with telomeric DNA and the telomere-favored persistent DNA damage contributes to X-rays induced cellular senescence. These findings provide new insight into the understanding of high relative biological effectiveness of heavy ions relevant to cancer therapy and space radiation research. PMID:27187621

  3. Both Complexity and Location of DNA Damage Contribute to Cellular Senescence Induced by Ionizing Radiation.

    Directory of Open Access Journals (Sweden)

    Xurui Zhang

    Full Text Available Persistent DNA damage is considered as a main cause of cellular senescence induced by ionizing radiation. However, the molecular bases of the DNA damage and their contribution to cellular senescence are not completely clear. In this study, we found that both heavy ions and X-rays induced senescence in human uveal melanoma 92-1 cells. By measuring senescence associated-β-galactosidase and cell proliferation, we identified that heavy ions were more effective at inducing senescence than X-rays. We observed less efficient repair when DNA damage was induced by heavy ions compared with X-rays and most of the irreparable damage was complex of single strand breaks and double strand breaks, while DNA damage induced by X-rays was mostly repaired in 24 hours and the remained damage was preferentially associated with telomeric DNA. Our results suggest that DNA damage induced by heavy ion is often complex and difficult to repair, thus presents as persistent DNA damage and pushes the cell into senescence. In contrast, persistent DNA damage induced by X-rays is preferentially associated with telomeric DNA and the telomere-favored persistent DNA damage contributes to X-rays induced cellular senescence. These findings provide new insight into the understanding of high relative biological effectiveness of heavy ions relevant to cancer therapy and space radiation research.

  4. Sumoylation of MDC1 is important for proper DNA damage response.

    Science.gov (United States)

    Luo, Kuntian; Zhang, Haoxing; Wang, Liewei; Yuan, Jian; Lou, Zhenkun

    2012-06-29

    In response to DNA damage, many DNA damage factors, such as MDC1 and 53BP1, redistribute to sites of DNA damage. The mechanism governing the turnover of these factors at DNA damage sites, however, remains enigmatic. Here, we show that MDC1 is sumoylated following DNA damage, and the sumoylation of MDC1 at Lys1840 is required for MDC1 degradation and removal of MDC1 and 53BP1 from sites of DNA damage. Sumoylated MDC1 is recognized and ubiquitinated by the SUMO-targeted E3 ubiquitin ligase RNF4. Mutation of the MDC1 Lys 1840 (K1840R) results in impaired CtIP, replication protein A, and Rad51 accumulation at sites of DNA damage and defective homologous recombination (HR). The HR defect caused by MDC1K1840R mutation could be rescued by 53BP1 downregulation. These results reveal the intricate dynamics governing the assembly and disassembly of DNA damage factors at sites of DNA damage for prompt response to DNA damage. PMID:22635276

  5. Biological effects of clustered DNA damage produced by heavy ion beams with its complexity

    International Nuclear Information System (INIS)

    Heavy ion beams produce denser ionized region around their track, and cause accumulated damage cluster in the target DNA molecule, termed ''clustered DNA damage.'' Although any ionizing radiations can generate clustered DNA damage with respective degree, heavy ion beam might very effectively produce clustered DNA damage for a reason as mentioned thereinbefore. However, we have less knowledge about molecular mechanism how clustered DNA damage is involved in the degree of biological consequence, and relationship between the species of ionizing radiation and the result. Our previous in vitro study showed that the yields of clustered DNA damage in the target DNA was in inverse proportion to the linear energy transfer (LET) of irradiated radiation (J. Radiat. Res., 49; 133-146, 2008). This result suggests that the yield is not simply responsible to the biological consequence. Therefore, we focused on the structure of clustered DNA damage induced by heavy ion beams in this study. We evaluated the number of damaged site in the designed target oligonucleotides irradiated by gamma-rays, carbon ions and iron ions beams. Also, we estimated the intracellular yields of clustered DNA damage consisted of oxidative base lesions (clustered base damage), because we investigated only DSB not clustered base damage in the previous study. (author)

  6. Effects of benzo[a]pyrene on mitochondrial and nuclear DNA damage in Atlantic killifish (Fundulus heteroclitus) from a creosote-contaminated and reference site

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Dawoon; Cho, Youngeun [Nicholas School of the Environment, Duke University, Durham, NC 27708 (United States); Collins, Leonard B.; Swenberg, James A. [Center for Environmental Health and Susceptibility, Gillings School of Global Public Health, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599 (United States); Di Giulio, Richard T., E-mail: richd@duke.edu [Nicholas School of the Environment, Duke University, Durham, NC 27708 (United States)

    2009-10-19

    Benzo[a]pyrene (BaP) is a known genotoxicant that affects both mitochondrial and nuclear DNA (mtDNA, nDNA). Here, we examined mtDNA and nDNA damage in the Atlantic killifish (Fundulus heteroclitus) from a highly contaminated Superfund site (Elizabeth River, VA, USA) and from a reference site (King's Creek, VA, USA) that were dosed with 10 mg/kg BaP. Using the long amplicon quantitative PCR technique, we observed similar increases in mitochondrial and nuclear DNA damage in King's Creek fish treated with BaP. Killifish from the Elizabeth River showed high levels of basal nDNA and mtDNA damage compared to fish from the reference site, but the level of damage induced due to BaP treatment was much lower in Elizabeth River killifish compared to King's Creek fish. Laboratory-reared offspring from both populations showed increased BaP-induced damage in mtDNA, relative to nDNA. Similar to the adult experiment, the Elizabeth River larvae had higher levels of basal DNA damage than those from the reference site, but were less impacted by BaP exposure. Measurements of oxidative DNA damage (8-oxo-deoxyguanine by LC-MS/MS) showed no differences among treatment groups, suggesting that the majority of DNA damage is from covalent binding of BaP metabolites to DNA. This study shows for the first time that mitochondria can be an important target of BaP toxicity in fish, indicating that BaP exposures could have important energetic consequences. Results also suggest that multi-generational exposures in the wild may lead to adaptations that dampen DNA damage arising from BaP exposure.

  7. Effects of benzo[a]pyrene on mitochondrial and nuclear DNA damage in Atlantic killifish (Fundulus heteroclitus) from a creosote-contaminated and reference site

    International Nuclear Information System (INIS)

    Benzo[a]pyrene (BaP) is a known genotoxicant that affects both mitochondrial and nuclear DNA (mtDNA, nDNA). Here, we examined mtDNA and nDNA damage in the Atlantic killifish (Fundulus heteroclitus) from a highly contaminated Superfund site (Elizabeth River, VA, USA) and from a reference site (King's Creek, VA, USA) that were dosed with 10 mg/kg BaP. Using the long amplicon quantitative PCR technique, we observed similar increases in mitochondrial and nuclear DNA damage in King's Creek fish treated with BaP. Killifish from the Elizabeth River showed high levels of basal nDNA and mtDNA damage compared to fish from the reference site, but the level of damage induced due to BaP treatment was much lower in Elizabeth River killifish compared to King's Creek fish. Laboratory-reared offspring from both populations showed increased BaP-induced damage in mtDNA, relative to nDNA. Similar to the adult experiment, the Elizabeth River larvae had higher levels of basal DNA damage than those from the reference site, but were less impacted by BaP exposure. Measurements of oxidative DNA damage (8-oxo-deoxyguanine by LC-MS/MS) showed no differences among treatment groups, suggesting that the majority of DNA damage is from covalent binding of BaP metabolites to DNA. This study shows for the first time that mitochondria can be an important target of BaP toxicity in fish, indicating that BaP exposures could have important energetic consequences. Results also suggest that multi-generational exposures in the wild may lead to adaptations that dampen DNA damage arising from BaP exposure.

  8. Microgravity increases DNA damage response in Caenorhabditis elegans during Shenzhou-8 spaceflight

    Science.gov (United States)

    Gao, Ying; Sun, Yeqing; Xu, Dan; Zhao, Lei; Xu, Jiamin

    DNA damage response (DDR) plays an important role in genome maintenance through cell cycle arrest followed by DNA repair and/or apoptosis. Perturbing DDR may elicit genomic instability, carcinogenesis, even cell death. Space radiation and microgravity both have been reported to cause DDR in mammal cells,while, in the space environment, the interaction of space radiation and microgravity on DDR is still controversial. To clarify the interaction, dauer larva of Caenorhabditis elegans were employed in Shenzhou-8 space mission and suffered space synthetic environment (RM) and space radiation (R) during 16.5-day spaceflight. mRNA microarray, qPCR and miRNA microarray were performed individually to detect the differences of transcriptome and microRNome affected by two environments. The results showed that, two fold genes were regulated more significantly by RM than by R. These regulated genes were involved in different physiological activities from each environment, which mainly involve in protein metabolic and modification processes in RM, and energy metabolic process in R. 21 of 500 DDR genes were extracted as significantly different expression in two space environments. DNA repair and apoptosis were enhanced by microgravity, since 18 of 21 genes were altered by RM specifically, including six “Response to DNA damage stimulus” genes, four “DNA repair” genes and eight “apoptosis process” genes. miRNAome also showed changes in response to microgravity. miRNA-81, 82, 124 and 795 were predicted to respond to RM and regulate DDR in C.elegans for the first time. These results suggest that microgravity increases the physiological activities to the space environment, especially enhance DNA damage response on transcription and post-transcriptional regulation in metazoan. We expect the finding provides new informations on synergetic effects between microgravity and radiation, and may be helpful for space risk assessment.

  9. Neutron energy-dependent initial DNA damage and chromosomal exchange

    International Nuclear Information System (INIS)

    This study was undertaken to investigate the biological effect of monoenergetic neutrons on human lymphocyte DNA and chromosomes. Monoenergetic neutrons of 2.3, 1.0, 0.79, 0.57, 0.37 and 0.186 MeV were generated, and 252Cf neutrons and 60Co γ-rays were also used for comparison. Biological effect was evaluated two ways. The RBE values with the comet assay were estimated as 6.3 and 5.4 at 0.37 MeV and 0.57 MeV relative to that of 60Co γ-rays, and chromosome aberration rates were also observed in these different levels of monoenergetic neutrons. The yield of chromosome aberrations per unit dose was high at lower neutron energies with a gradual decline with 0.186 MeV neutron energy. The RBE was increased to 10.7 at 0.57 MeV from 3.9 at 252Cf neutrons and reached 16.4 as the highest RBE at 0.37 MeV, but the value decreased to 11.2 at 0.186 MeV. The response patterns of initial DNA damage and chromosome exchange were quite similar to that of LET. These results show that the intensity of DNA damage and chromosomal exchange is LET dependent. RBE of low energy neutrons is higher than that of fission neutrons. Low energy neutrons containing Hiroshima atomic bomb radiation may have created a significantly higher incidence of biological effect in atomic bomb survivors. (author)

  10. Neutron energy-dependent initial DNA damage and chromosomal exchange.

    Science.gov (United States)

    Tanaka, K; Gajendiran, N; Endo, S; Komatsu, K; Hoshi, M; Kamada, N

    1999-12-01

    This study was undertaken to investigate the biological effect of monoenergetic neutrons on human lymphocyte DNA and chromosomes. Monoenergetic neutrons of 2.3, 1.0, 0.79, 0.57, 0.37 and 0.186 MeV were generated, and 252Cf neutrons and 60Co gamma-rays were also used for comparison. Biological effect was evaluated two ways. The RBE values with the comet assay were estimated as 6.3 and 5.4 at 0.37 MeV and 0.57 MeV relative to that of 60Co gamma-rays, and chromosome aberration rates were also observed in these different levels of monoenergetic neutrons. The yield of chromosome aberrations per unit dose was high at lower neutron energies with a gradual decline with 0.186 MeV neutron energy. The RBE was increased to 10.7 at 0.57 MeV from 3.9 at 252Cf neutrons and reached 16.4 as the highest RBE at 0.37 MeV, but the value decreased to 11.2 at 0.186 MeV. The response patterns of initial DNA damage and chromosome exchange were quite similar to that of LET. These results show that the intensity of DNA damage and chromosomal exchange is LET dependent. RBE of low energy neutrons is higher than that of fission neutrons. Low energy neutrons containing Hiroshima atomic bomb radiation may have created a significantly higher incidence of biological effect in atomic bomb survivors. PMID:10804992

  11. Amorphous nanosilica induce endocytosis-dependent ROS generation and DNA damage in human keratinocytes

    Directory of Open Access Journals (Sweden)

    Hirai Toshiro

    2011-01-01

    Full Text Available Abstract Background Clarifying the physicochemical properties of nanomaterials is crucial for hazard assessment and the safe application of these substances. With this in mind, we analyzed the relationship between particle size and the in vitro effect of amorphous nanosilica (nSP. Specifically, we evaluated the relationship between particle size of nSP and the in vitro biological effects using human keratinocyte cells (HaCaT. Results Our results indicate that exposure to nSP of 70 nm diameter (nSP70 induced an elevated level of reactive oxygen species (ROS, leading to DNA damage. A markedly reduced response was observed using submicron-sized silica particles of 300 and 1000 nm diameter. In addition, cytochalasin D-treatment reduced nSP70-mediated ROS generation and DNA damage, suggesting that endocytosis is involved in nSP70-mediated cellular effects. Conclusions Thus, particle size affects amorphous silica-induced ROS generation and DNA damage of HaCaT cells. We believe clarification of the endocytosis pathway of nSP will provide useful information for hazard assessment as well as the design of safer forms of nSPs.

  12. Plasmid DNA damage caused by stibine and trimethylstibine

    International Nuclear Information System (INIS)

    Antimony is classified as 'possibly carcinogenic to humans' and there is also sufficient evidence for antimony carcinogenicity in experimental animals. Stibine is a volatile inorganic antimony compound to which humans can be exposed in occupational settings (e.g., lead-acid battery charging). Because it is highly toxic, stibine is considered a significant health risk; however, its genotoxicity has received little attention. For the work reported here, stibine was generated by sodium borohydride reduction of potassium antimony tartrate. Trimethylstibine is a volatile organometallic antimony compound found commonly in landfill and sewage fermentation gases at concentrations ranging between 0.1 and 100 μg/m3. Trimethylstibine is generally considered to pose little environmental or health risk. In the work reported here, trimethylstibine was generated by reduction of trimethylantimony dichloride using either sodium borohydride or the thiol compounds, dithioerythritol (DTE), L-cysteine, and glutathione. Here we report the evaluation of the in vitro genotoxicities of five antimony compounds--potassium antimony tartrate, stibine, potassium hexahydroxyantimonate, trimethylantimony dichloride, and trimethylstibine--using a plasmid DNA-nicking assay. Of these five antimony compounds, only stibine and trimethylstibine were genotoxic (significant nicking to pBR 322 plasmid DNA). We found stibine and trimethylstibine to be about equipotent with trimethylarsine using this plasmid DNA-nicking assay. Reaction of trimethylantimony dichloride with either glutathione or L-cysteine to produce DNA-damaging trimethylstibine was observed with a trimethylantimony dichloride concentration as low as 50 μM and L-cysteine or glutathione concentrations as low as 500 and 200 μM, respectively, for a 24 h incubation

  13. Theoretical modelling of radiolytic damage of free DNA bases and within DNA macromolecule

    Czech Academy of Sciences Publication Activity Database

    Štěpán, Václav; Davídková, Marie

    2007-01-01

    Roč. 122, 1-4 (2007), s. 110-112. ISSN 0144-8420. [Symposium on Microdosimetry /14./. Venezia, 13.11.2005-18.11.2005] R&D Projects: GA AV ČR KJB4048401 Institutional research plan: CEZ:AV0Z10480505 Keywords : DNA damage * radiolysis * ionizing radiation * theoretical modeling Subject RIV: BO - Biophysics Impact factor: 0.528, year: 2007

  14. Low-Dose Formaldehyde Delays DNA Damage Recognition and DNA Excision Repair in Human Cells

    OpenAIRE

    Luch, Andreas; Frey, Flurina C. Clement; Meier, Regula; Fei, Jia; Naegeli, Hanspeter

    2014-01-01

    Objective Formaldehyde is still widely employed as a universal crosslinking agent, preservative and disinfectant, despite its proven carcinogenicity in occupationally exposed workers. Therefore, it is of paramount importance to understand the possible impact of low-dose formaldehyde exposures in the general population. Due to the concomitant occurrence of multiple indoor and outdoor toxicants, we tested how formaldehyde, at micromolar concentrations, interferes with general DNA damage recogni...

  15. Low-dose formaldehyde delays DNA damage recognition and DNA excision repair in human cells

    OpenAIRE

    Luch, Andreas; Frey, Flurina C. Clement; Meier, Regula; Fei, Jia; Naegeli, Hanspeter

    2014-01-01

    OBJECTIVE: Formaldehyde is still widely employed as a universal crosslinking agent, preservative and disinfectant, despite its proven carcinogenicity in occupationally exposed workers. Therefore, it is of paramount importance to understand the possible impact of low-dose formaldehyde exposures in the general population. Due to the concomitant occurrence of multiple indoor and outdoor toxicants, we tested how formaldehyde, at micromolar concentrations, interferes with general DNA damage recogn...

  16. Viral DNA Replication-Dependent DNA Damage Response Activation during BK Polyomavirus Infection

    OpenAIRE

    Verhalen, Brandy; Justice, Joshua L.; Imperiale, Michael J; Jiang, Mengxi

    2015-01-01

    BK polyomavirus (BKPyV) reactivation is associated with severe human disease in kidney and bone marrow transplant patients. The interplay between viral and host factors that regulates the productive infection process remains poorly understood. We have previously reported that the cellular DNA damage response (DDR) is activated upon lytic BKPyV infection and that its activation is required for optimal viral replication in primary kidney epithelial cells. In this report, we set out to determine...

  17. Even low doses of radiation lead to DNA damage accumulation in lung tissue according to the genetically-defined DNA repair capacity

    International Nuclear Information System (INIS)

    Background and purpose: Intensity-modulated radiation therapy for thoracic malignancies increases the exposure of healthy lung tissue to low-dose radiation. The biological impact of repetitive low-dose radiation on the radiosensitive lung is unclear. Materials and methods: In the present study, using mouse strains with different genetic DNA repair capacities, we monitored the extent of DNA damage in lung parenchyma after 2, 4, 6, 8, and 10 weeks of daily low-dose 100-mGy radiation. Results: Using 53BP1 as a marker for double-strand breaks, we observed DNA damage accumulation during fractionated low-dose radiation with increasing cumulative doses. The amount of radiation-induced 53BP1 varied significantly between bronchiolar and alveolar epithelial cells, suggesting that different cell populations in the lung parenchyma had varying vulnerabilities to ionizing radiation. The genetic background of DNA repair determined the extent of cumulative low-dose radiation damage. Moreover, increased DNA damage during fractionated low-dose radiation affected replication, and apoptosis in the lung parenchyma, which may influence overall lung function. Conclusion: Collectively, our results suggest that low, yet damaging, doses of radiation increase the risk of toxicity to normal lung tissue and the probability of developing secondary malignancies

  18. Action spectrum for DNA damage in alfalfa lowers predicted impact of ozone depletion

    International Nuclear Information System (INIS)

    Depletion of stratospheric ozone will increase the intensity of solar mid-ultraviolet (280–320 nm) radiation reaching the biosphere. Predictions of increases in biologically effective ultraviolet radiation require knowledge of both the solar spectral intensity and the wavelength-dependent sensitivity (action spectrum) for damaging the biological target. A generalized action spectrum for plant damage encompassing wavelengths from 280 to 313 nm has been widely used to predict the consequences of ozone depletion. Calculations based on this spectrum and new satellite measurements of atmospheric ozone suggest that plants will be among those organisms most severely affected. Here we report an absolute action spectrum for cyclobutyl pyrimidine dimer induction in DNA in intact alfalfa seedlings, which reveals damage by wavelengths as long as 365 nm. Calculations based on this new action spectrum predict significantly smaller increases in biologically effective ultraviolet radiation resulting from ozone depletion, particularly at high latitudes, than calculations based on either the generalized plant action spectrum or the action spectrum for damaging unshielded DNA

  19. Direct observation of ultrafast-electron-transfer reactions unravels high effectiveness of reductive DNA damage

    OpenAIRE

    Nguyen, Jenny; Ma, Yuhan; Luo, Ting; Bristow, Robert G; Jaffray, David A; Lu, Qing-Bin

    2011-01-01

    Both water and electron-transfer reactions play important roles in chemistry, physics, biology, and the environment. Oxidative DNA damage is a well-known mechanism, whereas the relative role of reductive DNA damage is unknown. The prehydrated electron (), a novel species of electrons in water, is a fascinating species due to its fundamental importance in chemistry, biology, and the environment. is an ideal agent to observe reductive DNA damage. Here, we report both the first in situ femtosec...

  20. Oxidative DNA damage in female patients with diabetes mellitus type 2.

    Directory of Open Access Journals (Sweden)

    Bianca Guggenberger

    2015-05-01

    No differences in DNA damage were found between the two groups of low vs. high HbA1c. In addition, neither diabetes duration nor medication (Insulin vs. oral antidiabetics had an influence on DNA damage. Therefore we can conclude that female patients with diabetes mellitus type 2 in Austria are under optimal treatment to control blood sugar and other metabolic parameter, that no differences in DNA damage could be observed.

  1. Nuclear accumulation and activation of p53 in embryonic stem cells after DNA damage

    OpenAIRE

    Rolletschek Alexandra; Solozobova Valeriya; Blattner Christine

    2009-01-01

    Abstract Background P53 is a key tumor suppressor protein. In response to DNA damage, p53 accumulates to high levels in differentiated cells and activates target genes that initiate cell cycle arrest and apoptosis. Since stem cells provide the proliferative cell pool within organisms, an efficient DNA damage response is crucial. Results In proliferating embryonic stem cells, p53 is localized predominantly in the cytoplasm. DNA damage-induced nuclear accumulation of p53 in embryonic stem cells...

  2. Multiple Rad5 activities mediate sister chromatid recombination to bypass DNA damage at stalled replication forks

    OpenAIRE

    Minca, Eugen C; Kowalski, David

    2010-01-01

    DNA damage that blocks replication is bypassed in order to complete chromosome duplication and preserve cell viability and genome stability. Rad5, a PCNA polyubiquitin ligase and DNA-dependent ATPase in yeast, is orthologous to putative tumor suppressors and controls error-free damage bypass by an unknown mechanism. To identify the mechanism in vivo, we investigated the roles of Rad5 and analyzed the DNA structures that form during damage bypass at site-specific stalled forks present at repli...

  3. Significant disparity in base and sugar damage in DNA resulting from neutron and electron irradiation

    OpenAIRE

    Pang, Dalong; Nico, Jeffrey S.; Karam, Lisa; Timofeeva, Olga; Blakely, William F.; Dritschilo, Anatoly; Dizdaroglu, Miral; Jaruga, Pawel

    2014-01-01

    In this study, a comparison of the effects of neutron and electron irradiation of aqueous DNA solutions was investigated to characterize potential neutron signatures in DNA damage induction. Ionizing radiation generates numerous lesions in DNA, including base and sugar lesions, lesions involving base–sugar combinations (e.g. 8,5′-cyclopurine-2′-deoxynucleosides) and DNA–protein cross-links, as well as single- and double-strand breaks and clustered damage. The characteristics of damage depend ...

  4. Phosphoramide mustard exposure induces DNA adduct formation and the DNA damage repair response in rat ovarian granulosa cells

    International Nuclear Information System (INIS)

    Phosphoramide mustard (PM), the ovotoxic metabolite of the anti-cancer agent cyclophosphamide (CPA), destroys rapidly dividing cells by forming NOR-G-OH, NOR-G and G-NOR-G adducts with DNA, potentially leading to DNA damage. A previous study demonstrated that PM induces ovarian DNA damage in rat ovaries. To investigate whether PM induces DNA adduct formation, DNA damage and induction of the DNA repair response, rat spontaneously immortalized granulosa cells (SIGCs) were treated with vehicle control (1% DMSO) or PM (3 or 6 μM) for 24 or 48 h. Cell viability was reduced (P < 0.05) after 48 h of exposure to 3 or 6 μM PM. The NOR-G-OH DNA adduct was detected after 24 h of 6 μM PM exposure, while the more cytotoxic G-NOR-G DNA adduct was formed after 48 h by exposure to both PM concentrations. Phosphorylated H2AX (γH2AX), a marker of DNA double stranded break occurrence, was also increased by PM exposure, coincident with DNA adduct formation. Additionally, induction of genes (Atm, Parp1, Prkdc, Xrcc6, and Brca1) and proteins (ATM, γH2AX, PARP-1, PRKDC, XRCC6, and BRCA1) involved in DNA repair were observed in both a time- and dose-dependent manner. These data support that PM induces DNA adduct formation in ovarian granulosa cells, induces DNA damage and elicits the ovarian DNA repair response. - Highlights: • PM forms ovarian DNA adducts. • DNA damage marker γH2AX increased by PM exposure. • PM induces ovarian DNA double strand break repair

  5. Phosphoramide mustard exposure induces DNA adduct formation and the DNA damage repair response in rat ovarian granulosa cells

    Energy Technology Data Exchange (ETDEWEB)

    Ganesan, Shanthi, E-mail: shanthig@iastate.edu; Keating, Aileen F., E-mail: akeating@iastate.edu

    2015-02-01

    Phosphoramide mustard (PM), the ovotoxic metabolite of the anti-cancer agent cyclophosphamide (CPA), destroys rapidly dividing cells by forming NOR-G-OH, NOR-G and G-NOR-G adducts with DNA, potentially leading to DNA damage. A previous study demonstrated that PM induces ovarian DNA damage in rat ovaries. To investigate whether PM induces DNA adduct formation, DNA damage and induction of the DNA repair response, rat spontaneously immortalized granulosa cells (SIGCs) were treated with vehicle control (1% DMSO) or PM (3 or 6 μM) for 24 or 48 h. Cell viability was reduced (P < 0.05) after 48 h of exposure to 3 or 6 μM PM. The NOR-G-OH DNA adduct was detected after 24 h of 6 μM PM exposure, while the more cytotoxic G-NOR-G DNA adduct was formed after 48 h by exposure to both PM concentrations. Phosphorylated H2AX (γH2AX), a marker of DNA double stranded break occurrence, was also increased by PM exposure, coincident with DNA adduct formation. Additionally, induction of genes (Atm, Parp1, Prkdc, Xrcc6, and Brca1) and proteins (ATM, γH2AX, PARP-1, PRKDC, XRCC6, and BRCA1) involved in DNA repair were observed in both a time- and dose-dependent manner. These data support that PM induces DNA adduct formation in ovarian granulosa cells, induces DNA damage and elicits the ovarian DNA repair response. - Highlights: • PM forms ovarian DNA adducts. • DNA damage marker γH2AX increased by PM exposure. • PM induces ovarian DNA double strand break repair.

  6. Reduction of arsenite-enhanced ultraviolet radiation-induced DNA damage by supplemental zinc

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Karen L.; King, Brenee S.; Sandoval, Monica M.; Liu, Ke Jian; Hudson, Laurie G., E-mail: lhudson@salud.unm.edu

    2013-06-01

    Arsenic is a recognized human carcinogen and there is evidence that arsenic augments the carcinogenicity of DNA damaging agents such as ultraviolet radiation (UVR) thereby acting as a co-carcinogen. Inhibition of DNA repair is one proposed mechanism to account for the co-carcinogenic actions of arsenic. We and others find that arsenite interferes with the function of certain zinc finger DNA repair proteins. Furthermore, we reported that zinc reverses the effects of arsenite in cultured cells and a DNA repair target protein, poly (ADP-ribose) polymerase-1. In order to determine whether zinc ameliorates the effects of arsenite on UVR-induced DNA damage in human keratinocytes and in an in vivo model, normal human epidermal keratinocytes and SKH-1 hairless mice were exposed to arsenite, zinc or both before solar-simulated (ss) UVR exposure. Poly (ADP-ribose) polymerase activity, DNA damage and mutation frequencies at the Hprt locus were measured in each treatment group in normal human keratinocytes. DNA damage was assessed in vivo by immunohistochemical staining of skin sections isolated from SKH-1 hairless mice. Cell-based findings demonstrate that ssUVR-induced DNA damage and mutagenesis are enhanced by arsenite, and supplemental zinc partially reverses the arsenite effect. In vivo studies confirm that zinc supplementation decreases arsenite-enhanced DNA damage in response to ssUVR exposure. From these data we can conclude that zinc offsets the impact of arsenic on ssUVR-stimulated DNA damage in cells and in vivo suggesting that zinc supplementation may provide a strategy to improve DNA repair capacity in arsenic exposed human populations. - Highlights: • Low levels of arsenite enhance UV-induced DNA damage in human keratinocytes. • UV-initiated HPRT mutation frequency is enhanced by arsenite. • Zinc supplementation offsets DNA damage and mutation frequency enhanced by arsenite. • Zinc-dependent reduction of arsenite enhanced DNA damage is confirmed in vivo.

