WorldWideScience

Sample records for affects cell cycle

  1. American cranberry (Vaccinium macrocarpon) extract affects human prostate cancer cell growth via cell cycle arrest by modulating expression of cell cycle regulators.

    Science.gov (United States)

    Déziel, Bob; MacPhee, James; Patel, Kunal; Catalli, Adriana; Kulka, Marianna; Neto, Catherine; Gottschall-Pass, Katherine; Hurta, Robert

    2012-05-01

    Prostate cancer is one of the most common cancers in the world, and its prevalence is expected to increase appreciably in the coming decades. As such, more research is necessary to understand the etiology, progression and possible preventative measures to delay or to stop the development of this disease. Recently, there has been interest in examining the effects of whole extracts from commonly harvested crops on the behaviour and progression of cancer. Here, we describe the effects of whole cranberry extract (WCE) on the behaviour of DU145 human prostate cancer cells in vitro. Following treatment of DU145 human prostate cancer cells with 10, 25 and 50 μg ml⁻¹ of WCE, respectively for 6 h, WCE significantly decreased the cellular viability of DU145 cells. WCE also decreased the proportion of cells in the G2-M phase of the cell cycle and increased the proportion of cells in the G1 phase of the cell cycle following treatment of cells with 25 and 50 μg ml⁻¹ treatment of WCE for 6 h. These alterations in cell cycle were associated with changes in cell cycle regulatory proteins and other cell cycle associated proteins. WCE decreased the expression of CDK4, cyclin A, cyclin B1, cyclin D1 and cyclin E, and increased the expression of p27. Changes in p16(INK4a) and pRBp107 protein expression levels also were evident, however, the changes noted in p16(INK4a) and pRBp107 protein expression levels were not statistically significant. These findings demonstrate that phytochemical extracts from the American cranberry (Vaccinium macrocarpon) can affect the behaviour of human prostate cancer cells in vitro and further support the potential health benefits associated with cranberries.

  2. Scrapie affects the maturation cycle and immune complex trapping by follicular dendritic cells in mice.

    Science.gov (United States)

    McGovern, Gillian; Mabbott, Neil; Jeffrey, Martin

    2009-01-01

    Transmissible spongiform encephalopathies (TSEs) or prion diseases are infectious neurological disorders of man and animals, characterised by abnormal disease-associated prion protein (PrP(d)) accumulations in the brain and lymphoreticular system (LRS). Prior to neuroinvasion, TSE agents often accumulate to high levels within the LRS, apparently without affecting immune function. However, our analysis of scrapie-affected sheep shows that PrP(d) accumulations within the LRS are associated with morphological changes to follicular dendritic cells (FDCs) and tingible body macrophages (TBMs). Here we examined FDCs and TBMs in the mesenteric lymph nodes (MLNs) of scrapie-affected mice by light and electron microscopy. In MLNs from uninfected mice, FDCs could be morphologically categorised into immature, mature and regressing forms. However, in scrapie-affected MLNs this maturation cycle was adversely affected. FDCs characteristically trap and retain immune complexes on their surfaces, which they display to B-lymphocytes. In scrapie-affected MLNs, some FDCs were found where areas of normal and abnormal immune complex retention occurred side by side. The latter co-localised with PrP(d) plasmalemmal accumulations. Our data suggest this previously unrecognised morphology represents the initial stage of an abnormal FDC maturation cycle. Alterations to the FDCs included PrP(d) accumulation, abnormal cell membrane ubiquitin and excess immunoglobulin accumulation. Regressing FDCs, in contrast, appeared to lose their membrane-attached PrP(d). Together, these data suggest that TSE infection adversely affects the maturation and regression cycle of FDCs, and that PrP(d) accumulation is causally linked to the abnormal pathology observed. We therefore support the hypothesis that TSEs cause an abnormality in immune function. PMID:19997557

  3. Scrapie affects the maturation cycle and immune complex trapping by follicular dendritic cells in mice.

    Directory of Open Access Journals (Sweden)

    Gillian McGovern

    Full Text Available Transmissible spongiform encephalopathies (TSEs or prion diseases are infectious neurological disorders of man and animals, characterised by abnormal disease-associated prion protein (PrP(d accumulations in the brain and lymphoreticular system (LRS. Prior to neuroinvasion, TSE agents often accumulate to high levels within the LRS, apparently without affecting immune function. However, our analysis of scrapie-affected sheep shows that PrP(d accumulations within the LRS are associated with morphological changes to follicular dendritic cells (FDCs and tingible body macrophages (TBMs. Here we examined FDCs and TBMs in the mesenteric lymph nodes (MLNs of scrapie-affected mice by light and electron microscopy. In MLNs from uninfected mice, FDCs could be morphologically categorised into immature, mature and regressing forms. However, in scrapie-affected MLNs this maturation cycle was adversely affected. FDCs characteristically trap and retain immune complexes on their surfaces, which they display to B-lymphocytes. In scrapie-affected MLNs, some FDCs were found where areas of normal and abnormal immune complex retention occurred side by side. The latter co-localised with PrP(d plasmalemmal accumulations. Our data suggest this previously unrecognised morphology represents the initial stage of an abnormal FDC maturation cycle. Alterations to the FDCs included PrP(d accumulation, abnormal cell membrane ubiquitin and excess immunoglobulin accumulation. Regressing FDCs, in contrast, appeared to lose their membrane-attached PrP(d. Together, these data suggest that TSE infection adversely affects the maturation and regression cycle of FDCs, and that PrP(d accumulation is causally linked to the abnormal pathology observed. We therefore support the hypothesis that TSEs cause an abnormality in immune function.

  4. Methyl Jasmonate Represses Growth and Affects Cell Cycle Progression in Cultured Taxus Cells

    OpenAIRE

    Patil, Rohan A.; Lenka, Sangram K.; Normanly, Jennifer; Walker, Elsbeth L.; Roberts, Susan C.

    2014-01-01

    Methyl jasmonate (MeJA) elicitation is an effective strategy to induce and enhance synthesis of the anticancer agent paclitaxel (Taxol®) in Taxus cell suspension cultures; however, concurrent decreases in growth are often observed, which is problematic for large scale bioprocessing. Here, increased accumulation of paclitaxel in Taxus cuspidata suspension cultures with MeJA elicitation was accompanied by a concomitant decrease in cell growth, evident within the first three days post-elicitatio...

  5. DNA damage during G2 phase does not affect cell cycle progression of the green alga Scenedesmus quadricauda.

    Directory of Open Access Journals (Sweden)

    Monika Hlavová

    Full Text Available DNA damage is a threat to genomic integrity in all living organisms. Plants and green algae are particularly susceptible to DNA damage especially that caused by UV light, due to their light dependency for photosynthesis. For survival of a plant, and other eukaryotic cells, it is essential for an organism to continuously check the integrity of its genetic material and, when damaged, to repair it immediately. Cells therefore utilize a DNA damage response pathway that is responsible for sensing, reacting to and repairing damaged DNA. We have studied the effect of 5-fluorodeoxyuridine, zeocin, caffeine and combinations of these on the cell cycle of the green alga Scenedesmus quadricauda. The cells delayed S phase and underwent a permanent G2 phase block if DNA metabolism was affected prior to S phase; the G2 phase block imposed by zeocin was partially abolished by caffeine. No cell cycle block was observed if the treatment with zeocin occurred in G2 phase and the cells divided normally. CDKA and CDKB kinases regulate mitosis in S. quadricauda; their kinase activities were inhibited by Wee1. CDKA, CDKB protein levels were stabilized in the presence of zeocin. In contrast, the protein level of Wee1 was unaffected by DNA perturbing treatments. Wee1 therefore does not appear to be involved in the DNA damage response in S. quadricauda. Our results imply a specific reaction to DNA damage in S. quadricauda, with no cell cycle arrest, after experiencing DNA damage during G2 phase.

  6. Overexpression or silencing of FOXO3a affects proliferation of endothelial progenitor cells and expression of cell cycle regulatory proteins.

    Directory of Open Access Journals (Sweden)

    Tiantian Sang

    Full Text Available Endothelial dysfunction is involved in the pathogenesis of many cardiovascular diseases such as atherosclerosis. Endothelial progenitor cells (EPCs have been considered to be of great significance in therapeutic angiogenesis. Furthermore, the Forkhead box O (FOXO transcription factors are known to be important regulators of cell cycle. Therefore, we investigated the effects of changes in FOXO3a activity on cell proliferation and cell cycle regulatory proteins in EPCs. The constructed recombinant adenovirus vectors Ad-TM (triple mutant-FOXO3a, Ad-shRNA-FOXO3a and the control Ad-GFP were transfected into EPCs derived from human umbilical cord blood. Assessment of transfection efficiency using an inverted fluorescence microscope and flow cytometry indicated a successful transfection. Additionally, the expression of FOXO3a was markedly increased in the Ad-TM-FOXO3a group but was inhibited in the Ad-shRNA-FOXO3a group as seen by western blotting. Overexpression of FOXO3a suppressed EPC proliferation and modulated expression of the cell cycle regulatory proteins including upregulation of the cell cycle inhibitor p27(kip1 and downregulation of cyclin-dependent kinase 2 (CDK2, cyclin D1 and proliferating cell nuclear antigen (PCNA. In the Ad-shRNA-FOXO3a group, the results were counter-productive. Furthermore, flow cytometry for cell cycle analysis suggested that the active mutant of FOXO3a caused a noticeable increase in G1- and S-phase frequencies, while a decrease was observed after FOXO3a silencing. In conclusion, these data demonstrated that FOXO3a could possibly inhibit EPC proliferation via cell cycle arrest involving upregulation of p27(kip1 and downregulation of CDK2, cyclin D1 and PCNA.

  7. JMJD2A attenuation affects cell cycle and tumourigenic inflammatory gene regulation in lipopolysaccharide stimulated neuroectodermal stem cells

    International Nuclear Information System (INIS)

    JMJD2A is a lysine trimethyl-specific histone demethylase that is highly expressed in a variety of tumours. The role of JMJD2A in tumour progression remains unclear. The objectives of this study were to identify JMJD2A-regulated genes and understand the function of JMJD2A in p53-null neuroectodermal stem cells (p53−/− NE-4Cs). We determined the effect of LPS as a model of inflammation in p53−/− NE-4Cs and investigated whether the epigenetic modifier JMJD2A alter the expression of tumourigenic inflammatory genes. Global gene expression was measured in JMJD2A knockdown (kd) p53−/− NE-4Cs and in LPS-stimulated JMJD2A-kd p53−/− NE-4C cells. JMJD2A attenuation significantly down-regulated genes were Cdca2, Ccnd2, Ccnd1, Crebbp, IL6rα, and Stat3 related with cell cycle, proliferation, and inflammatory-disease responses. Importantly, some tumour-suppressor genes including Dapk3, Timp2 and TFPI were significantly up-regulated but were not affected by silencing of the JMJD2B. Furthermore, we confirmed the attenuation of JMJD2A also down-regulated Cdca2, Ccnd2, Crebbp, and Rest in primary NSCs isolated from the forebrains of E15 embryos of C57/BL6J mice with effective p53 inhibitor pifithrin-α (PFT-α). Transcription factor (TF) motif analysis revealed known binding patterns for CDC5, MYC, and CREB, as well as three novel motifs in JMJD2A-regulated genes. IPA established molecular networks. The molecular network signatures and functional gene-expression profiling data from this study warrants further investigation as an effective therapeutic target, and studies to elucidate the molecular mechanism of JMJD2A-kd-dependent effects in neuroectodermal stem cells should be performed. - Highlights: • Significant up-regulation of epigenetic modifier JMJD2A mRNA upon LPS treatment. • Inhibition of JMJD2A attenuated key inflammatory and tumourigenic genes. • Establishing IPA based functional genomics in JMJD2A-attenuated p53−/− NE4C cells. • Finding JMJD2

  8. JMJD2A attenuation affects cell cycle and tumourigenic inflammatory gene regulation in lipopolysaccharide stimulated neuroectodermal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Das, Amitabh, E-mail: amitabhdas.kn@gmail.com [Department of Bionanotechnology, Hanyang University, Seoul 133-791 (Korea, Republic of); Chai, Jin Choul, E-mail: jincchai@gmail.com [Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do (Korea, Republic of); Jung, Kyoung Hwa, E-mail: khjung2@gmail.com [Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do (Korea, Republic of); Das, Nando Dulal, E-mail: nando.hu@gmail.com [Clinical Research Centre, Inha University School of Medicine, Incheon 400-711 (Korea, Republic of); Kang, Sung Chul, E-mail: gujiju11@gmail.com [Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do (Korea, Republic of); Lee, Young Seek, E-mail: yslee@hanyang.ac.kr [Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do (Korea, Republic of); Seo, Hyemyung, E-mail: hseo@hanyang.ac.kr [Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do (Korea, Republic of); Chai, Young Gyu, E-mail: ygchai@hanyang.ac.kr [Department of Bionanotechnology, Hanyang University, Seoul 133-791 (Korea, Republic of); Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do (Korea, Republic of)

    2014-11-01

    JMJD2A is a lysine trimethyl-specific histone demethylase that is highly expressed in a variety of tumours. The role of JMJD2A in tumour progression remains unclear. The objectives of this study were to identify JMJD2A-regulated genes and understand the function of JMJD2A in p53-null neuroectodermal stem cells (p53{sup −/−} NE-4Cs). We determined the effect of LPS as a model of inflammation in p53{sup −/−} NE-4Cs and investigated whether the epigenetic modifier JMJD2A alter the expression of tumourigenic inflammatory genes. Global gene expression was measured in JMJD2A knockdown (kd) p53{sup −/−} NE-4Cs and in LPS-stimulated JMJD2A-kd p53{sup −/−} NE-4C cells. JMJD2A attenuation significantly down-regulated genes were Cdca2, Ccnd2, Ccnd1, Crebbp, IL6rα, and Stat3 related with cell cycle, proliferation, and inflammatory-disease responses. Importantly, some tumour-suppressor genes including Dapk3, Timp2 and TFPI were significantly up-regulated but were not affected by silencing of the JMJD2B. Furthermore, we confirmed the attenuation of JMJD2A also down-regulated Cdca2, Ccnd2, Crebbp, and Rest in primary NSCs isolated from the forebrains of E15 embryos of C57/BL6J mice with effective p53 inhibitor pifithrin-α (PFT-α). Transcription factor (TF) motif analysis revealed known binding patterns for CDC5, MYC, and CREB, as well as three novel motifs in JMJD2A-regulated genes. IPA established molecular networks. The molecular network signatures and functional gene-expression profiling data from this study warrants further investigation as an effective therapeutic target, and studies to elucidate the molecular mechanism of JMJD2A-kd-dependent effects in neuroectodermal stem cells should be performed. - Highlights: • Significant up-regulation of epigenetic modifier JMJD2A mRNA upon LPS treatment. • Inhibition of JMJD2A attenuated key inflammatory and tumourigenic genes. • Establishing IPA based functional genomics in JMJD2A-attenuated p53{sup

  9. Glucosylceramide synthesis inhibition affects cell cycle progression, membrane trafficking, and stage differentiation in Giardia lamblia.

    Science.gov (United States)

    Stefanić, Sasa; Spycher, Cornelia; Morf, Laura; Fabriàs, Gemma; Casas, Josefina; Schraner, Elisabeth; Wild, Peter; Hehl, Adrian B; Sonda, Sabrina

    2010-09-01

    Synthesis of glucosylceramide via glucosylceramide synthase (GCS) is a crucial event in higher eukaryotes, both for the production of complex glycosphingolipids and for regulating cellular levels of ceramide, a potent antiproliferative second messenger. In this study, we explored the dependence of the early branching eukaryote Giardia lamblia on GCS activity. Biochemical analyses revealed that the parasite has a GCS located in endoplasmic reticulum (ER) membranes that is active in proliferating and encysting trophozoites. Pharmacological inhibition of GCS induced aberrant cell division, characterized by arrest of cytokinesis, incomplete cleavage furrow formation, and consequent block of replication. Importantly, we showed that increased ceramide levels were responsible for the cytokinesis arrest. In addition, GCS inhibition resulted in prominent ultrastructural abnormalities, including accumulation of cytosolic vesicles, enlarged lysosomes, and clathrin disorganization. Moreover, anterograde trafficking of the encystations-specific protein CWP1 was severely compromised and resulted in inhibition of stage differentiation. Our results reveal novel aspects of lipid metabolism in G. lamblia and specifically highlight the vital role of GCS in regulating cell cycle progression, membrane trafficking events, and stage differentiation in this parasite. In addition, we identified ceramide as a potent bioactive molecule, underscoring the universal conservation of ceramide signaling in eukaryotes. PMID:20335568

  10. Scrapie Affects the Maturation Cycle and Immune Complex Trapping by Follicular Dendritic Cells in Mice

    OpenAIRE

    Gillian McGovern; Neil Mabbott; Martin Jeffrey

    2009-01-01

    Transmissible spongiform encephalopathies (TSEs) or prion diseases are infectious neurological disorders of man and animals, characterised by abnormal disease-associated prion protein (PrP(d)) accumulations in the brain and lymphoreticular system (LRS). Prior to neuroinvasion, TSE agents often accumulate to high levels within the LRS, apparently without affecting immune function. However, our analysis of scrapie-affected sheep shows that PrP(d) accumulations within the LRS are associated with...

  11. The tankyrase-specific inhibitor JW74 affects cell cycle progression and induces apoptosis and differentiation in osteosarcoma cell lines

    International Nuclear Information System (INIS)

    Wnt/β-catenin is a major regulator of stem cell self-renewal and differentiation and this signaling pathway is aberrantly activated in a several cancers, including osteosarcoma (OS). Attenuation of Wnt/β-catenin activity by tankyrase inhibitors is an appealing strategy in treatment of OS. The efficacy of the tankyrase inhibitor JW74 was evaluated in three OS cell lines (KPD, U2OS, and SaOS-2) both at the molecular and functional level. At the molecular level, JW74 induces stabilization of AXIN2, a key component of the β-catenin destruction complex, resulting in reduced levels of nuclear β-catenin. At the functional level, JW74 induces reduced cell growth in all three tested cell lines, in part due to a delay in cell cycle progression and in part due to an induction of caspase-3-mediated apoptosis. Furthermore, JW74 induces differentiation in U2OS cells, which under standard conditions are resistant to osteogenic differentiation. JW74 also enhances differentiation of OS cell lines, which do not harbor a differentiation block. Interestingly, microRNAs (miRNAs) of the let-7 family, which are known tumor suppressors and inducers of differentiation, are significantly upregulated following treatment with JW74. We demonstrate for the first time that tankyrase inhibition triggers reduced cell growth and differentiation of OS cells. This may in part be due to an induction of let-7 miRNA. The presented data open for novel therapeutic strategies in the treatment of malignant OS

  12. Antiproliferation of Hepatoma Cell and Progression of Cell Cycle as Affected by Isoflavone Extracts from Soybean Cake

    Science.gov (United States)

    Kao, Tsai-Hua; Huang, Rwei-Fen S.; Chen, Bing-Huei

    2007-01-01

    The objectives of this study were to isolate various isoflavone fractions and extracts from soybean cake by preparative column chromatography and compare them with isoflavone standards with regards to inhibition of HepG2 cancer cell proliferation. Four fractions, including malonylglucoside, glucoside, acetylglucoside and aglycone, and two isoflavone extracts, ISO-1 and ISO-2, were collected for evaluation. MTT test results showed that most treatments were slightly protective against HepG2 cell growth at a low dose of isoflavone (5 and 10 μg/mL). However, at elevated concentration of isoflavone (20–50 μg/mL), both aglycone and acetylglucoside fractions as well as a mixture of isoflavone standards were the most effective in inhibition, demonstrating a possible synergistic phenomenon. Genistein showed a better retardation effect than daidzein. For cell cycle analysis, both aglycone and acetylglucoside fractions and a mixture of isoflavone standards exhibited a high G2/M ratio, correlating well with the result of MTT test. The presence of some other functional components in soybean cake like saponins and phenolic compounds may also play a vital role in inhibiting HepG2 cell growth.

  13. Mutations in N-cadherin and a Stardust homolog, Nagie oko, affect cell-cycle exit in zebrafish retina.

    Science.gov (United States)

    Yamaguchi, Masahiro; Imai, Fumiyasu; Tonou-Fujimori, Noriko; Masai, Ichiro

    2010-01-01

    It has been reported that the loss of apicobasal cell polarity and the disruption of adherens junctions induce hyperplasia in the mouse developing brain. However, it is not fully understood whether hyperplasia is caused by an enhanced cell proliferation, an inhibited neurogenesis, or both. In this study, we found that the ratio of the number of proliferating progenitor cells to the total number of retinal cells increases in the neurogenic stages in zebrafish n-cadherin (ncad) and nagie oko (nok) mutants, in which the apicobasal cell polarity and adherens junctions in the retinal epithelium are disrupted. The cell-cycle progression was not altered in the ncad and nok mutants. Rather, the ratio of the number of cells undergoing neurogenic cell division to the total number of cells undergoing mitosis decreased in the ncad and nok mutant retinas, suggesting that the switching from proliferative cell division to neurogenic cell division was compromised in these mutant retinas. These findings suggest that the inhibition of neurogenesis is a primary defect that causes hyperplasia in the ncad and nok mutant retinas. The Hedgehog-protein kinase A signaling pathway and the Notch signaling pathway regulate retinal neurogenesis in zebrafish. We found that both signaling pathways are involved in the generation of neurogenic defects in the ncad and nok mutant retinas. Taken together, these findings suggest that apicobasal cell polarity and epithelial integrity are essential for retinal neurogenesis in zebrafish.

  14. N-glycosylation at Asn residues 554 and 566 of E-cadherin affects cell cycle progression through extracellular signal-regulated protein kinase signaling pathway

    Institute of Scientific and Technical Information of China (English)

    Hongbo Zhao; Xiliang Zha; Lidong Sun; Liying Wang; Zhibin Xu; Feng Zhou; Jianmin Su; Jiawei Jin; Yong Yang; Yali Hu

    2008-01-01

    E-cadherin, which has a widely acknowledged role in mediating calcium-dependent cell-cell adhesion between epithelial cells, also functions as a tumor suppressor. The ectodomain of human E-cadherin contains four potential N-glycosylation sites at Asn residues 554, 566, 618, and 633.We investigated the role of E-cadherin N-glycosylation in cell cycle progression by site-directed mutagenesis. We showed previously that all four potential N-glycosylation sites of E-cadherin were N-glycosylated in human breast carcinoma MDA-MB-435 cells. Removal of N-glycan at Asn633 dramatically affected E-cadherin stability. In this study we showed that E-cadherin mutant missing N-glycans at Asn554, Asn566 and Asn618 failed to induce cell cycle arrest in G1 phase and to suppress cell proliferation in comparison with wild-type E-cadherin. Moreover, N-glycans at Asn554 and Asn566, but not at Asn618, seemed to be indispensable for E-cadherin-mediated suppression of cell cycle progression.Removal of N-glycans at either Asn554 or Asn566 of E-cadherin was accompanied with the activation of the extracellular signal-regulated protein kinase signaling pathway. After treatment with PD98059, an inhibitor of the extraceilular signal-regulated protein kinase signaling pathway, wild-type E-cadherin transfected MDA-MB-435 and E-cadherin N-glycosylation-deficient mutant transfected MDA-MB-435 cells had equivalent numbers of cells in G1 phase. These findings implied that N-glycosylation might be crucial for E-cadherin-mediated suppression of cell cycle progression.

  15. p-Cresol affects reactive oxygen species generation, cell cycle arrest, cytotoxicity and inflammation/atherosclerosis-related modulators production in endothelial cells and mononuclear cells.

    Directory of Open Access Journals (Sweden)

    Mei-Chi Chang

    Full Text Available AIMS: Cresols are present in antiseptics, coal tar, some resins, pesticides, and industrial solvents. Cresol intoxication leads to hepatic injury due to coagulopathy as well as disturbance of hepatic circulation in fatal cases. Patients with uremia suffer from cardiovascular complications, such as atherosclerosis, thrombosis, hemolysis, and bleeding, which may be partly due to p-cresol toxicity and its effects on vascular endothelial and mononuclear cells. Given the role of reactive oxygen species (ROS and inflammation in vascular thrombosis, the objective of this study was to evaluate the effect of p-cresol on endothelial and mononuclear cells. METHODS: EA.hy926 (EAHY endothelial cells and U937 cells were exposed to different concentrations of p-cresol. Cytotoxicity was evaluated by 3-(4,5-Dimethylthiazol-2-yl-2,5 -diphenyltetrazolium bromide (MTT assay and trypan blue dye exclusion technique, respectively. Cell cycle distribution was analyzed by propidium iodide flow cytometry. Endothelial cell migration was studied by wound closure assay. ROS level was measured by 2',7'-dichlorofluorescein diacetate (DCF fluorescence flow cytometry. Prostaglandin F2α (PGF2α, plasminogen activator inhibitor-1 (PAI-1, soluble urokinase plasminogen activator receptor (suPAR, and uPA production were determined by Enzyme-linked immunosorbant assay (ELISA. RESULTS: Exposure to 100-500 µM p-cresol decreased EAHY cell number by 30-61%. P-cresol also decreased the viability of U937 mononuclear cells. The inhibition of EAHY and U937 cell growth by p-cresol was related to induction of S-phase cell cycle arrest. Closure of endothelial wounds was inhibited by p-cresol (>100 µM. P-cresol (>50 µM also stimulated ROS production in U937 cells and EAHY cells but to a lesser extent. Moreover, p-cresol markedly stimulated PAI-1 and suPAR, but not PGF2α, and uPA production in EAHY cells. CONCLUSIONS: p-Cresol may contribute to atherosclerosis and thrombosis in patients with

  16. Memantine, an antagonist of the NMDA glutamate receptor, affects cell proliferation, differentiation and the intracellular cycle and induces apoptosis in Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Flávia Silva Damasceno

    2014-02-01

    Full Text Available Chagas' disease is caused by the protozoan parasite Trypanosoma cruzi and affects approximately 10 million people in endemic areas of Mexico and Central and South America. Currently available chemotherapies are limited to two compounds: Nifurtimox and Benznidazole. Both drugs reduce the symptoms of the disease and mortality among infected individuals when used during the acute phase, but their efficacy during the chronic phase (during which the majority of cases are diagnosed remains controversial. Moreover, these drugs have several side effects. The aim of this study was to evaluate the effect of Memantine, an antagonist of the glutamate receptor in the CNS of mammals, on the life cycle of T. cruzi. Memantine exhibited a trypanocidal effect, inhibiting the proliferation of epimastigotes (IC50 172.6 µM. Furthermore, this compound interfered with metacyclogenesis (approximately 30% reduction and affected the energy metabolism of the parasite. In addition, Memantine triggered mechanisms that led to the apoptosis-like cell death of epimastigotes, with extracellular exposure of phosphatidylserine, increased production of reactive oxygen species, decreased ATP levels, increased intracellular Ca(2+ and morphological changes. Moreover, Memantine interfered with the intracellular cycle of the parasite, specifically the amastigote stage (IC50 31 µM. Interestingly, the stages of the parasite life cycle that require more energy (epimastigote and amastigote were more affected as were the processes of differentiation and cell invasion.

  17. Glucosylceramide synthesis inhibition affects cell cycle progression, membrane trafficking, and stage differentiation in Giardia lamblia[S

    Science.gov (United States)

    Štefanić, Saša; Spycher, Cornelia; Morf, Laura; Fabriàs, Gemma; Casas, Josefina; Schraner, Elisabeth; Wild, Peter; Hehl, Adrian B.; Sonda, Sabrina

    2010-01-01

    Synthesis of glucosylceramide via glucosylceramide synthase (GCS) is a crucial event in higher eukaryotes, both for the production of complex glycosphingolipids and for regulating cellular levels of ceramide, a potent antiproliferative second messenger. In this study, we explored the dependence of the early branching eukaryote Giardia lamblia on GCS activity. Biochemical analyses revealed that the parasite has a GCS located in endoplasmic reticulum (ER) membranes that is active in proliferating and encysting trophozoites. Pharmacological inhibition of GCS induced aberrant cell division, characterized by arrest of cytokinesis, incomplete cleavage furrow formation, and consequent block of replication. Importantly, we showed that increased ceramide levels were responsible for the cytokinesis arrest. In addition, GCS inhibition resulted in prominent ultrastructural abnormalities, including accumulation of cytosolic vesicles, enlarged lysosomes, and clathrin disorganization. Moreover, anterograde trafficking of the encystations-specific protein CWP1 was severely compromised and resulted in inhibition of stage differentiation. Our results reveal novel aspects of lipid metabolism in G. lamblia and specifically highlight the vital role of GCS in regulating cell cycle progression, membrane trafficking events, and stage differentiation in this parasite. In addition, we identified ceramide as a potent bioactive molecule, underscoring the universal conservation of ceramide signaling in eukaryotes. PMID:20335568

  18. Protein kinase C delta (PKCδ affects proliferation of insulin-secreting cells by promoting nuclear extrusion of the cell cycle inhibitor p21Cip1/WAF1.

    Directory of Open Access Journals (Sweden)

    Felicia Ranta

    Full Text Available BACKGROUND: High fat diet-induced hyperglycemia and palmitate-stimulated apoptosis was prevented by specific inhibition of protein kinase C delta (PKCδ in β-cells. To understand the role of PKCδ in more detail the impact of changes in PKCδ activity on proliferation and survival of insulin-secreting cells was analyzed under stress-free conditions. METHODOLOGY AND PRINCIPAL FINDINGS: Using genetic and pharmacological approaches, the effect of reduced and increased PKCδ activity on proliferation, apoptosis and cell cycle regulation of insulin secreting cells was examined. Proteins were analyzed by Western blotting and by confocal laser scanning microscopy. Increased expression of wild type PKCδ (PKCδWT significantly stimulated proliferation of INS-1E cells with concomitant reduced expression and cytosolic retraction of the cell cycle inhibitor p21(Cip1/WAF1. This nuclear extrusion was mediated by PKCδ-dependent phosphorylation of p21(Cip1/WAF1 at Ser146. In kinase dead PKCδ (PKCδKN overexpressing cells and after inhibition of endogenous PKCδ activity by rottlerin or RNA interference phosphorylation of p21(Cip1/WAF1 was reduced, which favored its nuclear accumulation and apoptotic cell death of INS-1E cells. Human and mouse islet cells express p21(Cip1/WAF1 with strong nuclear accumulation, while in islet cells of PKCδWT transgenic mice the inhibitor resides cytosolic. CONCLUSIONS AND SIGNIFICANCE: These observations disclose PKCδ as negative regulator of p21(Cip1/WAF1, which facilitates proliferation of insulin secreting cells under stress-free conditions and suggest that additional stress-induced changes push PKCδ into its known pro-apoptotic role.

  19. p-Cresol Affects Reactive Oxygen Species Generation, Cell Cycle Arrest, Cytotoxicity and Inflammation/Atherosclerosis-Related Modulators Production in Endothelial Cells and Mononuclear Cells

    OpenAIRE

    Mei-Chi Chang; Hsiao-Hua Chang; Chiu-Po Chan; Sin-Yuet Yeung; Hsiang-Chi Hsien; Bor-Ru Lin; Chien-Yang Yeh; Wan-Yu Tseng; Shui-Kuan Tseng; Jiiang-Huei Jeng

    2014-01-01

    AIMS: Cresols are present in antiseptics, coal tar, some resins, pesticides, and industrial solvents. Cresol intoxication leads to hepatic injury due to coagulopathy as well as disturbance of hepatic circulation in fatal cases. Patients with uremia suffer from cardiovascular complications, such as atherosclerosis, thrombosis, hemolysis, and bleeding, which may be partly due to p-cresol toxicity and its effects on vascular endothelial and mononuclear cells. Given the role of reactive oxygen sp...

  20. Lactobacillus decelerates cervical epithelial cell cycle progression.

    Directory of Open Access Journals (Sweden)

    Katarina Vielfort

    Full Text Available We investigated cell cycle progression in epithelial cervical ME-180 cells during colonization of three different Lactobacillus species utilizing live cell microscopy, bromodeoxyuridine incorporation assays, and flow cytometry. The colonization of these ME-180 cells by L. rhamnosus and L. reuteri, originating from human gastric epithelia and saliva, respectively, was shown to reduce cell cycle progression and to cause host cells to accumulate in the G1 phase of the cell cycle. The G1 phase accumulation in L. rhamnosus-colonized cells was accompanied by the up-regulation and nuclear accumulation of p21. By contrast, the vaginal isolate L. crispatus did not affect cell cycle progression. Furthermore, both the supernatants from the lactic acid-producing L. rhamnosus colonies and lactic acid added to cell culture media were able to reduce the proliferation of ME-180 cells. In this study, we reveal the diversity of the Lactobacillus species to affect host cell cycle progression and demonstrate that L. rhamnosus and L. reuteri exert anti-proliferative effects on human cervical carcinoma cells.

  1. The Coronary Artery Disease-associated Coding Variant in Zinc Finger C3HC-type Containing 1 (ZC3HC1) Affects Cell Cycle Regulation.

    Science.gov (United States)

    Jones, Peter D; Kaiser, Michael A; Ghaderi Najafabadi, Maryam; McVey, David G; Beveridge, Allan J; Schofield, Christine L; Samani, Nilesh J; Webb, Tom R

    2016-07-29

    Genome-wide association studies have to date identified multiple coronary artery disease (CAD)-associated loci; however, for most of these loci the mechanism by which they affect CAD risk is unclear. The CAD-associated locus 7q32.2 is unusual in that the lead variant, rs11556924, is not in strong linkage disequilibrium with any other variant and introduces a coding change in ZC3HC1, which encodes NIPA. In this study, we show that rs11556924 polymorphism is associated with lower regulatory phosphorylation of NIPA in the risk variant, resulting in NIPA with higher activity. Using a genome-editing approach we show that this causes an effective decrease in cyclin-B1 stability in the nucleus, thereby slowing its nuclear accumulation. By perturbing the rate of nuclear cyclin-B1 accumulation, rs11556924 alters the regulation of mitotic progression resulting in an extended mitosis. This study shows that the CAD-associated coding polymorphism in ZC3HC1 alters the dynamics of cell-cycle regulation by NIPA. PMID:27226629

  2. Random transitions and cell cycle control.

    Science.gov (United States)

    Brooks, R F

    1981-01-01

    Differences between the cycle times of sister cells are exponentially distributed, which means that these differences can be explained entirely by the existence of a single critical step in the cell cycle which occurs at random. Cycle times as a whole are not exponentially distributed, indicating an additional source of variation in the cell cycle. It follows that this additional variation must affect sister cells identically; ie, sister cell cycle times are correlated. This correlation and the overall distribution of cycle times can be predicted quantitatively by a model that was developed initially in order to explain certain problematic features of the response of quiescent cells to mitogenic stimulation - in particular, the significance of the lag that almost invariably occurs between stimulation and the onset of DNA synthesis. This model proposes that each cell cycle depends not on one but two random transitions, one of which (at reasonably high growth rates) occurs in the mother cell, its effects being inherited equally by the two daughter cells. The fundamental timing element in the cell cycle is proposed to be a lengthy process, called L, which accounts for most of the lag on mitogenic stimulation and also for the minimum cycle time in growing cultures. One of the random transitions is concerned with the initiation of L, whereas the other becomes possible on completion of L. The latter transition has two consequences: the first is the initiation of a sequence of events which includes S, G2 and M; the second is the restoration of the state from which L may be initiated once more. As a result, L may begin (at random) at any stage of the conventional cycle, ie, S, G2, M, or G1. There are marked similarities between the hypothetical process L and the biogenesis of mitotic centres - the structures responsible for organising the spindle poles. PMID:7312875

  3. MAPK uncouples cell cycle progression from cell spreading and cytoskeletal organization in cycling cells

    OpenAIRE

    Margadant, Coert; Cremers, Lobke; Sonnenberg, Arnoud; Boonstra, Johannes

    2012-01-01

    Integrin-mediated cytoskeletal tension supports growth-factor-induced proliferation, and disruption of the actin cytoskeleton in growth factor-stimulated cells prevents the re-expression of cyclin D and cell cycle re-entry from quiescence. In contrast to cells that enter the cell cycle from G0, cycling cells continuously express cyclin D, and are subject to major cell shape changes during the cell cycle. Here, we investigated the cell cycle requirements for cytoskeletal tension and cell sprea...

  4. Ethyl-2-amino-pyrrole-3-carboxylates are novel potent anticancer agents that affect tubulin polymerization, induce G2/M cell-cycle arrest, and effectively inhibit soft tissue cancer cell growth in vitro.

    Science.gov (United States)

    Boichuk, Sergei; Galembikova, Aigul; Zykova, Svetlana; Ramazanov, Bulat; Khusnutdinov, Ramil; Dunaev, Pavel; Khaibullina, Svetlana; Lombardi, Vincent

    2016-08-01

    Microtubules are known to be one of the most attractive and validated targets in cancer therapy. However, the clinical use of drugs that affect the dynamic state of microtubules has been hindered by chemoresistance and toxicity issues. Accordingly, the development of novel agents that target microtubules is needed. Here, we report the identification of novel compounds with pirrole and carboxylate structures: ethyl-2-amino-pyrrole-3-carboxylates (EAPCs) that provide potent cytotoxic activities against multiple soft tissue cancer cell lines in vitro. Using the MTS cell proliferation assay, we assessed the activity of EAPCs on various cancer cell lines including leiomyosarcoma SK-LMS-1, rhabdomyosarcoma RD, gastrointestinal stromal tumor GIST-T1, A-673 Ewing's sarcoma, and U-2 OS osteosarcoma. We found that in the majority of cases, two EAPC compounds (EAPC-20 and EAPC-24) considerably inhibited cancer cell proliferation in vitro. The growth-inhibitory effects of EAPC-20 and EAPC-24 were time and dose dependent. The molecular mechanisms of action of these compounds were because of the inhibition of tubulin polymerization and induction of a robust G2/M cell-cycle arrest, leading to considerable accumulation of tumor cells in the M-phase. Finally, EAPCs induced tumor cell death by apoptotic pathways. The above-mentioned effects were also observed in most soft tissue tumor cell lines and the gastrointestinal stromal tumor cell line investigated. Taken together, our data identify potent antitumor activity of EAPCs in vitro, thus providing a novel scaffold with which to develop potent chemotherapeutic agents for cancer therapy. PMID:27129079

  5. Moonstruck how lunar cycles affect life

    CERN Document Server

    Naylor, Ernest

    2015-01-01

    Throughout history, the influence of the full Moon on humans and animals has featured in folklore and myths. Yet it has become increasingly apparent that many organisms really are influenced indirectly, and in some cases directly, by the lunar cycle. Breeding behaviour among some marine animals has been demonstrated to be controlled by internal circalunar biological clocks, to the point where lunar-daily and lunar-monthly patterns of Moon-generated tides are embedded in their genes. Yet, intriguingly, Moon-related behaviours are also found in dry land and fresh water species living far beyond the influence of any tides. In Moonstruck, Ernest Naylor dismisses the myths concerning the influence of the Moon, but shows through a range of fascinating examples the remarkable real effects that we are now finding through science. He suggests that since the advent of evolution on Earth, which occurred shortly after the formation of the Moon, animals evolved adaptations to the lunar cycle, and considers whether, if Moo...

  6. Alteration of cell cycle progression by Sindbis virus infection

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Ruirong; Saito, Kengo [Department of Molecular Virology, Graduate School of Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670 (Japan); Isegawa, Naohisa [Laboratory Animal Center, Graduate School of Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670 (Japan); Shirasawa, Hiroshi, E-mail: sirasawa@faculty.chiba-u.jp [Department of Molecular Virology, Graduate School of Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670 (Japan)

    2015-07-10

    We examined the impact of Sindbis virus (SINV) infection on cell cycle progression in a cancer cell line, HeLa, and a non-cancerous cell line, Vero. Cell cycle analyses showed that SINV infection is able to alter the cell cycle progression in both HeLa and Vero cells, but differently, especially during the early stage of infection. SINV infection affected the expression of several cell cycle regulators (CDK4, CDK6, cyclin E, p21, cyclin A and cyclin B) in HeLa cells and caused HeLa cells to accumulate in S phase during the early stage of infection. Monitoring SINV replication in HeLa and Vero cells expressing cell cycle indicators revealed that SINV which infected HeLa cells during G{sub 1} phase preferred to proliferate during S/G{sub 2} phase, and the average time interval for viral replication was significantly shorter in both HeLa and Vero cells infected during G{sub 1} phase than in cells infected during S/G{sub 2} phase. - Highlights: • SINV infection was able to alter the cell cycle progression of infected cancer cells. • SINV infection can affect the expression of cell cycle regulators. • SINV infection exhibited a preference for the timing of viral replication among the cell cycle phases.

  7. Cell Cycle Progression of Human Cells Cultured in Rotating Bioreactor

    Science.gov (United States)

    Parks, Kelsey

    2009-01-01

    Space flight has been shown to alter the astronauts immune systems. Because immune performance is complex and reflects the influence of multiple organ systems within the host, scientists sought to understand the potential impact of microgravity alone on the cellular mechanisms critical to immunity. Lymphocytes and their differentiated immature form, lymphoblasts, play an important and integral role in the body's defense system. T cells, one of the three major types of lymphocytes, play a central role in cell-mediated immunity. They can be distinguished from other lymphocyte types, such as B cells and natural killer cells by the presence of a special receptor on their cell surface called T cell receptors. Reported studies have shown that spaceflight can affect the expression of cell surface markers. Cell surface markers play an important role in the ability of cells to interact and to pass signals between different cells of the same phenotype and cells of different phenotypes. Recent evidence suggests that cell-cycle regulators are essential for T-cell function. To trigger an effective immune response, lymphocytes must proliferate. The objective of this project is to investigate the changes in growth of human cells cultured in rotating bioreactors and to measure the growth rate and the cell cycle distribution for different human cell types. Human lymphocytes and lymphoblasts will be cultured in a bioreactor to simulate aspects of microgravity. The bioreactor is a cylindrical culture vessel that incorporates the aspects of clinostatic rotation of a solid fluid body around a horizontal axis at a constant speed, and compensates gravity by rotation and places cells within the fluid body into a sustained free-fall. Cell cycle progression and cell proliferation of the lymphocytes will be measured for a number of days. In addition, RNA from the cells will be isolated for expression of genes related in cell cycle regulations.

  8. Investigating factors affecting the efficiency of gas turbine power cycle

    Directory of Open Access Journals (Sweden)

    R. Ghaderi

    2014-05-01

    Full Text Available Today, the use of gas turbines in power generation cycles has been growing. Small size, easy installation, high power-to-mass ratio and the ability to load and unload the cycle quickly are the advantages of such systems. Low efficiency is considered as one of the major disadvantages of such power plants. Thus providing a way to increase cycle efficiency can be very effective in making the cycle more efficient and thus saving fuel consumed in such systems. In this paper the thermal efficiency of the cycle is introduced through describing the mechanism of gas turbine in power generation cycle. Then we will examine the factors affecting the efficiency of the cycle and finally practical solutions such as increasing the inlet temperature, recovery, internal cooling of the compressor and heat recovery for increasing efficiency will be explained. Evaluating the polytropic efficiency of cycles shows that increasing the inlet gas temperature has little effect on turbine efficiency and is limited at high levels of ηpoly. Water or steam injection into the gas turbines will not only lead to increased efficiency of the cycle, but also increases the flexibility of the turbine, too.

  9. Crank inertial load affects freely chosen pedal rate during cycling.

    Science.gov (United States)

    Hansen, Ernst Albin; Jørgensen, Lars Vincents; Jensen, Kurt; Fregly, Benjamin Jon; Sjøgaard, Gisela

    2002-02-01

    Cyclists seek to maximize performance during competition, and gross efficiency is an important factor affecting performance. Gross efficiency is itself affected by pedal rate. Thus, it is important to understand factors that affect freely chosen pedal rate. Crank inertial load varies greatly during road cycling based on the selected gear ratio. Nevertheless, the possible influence of crank inertial load on freely chosen pedal rate and gross efficiency has never been investigated. This study tested the hypotheses that during cycling with sub-maximal work rates, a considerable increase in crank inertial load would cause (1) freely chosen pedal rate to increase, and as a consequence, (2) gross efficiency to decrease. Furthermore, that it would cause (3) peak crank torque to increase if a constant pedal rate was maintained. Subjects cycled on a treadmill at 150 and 250W, with low and high crank inertial load, and with preset and freely chosen pedal rate. Freely chosen pedal rate was higher at high compared with low crank inertial load. Notably, the change in crank inertial load affected the freely chosen pedal rate as much as did the 100W increase in work rate. Along with freely chosen pedal rate being higher, gross efficiency at 250W was lower during cycling with high compared with low crank inertial load. Peak crank torque was higher during cycling at 90rpm with high compared with low crank inertial load. Possibly, the subjects increased the pedal rate to compensate for the higher peak crank torque accompanying cycling with high compared with low crank inertial load. PMID:11784546

  10. Epigenetic dynamics across the cell cycle

    DEFF Research Database (Denmark)

    Kheir, Tony Bou; Lund, Anders H.

    2010-01-01

    Progression of the mammalian cell cycle depends on correct timing and co-ordination of a series of events, which are managed by the cellular transcriptional machinery and epigenetic mechanisms governing genome accessibility. Epigenetic chromatin modifications are dynamic across the cell cycle...... a correct inheritance of epigenetic chromatin modifications to daughter cells. In this chapter, we summarize the current knowledge on the dynamics of epigenetic chromatin modifications during progression of the cell cycle....

  11. Analysis of the Schizosaccharomyces pombe Cell Cycle.

    Science.gov (United States)

    Hagan, Iain M; Grallert, Agnes; Simanis, Viesturs

    2016-01-01

    Schizosaccharomyces pombe cells are rod shaped, and they grow by tip elongation. Growth ceases during mitosis and cell division; therefore, the length of a septated cell is a direct measure of the timing of mitotic commitment, and the length of a wild-type cell is an indicator of its position in the cell cycle. A large number of documented stage-specific changes can be used as landmarks to characterize cell cycle progression under specific experimental conditions. Conditional mutations can permanently or transiently block the cell cycle at almost any stage. Large, synchronously dividing cell populations, essential for the biochemical analysis of cell cycle events, can be generated by induction synchrony (arrest-release of a cell cycle mutant) or selection synchrony (centrifugal elutriation or lactose-gradient centrifugation). Schizosaccharomyces pombe cell cycle studies routinely combine particular markers, mutants, and synchronization procedures to manipulate the cycle. We describe these techniques and list key landmarks in the fission yeast mitotic cell division cycle. PMID:27587785

  12. The science of cycling: factors affecting performance - part 2.

    Science.gov (United States)

    Faria, Erik W; Parker, Daryl L; Faria, Irvin E

    2005-01-01

    This review presents information that is useful to athletes, coaches and exercise scientists in the adoption of exercise protocols, prescription of training regimens and creation of research designs. Part 2 focuses on the factors that affect cycling performance. Among those factors, aerodynamic resistance is the major resistance force the racing cyclist must overcome. This challenge can be dealt with through equipment technological modifications and body position configuration adjustments. To successfully achieve efficient transfer of power from the body to the drive train of the bicycle the major concern is bicycle configuration and cycling body position. Peak power output appears to be highly correlated with cycling success. Likewise, gear ratio and pedalling cadence directly influence cycling economy/efficiency. Knowledge of muscle recruitment throughout the crank cycle has important implications for training and body position adjustments while climbing. A review of pacing models suggests that while there appears to be some evidence in favour of one technique over another, there remains the need for further field research to validate the findings. Nevertheless, performance modelling has important implications for the establishment of performance standards and consequent recommendations for training. PMID:15831060

  13. Cell cycle and cell signal transduction in marine phytoplankton

    Institute of Scientific and Technical Information of China (English)

    LIU Jingwen; JIAO Nianzhi; CAI Huinong

    2006-01-01

    As unicellular phytoplankton, the growth of a marine phytoplankton population results directly from the completion of a cell cycle, therefore, cell-environment communication is an important way which involves signal transduction pathways to regulate cell cycle progression and contribute to growth, metabolism and primary production and respond to their surrounding environment in marine phytoplankton. Cyclin-CDK and CaM/Ca2+ are essentially key regulators in control of cell cycle and signal transduction pathway, which has important values on both basic research and applied biotechnology. This paper reviews progress made in this research field, which involves the identification and characterization of cyclins and cell signal transduction system, cell cycle control mechanisms in marine phytoplankton cells, cell cycle proteins as a marker of a terminal event to estimate the growth rate of phytoplankton at the species level, cell cycle-dependent toxin production of toxic algae and cell cycle progression regulated by environmental factors.

  14. Cell cycle gene expression under clinorotation

    Science.gov (United States)

    Artemenko, Olga

    2016-07-01

    Cyclins and cyclin-dependent kinase (CDK) are main regulators of the cell cycle of eukaryotes. It's assumes a significant change of their level in cells under microgravity conditions and by other physical factors actions. The clinorotation use enables to determine the influence of gravity on simulated events in the cell during the cell cycle - exit from the state of quiet stage and promotion presynthetic phase (G1) and DNA synthesis phase (S) of the cell cycle. For the clinorotation effect study on cell proliferation activity is the necessary studies of molecular mechanisms of cell cycle regulation and development of plants under altered gravity condition. The activity of cyclin D, which is responsible for the events of the cell cycle in presynthetic phase can be controlled by the action of endogenous as well as exogenous factors, but clinorotation is one of the factors that influence on genes expression that regulate the cell cycle.These data can be used as a model for further research of cyclin - CDK complex for study of molecular mechanisms regulation of growth and proliferation. In this investigation we tried to summarize and analyze known literature and own data we obtained relatively the main regulators of the cell cycle in altered gravity condition.

  15. High-Cycle-Life Lithium Cell

    Science.gov (United States)

    Yen, S. P. S.; Carter, B.; Shen, D.; Somoano, R.

    1985-01-01

    Lithium-anode electrochemical cell offers increased number of charge/ discharge cycles. Cell uses components selected for compatibility with electrolyte solvent: These materials are wettable and chemically stable. Low vapor pressure and high electrochemical stability of solvent improve cell packaging, handling, and safety. Cell operates at modest temperatures - less than 100 degrees C - and is well suited to automotive, communications, and other applications.

  16. Impact of the cell division cycle on gene circuits

    Science.gov (United States)

    Bierbaum, Veronika; Klumpp, Stefan

    2015-12-01

    In growing cells, protein synthesis and cell growth are typically not synchronous, and, thus, protein concentrations vary over the cell division cycle. We have developed a theoretical description of genetic regulatory systems in bacteria that explicitly considers the cell division cycle to investigate its impact on gene expression. We calculate the cell-to-cell variations arising from cells being at different stages in the division cycle for unregulated genes and for basic regulatory mechanisms. These variations contribute to the extrinsic noise observed in single-cell experiments, and are most significant for proteins with short lifetimes. Negative autoregulation buffers against variation of protein concentration over the division cycle, but the effect is found to be relatively weak. Stronger buffering is achieved by an increased protein lifetime. Positive autoregulation can strongly amplify such variation if the parameters are set to values that lead to resonance-like behaviour. For cooperative positive autoregulation, the concentration variation over the division cycle diminishes the parameter region of bistability and modulates the switching times between the two stable states. The same effects are seen for a two-gene mutual-repression toggle switch. By contrast, an oscillatory circuit, the repressilator, is only weakly affected by the division cycle.

  17. BRCA1 May Modulate Neuronal Cell Cycle Re-Entry in Alzheimer Disease

    OpenAIRE

    Evans, Teresa A.; Raina, Arun K; Delacourte, André; Aprelikova, Olga; Lee, Hyoung-gon; Zhu, Xiongwei; Perry, George; Smith, Mark A.

    2007-01-01

    In Alzheimer disease, neuronal degeneration and the presence of neurofibrillary tangles correlate with the severity of cognitive decline. Neurofibrillary tangles contain the antigenic profile of many cell cycle markers, reflecting a re-entry into the cell cycle by affected neurons. However, while such a cell cycle re-entry phenotype is an early and consistent feature of Alzheimer disease, the mechanisms responsible for neuronal cell cycle are unclear. In this regard, given that a dysregulated...

  18. Cell Cycle Deregulation in Ewing's Sarcoma Pathogenesis

    Directory of Open Access Journals (Sweden)

    Ashley A. Kowalewski

    2011-01-01

    Full Text Available Ewing's sarcoma is a highly aggressive pediatric tumor of bone that usually contains the characteristic chromosomal translocation t(11;22(q24;q12. This translocation encodes the oncogenic fusion protein EWS/FLI, which acts as an aberrant transcription factor to deregulate target genes necessary for oncogenesis. One key feature of oncogenic transformation is dysregulation of cell cycle control. It is therefore likely that EWS/FLI and other cooperating mutations in Ewing's sarcoma modulate the cell cycle to facilitate tumorigenesis. This paper will summarize current published data associated with deregulation of the cell cycle in Ewing's sarcoma and highlight important questions that remain to be answered.

  19. Cell cycle phases in the unequal mother/daughter cell cycles of Saccharomyces cerevisiae.

    OpenAIRE

    Brewer, B J; Chlebowicz-Sledziewska, E; Fangman, W L

    1984-01-01

    During cell division in the yeast Saccharomyces cerevisiae mother cells produce buds (daughter cells) which are smaller and have longer cell cycles. We performed experiments to compare the lengths of cell cycle phases in mothers and daughters. As anticipated from earlier indirect observations, the longer cell cycle time of daughter cells is accounted for by a longer G1 interval. The S-phase and the G2-phase are of the same duration in mother and daughter cells. An analysis of five isogenic st...

  20. Sonic Hedgehog Opposes Epithelial Cell Cycle Arrest

    OpenAIRE

    Fan, Hongran; Khavari, Paul A

    1999-01-01

    Stratified epithelium displays an equilibrium between proliferation and cell cycle arrest, a balance that is disrupted in basal cell carcinoma (BCC). Sonic hedgehog (Shh) pathway activation appears sufficient to induce BCC, however, the way it does so is unknown. Shh-induced epidermal hyperplasia is accompanied by continued cell proliferation in normally growth arrested suprabasal cells in vivo. Shh-expressing cells fail to exit S and G2/M phases in response to calcium-induced differentiation...

  1. Fuel cell and advanced turbine power cycle

    Energy Technology Data Exchange (ETDEWEB)

    White, D.J. [Solar Turbines, Inc., San Diego, CA (United States)

    1995-10-19

    Solar Turbines, Incorporated (Solar) has a vested interest in the integration of gas turbines and high temperature fuel cells and in particular, solid oxide fuel cells (SOFCs). Solar has identified a parallel path approach to the technology developments needed for future products. The primary approach is to move away from the simple cycle industrial machines of the past and develop as a first step more efficient recuperated engines. This move was prompted by the recognition that the simple cycle machines were rapidly approaching their efficiency limits. Improving the efficiency of simple cycle machines is and will become increasingly more costly. Each efficiency increment will be progressively more costly than the previous step.

  2. The cell cycle and acute kidney injury

    OpenAIRE

    Price, Peter M.; Safirstein, Robert L.; Megyesi, Judit

    2009-01-01

    Acute kidney injury (AKI) activates pathways of cell death and cell proliferation. Although seemingly discrete and unrelated mechanisms, these pathways can now be shown to be connected and even to be controlled by similar pathways. The dependence of the severity of renal-cell injury on cell cycle pathways can be used to control and perhaps to prevent acute kidney injury. This review is written to address the correlation between cellular life and death in kidney tubules, especially in acute ki...

  3. Fuel cell hybrid taxi life cycle analysis

    Energy Technology Data Exchange (ETDEWEB)

    Baptista, Patricia, E-mail: patricia.baptista@ist.utl.pt [IDMEC-Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa (Portugal); Ribau, Joao; Bravo, Joao; Silva, Carla [IDMEC-Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa (Portugal); Adcock, Paul; Kells, Ashley [Intelligent Energy, Charnwood Building, HolywellPark, Ashby Road, Loughborough, LE11 3GR (United Kingdom)

    2011-09-15

    A small fleet of classic London Taxis (Black cabs) equipped with hydrogen fuel cell power systems is being prepared for demonstration during the 2012 London Olympics. This paper presents a Life Cycle Analysis for these vehicles in terms of energy consumption and CO{sub 2} emissions, focusing on the impacts of alternative vehicle technologies for the Taxi, combining the fuel life cycle (Tank-to-Wheel and Well-to-Tank) and vehicle materials Cradle-to-Grave. An internal combustion engine diesel taxi was used as the reference vehicle for the currently available technology. This is compared to battery and fuel cell vehicle configurations. Accordingly, the following energy pathways are compared: diesel, electricity and hydrogen (derived from natural gas steam reforming). Full Life Cycle Analysis, using the PCO-CENEX drive cycle, (derived from actual London Taxi drive cycles) shows that the fuel cell powered vehicle configurations have lower energy consumption (4.34 MJ/km) and CO{sub 2} emissions (235 g/km) than both the ICE Diesel (9.54 MJ/km and 738 g/km) and the battery electric vehicle (5.81 MJ/km and 269 g/km). - Highlights: > A Life Cycle Analysis of alternative vehicle technologies for the London Taxi was performed. > The hydrogen powered vehicles have the lowest energy consumption and CO{sub 2} emissions results. > A hydrogen powered solution can be a sustainable alternative in a full life cycle framework.

  4. Creatine kinase in cell cycle regulation and cancer.

    Science.gov (United States)

    Yan, Yong-Bin

    2016-08-01

    The phosphocreatine-creatine kinase (CK) shuttle system is increasingly recognized as a fundamental mechanism for ATP homeostasis in both excitable and non-excitable cells. Many intracellular processes are ATP dependent. Cell division is a process requiring a rapid rate of energy turnover. Cell cycle regulation is also a key point to understanding the mechanisms underlying cancer progression. It has been known for about 40 years that aberrant CK levels are associated with various cancers and for over 30 years that CK is involved in mitosis regulation. However, the underlying molecular mechanisms have not been investigated sufficiently until recently. By maintaining ATP at sites of high-energy demand, CK can regulate cell cycle progression by affecting the intracellular energy status as well as by influencing signaling pathways that are essential to activate cell division and cytoskeleton reorganization. Aberrant CK levels may impair cell viability under normal or stressed conditions and induce cell death. The involvement of CK in cell cycle regulation and cellular energy metabolism makes it a potential diagnostic biomarker and therapeutic target in cancer. To understand the multiple physiological/pathological functions of CK, it is necessary to identify CK-binding partners and regulators including proteins, non-coding RNAs and participating endogenous small molecular weight chemical compounds. This review will focus on molecular mechanisms of CK in cell cycle regulation and cancer progression. It will also discuss the implications of recent mechanistic studies, the emerging problems and future challenges of the multifunctional enzyme CK. PMID:27020776

  5. Improved Gene Targeting through Cell Cycle Synchronization.

    Directory of Open Access Journals (Sweden)

    Vasiliki Tsakraklides

    Full Text Available Gene targeting is a challenge in organisms where non-homologous end-joining is the predominant form of recombination. We show that cell division cycle synchronization can be applied to significantly increase the rate of homologous recombination during transformation. Using hydroxyurea-mediated cell cycle arrest, we obtained improved gene targeting rates in Yarrowia lipolytica, Arxula adeninivorans, Saccharomyces cerevisiae, Kluyveromyces lactis and Pichia pastoris demonstrating the broad applicability of the method. Hydroxyurea treatment enriches for S-phase cells that are active in homologous recombination and enables previously unattainable genomic modifications.

  6. Flavonoids: from cell cycle regulation to biotechnology.

    Science.gov (United States)

    Woo, Ho-Hyung; Jeong, Byeong Ryong; Hawes, Martha C

    2005-03-01

    Flavonoids have been proposed to play diverse roles in plant growth and development, including defense, symbiosis, pollen development and male fertility, polar auxin transport, and protection against ultraviolet radiation. Recently, a new role in cell cycle regulation has emerged. Genetic alteration of glucuronide metabolism by altered expression of a Pisum sativum UDP-glucuronosyltransferase (PsUGT1) results in an altered cell cycle in pea, alfalfa, and Arabidopsis. In alfalfa, altered expression of PsUGT1 results in accumulation of a flavonoid-like compound that suppresses growth of cultured cells. The results are consistent with the hypothesis that PsUGT1 functions by controlling cellular levels of a factor controlling cell cycle (FCC). PMID:15834800

  7. Cell cycle regulation in Trypanosoma brucei

    OpenAIRE

    Tansy C Hammarton

    2007-01-01

    Cell division is regulated by intricate and interconnected signal transduction pathways that precisely coordinate, in time and space, the complex series of events involved in replicating and segregating the component parts of the cell. In Trypanosoma brucei, considerable progress has been made over recent years in identifying molecular regulators of the cell cycle and elucidating their functions, although many regulators undoubtedly remain to be identified, and there is still a long way to go...