  7. Reduction of arsenite-enhanced ultraviolet radiation-induced DNA damage by supplemental zinc

    International Nuclear Information System (INIS)

    Arsenic is a recognized human carcinogen and there is evidence that arsenic augments the carcinogenicity of DNA damaging agents such as ultraviolet radiation (UVR) thereby acting as a co-carcinogen. Inhibition of DNA repair is one proposed mechanism to account for the co-carcinogenic actions of arsenic. We and others find that arsenite interferes with the function of certain zinc finger DNA repair proteins. Furthermore, we reported that zinc reverses the effects of arsenite in cultured cells and a DNA repair target protein, poly (ADP-ribose) polymerase-1. In order to determine whether zinc ameliorates the effects of arsenite on UVR-induced DNA damage in human keratinocytes and in an in vivo model, normal human epidermal keratinocytes and SKH-1 hairless mice were exposed to arsenite, zinc or both before solar-simulated (ss) UVR exposure. Poly (ADP-ribose) polymerase activity, DNA damage and mutation frequencies at the Hprt locus were measured in each treatment group in normal human keratinocytes. DNA damage was assessed in vivo by immunohistochemical staining of skin sections isolated from SKH-1 hairless mice. Cell-based findings demonstrate that ssUVR-induced DNA damage and mutagenesis are enhanced by arsenite, and supplemental zinc partially reverses the arsenite effect. In vivo studies confirm that zinc supplementation decreases arsenite-enhanced DNA damage in response to ssUVR exposure. From these data we can conclude that zinc offsets the impact of arsenic on ssUVR-stimulated DNA damage in cells and in vivo suggesting that zinc supplementation may provide a strategy to improve DNA repair capacity in arsenic exposed human populations. - Highlights: • Low levels of arsenite enhance UV-induced DNA damage in human keratinocytes. • UV-initiated HPRT mutation frequency is enhanced by arsenite. • Zinc supplementation offsets DNA damage and mutation frequency enhanced by arsenite. • Zinc-dependent reduction of arsenite enhanced DNA damage is confirmed in vivo

  8. Investigation of DNA damage and repair mechanism using deinococcus radiodurans

    International Nuclear Information System (INIS)

    Deninococcus Radiodurans, formerly known as Micrococcus Radiodurans, is a popular bacterium because of its high resistance to damage by carcinogens such as ionizing radiation (Dean et. al. 1966; Kitayama and Matsuyama 1968) and UV radiation (Gasvon et. al., 1995; Arrange et. al. 1993). In this report, we investigated the high resistance to ionizing radiation by this bacterium. The bacteria had been exposed from I to 5 kGy of gamma radiation and then incubated in TGY medium to study their ability to repair the broken DNA. The repair time was measured by Pulse Field Gel Electrophoresis (PFGE) method. The repair time for each dose was determined. Also in order to ensure that the repair was perfect, the bacterium was subjected to a second exposure of ionizing radiation after it has fully repaired. It was found that the 'second' repair characteristic was similar to the first repair. This confirmed that the repair after the exposure to the ionizing radiation was perfect

  9. DDRprot: a database of DNA damage response-related proteins.

    Science.gov (United States)

    Andrés-León, Eduardo; Cases, Ildefonso; Arcas, Aida; Rojas, Ana M

    2016-01-01

    The DNA Damage Response (DDR) signalling network is an essential system that protects the genome's integrity. The DDRprot database presented here is a resource that integrates manually curated information on the human DDR network and its sub-pathways. For each particular DDR protein, we present detailed information about its function. If involved in post-translational modifications (PTMs) with each other, we depict the position of the modified residue/s in the three-dimensional structures, when resolved structures are available for the proteins. All this information is linked to the original publication from where it was obtained. Phylogenetic information is also shown, including time of emergence and conservation across 47 selected species, family trees and sequence alignments of homologues. The DDRprot database can be queried by different criteria: pathways, species, evolutionary age or involvement in (PTM). Sequence searches using hidden Markov models can be also used.Database URL: http://ddr.cbbio.es. PMID:27577567

  10. DNA-membrane complex damages in mammalian cells after gamma irradiation and chemical agent action and role of the complex in DNA replication

    International Nuclear Information System (INIS)

    The sedimentation behavior of the DNA-membrane complex (DMC) from Ehrlich ascites tumor (EAT) cells after gamma irradiation and carminomycin (CM) treatment was studied. The DNA and membrane containing material released by alkaline lysis from EAT cells had an anomalous sedimentation relative to denatured DNA. The DMC sediments with a great sedimentation constant (255 S). Both the chemical and physical agents induced DNA single-strand breaks and damage of the DMC. It was shown that 0.01 g/ml CM did not affect the incorporation of exogenic thymidine into DNA but the DMC was completely disrupted by this CM dose. There was no correlation between postirradiation repair kinetics of the DMC and the kinetics of 3H-thymidine incorporation into DNA of ETA cells. (author)

  11. Exome capture reveals ZNF423 and CEP164 mutations, linking renal ciliopathies to DNA damage response signaling

    DEFF Research Database (Denmark)

    Chaki, Moumita; Airik, Rannar; Ghosh, Amiya K;

    2012-01-01

    Nephronophthisis-related ciliopathies (NPHP-RC) are degenerative recessive diseases that affect kidney, retina, and brain. Genetic defects in NPHP gene products that localize to cilia and centrosomes defined them as "ciliopathies." However, disease mechanisms remain poorly understood. Here, we......, known to activate ATM at sites of DNA damage. We show that knockdown of CEP164 or ZNF423 causes sensitivity to DNA damaging agents and that cep164 knockdown in zebrafish results in dysregulated DDR and an NPHP-RC phenotype. Our findings link degenerative diseases of the kidney and retina, disorders of...

  12. PARP-1 ensures regulation of replication fork progression by homologous recombination on damaged DNA

    OpenAIRE

    Sugimura, Kazuto; Takebayashi, Shin-ichiro; Taguchi, Hiroshi; Takeda, Shunichi; Okumura, Katsuzumi

    2008-01-01

    Poly-ADP ribose polymerase 1 (PARP-1) is activated by DNA damage and has been implicated in the repair of single-strand breaks (SSBs). Involvement of PARP-1 in other DNA damage responses remains controversial. In this study, we show that PARP-1 is required for replication fork slowing on damaged DNA. Fork progression in PARP-1 −/− DT40 cells is not slowed down even in the presence of DNA damage induced by the topoisomerase I inhibitor camptothecin (CPT). Mammalian cells treated with a PARP in...

  13. Gene polymorphisms and increased DNA damage in morbidly obese women.

    Science.gov (United States)

    Luperini, B C O; Almeida, D C; Porto, M P; Marcondes, J P C; Prado, R P; Rasera, I; Oliveira, M R M; Salvadori, D M F

    2015-06-01

    Obesity is characterized by increased adipose tissue mass resulting from a chronic imbalance between energy intake and expenditure. Furthermore, there is a clearly defined relationship among fat mass expansion, chronic low-grade systemic inflammation and reactive oxygen species (ROS) generation; leading to ROS-related pathological events. In the past years, genome-wide association studies have generated convincing evidence associating genetic variation at multiple regions of the genome with traits that reflect obesity. Therefore, the present study aimed to evaluate the relationships among the gene polymorphisms ghrelin (GHRL-rs26802), ghrelin receptor (GHSR-rs572169), leptin (LEP-rs7799039), leptin receptor (LEPR-rs1137101) and fat mass and obesity-associated (FTO-rs9939609) and obesity. The relationships among these gene variants and the amount of DNA damage were also investigated. Three hundred Caucasian morbidly obese and 300 eutrophic (controls) women were recruited. In summary, the results demonstrated that the frequencies of the GHRL, GHSR, LEP and LEPR polymorphisms were not different between Brazilian white morbidly obese and eutrophic women. Exceptions were the AA-FTO genotype and allele A, which were significantly more frequent in obese women than in the controls (0.23% vs. 0.10%; 0.46 vs. 0.36, respectively), and the TT-FTO genotype and the T allele, which were less frequent in morbidly obese women (p<0.01). Furthermore, significant differences in the amount of genetic lesions associated with FTO variants were observed only in obese women. In conclusion, this study demonstrated that the analyzed SNPs were not closely associated with morbid obesity, suggesting they are not the major contributors to obesity. Therefore, our data indicated that these gene variants are not good biomarkers for predicting risk susceptibility for obesity, whereas ROS generated by the inflammatory status might be one of the causes of DNA damage in obese women, favoring

  14. DNA damage responses and oxidative stress in dyskeratosis congenita.

    Directory of Open Access Journals (Sweden)

    Larisa Pereboeva

    Full Text Available Dyskeratosis congenita (DC is an inherited multisystem disorder of premature aging, cancer predisposition, and bone marrow failure caused by selective exhaustion of highly proliferative cell pools. DC patients also have a poor tolerance to chemo/radiotherapy and bone marrow transplantation. Although critically shortened telomeres and defective telomere maintenance contribute to DC pathology, other mechanisms likely exist. We investigate the link between telomere dysfunction and oxidative and DNA damage response pathways and assess the effects of antioxidants. In vitro studies employed T lymphocytes from DC subjects with a hTERC mutation and age-matched controls. Cells were treated with cytotoxic agents, including Paclitaxel, Etoposide, or ionizing radiation. Apoptosis and reactive oxygen species (ROS were assessed by flow cytometry, and Western blotting was used to measure expression of DNA damage response (DDR proteins, including total p53, p53S15, and p21(WAF. N-acetyl-cysteine (NAC, an antioxidant, was used to modulate cell growth and ROS. In stimulated culture, DC lymphocytes displayed a stressed phenotype, characterized by elevated levels of ROS, DDR and apoptotic markers as well as a proliferative defect that was more pronounced after exposure to cytotoxic agents. NAC partially ameliorated the growth disadvantage of DC cells and decreased radiation-induced apoptosis and oxidative stress. These findings suggest that oxidative stress may play a role in the pathogenesis of DC and that pharmacologic intervention to correct this pro-oxidant imbalance may prove useful in the clinical setting, potentially alleviating untoward toxicities associated with current cytotoxic treatments.

  15. A possible role of repair proteins BRCA1 and DNA-PK in the processing of oxidative DNA damage

    Directory of Open Access Journals (Sweden)

    Alexandros G Georgakilas

    2008-08-01

    Full Text Available BRCA1 and DNA-PK are two significant multifunctional proteins involved primarily in the processing of double strand breaks (DSBs. BRCA1 participates actively in homologous recombination (HR while DNA-PK in non-homologous end joining (NHEJ. In this mini review, we discuss all recent evidence for a possible involvement of these repair proteins also in the processing of oxidatively-induced DNA damage.Keyword: DNA damage, BRCA1, DNA-PKReceived: 6 June 2008, Accepted: 10 August 2008 Published online: 18 August 2008

  16. Photoelectrochemical Sensors for the Rapid Detection of DNA Damage Induced by Some Nanoparticles

    OpenAIRE

    M. Jamaluddin Ahmed; Bin-Tian Zhang; Liang-Hong Guo

    2010-01-01

    Photoelectrochemcal sensors were developed for the rapid detection of oxidative DNA damage induced by titanium dioxide and polystyrene nanoparticles. Each sensor is a multilayer film prepared on a tin oxide nanoparticle electrode using layer- by-layer self assembly and is composed of separate layer of a photoelectrochemical indicator, DNA. The organic compound and heavy metals represent genotoxic chemicals leading two major damaging mechanisms, DNA adduct formation and DNA oxidation. The DN...

  17. DNA damage by smoke: Protection by turmeric and other inhibitors of ROS

    Energy Technology Data Exchange (ETDEWEB)

    Srinivas, L.; Shalini, V.K. (Department of Nutrition and Food Safety, Central Food Technological Research Institute, Mysore (India))

    1991-01-01

    Twigs-dry leaves smoke condensate (TDS), as a source of clastogenic ROS and carcinogenic PAH, was investigated for its in vitro DNA-damaging effect in calf thymus DNA and human peripheral lymphocytes. An aqueous turmeric component--Aq.T--with an established antioxidant activity, was tested as a DNA protectant. TDS induced 13-fold damage to calf thymus DNA as judged by the emergence of a DNA damage specific, fluorescent product (em: 405 nm). Aq.T at 800 ng/microL extended 69% protection to calf thymus DNA and was comparable to the other protectants such as curcumin, BHA, vitamin E, SOD, and CAT. In human peripheral lymphocytes, TDS induced extensive DNA damage in comparison with the tumor promoter TPA, as judged by FADU. Aq.T at 300 ng/microL extended 90% protection to human lymphocyte DNA against TDS-induced damage, and was more effective than the other protectants--DABCO, D-mannitol, sodium benzoate, vitamin E (ROS quenchers), SOD, CAT (antioxidant enzymes), tannic acid, flufenamic acid, BHA, BHT, n-PG, curcumin and quercetin (antioxidants). Aq.T offered 65% protection to human lymphocyte DNA against TPA-induced damage and was comparable to SOD. The above results indicate that TDS induces substantial DNA damage in calf thymus DNA and human lymphocytes and Aq.T is an efficient protectant.

  18. DNA Damage Response in Hematopoietic Stem Cell Ageing.

    Science.gov (United States)

    Li, Tangliang; Zhou, Zhong-Wei; Ju, Zhenyu; Wang, Zhao-Qi

    2016-06-01

    Maintenance of tissue-specific stem cells is vital for organ homeostasis and organismal longevity. Hematopoietic stem cells (HSCs) are the most primitive cell type in the hematopoietic system. They divide asymmetrically and give rise to daughter cells with HSC identity (self-renewal) and progenitor progenies (differentiation), which further proliferate and differentiate into full hematopoietic lineages. Mammalian ageing process is accompanied with abnormalities in the HSC self-renewal and differentiation. Transcriptional changes and epigenetic modulations have been implicated as the key regulators in HSC ageing process. The DNA damage response (DDR) in the cells involves an orchestrated signaling pathway, consisting of cell cycle regulation, cell death and senescence, transcriptional regulation, as well as chromatin remodeling. Recent studies employing DNA repair-deficient mouse models indicate that DDR could intrinsically and extrinsically regulate HSC maintenance and play important roles in tissue homeostasis of the hematopoietic system. In this review, we summarize the current understanding of how the DDR determines the HSC fates and finally contributes to organismal ageing. PMID:27221660

  19. DNA Damage Response in Hematopoietic Stem Cell Ageing

    Institute of Scientific and Technical Information of China (English)

    Tangliang Li; Zhong-Wei Zhou; Zhenyu Ju; Zhao-Qi Wang

    2016-01-01

    Maintenance of tissue-specific stem cells is vital for organ homeostasis and organismal longevity. Hematopoietic stem cells (HSCs) are the most primitive cell type in the hematopoietic system. They divide asymmetrically and give rise to daughter cells with HSC identity (self-renewal) and progenitor progenies (differentiation), which further proliferate and differentiate into full hematopoietic lineages. Mammalian ageing process is accompanied with abnormalities in the HSC self-renewal and differentiation. Transcriptional changes and epigenetic modulations have been implicated as the key regulators in HSC ageing process. The DNA damage response (DDR) in the cells involves an orchestrated signaling pathway, consisting of cell cycle regulation, cell death and senescence, transcriptional regulation, as well as chromatin remodeling. Recent studies employ-ing DNA repair-deficient mouse models indicate that DDR could intrinsically and extrinsically reg-ulate HSC maintenance and play important roles in tissue homeostasis of the hematopoietic system. In this review, we summarize the current understanding of how the DDR determines the HSC fates and finally contributes to organismal ageing.

  20. Mutants of Arabidopsis thaliana hypersensitive to DNA-damaging treatments

    International Nuclear Information System (INIS)

    A simple screening method was developed for the isolation of Arabidopsis thaliana mutants hypersensitive to X-ray irradiation. The root meristem was used as the target for irradiation with sublethal doses of X rays, while protection of the shoot meristem by a lead cover allowed the rescue of hypersensitive individuals. We isolated nine independent X-ray-hypersensitive mutants from 7000 M2 seedlings. Analysis of three chosen mutants (xrs4, xrs9 and xrs11) showed that alterations in single recessive alleles are responsible for their phenotypes. The mutations are not allelic but linked and map to chromosome 4, suggesting mutations in novel genes as compared to previously mapped mutant alleles. Importantly, hypersensitivity to X rays was found to correlate with hypersensitivity to the DNA-alkylating agent mitomycin C, which provokes interstrand crosslinks, and/or to methyl methanesulfonate, which is known as a radiomimetic chemical. These novel phenotypes suggest that the mutants described here are altered in the repair of DNA damage, most probably by recombinational repair

  1. Induction of beta-polymerase mRNA by DNA-damaging agents in Chinese hamster ovary cells

    International Nuclear Information System (INIS)

    Only a few of the genes involved in DNA repair in mammalian cells have been isolated, and induction of a DNA repair gene in response to DNA damage has not yet been established. DNA polymerase beta (beta-polymerase) appears to have a synthetic role in DNA repair after certain types of DNA damage. Here we show that the level of beta-polymerase mRNA is increased in CHO cells after treatment with several DNA-damaging agents

  2. Chromatin factors affecting DNA repair in mammalian cell nuclei

    International Nuclear Information System (INIS)

    We are investigating chromatin factors that participate in the incision step of DNA repair in eukaryotic cells. Localization of repair activity within nuclei, the stability and extractability of activity, the specificity for recognizing damage in chromatin or purified DNA as substrates are of interest in this investigation of human cells, CHO cells, and their radiation sensitive mutants. We have developed procedures that provide nuclei in which their DNA behaves as a collection of circular molecules. The integrity of the DNA in human nuclei can be maintained during incubation in appropriate buffers for as long as 60 minutes. When cells or nuclei are exposed to uv light prior to incubation, incisions presumably associated with DNA repair can be demonstrated. Incision activity is stable to prior extraction of nuclei with 0.6 M NaCl, which removes many nonhistone proteins. Our studies are consistent with an hypothesis that factors responsible for initiating DNA repair are localized in the nuclear matrix. 18 references, 3 figures

  3. Simulated microgravity influenced the expression of DNA damage repair genes

    Science.gov (United States)

    Zhang, Meng; Sun, Yeqing; Jiawei, Liu; Wang, Ting

    2016-07-01

    Ionizing radiation and microgravity were considered to be the most important stress factors of space environmental the respective study of the biological effects of the radiation and microgravity carried out earlier, but the interaction of the effects of radiation with microgravity started later, and due to difference of the materials and methods the result of this experiment were not consistent. To further investigate the influence of microgravity on the expression of the radiation damage repair genes, the seed of Arabidopsis (Col) and its gravity-insensitive mutant (PIN2) were exposed to 0.1Gy of the dose of energetic carbon-ion beam radiation (LET = 30KeV / μm), and the germinated seed were than fixed in the 3D random positioning apparatus immediately for a 10-day simulated microgravity. By measuring the deflection angle of root tip and the changes of the expression of Ku70 and RAD51 protein, we investigated the impact of microgravity effect on radiation damage repair systems. The results shown that radiation, microgravity and microgravity with radiation could increase the angle of the root of the Col significantly, but no obvious effect on PIN2 type. The radiation could increase the expression of Ku70 significantly in both Col and PIN2, microgravity does not affect the expression, but the microgravity with radiation could decrease the expression of Ku70. This result shown that the microgravity could influence the radiation damage repair systems in molecular level. Moreover, our findings were important to understand the molecular mechanism of the impact of microgravity effect on radiation damage repair systems in vivo.

  4. WDR76 Co-Localizes with Heterochromatin Related Proteins and Rapidly Responds to DNA Damage

    Science.gov (United States)

    Gilmore, Joshua M.; Sardiu, Mihaela E.; Groppe, Brad D.; Thornton, Janet L.; Liu, Xingyu; Dayebgadoh, Gerald; Banks, Charles A.; Slaughter, Brian D.; Unruh, Jay R.; Workman, Jerry L.; Florens, Laurence; Washburn, Michael P.

    2016-01-01

    Proteins that respond to DNA damage play critical roles in normal and diseased states in human biology. Studies have suggested that the S. cerevisiae protein CMR1/YDL156w is associated with histones and is possibly associated with DNA repair and replication processes. Through a quantitative proteomic analysis of affinity purifications here we show that the human homologue of this protein, WDR76, shares multiple protein associations with the histones H2A, H2B, and H4. Furthermore, our quantitative proteomic analysis of WDR76 associated proteins demonstrated links to proteins in the DNA damage response like PARP1 and XRCC5 and heterochromatin related proteins like CBX1, CBX3, and CBX5. Co-immunoprecipitation studies validated these interactions. Next, quantitative imaging studies demonstrated that WDR76 was recruited to laser induced DNA damage immediately after induction, and we compared the recruitment of WDR76 to laser induced DNA damage to known DNA damage proteins like PARP1, XRCC5, and RPA1. In addition, WDR76 co-localizes to puncta with the heterochromatin proteins CBX1 and CBX5, which are also recruited to DNA damage but much less intensely than WDR76. This work demonstrates the chromatin and DNA damage protein associations of WDR76 and demonstrates the rapid response of WDR76 to laser induced DNA damage. PMID:27248496

  5. Chromatin structure influence of DNA damage measurements by four assays: pulsed- and constant-field gel electrophoresis, DNA precipitation and non-denaturing filter elution

    International Nuclear Information System (INIS)

    The of elution of DNA during non-denaturing filter elution (NFE) often correlates with cell sensitivity to radiation. The elution rate is influenced by two cellular factors: chromatin structure and the number of DNA-strand breaks (DSBs) produced in an intact cell by ionizing radiation. To determine which of the above factors is relevant to cell radiosensitivity, four assays were used to measure induction of DNA damage in three cell lines varying in radiosensitivity (V79, CHO, and L5178Y-R). Each of the assays, neutral filter elution (NFE), DNA precipitation, constant (CFGE) and pulsed field gel electrophoresis (PFGE) have different physical basis for DNA damage measurement and might be differently affected by chromatin structure. Three of the methods used to measure DNA double-strand breaks gave different results: NFE was dependent on cell type and location of DNA relative to the replication fork, gel electrophoresis was independent of cell type but was affected by proximity to the replication fork, and the precipitation assay was independent of both cell type and replication status. Pulsed field gel electrophoresis produced the same results and constant field gel electrophoresis for 3 cell lines examined. Only NFE showed differences in sensitivity which correlated with cell survival following irradiation. The results suggest that three is the same initial amount of DSBs in cells from all three lines and that the sensitivity to radiation is determined by some additional factors, probably chromatin structure. (author). 18 refs, 5 figs

  6. ATP-dependent chromatin remodeling in the DNA-damage response

    Directory of Open Access Journals (Sweden)

    Lans Hannes

    2012-01-01

    Full Text Available Abstract The integrity of DNA is continuously challenged by metabolism-derived and environmental genotoxic agents that cause a variety of DNA lesions, including base alterations and breaks. DNA damage interferes with vital processes such as transcription and replication, and if not repaired properly, can ultimately lead to premature aging and cancer. Multiple DNA pathways signaling for DNA repair and DNA damage collectively safeguard the integrity of DNA. Chromatin plays a pivotal role in regulating DNA-associated processes, and is itself subject to regulation by the DNA-damage response. Chromatin influences access to DNA, and often serves as a docking or signaling site for repair and signaling proteins. Its structure can be adapted by post-translational histone modifications and nucleosome remodeling, catalyzed by the activity of ATP-dependent chromatin-remodeling complexes. In recent years, accumulating evidence has suggested that ATP-dependent chromatin-remodeling complexes play important, although poorly characterized, roles in facilitating the effectiveness of the DNA-damage response. In this review, we summarize the current knowledge on the involvement of ATP-dependent chromatin remodeling in three major DNA repair pathways: nucleotide excision repair, homologous recombination, and non-homologous end-joining. This shows that a surprisingly large number of different remodeling complexes display pleiotropic functions during different stages of the DNA-damage response. Moreover, several complexes seem to have multiple functions, and are implicated in various mechanistically distinct repair pathways.

  7. DNA damage induced by boron neutron capture therapy is partially repaired by DNA ligase IV.

    Science.gov (United States)

    Kondo, Natsuko; Sakurai, Yoshinori; Hirota, Yuki; Tanaka, Hiroki; Watanabe, Tsubasa; Nakagawa, Yosuke; Narabayashi, Masaru; Kinashi, Yuko; Miyatake, Shin-ichi; Hasegawa, Masatoshi; Suzuki, Minoru; Masunaga, Shin-ichiro; Ohnishi, Takeo; Ono, Koji

    2016-03-01

    Boron neutron capture therapy (BNCT) is a particle radiation therapy that involves the use of a thermal or epithermal neutron beam in combination with a boron ((10)B)-containing compound that specifically accumulates in tumor. (10)B captures neutrons and the resultant fission reaction produces an alpha ((4)He) particle and a recoiled lithium nucleus ((7)Li). These particles have the characteristics of high linear energy transfer (LET) radiation and therefore have marked biological effects. High-LET radiation is a potent inducer of DNA damage, specifically of DNA double-strand breaks (DSBs). The aim of the present study was to clarify the role of DNA ligase IV, a key player in the non-homologous end-joining repair pathway, in the repair of BNCT-induced DSBs. We analyzed the cellular sensitivity of the mouse embryonic fibroblast cell lines Lig4-/- p53-/- and Lig4+/+ p53-/- to irradiation using a thermal neutron beam in the presence or absence of (10)B-para-boronophenylalanine (BPA). The Lig4-/- p53-/- cell line had a higher sensitivity than the Lig4+/+ p53-/-cell line to irradiation with the beam alone or the beam in combination with BPA. In BNCT (with BPA), both cell lines exhibited a reduction of the 50 % survival dose (D 50) by a factor of 1.4 compared with gamma-ray and neutron mixed beam (without BPA). Although it was found that (10)B uptake was higher in the Lig4+/+ p53-/- than in the Lig4-/- p53-/- cell line, the latter showed higher sensitivity than the former, even when compared at an equivalent (10)B concentration. These results indicate that BNCT-induced DNA damage is partially repaired using DNA ligase IV. PMID:26573366

  8. Quantification of damage in DNA recovered from highly degraded samples – a case study on DNA in faeces

    Directory of Open Access Journals (Sweden)

    Eveson J Paige

    2006-08-01

    Full Text Available Abstract Background Poorly preserved biological tissues have become an important source of DNA for a wide range of zoological studies. Measuring the quality of DNA obtained from these samples is often desired; however, there are no widely used techniques available for quantifying damage in highly degraded DNA samples. We present a general method that can be used to determine the frequency of polymerase blocking DNA damage in specific gene-regions in such samples. The approach uses quantitative PCR to measure the amount of DNA present at several fragment sizes within a sample. According to a model of random degradation the amount of available template will decline exponentially with increasing fragment size in damaged samples, and the frequency of DNA damage (λ can be estimated by determining the rate of decline. Results The method is illustrated through the analysis of DNA extracted from sea lion faecal samples. Faeces contain a complex mixture of DNA from several sources and different components are expected to be differentially degraded. We estimated the frequency of DNA damage in both predator and prey DNA within individual faecal samples. The distribution of fragment lengths for each target fit well with the assumption of a random degradation process and, in keeping with our expectations, the estimated frequency of damage was always less in predator DNA than in prey DNA within the same sample (mean λpredator = 0.0106 per nucleotide; mean λprey = 0.0176 per nucleotide. This study is the first to explicitly define the amount of template damage in any DNA extracted from faeces and the first to quantify the amount of predator and prey DNA present within individual faecal samples. Conclusion We present an approach for characterizing mixed, highly degraded PCR templates such as those often encountered in ecological studies using non-invasive samples as a source of DNA, wildlife forensics investigations and ancient DNA research. This method will

  9. Elevated levels of urinary markers of oxidatively generated DNA and RNA damage in bipolar disorder

    DEFF Research Database (Denmark)

    Munkholm, Klaus; Poulsen, Henrik Enghusen; Kessing, Lars Vedel;

    2015-01-01

    OBJECTIVES: The pathophysiological mechanisms underlying bipolar disorder and its multi-system nature are unclear. Oxidatively generated damage to nucleosides has been demonstrated in metabolic disorders; however, the extent to which this occurs in bipolar disorder in vivo is unknown. We...... with bipolar disorder during a six- to 12-month period and compared with repeated measurements in healthy control subjects. RESULTS: In linear mixed models, adjusting for demographical, metabolic, and lifestyle factors, the excretion of 8-oxodG and 8-oxoGuo was significantly elevated in euthymic patients...... investigated oxidatively generated damage to DNA and RNA in patients with bipolar disorder and its relationship with the affective phase compared with healthy control subjects. METHODS: Urinary excretion of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and 8-oxo-7,8-dihydroguanosine (8-oxoGuo), markers...