  8. K+ channels and cell cycle progression in tumor cells

    Directory of Open Access Journals (Sweden)

    HALIMA eOUADID-AHIDOUCH

    2013-08-01

    Full Text Available K+ ions play a major role in many cellular processes. The deregulation of K+ signaling is associated with a variety of diseases such as hypertension, atherosclerosis, or diabetes. K+ ions are important for setting the membrane potential, the driving force for Ca2+ influx, and regulate volume of growing cells. Moreover, it is increasingly recognized that K+ channels control cell proliferation through a novel signaling mechanisms triggered and modulated independently of ion fluxes. In cancer, aberrant expression, regulation and/or sublocalization of K+ channels can alter the downstream signals that converge on the cell cycle machinery. Various K+ channels are involved in cell cycle progression and are needed only at particular stages of the cell cycle. Consistent with this idea, the expression of Eag1 and HERG channels fluctuate along the cell cycle. Despite of acquired knowledge, our understanding of K+ channels functioning in cancer cells requires further studies. These include identifying the molecular mechanisms controling the cell cycle machinery. By understanding how K+ channels regulate cell cycle progression in cancer cells, we will gain insights into how cancer cells subvert the need for K+ signal and its downstream targets to proliferate.

  9. A cell cycle and nutritional checkpoint controlling bacterial surface adhesion.

    Directory of Open Access Journals (Sweden)

    Aretha Fiebig

    2014-01-01

    Full Text Available In natural environments, bacteria often adhere to surfaces where they form complex multicellular communities. Surface adherence is determined by the biochemical composition of the cell envelope. We describe a novel regulatory mechanism by which the bacterium, Caulobacter crescentus, integrates cell cycle and nutritional signals to control development of an adhesive envelope structure known as the holdfast. Specifically, we have discovered a 68-residue protein inhibitor of holdfast development (HfiA that directly targets a conserved glycolipid glycosyltransferase required for holdfast production (HfsJ. Multiple cell cycle regulators associate with the hfiA and hfsJ promoters and control their expression, temporally constraining holdfast development to the late stages of G1. HfiA further functions as part of a 'nutritional override' system that decouples holdfast development from the cell cycle in response to nutritional cues. This control mechanism can limit surface adhesion in nutritionally sub-optimal environments without affecting cell cycle progression. We conclude that post-translational regulation of cell envelope enzymes by small proteins like HfiA may provide a general means to modulate the surface properties of bacterial cells.

  10. Control points within the cell cycle

    Energy Technology Data Exchange (ETDEWEB)

    Van' t Hof, J.

    1984-01-01

    Evidence of the temporal order of chromosomal DNA replication argues favorably for the view that the cell cycle is controlled by genes acting in sequence whose time of expression is determined by mitosis and the amount of nuclear DNA (2C vs 4C) in the cell. Gl and G2 appear to be carbohydrate dependent in that cells starved of either carbohydrate of phosphate fail to make these transitions. Cells deprived of nitrate, however, fail only at Gl to S transition indicating that the controls that operate in G1 differ from those that operate in G2. 46 references, 5 figures.

  11. SAMHD1 controls cell cycle status, apoptosis and HIV-1 infection in monocytic THP-1 cells.

    Science.gov (United States)

    Bonifati, Serena; Daly, Michele B; St Gelais, Corine; Kim, Sun Hee; Hollenbaugh, Joseph A; Shepard, Caitlin; Kennedy, Edward M; Kim, Dong-Hyun; Schinazi, Raymond F; Kim, Baek; Wu, Li

    2016-08-01

    SAMHD1 limits HIV-1 infection in non-dividing myeloid cells by decreasing intracellular dNTP pools. HIV-1 restriction by SAMHD1 in these cells likely prevents activation of antiviral immune responses and modulates viral pathogenesis, thus highlighting a critical role of SAMHD1 in HIV-1 physiopathology. Here, we explored the function of SAMHD1 in regulating cell proliferation, cell cycle progression and apoptosis in monocytic THP-1 cells. Using the CRISPR/Cas9 technology, we generated THP-1 cells with stable SAMHD1 knockout. We found that silencing of SAMHD1 in cycling cells stimulates cell proliferation, redistributes cell cycle population in the G1/G0 phase and reduces apoptosis. These alterations correlated with increased dNTP levels and more efficient HIV-1 infection in dividing SAMHD1 knockout cells relative to control. Our results suggest that SAMHD1, through its dNTPase activity, affects cell proliferation, cell cycle distribution and apoptosis, and emphasize a key role of SAMHD1 in the interplay between cell cycle regulation and HIV-1 infection. PMID:27183329

  12. Cell cycle arrest induced by MPPa-PDT in MDA-MB-231 cells

    Science.gov (United States)

    Liang, Liming; Bi, Wenxiang; Tian, Yuanyuan

    2016-05-01

    Photodynamic therapy (PDT) is a medical treatment using a photosensitizing agent and light source to treat cancers. Pyropheophorbidea methyl ester (MPPa), a derivative of chlorophyll, is a novel potent photosensitizer. To learn more about this photosensitizer, we examined the cell cycle arrest in MDA-MB-231. Cell cycle and apoptosis were measured by flow cytometer. Checkpoints of the cell cycle were measured by western blot. In this study, we found that the expression of Cyclin D1 was obviously decreased, while the expression of Chk2 and P21 was increased after PDT treatment. This study showed that MPPa-PDT affected the checkpoints of the cell cycle and led the cells to apoptosis.

  13. Relation Between the Cell Volume and the Cell Cycle Dynamics in Mammalian cell

    Science.gov (United States)

    Magno, A. C. G.; Oliveira, I. L.; Hauck, J. V. S.

    2016-08-01

    The main goal of this work is to add and analyze an equation that represents the volume in a dynamical model of the mammalian cell cycle proposed by Gérard and Goldbeter (2011) [1]. The cell division occurs when the cyclinB/Cdkl complex is totally degraded (Tyson and Novak, 2011)[2] and it reaches a minimum value. At this point, the cell is divided into two newborn daughter cells and each one will contain the half of the cytoplasmic content of the mother cell. The equations of our base model are only valid if the cell volume, where the reactions occur, is constant. Whether the cell volume is not constant, that is, the rate of change of its volume with respect to time is explicitly taken into account in the mathematical model, then the equations of the original model are no longer valid. Therefore, every equations were modified from the mass conservation principle for considering a volume that changes with time. Through this approach, the cell volume affects all model variables. Two different dynamic simulation methods were accomplished: deterministic and stochastic. In the stochastic simulation, the volume affects every model's parameters which have molar unit, whereas in the deterministic one, it is incorporated into the differential equations. In deterministic simulation, the biochemical species may be in concentration units, while in stochastic simulation such species must be converted to number of molecules which are directly proportional to the cell volume. In an effort to understand the influence of the new equation a stability analysis was performed. This elucidates how the growth factor impacts the stability of the model's limit cycles. In conclusion, a more precise model, in comparison to the base model, was created for the cell cycle as it now takes into consideration the cell volume variation

  14. Short term hypothyroidism affects ovarian function in the cycling rat

    OpenAIRE

    Gamarra-Luques Carlos; Hapon María; Jahn Graciela A

    2010-01-01

    Abstract Background Rats made hypothyroid with propilthyouracil start showing abnormal cycling on the second cycle after the start of the treatment, with a high proportion of spontaneous pseudopregnancies and reduced fertility. Methods To investigate some of the mechanisms involved in these reproductive abnormalities, hypothyroidism was induced in virgin rats by propilthyouracil (0.1 g/L in the drinking water) and we determined circulating hormones by radioimmunoassay and whole ovary expressi...

  15. How Does Globalization Affect the Synchronization of Business Cycles?

    OpenAIRE

    Kose, M. Ayhan; Prasad, Eswar; Marco E. Terrones

    2003-01-01

    This paper examines the impact of rising trade and financial integration on international business cycle comovement among a large group of industrial and developing countries. The results provide at best limited support for the conventional wisdom that globalization has increased the degree of synchronization of business cycles. The evidence that trade and financial integration enhance global spillovers of macroeconomic fluctuations is mostly limited to industrial countries. One striking resu...

  16. The cell cycle as a brake for β-cell regeneration from embryonic stem cells.

    Science.gov (United States)

    El-Badawy, Ahmed; El-Badri, Nagwa

    2016-01-13

    The generation of insulin-producing β cells from stem cells in vitro provides a promising source of cells for cell transplantation therapy in diabetes. However, insulin-producing cells generated from human stem cells show deficiency in many functional characteristics compared with pancreatic β cells. Recent reports have shown molecular ties between the cell cycle and the differentiation mechanism of embryonic stem (ES) cells, assuming that cell fate decisions are controlled by the cell cycle machinery. Both β cells and ES cells possess unique cell cycle machinery yet with significant contrasts. In this review, we compare the cell cycle control mechanisms in both ES cells and β cells, and highlight the fundamental differences between pluripotent cells of embryonic origin and differentiated β cells. Through critical analysis of the differences of the cell cycle between these two cell types, we propose that the cell cycle of ES cells may act as a brake for β-cell regeneration. Based on these differences, we discuss the potential of modulating the cell cycle of ES cells for the large-scale generation of functionally mature β cells in vitro. Further understanding of the factors that modulate the ES cell cycle will lead to new approaches to enhance the production of functional mature insulin-producing cells, and yield a reliable system to generate bona fide β cells in vitro.

  17. Chloroplast Dysfunction Causes Multiple Defects in Cell Cycle Progression in the Arabidopsis crumpled leaf Mutant

    KAUST Repository

    Hudik, Elodie

    2014-07-18

    The majority of research on cell cycle regulation is focused on the nuclear events that govern the replication and segregation of the genome between the two daughter cells. However, eukaryotic cells contain several compartmentalized organelles with specialized functions, and coordination among these organelles is required for proper cell cycle progression, as evidenced by the isolation of several mutants in which both organelle function and overall plant development were affected. To investigate how chloroplast dysfunction affects the cell cycle, we analyzed the crumpled leaf (crl) mutant of Arabidopsis (Arabidopsis thaliana), which is deficient for a chloroplastic protein and displays particularly severe developmental defects. In the crl mutant, we reveal that cell cycle regulation is altered drastically and that meristematic cells prematurely enter differentiation, leading to reduced plant stature and early endoreduplication in the leaves. This response is due to the repression of several key cell cycle regulators as well as constitutive activation of stress-response genes, among them the cell cycle inhibitor SIAMESE-RELATED5. One unique feature of the crl mutant is that it produces aplastidic cells in several organs, including the root tip. By investigating the consequence of the absence of plastids on cell cycle progression, we showed that nuclear DNA replication occurs in aplastidic cells in the root tip, which opens future research prospects regarding the dialogue between plastids and the nucleus during cell cycle regulation in higher plants.

  18. Targeting cell cycle regulators in hematologic malignancies

    Directory of Open Access Journals (Sweden)

    Eiman eAleem

    2015-04-01

    Full Text Available Hematologic malignancies represent the fourth most frequently diagnosed cancer in economically developed countries. In hematologic malignancies normal hematopoiesis is interrupted by uncontrolled growth of a genetically altered stem or progenitor cell (HSPC that maintains its ability of self-renewal. Cyclin-dependent kinases (CDKs not only regulate the mammalian cell cycle, but also influence other vital cellular processes, such as stem cell renewal, differentiation, transcription, epigenetic regulation, apoptosis, and DNA repair. Chromosomal translocations, amplification, overexpression and altered CDK activities have been described in different types of human cancer, which have made them attractive targets for pharmacological inhibition. Mouse models deficient for one or more CDKs have significantly contributed to our current understanding of the physiological functions of CDKs, as well as their roles in human cancer. The present review focuses on selected cell cycle kinases with recent emerging key functions in hematopoiesis and in hematopoietic malignancies, such as CDK6 and its role in MLL-rearranged leukemia and acute lymphocytic leukemia, CDK1 and its regulator WEE-1 in acute myeloid leukemia, and cyclin C/CDK8/CDK19 complexes in T-cell acute lymphocytic leukemia. The knowledge gained from gene knockout experiments in mice of these kinases is also summarized. An overview of compounds targeting these kinases, which are currently in clinical development in various solid tumors and hematopoietic malignances, is presented. These include the CDK4/CDK6 inhibitors (palbociclib, LEE011, LY2835219, pan-CDK inhibitors that target CDK1 (dinaciclib, flavopiridol, AT7519, TG02, P276-00, terampeprocol and RGB 286638 as well as the WEE-1 kinase inhibitor, MK-1775. The advantage of combination therapy of cell cycle inhibitors with conventional chemotherapeutic agents used in the treatment of AML, such as cytarabine, is discussed.

  19. System-level design of bacterial cell cycle control

    OpenAIRE

    McAdams, Harley H.; Shapiro, Lucy

    2009-01-01

    Understanding of the cell cycle control logic in Caulobacter has progressed to the point where we now have an integrated view of the operation of an entire bacterial cell cycle system functioning as a state machine. Oscillating levels of a few temporally-controlled master regulator proteins in a cyclical circuit drive cell cycle progression. To a striking degree, the cell cycle regulation is a whole cell phenomenon. Phospho-signaling proteins and proteases dynamically deployed to specific loc...

  20. The cell cycle as a brake for β-cell regeneration from embryonic stem cells

    OpenAIRE

    El-Badawy, Ahmed; El-Badri, Nagwa

    2016-01-01

    The generation of insulin-producing β cells from stem cells in vitro provides a promising source of cells for cell transplantation therapy in diabetes. However, insulin-producing cells generated from human stem cells show deficiency in many functional characteristics compared with pancreatic β cells. Recent reports have shown molecular ties between the cell cycle and the differentiation mechanism of embryonic stem (ES) cells, assuming that cell fate decisions are controlled by the cell cycle ...

  1. Changes of the cell cycle regulators and cell cycle arrest in cervical cancer cells after cisplatin therapy

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Objective To investigate the changes of the cell cycle regulators ATM,Chk2 and p53 and cell cycle arrest in HeLa cells after cisplatin therapy. Methods The proliferation-inhibiting rates of HeLa cells induced by cisplatin of different concentrations were measured by MTT assays. The mRNA and protein expressions of ATM,Chk2 and p53 of HeLa cells with and without cisplatin were detected by RT-PCR and Western blot,respectively. The cell cycle analysis was conducted by flow cytometric analysis. Results Cisplatin...

  2. SHP1-mediated cell cycle redistribution inhibits radiosensitivity of non-small cell lung cancer

    International Nuclear Information System (INIS)

    Radioresistance is the common cause for radiotherapy failure in non-small cell lung cancer (NSCLC), and the degree of radiosensitivity of tumor cells is different during different cell cycle phases. The objective of the present study was to investigate the effects of cell cycle redistribution in the establishment of radioresistance in NSCLC, as well as the signaling pathway of SH2 containing Tyrosine Phosphatase (SHP1). A NSCLC subtype cell line, radioresistant A549 (A549S1), was induced by high-dose hypofractionated ionizing radiations. Radiosensitivity-related parameters, cell cycle distribution and expression of cell cycle-related proteins and SHP1 were investigated. siRNA was designed to down-regulate SHP1expression. Compared with native A549 cells, the proportion of cells in the S phase was increased, and cells in the G0/G1 phase were consequently decreased, however, the proportion of cells in the G2/M phase did not change in A549S1 cells. Moreover, the expression of SHP1, CDK4 and CylinD1 were significantly increased, while p16 was significantly down-regulated in A549S1 cells compared with native A549 cells. Furthermore, inhibition of SHP1 by siRNA increased the radiosensitivity of A549S1 cells, induced a G0/G1 phase arrest, down-regulated CDK4 and CylinD1expressions, and up-regulated p16 expression. SHP1 decreases the radiosensitivity of NSCLC cells through affecting cell cycle distribution. This finding could unravel the molecular mechanism involved in NSCLC radioresistance

  3. Centrioles in the cell cycle. I. Epithelial cells

    OpenAIRE

    1982-01-01

    A study was made of the structure of the centrosome in the cell cycle in a nonsynchronous culture of pig kidney embryo (PE) cells. In the spindle pole of the metaphase cell there are two mutually perpendicular centrioles (mother and daughter) which differ in their ultrastructure. An electron-dense halo, which surrounds only the mother centriole and is the site where spindle microtubules converge, disappears at the end of telophase. In metaphase and anaphase, the mother centriole is situated p...

  4. Acanthamoeba induces cell-cycle arrest in host cells

    OpenAIRE

    Sissons, J.; Alsam, S.; Jayasekera, S.; Kim, K S; Stins, M; Khan, Naveed Ahmed

    2004-01-01

    Acanthamoeba can cause fatal granulomatous amoebic encephalitis (GAE) and eye keratitis. However, the pathogenesis and pathophysiology of these emerging diseases remain unclear. In this study, the effects of Acanthamoeba on the host cell cycle using human brain microvascular endothelial cells (HBMEC) and human corneal epithelial cells (HCEC) were determined. Two isolates of Acanthamoeba belonging to the T1 genotype (GAE isolate) and T4 genotype (keratitis isolate) were used, which showed seve...

  5. 6-Br-5methylindirubin-3'oxime (5-Me-6-BIO) targeting the leishmanial glycogen synthase kinase-3 (GSK-3) short form affects cell-cycle progression and induces apoptosis-like death: exploitation of GSK-3 for treating leishmaniasis.

    Science.gov (United States)

    Xingi, Evangelia; Smirlis, Despina; Myrianthopoulos, Vassilios; Magiatis, Prokopios; Grant, Karen M; Meijer, Laurent; Mikros, Emmanuel; Skaltsounis, Alexios-Leandros; Soteriadou, Ketty

    2009-10-01

    Indirubins known to target mammalian cyclin-dependent kinases (CDKs) and glycogen synthase kinase (GSK-3) were tested for their antileishmanial activity. 6-Br-indirubin-3'-oxime (6-BIO), 6-Br-indirubin-3'acetoxime and 6-Br-5methylindirubin-3'oxime (5-Me-6-BIO) were the most potent inhibitors of Leishmania donovani promastigote and amastigote growth (half maximal inhibitory concentration (IC(50)) values human GSK-3beta, for further studies. Kinase assays showed that 5-Me-6-BIO inhibited LdGSK-3s more potently than CRK3 (the CDK1 homologue in Leishmania), whilst 6-BIO was more selective for CRK3. Promastigotes treated with 5-Me-6-BIO accumulated in the S and G2/M cell-cycle phases and underwent apoptosis-like death. Interestingly, these phenotypes were completely reversed in parasites over-expressing LdGSK-3s. This finding strongly supports that LdGSK-3s is: (i) the intracellular target of 5-Me-6-BIO, and (ii) involved in cell-cycle control and in pathways leading to apoptosis-like death. 6-BIO treatment induced a G2/M arrest, consistent with inhibition of CRK3 and apoptosis-like death. These effects were partially reversed in parasites over-expressing LdGSK-3s suggesting that in vivo 6-BIO may also target LdGSK-3s. Molecular docking of 5-Me-6-BIO in CRK3 and 6-BIO in human GSK-3beta and LdGSK-3s active sites predict the existence of functional/structural differences that are sufficient to explain the observed difference in their affinity. In conclusion, LdGSK-3s is validated as a potential drug target in Leishmania and could be exploited for the development of selective indirubin-based leishmanicidals. PMID:19445946

  6. Short term hypothyroidism affects ovarian function in the cycling rat

    Directory of Open Access Journals (Sweden)

    Gamarra-Luques Carlos

    2010-02-01

    Full Text Available Abstract Background Rats made hypothyroid with propilthyouracil start showing abnormal cycling on the second cycle after the start of the treatment, with a high proportion of spontaneous pseudopregnancies and reduced fertility. Methods To investigate some of the mechanisms involved in these reproductive abnormalities, hypothyroidism was induced in virgin rats by propilthyouracil (0.1 g/L in the drinking water and we determined circulating hormones by radioimmunoassay and whole ovary expression of ovarian hormone receptors, growth factors and steroidogenic enzymes using semi-quantitative RT-PCR. The study was performed on days 6 to 9 of treatment, corresponding to diestrus I (at 20.00-22.00 h, diestrus II (at 20.00-22.00 h, proestrus and estrus (both at 8.00-10.00 h and 20.00-22.00 h of the second estrous cycle after beginning propilthyouracil treatment. Another group of rats was mated on day 8 and the treatment continued through the entire pregnancy to evaluate reproductive performance. Results Hypothyroidism increased circulating prolactin and estradiol on estrus 5 to 7-fold and 1.2 to 1.4-fold respectively. Growth hormone and insulin-like growth factor 1 diminished 60 and 20% respectively on proestrus morning. Hypothyroidism doubled the ovarian mRNA contents of estrogen receptor-beta on proestrus and estrus evenings, cyp19A1 aromatase mRNA on estrus evening and of growth hormone receptor on proestrus evening. Hypothyroidism did not influence ovulation rate or the number of corpora lutea at term, but a diminished number of implantation sites and pups per litter were observed (Hypothyroid: 11.7 +/- 0.8 vs. Control: 13.9 +/- 0.7. Conclusions Short term hypothyroidism alters normal hormone profile in the cycling rat increasing the expression of estrogen receptor-beta and cyp19A1 aromatase on estrus, which in turn may stimulate estradiol and prolactin secretion, favouring corpus luteum survival and the subsequent instauration of pseudopregnancy.

  7. The cell cycle rallies the transcription cycle: Cdc28/Cdk1 is a cell cycle-regulated transcriptional CDK.

    Science.gov (United States)

    Chymkowitch, Pierre; Enserink, Jorrit M

    2013-01-01

    In the budding yeast Saccharomyces cerevisiae, the cyclin-dependent kinases (CDKs) Kin28, Bur1 and Ctk1 regulate basal transcription by phosphorylating the carboxyl-terminal domain (CTD) of RNA polymerase II. However, very little is known about the involvement of the cell cycle CDK Cdc28 in the transcription process. We have recently shown that, upon cell cycle entry, Cdc28 kinase activity boosts transcription of a subset of genes by directly stimulating the basal transcription machinery. Here, we discuss the biological significance of this finding and give our view of the kinase-dependent role of Cdc28 in regulation of RNA polymerase II.

  8. Feedback and Modularity in Cell Cycle Control

    Science.gov (United States)

    Skotheim, Jan

    2009-03-01

    Underlying the wonderful diversity of natural forms is the ability of an organism to grow into its appropriate shape. Regulation ensures that cells grow, divide and differentiate so that the organism and its constitutive parts are properly proportioned and of suitable size. Although the size-control mechanism active in an individual cell is of fundamental importance to this process, it is difficult to isolate and study in complex multi-cellular systems and remains poorly understood. This motivates our use of the budding yeast model organism, whose Start checkpoint integrates multiple internal (e.g. cell size) and external signals into an irreversible decision to enter the cell cycle. We have endeavored to address the following two questions: What makes the Start transition irreversible? How does a cell compute its own size? I will report on the progress we have made. Our work is part of an emerging framework for understanding biological control circuits, which will allow us to discern the function of natural systems and aid us in engineering synthetic systems.

  9. Breaking the cycle: extending the persistent pain cycle diagram using an affective pictorial metaphor.

    Science.gov (United States)

    Stones, Catherine; Cole, Frances

    2014-01-01

    The persistent pain cycle diagram is a common feature of pain management literature. but how is it designed and is it fulfilling its potential in terms of providing information to motivate behavioral change? This article examines on-line persistent pain diagrams and critically discusses their purpose and design approach. By using broad information design theories by Karabeg and particular approaches to dialogic visual communications in business, this article argues the need for motivational as well as cognitive diagrams. It also outlines the design of a new persistent pain cycle that is currently being used with chronic pain patients in NHS Bradford, UK. This new cycle adopts and then visually extends an established verbal metaphor within acceptance and commitment therapy (ACT) in an attempt to increase the motivational aspects of the vicious circle diagram format.

  10. Monitoring cell-cycle-related viscoelasticity by a quartz crystal microbalance

    Science.gov (United States)

    Alessandrini, A.; Croce, M. A.; Tiozzo, R.; Facci, P.

    2006-02-01

    We have monitored viscoelasticity variation of a cell population during the cell cycle by a Quartz Crystal Microbalance (QCM). Balb 3T3 fibroblasts were synchronized in the G0/G1 phase and seeded in a QCM chamber placed in a cell incubator. After cell sedimentation, the frequency signal was characterized by an amplitude modulation attributed to the viscoelasticity variation of the cells proliferating in phase. A control experiment with nonsynchronized cells showed a similar signal trend, but without significant modulation. Interestingly, the system resulted also to perform as a device sensitive to the effect of drugs affecting the cell cycle, such as colchicine.

  11. High intensity swimming outlay in Olympic distance triathlon does not affect cycling performance and cycling economy

    OpenAIRE

    Schiødt, Daniel

    2010-01-01

    Aim: The purpose of the present study was to investigate to what extent swimming at 100% of 500m velocity the first 500m of a 1500m swim will influence on average 1500m velocity and the intensity and economy during a 22.5km TT (time trial) on a cycle ergometer. Method: Six triathletes (n = 6) five male and one female, age (34.8 ± 6.4) years, and VO2max: (63.2 ± 5.7)ml*kg-1 * min-1), performed baseline testing on two different days: 1) an isolated 500m maximal swim test and a VO2max cycl...

  12. Factors affecting cadence choice during submaximal cycling and cadence influence on performance

    OpenAIRE

    Hansen, Ernst Albin; Smith, Gerald

    2009-01-01

    Cadence choice during cycling has been of considerable interest among cyclists, coaches, and researchers for nearly 100 years. The present review examines and summarizes the current knowledge of factors affecting the freely chosen cadence during submaximal cycling and of the influence of cadence choice on performance. In addition, suggestions for future research are given along with scientifically based, practical recommendations for those involved in cycling. Within the past 10 years, a numb...

  13. Modeling the fission yeast cell cycle: Quantized cycle times in wee1 cdc25 mutant cells

    Science.gov (United States)

    Sveiczer, Akos; Csikasz-Nagy, Attila; Gyorffy, Bela; Tyson, John J.; Novak, Bela

    2000-07-01

    A detailed mathematical model for the fission yeast mitotic cycle is developed based on positive and negative feedback loops by which Cdc13/Cdc2 kinase activates and inactivates itself. Positive feedbacks are created by Cdc13/Cdc2-dependent phosphorylation of specific substrates: inactivating its negative regulators (Rum1, Ste9 and Wee1/Mik1) and activating its positive regulator (Cdc25). A slow negative feedback loop is turned on during mitosis by activation of Slp1/anaphase-promoting complex (APC), which indirectly re-activates the negative regulators, leading to a drop in Cdc13/Cdc2 activity and exit from mitosis. The model explains how fission yeast cells can exit mitosis in the absence of Ste9 (Cdc13 degradation) and Rum1 (an inhibitor of Cdc13/Cdc2). We also show that, if the positive feedback loops accelerating the G2/M transition (through Wee1 and Cdc25) are weak, then cells can reset back to G2 from early stages of mitosis by premature activation of the negative feedback loop. This resetting can happen more than once, resulting in a quantized distribution of cycle times, as observed experimentally in wee1- cdc25 mutant cells. Our quantitative description of these quantized cycles demonstrates the utility of mathematical modeling, because these cycles cannot be understood by intuitive arguments alone.

  14. Molecular biological mechanism II. Molecular mechanisms of cell cycle regulation

    International Nuclear Information System (INIS)

    The cell cycle in eukaryotes is regulated by central cell cycle controlling protein kinase complexes. These protein kinase complexes consist of a catalytic subunit from the cyclin-dependent protein kinase family (CDK), and a regulatory subunit from the cyclin family. Cyclins are characterised by their periodic cell cycle related synthesis and destruction. Each cell cycle phase is characterised by a specific set of CDKs and cyclins. The activity of CDK/cyclin complexes is mainly regulated on four levels. It is controlled by specific phosphorylation steps, the synthesis and destruction of cyclins, the binding of specific inhibitor proteins, and by active control of their intracellular localisation. At several critical points within the cell cycle, named checkpoints, the integrity of the cellular genome is monitored. If damage to the genome or an unfinished prior cell cycle phase is detected, the cell cycle progression is stopped. These cell cycle blocks are of great importance to secure survival of cells. Their primary importance is to prevent the manifestation and heritable passage of a mutated genome to daughter cells. Damage sensing, DNA repair, cell cycle control and apoptosis are closely linked cellular defence mechanisms to secure genome integrity. Disregulation in one of these defence mechanisms are potentially correlated with an increased cancer risk and therefore in at least some cases with an increased radiation sensitivity. (orig.)

  15. (p)ppGpp and the bacterial cell cycle

    Indian Academy of Sciences (India)

    Aanisa Nazir; Rajendran Harinarayanan

    2016-06-01

    Genes of the Rel/Spo homolog (RSH) superfamily synthesize and/or hydrolyse the modified nucleotides pppGpp/ppGpp (collectively referred to as (p)ppGpp) and are prevalent across diverse bacteria and in plant chloroplasts. Bacteria accumulate (p)ppGpp in response to nutrient deprivation (generically called the stringent response) and elicit appropriate adaptive responses mainly through the regulation of transcription. Although at different concentrations (p)ppGpp affect the expression of distinct set of genes, the two well-characterized responses are reduction in expression of the protein synthesis machinery and increase in the expression of genes coding for amino acid biosynthesis. In Escherichia coli, the cellular (p)ppGpp level inversely correlates with the growth rate and increasing its concentration decreases the steady state growth rate in a defined growth medium. Since change in growth rate must be accompanied by changes in cell cycle parameters set through the activities of the DNA replication and cell division apparatus, (p)ppGpp could coordinate protein synthesis (cell mass increase) with these processes. Here we review the role of (p)ppGpp in bacterial cell cycle regulation.

  16. (p)ppGpp and the bacterial cell cycle.

    Science.gov (United States)

    Nazir, Aanisa; Harinarayanan, Rajendran

    2016-06-01

    Genes of the Rel/Spo homolog (RSH) superfamily synthesize and/or hydrolyse the modified nucleotides pppGpp/ ppGpp (collectively referred to as (p)ppGpp) and are prevalent across diverse bacteria and in plant chloroplasts. Bacteria accumulate (p)ppGpp in response to nutrient deprivation (generically called the stringent response) and elicit appropriate adaptive responses mainly through the regulation of transcription. Although at different concentrations (p)ppGpp affect the expression of distinct set of genes, the two well-characterized responses are reduction in expression of the protein synthesis machinery and increase in the expression of genes coding for amino acid biosynthesis. In Escherichia coli, the cellular (p)ppGpp level inversely correlates with the growth rate and increasing its concentration decreases the steady state growth rate in a defined growth medium. Since change in growth rate must be accompanied by changes in cell cycle parameters set through the activities of the DNA replication and cell division apparatus, (p)ppGpp could coordinate protein synthesis (cell mass increase) with these processes. Here we review the role of (p)ppGpp in bacterial cell cycle regulation.

  17. Hsp90 phosphorylation, Wee1 and the cell cycle.

    Science.gov (United States)

    Mollapour, Mehdi; Tsutsumi, Shinji; Neckers, Len

    2010-06-15

    Heat Shock Protein 90 (Hsp90) is an essential molecular chaperone in eukaryotic cells, and it maintains the functional conformation of a subset of proteins that are typically key components of multiple regulatory and signaling networks mediating cancer cell proliferation, survival, and metastasis. It is possible to selectively inhibit Hsp90 using natural products such as geldanamycin (GA) or radicicol (RD), which have served as prototypes for development of synthetic Hsp90 inhibitors. These compounds bind within the ADP/ATP-binding site of the Hsp90 N-terminal domain to inhibit its ATPase activity. As numerous N-terminal domain inhibitors are currently undergoing extensive clinical evaluation, it is important to understand the factors that may modulate in vivo susceptibility to these drugs. We recently reported that Wee1Swe1-mediated, cell cycle-dependent, tyrosine phosphorylation of Hsp90 affects GA binding and impacts cancer cell sensitivity to Hsp90 inhibition. This phosphorylation also affects Hsp90 ATPase activity and its ability to chaperone a selected group of clients, comprised primarily of protein kinases. Wee1 regulates the G2/M transition. Here we present additional data demonstrating that tyrosine phosphorylation of Hsp90 by Wee1Swe1 is important for Wee1Swe1 association with Hsp90 and for Wee1Swe1 stability. Yeast expressing non-phosphorylatable yHsp90-Y24F, like swe1∆ yeast, undergo premature nuclear division that is insensitive to G2/M checkpoint arrest. These findings demonstrate the importance of Hsp90 phosphorylation for proper cell cycle regulation. PMID:20519952

  18. Mitochondrial dynamics and the cell cycle

    Directory of Open Access Journals (Sweden)

    Penny M.A. Kianian

    2014-05-01

    Full Text Available Nuclear-mitochondrial (NM communication impacts many aspects of plant development including vigor, sterility and viability. Dynamic changes in mitochondrial number, shape, size, and cellular location takes place during the cell cycle possibly impacting the process itself and leading to distribution of this organelle into daughter cells. The genes that underlie these changes are beginning to be identified in model plants such as Arabidopsis. In animals disruption of the drp1 gene, a homolog to the plant drp3A and drp3B, delays mitochondrial division. This mutation results in increased aneuploidy due to chromosome mis-segregation. It remains to be discovered if a similar outcome is observed in plants. Alloplasmic lines provide an opportunity to understand the communication between the cytoplasmic organelles and the nucleus. Examples of studies in these lines, especially from the extensive collection in wheat, point to the role of mitochondria in chromosome movement, pollen fertility and other aspects of development. Genes involved in NM interaction also are believed to play a critical role in evolution of species and interspecific cross incompatibilities.

  19. Simvastatin induces cell cycle arrest and inhibits proliferation of bladder cancer cells via PPARγ signalling pathway

    Science.gov (United States)

    Wang, Gang; Cao, Rui; Wang, Yongzhi; Qian, Guofeng; Dan, Han C.; Jiang, Wei; Ju, Lingao; Wu, Min; Xiao, Yu; Wang, Xinghuan

    2016-01-01

    Simvastatin is currently one of the most common drugs for old patients with hyperlipidemia, hypercholesterolemia and atherosclerotic diseases by reducing cholesterol level and anti-lipid properties. Importantly, simvastatin has also been reported to have anti-tumor effect, but the underlying mechanism is largely unknown. We collected several human bladder samples and performed microarray. Data analysis suggested bladder cancer (BCa) was significantly associated with fatty acid/lipid metabolism via PPAR signalling pathway. We observed simvastatin did not trigger BCa cell apoptosis, but reduced cell proliferation in a dose- and time-dependent manner, accompanied by PPARγ-activation. Moreover, flow cytometry analysis indicated that simvastatin induced cell cycle arrest at G0/G1 phase, suggested by downregulation of CDK4/6 and Cyclin D1. Furthermore, simvastatin suppressed BCa cell metastasis by inhibiting EMT and affecting AKT/GSK3β. More importantly, we found that the cell cycle arrest at G0/G1 phase and the alterations of CDK4/6 and Cyclin D1 triggered by simvastatin could be recovered by PPARγ-antagonist (GW9662), whereas the treatment of PPARα-antagonist (GW6471) shown no significant effects on the BCa cells. Taken together, our study for the first time revealed that simvastatin inhibited bladder cancer cell proliferation and induced cell cycle arrest at G1/G0 phase via PPARγ signalling pathway. PMID:27779188

  20. AspC-mediated aspartate metabolism coordinates the Escherichia coli cell cycle.

    Directory of Open Access Journals (Sweden)

    Feng Liu

    Full Text Available The fast-growing bacterial cell cycle consists of at least two independent cycles of chromosome replication and cell division. To ensure proper cell cycles and viability, chromosome replication and cell division must be coordinated. It has been suggested that metabolism could affect the Escherichia coli cell cycle, but the idea is still lacking solid evidences.We found that absence of AspC, an aminotransferase that catalyzes synthesis of aspartate, led to generation of small cells with less origins and slow growth. In contrast, excess AspC was found to exert the opposite effect. Further analysis showed that AspC-mediated aspartate metabolism had a specific effect in the cell cycle, as only extra aspartate of the 20 amino acids triggered production of bigger cells with more origins per cell and faster growth. The amount of DnaA protein per cell was found to be changed in response to the availability of AspC. Depletion of (pppGpp by ΔrelAΔspoT led to a slight delay in initiation of replication, but did not change the replication pattern found in the ΔaspC mutant.The results suggest that AspC-mediated metabolism of aspartate coordinates the E. coli cell cycle through altering the amount of the initiator protein DnaA per cell and the division signal UDP-glucose. Furthermore, AspC sequence conservation suggests similar functions in other organisms.

  1. The ubiquitin-proteasome system in glioma cell cycle control

    Directory of Open Access Journals (Sweden)

    Vlachostergios Panagiotis J

    2012-07-01

    Full Text Available Abstract A major determinant of cell fate is regulation of cell cycle. Tight regulation of this process is lost during the course of development and progression of various tumors. The ubiquitin-proteasome system (UPS constitutes a universal protein degradation pathway, essential for the consistent recycling of a plethora of proteins with distinct structural and functional roles within the cell, including cell cycle regulation. High grade tumors, such as glioblastomas have an inherent potential of escaping cell cycle control mechanisms and are often refractory to conventional treatment. Here, we review the association of UPS with several UPS-targeted proteins and pathways involved in regulation of the cell cycle in malignant gliomas, and discuss the potential role of UPS inhibitors in reinstitution of cell cycle control.

  2. Inhibition of TFII-I-Dependent Cell Cycle Regulation by p53

    OpenAIRE

    Desgranges, Zana P.; Ahn, Jinwoo; Lazebnik, Maria B.; Ashworth, Todd; Lee, Caleb; Pestell, Richard C.; Rosenberg, Naomi; Prives, Carol; Roy, Ananda L.

    2005-01-01

    The multifunctional transcription factor TFII-I is tyrosine phosphorylated in response to extracellular growth signals and transcriptionally activates growth-promoting genes. However, whether activation of TFII-I also directly affects the cell cycle profile is unknown. Here we show that under normal growth conditions, TFII-I is recruited to the cyclin D1 promoter and transcriptionally activates this gene. Most strikingly, upon cell cycle arrest resulting from genotoxic stress and p53 activati...

  3. Change of the cell cycle after flutamide treatment in prostate cancer cells and its molecular mechanism

    Institute of Scientific and Technical Information of China (English)

    Yong Wang; Wei-Jun Qin; He Wang; Guo-Xing Shao; Chen Shao; Chang-Hong Shi; Lei Zhang; Hong-Hong Yue; Peng-Fei Wang; Bo Yang; Yun-Tao Zhang; Fan Liu

    2005-01-01

    Aim: To explore the effect of androgen receptor (AR) on the expression of the cell cycle-related genes, such as CDKN1A and BTG1, in prostate cancer cell line LNCaP. Methods: After AR antagonist flutamide treatment and confirmation of its effect by phase contrast microscope and flow cytometry, the differential expression of the cell cycle-related genes was analyzed by a cDNA microarray. The flutamide treated cells were set as the experimental group and the LNCaP cells as the control. We labeled cDNA probes of the experimental group and control group with Cy5 and Cy3 dyes, respectively, through reverse transcription. Then we hybridized the cDNA probes with cDNA microarrays, which contained 8 126 unique human cDNA sequences and the chip was scanned to get the fluorescent values of Cy5 and Cy3 on each spot. After primary analysis, reverse transcription polymerase chain reaction (RTPCR) tests were carried out to confirm the results of the chips. Results:After AR antagonist flutamide treatment,three hundred and twenty-six genes (3.93 %) expressed differentially, 97 down-regulated and 219 up-regulated.Among them, eight up-regulated genes might be cell cycle-related, namely CDC10, NRAS, BTG1, Weel, CLK3,DKFZP564A122, CDKN1A and BTG2. The CDKN1A and BTG1 gene mRNA expression was confirmed to be higher in the experimental group by RT-PCR, whilep53 mRNA expression had no significant changes. Conclusion: Flutamide treatment might up-regulate CDKN1A and BTG1 expression in prostate cancer cells. The protein expressions of CDKN1A and BTG1 play an important role in inhibiting the proliferation of cancer cells. CDKN1A has a great impact on the cell cycle of prostate cancer cells and may play a role in the cancer cells in a p53-independent pathway. The prostate cancer cells might affect the cell cycle-related genes by activating AR and thus break the cell cycle control.

  4. Factors affecting cadence choice during submaximal cycling and cadence influence on performance.

    Science.gov (United States)

    Hansen, Ernst A; Smith, Gerald

    2009-03-01

    Cadence choice during cycling has been of considerable interest among cyclists, coaches, and researchers for nearly 100 years. The present review examines and summarizes the current knowledge of factors affecting the freely chosen cadence during submaximal cycling and of the influence of cadence choice on performance. In addition, suggestions for future research are given along with scientifically based, practical recommendations for those involved in cycling. Within the past 10 years, a number of papers have been published that have brought novel insight into the subject. For example, under the influence of spinal central pattern generators, a robust innate voluntary motor rhythm has been suggested as the primary basis for freely chosen cadence in cycling. This might clarify the cadence paradox in which the freely chosen cadence during low-to-moderate submaximal cycling is considerably higher and thereby less economical than the energetically optimal cadence. A number of factors, including age, power output, and road gradient, have been shown to affect the choice of cadence to some extent. During high-intensity cycling, close to the maximal aerobic power output, cyclists choose an energetically economical cadence that is also favorable for performance. In contrast, the choice of a relatively high cadence during cycling at low-to-moderate intensity is uneconomical and could compromise performance during prolonged cycling.

  5. Cell shape, cytoskeletal mechanics, and cell cycle control in angiogenesis

    Science.gov (United States)

    Ingber, D. E.; Prusty, D.; Sun, Z.; Betensky, H.; Wang, N.

    1995-01-01

    Capillary endothelial cells can be switched between growth and differentiation by altering cell-extracellular matrix interactions and thereby, modulating cell shape. Studies were carried out to determine when cell shape exerts its growth-regulatory influence during cell cycle progression and to explore the role of cytoskeletal structure and mechanics in this control mechanism. When G0-synchronized cells were cultured in basic fibroblast growth factor (FGF)-containing defined medium on dishes coated with increasing densities of fibronectin or a synthetic integrin ligand (RGD-containing peptide), cell spreading, nuclear extension, and DNA synthesis all increased in parallel. To determine the minimum time cells must be adherent and spread on extracellular matrix (ECM) to gain entry into S phase, cells were removed with trypsin or induced to retract using cytochalasin D at different times after plating. Both approaches revealed that cells must remain extended for approximately 12-15 h and hence, most of G1, in order to enter S phase. After this restriction point was passed, normally 'anchorage-dependent' endothelial cells turned on DNA synthesis even when round and in suspension. The importance of actin-containing microfilaments in shape-dependent growth control was confirmed by culturing cells in the presence of cytochalasin D (25-1000 ng ml-1): dose-dependent inhibition of cell spreading, nuclear extension, and DNA synthesis resulted. In contrast, induction of microtubule disassembly using nocodazole had little effect on cell or nuclear spreading and only partially inhibited DNA synthesis. Interestingly, combination of nocodazole with a suboptimal dose of cytochalasin D (100 ng ml-1) resulted in potent inhibition of both spreading and growth, suggesting that microtubules are redundant structural elements which can provide critical load-bearing functions when microfilaments are partially compromised. Similar synergism between nocodazole and cytochalasin D was observed

  6. Cell cycle controls stress response and longevity in C. elegans

    Science.gov (United States)

    Dottermusch, Matthias; Lakner, Theresa; Peyman, Tobias; Klein, Marinella; Walz, Gerd; Neumann-Haefelin, Elke

    2016-01-01

    Recent studies have revealed a variety of genes and mechanisms that influence the rate of aging progression. In this study, we identified cell cycle factors as potent regulators of health and longevity in C. elegans. Focusing on the cyclin-dependent kinase 2 (cdk-2) and cyclin E (cye-1), we show that inhibition of cell cycle genes leads to tolerance towards environmental stress and longevity. The reproductive system is known as a key regulator of longevity in C. elegans. We uncovered the gonad as the central organ mediating the effects of cell cycle inhibition on lifespan. In particular, the proliferating germ cells were essential for conferring longevity. Steroid hormone signaling and the FOXO transcription factor DAF-16 were required for longevity associated with cell cycle inhibition. Furthermore, we discovered that SKN-1 (ortholog of mammalian Nrf proteins) activates protective gene expression and induces longevity when cell cycle genes are inactivated. We conclude that both, germline absence and inhibition through impairment of cell cycle machinery results in longevity through similar pathways. In addition, our studies suggest further roles of cell cycle genes beyond cell cycle progression and support the recently described connection of SKN-1/Nrf to signals deriving from the germline. PMID:27668945

  7. Limit Cycle Oscillations in Pacemaker Cells

    CERN Document Server

    Endresen, L P; Endresen, Lars Petter; Skarland, Nils

    1999-01-01

    In recent decades, several mathematical models describing the pacemaker activity of the rabbit sinoatrial node have been developed. We demonstrate that it is not possible to establish the existence, uniqueness, and stability of a limit cycle oscillation in those models. Instead we observe an infinite number of limit cycles. We then display numerical results from a new model, with a limit cycle that can be reached from many different initial conditions.

  8. Cell cycle-dependent gene networks relevant to cancer

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The analysis of sophisticated interplays between cell cycle-dependent genes in a disease condition is one of the largely unexplored areas in modern tumor biology research. Many cell cycle-dependent genes are either oncogenes or suppressor genes, or are closely asso- ciated with the transition of a cell cycle. However, it is unclear how the complicated relationships between these cell cycle-dependent genes are, especially in cancers. Here, we sought to identify significant expression relationships between cell cycle-dependent genes by analyzing a HeLa microarray dataset using a local alignment algorithm and constructed a gene transcriptional network specific to the cancer by assembling these newly identified gene-gene relationships. We further characterized this global network by partitioning the whole network into several cell cycle phase-specific sub-networks. All generated networks exhibited the power-law node-degree dis- tribution, and the average clustering coefficients of these networks were remarkably higher than those of pure scale-free networks, indi- cating a property of hierarchical modularity. Based on the known protein-protein interactions and Gene Ontology annotation data, the proteins encoded by cell cycle-dependent interacting genes tended to share the same biological functions or to be involved in the same biological processes, rather than interacting by physical means. Finally, we identified the hub genes related to cancer based on the topo- logical importance that maintain the basic structure of cell cycle-dependent gene networks.

  9. A Method to Design Synthetic Cell-Cycle Networks

    Institute of Scientific and Technical Information of China (English)

    MIAO Ke-Ke

    2009-01-01

    The interactions among proteins, DNA and RNA in an organism form elaborate cell-cycle networks which govern cell growth and proliferation. Understanding the common structure of ce11-cycle networks will be of great benefit to science research. Here, inspired by the importance of the cell-cycle regulatory network of yeast which has been studied intensively, we focus on small networks with 11 nodes, equivalent to that of the cell-cycle regulatory network used by Li et al. [Proc. Natl. Acad. Sci. USA 101(2004)4781] Using a Boolean model, we study the correlation between structure and function, and a possible common structure. It is found that cascade-like networks with a great number of interactions between nodes are stable. Based on these findings, we are able to construct synthetic networks that have the same functions as the cell-cycle regulatory network.

  10. Chinese medicinal herb, Acanthopanax gracilistylus, extract induces cell cycle arrest of human tumor cells in vitro.

    Science.gov (United States)

    Shan, B E; Zeki, K; Sugiura, T; Yoshida, Y; Yamashita, U

    2000-04-01

    We investigated the effect of a Chinese medicinal herb, Acanthopanax gracilistylus (AG), extract (E) on the growth of human tumor cell lines in vitro. AGE markedly inhibited the proliferation of several tumor cell lines such as MT-2, Raji, HL-60, TMK-1 and HSC-2. The activity was associated with a protein of 60 kDa, which was purified by gel-filtration chromatography. Cell viability analyses indicated that the treatment with AGE inhibits cell proliferation, but does not induce cell death. The mechanism of AGE-induced inhibition of tumor cell growth involves arrest of the cell cycle at the G(0) / G(1) stage without a direct cytotoxic effect. The cell cycle arrest induced by AGE was accompanied by a decrease of phosphorylated retinoblastoma (Rb) protein. Furthermore, cyclin-dependent kinases 2 and 4 (Cdk2 and Cdk4), which are involved in the phosphorylation of Rb, were also decreased. These results suggest that AGE inhibits tumor cell growth by affecting phosphorylated Rb proteins and Cdks. PMID:10804285

  11. Systems Level Modeling of the Cell Cycle Using Budding Yeast

    Directory of Open Access Journals (Sweden)

    D.R. Kim

    2007-01-01

    Full Text Available Proteins involved in the regulation of the cell cycle are highly conserved across all eukaryotes, and so a relatively simple eukaryote such as yeast can provide insight into a variety of cell cycle perturbations including those that occur in human cancer. To date, the budding yeast Saccharomyces cerevisiae has provided the largest amount of experimental and modeling data on the progression of the cell cycle, making it a logical choice for in-depth studies of this process. Moreover, the advent of methods for collection of high-throughput genome, transcriptome, and proteome data has provided a means to collect and precisely quantify simultaneous cell cycle gene transcript and protein levels, permitting modeling of the cell cycle on the systems level. With the appropriate mathematical framework and suffi cient and accurate data on cell cycle components, it should be possible to create a model of the cell cycle that not only effectively describes its operation, but can also predict responses to perturbations such as variation in protein levels and responses to external stimuli including targeted inhibition by drugs. In this review, we summarize existing data on the yeast cell cycle, proteomics technologies for quantifying cell cycle proteins, and the mathematical frameworks that can integrate this data into representative and effective models. Systems level modeling of the cell cycle will require the integration of high-quality data with the appropriate mathematical framework, which can currently be attained through the combination of dynamic modeling based on proteomics data and using yeast as a model organism.

  12. Altered Cell Cycle Arrest by Multifunctional Drug-Loaded Enzymatically-Triggered Nanoparticles.

    Science.gov (United States)

    Huang, Can; Sun, Ying; Shen, Ming; Zhang, Xiangyu; Gao, Pei; Duan, Yourong

    2016-01-20

    cRGD-targeting matrix metalloproteinase (MMP)-sensitive nanoparticles [PLGA-PEG1K-cRGD/PLGA-peptide-PEG5K (NPs-cRGD)] were successfully developed. Au-Pt(IV) nanoparticles, PTX, and ADR were encapsulated into NPs-RGD separately. The effects of the drug-loaded nanoparticles on the cell cycle were investigated. Here, we showed that higher cytotoxicity of drug-loaded nanoparticles was related to the cell cycle arrest, compared to that of free drugs. The NPs-cRGD studied here did not disrupt cell cycle progression. The cell cycle of Au-Pt(IV)@NPs-cRGD showed a main S phase arrest in all phases of the cell cycle phase, especially in G0/G1 phase. PTX@NPs-cRGD and ADR@NPs-cRGD showed a higher ratio of G2/M and S phase arrest than the free drugs, respectively. Cells in G0/G1 and S phases of the cell cycle had a higher uptake ratio of NPs-cRGD. A nutrient deprivation or an increase in the requirement of nutrients in tumor cells could promote the uptake of nanoparticles from the microenvironments. In vivo, NPs-cRGD could efficiently accumulate at tumor sites. The inhibition of tumor growth coupled with cell cycle arrest is in line with that in vitro. On the basis of our results, we propose that future studies on nanoparticle action mechanism should consider the cell cycle, which could be different from free drugs. Understanding the actions of cell cycle arrest could affect the application of nanomedicine in the clinic.

  13. Cell cycle regulation and apoptotic cell death in experimental colon carcinogenesis: intervening with cyclooxygenase-2 inhibitors.

    Science.gov (United States)

    Saini, Manpreet Kaur; Sanyal, Sankar Nath

    2015-01-01

    Relative imbalance in the pathways regulating cell cycle, cell proliferation, or cell death marks a prerequisite for neoplasm. C-phycocyanin, a biliprotein from Spirulina platensis and a selective COX-2 inhibitor along with piroxicam, a traditional nonsteroidal antiinflammatory drug was used to investigate the role of cell cycle regulatory proteins and proinflammatory transcription factor NFκB in 1,2-dimethylhydrazine dihydrochloride (DMH)-induced rat colon carcinogenesis. Cell cycle regulators [cyclin D1, cyclin E, cyclin dependent kinase 2 (CDK2), CDK4, and p53], NFκB (p65) pathway, and proliferating cell nuclear antigen (PCNA) were evaluated by gene and protein expression, whereas apoptosis was studied by terminal deoxynucleotidyl transferase dUTP nick end labeling and apoptotic bleb assay. Molecular docking of ligand protein interaction was done to validate the in vivo results. Cyclin D1, cyclin E, CDK2, and CDK4 were overexpressed in DMH, whereas piroxicam and c-phycocyanin promoted the cell cycle arrest by downregulating them. Both drugs mediated apoptosis through p53 activation. Piroxicam and c-phycocyanin also stimulated antiproliferation by restraining PCNA expression and reduced cell survival via inhibiting NFκB (p65) pathway. Molecular docking revealed that phycocyanobilin (a chromophore of c-phycocyanin) interact with DNA binding site of NFκB. Inhibition of cyclin/CDK complex by piroxicam and c-phycocyanin affects the expression of p53 in colon cancer followed by downregulation of NFκB and PCNA levels, thus substantiating the antineoplastic role of these agents. PMID:25825916

  14. Connecting the nucleolus to the cell cycle and human disease.

    Science.gov (United States)

    Tsai, Robert Y L; Pederson, Thoru

    2014-08-01

    Long known as the center of ribosome synthesis, the nucleolus is connected to cell cycle regulation in more subtle ways. One is a surveillance system that reacts promptly when rRNA synthesis or processing is impaired, halting cell cycle progression. Conversely, the nucleolus also acts as a first-responder to growth-related stress signals. Here we review emerging concepts on how these "infraribosomal" links between the nucleolus and cell cycle progression operate in both forward and reverse gears. We offer perspectives on how new cancer therapeutic designs that target this infraribosomal mode of cell growth control may shape future clinical progress.

  15. The Cell Cycle: An Activity Using Paper Plates to Represent Time Spent in Phases of the Cell Cycle

    Science.gov (United States)

    Scherer, Yvette D.

    2014-01-01

    In this activity, students are given the opportunity to combine skills in math and geometry for a biology lesson in the cell cycle. Students utilize the data they collect and analyze from an online onion-root-tip activity to create a paper-plate time clock representing a 24-hour cell cycle. By dividing the paper plate into appropriate phases of…

  16. Plant Characteristics of an Integrated Solid Oxide Fuel Cell Cycle and a Steam Cycle

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2010-01-01

    Plant characteristics of a system containing a solid oxide fuel cell (SOFC) cycle on the top of a Rankine cycle were investigated. Natural gas (NG) was used as the fuel for the plant. A desulfurization reactor removes the sulfur content in the fuel, while a pre-reformer broke down the heavier hyd...

  17. Effects of hypoxia on promoter of telomerase reverse transcriptase and cell cycle distribution in neonatal rat cardiac myocytes

    Institute of Scientific and Technical Information of China (English)

    XU Shun-lin; HUANG Jun; ZHU Jing; CAO Ke-jiang; DING Gui-peng; ZHU Yi; XU Lu

    2005-01-01

    @@ On the hypothesis that telomerase reverse transcriptase (TERT) of cardiac myocytes (CMs) is consistent with cell cycle distribution as well as tumour cells, we plan to investigate the expression of TERT in CMs and how TERT is in keeping with CMs cycle distribution after birth and under hypoxia, and roughly understand how hypoxia affects activity of TERT promoter.

  18. Cell cycle is disturbed in mucopolysaccharidosis type II fibroblasts, and can be improved by genistein.

    Science.gov (United States)

    Moskot, Marta; Gabig-Cimińska, Magdalena; Jakóbkiewicz-Banecka, Joanna; Węsierska, Magdalena; Bocheńska, Katarzyna; Węgrzyn, Grzegorz

    2016-07-01

    Mucopolysaccharidoses (MPSs) are inherited metabolic diseases caused by mutations resulting in deficiency of one of enzymes involved in degradation of glycosaminoglycans (GAGs). These compounds accumulate in cells causing their dysfunctions. Genistein is a molecule previously found to both modify GAG metabolism and modulate cell cycle. Therefore, we investigated whether the cell cycle is affected in MPS cells and if genistein can influence this process. Fibroblasts derived from patients suffering from MPS types I, II, IIIA and IIIB, as well as normal human fibroblasts (the HDFa cell line) were investigated. MTT assay was used for determination of cell proliferation, and the cell cycle was analyzed by using the MUSE® Cell Analyzer. While effects of genistein on cell proliferation were similar in both normal and MPS fibroblasts, fractions of cells in the G0/G1 phase were higher, and number of cells entering the S and G2/M phases was considerably lower in MPS II fibroblasts relative to control cells. Somewhat similar tendency, though significantly less pronounced, could be noted in MPS I, but only at longer times of incubation. However, this was not observed in MPS IIIA and MPS IIIB fibroblasts. Genistein (5, 7-dihydroxy-3-(4-hydroxyphenyl)-4H-1-benzopyran-4-one) was found to be able to partially correct the disturbances in the MPS II cell cycle, and to some extent in MPS I, at higher concentrations of this compound. The tendency to increase the fractions of cells entering the S and G2/M phases was also observed in MPS IIIA and IIIB fibroblasts treated with genistein. In conclusion, this is the first report indicating that the cell cycle can be impaired in MPS cells. The finding that genistein can improve the MPS II (and to some extent also MPS I) cell cycle provides an input to our knowledge on the molecular mechanisms of action of this compound. PMID:27016302

  19. Cell Cycle Related Differentiation of Bone Marrow Cells into Lung Cells

    Energy Technology Data Exchange (ETDEWEB)

    Dooner, Mark; Aliotta, Jason M.; Pimental, Jeffrey; Dooner, Gerri J.; Abedi, Mehrdad; Colvin, Gerald; Liu, Qin; Weier, Heinz-Ulli; Dooner, Mark S.; Quesenberry, Peter J.

    2007-12-31

    Green-fluorescent protein (GFP) labeled marrow cells transplanted into lethally irradiated mice can be detected in the lungs of transplanted mice and have been shown to express lung specific proteins while lacking the expression of hematopoietic markers. We have studied marrow cells induced to transit cell cycle by exposure to IL-3, IL-6, IL-11 and steel factor at different times of culture corresponding to different phases of cell cycle. We have found that marrow cells at the G1/S interface have a 3-fold increase in cells which assume a lung phenotype and that this increase is no longer seen in late S/G2. These cells have been characterized as GFP{sup +} CD45{sup -} and GFP{sup +} cytokeratin{sup +}. Thus marrow cells with the capacity to convert into cells with a lung phenotype after transplantation show a reversible increase with cytokine induced cell cycle transit. Previous studies have shown the phenotype of bone marrow stem cells fluctuates reversibly as these cells traverse cell cycle, leading to a continuum model of stem cell regulation. The present studies indicate that marrow stem cell production of nonhematopoietic cells also fluctuates on a continuum.

  20. Cell cycle control, checkpoint mechanisms, and genotoxic stress.

    OpenAIRE

    R.E. Shackelford; Kaufmann, W K; Paules, R S

    1999-01-01

    The ability of cells to maintain genomic integrity is vital for cell survival and proliferation. Lack of fidelity in DNA replication and maintenance can result in deleterious mutations leading to cell death or, in multicellular organisms, cancer. The purpose of this review is to discuss the known signal transduction pathways that regulate cell cycle progression and the mechanisms cells employ to insure DNA stability in the face of genotoxic stress. In particular, we focus on mammalian cell cy...