  10. Protein kinase CK2 localizes to sites of DNA double-strand break regulating the cellular response to DNA damage

    Directory of Open Access Journals (Sweden)

    Olsen Birgitte B

    2012-03-01

    Full Text Available Abstract Background The DNA-dependent protein kinase (DNA-PK is a nuclear complex composed of a large catalytic subunit (DNA-PKcs and a heterodimeric DNA-targeting subunit Ku. DNA-PK is a major component of the non-homologous end-joining (NHEJ repair mechanism, which is activated in the presence of DNA double-strand breaks induced by ionizing radiation, reactive oxygen species and radiomimetic drugs. We have recently reported that down-regulation of protein kinase CK2 by siRNA interference results in enhanced cell death specifically in DNA-PKcs-proficient human glioblastoma cells, and this event is accompanied by decreased autophosphorylation of DNA-PKcs at S2056 and delayed repair of DNA double-strand breaks. Results In the present study, we show that CK2 co-localizes with phosphorylated histone H2AX to sites of DNA damage and while CK2 gene knockdown is associated with delayed DNA damage repair, its overexpression accelerates this process. We report for the first time evidence that lack of CK2 destabilizes the interaction of DNA-PKcs with DNA and with Ku80 at sites of genetic lesions. Furthermore, we show that CK2 regulates the phosphorylation levels of DNA-PKcs only in response to direct induction of DNA double-strand breaks. Conclusions Taken together, these results strongly indicate that CK2 plays a prominent role in NHEJ by facilitating and/or stabilizing the binding of DNA-PKcs and, possibly other repair proteins, to the DNA ends contributing to efficient DNA damage repair in mammalian cells.

  11. Identification of S-phase DNA damage-response targets in fission yeast reveals conservation of damage-response networks.

    Science.gov (United States)

    Willis, Nicholas A; Zhou, Chunshui; Elia, Andrew E H; Murray, Johanne M; Carr, Antony M; Elledge, Stephen J; Rhind, Nicholas

    2016-06-28

    The cellular response to DNA damage during S-phase regulates a complicated network of processes, including cell-cycle progression, gene expression, DNA replication kinetics, and DNA repair. In fission yeast, this S-phase DNA damage response (DDR) is coordinated by two protein kinases: Rad3, the ortholog of mammalian ATR, and Cds1, the ortholog of mammalian Chk2. Although several critical downstream targets of Rad3 and Cds1 have been identified, most of their presumed targets are unknown, including the targets responsible for regulating replication kinetics and coordinating replication and repair. To characterize targets of the S-phase DDR, we identified proteins phosphorylated in response to methyl methanesulfonate (MMS)-induced S-phase DNA damage in wild-type, rad3∆, and cds1∆ cells by proteome-wide mass spectrometry. We found a broad range of S-phase-specific DDR targets involved in gene expression, stress response, regulation of mitosis and cytokinesis, and DNA replication and repair. These targets are highly enriched for proteins required for viability in response to MMS, indicating their biological significance. Furthermore, the regulation of these proteins is similar in fission and budding yeast, across 300 My of evolution, demonstrating a deep conservation of S-phase DDR targets and suggesting that these targets may be critical for maintaining genome stability in response to S-phase DNA damage across eukaryotes. PMID:27298342

  12. Effects of Spaceflight on Molecular and Cellular Responses to Bleomycin-induced DNA Damages in Confluent Human Fibroblasts

    Science.gov (United States)

    Lu, Tao; Wu, Honglu; Karouia, Fathi; Stodieck, Louis; Zhang, Ye; Wong, Michael

    2016-07-01

    significantly affect initial transcriptional responses to bleomycin treatment in the selected genes in the DNA damage signaling pathways.

  13. The effect of ancient DNA damage on inferences of demographic histories

    DEFF Research Database (Denmark)

    Axelsson, Erik; Willerslev, Eske; Gilbert, Marcus Thomas Pius; Nielsen, Rasmus

    2008-01-01

    The field of ancient DNA (aDNA) is casting new light on many evolutionary questions. However, problems associated with the postmortem instability of DNA may complicate the interpretation of aDNA data. For example, in population genetic studies, the inclusion of damaged DNA may inflate estimates of...... diversity. In this paper, we examine the effect of DNA damage on population genetic estimates of ancestral population size. We simulate data using standard coalescent simulations that include postmortem damage and show that estimates of effective population sizes are inflated around, or right after, the...... sampling time of the ancestral DNA sequences. This bias leads to estimates of increasing, and then decreasing, population sizes, as observed in several recently published studies. We reanalyze a recently published data set of DNA sequences from the Bison (Bison bison/Bison priscus) and show that the signal...

  14. Increased DNA and RNA damage by oxidation in patients with bipolar I disorder.

    Science.gov (United States)

    Jacoby, A S; Vinberg, M; Poulsen, H E; Kessing, L V; Munkholm, K

    2016-01-01

    The mechanisms underlying bipolar disorder (BD) and the associated medical burden are unclear. Damage generated by oxidation of nucleosides may be implicated in BD pathophysiology; however, evidence from in vivo studies is limited and the extent of state-related alterations is unclear. This prospective study investigated for we believe the first time the damage generated by oxidation of DNA and RNA strictly in patients with type I BD in a manic or mixed state and subsequent episodes and remission compared with healthy control subjects. Urinary excretion of 8-oxo-deoxyguanosine (8-oxodG) and 8-oxo-guanosine (8-oxoGuo), valid markers of whole-body DNA and RNA damage by oxidation, respectively, was measured in 54 patients with BD I and in 35 healthy control subjects using a modified ultraperformance liquid chromatography and mass spectrometry assay. Repeated measurements were evaluated in various affective phases during a 6- to 12-month period and compared with repeated measurements in healthy control subjects. Independent of lifestyle and demographic variables, a 34% (Pfunction as biological markers of diagnosis, state and treatment response in BD. PMID:27505230

  15. Radiation damage to Fpg protein complex with DNA oligomer containing abasic site analog

    Czech Academy of Sciences Publication Activity Database

    Běgusová, Marie

    Edmonton, Alberta: University of Alberta, Cross Cancer Institute, 2004. P4. [International Workshop on Radiation Damage to DNA /8./. 25.05.2004-30.05.2004, Banff, Alberta] R&D Projects: GA AV ČR IAA1048103 Institutional research plan: CEZ:AV0Z1048901 Keywords : Fpg protein * abasic site analog * radiation damage * DNA-protein complex Subject RIV: BO - Biophysics

  16. Expression Profile of DNA Damage Signaling Genes in Proton Exposed Mouse Brain

    Science.gov (United States)

    Ramesh, Govindarajan; Wu, Honglu

    Exposure of living systems to radiation results in a wide assortment of lesions, the most signif-icant of is damage to genomic DNA which induce several cellular functions such as cell cycle arrest, repair, apoptosis etc. The radiation induced DNA damage investigation is one of the im-portant area in biology, but still the information available regarding the effects of proton is very limited. In this report, we investigated the differential gene expression pattern of DNA damage signaling genes particularly, damaged DNA binding, repair, cell cycle arrest, checkpoints and apoptosis using quantitative real-time RT-PCR array in proton exposed mouse brain tissues. The expression profiles showed significant changes in DNA damage related genes in 2Gy proton exposed mouse brain tissues as compared with control brain tissues. Furthermore, we also show that significantly increased levels of apoptotic related genes, caspase-3 and 8 activities in these cells, suggesting that in addition to differential expression of DNA damage genes, the alteration of apoptosis related genes may also contribute to the radiation induced DNA damage followed by programmed cell death. In summary, our findings suggest that proton exposed brain tissue undergo severe DNA damage which in turn destabilize the chromatin stability.

  17. Proteomic investigations reveal a role for RNA processing factor THRAP3 in the DNA damage response

    DEFF Research Database (Denmark)

    Beli, Petra; Lukashchuk, Natalia; Wagner, Sebastian A; Weinert, Brian T; Olsen, Jesper V; Baskcomb, Linda; Mann, Matthias; Jackson, Stephen P; Choudhary, Chuna Ram

    2012-01-01

    The regulatory networks of the DNA damage response (DDR) encompass many proteins and posttranslational modifications. Here, we use mass spectrometry-based proteomics to analyze the systems-wide response to DNA damage by parallel quantification of the DDR-regulated phosphoproteome, acetylome, and ...

  18. Mitochondrial DNA damage and vascular function in patients with diabetes mellitus and atherosclerotic cardiovascular disease

    OpenAIRE

    Fetterman, Jessica L.; Holbrook, Monica; Westbrook, David G.; Brown, Jamelle A.; Kyle P. Feeley; Bretón-Romero, Rosa; Linder, Erika A.; Berk, Brittany D.; Weisbrod, Robert M.; Widlansky, Michael E.; Gokce, Noyan; Ballinger, Scott W.; Hamburg, Naomi M.

    2016-01-01

    Objective Prior studies demonstrate mitochondrial dysfunction with increased reactive oxygen species generation in peripheral blood mononuclear cells in diabetes mellitus. Oxidative stress-mediated damage to mitochondrial DNA promotes atherosclerosis in animal models. Thus, we evaluated the relation of mitochondrial DNA damage in peripheral blood mononuclear cells s with vascular function in patients with diabetes mellitus and with atherosclerotic cardiovascular disease. Approach and results ...

  19. Bidirectional coupling of splicing and ATM signaling in response to transcription-blocking DNA damage

    NARCIS (Netherlands)

    M. Tresini (Maria); J.A. Marteijn (Jurgen); W. Vermeulen (Wim)

    2016-01-01

    textabstractIn response to DNA damage cells activate intricate protein networks to ensure genomic fidelity and tissue homeostasis. DNA damage response signaling pathways coordinate these networks and determine cellular fates, in part, by modulating RNA metabolism. Here we discuss a replication-indep

  20. The association of DNA damage to concentrations of mercury and radiocesium in largemouth bass

    International Nuclear Information System (INIS)

    Largemouth bass from five lakes were examined to determine levels of contamination by mercury and radiocesium and amounts of DNA damage. Concentrations of these toxicants and an index of body condition were regressed against overall DNA damage and DNA damage in individual tissues (liver, gills, and red blood cells) as indicated by the alkaline unwinding method. Sample sites showed considerable heterogeneity in concentrations of mercury and radiocesium, as well as numbers of DNA strand breaks. Generally, increased concentrations of toxicants were related to increased DNA damage. Tissues may have responded to contaminants in different manners; red blood cells generally showed the greatest DNA damage while liver tissue showed the least. Although body condition was related to DNA damage, it is unclear whether it has a direct effect or whether it is a correlated response to contamination by mercury and radiocesium. The potential for repair of DNA strand breaks and cell turnover rates may play an important role in determining the ultimate amount of DNA damage in contaminated organisms

  1. Damage of DNA ends induced by mechanical force during AFM nano-manipulation

    International Nuclear Information System (INIS)

    An experimental and statistical study was carried out to explore the effects of mechanical forces on the ends of linear double-stranded DNA (dsDNA) fragments. Mechanical force was applied onto individual DNA molecules during atomic force microscope (AFM)-based picking-up manipulation. By comparing the PCR efficiency of two DNA fragments with primers either at ends or at the inner regions, it was found that the ends of DNA fragments were damaged during picking-up process. (authors)

  2. Comparative DNA damage and repair in echinoderm coelomocytes exposed to genotoxicants.

    Directory of Open Access Journals (Sweden)

    Ameena H El-Bibany

    Full Text Available The capacity to withstand and repair DNA damage differs among species and plays a role in determining an organism's resistance to genotoxicity, life history, and susceptibility to disease. Environmental stressors that affect organisms at the genetic level are of particular concern in ecotoxicology due to the potential for chronic effects and trans-generational impacts on populations. Echinoderms are valuable organisms to study the relationship between DNA repair and resistance to genotoxic stress due to their history and use as ecotoxicological models, little evidence of senescence, and few reported cases of neoplasia. Coelomocytes (immune cells have been proposed to serve as sensitive bioindicators of environmental stress and are often used to assess genotoxicity; however, little is known about how coelomocytes from different echinoderm species respond to genotoxic stress. In this study, DNA damage was assessed (by Fast Micromethod in coelomocytes of four echinoderm species (sea urchins Lytechinus variegatus, Echinometra lucunter lucunter, and Tripneustes ventricosus, and a sea cucumber Isostichopus badionotus after acute exposure to H2O2 (0-100 mM and UV-C (0-9999 J/m2, and DNA repair was analyzed over a 24-hour period of recovery. Results show that coelomocytes from all four echinoderm species have the capacity to repair both UV-C and H2O2-induced DNA damage; however, there were differences in repair capacity between species. At 24 hours following exposure to the highest concentration of H2O2 (100 mM and highest dose of UV-C (9999 J/m2 cell viability remained high (>94.6 ± 1.2% but DNA repair ranged from 18.2 ± 9.2% to 70.8 ± 16.0% for H2O2 and 8.4 ± 3.2% to 79.8 ± 9.0% for UV-C exposure. Species-specific differences in genotoxic susceptibility and capacity for DNA repair are important to consider when evaluating ecogenotoxicological model organisms and assessing overall impacts of genotoxicants in the environment.

  3. Comparative DNA Damage and Repair in Echinoderm Coelomocytes Exposed to Genotoxicants

    Science.gov (United States)

    El-Bibany, Ameena H.; Bodnar, Andrea G.; Reinardy, Helena C.

    2014-01-01

    The capacity to withstand and repair DNA damage differs among species and plays a role in determining an organism's resistance to genotoxicity, life history, and susceptibility to disease. Environmental stressors that affect organisms at the genetic level are of particular concern in ecotoxicology due to the potential for chronic effects and trans-generational impacts on populations. Echinoderms are valuable organisms to study the relationship between DNA repair and resistance to genotoxic stress due to their history and use as ecotoxicological models, little evidence of senescence, and few reported cases of neoplasia. Coelomocytes (immune cells) have been proposed to serve as sensitive bioindicators of environmental stress and are often used to assess genotoxicity; however, little is known about how coelomocytes from different echinoderm species respond to genotoxic stress. In this study, DNA damage was assessed (by Fast Micromethod) in coelomocytes of four echinoderm species (sea urchins Lytechinus variegatus, Echinometra lucunter lucunter, and Tripneustes ventricosus, and a sea cucumber Isostichopus badionotus) after acute exposure to H2O2 (0–100 mM) and UV-C (0–9999 J/m2), and DNA repair was analyzed over a 24-hour period of recovery. Results show that coelomocytes from all four echinoderm species have the capacity to repair both UV-C and H2O2-induced DNA damage; however, there were differences in repair capacity between species. At 24 hours following exposure to the highest concentration of H2O2 (100 mM) and highest dose of UV-C (9999 J/m2) cell viability remained high (>94.6±1.2%) but DNA repair ranged from 18.2±9.2% to 70.8±16.0% for H2O2 and 8.4±3.2% to 79.8±9.0% for UV-C exposure. Species-specific differences in genotoxic susceptibility and capacity for DNA repair are important to consider when evaluating ecogenotoxicological model organisms and assessing overall impacts of genotoxicants in the environment. PMID:25229547

  4. Flavonoids can protect maize DNA from the induction of ultraviolet radiation damage

    International Nuclear Information System (INIS)

    Diverse flavonoid compounds are widely distributed in angiosperm families. Flavonoids absorb radiation in the ultraviolet (UV) region of the spectrum, and it has been proposed that these compounds function as UV filters. We demonstrate that the DNA in Zea mays plants that contain flavonoids (primarily anthocyanins) is protected from the induction of damage caused by UV radiation relative to the DNA in plants that are genetically deficient in these compounds. DNA damage was measured with a sensitive and simple assay using individual monoclonal antibodies, one specific for cyclobutane pyrimidine dimer damage and the other specific for pyrimidine(6,4)pyrimidone damage. (author)

  5. Localization of UvrA and Effect of DNA Damage on the Chromosome of Bacillus subtilis

    OpenAIRE

    Smith, Bradley T.; Grossman, Alan D.; Walker, Graham C.

    2002-01-01

    We found that the nucleotide excision repair protein UvrA, which is involved in DNA damage recognition, localizes to the entire chromosome both before and after damage in living Bacillus subtilis cells. We suggest that the UvrA2B damage recognition complex is constantly scanning the genome, searching for lesions in the DNA. We also found that DNA damage induces a dramatic reconfiguration of the chromosome such that it no longer fills the entire cell as it does during normal growth. This recon...

  6. Condensin I recruitment to base damage-enriched DNA lesions is modulated by PARP1.

    Directory of Open Access Journals (Sweden)

    Xiangduo Kong

    Full Text Available Condensin I is important for chromosome organization and segregation in mitosis. We previously showed that condensin I also interacts with PARP1 in response to DNA damage and plays a role in single-strand break repair. However, whether condensin I physically associates with DNA damage sites and how PARP1 may contribute to this process were unclear. We found that condensin I is preferentially recruited to DNA damage sites enriched for base damage. This process is dictated by PARP1 through its interaction with the chromosome-targeting domain of the hCAP-D2 subunit of condensin I.

  7. Non-randomized mtDNA damage after ionizing radiation via charge transport

    OpenAIRE

    Xin Zhou; Xinguo Liu; Xin Zhang; Rong Zhou; Yang He; Qiang Li; Zhenhua Wang; Hong Zhang

    2012-01-01

    Although it is well known that there are mutation hot spots in mtDNA, whether there are damage hot spots remain elusive. In this study, the regional DNA damage of mitochondrial genome after ionizing radiation was determined by real-time quantitative PCR. The mtDNA damage level was found to be dose-dependent and regional unequal. The control region was the most susceptible region to oxidative damage. GGG, as an typical hole trap during charge transport, was found to be disproportionally enrich...

  8. DNA damage in lung after oral exposure to diesel exhaust particles in Big Blue (R) rats

    DEFF Research Database (Denmark)

    Müller, Anne Kirstine; Farombi, E.O.; Møller, P.;

    2004-01-01

    . Lung tissue is a target organ for DEP induced cancer following inhalation. Recent studies have provided evidence that the lung is also a target organ for DNA damage and cancer after oral exposure to other complex mixtures of PAHs. The genotoxic effect of oral administration of DEP was investigated, in...... endonuclease III and fapyguanine glycosylase (FPG) sensitive sites increased at the intermediate dose levels. The induction of DNA damage by DEP exposure did not increase the expression of the repair genes OGG1 and ERCC1 at the mRNA level. The present study indicates that the lung is a target organ for primary...... DNA damage following oral exposure to DEP. DNA damage was induced following exposure to relatively low levels of DEP, but under the conditions used in the present experiment DNA damage did not result in an increased mutation rate....

  9. DNA damage in lung after oral exposure to diesel exhaust particles in Big Blue (R) rats

    DEFF Research Database (Denmark)

    Müller, Anne Kirstine; Farombi, E.O.; Møller, P.; Autrup, H.N.; Vogel, U.; Wallin, H.; Dragsted, Lars Ove; Loft, S.; Binderup, Mona-Lise

    . Lung tissue is a target organ for DEP induced cancer following inhalation. Recent studies have provided evidence that the lung is also a target organ for DNA damage and cancer after oral exposure to other complex mixtures of PAHs. The genotoxic effect of oral administration of DEP was investigated, in...... endonuclease III and fapyguanine glycosylase (FPG) sensitive sites increased at the intermediate dose levels. The induction of DNA damage by DEP exposure did not increase the expression of the repair genes OGG1 and ERCC1 at the mRNA level. The present study indicates that the lung is a target organ for primary...... DNA damage following oral exposure to DEP. DNA damage was induced following exposure to relatively low levels of DEP, but under the conditions used in the present experiment DNA damage did not result in an increased mutation rate....

  10. Cytotoxicity of, and DNA damage by, active oxygen species produced by xanthine oxidase.

    Science.gov (United States)

    Chiricolo, M; Tazzari, P L; Abbondanza, A; Dinota, A; Battelli, M G

    1991-10-21

    Toxicity to Raji cells of the xanthine oxidase/hypoxanthine system is related to the formation of single-strand DNA breaks. DNA damage was proportional to the concentration of xanthine oxidase and to the time of exposure. It was prevented by the absence of hypoxanthine, or by the presence of allopurinol, or both superoxide dismutase and catalase. The release of 51Cr from damaged cells was detectable 12 h after the inhibition of cloning efficiency and the production of DNA breakage. These data suggest that DNA damage induced by the oxygen products precedes the severe lesion to the cellular membrane. PMID:1936259

  11. Energy absorbtion capability of damage affected composite structures

    OpenAIRE

    Ribeaux, Michael

    2003-01-01

    The aim of this project is to consider the effect of damage on the energy absorption potential of continuous filament random mat (CoFRM) E-glass / polyester composite tubes. Composite materials have been shown to absorb significantly higher specific energy levels than metals under axial crushing conditions. This property can be exploited in automotive crashworthiness applications. Replacing steel crash structures with composites can lead to significant weight reductions. However, damage in co...

  12. 2-Aminopurine hairpin probes for the detection of ultraviolet-induced DNA damage

    International Nuclear Information System (INIS)

    Highlights: ► Molecular beacon with 2AP bases detects DNA damage in a simple mix-and-read assay. ► Molecular beacons with 2AP bases detect damage at a 17.2 nM limit of detection. ► The 2AP molecular beacon is linear over a 0–3.5 μM concentration range for damage. - Abstract: Nucleic acid exposure to radiation and chemical insults leads to damage and disease. Thus, detection and understanding DNA damage is important for elucidating molecular mechanisms of disease. However, current methods of DNA damage detection are either time-consuming, destroy the sample, or are too specific to be used for generic detection of damage. In this paper, we develop a fluorescence sensor of 2-aminopurine (2AP), a fluorescent analogue of adenine, incorporated in the loop of a hairpin probe for the quantification of ultraviolet (UV) C-induced nucleic acid damage. Our results show that the selectivity of the 2AP hairpin probe to UV-induced nucleic acid damage is comparable to molecular beacon (MB) probes of DNA damage. The calibration curve for the 2AP hairpin probe shows good linearity (R2 = 0.98) with a limit of detection of 17.2 nM. This probe is a simple, fast and economic fluorescence sensor for the quantification of UV-induced damage in DNA.

  13. Parental exposure to the herbicide diuron results in oxidative DNA damage to germinal cells of the Pacific oyster Crassostrea gigas.

    Science.gov (United States)

    Barranger, Audrey; Heude-Berthelin, Clothilde; Rouxel, Julien; Adeline, Béatrice; Benabdelmouna, Abdellah; Burgeot, Thierry; Akcha, Farida

    2016-02-01

    Chemical pollution by pesticides has been identified as a possible contributing factor to the massive mortality outbreaks observed in Crassostrea gigas for several years. A previous study demonstrated the vertical transmission of DNA damage by subjecting oyster genitors to the herbicide diuron at environmental concentrations during gametogenesis. This trans-generational effect occurs through damage to genitor-exposed gametes, as measured by the comet-assay. The presence of DNA damage in gametes could be linked to the formation of DNA damage in other germ cells. In order to explore this question, the levels and cell distribution of the oxidized base lesion 8-oxodGuo were studied in the gonads of exposed genitors. High-performance liquid chromatography coupled with UV and electrochemical detection analysis showed an increase in 8-oxodGuo levels in both male and female gonads after exposure to diuron. Immunohistochemistry analysis showed the presence of 8-oxodGuo at all stages of male germ cells, from early to mature stages. Conversely, the oxidized base was only present in early germ cell stages in female gonads. These results indicate that male and female genitors underwent oxidative stress following exposure to diuron, resulting in DNA oxidation in both early germ cells and gametes, such as spermatozoa, which could explain the transmission of diuron-induced DNA damage to offspring. Furthermore, immunostaining of early germ cells seems indicates that damages caused by exposure to diuron on germ line not only affect the current sexual cycle but also could affect future gametogenesis. PMID:26610786

  14. An ECVAG trial on assessment of oxidative damage to DNA measured by the comet assay

    DEFF Research Database (Denmark)

    Johansson, Clara; Møller, Peter; Forchhammer, Lykke;

    2010-01-01

    The increasing use of single cell gel electrophoresis (the comet assay) highlights its popularity as a method for detecting DNA damage, including the use of enzymes for assessment of oxidatively damaged DNA. However, comparison of DNA damage levels between laboratories can be difficult due to...... differences in assay protocols (e.g. lysis conditions, enzyme treatment, the duration of the alkaline treatment and electrophoresis) and in the end points used for reporting results (e.g. %DNA in tail, arbitrary units, tail moment and tail length). One way to facilitate comparisons is to convert primary comet...... assay end points to number of lesions/10(6) bp by calibration with ionizing radiation. The aim of this study was to investigate the inter-laboratory variation in assessment of oxidatively damaged DNA by the comet assay in terms of oxidized purines converted to strand breaks with formamidopyrimidine DNA...

  15. Electrochemical detection of benzo(a)pyrene and related DNA damage using DNA/hemin/nafion–graphene biosensor

    International Nuclear Information System (INIS)

    Graphical abstract: A novel electrochemical biosensor, DNA/hemin/nafion–graphene/GCE, was constructed to quantitatively study the DNA damage induced by the metabolite of benzo(a)pyrene in the presence of H2O2. - Highlights: • Construction of a novel DNA/hemin/nafion-graphene/GCE biosensor. • DNA damage induced by the benzo(a)pyrene metabolite was detected. • DPV analysis of benzo(a)pyrene provided a quantitative estimate of DNA damage. • Hemin/H2O2 system could mimic the cytochrome P450 to metabolize benzo(a)pyrene. - Abstract: A novel electrochemical biosensor, DNA/hemin/nafion–graphene/GCE, was constructed for the analysis of the benzo(a)pyrene PAH, which can produce DNA damage induced by a benzo(a)pyrene (BaP) enzyme-catalytic product. This biosensor was assembled layer-by-layer, and was characterized with the use of cyclic voltammetry, electrochemical impedance spectroscopy (EIS) and atomic force microscopy. Ultimately, it was demonstrated that the hemin/nafion–graphene/GCE was a viable platform for the immobilization of DNA. This DNA biosensor was treated separately in benzo(a)pyrene, hydrogen peroxide (H2O2) and in their mixture, respectively, and differential pulse voltammetry (DPV) analysis showed that an oxidation peak was apparent after the electrode was immersed in H2O2. Such experiments indicated that in the presence of H2O2, hemin could mimic cytochrome P450 to metabolize benzo(a)pyrene, and a voltammogram of its metabolite was recorded. The DNA damage induced by this metabolite was also detected by electrochemical impedance and ultraviolet spectroscopy. Finally, a novel, indirect DPV analytical method for BaP in aqueous solution was developed based on the linear metabolite versus BaP concentration plot; this method provided a new, indirect, quantitative estimate of DNA damage

  16. Correlation of DNA damage in type 2 diabetes to glycemic control

    Directory of Open Access Journals (Sweden)

    Sohair I Salem, Safinaz E El-Toukhy, Gamila S M El-Saeed, Maha El-

    2012-07-01

    Full Text Available Background: Diabetes is associated with excessive production of reactive oxygen species (ROS which can damage cellular macromolecules. The aim of the study was to detect oxidative DNA damage in type 2 diabetic patients and to correlate it with glycemic control.Aim of work: to assess the percentage of DNA damage in patients with type 2 diabetes and the relation with glycemic control and lipid profile.Patients and methods: The present work included 28 diabetic patients as well as 25 age and sex matched healthy volunteers served as control. Single cell gel electrophoresis (SCGE was used to assess DNA damage in 28 patients with type 2 diabetes and 25 age and sex matched healthy controls. Moreover, glycemic as well as lipid profiles were also estimated in those subjects.Results: The percent of DNA damage of peripheral blood mononuclear cells was higher in diabetic patients (45.1±9.2 compared to healthy controls (3.70± 0.85 (p<0.001. The percent of DNA damage correlated positively with BMI, fasting blood glucose, HbA1C, serum cholesterol, serum triglycerides, HDL cholesterol and LDL cholesterol (p<0.001 . However, there was no significant difference in percent of DNA damage between hypertensive patients (36.2 ±4.6 and non hypertensive patients (37.2±4.6. Pearson correlation analysis showed a significant positive correlation between DNA damage and body mass index, glycated hemoglobin, total cholesterol, triglycerides and low density lipoprotein cholesterol.Conclusion: Type 2 diabetic patients have more oxidative DNA damage than normal controls and this damage increase with poor diabetic control, obesity and hyperlipidemia. Thus, DNA damage in the peripheral blood of diabetic patients assessed by comet assay can be applied as a new and non expensive technique for monitoring patients with type-2 diabetes.