  1. Does the phase of menstrual cycle affect MR-guided focused ultrasound surgery of uterine leiomyomas?

    International Nuclear Information System (INIS)

    Purpose: To determine whether the phase of menstrual cycle at the time of MR-guided focused ultrasound surgery (MRgFUS) treatment for uterine leiomyomas affects treatment outcome. Methods: We enrolled all patients participating in a prospective phase III clinical trial from our center who completed 6 months of clinical and imaging follow-up. Patients with irregular cycles and those on oral contraceptives were excluded. Data prospectively documenting the date of the last menstrual period (LMP) at the time of treatment, length and duration of cycle, and raw symptom severity score (SSS) from the Uterine Fibroid Symptom and Quality of Life questionnaire, at baseline and 6 months were collected. Proliferative phase patients were determined retrospectively as those who were treated within less than 14 days from LMP; secretory phase patients were classified as those who were treated greater than 14 days from LMP. Results: A total of 58 patients were enrolled. There was no significant difference in the mean SSS at baseline and mean SSS at 6 months between patients treated in the proliferative versus secretory phase of the cycle. No significant difference in the SSS change from baseline to 6 months was seen between the two groups. Conclusions: Menstrual cycle phase does not influence MRgFUS treatment outcome. Symptomatic improvement occurs with treatment during either phase of the menstrual cycle. Thus, the scheduling of MRgFUS treatment need not be based upon the phase of the menstrual cycle

  2. Low-intensity cycling affects the muscle activation pattern of consequent countermovement jumps.

    Science.gov (United States)

    Marquez, Gonzalo J; Mon, Javier; Acero, Rafael M; Sanchez, Jose A; Fernandez-del-Olmo, Miguel

    2009-08-01

    Players (eg, basketball, soccer, and football) often use a static bicycle during a game to maintain warming. However, the effectiveness of this procedure has not been addressed in the literature. Thus, it remains unknown whether low-intensity cycling movement can affect explosive movement performance. In this study, 10 male subjects performed countermovement jumps before and after a 15-minutes cycling bout at 35% of their maximal power output. Three sessions were tested for 3 different cadences of cycling: freely chosen cadence, 20% lower than freely chosen cadence (FCC-20%), and 20% higher than freely chosen cadence (FCC+20%). Jump height, kinematics, and electromyogram were recorded simultaneously during the countermovement jumps. The results showed a significant decreasing in the height of countermovement jump after cycling at freely chosen cadence and FCC-20% (p = 0.03 and p = 0.04, respectively), but not for FCC+20% cadences. The electromyographic parameters suggest that changes in the countermovement jump after cycling can be attributed to alteration of the pattern of activation and may be modulated by the preceding cycling cadence. Our study indicates that to avoid a possible negative effect of the cycling in the subsequent explosive movements, a cadence 20% higher than the preferred cadence must be used.

  3. Staphylococcal Enterotoxin O Exhibits Cell Cycle Modulating Activity

    Science.gov (United States)

    Hodille, Elisabeth; Alekseeva, Ludmila; Berkova, Nadia; Serrier, Asma; Badiou, Cedric; Gilquin, Benoit; Brun, Virginie; Vandenesch, François; Terman, David S.; Lina, Gerard

    2016-01-01

    Maintenance of an intact epithelial barrier constitutes a pivotal defense mechanism against infections. Staphylococcus aureus is a versatile pathogen that produces multiple factors including exotoxins that promote tissue alterations. The aim of the present study is to investigate the cytopathic effect of staphylococcal exotoxins SEA, SEG, SEI, SElM, SElN and SElO on the cell cycle of various human cell lines. Among all tested exotoxins only SEIO inhibited the proliferation of a broad panel of human tumor cell lines in vitro. Evaluation of a LDH release and a DNA fragmentation of host cells exposed to SEIO revealed that the toxin does not induce necrosis or apoptosis. Analysis of the DNA content of tumor cells synchronized by serum starvation after exposure to SEIO showed G0/G1 cell cycle delay. The cell cycle modulating feature of SEIO was confirmed by the flow cytometry analysis of synchronized cells exposed to supernatants of isogenic S. aureus strains wherein only supernatant of the SElO producing strain induced G0/G1 phase delay. The results of yeast-two-hybrid analysis indicated that SEIO’s potential partner is cullin-3, involved in the transition from G1 to S phase. In conclusion, we provide evidence that SEIO inhibits cell proliferation without inducing cell death, by delaying host cell entry into the G0/G1 phase of the cell cycle. We speculate that this unique cell cycle modulating feature allows SEIO producing bacteria to gain advantage by arresting the cell cycle of target cells as part of a broader invasive strategy. PMID:27148168

  4. Discovery of a Splicing Regulator Required for Cell Cycle Progression

    Energy Technology Data Exchange (ETDEWEB)

    Suvorova, Elena S.; Croken, Matthew; Kratzer, Stella; Ting, Li-Min; Conde de Felipe, Magnolia; Balu, Bharath; Markillie, Lye Meng; Weiss, Louis M.; Kim, Kami; White, Michael W.

    2013-02-01

    In the G1 phase of the cell division cycle, eukaryotic cells prepare many of the resources necessary for a new round of growth including renewal of the transcriptional and protein synthetic capacities and building the machinery for chromosome replication. The function of G1 has an early evolutionary origin and is preserved in single and multicellular organisms, although the regulatory mechanisms conducting G1 specific functions are only understood in a few model eukaryotes. Here we describe a new G1 mutant from an ancient family of apicomplexan protozoans. Toxoplasma gondii temperature-sensitive mutant 12-109C6 conditionally arrests in the G1 phase due to a single point mutation in a novel protein containing a single RNA-recognition-motif (TgRRM1). The resulting tyrosine to asparagine amino acid change in TgRRM1 causes severe temperature instability that generates an effective null phenotype for this protein when the mutant is shifted to the restrictive temperature. Orthologs of TgRRM1 are widely conserved in diverse eukaryote lineages, and the human counterpart (RBM42) can functionally replace the missing Toxoplasma factor. Transcriptome studies demonstrate that gene expression is downregulated in the mutant at the restrictive temperature due to a severe defect in splicing that affects both cell cycle and constitutively expressed mRNAs. The interaction of TgRRM1 with factors of the tri-SNP complex (U4/U6 & U5 snRNPs) indicate this factor may be required to assemble an active spliceosome. Thus, the TgRRM1 family of proteins is an unrecognized and evolutionarily conserved class of splicing regulators. This study demonstrates investigations into diverse unicellular eukaryotes, like the Apicomplexa, have the potential to yield new insights into important mechanisms conserved across modern eukaryotic kingdoms.

  5. Mechanisms involved in alternariol-induced cell cycle arrest

    International Nuclear Information System (INIS)

    Alternariol (AOH), a mycotoxin produced by Alternaria sp, is often found as a contaminant in fruit and cereal products. Here we employed the murine macrophage cell line RAW 264.7 to test the hypothesis that AOH causes toxicity as a response to DNA damage. AOH at concentrations of 15–30 μM almost completely blocked cell proliferation. Within 30 min treatment, AOH (30 μM) significantly increased the level of reactive oxygen species (ROS). Furthermore, DNA base oxidations as well as DNA strand breaks and/or alkaline labile sites were detected by the comet assay after 2 h exposure of AOH. Cell death (mostly necrosis) was observed after prolonged exposure to the highest concentration of AOH (60 μM for 24 and 48 h) in our study. The DNA damage response involved phosphorylation (activation) of histone H2AX and check point kinase-1- and 2 (Chk-1/2). Moreover, AOH activated p53 and increased the expression of p21, Cyclin B, MDM2, and Sestrin 2; likewise the level of several miRNA was affected. AOH-induced Sestrin 2 expression was regulated by p53 and could at least partly be inhibited by antioxidants, suggesting a role of ROS in the response. Interestingly, the addition of antioxidants did not inhibit cell cycle arrest. Although the formation of ROS by itself was not directly linked cell proliferation, AOH-induced DNA damage and resulting transcriptional changes in p21, MDM2, and Cyclin B likely contribute to the reduced cell proliferation; while Sestrin 2 would contribute to the oxidant defense.

  6. Mechanisms involved in alternariol-induced cell cycle arrest

    Energy Technology Data Exchange (ETDEWEB)

    Solhaug, A., E-mail: Anita.Solhaug@vetinst.no [Norwegian Veterinary Institute, Oslo (Norway); Vines, L.L. [Michigan State University, Department of Food Science and Human Nutrition, East Lansing, MI (United States); Ivanova, L.; Spilsberg, B. [Norwegian Veterinary Institute, Oslo (Norway); Holme, J.A. [Norwegian Institute of Public Health, Division of Environmental Medicine, Oslo (Norway); Pestka, J. [Michigan State University, Department of Food Science and Human Nutrition, East Lansing, MI (United States); Collins, A. [University of Oslo, Department of Nutrition, Faculty of Medicine, Oslo (Norway); Eriksen, G.S. [Norwegian Veterinary Institute, Oslo (Norway)

    2012-10-15

    Alternariol (AOH), a mycotoxin produced by Alternaria sp, is often found as a contaminant in fruit and cereal products. Here we employed the murine macrophage cell line RAW 264.7 to test the hypothesis that AOH causes toxicity as a response to DNA damage. AOH at concentrations of 15-30 {mu}M almost completely blocked cell proliferation. Within 30 min treatment, AOH (30 {mu}M) significantly increased the level of reactive oxygen species (ROS). Furthermore, DNA base oxidations as well as DNA strand breaks and/or alkaline labile sites were detected by the comet assay after 2 h exposure of AOH. Cell death (mostly necrosis) was observed after prolonged exposure to the highest concentration of AOH (60 {mu}M for 24 and 48 h) in our study. The DNA damage response involved phosphorylation (activation) of histone H2AX and check point kinase-1- and 2 (Chk-1/2). Moreover, AOH activated p53 and increased the expression of p21, Cyclin B, MDM2, and Sestrin 2; likewise the level of several miRNA was affected. AOH-induced Sestrin 2 expression was regulated by p53 and could at least partly be inhibited by antioxidants, suggesting a role of ROS in the response. Interestingly, the addition of antioxidants did not inhibit cell cycle arrest. Although the formation of ROS by itself was not directly linked cell proliferation, AOH-induced DNA damage and resulting transcriptional changes in p21, MDM2, and Cyclin B likely contribute to the reduced cell proliferation; while Sestrin 2 would contribute to the oxidant defense.

  7. Cell-cycle inhibition by Helicobacter pylori L-asparaginase.

    Directory of Open Access Journals (Sweden)

    Claudia Scotti

    Full Text Available Helicobacter pylori (H. pylori is a major human pathogen causing chronic gastritis, peptic ulcer, gastric cancer, and mucosa-associated lymphoid tissue lymphoma. One of the mechanisms whereby it induces damage depends on its interference with proliferation of host tissues. We here describe the discovery of a novel bacterial factor able to inhibit the cell-cycle of exposed cells, both of gastric and non-gastric origin. An integrated approach was adopted to isolate and characterise the molecule from the bacterial culture filtrate produced in a protein-free medium: size-exclusion chromatography, non-reducing gel electrophoresis, mass spectrometry, mutant analysis, recombinant protein expression and enzymatic assays. L-asparaginase was identified as the factor responsible for cell-cycle inhibition of fibroblasts and gastric cell lines. Its effect on cell-cycle was confirmed by inhibitors, a knockout strain and the action of recombinant L-asparaginase on cell lines. Interference with cell-cycle in vitro depended on cell genotype and was related to the expression levels of the concurrent enzyme asparagine synthetase. Bacterial subcellular distribution of L-asparaginase was also analysed along with its immunogenicity. H. pylori L-asparaginase is a novel antigen that functions as a cell-cycle inhibitor of fibroblasts and gastric cell lines. We give evidence supporting a role in the pathogenesis of H. pylori-related diseases and discuss its potential diagnostic application.

  8. Studies on regulation of the cell cycle in fission yeast.

    Directory of Open Access Journals (Sweden)

    Miroslava Požgajová

    2015-05-01

    Full Text Available All living organisms including plants and animals are composed of millions of cells. These cells perform different functions for the organism although they possess the same chromosomes and carry the same genetic information. Thus, to be able to understand multicellular organism we need to understand the life cycle of individual cells from which the organism comprises. The cell cycle is the life cycle of a single cell in the plant or animal body. It involves series of events in which components of the cell doubles and afterwards equally segregate into daughter cells. Such process ensures growth of the organism, and specialized reductional cell division which leads to production of gamets, assures sexual reproduction. Cell cycle is divided in the G1, S, G2 and M phase. Two gap-phases (G1 and G2 separate S phase (or synthesis and M phase which stays either for mitosis or meiosis. Essential for normal life progression and reproduction is correct chromosome segregation during mitosis and meiosis. Defects in the division program lead to aneuploidy, which in turn leads to birth defects, miscarriages or cancer. Even thou, researchers invented much about the regulation of the cell cycle, there is still long way to understand the complexity of the regulatory machineries that ensure proper segregation of chromosomes. In this paper we would like to describe techniques and materials we use for our studies on chromosome segregation in the model organism Schizosaccharomyces pombe.

  9. Side population sorting separates subfractions of cycling and non-cycling intestinal stem cells

    Directory of Open Access Journals (Sweden)

    Richard J. von Furstenberg

    2014-03-01

    Full Text Available We report here that side population (SP sorting allows for the simultaneous isolation of two intestinal stem cell (ISC subsets from wild-type (WT mice which are phenotypically different and represent cycling and non-cycling pools of cells. Following 5-ethynyl-2′-deoxyuridine (EdU injection, in the upper side population (USP the percentage of EdU+ was 36% showing this fraction to be highly proliferative. In the lower side population (LSP, only 0.4% of cells were EdU+, indicating this fraction to be predominantly non-cycling. Using Lgr5-EGFP mice, we show that Lgr5-EGFPhi cells, representing actively cycling ISCs, are essentially exclusive to the USP. In contrast, using histone 2B-YFP mice, SP analysis revealed YFP label retaining cells (LRCs in both the USP and the LSP. Correspondingly, evaluation of the SP fractions for mRNA markers by qRT-PCR showed that the USP was enriched in transcripts associated with both quiescent and active ISCs. In contrast, the LSP expressed mRNA markers of quiescent ISCs while being de-enriched for those of the active ISC. Both the USP and LSP are capable of generating enteroids in culture which include the four intestinal lineages. We conclude that sorting of USP and LSP fractions represents a novel isolation of cycling and non-cycling ISCs from WT mice.

  10. Analysis of factors affecting the implementation of back-end nuclear fuel cycle policy in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yung Myung; Yang, Maeng Ho; Kim, Hyun Joon; Chung, Hwan Sam; Oh, Keun Bae; Lee, Byung OoK; Ko, Han Suk; Song, Ki Dong; Lee, Man Ki; Moon, Ki Hwan; Lee, Han Myung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-01-01

    In this study, the back-end nuclear fuel cycle acceptability is surveyed and analyzed in the following three aspects. To begin with, the future political situation and energy-environmental issues are analyzed as part of the socio-economic aspect. Secondly, the domestic situation of nuclear industries and the fuel cycle policy of foreign countries are surveyed as the technical aspect. Finally, NPT, IAEA safeguards and nuclear export control regimes are analyzed as the institutional aspect. The unification period of South and North Korea also will greatly affect the implementation of back-end fuel cycle policy, and public attitudes will affect the acquisition of site, construction, and operation of nuclear facilities. An effort to release international restrictions on the back-end fuel cycle is also required to accelerate the implementation of the policy. In this regard, the back-end fuel cycle policy should be clear-cut to avoid misunderstanding with respect to nuclear proliferation. Importantly, agreements with foreign countries should be amended at a mutual equivalent level. (Author) 30 refs., 5 figs., 25 tabs.

  11. Two cell cycle blocks caused by iron chelation of neuroblastoma cells: separating cell cycle events associated with each block.

    Science.gov (United States)

    Siriwardana, Gamini; Seligman, Paul A

    2013-12-01

    Studies have presented evidence that besides the well described S phase block, treatment of cancer cell lines with the iron chelator deferrioxamine (DFO) also results in an earlier block in G1 phase. In this article, measurements of cell cycle regulatory proteins define this block at a very specific point in G1. DFO treatment results in markedly decreased cyclin A protein levels. Cyclin E levels that accumulate in early to mid-G1 are increased in cells treated with DFO as compared to the resting cells. The DFO S phase block is shown after cells are arrested at G1/S by (aphidicolin) then released into DFO. The same S phase block occurs with DFO treatment of a neuroblastoma cell line relatively resistant to the G1 DFO block. These experiments clearly differentiate the S phase DFO block from the earlier block pinpointed to a point in mid-G1, before G1/S when cyclin E protein increases but before increased cyclin A synthesis. Apoptosis was observed in cells inhibited by DFO at both cell cycle arrest points. PMID:24744856

  12. Two cell cycle blocks caused by iron chelation of neuroblastoma cells: separating cell cycle events associated with each block.

    Science.gov (United States)

    Siriwardana, Gamini; Seligman, Paul A

    2013-12-01

    Studies have presented evidence that besides the well described S phase block, treatment of cancer cell lines with the iron chelator deferrioxamine (DFO) also results in an earlier block in G1 phase. In this article, measurements of cell cycle regulatory proteins define this block at a very specific point in G1. DFO treatment results in markedly decreased cyclin A protein levels. Cyclin E levels that accumulate in early to mid-G1 are increased in cells treated with DFO as compared to the resting cells. The DFO S phase block is shown after cells are arrested at G1/S by (aphidicolin) then released into DFO. The same S phase block occurs with DFO treatment of a neuroblastoma cell line relatively resistant to the G1 DFO block. These experiments clearly differentiate the S phase DFO block from the earlier block pinpointed to a point in mid-G1, before G1/S when cyclin E protein increases but before increased cyclin A synthesis. Apoptosis was observed in cells inhibited by DFO at both cell cycle arrest points.

  13. Regulation of cell cycle by the anaphase spindle midzone

    Directory of Open Access Journals (Sweden)

    Sluder Greenfield

    2004-12-01

    Full Text Available Abstract Background A number of proteins accumulate in the spindle midzone and midbody of dividing animal cells. Besides proteins essential for cytokinesis, there are also components essential for interphase functions, suggesting that the spindle midzone and/or midbody may play a role in regulating the following cell cycle. Results We microsurgically severed NRK epithelial cells during anaphase or telophase, such that the spindle midzone/midbody was associated with only one of the daughter cells. Time-lapse recording of cells severed during early anaphase indicated that the cell with midzone underwent cytokinesis-like cortical contractions and progressed normally through the interphase, whereas the cell without midzone showed no cortical contraction and an arrest or substantial delay in the progression of interphase. Similar microsurgery during telophase showed a normal progression of interphase for both daughter cells with or without the midbody. Microsurgery of anaphase cells treated with cytochalasin D or nocodazole indicated that interphase progression was independent of cortical ingression but dependent on microtubules. Conclusions We conclude that the mitotic spindle is involved in not only the separation of chromosomes but also the regulation of cell cycle. The process may involve activation of components in the spindle midzone that are required for the cell cycle, and/or degradation of components that are required for cytokinesis but may interfere with the cell cycle.

  14. Mathematical model of the cell division cycle of fission yeast

    Science.gov (United States)

    Novak, Bela; Pataki, Zsuzsa; Ciliberto, Andrea; Tyson, John J.

    2001-03-01

    Much is known about the genes and proteins controlling the cell cycle of fission yeast. Can these molecular components be spun together into a consistent mechanism that accounts for the observed behavior of growth and division in fission yeast cells? To answer this question, we propose a mechanism for the control system, convert it into a set of 14 differential and algebraic equations, study these equations by numerical simulation and bifurcation theory, and compare our results to the physiology of wild-type and mutant cells. In wild-type cells, progress through the cell cycle (G1→S→G2→M) is related to cyclic progression around a hysteresis loop, driven by cell growth and chromosome alignment on the metaphase plate. However, the control system operates much differently in double-mutant cells, wee1- cdc25Δ, which are defective in progress through the latter half of the cell cycle (G2 and M phases). These cells exhibit "quantized" cycles (interdivision times clustering around 90, 160, and 230 min). We show that these quantized cycles are associated with a supercritical Hopf bifurcation in the mechanism, when the wee1 and cdc25 genes are disabled.

  15. Genome-wide examination of myoblast cell cycle withdrawal duringdifferentiation

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Xun; Collier, John Michael; Hlaing, Myint; Zhang, Leanne; Delshad, Elizabeth H.; Bristow, James; Bernstein, Harold S.

    2002-12-02

    Skeletal and cardiac myocytes cease division within weeks of birth. Although skeletal muscle retains limited capacity for regeneration through recruitment of satellite cells, resident populations of adult myocardial stem cells have not been identified. Because cell cycle withdrawal accompanies myocyte differentiation, we hypothesized that C2C12 cells, a mouse myoblast cell line previously used to characterize myocyte differentiation, also would provide a model for studying cell cycle withdrawal during differentiation. C2C12 cells were differentiated in culture medium containing horse serum and harvested at various time points to characterize the expression profiles of known cell cycle and myogenic regulatory factors by immunoblot analysis. BrdU incorporation decreased dramatically in confluent cultures 48 hr after addition of horse serum, as cells started to form myotubes. This finding was preceded by up-regulation of MyoD, followed by myogenin, and activation of Bcl-2. Cyclin D1 was expressed in proliferating cultures and became undetectable in cultures containing 40 percent fused myotubes, as levels of p21(WAF1/Cip1) increased and alpha-actin became detectable. Because C2C12 myoblasts withdraw from the cell cycle during myocyte differentiation following a course that recapitulates this process in vivo, we performed a genome-wide screen to identify other gene products involved in this process. Using microarrays containing approximately 10,000 minimally redundant mouse sequences that map to the UniGene database of the National Center for Biotechnology Information, we compared gene expression profiles between proliferating, differentiating, and differentiated C2C12 cells and verified candidate genes demonstrating differential expression by RT-PCR. Cluster analysis of differentially expressed genes revealed groups of gene products involved in cell cycle withdrawal, muscle differentiation, and apoptosis. In addition, we identified several genes, including DDAH2 and Ly

  16. Genistein and Daidzein Effects on Proliferation, Cell Membranes,Cell Cycles and Cell Apoptosis of Different Cell Lines

    Institute of Scientific and Technical Information of China (English)

    李重华; 王洪钟; 肖锐; 张勇; 于江涛; 谢莉萍; 张荣庆

    2001-01-01

    Genistein and daidzein are two principle isoflavonoids in soybeans. They have received increasing attention in the past few years because of their possible roles in cancer prevention. Here are provided experimental evidences that genistein could inhibit the growth of human bladder carcinoma cells (ECV-304), human colon cancer cells (HT29), human uterus cervix cancer cells (Hela), and murine transformed muscle cells (3T3). Different from genistein, daidzein could only inhibit the growth of ECV-304, HT29, and 3T3 cells. To elucidate the mechanisms of the anti-tumor effect of genistein and daidzein, fluorescent polarization, circular dichroism, and flow cytometric analysis were employed to study the influence of genistein and daidzein on membrane fluidity and membrane protein conformation of these cell lines. The results showed that genistein increased the order of membrane protein conformation and reduced the membrane fluidity of ECV-304, HT29, and Hela cells. Daidzein also increased the order of membrane protein conformation of ECV-304 and HT29, but had no effect on the membrane fluidity of all these four cell lines. Also demonstrated was that both compounds affected the apoptosis and cell cycle progression of some cell lines. However, the effects of genistein and daidzein were not the same. These evidences suggested that the effects of genistein and daidzein on malignant cells were multisites and multiapproaches, and there were differences between their functional mechanisms. The amelioration effect on cell conditions may represent one of the mechanisms of the effect of genistein and daidzein on the growth, differentiation, and transference of malignant cells.

  17. Large scale spontaneous synchronization of cell cycles in amoebae

    Science.gov (United States)

    Segota, Igor; Boulet, Laurent; Franck, Carl

    2014-03-01

    Unicellular eukaryotic amoebae Dictyostelium discoideum are generally believed to grow in their vegetative state as single cells until starvation, when their collective aspect emerges and they differentiate to form a multicellular slime mold. While major efforts continue to be aimed at their starvation-induced social aspect, our understanding of population dynamics and cell cycle in the vegetative growth phase has remained incomplete. We show that substrate-growtn cell populations spontaneously synchronize their cell cycles within several hours. These collective population-wide cell cycle oscillations span millimeter length scales and can be completely suppressed by washing away putative cell-secreted signals, implying signaling by means of a diffusible growth factor or mitogen. These observations give strong evidence for collective proliferation behavior in the vegetative state and provide opportunities for synchronization theories beyond classic Kuramoto models.

  18. Business cycles and the financial performance of fuel cell companies

    Energy Technology Data Exchange (ETDEWEB)

    Henriques, I.; Sadorsky, P. [York Univ., Toronto, ON (Canada). Schulich School of Business

    2005-07-01

    Fuel cells are expected to play a major role in a hydrogen powered world. They will provide power to homes, modes of transportation and appliances. Hydrogen is the most abundant element in nature, but it must be extracted in order to be usable. It can be produced from oil, natural gas and coal or from renewable sources such as biomass, thermal or nuclear reactions. Fuel cells running on hydrogen extracted from non renewable resources have an efficiency of 30 per cent, which is twice as efficient as an internal combustion engine. The greatest barrier to mass commercialization is the cost of making hydrogen-powered auto engines. Also, an infrastructure must be developed to refill hydrogen cars. One solution is to build a hydrogen highway using the existing natural gas grid to produce hydrogen and sell it at existing filling stations. The cost of building 12,000 refueling pumps in urban areas which will provide access to 70 per cent of America's population is estimated at $10 to $15 billion. This paper described the vector autoregression (VAR) model which empirically examines the relationship between financial performance of fuel cell companies and business cycles. It was used to measure how sensitive the financial performance of fuel cell companies are to changes in macroeconomic activity. A four variable VAR model was developed to examine the relationship between stock prices, oil prices and interest rates. It was shown that the stock prices of fuel cell companies are affected by shocks to technology stock prices and oil prices, with the former having a longer lasting impact. These results add to the growing literature that oil price movements are not as important as once thought. 15 refs., 3 tabs., 3 figs.

  19. Spatial complexity and control of a bacterial cell cycle

    OpenAIRE

    Collier, Justine; Shapiro, Lucy

    2007-01-01

    A major breakthrough in understanding the bacterial cell cycle is the discovery that bacteria exhibit a high degree of intracellular organization. Chromosomal loci and many protein complexes are positioned at particular subcellular sites. In this review, we examine recently discovered control mechanisms that make use of dynamically localized protein complexes to orchestrate the Caulobacter crescentus cell cycle. Protein localization, notably of signal transduction proteins, chromosome partiti...

  20. Cell cycle deregulation by methyl isocyanate: Implications in liver carcinogenesis.

    Science.gov (United States)

    Panwar, Hariom; Raghuram, Gorantla V; Jain, Deepika; Ahirwar, Alok K; Khan, Saba; Jain, Subodh K; Pathak, Neelam; Banerjee, Smita; Maudar, Kewal K; Mishra, Pradyumna K

    2014-03-01

    Liver is often exposed to plethora of chemical toxins. Owing to its profound physiological role and central function in metabolism and homeostasis, pertinent succession of cell cycle in liver epithelial cells is of prime importance to maintain cellular proliferation. Although recent evidence has displayed a strong association between exposures to methyl isocyanate (MIC), one of the most toxic isocyanates, and neoplastic transformation, molecular characterization of the longitudinal effects of MIC on cell cycle regulation has never been performed. Here, we sequentially delineated the status of different proteins arbitrating the deregulation of cell cycle in liver epithelial cells treated with MIC. Our data reaffirms the oncogenic capability of MIC with elevated DNA damage response proteins pATM and γ-H2AX, deregulation of DNA damage check point genes CHK1 and CHK2, altered expression of p53 and p21 proteins involved in cell cycle arrest with perturbation in GADD-45 expression in the treated cells. Further, alterations in cyclin A, cyclin E, CDK2 levels along with overexpression of mitotic spindle checkpoints proteins Aurora A/B, centrosomal pericentrin protein, chromosomal aberrations, and loss of Pot1a was observed. Thus, MIC impacts key proteins involved in cell cycle regulation to trigger genomic instability as a possible mechanism of developmental basis of liver carcinogenesis. PMID:22223508

  1. P27 in cell cycle control and cancer

    DEFF Research Database (Denmark)

    Møller, Michael Boe

    2000-01-01

    In order to survive, cells need tight control of cell cycle progression. The control mechanisms are often lost in human cancer cells. The cell cycle is driven forward by cyclin-dependent kinases (CDKs). The CDK inhibitors (CKIs) are important regulators of the CDKs. As the name implies, CKIs were....... In distinct NHL entities however, shortened survival seems to correlate with high expression of p27. For definitive assessment of the role played by p27 in lymphomagenesis, and the prognostic value of p27 in these tumors, further studies of distinct NHL entities are needed. This review addresses the function...

  2. The timing of T cell priming and cycling

    Directory of Open Access Journals (Sweden)

    Reinhard eObst

    2015-11-01

    Full Text Available The proliferation of specific lymphocytes is the central tenet of the clonal selection paradigm. Antigen recognition by T cells triggers a series of events that produces expanded clones of differentiated effector cells. TCR signaling events are detectable within seconds and minutes and are likely to continue for hours and days in vivo. Here, I review the work done on the importance of TCR signals in the later part of the expansion phase of the primary T cell response, primarily regarding the regulation of the cell cycle in CD4+ and CD8+ cells. The results suggest a degree of programming by early signals for effector differentiation, particularly in the CD8+ T cell compartment, with optimal expansion supported by persistent antigen presentation later on. Differences to CD4+ T cell expansion and new avenues towards a molecular understanding of cell cycle regulation in lymphocytes are discussed.

  3. Cell Cycle Inhibition without Disruption of Neurogenesis Is a Strategy for Treatment of Aberrant Cell Cycle Diseases: An Update

    OpenAIRE

    Da-Zhi Liu; Ander, Bradley P.

    2012-01-01

    Since publishing our earlier report describing a strategy for the treatment of central nervous system (CNS) diseases by inhibiting the cell cycle and without disrupting neurogenesis (Liu et al. 2010), we now update and extend this strategy to applications in the treatment of cancers as well. Here, we put forth the concept of “aberrant cell cycle diseases” to include both cancer and CNS diseases, the two unrelated disease types on the surface, by focusing on a common mechanism in each aberr...

  4. Mitochondrial Regulation of Cell Cycle and Proliferation

    OpenAIRE

    Antico Arciuch, Valeria Gabriela; Elguero, María Eugenia; Poderoso, Juan José; Carreras, María Cecilia

    2012-01-01

    Eukaryotic mitochondria resulted from symbiotic incorporation of α-proteobacteria into ancient archaea species. During evolution, mitochondria lost most of the prokaryotic bacterial genes and only conserved a small fraction including those encoding 13 proteins of the respiratory chain. In this process, many functions were transferred to the host cells, but mitochondria gained a central role in the regulation of cell proliferation and apoptosis, and in the modulation of metabolism; accordingly...

  5. Nanosecond pulsed electric fields and the cell cycle

    Science.gov (United States)

    Mahlke, Megan A.

    Exposure to nanosecond pulsed electrical fields (nsPEFs) can cause poration of external and internal cell membranes, DNA damage, and disassociation of cytoskeletal components, all of which are capable of disrupting a cell's ability to replicate. The phase of the cell cycle at the time of exposure is linked to differential sensitivities to nsPEFs across cell lines, as DNA structure, membrane elasticity, and cytoskeletal structure change dramatically during the cell cycle. Additionally, nsPEFs are capable of activating cell cycle checkpoints, which could lead to apoptosis or slow population growth. NsPEFs are emerging as a method for treating tumors via apoptotic induction; therefore, investigating the relevance of nsPEFs and the cell cycle could translate into improved efficacy in tumor treatment. Populations of Jurkat and Chinese Hamster Ovary (CHO) cells were examined post-exposure (10 ns pulse trains at 150kV/cm) by analysis of DNA content via propidium iodide staining and flow cytometric analysis at various time points (1, 6, and 12h post-exposure) to determine population distribution in cell cycle phases. Additionally, CHO and Jurkat cells were synchronized in G1/S and G2/M phases, pulsed, and analyzed to evaluate the role of cell cycle phase in survival of nsPEFs. CHO populations appeared similar to sham populations post-nsPEFs but exhibited arrest in the G1 phase at 6h after exposure. Jurkat cells exhibited increased cell death after nsPEFs compared to CHO cells but did not exhibit checkpoint arrest at any observed time point. The G1/S phase checkpoint is partially controlled by the action of p53; the lack of an active p53 response in Jurkat cells could contribute to their ability to pass this checkpoint and resist cell cycle arrest. Both cell lines exhibited increased sensitivity to nsPEFs in G2/M phase. Live imaging of CHO cells after nsPEF exposure supports the theory of G1/S phase arrest, as a reduced number of cells undergo mitosis within 24 h when

  6. CycleBase.org - a comprehensive multi-organism online database of cell-cycle experiments

    DEFF Research Database (Denmark)

    Gauthier, Nicholas Paul; Larsen, Malene Erup; Wernersson, Rasmus;

    2007-01-01

    The past decade has seen the publication of a large number of cell-cycle microarray studies and many more are in the pipeline. However, data from these experiments are not easy to access, combine and evaluate. We have developed a centralized database with an easy-to-use interface, Cyclebase.......org, for viewing and downloading these data. The user interface facilitates searches for genes of interest as well as downloads of genome-wide results. Individual genes are displayed with graphs of expression profiles throughout the cell cycle from all available experiments. These expression profiles are...

  7. The cell cycle-regulated genes of Schizosaccharomyces pombe.

    Directory of Open Access Journals (Sweden)

    Anna Oliva

    2005-07-01

    Full Text Available Many genes are regulated as an innate part of the eukaryotic cell cycle, and a complex transcriptional network helps enable the cyclic behavior of dividing cells. This transcriptional network has been studied in Saccharomyces cerevisiae (budding yeast and elsewhere. To provide more perspective on these regulatory mechanisms, we have used microarrays to measure gene expression through the cell cycle of Schizosaccharomyces pombe (fission yeast. The 750 genes with the most significant oscillations were identified and analyzed. There were two broad waves of cell cycle transcription, one in early/mid G2 phase, and the other near the G2/M transition. The early/mid G2 wave included many genes involved in ribosome biogenesis, possibly explaining the cell cycle oscillation in protein synthesis in S. pombe. The G2/M wave included at least three distinctly regulated clusters of genes: one large cluster including mitosis, mitotic exit, and cell separation functions, one small cluster dedicated to DNA replication, and another small cluster dedicated to cytokinesis and division. S. pombe cell cycle genes have relatively long, complex promoters containing groups of multiple DNA sequence motifs, often of two, three, or more different kinds. Many of the genes, transcription factors, and regulatory mechanisms are conserved between S. pombe and S. cerevisiae. Finally, we found preliminary evidence for a nearly genome-wide oscillation in gene expression: 2,000 or more genes undergo slight oscillations in expression as a function of the cell cycle, although whether this is adaptive, or incidental to other events in the cell, such as chromatin condensation, we do not know.

  8. RNA interference regulates the cell cycle checkpoint through the RNA export factor, Ptr1, in fission yeast

    International Nuclear Information System (INIS)

    Highlights: ► RNAi is linked to the cell cycle checkpoint in fission yeast. ► Ptr1 co-purifies with Ago1. ► The ptr1-1 mutation impairs the checkpoint but does not affect gene silencing. ► ago1+ and ptr1+ regulate the cell cycle checkpoint via the same pathway. ► Mutations in ago1+ and ptr1+ lead to the nuclear accumulation of poly(A)+ RNAs. -- Abstract: Ago1, an effector protein of RNA interference (RNAi), regulates heterochromatin silencing and cell cycle arrest in fission yeast. However, the mechanism by which Ago1 controls cell cycle checkpoint following hydroxyurea (HU) treatment has not been elucidated. In this study, we show that Ago1 and other RNAi factors control cell cycle checkpoint following HU treatment via a mechanism independent of silencing. While silencing requires dcr1+, the overexpression of ago1+ alleviated the cell cycle defect in dcr1Δ. Ago1 interacted with the mRNA export factor, Ptr1. The ptr1-1 mutation impaired cell cycle checkpoint but gene silencing was unaffected. Genetic analysis revealed that the regulation of cell cycle checkpoint by ago1+ is dependent on ptr1+. Nuclear accumulation of poly(A)+ RNAs was detected in mutants of ago1+ and ptr1+, suggesting there is a functional link between the cell cycle checkpoint and RNAi-mediated RNA quality control.

  9. Galiellalactone induces cell cycle arrest and apoptosis through the ATM/ATR pathway in prostate cancer cells.

    Science.gov (United States)

    García, Víctor; Lara-Chica, Maribel; Cantarero, Irene; Sterner, Olov; Calzado, Marco A; Muñoz, Eduardo

    2016-01-26

    Galiellalactone (GL) is a fungal metabolite that presents antitumor activities on prostate cancer in vitro and in vivo. In this study we show that GL induced cell cycle arrest in G2/M phase, caspase-dependent apoptosis and also affected the microtubule organization and migration ability in DU145 cells. GL did not induce double strand DNA break but activated the ATR and ATM-mediated DNA damage response (DDR) inducing CHK1, H2AX phosphorylation (fH2AX) and CDC25C downregulation. Inhibition of the ATM/ATR activation with caffeine reverted GL-induced G2/M cell cycle arrest, apoptosis and DNA damage measured by fH2AX. In contrast, UCN-01, a CHK1 inhibitor, prevented GL-induced cell cycle arrest but enhanced apoptosis in DU145 cells. Furthermore, we found that GL did not increase the levels of intracellular ROS, but the antioxidant N-acetylcysteine (NAC) completely prevented the effects of GL on fH2AX, G2/M cell cycle arrest and apoptosis. In contrast to NAC, other antioxidants such as ambroxol and EGCG did not interfere with the activity of GL on cell cycle. GL significantly suppressed DU145 xenograft growth in vivo and induced the expression of fH2AX in the tumors. These findings identify for the first time that GL activates DDR in prostate cancer.

  10. RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Houcai; Yu, Jing; Zhang, Lixia; Xiong, Yuanyuan; Chen, Shuying; Xing, Haiyan; Tian, Zheng; Tang, Kejing; Wei, Hui; Rao, Qing; Wang, Min; Wang, Jianxiang, E-mail: wangjx@ihcams.ac.cn

    2014-04-18

    Highlights: • RPS27a expression was up-regulated in advanced-phase CML and AL patients. • RPS27a knockdown changed biological property of K562 and K562/G01 cells. • RPS27a knockdown affected Raf/MEK/ERK, P21 and BCL-2 signaling pathways. • RPS27a knockdown may be applicable for new combination therapy in CML patients. - Abstract: Ribosomal protein S27a (RPS27a) could perform extra-ribosomal functions besides imparting a role in ribosome biogenesis and post-translational modifications of proteins. The high expression level of RPS27a was reported in solid tumors, and we found that the expression level of RPS27a was up-regulated in advanced-phase chronic myeloid leukemia (CML) and acute leukemia (AL) patients. In this study, we explored the function of RPS27a in leukemia cells by using CML cell line K562 cells and its imatinib resistant cell line K562/G01 cells. It was observed that the expression level of RPS27a was high in K562 cells and even higher in K562/G01 cells. Further analysis revealed that RPS27a knockdown by shRNA in both K562 and K562G01 cells inhibited the cell viability, induced cell cycle arrest at S and G2/M phases and increased cell apoptosis induced by imatinib. Combination of shRNA with imatinib treatment could lead to more cleaved PARP and cleaved caspase-3 expression in RPS27a knockdown cells. Further, it was found that phospho-ERK(p-ERK) and BCL-2 were down-regulated and P21 up-regulated in RPS27a knockdown cells. In conclusion, RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells. It appears that drugs targeting RPS27a combining with tyrosine kinase inhibitor (TKI) might represent a novel therapy strategy in TKI resistant CML patients.

  11. Cell cycle control after DNA damage: arrest, recovery and adaptation

    International Nuclear Information System (INIS)

    DNA damage triggers surveillance mechanisms, the DNA checkpoints, that control the genome integrity. The DNA checkpoints induce several responses, either cellular or transcriptional, that favor DNA repair. In particular, activation of the DNA checkpoints inhibits cell cycle progression in all phases, depending on the stage when lesions occur. These arrests are generally transient and cells ultimately reenter the cell division cycle whether lesions have been repaired (this process is termed 'recovery') or have proved un-repairable (this option is called 'adaptation'). The mechanisms controlling cell cycle arrests, recovery and adaptation are largely conserved among eukaryotes, and much information is now available for the yeast Saccharomyces cerevisiae, that is used as a model organism in these studies. (author)

  12. Factors Affecting Sustainable Performance of Construction Projects during Project Life Cycle Phases

    Directory of Open Access Journals (Sweden)

    Adnan Enshassi

    2016-03-01

    Full Text Available Sustainable development (SD is one of the main challenges faced by the construction industry, which has acquired global attention. Sustainable performance (SP of a construction project during its life cycle (LC is considered crucial to achieve the SD. The aim of this paper is to investigate the factors affecting sustainable performance of construction projects throughout project life cycle phases in the Gaza Strip. A total of 53 sustainable factors (economic, social, and environmental sustainable factors were identified through extensive literature review and confirmed by experts’ interviews and a pilot study. These factors are classified in relation to the project life cycle phases; inception phase, design phase, construction phase, operation phase, and demolition phase. A structured questionnaire survey is employed in this study for primary data collection. A total of 119 questionnaires were distributed randomly to engineers working in construction projects in the Gaza Strip to solicit their views regarding the factors affecting sustainable performance of construction projects throughout project life cycle phases. The results revealed that five factors among the top ten factors that impacting the sustainable performance of construction projects are classified under the construction phase, which confirmed that the construction process has the most effect on the projects SP. Three factors are classified under the inception phase, which assured that the inception of a potential project has a considerable effect projects. In addition, one factor was classified under operation phase and one factor was classified under demolition phase. The most common factors affecting the SP of construction project through the overall sustainability elements: reusable/recyclable element, provision of services, energy consumption, water cost, and water pollution assessment. Further studies are recommended to explore how to integrated sustainability concepts into

  13. Dynamics of the mammalian cell cycle in physiological and pathological conditions.

    Science.gov (United States)

    Gérard, Claude; Goldbeter, Albert

    2016-01-01

    A network of cyclin-dependent kinases (Cdks) controls progression along the successive phases G1, S, G2, and M of the mammalian cell cycle. Deregulations in the expression of molecular components in this network often lead to abusive cell proliferation and cancer. Given the complex nature of the Cdk network, it is fruitful to resort to computational models to grasp its dynamical properties. Investigated by means of bifurcation diagrams, a detailed computational model for the Cdk network shows how the balance between quiescence and proliferation is affected by activators (oncogenes) and inhibitors (tumor suppressors) of cell cycle progression, as well as by growth factors and other external factors such as the extracellular matrix (ECM) and cell contact inhibition. Suprathreshold changes in all these factors can trigger a switch in the dynamical behavior of the network corresponding to a bifurcation between a stable steady state, associated with cell cycle arrest, and sustained oscillations of the various cyclin/Cdk complexes, corresponding to cell proliferation. The model for the Cdk network accounts for the dependence or independence of cell proliferation on serum and/or cell anchorage to the ECM. Such computational approach provides an integrated view of the control of cell proliferation in physiological or pathological conditions. Whether the balance is tilted toward cell cycle arrest or cell proliferation depends on the direction in which the threshold associated with the bifurcation is passed once the cell integrates the multiple signals, internal or external to the Cdk network, that promote or impede progression in the cell cycle. PMID:26613368

  14. Establishment of human papillomavirus infection requires cell cycle progression.

    Directory of Open Access Journals (Sweden)

    Dohun Pyeon

    2009-02-01

    Full Text Available Human papillomaviruses (HPVs are DNA viruses associated with major human cancers. As such there is a strong interest in developing new means, such as vaccines and microbicides, to prevent HPV infections. Developing the latter requires a better understanding of the infectious life cycle of HPVs. The HPV infectious life cycle is closely linked to the differentiation state of the stratified epithelium it infects, with progeny virus only made in the terminally differentiating suprabasal compartment. It has long been recognized that HPV must first establish its infection within the basal layer of stratified epithelium, but why this is the case has not been understood. In part this restriction might reflect specificity of expression of entry receptors. However, this hypothesis could not fully explain the differentiation restriction of HPV infection, since many cell types can be infected with HPVs in monolayer cell culture. Here, we used chemical biology approaches to reveal that cell cycle progression through mitosis is critical for HPV infection. Using infectious HPV16 particles containing the intact viral genome, G1-synchronized human keratinocytes as hosts, and early viral gene expression as a readout for infection, we learned that the recipient cell must enter M phase (mitosis for HPV infection to take place. Late M phase inhibitors had no effect on infection, whereas G1, S, G2, and early M phase cell cycle inhibitors efficiently prevented infection. We conclude that host cells need to pass through early prophase for successful onset of transcription of the HPV encapsidated genes. These findings provide one reason why HPVs initially establish infections in the basal compartment of stratified epithelia. Only this compartment of the epithelium contains cells progressing through the cell cycle, and therefore it is only in these cells that HPVs can establish their infection. By defining a major condition for cell susceptibility to HPV infection, these

  15. Technoeconomy of different solid oxide fuel cell based hybrid cycle

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2014-01-01

    Gas turbine, steam turbine and heat engine (Stirling engine) is used as bottoming cycle for a solid oxide fuel cell plant to compare different plants efficiencies, CO2 emissionsand plants cost in terms of $/kW. Each plant is then integrated with biomass gasification and finally six plants configu...... with these hybrid cycles then integrated biomass gasification with solid oxide fuel cell and steam cycle will have the highest plant efficiency. The cost of solid oxide fuel cell with steam plant is found to be the lowest one with a value of about 1030$/kW.......Gas turbine, steam turbine and heat engine (Stirling engine) is used as bottoming cycle for a solid oxide fuel cell plant to compare different plants efficiencies, CO2 emissionsand plants cost in terms of $/kW. Each plant is then integrated with biomass gasification and finally six plants...... configurations are compared with each other. Technoeconomy is used when calculating the cost if the plants. It is found that when a solid oxide fuel cell plant is combined with a gas turbine cycle then the plant efficiency will be the highest one while if a biomass gasification plant is integrated...

  16. Effects of furanodiene on 95-D lung cancer cells: apoptosis, autophagy and G1 phase cell cycle arrest.

    Science.gov (United States)

    Xu, Wen-Shan; Li, Ting; Wu, Guo-Sheng; Dang, Yuan-Ye; Hao, Wen-Hui; Chen, Xiu-Ping; Lu, Jin-Jian; Wang, Yi-Tao

    2014-01-01

    Furanodiene (FUR) is a natural terpenoid isolated from Rhizoma curcumae, a well-known Chinese medicinal herb that presents anti-proliferative activities in several cancer cell lines. Herein, we systematically investigated the effects of FUR on the significant processes of tumor progression with the relatively low concentrations in 95-D lung cancer cells. FUR concentration-dependently inhibited cell proliferation and blocked the cell cycle progressions in G1 phase by down-regulating the protein levels of cyclin D1 and CDK6, and up-regulating those of p21 and p27 in 95-D cells. FUR also affected the signaling molecules that regulate apoptosis in 95-D cells revealed by the down-regulation of the protein levels of full PARP, pro-caspase-7, survivin, and Bcl-2, and the up-regulation of cleaved PARP. Further studies showed that FUR enhanced the expression of light chain 3-II (LC3-II) in the protein level, indicating that autophagy is involved in this process. Besides, the adhesion ability of 95-D cells to matrigel and fibronectin was slightly inhibited after FUR treatment for 1 h in our experimental condition. FUR also slightly suppressed cell migration and invasion in 95-D cells according to the data from wound healing and Transwell assays, respectively. Taken together, FUR activated the signal molecules regulating G1 cell cycle arrest, apoptosis and autophagy, while slightly affecting the key steps of cell metastasis in 95-D lung cancer cells in the relatively low concentrations.

  17. Entrainability of cell cycle oscillator models with exponential growth of cell mass.

    Science.gov (United States)

    Nakao, Mitsuyuki; Enkhkhudulmur, Tsog-Erdene; Katayama, Norihiro; Karashima, Akihiro

    2014-01-01

    Among various aspects of cell cycle, understanding synchronization mechanism of cell cycle is important because of the following reasons. (1)Cycles of cell assembly should synchronize to form an organ. (2) Synchronizing cell cycles are required to experimental analysis of regulatory mechanisms of cell cycles. (3) Cell cycle has a distinct phase relationship with the other biological rhythms such as circadian rhythm. However, forced as well as mutual entrainment mechanisms are not clearly known. In this study, we investigated entrainability of cell cycle models of yeast cell under the periodic forcing to both of the cell mass and molecular dynamics. Dynamics of models under study involve the cell mass growing exponentially. In our result, they are shown to allow only a limited frequency range for being entrained by the periodic forcing. In contrast, models with linear growth are shown to be entrained in a wider frequency range. It is concluded that if the cell mass is included in the cell cycle regulation, its entrainability is sensitive to a shape of growth curve assumed in the model. PMID:25571564

  18. Cell Division, a new open access online forum for and from the cell cycle community

    Directory of Open Access Journals (Sweden)

    Kaldis Philipp

    2006-04-01

    Full Text Available Abstract Cell Division is a new, open access, peer-reviewed online journal that publishes cutting-edge articles, commentaries and reviews on all exciting aspects of cell cycle control in eukaryotes. A major goal of this new journal is to publish timely and significant studies on the aberrations of the cell cycle network that occur in cancer and other diseases.

  19. Regulation of apoptosis and cell cycle in irradiated mouse brain

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Yong; Song, Mi Hee; Hung, Eun Ji; Seong, Jin Sil; Suh, Chang Ok [College of Medicine, Yonsei Univ., Seoul (Korea, Republic of)

    2001-06-01

    To investigate the regulation of apoptosis and cell cycle in mouse brain irradiation. 8-week old male mice, C57B 1/6J were given whole body {gamma} -radiation with a single dose of 25 Gy using Cobalt 60 irradiator. At different times 1, 2, 4, 8 and 24hr after irradiation, mice were killed and brain tissues were collected. Apoptotic cells were scored by TUNEL assay. Expression of p53, Bcl-2, and Bax and cell cycle regulating molecules; cyclins BI, D1, E and cdk2, cdk4, p34{sup cdc2} were analysed by Western blotting. Cell cycle was analysed by flow cytometry. The peak of radiation induced apoptosis is shown at 8 hour after radiation. With a single 25 Gy irradiation, the peak of apoptotic index in C57B1/6J is 24.0{+-}0.25 (p<0.05) at 8 hour after radiation. Radiation upregulated the expression of p53/tubulin, Bax/tubulin, and Bcl-2/tubulin with 1.3, 1.1 and 1.45 fold increase, respectively were shown at the peak level at 8 hour after radiation. The levels of cell cycle regulating molecules after radiation are not changed significantly except cyclin D1 with 1.3 fold increase. Fractions of Go-G 1, G2-M and S phase in the cell cycle does not specific changes by time. In mouse brain tissue, radiation induced apoptosis is particularly shown in a specific area, subependyma. These results and lack of radiation induced changes in cell cycle offer better understanding of radiation response of normal brain tissue.

  20. Viral infections and cell cycle G2/M regulation

    Institute of Scientific and Technical Information of China (English)

    Richard Y.ZHAO; Robert T.ELDER

    2005-01-01

    Progression of cells from G2 phase of the cell cycle to mitosis is a tightly regulated cellular process that requires activation of the Cdc2 kinase, which determines onset of mitosis in all eukaryotic cells. In both human and fission yeast(Schizosaccharomyces pombe) cells, the activity of Cdc2 is regulated in part by the phosphorylation status of tyrosine 15(Tyr15) on Cdc2, which is phosphorylated by Wee1 kinase during late G2 and is rapidly dephosphorylated by the Cdc25 tyrosine phosphatase to trigger entry into mitosis. These Cdc2 regulators are the downstream targets of two well-characterized G2/M checkpoint pathways which prevent cells from entering mitosis when cellular DNA is damaged or when DNA replication is inhibited. Increasing evidence suggests that Cdc2 is also commonly targeted by viral proteins,which modulate host cell cycle machinery to benefit viral survival or replication. In this review, we describe the effect of viral protein R (Vpr) encoded by human immunodeficiency virus type 1 (HIV-1) on cell cycle G2/M regulation. Based on our current knowledge about this viral effect, we hypothesize that Vpr induces cell cycle G2 arrest through a mechanism that is to some extent different from the classic G2/M checkpoints. One the unique features distinguishing Vpr-induced G2 arrest from the classic checkpoints is the role of phosphatase 2A (PP2A) in Vpr-induced G2 arrest.Interestingly, PP2A is targeted by a number of other viral proteins including SV40 small T antigen, polyomavirus T antigen, HTLV Tax and adenovirus E4orf4. Thus an in-depth understanding of the molecular mechanisms underlying Vpr-induced G2 arrest will provide additional insights into the basic biology of cell cycle G2/M regulation and into the biological significance of this effect during host-pathogen interactions.

  1. Epigallocatechin-3-gallate regulates cell growth, cell cycle and phosphorylated nuclear factor-KB in human dermal fibroblasts

    Institute of Scientific and Technical Information of China (English)

    Dong-Wook HAN; Mi Hee LEE; Hak Hee KIM; Suong-Hyu HYON; Jong-Chul PARK

    2011-01-01

    Aim: To investigate the effects of (-)epigallocatechin-3-gallate (EGCG), the main polyphenol in green tea, on cell growth, cell cycle and phosphorylated nuclear factor-kB (pNF-KB) expression in neonatal human dermal fibroblasts (nHDFs).Methods: The proliferation and cell-cycle of nHDFs were determined using WST-8 cell growth assay and flow cytometry, respectively. The apoptosis was examined using DNA ladder and Annexin V-FITC assays. The expression levels of pNF-kB and cell cycle-related genes and proteins in nHDFs were measured using cDNA microarray analyses and Western blot. The cellular uptake of EGCG was examined using fluorescence (FITC)-Iabeled EGCG (FITC-EGCG) in combination with confocal microscopy.Results: The effect of EGCG on the growth of nHDFs depended on the concentration tested. At a low concentration (200 μmol/L), EGCG resulted in a slight decrease in the proportion of ceils in the S and G/M phases of cell cycle with a concomitant increase in the proportion of cells in G/G phase. At the higher doses (400 and 800 pmol/L), apoptosis was induced. The regulation of EGCG on the expression of pNF-kB was also concentration-dependent, whereas it did not affect the unphosphorylated NF-kB expression, cDNA microarray analysis showed that cell cycle-related genes were down-regulated by EGCG (200 μmol/L). The expression of cyclins A/B and cyclin-dependent kinase 1 was reversibly regulated by EGCG (200 μmol/L). FITC-EGCG was found to be internalized into the cyto-plasm and translocated into the nucleus of nHDFs.Conclusion: EGCG, through uptake into cytoplasm, reversibly regulated the cell growth and expression of cell cycle-related proteins and genes in normal fibroblasts.

  2. Labeling of lectin receptors during the cell cycle.

    Science.gov (United States)

    Garrido, J

    1976-12-01

    Labeling of lectin receptors during the cell cycle. (Localizabión de receptores para lectinas durante el ciclo celular). Arch. Biol. Med. Exper. 10: 100-104, 1976. The topographic distribution of specific cell surface receptors for concanavalin A and wheat germ agglutinin was studied by ultrastructural labeling in the course of the cell cycle. C12TSV5 cells were synchronized by double thymidine block or mechanical selection (shakeoff). They were labeled by means of lectin-peroxidase techniques while in G1 S, G2 and M phases of the cycle. The results obtained were similar for both lectins employed. Interphase cells (G1 S, G2) present a stlihtly discontinous labeling pattern that is similar to the one observed on unsynchronized cells of the same line. Cells in mitosis, on the contrary, present a highly discontinous distribution of reaction product. This pattern disappears after the cells enters G1 and is not present on mitotic cells fixed in aldehyde prior to labeling. PMID:1030938

  3. A mutation-promotive role of nucleotide excision repair in cell cycle-arrested cell populations following UV irradiation.

    Science.gov (United States)

    Heidenreich, Erich; Eisler, Herfried; Lengheimer, Theresia; Dorninger, Petra; Steinboeck, Ferdinand

    2010-01-01

    Growing attention is paid to the concept that mutations arising in stationary, non-proliferating cell populations considerably contribute to evolution, aging, and pathogenesis. If such mutations are beneficial to the affected cell, in the sense of allowing a restart of proliferation, they are called adaptive mutations. In order to identify cellular processes responsible for adaptive mutagenesis in eukaryotes, we study frameshift mutations occurring during auxotrophy-caused cell cycle arrest in the model organism Saccharomyces cerevisiae. Previous work has shown that an exposure of cells to UV irradiation during prolonged cell cycle arrest resulted in an increased incidence of mutations. In the present work, we determined the influence of defects in the nucleotide excision repair (NER) pathway on the incidence of UV-induced adaptive mutations in stationary cells. The mutation frequency was decreased in Rad16-deficient cells and further decreased in Rad16/Rad26 double-deficient cells. A knockout of the RAD14 gene, the ortholog of the human XPA gene, even resulted in a nearly complete abolishment of UV-induced mutagenesis in cell cycle-arrested cells. Thus, the NER pathway, responsible for a normally accurate repair of UV-induced DNA damage, paradoxically is required for the generation and/or fixation of UV-induced frameshift mutations specifically in non-replicating cells.

  4. A combined gas cooled nuclear reactor and fuel cell cycle

    Science.gov (United States)

    Palmer, David J.

    Rising oil costs, global warming, national security concerns, economic concerns and escalating energy demands are forcing the engineering communities to explore methods to address these concerns. It is the intention of this thesis to offer a proposal for a novel design of a combined cycle, an advanced nuclear helium reactor/solid oxide fuel cell (SOFC) plant that will help to mitigate some of the above concerns. Moreover, the adoption of this proposal may help to reinvigorate the Nuclear Power industry while providing a practical method to foster the development of a hydrogen economy. Specifically, this thesis concentrates on the importance of the U.S. Nuclear Navy adopting this novel design for its nuclear electric vessels of the future with discussion on efficiency and thermodynamic performance characteristics related to the combined cycle. Thus, the goals and objectives are to develop an innovative combined cycle that provides a solution to the stated concerns and show that it provides superior performance. In order to show performance, it is necessary to develop a rigorous thermodynamic model and computer program to analyze the SOFC in relation with the overall cycle. A large increase in efficiency over the conventional pressurized water reactor cycle is realized. Both sides of the cycle achieve higher efficiencies at partial loads which is extremely important as most naval vessels operate at partial loads as well as the fact that traditional gas turbines operating alone have poor performance at reduced speeds. Furthermore, each side of the cycle provides important benefits to the other side. The high temperature exhaust from the overall exothermic reaction of the fuel cell provides heat for the reheater allowing for an overall increase in power on the nuclear side of the cycle. Likewise, the high temperature helium exiting the nuclear reactor provides a controllable method to stabilize the fuel cell at an optimal temperature band even during transients helping

  5. Space environment effect on cell cycle of proliferating FRTL-5 cells

    Science.gov (United States)

    Curcio, Francesco; Saverio Ambesi-Impiombato, Francesco; Meli, Antonella; Perrella, Giuseppina; Spelat, Renza; Zambito, Anna Maria

    The space environment is a unique laboratory to study the response of living organisms to microgravity and cosmic radiation at the molecular and cellular levels. Significant results obtained by us during the Eneide Mission (Soyuz 9S and 10S 2005) showed a different sensitivity to space environment of cells in proliferative state as compared to those in physiological stand-by. The main object of our investigation was to validate these important findings and to study the molecular mechanisms underlying the phenomenon. To this purpose, a cell model of normal cells derived from rat thyroids which can be kept unattended for up to 20 days in a proliferative medium and at room temperature (FRTL-5) were used in a 10 days experiment on a FOTON satellite and in a 15 days experiment in the STS-120 shuttle mission. Experimental design for both flights was planned on the basis of the "ENEIDE" mission results. Microarray analysis has been performed on the samples from Foton M3 and STS-120. Background subtraction, quality assessment and normalization as well as the definition of specific evaluation algorithms have been performed. Based on the hyper G Test function we computed the Hyper geometric p-values for over representation of genes at all Gene Ontology (GO) terms in the induced GO graphs; this test was performed for each GO category and applied also to KEGG pathways. Results show the good quality of the experiment and our data show that the pathways mostly affected by the flight are: a) the cell cycle, b) the ubiquitin mediated proteolysis, c) the repair mechanisms, d) the adherens junction and e) the pyrimidine metabolism. The patways studied indicate that the cells suffer a slowing of cell cycle as well as upregulation of the DNA and RNA repair processes and even further corroborate the validity of using the FRTL5 cells as biosensors for monitoring the effectiveness of countermeasures to damage caused by the Space.

  6. High efficiency fuel cell/advanced turbine power cycles

    Energy Technology Data Exchange (ETDEWEB)

    Morehead, H. [Westinghouse Electric Corp., Orlando, FL (United States)

    1995-10-19

    An outline of the Westinghouse high-efficiency fuel cell/advanced turbine power cycle is presented. The following topics are discussed: The Westinghouse SOFC pilot manufacturing facility, cell scale-up plan, pressure effects on SOFC power and efficiency, sureCell versus conventional gas turbine plants, sureCell product line for distributed power applications, 20 MW pressurized-SOFC/gas turbine power plant, 10 MW SOFC/CT power plant, sureCell plant concept design requirements, and Westinghouse SOFC market entry.

  7. Evolution of cell cycle control: same molecular machines, different regulation

    DEFF Research Database (Denmark)

    de Lichtenberg, Ulrik; Jensen, Thomas Skøt; Brunak, Søren;

    2007-01-01

    Decades of research has together with the availability of whole genomes made it clear that many of the core components involved in the cell cycle are conserved across eukaryotes, both functionally and structurally. These proteins are organized in complexes and modules that are activated or...... layers of regulation together control the activity of cell cycle complexes and how this regulation has evolved. The results show surprisingly poor conservation of both the transcriptional and the post-translation regulation of individual genes and proteins; however, the changes in one layer of regulation...... are often mirrored by changes in other layers, implying that independent layers of control coevolve. By taking a bird's eye view of the cell cycle, we demonstrate how the modular organization of cellular systems possesses a built-in flexibility, which allows evolution to find many different solutions...

  8. Microbial H2 cycling does not affect δ2H values of ground water

    Science.gov (United States)

    Landmeyer, J.E.; Chapelle, F.H.; Bradley, P.M.

    2000-01-01

    Stable hydrogen-isotope values of ground water (δ2H) and dissolved hydrogen concentrations (H(2(aq)) were quantified in a petroleum-hydrocarbon contaminated aquifer to determine whether the production/consumption of H2 by subsurface microorganisms affects ground water &delta2H values. The range of &delta2H observed in monitoring wells sampled (-27.8 ‰c to -15.5 ‰c) was best explained, however, by seasonal differences in recharge temperature as indicated using ground water δ18O values, rather than isotopic exchange reactions involving the microbial cycling of H2 during anaerobic petroleum-hydrocarbon biodegradation. The absence of a measurable hydrogen-isotope exchange between microbially cycled H2 and ground water reflects the fact that the amount of H2 available from the anaerobic decomposition of petroleum hydrocarbons is small relative to the amount of hydrogen present in water, even though milligram per liter concentrations of readily biodegradable contaminants are present at the study site. Additionally, isotopic fractionation calculations indicate that in order for H2 cycling processes to affect δ2H values of ground water, relatively high concentrations of H2 (>0.080 M) would have to be maintained, considerably higher than the 0.2 to 26 nM present at this site and characteristic of anaerobic conditions in general. These observations suggest that the conventional approach of using δ2H and δ18O values to determine recharge history is appropriate even for those ground water systems characterized by anaerobic conditions and extensive microbial H2 cycling.

  9. Systematic Analysis of Cell Cycle Effects of Common Drugs Leads to the Discovery of a Suppressive Interaction between Gemfibrozil and Fluoxetine

    OpenAIRE

    Hoose, Scott A.; Duran, Camille; Malik, Indranil; Eslamfam, Shabnam; Samantha C Shasserre; Downing, S. Sabina; Evelyn M Hoover; Dowd, Katherine E.; Smith, Roger; Polymenis, Michael

    2012-01-01

    Screening chemical libraries to identify compounds that affect overall cell proliferation is common. However, in most cases, it is not known whether the compounds tested alter the timing of particular cell cycle transitions. Here, we evaluated an FDA-approved drug library to identify pharmaceuticals that alter cell cycle progression in yeast, using DNA content measurements by flow cytometry. This approach revealed strong cell cycle effects of several commonly used pharmaceuticals. We show tha...

  10. PKCeta enhances cell cycle progression, the expression of G1 cyclins and p21 in MCF-7 cells.

    Science.gov (United States)

    Fima, E; Shtutman, M; Libros, P; Missel, A; Shahaf, G; Kahana, G; Livneh, E

    2001-10-11

    Protein kinase C encodes a family of enzymes implicated in cellular differentiation, growth control and tumor promotion. However, not much is known with respect to the molecular mechanisms that link protein kinase C to cell cycle control. Here we report that the expression of PKCeta in MCF-7 cells, under the control of a tetracycline-responsive inducible promoter, enhanced cell growth and affected the cell cycle at several points. The induced expression of another PKC isoform, PKCdelta, in MCF-7 cells had opposite effects and inhibited their growth. PKCeta expression activated cellular pathways in these cells that resulted in the increased expression of the G1 phase cyclins, cyclin D and cyclin E. Expression of the cyclin-dependent kinase inhibitor p21(WAF1) was also specifically elevated in PKCeta expressing cells, but its overall effects were not inhibitory. Although, the protein levels of the cyclin-dependent kinase inhibitor p27(KIP1) were not altered by the induced expression of PKCeta, the cyclin E associated Cdk2 kinase activity was in correlation with the p27(KIP1) bound to the cyclin E complex and not by p21(WAF1) binding. PKCeta expression enhanced the removal of p27(KIP1) from this complex, and its re-association with the cyclin D/Cdk4 complex. Reduced binding of p27(KIP1) to the cyclin D/Cdk4 complex at early time points of the cell cycle also enhanced the activity of this complex, while at later time points the decrease in bound p21(WAF1) correlated with its increased activity in PKCeta-expressing cells. Thus, PKCeta induces altered expression of several cell cycle functions, which may contribute to its ability to affect cell growth.

  11. Influence of chlorine dioxide on cell death and cell cycle of human gingival fibroblasts

    OpenAIRE

    Nishikiori, Ryo; Nomura, Yuji; Sawajiri, Masahiko; Masuki, Kohei; Hirata, Isao; Okazaki, Masayuki

    2008-01-01

    Objectives: The effects of chlorine dioxide (ClO2), sodium hypochlorite (NaOCl), and hydrogen peroxide (H2O2) on cell death and the cell cycle of human gingival fibroblast (HGF) cells were examined. Methods: The inhibition of HGF cell growth was evaluated using a Cell Counting Kit-8. The cell cycle was assessed with propidium iodide-stained cells (distribution of cells in G0/G1, S, G2/M phases) using flow cytometry. The patterns of cell death (necrosis and apoptosis) were analyzed using f...

  12. Does Arabidopsis thaliana DREAM of cell cycle control?

    Science.gov (United States)

    Fischer, Martin; DeCaprio, James A

    2015-08-01

    Strict temporal control of cell cycle gene expression is essential for all eukaryotes including animals and plants. DREAM complexes have been identified in worm, fly, and mammals, linking several distinct transcription factors to coordinate gene expression throughout the cell cycle. In this issue of The EMBO Journal, Kobayashi et al (2015) identify distinct activator and repressor complexes for genes expressed during the G2 and M phases in Arabidopsis that can be temporarily separated during proliferating and post‐mitotic stages of development. The complexes incorporate specific activator and repressor MYB and E2F transcription factors and indicate the possibility of the existence of multiple DREAM complexes in plants. PMID:26089020

  13. α-Mangostin Induces Apoptosis and Cell Cycle Arrest in Oral Squamous Cell Carcinoma Cell

    Directory of Open Access Journals (Sweden)

    Hyun-Ho Kwak

    2016-01-01

    Full Text Available Mangosteen has long been used as a traditional medicine and is known to have antibacterial, antioxidant, and anticancer effects. Although the effects of α-mangostin, a natural compound extracted from the pericarp of mangosteen, have been investigated in many studies, there is limited data on the effects of the compound in human oral squamous cell carcinoma (OSCC. In this study, α-mangostin was assessed as a potential anticancer agent against human OSCC cells. α-Mangostin inhibited cell proliferation and induced cell death in OSCC cells in a dose- and time-dependent manner with little to no effect on normal human PDLF cells. α-Mangostin treatment clearly showed apoptotic evidences such as nuclear fragmentation and accumulation of annexin V and PI-positive cells on OSCC cells. α-Mangostin treatment also caused the collapse of mitochondrial membrane potential and the translocation of cytochrome c from the mitochondria into the cytosol. The expressions of the mitochondria-related proteins were activated by α-mangostin. Treatment with α-mangostin also induced G1 phase arrest and downregulated cell cycle-related proteins (CDK/cyclin. Hence, α-mangostin specifically induces cell death and inhibits proliferation in OSCC cells via the intrinsic apoptosis pathway and cell cycle arrest at the G1 phase, suggesting that α-mangostin may be an effective agent for the treatment of OSCC.

  14. α-Mangostin Induces Apoptosis and Cell Cycle Arrest in Oral Squamous Cell Carcinoma Cell

    Science.gov (United States)

    Kwak, Hyun-Ho; Park, Bong-Soo

    2016-01-01

    Mangosteen has long been used as a traditional medicine and is known to have antibacterial, antioxidant, and anticancer effects. Although the effects of α-mangostin, a natural compound extracted from the pericarp of mangosteen, have been investigated in many studies, there is limited data on the effects of the compound in human oral squamous cell carcinoma (OSCC). In this study, α-mangostin was assessed as a potential anticancer agent against human OSCC cells. α-Mangostin inhibited cell proliferation and induced cell death in OSCC cells in a dose- and time-dependent manner with little to no effect on normal human PDLF cells. α-Mangostin treatment clearly showed apoptotic evidences such as nuclear fragmentation and accumulation of annexin V and PI-positive cells on OSCC cells. α-Mangostin treatment also caused the collapse of mitochondrial membrane potential and the translocation of cytochrome c from the mitochondria into the cytosol. The expressions of the mitochondria-related proteins were activated by α-mangostin. Treatment with α-mangostin also induced G1 phase arrest and downregulated cell cycle-related proteins (CDK/cyclin). Hence, α-mangostin specifically induces cell death and inhibits proliferation in OSCC cells via the intrinsic apoptosis pathway and cell cycle arrest at the G1 phase, suggesting that α-mangostin may be an effective agent for the treatment of OSCC. PMID:27478478

  15. Arginine starvation in colorectal carcinoma cells: Sensing, impact on translation control and cell cycle distribution.

    Science.gov (United States)

    Vynnytska-Myronovska, Bozhena O; Kurlishchuk, Yuliya; Chen, Oleh; Bobak, Yaroslav; Dittfeld, Claudia; Hüther, Melanie; Kunz-Schughart, Leoni A; Stasyk, Oleh V

    2016-02-01

    Tumor cells rely on a continued exogenous nutrient supply in order to maintain a high proliferative activity. Although a strong dependence of some tumor types on exogenous arginine sources has been reported, the mechanisms of arginine sensing by tumor cells and the impact of changes in arginine availability on translation and cell cycle regulation are not fully understood. The results presented herein state that human colorectal carcinoma cells rapidly exhaust the internal arginine sources in the absence of exogenous arginine and repress global translation by activation of the GCN2-mediated pathway and inhibition of mTOR signaling. Tumor suppressor protein p53 activation and G1/G0 cell cycle arrest support cell survival upon prolonged arginine starvation. Cells with the mutant or deleted TP53 fail to stop cell cycle progression at defined cell cycle checkpoints which appears to be associated with reduced recovery after durable metabolic stress triggered by arginine withdrawal.

  16. Effects of cell cycle noise on excitable gene circuits

    CERN Document Server

    Veliz-Cuba, Alan; Bennett, Matthew R; Josić, Krešimir; Ott, William

    2016-01-01

    We assess the impact of cell cycle noise on gene circuit dynamics. For bistable genetic switches and excitable circuits, we find that transitions between metastable states most likely occur just after cell division and that this concentration effect intensifies in the presence of transcriptional delay. We explain this concentration effect with a 3-states stochastic model. For genetic oscillators, we quantify the temporal correlations between daughter cells induced by cell division. Temporal correlations must be captured properly in order to accurately quantify noise sources within gene networks.

  17. Notch3 overexpression causes arrest of cell cycle progression by inducing Cdh1 expression in human breast cancer cells.

    Science.gov (United States)

    Chen, Chun-Fa; Dou, Xiao-Wei; Liang, Yuan-Ke; Lin, Hao-Yu; Bai, Jing-Wen; Zhang, Xi-Xun; Wei, Xiao-Long; Li, Yao-Chen; Zhang, Guo-Jun

    2016-01-01

    Uncontrolled cell proliferation, genomic instability and cancer are closely related to the abnormal activation of the cell cycle. Therefore, blocking the cell cycle of cancer cells has become one of the key goals for treating malignancies. Unfortunately, the factors affecting cell cycle progression remain largely unknown. In this study, we have explored the effects of Notch3 on the cell cycle in breast cancer cell lines by 3 methods: overexpressing the intra-cellular domain of Notch3 (N3ICD), knocking-down Notch3 by RNA interference, and using X-ray radiation exposure. The results revealed that overexpression of Notch3 arrested the cell cycle at the G0/G1 phase, and inhibited the proliferation and colony-formation rate in the breast cancer cell line, MDA-MB-231. Furthermore, overexpressing N3ICD upregulated Cdh1 expression and resulted in p27(Kip) accumulation by accelerating Skp2 degradation. Conversely, silencing of Notch3 in the breast cancer cell line, MCF-7, caused a decrease in expression levels of Cdh1 and p27(Kip) at both the protein and mRNA levels, while the expression of Skp2 only increased at the protein level. Correspondingly, there was an increase in the percentage of cells in the G0/G1 phase and an elevated proliferative ability and colony-formation rate, which may be caused by alterations of the Cdh1/Skp2/p27 axis. These results were also supported by exposing MDA-MB-231 cells or MCF-7 treated with siN3 to X-irradiation at various doses. Overall, our data showed that overexpression of N3ICD upregulated the expression of Cdh1 and caused p27(Kip) accumulation by accelerating Skp2 degradation, which in turn led to cell cycle arrest at the G0/G1 phase, in the context of proliferating breast cancer cell lines. These findings help to illuminate the precision therapy targeted to cell cycle progression, required for cancer treatment.

  18. Cell cycle control of DNA joint molecule resolution.

    Science.gov (United States)

    Wild, Philipp; Matos, Joao

    2016-06-01

    The establishment of stable interactions between chromosomes underpins vital cellular processes such as recombinational DNA repair and bipolar chromosome segregation. On the other hand, timely disengagement of persistent connections is necessary to assure efficient partitioning of the replicated genome prior to cell division. Whereas great progress has been made in defining how cohesin-mediated chromosomal interactions are disengaged as cells prepare to undergo chromosome segregation, little is known about the metabolism of DNA joint molecules (JMs), generated during the repair of chromosomal lesions. Recent work on Mus81 and Yen1/GEN1, two conserved structure-selective endonucleases, revealed unforeseen links between JM-processing and cell cycle progression. Cell cycle kinases and phosphatases control Mus81 and Yen1/GEN1 to restrain deleterious JM-processing during S-phase, while safeguarding chromosome segregation during mitosis. PMID:26970388

  19. Cell-cycle quiescence maintains Caenorhabditis elegans germline stem cells independent of GLP-1/Notch.

    Science.gov (United States)

    Seidel, Hannah S; Kimble, Judith

    2015-11-09

    Many types of adult stem cells exist in a state of cell-cycle quiescence, yet it has remained unclear whether quiescence plays a role in maintaining the stem cell fate. Here we establish the adult germline of Caenorhabditis elegans as a model for facultative stem cell quiescence. We find that mitotically dividing germ cells--including germline stem cells--become quiescent in the absence of food. This quiescence is characterized by a slowing of S phase, a block to M-phase entry, and the ability to re-enter M phase rapidly in response to re-feeding. Further, we demonstrate that cell-cycle quiescence alters the genetic requirements for stem cell maintenance: The signaling pathway required for stem cell maintenance under fed conditions--GLP-1/Notch signaling--becomes dispensable under conditions of quiescence. Thus, cell-cycle quiescence can itself maintain stem cells, independent of the signaling pathway otherwise essential for such maintenance.

  20. EFFECT OF SOMATOSTATIN ON THE CELL CYCLE OF HUMAN GALLBLADDER CANCER CELL

    Institute of Scientific and Technical Information of China (English)

    李济宇; 全志伟; 张强; 刘建文

    2005-01-01

    Objective To explore the effect of somatostatin on the cell cycle of human gallbladder cancer cell. Methods Growth curve of gallbladder cancer cell was measured after somatostatin treated on gradient concentration. Simultaneously, the change of gallbladder cancer cell cycle was detected using flow cytometry.Results Concentration-dependent cell growth inhibition caused by somatostatin was detected in gallbladder cancer cell(P<0.05). Cell growth was arrested in S phase since 12h after somatostatin treated, which reached its peak at 24h, then fell down. The changes in apoptosis index of gallbladder cancer cell caused by somatostatin correlated with that's in cell cycle. Conclusion Somatostatin could inhibit the cell growth of human gallbladder cancer cell in vitro on higher concentration. It might result from inducing growth arrest in S phase in early stage and inducing apoptosis in the late stage.

  1. A Coarse Estimation of Cell Size Region from a Mesoscopic Stochastic Cell Cycle Model

    Institute of Scientific and Technical Information of China (English)

    YI Ming; JIA Ya; LIU Quan; ZHU Chun-Lian; YANG Li-Jian

    2007-01-01

    Based on a deterministic cell cycle model of fission yeast, the effects of the finite cell size on the cell cycle regulation in wee1- cdc25△ double mutant type are numerically studied by using of the chemical Langevin equations. It is found that at a certain region of cell size, our numerical results from the chemical Langevin equations are in good qualitative agreement with the experimental observations. The two resettings to the G2 phase from early stages of mitosis can be induced under the moderate cell size. The quantized cycle times can be observed during such a cell size region. Therefore, a coarse estimation of cell size is obtained from the mesoscopic stochastic cell cycle model.

  2. A Coarse Estimation of Cell Size Region from a Mesoscopic Stochastic Cell Cycle Model

    Science.gov (United States)

    Yi, Ming; Jia, Ya; Liu, Quan; Zhu, Chun-Lian; Yang, Li-Jian

    2007-07-01

    Based on a deterministic cell cycle model of fission yeast, the effects of the finite cell size on the cell cycle regulation in wee1- cdc25Δ double mutant type are numerically studied by using of the chemical Langevin equations. It is found that at a certain region of cell size, our numerical results from the chemical Langevin equations are in good qualitative agreement with the experimental observations. The two resettings to the G2 phase from early stages of mitosis can be induced under the moderate cell size. The quantized cycle times can be observed during such a cell size region. Therefore, a coarse estimation of cell size is obtained from the mesoscopic stochastic cell cycle model.

  3. Effect of staurosporine on cycle of human gastric cancer cells

    Institute of Scientific and Technical Information of China (English)

    Min-Wen Ha; Ke-Zuo Hou; Yun-Peng Liu; Yuan Yuan

    2004-01-01

    AIM: To study the effect of staurosporine (ST) on the cell cycle of human gastriccancer cell lines MGC803 and SGC7901.METHODS: Cell proliferation was evaluated by trypan blue dye exclusion method. Apoptotic morphology was observed under a transmission electron microscope. Changes of cell cycle and apoptotic peaks of cells were determined by flow cytometry. Expression of p21WAFI gene was examined using immunohistochemistry and RT-PCR.RESULTS: The growth of MGC803 and SGC7901 cells was inhibited by ST. The inhibitory concentrations against 50% cells (IC50) at 24 h and 48 h were 54 ng/ml and 23 ng/ml for MlGC803, and 61 ng/ml and 37 ng/ml for SGC7901. Typical apoptotic bodies and apoptotic peaks were observed 24 hafter cells were treated wth ST at a concentration of 200ng/ml. The percentage of cells at G0/G1 phase was decreased and that of cells at G2/M was increased significantly in the group treated wth ST at the concentrations of 40ng/ml,60 ng/ml, 100 ng/ml for 24 h, compared with the control group (P<0.01). The expression levels of p21WAFI gene in both MGC803 and SGC7901 cells were markedly up-regulated after treatment with ST.CONCLUSION: ST can cause arrest of gastric cancer cells at G2/M phase, which may be one of the mechanisms that inhibit cell proliferation and cause apoptosis in these cells.Effect of ST on cells at G2/M phase may be attributed to the up-regulattion of p21WAFI gene.

  4. Cell cycle control in Plasmodium falciparum: a genomics perspective

    OpenAIRE

    Waters, A.P.; Janse, C.J.; Doerig, Christian; Chakrabarti, Debopam

    2004-01-01

    The molecular mechanisms regulating cell proliferation and development in malaria parasites are still largely unknown. Phenomenological observations, pertaining to the organisation of the cell cycle during schizogony or to the signal transduction pathways whose activation is responsible for the developmental stage transitions, can now be complemented with information gathered from genomic databases. The PlasmoDB database has been used extensively to identify putative homologues of a number of...

  5. Cell survival, cell death and cell cycle pathways are interconnected: Implications for cancer therapy

    DEFF Research Database (Denmark)

    Maddika, S; Ande, SR; Panigrahi, S;

    2007-01-01

    both for their apoptosis-regulating capacity and also for their effect on the cell cycle progression. The PI3-K/Akt cell survival pathway is shown as regulator of cell metabolism and cell survival, but examples are also provided where aberrant activity of the pathway may contribute to the induction...... of apoptosis. Myc/Mad/Max proteins are shown both as a powerful S-phase driving complex and as apoptosis-sensitizers. We also discuss multifunctional proteins like p53 and Rb (RBL1/p107, RBL2/p130) both in the context of G(1)-S transition and as apoptotic triggers. Finally, we reflect on novel therapeutic...

  6. Refined life-cycle assessment of polymer solar cells

    DEFF Research Database (Denmark)

    Lenzmann, F.; Kroon, J.; Andriessen, R.;

    2011-01-01

    A refined life-cycle assessment of polymer solar cells is presented with a focus on critical components, i.e. the transparent conductive ITO layer and the encapsulation components. This present analysis gives a comprehensive sketch of the full environmental potential of polymer-OPV in comparison...

  7. Cycle training modulates satellite cell and transcriptional responses to a bout of resistance exercise.

    Science.gov (United States)

    Murach, Kevin A; Walton, R Grace; Fry, Christopher S; Michaelis, Sami L; Groshong, Jason S; Finlin, Brian S; Kern, Philip A; Peterson, Charlotte A

    2016-09-01

    This investigation evaluated whether moderate-intensity cycle ergometer training affects satellite cell and molecular responses to acute maximal concentric/eccentric resistance exercise in middle-aged women. Baseline and 72 h postresistance exercise vastus lateralis biopsies were obtained from seven healthy middle-aged women (56 ± 5 years, BMI 26 ± 1, VO2max 27 ± 4) before and after 12 weeks of cycle training. Myosin heavy chain (MyHC) I- and II-associated satellite cell density and cross-sectional area was determined via immunohistochemistry. Expression of 93 genes representative of the muscle-remodeling environment was also measured via NanoString. Overall fiber size increased ~20% with cycle training (P = 0.052). MyHC I satellite cell density increased 29% in response to acute resistance exercise before endurance training and 50% with endurance training (P exercise (acute resistance × training interaction, P exercise. Similar satellite cell and gene expression response patterns indicate coordinated regulation of the muscle environment to promote adaptation. Moderate-intensity endurance cycle training modulates the response to acute resistance exercise, potentially conditioning the muscle for more intense concentric/eccentric activity. These results suggest that cycle training is an effective endurance exercise modality for promoting growth in middle-aged women, who are susceptible to muscle mass loss with progressing age. PMID:27650251

  8. NSA2, a novel nucleolus protein regulates cell proliferation and cell cycle

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Heyu [Department of Immunology, School of Basic Medical Sciences, Peking University, No. 38 Xueyuan Road, Beijing 100191 (China); Human Disease Genomics Center, Peking University, No. 38 Xueyuan Road, Beijing 100191 (China); Ma, Xi [Department of Immunology, School of Basic Medical Sciences, Peking University, No. 38 Xueyuan Road, Beijing 100191 (China); Human Disease Genomics Center, Peking University, No. 38 Xueyuan Road, Beijing 100191 (China); State Key Lab of Animal Nutrition, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193 (China); Shi, Taiping [Chinese National Human Genome Center, Beijing. 3-707 North YongChang Road BDA, Beijing 100176 (China); Song, Quansheng [Department of Immunology, School of Basic Medical Sciences, Peking University, No. 38 Xueyuan Road, Beijing 100191 (China); Human Disease Genomics Center, Peking University, No. 38 Xueyuan Road, Beijing 100191 (China); Zhao, Hongshan, E-mail: hongshan@bjmu.edu.cn [Department of Immunology, School of Basic Medical Sciences, Peking University, No. 38 Xueyuan Road, Beijing 100191 (China); Human Disease Genomics Center, Peking University, No. 38 Xueyuan Road, Beijing 100191 (China); Ma, Dalong [Department of Immunology, School of Basic Medical Sciences, Peking University, No. 38 Xueyuan Road, Beijing 100191 (China); Human Disease Genomics Center, Peking University, No. 38 Xueyuan Road, Beijing 100191 (China)

    2010-01-01

    NSA2 (Nop seven-associated 2) was previously identified in a high throughput screen of novel human genes associated with cell proliferation, and the NSA2 protein is evolutionarily conserved across different species. In this study, we revealed that NSA2 is broadly expressed in human tissues and cultured cell lines, and located in the nucleolus of the cell. Both of the putative nuclear localization signals (NLSs) of NSA2, also overlapped with nucleolar localization signals (NoLSs), are capable of directing nucleolar accumulation. Moreover, over-expression of the NSA2 protein promoted cell growth in different cell lines and regulated the G1/S transition in the cell cycle. SiRNA silencing of the NSA2 transcript attenuated the cell growth and dramatically blocked the cell cycle in G1/S transition. Our results demonstrated that NSA2 is a nucleolar protein involved in cell proliferation and cell cycle regulation.

  9. Piperlongumine Suppresses Proliferation of Human Oral Squamous Cell Carcinoma through Cell Cycle Arrest, Apoptosis and Senescence.

    Science.gov (United States)

    Chen, San-Yuan; Liu, Geng-Hung; Chao, Wen-Ying; Shi, Chung-Sheng; Lin, Ching-Yen; Lim, Yun-Ping; Lu, Chieh-Hsiang; Lai, Peng-Yeh; Chen, Hau-Ren; Lee, Ying-Ray

    2016-01-01

    Oral squamous cell carcinoma (OSCC), an aggressive cancer originating in the oral cavity, is one of the leading causes of cancer deaths in males worldwide. This study investigated the antitumor activity and mechanisms of piperlongumine (PL), a natural compound isolated from Piper longum L., in human OSCC cells. The effects of PL on cell proliferation, the cell cycle, apoptosis, senescence and reactive oxygen species (ROS) levels in human OSCC cells were investigated. PL effectively inhibited cell growth, caused cell cycle arrest and induced apoptosis and senescence in OSCC cells. Moreover, PL-mediated anti-human OSCC behavior was inhibited by an ROS scavenger N-acetyl-l-cysteine (NAC) treatment, suggesting that regulation of ROS was involved in the mechanism of the anticancer activity of PL. These findings suggest that PL suppresses tumor growth by regulating the cell cycle and inducing apoptosis and senescence and is a potential chemotherapy agent for human OSCC cells. PMID:27120594

  10. Piperlongumine Suppresses Proliferation of Human Oral Squamous Cell Carcinoma through Cell Cycle Arrest, Apoptosis and Senescence

    Directory of Open Access Journals (Sweden)

    San-Yuan Chen

    2016-04-01

    Full Text Available Oral squamous cell carcinoma (OSCC, an aggressive cancer originating in the oral cavity, is one of the leading causes of cancer deaths in males worldwide. This study investigated the antitumor activity and mechanisms of piperlongumine (PL, a natural compound isolated from Piper longum L., in human OSCC cells. The effects of PL on cell proliferation, the cell cycle, apoptosis, senescence and reactive oxygen species (ROS levels in human OSCC cells were investigated. PL effectively inhibited cell growth, caused cell cycle arrest and induced apoptosis and senescence in OSCC cells. Moreover, PL-mediated anti-human OSCC behavior was inhibited by an ROS scavenger N-acetyl-l-cysteine (NAC treatment, suggesting that regulation of ROS was involved in the mechanism of the anticancer activity of PL. These findings suggest that PL suppresses tumor growth by regulating the cell cycle and inducing apoptosis and senescence and is a potential chemotherapy agent for human OSCC cells.

  11. MiR-107 and MiR-185 can induce cell cycle arrest in human non small cell lung cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Yukari Takahashi

    Full Text Available BACKGROUND: MicroRNAs (miRNAs are short single stranded noncoding RNAs that suppress gene expression through either translational repression or degradation of target mRNAs. The annealing between messenger RNAs and 5' seed region of miRNAs is believed to be essential for the specific suppression of target gene expression. One miRNA can have several hundred different targets in a cell. Rapidly accumulating evidence suggests that many miRNAs are involved in cell cycle regulation and consequentially play critical roles in carcinogenesis. METHODOLOGY/PRINCIPAL FINDINGS: Introduction of synthetic miR-107 or miR-185 suppressed growth of the human non-small cell lung cancer cell lines. Flow cytometry analysis revealed these miRNAs induce a G1 cell cycle arrest in H1299 cells and the suppression of cell cycle progression is stronger than that by Let-7 miRNA. By the gene expression analyses with oligonucleotide microarrays, we find hundreds of genes are affected by transfection of these miRNAs. Using miRNA-target prediction analyses and the array data, we listed up a set of likely targets of miR-107 and miR-185 for G1 cell cycle arrest and validate a subset of them using real-time RT-PCR and immunoblotting for CDK6. CONCLUSIONS/SIGNIFICANCE: We identified new cell cycle regulating miRNAs, miR-107 and miR-185, localized in frequently altered chromosomal regions in human lung cancers. Especially for miR-107, a large number of down-regulated genes are annotated with the gene ontology term 'cell cycle'. Our results suggest that these miRNAs may contribute to regulate cell cycle in human malignant tumors.

  12. Identification of sugarcane cDNAs encoding components of the cell cycle machinery

    Directory of Open Access Journals (Sweden)

    Andrietta Mírian Helene

    2001-01-01

    Full Text Available Data on cell cycle research in plants indicate that the majority of the fundamental regulators are conserved with other eukaryotes, but the controlling mechanisms imposed on them, and their integration into growth and development is unique to plants. To date, most studies on cell division have been conducted in dicot plants. However, monocot plants have distinct developmental strategies that will affect the regulation of cell division at the meristems. In order to advance our understanding how cell division is integrated with the basic mechanisms controlling cell growth and development in monocots, we took advantage of the sugarcane EST Project (Sucest to carry an exhaustive data mining to identify components of the cell cycle machinery. Results obtained include the description of distinct classes of cyclin-dependent kinases (CDKs; A, B, D, and H-type cyclins; CDK-interacting proteins, CDK-inhibitory and activating kinases, pRB and E2F transcription factors. Most sugarcane cell cycle genes seem to be member of multigene families. Like in dicot plants, CDKa transcription is not restricted to tissues with elevated meristematic activity, but the vast majority of CDKb-related ESTs are found in regions of high proliferation rates. Expression of CKI genes is far more abundant in regions of less cell division, notably in lateral buds. Shared expression patterns for a group of clusters was unraveled by transcriptional profiling, and we suggest that similar approaches could be used to identify genes that are part of the same regulatory network.

  13. Silencing of genes involved in Anaplasma marginale-tick interactions affects the pathogen developmental cycle in Dermacentor variabilis

    Directory of Open Access Journals (Sweden)

    Almazán Consuelo

    2009-07-01

    Full Text Available Abstract Background The cattle pathogen, Anaplasma marginale, undergoes a developmental cycle in ticks that begins in gut cells. Transmission to cattle occurs from salivary glands during a second tick feeding. At each site of development two forms of A. marginale (reticulated and dense occur within a parasitophorous vacuole in the host cell cytoplasm. However, the role of tick genes in pathogen development is unknown. Four genes, found in previous studies to be differentially expressed in Dermacentor variabilis ticks in response to infection with A. marginale, were silenced by RNA interference (RNAi to determine the effect of silencing on the A. marginale developmental cycle. These four genes encoded for putative glutathione S-transferase (GST, salivary selenoprotein M (SelM, H+ transporting lysosomal vacuolar proton pump (vATPase and subolesin. Results The impact of gene knockdown on A. marginale tick infections, both after acquiring infection and after a second transmission feeding, was determined and studied by light microscopy. Silencing of these genes had a different impact on A. marginale development in different tick tissues by affecting infection levels, the densities of colonies containing reticulated or dense forms and tissue morphology. Salivary gland infections were not seen in any of the gene-silenced ticks, raising the question of whether these ticks were able to transmit the pathogen. Conclusion The results of this RNAi and light microscopic analyses of tick tissues infected with A. marginale after the silencing of genes functionally important for pathogen development suggest a role for these molecules during pathogen life cycle in ticks.

  14. The Interplay between Cell Wall Mechanical Properties and the Cell Cycle in Staphylococcus aureus

    OpenAIRE

    Bailey, Richard G.; Turner, Robert D.; Mullin, Nic; Clarke, Nigel,; Foster, Simon J.; Hobbs, Jamie K.

    2014-01-01

    The nanoscale mechanical properties of live Staphylococcus aureus cells during different phases of growth were studied by atomic force microscopy. Indentation to different depths provided access to both local cell wall mechanical properties and whole-cell properties, including a component related to cell turgor pressure. Local cell wall properties were found to change in a characteristic manner throughout the division cycle. Splitting of the cell into two daughter cells followed a local softe...

  15. Pfaffosidic Fraction from Hebanthe paniculata Induces Cell Cycle Arrest and Caspase-3-Induced Apoptosis in HepG2 Cells

    Directory of Open Access Journals (Sweden)

    Tereza Cristina da Silva

    2015-01-01

    Full Text Available Hebanthe paniculata roots (formerly Pfaffia paniculata and popularly known as Brazilian ginseng show antineoplastic, chemopreventive, and antiproliferative properties. Functional properties of these roots and their extracts are usually attributed to the pfaffosidic fraction, which is composed mainly by pfaffosides A–F. However, the therapeutic potential of this fraction in cancer cells is not yet entirely understood. This study aimed to analyze the antitumoral effects of the purified pfaffosidic fraction or saponinic fraction on the human hepatocellular carcinoma HepG2 cell line. Cellular viability, proliferation, and apoptosis were evaluated, respectively, by MTT assay, BrdU incorporation, activated caspase-3 immunocytochemistry, and DNA fragmentation assay. Cell cycle was analyzed by flow cytometry and the cell cycle-related proteins were analyzed by quantitative PCR and Western blot. The cells exposed to pfaffosidic fraction had reduced viability and cellular growth, induced G2/M at 48 h or S at 72 h arrest, and increased sub-G1 cell population via cyclin E downregulation, p27KIP1 overexpression, and caspase-3-induced apoptosis, without affecting the DNA integrity. Antitumoral effects of pfaffosidic fraction from H. paniculata in HepG2 cells originated by multimechanisms of action might be associated with cell cycle arrest in the S phase, by CDK2 and cyclin E downregulation and p27KIP1 overexpression, besides induction of apoptosis through caspase-3 activation.

  16. Phase resetting reveals network dynamics underlying a bacterial cell cycle.

    Directory of Open Access Journals (Sweden)

    Yihan Lin

    Full Text Available Genomic and proteomic methods yield networks of biological regulatory interactions but do not provide direct insight into how those interactions are organized into functional modules, or how information flows from one module to another. In this work we introduce an approach that provides this complementary information and apply it to the bacterium Caulobacter crescentus, a paradigm for cell-cycle control. Operationally, we use an inducible promoter to express the essential transcriptional regulatory gene ctrA in a periodic, pulsed fashion. This chemical perturbation causes the population of cells to divide synchronously, and we use the resulting advance or delay of the division times of single cells to construct a phase resetting curve. We find that delay is strongly favored over advance. This finding is surprising since it does not follow from the temporal expression profile of CtrA and, in turn, simulations of existing network models. We propose a phenomenological model that suggests that the cell-cycle network comprises two distinct functional modules that oscillate autonomously and couple in a highly asymmetric fashion. These features collectively provide a new mechanism for tight temporal control of the cell cycle in C. crescentus. We discuss how the procedure can serve as the basis for a general approach for probing network dynamics, which we term chemical perturbation spectroscopy (CPS.

  17. Akt1 intramitochondrial cycling is a crucial step in the redox modulation of cell cycle progression.

    Directory of Open Access Journals (Sweden)

    Valeria Gabriela Antico Arciuch

    Full Text Available Akt is a serine/threonine kinase involved in cell proliferation, apoptosis, and glucose metabolism. Akt is differentially activated by growth factors and oxidative stress by sequential phosphorylation of Ser(473 by mTORC2 and Thr(308 by PDK1. On these bases, we investigated the mechanistic connection of H(2O(2 yield, mitochondrial activation of Akt1 and cell cycle progression in NIH/3T3 cell line with confocal microscopy, in vivo imaging, and directed mutagenesis. We demonstrate that modulation by H(2O(2 entails the entrance of cytosolic P-Akt1 Ser(473 to mitochondria, where it is further phosphorylated at Thr(308 by constitutive PDK1. Phosphorylation of Thr(308 in mitochondria determines Akt1 passage to nuclei and triggers genomic post-translational mechanisms for cell proliferation. At high H(2O(2, Akt1-PDK1 association is disrupted and P-Akt1 Ser(473 accumulates in mitochondria in detriment to nuclear translocation; accordingly, Akt1 T308A is retained in mitochondria. Low Akt1 activity increases cytochrome c release to cytosol leading to apoptosis. As assessed by mass spectra, differential H(2O(2 effects on Akt1-PDK interaction depend on the selective oxidation of Cys(310 to sulfenic or cysteic acids. These results indicate that Akt1 intramitochondrial-cycling is central for redox modulation of cell fate.

  18. Intercellular Variability in Protein Levels from Stochastic Expression and Noisy Cell Cycle Processes

    Science.gov (United States)

    Soltani, Mohammad; Vargas-Garcia, Cesar A.; Antunes, Duarte; Singh, Abhyudai

    2016-01-01

    Inside individual cells, expression of genes is inherently stochastic and manifests as cell-to-cell variability or noise in protein copy numbers. Since proteins half-lives can be comparable to the cell-cycle length, randomness in cell-division times generates additional intercellular variability in protein levels. Moreover, as many mRNA/protein species are expressed at low-copy numbers, errors incurred in partitioning of molecules between two daughter cells are significant. We derive analytical formulas for the total noise in protein levels when the cell-cycle duration follows a general class of probability distributions. Using a novel hybrid approach the total noise is decomposed into components arising from i) stochastic expression; ii) partitioning errors at the time of cell division and iii) random cell-division events. These formulas reveal that random cell-division times not only generate additional extrinsic noise, but also critically affect the mean protein copy numbers and intrinsic noise components. Counter intuitively, in some parameter regimes, noise in protein levels can decrease as cell-division times become more stochastic. Computations are extended to consider genome duplication, where transcription rate is increased at a random point in the cell cycle. We systematically investigate how the timing of genome duplication influences different protein noise components. Intriguingly, results show that noise contribution from stochastic expression is minimized at an optimal genome-duplication time. Our theoretical results motivate new experimental methods for decomposing protein noise levels from synchronized and asynchronized single-cell expression data. Characterizing the contributions of individual noise mechanisms will lead to precise estimates of gene expression parameters and techniques for altering stochasticity to change phenotype of individual cells. PMID:27536771

  19. High efficiency carbonate fuel cell/turbine hybrid power cycles

    Energy Technology Data Exchange (ETDEWEB)

    Steinfeld, G. [Energy Research Corp., Danbury, CT (United States)

    1995-10-19

    Carbonate fuel cells developed by Energy Research Corporation, in commercial 2.85 MW size, have an efficiency of 57.9 percent. Studies of higher efficiency hybrid power cycles were conducted in cooperation with METC to identify an economically competitive system with an efficiency in excess of 65 percent. A hybrid power cycle was identified that includes a direct carbonate fuel cell, a gas turbine and a steam cycle, which generates power at a LHV efficiency in excess of 70 percent. This new system is called a Tandem Technology Cycle (TTC). In a TTC operating on natural gas fuel, 95 percent of the fuel is mixed with recycled fuel cell anode exhaust, providing water for the reforming of the fuel, and flows to a direct carbonate fuel cell system which generates 72 percent of the power. The portion of the fuel cell anode exhaust which is not recycled, is burned and heat is transferred to the compressed air from a gas turbine, raising its temperature to 1800{degrees}F. The stream is then heated to 2000{degrees}F in the gas turbine burner and expands through the turbine generating 13 percent of the power. Half the exhaust from the gas turbine flows to the anode exhaust burner, and the remainder flows to the fuel cell cathodes providing the O{sub 2} and CO{sub 2} needed in the electrochemical reaction. Exhaust from the fuel cells flows to a steam system which includes a heat recovery steam generator and stages steam turbine which generates 15 percent of the TTC system power. Studies of the TTC for 200-MW and 20-MW size plants quantified performance, emissions and cost-of-electricity, and compared the characteristics of the TTC to gas turbine combined cycles. A 200-MW TTC plant has an efficiency of 72.6 percent, and is relatively insensitive to ambient temperature, but requires a heat exchanger capable of 2000{degrees}F. The estimated cost of electricity is 45.8 mills/kWhr which is not competitive with a combined cycle in installations where fuel cost is under $5.8/MMBtu.

  20. HCdc14A is involved in cell cycle regulation of human brain vascular endothelial cells following injury induced by high glucose, free fatty acids and hypoxia.

    Science.gov (United States)

    Su, Jingjing; Zhou, Houguang; Tao, Yinghong; Guo, Zhuangli; Zhang, Shuo; Zhang, Yu; Huang, Yanyan; Tang, Yuping; Hu, Renming; Dong, Qiang

    2015-01-01

    Cell cycle processes play a vital role in vascular endothelial proliferation and dysfunction. Cell division cycle protein 14 (Cdc14) is an important cell cycle regulatory phosphatase. Previous studies in budding yeast demonstrated that Cdc14 could trigger the inactivation of mitotic cyclin-dependent kinases (Cdks), which are required for mitotic exit and cytokinesis. However, the exact function of human Cdc14 (hCdc14) in cell cycle regulation during vascular diseases is yet to be elucidated. There are two HCdc14 homologs: hCdc14A and hCdc14B. In the current study, we investigated the potential role of hCdc14A in high glucose-, free fatty acids (FFAs)-, and hypoxia-induced injury in cultured human brain vascular endothelial cells (HBVECs). Data revealed that high glucose, FFA, and hypoxia down-regulated hCdc14A expression remarkably, and also affected the expression of other cell cycle-related proteins such as cyclin B, cyclin D, cyclin E, and p53. Furthermore, the combined addition of the three stimuli largely blocked cell cycle progression, decreased cell proliferation, and increased apoptosis. We also determined that hCdc14A was localized mainly to centrosomes during interphase and spindles during mitosis using confocal microscopy, and that it could affect the expression of other cycle-related proteins. More importantly, the overexpression of hCdc14A accelerated cell cycle progression, enhanced cell proliferation, and promoted neoplastic transformation, whereas the knockdown of hCdc14A using small interfering RNA produced the opposite effects. Therefore, these findings provide novel evidence that hCdc14A might be involved in cell cycle regulation in cultured HBVECs during high glucose-, FFA-, and hypoxia-induced injury.

  1. Downregulation of cell division cycle 25 homolog C reduces the radiosensitivity and proliferation activity of esophageal squamous cell carcinoma.

    Science.gov (United States)

    Yin, Yachao; Dou, Xiaoyan; Duan, Shimiao; Zhang, Lei; Xu, Quanjing; Li, Hongwei; Li, Duojie

    2016-09-30

    Radiation therapy is one of the most important methods of contemporary cancer treatment. Cells in the G2 and M phases are more sensitive to radiation therapy, and cell division cycle 25 homolog C (CDC25C) is essential in shifting the cell cycle between these two phases. In this study, the knockdown of CDC25C in human esophageal squamous carcinoma EC9706 cells was mediated by transfecting shRNA against human CDC25C-subcloning into pGV248. The levels of CDC25C mRNA and protein expression were assessed by reverse transcription-polymerase chain reaction (RT-PCR) and western blotting, respectively. Moreover, cell proliferation and radiosensitivity were measured. Stable CDC25C-knockdown EC9706 cell lines were successfully established. Furthermore, the proliferation of both control and CDC25C-shRNA-EC9706 cells was inhibited after the cells were treated with increasing X-ray doses, and the proliferation of the control cells was affected more significantly (p<0.05). Moreover, cell colony formation assays allowed us to reach the same conclusion. Taken together, our experiments demonstrated that the knockdown of CDC25C can reduce both the radiotherapy sensitivity and the proliferation activity of EC9706 cells. Thus, CDC25C might be a potential biomarker for radiotherapy treatment. PMID:27188256

  2. IARS2 silencing induces non-small cell lung cancer cells proliferation inhibition, cell cycle arrest and promotes cell apoptosis.

    Science.gov (United States)

    Yin, J; Liu, W; Li, R; Liu, J; Zhang, Y; Tang, W; Wang, K

    2016-01-01

    The purpose of this study was to investigate the potential role of Ileucyl-tRNA synthetase (IARS2) silencing in non-small cell lung cancer (NSCLC). The silencing of IARS2 in H1299 cells and A549 cells were performed by lentivirus encoding shRNAs. The efficiency of IARS2 silencing was detected by quantitative real time PCR and western blot. The effects of IARS2 silencing on cell growth, cell apoptosis, cell cycle and cell colony formation ability were assessed by cells counting, MTT assay, flow cytometer analysis and soft agar colony formation assay, respectively. Compared with negative control group, IARS2 was significantly knockdown by transfection with lentivirus encoding shRNA of IARS2. The IARS2 silencing significantly inhibited the cells proliferation and cells colony formation ability, induced cell cycle arrest at G1/S phase and promoted cell apoptosis. IARS2 silencing induced NSCLC cells growth inhibition, cell cycle arrest and promoted cell apoptosis. These results suggest that IARS2 may be a novel target for the treatment of NSCLC. PMID:26639235

  3. Andrographolide inhibits prostate cancer by targeting cell cycle regulators, CXCR3 and CXCR7 chemokine receptors.

    Science.gov (United States)

    Mir, Hina; Kapur, Neeraj; Singh, Rajesh; Sonpavde, Guru; Lillard, James W; Singh, Shailesh

    2016-01-01

    Despite state of the art cancer diagnostics and therapies offered in clinic, prostate cancer (PCa) remains the second leading cause of cancer-related deaths. Hence, more robust therapeutic/preventive regimes are required to combat this lethal disease. In the current study, we have tested the efficacy of Andrographolide (AG), a bioactive diterpenoid isolated from Andrographis paniculata, against PCa. This natural agent selectively affects PCa cell viability in a dose and time-dependent manner, without affecting primary prostate epithelial cells. Furthermore, AG showed differential effect on cell cycle phases in LNCaP, C4-2b and PC3 cells compared to retinoblastoma protein (RB(-/-)) and CDKN2A lacking DU-145 cells. G2/M transition was blocked in LNCaP, C4-2b and PC3 after AG treatment whereas DU-145 cells failed to transit G1/S phase. This difference was primarily due to differential activation of cell cycle regulators in these cell lines. Levels of cyclin A2 after AG treatment increased in all PCa cells line. Cyclin B1 levels increased in LNCaP and PC3, decreased in C4-2b and showed no difference in DU-145 cells after AG treatment. AG decreased cyclin E2 levels only in PC3 and DU-145 cells. It also altered Rb, H3, Wee1 and CDC2 phosphorylation in PCa cells. Intriguingly, AG reduced cell viability and the ability of PCa cells to migrate via modulating CXCL11 and CXCR3 and CXCR7 expression. The significant impact of AG on cellular and molecular processes involved in PCa progression suggests its potential use as a therapeutic and/or preventive agent for PCa. PMID:27029529

  4. Human NK Cell Subset Functions Are Differentially Affected by Adipokines

    OpenAIRE

    Huebner, Lena; Engeli, Stefan; Christiane D Wrann; Goudeva, Lilia; Laue, Tobias; Kielstein, Heike

    2013-01-01

    Background: Obesity is a risk factor for various types of infectious diseases and cancer. The increase in adipose tissue causes alterations in both adipogenesis and the production of adipocyte-secreted proteins (adipokines). Since natural killer (NK) cells are the host’s primary defense against virus-infected and tumor cells, we investigated how adipocyte-conditioned medium (ACM) affects functions of two distinct human NK cell subsets. Methods: Isolated human peripheral blood mononuclear cell...

  5. Polyamines and the Cell Cycle of Catharanthus roseus Cells in Culture 1

    Science.gov (United States)

    Maki, Hisae; Ando, Satoshi; Kodama, Hiroaki; Komamine, Atsushi

    1991-01-01

    Investigation was made on the effect of partial depletion of polyamines (PAs), induced by treatment with inhibitors of the biosynthesis of PAs, on the distribution of cells at each phase of the cell cycle in Catharanthus roseus (L.) G. Don. cells in suspension cultures, using flow cytometry. More cells treated with inhibitors of arginine decarboxylase (ADC) and ornithine decarboxylase (ODC) were accumulated in the G1 phase than those in the control, while the treatment with an inhibitor of spermidine (SPD) synthase showed no effect on the distribution of cells. The endogenous levels of the PAs, putrescine (PUT), SPD, and spermine (SPM), were determined during the cell cycle in synchronous cultures of C. roseus. Two peaks of endogenous level of PAs, in particular, of PUT and SPD, were observed during the cell cycle. Levels of PAs increased markedly prior to synthesis of DNA in the S phase and prior to cytokinesis. Activities of ADC and ODC were also assayed during the cell cycle. Activities of ADC was much higher than that of ODC throughout the cell cycle, but both activities of ODC and ADC changed in concert with changes in levels of PAs. Therefore, it is suggested that these enzymes may regulate PA levels during the cell cycle. These results indicate that inhibitors of PUT biosynthesis caused the suppression of cell proliferation by prevention of the progression of the cell cycle, probably from the G1 to the S phase, and PUT may play more important roles in the progression of the cell cycle than other PAs. PMID:16668290

  6. Reversible regulation of cell cycle-related genes by epigallocatechin gallate for hibernation of neonatal human tarsal fibroblasts.

    Science.gov (United States)

    Bae, Jung Yoon; Kanamune, Jun; Han, Dong-Wook; Matsumura, Kazuaki; Hyon, Suong-Hyu

    2009-01-01

    We investigated the hibernation effect of epigallocatechin-3-O-gallate (EGCG) on neonatal human tarsal fibroblasts (nHTFs) by analyzing the expression of cell cycle-related genes. EGCG application to culture media moderately inhibited the growth of nHTFs, and the removal of EGCG from culture media led to complete recovery of cell growth. EGCG resulted in a slight decrease in the cell population of the S and G(2)/M phases of cell cycle with concomitant increase in that of the G(0)/G(1) phase, but this cell cycle profile was restored to the initial level after EGCG removal. The expression of cyclin D1 (CCND1), CCNE2, CCN-dependent kinase 6 (CDK6), and CDK2 was restored, whereas that of CCNA, CCNB1, and CDK1 was irreversibly attenuated. The expression of a substantial number of genes analyzed by cDNA microarray was affected by EGCG application, and these affected expression levels were restored to the normal levels after EGCG removal. We also found the incorporation of FITC-EGCG into the cytosol of nHTFs and its further nuclear translocation, which might lead to the regulation of the exogenous signals directed to genes for cellular responses including proliferation and cell cycle progression. These results suggest that EGCG temporarily affects not only genes related to the cell cycle but also various other cellular functions. PMID:19622233

  7. Reversible regulation of cell cycle-related genes by epigallocatechin gallate for hibernation of neonatal human tarsal fibroblasts.

    Science.gov (United States)

    Bae, Jung Yoon; Kanamune, Jun; Han, Dong-Wook; Matsumura, Kazuaki; Hyon, Suong-Hyu

    2009-01-01

    We investigated the hibernation effect of epigallocatechin-3-O-gallate (EGCG) on neonatal human tarsal fibroblasts (nHTFs) by analyzing the expression of cell cycle-related genes. EGCG application to culture media moderately inhibited the growth of nHTFs, and the removal of EGCG from culture media led to complete recovery of cell growth. EGCG resulted in a slight decrease in the cell population of the S and G(2)/M phases of cell cycle with concomitant increase in that of the G(0)/G(1) phase, but this cell cycle profile was restored to the initial level after EGCG removal. The expression of cyclin D1 (CCND1), CCNE2, CCN-dependent kinase 6 (CDK6), and CDK2 was restored, whereas that of CCNA, CCNB1, and CDK1 was irreversibly attenuated. The expression of a substantial number of genes analyzed by cDNA microarray was affected by EGCG application, and these affected expression levels were restored to the normal levels after EGCG removal. We also found the incorporation of FITC-EGCG into the cytosol of nHTFs and its further nuclear translocation, which might lead to the regulation of the exogenous signals directed to genes for cellular responses including proliferation and cell cycle progression. These results suggest that EGCG temporarily affects not only genes related to the cell cycle but also various other cellular functions.

  8. Involvement of cdc25c in cell cycle alteration of a radioresistant lung cancer cell line established with fractionated ionizing radiation.

    Science.gov (United States)

    Li, Jie; Yang, Chun-Xu; Mei, Zi-Jie; Chen, Jing; Zhang, Shi-Min; Sun, Shao-Xing; Zhou, Fu-Xiang; Zhou, Yun-Feng; Xie, Cong-Hua

    2013-01-01

    Cancer patients often suffer from local tumor recurrence after radiation therapy. Cell cycling, an intricate sequence of events which guarantees high genomic fidelity, has been suggested to affect DNA damage responses and eventual radioresistant characteristics of cancer cells. Here, we established a radioresistant lung cancer cell line, A549R , by exposing the parental A549 cells to repeated γ-ray irradiation with a total dose of 60 Gy. The radiosensitivity of A549 and A549R was confirmed using colony formation assays. We then focused on examination of the cell cycle distribution between A549 and A549R and found that the proportion of cells in the radioresistant S phase increased, whereas that in the radiosensitive G1 phase decreased. When A549 and A549R cells were exposed to 4 Gy irradiation the total differences in cell cycle redistribution suggested that G2-M cell cycle arrest plays a predominant role in mediating radioresistance. In order to further explore the possible mechanisms behind the cell cycle related radioresistance, we examined the expression of Cdc25 proteins which orchestrate cell cycle transitions. The results showed that expression of Cdc25c increased accompanied by the decrease of Cdc25a and we proposed that the quantity of Cdc25c, rather than activated Cdc25c or Cdc25a, determines the radioresistance of cells. PMID:24289569

  9. Lineage-specific interface proteins match up the cell cycle and differentiation in embryo stem cells

    DEFF Research Database (Denmark)

    Re, Angela; Workman, Christopher; Waldron, Levi;

    2014-01-01

    The shortage of molecular information on cell cycle changes along embryonic stem cell (ESC) differentiation prompts an in silico approach, which may provide a novel way to identify candidate genes or mechanisms acting in coordinating the two programs. We analyzed germ layer specific gene expression...... changes during the cell cycle and ESC differentiation by combining four human cell cycle transcriptome profiles with thirteen in vitro human ESC differentiation studies. To detect cross-talk mechanisms we then integrated the transcriptome data that displayed differential regulation with protein...... interaction data. A new class of non-transcriptionally regulated genes was identified, encoding proteins which interact systematically with proteins corresponding to genes regulated during the cell cycle or cell differentiation, and which therefore can be seen as interface proteins coordinating the two...

  10. A Gene, ALCA, Affecting the Life Cycle Form Expressed in PHYSARUM POLYCEPHALUM.

    Science.gov (United States)

    Truitt, C L; Hoffman, C S; Holt, C E

    1982-05-01

    The usual sequence of forms in the Physarum polycephalum life cycle is plasmodium-spore-amoeba-plasmodium. So-called "amoebaless life cycle" or alc mutants of this Myxomycete undergo a simplified plasmodium-spore-plasmodium life cycle. We have analyzed three independently isolated alc mutants and found in each case that the failure of the spores to give rise to amoebae is due to a recessive Mendelian allele. The three mutations are tightly linked to one another and belong to a single complementation group, alcA. The mutations are pleiotropic, not only interfering with the establishment of the amoebal form at spore germination, but also affecting the phenotype of alc amoebae, which occasionally arise from alc spores. The alc amoebae (1) grow more slowly than wild type, particularly at elevated temperatures; (2) tend to transform directly into plasmodia, circumventing the sexual fusion of amoebae that usually accompanies plasmodium formation; and (3) form plasmodia by the sexual mechanism less efficiently than wild-type amoebae. The various effects of an alc mutation seem to derive from mutation of a single gene, since reversion for one effect is always accompanied by reversion for the other effects. Moreover, a mutation, aptA1, that blocks direct plasmodium formation by alcA amoebae, also increases their growth rate to near normal. The manner of plasmodium formation in alcA strains differs significantly from that in another class of mutants, the gad mutants. Unlike gad amoebae, alcA amoebae need not reach a critical density in order to differentiate directly into plasmodia and do not respond to the extracellular inducer of differentiation. In addition, alcA differentiation is not prevented by a mutation, npfA1, that blocks direct differentiation by most gad amoebae.

  11. Over-expression of ornithine decarboxylase antizyme fusion proteins affects the cell cycle of mouse melanoma B16-F1 cells%鸟氨酸脱羧酶抗酶融合蛋白高表达对小鼠黑素瘤细胞B16-F1细胞周期的影响

    Institute of Scientific and Technical Information of China (English)

    刘梦瑶; 韩钰; 蔡富强; 何玲; 王艳林

    2011-01-01

    This study aims to assess the effects of over-expressed GFP-0AZ1 (green fluorescent protein-or-nithine decarboxylase antizyme-1) and GFP-OAZ2 (green fluorescent protein-omithine decarboxylase antizyme-2) fusion proteins on cell cycle of mouse melanoma B16-F1 cells. GFP-OAZ1 and GFP-OAZ2 fusion genes were constructed truly, then transiently transfected into B16-F1 cells by lipofectamine reagent. The expressions of GFP-OAZ1 and GFP-OAZ2 fusion proteins were confirmed by immunocytochemistry and Western blot analysis. Flow cytometry was applied to detect the effect of the fusion proteins on the cell cycle of B16-F1 cells; Western blot analysis was also used to detect the effect of GFP-0AZ1/2 on ornithine decarboxylase (ODC) in protein level. Results showed that over-expression of GFP-OAZ1 and GFP-0AZ2 fusion proteins in B16-F1 resulted in G1/G0 arrest in the cell cycle. When OAZ1 or OAZ2 gene was co-transfected with ODC gene into B16-F1 cells, over-expression of GFP-OAZ1 fusion protein, not GFP-OAZ2, demonstrated the ability to significantly decrease the total protein level of ODC. We concluded that over-expression of GFP-OAZ1 or GFP-OAZ2 fusion gene could lead to cell cycle arrest in Gl/GO phase, and GFP-0AZ1 fusion protein could stimulate ODC degradation efficiently, but no such function was found on OAZ2 fusion protein.%研究鸟氨酸脱羧酶抗酶(OAZ)与绿色荧光蛋白融合蛋白GFP-OAZ1和GFP-OAZ2高表达对小鼠黑色素瘤B16-F1细胞周期的影响.构建GFP-OAZ1和GFP-OAZ2融合基因的真核表达质粒并经脂质体法瞬时转染B16-F1细胞,然后用Western blot分析法和荧光显微镜下观察融合蛋白在B16-F1细胞中的表达.流式细胞分析用于检测GFP-OAZ融合蛋白高表达对B16-F1细胞周期的影响.Western blot分析法鉴定GFP-OAZ融合蛋白高表达对B16-F1细胞中鸟氨酸脱羧酶(ODC)酶蛋白水平的影响.结果成功构建的GFP-OAZ1和GFP-OAZ2融合基因B16-F1细胞中正确高效表达.