  17. Post-irradiation chemical processing of DNA damage generates double-strand breaks in cells already engaged in repair

    Science.gov (United States)

    Singh, Satyendra K.; Wang, Minli; Staudt, Christian; Iliakis, George

    2011-01-01

    In cells exposed to ionizing radiation (IR), double-strand breaks (DSBs) form within clustered-damage sites from lesions disrupting the DNA sugar–phosphate backbone. It is commonly assumed that these DSBs form promptly and are immediately detected and processed by the cellular DNA damage response (DDR) apparatus. This assumption is questioned by the observation that after irradiation of naked DNA, a fraction of DSBs forms minutes to hours after exposure as a result of temperature dependent, chemical processing of labile sugar lesions. Excess DSBs also form when IR-exposed cells are processed at 50°C, but have been hitherto considered method-related artifact. Thus, it remains unknown whether DSBs actually develop in cells after IR exposure from chemically labile damage. Here, we show that irradiation of ‘naked’ or chromatin-organized mammalian DNA produces lesions, which evolve to DSBs and add to those promptly induced, after 8–24 h in vitro incubation at 37°C or 50°C. The conversion is more efficient in chromatin-associated DNA, completed within 1 h in cells and delayed in a reducing environment. We conclude that IR generates sugar lesions within clustered-damage sites contributing to DSB formation only after chemical processing, which occurs efficiently at 37°C. This subset of delayed DSBs may challenge DDR, may affect the perceived repair kinetics and requires further characterization. PMID:21745815

  18. The role of dietary nucleotides in reduction of DNA damage induced by T-2 toxin and deoxynivalenol in chicken leukocytes.

    Science.gov (United States)

    Frankic, T; Pajk, T; Rezar, V; Levart, A; Salobir, J

    2006-11-01

    The objective of present study was to determine the effect of T-2 toxin and deoxynivalenol (DON) on DNA fragmentation in spleen leukocytes and oxidative stress in chickens, and furthermore, to evaluate the potential of dietary nucleotides in reduction of toxin-induced DNA damage. Male broiler chickens were exposed to 10mg/kg feed of either T-2 toxin or DON with or without addition of dietary nucleotides. After 17 days of treatment DNA damage of spleen leukocytes was measured by Comet assay, lipid peroxidation was studied by malondialdehyde (MDA), total antioxidant status (TAS) of plasma and glutathione peroxidase (GPx) assays, and the hepatotoxicity was studied by measuring plasma liver enzyme levels (ALT, AST and GGT) levels. T-2 toxin and DON induced DNA fragmentation in chicken spleen leukocytes and supplementation with nucleotides reduced the amount of damage only when added to T-2 toxin. In comparison to control group, values of TAS and AST decreased significantly in the groups fed T-2 toxin with or without nucleotide supplementation. Plasma and liver MDA content in groups fed T-2 toxin and DON did not differ significantly from the control. Dietary nucleotides did not affect MDA formation when added to the diets with mycotoxins. The results obtained suggest that dietary nucleotides have the potency to reduce the extent of DNA damage induced by the action of T-2 toxin in immune cells. This underlines their possible beneficial effect on the immune system in mycotoxin intoxication. PMID:16875771

  19. BRCA1 in the DNA damage response and at telomeres

    Directory of Open Access Journals (Sweden)

    Eliot Michael Rosen

    2013-06-01

    Full Text Available Abstract. Mutations of the breast and ovarian cancer susceptibility gene 1 (BRCA1 account for about 40-45% of hereditary breast cancer cases. Moreover, a significant fraction of sporadic (non-hereditary breast and ovarian cancers exhibit reduced or absent expression of the BRCA1 protein, suggesting an additional role for BRCA1 in sporadic cancers. BRCA1 follows the classic pattern of a highly penetrant Knudsen-type tumor suppressor gene in which one allele is inactivated through a germ-line mutation and the other is mutated or deleted within the tumor. BRCA1 is a multi-functional protein but it is not fully understood which function(s is (are most important for tumor suppression, nor is it clear why BRCA1 mutations confer a high risk for breast and ovarian cancers and not a broad spectrum of tumor types. Here, we will review BRCA1 functions in the DNA damage response (DDR, which are likely to contribute to tumor suppression. In the process, we will highlight some of the controversies and unresolved issues in the field. We will also describe a recently identified and under-investigated role for BRCA1 in the regulation of telomeres and the implications of this role in the DDR and cancer suppression.

  20. Vertebrate POLQ and POLβ Cooperate in Base Excision Repair of Oxidative DNA Damage

    OpenAIRE

    Yoshimura, Michio; Kohzaki, Masaoki; Nakamura, Jun; Asagoshi, Kenjiro; Sonoda, Eiichiro; Hou, Esther; Prasad, Rajendra; Wilson, Samuel H.; TANO, KEIZO; Yasui, Akira; Lan, Li; Seki, Mineaki; Wood, Richard D.; Arakawa, Hiroshi; Buerstedde, Jean-Marie

    2006-01-01

    Base excision repair (BER) plays an essential role in protecting cells from mutagenic base damage caused by oxidative stress, hydrolysis, and environmental factors. POLQ is a DNA polymerase, which appears to be involved in translesion DNA synthesis (TLS) past base damage. We disrupted POLQ, and its homologs HEL308 and POLN in chicken DT40 cells, and also created polq/hel308 and polq/poln double mutants. We found that POLQ-deficient mutants exhibit hypersensitivity to oxidative base damage ind...

  1. ShaPINg cell fate upon DNA damage:role of Pin1 isomerase in DNA damage-induced cell death and repair

    Directory of Open Access Journals (Sweden)

    Thomas G Hofmann

    2014-06-01

    Full Text Available The peptidyl-prolyl cis/trans isomerase Pin1 acts as a molecular timer in proline-directed Ser/Thr kinase signaling and shapes cellular responses based on recognition of phosphorylation marks and implementing conformational changes in its substrates. Accordingly, Pin1 has been linked to numerous phosphorylation-controlled signaling pathways and cellular processes such as cell cycle progression, proliferation and differentiation. In addition, Pin1 plays a pivotal role in DNA damage-triggered cell fate decisions. Whereas moderate DNA damage is balanced by DNA repair, cells confronted with massive genotoxic stress are eliminated by the induction of programmed cell death or cellular senescence. In this review we summarize and discuss the current knowledge on how Pin1 specifies cell fate through regulating key players of the apoptotic and the repair branch of the DNA damage response.

  2. Activation of a DNA Damage Checkpoint Response in a TAF1-Defective Cell Line

    OpenAIRE

    Buchmann, Ann M.; Skaar, Jeffrey R.; DeCaprio, James A.

    2004-01-01

    Although the link between transcription and DNA repair is well established, defects in the core transcriptional complex itself have not been shown to elicit a DNA damage response. Here we show that a cell line with a temperature-sensitive defect in TBP-associated factor 1 (TAF1), a component of the TFIID general transcription complex, exhibits hallmarks of an ATR-mediated DNA damage response. Upon inactivation of TAF1, ATR rapidly localized to subnuclear foci and contributed to the phosphoryl...

  3. S1P lyase regulates DNA damage responses through a novel sphingolipid feedback mechanism

    OpenAIRE

    Kumar, A.; Oskouian, B; Fyrst, H; Zhang, M.; Paris, F; Saba, J D

    2011-01-01

    The injurious consequences of ionizing radiation (IR) to normal human cells and the acquired radioresistance of cancer cells represent limitations to cancer radiotherapy. IR induces DNA damage response pathways that orchestrate cell cycle arrest, DNA repair or apoptosis such that irradiated cells are either repaired or eliminated. Concomitantly and independent of DNA damage, IR activates acid sphingomyelinase (ASMase), which generates ceramide, thereby promoting radiation-induced apoptosis. H...

  4. PARP-1 mechanism for coupling DNA damage detection to poly(ADP-ribose) synthesis

    OpenAIRE

    Langelier, Marie-France; Pascal, John M.

    2013-01-01

    Poly(ADP-ribose) polymerase 1 (PARP-1) regulates gene transcription, cell death signaling, and DNA repair through production of the posttranslational modification poly(ADP-ribose). During the cellular response to genotoxic stress PARP-1 rapidly associates with DNA damage, which robustly stimulates poly(ADP-ribose) production over a low basal level of PARP-1 activity. DNA damage-dependent PARP-1 activity is central to understanding PARP-1 biological function, but structural insights into the m...

  5. Biomarkers of oxidative stress and DNA damage in agricultural workers: A pilot study

    International Nuclear Information System (INIS)

    Oxidative stress and DNA damage have been proposed as mechanisms linking pesticide exposure to health effects such as cancer and neurological diseases. A study of pesticide applicators and farmworkers was conducted to examine the relationship between organophosphate pesticide exposure and biomarkers of oxidative stress and DNA damage. Urine samples were analyzed for OP metabolites and 8-hydroxy-2'-deoxyguanosine (8-OH-dG). Lymphocytes were analyzed for oxidative DNA repair activity and DNA damage (Comet assay), and serum was analyzed for lipid peroxides (i.e., malondialdehyde, MDA). Cellular damage in agricultural workers was validated using lymphocyte cell cultures. Urinary OP metabolites were significantly higher in farmworkers and applicators (p < 0.001) when compared to controls. 8-OH-dG levels were 8.5 times and 2.3 times higher in farmworkers or applicators (respectively) than in controls. Serum MDA levels were 4.9 times and 24 times higher in farmworkers or applicators (respectively) than in controls. DNA damage (Comet assay) and oxidative DNA repair were significantly greater in lymphocytes from applicators and farmworkers when compared with controls. Markers of oxidative stress (i.e., increased reactive oxygen species and reduced glutathione levels) and DNA damage were also observed in lymphocyte cell cultures treated with an OP. The findings from these in vivo and in vitro studies indicate that organophosphate pesticides induce oxidative stress and DNA damage in agricultural workers. These biomarkers may be useful for increasing our understanding of the link between pesticides and a number of health effects

  6. Addressing sperm DNA integrity and fertilization; establishment of a PCR based method for detection of DNA damage (the MDDA assay).

    OpenAIRE

    2011-01-01

    Humans in industrialized societies are continuously exposed to a plethora of environmental chemicals, of which the long-term consequences are largely unknown. Reduced fertility could be one such undesired consequence, and indeed reduced sperm quality is increasingly reported from many developed countries. Many environmental chemicals induce DNA damage, and sperm DNA damage is associated with reduced sperm quality, disturbed embryo development and early abortions. The present wo...

  7. Association between age and repair of oxidatively damaged DNA in human peripheral blood mononuclear cells

    DEFF Research Database (Denmark)

    Løhr, Mille; Jensen, Annie; Eriksen, Louise;

    2015-01-01

    damaged DNA in peripheral blood mononuclear cells (PBMCs). We isolated PBMCs from subjects aged 18-83 years, as part of a health survey of the Danish population that focussed on lifestyle factors. The level of DNA repair activity was measured as incisions on potassium bromate-damaged DNA by the comet...... assay. There was an inverse association between age and DNA repair activity with a 0.65% decline in activity per year from age 18 to 83 (95% confidence interval: 0.16-1.14% per year). Univariate regression analysis also indicated inverse associations between DNA repair activity and waist-hip ratio (P...

  8. Live cell microscopy of DNA damage response in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Pinela da Silva, Sonia Cristina; Gallina, Irene; Eckert-Boulet, Nadine Valerie; Lisby, Michael

    Fluorescence microscopy of the DNA damage response in living cells stands out from many other DNA repair assays by its ability to monitor the response to individual DNA lesions in single cells. This is particularly true in yeast, where the frequency of spontaneous DNA lesions is relatively low...... live cell imaging allows for multiple cellular markers to be monitored over several hours. This chapter reviews useful fluorescent markers and genotoxic agents for studying the DNA damage response in living cells and provides protocols for live cell imaging, time-lapse microscopy, and for induction of...

  9. DNA DAMAGE REPAIR AND CELL CYCLE CONTROL: A NATURAL BIO-DEFENSE MECHANISM

    Science.gov (United States)

    DNA DAMAGE REPAIR AND CELL CYCLE CONTROL: A natural bio-defense mechanismAnuradha Mudipalli.Maintenance of genetic information, including the correct sequence of nucleotides in DNA, is essential for replication, gene expression, and protein synthesis. DNA lesions onto...

  10. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints

    DEFF Research Database (Denmark)

    Bartkova, Jirina; Rezaei, Nousin; Liontos, Michalis;

    2006-01-01

    DNA double-strand breaks. Inhibiting the DNA double-strand break response kinase ataxia telangiectasia mutated (ATM) suppressed the induction of senescence and in a mouse model led to increased tumour size and invasiveness. Analysis of human precancerous lesions further indicated that DNA damage and...

  11. ATP-dependent chromatin remodeling in the DNA-damage response

    NARCIS (Netherlands)

    H. Lans (Hannes); J.A. Marteijn (Jurgen); W. Vermeulen (Wim)

    2012-01-01

    textabstractThe integrity of DNA is continuously challenged by metabolism-derived and environmental genotoxic agents that cause a variety of DNA lesions, including base alterations and breaks. DNA damage interferes with vital processes such as transcription and replication, and if not repaired prope

  12. Single-molecule analysis reveals human UV-damaged DNA-binding protein (UV-DDB) dimerizes on DNA via multiple kinetic intermediates

    OpenAIRE

    Ghodke, Harshad; Wang, Hong; Hsieh, Ching L.; Woldemeskel, Selamawit; Watkins, Simon C.; Rapić-Otrin, Vesna; Van Houten, Bennett

    2014-01-01

    UV damage in genomic DNA is identified by the human UV-damaged DNA-binding protein (UV-DDB). Recognition of DNA damage by UV-DDB serves to initiate global genomic nucleotide excision repair (NER) in humans. Recent work has revealed that UV-DDB dimerizes at sites of damage. This study demonstrates that prior to stable damage recognition, UV-DDB interrogates DNA for damage via a 3D diffusion mechanism coupled to the formation of multiple transient intermediates. Stable binding at sites of damag...

  13. Microscopic mechanism of DNA damage searching by hOGG1

    OpenAIRE

    Rowland, Meng M.; Schonhoft, Joseph D.; McKibbin, Paige L.; David, Sheila S.; Stivers, James T.

    2014-01-01

    The DNA backbone is often considered a track that allows long-range sliding of DNA repair enzymes in their search for rare damage sites in DNA. A proposed exemplar of DNA sliding is human 8-oxoguanine (oG) DNA glycosylase 1 (hOGG1), which repairs mutagenic oG lesions in DNA. Here we use our high-resolution molecular clock method to show that macroscopic 1D DNA sliding of hOGG1 occurs by microscopic 2D and 3D steps that masquerade as sliding in resolution-limited single-molecule images. Strand...

  14. DNA Damage in Euonymus japonicus Leaf Cells Caused by Roadside Pollution in Beijing.

    Science.gov (United States)

    Li, Tianxin; Zhang, Minjie; Gu, Ke; Herman, Uwizeyimana; Crittenden, John; Lu, Zhongming

    2016-01-01

    The inhalable particles from vehicle exhaust can cause DNA damage to exposed organisms. Research on DNA damage is primarily focused on the influence of specific pollutants on certain species or the effect of environmental pollution on human beings. To date, little research has quantitatively studied the relationship between roadside pollution and DNA damage. Based on an investigation of the roadside pollution in Beijing, Euonymus japonicus leaves of differing ages grown in heavily-polluted sections were chosen as biomonitors to detect DNA damage using the comet assay technique. The percentage of DNA in the tail and tail moment was chosen as the analysis index based on SPSS data analysis. The roadside samples showed significantly higher levels of DNA damage than non-roadside samples, which increased in older leaves, and the DNA damage to Euonymus japonicus leaf cells was positively correlated with haze-aggravated roadside pollution. The correlation between damage and the Air Quality Index (AQI) are 0.921 (one-year-old leaves), 0.894 (two-year-old leaves), and 0.878 (three-year-old leaves). Over time, the connection between DNA damage and AQI weakened, with the sensitivity coefficient for δyear 1 being larger than δyear 2 and δyear 3. These findings support the suitability and sensitivity of the comet assay for surveying plants for an estimation of DNA damage induced by environmental genotoxic agents. This study might be applied as a preliminary quantitative method for Chinese urban air pollution damage assessment caused by environmental stress. PMID:27455298

  15. DNA Damage in Euonymus japonicus Leaf Cells Caused by Roadside Pollution in Beijing

    Science.gov (United States)

    Li, Tianxin; Zhang, Minjie; Gu, Ke; Herman, Uwizeyimana; Crittenden, John; Lu, Zhongming

    2016-01-01

    The inhalable particles from vehicle exhaust can cause DNA damage to exposed organisms. Research on DNA damage is primarily focused on the influence of specific pollutants on certain species or the effect of environmental pollution on human beings. To date, little research has quantitatively studied the relationship between roadside pollution and DNA damage. Based on an investigation of the roadside pollution in Beijing, Euonymus japonicus leaves of differing ages grown in heavily-polluted sections were chosen as biomonitors to detect DNA damage using the comet assay technique. The percentage of DNA in the tail and tail moment was chosen as the analysis index based on SPSS data analysis. The roadside samples showed significantly higher levels of DNA damage than non-roadside samples, which increased in older leaves, and the DNA damage to Euonymus japonicus leaf cells was positively correlated with haze-aggravated roadside pollution. The correlation between damage and the Air Quality Index (AQI) are 0.921 (one-year-old leaves), 0.894 (two-year-old leaves), and 0.878 (three-year-old leaves). Over time, the connection between DNA damage and AQI weakened, with the sensitivity coefficient for δyear 1 being larger than δyear 2 and δyear 3. These findings support the suitability and sensitivity of the comet assay for surveying plants for an estimation of DNA damage induced by environmental genotoxic agents. This study might be applied as a preliminary quantitative method for Chinese urban air pollution damage assessment caused by environmental stress. PMID:27455298

  16. Preserving Yeast Genetic Heritage through DNA Damage Checkpoint Regulation and Telomere Maintenance

    Directory of Open Access Journals (Sweden)

    Huilin Zhou

    2012-10-01

    Full Text Available In order to preserve genome integrity, extrinsic or intrinsic DNA damages must be repaired before they accumulate in cells and trigger other mutations and genome rearrangements. Eukaryotic cells are able to respond to different genotoxic stresses as well as to single DNA double strand breaks (DSBs, suggesting highly sensitive and robust mechanisms to detect lesions that trigger a signal transduction cascade which, in turn, controls the DNA damage response (DDR. Furthermore, cells must be able to distinguish natural chromosomal ends from DNA DSBs in order to prevent inappropriate checkpoint activation, DDR and chromosomal rearrangements. Since the original discovery of RAD9, the first DNA damage checkpoint gene identified in Saccharomyces cerevisiae, many genes that have a role in this pathway have been identified, including MRC1, MEC3, RAD24, RAD53, DUN1, MEC1 and TEL1. Extensive studies have established most of the genetic basis of the DNA damage checkpoint and uncovered its different functions in cell cycle regulation, DNA replication and repair, and telomere maintenance. However, major questions concerning the regulation and functions of the DNA damage checkpoint remain to be answered. First, how is the checkpoint activity coupled to DNA replication and repair? Second, how do cells distinguish natural chromosome ends from deleterious DNA DSBs? In this review we will examine primarily studies performed using Saccharomyces cerevisiae as a model system.

  17. Ozone depletion and UVB radiation: Impact on plant DNA damage in southern South America

    Science.gov (United States)

    Rousseaux, M. Cecilia; Ballaré, Carlos L.; Giordano, Carla V.; Scopel, Ana L.; Zima, Ana M.; Szwarcberg-Bracchitta, Mariela; Searles, Peter S.; Caldwell, Martyn M.; Díaz, Susana B.

    1999-01-01

    The primary motivation behind the considerable effort in studying stratospheric ozone depletion is the potential for biological consequences of increased solar UVB (280–315 nm) radiation. Yet, direct links between ozone depletion and biological impacts have been established only for organisms of Antarctic waters under the influence of the ozone “hole;” no direct evidence exists that ozone-related variations in UVB affect ecosystems of temperate latitudes. Indeed, calculations based on laboratory studies with plants suggest that the biological impact of ozone depletion (measured by the formation of cyclobutane pyrimidine dimers in DNA) is likely to be less marked than previously thought, because UVA quanta (315–400 nm) may also cause significant damage, and UVA is unaffected by ozone depletion. Herein, we show that the temperate ecosystems of southern South America have been subjected to increasingly high levels of ozone depletion during the last decade. We found that in the spring of 1997, despite frequent cloud cover, the passages of the ozone hole over Tierra del Fuego (55° S) caused concomitant increases in solar UV and that the enhanced ground-level UV led to significant increases in DNA damage in the native plant Gunnera magellanica. The fluctuations in solar UV explained a large proportion of the variation in DNA damage (up to 68%), particularly when the solar UV was weighted for biological effectiveness according to action spectra that assume a sharp decline in quantum efficiency with increasing wavelength from the UVB into the UVA regions of the spectrum. PMID:10611381

  18. Association Between Polymorphisms of DNA Repair Gene XRCC1 and DNA Damage in Asbestos-Exposed Workers

    Institute of Scientific and Technical Information of China (English)

    XIAO-HONG ZHAO; GUANG JIA; YONG-QUAN LIU; SHAO-WEI LIU; LEI YAN; YU JIN; NIAN LIU

    2006-01-01

    Objective To compare the asbestos-induced DNA damage and repair capacities of DNA damage between 104 asbestos exposed workers and 101 control workers in Qingdao City of China and to investigate the possible association between polymorphisms in codon 399 of XRCC1 and susceptibility to asbestosis. Methods DNA damage levels in peripheral bloodlymphocytes were determined by comet assay, and XRCC 1 genetic polymorphisms of DNA samples from 51 asbestosis cases and 53 non-asbestosis workers with a similar asbestos exposure history were analyzed by PCR/RFLP. Results The basal comet scores (3.95±2.95) were significantly higher in asbestos-exposed workers than in control workers (0.10±0.28). After 1 h H2O2 stimulation, DNA damage of lymphocytes exhibited different increases. After a 4 h repair period, the comet scores were 50.98±19.53 in asbestos-exposed workers and 18.32±12.04 in controls. The residual DNA damage (RD) was significantly greater (P<0.01) in asbestos-exposed workers (35.62%) than in controls (27.75%). XRCC1 genetic polymorphism in 104 asbestos-exposed workers was not associated with increased risk of asbestosis. But compared with polymorphisms in the DNA repair gene XRCC1 (polymorphisms in codon 399) and the DNA damage induced by asbestos, the comet scores in asbestosis cases with Gln/Gln, Gln/Arg, and Arg/Arg were 40.26±18.94, 38.03±28.22, and 32.01±11.65, respectively, which were higher than those in non-asbestosis workers with the same genotypes (25.58±11.08, 37.08±14.74, and 29.38±10.15). There were significant differences in the comet scores between asbestosis cases and non-asbestosis workers with Gln/Gln by Student's t-test (P<0.05 or 0.01). The comet scores were higher in asbestosis workers with Gln/Gln than in those with Arg/Arg and in non-asbestosis workers exposed to asbestos, but without statistically significant difference. Conclusions Exposure to asbestos may be related to DNA damage or the capacity of cells to repair H2O2-induced

  19. Photoelectrochemical Sensors for the Rapid Detection of DNA Damage Induced by Some Nanoparticles

    Directory of Open Access Journals (Sweden)

    M. Jamaluddin Ahmed

    2010-06-01

    Full Text Available Photoelectrochemcal sensors were developed for the rapid detection of oxidative DNA damage induced by titanium dioxide and polystyrene nanoparticles. Each sensor is a multilayer film prepared on a tin oxide nanoparticle electrode using layer- by-layer self assembly and is composed of separate layer of a photoelectrochemical indicator, DNA. The organic compound and heavy metals represent genotoxic chemicals leading two major damaging mechanisms, DNA adduct formation and DNA oxidation. The DNA damage is detected by monitoring the change of photocurrent of the indicator. In one sensor configuration, a DNA intercalator, Ru(bpy2 (dppz2+ [bpy=2, 2′ -bipyridine, dppz=dipyrido( 3, 2-a: 2′ 3′-c phenazine], was employed as the photoelectrochemical indicator. The damaged DNA on the sensor bound lesser Ru(bpy2 (dppz2+ than the intact DNA, resulting in a drop in photocurrent. In another configuration, ruthenium tris(bipyridine was used as the indicator and was immobilized on the electrode underneath the DNA layer. After oxidative damage, the DNA bases became more accessible to photoelectrochemical oxidation than the intact DNA, producing a rise in photocurrent. Both sensors displayed substantial photocurrent change after incubation in titanium dioxide / polystyrene solution in a time – dependent manner. According to the data, damage of the DNA film was completed in 1h in titanium dioxide / polystyrene solution. In addition, the titanium dioxide induced much more sever damage than polysterene. The results were verified independently by gel electrophoresis and UV-Vis absorbance experiments. The photoelectrochemical reaction can be employed as a new and inexpensive screening tool for the rapid assessment of the genotoxicity of existing and new chemicals.

  20. β-carboline derivatives: Novel photosensitizers that intercalate into DNA to cause direct DNA damage in photodynamic therapy

    International Nuclear Information System (INIS)

    Novel 1,3,9-trisubstituted β-carboline derivatives were found to exhibit DNA photocleavage properties under visible light irradiation in a cell-free system, which could be reduced by antioxidant vitamin E. Their photo-cytotoxicity to human tumor cell line HeLa was confirmed, in which apoptosis only contributed a small part to the cell death, and necrosis was the dominating outcome of HeLa cells in photodynamic therapy (PDT) using β-carboline derivatives. Different from other clinical PDT drugs, β-carboline derivatives were demonstrated to be able to distribute in the nucleus and intercalate into DNA, and consequently cause direct DNA damage by photochemical reaction products in PDT, which was proved by the distinct DNA tails in the comet assay and the considerable amount of DNA damaged cells quantified by flow cytometry. This mechanism could be the explanation for the delay of cell proliferation at DNA synthesis and mitosis

  1. DNA damage in human germ cell exposed to the some food additives in vitro.

    Science.gov (United States)

    Pandir, Dilek

    2016-08-01

    The use of food additives has increased enormously in modern food technology but they have adverse effects in human healthy. The aim of this study was to investigate the DNA damage of some food additives such as citric acid (CA), benzoic acid (BA), brilliant blue (BB) and sunset yellow (SY) which were investigated in human male germ cells using comet assay. The sperm cells were incubated with different concentrations of these food additives (50, 100, 200 and 500 μg/mL) for 1 h at 32 °C. The results showed for CA, BA, BB and SY a dose dependent increase in tail DNA%, tail length and tail moment in human sperm when compared to control group. When control values were compared in the studied parameters in the treatment concentrations, SY was found to exhibit the highest level of DNA damage followed by BB > BA > CA. However, none of the food additives affected the tail DNA%, tail length and tail moment at 50 and 100 μg/mL. At 200 μg/mL of SY, the tail DNA% and tail length of sperm were 95.80 ± 0.28 and 42.56 ± 4.66, for BB the values were 95.06 ± 2.30 and 39.56 ± 3.78, whereas for BA the values were 89.05 ± 2.78 and 31.50 ± 0.71, for CA the values were 88.59 ± 6.45 and 13.59 ± 2.74, respectively. However, only the highest concentration of the used food additives significantly affected the studied parameters of sperm DNA. The present results indicate that SY and BB are more harmful than BA and CA to human sperm in vitro. PMID:25501537

  2. In vitro and in vivo assay of radio-induced damage in Escherichia Coli, DNA labelled on thymidilic fragment

    International Nuclear Information System (INIS)

    A technique of rapid assay for a particular and very important damage, N-formamido (DNA), is described. Using this technique, the importance of radio-induced DNA damage can be evaluated before the repair enzymatic system takes place

  3. Detection of DNA damage induced by heavy ion irradiation in the individual cells with comet assay

    Science.gov (United States)

    Wada, S.; Natsuhori, M.; Ito, N.; Funayama, T.; Kobayashi, Y.