  12. Sex hormones affect language lateralisation but not cognitive control in normally cycling women.

    Science.gov (United States)

    Hodgetts, Sophie; Weis, Susanne; Hausmann, Markus

    2015-08-01

    This article is part of a Special Issue "Estradiol and Cognition". Natural fluctuations of sex hormones during the menstrual cycle have been shown to modulate language lateralisation. Using the dichotic listening (DL) paradigm, a well-established measurement of language lateralisation, several studies revealed that the left hemispheric language dominance was stronger when levels of estradiol were high. A recent study (Hjelmervik et al., 2012) showed, however, that high levels of follicular estradiol increased lateralisation only in a condition that required participants to cognitively control (top-down) the stimulus-driven (bottom-up) response. This finding suggested that sex hormones modulate lateralisation only if cognitive control demands are high. The present study investigated language lateralisation in 73 normally cycling women under three attention conditions that differed in cognitive control demands. Saliva estradiol and progesterone levels were determined by luminescence immunoassays. Women were allocated to a high or low estradiol group. The results showed a reduced language lateralisation when estradiol and progesterone levels were high. The effect was independent of the attention condition indicating that estradiol marginally affected cognitive control. The findings might suggest that high levels of estradiol especially reduce the stimulus-driven (bottom-up) aspect of lateralisation rather than top-down cognitive control. PMID:26145565

  13. How does a modal shift from short car trips to cycling affect road safety?

    Science.gov (United States)

    Schepers, J P; Heinen, E

    2013-01-01

    Governments aim to promote a shift from car to bicycle, but concerns about road safety seem to represent an important argument against this encouragement. This study examines the road safety impact of a modal shift from short car trips to cycling in Dutch municipalities. The road safety effect is estimated using Accident Prediction Models (APMs) that account for the non-linearity of risk. APMs are developed utilizing Negative Binomial regression. This study is the first to develop APMs using crash and mobility data from municipalities, and utilizing these models to estimate the effects of changing modal splits of current car and bicycle use to modal splits that actually exist in these municipalities. The results suggest that, under conditions such as in Dutch municipalities, transferring short trips made by cars to bicycles does not change the number of fatalities, but increases the number of serious road injuries. The neutral effect on fatalities, despite the high fatality risk for cyclists, can be explained by there being fewer cars on the road to pose a risk to others, the shorter length of bicycle trips compared to the car trips they replace, and the "safety in numbers" phenomenon. The rise in the number of serious road injuries is due wholly to the high number of cycling crashes with no other vehicle involved. The effect of a modal shift is dependent on the age of the population in which the shift is concentrated, and can be influenced by measures affecting cyclists' injury risk.

  14. Bioelectrical Regulation of Cell Cycle and the Planarian Model System

    Science.gov (United States)

    Barghouth, Paul G.; Thiruvalluvan, Manish; Oviedo, Néstor J.

    2015-01-01

    Cell cycle regulation through the manipulation of endogenous membrane potentials offers tremendous opportunities to control cellular processes during tissue repair and cancer formation. However, the molecular mechanisms by which biophysical signals modulate the cell cycle remain underappreciated and poorly understood. Cells in complex organisms generate and maintain a constant voltage gradient across the plasma membrane known as the transmembrane potential. This potential, generated through the combined efforts of various ion transporters, pumps and channels, is known to drive a wide range of cellular processes such as cellular proliferation, migration and tissue regeneration while its deregulation can lead to tumorigenesis. These cellular regulatory events, coordinated by ionic flow, correspond to a new and exciting field termed molecular bioelectricity. We aim to present a brief discussion on the biophysical machinery involving membrane potential and the mechanisms mediating cell cycle progression and cancer transformation. Furthermore, we present the planarian Schmidtea mediterranea as a tractable model system for understanding principles behind molecular bioelectricity at both the cellular and organismal level. PMID:25749155

  15. Boolean network model predicts cell cycle sequence of fission yeast.

    Directory of Open Access Journals (Sweden)

    Maria I Davidich

    Full Text Available A Boolean network model of the cell-cycle regulatory network of fission yeast (Schizosaccharomyces Pombe is constructed solely on the basis of the known biochemical interaction topology. Simulating the model in the computer faithfully reproduces the known activity sequence of regulatory proteins along the cell cycle of the living cell. Contrary to existing differential equation models, no parameters enter the model except the structure of the regulatory circuitry. The dynamical properties of the model indicate that the biological dynamical sequence is robustly implemented in the regulatory network, with the biological stationary state G1 corresponding to the dominant attractor in state space, and with the biological regulatory sequence being a strongly attractive trajectory. Comparing the fission yeast cell-cycle model to a similar model of the corresponding network in S. cerevisiae, a remarkable difference in circuitry, as well as dynamics is observed. While the latter operates in a strongly damped mode, driven by external excitation, the S. pombe network represents an auto-excited system with external damping.

  16. Systematic identification of yeast cell cycle transcription factors using multiple data sources

    Directory of Open Access Journals (Sweden)

    Li Wen-Hsiung

    2008-12-01

    Full Text Available Abstract Background Eukaryotic cell cycle is a complex process and is precisely regulated at many levels. Many genes specific to the cell cycle are regulated transcriptionally and are expressed just before they are needed. To understand the cell cycle process, it is important to identify the cell cycle transcription factors (TFs that regulate the expression of cell cycle-regulated genes. Results We developed a method to identify cell cycle TFs in yeast by integrating current ChIP-chip, mutant, transcription factor binding site (TFBS, and cell cycle gene expression data. We identified 17 cell cycle TFs, 12 of which are known cell cycle TFs, while the remaining five (Ash1, Rlm1, Ste12, Stp1, Tec1 are putative novel cell cycle TFs. For each cell cycle TF, we assigned specific cell cycle phases in which the TF functions and identified the time lag for the TF to exert regulatory effects on its target genes. We also identified 178 novel cell cycle-regulated genes, among which 59 have unknown functions, but they may now be annotated as cell cycle-regulated genes. Most of our predictions are supported by previous experimental or computational studies. Furthermore, a high confidence TF-gene regulatory matrix is derived as a byproduct of our method. Each TF-gene regulatory relationship in this matrix is supported by at least three data sources: gene expression, TFBS, and ChIP-chip or/and mutant data. We show that our method performs better than four existing methods for identifying yeast cell cycle TFs. Finally, an application of our method to different cell cycle gene expression datasets suggests that our method is robust. Conclusion Our method is effective for identifying yeast cell cycle TFs and cell cycle-regulated genes. Many of our predictions are validated by the literature. Our study shows that integrating multiple data sources is a powerful approach to studying complex biological systems.

  17. Regulatory mechanism of radiation-induced cancer cell death by the change of cell cycle

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Soo Jin; Jeong, Min Ho; Jang, Ji Yeon [College of Medicine, Donga Univ., Pusan (Korea, Republic of)

    2003-09-01

    In our previous study, we have shown the main cell death pattern induced by irradiation or protein tyrosine kinase (PTK) inhibitors in K562 human myelogenous leukemic cell line. Death of the cells treated with irradiation alone was characterized by mitotic catastrophe and typical radiation-induced apoptosis was accelerated by herbimycin A (HMA). Both types of cell death were inhibited by genistein. In this study, we investigated the effects of HMA and genistein on cell cycle regulation and its correlation with the alterations of radiation-induced cell death. K562 cells in exponential growth phase were used for this study. The cells were irradiated with 10 Gy using 6 MeV Linac (200-300 cGy/min). Immediately after irradiation, cells were treated with 250 nM of HMA or 25{mu}M of genistein. The distributions of cell cycle, the expressions of cell cycle-related protein, the activities of cyclin-dependent kinase, and the yield of senescence and differentiation were analyzed. X-irradiated cells were arrested in the G2 phase of the cell cycle but unlike the p53-positive cells, they were not able to sustain the cell cycle arrest. An accumulation of cells in G2 phase of first cell-cycle post-treatment and an increase of cyclin B1 were correlated with spontaneous, premature, chromosome condensation and mitotic catastrophe. HMA induced rapid G2 checkpoint abrogation and concomitant p53-independent G1 accumulation HMA-induced cell cycle modifications correlated with the increase of cdc2 kinase activity, the decrease of the expressions of cyclins E and A and of CDK2 kinase activity, and the enhancement of radiation-induced apoptosis. Genistein maintained cells that were arrested in the G2-phase, decreased the expressions of cyclin B1 and cdc25C and cdc2 kinase activity, increased the expression of p16, and sustained senescence and megakaryocytic differentiation. The effects of HMA and genistein on the radiation-induced cell death of K562 cells were closely related to the cell

  18. Mutations altering the gammaretrovirus endoproteolytic motif affect glycosylation of the envelope glycoprotein and early events of the virus life cycle

    Energy Technology Data Exchange (ETDEWEB)

    Argaw, Takele; Wilson, Carolyn A., E-mail: carolyn.wilson@fda.hhs.gov

    2015-01-15

    Previously, we found that mutation of glutamine to proline in the endoproteolytic cleavage signal of the PERV-C envelope (RQKK to RPKK) resulted in non-infectious vectors. Here, we show that RPKK results in a non-infectious vector when placed in not only a PERV envelope, but also the envelope of a related gammaretrovirus, FeLV-B. The amino acid substitutions do not prevent envelope precursor cleavage, viral core and genome assembly, or receptor binding. Rather, the mutations result in the formation of hyperglycosylated glycoprotein and a reduction in the reverse transcribed minus strand synthesis and undetectable 2-LTR circular DNA in cells exposed to vectors with these mutated envelopes. Our findings suggest novel functions associated with the cleavage signal sequence that may affect trafficking through the glycosylation machinery of the cell. Further, the glycosylation status of the envelope appears to impact post-binding events of the viral life cycle, either membrane fusion, internalization, or reverse transcription. - Highlights: • Env cleavage signal impacts infectivity of gammaretroviruses. • Non-infectious mutants have hyper-glycosylated envelope that bind target cells. • Non-infectious mutants have defects in the formation of the double-stranded DNA. • Env cleavage motif has functions beyond cleavage of the env precursor.

  19. Mechanistic insights into aging, cell cycle progression, and stress response

    Directory of Open Access Journals (Sweden)

    Troy Anthony Alan Harkness

    2012-06-01

    Full Text Available The longevity of an organism depends on the health of its cells. Throughout life cells are exposed to numerous intrinsic and extrinsic stresses, such as free radicals, generated through mitochondrial electron transport, and ultraviolet irradiation. The cell has evolved numerous mechanisms to scavenge free radicals and repair damage induced by these insults. One mechanism employed by the yeast Saccharomyces cerevisiae to combat stress utilizes the Anaphase Promoting Complex (APC, an essential multi-subunit ubiquitin-protein ligase structurally and functionally conserved from yeast to humans that controls progression through mitosis and G1. We have observed that yeast cells expressing compromised APC subunits are sensitive to multiple stresses and have shorter replicative and chronological lifespans. In a pathway that runs parallel to that regulated by the APC, members of the Forkhead box (Fox transcription factor family also regulate stress responses. The yeast Fox orthologues Fkh1 and Fkh2 appear to drive the transcription of stress response factors and slow early G1 progression, while the APC seems to regulate chromatin structure, chromosome segregation, and resetting of the transcriptome in early G1. In contrast, under non-stress conditions, the Fkhs play a complex role in cell cycle progression, partially through activation of the APC. Direct and indirect interactions between the APC and the yeast Fkhs appear to be pivotal for lifespan determination. Here we explore the potential for these interactions to be evolutionarily conserved as a mechanism to balance cell cycle regulation with stress responses.

  20. Cell Cycle Analysis of CML Stem Cells Using Hoechst 33342 and Propidium Iodide.

    Science.gov (United States)

    DeSouza, Ngoc; Zhou, Megan; Shan, Yi

    2016-01-01

    Chronic myeloid leukemia (CML) is a myeloproliferative disease with an expansion of white blood cells. The current treatments for CML are shown not to be long-term effective because of CML stem cells' insensitivity to tyrosine kinase inhibitors. Therefore, studying more about CML stem cells is essential to understand the pathways of CML stem cell development and proliferation and finally lead to effective treatments to eliminate CML stem cells and eradicate CML. This chapter describes two methods to analyze cell cycle of CML stem cells. The rare population of CML stem cells can be identified by staining with cell surface markers, and then DNA-binding dyes Hoechst 33342 and propidium iodide (PI) are added to stain the DNA content which is changed when cells go through different phases of the cell cycle. Samples are run through the flow cytometer to be analyzed based on different absorbance and emission wavelengths of different florescent colors. PMID:27581138

  1. Does Arabidopsis thaliana DREAM of cell cycle control?

    Science.gov (United States)

    Fischer, Martin; DeCaprio, James A

    2015-01-01

    Strict temporal control of cell cycle gene expression is essential for all eukaryotes including animals and plants. DREAM complexes have been identified in worm, fly, and mammals, linking several distinct transcription factors to coordinate gene expression throughout the cell cycle. In this issue of The EMBO Journal, Kobayashi et al (2015) identify distinct activator and repressor complexes for genes expressed during the G2 and M phases in Arabidopsis that can be temporarily separated during proliferating and post-mitotic stages of development. The complexes incorporate specific activator and repressor MYB and E2F transcription factors and indicate the possibility of the existence of multiple DREAM complexes in plants. PMID:26089020

  2. K+ channels and cell cycle progression in tumor cells

    OpenAIRE

    HALIMA eOUADID-AHIDOUCH; Ahmed eAHIDOUCH

    2013-01-01

    K+ ions play a major role in many cellular processes. The deregulation of K+ signaling is associated with a variety of diseases such as hypertension, atherosclerosis, or diabetes. K+ ions are important for setting the membrane potential, the driving force for Ca2+ influx, and regulate volume of growing cells. Moreover, it is increasingly recognized that K+ channels control cell proliferation through a novel signaling mechanisms triggered and modulated independently of ion fluxes. In cancer, a...

  3. Ocean acidification affects redox-balance and ion-homeostasis in the life-cycle stages of Emiliania huxleyi.

    Directory of Open Access Journals (Sweden)

    Sebastian D Rokitta

    Full Text Available Ocean Acidification (OA has been shown to affect photosynthesis and calcification in the coccolithophore Emiliania huxleyi, a cosmopolitan calcifier that significantly contributes to the regulation of the biological carbon pumps. Its non-calcifying, haploid life-cycle stage was found to be relatively unaffected by OA with respect to biomass production. Deeper insights into physiological key processes and their dependence on environmental factors are lacking, but are required to understand and possibly estimate the dynamics of carbon cycling in present and future oceans. Therefore, calcifying diploid and non-calcifying haploid cells were acclimated to present and future CO(2 partial pressures (pCO(2; 38.5 Pa vs. 101.3 Pa CO(2 under low and high light (50 vs. 300 µmol photons m(-2 s(-1. Comparative microarray-based transcriptome profiling was used to screen for the underlying cellular processes and allowed to follow up interpretations derived from physiological data. In the diplont, the observed increases in biomass production under OA are likely caused by stimulated production of glycoconjugates and lipids. The observed lowered calcification under OA can be attributed to impaired signal-transduction and ion-transport. The haplont utilizes distinct genes and metabolic pathways, reflecting the stage-specific usage of certain portions of the genome. With respect to functionality and energy-dependence, however, the transcriptomic OA-responses resemble those of the diplont. In both life-cycle stages, OA affects the cellular redox-state as a master regulator and thereby causes a metabolic shift from oxidative towards reductive pathways, which involves a reconstellation of carbon flux networks within and across compartments. Whereas signal transduction and ion-homeostasis appear equally OA-sensitive under both light intensities, the effects on carbon metabolism and light physiology are clearly modulated by light availability. These interactive effects

  4. Synchronization of Green Algae by Light and Dark Regimes for Cell Cycle and Cell Division Studies.

    Science.gov (United States)

    Hlavová, Monika; Vítová, Milada; Bišová, Kateřina

    2016-01-01

    A synchronous population of cells is one of the prerequisites for studying cell cycle processes such as DNA replication, nuclear and cellular division. Green algae dividing by multiple fission represent a unique single cell system enabling the preparation of highly synchronous cultures by application of a light-dark regime similar to what they experience in nature. This chapter provides detailed protocols for synchronization of different algal species by alternating light-dark cycles; all critical points are discussed extensively. Moreover, detailed information on basic analysis of cell cycle progression in such cultures is presented, including analyses of nuclear, cellular, and chloroplast divisions. Modifications of basic protocols that enable changes in cell cycle progression are also suggested so that nuclear or chloroplast divisions can be followed separately.

  5. The Influence of Various Distraction Stimuli on Affective Responses during Recumbent Cycle Ergometry

    Directory of Open Access Journals (Sweden)

    Paul C. Miller

    2016-03-01

    Full Text Available (1 Background: Acute bouts of exercise have been associated with affective changes. Exercise supplemented with distraction may divert attention from unpleasant feelings commonly associated with exercise to more pleasant feelings. The purpose of this study was to compare affective responses to exercise with and without distraction. (2 Methods: 25 individuals volunteered for this investigation and completed all three conditions. This study included three 30 min cycle ergometry exercise conditions, a control condition with no stimuli and two test conditions; one supplemented with a self-selected video and the other self-selected music. The Feeling Scale (FS was administered prior to, every 10 min during, immediately following, and 10 min post exercise. (3 Results: These data demonstrate a significant condition effect for FS during exercise. The condition effect was due to FS being greater in the video and distraction conditions. There was no time by condition interaction seen during exercise. (4 Conclusion: These data indicate that distraction may be effective in supporting a more pleasant exercise experience and could potentially increase exercise adherence.

  6. The circadian clock and cell cycle: Interconnected biological circuits

    OpenAIRE

    Masri, Selma; Cervantes, Marlene; Sassone-Corsi, Paolo

    2013-01-01

    The circadian clock governs biological timekeeping on a systemic level, helping to regulate and maintain physiological processes, including endocrine and metabolic pathways with a periodicity of 24-hours. Disruption within the circadian clock machinery has been linked to numerous pathological conditions, including cancer, suggesting that clock-dependent regulation of the cell cycle is an essential control mechanism. This review will highlight recent advances on the ‘gating’ controls of the ci...

  7. Cdk Activity Couples Epigenetic Centromere Inheritance to Cell Cycle Progression

    OpenAIRE

    Silva, Mariana C.C.; Bodor, Dani L.; Stellfox, Madison E.; Martins, Nuno M.C.; Hochegger, Helfrid; Foltz, Daniel R.; Jansen, Lars E.T.

    2012-01-01

    Centromeres form the site of chromosome attachment to microtubules during mitosis. Identity of these loci is maintained epigenetically by nucleosomes containing the histone H3 variant CENP-A. Propagation of CENP-A chromatin is uncoupled from DNA replication initiating only during mitotic exit. We now demonstrate that inhibition of Cdk1 and Cdk2 activities is sufficient to trigger CENP-A assembly throughout the cell cycle in a manner dependent on the canonical CENP-A assembly machinery. We fur...

  8. Linalool Induces Cell Cycle Arrest and Apoptosis in Leukemia Cells and Cervical Cancer Cells through CDKIs.

    Science.gov (United States)

    Chang, Mei-Yin; Shieh, Den-En; Chen, Chung-Chi; Yeh, Ching-Sheng; Dong, Huei-Ping

    2015-01-01

    Plantaginaceae, a popular traditional Chinese medicine, has long been used for treating various diseases from common cold to cancer. Linalool is one of the biologically active compounds that can be isolated from Plantaginaceae. Most of the commonly used cytotoxic anticancer drugs have been shown to induce apoptosis in susceptible tumor cells. However, the signaling pathway for apoptosis remains undefined. In this study, the cytotoxic effect of linalool on human cancer cell lines was investigated. Water-soluble tetrazolium salts (WST-1) based colorimetric cellular cytotoxicity assay, was used to test the cytotoxic ability of linalool against U937 and HeLa cells, and flow cytometry (FCM) and genechip analysis were used to investigate the possible mechanism of apoptosis. These results demonstrated that linalool exhibited a good cytotoxic effect on U937 and HeLa cells, with the IC50 value of 2.59 and 11.02 μM, respectively, compared with 5-FU with values of 4.86 and 12.31 μM, respectively. After treating U937 cells with linalool for 6 h, we found an increased sub-G1 peak and a dose-dependent phenomenon, whereby these cells were arrested at the G0/G1 phase. Furthermore, by using genechip analysis, we observed that linalool can promote p53, p21, p27, p16, and p18 gene expression. Therefore, this study verified that linalool can arrest the cell cycle of U937 cells at the G0/G1 phase and can arrest the cell cycle of HeLa cells at the G2/M phase. Its mechanism facilitates the expression of the cyclin-dependent kinases inhibitors (CDKIs) p53, p21, p27, p16, and p18, as well as the non-expression of cyclin-dependent kinases (CDKs) activity.

  9. Linalool Induces Cell Cycle Arrest and Apoptosis in Leukemia Cells and Cervical Cancer Cells through CDKIs

    Directory of Open Access Journals (Sweden)

    Mei-Yin Chang

    2015-11-01

    Full Text Available Plantaginaceae, a popular traditional Chinese medicine, has long been used for treating various diseases from common cold to cancer. Linalool is one of the biologically active compounds that can be isolated from Plantaginaceae. Most of the commonly used cytotoxic anticancer drugs have been shown to induce apoptosis in susceptible tumor cells. However, the signaling pathway for apoptosis remains undefined. In this study, the cytotoxic effect of linalool on human cancer cell lines was investigated. Water-soluble tetrazolium salts (WST-1 based colorimetric cellular cytotoxicity assay, was used to test the cytotoxic ability of linalool against U937 and HeLa cells, and flow cytometry (FCM and genechip analysis were used to investigate the possible mechanism of apoptosis. These results demonstrated that linalool exhibited a good cytotoxic effect on U937 and HeLa cells, with the IC50 value of 2.59 and 11.02 μM, respectively, compared with 5-FU with values of 4.86 and 12.31 μM, respectively. After treating U937 cells with linalool for 6 h, we found an increased sub-G1 peak and a dose-dependent phenomenon, whereby these cells were arrested at the G0/G1 phase. Furthermore, by using genechip analysis, we observed that linalool can promote p53, p21, p27, p16, and p18 gene expression. Therefore, this study verified that linalool can arrest the cell cycle of U937 cells at the G0/G1 phase and can arrest the cell cycle of HeLa cells at the G2/M phase. Its mechanism facilitates the expression of the cyclin-dependent kinases inhibitors (CDKIs p53, p21, p27, p16, and p18, as well as the non-expression of cyclin-dependent kinases (CDKs activity.

  10. The Cell Cycle Timing of Human Papillomavirus DNA Replication.

    Science.gov (United States)

    Reinson, Tormi; Henno, Liisi; Toots, Mart; Ustav, Mart; Ustav, Mart

    2015-01-01

    Viruses manipulate the cell cycle of the host cell to optimize conditions for more efficient viral genome replication. One strategy utilized by DNA viruses is to replicate their genomes non-concurrently with the host genome; in this case, the viral genome is amplified outside S phase. This phenomenon has also been described for human papillomavirus (HPV) vegetative genome replication, which occurs in G2-arrested cells; however, the precise timing of viral DNA replication during initial and stable replication phases has not been studied. We developed a new method to quantitate newly synthesized DNA levels and used this method in combination with cell cycle synchronization to show that viral DNA replication is initiated during S phase and is extended to G2 during initial amplification but follows the replication pattern of cellular DNA during S phase in the stable maintenance phase. E1 and E2 protein overexpression changes the replication time from S only to both the S and G2 phases in cells that stably maintain viral episomes. These data demonstrate that the active synthesis and replication of the HPV genome are extended into the G2 phase to amplify its copy number and the duration of HPV genome replication is controlled by the level of the viral replication proteins E1 and E2. Using the G2 phase for genome amplification may be an important adaptation that allows exploitation of changing cellular conditions during cell cycle progression. We also describe a new method to quantify newly synthesized viral DNA levels and discuss its benefits for HPV research. PMID:26132923

  11. The Cell Cycle Timing of Human Papillomavirus DNA Replication.

    Directory of Open Access Journals (Sweden)

    Tormi Reinson

    Full Text Available Viruses manipulate the cell cycle of the host cell to optimize conditions for more efficient viral genome replication. One strategy utilized by DNA viruses is to replicate their genomes non-concurrently with the host genome; in this case, the viral genome is amplified outside S phase. This phenomenon has also been described for human papillomavirus (HPV vegetative genome replication, which occurs in G2-arrested cells; however, the precise timing of viral DNA replication during initial and stable replication phases has not been studied. We developed a new method to quantitate newly synthesized DNA levels and used this method in combination with cell cycle synchronization to show that viral DNA replication is initiated during S phase and is extended to G2 during initial amplification but follows the replication pattern of cellular DNA during S phase in the stable maintenance phase. E1 and E2 protein overexpression changes the replication time from S only to both the S and G2 phases in cells that stably maintain viral episomes. These data demonstrate that the active synthesis and replication of the HPV genome are extended into the G2 phase to amplify its copy number and the duration of HPV genome replication is controlled by the level of the viral replication proteins E1 and E2. Using the G2 phase for genome amplification may be an important adaptation that allows exploitation of changing cellular conditions during cell cycle progression. We also describe a new method to quantify newly synthesized viral DNA levels and discuss its benefits for HPV research.

  12. Development of cell-cycle checkpoint therapy for solid tumors.

    Science.gov (United States)

    Tamura, Kenji

    2015-12-01

    Cellular proliferation is tightly controlled by several cell-cycle checkpoint proteins. In cancer, the genes encoding these proteins are often disrupted and cause unrestrained cancer growth. The proteins are over-expressed in many malignancies; thus, they are potential targets for anti-cancer therapies. These proteins include cyclin-dependent kinase, checkpoint kinase, WEE1 kinase, aurora kinase and polo-like kinase. Cyclin-dependent kinase inhibitors are the most advanced cell-cycle checkpoint therapeutics available. For instance, palbociclib (PD0332991) is a first-in-class, oral, highly selective inhibitor of CDK4/6 and, in combination with letrozole (Phase II; PALOMA-1) or with fulvestrant (Phase III; PALOMA-3), it has significantly prolonged progression-free survival, in patients with metastatic estrogen receptor-positive, HER2-negative breast cancer, in comparison with that observed in patients using letrozole, or fulvestrant alone, respectively. In this review, we provide an overview of the current compounds available for cell-cycle checkpoint protein-directed therapy for solid tumors. PMID:26486823

  13. TRICHOSTATIN A INHIBITS PROLIFERATION, INDUCES APOPTOSIS AND CELL CYCLE ARREST IN HELA CELLS

    Institute of Scientific and Technical Information of China (English)

    XU Zhou-min; WANG Yi-qun; MEI Qi; CHEN Jian; DU Jia; WEI Yan; XU Ying-chun

    2006-01-01

    Objective: The histone deacetylase inhibitors (HDACIS) have been shown to inhibit cancer cell proliferation, stimulate apoptosis, an induce cell cycle arrest. Our purpose was to investigate the antiproliferative effects of a HDACI, trichostatin A (TSA), against human cervical cancer cells (HeLa). Methods: HeLa cells were treated in vitro with various concentrations of TSA. The inhibitory effect of TSA on the growth of HeLa cells was measured by MTT assay. To detect the characteristic of apoptosis chromatin condensation, HeLa cells were stained with Hoechst 33258 in the presence of TSA. Induction of cell cycle arrest was studied by flow cytometry. Changes in gene expression of p53, p21Waf1 and p27Kip1 were studied by semiquantitative RT-PCR. Results: TSA inhibited cell growth in a time- and dose-dependent manner. Hoechst 33258 staining assay showed that TSA induced apoptosis. Cell cycle analysis indicated that treatment with TSA decreased the proportion of cells in S phase and increased the proportion of cells in G0/G1 and/or G2/M phases of the cell cycle. This was concomitant with overexpression of genes related to malignant phenotype, including an increase in p53, p21Waf1 and p27Kip1. Conclusion: These results suggest that TSA is effective in inhibiting growth of HeLa cells in vitro. The findings raise the possibility that TSA may prove particularly effective in treatment of cervical cancers.

  14. Effects of Trichostatin A on HDAC8 Expression, Proliferation and Cell Cycle of Molt-4 Cells

    Institute of Scientific and Technical Information of China (English)

    HE Jing; LIU Hongli; CHEN Yan

    2006-01-01

    The effects of Trichostatin A (TSA) on histone deacetylase 8 (HDAC8) expression, proliferation and cell cycle arrest in T-lymphoblastic leukemia cell line Molt-4 cells in vitro were investigated. The effect of TSA on the growth of Molt-4 cells was studied by MTT assay. Flow cytometry was used to examine the cell cycle. The expression of HDAC8 was detected by using immunocytochemistry and Western blot. The results showed that proliferation of Molt-4 cells was inhibited in TSA-treated group in a time- and dose-dependent manner. The IC50 of TSA exposures for 24 h and 36 h were 254.3236 and 199.257 μg/L respectively. The cell cycle analysis revealed that Molt-4 was mostly in G0/G1 phase, and after treatment with TSA from 50 to 400 μg/L for 24 h, the percents of G0/G1 cells were decreased and cells were arrested in G2/M phase. Treatment of TSA for 24 h could significantly inhibit the expression of HDAC8 protein in Molt-4 cells (P<0.01). It was concluded that TSA could decrease the expression of HDAC8 in Molt-4 cells, which contributed to the inhibition of proliferation and induction of cell cycle arrest in Molt-4 cells.

  15. A genetic interaction map of cell cycle regulators.

    Science.gov (United States)

    Billmann, Maximilian; Horn, Thomas; Fischer, Bernd; Sandmann, Thomas; Huber, Wolfgang; Boutros, Michael

    2016-04-15

    Cell-based RNA interference (RNAi) is a powerful approach to screen for modulators of many cellular processes. However, resulting candidate gene lists from cell-based assays comprise diverse effectors, both direct and indirect, and further dissecting their functions can be challenging. Here we screened a genome-wide RNAi library for modulators of mitosis and cytokinesis inDrosophilaS2 cells. The screen identified many previously known genes as well as modulators that have previously not been connected to cell cycle control. We then characterized ∼300 candidate modifiers further by genetic interaction analysis using double RNAi and a multiparametric, imaging-based assay. We found that analyzing cell cycle-relevant phenotypes increased the sensitivity for associating novel gene function. Genetic interaction maps based on mitotic index and nuclear size grouped candidates into known regulatory complexes of mitosis or cytokinesis, respectively, and predicted previously uncharacterized components of known processes. For example, we confirmed a role for theDrosophilaCCR4 mRNA processing complex componentl(2)NC136during the mitotic exit. Our results show that the combination of genome-scale RNAi screening and genetic interaction analysis using process-directed phenotypes provides a powerful two-step approach to assigning components to specific pathways and complexes. PMID:26912791

  16. Hypoxia alters cell cycle regulatory protein expression and induces premature maturation of oligodendrocyte precursor cells.

    Directory of Open Access Journals (Sweden)

    Ravi Shankar Akundi

    Full Text Available BACKGROUND: Periventricular white matter injury (PWMI is a common form of brain injury sustained by preterm infants. A major factor that predisposes to PWMI is hypoxia. Because oligodendrocytes (OLs are responsible for myelination of axons, abnormal OL development or function may affect brain myelination. At present our understanding of the influences of hypoxia on OL development is limited. To examine isolated effects of hypoxia on OLs, we examined the influences of hypoxia on OL development in vitro. METHODOLOGY/FINDINGS: Cultures of oligodendrocyte precursor cells (OPCs were prepared from mixed glial cultures and were 99% pure. OPCs were maintained at 21% O(2 or hypoxia (1% or 4% O(2 for up to 7 days. We observed that 1% O(2 lead to an increase in the proportion of myelin basic protein (MBP-positive OLs after 1 week in culture, and a decrease in the proportion of platelet-derived growth factor receptor alpha (PDGFRalpha-positive cells suggesting premature OL maturation. Increased expression of the cell cycle regulatory proteins p27(Kip1 and phospho-cdc2, which play a role in OL differentiation, was seen as well. CONCLUSIONS: These results show that hypoxia interferes with the normal process of OL differentiation by inducing premature OPC maturation.

  17. Mast cells dysregulate apoptotic and cell cycle genes in mucosal squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Davis Paul

    2006-12-01

    Full Text Available Abstract Background Mucosal squamous cell carcinoma of the head and neck is a disease of high mortality and morbidity. Interactions between the squamous cell carcinoma and the host's local immunity, and how the latter contributes to the biological behavior of the tumor are unclear. In vivo studies have demonstrated sequential mast cell infiltration and degranulation during squamous cell carcinogenesis. The degree of mast cell activation correlates closely with distinct phases of hyperkeratosis, dysplasia, carcinoma in-situ and invasive carcinoma. However, the role of mast cells in carcinogenesis is unclear. Aim This study explores the effects of mast cells on the proliferation and gene expression profile of mucosal squamous cell carcinoma using human mast cell line (HMC-1 and human glossal squamous cell carcinoma cell line (SCC25. Methods HMC-1 and SCC25 were co-cultured in a two-compartment chamber, separated by a polycarbonate membrane. HMC-1 was stimulated to degranulate with calcium ionophore A23187. The experiments were done in quadruplicate. Negative controls were established where SCC25 were cultured alone without HMC-1. At 12, 24, 48 and 72 hours, proliferation and viability of SCC25 were assessed with MTT colorimetric assay. cDNA microarray was employed to study differential gene expression between co-cultured and control SCC25. Results HMC-1/SCC25 co-culture resulted in suppression of growth rate for SCC-25 (34% compared with 110% for the control by 72 hours, p Conclusion We show that mast cells have a direct inhibitory effect on the proliferation of mucosal squamous cell carcinoma in vitro by dysregulating key genes in apoptosis and cell cycle control.

  18. Menstrual cycle distribution of uterine natural killer cells is altered in heavy menstrual bleeding.

    Science.gov (United States)

    Biswas Shivhare, Sourima; Bulmer, Judith N; Innes, Barbara A; Hapangama, Dharani K; Lash, Gendie E

    2015-11-01

    Heavy menstrual bleeding (HMB) affects 30% of women of reproductive age and significantly interferes with quality of life. Altered endometrial vascular maturation has been reported in HMB and recurrent miscarriage, the latter associated with increased uterine natural killer (uNK) cell numbers. This study compared endometrial leukocyte populations in controls and women with HMB. Formalin-fixed paraffin-embedded endometrial biopsies from controls (without endometrial pathology) and HMB were immunostained for CD14 (macrophages), CD56 (uNK cells), CD83 (dendritic cells), FOXP3 (regulatory T cells/Tregs), CD3 and CD8 (T cells). Leukocyte numbers were analysed as a percentage of total stromal cells in five randomly selected fields of view in the stratum functionalis of each sample. In control women across the menstrual cycle, 2-8% of total stromal cells were CD3(+) cells, 2-4% were CD8(+) T cells and 6-8% were CD14(+) macrophages. Compared with controls, CD3(+) cells were reduced during the mid-secretory phase (4%, P<0.01) and increased in the late secretory phase (12%, P=0.01) in HMB. CD83(+) dendritic cells and FOXP3(+) Tregs were scarce throughout the menstrual cycle in both groups. In controls, 2% of stromal cells in proliferative endometrium were CD56(+) uNK cells, increasing to 17% during the late secretory phase. In HMB, CD56(+) uNK cells were increased in the proliferative (5%, P<0.01) and early secretory (4%, P<0.02) phases, but reduced (10%, P<0.01) in the late secretory phase. This study demonstrates dysregulation of uNK cells in HMB, the functional consequence of which may have an impact on endometrial vascular development and/or endometrial preparation for menstruation.

  19. Cadmium affects mitotically inherited histone modification pathways in mouse embryonic stem cells.

    Science.gov (United States)

    Gadhia, S R; O'Brien, D; Barile, F A

    2015-12-25

    The fetal basis of adult disease (FeBAD) theorizes that embryonic challenges initiate pathologies in adult life through epigenetic modification of gene expression. In addition, inheritance of H3K27 methylation marks, especially in vitro, is still controversial. Metals, such as Cd, are known to affect differentiation, DNA repair and epigenetic status in mES cells. We tested the premise that Cd exerts differential toxicity in mouse embryonic stem (mES) cells by targeting total histone protein (THP) production early in stem cell development, while affecting H3K27-mono-methylation (H3K27me(1)) in latter stages of differentiation. The inability of mES cells to recover from Cd insult at concentrations greater than IC50 indicates that maximum cytotoxicity occurs during initial hours of exposure. Moreover, as a measure of chromatin stability, low dose acute Cd exposure lowers THP production. The heritable effects of Cd exposure on cell proliferation, chromatin stability and transcription observed through several cell population doublings were detected only during alternate passages on days 3, 7, and 11, presumably due to slower maturation of histone methylation marks. These findings demonstrate a selective disruption of chromatin structure following acute Cd exposure, an effect not seen in developmentally mature cells. Hence, we present that acute Cd toxicity is cumulative and disrupts DNA repair, while concurrently affecting cell cycle progression, chromatin stability and transcriptional state in mES cells.

  20. Piperlongumine Suppresses Proliferation of Human Oral Squamous Cell Carcinoma through Cell Cycle Arrest, Apoptosis and Senescence

    OpenAIRE

    San-Yuan Chen; Geng-Hung Liu; Wen-Ying Chao; Chung-Sheng Shi; Ching-Yen Lin; Yun-Ping Lim; Chieh-Hsiang Lu; Peng-Yeh Lai; Hau-Ren Chen; Ying-Ray Lee

    2016-01-01

    Oral squamous cell carcinoma (OSCC), an aggressive cancer originating in the oral cavity, is one of the leading causes of cancer deaths in males worldwide. This study investigated the antitumor activity and mechanisms of piperlongumine (PL), a natural compound isolated from Piper longum L., in human OSCC cells. The effects of PL on cell proliferation, the cell cycle, apoptosis, senescence and reactive oxygen species (ROS) levels in human OSCC cells were investigated. PL effectively inhibited ...

  1. Effect of Lithium on Cell Cycle Progression of Pig Airway Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    陈文书; 吴人亮; 王曦; 李媛; 郝天玲

    2004-01-01

    To investigate the effect of lithium on cell cycle progression of airway epithelial cells,primary pig tracheobronchial epithelial cells were incubated with lithium chloride (LiCl) at different concentrations (0, 5 mmol/L, and 10 mmol/L) and time (12 h, 16 h and 24 h). After the treatment, cells were counted, cell cycle profile was measured by BrdU labeling and flow cytometry, and expression of cyclin D1 and cyclin B1 were detected by Western blotting. The results showed that after 24h of 10mmol/L but not 5mmol/L LiCl treatment, proliferation of cells was slowed down as manifested by delayed confluence and cell number accumulation (P<0.05). Lithium did not change the percentage of cells in S phase (P>0.05), but 24 h incubation with 10 mmol/L LiCl induced a G2/M cell cycle arrest. Furthermore, 10mmol/L LiCl elevated cyclin D1 expression after 12h treatment, while expression of cyclin B1 increased more significantly after 24h incubation. These data demonstrate that lithium inhibits proliferation of pig airway epithelial cells by inhibiting cell cycle progression, and suggest that lithium-sensitive molecule(s) such as glycogen synthase kinase 3 may have a role in the regulation of growth of airway epithelial cells.

  2. Pitx2 expression promotes p21 expression and cell cycle exit in neural stem cells.

    Science.gov (United States)

    Heldring, Nina; Joseph, Bertrand; Hermanson, Ola; Kioussi, Chrissa

    2012-11-01

    Cortical development is a complex process that involves many events including proliferation, cell cycle exit and differentiation that need to be appropriately synchronized. Neural stem cells (NSCs) isolated from embryonic cortex are characterized by their ability of self-renewal under continued maintenance of multipotency. Cell cycle progression and arrest during development is regulated by numerous factors, including cyclins, cyclin dependent kinases and their inhibitors. In this study, we exogenously expressed the homeodomain transcription factor Pitx2, usually expressed in postmitotic progenitors and neurons of the embryonic cortex, in NSCs with low expression of endogenous Pitx2. We found that Pitx2 expression induced a rapid decrease in proliferation associated with an accumulation of NSCs in G1 phase. A search for potential cell cycle inhibitors responsible for such cell cycle exit of NSCs revealed that Pitx2 expression caused a rapid and dramatic (≉20-fold) increase in expression of the cell cycle inhibitor p21 (WAF1/Cip1). In addition, Pitx2 bound directly to the p21 promoter as assessed by chromatin immunoprecipitation (ChIP) in NSCs. Surprisingly, Pitx2 expression was not associated with an increase in differentiation markers, but instead the expression of nestin, associated with undifferentiated NSCs, was maintained. Our results suggest that Pitx2 promotes p21 expression and induces cell cycle exit in neural progenitors.

  3. The cell cycle, cell death, and cell morphology during retinoic acid-induced differentiation of embryonal carcinoma cells

    NARCIS (Netherlands)

    Mummery, C.L.; Brink, C.E. van den; Saag, P.T. van der; Laat, S.W. de

    1984-01-01

    Abstract Time-lapse films were made of PC13 embryonal carcinoma cells, synchronized by mitotic shake off, in the absence and presence of retinoic acid. Using a method based on the transition probability model, cell cycle parameters were determined during the first five generations following synchron

  4. Elevated Progesterone Levels on the Day of Oocyte Maturation May Affect Top Quality Embryo IVF Cycles.

    Directory of Open Access Journals (Sweden)

    Bo Huang

    Full Text Available In contrast to the impact of elevated progesterone on endometrial receptivity, the data on whether increased progesterone levels affects the quality of embryos is still limited. This study retrospectively enrolled 4,236 fresh in vitro fertilization (IVF cycles and sought to determine whether increased progesterone is associated with adverse outcomes with regard to top quality embryos (TQE. The results showed that the TQE rate significantly correlated with progesterone levels on the day of human chorionic gonadotropin (hCG trigger (P = 0.009. Multivariate linear regression analysis of factors related to the TQE rate, in conventional IVF cycles, showed that the TQE rate was negatively associated with progesterone concentration on the day of hCG (OR was -1.658, 95% CI: -2.806 to -0.510, P = 0.005. When the serum progesterone level was within the interval 2.0-2.5 ng/ml, the TQE rate was significantly lower (P 2.5 ng/ml. Then, we choose a progesterone level at 1.5ng/ml, 2.0 ng/ml and 2.5 ng/ml as cut-off points to verify this result. We found that the TQE rate was significantly different (P 2.0 ng/ml. In conclusion, the results of this study clearly demonstrated a negative effect of elevated progesterone levels on the day of hCG trigger, on TQE rate, regardless of the basal FSH, the total gonadotropin, the age of the woman, or the time of ovarian stimulation. These data demonstrate that elevated progesterone levels (>2.0 ng/ml before oocyte maturation were consistently detrimental to the oocyte.

  5. Elevated Progesterone Levels on the Day of Oocyte Maturation May Affect Top Quality Embryo IVF Cycles

    Science.gov (United States)

    Huang, Bo; Ren, Xinling; Wu, Li; Zhu, Lixia; Xu, Bei; Li, Yufeng; Ai, Jihui; Jin, Lei

    2016-01-01

    In contrast to the impact of elevated progesterone on endometrial receptivity, the data on whether increased progesterone levels affects the quality of embryos is still limited. This study retrospectively enrolled 4,236 fresh in vitro fertilization (IVF) cycles and sought to determine whether increased progesterone is associated with adverse outcomes with regard to top quality embryos (TQE). The results showed that the TQE rate significantly correlated with progesterone levels on the day of human chorionic gonadotropin (hCG) trigger (P = 0.009). Multivariate linear regression analysis of factors related to the TQE rate, in conventional IVF cycles, showed that the TQE rate was negatively associated with progesterone concentration on the day of hCG (OR was -1.658, 95% CI: -2.806 to -0.510, P = 0.005). When the serum progesterone level was within the interval 2.0–2.5 ng/ml, the TQE rate was significantly lower (P 2.5 ng/ml. Then, we choose a progesterone level at 1.5ng/ml, 2.0 ng/ml and 2.5 ng/ml as cut-off points to verify this result. We found that the TQE rate was significantly different (P 2.0 ng/ml. In conclusion, the results of this study clearly demonstrated a negative effect of elevated progesterone levels on the day of hCG trigger, on TQE rate, regardless of the basal FSH, the total gonadotropin, the age of the woman, or the time of ovarian stimulation. These data demonstrate that elevated progesterone levels (>2.0 ng/ml) before oocyte maturation were consistently detrimental to the oocyte. PMID:26745711

  6. Low Temperature Affects Stem Cell Maintenance in Brassica oleracea Seedlings.

    Science.gov (United States)

    de Jonge, Jennifer; Kodde, Jan; Severing, Edouard I; Bonnema, Guusje; Angenent, Gerco C; Immink, Richard G H; Groot, Steven P C

    2016-01-01

    Most of the above ground tissues in higher plants originate from stem cells located in the shoot apical meristem (SAM). Several plant species can suffer from spontaneous stem cell arrest resulting in lack of further shoot development. In Brassica oleracea this SAM arrest is known as blindness and occurs in an unpredictable manner leading to considerable economic losses for plant raisers and farmers. Detailed analyses of seedlings showed that stem cell arrest is triggered by low temperatures during germination. To induce this arrest reproducibly and to study the effect of the environment, an assay was developed. The role of genetic variation on the susceptibility to develop blind seedlings was analyzed by a quantitative genetic mapping approach, using seeds from a double haploid population from a cross between broccoli and Chinese kale, produced at three locations. The analysis revealed, besides an effect of the seed production location, a region on linkage group C3 associated with blindness sensitivity. A subsequent dynamic genome-wide transcriptome analysis resulted in the identification of around 3000 differentially expressed genes early after blindness induction. A large number of cell cycle genes were en masse induced early during the development of blindness, whereas shortly after, all were down-regulated. This miss-regulation of core cell cycle genes is accompanied with a strong reduction of cells reaching the DNA replication phase. From the differentially expressed genes, 90 were located in the QTL region C3. Among them are two genes belonging to the MINICHROMOSOMAL MAINTENANCE gene family, known to be involved in DNA replication, a RETINOBLASTOMA-RELATED gene, a key regulator for cell cycle initiation, and several MutS homologs genes, involved in DNA repair. These genes are potential candidates for being involved in the development of blindness in Brassica oleracea sensitive genotypes. PMID:27375654

  7. DMPD: CSF-1 and cell cycle control in macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 8981359 CSF-1 and cell cycle control in macrophages. Hamilton JA. Mol Reprod Dev. 1...D 8981359 Title CSF-1 and cell cycle control in macrophages. Authors Hamilton JA. Publication Mol Reprod Dev

  8. Methamphetamine alters the normal progression by inducing cell cycle arrest in astrocytes.

    Directory of Open Access Journals (Sweden)

    Austin R Jackson

    Full Text Available Methamphetamine (MA is a potent psychostimulant with a high addictive capacity, which induces many deleterious effects on the brain. Chronic MA abuse leads to cognitive dysfunction and motor impairment. MA affects many cells in the brain, but the effects on astrocytes of repeated MA exposure is not well understood. In this report, we used Gene chip array to analyze the changes in the gene expression profile of primary human astrocytes treated with MA for 3 days. Range of genes were found to be differentially regulated, with a large number of genes significantly downregulated, including NEK2, TTK, TOP2A, and CCNE2. Gene ontology and pathway analysis showed a highly significant clustering of genes involved in cell cycle progression and DNA replication. Further pathway analysis showed that the genes downregulated by multiple MA treatment were critical for G2/M phase progression and G1/S transition. Cell cycle analysis of SVG astrocytes showed a significant reduction in the percentage of cell in the G2/M phase with a concomitant increase in G1 percentage. This was consistent with the gene array and validation data, which showed that repeated MA treatment downregulated the genes associated with cell cycle regulation. This is a novel finding, which explains the effect of MA treatment on astrocytes and has clear implication in neuroinflammation among the drug abusers.

  9. Cell Cycle Regulates Nuclear Stability of AID and Determines the Cellular Response to AID.

    Directory of Open Access Journals (Sweden)

    Quy Le

    2015-09-01

    Full Text Available AID (Activation Induced Deaminase deaminates cytosines in DNA to initiate immunoglobulin gene diversification and to reprogram CpG methylation in early development. AID is potentially highly mutagenic, and it causes genomic instability evident as translocations in B cell malignancies. Here we show that AID is cell cycle regulated. By high content screening microscopy, we demonstrate that AID undergoes nuclear degradation more slowly in G1 phase than in S or G2-M phase, and that mutations that affect regulatory phosphorylation or catalytic activity can alter AID stability and abundance. We directly test the role of cell cycle regulation by fusing AID to tags that destabilize nuclear protein outside of G1 or S-G2/M phases. We show that enforced nuclear localization of AID in G1 phase accelerates somatic hypermutation and class switch recombination, and is well-tolerated; while nuclear AID compromises viability in S-G2/M phase cells. We identify AID derivatives that accelerate somatic hypermutation with minimal impact on viability, which will be useful tools for engineering genes and proteins by iterative mutagenesis and selection. Our results further suggest that use of cell cycle tags to regulate nuclear stability may be generally applicable to studying DNA repair and to engineering the genome.

  10. Modeling cell-cycle synchronization during embryogenesis in Xenopus laevis

    Science.gov (United States)

    McIsaac, R. Scott; Huang, K. C.; Sengupta, Anirvan; Wingreen, Ned

    2010-03-01

    A widely conserved aspect of embryogenesis is the ability to synchronize nuclear divisions post-fertilization. How is synchronization achieved? Given a typical protein diffusion constant of 10 μm^2sec, and an embryo length of 1mm, it would take diffusion many hours to propagate a signal across the embryo. Therefore, synchrony cannot be attained by diffusion alone. We hypothesize that known autocatalytic reactions of cell-cycle components make the embryo an ``active medium'' in which waves propagate much faster than diffusion, enforcing synchrony. We report on robust spatial synchronization of components of the core cell cycle circuit based on a mathematical model previously determined by in vitro experiments. In vivo, synchronized divisions are preceded by a rapid calcium wave that sweeps across the embryo. Experimental evidence supports the hypothesis that increases in transient calcium levels lead to derepression of a negative feedback loop, allowing cell divisions to start. Preliminary results indicate a novel relationship between the speed of the initial calcium wave and the ability to achieve synchronous cell divisions.

  11. Systematic Characterization of Cell Cycle Phase-dependent Protein Dynamics and Pathway Activities by High-content Microscopy-assisted Cell Cycle Phenotyping

    Institute of Scientific and Technical Information of China (English)

    Christopher Bruhn; Torsten Kroll; Zhao-Qi Wang

    2014-01-01

    Cell cycle progression is coordinated with metabolism, signaling and other complex cel-lular functions. The investigation of cellular processes in a cell cycle stage-dependent manner is often the subject of modern molecular and cell biological research. Cell cycle synchronization and immunostaining of cell cycle markers facilitate such analysis, but are limited in use due to unphysiological experimental stress, cell type dependence and often low flexibility. Here, we describe high-content microscopy-assisted cell cycle phenotyping (hiMAC), which integrates high-resolution cell cycle profiling of asynchronous cell populations with immunofluorescence microscopy. hiMAC is compatible with cell types from any species and allows for statistically pow-erful, unbiased, simultaneous analysis of protein interactions, modifications and subcellular locali-zation at all cell cycle stages within a single sample. For illustration, we provide a hiMAC analysis pipeline tailored to study DNA damage response and genomic instability using a 3–4-day protocol, which can be adjusted to any other cell cycle stage-dependent analysis.

  12. Cycle training modulates satellite cell and transcriptional responses to a bout of resistance exercise.

    Science.gov (United States)

    Murach, Kevin A; Walton, R Grace; Fry, Christopher S; Michaelis, Sami L; Groshong, Jason S; Finlin, Brian S; Kern, Philip A; Peterson, Charlotte A

    2016-09-01

    This investigation evaluated whether moderate-intensity cycle ergometer training affects satellite cell and molecular responses to acute maximal concentric/eccentric resistance exercise in middle-aged women. Baseline and 72 h postresistance exercise vastus lateralis biopsies were obtained from seven healthy middle-aged women (56 ± 5 years, BMI 26 ± 1, VO2max 27 ± 4) before and after 12 weeks of cycle training. Myosin heavy chain (MyHC) I- and II-associated satellite cell density and cross-sectional area was determined via immunohistochemistry. Expression of 93 genes representative of the muscle-remodeling environment was also measured via NanoString. Overall fiber size increased ~20% with cycle training (P = 0.052). MyHC I satellite cell density increased 29% in response to acute resistance exercise before endurance training and 50% with endurance training (P training, MyHC I satellite cell density decreased by 13% in response to acute resistance exercise (acute resistance × training interaction, P trained state in response to resistance exercise. Similar satellite cell and gene expression response patterns indicate coordinated regulation of the muscle environment to promote adaptation. Moderate-intensity endurance cycle training modulates the response to acute resistance exercise, potentially conditioning the muscle for more intense concentric/eccentric activity. These results suggest that cycle training is an effective endurance exercise modality for promoting growth in middle-aged women, who are susceptible to muscle mass loss with progressing age.

  13. Toll-like receptor 4 is involved in the cell cycle modulation and required for effective human cytomegalovirus infection in THP-1 macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Arcangeletti, Maria-Cristina, E-mail: mariacristina.arcangeletti@unipr.it [Department of Clinical and Experimental Medicine, University of Parma, Parma (Italy); Germini, Diego; Rodighiero, Isabella [Department of Clinical and Experimental Medicine, University of Parma, Parma (Italy); Mirandola, Prisco [Department of Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma (Italy); De Conto, Flora; Medici, Maria-Cristina [Department of Clinical and Experimental Medicine, University of Parma, Parma (Italy); Gatti, Rita [Department of Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma (Italy); Chezzi, Carlo; Calderaro, Adriana [Department of Clinical and Experimental Medicine, University of Parma, Parma (Italy)

    2013-05-25

    Suitable host cell metabolic conditions are fundamental for the effective development of the human cytomegalovirus (HCMV) lytic cycle. Indeed, several studies have demonstrated the ability of this virus to interfere with cell cycle regulation, mainly by blocking proliferating cells in G1 or G1/S. In the present study, we demonstrate that HCMV deregulates the cell cycle of THP-1 macrophages (a cell line irreversibly arrested in G0) by pushing them into S and G2 phases. Moreover, we show that HCMV infection of THP-1 macrophages leads to Toll-like receptor 4 (TLR4) activation. Since various studies have indicated TLR4 to be involved in promoting cell proliferation, here we investigate the possible role of TLR4 in the observed HCMV-induced cell cycle perturbation. Our data strongly support TLR4 as a mediator of HCMV-triggered cell cycle activation in THP-1 macrophages favouring, in turn, the development of an efficient viral lytic cycle. - Highlights: ► We studied HCMV infection impact on THP-1 macrophage cell cycle. ► We analysed the role played by Toll-like receptor (TLR) 4 upon HCMV infection. ► HCMV pushes THP-1 macrophages (i.e. resting cells) to re-enter the cell cycle. ► TLR4 pathway inhibition strongly affects the effectiveness of HCMV replication. ► TLR4 pathway inhibition significantly decreases HCMV-induced cell cycle re-entry.

  14. Coupling between the circadian clock and cell cycle oscillators: implication for healthy cells and malignant growth

    Directory of Open Access Journals (Sweden)

    Celine eFeillet

    2015-05-01

    Full Text Available Uncontrolled cell proliferation is one of the key features leading to cancer. Seminal works in chronobiology have revealed that disruption of the circadian timing system in mice, either by surgical, genetic or environmental manipulation, increased tumor development. In humans, shift work is a risk factor for cancer. Based on these observations, the link between the circadian clock and cell cycle has become intuitive. But despite identification of molecular connections between the two processes, the influence of the clock on the dynamics of the cell cycle has never been formally observed. Recently, two studies combining single live cell imaging with computational methods have shed light on robust coupling between clock and cell cycle oscillators. We recapitulate here these novel findings and integrate them with earlier results in both healthy and cancerous cells. Moreover, we propose that the cell cycle may be synchronized or slowed down through coupling with the circadian clock, which results in reduced tumour growth. More than ever, systems biology has become instrumental to understand the dynamic interaction between the circadian clock and cell cycle, which is critical in cellular coordination and for diseases such as cancer.

  15. Coupling between the Circadian Clock and Cell Cycle Oscillators: Implication for Healthy Cells and Malignant Growth

    Science.gov (United States)

    Feillet, Celine; van der Horst, Gijsbertus T. J.; Levi, Francis; Rand, David A.; Delaunay, Franck

    2015-01-01

    Uncontrolled cell proliferation is one of the key features leading to cancer. Seminal works in chronobiology have revealed that disruption of the circadian timing system in mice, either by surgical, genetic, or environmental manipulation, increased tumor development. In humans, shift work is a risk factor for cancer. Based on these observations, the link between the circadian clock and cell cycle has become intuitive. But despite identification of molecular connections between the two processes, the influence of the clock on the dynamics of the cell cycle has never been formally observed. Recently, two studies combining single live cell imaging with computational methods have shed light on robust coupling between clock and cell cycle oscillators. We recapitulate here these novel findings and integrate them with earlier results in both healthy and cancerous cells. Moreover, we propose that the cell cycle may be synchronized or slowed down through coupling with the circadian clock, which results in reduced tumor growth. More than ever, systems biology has become instrumental to understand the dynamic interaction between the circadian clock and cell cycle, which is critical in cellular coordination and for diseases such as cancer. PMID:26029155

  16. Cell cycle delays in synchronized cell populations following irradiation with heavy ions

    International Nuclear Information System (INIS)

    Mammalian cells subjected to irradiation with heavy ions were investigated for cell cycle delays. The ions used for this purpose included Ne ions in the LET range of 400 keV/μm just as well as uranium ions of 16225 keV/μm. The qualitative changes in cell cycle progression seen after irradiation with Ne ions (400 keV/μm) were similar to those observed in connection with X-rays. Following irradiation with extremely heavy ions (lead, uranium) the majority of cells were even at 45 hours still found to be in the S phase or G2M phase of the first cycle. The delay cross section 'σ-delay' was introduced as a quantity that would permit quantitative comparisons to be carried out between the changes in cell progression and other effects of radiation. In order to evaluate the influence of the number of hits on the radiation effect observed, the size of the cell nucleus was precisely determined with reference to the cycle phase and local cell density. A model to simulate those delay effects was designed in such a way that account is taken of this probability of hit and that the results can be extrapolated from the delay effects after X-irradiation. On the basis of the various probabilities of hit for cells at different cycle stages a model was developed to ascertain the intensified effect following fractionated irradiation with heavy ions. (orig./MG)

  17. Impairment of cell cycle progression by aflatoxin B1 in human cell lines.

    Science.gov (United States)

    Ricordy, R; Gensabella, G; Cacci, E; Augusti-Tocco, G

    2002-05-01

    Aflatoxin B1 is a mycotoxin produced by Aspergillus flavus and Aspergillus parasiticum, which may be present as a food contaminant. It is known to cause acute toxic effects and act as a carcinogenic agent. The carcinogenic action has been related to its ability to form unstable adducts with DNA, which represent possible mutagenic sites. On the other hand, the primary cellular target responsible for its toxic action has not yet been clearly identified. Previous data suggested a possible correlation between cell proliferation and responsiveness to aflatoxin toxicity. These observations led us to investigate the effect of the toxin on cell cycle progression of three human cell lines (HepG2, SK-N-MC and SK-N-SH derived from liver and nervous tissue tumours); they were shown to display different responses to toxin exposure and have different growth kinetics. We performed analysis of the cell cycle, DNA synthesis and expression of p21 and p53 in the presence and absence of the toxin in all cell lines exposed. The results of cell cycle cytofluorometric analysis show significant alterations of cell cycle progression as a result of toxin treatment. In all cell lines exposure to a 24 h toxin treatment causes a dose-dependent accumulation in S phase, however, the ability to recover from impairment to traverse S phase varies in the cell lines under study. SK-N-MC cells appear more prone to resume DNA synthesis when the toxin is removed, while the other two cell lines maintain a significant inhibition of DNA synthesis, as indicated by cytofluorimetry and [(3)H]dTR incorporation. The level of p53 and p21 expression in the three cell lines was examined by western blot analysis and significant differences were detected. The ready resumption of DNA synthesis displayed by SK-N-MC cells could possibly be related to the absence of p53 control of cell cycle progression.

  18. Antecedent acute cycling exercise affects attention control: an ERP study using attention network test

    Directory of Open Access Journals (Sweden)

    Yu-Kai eChang

    2015-04-01

    Full Text Available The purpose of this study was to investigate the after-effects of an acute bout of moderate-intensity aerobic cycling exercise on neuroelectric and behavioral indices of efficiency of three attentional networks: alerting, orienting, and executive (conflict control. Thirty young, highly fit amateur basketball players performed a multifunctional attentional reaction time task, the attention network test (ANT, with a two-group randomized experimental design after an acute bout of moderate-intensity spinning wheel exercise or without antecedent exercise. The ANT combined warning signals prior to targets, spatial cueing of potential target locations and target stimuli surrounded by congruent or incongruent flankers, which were provided to assess three attentional networks. Event-related brain potentials and task performance were measured during the ANT. Exercise resulted in a larger P3 amplitude in the alerting and executive control subtasks across frontal, central and parietal midline sites that was paralleled by an enhanced reaction speed only on trials with incongruent flankers of the executive control network. The P3 latency and response accuracy were not affected by exercise. These findings suggest that after spinning, more resources are allocated to task-relevant stimuli in tasks that rely on the alerting and executive control networks. However, the improvement in performance was observed in only the executively challenging conflict condition, suggesting that whether the brain resources that are rendered available immediately after acute exercise translate into better attention performance depends on the cognitive task complexity.

  19. Antecedent acute cycling exercise affects attention control: an ERP study using attention network test.

    Science.gov (United States)

    Chang, Yu-Kai; Pesce, Caterina; Chiang, Yi-Te; Kuo, Cheng-Yuh; Fong, Dong-Yang

    2015-01-01

    The purpose of this study was to investigate the after-effects of an acute bout of moderate intensity aerobic cycling exercise on neuroelectric and behavioral indices of efficiency of three attentional networks: alerting, orienting, and executive (conflict) control. Thirty young, highly fit amateur basketball players performed a multifunctional attentional reaction time task, the attention network test (ANT), with a two-group randomized experimental design after an acute bout of moderate intensity spinning wheel exercise or without antecedent exercise. The ANT combined warning signals prior to targets, spatial cueing of potential target locations and target stimuli surrounded by congruent or incongruent flankers, which were provided to assess three attentional networks. Event-related brain potentials and task performance were measured during the ANT. Exercise resulted in a larger P3 amplitude in the alerting and executive control subtasks across frontal, central and parietal midline sites that was paralleled by an enhanced reaction speed only on trials with incongruent flankers of the executive control network. The P3 latency and response accuracy were not affected by exercise. These findings suggest that after spinning, more resources are allocated to task-relevant stimuli in tasks that rely on the alerting and executive control networks. However, the improvement in performance was observed in only the executively challenging conflict condition, suggesting that whether the brain resources that are rendered available immediately after acute exercise translate into better attention performance depends on the cognitive task complexity. PMID:25914634

  20. Salidroside induces cell-cycle arrest and apoptosis in human breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xiaolan, E-mail: huxiaolan1998@yahoo.com.cn [Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou (China); Zhang, Xianqi [The 2nd Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou (China); Qiu, Shuifeng [Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou (China); Yu, Daihua; Lin, Shuxin [Fourth Military Medical University, Xi' an (China)

    2010-07-16

    Research highlights: {yields} Salidroside inhibits the growth of human breast cancer cells. {yields} Salidroside induces cell-cycle arrest of human breast cancer cells. {yields} Salidroside induces apoptosis of human breast cancer cell lines. -- Abstract: Recently, salidroside (p-hydroxyphenethyl-{beta}-D-glucoside) has been identified as one of the most potent compounds isolated from plants of the Rhodiola genus used widely in traditional Chinese medicine, but pharmacokinetic data on the compound are unavailable. We were the first to report the cytotoxic effects of salidroside on cancer cell lines derived from different tissues, and we found that human breast cancer MDA-MB-231 cells (estrogen receptor negative) were sensitive to the inhibitory action of low-concentration salidroside. To further investigate the cytotoxic effects of salidroside on breast cancer cells and reveal possible ER-related differences in response to salidroside, we used MDA-MB-231 cells and MCF-7 cells (estrogen receptor-positive) as models to study possible molecular mechanisms; we evaluated the effects of salidroside on cell growth characteristics, such as proliferation, cell cycle duration, and apoptosis, and on the expression of apoptosis-related molecules. Our results demonstrated for the first time that salidroside induces cell-cycle arrest and apoptosis in human breast cancer cells and may be a promising candidate for breast cancer treatment.

  1. A protocol to assess cell cycle and apoptosis in human and mouse pluripotent cells

    Directory of Open Access Journals (Sweden)

    Edel Michael J

    2011-04-01

    Full Text Available Abstract Embryonic stem cells (ESC and induced pluripotent stem cells (iPSCs present a great opportunity to treat and model human disease as a cell replacement therapy. There is a growing pressure to understand better the signal transduction pathways regulating pluripotency and self-renewal of these special cells in order to deliver a safe and reliable cell based therapy in the near future. Many signal transduction pathways converge on two major cell functions associated with self-renewal and pluripotency: control of the cell cycle and apoptosis, although a standard method is lacking across the field. Here we present a detailed protocol to assess the cell cycle and apoptosis of ESC and iPSCs as a single reference point offering an easy to use standard approach across the field.

  2. The FRIABLE1 gene product affects cell adhesion in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Lutz Neumetzler

    Full Text Available Cell adhesion in plants is mediated predominantly by pectins, a group of complex cell wall associated polysaccharides. An Arabidopsis mutant, friable1 (frb1, was identified through a screen of T-DNA insertion lines that exhibited defective cell adhesion. Interestingly, the frb1 plants displayed both cell and organ dissociations and also ectopic defects in organ separation. The FRB1 gene encodes a Golgi-localized, plant specific protein with only weak sequence similarities to known proteins (DUF246. Unlike other cell adhesion deficient mutants, frb1 mutants do not have reduced levels of adhesion related cell wall polymers, such as pectins. Instead, FRB1 affects the abundance of galactose- and arabinose-containing oligosaccharides in the Golgi. Furthermore, frb1 mutants displayed alteration in pectin methylesterification, cell wall associated extensins and xyloglucan microstructure. We propose that abnormal FRB1 action has pleiotropic consequences on wall architecture, affecting both the extensin and pectin matrices, with consequent changes to the biomechanical properties of the wall and middle lamella, thereby influencing cell-cell adhesion.

  3. Berberine induces cell cycle arrest and apoptosis in human gastric carcinoma SNU-5 cell line

    Institute of Scientific and Technical Information of China (English)

    Jing-Pin Lin; Jai-Sing Yang; Jau-Hong Lee; Wen-Tsong Hsieh; Jing-Gung Chung

    2006-01-01

    AIM: To investigate the relationship between the inhibited growth (cytotoxic activity) of berberine and apoptotic pathway with its molecular mechanism of action.METHODS: The in vitro cytotoxic techniques were complemented by cell cycle analysis and determination of sub-G1 for apoptosis in human gastric carcinoma SNU-5 cells. Percentage of viable cells, cell cycle, and sub-G1 group (apoptosis) were examined and determined by the flow cytometric methods. The associated proteins for cell cycle arrest and apoptosis were examined by Western blotting.RESULTS: For SNU-5 cell line, the IC (50) was found to be 48 μmol/L of berberine. In SNU-5 cells treated with 25-200 μmol/L berberine, G2/M cell cycle arrest was observed which was associated with a marked increment of the expression of p53, Wee1 and CDk1 proteins and decreased cyclin B. A concentration-dependent decrease of cells in G0/G1 phase and an increase in G2/M phase were detected. In addition, apoptosis detected as sub-G0 cell population in cell cycle measurement was proved in 25-200 μmol/L berberine-treated cells by monitoring the apoptotic pathway. Apoptosis was identified by sub-G0 cell population, and upregulation of Bax, downregulation of Bcl-2, release of Ca2+, decreased the mitochondrial membrane potential and then led to the release of mitochondrial cytochrome C into the cytoplasm and caused the activation of caspase-3, and finally led to the occurrence of apoptosis.CONCLUSION: Berberine induces p53 expression and leads to the decrease of the mitochondrial membrane potential, Cytochrome C release and activation of caspase-3 for the induction of apoptosis.

  4. Induction of G1 cell cycle arrest and apoptosis by berberine in bladder cancer cells.

    Science.gov (United States)

    Yan, Keqiang; Zhang, Cheng; Feng, Jinbo; Hou, Lifang; Yan, Lei; Zhou, Zunlin; Liu, Zhaoxu; Liu, Cheng; Fan, Yidon; Zheng, Baozhong; Xu, Zhonghua

    2011-07-01

    Bladder cancer is the ninth most common type of cancer, and its surgery is always followed by chemotherapy to prevent recurrence. Berberine is non-toxic to normal cells but has anti-cancer effects in many cancer cell lines. This study was aimed to determine whether berberine inhibits the cell proliferation and induces cell cycle arrest and apoptosis in BIU-87 and T24 bladder cancer cell line. The superficial bladder cancer cell line BIU-87 and invasive T24 bladder cancer cells were treated with different concentrations of berberine. MTT assay was used to determine the effects of berberine on the viability of these cells. The cell cycle arrest was detected through propidium iodide (PI) staining. The induction of apoptosis was determined through Annexin V-conjugated Alexa Fluor 488 (Alexa488) staining. Berberine inhibited the viability of BIU-87 and T24 cells in a dose- and time-dependent manner. It also promoted cell cycle arrest at G0/G1 in a dose-dependent manner and induced apoptosis. We observed that H-Ras and c-fos mRNA and protein expressionswere dose-dependently and time-dependently decreased by berberine treatment. Also, we investigated the cleaved caspase-3 and caspase-9 protein expressions increased in a dose-dependent manner. Berberine inhibits the cell proliferation and induces cell cycle arrest and apoptosis in BIU-87, bladder cancer cell line and T24, invasive bladder cancer cell line. Berberine can inhibit the oncogentic H-Ras and c-fos in T24 cells, and can induce the activation of the caspase-3 and caspase-9 apoptosis. Therefore, berberine has the potential to be a novel chemotherapy drug to treat the bladder cancer by suppressing tumor growth.

  5. Asparanin A induces G(2)/M cell cycle arrest and apoptosis in human hepatocellular carcinoma HepG2 cells.

    Science.gov (United States)

    Liu, Wei; Huang, Xue-Feng; Qi, Qi; Dai, Qin-Sheng; Yang, Li; Nie, Fei-Fei; Lu, Na; Gong, Dan-Dan; Kong, Ling-Yi; Guo, Qing-Long

    2009-04-17

    We recently established that asparanin A, a steroidal saponin extracted from Asparagus officinalis L., is an active cytotoxic component. The molecular mechanisms by which asparanin A exerts its cytotoxic activity are currently unknown. In this study, we show that asparanin A induces G(2)/M phase arrest and apoptosis in human hepatocellular carcinoma HepG2 cells. Following treatment of HepG2 cells with asparanin A, cell cycle-related proteins such as cyclin A, Cdk1 and Cdk4 were down-regulated, while p21(WAF1/Cip1) and p-Cdk1 (Thr14/Tyr15) were up-regulated. Additionally, we observed poly (ADP-ribose) polymerase (PARP) cleavage and activation of caspase-3, caspase-8 and caspase-9. The expression ratio of Bax/Bcl-2 was increased in the treated cells, where Bax was also up-regulated. We also found that the expression of p53, a modulator of p21(WAF1/Cip1) and Bax, was not affected in asparanin A-treated cells. Collectively, our findings demonstrate that asparanin A induces cell cycle arrest and triggers apoptosis via a p53-independent manner in HepG2 cells. These data indicate that asparanin A shows promise as a preventive and/or therapeutic agent against human hepatoma. PMID:19254688

  6. Maid (GCIP) is involved in cell cycle control of hepatocytes

    DEFF Research Database (Denmark)

    Sonnenberg-Riethmacher, Eva; Wüstefeld, Torsten; Miehe, Michaela;

    2007-01-01

    The function of Maid (GCIP), a cyclinD-binding helix-loop-helix protein, was analyzed by targeted disruption in mice. We show that Maid function is not required for normal embryonic development. However, older Maid-deficient mice-in contrast to wild-type controls--develop hepatocellular carcinomas....... Therefore, we studied the role of Maid during cell cycle progression after partial hepatectomy (PH). Lack of Maid expression after PH was associated with a delay in G1/S-phase progression as evidenced by delayed cyclinA expression and DNA replication in Maid-deficient mice. However, at later time points...

  7. Factors affecting life cycle assessment of milk produced on 6 Mediterranean buffalo farms.

    Science.gov (United States)

    Pirlo, G; Carè, S; Fantin, V; Falconi, F; Buttol, P; Terzano, G M; Masoni, P; Pacelli, C

    2014-10-01

    This study quantifies the environmental impact of milk production of Italian Mediterranean buffaloes and points out the farm characteristics that mainly affect their environmental performance. Life cycle assessment was applied in a sample of 6 farms. The functional unit was 1 kg of normalized buffalo milk (LBN), with a reference milk fat and protein content of 8.3 and 4.73%, respectively. The system boundaries included the agricultural phase of the buffalo milk chain from cradle to farm gate. An economic criterion was adopted to allocate the impacts on milk production. Impact categories investigated were global warming (GW), abiotic depletion (AD), photochemical ozone formation (PO), acidification (AC), and eutrophication (EU). The contribution to the total results of the following farm activities were investigated: (1) on-farm energy consumption, (2) manure management, (3) manure application, (4) on-farm feed production (comprising production and application of chemical fertilizers and pesticides), (5) purchased feed production, (6) enteric fermentation, and (7) transport of purchased feeds, chemical fertilizers, and pesticides from producers to farms. Global warming associated with 1 kg of LBN resulted in 5.07 kg of CO₂ Eq [coefficient of variation (CV)=21.9%], AD was 3.5 × 10(-3) kg of Sb Eq (CV=51.7%), PO was 6.8 × 10(-4) kg of C₂H₄ Eq (CV=28.8%), AC was 6.5 × 10(-2) kg of SO₂ Eq (CV=30.3%), and EU was 3.3 × 10(-2) kg of PO₄(3-) Eq (CV=36.5%). The contribution of enteric fermentation and manure application to GW is 37 and 20%, respectively; on-farm consumption, on-farm feed production, and purchased feed production are the main contributors to AD; about 70% of PO is due to enteric fermentation; manure management and manure application are responsible for 55 and 25% of AC and 25 and 55% of EU, respectively. Methane and N₂O are responsible for 44 and 43% of GW, respectively. Crude oil consumption is responsible for about 72% of AD; contribution of

  8. Ethanol Metabolism Activates Cell Cycle Checkpoint Kinase, Chk2

    Science.gov (United States)

    Clemens, Dahn L.; Mahan Schneider, Katrina J.; Nuss, Robert F.

    2011-01-01

    Chronic ethanol abuse results in hepatocyte injury and impairs hepatocyte replication. We have previously shown that ethanol metabolism results in cell cycle arrest at the G2/M transition, which is partially mediated by inhibitory phosphorylation of the cyclin-dependent kinase, Cdc2. To further delineate the mechanisms by which ethanol metabolism mediates this G2/M arrest, we investigated the involvement of upstream regulators of Cdc2 activity. Cdc2 is activated by the phosphatase Cdc25C. The activity of Cdc25C can, in turn, be regulated by the checkpoint kinase, Chk2, which is regulated by the kinase ataxia telangiectasia mutated (ATM). To investigate the involvement of these regulators of Cdc2 activity, VA-13 cells, which are Hep G2 cells modified to efficiently express alcohol dehydrogenase, were cultured in the presence or absence of 25 mM ethanol. Immunoblots were performed to determine the effects of ethanol metabolism on the activation of Cdc25C, Chk2, and ATM. Ethanol metabolism increased the active forms of ATM, and Chk2, as well as the phosphorylated form of Cdc25C. Additionally, inhibition of ATM resulted in approximately 50% of the cells being rescued from the G2/M cell cycle arrest, and ameliorated the inhibitory phosphorylation of Cdc2. Our findings demonstrate that ethanol metabolism activates ATM. ATM can activate the checkpoint kinase Chk2, resulting in phosphorylation of Cdc25C, and ultimately in the accumulation of inactive Cdc2. This may, in part, explain the ethanol metabolism-mediated impairment in hepatocyte replication, which may be important in the initiation and progression of alcoholic liver injury. PMID:21924579

  9. DNA Damage, Cell Cycle Arrest, and Apoptosis Induction Caused by Lead in Human Leukemia Cells.

    Science.gov (United States)

    Yedjou, Clement G; Tchounwou, Hervey M; Tchounwou, Paul B

    2016-01-01

    In recent years, the industrial use of lead has been significantly reduced from paints and ceramic products, caulking, and pipe solder. Despite this progress, lead exposure continues to be a significant public health concern. The main goal of this research was to determine the in vitro mechanisms of lead nitrate [Pb(NO₃)₂] to induce DNA damage, apoptosis, and cell cycle arrest in human leukemia (HL-60) cells. To reach our goal, HL-60 cells were treated with different concentrations of Pb(NO₃)₂ for 24 h. Live cells and necrotic death cells were measured by the propidium idiode (PI) assay using the cellometer vision. Cell apoptosis was measured by the flow cytometry and DNA laddering. Cell cycle analysis was evaluated by the flow cytometry. The result of the PI demonstrated a significant (p cell death in Pb(NO₃)₂-treated cells, indicative of membrane rupture by Pb(NO₃)₂ compared to the control. Data generated from the comet assay indicated a concentration-dependent increase in DNA damage, showing a significant increase (p cells (apoptotic cells) compared to the control. The flow cytometry assessment also indicated Pb(NO₃)₂ exposure caused cell cycle arrest at the G₀/G₁ checkpoint. The result of DNA laddering assay showed presence of DNA smear in the agarose gel with little presence of DNA fragments in the treated cells compared to the control. In summary, Pb(NO₃)₂ inhibits HL-60 cells proliferation by not only inducing DNA damage and cell cycle arrest at the G₀/G₁ checkpoint but also triggering the apoptosis through caspase-3 activation and nucleosomal DNA fragmentation accompanied by secondary necrosis. We believe that our study provides a new insight into the mechanisms of Pb(NO₃)₂ exposure and its associated adverse health effects.

  10. INTEGRATED GASIFICATION COMBINED CYCLE PROJECT 2 MW FUEL CELL DEMONSTRATION

    Energy Technology Data Exchange (ETDEWEB)

    FuelCell Energy

    2005-05-16

    With about 50% of power generation in the United States derived from coal and projections indicating that coal will continue to be the primary fuel for power generation in the next two decades, the Department of Energy (DOE) Clean Coal Technology Demonstration Program (CCTDP) has been conducted since 1985 to develop innovative, environmentally friendly processes for the world energy market place. The 2 MW Fuel Cell Demonstration was part of the Kentucky Pioneer Energy (KPE) Integrated Gasification Combined Cycle (IGCC) project selected by DOE under Round Five of the Clean Coal Technology Demonstration Program. The participant in the CCTDP V Project was Kentucky Pioneer Energy for the IGCC plant. FuelCell Energy, Inc. (FCE), under subcontract to KPE, was responsible for the design, construction and operation of the 2 MW fuel cell power plant. Duke Fluor Daniel provided engineering design and procurement support for the balance-of-plant skids. Colt Engineering Corporation provided engineering design, fabrication and procurement of the syngas processing skids. Jacobs Applied Technology provided the fabrication of the fuel cell module vessels. Wabash River Energy Ltd (WREL) provided the test site. The 2 MW fuel cell power plant utilizes FuelCell Energy's Direct Fuel Cell (DFC) technology, which is based on the internally reforming carbonate fuel cell. This plant is capable of operating on coal-derived syngas as well as natural gas. Prior testing (1992) of a subscale 20 kW carbonate fuel cell stack at the Louisiana Gasification Technology Inc. (LGTI) site using the Dow/Destec gasification plant indicated that operation on coal derived gas provided normal performance and stable operation. Duke Fluor Daniel and FuelCell Energy developed a commercial plant design for the 2 MW fuel cell. The plant was designed to be modular, factory assembled and truck shippable to the site. Five balance-of-plant skids incorporating fuel processing, anode gas oxidation, heat recovery

  11. Regulation of the G1 phase of the mammalian cell cycle

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In any multi-cellular organism, the balance between cell division and cell death maintains a constant cell num ber. Both cell division cycle and cell death are highly regulated events. Whether the cell will proceed through the cycle or not, depends upon whether the conditions re quired at the checkpoints during the cycle are filfilled. In higher eucaryotic cells, such as mammalian cells, signals that arrest the cycle usually act at a G1 checkpoint. Cells that pass this restriction point are committed to complete the cycle. Regulation of the G1 phase of the cell cycle is extremely complex and involves many different families of proteins such as retinoblastoma family, cyclin dependent kinases, cyclins, and cyclin kinase inhibitors.

  12. Daily exposure to summer circadian cycles affects spermatogenesis, but not fertility in an in vivo rabbit model.

    Science.gov (United States)

    Sabés-Alsina, Maria; Planell, Núria; Torres-Mejia, Elen; Taberner, Ester; Maya-Soriano, Maria José; Tusell, Llibertat; Ramon, Josep; Dalmau, Antoni; Piles, Miriam; Lopez-Bejar, Manel

    2015-01-15

    Heat stress (HS) in mammals is a determining factor in the deterioration of spermatogenesis and can cause infertility. The aim of this study was to evaluate the effect of continuous summer circadian cycles on semen production, sperm cell features, fertility, prolificacy, and fecal cortisol metabolites from rabbits kept under an in vivo HS model. We split randomly 60 New Zealand White rabbits into two temperature-controlled rooms: The control group was maintained at comfort temperature (18 °C-22 °C) and an HS group, where the environmental temperature was programmed to increase from 22 °C to 31 °C and be maintained for 3 hours to this temperature at the central part of the day. Fecal cortisol metabolites were assessed to evaluate the stress conditions. Seminal parameters were analyzed. Although animals exposed to HS showed higher values of fecal cortisol metabolites (P = 0.0003), no differences were detected in fertility or prolificacy. Semen samples from HS males showed a significant decrease (P < 0.05) with respect to the controls in the percentage of viable spermatozoa (80.71% vs. 74.21%), and a significant (P ≤ 0.01) increase in the percentage of acrosomic abnormalities (22.57% vs. 36.96%) and tailless spermatozoa (7.91% vs. 12.83). Among motility parameters, no differences were found. This study describes a model of HS simulating a continuous summer daily cycle that allows periods of time to recover as it occurs under natural conditions. Although negative effects have been detected in several sperm parameters, fertility and prolificacy were not affected, suggesting a recovery of the reproductive function when normal conditions are reestablished.

  13. Cyclin D3 coordinates the cell cycle during differentiation to regulate erythrocyte size and number.

    Science.gov (United States)

    Sankaran, Vijay G; Ludwig, Leif S; Sicinska, Ewa; Xu, Jian; Bauer, Daniel E; Eng, Jennifer C; Patterson, Heide Christine; Metcalf, Ryan A; Natkunam, Yasodha; Orkin, Stuart H; Sicinski, Piotr; Lander, Eric S; Lodish, Harvey F

    2012-09-15

    Genome-wide association studies (GWASs) have identified a genetic variant of moderate effect size at 6p21.1 associated with erythrocyte traits in humans. We show that this variant affects an erythroid-specific enhancer of CCND3. A Ccnd3 knockout mouse phenocopies these erythroid phenotypes, with a dramatic increase in erythrocyte size and a concomitant decrease in erythrocyte number. By examining human and mouse primary erythroid cells, we demonstrate that the CCND3 gene product cyclin D3 regulates the number of cell divisions that erythroid precursors undergo during terminal differentiation, thereby controlling erythrocyte size and number. We illustrate how cell type-specific specialization can occur for general cell cycle components-a finding resulting from the biological follow-up of unbiased human genetic studies.

  14. Analysis of X-ray induced cell-cycle perturbations in mouse osteosarcoma cells: a two-signal cell-cycle model

    International Nuclear Information System (INIS)

    The effects of X-irradiation on mouse osteosarcoma cells have been studied by time-lapse cinematography and the resulting pedigrees have been analysed statistically. It is shown that the irradiation treatment causes three types of cell kinetic lesions: cell death (disintegration), cell sterilization (failure to divide) and proliferation delay. The first two lesions are the most important with regard to survival of the irradiated cell in a clonal assay. Of these two lesions, sterilization appears to be highly correlated for sister cells, while this is not true for cell disintegration. This indicates that cell survival in a clonal assay may be a function of the ratio of the incidences of these two types of lesions. The X-ray-induced proliferation delay was studied in terms of intermitotic time distributions, mother-daughter correlation and sibling correlation in relation to the current cell-cycle phase at the time of treatment. This analysis shows that the effects of irradiation on these cell-cycle characteristics is highly cell-cycle-dependent. A qualitative model to account for the observations is presented. (author)

  15. Measurement of human embryonic stem cell in the growing cycle

    Science.gov (United States)

    Li, X.; Zhao, L.; Oh, Steve K. W.; Chong, W. K.; Ong, J. K.; Chen, Allen K.; Choo, Andre B. H.

    2008-09-01

    A measurement and imaging system has been developed for in-line continuous measurement of live, unmodified, human embryonic stem cells (hESC). The measurement will not affect cell growth, structure, sterility and suitability for clinical use. The stem cell imaging system (SCIS) can be used to support the optimization of automated stem cell growth for invitro study and for high-volume bio-manufacture. This paper present the experimental and analysis for the optimization of system parameters. A non-linear lighting is developed to obtain a clear images. The individual cluster can be traced from day one to day two. The whole system is calibrated with measurement microscope and haemacytometer. The measurement accuracy is better than 90%.

  16. Genistein sensitizes ovarian carcinoma cells to chemotherapy by switching the cell cycle progression in vitro

    Institute of Scientific and Technical Information of China (English)

    Huang Yanhong; Yuan Peng; Zhang Qinghong; Xin Xiaoyan

    2009-01-01

    Objective: To address how genistein sensitizes the chemotherapy-resistant ovarian carcinoma cells and promotes apoptosis in the respect of cell cycle and the regulation of survivin expression in the process. Methods: Ovarian SKOV-3 carcinoma cell line was treated with genistein or cisplatin either alone or in combination. Cell viability was showed by MTT method. Cell cycle and apoptosis were detected by flow cytometry. Survivin mRNA and protein were revealed by RT-PCR and immunocytochemistry, respectively. Results: Genistein could reduce the cell viability in a dose-dependent manner, while cisplatin did so at a much higher level. In contrast, if the two agents were treated in combination, half growth inhibition (IC50) value for cisplatin was reduced remarkably and the effect was synergistic as analyzed by isobologram. In particular, the reduced cell viability was exhibited by a switch in cell cycle progression, as the cells were arrested in G2/M phase and the G0/G1 phase-fraction was significantly decreased. The reduced cell viability appeared to involve apoptosis, based on our results from flow cytometry and Hoechst 33258 staining. In the meanwhile, genistein performed the inhibitory effect on cisplatin-induced survivin expression. Conclusion: Genistein can sensitize ovarian carcinoma cells to cisplatin therapy with the inhibition of survivin expression as the potential mechanism.

  17. Ghrelin regulates cell cycle-related gene expression in cultured hippocampal neural stem cells.

    Science.gov (United States)

    Chung, Hyunju; Park, Seungjoon

    2016-08-01

    We have previously demonstrated that ghrelin stimulates the cellular proliferation of cultured adult rat hippocampal neural stem cells (NSCs). However, little is known about the molecular mechanisms by which ghrelin regulates cell cycle progression. The purpose of this study was to investigate the potential effects of ghrelin on cell cycle regulatory molecules in cultured hippocampal NSCs. Ghrelin treatment increased proliferation assessed by CCK-8 proliferation assay. The expression levels of proliferating cell nuclear antigen and cell division control 2, well-known cell-proliferating markers, were also increased by ghrelin. Fluorescence-activated cell sorting analysis revealed that ghrelin promoted progression of cell cycle from G0/G1 to S phase, whereas this progression was attenuated by the pretreatment with specific inhibitors of MEK/extracellular signal-regulated kinase 1/2, phosphoinositide 3-kinase/Akt, mammalian target of rapamycin, and janus kinase 2/signal transducer and activator of transcription 3. Ghrelin-induced proliferative effect was associated with increased expression of E2F1 transcription factor in the nucleus, as determined by Western blotting and immunofluorescence. We also found that ghrelin caused an increase in protein levels of positive regulators of cell cycle, such as cyclin A and cyclin-dependent kinase (CDK) 2. Moreover, p27(KIP1) and p57(KIP2) protein levels were reduced when cell were exposed to ghrelin, suggesting downregulation of CDK inhibitors may contribute to proliferative effect of ghrelin. Our data suggest that ghrelin targets both cell cycle positive and negative regulators to stimulate proliferation of cultured hippocampal NSCs. PMID:27325242

  18. New common variants affecting susceptibility to basal cell carcinoma.

    NARCIS (Netherlands)

    Stacey, S.N.; Sulem, P.; Masson, G.; Gudjonsson, S.A.; Thorleifsson, G.; Jakobsdottir, M.; Sigurdsson, A.; Gudbjartsson, D.F.; Sigurgeirsson, B.; Benediktsdottir, K.R.; Thorisdottir, K.; Ragnarsson, R.; Scherer, D.; Hemminki, K.; Rudnai, P.; Gurzau, E.; Koppova, K.; Botella-Estrada, R.; Soriano, V.; Juberias, P.; Saez, B.; Gilaberte, Y.; Fuentelsaz, V.; Corredera, C.; Grasa, M.; Hoiom, V.; Lindblom, A.; Bonenkamp, J.J.; Rossum, M.M. van; Aben, K.K.H.; Vries, E. de; Santinami, M.; Mauro, M.G. Di; Maurichi, A.; Wendt, J.; Hochleitner, P.; Pehamberger, H.; Gudmundsson, J.; Magnusdottir, D.N.; Gretarsdottir, S.; Holm, H.; Steinthorsdottir, V.; Frigge, M.L.; Blondal, T.; Saemundsdottir, J.; Bjarnason, H.; Kristjansson, K.; Bjornsdottir, G.; Okamoto, I.; Rivoltini, L.; Rodolfo, M.; Kiemeney, L.A.L.M.; Hansson, J.; Nagore, E.; Mayordomo, J.I.; Kumar, R.; Karagas, M.R.; Nelson, H.H.; Gulcher, J.R.; Rafnar, T.; Thorsteinsdottir, U.; Olafsson, J.H.; Kong, A.; Stefansson, K.

    2009-01-01

    In a follow-up to our previously reported genome-wide association study of cutaneous basal cell carcinoma (BCC), we describe here several new susceptibility variants. SNP rs11170164, encoding a G138E substitution in the keratin 5 (KRT5) gene, affects risk of BCC (OR = 1.35, P = 2.1 x 10(-9)). A vari

  19. Biological soil crusts emit large amounts of NO and HONO affecting the nitrogen cycle in drylands

    Science.gov (United States)

    Tamm, Alexandra; Wu, Dianming; Ruckteschler, Nina; Rodríguez-Caballero, Emilio; Steinkamp, Jörg; Meusel, Hannah; Elbert, Wolfgang; Behrendt, Thomas; Sörgel, Matthias; Cheng, Yafang; Crutzen, Paul J.; Su, Hang; Pöschl, Ulrich; Weber, Bettina

    2016-04-01

    to the latest IPCC report. In summary, our measurements show that dryland emissions of nitrogen oxides are largely driven by biocrusts and not by the underlying soil. As precipitation patterns, which influence biocrust activity, are affected by climate change, alterations in global nitrogen oxide emissions are to be expected. Thus, the role of biocrusts in the global cycling of reactive nitrogen needs to be followed and also implemented in regional and global models of biogeochemistry, air chemistry and climate.

  20. New castanospermine glycoside analogues inhibit breast cancer cell proliferation and induce apoptosis without affecting normal cells.

    Directory of Open Access Journals (Sweden)

    Ghada Allan

    Full Text Available sp²-Iminosugar-type castanospermine analogues have been shown to exhibit anti-tumor activity. However, their effects on cell proliferation and apoptosis and the molecular mechanism at play are not fully understood. Here, we investigated the effect of two representatives, namely the pseudo-S- and C-octyl glycoside 2-oxa-3-oxocastanospermine derivatives SO-OCS and CO-OCS, on MCF-7 and MDA-MB-231 breast cancer and MCF-10A mammary normal cell lines. We found that SO-OCS and CO-OCS inhibited breast cancer cell viability in a concentration- and time-dependent manner. This effect is specific to breast cancer cells as both molecules had no impact on normal MCF-10A cell proliferation. Both drugs induced a cell cycle arrest. CO-OCS arrested cell cycle at G1 and G2/M in MCF-7 and MDA-MB-231 cells respectively. In MCF-7 cells, the G1 arrest is associated with a reduction of CDK4 (cyclin-dependent kinase 4, cyclin D1 and cyclin E expression, pRb phosphorylation, and an overexpression of p21(Waf1/Cip1. In MDA-MB-231 cells, CO-OCS reduced CDK1 but not cyclin B1 expression. SO-OCS accumulated cells in G2/M in both cell lines and this blockade was accompanied by a decrease of CDK1, but not cyclin B1 expression. Furthermore, both drugs induced apoptosis as demonstrated by the increased percentage of annexin V positive cells and Bax/Bcl-2 ratio. Interestingly, in normal MCF-10A cells the two drugs failed to modify cell proliferation, cell cycle progression, cyclins, or CDKs expression. These results demonstrate that the effect of CO-OCS and SO-OCS is triggered by both cell cycle arrest and apoptosis, suggesting that these castanospermine analogues may constitute potential anti-cancer agents against breast cancer.

  1. Kalanchoe tubiflora extract inhibits cell proliferation by affecting the mitotic apparatus

    Directory of Open Access Journals (Sweden)

    Hsieh Yi-Jen

    2012-09-01

    Full Text Available Abstract Background Kalanchoe tubiflora (KT is a succulent plant native to Madagascar, and is commonly used as a medicinal agent in Southern Brazil. The underlying mechanisms of tumor suppression are largely unexplored. Methods Cell viability and wound-healing were analyzed by MTT assay and scratch assay respectively. Cell cycle profiles were analyzed by FACS. Mitotic defects were analyzed by indirect immunofluoresence images. Results An n-Butanol-soluble fraction of KT (KT-NB was able to inhibit cell proliferation. After a 48 h treatment with 6.75 μg/ml of KT, the cell viability was less than 50% of controls, and was further reduced to less than 10% at higher concentrations. KT-NB also induced an accumulation of cells in the G2/M phase of the cell cycle as well as an increased level of cells in the subG1 phase. Instead of disrupting the microtubule network of interphase cells, KT-NB reduced cell viability by inducing multipolar spindles and defects in chromosome alignment. KT-NB inhibits cell proliferation and reduces cell viability by two mechanisms that are exclusively involved with cell division: first by inducing multipolarity; second by disrupting chromosome alignment during metaphase. Conclusion KT-NB reduced cell viability by exclusively affecting formation of the proper structure of the mitotic apparatus. This is the main idea of the new generation of anti-mitotic agents. All together, KT-NB has sufficient potential to warrant further investigation as a potential new anticancer agent candidate.

  2. Methyl Jasmonate: Putative Mechanisms of Action on Cancer Cells Cycle, Metabolism, and Apoptosis

    Directory of Open Access Journals (Sweden)

    Italo Mario Cesari

    2014-01-01

    Full Text Available Methyl jasmonate (MJ, an oxylipid that induces defense-related mechanisms in plants, has been shown to be active against cancer cells both in vitro and in vivo, without affecting normal cells. Here we review most of the described MJ activities in an attempt to get an integrated view and better understanding of its multifaceted modes of action. MJ (1 arrests cell cycle, inhibiting cell growth and proliferation, (2 causes cell death through the intrinsic/extrinsic proapoptotic, p53-independent apoptotic, and nonapoptotic (necrosis pathways, (3 detaches hexokinase from the voltage-dependent anion channel, dissociating glycolytic and mitochondrial functions, decreasing the mitochondrial membrane potential, favoring cytochrome c release and ATP depletion, activating pro-apoptotic, and inactivating antiapoptotic proteins, (4 induces reactive oxygen species mediated responses, (5 stimulates MAPK-stress signaling and redifferentiation in leukemia cells, (6 inhibits overexpressed proinflammatory enzymes in cancer cells such as aldo-keto reductase 1 and 5-lipoxygenase, and (7 inhibits cell migration and shows antiangiogenic and antimetastatic activities. Finally, MJ may act as a chemosensitizer to some chemotherapics helping to overcome drug resistant. The complete lack of toxicity to normal cells and the rapidity by which MJ causes damage to cancer cells turn MJ into a promising anticancer agent that can be used alone or in combination with other agents.

  3. Impaired Cell Cycle Regulation in a Natural Equine Model of Asthma.

    Directory of Open Access Journals (Sweden)

    Alicja Pacholewska

    Full Text Available Recurrent airway obstruction (RAO is a common and potentially debilitating lower airway disease in horses, which shares many similarities with human asthma. In susceptible horses RAO exacerbation is caused by environmental allergens and irritants present in hay dust. The objective of this study was the identification of genes and pathways involved in the pathology of RAO by global transcriptome analyses in stimulated peripheral blood mononuclear cells (PBMCs. We performed RNA-seq on PBMCs derived from 40 RAO affected and 45 control horses belonging to three cohorts of Warmblood horses: two half-sib families and one group of unrelated horses. PBMCs were stimulated with hay dust extract, lipopolysaccharides, a recombinant parasite antigen, or left unstimulated. The total dataset consisted of 561 individual samples. We detected significant differences in the expression profiles between RAO and control horses. Differential expression (DE was most marked upon stimulation with hay dust extract. An important novel finding was a strong upregulation of CXCL13 together with many genes involved in cell cycle regulation in stimulated samples from RAO affected horses, in addition to changes in the expression of several HIF-1 transcription factor target genes. The RAO condition alters systemic changes observed as differential expression profiles of PBMCs. Those changes also depended on the cohort and stimulation of the samples and were dominated by genes involved in immune cell trafficking, development, and cell cycle regulation. Our findings indicate an important role of CXCL13, likely macrophage or Th17 derived, and the cell cycle regulator CDC20 in the immune response in RAO.

  4. Ovarian cycle-linked plasticity of δ-GABAA receptor subunits in hippocampal interneurons affects γ oscillations in vivo

    Directory of Open Access Journals (Sweden)

    Albert Miklos Barth

    2014-08-01

    Full Text Available GABAA receptors containing δ subunits (δ-GABAARs are GABA-gated ion channels with extra- and perisynaptic localization, strong sensitivity to neurosteroids (NS, and a high degree of plasticity. In selective brain regions they are expressed on specific principal cells and interneurons (INs, and generate a tonic conductance that controls neuronal excitability and oscillations. Plasticity of δ-GABAARs in principal cells has been described during states of altered NS synthesis including acute stress, puberty, ovarian cycle, pregnancy and the postpartum period, with direct consequences on neuronal excitability and network dynamics. The defining network events implicated in cognitive function, memory formation and encoding are γ oscillations (30-120 Hz, a well-timed loop of excitation and inhibition between principal cells and PV-expressing INs (PV+INs. The δ-GABAARs of INs can modify γ oscillations, and a lower expression of δ-GABAARs on INs during pregnancy alters γ frequency recorded in vitro. The ovarian cycle is another physiological event with large fluctuations in NS levels and δ-GABAARs. Stages of the cycle are paralleled by swings in memory performance, cognitive function, and mood in both humans and rodents. Here we show δ-GABAARs changes during the mouse ovarian cycle in hippocampal cell types, with enhanced expression during diestrus in principal cells and specific INs. The plasticity of δ-GABAARs on PV-INs decreases the magnitude of γ oscillations continuously recorded in area CA1 throughout several days in vivo during diestrus and increases it during estrus. Such recurring changes in γ magnitude were not observed in non-cycling wild-type (WT females, cycling females lacking δ-GABAARs only on PV-INs (PV-Gabrd-/-, and in male mice during a time course equivalent to the ovarian cycle. Our findings may explain the impaired memory and cognitive performance experienced by women with premenstrual syndrome (PMS or premenstrual

  5. Visualization of radiation-induced cell cycle-associated events in tumor cells expressing the fusion protein of Azami Green and the destruction box of human Geminin

    International Nuclear Information System (INIS)

    Ionizing radiation (IR) influences cell cycle-associated events in tumor cells. We expressed the fusion protein of Azami Green (AG) and the destruction box plus nuclear localization signal of human Geminin, an inhibitor of DNA replication licensing factor, in oral tumor cells. This approach allowed us to visualize G2 arrest in living cells following irradiation. The combination of time-lapse imaging analysis allowed us to observe the nuclear envelope break down (NEBD) at early M phase, and disappearance of fluorescence (DF) at the end of M phase. The duration from NEBD to DF was not much affected in irradiated cells; however, most of daughter cells harbored double-strand breaks. Complete DF was also observed in cells exhibiting abnormal mitosis or cytokinesis. We conclude that the fluorescent Geminin probe could function as a stable cell cycle indicator irrespective of genome integrity.

  6. Timing robustness in the budding and fission yeast cell cycles.

    KAUST Repository

    Mangla, Karan

    2010-02-01

    Robustness of biological models has emerged as an important principle in systems biology. Many past analyses of Boolean models update all pending changes in signals simultaneously (i.e., synchronously), making it impossible to consider robustness to variations in timing that result from noise and different environmental conditions. We checked previously published mathematical models of the cell cycles of budding and fission yeast for robustness to timing variations by constructing Boolean models and analyzing them using model-checking software for the property of speed independence. Surprisingly, the models are nearly, but not totally, speed-independent. In some cases, examination of timing problems discovered in the analysis exposes apparent inaccuracies in the model. Biologically justified revisions to the model eliminate the timing problems. Furthermore, in silico random mutations in the regulatory interactions of a speed-independent Boolean model are shown to be unlikely to preserve speed independence, even in models that are otherwise functional, providing evidence for selection pressure to maintain timing robustness. Multiple cell cycle models exhibit strong robustness to timing variation, apparently due to evolutionary pressure. Thus, timing robustness can be a basis for generating testable hypotheses and can focus attention on aspects of a model that may need refinement.

  7. Flow cytometric analysis of mitotic cycle perturbation by chemical carcinogens in cultured epithelial cells. [Effects of benzo(a)pyrene-diol-epoxide on mitotic cycle of cultural mouse liver epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Pearlman, A.L.

    1978-08-01

    A system for kinetic analysis of mitotic cycle perturbation by various agents was developed and applied to the study of the mitotic cycle effects and dependency of the chemical carcinogen benzo(a)pyrene-diolepoxide, DE, upon a mouse lever epithelial cell line, NMuLi. The study suggests that the targets of DE action are not confined to DNA alone but may include cytoplasmic structures as well. DE was found to affect cells located in virtually every phase of the mitotic cycle, with cells that were actively synthesizing DNA showing the strongest response. However, the resulting perturbations were not confined to S-phase alone. DE slowed traversal through S-phase by about 40% regardless of the cycle phase of the cells exposed to it, and slowed traversal through G/sub 2/M by about 50%. When added to G/sub 1/ cells, DE delayed recruitment of apparently quiescent (G/sub 0/) cells by 2 hours, and reduced the synchrony of the cohort of cells recruited into active proliferation. The kinetic analysis system consists of four elements: tissue culture methods for propagating and harvesting cell populations; an elutriation centrifugation system for bulk synchronization of cells in various phases of the mitotic cycle; a flow cytometer (FCM), coupled with appropriate staining protocols, to enable rapid analysis of the DNA distribution of any given cell population; and data reduction and analysis methods for extracting information from the DNA histograms produced by the FCM. The elements of the system are discussed. A mathematical analysis of DNA histograms obtained by FCM is presented. The analysis leads to the detailed implementation of a new modeling approach. The new modeling approach is applied to the estimation of cell cycle kinetic parameters from time series of DNA histograms, and methods for the reduction and interpretation of such series are suggested.

  8. Albumin Suppresses Human Hepatocellular Carcinoma Proliferation and the Cell Cycle

    Directory of Open Access Journals (Sweden)

    Shunsuke Nojiri

    2014-03-01

    Full Text Available Many investigations have revealed that a low recurrence rate of hepatocellular carcinoma (HCC is associated with high serum albumin levels in patients; therefore, high levels of serum albumin are a major indicator of a favorable prognosis. However, the mechanism inhibiting the proliferation of HCC has not yet been elucidated, so we investigated the effect of serum albumin on HCC cell proliferation. Hep3B was cultured in MEM with no serum or containing 5 g/dL human albumin. As control samples, Prionex was added to generate the same osmotic pressure as albumin. After 24-h incubation, the expressions of α-fetoprotein (AFP, p53, p21, and p57 were evaluated with real-time PCR using total RNA extracted from the liver. Protein expressions and the phosphorylation of Rb (retinoblastoma were determined by Western blot analysis using total protein extracted from the liver. For flow cytometric analysis of the cell cycle, FACS analysis was performed. The percentages of cell cycle distribution were evaluated by PI staining, and all samples were analyzed employing FACScalibur (BD with appropriate software (ModFit LT; BD. The cell proliferation assay was performed by counting cells with using a Scepter handy automated cell counter (Millipore. The mRNA levels of AFP relative to Alb(−: Alb(−, Alb(+, and Prionex, were 1, 0.7 ± 0.2 (p < 0.001 for Alb(−, and 1 ± 0.3, respectively. The mRNA levels of p21 were 1, 1.58 ± 0.4 (p = 0.007 for Alb(− and p = 0.004 for Prionex, and 0.8 ± 0.2, respectively. The mRNA levels of p57 were 1, 4.4 ± 1.4 (p = 0.002 for Alb(− and Prionex, and 1.0 ± 0.1, respectively. The protein expression levels of Rb were similar in all culture media. The phosphorylation of P807/811 and P780 of Rb protein was reduced in Alb(+. More cells in the G0/G1 phase and fewer cells in S and G2/M phases were obtained in Alb(+ than in Alb(− (G0/G1: 60.9%, 67.7%, 61.5%; G2/M: 16.5%, 13.1%, 15.6%; S: 22.6%, 19.2%, 23.0%, Alb(−, Alb

  9. DNA Damage, Cell Cycle Arrest, and Apoptosis Induction Caused by Lead in Human Leukemia Cells.

    Science.gov (United States)

    Yedjou, Clement G; Tchounwou, Hervey M; Tchounwou, Paul B

    2016-01-01

    In recent years, the industrial use of lead has been significantly reduced from paints and ceramic products, caulking, and pipe solder. Despite this progress, lead exposure continues to be a significant public health concern. The main goal of this research was to determine the in vitro mechanisms of lead nitrate [Pb(NO₃)₂] to induce DNA damage, apoptosis, and cell cycle arrest in human leukemia (HL-60) cells. To reach our goal, HL-60 cells were treated with different concentrations of Pb(NO₃)₂ for 24 h. Live cells and necrotic death cells were measured by the propidium idiode (PI) assay using the cellometer vision. Cell apoptosis was measured by the flow cytometry and DNA laddering. Cell cycle analysis was evaluated by the flow cytometry. The result of the PI demonstrated a significant (p rupture by Pb(NO₃)₂ compared to the control. Data generated from the comet assay indicated a concentration-dependent increase in DNA damage, showing a significant increase (p < 0.05) in comet tail-length and percentages of DNA cleavage. Data generated from the flow cytometry assessment indicated that Pb(NO₃)₂ exposure significantly (p < 0.05) increased the proportion of caspase-3 positive cells (apoptotic cells) compared to the control. The flow cytometry assessment also indicated Pb(NO₃)₂ exposure caused cell cycle arrest at the G₀/G₁ checkpoint. The result of DNA laddering assay showed presence of DNA smear in the agarose gel with little presence of DNA fragments in the treated cells compared to the control. In summary, Pb(NO₃)₂ inhibits HL-60 cells proliferation by not only inducing DNA damage and cell cycle arrest at the G₀/G₁ checkpoint but also triggering the apoptosis through caspase-3 activation and nucleosomal DNA fragmentation accompanied by secondary necrosis. We believe that our study provides a new insight into the mechanisms of Pb(NO₃)₂ exposure and its associated adverse health effects. PMID:26703663

  10. A cell cycle timer for asymmetric spindle positioning.

    Directory of Open Access Journals (Sweden)

    Erin K McCarthy Campbell

    2009-04-01

    Full Text Available The displacement of the mitotic spindle to one side of a cell is important for many cells to divide unequally. While recent progress has begun to unveil some of the molecular mechanisms of mitotic spindle displacement, far less is known about how spindle displacement is precisely timed. A conserved mitotic progression mechanism is known to time events in dividing cells, although this has never been linked to spindle displacement. This mechanism involves the anaphase-promoting complex (APC, its activator Cdc20/Fizzy, its degradation target cyclin, and cyclin-dependent kinase (CDK. Here we show that these components comprise a previously unrecognized timer for spindle displacement. In the Caenorhabditis elegans zygote, mitotic spindle displacement begins at a precise time, soon after chromosomes congress to the metaphase plate. We found that reducing the function of the proteasome, the APC, or Cdc20/Fizzy delayed spindle displacement. Conversely, inactivating CDK in prometaphase caused the spindle to displace early. The consequence of experimentally unlinking spindle displacement from this timing mechanism was the premature displacement of incompletely assembled components of the mitotic spindle. We conclude that in this system, asymmetric positioning of the mitotic spindle is normally delayed for a short time until the APC inactivates CDK, and that this delay ensures that the spindle does not begin to move until it is fully assembled. To our knowledge, this is the first demonstration that mitotic progression times spindle displacement in the asymmetric division of an animal cell. We speculate that this link between the cell cycle and asymmetric cell division might be evolutionarily conserved, because the mitotic spindle is displaced at a similar stage of mitosis during asymmetric cell divisions in diverse systems.

  11. Menstrual cycle phase at the time of rape does not affect recovery of semen or amplification of STR profiles of a suspect in vaginal swabs.

    Science.gov (United States)

    Cerdas, Loreley; Herrera, Fabiola; Arrieta, Glenn; Morelli, Concepción; Álvarez, Karla; Gómez, Aarón

    2016-02-01

    The effect of women menstrual cycle on the forensic analysis of rapes was studied in a random group of 170 victims aged among 10 and 51 years. Participants were grouped according to the day of the menstrual cycle in which they were at the moment of the assault. From each participant, samples of vaginal fluid were taken and analyzed for sperm cells, p30 protein, total human DNA and human male DNA. Moreover, amplification of suspect's autosomal STR and Y-STR was attempted. Suspects' autosomal STR profiles were obtained from 92 of the 101 samples in which spermatozoa were found; and Y-STR haplotype was obtained in 1 of the 9 samples where autosomal STR profiles of a male were not obtained. On the other hand, Y-STR haplotypes were obtained in 2 of the 21 samples negative for sperm cells but positive for p30 protein. Y-STR haplotypes were also obtained in 11 of the 48 samples negative for sperm cells and p30 protein. It was found that groups of participants did not differ on the recovery of sperm cells from the vaginal swabs, quantification of suspect's DNA or amplification of their STR profiles. It is concluded that the menstrual cycle phase at the moment of the sexual assault does not affect the main outcomes of the forensic investigation of rapes. PMID:26734988

  12. Mechanisms involved in ceramide-induced cell cycle arrest in human hepatocarcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Jing Wang; Xiao-Wen Lv; Jie-Ping Shi; Xiao-Song Hu

    2007-01-01

    AIM:To investigate the effect of ceramide on the cell cycle in human hepatocarcinoma Bel7402 cells.Possible molecular mechanisms were explored.METHODS:[3-(4,5)-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide(MTT)assay,plasmid transfection,reporter assay,FACS and Western blotting analyses were employed to investigate the effect and the related molecular mechanisms of C2-ceramide on the cell cycle of Bel7402 cells.RESULTS:C2-ceramide was found to inhibit the growth of Bel7402 cells by inducing cell cycle arrest.During the process,the expression of p21 protein increased,while that of cyclinD1,phospho-ERK1/2 and c-myc decreased.Furthermore,the level of CDK7 was downregulated,while the transcriptional activity of PPARγ was upregulated.Addition of GW9662,which is a PPARγ specific antagonist,could reserve the modulation action on CDK7.CONCLUSION:Our results support the hypothesis that cell cycle arrest induced by C2-ceramide may be mediated via accumulation of p21 and reduction of cyclinD1 and CDK7,at least partly,through PPARγ activation.The ERK signaling pathway was involved in this process.

  13. Gold nanoparticle sensitize radiotherapy of prostate cancer cells by regulation of the cell cycle

    Energy Technology Data Exchange (ETDEWEB)

    Roa, Wilson; Zhang Xiaojing; Guo Linghong; Patel, Samir; Xing, James Z [Department of Radiation Oncology, Cross Cancer Institute, Edmonton, AB (Canada); Shaw, Andrew; Hu Xiuying; Sun Xuejun [Department of Experimental Oncology, Cross Cancer Institute, Edmonton, AB (Canada); Xiong Yeping; Chen Jie [Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB (Canada); Gulavita, Sunil [Thunder Bay Regional Health Science Center, Thunder Bay, ON (Canada); Moore, Ronald, E-mail: wilsonro@cancerboard.ab.c, E-mail: jxing@ualberta.c [Department of Surgery, Cross Cancer Institute, Edmonton, AB (Canada)

    2009-09-16

    Glucose-capped gold nanoparticles (Glu-GNPs) have been used to improve cellular targeting and radio-sensitization. In this study, we explored the mechanism of Glu-GNP enhanced radiation sensitivity in radiation-resistant human prostate cancer cells. Cell survival and proliferation were measured using MTT and clonogenic assay. Flow cytometry with staining by propidium iodide (PI) was performed to study the cell cycle changes induced by Glu-GNPs, and western blotting was used to determine the expression of p53 and cyclin proteins that correlated to cell cycle regulation. With 2 Gy of ortho-voltage irradiation, Glu-GNP showed a 1.5-2.0 fold enhancement in growth inhibition when compared to x-rays alone. Comparing the cell cycle change, Glu-GNPs induced acceleration in the G0/G1 phase and accumulation of cells in the G2/M phase at 29.8% versus 18.4% for controls at 24 h. G2/M arrest was accompanied by decreased expression of p53 and cyclin A, and increased expression of cyclin B1 and cyclin E. In conclusion, Glu-GNPs trigger activation of the CDK kinases leading to cell cycle acceleration in the G0/G1 phase and accumulation in the G2/M phase. This activation is accompanied by a striking sensitization to ionizing radiation, which may have clinical implications.

  14. Gold nanoparticle sensitize radiotherapy of prostate cancer cells by regulation of the cell cycle

    Science.gov (United States)

    Roa, Wilson; Zhang, Xiaojing; Guo, Linghong; Shaw, Andrew; Hu, Xiuying; Xiong, Yeping; Gulavita, Sunil; Patel, Samir; Sun, Xuejun; Chen, Jie; Moore, Ronald; Xing, James Z.

    2009-09-01

    Glucose-capped gold nanoparticles (Glu-GNPs) have been used to improve cellular targeting and radio-sensitization. In this study, we explored the mechanism of Glu-GNP enhanced radiation sensitivity in radiation-resistant human prostate cancer cells. Cell survival and proliferation were measured using MTT and clonogenic assay. Flow cytometry with staining by propidium iodide (PI) was performed to study the cell cycle changes induced by Glu-GNPs, and western blotting was used to determine the expression of p53 and cyclin proteins that correlated to cell cycle regulation. With 2 Gy of ortho-voltage irradiation, Glu-GNP showed a 1.5-2.0 fold enhancement in growth inhibition when compared to x-rays alone. Comparing the cell cycle change, Glu-GNPs induced acceleration in the G0/G1 phase and accumulation of cells in the G2/M phase at 29.8% versus 18.4% for controls at 24 h. G2/M arrest was accompanied by decreased expression of p53 and cyclin A, and increased expression of cyclin B1 and cyclin E. In conclusion, Glu-GNPs trigger activation of the CDK kinases leading to cell cycle acceleration in the G0/G1 phase and accumulation in the G2/M phase. This activation is accompanied by a striking sensitization to ionizing radiation, which may have clinical implications.

  15. Human NK cell subset functions are differentially affected by adipokines.

    Directory of Open Access Journals (Sweden)

    Lena Huebner

    Full Text Available BACKGROUND: Obesity is a risk factor for various types of infectious diseases and cancer. The increase in adipose tissue causes alterations in both adipogenesis and the production of adipocyte-secreted proteins (adipokines. Since natural killer (NK cells are the host's primary defense against virus-infected and tumor cells, we investigated how adipocyte-conditioned medium (ACM affects functions of two distinct human NK cell subsets. METHODS: Isolated human peripheral blood mononuclear cells (PBMCs were cultured with various concentrations of human and murine ACM harvested on two different days during adipogenesis and analyzed by fluorescent-activated cell sorting (FACS. RESULTS: FACS analyses showed that the expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL, granzyme A (GzmA and interferon (IFN-γ in NK cells was regulated in a subset-specific manner. ACM treatment altered IFN-γ expression in CD56(dim NK cells. The production of GzmA in CD56(bright NK cells was differentially affected by the distinct adipokine compositions harvested at different states of adipogenesis. Comparison of the treatment with either human or murine ACM revealed that adipokine-induced effects on NK cell expression of the leptin receptor (Ob-R, TRAIL and IFN-γ were species-specific. CONCLUSION: Considering the growing prevalence of obesity and the various disorders related to it, the present study provides further insights into the roles human NK cell subsets play in the obesity-associated state of chronic low-grade inflammation.

  16. FoxM1, a forkhead transcription factor is a master cell cycle regulator for mouse mature T cells but not double positive thymocytes.

    Directory of Open Access Journals (Sweden)

    Ling Xue

    Full Text Available FoxM1 is a forkhead box transcription factor and a known master regulator required for different phases of the cell cycle. In cell lines, FoxM1 deficient cells exhibit delayed S phase entry, aneuploidy, polyploidy and can't complete mitosis. In vivo, FoxM1 is expressed mostly in proliferating cells but is surprisingly also found in non-proliferating CD4(+CD8(+ double positive thymocytes. Here, we addressed the role of FoxM1 in T cell development by generating and analyzing two different lines of T-cell specific FoxM1 deficient mice. As expected, FoxM1 is required for proliferation of early thymocytes and activated mature T cells. Defective expression of many cell cycle proteins was detected, including cyclin A, cyclin B1, cdc2, cdk2, p27 and the Rb family members p107 and p130 but surprisingly not survivin. Unexpectedly, loss of FoxM1 only affects a few cell cycle proteins in CD4(+CD8(+ thymocytes and has little effect on their sensitivity to apoptosis and the subsequent steps of T cell differentiation. Thus, regulation of cell cycle genes by FoxM1 is stage- and context-dependent.

  17. Tcf3 and cell cycle factors contribute to butyrate resistance in colorectal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Chiaro, Christopher, E-mail: cchiaro@tcmedc.org [Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509 (United States); Lazarova, Darina L., E-mail: dlazarova@tcmedc.org [Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509 (United States); Bordonaro, Michael, E-mail: mbordonaro@tcmedc.org [Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509 (United States)

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer We investigate mechanisms responsible for butyrate resistance in colon cancer cells. Black-Right-Pointing-Pointer Tcf3 modulates butyrate's effects on Wnt activity and cell growth in resistant cells. Black-Right-Pointing-Pointer Tcf3 modulation of butyrate's effects differ by cell context. Black-Right-Pointing-Pointer Cell cycle factors are overexpressed in the resistant cells. Black-Right-Pointing-Pointer Reversal of altered gene expression can enhance the anti-cancer effects of butyrate. -- Abstract: Butyrate, a fermentation product of dietary fiber, inhibits clonal growth in colorectal cancer (CRC) cells dependent upon the fold induction of Wnt activity. We have developed a CRC cell line (HCT-R) that, unlike its parental cell line, HCT-116, does not respond to butyrate exposure with hyperactivation of Wnt signaling and suppressed clonal growth. PCR array analyses revealed Wnt pathway-related genes, the expression of which differs between butyrate-sensitive HCT-116 CRC cells and their butyrate-resistant HCT-R cell counterparts. We identified overexpression of Tcf3 as being partially responsible for the butyrate-resistant phenotype, as this DNA-binding protein suppresses the hyperinduction of Wnt activity by butyrate. Consequently, Tcf3 knockdown in HCT-R cells restores their sensitivity to the effects of butyrate on Wnt activity and clonal cell growth. Interestingly, the effects of overexpressed Tcf3 differ between HCT-116 and HCT-R cells; thus, in HCT-116 cells Tcf3 suppresses proliferation without rendering the cells resistant to butyrate. In HCT-R cells, however, the overexpression of Tcf3 inhibits Wnt activity, and the cells are still able to proliferate due to the higher expression levels of cell cycle factors, particularly those driving the G{sub 1} to S transition. Knowledge of the molecular mechanisms determining the variable sensitivity of CRC cells to butyrate may assist in developing approaches that

  18. S-phase-dependent cell cycle disturbances caused by Aleutian mink disease parvovirus

    DEFF Research Database (Denmark)

    Oleksiewicz, M.B.; Alexandersen, Søren

    1997-01-01

    We examined replication of the autonomous parovirus Aleutian mink disease parovirus (ADV) in relation to cell cycle progression of permissive Crandell feline kidney (CRFK) cells. Flow cytometric analysis showed that ADV caused a composite, binary pattern of cell cycle arrest. ADV-induced cell cyc...