    2003-05-01

    Investigating the biological effects of high-LET heavy ion irradiation at low fluence is important to evaluate the risk of charged particles. Especially it is important to detect radiation damage induced by the precise number of heavy ions in the individual cells. Thus we studied the relationship between the number of ions traversing the cell and DNA damage produced by the ion irradiation. We applied comet assay to measure the DNA damage in the individual cells. Cells attached on the ion track detector CR-39 were irradiated with ion beams at TIARA, JAERI-Takasaki. After irradiation, the cells were stained with ethidium bromide and the opposite side of the CR-39 was etched. We observed that the heavy ions with higher LET values induced the heavier DNA damage. The result indicated that the amount of DNA damage induced by one particle increased with the LET values of the heavy ions.

  4. Hypersensitivity to DNA damage in antephase as a safeguard for genome stability

    Science.gov (United States)

    Feringa, Femke M.; Krenning, Lenno; Koch, André; van den Berg, Jeroen; van den Broek, Bram; Jalink, Kees; Medema, René H.

    2016-01-01

    Activation of the DNA-damage response can lead to the induction of an arrest at various stages in the cell cycle. These arrests are reversible in nature, unless the damage is too excessive. Here we find that checkpoint reversibility is lost in cells that are in very late G2, but not yet fully committed to enter mitosis (antephase). We show that antephase cells exit the cell cycle and enter senescence at levels of DNA damage that induce a reversible arrest in early G2. We show that checkpoint reversibility critically depends on the presence of the APC/C inhibitor Emi1, which is degraded just before mitosis. Importantly, ablation of the cell cycle withdrawal mechanism in antephase promotes cell division in the presence of broken chromosomes. Thus, our data uncover a novel, but irreversible, DNA-damage response in antephase that is required to prevent the propagation of DNA damage during cell division. PMID:27561326

  5. Plasmid DNA damage by neutron and γ-ray in the presence of BSH

    International Nuclear Information System (INIS)

    In this study, the extent of plasmid DNA damage was observed according to concentration of BSH(Boron Sulfhydry1 Hydride) and irradiation doses of neutron and γ-ray. The plasmid used was both pBR 322 (2870 bp) and φX174 RF(5386 bp) DNA. Plasmid DNA damage by irradiation in the presence of BSH was analyzed by agarose gel electrophoresis. In the neutron experiment, DNA damage of both plasmid DNAs was increased according to increasing the concentration of BSH and neutron doses. But in the γ-ray experiment, there appeared no dose dependency as compared to the neutron experiment. The extent of the plasmid DNA damage in the presence of BSH was somewhat different according to irradiation by neutron or γ-ray

  6. Spatiotemporal characterization of ionizing radiation induced DNA damage foci and their relation to chromatin organization

    Energy Technology Data Exchange (ETDEWEB)

    Costes, Sylvain V; Chiolo, Irene; Pluth, Janice M.; Barcellos-Hoff, Mary Helen; Jakob, Burkhard

    2009-09-15

    DNA damage sensing proteins have been shown to localize to the sites of DSB within seconds to minutes following ionizing radiation (IR) exposure, resulting in the formation of microscopically visible nuclear domains referred to as radiation-induced foci (RIF). This review characterizes the spatio-temporal properties of RIF at physiological doses, minutes to hours following exposure to ionizing radiation, and it proposes a model describing RIF formation and resolution as a function of radiation quality and nuclear densities. Discussion is limited to RIF formed by three interrelated proteins ATM (Ataxia telangiectasia mutated), 53BP1 (p53 binding protein 1) and ?H2AX (phosphorylated variant histone H2AX). Early post-IR, we propose that RIF mark chromatin reorganization, leading to a local nuclear scaffold rigid enough to keep broken DNA from diffusing away, but open enough to allow the repair machinery. We review data indicating clear kinetic and physical differences between RIF emerging from dense and uncondensed regions of the nucleus. At later time post-IR, we propose that persistent RIF observed days following exposure to ionizing radiation are nuclear ?scars? marking permanent disruption of the chromatin architecture. When DNA damage is resolved, such chromatin modifications should not necessarily lead to growth arrest and it has been shown that persistent RIF can replicate during mitosis. Thus, heritable persistent RIF spanning over tens of Mbp may affect the transcriptome of a large progeny of cells. This opens the door for a non DNA mutation-based mechanism of radiation-induced phenotypes.

  7. Direct observation of ultrafast-electron-transfer reactions unravels high effectiveness of reductive DNA damage.

    Science.gov (United States)

    Nguyen, Jenny; Ma, Yuhan; Luo, Ting; Bristow, Robert G; Jaffray, David A; Lu, Qing-Bin

    2011-07-19

    Both water and electron-transfer reactions play important roles in chemistry, physics, biology, and the environment. Oxidative DNA damage is a well-known mechanism, whereas the relative role of reductive DNA damage is unknown. The prehydrated electron (e(pre)-), a novel species of electrons in water, is a fascinating species due to its fundamental importance in chemistry, biology, and the environment. e(pre)- is an ideal agent to observe reductive DNA damage. Here, we report both the first in situ femtosecond time-resolved laser spectroscopy measurements of ultrafast-electron-transfer (UET) reactions of e(pre)- with various scavengers (KNO(3), isopropanol, and dimethyl sulfoxide) and the first gel electrophoresis measurements of DNA strand breaks induced by e(pre)- and OH(•) radicals co-produced by two-UV-photon photolysis of water. We strikingly found that the yield of reductive DNA strand breaks induced by each e(pre)- is twice the yield of oxidative DNA strand breaks induced by each OH(•) radical. Our results not only unravel the long-standing mystery about the relative role of radicals in inducing DNA damage under ionizing radiation, but also challenge the conventional notion that oxidative damage is the main pathway for DNA damage. The results also show the potential of femtomedicine as a new transdisciplinary frontier and the broad significance of UET reactions of e(pre)- in many processes in chemistry, physics, biology, and the environment. PMID:21730183

  8. The ability of sperm selection techniques to remove single-or double-strand DNA damage

    Institute of Scientific and Technical Information of China (English)

    Maria Enciso; Miriam Iglesias; Isabel Galin; Jonas Sarasa; Antonio Gosalvez; Jaime Gosalvez

    2011-01-01

    @@ A wide variety of techniques for the preparation of sperm are currently available,of which the most commonly employed are densitygradient centrifugation (DGC) and swim-up (SUP).To date,these methods appear to be effective in selecting functional sperm for assisted reproduction techniques (ART),but they may have negative effects on sperm DNA.In this study,the ability of these semen processing techniques to eliminate spermatozoa containing single- and double-strand DNA damage was assessed by the two-tailed comet assay and the sperm chromatin dispersion test in 1[57]semen samples from patients seeking assisted reproduction treatment.Our results indicated that SUP and DGC are equally efficient in eliminating spermatozoa containing double-strand DNA damage and sperm with highly damaged (degraded) DNA,as characterized by the presence of both single- and double-strand DNA breaks.However,DGC is more efficient than SUP in selecting spermatozoa that are free from single-strand DNA damage.Future studies should characterise the importance of the various types of DNA damage and examine the sperm processing protocols used in each laboratory to determine their ability to eliminate DNA damage and hence,prevent the potential transmission of genetic mutations via ART.

  9. Determination of the Action Spectrum of UVR-Induced Mitochondrial DNA Damage in Human Skin Cells.

    Science.gov (United States)

    Latimer, Jennifer A; Lloyd, James J; Diffey, Brian L; Matts, Paul J; Birch-Machin, Mark A

    2015-10-01

    Biological responses of human skin to UVR including cancer and aging are largely wavelength-dependent, as shown by the action spectra of UVR-induced erythema and nuclear DNA (nDNA) damage. A molecular dosimeter of UVR exposure is therefore required. Although mitochondrial DNA (mtDNA) damage has been shown to be a reliable and sensitive biomarker of UVR exposure in human skin, its wavelength dependency is unknown. The current study solves this problem by determining the action spectrum of UVR-induced mtDNA damage in human skin. Human neonatal dermal fibroblasts and primary human adult keratinocyte cells were irradiated with increasing doses of UVR. Dose-response curves of mtDNA damage were produced for each of the UVR sources and cell types, and an action spectrum for each cell type was determined by mathematical induction. Similarities between these mtDNA damage action spectra and previously determined nDNA damage were observed, with the most detrimental effects occurring over the shorter UVR wavelengths. Notably, a statistically significant (P300 nm, possibly indicating a wider picture of depth dependence in sensitivity. This finding has implications for disease/photodamage mechanisms and interventions. PMID:26030182

  10. Response to DNA damage: why do we need to focus on protein phosphatases?

    Directory of Open Access Journals (Sweden)

    MidoriShimada

    2013-01-01

    Full Text Available Eukaryotic cells are continuously threatened by unavoidable errors during normal DNA replication or various sources of genotoxic stresses that cause DNA damage or stalled replication. To maintain genomic integrity, cells have developed a coordinated signaling network, known as the DNA damage response (DDR. Following DNA damage, sensor molecules detect the presence of DNA damage and transmit signals to downstream transducer molecules. This in turn conveys the signals to numerous effectors, which initiate a large number of specific biological responses, including transient cell cycle arrest mediated by checkpoints, DNA repair, and apoptosis. It is recently becoming clear that dephosphorylation events are involved in keeping DDR factors inactive during normal cell growth. Moreover, dephosphorylation is required to shut off checkpoint arrest following DNA damage and has been implicated in the activation of the DDR. Spatial and temporal regulation of phosphorylation events is essential for the DDR, and fine-tuning of phosphorylation is partly mediated by protein phosphatases. While the role of kinases in the DDR has been well documented, the complex roles of protein dephosphorylation have only recently begun to be investigated. Therefore, it is important to focus on the role of phosphatases and to determine how their activity is regulated upon DNA damage. In this work, we summarize current knowledge on the involvement of serine/threonine phosphatases, especially the protein phosphatase 1, protein phosphatase 2A, and protein phosphatase Mg2+/Mn2+-dependent families, in the DDR.

  11. International congress on DNA damage and repair: Book of abstracts

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    This document contains the abstracts of 105 papers presented at the Congress. Topics covered include the Escherichia coli nucleotide excision repair system, DNA repair in malignant transformations, defective DNA repair, and gene regulation. (TEM)

  12. International congress on DNA damage and repair: Book of abstracts

    International Nuclear Information System (INIS)

    This document contains the abstracts of 105 papers presented at the Congress. Topics covered include the Escherichia coli nucleotide excision repair system, DNA repair in malignant transformations, defective DNA repair, and gene regulation

  13. DNA damage-induced metaphase I arrest is mediated by the spindle assembly checkpoint and maternal age

    OpenAIRE

    Marangos, P; Stevense, M.; Niaka, K.; Lagoudaki, M.; Nabti, I.; Jessberger, R.; Carroll, J.

    2015-01-01

    In mammalian oocytes DNA damage can cause chromosomal abnormalities that potentially lead to infertility and developmental disorders. However, there is little known about the response of oocytes to DNA damage. Here we find that oocytes with DNA damage arrest at metaphase of the first meiosis (MI). The MI arrest is induced by the spindle assembly checkpoint (SAC) because inhibiting the SAC overrides the DNA damage-induced MI arrest. Furthermore, this MI checkpoint is compromised in oocytes fro...

  14. DNA damage is a late event in resveratrol-mediated inhibition of Escherichia coli.

    Science.gov (United States)

    Subramanian, Mahesh; Soundar, Swetha; Mangoli, Suhas

    2016-07-01

    Resveratrol is an important phytoalexin notable for a wide variety of beneficial activities. Resveratrol has been reported to be active against various pathogenic bacteria. However, it is not clear at the molecular level how this important activity is manifested. Resveratrol has been reported to bind to cupric ions and reduce it. In the process, it generates copper-peroxide complex and reactive oxygen species (ROS). Due to this ability, resveratrol has been shown to cleave plasmid DNA in several studies. To this end, we envisaged DNA damage to play a role in resveratrol mediated inhibition in Escherichia coli. We employed DNA damage repair deficient mutants from keio collection to demonstrate the hypersensitive phenotype upon resveratrol treatment. Analysis of integrity and PCR efficiency of plasmid DNA from resveratrol-treated cells revealed significant DNA damage after 6 h or more compared to DNA from vehicle-treated cells. RAPD-PCR was performed to demonstrate the damage in genomic DNA from resveratrol-treated cells. In addition, in situ DNA damage was observed under fluorescence microscopy after resveratrol treatment. Further resveratrol treatment resulted in cell cycle arrest of significant fraction of population revealed by flow cytometry. However, a robust induction was not observed in phage induction assay and induction of DNA damage response genes quantified by promoter fused fluorescent tracker protein. These observations along with our previous observation that resveratrol induces membrane damage in E. coli at early time point reveal, DNA damage is a late event, occurring after a few hours of treatment. PMID:27021971

  15. Genetic polymorphisms in homologous recombination repair genes in healthy Slovenian population and their influence on DNA damage

    International Nuclear Information System (INIS)

    Homologous recombination (HR) repair is an important mechanism involved in repairing double-strand breaks in DNA and for maintaining genomic stability. Polymorphisms in genes coding for enzymes involved in this pathway may influence the capacity for DNA repair. The aim of this study was to select tag single nucleotide polymorphisms (SNPs) in specific genes involved in HR repair, to determine their allele frequencies in a healthy Slovenian population and their influence on DNA damage detected with comet assay. In total 373 individuals were genotyped for nine tag SNPs in three genes: XRCC3 722C>T, XRCC3 -316A>G, RAD51 -98G>C, RAD51 -61G>T, RAD51 1522T>G, NBS1 553G>C, NBS1 1197A>G, NBS1 37117C>T and NBS1 3474A>C using competitive allele-specific amplification (KASPar assay). Comet assay was performed in a subgroup of 26 individuals to determine the influence of selected SNPs on DNA damage. We observed that age significantly affected genotype frequencies distribution of XRCC3 -316A>G (P = 0.039) in healthy male blood donors. XRCC3 722C>T (P = 0.005), RAD51 -61G>T (P = 0.023) and NBS1 553G>C (P = 0.008) had a statistically significant influence on DNA damage. XRCC3 722C>T, RAD51 -61G>T and NBS1 553G>C polymorphisms significantly affect the repair of damaged DNA and may be of clinical importance as they are common in Slovenian population

  16. Perturbations of enzymic uracil excision due to purine damage in DNA.

    OpenAIRE

    Duker, N J; Jensen, D E; Hart, D M; Fishbein, D E

    1982-01-01

    Phage PBS-2 DNA, which contains uracil in place of thymine, was selectively damaged and then used as substrate for purified Bacillus subtilis uracil-DNA glycosylase. This enzyme releases uracil from DNA in a limited processive manner. Irradiation by ultraviolet light (greater than 305 nm) in the presence of isopropanol and a free radical photoinitiator introduced covalently bound 8-(2-hydroxy-2-propyl)purines into DNA. Methylation by dimethylsulfate yielded 7-methylguanine. Apurinic sites wer...

  17. An immunochemical approach to the study of DNA damage and repair

    International Nuclear Information System (INIS)

    The overall objective of this project is to produce antibodies to unique modified DNA bases and develop immunochemical assays to quantitate these lesions in damaged DNA. During this past year we have developed an antibody and chemical test to quantitate a basic sites in DNA and produced antibodies to the 8-oxopurines. This report discusses the detection of a basic sites in DNA and the preparation of antibodies to 8-hydroxyadenine and 8-hydroxyguanine

  18. Detection of primary DNA damage: applicability to biomonitoring of genotoxic occupational exposure and in clinical therapy

    OpenAIRE

    Oesch, F; Hengstler, J.G.; Arand, M; Fuchs, J.

    1995-01-01

    The biological effect of putative genotoxic chemicals in the work place environment was monitored in peripheral mononuclear blood cells of exposed workers. DNA strand breaks, alkali-labile sites of DNA and DNA cross-links were measured using the alkaline filter elution method. A dose dependent increase in DNA damage was found in sterilization workers exposed to ethylene oxide and metal workers with exposure towards N-nitrosodiethanolamine. Two subpopulations with different response to the ext...

  19. Repair of UV-damaged incoming plasmid DNA in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    A whole-cell transformation assay was used for the repair of UV-damaged plasma DNA in highly-transformable haploid strains of Saccharomyces cerevisiae having different repair capabilities. The experiments described demonstrate that three epistasis groups (Friedberg 1988) are involved in the repair of UV-incoming DNA and that the repair processes act less efficiently on incoming DNA than they do on chromosomal DNA. The implications of these findings for UV repair in Saccharomyces cerevisiae are discussed. (author)

  20. Comet-FISH with rDNA probes for the analysis of mutagen-induced DNA damage in plant cells.

    Science.gov (United States)

    Kwasniewska, Jolanta; Grabowska, Marta; Kwasniewski, Miroslaw; Kolano, Bozena

    2012-06-01

    We used comet-fluorescence in situ hybridization (FISH) in the model plant species Crepis capillaris following exposure of seedlings to maleic hydrazide (MH). FISH with 5S and 25S rDNA probes was applied to comets obtained under alkaline conditions to establish whether these DNA regions were preferentially involved in comet tail formation. MH treatment induced significant fragmentation of nuclear DNA and of rDNA loci. A 24-h post-treatment recovery period allowed a partial reversibility of MH-induced damage on nuclear and rDNA regions. Analyses of FISH signals demonstrated that rDNA sequences were always involved in tail formation and that 5S rDNA was more frequently present in the tail than 25S rDNA, regardless of treatment. The involvement of 25S rDNA in nucleolus formation and differences in chromatin structure between the two loci may explain the different susceptibility of the 25S and 5S rDNA regions to migrate into the tail. This work is the first report on the application of FISH to comet preparations from plants to analyze the distribution and repair of DNA damage within specific genomic regions after mutagenic treatment. Moreover, our work suggests that comet-FISH in plants may be a useful tool for environmental monitoring assessment. PMID:22556029

  1. Compare two methods of measuring DNA damage induced by photogenotoxicity of fluoroquinolones

    Institute of Scientific and Technical Information of China (English)

    Ting ZHANG; Jun-ling LI; Jian XIN; Xiao-chao MA; Zeng-hong TU

    2004-01-01

    AIM: To compare two methods of measuring DNA damage induced by photogenotoxicity of fluoroquinolones (FQ). METHODS: Lomefloxacin (LFLX), sparfloxacin (SPFX), ciprofloxacin (CPFX), and levofloxacin (LELX)were tested by comet assay and photodynamic DNA strand breaking activity under the different conditions of UVA irradiation. RESULTS: In comet assay, photogenotoxicity was evident at SPFX 1 mg/L, LFLX 5 mg/L, and CPFX 5 mg/L, and LELX 10 mg/L. In photodynamic DNA srand-breaking activity, SPFX and LFLX induced the conversion of the supercoiled form into the nicked relaxed form at 10-50 μmol/L, while CPFX at 25 μmol/L and LELX at 50 μmol/L. CONCLUSION: There were good correlations between the two methods to detect DNA damage induced by phototoxicity of fluoroquinolones. Photodynamic DNA strand breaking activity was a good method to detect DNA damage induced by photogenotoxicity of fluoroquinolones as well as comet assay.

  2. Phosphorylation of PTEN at STT motif is associated with DNA damage response

    International Nuclear Information System (INIS)

    Highlights: • Phosphorylation PTEN at the C-terminal STT motif is necessary for DNA repair. • DNA damage induces phosphorylation of STT motif of PTEN. • Phospho-PTEN translocates to nucleus after DNA damage. • Phospho-PTEN forms nuclear foci after DNA damage which co localized with γH2AX. - Abstract: Phosphatase and tensin homolog deleted on chromosome Ten (PTEN), a tumor suppressor protein participates in multiple cellular activities including DNA repair. In this work we found a relationship between phosphorylation of carboxy (C)-terminal STT motif of PTEN and DNA damage response. Ectopic expression of C-terminal phospho-mutants of PTEN, in PTEN deficient human glioblastoma cells, U87MG, resulted in reduced viability and DNA repair after etoposide induced DNA damage compared to cells expressing wild type PTEN. Also, after etoposide treatment phosphorylation of PTEN increased at C-terminal serine 380 and threonine 382/383 residues in PTEN positive HEK293T cells and wild type PTEN transfected U87MG cells. One-step further, DNA damage induced phosphorylation of PTEN was confirmed by immunoprecipitation of total PTEN from cellular extract followed by immunobloting with phospho-specific PTEN antibodies. Additionally, phospho-PTEN translocated to nucleus after etoposide treatment as revealed by indirect immunolabeling. Further, phosphorylation dependent nuclear foci formation of PTEN was observed after ionizing radiation or etoposide treatment which colocalized with γH2AX. Additionally, etoposide induced γH2AX, Mre11 and Ku70 foci persisted for a longer period of times in U87MG cells after ectopic expression of PTEN C-terminal phospho-mutant constructs compared to wild type PTEN expressing cells. Thus, our findings strongly suggest that DNA damage induced phosphorylation of C-terminal STT motif of PTEN is necessary for DNA repair

  3. Factors influencing heterogeneity of radiation-induced DNA-damage measured by the alkaline comet assay

    International Nuclear Information System (INIS)

    To investigate whether different conditions of DNA structure and radiation treatment could modify heterogeneity of response. Additionally to study variance as a potential parameter of heterogeneity for radiosensitivity testing. Two-hundred leukocytes per sample of healthy donors were split into four groups. I: Intact chromatin structure; II: Nucleoids of histone-depleted DNA; III: Nucleoids of histone-depleted DNA with 90 mM DMSO as antioxidant. Response to single (I-III) and twice (IV) irradiation with 4 Gy and repair kinetics were evaluated using %Tail-DNA. Heterogeneity of DNA damage was determined by calculation of variance of DNA-damage (V) and mean variance (Mvar), mutual comparisons were done by one-way analysis of variance (ANOVA). Heterogeneity of initial DNA-damage (I, 0 min repair) increased without histones (II). Absence of histones was balanced by addition of antioxidants (III). Repair reduced heterogeneity of all samples (with and without irradiation). However double irradiation plus repair led to a higher level of heterogeneity distinguishable from single irradiation and repair in intact cells. Increase of mean DNA damage was associated with a similarly elevated variance of DNA damage (r = +0.88). Heterogeneity of DNA-damage can be modified by histone level, antioxidant concentration, repair and radiation dose and was positively correlated with DNA damage. Experimental conditions might be optimized by reducing scatter of comet assay data by repair and antioxidants, potentially allowing better discrimination of small differences. Amount of heterogeneity measured by variance might be an additional useful parameter to characterize radiosensitivity

  4. Mechanisms for radiation damage in DNA. Progress report, June 1, 1994--May 31, 1995

    International Nuclear Information System (INIS)

    In this project we have proposed several mechanisms for radiation damage to DNA and its constituents, and have detailed a series of experiments utilizing electron spin resonance spectroscopy, HPLC, GC-mass spectroscopy and ab initio molecular orbital calculations to test the proposed mechanisms. The results from these various techniques have resulted in an understanding of consequences of radiation damage to DNA from the early ionization event to the production of non-radical lesions (discussed in detail in Comprehensive Report). In this year's work we have found the hydroxyl radical in DNA's hydration layer. This is an important result which impacts the hole transfer hypothesis and the understanding of the direct vs. indirect effect in DNA. Further we have found the first ESR evidence for sugar radicals as a result of direct radiation damage to DNA nucleotides in an aqueous environment. This is significant as it impacts the biological endpoint of radiation damage to DNA and suggests future work in DNA. Work with DNA-polypeptides show clear evidence for electron transfer to DNA from the polypeptide which we believe is a radioprotective mechanism. Our work with ab initio molecular orbital theory has gain insight into the initial events of radiation damage to DNA. Ab initio calculations have provided an understanding of the energetics involved in anion and cation formation, ion radical transfer in DNA as well as proton transfer with DNA base pair radical ions. This has been extended in this year's work to new, more accurate values for the electron affinities of the DNA bases, understanding of the relative stability of all possible sugar radicals formed by hydrogen abstraction on the deoxyribose group, hydration effects on, thiol radioprotectors, and an ongoing study of radical intermediates formed from initial DNA ion radicals. During this fiscal year five articles have been published, three are in press, two are submitted and several more are in preparation

  5. RCC1-dependent activation of Ran accelerates cell cycle and DNA repair, inhibiting DNA damage-induced cell senescence.

    Science.gov (United States)

    Cekan, Pavol; Hasegawa, Keisuke; Pan, Yu; Tubman, Emily; Odde, David; Chen, Jin-Qiu; Herrmann, Michelle A; Kumar, Sheetal; Kalab, Petr

    2016-04-15

    The coordination of cell cycle progression with the repair of DNA damage supports the genomic integrity of dividing cells. The function of many factors involved in DNA damage response (DDR) and the cell cycle depends on their Ran GTPase-regulated nuclear-cytoplasmic transport (NCT). The loading of Ran with GTP, which is mediated by RCC1, the guanine nucleotide exchange factor for Ran, is critical for NCT activity. However, the role of RCC1 or Ran⋅GTP in promoting cell proliferation or DDR is not clear. We show that RCC1 overexpression in normal cells increased cellular Ran⋅GTP levels and accelerated the cell cycle and DNA damage repair. As a result, normal cells overexpressing RCC1 evaded DNA damage-induced cell cycle arrest and senescence, mimicking colorectal carcinoma cells with high endogenous RCC1 levels. The RCC1-induced inhibition of senescence required Ran and exportin 1 and involved the activation of importin β-dependent nuclear import of 53BP1, a large NCT cargo. Our results indicate that changes in the activity of the Ran⋅GTP-regulated NCT modulate the rate of the cell cycle and the efficiency of DNA repair. Through the essential role of RCC1 in regulation of cellular Ran⋅GTP levels and NCT, RCC1 expression enables the proliferation of cells that sustain DNA damage. PMID:26864624

  6. Electrochemical behavior of antioxidants: Part 3. Electrochemical studies of caffeic Acid–DNA interaction and DNA/carbon nanotube biosensor for DNA damage and protection

    Directory of Open Access Journals (Sweden)

    Refat Abdel-Hamid

    2016-05-01

    Full Text Available Multi-walled carbon nanotubes-modified glassy carbon electrode biosensor was used for electrochemical studies of caffeic acid–dsDNA interaction in phosphate buffer solution at pH 2.12. Caffeic acid, CAF, shows a well-defined cyclic voltammetric wave. Its anodic peak current decreases and the peak potential shifts positively on the addition of dsDNA. This behavior was ascribed to an interaction of CAF with dsDNA giving CAF–dsDNA complex by intercalative binding mode. The apparent binding constant of CAF–dsDNA complex was determined using amperometric titrations. The oxidative damage caused to DNA was detected using the biosensor. The damage caused by the reactive oxygen species, hydroxyl radical (·−OH generated by the Fenton system on the DNA-biosensor was detected. It was found that CAF has the capability of scavenging the hydroxide radical and protecting the DNA immobilized on the GCE surface.