  19. SPARC expression induces cell cycle arrest via STAT3 signaling pathway in medulloblastoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Chetty, Chandramu [Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, One Illini Drive, Peoria, IL-61605 (United States); Dontula, Ranadheer [Section of Hematology/Oncology, Department of Medicine, University of Illinois College of Medicine at Chicago, 840 South Wood Street, Suite 820-E, Chicago, IL-60612 (United States); Ganji, Purnachandra Nagaraju [Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, One Illini Drive, Peoria, IL-61605 (United States); Gujrati, Meena [Department of Pathology, University of Illinois College of Medicine at Peoria, One Illini Drive, Peoria, IL-61605 (United States); Lakka, Sajani S., E-mail: slakka@uic.edu [Section of Hematology/Oncology, Department of Medicine, University of Illinois College of Medicine at Chicago, 840 South Wood Street, Suite 820-E, Chicago, IL-60612 (United States)

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Ectopic expression of SPARC impaired cell proliferation in medulloblastoma cells. Black-Right-Pointing-Pointer SPARC expression induces STAT3 mediated cell cycle arrest in medulloblastoma cells. Black-Right-Pointing-Pointer SPARC expression significantly inhibited pre-established tumor growth in nude-mice. -- Abstract: Dynamic cell interaction with ECM components has profound influence in cancer progression. SPARC is a component of the ECM, impairs the proliferation of different cell types and modulates tumor cell aggressive features. We previously reported that SPARC expression significantly impairs medulloblastoma tumor growth in vivo. In this study, we demonstrate that expression of SPARC inhibits medulloblastoma cell proliferation. MTT assay indicated a dose-dependent reduction in tumor cell proliferation in adenoviral mediated expression of SPARC full length cDNA (Ad-DsRed-SP) in D425 and UW228 cells. Flow cytometric analysis showed that Ad-DsRed-SP-infected cells accumulate in the G2/M phase of cell cycle. Further, immunoblot and immunoprecipitation analyses revealed that SPARC induced G2/M cell cycle arrest was mediated through inhibition of the Cyclin-B-regulated signaling pathway involving p21 and Cdc2 expression. Additionally, expression of SPARC decreased STAT3 phosphorylation at Tyr-705; constitutively active STAT3 expression reversed SPARC induced G2/M arrest. Ad-DsRed-SP significantly inhibited the pre-established orthotopic tumor growth and tumor volume in nude-mice. Immunohistochemical analysis of tumor sections from mice treated with Ad-DsRed-SP showed decreased immunoreactivity for pSTAT3 and increased immunoreactivity for p21 compared to tumor section from mice treated with mock and Ad-DsRed. Taken together our studies further reveal that STAT3 plays a key role in SPARC induced G2/M arrest in medulloblastoma cells. These new findings provide a molecular basis for the mechanistic understanding of the

  20. Meiotic and Mitotic Cell Cycle Mutants Involved in Gametophyte Development in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Jingjing Liu; Li-Jia Qu

    2008-01-01

    The alternation between diploid and haploid generations is fundamentalin the life cycles of both animals and plants.The meiotic cell cycle is common to both animals and plants gamete formation, but in animals the products of meiosis are gametes,whereas for most plants,subsequent mitotic cell cycles are needed for their formation. Clarifying the regulatory mechanisms of mitotic cell cycle progression during gametophyte development will help understanding of sexual reproduction in plants.Many mutants defective in gametophyte development and,in particular,many meiotic and mitotic cell cycle mutants in Arabidopsis male and female gametophyte development were identified through both forward and reverse genetics approaches.

  1. Dynamical modeling of the cell cycle and cell fate emergence in Caulobacter crescentus.

    Directory of Open Access Journals (Sweden)

    César Quiñones-Valles

    Full Text Available The division of Caulobacter crescentus, a model organism for studying cell cycle and differentiation in bacteria, generates two cell types: swarmer and stalked. To complete its cycle, C. crescentus must first differentiate from the swarmer to the stalked phenotype. An important regulator involved in this process is CtrA, which operates in a gene regulatory network and coordinates many of the interactions associated to the generation of cellular asymmetry. Gaining insight into how such a differentiation phenomenon arises and how network components interact to bring about cellular behavior and function demands mathematical models and simulations. In this work, we present a dynamical model based on a generalization of the Boolean abstraction of gene expression for a minimal network controlling the cell cycle and asymmetric cell division in C. crescentus. This network was constructed from data obtained from an exhaustive search in the literature. The results of the simulations based on our model show a cyclic attractor whose configurations can be made to correspond with the current knowledge of the activity of the regulators participating in the gene network during the cell cycle. Additionally, we found two point attractors that can be interpreted in terms of the network configurations directing the two cell types. The entire network is shown to be operating close to the critical regime, which means that it is robust enough to perturbations on dynamics of the network, but adaptable to environmental changes.

  2. Dynamical modeling of the cell cycle and cell fate emergence in Caulobacter crescentus.

    Science.gov (United States)

    Quiñones-Valles, César; Sánchez-Osorio, Ismael; Martínez-Antonio, Agustino

    2014-01-01

    The division of Caulobacter crescentus, a model organism for studying cell cycle and differentiation in bacteria, generates two cell types: swarmer and stalked. To complete its cycle, C. crescentus must first differentiate from the swarmer to the stalked phenotype. An important regulator involved in this process is CtrA, which operates in a gene regulatory network and coordinates many of the interactions associated to the generation of cellular asymmetry. Gaining insight into how such a differentiation phenomenon arises and how network components interact to bring about cellular behavior and function demands mathematical models and simulations. In this work, we present a dynamical model based on a generalization of the Boolean abstraction of gene expression for a minimal network controlling the cell cycle and asymmetric cell division in C. crescentus. This network was constructed from data obtained from an exhaustive search in the literature. The results of the simulations based on our model show a cyclic attractor whose configurations can be made to correspond with the current knowledge of the activity of the regulators participating in the gene network during the cell cycle. Additionally, we found two point attractors that can be interpreted in terms of the network configurations directing the two cell types. The entire network is shown to be operating close to the critical regime, which means that it is robust enough to perturbations on dynamics of the network, but adaptable to environmental changes.

  3. Quantitative imaging with Fucci and mathematics to uncover temporal dynamics of cell cycle progression.

    Science.gov (United States)

    Saitou, Takashi; Imamura, Takeshi

    2016-01-01

    Cell cycle progression is strictly coordinated to ensure proper tissue growth, development, and regeneration of multicellular organisms. Spatiotemporal visualization of cell cycle phases directly helps us to obtain a deeper understanding of controlled, multicellular, cell cycle progression. The fluorescent ubiquitination-based cell cycle indicator (Fucci) system allows us to monitor, in living cells, the G1 and the S/G2/M phases of the cell cycle in red and green fluorescent colors, respectively. Since the discovery of Fucci technology, it has found numerous applications in the characterization of the timing of cell cycle phase transitions under diverse conditions and various biological processes. However, due to the complexity of cell cycle dynamics, understanding of specific patterns of cell cycle progression is still far from complete. In order to tackle this issue, quantitative approaches combined with mathematical modeling seem to be essential. Here, we review several studies that attempted to integrate Fucci technology and mathematical models to obtain quantitative information regarding cell cycle regulatory patterns. Focusing on the technological development of utilizing mathematics to retrieve meaningful information from the Fucci producing data, we discuss how the combined methods advance a quantitative understanding of cell cycle regulation.

  4. Imaging Nuclear Morphology and Organization in Cleared Plant Tissues Treated with Cell Cycle Inhibitors.

    Science.gov (United States)

    de Souza Junior, José Dijair Antonino; de Sa, Maria Fatima Grossi; Engler, Gilbert; Engler, Janice de Almeida

    2016-01-01

    Synchronization of root cells through chemical treatment can generate a large number of cells blocked in specific cell cycle phases. In plants, this approach can be employed for cell suspension cultures and plant seedlings. To identify plant cells in the course of the cell cycle, especially during mitosis in meristematic tissues, chemical inhibitors can be used to block cell cycle progression. Herein, we present a simplified and easy-to-apply protocol to visualize mitotic figures, nuclei morphology, and organization in whole Arabidopsis root apexes. The procedure is based on tissue clearing, and fluorescent staining of nuclear DNA with DAPI. The protocol allows carrying out bulk analysis of nuclei and cell cycle phases in root cells and will be valuable to investigate mutants like overexpressing lines of genes disturbing the plant cell cycle.

  5. Selenium Inhibits Metastasis of Murine Melanoma Cells through the Induction of Cell Cycle Arrest and Cell Death

    OpenAIRE

    SONG, HYUNKEUN; Hur, Indo; Park, Hyun-jin; Nam, Joohyung; PARK, GA BIN; Kong, Kyoung Hye; Hwang, Young Mi; KIM, YEONG SEOK; Cho, Dae Ho; Lee, Wang Jae; Hur, Dae Young

    2009-01-01

    Background Melanoma is the most fatal form of skin cancer due to its rapid metastasis. Recently, several studies reported that selenium can induce apoptosis in melanoma cells. However, the precise mechanism remains to be elucidated. In this study, we investigated the effect of selenium on cell proliferation in murine melanoma and on tumor growth and metastasis in C57BL/6 mice. Methods Cell proliferation was measured by MTT assay in selenium-treated melanoma cells. Cell cycle distribution was ...

  6. Impaired germ cell development due to compromised cell cycle progression in Skp2-deficient mice

    Directory of Open Access Journals (Sweden)

    Nakayama Keiko

    2006-04-01

    Full Text Available Abstract Background The gonads are responsible for the production of germ cells through both mitosis and meiosis. Skp2 is the receptor subunit of an SCF-type ubiquitin ligase and is a major regulator of the progression of cells into S phase of the cell cycle, which it promotes by mediating the ubiquitin-dependent degradation of p27, an inhibitor of cell proliferation. However, the role of the Skp2-p27 pathway in germ cell development remains elusive. Results We now show that disruption of Skp2 in mice results in a marked impairment in the fertility of males, with the phenotypes resembling Sertoli cell-only syndrome in men. Testes of Skp2-/- mice manifested pronounced germ cell hypoplasia accompanied by massive apoptosis in spermatogenic cells. Flow cytometry revealed an increased prevalence of polyploidy in spermatozoa, suggesting that the aneuploidy of these cells is responsible for the induction of apoptosis. Disruption of the p27 gene of Skp2-/- mice restored germ cell development, indicating that the testicular hypoplasia of Skp2-/- animals is attributable to the antiproliferative effect of p27 accumulation. Conclusion Our results thus suggest that compromised cell cycle progression caused by the accumulation of p27 results in aneuploidy and the induction of apoptosis in gonadal cells of Skp2-/- mice. The consequent reduction in the number of mature gametes accounts for the decreased fertility of these animals. These findings reinforce the importance of the Skp2-p27 pathway in cell cycle regulation and in germ cell development.

  7. Measuring cell cycle progression kinetics with metabolic labeling and flow cytometry.

    Science.gov (United States)

    Fleisig, Helen; Wong, Judy

    2012-01-01

    Precise control of the initiation and subsequent progression through the various phases of the cell cycle are of paramount importance in proliferating cells. Cell cycle division is an integral part of growth and reproduction and deregulation of key cell cycle components have been implicated in the precipitating events of carcinogenesis. Molecular agents in anti-cancer therapies frequently target biological pathways responsible for the regulation and coordination of cell cycle division. Although cell cycle kinetics tend to vary according to cell type, the distribution of cells amongst the four stages of the cell cycle is rather consistent within a particular cell line due to the consistent pattern of mitogen and growth factor expression. Genotoxic events and other cellular stressors can result in a temporary block of cell cycle progression, resulting in arrest or a temporary pause in a particular cell cycle phase to allow for instigation of the appropriate response mechanism. The ability to experimentally observe the behavior of a cell population with reference to their cell cycle progression stage is an important advance in cell biology. Common procedures such as mitotic shake off, differential centrifugation or flow cytometry-based sorting are used to isolate cells at specific stages of the cell cycle. These fractionated, cell cycle phase-enriched populations are then subjected to experimental treatments. Yield, purity and viability of the separated fractions can often be compromised using these physical separation methods. As well, the time lapse between separation of the cell populations and the start of experimental treatment, whereby the fractionated cells can progress from the selected cell cycle stage, can pose significant challenges in the successful implementation and interpretation of these experiments. Other approaches to study cell cycle stages include the use of chemicals to synchronize cells. Treatment of cells with chemical inhibitors of key

  8. Rosmarinic Acid and Melissa officinalis Extracts Differently Affect Glioblastoma Cells

    Directory of Open Access Journals (Sweden)

    Kristina Ramanauskiene

    2016-01-01

    Full Text Available Lemon balm (Melissa officinalis L. has many biological effects but especially important is its neuroprotective activity. The aim of the study is to produce different extracts of Melissa officinalis and analyse their chemical composition and biological properties on rat glioblastoma C6 cells. Results revealed that rosmarinic acid (RA is the predominant compound of lemon balm extracts. RA has cytotoxic effect on glioblastoma cells (LC50 290.5 μM after the incubation of 24 h and LC50 171.3 μM after 48 h. RA at concentration 80–130 μM suppresses the cell proliferation and has an antioxidant effect. 200 μM and higher concentrations of RA have a prooxidant effect and initiate cell death through necrosis. The aqueous extract of lemon balm is also enriched in phenolic compounds: protocatechuic, caftaric, caffeic, ferulic, and cichoric acids and flavonoid luteolin-7-glucoside. This extract at concentrations 50 μM–200 μM RA has cytotoxic activity and initiates cell death through apoptosis. Extracts prepared with 70% ethanol contain the biggest amount of active compounds. These extracts have the highest cytotoxic activity on glioblastoma cells. They initiate generation of intracellular ROS and cell death through apoptosis and necrosis. Our data suggest that differently prepared lemon balm extracts differently affect glioblastoma cells and can be used as neuroprotective agents in several therapeutic strategies.

  9. The depletion of Interleukin-8 causes cell cycle arrest and increases the efficacy of docetaxel in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Nan [Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou (China); Chen, Liu-Hua [Department of Minimally Invasive Surgery Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou (China); Ye, Run-Yi [Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou (China); Lin, Ying, E-mail: frostlin@hotmail.com [Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou (China); Wang, Shen-Ming, E-mail: shenmingwang@hotmail.com [Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou (China)

    2013-02-15

    Highlights: ► IL-8 depletion affects cell cycle distribution. ► Intrinsic IL-8 mediates breast cancer cell migration and invasion. ► IL-8 siRNA down regulates key factors that control survival and metastatic pathway. ► IL-8 depletion reduces integrin β3 expression. ► IL-8 depletion increases the chemosensitivity to docetaxel. -- Abstract: IL-8 is a multi-functional pro-inflammatory chemokine, which is highly expressed in cancers, such as ER-negative breast cancer. The present study demonstrates the pervasive role of IL-8 in the malignant progression of ER-negative breast cancer. IL-8 siRNA inhibited proliferation and delayed the G1 to S cell cycle progression in MDA-MB-231 and BT549 cells. IL-8 silencing resulted in the upregulation of the CDK inhibitor p27, the downregulation of cyclin D1, and the reduction of phosphorylated-Akt and NF-κB activities. IL-8 depletion also increased the chemosensitivity to docetaxel. These results indicate a role for IL-8 in promoting tumor cell survival and resistance to docetaxel and highlight the potential therapeutic significance of IL-8 depletion in ER-negative breast cancer patients.

  10. Propionibacterium acnes inhibits FOXM1 and induces cell cycle alterations in human primary prostate cells

    DEFF Research Database (Denmark)

    Sayanjali, Behnam; Christensen, Gitte J M; Al-Zeer, Munir A;

    2016-01-01

    Propionibacterium acnes has been detected in diseased human prostate tissue, and cell culture experiments suggest that the bacterium can establish a low-grade inflammation. Here, we investigated its impact on human primary prostate epithelial cells. Microarray analysis confirmed the inflammation......-inducing capability of P. acnes but also showed deregulation of genes involved in the cell cycle. qPCR experiments showed that viable P. acnes downregulates a master regulator of cell cycle progression, FOXM1. Flow cytometry experiments revealed that P. acnes increases the number of cells in S-phase. We tested...... the hypothesis that a P. acnes-produced berninamycin-like thiopeptide is responsible for this effect, since it is related to the FOXM1 inhibitor siomycin. The thiopeptide biosynthesis gene cluster was strongly expressed; it is present in subtype IB of P. acnes, but absent from type IA, which is most abundant...

  11. Cycling of lithium/metal oxide cells using composite electrolytes containing fumed silicas

    International Nuclear Information System (INIS)

    The effect on cycle capacity is reported of cathode material (metal oxide, carbon, and current collector) in lithium/metal oxide cells cycled with fumed silica-based composite electrolytes. Three types of electrolytes are compared: filler-free electrolyte consisting of methyl-terminated poly(ethylene glycol) oligomer (PEGdm, Mw=250)+lithium bis(trifluromethylsufonyl)imide (LiTFSI) (Li:O=1:20), and two composite systems of the above baseline liquid electrolyte containing 10-wt% A200 (hydrophilic fumed silica) or R805 (hydrophobic fumed silica with octyl surface group). The composite electrolytes are solid-like gels. Three cathode active materials (LiCoO2, V6O13, and LixMnO2), four conducting carbons (graphite Timrex [reg] SFG 15, SFG 44, carbon black Vulcan XC72R, and Ketjenblack EC-600JD), and three current collector materials (Al, Ni, and carbon fiber) were studied. Cells with composite electrolytes show higher capacity, reduced capacity fade, and less cell polarization than those with filler-free electrolyte. Among the three active materials studied, V6O13 cathodes deliver the highest capacity and LixMnO2 cathodes render the best capacity retention. Discharge capacity of Li/LiCoO2 cells is affected greatly by cathode carbon type, and the capacity decreases in the order of Ketjenblack>SFG 15>SFG 44>Vulcan. Current collector material also plays a significant role in cell cycling performance. Lithium/vanadium oxide (V6O13) cells deliver increased capacity using Ni foil and carbon fiber current collectors in comparison to an Al foil current collector

  12. Genes affecting β-cell function in type 1 diabetes

    DEFF Research Database (Denmark)

    Fløyel, Tina; Kaur, Simranjeet; Pociot, Flemming

    2015-01-01

    Type 1 diabetes (T1D) is a multifactorial disease resulting from an immune-mediated destruction of the insulin-producing pancreatic β cells. Several environmental and genetic risk factors predispose to the disease. Genome-wide association studies (GWAS) have identified around 50 genetic regions...... that affect the risk of developing T1D, but the disease-causing variants and genes are still largely unknown. In this review, we discuss the current status of T1D susceptibility loci and candidate genes with focus on the β cell. At least 40 % of the genes in the T1D susceptibility loci are expressed in human...... islets and β cells, where they according to recent studies modulate the β-cell response to the immune system. As most of the risk variants map to noncoding regions of the genome, i.e., promoters, enhancers, intergenic regions, and noncoding genes, their possible involvement in T1D pathogenesis as gene...

  13. Differences in CART expression and cell cycle behavior discriminate sympathetic neuroblast from chromaffin cell lineages in mouse sympathoadrenal cells.

    Science.gov (United States)

    Chan, Wing Hei; Gonsalvez, David G; Young, Heather M; Southard-Smith, E Michelle; Cane, Kylie N; Anderson, Colin R

    2016-02-01

    Adrenal medullary chromaffin cells and peripheral sympathetic neurons originate from a common sympathoadrenal (SA) progenitor cell. The timing and phenotypic changes that mark this lineage diversification are not fully understood. The present study investigated the expression patterns of phenotypic markers, and cell cycle dynamics, in the adrenal medulla and the neighboring suprarenal ganglion of embryonic mice. The noradrenergic marker, tyrosine hydroxylase (TH), was detected in both presumptive adrenal medulla and sympathetic ganglion cells, but with significantly stronger immunostaining in the former. There was intense cocaine and amphetamine-regulated transcript (CART) peptide immunostaining in most neuroblasts, whereas very few adrenal chromaffin cells showed detectable CART immunostaining. This phenotypic segregation appeared as early as E12.5, before anatomical segregation of the two cell types. Cell cycle dynamics were also examined. Initially, 88% of Sox10 positive (+) neural crest progenitors were proliferating at E10.5. Many SA progenitor cells withdrew from the cell cycle at E11.5 as they started to express TH. Whereas 70% of neuroblasts (TH+/CART+ cells) were back in the cell cycle at E12.5, only around 20% of chromaffin (CART negative) cells were in the cell cycle at E12.5 and subsequent days. Thus, chromaffin cell and neuroblast lineages showed differences in proliferative behavior from their earliest appearance. We conclude that the intensity of TH immunostaining and the expression of CART permit early discrimination of chromaffin cells and sympathetic neuroblasts, and that developing chromaffin cells exhibit significantly lower proliferative activity relative to sympathetic neuroblasts.

  14. Boron neutron capture therapy induces cell cycle arrest and cell apoptosis of glioma stem/progenitor cells in vitro

    International Nuclear Information System (INIS)

    Glioma stem cells in the quiescent state are resistant to clinical radiation therapy. An almost inevitable glioma recurrence is due to the persistence of these cells. The high linear energy transfer associated with boron neutron capture therapy (BNCT) could kill quiescent and proliferative cells. The present study aimed to evaluate the effects of BNCT on glioma stem/progenitor cells in vitro. The damage induced by BNCT was assessed using cell cycle progression, apoptotic cell ratio and apoptosis-associated proteins expression. The surviving fraction and cell viability of glioma stem/progenitor cells were decreased compared with differentiated glioma cells using the same boronophenylalanine pretreatment and the same dose of neutron flux. BNCT induced cell cycle arrest in the G2/M phase and cell apoptosis via the mitochondrial pathway, with changes in the expression of associated proteins. Glioma stem/progenitor cells, which are resistant to current clinical radiotherapy, could be effectively killed by BNCT in vitro via cell cycle arrest and apoptosis using a prolonged neutron irradiation, although radiosensitivity of glioma stem/progenitor cells was decreased compared with differentiated glioma cells when using the same dose of thermal neutron exposure and boronophenylalanine pretreatment. Thus, BNCT could offer an appreciable therapeutic advantage to prevent tumor recurrence, and may become a promising treatment in recurrent glioma

  15. Effects of Genistein on Proliferation and Cell Cycle of Salivary Adenoid Cystic Carcinoma Cells

    Institute of Scientific and Technical Information of China (English)

    MA Jie; WANG Jie; ZHONG Ming; WANG Zhao-yuan

    2007-01-01

    Objective: To investigate the growth inhibiting effect of tyrosine protein kinase inhibitor, genistein, on human salivary adenoid cystic carcinoma SACC-83 cell line in vitro, and its effects on the expression of CyclinB1 protein and cell cycle. Methods: Effects of genistein on the growth of SACC-83 cells in vitro were measured with MTT assay. Cell cycle was detected with flow cytometry. The expressions of CyclinB1 and Cdk1 proteins were measured with Western blot method, and the results of protein expression were quantitatively analyzed by FluorChem V2.0 software. The results were statistically analyzed by SPSS11.5 software. Results: Genistein inhibited the cell proliferation in a dose-dependant and time-dependant manner. The genistein-treated SACC-83 cells were arrested in the G2/M phase and had lower contents of CyclinB1 and Cdk1 proteins compared with the control group. Conclusion: The growth inhibiting effect of genistein on SACC-83 cells may be associated with the regulations of genistein on the CyclinB1 and Cdk1 protein expressions and the cell cycle.

  16. Mast cells as modulators of hair follicle cycling.

    Science.gov (United States)

    Maurer, M; Paus, R; Czarnetzki, B M

    1995-08-01

    While the central role of mast cells (MC) in allergy and inflammation is well-appreciated, much less is known about their physiological functions. The impressive battery of potent growth modulatory MC products, and increasing evidence of MC involvement in hyperproliferative and fibrotic disorders suggest that tissue remodelling may be one of those, namely in the skin. Here, we delineate why this may best be studied by analysing the potential role of MC in hair growth regulation. On the background of numerous, yet widely under-appreciated hints from the older literature, we summarize and discuss our recent observations from the C57BL/6 mouse model for hair research which support the concept that MC are functionally important modulators of hair follicle cycling, specifically during anagen development. This invites to exploit the murine hair cycle as a model for dissecting the physiological growth modulatory functions of MC and encourages the exploration of MC-targeting pharmaceutical strategies for the treatment of hair growth disorders.

  17. Exosomes Secreted by Toxoplasma gondii-Infected L6 Cells: Their Effects on Host Cell Proliferation and Cell Cycle Changes

    OpenAIRE

    Kim, Min Jae; Jung, Bong-Kwang; Cho, Jaeeun; Song, Hyemi; Pyo, Kyung-Ho; Lee, Ji Min; Kim, Min-Kyung; Chai, Jong-Yil

    2016-01-01

    Toxoplasma gondii infection induces alteration of the host cell cycle and cell proliferation. These changes are not only seen in directly invaded host cells but also in neighboring cells. We tried to identify whether this alteration can be mediated by exosomes secreted by T. gondii-infected host cells. L6 cells, a rat myoblast cell line, and RH strain of T. gondii were selected for this study. L6 cells were infected with or without T. gondii to isolate exosomes. The cellular growth patterns w...

  18. Life-cycle analysis of product integrated polymer solar cells

    DEFF Research Database (Denmark)

    Espinosa Martinez, Nieves; García-Valverde, Rafael; Krebs, Frederik C

    2011-01-01

    A life cycle analysis (LCA) on a product integrated polymer solar module is carried out in this study. These assessments are well-known to be useful in developmental stages of a product in order to identify the bottlenecks for the up-scaling in its production phase for several aspects spanning fr...... and instead of a battery charging station. The analysis reveals that the OPV lamp has a significant advantage provided that some of the challenges facing this novel technology are efficiently met such that it can enter the market of portable lighting devices....... on the complete product integrated polymer solar cell. We have compared this portable lighting system with other lighting solutions, namely: a kerosene lamp in a remote rural area in Africa (Ethiopia), as a replacement of a silicon PV based lamp, in place of a torch with non-rechargeable lead-acid battery...

  19. Role of Ran GTPase in cell cycle regulation

    Institute of Scientific and Technical Information of China (English)

    JIANG Qing; LU Zhigang; ZHANG Chuanmao

    2004-01-01

    Ran, a member of the Ras GTPase superfamily,is a multifunctional protein and abundant in the nucleus.Many evidences suggest that Ran and its interacting proteins are involved in multiple aspects of the cell cycle regulation.So far it has been conformed that Ran and its interacting proteins control the nucleocytoplasmic transport, the nuclear envelope (NE) assembly, the DNA replication and the spindle assembly, although many details of the mechanisms are waiting for elucidation. It has also been implicated that Ran and its interacting proteins are involved in regulating the integrity of the nuclear structure, the mRNA transcription and splicing, and the RNA transport from the nucleus to the cytoplasm. In this review we mainly discuss the mechanisms by which Ran and its interacting proteins regulate NE assembly, DNA replication and spindle assembly.

  20. Effect of cell cycle inhibitor p19ARF on senescence of human diploid cell

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    To investigate the effect of cell cycle inhibitor p19ARF on replicative senescence of human diploid cell, recombinant p19ARF eukaryotic expression vector was constructed and p19ARF gene was transfected into human diploid fibroblasts (WI-38 cells) by liposome-mediated transfection for overexpression. Then, the effects of p19ARF on replicative senescence of WI-38 cells were observed. The results re- vealed that, compared with control cells, the WI-38 cells in which p19ARF gene was introduced showed significant up-regulation of p53 and p21 expression level, decrease of cell generation by 10 12 generations, decline of cell growth rate with cell cycle being arrested at G1 phase, increase of positive rate of senescent marker SA-β-gal staining, and decrease of mitochondrial membrane potential. The morphology of the transfected fibroblasts presented the characteristics changes similar to senescent cells. These results indicated that high expression of p19ARF may promote the senescent process of human diploid cells.

  1. Abnormal mitosis triggers p53-dependent cell cycle arrest in human tetraploid cells.

    Science.gov (United States)

    Kuffer, Christian; Kuznetsova, Anastasia Yurievna; Storchová, Zuzana

    2013-08-01

    Erroneously arising tetraploid mammalian cells are chromosomally instable and may facilitate cell transformation. An increasing body of evidence shows that the propagation of mammalian tetraploid cells is limited by a p53-dependent arrest. The trigger of this arrest has not been identified so far. Here we show by live cell imaging of tetraploid cells generated by an induced cytokinesis failure that most tetraploids arrest and die in a p53-dependent manner after the first tetraploid mitosis. Furthermore, we found that the main trigger is a mitotic defect, in particular, chromosome missegregation during bipolar mitosis or spindle multipolarity. Both a transient multipolar spindle followed by efficient clustering in anaphase as well as a multipolar spindle followed by multipolar mitosis inhibited subsequent proliferation to a similar degree. We found that the tetraploid cells did not accumulate double-strand breaks that could cause the cell cycle arrest after tetraploid mitosis. In contrast, tetraploid cells showed increased levels of oxidative DNA damage coinciding with the p53 activation. To further elucidate the pathways involved in the proliferation control of tetraploid cells, we knocked down specific kinases that had been previously linked to the cell cycle arrest and p53 phosphorylation. Our results suggest that the checkpoint kinase ATM phosphorylates p53 in tetraploid cells after abnormal mitosis and thus contributes to proliferation control of human aberrantly arising tetraploids.

  2. Life cycle assessment of fuel cell vehicles: Dealing with uncertainties

    Science.gov (United States)

    Contadini, Jose Fernando

    Life cycle assessment (LCA), or "well to wheels" in transportation terms, involves some subjectivity and uncertainty, especially with new technologies and future scenarios. To analyze lifecycle impacts of future fuel cell vehicles and fuels, I developed the Fuel Upstream Energy and Emission Model (FUEEM). The FUEEM project pioneered two specific new ways to incorporate and propagate uncertainty within an LCA analysis. First, the model uses probabilistic curves generated by experts as inputs and then employs Monte Carlo simulation techniques to propagate these uncertainties throughout the full chain of fuel production and use. Second, the FUEEM process explicitly involves the interested parties in the entire analysis process, not only in the critical final review phase. To demonstrate the FUEEM process, an analysis has been made for the use of three different fuel cell vehicle technologies (direct hydrogen, indirect methanol, and indirect hydrocarbon) in 2010 within the South Coast Air Basin (SCAB) of California (Los Angeles). The analysis covered topics such as the requirement of non-renewable energy sources, emissions of CO2 and other greenhouse gases, and emissions of several criteria pollutants generated within SCAB and within other regions. The results obtained from this example show that the hydrogen option has the potential to have the most efficient energy life cycle for the SCAB, followed by the methanol and finally by the Fisher-Tropsch naphtha option. A similar pattern is observed for the greenhouse gas emissions. The results showing criteria pollutants emitted within SCAB highlight the importance of having a flexible model that is responsive to local considerations. This dissertation demonstrates that explicit recognition and quantitative analysis of the inherent uncertainty in the LCA process generates richer information, explains many of the discrepancies between results of previous studies, and enhances the robustness and credibility of LCA analyses.

  3. Cell cycle variation in x-ray survival for cells from spheroids measured by volume cell sorting

    International Nuclear Information System (INIS)

    Considerable work has been done studying the variation in cell survival as a function of cell cycle position for monolayers or single cells exposed to radiation. Little is known about the effects of multicellular growth on the relative radiation sensitivity of cells in different cell cycle stages. The authors have developed a new technique for measuring the response of cells, using volume cell sorting, which is rapid, non-toxic, and does not require cell synchronization. By combining this technique with selective spheroid dissociation,they have measured the age response of cells located at various depths in EMT6 and Colon 26 spheroids. Although cells in the inner region had mostly G1-phase DNA contents, 15-20% had S- and G2-phase DNA contents. Analysis of these cells using BrdU labeling and flow cytometric analysis with a monoclonal antibody to BrdU indicated that the inner region cells were not synthesizing DNA. Thus, the authors were able to measure the radiation response of cells arrested in G1, S and G2 cell cycle phases. Comparison of inner and outer spheroid regions, and monolayer cultures, indicates that it is improper to extrapolate age response data in standard culture conditions to the situation in spheroids

  4. Affectivity

    OpenAIRE

    Stenner, Paul; Greco, Monica

    2013-01-01

    The concept of affectivity has assumed central importance in much recent scholarship, and many in the social sciences and humanities now talk of an ‘affective turn’. The concept of affectivity at play in this ‘turn’ remains, however, somewhat vague and slippery. Starting with Silvan Tomkins’ influential theory of affect, this paper will explore the relevance of the general assumptions (or ‘utmost abstractions’) that inform thinking about affectivity. The technological and instrumentalist char...

  5. Nuclear orphan receptor TLX affects gene expression, proliferation and cell apoptosis in beta cells.

    Science.gov (United States)

    Shi, Xiaoli; Xiong, Xiaokan; Dai, Zhe; Deng, Haohua; Sun, Li; Hu, Xuemei; Zhou, Feng; Xu, Yancheng

    Nuclear orphan receptor TLX is an essential regulator of the growth of neural stem cells. However, its exact function in pancreatic islet cells is still unknown. In the present study, gene expression profiling analysis revealed that overexpression of TLX in beta cell line MIN6 causes suppression of 176 genes and upregulation of 49 genes, including a cadre of cell cycle, cell proliferation and cell death control genes, such as Btg2, Ddit3 and Gadd45a. We next examined the effects of TLX overexpression on proliferation, apoptosis and insulin secretion in MIN6 cells. Proliferation analysis using EdU assay showed that overexpression of TLX increased percentage of EdU-positive cells. Cell cycle and apoptosis analysis revealed that overexpression of TLX in MIN6 cells resulted in higher percentage of cells exiting G1 into S-phase, and a 58.8% decrease of cell apoptosis induced by 0.5 mM palmitate. Moreover, TLX overexpression did not cause impairment of insulin secretion. Together, we conclude that TLX is among factors capable of controlling beta cell proliferation and survival, which may serve as a target for the development of novel therapies for diabetes.

  6. Effect of genistein on cell cycle of bone marrow hematopoietic cells in normal and irradiated mice

    International Nuclear Information System (INIS)

    Objective: To study the effects of genistein on cell cycle, proliferation and expression of bcl-2 gene in bone marrow hematopoietic cells (BMHCs) of normal and irradiated mice in order to explore mechanisms for protection of genistein from radiation-induced hematopoietic system injury. Methods: Adult male BALB/c mice were orally administered with genistein (160 mg/kg b.w.) 24 h before irradiation. Cell cycles in BMHCs of the normal and irradiated mice were measured by flow cytometry. The protein and mRNA expressions of bcl-2 gene in BMHCs were analyzed by Western blot and RT-PCR, respectively. Results: a) Transitory and significant changes occurred in the cell cycle of BMHCs in the normal mice after administration of genistein: first, the proliferation suppression of BMHCs was observed and most cells were arrested in G0/G1 phase on day 1; second, progression of cells from G0/G1 phase into S phase was observed, accumulation of cells in S phase on day 2, and back to the normal level on day 4. b) Genistein, administration 24 h before irradiation, decreased the percentage of BMHCs in G0/G1 phase and increased cell proliferation. Moreover, genistein up-regulated the protein and mRNA expressions of bcl-2 in BMHCs in the irradiated mice. Conclusions: It was shown that changing with cell cycle, strengthening of radioresistant, suppressing of radiation-induced apoptosis, and enhancing of proliferation and differentiation of BMHCs maybe the underlying mechanisms for genistein protection of hematopoietic system against radiation damage. (authors)

  7. Effect of p27KIP1 on cell cycle and apoptosis in gastric cancer cells

    Institute of Scientific and Technical Information of China (English)

    Jian-Yong Zheng; Wei-Zhong Wang; Kai-Zong Li; Wen-Xian Guan; Wei Yan

    2005-01-01

    AIM: To elucidate the effect of p27KIP1 on cell cycle and apoptosis regulation in gastric carcinoma cells.METHODS: The whole length of p27KIP1 cDNA was transfected into human gastric cancer cell line SCG7901by lipofectamine. Expression of p27KIP1 protein or mRNA was analyzed by Western blot and RNA dot blotting,respectively. Effect of p27KIP1 on cell growth was observed by MTT assay and anchorage-independent growth in soft agar. Tumorigenicity in nude mice was used to assess the in vivo biological effect of p27KIP1. Flow cytometry,TUNEL, and electron microscopy were used to assess the effect of p27KIP1 on cell cycle and apoptosis.RESULTS: Expression of p27KIP1 protein or mRNA increased evidently in SCG7901 cells transfected with p27KIP1. The cell growth was reduced by 31% at 48 h after induction with zinc determined by cell viability assay. The alteration of cell malignant phenotype was evidently indicated by the loss of anchorage-independent growth ability in soft agar. The tumorigenicity in nude mice was reduced evidently (0.55±0.14 cm vs 1.36±0.13crn, P<0.01). p27KIP1 overexpression caused cell arrest with 36% increase (from 33.7% to 69.3%,P<0.01) in G1 population. Prolonged p27KIP1 expression induced apoptotic cell death reflected by pre-G1 peak in the histogram of FACS, which was also confirmed by TUNEL assay and electron microscopy.CONCLUSION: p27KIP1 can prolong cell cycle in G1phase and lead to apoptosis. p27KIP1 may be a good candidate for cancer gene therapy.

  8. Cell cycle arrest and cell survival induce reverse trends of cardiolipin remodeling.

    Directory of Open Access Journals (Sweden)

    Yu-Jen Chao

    Full Text Available Cell survival from the arrested state can be a cause of the cancer recurrence. Transition from the arrest state to the growth state is highly regulated by mitochondrial activity, which is related to the lipid compositions of the mitochondrial membrane. Cardiolipin is a critical phospholipid for the mitochondrial integrity and functions. We examined the changes of cardiolipin species by LC-MS in the transition between cell cycle arrest and cell reviving in HT1080 fibrosarcoma cells. We have identified 41 cardiolipin species by MS/MS and semi-quantitated them to analyze the detailed changes of cardiolipin species. The mass spectra of cardiolipin with the same carbon number form an envelope, and the C64, C66, C68, C70 C72 and C74 envelopes in HT1080 cells show a normal distribution in the full scan mass spectrum. The cardiolipin quantity in a cell decreases while entering the cell cycle arrest, but maintains at a similar level through cell survival. While cells awakening from the arrested state and preparing itself for replication, the groups with short acyl chains, such as C64, C66 and C68 show a decrease of cardiolipin percentage, but the groups with long acyl chains, such as C70 and C72 display an increase of cardiolipin percentage. Interestingly, the trends of the cardiolipin species changes during the arresting state are completely opposite to cell growing state. Our results indicate that the cardiolipin species shift from the short chain to long chain cardiolipin during the transition from cell cycle arrest to cell progression.

  9. Effects of tachyplesin on the regulation of cell cycle in human hepatocarcinoma SMMC-7721 cells

    Institute of Scientific and Technical Information of China (English)

    Qi-Fu Li; Gao-Liang Ouyang; Xuan-Xian Peng; Shui-Gen Hong

    2003-01-01

    AIM: To investigate the effects of tachyplesin on the cell cycle regulation in human hepatcarcinoma cells.METHODS: Effects of tachyplesin on the cell cycle in human hepatocarcinoma SMMC-7721 cells were assayed with flow cytometry. The protein levels of p53, p16, cyclin D1 and CDK4 were assayed by immunocytochemistry. The mRNA levels of p21WAF1/CIP1 and c-myc genes were examined with in situ hybridization assay.RESULTS: After tachyplesin treatment, the cell cycle arrested at G0/G1 phase, the protein levels of mutant p53, cyclin D1 and CDK4 and the mRNA level of c-myc gene were decreased, whereas the levels of p16 protein and p21wWF1/CIP1 mRNA increased.CONCLUSION: Tachyplesin might arrest the cell at G0/G1 phase by upregulating the levels of p16 protein and p21WAF1/CIP1 mRNA and downregulating the levels of mutant p53, cyclin D1 and CDK4 proteins and c-myc mRNA, and induce the differentiation of human hepatocacinoma cells.

  10. Effect of Juglone in qinglongyi on cell cycle status and apoptosis in A-549 cells

    Institute of Scientific and Technical Information of China (English)

    ZOU Xiang; KONG Ling-sheng; JI Yu-bin

    2008-01-01

    Objective To explore the inhibition of juglone in Qinglongyi on A-549 cells in vitro. Methods MTT assay was used. Laser confocal scanning microscope was used to observe apoptotic morphology.Changes of cell cycle are studied by flow cytometry analysis. Results MTT assay showed that juglone had a marked growth inhibition in A-549 cells and the IC50 is respectively 3.4×10-5 mol·L-1, 1.8×10-5 mol·L-1 and 2.6×10-6 mol·L-1 after treatment for 24, 48 and 72 h by juglone. Through Laser confocal scanning microscope, we can see that juglone can induce the apoptosis. Cell cycle changes are analyzed by flow cytometry with cells at G1 phase significantly less than those of control and ceils at G2 phase significantly more than those of control. Conclusions It suggests that juglone could apoptosis of A-549 cells with the cell cycle arrest on G2 phase in distinct dose-dependent manner.

  11. Quantitative proteomic analysis of cell cycle of the dinoflagellate Prorocentrum donghaiense (Dinophyceae.

    Directory of Open Access Journals (Sweden)

    Da-Zhi Wang

    Full Text Available Dinoflagellates are the major causative agents of harmful algal blooms in the coastal zone, which has resulted in adverse effects on the marine ecosystem and public health, and has become a global concern. Knowledge of cell cycle regulation in proliferating cells is essential for understanding bloom dynamics, and so this study compared the protein profiles of Prorocentrum donghaiense at different cell cycle phases and identified differentially expressed proteins using 2-D fluorescence difference gel electrophoresis combined with MALDI-TOF-TOF mass spectrometry. The results showed that the synchronized cells of P. donghaiense completed a cell cycle within 24 hours and cell division was phased with the diurnal cycle. Comparison of the protein profiles at four cell cycle phases (G1, S, early and late G2/M showed that 53 protein spots altered significantly in abundance. Among them, 41 were identified to be involved in a variety of biological processes, e.g. cell cycle and division, RNA metabolism, protein and amino acid metabolism, energy and carbon metabolism, oxidation-reduction processes, and ABC transport. The periodic expression of these proteins was critical to maintain the proper order and function of the cell cycle. This study, to our knowledge, for the first time revealed the major biological processes occurring at different cell cycle phases which provided new insights into the mechanisms regulating the cell cycle and growth of dinoflagellates.

  12. The effect of freeze-thaw cycles on gene expression levels in lymphoblastoid cell lines.

    Directory of Open Access Journals (Sweden)

    Minal Çalışkan

    Full Text Available Epstein-Barr virus (EBV transformed lymphoblastoid cell lines (LCLs are a widely used renewable resource for functional genomic studies in humans. The ability to accumulate multidimensional data pertaining to the same individual cell lines, from complete genomic sequences to detailed gene regulatory profiles, further enhances the utility of LCLs as a model system. However, the extent to which LCLs are a faithful model system is relatively unknown. We have previously shown that gene expression profiles of newly established LCLs maintain a strong individual component. Here, we extend our study to investigate the effect of freeze-thaw cycles on gene expression patterns in mature LCLs, especially in the context of inter-individual variation in gene expression. We report a profound difference in the gene expression profiles of newly established and mature LCLs. Once newly established LCLs undergo a freeze-thaw cycle, the individual specific gene expression signatures become much less pronounced as the gene expression levels in LCLs from different individuals converge to a more uniform profile, which reflects a mature transformed B cell phenotype. We found that previously identified eQTLs are enriched among the relatively few genes whose regulations in mature LCLs maintain marked individual signatures. We thus conclude that while insight drawn from gene regulatory studies in mature LCLs may generally not be affected by the artificial nature of the LCL model system, many aspects of primary B cell biology cannot be observed and studied in mature LCL cultures.

  13. GATA-3 regulates hematopoietic stem cell maintenance and cell-cycle entry

    OpenAIRE

    Ku, Chia-Jui; Hosoya, Tomonori; Maillard, Ivan; Engel, James Douglas

    2012-01-01

    Maintaining hematopoietic stem cell (HSC) quiescence is a critical property for the life-long generation of blood cells. Approximately 75% of cells in a highly enriched long-term repopulating HSC (LT-HSC) pool (Lin−Sca1+c-KithiCD150+CD48−) are quiescent, with only a small percentage of the LT-HSCs in cycle. Transcription factor GATA-3 is known to be vital for the development of T cells at multiple stages in the thymus and for Th2 differentiation in the peripheral organs. Although it is well d...

  14. The cell cycle of the planctomycete Gemmata obscuriglobus with respect to cell compartmentalization

    Directory of Open Access Journals (Sweden)

    Fuerst John A

    2009-01-01

    Full Text Available Abstract Background Gemmata obscuriglobus is a distinctive member of the divergent phylum Planctomycetes, all known members of which are peptidoglycan-less bacteria with a shared compartmentalized cell structure and divide by a budding process. G. obscuriglobus in addition shares the unique feature that its nucleoid DNA is surrounded by an envelope consisting of two membranes forming an analogous structure to the membrane-bounded nucleoid of eukaryotes and therefore G. obscuriglobus forms a special model for cell biology. Draft genome data for G. obscuriglobus as well as complete genome sequences available so far for other planctomycetes indicate that the key bacterial cell division protein FtsZ is not present in these planctomycetes, so the cell division process in planctomycetes is of special comparative interest. The membrane-bounded nature of the nucleoid in G. obscuriglobus also suggests that special mechanisms for the distribution of this nuclear body to the bud and for distribution of chromosomal DNA might exist during division. It was therefore of interest to examine the cell division cycle in G. obscuriglobus and the process of nucleoid distribution and nuclear body formation during division in this planctomycete bacterium via light and electron microscopy. Results Using phase contrast and fluorescence light microscopy, and transmission electron microscopy, the cell division cycle of G. obscuriglobus was determined. During the budding process, the bud was formed and developed in size from one point of the mother cell perimeter until separation. The matured daughter cell acted as a new mother cell and started its own budding cycle while the mother cell can itself initiate budding repeatedly. Fluorescence microscopy of DAPI-stained cells of G. obscuriglobus suggested that translocation of the nucleoid and formation of the bud did not occur at the same time. Confocal laser scanning light microscopy applied to cells stained for membranes as

  15. Difference of cell cycle arrests induced by lidamycin in human breast cancer cells.

    Science.gov (United States)

    Liu, Xia; He, Hongwei; Feng, Yun; Zhang, Min; Ren, Kaihuan; Shao, Rongguang

    2006-02-01

    Lidamycin (LDM) is a member of the enediyne antibiotic family. It is undergoing phase I clinical trials in China as a potential chemotherapeutic agent. In the present study, we investigated the mechanism by which LDM induced cell cycle arrest in human breast cancer cells. The results showed that LDM induced G1 arrest in p53 wild-type MCF-7 cells at low concentrations, and caused both G1 and G2/M arrests at higher concentrations. In contrast, LDM induced only G2/M arrest in p53-mutant MCF-7/DOX cells. Western blotting analysis indicated that LDM-induced G1 and G2/M arrests in MCF-7 cells were associated with an increase of p53 and p21, and a decrease of phosphorylated retinoblastoma tumor suppressor protein, cyclin-dependent kinase (Cdk), Cdc2 and cyclin B1 protein levels. However, LDM-induced G2/M arrest in MCF-7/DOX cells was correlated with the reduction of cyclin B1 expression. Further study indicated that the downregulation of cyclin B1 by LDM in MCF-7 cells was associated with decreasing cyclin B1 mRNA levels and promoting protein degradation, whereas it was only due to inducing cyclin B1 protein degradation in MCF-7/DOX cells. In addition, activation of checkpoint kinases Chk1 or Chk2 maybe contributed to LDM-induced cell cycle arrest. Taken together, we provide the first evidence that LDM induces different cell cycle arrests in human breast cancer cells, which are dependent on drug concentration and p53 status. These findings are helpful in understanding the molecular anti-cancer mechanisms of LDM and support its clinical trials. PMID:16428935

  16. The Relationship between Sleep-Wake Cycle and Cognitive Functioning in Young People with Affective Disorders

    OpenAIRE

    Carpenter, Joanne S.; Rébecca Robillard; Rico S C Lee; Hermens, Daniel F.; Naismith, Sharon L.; Django White; Bradley Whitwell; Scott, Elizabeth M; Ian B Hickie

    2015-01-01

    Although early-stage affective disorders are associated with both cognitive dysfunction and sleep-wake disruptions, relationships between these factors have not been specifically examined in young adults. Sleep and circadian rhythm disturbances in those with affective disorders are considerably heterogeneous, and may not relate to cognitive dysfunction in a simple linear fashion. This study aimed to characterise profiles of sleep and circadian disturbance in young people with affective disord...

  17. Influence of cell cycle on responses of MCF-7 cells to benzo[a]pyrene

    Directory of Open Access Journals (Sweden)

    Giddings Ian

    2011-06-01

    Full Text Available Abstract Background Benzo[a]pyrene (BaP is a widespread environmental genotoxic carcinogen that damages DNA by forming adducts. This damage along with activation of the aryl hydrocarbon receptor (AHR induces complex transcriptional responses in cells. To investigate whether human cells are more susceptible to BaP in a particular phase of the cell cycle, synchronised breast carcinoma MCF-7 cells were exposed to BaP. Cell cycle progression was analysed by flow cytometry, DNA adduct formation was assessed by 32P-postlabeling analysis, microarrays of 44K human genome-wide oligos and RT-PCR were used to detect gene expression (mRNA changes and Western blotting was performed to determine the expression of some proteins, including cytochrome P450 (CYP 1A1 and CYP1B1, which are involved in BaP metabolism. Results Following BaP exposure, cells evaded G1 arrest and accumulated in S-phase. Higher levels of DNA damage occurred in S- and G2/M- compared with G0/G1-enriched cultures. Genes that were found to have altered expression included those involved in xenobiotic metabolism, apoptosis, cell cycle regulation and DNA repair. Gene ontology and pathway analysis showed the involvement of various signalling pathways in response to BaP exposure, such as the Catenin/Wnt pathway in G1, the ERK pathway in G1 and S, the Nrf2 pathway in S and G2/M and the Akt pathway in G2/M. An important finding was that higher levels of DNA damage in S- and G2/M-enriched cultures correlated with higher levels of CYP1A1 and CYP1B1 mRNA and proteins. Moreover, exposure of synchronised MCF-7 cells to BaP-7,8-diol-9,10-epoxide (BPDE, the ultimate carcinogenic metabolite of BaP, did not result in significant changes in DNA adduct levels at different phases of the cell cycle. Conclusions This study characterised the complex gene response to BaP in MCF-7 cells and revealed a strong correlation between the varying efficiency of BaP metabolism and DNA damage in different phases of the cell

  18. Dynamics of the cell-cycle network under genome-rewiring perturbations

    Science.gov (United States)

    Katzir, Yair; Elhanati, Yuval; Averbukh, Inna; Braun, Erez

    2013-12-01

    The cell-cycle progression is regulated by a specific network enabling its ordered dynamics. Recent experiments supported by computational models have shown that a core of genes ensures this robust cycle dynamics. However, much less is known about the direct interaction of the cell-cycle regulators with genes outside of the cell-cycle network, in particular those of the metabolic system. Following our recent experimental work, we present here a model focusing on the dynamics of the cell-cycle core network under rewiring perturbations. Rewiring is achieved by placing an essential metabolic gene exclusively under the regulation of a cell-cycle's promoter, forcing the cell-cycle network to function under a multitasking challenging condition; operating in parallel the cell-cycle progression and a metabolic essential gene. Our model relies on simple rate equations that capture the dynamics of the relevant protein-DNA and protein-protein interactions, while making a clear distinction between these two different types of processes. In particular, we treat the cell-cycle transcription factors as limited ‘resources’ and focus on the redistribution of resources in the network during its dynamics. This elucidates the sensitivity of its various nodes to rewiring interactions. The basic model produces the correct cycle dynamics for a wide range of parameters. The simplicity of the model enables us to study the interface between the cell-cycle regulation and other cellular processes. Rewiring a promoter of the network to regulate a foreign gene, forces a multitasking regulatory load. The higher the load on the promoter, the longer is the cell-cycle period. Moreover, in agreement with our experimental results, the model shows that different nodes of the network exhibit variable susceptibilities to the rewiring perturbations. Our model suggests that the topology of the cell-cycle core network ensures its plasticity and flexible interface with other cellular processes, without

  19. DNA Damage, Cell Cycle Arrest, and Apoptosis Induction Caused by Lead in Human Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Clement G. Yedjou

    2015-12-01

    Full Text Available In recent years, the industrial use of lead has been significantly reduced from paints and ceramic products, caulking, and pipe solder. Despite this progress, lead exposure continues to be a significant public health concern. The main goal of this research was to determine the in vitro mechanisms of lead nitrate [Pb(NO32] to induce DNA damage, apoptosis, and cell cycle arrest in human leukemia (HL-60 cells. To reach our goal, HL-60 cells were treated with different concentrations of Pb(NO32 for 24 h. Live cells and necrotic death cells were measured by the propidium idiode (PI assay using the cellometer vision. Cell apoptosis was measured by the flow cytometry and DNA laddering. Cell cycle analysis was evaluated by the flow cytometry. The result of the PI demonstrated a significant (p < 0.05 increase of necrotic cell death in Pb(NO32-treated cells, indicative of membrane rupture by Pb(NO32 compared to the control. Data generated from the comet assay indicated a concentration-dependent increase in DNA damage, showing a significant increase (p < 0.05 in comet tail-length and percentages of DNA cleavage. Data generated from the flow cytometry assessment indicated that Pb(NO32 exposure significantly (p < 0.05 increased the proportion of caspase-3 positive cells (apoptotic cells compared to the control. The flow cytometry assessment also indicated Pb(NO32 exposure caused cell cycle arrest at the G0/G1 checkpoint. The result of DNA laddering assay showed presence of DNA smear in the agarose gel with little presence of DNA fragments in the treated cells compared to the control. In summary, Pb(NO32 inhibits HL-60 cells proliferation by not only inducing DNA damage and cell cycle arrest at the G0/G1 checkpoint but also triggering the apoptosis through caspase-3 activation and nucleosomal DNA fragmentation accompanied by secondary necrosis. We believe that our study provides a new insight into the mechanisms of Pb(NO32 exposure and its associated adverse

  20. Ras signalling linked to the cell-cycle machinery by the retinoblastoma protein

    NARCIS (Netherlands)

    Peeper, D.S.; Upton, T.M.; Ladha, M.H.; Neuman, E.; Zalvide, J.; Bernards, R.A.; DeCaprio, J.A.; Ewen, M.E.

    1997-01-01

    The Ras proto-oncogene is a central component of mitogenic signal-transduction pathways, and is essential for cells both to leave a quiescent state (GO) and to pass through the GI/S transition of the cell cycle. The mechanism by which Ras signalling regulates cell-cycle progression is unclear, howev

  1. Scaffolding during the cell cycle by A-kinase anchoring proteins

    NARCIS (Netherlands)

    Han, B; Poppinga, W J; Schmidt, M

    2015-01-01

    Cell division relies on coordinated regulation of the cell cycle. A process including a well-defined series of strictly regulated molecular mechanisms involving cyclin-dependent kinases, retinoblastoma protein, and polo-like kinases. Dysfunctions in cell cycle regulation are associated with disease

  2. Altered cell cycle regulation helps stem-like carcinoma cells resist apoptosis

    OpenAIRE

    Dalton Stephen; Chappell James

    2010-01-01

    Abstract Reemergence of carcinomas following chemotherapy and/or radiotherapy is not well understood, but a recent study in BMC Cancer suggests that resistance to apoptosis resulting from altered cell cycle regulation is crucial. See research article: http://biomedcentral.com/1471-2407/10/166

  3. Culture materials affect ex vivo expansion of hematopoietic progenitor cells.

    Science.gov (United States)

    LaIuppa, J A; McAdams, T A; Papoutsakis, E T; Miller, W M

    1997-09-01

    Ex vivo expansion of hematopoietic cells is important for applications such as cancer treatment, gene therapy, and transfusion medicine. While cell culture systems are widely used to evaluate the biocompatibility of materials for implantation, the ability of materials to support proliferation of primary human cells in cultures for reinfusion into patients has not been addressed. We screened a variety of commercially available polymer (15 types), metal (four types), and glass substrates for their ability to support expansion of hematopoietic cells when cultured under conditions that would be encountered in a clinical setting. Cultures of peripheral blood (PB) CD34+ cells and mononuclear cells (MNC) were evaluated for expansion of total cells and colony-forming unit-granulocyte monocyte (CFU-GM; progenitors committed to the granulocyte and/or monocyte lineage). Human hematopoietic cultures in serum-free medium were found to be extremely sensitive to the substrate material. The only materials tested that supported expansion at or near the levels of polystyrene were tissue culture polystyrene, Teflon perfluoroalkoxy, Teflon fluorinated ethylene propylene, cellulose acetate, titanium, new polycarbonate, and new polymethylpentene. MNC were less sensitive to the substrate materials than the primitive CD34+ progenitors, although similar trends were seen for expansion of the two cell populations on the substrates tested. CFU-GM expansion was more sensitive to substrate materials than was total cell expansion. The detrimental effects of a number of the materials on hematopoietic cultures appear to be caused by protein adsorption and/or leaching of toxins. Factors such as cleaning, sterilization, and reuse significantly affected the performance of some materials as culture substrates. We also used PB CD34+ cell cultures to examine the biocompatibility of gas-permeable cell culture and blood storage bags and several types of tubing commonly used with biomedical equipment

  4. Tetrahydrouridine inhibits cell proliferation through cell cycle regulation regardless of cytidine deaminase expression levels.

    Directory of Open Access Journals (Sweden)

    Naotake Funamizu

    Full Text Available Tetrahydrouridine (THU is a well characterized and potent inhibitor of cytidine deaminase (CDA. Highly expressed CDA catalyzes and inactivates cytidine analogues, ultimately contributing to increased gemcitabine resistance. Therefore, a combination therapy of THU and gemcitabine is considered to be a potential and promising treatment for tumors with highly expressed CDA. In this study, we found that THU has an alternative mechanism for inhibiting cell growth which is independent of CDA expression. Three different carcinoma cell lines (MIAPaCa-2, H441, and H1299 exhibited decreased cell proliferation after sole administration of THU, while being unaffected by knocking down CDA. To investigate the mechanism of THU-induced cell growth inhibition, cell cycle analysis using flow cytometry was performed. This analysis revealed that THU caused an increased rate of G1-phase occurrence while S-phase occurrence was diminished. Similarly, Ki-67 staining further supported that THU reduces cell proliferation. We also found that THU regulates cell cycle progression at the G1/S checkpoint by suppressing E2F1. As a result, a combination regimen of THU and gemcitabine might be a more effective therapy than previously believed for pancreatic carcinoma since THU works as a CDA inhibitor, as well as an inhibitor of cell growth in some types of pancreatic carcinoma cells.

  5. Effect of welding thermal cycles on the heat affected zone microstructure and toughness of multi-pass welded pipeline steels

    OpenAIRE

    Nuruddin, Ibrahim K.

    2012-01-01

    This research is aimed at understanding the effect of thermal cycles on the metallurgical and microstructural characteristics of the heat affected zone of a multi-pass pipeline weld. Continuous Cooling Transformation (CCT) diagrams of the pipeline steel grades studied (X65, X70 and X100) were generated using a thermo mechanical simulator (Gleeble 3500) and 10 mm diameter by 100 mm length samples. The volume change during phase transformation was studied by a dilatometer, this is to underst...