  7. The histone demethylase LSD1/KDM1A promotes the DNA damage response

    OpenAIRE

    Mosammaparast, Nima; Kim, Haeyoung; Laurent, Benoit; Zhao, Yu; Lim, Hui Jun; Majid, Mona C.; Dango, Sebastian; Luo, Yuying; Hempel, Kristina; Sowa, Mathew E.; Gygi, Steven P.; Steen, Hanno; Harper, J. Wade; Yankner, Bruce; Shi, Yang

    2013-01-01

    Histone demethylation is known to regulate transcription, but its role in other processes is largely unknown. We report a role for the histone demethylase LSD1/KDM1A in the DNA damage response (DDR). We show that LSD1 is recruited directly to sites of DNA damage. H3K4 dimethylation, a major substrate for LSD1, is reduced at sites of DNA damage in an LSD1-dependent manner. The E3 ubiquitin ligase RNF168 physically interacts with LSD1 and we find this interaction to be important for LSD1 recrui...

  8. DNA damage-induced cell death: lessons from the central nervous system

    Institute of Scientific and Technical Information of China (English)

    Helena Lobo Borges; Rafael Linden; Jean YJ Wang

    2008-01-01

    DNA damage can, but does not always, induce cell death. While several pathways linking DNA damage signals to mitochondria-dependent and -independent death machineries have been elucidated, the connectivity of these pathways is subject to regulation by multiple other factors that are not well understood. We have proposed two conceptual models to explain the delayed and variable cell death response to DNA damage: integrative surveillance versus autonomous pathways. In this review, we discuss how these two models may explain the in vivo regulation of cell death induced by ionizing radiation (IR) in the developing central nervous system, where the death response is regulated by radiation dose, cell cycle status and neuronal development.

  9. Potentiation of tumor responses to DNA damaging therapy by the selective ATR inhibitor VX-970

    OpenAIRE

    Hall, Amy B.; Newsome, Dave; Wang, Yuxin; Boucher, Diane M.; Eustace, Brenda; Gu, Yong; Hare, Brian; Mac A. Johnson; Milton, Sean; Murphy, Cheryl E.; Takemoto, Darin; Tolman, Crystal; Wood, Mark; Charlton, Peter; Charrier, Jean-Damien

    2014-01-01

    Platinum-based DNA-damaging chemotherapy is standard-of-care for most patients with lung cancer but outcomes remain poor. This has been attributed, in part, to the highly effective repair network known as the DNA-damage response (DDR). ATR kinase is a critical regulator of this pathway, and its inhibition has been shown to sensitize some cancer, but not normal, cells in vitro to DNA damaging agents. However, there are limited in vivo proof-of-concept data for ATR inhibition. To address this w...

  10. RNF111/Arkadia is a SUMO-targeted ubiquitin ligase that facilitates the DNA damage response

    DEFF Research Database (Denmark)

    Poulsen, Sara L; Hansen, Rebecca K; Wagner, Sebastian A;

    2013-01-01

    )-induced SUMOylation and ubiquitylation. Moreover, we show that RNF111 facilitated NER by regulating the recruitment of XPC to UV-damaged DNA. Our findings establish RNF111 as a new STUbL that directly links nonproteolytic ubiquitylation and SUMOylation in the DNA damage response....... nonproteolytic, K63-linked ubiquitylation of SUMOylated target proteins. We demonstrate that RNF111 promoted ubiquitylation of SUMOylated XPC (xeroderma pigmentosum C) protein, a central DNA damage recognition factor in nucleotide excision repair (NER) extensively regulated by ultraviolet (UV...

  11. The Prp19/Pso4 Core complex Undergoes Ubiquitylation and Structural Alterations in Response to DNA Damage

    Science.gov (United States)

    Lu, Xiaoyan; Legerski, Randy J.

    2007-01-01

    Prp19/Pso4, a U-box containing E3 ligase, has a demonstrated role in pre-mRNA splicing, but has also been implicated in both yeast and mammalian cells as having a direct role in DNA damage processing. In this report we provide further evidence in support of this latter assertion. We show that hPrp19 forms an ubiquitylated oligomeric species that is resistant to disruption by SDS gel electrophoresis under nonreducing conditions suggesting that is mediated by a thiolester between ubiquitin and a cysteine residue in Prp19. The level of this species is significantly enhanced upon treatment of cells with DNA damaging agents, and its association with chromatin is increased. In addition, hPrp19 is known to form a stable core complex with Cdc5L, Plrg1, and Spf27; however, ubiquitylated hPrp19 fails to interact with either Cdc5L or Plrg1 indicating that DNA damage can induce profound alterations to the hPrp19 core complex. Finally, we show that overexpression of hPrp19 in human cells provides a pro-survival affect in that it reduces the levels of apoptosis observed after exposure of cells to DNA damage. PMID:17276391

  12. Squalene Inhibits ATM-Dependent Signaling in γIR-Induced DNA Damage Response through Induction of Wip1 Phosphatase.

    Directory of Open Access Journals (Sweden)

    Naoto Tatewaki

    Full Text Available Ataxia telangiectasia mutated (ATM kinase plays a crucial role as a master controller in the cellular DNA damage response. Inhibition of ATM leads to inhibition of the checkpoint signaling pathway. Hence, addition of checkpoint inhibitors to anticancer therapies may be an effective targeting strategy. A recent study reported that Wip1, a protein phosphatase, de-phosphorylates serine 1981 of ATM during the DNA damage response. Squalene has been proposed to complement anticancer therapies such as chemotherapy and radiotherapy; however, there is little mechanistic information supporting this idea. Here, we report the inhibitory effect of squalene on ATM-dependent DNA damage signals. Squalene itself did not affect cell viability and the cell cycle of A549 cells, but it enhanced the cytotoxicity of gamma-irradiation (γIR. The in vitro kinase activity of ATM was not altered by squalene. However, squalene increased Wip1 expression in cells and suppressed ATM activation in γIR-treated cells. Consistent with the potential inhibition of ATM by squalene, IR-induced phosphorylation of ATM effectors such as p53 (Ser15 and Chk1 (Ser317 was inhibited by cell treatment with squalene. Thus, squalene inhibits the ATM-dependent signaling pathway following DNA damage through intracellular induction of Wip1 expression.

  13. Squalene Inhibits ATM-Dependent Signaling in γIR-Induced DNA Damage Response through Induction of Wip1 Phosphatase.

    Science.gov (United States)

    Tatewaki, Naoto; Konishi, Tetsuya; Nakajima, Yuki; Nishida, Miyako; Saito, Masafumi; Eitsuka, Takahiro; Sakamaki, Toshiyuki; Ikekawa, Nobuo; Nishida, Hiroshi

    2016-01-01

    Ataxia telangiectasia mutated (ATM) kinase plays a crucial role as a master controller in the cellular DNA damage response. Inhibition of ATM leads to inhibition of the checkpoint signaling pathway. Hence, addition of checkpoint inhibitors to anticancer therapies may be an effective targeting strategy. A recent study reported that Wip1, a protein phosphatase, de-phosphorylates serine 1981 of ATM during the DNA damage response. Squalene has been proposed to complement anticancer therapies such as chemotherapy and radiotherapy; however, there is little mechanistic information supporting this idea. Here, we report the inhibitory effect of squalene on ATM-dependent DNA damage signals. Squalene itself did not affect cell viability and the cell cycle of A549 cells, but it enhanced the cytotoxicity of gamma-irradiation (γIR). The in vitro kinase activity of ATM was not altered by squalene. However, squalene increased Wip1 expression in cells and suppressed ATM activation in γIR-treated cells. Consistent with the potential inhibition of ATM by squalene, IR-induced phosphorylation of ATM effectors such as p53 (Ser15) and Chk1 (Ser317) was inhibited by cell treatment with squalene. Thus, squalene inhibits the ATM-dependent signaling pathway following DNA damage through intracellular induction of Wip1 expression. PMID:26824362

  14. DNA DAMAGE INDUCED BY A OZONE IN PERIPHERAL BLOOD LYMPHOCYTES OF ELDERLY PATIENTS WITH CHRONIC OBSTRUCTIVE PULMONARY DISEASE

    OpenAIRE

    Kytikova, Oxana; Gvozdenko, Tatyana; Vitkina, Tatyana

    2015-01-01

    We have assessed DNA damage by using various therapeutic concentrations of ozone in the peripheral blood lymphocytes of elderly patients with chronic obstructive pulmonary disease (in vitro). The results of this work demonstrate that ozone induces DNA damage. It was also noticed, that there is a clear dose-dependent increase in DNA damage.

  15. Chromosomal bands affected by acute oil exposure and DNA repair errors.

    Directory of Open Access Journals (Sweden)

    Gemma Monyarch

    Full Text Available BACKGROUND: In a previous study, we showed that individuals who had participated in oil clean-up tasks after the wreckage of the Prestige presented an increase of structural chromosomal alterations two years after the acute exposure had occurred. Other studies have also reported the presence of DNA damage during acute oil exposure, but little is known about the long term persistence of chromosomal alterations, which can be considered as a marker of cancer risk. OBJECTIVES: We analyzed whether the breakpoints involved in chromosomal damage can help to assess the risk of cancer as well as to investigate their possible association with DNA repair efficiency. METHODS: Cytogenetic analyses were carried out on the same individuals of our previous study and DNA repair errors were assessed in cultures with aphidicolin. RESULTS: Three chromosomal bands, 2q21, 3q27 and 5q31, were most affected by acute oil exposure. The dysfunction in DNA repair mechanisms, expressed as chromosomal damage, was significantly higher in exposed-oil participants than in those not exposed (p= 0.016. CONCLUSION: The present study shows that breaks in 2q21, 3q27 and 5q31 chromosomal bands, which are commonly involved in hematological cancer, could be considered useful genotoxic oil biomarkers. Moreover, breakages in these bands could induce chromosomal instability, which can explain the increased risk of cancer (leukemia and lymphomas reported in chronically benzene-exposed individuals. In addition, it has been determined that the individuals who participated in clean-up of the oil spill presented an alteration of their DNA repair mechanisms two years after exposure.

  16. DNA damage markers in dermal fibroblasts in vitro reflect chronological donor age

    DEFF Research Database (Denmark)

    Waaijer, Mariëtte E C; Croco, Eleonora; Westendorp, Rudi G J; Slagboom, P Eline; Sedivy, John M; Lorenzini, Antonello; Maier, Andrea B

    2016-01-01

    The aging process is accompanied by an accumulation of cellular damage, which compromises the viability and function of cells and tissues. We aim to further explore the association between in vitro DNA damage markers and the chronological age of the donor, as well as long-lived family membership...... damage markers and long-lived family membership or cardiovascular disease. Results were comparable when fibroblasts were stressed in vitro with rotenone. In conclusion, we found that DNA damage foci of cultured fibroblasts are significantly associated with the chronological age, but not biological age...

  17. Electrophile and oxidant damage of mitochondrial DNA leading to rapid evolution of homoplasmic mutations

    OpenAIRE

    Mambo, Elizabeth; Gao, Xiangqun; Cohen, Yoram; Guo, Zhongmin; Talalay, Paul; Sidransky, David

    2003-01-01

    mtDNA mutations occur in a wide variety of degenerative diseases and cancer. mtDNA seems to be more susceptible to DNA damage and consequently sustains higher rates of mutation than does nuclear DNA (nDNA). Many of the somatic mtDNA mutations in human cancers are located in the displacement loop (D-loop) and in particular in a polycytidine stretch (C-tract) termed D310. The D310 region exhibits polymorphic length variation among individuals and has been described as a “hot spot” for somatic m...

  18. Studies on DNA Damage Response in Sulfolobus islandicus

    DEFF Research Database (Denmark)

    Han, Wenyuan

    methyl methanesulfonate (MMS), and hydroxyurea (HU) that may not introduce DNA lesions directly. Comparison of the effects of the three drugs on S. islandicus cells showed that NQO and MMS led to DNA-less cell formation, while HU did not. In addition, the DNA-less cells were featured with increased side...... scattered light, damaged cell membrane and electron-dense area. During NQO and MMS treatment, degradation of chromatin proteins was coincided with DNA-less cell formation, suggesting their roles in protecting genomic DNA from massive degradation. Further, HU inhibited NQO-induced DSB formation and DNA...

  19. Experimental Wing Damage Affects Foraging Effort and Foraging Distance in Honeybees Apis mellifera

    Directory of Open Access Journals (Sweden)

    Andrew D. Higginson

    2011-01-01

    Full Text Available Bees acquire wing damage as they age, and loss of wing area affects longevity and behaviour. This may influence colony performance via effects on worker behaviour. The effects of experimental wing damage were studied in worker honeybees in observation hives by recording survivorship, how often and for how long bees foraged, and by decoding waggle dances. Mortality rate increased with both age and wing damage. Damaged bees carried out shorter and/or less frequent foraging trips, foraged closer to the hive, and reported the profitability of flower patches to be lower than did controls. These results suggest that wing damage caused a reduction in foraging ability, and that damaged bees adjusted their foraging behaviour accordingly. Furthermore, the results suggest that wing damage affects the profitability of nectar sources. These results have implications for the colony dynamics and foraging efficiency in honeybees.

  20. Oxidative stress generated damage to DNA by gastrointestinal exposure to insoluble particles

    DEFF Research Database (Denmark)

    Møller, Peter; Folkmann, J K; Danielsen, P H;

    2012-01-01

    There is growing concern that gastrointestinal exposure to particles is associated with increased risk of toxicity to internal organs and carcinogenicity. The mechanism of action is related to particle-induced oxidative stress and oxidation of DNA. Observations from animal models indicate that...... level of lipid peroxidation derived exocyclic DNA adducts in the liver, suggesting multiple pathways of oxidative stress for particle-generated damage to DNA. At equal dose, diesel exhaust particles (SRM2975) generated larger levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine in rat liver than carbon black...... to particulate matter is associated with oxidative damage to DNA and this might be associated with increased risk of cancer....

  1. Plasmid linking number change induced by topoisomerase I-mediated DNA damage.

    OpenAIRE

    Duann, P; M. Sun; Lin, C T; Zhang, H.; Liu, L F

    1999-01-01

    The state of cellular chromatin in response to DNA damage has been examined by monitoring the change in the linking number of circular episomes. COS cells transfected with an SV40-based vector were treated with camptothecin (CPT), a eukaryotic DNA topoisomerase I (TOP1) poison which induces TOP1-mediated DNA damage. Within minutes, a large increase in the linking number (over 10 linking number) of a small fraction (5-15%) of the episomal DNA was observed. A similar CPT-induced increase in pla...

  2. The CXXC finger 5 protein is required for DNA damage-induced p53 activation

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The tumor suppressor p53 is a critical component of the DNA damage response pathway that induces a set of genes responsible for cell cycle arrest,senescence,apoptosis,and DNA repair.The ataxia te-langiectasia mutated protein kinase(ATM) responds to DNA-damage stimuli and signals p53 stabiliza-tion and activation,thereby facilitating transactivation of p53 inducible genes and maintainence of genome integrity.In this study,we identified a CXXC zinc finger domain containing protein termed CF5 as a critical component in the DNA damage signaling pathway.CF5 induces p53 transcriptional activity and apoptosis in cells expressing wild type p53 but not in p53-deficient cells.Knockdown of CF5 in-hibits DNA damage-induced p53 activation as well as cell cycle arrest.Furthermore,CF5 physically interacts with ATM and is required for DNA damage-induced ATM phosphorylation but not its recruitment to chromatin.These findings suggest that CF5 plays a crucial role in ATM-p53 signaling in response to DNA damage.

  3. Formation of clustered DNA damage after high-LET irradiation: a review.

    Science.gov (United States)

    Hada, Megumi; Georgakilas, Alexandros G

    2008-05-01

    Radiation can cause as well as cure cancer. The risk of developing radiation-induced cancer has traditionally been estimated from cancer incidence among survivors of the atomic bombs in Hiroshima and Nagasaki.(1)) These data provide the best estimate of human cancer risk over the dose range for low linear energy transfer (LET) radiations, such as X- or gamma-rays. The situation of estimating the real biological effects becomes even more difficult in the case of high LET particles encountered in space or as the result of domestic exposure to alpha-particles from radon gas emitters or other radioactive emitters like uranium-238. Complex DNA damage, i.e., the signature of high-LET radiations comprises of closely spaced DNA lesions forming a cluster of DNA damage. The two basic groups of complex DNA damage are double strand breaks (DSBs) and non-DSB oxidative clustered DNA lesions (OCDL). Theoretical analysis and experimental evidence suggest an increased complexity and severity of complex DNA damage with increasing LET (linear energy transfer) and a high mutagenic or carcinogenic potential. Data available on the formation of clustered DNA damage (DSBs and OCDL) by high-LET radiations are often controversial suggesting a variable response to dose and type of radiation. The chemical nature and cellular repair mechanisms of complex DNA damage have been much less characterized than those of isolated DNA lesions like an oxidized base or a single strand break especially in the case of high-LET radiation. This review will focus on the induction of clustered DNA damage by high-LET radiations presenting the earlier and recent relative data. PMID:18413977

  4. Formation of Clustered DNA Damage after High-LET Irradiation: A Review

    Science.gov (United States)

    Hada, Megumi; Georgakilas, Alexandros G.

    2008-01-01

    Radiation can cause as well as cure cancer. The risk of developing radiation-induced cancer has traditionally been estimated from cancer incidence among survivors of the atomic bombs in Hiroshima and Nagasaki. These data provide the best estimate of human cancer risk over the dose range for low linear energy transfer (LET) radiations, such as X- or gamma-rays. The situation of estimating the real biological effects becomes even more difficult in the case of high LET particles encountered in space or as the result of domestic exposure to particles from radon gas emitters or other radioactive emitters like uranium-238. Complex DNA damage, i.e., the signature of high-LET radiations comprises by closely spaced DNA lesions forming a cluster of DNA damage. The two basic groups of complex DNA damage are double strand breaks (DSBs) and non-DSB oxidative clustered DNA lesions (OCDL). Theoretical analysis and experimental evidence suggest there is increased complexity and severity of complex DNA damage with increasing LET (linear energy transfer) and a high mutagenic or carcinogenic potential. Data available on the formation of clustered DNA damage (DSBs and OCDL) by high-LET radiations are often controversial suggesting a variable response to dose and type of radiation. The chemical nature and cellular repair mechanisms of complex DNA damage have been much less characterized than those of isolated DNA lesions like an oxidized base or a single strand break especially in the case of high-LET radiation. This review will focus on the induction of clustered DNA damage by high-LET radiations presenting the earlier and recent relative data.

  5. Formation of clustered DNA damage after high-LET irradiation. A review

    International Nuclear Information System (INIS)

    Radiation can cause as well as cure cancer. The risk of developing radiation-induced cancer has traditionally been estimated from cancer incidence among survivors of the atomic bombs in Hiroshima and Nagasaki. These data provide the best estimate of human cancer risk over the dose range for low linear energy transfer (LET) radiations, such as X- or γ-rays. The situation of estimating the real biological effects becomes even more difficult in the case of high LET particles encountered in space or as the result of domestic exposure to α-particles from radon gas emitters or other radioactive emitters like uranium-238. Complex DNA damage, i.e., the signature of high-LET radiations comprises of closely spaced DNA lesions forming a cluster of DNA damage. The two basic groups of complex DNA damage are double strand breaks (DSBs) and non-DSB oxidative clustered DNA lesions (OCDL). Theoretical analysis and experimental evidence suggest an increased complexity and severity of complex DNA damage with increasing LET (linear energy transfer) and a high mutagenic or carcinogenic potential. Data available on the formation of clustered DNA damage (DSBs and OCDL) by high-LET radiations are often controversial suggesting a variable response to dose and type of radiation. The chemical nature and cellular repair mechanisms of complex DNA damage have been much less characterized than those of isolated DNA lesions like an oxidized base or a single strand break especially in the case of high-LET radiation. This review will focus on the induction of clustered DNA damage by high-LET radiations presenting the earlier and recent relative data. (author)

  6. Topics in free radical-mediated DNA damage: purines and damage amplification - superoxic reactions - bleomycin, the incomplete radiomimetic

    International Nuclear Information System (INIS)

    Only a small percentage of the DNA damage set by ionizing radiation in the living cell manifests itself as lethal. It is now increasingly accepted that clustered lesions may constitute the kind of damage that the repair enzymes cannot adequately deal with. The question is raised as to whether damage amplification reactions (radical transfer reactions) may contribute to these clustered lesions, and examples of such damage amplification reactions are given. In one example a purine is involved. With 2'-deoxy adenosine and 2'-deoxy guanosine it is shown that these purine nucleosides undergo unexpected radical reactions. Evidence for the radical transfer from the purine to the sugar moiety is provided by the formation of the 5'-aldehydes. These products have been assayed with 2-thiobarbituric acid (TBA), a reagent commonly applied to the detection of malonaldehyde. TBA-reactive material has also been assayed in γ-irradiated DNA, about one-third of this is free malonaldehyde, while the major part of the TBA-reactive material remains bound to the DNA. In contrast, bleomycin-treated DNA yields practically no free malonaldehyde, and the major TBA-reactive products are identified as the thymine and adenine base propenals. (Author)

  7. Protection of vanillin derivative VND3207 on plasmid DNA damage induced by different LET ionizing radiation

    International Nuclear Information System (INIS)

    Objective: To evaluate the radioprotective effect of vanillin derivative VND3207 on DNA damage induced by different LET ionizing radiation. Methods: The plasmid DNA in liquid was irradiated by 60Co γ-rays, proton or 7Li heavy ion with or without VND3207. The conformation changes of plasmid DNA were assessed by agarose gel electrophoresis and the quantification was done using gel imaging system. Results: The DNA damage induced by proton and 7Li heavy ion was much more serious as compared with that by 60Co γ-rays, and the vanillin derivative VND3207 could efficiently decrease the DNA damage induced by all three types of irradiation sources, which was expressed as a significantly reduced ratio of open circular form (OC) of plasmid DNA. The radioprotective effect of VND3207 increased with the increasing of drug concentration. The protective efficiencies of 200 μmol/L VND3207 were 85.3% (t =3.70, P=0.033), 73.3% (t=10.58, P=0.017) and 80.4% (t=8.57, P=0.008) on DNA damage induction by 50 Gy of γ-rays, proton and 7Li heavy ion, respectively. It seemed that the radioprotection of VND3207 was more effective on DNA damage induced by high LET heavy ion than that by proton. Conclusions: VND3207 has a protective effect against the genotoxicity of different LET ionizing radiation, especially for γ-rays and 7 Li heavy ion. (authors)

  8. Protective effect of deoxynucleotide triphosphates on DNA damage in different mammalian cells exposed to -radiation

    Directory of Open Access Journals (Sweden)

    Elmaghraby, T

    2002-09-01

    Full Text Available DNA is generally considered to be the most critical cellular target when considering the lethal, carcinogenic and mutagenic effects of drugs, radiation and environmental chemicals. So the study aim to the determination the damaging effect of -radiation on DNA and the protective effect of deoxynucleotide triphosphates (dNTPs. The study includes three cell types, lymphocytes, kidney cells of African gree monkey (Vero and hepatocellular carcinoma of human (HePG2 exposed to 1-5 Gy of -radiation and by using fluorometric analysis of DNA unwinding (FADU method, DNA damage was measured after radiation. The cells were divided into two groups: The first received 5x10-5 dNTPs from 0-30 minutes after radiation, while the second group was not supplemented with deoxynucleotides. Clonogenic survival for vero and HePG2 cell lines was measured. The results revealed that the increase of irradiation dose precipitates an increase of DNA strand breaks. The slope curve of initial DNA damage and mean inactivation dose (D differ between vero and HepG2 cell line by a factor of up 3.5 and 2, respectively. dNTPs have clear ameliorating effect on DNA damage. FADU method can play an important role in the choice of a suitable treatment (radiation or drugs and its dosage according to measurement of DNA damages in selective malignant tissues. Moreover, using dNTPs mixture can reduce the side effect of these treatment especially after experimentally on live mammals (mice .

  9. The effects of male age on sperm DNA damage in healthy non-smokers

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, T; Eskenazi, B; Baumgartner, A; Marchetti, F; Young, S; Weldon, R; Anderson, D; Wyrobek, A

    2006-03-08

    The trend for men to have children at older ages raises concerns that advancing age may increase the production of genetically defective sperm, increasing the risks of transmitting germ-line mutations. We investigated the associations between male age and sperm DNA damage and the influence of several lifestyle factors in a healthy non-clinical group of 80 non-smokers (age: 22-80) with no known fertility problems using the sperm Comet analyses. The average percent of DNA that migrated out of the sperm nucleus under alkaline electrophoresis increased with age (0.18% per year, p=0.006); but there was no age association for damage measured under neutral conditions (p=0.7). Men who consumed >3 cups coffee per day had {approx}20% higher % tail DNA under neutral but not alkaline conditions compared to men who consumed no caffeine (p=0.005). Our findings indicate that (a) older men have increased sperm DNA damage associated with alkali-labile sites or single-strand DNA breaks, and (b) independent of age, men with substantial daily caffeine consumption have increased sperm DNA damage associated with double-strand DNA breaks. DNA damage in sperm can be converted to chromosomal aberrations and gene mutations after fertilization increasing the risks for developmental defects and genetic diseases among offspring.

  10. DNA-binding protein from HeLa cells that binds preferentially to supercoiled DNA damaged by ultraviolet light or N-acetoxy-N-acetyl-2-aminofluorene

    International Nuclear Information System (INIS)

    A DNA-binding protein was partially purified from extracts of HeLa cells by high-speed centrifugation and chromatography on DEAE-cellulose, phosphocellulose and ultraviolet light-irradiated DNA-cellulose columns. It eluted from the phosphocellulose column with 0.375 M potassium phosphate and from the ultraviolet light-irradiated DNA-cellulose column between 0.5 M and 1 M NaCl. The protein binds preferentially to supercoiled PM2 DNA treated with ultraviolet light or N-acetoxy-N-acetyl-2-aminofluorene, as compared to native supercoiled PM2 DNA. The binding is non-cooperative. Nicked or linear forms of PM2 DNA (damaged or untreated) are not efficient substrates, indicating a requirement of DNA supercoiling for DNA binding. The sedimentation coefficient of the protein estimated by glycerol gradient centrifugation is 2.0-2.5 S, corresponding to a molecular weight of about 20000-25000 if the protein is spherical. The binding to DNA irradiated with ultraviolet light or treated with acetoxyacetylaminofluorene is optimal at around 100-200 mM NaCl and is relatively independent of temperature and pH. MgCl2 and MnCl2 at concentrations between 1 and 5 mM do not markedly affect the binding, but it is inhibited by sucrose, ATP and caffeine. The biological significance of the DNA-binding protein remains to be determined. It does not possess significant glycosylase, endonuclease or exonuclease activities. The dissociation equilibrium constant for the binding reaction of the protein to the ultraviolet light or acetoxyacetylaminofluorene-induced binding sites on DNA is estimated to be 4x10-11 M. There are at least 1x105 DNA-binding protein molecules/HeLa cell. (Auth.)

  11. Mercuric dichloride induces DNA damage in human salivary gland tissue cells and lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Katharina; Kroemer, Susanne [University of Regensburg, Regensburg (Germany); Sassen, Andrea [University of Regensburg, Department of Pathology, Regensburg (Germany); Staudenmaier, Rainer [Technical University of Munich, Department of Otorhinolaryngology, Head and Neck Surgery, Munich (Germany); Reichl, Franz-Xaver [University of Munich, Institute of Pharmacology and Toxicology, Munich (Germany); Harreus, Ulrich [University of Munich, Department of Otorhinolaryngology, Head and Neck Surgery, Munich (Germany); Hagen, Rudolf; Kleinsasser, Norbert [University of Wuerzburg, Department of Otorhinolaryngology, Head and Neck Surgery, Wuerzburg (Germany)

    2007-11-15

    Amalgam is still one of the most frequently used dental filling materials. However, the possible adverse effects especially that of the mercuric component have led to continued controversy. Considering that mercury may be released from amalgam fillings into the oral cavity and also reach the circulating blood after absorption and resorption, it eventually may contribute to tumorigenesis in a variety of target cells. The present investigation focuses on genotoxic effects below a cytotoxic dose level of mercuric dichloride (HgCl{sub 2}) in human samples of salivary glands and lymphocytes to elucidate a possible role in tumor initiation. DNA migration due to single strand breaks, alkali labile sites and incomplete excision repair was quantified with the aid of the single cell microgel electrophoresis (Comet) assay. The concepts of Olive Tail Moment, percentage of DNA in the Tail and Tail Length were used as measures of DNA damage. To control for cytotoxic effects, the trypan blue exclusion test was applied. Human samples of the parotid salivary gland and lymphocytes of ten donors were exposed to HgCl{sub 2} concentrations from 1 to 50 {mu}M. N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and dimethyl sulfoxide (DMSO) served as controls. Increasing dose-dependent DNA migration could be demonstrated after exposure to HgCl{sub 2} in cells of the salivary glands and lymphocytes. In both cell types a significant increase in DNA migration could be shown starting from HgCl{sub 2} concentrations of 5 {mu}M in comparison to the negative control. The viability of the cell systems was not affected except at the highest concentration (50 {mu}M) tested. These data indicate genotoxic effects of mercuric dichloride in human salivary glands and lymphocytes at concentrations not leading to cytotoxic effects or cell death. Consequently, a contributory role in oral salivary gland tumor initiation warrants further investigation. (orig.)

  12. Mobile phone radiation induces reactive oxygen species production and DNA damage in human spermatozoa in vitro.

    Directory of Open Access Journals (Sweden)

    Geoffry N De Iuliis

    Full Text Available BACKGROUND: In recent times there has been some controversy over the impact of electromagnetic radiation on human health. The significance of mobile phone radiation on male reproduction is a key element of this debate since several studies have suggested a relationship between mobile phone use and semen quality. The potential mechanisms involved have not been established, however, human spermatozoa are known to be particularly vulnerable to oxidative stress by virtue of the abundant availability of substrates for free radical attack and the lack of cytoplasmic space to accommodate antioxidant enzymes. Moreover, the induction of oxidative stress in these cells not only perturbs their capacity for fertilization but also contributes to sperm DNA damage. The latter has, in turn, been linked with poor fertility, an increased incidence of miscarriage and morbidity in the offspring, including childhood cancer. In light of these associations, we have analyzed the influence of RF-EMR on the cell biology of human spermatozoa in vitro. PRINCIPAL FINDINGS: Purified human spermatozoa were exposed to radio-frequency electromagnetic radiation (RF-EMR tuned to 1.8 GHz and covering a range of specific absorption rates (SAR from 0.4 W/kg to 27.5 W/kg. In step with increasing SAR, motility and vitality were significantly reduced after RF-EMR exposure, while the mitochondrial generation of reactive oxygen species and DNA fragmentation were significantly elevated (P<0.001. Furthermore, we also observed highly significant relationships between SAR, the oxidative DNA damage bio-marker, 8-OH-dG, and DNA fragmentation after RF-EMR exposure. CONCLUSIONS: RF-EMR in both the power density and frequency range of mobile phones enhances mitochondrial reactive oxygen species generation by human spermatozoa, decreasing the motility and vitality of these cells while stimulating DNA base adduct formation and, ultimately DNA fragmentation. These findings have clear implications

  13. Topology of chromosome centromeres in human sperm nuclei with high levels of DNA damage.

    Science.gov (United States)

    Wiland, Ewa; Fraczek, Monika; Olszewska, Marta; Kurpisz, Maciej

    2016-01-01

    Several studies have shown that the 'poor' sperm DNA quality appears to be an important factor affecting male reproductive ability. In the case of sperm cells from males with the correct somatic karyotype but with deficient spermatogenesis, resulting in a high degree of sperm DNA fragmentation, we observed changes in the preferential topology of the chromosome 7, 9, 15, 18, X and Y centromeres. The changes occurred in radial localization and may have been directly linked to the sperm chromatin damage. This conclusion is mainly based on a comparison of FISH signals that were observed simultaneously in the TUNEL-positive and TUNEL-negative sperm cells. The analyzed cells originated from the same ejaculated sample and FISH was performed on the same slides, after in situ TUNEL reaction. Based on the observed changes and previous data, it appears that the sperm nucleus architecture can be disrupted by a variety of factors and has a negative influence on spermatogenesis at the same time. Often, these factors coexist (e.g. chromosomal translocations, aneuploidies, a higher DNA fragmentation, abnormal seminology), but no direct correlations between the factors were observed. PMID:27558650

  14. DNA DAMAGE AND EXTERNAL LESIONS IN BROWN BULLHEAD FROM CONTAMINATED HABITATS

    Science.gov (United States)

    The single cell gel electrophoresis ("Comet") assay was used to compare levels of DNA damage in brown bullheads (Ameiurus nebulosus) collected from three known contaminated locations, the Cuyahoga River, Ashtabula River, and Ashumet Pond (Cape Cod), with brown bullheads collected...

  15. Assessment of gamma ray-induced DNA damage in Lasioderma serricorne using the comet assay

    Science.gov (United States)

    Kameya, Hiromi; Miyanoshita, Akihiro; Imamura, Taro; Todoriki, Setsuko

    2012-03-01

    We attempted a DNA comet assay under alkaline conditions to verify the irradiation treatment of pests. Lasioderma serricorne (Fabricius) were chosen as test insects and irradiated with gamma rays from a 60Co source at 1 kGy. We conducted the comet assay immediately after irradiation and over time for 7 day. Severe DNA fragmentation in L. serricorne cells was observed just after irradiation and the damage was repaired during the post-irradiation period in a time-dependent manner. The parameters of the comet image analysis were calculated, and the degree of DNA damage and repair were evaluated. Values for the Ratio (a percentage determined by fluorescence in the damaged area to overall luminance, including intact DNA and the damaged area of a comet image) of individual cells showed that no cells in the irradiated group were included in the Ratiocomet assay under alkaline conditions, combined with comet image analysis, can be used to identify irradiation history.

  16. DNA synthesis as an index of the cell reaction to irradiation and other damaging exposures

    International Nuclear Information System (INIS)

    Recent investigation results, showing the outlook of DNA synthesis suppresion determination method as a test for estimating and predicting cell sensitivity to irradiation and other damageing exposures are presented. Advantages of such a method are noted

  17. Urinary 8-hydroxy-2'-deoxyguanosine as a biological marker of in vivo oxidative DNA damage

    International Nuclear Information System (INIS)

    DNA is subject to constant oxidative damage from endogenous oxidants. The oxidized DNA is continuously repaired and the oxidized bases are excreted in the urine. A simple routine analytical procedure is described for urinary 8-hydroxy-2'-deoxyguanosine, an oxidative DNA damage adduct, as an indicator of oxidative damage in humans and rodents. This adduct was purified from human urine and characterized. The described assay employs a series of solid-phase extraction steps that separate 8-hydroxy-2'-deoxyguanosine from other urinary constituents, followed by analysis by gradient reversed-phase HPLC coupled to a dual-electrode high-efficient electrochemical detection system. Analysis of urine from three species by this method indicates that mice excrete approximately 3.3-fold more 8-hydroxy-2'-deoxyguanosine than humans (582 vs. 178 residues per cell day), a result that supports the proposal that oxidative damage to DNA increases in proportion to species-specific basal metabolic rates

  18. PLASMID DNA DAMAGE CAUSED BY METHYLATED ARSENICALS, ASCORBIC ACID AND HUMAN LIVER FERRITIN

    Science.gov (United States)

    PLASMID DNA DAMAGE CAOUSED BY METHYLATED ARSENICALS, ASCORBIC ACID AND HUMAN LIVER FERRITINABSTRACT Both dimethylarsinic acid (DMA(V)) and dimethylarsinous acid (DMA(III)) release iron from human liver ferritin (HLF) with or without the presence of ascorbic acid. ...

  19. Correction of the DNA repair defect in xeroderma pigmentosum group E by injection of a DNA damage-binding protein.

    OpenAIRE

    Keeney, S.; Eker, André; Brody, T.; Vermeulen, Wim; Bootsma, Dirk; Hoeijmakers, Jan; Linn, S.(Florida International University, Miami, USA)

    1994-01-01

    textabstractCells from a subset of patients with the DNA-repair-defective disease xeroderma pigmentosum complementation group E (XP-E) are known to lack a DNA damage-binding (DDB) activity. Purified human DDB protein was injected into XP-E cells to test whether the DNA-repair defect in these cells is caused by a defect in DDB activity. Injected DDB protein stimulated DNA repair to normal levels in those strains that lack the DDB activity but did not stimulate repair in cells from other xerode...

  20. Effects of different levels of vitamin C on UV radiation-induced DNA damage

    Institute of Scientific and Technical Information of China (English)

    Dianfeng Zhou; Hang Heng; Kang Ji; Weizhong Ke

    2005-01-01

    The Raman spectra of DNA in different levels of vitamin C with 10- and 30-min ultraviolet (UV) radiations were reported. The intensity of UV radiation was 18.68 W/m2. The experimental results proved that vitamin C could alone prevent UV radiation from damaging DNA, but the effects depended on the concentration of vitamin C. When the concentration of vitamin C was about 0.08-0.4 mmol/L, vitamin C decreased UV radiation-induced DNA's damage. When the concentration of vitamin C exceeded 0.4 mmol/L, vitamin C accelerated DNA's damage instead. Maybe the reason is that when DNA in aqueous solution is radiated by UV, free radicals come into being, and vitamin C can scavenge free radicals, so vitamin C in lower concentration can protect DNA. The quantity of free radicals is finite, when vitamin C is superfluous, free radicals have been scavenged absolutely and vitamin C is residual. Vitamin C is a strong reductant. When the mixture of DNA and residual vitamin C is radiated by UV, vitamin C reacts with DNA. The more residual vitamin C and the longer time of UV radiation, the more DNA is damaged.

  1. The DNA-damage signature in Saccharomyces cerevisiae is associated with single-strand breaks in DNA

    OpenAIRE

    Begley Thomas J; Cosgrove Joseph P; DeMott Michael S; Fry Rebecca C; Samson Leona D; Dedon Peter C

    2006-01-01

    Abstract Background Upon exposure to agents that damage DNA, Saccharomyces cerevisiae undergo widespread reprogramming of gene expression. Such a vast response may be due not only to damage to DNA but also damage to proteins, RNA, and lipids. Here the transcriptional response of S. cerevisiae specifically induced by DNA damage was discerned by exposing S. cerevisiae to a panel of three "radiomimetic" enediyne antibiotics (calicheamicin γ1I, esperamicin A1 and neocarzinostatin) that bind speci...

  2. Cohesin Is limiting for the suppression of DNA damage-induced recombination between homologous chromosomes.

    Directory of Open Access Journals (Sweden)

    Shay Covo

    2010-07-01

    Full Text Available Double-strand break (DSB repair through homologous recombination (HR is an evolutionarily conserved process that is generally error-free. The risk to genome stability posed by nonallelic recombination or loss-of-heterozygosity could be reduced by confining HR to sister chromatids, thereby preventing recombination between homologous chromosomes. Here we show that the sister chromatid cohesion complex (cohesin is a limiting factor in the control of DSB repair and genome stability and that it suppresses DNA damage-induced interactions between homologues. We developed a gene dosage system in tetraploid yeast to address limitations on various essential components in DSB repair and HR. Unlike RAD50 and RAD51, which play a direct role in HR, a 4-fold reduction in the number of essential MCD1 sister chromatid cohesion subunit genes affected survival of gamma-irradiated G(2/M cells. The decreased survival reflected a reduction in DSB repair. Importantly, HR between homologous chromosomes was strongly increased by ionizing radiation in G(2/M cells with a single copy of MCD1 or SMC3 even at radiation doses where survival was high and DSB repair was efficient. The increased recombination also extended to nonlethal doses of UV, which did not induce DSBs. The DNA damage-induced recombinants in G(2/M cells included crossovers. Thus, the cohesin complex has a dual role in protecting chromosome integrity: it promotes DSB repair and recombination between sister chromatids, and it suppresses damage-induced recombination between homologues. The effects of limited amounts of Mcd1and Smc3 indicate that small changes in cohesin levels may increase the risk of genome instability, which may lead to genetic diseases and cancer.

  3. The effect of two cryopreservation methods on human sperm DNA damage.

    Science.gov (United States)

    Liu, Taixiu; Gao, Jianfang; Zhou, Niya; Mo, Min; Wang, Xiaogang; Zhang, Xi; Yang, Huan; Chen, Qing; Ao, Lin; Liu, Jinyi; Cui, Zhihong; Cao, Jia

    2016-06-01

    Several methods are currently available for selection when conducting sperm cryopreservation, however, these methods might cause different degrees of damage on sperm DNA. The aim of the this study is to compare the effects of storage at -80 °C (in ultra-low temperature refrigerator) and at -196 °C (in liquid nitrogen) on sperm DNA damage, thus to provide a reference for choosing the right method according to different aims. We randomly collected 28 semen samples from college students of Chongqing city. The samples stored at -80 °C were neat semen samples and the samples stored at -196 °C were mixed with additional cryoprotectants. Each sample was subjected to two freezing-thawing cycles, and the sperm DNA damage levels of fresh and thawed samples were measured by single cell gel electrophoresis (SCGE) and sperm chromatin structure assay (SCSA). Both SCGE and SCSA assays showed cryopreservation induced significant damage to sperm DNA. However, storage at -196 °C lead to more severe damage to sperm DNA than storage at -80 °C measured by SCSA. Sperm DNA damage increased simultaneously with the higher frequency of freezing-thawing cycles. We concluded that storage of neat semen samples at -80 °C had milder damage to sperm DNA than storage at -196 °C mixed with cryoprotectants. To avoid additional sperm DNA damage, repeated freezing and thawing should be prevented. PMID:27126062

  4. Cytometric Assessment of DNA Damage by Exogenous and Endogenous Oxidants Reports Aging-related Processes

    OpenAIRE

    Zhao, Hong; Tanaka, Toshiki; Halicka, H. Dorota; Traganos, Frank; Zarebski, Miroslaw; Dobrucki, Jurek; Darzynkiewicz, Zbigniew

    2007-01-01

    The ongoing DNA damage caused by reactive oxygen species generated during oxidative metabolism is considered a key factor contributing to cell aging as well as preconditioning cells to neoplastic transformation. We postulated before that a significant fraction of constitutive histone H2AX phosphorylation (CHP) and constitutive activation of ATM (CAA) seen in untreated normal and tumor cells occurs in response to such DNA damage. In the present study, we provide further evidence in support of ...

  5. UVA-induced damage to DNA and proteins: direct versus indirect photochemical processes

    Science.gov (United States)

    Girard, P. M.; Francesconi, S.; Pozzebon, M.; Graindorge, D.; Rochette, P.; Drouin, R.; Sage, E.

    2011-01-01

    UVA has long been known for generating an oxidative stress in cells. In this paper we review the different types of DNA damage induced by UVA, i.e. strand breaks, bipyrimidine photoproducts, and oxidatively damaged bases. Emphasis is given to the mechanism of formation that is further illustrated by the presentation of new in vitro data. Examples of oxidation of proteins involved in DNA metabolism are also given.

  6. UVA-induced damage to DNA and proteins: direct versus indirect photochemical processes

    International Nuclear Information System (INIS)

    UVA has long been known for generating an oxidative stress in cells. In this paper we review the different types of DNA damage induced by UVA, i.e. strand breaks, bipyrimidine photoproducts, and oxidatively damaged bases. Emphasis is given to the mechanism of formation that is further illustrated by the presentation of new in vitro data. Examples of oxidation of proteins involved in DNA metabolism are also given.

  7. DNA damage in children and adolescents with cardiovascular disease risk factors

    OpenAIRE

    Mariele Kliemann; Daniel Prá; Luiza L. Müller; Liziane Hermes; Jorge A Horta; Miriam B. Reckziegel; Miria S. Burgos; Sharbel W. Maluf; Silvia I.R. Franke; Juliana da Silva

    2012-01-01

    The risk of developing cardiovascular disease (CVD) is related to lifestyle (e.g. diet, physical activity and smoking) as well as to genetic factors. This study aimed at evaluating the association between CVD risk factors and DNA damage levels in children and adolescents. Anthropometry, diet and serum CVD risk factors were evaluated by standard procedures. DNA damage levels were accessed by the comet assay (Single cell gel electrophoresis; SCGE) and cytokinesis-blocked micronucleus (CBMN) ass...

  8. Ubiquitin-dependent DNA damage bypass is separable from genome replication

    OpenAIRE

    Daigaku, Yasukazu; Davies, Adelina A.; Ulrich, Helle D.

    2010-01-01

    Postreplication repair (PRR) is a pathway that allows cells to bypass or overcome lesions during DNA replication1. In eukaryotes, damage bypass is activated by ubiquitylation of the replication clamp PCNA through components of the RAD6 pathway2. Whereas monoubiquitylation of PCNA allows mutagenic translesion synthesis by damage-tolerant DNA polymerases3-5, polyubiquitylation is required for an error-free pathway that likely involves a template switch to the undamaged sister chromatid6. Both t...

  9. Both Complexity and Location of DNA Damage Contribute to Cellular Senescence Induced by Ionizing Radiation

    OpenAIRE

    Xurui Zhang; Caiyong Ye; Fang Sun; Wenjun Wei; Burong Hu; Jufang Wang

    2016-01-01

    Persistent DNA damage is considered as a main cause of cellular senescence induced by ionizing radiation. However, the molecular bases of the DNA damage and their contribution to cellular senescence are not completely clear. In this study, we found that both heavy ions and X-rays induced senescence in human uveal melanoma 92-1 cells. By measuring senescence associated-β-galactosidase and cell proliferation, we identified that heavy ions were more effective at inducing senescence than X-rays. ...

  10. Assessment of folic acid and DNA damage in cleft lip and cleft palate

    OpenAIRE

    Sivakumar Brooklyin; Rashmoni Jana; Singaravelu Aravinthan; Bethou Adhisivam; Parkash Chand

    2014-01-01

    Studies have identified the risk factors like folic acid deficiency during gestational period, family history for orofacial clefts, drugs like antiepileptic, vitamin A. But, the data regarding the folic acid status in children with cleft lip/palate is hardly evaluated in depth. Here, an assessment of folic acid and DNA damage were carried out in children with orofacial anomalies. Folic acid level and DNA damage were evaluated by folic acid assay (direct chemiluminescent technology) and single...

  11. NMR Metabolomic Profiling Reveals New Roles of SUMOylation in DNA Damage Response

    OpenAIRE

    Cano, Kristin E.; Li, Yi-Jia; Chen, Yuan

    2010-01-01

    Post-translational modifications by the Small Ubiquitin-like Modifier (SUMO) family of proteins have been established as critical events in the cellular response to a wide range of DNA damaging reagents and radiation; however, the detailed mechanism of SUMOylation in DNA damage response is not well understood. In this study, we used nuclear magnetic resonance (NMR) spectroscopy based metabolomics approach to examine the effect of an inhibitor of SUMO-mediated protein-protein interactions on M...

  12. Sperm DNA damage and its clinical relevance in assessing reproductive outcome

    Institute of Scientific and Technical Information of China (English)

    R.K.Sharma; T.Said; A.Agarwal

    2004-01-01

    The routine examination of semen, which assesses sperm concentration, percentage motility and morphology,does not identify subtle defects in sperm chromatin architecture. The focus on the genomic integrity of the male gamete has intensified recently due to the growing concern that genetic diseases may be transmitted via assisted reproductive techniques (ART). Accordingly, the intent of this review is to describe the details of the informationpertaining to mitochondfial/nuclear sperm DNA damage with an emphasis on its clinical significance and its relationship with male infertility. Assessment of sperm DNA damage appears to be a potential tool for evaluating semen samples prior to their use in ART. Testing DNA integrity may help select spermatozoa with intact DNA or with the least amount of DNA damage for use in assisted conception. In turn, this may alleviate the financial, social and emotional problems associated with failed ART attempts.

  13. The use of recombinant DNA techniques to study radiation-induced damage, repair and genetic change in mammalian cells

    International Nuclear Information System (INIS)

    A brief introduction is given to appropriate elements of recombinant DNA techniques and applications to problems in radiobiology are reviewed with illustrative detail. Examples are included of studies with both 254 nm ultraviolet light and ionizing radiation and the review progresses from the molecular analysis of DNA damage in vitro through to the nature of consequent cellular responses. The review is dealt with under the following headings: Molecular distribution of DNA damage, The use of DNA-mediated gene transfer to assess damage and repair, The DNA double strand break: use of restriction endonucleases to model radiation damage, Identification and cloning of DNA repair genes, Analysis of radiation-induced genetic change. (UK)

  14. A DNA damage-induced, SOS-independent checkpoint regulates cell division in Caulobacter crescentus.

    Directory of Open Access Journals (Sweden)

    Joshua W Modell

    2014-10-01

    Full Text Available Cells must coordinate DNA replication with cell division, especially during episodes of DNA damage. The paradigm for cell division control following DNA damage in bacteria involves the SOS response where cleavage of the transcriptional repressor LexA induces a division inhibitor. However, in Caulobacter crescentus, cells lacking the primary SOS-regulated inhibitor, sidA, can often still delay division post-damage. Here we identify didA, a second cell division inhibitor that is induced by DNA damage, but in an SOS-independent manner. Together, DidA and SidA inhibit division, such that cells lacking both inhibitors divide prematurely following DNA damage, with lethal consequences. We show that DidA does not disrupt assembly of the division machinery and instead binds the essential division protein FtsN to block cytokinesis. Intriguingly, mutations in FtsW and FtsI, which drive the synthesis of septal cell wall material, can suppress the activity of both SidA and DidA, likely by causing the FtsW/I/N complex to hyperactively initiate cell division. Finally, we identify a transcription factor, DriD, that drives the SOS-independent transcription of didA following DNA damage.

  15. A DNA damage-induced, SOS-independent checkpoint regulates cell division in Caulobacter crescentus.

    Science.gov (United States)

    Modell, Joshua W; Kambara, Tracy K; Perchuk, Barrett S; Laub, Michael T

    2014-10-01

    Cells must coordinate DNA replication with cell division, especially during episodes of DNA damage. The paradigm for cell division control following DNA damage in bacteria involves the SOS response where cleavage of the transcriptional repressor LexA induces a division inhibitor. However, in Caulobacter crescentus, cells lacking the primary SOS-regulated inhibitor, sidA, can often still delay division post-damage. Here we identify didA, a second cell division inhibitor that is induced by DNA damage, but in an SOS-independent manner. Together, DidA and SidA inhibit division, such that cells lacking both inhibitors divide prematurely following DNA damage, with lethal consequences. We show that DidA does not disrupt assembly of the division machinery and instead binds the essential division protein FtsN to block cytokinesis. Intriguingly, mutations in FtsW and FtsI, which drive the synthesis of septal cell wall material, can suppress the activity of both SidA and DidA, likely by causing the FtsW/I/N complex to hyperactively initiate cell division. Finally, we identify a transcription factor, DriD, that drives the SOS-independent transcription of didA following DNA damage. PMID:25350732

  16. Evaluation of the DNA damaging effects of amitraz on human lymphocytes in the Comet assay

    Indian Academy of Sciences (India)

    Milena Radakovic; Jevrosima Stevanovic; Ninoslav Djelic; Nada Lakic; Jelena Knezevic-Vukcevic; Branka Vukovic-Gacic; Zoran Stanimirovic

    2013-03-01

    Amitraz is formamidine pesticide widely used as insecticide and acaricide. In veterinary medicine, amitraz has important uses against ticks, mites and lice on animals. Also, amitraz is used in apiculture to control Varroa destructor. It this study, the alkaline Comet assay was used to evaluate DNA damaging effects of amitraz in human lymphocytes. Isolated human lymphocytes were incubated with varying concentrations of amitraz (0.035, 0.35, 3.5, 35 and 350 g/mL). The Comet assay demonstrated that all concentrations of amitraz caused statistically significant increase in the level of DNA damage, thus indicating that amitraz possesses genotoxic potential. The concentration of amitraz that produced the highest DNA damage (3.5 g/mL) was chosen for further analysis with the antioxidant catalase. The obtained results showed that co-treatment with antioxidant catalase (100 IU/mL or 500 IU/mL) significantly reduced the level of DNA damage, indicating the possible involvement of reactive oxygen species in DNA damaging effects of amitraz. Flow cytometric analysis revealed increase of the apoptotic index following treatment with amitraz. However, co-treatment with catalase reduced the apoptotic index, while treatment with catalase alone reduced the percentage of apoptotoc cells even in comparison with the negative control. Therefore, catalase had protective effects against ROS-mediated DNA damage and apoptosis.

  17. Repair of DNA damage induced by ionizing radiation and benzo[a]pyrene in mammalian cells

    International Nuclear Information System (INIS)

    The biological effects of DNA-damaging agents are codetermined by the structural characteristics of the lesions, the quality and extent of the local distortion of DNA and chromatin structure, and the mode(s) of damage processing used by a given type of cell. Persistent damage (i.e., damage that is not removed before it is reached by DNA replication) may be mostly responsible for mutagenesis and carcinogenesis. To understand the effects of environmental physical and chemical DNA-damaging agents on human health, the mechanisms of damage processing used by human cells have to be elucidated. We report our studies of the excision of gamma-ray products of the 5,6-dihydroxydihydrothymine type (t0/sub 2//sup γ/) in normal human fibroblasts and in fibroblasts from patients with the hereditary diseases Fanconi's anemia (FA) and ataxia telangiectasia (AT). Both diseases are characterized by chromosomal instability and increased susceptibility for the development of cancer. Formation and repair of DNA-benzo[a]pyrene adducts were studied in baby hamster kidney cells, secondary mouse embryo cells, and human lymphoma. The relative persistence of DNA-B[a]P may explain the high mutagenicity of the 7,8-dihydroxy-9,10-epoxy-tetrahydrobenzo[a]pyrene metabolites in rodent cells that has been observed by several investigators

  18. Repair studies in vitro of the DNA damage induced in human lymphocytes irradiated by UV

    International Nuclear Information System (INIS)

    The aim of this study was to estimate the repair capacity of DNA damage in UV irradiated human lymphocytes. The estimation of the DNA damage was done with the use of a single cell gel electrophoresis method (SCGE), also known as the Comet assay. In our investigation, previously cryopreserved lymphocytes were irradiated with UV at different doses, and DNA damage was estimated after various times of incubation. To study the biological effects of the dependence on UV exposure we have examined the level of the DNA damage in human lymphocytes after 1 hour of incubation. There was observed almost a linear increase of the DNA damage in the range of doses from 0 to 18 J/m2. To examine an influence of cell cycle (G0 stage or proliferating cells) on the repair efficiency, UV irradiated lymphocytes were incubated with or without the presence of LF-7. Results showed a statistically significant influence of the LF-7 on the repair of DNA damage induced by different doses of UV. (author)

  19. DNA damage response during mitosis induces whole chromosome mis-segregation

    Science.gov (United States)

    Bakhoum, Samuel F.; Kabeche, Lilian; Murnane, John P.; Zaki, Bassem I.; Compton, Duane A.

    2014-01-01

    Many cancers display both structural (s-CIN) and numerical (w-CIN) chromosomal instabilities. Defective chromosome segregation during mitosis has been shown to cause DNA damage that induces structural rearrangements of chromosomes (s-CIN). In contrast, whether DNA damage can disrupt mitotic processes to generate whole chromosomal instability (w-CIN) is unknown. Here we show that activation of the DNA damage response (DDR) during mitosis selectively stabilizes kinetochore-microtubule (k-MT) attachments to chromosomes through Aurora-A and Plk1 kinases, thereby increasing the frequency of lagging chromosomes during anaphase. Inhibition of DDR proteins, ATM or Chk2, abolishes the effect of DNA damage on k-MTs and chromosome segregation, whereas activation of the DDR in the absence of DNA damage is sufficient to induce chromosome segregation errors. Finally, inhibiting the DDR during mitosis in cancer cells with persistent DNA damage suppresses inherent chromosome segregation defects. Thus, DDR during mitosis inappropriately stabilizes k-MTs creating a link between s-CIN and w-CIN. PMID:25107667

  20. Gene Expression Profile Changes and Cellular Responses to Bleomycin-Induced DNA Damage in Human Fibroblast Cells in Space

    Science.gov (United States)

    Lu, Tao; Zhang, Ye; Kidane, Yared; Feiveson, Alan; Stodieck, Louis; Karouia, Fathi; Rohde, Larry; Wu, Honglu

    2016-01-01

    Living organisms are constantly exposed to space radiation that consists of energetic protons and other heavier charged particles. In addition, DNA in space can be damaged by toxic chemicals or reactive oxygen species generated due to increased levels of environmental and psychological stresses. Understanding the impact of spaceflight factors, microgravity in particular, on cellular responses to DNA damage affects the accuracy of the radiation risk assessment for astronauts and the mutation rate in microorganisms. Although possible synergistic effects of space radiation and microgravity have been investigated since the early days of the human space program, the published results were mostly conflicting and inconsistent. To investigate the effects of spaceflight on cellular responses to DNA damage, confluent human fibroblast cells (AG1522) flown on the International Space Station (ISS) were treated with bleomycin for three hours in the true microgravity environment, which induced DNA damages including double-strand breaks (DSB). Damages in the DNA were quantified by immunofluorescence staining for ?-H2AX, which showed similar percentages of different types of stained cells between flight and ground. However, there was a slight shift in the distribution of the ?-H2AX foci number in the flown cells with countable foci. Comparison of the cells in confluent and in exponential growth conditions indicated that the proliferation rate between flight and the ground may be responsible for such a shift. A microarray analysis of gene expressions in response to bleomycin treatment was also performed. Comparison of the responsive pathways between the flown and ground cells showed similar responses with the p53 network being the top upstream regulator. Similar responses at the RNA level between different gravity conditions were also observed with a PCR array analysis containing a set of genes involved in DNA damage signaling; with BBC3, CDKN1A, PCNA and PPM1D being significantly

  1. Research progress of DNA damage and repair in Candida albicans%白念珠菌DNA损伤与修复

    Institute of Scientific and Technical Information of China (English)

    李星星; 阎澜; 姜远英

    2011-01-01

    内外环境中各种因素如电离辐射、紫外辐射、氧化剂、烷化荆等都可以造成白念珠菌DNA的损伤.如果DNA的损伤得不到有效的修复,便会造成突变.白念珠菌的突变率很高,但并不是所有DNA受损伤的细胞都会表现出突变型性状,这跟其自身的修复系统有很大关系,主要包括切除修复、错配修复及双链断裂修复等途径,使得绝大多数损伤能够及时修复,从而维持DNA的完整性与稳定性.白念珠菌DNA的损伤修复可能影响其适应性、药物敏感性等表型,从而给临床感染患者的治疗增加难度.本文主要从白念珠菌DNA损伤的产生,损伤信号的传导识别及损伤修复三方面综述目前的研究进展.%There are so many internal and external environmental factors that could cause DNA damage in Candida albicans, such as ionizing radiation, ultraviolet radiation, oxidants, alkylating agent, and so on. It would result in mutations if DNA damages are not repaired effectively. Although the mutation rate is high in C. albicans, not all DNA-damaged cells show the mutant trait, which depends on their own repair system. The repair system, including excision repair, mismatch repair, double strand break repair and other pathways,enables most damages to be repaired in time in order to maintain the integrity and stability of DNA. DNA damage and repair system in C. albicans would affect its adaptability, drug sensitivity and other phenotypes, which increase the difficulty of clinical treatment of infections. This review summarizes the research progress about the cause of DNA damage, identification of the damage signal transduction and damage repairs in C. albicans.

  2. Understanding extreme resistance to DNA damage in D. radiodurans: genomic inputs and proteomic insights into extraordinary DNA repair

    International Nuclear Information System (INIS)

    Deinococcus radiodurans, a model extremophile, tolerates very high doses of virtually all DNA damaging agents such as ionizing radiations, UV, desiccation or mutagenic chemicals. It repairs its damaged DNA, from hundreds of fragments to intact chromosome, with absolute fidelity. Its genome displays acquisition of eukaryotic DNA repair pathways and deletion of universal prokaryotic DNA repair pathways, along with several ORFs that encode proteins with unusual domain combinations, expanded gene families and uncharacterized proteins. Yet, it is one of the most DNA repair efficient organism known today. To understand gamma radiation responsive global modifications in the proteome, respective proteome profiles were resolved by 2D electrophoresis and the gamma radiation responsive differentially expressed proteins were identified by MALDI mass spectrometry. Exposure to gamma irradiation set in immediate growth arrest, a phase during which the organism reassembles its shattered genome and recycles the radiation-damaged biomolecules. A proteomic investigation of this phase revealed highest up-regulation of DNA repair proteins involved in strand annealing, nucleotide excision repair, non-homologous end joining and homologous recombination pathways. Another set of differentially expressed proteins were metabolic enzymes that appeared to modulate metabolism to utilize stored glycogen and slow down amino acid biosynthesis. Oxidative stress alleviation machinery, which was constitutively present in abundance, displayed minor modulation. The gamma radiation responsive proteome modulations emphasize focused multi-factorial DNA repair and metabolic modulations, during post-irradiation recovery. (author)

  3. The degree of housing damage model for a flood affected area

    Directory of Open Access Journals (Sweden)

    Mohd Thuraiya

    2016-01-01

    Full Text Available Floods can cause damage like slightly damaged, significantly damaged or destroyed to homes and possessions as well as disruption to communications. Inherently, victims should be given temporary or permanent houses depending on the degree of damage to their houses. Therefore, an assessment on the levels of damage must be carried out in the aftermath of a flood as a direction for recovery effort, for example housing resettlement. The fact is, in Malaysia, there is still no standardized damage assessment used by the relevant authorities in assessing the degree of housing damage after a disaster. As a result, errors in assessing the degree of housing damage and providing inaccurate type of assistance might occur. Thus, this research emphasis on the understanding the degree of house damage and recommend the significant input in developing the damage assessment model in Malaysia. To achieve the objective, this research applies a self-developed model that is derived from the literature review (framework or model of the degrees of housing damage after flood and the observation at the case study area to see the actual conditions of the affected houses. After that, questionnaires were distributed to 50 respondents consist of engineers (n=10, architects (n=10, quantity surveyors (n=10, real estate valuers (n=10 and building surveyor (n=10 by using purposive sampling to gauge their perceptions on attributes of degree of housing damage and eventually conducting a focus group consist of ten (10 technical experts involved in MERCY Malaysia in assessing the housing damage for model validation. The findings indicate that the degree of damage can be classified as ‘minor’, ‘major’ and ‘destroyed’. Research findings will give input in the form of a Housing Damage Assessment Framework for the government, NGOs, MERCY, insurers or other appropriate bodies involve in assessing or evaluating the condition of houses affected by floods.

  4. A polymerization-based method to construct a plasmid containing clustered DNA damage and a mismatch.

    Science.gov (United States)

    Takahashi, Momoko; Akamatsu, Ken; Shikazono, Naoya

    2016-10-01

    Exposure of biological materials to ionizing radiation often induces clustered DNA damage. The mutagenicity of clustered DNA damage can be analyzed with plasmids carrying a clustered DNA damage site, in which the strand bias of a replicating plasmid (i.e., the degree to which each of the two strands of the plasmid are used as the template for replication of the plasmid) can help to clarify how clustered DNA damage enhances the mutagenic potential of comprising lesions. Placement of a mismatch near a clustered DNA damage site can help to determine the strand bias, but present plasmid-based methods do not allow insertion of a mismatch at a given site in the plasmid. Here, we describe a polymerization-based method for constructing a plasmid containing clustered DNA lesions and a mismatch. The presence of a DNA lesion and a mismatch in the plasmid was verified by enzymatic treatment and by determining the relative abundance of the progeny plasmids derived from each of the two strands of the plasmid. PMID:27449134

  5. Roles of DNA polymerase epsilon and TopBP1 in DNA replication and damage response

    OpenAIRE

    Hillukkala, T.

    2006-01-01

    Abstract During DNA replication cells accurately copy their DNA to transfer the genetic information to daughter cells. DNA polymerases synthesise the new DNA strand using the old strand as a template. Other functions of DNA polymerases are recombination linked and DNA iamage repair linked DNA synthesis, regulation of replication complex formation and regulation of transcription – a process in which the genetic information is transformed into an RNA sequence needed to guide protein synthesi...

  6. DNA damage-induced metaphase I arrest is mediated by the spindle assembly checkpoint and maternal age.

    Science.gov (United States)

    Marangos, Petros; Stevense, Michelle; Niaka, Konstantina; Lagoudaki, Michaela; Nabti, Ibtissem; Jessberger, Rolf; Carroll, John

    2015-01-01

    In mammalian oocytes DNA damage can cause chromosomal abnormalities that potentially lead to infertility and developmental disorders. However, there is little known about the response of oocytes to DNA damage. Here we find that oocytes with DNA damage arrest at metaphase of the first meiosis (MI). The MI arrest is induced by the spindle assembly checkpoint (SAC) because inhibiting the SAC overrides the DNA damage-induced MI arrest. Furthermore, this MI checkpoint is compromised in oocytes from aged mice. These data lead us to propose that the SAC is a major gatekeeper preventing the progression of oocytes harbouring DNA damage. The SAC therefore acts to integrate protection against both aneuploidy and DNA damage by preventing production of abnormal mature oocytes and subsequent embryos. Finally, we suggest escaping this DNA damage checkpoint in maternal ageing may be one of the causes of increased chromosome anomalies in oocytes and embryos from older mothers. PMID:26522734

  7. Close encounters for the first time: Helicase interactions with DNA damage.

    Science.gov (United States)

    Khan, Irfan; Sommers, Joshua A; Brosh, Robert M

    2015-09-01

    DNA helicases are molecular motors that harness the energy of nucleoside triphosphate hydrolysis to unwinding structured DNA molecules that must be resolved during cellular replication, DNA repair, recombination, and transcription. In vivo, DNA helicases are expected to encounter a wide spectrum of covalent DNA modifications to the sugar phosphate backbone or the nitrogenous bases; these modifications can be induced by endogenous biochemical processes or exposure to environmental agents. The frequency of lesion abundance can vary depending on the lesion type. Certain adducts such as oxidative base modifications can be quite numerous, and their effects can be helix-distorting or subtle perturbations to DNA structure. Helicase encounters with specific DNA lesions and more novel forms of DNA damage will be discussed. We will also review the battery of assays that have been used to characterize helicase-catalyzed unwinding of damaged DNA substrates. Characterization of the effects of specific DNA adducts on unwinding by various DNA repair and replication helicases has proven to be insightful for understanding mechanistic and biological aspects of helicase function in cellular DNA metabolism. PMID:26160335

  8. Electrochemical detection of benzo(a)pyrene and related DNA damage using DNA/hemin/nafion–graphene biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Yongnian, E-mail: ynni@ncu.edu.cn [State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047 (China); Department of Chemistry, Nanchang University, Nanchang 330031 (China); Wang, Pingping; Song, Haiyan [Department of Chemistry, Nanchang University, Nanchang 330031 (China); Lin, Xiaoyun [State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047 (China); Department of Chemistry, Nanchang University, Nanchang 330031 (China); Kokot, Serge, E-mail: s.kokot@qut.edu.au [School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Brisbane 4001 (Australia)

    2014-04-01

    Graphical abstract: A novel electrochemical biosensor, DNA/hemin/nafion–graphene/GCE, was constructed to quantitatively study the DNA damage induced by the metabolite of benzo(a)pyrene in the presence of H{sub 2}O{sub 2}. - Highlights: • Construction of a novel DNA/hemin/nafion-graphene/GCE biosensor. • DNA damage induced by the benzo(a)pyrene metabolite was detected. • DPV analysis of benzo(a)pyrene provided a quantitative estimate of DNA damage. • Hemin/H{sub 2}O{sub 2} system could mimic the cytochrome P450 to metabolize benzo(a)pyrene. - Abstract: A novel electrochemical biosensor, DNA/hemin/nafion–graphene/GCE, was constructed for the analysis of the benzo(a)pyrene PAH, which can produce DNA damage induced by a benzo(a)pyrene (BaP) enzyme-catalytic product. This biosensor was assembled layer-by-layer, and was characterized with the use of cyclic voltammetry, electrochemical impedance spectroscopy (EIS) and atomic force microscopy. Ultimately, it was demonstrated that the hemin/nafion–graphene/GCE was a viable platform for the immobilization of DNA. This DNA biosensor was treated separately in benzo(a)pyrene, hydrogen peroxide (H{sub 2}O{sub 2}) and in their mixture, respectively, and differential pulse voltammetry (DPV) analysis showed that an oxidation peak was apparent after the electrode was immersed in H{sub 2}O{sub 2}. Such experiments indicated that in the presence of H{sub 2}O{sub 2}, hemin could mimic cytochrome P450 to metabolize benzo(a)pyrene, and a voltammogram of its metabolite was recorded. The DNA damage induced by this metabolite was also detected by electrochemical impedance and ultraviolet spectroscopy. Finally, a novel, indirect DPV analytical method for BaP in aqueous solution was developed based on the linear metabolite versus BaP concentration plot; this method provided a new, indirect, quantitative estimate of DNA damage.

  9. DNA damage induced by the anticodon nuclease from a Pichia acaciae killer strain is linked to ribonucleotide reductase depletion.

    Science.gov (United States)

    Wemhoff, Sabrina; Klassen, Roland; Meinhardt, Friedhelm

    2016-02-01

    Virus like element (VLE) encoded killer toxins of Pichia acaciae and Kluyveromyces lactis kill target cells through anticodon nuclease (ACNase) activity directed against tRNA(Gln) and tRNA(Glu) respectively. Not only does tRNA cleavage disable translation, it also affects DNA integrity as well. Consistent with DNA damage, which is involved in toxicity, target cells' mutation frequencies are elevated upon ACNase exposure, suggesting a link between translational integrity and genome surveillance. Here, we analysed whether ACNase action impedes the periodically and highly expressed S-phase specific ribonucleotide reductase (RNR) and proved that RNR expression is severely affected by PaT. Because RNR catalyses the rate-limiting step in dNTP synthesis, mutants affected in dNTP synthesis were scrutinized with respect to ACNase action. Mutations elevating cellular dNTPs antagonized the action of both the above ACNases, whereas mutations lowering dNTPs aggravated toxicity. Consistently, prevention of tRNA cleavage in elp3 or trm9 mutants, which both affect the wobble uridine modification of the target tRNA, suppressed the toxin hypersensitivity of a dNTP synthesis mutant. Moreover, dNTP synthesis defects exacerbated the PaT ACNase sensitivity of cells defective in homologous recombination, proving that dNTP depletion is responsible for subsequent DNA damage. PMID:26247322

  10. Oxidative DNA damage induced by metabolites of chloramphenicol, an antibiotic drug.

    Science.gov (United States)

    Ohnishi, Shiho; Murata, Mariko; Ida, Naoyuki; Oikawa, Shinji; Kawanishi, Shosuke

    2015-01-01

    Chloramphenicol (CAP) was an old antimicrobial agent. However, the use of CAP is limited because of its harmful side effects, such as leukemia. The molecular mechanism through which CAP has been strongly correlated with leukemogenesis is still unclear. To elucidate the mechanism of genotoxicity, we examined DNA damage by CAP and its metabolites, nitroso-CAP (CAP-NO), N-hydroxy-CAP (CAP-NHOH), using isolated DNA. CAP-NHOH have the ability of DNA damage including 8-oxo-7,8-dihydro-2'-deoxyguanosine formation in the presence of Cu(II), which was greatly enhanced by the addition of an endogenous reductant NADH. CAP-NO caused DNA damage in the presence of Cu(II), only when reduced by NADH. NADH can non-enzymatically reduce the nitroso form to hydronitroxide radicals, resulting in enhanced generation of reactive oxygen species followed by DNA damage through the redox cycle. Furthermore, we also studied the site specificity of base lesions in DNA treated with piperidine or formamidopyrimidine-DNA glycosylase, using (32)P-5'-end-labeled DNA fragments obtained from the human tumor suppressor gene. CAP metabolites preferentially caused double base lesion, the G and C of the ACG sequence complementary to codon 273 of the p53 gene, in the presence of NADH and Cu(II). Therefore, we conclude that oxidative double base lesion may play a role in carcinogenicity of CAP. PMID:25971446

  11. Age and metabolic risk factors associated with oxidatively damaged DNA in human peripheral blood mononuclear cells

    DEFF Research Database (Denmark)

    Løhr, Mille; Jensen, Annie; Eriksen, Louise;

    2015-01-01

    18-93 years. DNA damage was analyzed as strand breaks by the comet assay and levels of formamidopyrimidine (FPG-) and human 8-oxoguanine DNA glycosylase 1 (hOGG1)-sensitive sites There was an association between age and levels of FPG-sensitive sites for women, but not for men. The same tendency was...

  12. Nick translation - a new assay for monitoring DNA damage and repair in cultured human fibroblasts

    International Nuclear Information System (INIS)

    An in vitro assay has been developed to detect DNA damage and repair following chemical treatment of human diploid fibroblasts. DNA damage is measured by following the Escherichia coli DNA polymerase I-catalyzed incorporation of radiolabeled deoxycytidine triphosphate (dCTP) into the DNA of lysolecithin-permeabilized cells. DNA strand breaks with free 3' OH termini serve as template sites for incorporation, and decrease of this incorporation with time, following removal of the test chemical, indicates loss (repair) of initial damage. Inhibition of the DNA excision repair process by the addition of the repair inhibitors arabinofuranosyl cytosine (ara-C) and hydroxyurea (HU) during the incubation period gives rise to an increased number of template sites, manifesting itself in increased incorporation and indicating the induction of long-patch excision repair. Results presented demonstrate that all 14 direct-acting carcinogens tested and 8 of 14 carcinogens requiring metabolic activation give positive indication of DNA damage, repair, or both. Eleven of 14 noncarcinogens tested were scored as negative, the other 3 having previously been shown to interact with cellular DNA. This assay is shown to have predictive capability at least equal to that of UDS assays but to allow a broader spectrum of genotoxic effects to be analyzed

  13. PARP-1: Friend or Foe of DNA Damage and Repair in Tumorigenesis?

    Energy Technology Data Exchange (ETDEWEB)

    Swindall, Amanda F.; Stanley, Jennifer A. [Department of Radiation Oncology Comprehensive Cancer Center, University of Alabama at Birmingham School of Medicine, 176F HSROC Suite 2232B, 1700 6th Avenue South, Birmingham, AL 35249 (United States); Yang, Eddy S., E-mail: eyang@uab.edu [Department of Radiation Oncology Comprehensive Cancer Center, University of Alabama at Birmingham School of Medicine, 176F HSROC Suite 2232B, 1700 6th Avenue South, Birmingham, AL 35249 (United States); Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35249 (United States); Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35249 (United States)

    2013-07-26

    Oxidative stress induced by reactive oxygen species can result in DNA damage within cells and subsequently increase risk for carcinogenesis. This may be averted by repair of DNA damage through the base or nucleotide excision repair (BER/NER) pathways. PARP, a BER protein, is known for its role in DNA-repair. However, multiple lesions can occur within a small range of DNA, known as oxidative clustered DNA lesions (OCDLs), which are difficult to repair and may lead to the more severe DNA double-strand break (DSB). Inefficient DSB repair can then result in increased mutagenesis and neoplastic transformation. OCDLs occur more frequently within a variety of tumor tissues. Interestingly, PARP is highly expressed in several human cancers. Additionally, chronic inflammation may contribute to tumorigenesis through ROS-induced DNA damage. Furthermore, PARP can modulate inflammation through interaction with NFκB and regulating the expression of inflammatory signaling molecules. Thus, the upregulation of PARP may present a double-edged sword. PARP is needed to repair ROS-induced DNA lesions, but PARP expression may lead to increased inflammation via upregulation of NFκB signaling. Here, we discuss the role of PARP in the repair of oxidative damage versus the formation of OCDLs and speculate on the feasibility of PARP inhibition for the treatment and prevention of cancers by exploiting its role in inflammation.

  14. Endonuclease modified comet assay for oxidative DNA damage induced by detection of genetic toxiants

    Institute of Scientific and Technical Information of China (English)

    赵健

    2014-01-01

    Objective The aim of this study was to investigate the use of the lesion-specific endonucleases-modifiedcomet assay for analysis of DNA,oxidation in cell lines.Methods DNA breaks and oxidative damage were evaluated by normal alkaline and formamidopyrimidine-DNAglycosylase(FPG)modified comet assays.Cytotoxicity was assessed by MTT method.The human bronchial epi-

  15. PARP-1: Friend or Foe of DNA Damage and Repair in Tumorigenesis?

    International Nuclear Information System (INIS)

    Oxidative stress induced by reactive oxygen species can result in DNA damage within cells and subsequently increase risk for carcinogenesis. This may be averted by repair of DNA damage through the base or nucleotide excision repair (BER/NER) pathways. PARP, a BER protein, is known for its role in DNA-repair. However, multiple lesions can occur within a small range of DNA, known as oxidative clustered DNA lesions (OCDLs), which are difficult to repair and may lead to the more severe DNA double-strand break (DSB). Inefficient DSB repair can then result in increased mutagenesis and neoplastic transformation. OCDLs occur more frequently within a variety of tumor tissues. Interestingly, PARP is highly expressed in several human cancers. Additionally, chronic inflammation may contribute to tumorigenesis through ROS-induced DNA damage. Furthermore, PARP can modulate inflammation through interaction with NFκB and regulating the expression of inflammatory signaling molecules. Thus, the upregulation of PARP may present a double-edged sword. PARP is needed to repair ROS-induced DNA lesions, but PARP expression may lead to increased inflammation via upregulation of NFκB signaling. Here, we discuss the role of PARP in the repair of oxidative damage versus the formation of OCDLs and speculate on the feasibility of PARP inhibition for the treatment and prevention of cancers by exploiting its role in inflammation

  16. PARP-1: Friend or Foe of DNA Damage and Repair in Tumorigenesis?

    Directory of Open Access Journals (Sweden)

    Eddy S. Yang

    2013-07-01

    Full Text Available Oxidative stress induced by reactive oxygen species can result in DNA damage within cells and subsequently increase risk for carcinogenesis. This may be averted by repair of DNA damage through the base or nucleotide excision repair (BER/NER pathways. PARP, a BER protein, is known for its role in DNA-repair. However, multiple lesions can occur within a small range of DNA, known as oxidative clustered DNA lesions (OCDLs, which are difficult to repair and may lead to the more severe DNA double-strand break (DSB. Inefficient DSB repair can then result in increased mutagenesis and neoplastic transformation. OCDLs occur more frequently within a variety of tumor tissues. Interestingly, PARP is highly expressed in several human cancers. Additionally, chronic inflammation may contribute to tumorigenesis through ROS-induced DNA damage. Furthermore, PARP can modulate inflammation through interaction with NFκB and regulating the expression of inflammatory signaling molecules. Thus, the upregulation of PARP may present a double-edged sword. PARP is needed to repair ROS-induced DNA lesions, but PARP expression may lead to increased inflammation via upregulation of NFκB signaling. Here, we discuss the role of PARP in the repair of oxidative damage versus the formation of OCDLs and speculate on the feasibility of PARP inhibition for the treatment and prevention of cancers by exploiting its role in inflammation.

  17. Analysis of the Contribution of Charge Transport in Iodine-125 induced DNA Damage

    OpenAIRE

    Ndlebe, Thabisile; Panyutin, Igor; Neumann, Ronald

    2010-01-01

    Auger electron emitters, like iodine-125, are the radionuclides of choice for gene-targeted radiotherapy. The highly localized damage they induced in DNA is produced by three mechanisms: direct damage by the emitted Auger electrons, indirect damage by diffusible free radicals produced by Auger electrons travelling in water, and charge neutralization of the residual, highly positively charged, tellurium daughter atom by stripping electrons from covalent bonds of neighboring residues. The purpo...

  18. XPS STUDY ON DNA DAMAGE BY LOW-ENERGY ELECTRON IRRADIATION

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Hyung Ah; Cho, Hyuck [Chungnam National University, Physics Department, Daejeon (Korea, Republic of)

    2011-12-15

    After the first report that electrons with sub-ionization energy of DNA could cause single strand breaks or double strand breaks to DNA, there have been various studies to investigate the mechanisms of DNA damage by low-energy electrons. In this paper, we examined the possibility of using X-ray photoelectron spectroscopy (XPS) to analyze the dissociation patterns of the molecular bonds by electron irradiation on DNA thin films and tried to establish the method as a general tool for studying the radiation damage of biomolecules by low energy electrons. For the experiment, pBR322 plasmid DNA solution was formed into the films on tantalum plates by lyophilization and was irradiated by 5-eV electrons. Un-irradiated and irradiated DNA films were compared and analyzed using the XPS technique.

  19. Nicotinamide enhances repair of ultraviolet radiation-induced DNA damage in primary melanocytes.

    Science.gov (United States)

    Thompson, Benjamin C; Surjana, Devita; Halliday, Gary M; Damian, Diona L

    2014-07-01

    Cutaneous melanoma is a significant cause of morbidity and mortality. Nicotinamide is a safe, widely available vitamin that reduces the immune suppressive effects of UV, enhances DNA repair in keratinocytes and has shown promise in the chemoprevention of non-melanoma skin cancer. Here, we report the effect of nicotinamide on DNA damage and repair in primary human melanocytes. Nicotinamide significantly enhanced the repair of oxidative DNA damage (8-oxo-7,8-dihydro-2'-deoxyguanosine) and cyclobutane pyrimidine dimers induced by UV exposure. It also enhanced the repair of 8-oxo-7,8-dihydro-2'-deoxyguanosine induced by the culture conditions in unirradiated melanocytes. A significant increase in the percentage of melanocytes undergoing unscheduled but not scheduled DNA synthesis was observed, confirming that nicotinamide enhances DNA repair in human melanocytes. In summary, nicotinamide, by enhancing DNA repair in melanocytes, is a potential agent for the chemoprevention of cutaneous melanoma. PMID:24798949

  20. Significant disparity in base and sugar damage in DNA resulting from neutron and electron irradiation.

    Science.gov (United States)

    Pang, Dalong; Nico, Jeffrey S; Karam, Lisa; Timofeeva, Olga; Blakely, William F; Dritschilo, Anatoly; Dizdaroglu, Miral; Jaruga, Pawel

    2014-11-01

    In this study, a comparison of the effects of neutron and electron irradiation of aqueous DNA solutions was investigated to characterize potential neutron signatures in DNA damage induction. Ionizing radiation generates numerous lesions in DNA, including base and sugar lesions, lesions involving base-sugar combinations (e.g. 8,5'-cyclopurine-2'-deoxynucleosides) and DNA-protein cross-links, as well as single- and double-strand breaks and clustered damage. The characteristics of damage depend on the linear energy transfer (LET) of the incident radiation. Here we investigated DNA damage using aqueous DNA solutions in 10 mmol/l phosphate buffer from 0-80 Gy by low-LET electrons (10 Gy/min) and the specific high-LET (∼0.16 Gy/h) neutrons formed by spontaneous (252)Cf decay fissions. 8-hydroxy-2'-deoxyguanosine (8-OH-dG), (5'R)-8,5'-cyclo-2'-deoxyadenosine (R-cdA) and (5'S)-8,5'-cyclo-2'-deoxyadenosine (S-cdA) were quantified using liquid chromatography-isotope-dilution tandem mass spectrometry to demonstrate a linear dose dependence for induction of 8-OH-dG by both types of radiation, although neutron irradiation was ∼50% less effective at a given dose compared with electron irradiation. Electron irradiation resulted in an exponential increase in S-cdA and R-cdA with dose, whereas neutron irradiation induced substantially less damage and the amount of damage increased only gradually with dose. Addition of 30 mmol/l 2-amino-2-(hydroxymethyl)-1,3-propanediol (TRIS), a free radical scavenger, to the DNA solution before irradiation reduced lesion induction to background levels for both types of radiation. These results provide insight into the mechanisms of DNA damage by high-LET (252)Cf decay neutrons and low-LET electrons, leading to enhanced understanding of the potential biological effects of these types of irradiation. PMID:25034731