  6. Kefir induces cell-cycle arrest and apoptosis in HTLV-1-negative malignant T-lymphocytes

    International Nuclear Information System (INIS)

    Adult lymphoblastic leukemia (ALL) is a malignancy that occurs in white blood cells. The overall cure rate in children is 85%, whereas it is only 40% in adults. Kefir is an important probiotic that contains many bioactive ingredients, which give it unique health benefits. It has been shown to control several cellular types of cancer. The present study investigates the effect of a cell-free fraction of kefir on CEM and Jurkat cells, which are human T-lymphotropic virus type I (HTLV-1)-negative malignant T-lymphocytes. Cells were incubated with different kefir concentrations. The cytotoxicity of the compound was evaluated by determining the percentage viability of cells. The effect of all the noncytotoxic concentrations of kefir on the proliferation of CEM and Jurkat cells was then assessed. The levels of transforming growth factor-alpha (TGF-α), transforming growth factor- beta1 (TGF-β1), matrix metalloproteinase-2 (MMP-2), and MMP-9 mRNA upon kefir treatment were then analyzed using reverse transcriptase polymerase chain reaction (RT-PCR). Finally, the growth inhibitory effects of kefir on cell-cycle progression/apoptosis were assessed by Cell Death Detection (ELISA) and flow cytometry. The maximum cytotoxicity recorded after 48-hours treatment with 80 μg/μL kefir was only 42% and 39% in CEM and Jurkat cells, respectively. The percent reduction in proliferation was very significant, and was dose-, and time-dependent. In both cell lines, kefir exhibited its antiproliferative effect by downregulating TGF-α and upregulating TGF-β1 mRNA expression. Upon kefir treatment, a marked increase in cell-cycle distribution was noted in the preG1 phase of CEM and Jurkat cells, indicating the proapoptotic effect of kefir, which was further confirmed by Cell Death Detection ELISA. However, kefir did not affect the mRNA expression of metalloproteinases needed for the invasion of leukemic cell lines. In conclusion, kefir is effective in inhibiting proliferation and inducing

  7. Kefir induces cell-cycle arrest and apoptosis in HTLV-1-negative malignant T-lymphocytes

    Directory of Open Access Journals (Sweden)

    Katia Maalouf

    2011-02-01

    Full Text Available Katia Maalouf1, Elias Baydoun2, Sandra Rizk11Department of Natural Sciences, Lebanese American University, Beirut, Lebanon; 2Department of Biology, American University of Beirut, Beirut, LebanonBackground: Adult lymphoblastic leukemia (ALL is a malignancy that occurs in white blood cells. The overall cure rate in children is 85%, whereas it is only 40% in adults. Kefir is an important probiotic that contains many bioactive ingredients, which give it unique health benefits. It has been shown to control several cellular types of cancer.Purpose: The present study investigates the effect of a cell-free fraction of kefir on CEM and Jurkat cells, which are human T-lymphotropic virus type I (HTLV-1-negative malignant T-lymphocytes.Methods: Cells were incubated with different kefir concentrations. The cytotoxicity of the compound was evaluated by determining the percentage viability of cells. The effect of all the noncytotoxic concentrations of kefir on the proliferation of CEM and Jurkat cells was then assessed. The levels of transforming growth factor-alpha (TGF-α, transforming growth factor- beta1 (TGF-β1, matrix metalloproteinase-2 (MMP-2, and MMP-9 mRNA upon kefir treatment were then analyzed using reverse transcriptase polymerase chain reaction (RT-PCR. Finally, the growth inhibitory effects of kefir on cell-cycle progression/apoptosis were assessed by Cell Death Detection (ELISA and flow cytometry.Results: The maximum cytotoxicity recorded after 48-hours treatment with 80 µg/µL kefir was only 42% and 39% in CEM and Jurkat cells, respectively. The percent reduction in proliferation was very significant, and was dose-, and time-dependent. In both cell lines, kefir exhibited its antiproliferative effect by downregulating TGF-α and upregulating TGF- β1 mRNA expression. Upon kefir treatment, a marked increase in cell-cycle distribution was noted in the preG1 phase of CEM and Jurkat cells, indicating the proapoptotic effect of kefir, which was

  8. How Business Cycles Affect the Healthcare Sector: A Cross-country Investigation.

    Science.gov (United States)

    Cleeren, Kathleen; Lamey, Lien; Meyer, Jan-Hinrich; De Ruyter, Ko

    2016-07-01

    The long-term relationship between the general economy and healthcare expenditures has been extensively researched, to explain differences in healthcare spending between countries, but the midterm (i.e., business cycle) perspective has been overlooked. This study explores business cycle sensitivity in both public and private parts of the healthcare sector across 32 countries. Responses to the business cycle vary notably, both across spending sources and across countries. Whereas in some countries, consumers and/or governments cut back, in others, private and/or public healthcare buyers tend to spend more. We also assess long-term consequences of business cycle sensitivity and show that public cost cutting during economic downturns deflates the mortality rates, whereas private cut backs increase the long-term growth in total healthcare expenditures. Finally, multiple factors help explain variability in cyclical sensitivity. Private cost cuts during economic downturns are smaller in countries with a predominantly publicly funded healthcare system and more preventive public activities. Public cut backs during contractions are smaller in countries that rely more on tax-based resources rather than social health insurances. Copyright © 2015 John Wiley & Sons, Ltd.

  9. How Business Cycles Affect the Healthcare Sector: A Cross-country Investigation.

    Science.gov (United States)

    Cleeren, Kathleen; Lamey, Lien; Meyer, Jan-Hinrich; De Ruyter, Ko

    2016-07-01

    The long-term relationship between the general economy and healthcare expenditures has been extensively researched, to explain differences in healthcare spending between countries, but the midterm (i.e., business cycle) perspective has been overlooked. This study explores business cycle sensitivity in both public and private parts of the healthcare sector across 32 countries. Responses to the business cycle vary notably, both across spending sources and across countries. Whereas in some countries, consumers and/or governments cut back, in others, private and/or public healthcare buyers tend to spend more. We also assess long-term consequences of business cycle sensitivity and show that public cost cutting during economic downturns deflates the mortality rates, whereas private cut backs increase the long-term growth in total healthcare expenditures. Finally, multiple factors help explain variability in cyclical sensitivity. Private cost cuts during economic downturns are smaller in countries with a predominantly publicly funded healthcare system and more preventive public activities. Public cut backs during contractions are smaller in countries that rely more on tax-based resources rather than social health insurances. Copyright © 2015 John Wiley & Sons, Ltd. PMID:25916435

  10. An integrative model and analysis of cell cycle in fission yeast

    Institute of Scientific and Technical Information of China (English)

    TENG Hu; HUANG Xun; XIU Zhilong; FENG Enmin

    2005-01-01

    According to the recent investigation on cell cycle of fission yeast, a mathematical dynamic model is formulated. Four cyclins, e.g. Puc1, Cig1, Cig2 and Cdc13, are investigated here. The interacting networks between the cyclins and the process of cell cycle are mathematically described. The functions of these cyclins are particularly analyzed. Comparison among different mutants indicates that the cyclins play an important role in cell cycle.

  11. CRL4Cdt2: Master coordinator of cell cycle progression and genome stability

    OpenAIRE

    Abbas, Tarek; Dutta, Anindya

    2011-01-01

    Polyubiquitin-mediated degradation of proteins plays an essential role in various physiological processes including cell cycle progression, transcription and DNA replication and repair. Increasing evidence supports a vital role for the E3 ubiquitin ligase cullin-4, in conjunction with the substrate recognition factor Cdt2 (CRL4Cdt2), for the degradation of multiple cell cycle-regulated proteins to prevent genomic instability. In addition, it is critical for normal cell cycle progression by en...

  12. The Oxygen-Rich Postnatal Environment Induces Cardiomyocyte Cell-Cycle Arrest through DNA Damage Response

    OpenAIRE

    Bao\\xa0N. Puente; Wataru Kimura; Shalini\\xa0A. Muralidhar; Jesung Moon; James\\xa0F. Amatruda; Kate\\xa0L. Phelps; David Grinsfelder; Beverly\\xa0A. Rothermel; Rui Chen; Joseph\\xa0A. Garcia; Celio\\xa0X. Santos; SuWannee Thet; Eiichiro Mori; Michael\\xa0T. Kinter; Paul\\xa0M. Rindler

    2014-01-01

    The mammalian heart has a remarkable regenerative capacity for a short period of time after birth, after which the majority of cardiomyocytes permanently exit cell cycle. We sought to determine the primary post-natal event that results in cardiomyocyte cell-cycle arrest. We hypothesized that transition to the oxygen rich postnatal environment is the upstream signal that results in cell cycle arrest of cardiomyocytes. Here we show that reactive oxygen species (ROS), oxidative DNA damage, and D...

  13. Slow-cycling stem cells in hydra contribute to head regeneration

    Directory of Open Access Journals (Sweden)

    Niraimathi Govindasamy

    2014-11-01

    Full Text Available Adult stem cells face the challenge of maintaining tissue homeostasis by self-renewal while maintaining their proliferation potential over the lifetime of an organism. Continuous proliferation can cause genotoxic/metabolic stress that can compromise the genomic integrity of stem cells. To prevent stem cell exhaustion, highly proliferative adult tissues maintain a pool of quiescent stem cells that divide only in response to injury and thus remain protected from genotoxic stress. Hydra is a remarkable organism with highly proliferative stem cells and ability to regenerate at whole animal level. Intriguingly, hydra does not display consequences of high proliferation, such as senescence or tumour formation. In this study, we investigate if hydra harbours a pool of slow-cycling stem cells that could help prevent undesirable consequences of continuous proliferation. Hydra were pulsed with the thymidine analogue 5-ethynyl-2′-deoxyuridine (EdU and then chased in the absence of EdU to monitor the presence of EdU-retaining cells. A significant number of undifferentiated cells of all three lineages in hydra retained EdU for about 8–10 cell cycles, indicating that these cells did not enter cell cycle. These label-retaining cells were resistant to hydroxyurea treatment and were predominantly in the G2 phase of cell cycle. Most significantly, similar to mammalian quiescent stem cells, these cells rapidly entered cell division during head regeneration. This study shows for the first time that, contrary to current beliefs, cells in hydra display heterogeneity in their cell cycle potential and the slow-cycling cells in this population enter cell cycle during head regeneration. These results suggest an early evolution of slow-cycling stem cells in multicellular animals.

  14. Apoptosis and cell-cycle arrest in human and murine tumor cells are initiated by isoprenoids.

    Science.gov (United States)

    Mo, H; Elson, C E

    1999-04-01

    Diverse classes of phytochemicals initiate biological responses that effectively lower cancer risk. One class of phytochemicals, broadly defined as pure and mixed isoprenoids, encompasses an estimated 22,000 individual components. A representative mixed isoprenoid, gamma-tocotrienol, suppresses the growth of murine B16(F10) melanoma cells, and with greater potency, the growth of human breast adenocarcinoma (MCF-7) and human leukemic (HL-60) cells. beta-Ionone, a pure isoprenoid, suppresses the growth of B16 cells and with greater potency, the growth of MCF-7, HL-60 and human colon adenocarcinoma (Caco-2) cells. Results obtained with diverse cell lines differing in ras and p53 status showed that the isoprenoid-mediated suppression of growth is independent of mutated ras and p53 functions. beta-Ionone suppressed the growth of human colon fibroblasts (CCD-18Co) but only when present at three-fold the concentration required to suppress the growth of Caco-2 cells. The isoprenoids initiated apoptosis and, concomitantly arrested cells in the G1 phase of the cell cycle. Both suppress 3-hydroxy-3-methylglutaryl CoA reductase activity. beta-Ionone and lovastatin interfered with the posttranslational processing of lamin B, an activity essential to assembly of daughter nuclei. This interference, we postulate, renders neosynthesized DNA available to the endonuclease activities leading to apoptotic cell death. Lovastatin-imposed mevalonate starvation suppressed the glycosylation and translocation of growth factor receptors to the cell surface. As a consequence, cells were arrested in the G1 phase of the cell cycle. This rationale may apply to the isoprenoid-mediated G1-phase arrest of tumor cells. The additive and potentially synergistic actions of these isoprenoids in the suppression of tumor cell proliferation and initiation of apoptosis coupled with the mass action of the diverse isoprenoid constituents of plant products may explain, in part, the impact of fruit, vegetable

  15. Trichostatin A Regulates hGCN5 Expression and Cell Cycle on Daudi Cells in vitro

    Institute of Scientific and Technical Information of China (English)

    LIU Hongli; CHEN Yan; CUI Guohui; WU Gang; WANG Tao; HU Jianli

    2006-01-01

    The expression of human general control of amino acid synthesis protein 5 (hGCN5) in human Burkitt's lymphoma Daudi cells in vitro, effects of Trichostatin A (TSA) on cell proliferation and apoptosis and the molecular mechanism of TSA inhibiting proliferation of Daudi cells were investigated. The effects of TSA on the growth of Daudi cells were studied by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium (MTT) assay. The effect of TSA on the cell cycle of Daudi cells was assayed by a propidium iodide method. Immunochemistry and Western blot were used to detect the expression of hGCN5. The proliferation of Daudi cells was decreased in TSA-treated group with a 24 h IC50 value of 415.3979 μg/L. TSA induced apoptosis of Daudi cells in a time- and dose-dependent manner. Treatment with TSA (200 and 400 μg/L) for 24 h, the apoptosis rates of Daudi cells were (14.74±2.04) % and (17.63±1.25) %, respectively. The cell cycle was arrested in G0/G1 phase (50, 100 μtg/L) and in G2/M phase (200 μg/L) by treatment with TSA for 24 h.The expression of hGCN5 protein in Daudi cells was increased in 24 h TSA-treated group by immunochemistry and Western blot (P<0.05). It was suggested that TSA as HDACIs could increase the expression of hGCN5 in Daudi cells, and might play an important role in regulating the proliferation and apoptosis of B-NHL cell line Daudi cells.

  16. DNA Damage and Cell Cycle Arrest Induced by Protoporphyrin IX in Sarcoma 180 Cells

    Directory of Open Access Journals (Sweden)

    Qing Li

    2013-09-01

    Full Text Available Background: Porphyrin derivatives have been widely used in photodynamic therapy as effective sensitizers. Protoporphyrin IX (PpIX, a well-known hematoporphyrin derivative component, shows great potential to enhance light induced tumor cell damage. However, PpIX alone could also exert anti-tumor effects. The mechanisms underlying those direct effects are incompletely understood. This study thus investigated the putative mechanisms underlying the anti-tumor effects of PpIX on sarcoma 180 (S180 cells. Methods: S180 cells were treated with different concentrations of PpIX. Following the treatment, cell viability was evaluated by the 3-(4, 5- dimethylthiazol-2-yl-2, 5-diphenyltetrazoliumbromide (MTT assay; Disruption of mitochondrial membrane potential was measured by flow cytometry; The trans-location of apoptosis inducer factor (AIF from mitochondria to nucleus was visualized by confocal laser scanning microscopy; DNA damage was detected by single cell gel electrophoresis; Cell cycle distribution was analyzed by DNA content with flow cytometry; Cell cycle associated proteins were detected by western blotting. Results: PpIX (≥ 1 µg/ml significantly inhibited proliferation and reduced viability of S180 cells in a dose-dependent manner. PpIX rapidly and significantly triggered mitochondrial membrane depolarization, AIF (apoptosis inducer factor translocation from mitochondria to nucleus and DNA damage, effects partially relieved by the specific inhibitor of MPTP (mitochondrial permeability transition pore. Furthermore, S phase arrest and upregulation of the related proteins of P53 and P21 were observed following 12 and 24 h PpIX exposure. Conclusion: PpIX could inhibit tumor cell proliferation by induction of DNA damage and cell cycle arrest in the S phase.

  17. The Impact of Continuous and Interval Cycle Exercise on Affect and Enjoyment

    Science.gov (United States)

    Kilpatrick, Marcus W.; Greeley, Samuel J.; Collins, Larry H.

    2015-01-01

    Rates of physical activity remain low despite public health efforts. One form of physical activity that provides significant physiological benefit but has not been evaluated in terms of affective and enjoyment responses is interval exercise. Purpose: The purpose of this study was to compare affect and enjoyment assessed before, during, and after…

  18. Circadian clock regulation of the cell cycle in the zebrafish intestine.

    Science.gov (United States)

    Peyric, Elodie; Moore, Helen A; Whitmore, David

    2013-01-01

    The circadian clock controls cell proliferation in a number of healthy tissues where cell renewal and regeneration are critical for normal physiological function. The intestine is an organ that typically undergoes regular cycles of cell division, differentiation and apoptosis as part of its role in digestion and nutrient absorption. The aim of this study was to explore circadian clock regulation of cell proliferation and cell cycle gene expression in the zebrafish intestine. Here we show that the zebrafish gut contains a directly light-entrainable circadian pacemaker, which regulates the daily timing of mitosis. Furthermore, this intestinal clock controls the expression of key cell cycle regulators, such as cdc2, wee1, p21, PCNA and cdk2, but only weakly influences cyclin B1, cyclin B2 and cyclin E1 expression. Interestingly, food deprivation has little impact on circadian clock function in the gut, but dramatically reduces cell proliferation, as well as cell cycle gene expression in this tissue. Timed feeding under constant dark conditions is able to drive rhythmic expression not only of circadian clock genes, but also of several cell cycle genes, suggesting that food can entrain the clock, as well as the cell cycle in the intestine. Rather surprisingly, we found that timed feeding is critical for high amplitude rhythms in cell cycle gene expression, even when zebrafish are maintained on a light-dark cycle. Together these results suggest that the intestinal clock integrates multiple rhythmic cues, including light and food, to function optimally.

  19. Circadian clock regulation of the cell cycle in the zebrafish intestine.

    Directory of Open Access Journals (Sweden)

    Elodie Peyric

    Full Text Available The circadian clock controls cell proliferation in a number of healthy tissues where cell renewal and regeneration are critical for normal physiological function. The intestine is an organ that typically undergoes regular cycles of cell division, differentiation and apoptosis as part of its role in digestion and nutrient absorption. The aim of this study was to explore circadian clock regulation of cell proliferation and cell cycle gene expression in the zebrafish intestine. Here we show that the zebrafish gut contains a directly light-entrainable circadian pacemaker, which regulates the daily timing of mitosis. Furthermore, this intestinal clock controls the expression of key cell cycle regulators, such as cdc2, wee1, p21, PCNA and cdk2, but only weakly influences cyclin B1, cyclin B2 and cyclin E1 expression. Interestingly, food deprivation has little impact on circadian clock function in the gut, but dramatically reduces cell proliferation, as well as cell cycle gene expression in this tissue. Timed feeding under constant dark conditions is able to drive rhythmic expression not only of circadian clock genes, but also of several cell cycle genes, suggesting that food can entrain the clock, as well as the cell cycle in the intestine. Rather surprisingly, we found that timed feeding is critical for high amplitude rhythms in cell cycle gene expression, even when zebrafish are maintained on a light-dark cycle. Together these results suggest that the intestinal clock integrates multiple rhythmic cues, including light and food, to function optimally.

  20. Replication of the R6K plasmid during the Escherichia coli cell cycle.

    OpenAIRE

    Keasling, J.D.; Palsson, B O; Cooper, S.

    1992-01-01

    The cell-cycle replication pattern of the R6K plasmid has been investigated by using the membrane-elution technique to produce cells labelled at different times during the division cycle and scintillation counting for quantitative analysis of radioactive plasmid DNA. The high-copy plasmid R6K replicates exponentially in a cell-cycle-independent manner. A mini-R6K plasmid deleted for the ori alpha origin of replication also replicates, exponentially in a cell-cycle-independent manner.

  1. Programmed cell cycle arrest is required for infection of corn plants by the fungus Ustilago maydis.

    Science.gov (United States)

    Castanheira, Sónia; Mielnichuk, Natalia; Pérez-Martín, José

    2014-12-01

    Ustilago maydis is a plant pathogen that requires a specific structure called infective filament to penetrate the plant tissue. Although able to grow, this filament is cell cycle arrested on the plant surface. This cell cycle arrest is released once the filament penetrates the plant tissue. The reasons and mechanisms for this cell cycle arrest are unknown. Here, we have tried to address these questions. We reached three conclusions from our studies. First, the observed cell cycle arrest is the result of the cooperation of at least two distinct mechanisms: one involving the activation of the DNA damage response (DDR) cascade; and the other relying on the transcriptional downregulation of Hsl1, a kinase that modulates the G2/M transition. Second, a sustained cell cycle arrest during the infective filament step is necessary for the virulence in U. maydis, as a strain unable to arrest the cell cycle was severely impaired in its ability to infect corn plants. Third, production of the appressorium, a structure required for plant penetration, is incompatible with an active cell cycle. The inability to infect plants by strains defective in cell cycle arrest seems to be caused by their failure to induce the appressorium formation process. In summary, our findings uncover genetic circuits to arrest the cell cycle during the growth of this fungus on the plant surface, thus allowing the penetration into plant tissue.

  2. Coordinating Cell Cycle Remodeling with Transcriptional Activation at the Drosophila MBT.

    Science.gov (United States)

    Blythe, Shelby A; Wieschaus, Eric F

    2015-01-01

    During the maternal-to-zygotic transition (MZT), major changes in cell cycle regulation coincide with large-scale zygotic genome activation. In this chapter, we discuss the current understanding of how the cell cycle is remodeled over the course of the Drosophila MZT, and how the temporal precision of this event is linked to contemporaneous alterations in genome-wide chromatin structure and transcriptional activity. The cell cycle is initially lengthened during the MZT by activation of the DNA replication checkpoint but, subsequently, zygotically supplied factors are essential for establishing lasting modifications to the cell cycle. PMID:26358872

  3. A generalized model for multi-marker analysis of cell cycle progression in synchrony experiments

    OpenAIRE

    Mayhew, Michael B.; Joshua W. Robinson; Jung, Boyoun; Haase, Steven B.; Alexander J Hartemink

    2011-01-01

    Motivation: To advance understanding of eukaryotic cell division, it is important to observe the process precisely. To this end, researchers monitor changes in dividing cells as they traverse the cell cycle, with the presence or absence of morphological or genetic markers indicating a cell's position in a particular interval of the cell cycle. A wide variety of marker data is available, including information-rich cellular imaging data. However, few formal statistical methods have been develop...

  4. Synchronization of Caulobacter crescentus for investigation of the bacterial cell cycle.

    Science.gov (United States)

    Schrader, Jared M; Shapiro, Lucy

    2015-04-08

    The cell cycle is important for growth, genome replication, and development in all cells. In bacteria, studies of the cell cycle have focused largely on unsynchronized cells making it difficult to order the temporal events required for cell cycle progression, genome replication, and division. Caulobacter crescentus provides an excellent model system for the bacterial cell cycle whereby cells can be rapidly synchronized in a G0 state by density centrifugation. Cell cycle synchronization experiments have been used to establish the molecular events governing chromosome replication and segregation, to map a genetic regulatory network controlling cell cycle progression, and to identify the establishment of polar signaling complexes required for asymmetric cell division. Here we provide a detailed protocol for the rapid synchronization of Caulobacter NA1000 cells. Synchronization can be performed in a large-scale format for gene expression profiling and western blot assays, as well as a small-scale format for microscopy or FACS assays. The rapid synchronizability and high cell yields of Caulobacter make this organism a powerful model system for studies of the bacterial cell cycle.

  5. Visualizing spatiotemporal dynamics of multicellular cell-cycle progressions with fucci technology.

    Science.gov (United States)

    Sakaue-Sawano, Asako; Miyawaki, Atsushi

    2014-05-01

    The visualization of cell-cycle behavior of individual cells within complex tissues presents an irresistible challenge to biologists studying multicellular structures. However, the transition from G1 to S in the cell cycle is difficult to monitor despite the fact that the process involves the critical decision to initiate a new round of DNA replication. Here, we use ubiquitination oscillators that control cell-cycle transitions to develop genetically encoded fluorescent probes for cell-cycle progression. Fucci (fluorescent ubiquitination-based cell-cycle indicator) probes exploit the regulation of cell-cycle-dependent ubiquitination to effectively label individual nuclei in G1 phase red, and those in S/G2/M phases green. Cultured cells and transgenic mice constitutively expressing the probes have been generated, such that every cell nucleus shows either red or green fluorescence. This protocol details two experiments that use biological samples expressing Fucci probes. One experiment involves time-lapse imaging of cells stably expressing a Fucci derivative (Fucci2), which allows for the exploration of the spatiotemporal patterns of cell-cycle dynamics during structural and behavioral changes of cultured cells. The other experiment involves large-field, high-resolution imaging of fixed sections of Fucci transgenic mouse embryos, which provides maps that illustrate cell proliferation versus differentiation in various developing organs.

  6. Physiology of Saccharomyces cerevisiae during cell cycle oscillations.

    Science.gov (United States)

    Duboc, P; Marison, I; von Stockar, U

    1996-10-18

    Synchronized populations of Saccharomyces cerevisiae CBS 426 are characterized by autonomous oscillations of process variables. CO2 evolution rate, O2 uptake rate and heat production rate varied by a factor of 2 for a continuous culture grown at a dilution rate of 0.10 h-1. Elemental analysis showed that the carbon mass fraction of biomass did not change. Since the reactor is not at steady state, the elemental and energy balances were calculated on cumulated quantities, i.e. the integral of the reaction rates. It was possible to show that carbon, degree of reduction and energy balances matched. Application of simple mass balance principles for non-steady state systems indicated that oscillations were basically characterized by changes in biomass production rate. In addition, the amount of intermediates, e.g. ethanol or acetate, produced or consumed was negligible. Growth rate was low during the S-phase (0.075 h-1) and high during the G2, M and G1 phases (0.125 h-1) for a constant dilution rate of 0.10 h-1. However, nitrogen, ash, sulfur and potassium content showed systematic increases during the S-phase (bud initiation). Cell component analyses showed that changes in cellular fractions during oscillations (storage carbohydrate content decreased during the S-phase) were due to changes in production rates, particularly for protein and carbohydrates. Nevertheless, using the data evaluation techniques for dynamic systems presented here, it was shown that storage carbohydrates are not consumed during the S-phase. Only the synthesis rate of the different cell components changed depending on position in cell cycle. The growth process may be divided into two phenomena: the formation of new cells during mitosis with a low yield, and size increase of new born cells with high yield. Both kinetic and stoichiometric coefficients varied with the position in the oscillation: the results showed that biomass structure changed and that specific growth rate, as well as biomass yield

  7. Adhesion of different cell cycle human hepatoma cells to endothelial cells and roles of integrin β1

    Institute of Scientific and Technical Information of China (English)

    Guan-Bin Song; Jian Qin; Qing Luo; Xiao-Dong Shen; Run-Bin Yan; Shao-Xi Cai

    2005-01-01

    AIM: To investigate the adhesive mechanical properties of different cell cycle human hepatoma cells (SMMC-7721)to human umbilical vein endothelial cells (ECV-304),expression of adhesive molecule integrinβ1 in SMMC-7721cells and its contribution to this adhesive course.METHODS: Adhesive force of SMMC-7721 cells to endothelialcells was measured using micropipette aspiration technique.Synchronous G1 and S phase SMMC-7721 cells wereachieved by thymine-2-deoxyriboside and colchicinessequential blockage method and double thymine-2-deoxyriboside blockage method, respectively. Synchronousrates of SMMC-7721 cells and expression of integrinβ1 inSMMC-7721 cells were detected by flow cytometer.RESULTS: The percentage of cell cycle phases of generalSMMC-7721 cells was 11.01% in G2/M phases, 53.51% inG0/G1 phase, and 35.48% in S phase. The synchronous ratesof G1 and S phase SMMC-7721 cells amounted to 74.09%and 98.29%, respectively. The adhesive force of SMMC-7721cells to endothelial cells changed with the variations ofadhesive time and presented behavior characteristics ofadhesion and de-adhesion. S phase SMMC-7721 cells had higheradhesive forces than G1 phase cells [(307.65±92.10)× 10-10Nvs (195.42±60.72)×10-10N, P<0.01]. The expressivefluorescent intensity of integrinβ1 in G1 phase SMMC-7721cells was depressed more significantly than the values ofS phase and general SMMC-7721cells. The contribution ofadhesive integrinβ1 was about 53% in this adhesive course.CONCLUSION: SMMC-7721 cells can be synchronizedpreferably in G1 and S phases with thymine-2-deoxyribosideand colchicines. The adhesive molecule integrinβ1 expressesa high level in SMMC-7721 cells and shows differences invarious cell cycles, suggesting integrin β1 plays an importantrole in adhesion to endothelial cells. The change of adhesiveforces in different cell cycle SMMC-7721 cells indicatesthat S phase cells play predominant roles possibly whilethey interact with endothelial cells.

  8. Methylation at global LINE-1 repeats in human blood are affected by gender but not by age or natural hormone cycles.

    Directory of Open Access Journals (Sweden)

    Osman El-Maarri

    Full Text Available Previously, we reported on inter-individual and gender specific variations of LINE-1 methylation in healthy individuals. In this study, we investigated whether this variability could be influenced by age or sex hormones in humans. To this end, we studied LINE-1 methylation in vivo in blood-derived DNA from individuals aged 18 to 64 years and from young healthy females at various hormone levels during the menstrual cycle. Our results show that no significant association with age was observed. However, the previously reported increase of LINE-1 methylation in males was reconfirmed. In females, although no correlation between LINE-1 or Alu methylation and hormone levels was observed, a significant stable individual specific level of methylation was noted. In vitro results largely confirmed these findings, as neither estrogen nor dihydrotestosterone affected LINE-1 or Alu methylation in Hek293T, HUVEC, or MDA-kb2 cell lines. In contrast, a decrease in methylation was observed in estrogen-treated T47-Kbluc cell lines strongly expressing estrogen receptor. The very low expression of estrogen receptor in blood cells could explain the observed insensitivity of methylation at LINE-1 to natural hormonal variations in females. In conclusion, neither natural cycle of hormones nor age has a detectable effect on the LINE-1 methylation in peripheral blood cells, while gender remains an important factor.

  9. All-Trans Retinoic Acid Induces DU145 Cell Cycle Arrest through Cdk5 Activation

    Directory of Open Access Journals (Sweden)

    Eugene Lin

    2014-05-01

    Full Text Available Background/Aims: All-trans retinoic acid (ATRA, the active form of vitamin A, plays an important role in the growth arrest of numerous types of cancer cells. It has been indicated that cyclin-dependent kinase 5 (Cdk5 activity can be affected by ATRA treatment. Our previous results demonstrate the involvement of Cdk5 in the fate of prostate cancer cells. The purpose of this study is to examine whether Cdk5 is involved in ATRA-induced growth arrest of the castration-resistant cancer cell line DU145 through up-regulating Cdk inhibitor protein, p27. Methods: DU145 cells were treated with ATRA, and cell proliferation, protein expression, and protein localization of Cdk5/p27 were examined. Cell proliferation and cell cycle distribution were also determined under Cdk5 inhibition induced by inhibitor or knockdown. Results: ATRA treatment inhibited DU145 cell proliferation and significantly increased p27 expression through Cdk5 up-regulation. Immunocytochemical data showed that a Cdk5 inhibitor reduced ATRA-triggered nuclear distribution of p27 in DU145 cells. The proliferation inhibition and G1 phase accumulation of DU145 cells were significantly increased by ATRA treatment, whereas Cdk5 inhibitor and siRNA could reverse these effects. Conclusions: Our results demonstrate that ATRA induced growth inhibition in castration-resistant prostate cancer cells through activating Cdk5 and p27. We hope this finding will increase the knowledge of prostate cancer treatment and can be applied in patients' nutritional control in the future.

  10. A stochastic spatiotemporal model of a response-regulator network in the Caulobacter crescentus cell cycle

    Science.gov (United States)

    Li, Fei; Subramanian, Kartik; Chen, Minghan; Tyson, John J.; Cao, Yang

    2016-06-01

    The asymmetric cell division cycle in Caulobacter crescentus is controlled by an elaborate molecular mechanism governing the production, activation and spatial localization of a host of interacting proteins. In previous work, we proposed a deterministic mathematical model for the spatiotemporal dynamics of six major regulatory proteins. In this paper, we study a stochastic version of the model, which takes into account molecular fluctuations of these regulatory proteins in space and time during early stages of the cell cycle of wild-type Caulobacter cells. We test the stochastic model with regard to experimental observations of increased variability of cycle time in cells depleted of the divJ gene product. The deterministic model predicts that overexpression of the divK gene blocks cell cycle progression in the stalked stage; however, stochastic simulations suggest that a small fraction of the mutants cells do complete the cell cycle normally.

  11. Transcriptomic profiling of human embryonic stem cells upon cell cycle manipulation during pluripotent state dissolution.

    Science.gov (United States)

    Gonzales, Kevin Andrew Uy; Liang, Hongqing

    2015-12-01

    While distinct cell cycle structures have been known to correlate with pluripotent or differentiated cell states [1], there is no evidence on how the cell cycle machinery directly contributes to human embryonic stem cell (hESC) pluripotency. We established a determinant role of cell cycle machineries on the pluripotent state by demonstrating that the specific perturbation of the S and G2 phases can prevent pluripotent state dissolution (PSD) [2]. Active mechanisms in these phases, such as the DNA damage checkpoint and Cyclin B1, promote the pluripotent state [2]. To understand the mechanisms behind the effect on PSD by these pathways in hESCs, we performed comprehensive gene expression analysis by time-course microarray experiments. From these datasets, we observed expression changes in genes involved in the TGFβ signaling pathway, which has a well-established role in hESC maintenance [3], [4], [5]. The microarray data have been deposited in NCBI's Gene Expression Omnibus (GEO) and can be accessed through GEO Series accession numbers GSE62062 and GSE63215.

  12. Azathioprine inhibits vaccinia virus replication in both BSC-40 and RAG cell lines acting on different stages of virus cycle.

    Science.gov (United States)

    Damaso, Clarissa R A; Oliveira, Marcus F; Massarani, Susana M; Moussatché, Nissin

    2002-08-15

    In the present study we demonstrate that azathioprine (AZA) inhibits vaccinia virus (VV) replication in both BSC-40 and RAG cell lines, acting on different stages of virus cycle. In BSC-40 cells, early protein synthesis was not significantly affected, but late gene expression was severely impaired. In RAG cells all stages of gene expression were completed during synchronous infection in the presence of the drug. The onset of DNA replication was not affected in RAG cells, but a severe inhibition was observed in BSC-40 cells. Electron microscopic analysis of VV-infected RAG cells treated with AZA revealed brick-shaped particles presenting abnormal definition of the internal structure. Purified virions from AZA-treated RAG cells presented several modifications of the protein content, a lesser amount of DNA, and a lower PFU:particle ratio. Our results suggest that in VV-infected RAG cells AZA interfered with virus morphogenesis, whereas in BSC-40 cells the replicative cycle was inhibited at the DNA replication stage.

  13. Ethanol extract of Innotus obliquus (Chaga mushroom) induces G1 cell cycle arrest in HT-29 human colon cancer cells

    OpenAIRE

    Lee, Hyun Sook; Kim, Eun Ji; Kim, Sun Hyo

    2015-01-01

    BACKGROUND/OBJECTIVES Inonotus obliquus (I. obliquus, Chaga mushroom) has long been used as a folk medicine to treat cancer. In the present study, we examined whether or not ethanol extract of I. obliquus (EEIO) inhibits cell cycle progression in HT-29 human colon cancer cells, in addition to its mechanism of action. MATERIALS/METHODS To examine the effects of Inonotus obliquus on the cell cycle progression and the molecular mechanism in colon cancer cells, HT-29 human colon cancer cells were...

  14. Cell cycle and anti-estrogen effects synergize to regulate cell proliferation and ER target gene expression.

    Directory of Open Access Journals (Sweden)

    Mathieu Dalvai

    Full Text Available Antiestrogens are designed to antagonize hormone induced proliferation and ERalpha target gene expression in mammary tumor cells. Commonly used drugs such as OH-Tamoxifen and ICI 182780 (Fulvestrant block cell cycle progression in G0/G1. Inversely, the effect of cell cycle stage on ER regulated gene expression has not been tested directly. We show that in ERalpha-positive breast cancer cells (MCF-7 the estrogen receptor gene and downstream target genes are cell cycle regulated with expression levels varying as much as three-fold between phases of the cell cycle. Steroid free culture conditions commonly used to assess the effect of hormones or antiestrogens on gene expression also block MCF-7 cells in G1-phase when several ERalpha target genes are overexpressed. Thus, cell cycle effects have to be taken into account when analyzing the impact of hormonal treatments on gene transcription. We found that antiestrogens repress transcription of several ERalpha target genes specifically in S phase. This observation corroborates the more rapid and strong impact of antiestrogen treatments on cell proliferation in thymidine, hydroxyurea or aphidicolin arrested cells and correlates with an increase of apoptosis compared to similar treatments in lovastatin or nocodazol treated cells. Hence, cell cycle effects synergize with the action of antiestrogens. An interesting therapeutic perspective could be to enhance the action of anti-estrogens by associating hormone-therapy with specific cell cycle drugs.

  15. Antecedent acute cycling exercise affects attention control: an ERP study using attention network test

    OpenAIRE

    Yu-Kai eChang; Caterina ePesce; Yi-Te eChiang; Cheng-Yuh eKuo; Dong-Yang eFong

    2015-01-01

    The purpose of this study was to investigate the after-effects of an acute bout of moderate intensity aerobic cycling exercise on neuroelectric and behavioral indices of efficiency of three attentional networks: alerting, orienting, and executive (conflict) control. Thirty young, highly fit amateur basketball players performed a multifunctional attentional reaction time task, the attention network test (ANT), with a two-group randomized experimental design after an acute bout of moderate inte...

  16. The effects of phenoxodiol on the cell cycle of prostate cancer cell lines

    OpenAIRE

    Mahoney, Simon; Arfuso, Frank; Millward, Michael; Dharmarajan, Arun

    2014-01-01

    Background Prostate cancer is associated with a poor survival rate. The ability of cancer cells to evade apoptosis and exhibit limitless replication potential allows for progression of cancer from a benign to a metastatic phenotype. The aim of this study was to investigate in vitro the effect of the isoflavone phenoxodiol on the expression of cell cycle genes. Methods Three prostate cancer cell lines-LNCaP, DU145, and PC3 were cultured in vitro, and then treated with phenoxodiol (10 μM and 30...

  17. DNA Damage, Cell Cycle Arrest, and Apoptosis Induction Caused by Lead in Human Leukemia Cells

    OpenAIRE

    Yedjou, Clement G.; Tchounwou, Hervey M.; Tchounwou, Paul B.

    2015-01-01

    In recent years, the industrial use of lead has been significantly reduced from paints and ceramic products, caulking, and pipe solder. Despite this progress, lead exposure continues to be a significant public health concern. The main goal of this research was to determine the in vitro mechanisms of lead nitrate [Pb(NO3)2] to induce DNA damage, apoptosis, and cell cycle arrest in human leukemia (HL-60) cells. To reach our goal, HL-60 cells were treated with different concentrations of Pb(NO3)...

  18. Cell cycle regulation and radiation-induced cell death; Regulation du cycle cellulaire et de la mort cellulaire radio-induite

    Energy Technology Data Exchange (ETDEWEB)

    Favaudon, V. [Centre Universitaire d' Orsay, Institut Curie, Section de Recherche, Lab. Raymond-Latarjet, Unite 350 Inserm, 91 (France)

    2000-10-01

    Tight control of cell proliferation is mandatory to prevent cancer formation as well as to normal organ development and homeostasis. This occurs through checkpoints that operate in both time and space and are involved in the control of numerous pathways including DNA replication and transcription, cell cycle progression, signal transduction and differentiation. Moreover, evidence has accumulated to show that apoptosis is tightly connected with the regulation of cell cycle progression. In this paper we describe the main pathways that determine checkpoints in the cell cycle and apoptosis. It is also recalled that in solid tumors radiation-induced cell death occurs most frequently through non-apoptotic mechanisms involving oncosis, and mitotic or delayed cell death. (author)

  19. TOUSLED Kinase Activity Oscillates during the Cell Cycle and Interacts with Chromatin Regulators1

    Science.gov (United States)

    Ehsan, Hashimul; Reichheld, Jean-Philippe; Durfee, Tim; Roe, Judith L.

    2004-01-01

    The TOUSLED (TSL)-like nuclear protein kinase family is highly conserved in plants and animals. tsl loss of function mutations cause pleiotropic defects in both leaf and flower development, and growth and initiation of floral organ primordia is abnormal, suggesting that basic cellular processes are affected. TSL is more highly expressed in exponentially growing Arabidopsis culture cells than in stationary, nondividing cells. While its expression remains constant throughout the cell cycle in dividing cells, TSL kinase activity is higher in enriched late G2/M-phase and G1-phase populations of Arabidopsis suspension culture cells compared to those in S-phase. tsl mutants also display an aberrant pattern and increased expression levels of the mitotic cyclin gene CycB1;1, suggesting that TSL represses CycB1;1 expression at certain times during development or that cells are delayed in mitosis. TSL interacts with and phosphorylates one of two Arabidopsis homologs of the nucleosome assembly/silencing protein Asf1 and histone H3, as in humans, and a novel plant SANT/myb-domain protein, TKI1, suggesting that TSL plays a role in chromatin metabolism. PMID:15047893

  20. How inhibiting nitrification affects nitrogen cycle and reduces environmental impacts of anthropogenic nitrogen input

    Science.gov (United States)

    We conducted a meta-analysis of 103 nitrification inhibitor (NI) studies, and evaluated how NI application affects crop productivity and other ecosystem services in agricultural systems. Our results showed that, compared to conventional fertilizer practice, applications of NI alo...

  1. Effects of allitridi on cell cycle arrest of human gastric cancer cells

    Institute of Scientific and Technical Information of China (English)

    Min-Wen Ha; Rui Ma; Li-Ping Shun; Yue-Hua Gong; Yuan Yuan

    2005-01-01

    AIM: To determine the effect of allitridi on cell cycle of human gastric cancer (HGC) cell lines MGC803 and SGC7901 and its possible mechanism.METHODS: Trypan blue dye exclusion was used to evaluate the proliferation, inhibition of cells and damages of these cells were detected with electron microscope.Flow cytometry and cell mitotic index were used to analyze the change of cell cycle, immunohistochemistry, and RT-PCR was used to examine expression of the p21WAF1 gene.RESULTS: MGC803 cell growth was inhibited by allitridi with 24 h IC50 being 6.4 μg/mL. SGC7901 cell growth was also inhibited by allitridi with 24 h IC50 being 7.3 μg/mL.After being treated with allitridi at the concentration of 12 μg/mL for 24 h, cells were found to have direct cytotoxic effects, including broken cellular membrane, swollen and vesiculated mitochondria and rough endoplasmic reticula,and mass lipid droplet. When cells were treated with allitridi at the concentration of 3, 6, and 9 μg/mL for 24 h, the percentage of G0/G1 phase cells was decreased and that of G2/M phase cells was significantly increased (P = 0.002)compared with those in the group. When cells were treated with allitridi at the concentration of 6 μg/mL, cell mitotic index was much higher (P = 0.003) than that of control group, indicating that allitridi could cause gastric cancer cell arrest in M phase. Besides, the expression levels of p21WAF1 gene of MGC803 cells and p21WAF1 gene of SGC7901 cells were remarkably upregulated after treatment.CONCLUSION: Allitridi can cause gastric cancer cell arrest in M phase, and this may be one of the mechanisms for inhibiting cell proliferation. Effect of allitridi on cells in M phas e may be associated with the upregulation of p21WAF1 genes. This study provides experimental data for clinical use of allitridi in the treatment of gastric carcinoma.

  2. Biochar affects soil organic matter cycling and microbial functions but does not alter microbial community structure in a paddy soil.

    Science.gov (United States)

    Tian, Jing; Wang, Jingyuan; Dippold, Michaela; Gao, Yang; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2016-06-15

    The application of biochar (BC) in conjunction with mineral fertilizers is one of the most promising management practices recommended to improve soil quality. However, the interactive mechanisms of BC and mineral fertilizer addition affecting microbial communities and functions associated with soil organic matter (SOM) cycling are poorly understood. We investigated the SOM in physical and chemical fractions, microbial community structure (using phospholipid fatty acid analysis, PLFA) and functions (by analyzing enzymes involved in C and N cycling and Biolog) in a 6-year field experiment with BC and NPK amendment. BC application increased total soil C and particulate organic C for 47.4-50.4% and 63.7-74.6%, respectively. The effects of BC on the microbial community and C-cycling enzymes were dependent on fertilization. Addition of BC alone did not change the microbial community compared with the control, but altered the microbial community structure in conjunction with NPK fertilization. SOM fractions accounted for 55% of the variance in the PLFA-related microbial community structure. The particulate organic N explained the largest variation in the microbial community structure. Microbial metabolic activity strongly increased after BC addition, particularly the utilization of amino acids and amines due to an increase in the activity of proteolytic (l-leucine aminopeptidase) enzymes. These results indicate that microorganisms start to mine N from the SOM to compensate for high C:N ratios after BC application, which consequently accelerate cycling of stable N. Concluding, BC in combination with NPK fertilizer application strongly affected microbial community composition and functions, which consequently influenced SOM cycling. PMID:26974565

  3. Biochar affects soil organic matter cycling and microbial functions but does not alter microbial community structure in a paddy soil.

    Science.gov (United States)

    Tian, Jing; Wang, Jingyuan; Dippold, Michaela; Gao, Yang; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2016-06-15

    The application of biochar (BC) in conjunction with mineral fertilizers is one of the most promising management practices recommended to improve soil quality. However, the interactive mechanisms of BC and mineral fertilizer addition affecting microbial communities and functions associated with soil organic matter (SOM) cycling are poorly understood. We investigated the SOM in physical and chemical fractions, microbial community structure (using phospholipid fatty acid analysis, PLFA) and functions (by analyzing enzymes involved in C and N cycling and Biolog) in a 6-year field experiment with BC and NPK amendment. BC application increased total soil C and particulate organic C for 47.4-50.4% and 63.7-74.6%, respectively. The effects of BC on the microbial community and C-cycling enzymes were dependent on fertilization. Addition of BC alone did not change the microbial community compared with the control, but altered the microbial community structure in conjunction with NPK fertilization. SOM fractions accounted for 55% of the variance in the PLFA-related microbial community structure. The particulate organic N explained the largest variation in the microbial community structure. Microbial metabolic activity strongly increased after BC addition, particularly the utilization of amino acids and amines due to an increase in the activity of proteolytic (l-leucine aminopeptidase) enzymes. These results indicate that microorganisms start to mine N from the SOM to compensate for high C:N ratios after BC application, which consequently accelerate cycling of stable N. Concluding, BC in combination with NPK fertilizer application strongly affected microbial community composition and functions, which consequently influenced SOM cycling.

  4. Dual Pressure versus Hybrid Recuperation in an Integrated Solid Oxide Fuel Cell Cycle – Steam Cycle

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2014-01-01

    pressure configuration steam cycle combined with SOFC cycle (SOFC-ST) was new and has not been studied previously. In each of the configuration, a hybrid recuperator was used to recovery the remaining energy of the off-gases after the HRSG. Thus, four different plants system setups were compared to each...... other to reveal the most superior concept with respect to plant efficiency and power. It was found that in order to increase the plant efficiency considerably, it was enough to use a single pressure with a hybrid recuperator instead of a dual pressure Rankine cycle....

  5. The stringent response and cell cycle arrest in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Daniel J Ferullo

    2008-12-01

    Full Text Available The bacterial stringent response, triggered by nutritional deprivation, causes an accumulation of the signaling nucleotides pppGpp and ppGpp. We characterize the replication arrest that occurs during the stringent response in Escherichia coli. Wild type cells undergo a RelA-dependent arrest after treatment with serine hydroxamate to contain an integer number of chromosomes and a replication origin-to-terminus ratio of 1. The growth rate prior to starvation determines the number of chromosomes upon arrest. Nucleoids of these cells are decondensed; in the absence of the ability to synthesize ppGpp, nucleoids become highly condensed, similar to that seen after treatment with the translational inhibitor chloramphenicol. After induction of the stringent response, while regions corresponding to the origins of replication segregate, the termini remain colocalized in wild-type cells. In contrast, cells arrested by rifampicin and cephalexin do not show colocalized termini, suggesting that the stringent response arrests chromosome segregation at a specific point. Release from starvation causes rapid nucleoid reorganization, chromosome segregation, and resumption of replication. Arrest of replication and inhibition of colony formation by ppGpp accumulation is relieved in seqA and dam mutants, although other aspects of the stringent response appear to be intact. We propose that DNA methylation and SeqA binding to non-origin loci is necessary to enforce a full stringent arrest, affecting both initiation of replication and chromosome segregation. This is the first indication that bacterial chromosome segregation, whose mechanism is not understood, is a step that may be regulated in response to environmental conditions.

  6. Cell-cycle dependent micronucleus formation and mitotic disturbances induced by 5-azacytidine in mammalian cells

    OpenAIRE

    Stopper, Helga; Körber, C.; Schiffmann, D; Caspary, W J

    2012-01-01

    5-Azacytidine was originally developed to treat human myelogenous leukemia. However, interest in this compound has expanded because of reports of its ability to affect cell differentiation and to alter eukaryotic gene expression. In an ongoing attempt to understand the biochemical effects of this compound, we examined the effects of 5-azacytidine on mitosis and on micronucleus formation in mammalian cells. In L5178Y mouse cells, 5-azacytidine induced micronuclei at concentrations at which we ...

  7. Genome rearrangement affects RNA virus adaptability on prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Kendra ePesko

    2015-04-01

    Full Text Available Gene order is often highly conserved within taxonomic groups, such that organisms with rearranged genomes tend to be less fit than wildtype gene orders, and suggesting natural selection favors genome architectures that maximize fitness. But it is unclear whether rearranged genomes hinder adaptability: capacity to evolutionarily improve in a new environment. Negative-sense nonsegmented RNA viruses (order Mononegavirales have specific genome architecture: 3′ UTR – core protein genes – envelope protein genes – RNA-dependent RNA-polymerase gene – 5′ UTR. To test how genome architecture affects RNA virus evolution, we examined vesicular stomatitis virus (VSV variants with the nucleocapsid (N gene moved sequentially downstream in the genome. Because RNA polymerase stuttering in VSV replication causes greater mRNA production in upstream genes, N-gene translocation towards the 5’ end leads to stepwise decreases in N transcription, viral replication and progeny production, and also impacts the activation of type 1 interferon mediated antiviral responses. We evolved VSV gene-order variants in two prostate cancer cell lines: LNCap cells deficient in innate immune response to viral infection, and PC3 cells that mount an IFN stimulated anti-viral response to infection. We observed that gene order affects phenotypic adaptability (reproductive growth; viral suppression of immune function, especially on PC3 cells that strongly select against virus infection. Overall, populations derived from the least-fit ancestor (most-altered N position architecture adapted fastest, consistent with theory predicting populations with low initial fitness should improve faster in evolutionary time. Also, we observed correlated responses to selection, where viruses improved across both hosts, rather than suffer fitness trade-offs on unselected hosts. Whole genomics revealed multiple mutations in evolved variants, some of which were conserved across selective

  8. WNT5A modulates cell cycle progression and contributes to the chemoresistance in pancreatic cancer cells

    Institute of Scientific and Technical Information of China (English)

    Wei Wei; Hui-Hui Sun; Na Li; Hong-Yue Li; Xin Li; Qiang Li; Xiao-Hong Shen

    2014-01-01

    BACKGROUND: Although there are many studies on the mechanism of chemoresistance in cancers, studies on the relations between WNT5A and chemoresistance in pancreatic cancer are rare. The present study was to examine the role of WNT5A in the regulation of cell cycle progression and in chemoresistance in pancreatic cancer tissues and cell lines. METHODS: Fresh pancreatic cancer and paracarcinoma tissues were obtained from 32 patients. The expressions of WNT5A, AKT/p-AKT and Cyclin D1 were detected by immunohistochemistry, and the correlation between WNT5A expression and clinicopathological characteristics was analyzed. The relationship between WNT5A expression and gemcitabine resistance was studied in PANC-1 and MIAPaCa2 cell lines. The effect of WNT5A on the regulation of cell cycle and gemcitabine cytotoxicity were investigated. The associations among the expressions of p-AKT, Cyclin D1 and WNT5A were also analyzed in cell lines and the effect of WNT5A on restriction-point (R-point) progression was evaluated. RESULTS: WNT5A, p-AKT and Cyclin D1 were highly expressed in pancreatic cancer tissues, and the WNT5A expression was correlated with the TNM stages. In vitro, WNT5A expression was associated with gemcitabine chemoresistance. The percentage of cells was increased in G0/G1 phase and decreased in S phase after knockdown of WNT5A in PANC-1. WNT5A promoted Cyclin D1 expression through phosphorylation of AKT which consequently enhanced G1-S transition and gemcitabine resistance. Furthermore, WNT5A enhanced the cell cycle progression toward R-point through regulation of retinoblastoma protein (pRb) and pRb-E2F complex formation. CONCLUSIONS: WNT5A induced chemoresistance by regulation of G1-S transition in pancreatic cancer cells. WNT5A might serve as a predictor of gemcitabine response and as a potential target for tumor chemotherapy.

  9. Effects of hyaluronic acid- chitosan-gelatin complex on the apoptosis and cell cycle of L929 cells

    Institute of Scientific and Technical Information of China (English)

    MAO Jinshu; WANG Xianghui; CUI Yuanlu; YAO Kangde

    2003-01-01

    With the development in the field of tissue engineering, the interaction between biomaterials and cells has been deeply studied. Viewing the cells seeded on the surface of materials as an organic whole, cell cycle and apoptosis are analyzed to deepen the study of cell compatibility on biomaterials, while cellproliferation and differentiation are studied at the same time. In this paper, hyaluronic acid is incorporated into the chitosan-gelatin system. Propidium iodide (PI) was used in cell cycle analysis and the double-staining of cells with annexin-V and PI was applied in cell apoptosis analysis. The results show that incorporated hyaluronic acid shortens the adaptation period of cells on the material surface, and then cells enter the normal cell cycle quickly. In addition, added hyaluronic acid inhibits cell apoptosis triggered by the membranes. Therefore,hyaluronic acid improves the cell compatibility of chitosan-gelatin system and benefits the design of biomimetic materials.

  10. Tea pigments induce cell-cycle arrest and apoptosis in HepG2 cells

    Institute of Scientific and Technical Information of China (English)

    Xu-Dong Jia; Chi Han; Jun-Shi Chen

    2005-01-01

    AIM: To investigate the molecular mechanisms by which tea pigments exert preventive effects on liver carcinogenesis.METHODS: HepG2 cells were seeded at a density of 5×105/well in six-well culture dishes and incubated overnight. The cells then were treated with various concentrations of tea pigments over 3 d, harvested by trypsinization, and counted using a hemocytometer. Flow cytometric analysis was performed by a flow cytometer after propidium iodide labeling. Bcl-2 and p21WAF1 proteins were determined by Western blotting. In addition, DNA laddering assay was performed on treated and untreated cultured HepG2 cells.RESULTS: Tea pigments inhibited the growth of HepG2 cells in a dose-dependent manner. Flow-cytometric analysis showed that tea pigments arrested cell cycle progression at G1 phase. DNA laddering was used to investigate apoptotic cell death, and the result showed that 100 mg/L of tea pigments caused typical DNA laddering. Our study also showed that tea pigments induced upregulation of p21WAF1 protein and downregulation of Bcl-2 protein.CONCLUSION: Tea pigments induce cell-cycle arrest and apoptosis. Tea pigments may be used as an ideal chemopreventive agent.

  11. TGEV nucleocapsid protein induces cell cycle arrest and apoptosis through activation of p53 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Li [College of Veterinary Medicine, Northwest A and F University, Yangling, Shaanxi 712100 (China); College of Life Sciences, Hainan Normal University, Haikou, Hainan 571158 (China); Huang, Yong; Du, Qian; Dong, Feng; Zhao, Xiaomin; Zhang, Wenlong; Xu, Xingang [College of Veterinary Medicine, Northwest A and F University, Yangling, Shaanxi 712100 (China); Tong, Dewen, E-mail: dwtong@nwsuaf.edu.cn [College of Veterinary Medicine, Northwest A and F University, Yangling, Shaanxi 712100 (China)

    2014-03-07

    Highlights: • TGEV N protein reduces cell viability by inducing cell cycle arrest and apoptosis. • TGEV N protein induces cell cycle arrest and apoptosis by regulating p53 signaling. • TGEV N protein plays important roles in TGEV-induced cell cycle arrest and apoptosis. - Abstract: Our previous studies showed that TGEV infection could induce cell cycle arrest and apoptosis via activation of p53 signaling in cultured host cells. However, it is unclear which viral gene causes these effects. In this study, we investigated the effects of TGEV nucleocapsid (N) protein on PK-15 cells. We found that TGEV N protein suppressed cell proliferation by causing cell cycle arrest at the S and G2/M phases and apoptosis. Characterization of various cellular proteins that are involved in regulating cell cycle progression demonstrated that the expression of N gene resulted in an accumulation of p53 and p21, which suppressed cyclin B1, cdc2 and cdk2 expression. Moreover, the expression of TGEV N gene promoted translocation of Bax to mitochondria, which in turn caused the release of cytochrome c, followed by activation of caspase-3, resulting in cell apoptosis in the transfected PK-15 cells following cell cycle arrest. Further studies showed that p53 inhibitor attenuated TGEV N protein induced cell cycle arrest at S and G2/M phases and apoptosis through reversing the expression changes of cdc2, cdk2 and cyclin B1 and the translocation changes of Bax and cytochrome c induced by TGEV N protein. Taken together, these results demonstrated that TGEV N protein might play an important role in TGEV infection-induced p53 activation and cell cycle arrest at the S and G2/M phases and apoptosis occurrence.

  12. Arecoline induced cell cycle arrest, apoptosis, and cytotoxicity to human endothelial cells.

    Science.gov (United States)

    Tseng, Shuei-Kuen; Chang, Mei-Chi; Su, Cheng-Yao; Chi, Lin-Yang; Chang, Jenny Zwei-Ching; Tseng, Wan-Yu; Yeung, Sin-Yuet; Hsu, Ming-Lun; Jeng, Jiiang-Huei

    2012-08-01

    Betel quid (BQ) chewing is a common oral habit in South Asia and Taiwan. BQ consumption may increase the risk of oral squamous cell carcinoma (OSCC), oral submucous fibrosis (OSF), and periodontitis as well as systemic diseases (atherosclerosis, hypertension, etc.). However, little is known about the toxic effect of BQ components on endothelial cells that play important roles for angiogenesis, carcinogenesis, tissue fibrosis, and cardiovascular diseases. EAhy 926 (EAHY) endothelial cells were exposed to arecoline, a major BQ alkaloid, for various time periods. Cytotoxicity was estimated by 3-(4, 5- dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide assay. The cell cycle distribution of EAHY cells residing in sub-G0/G1, G0/G1, S-, and G2/M phases was analyzed by propidium iodide staining of cellular DNA content and flow cytometry. Some EAHY cells retracted, became round-shaped in appearance, and even detached from the culture plate after exposure to higher concentrations of arecoline (> 0.4 mM). At concentrations of 0.4 and 0.8 mM, arecoline induced significant cytotoxicity to EAHY cells. At similar concentrations, arecoline induced G2/M cell cycle arrest and increased sub-G0/G1 population, a hallmark of apoptosis. Interestingly, prolonged exposure to arecoline (0.1 mM) for 12 and 21 days significantly suppressed the proliferation of EAHY cells, whereas EAHY cells showed adaptation and survived when exposed to 0.05 mM arecoline. These results suggest that BQ components may contribute to the pathogenesis of OSF and BQ chewing-related cardiovascular diseases via toxicity to oral or systemic endothelial cells, leading to impairment of vascular function. During BQ chewing, endothelial damage may be induced by areca nut components and associate with the pathogenesis of OSF, periodontitis, and cardiovascular diseases. PMID:21847594

  13. 维甲酸和睾酮单独与联合诱导脂肪源干细胞周期的变化%Retinoic acid, testosterone or their combination affects the cell cycle of adipose-derived stem cells

    Institute of Scientific and Technical Information of China (English)

    段富华; 曾文钦; 杨春; 杨会营; 余美春; 陶晖; 戴景兴; 原林

    2014-01-01

    BACKGROUND:The researches about the effect of retinoic acid on the proliferation of adipose-derived stem cells are rare, and the researches on the testosterone are mainly on the inhibition of cellaging. OBJECTIVE: To study the effects of retinoic acid and testosterone or combination on the cellcycle of adipose derived stem cells. METHODS:Adipose derived stem cells were isolated from adult female Sprague Dawley rats with 2 months age and cultured in vitro til passage 3 adipose derived stem cells, and then the 3rd passage adipose-derived stem cells were performed with adipogenic induction, osteogenic induction and surface marker identification. The cells were divided into six groups:(1) Control group;(2) 10-5 mol/L retinoic acid group;(3) Retinoic acid group;(4) 10-5 mol/L retinoic acid+testosterone group;(5) 10-6 mol/L retinoic acid+testosterone group;(6) Testosterone group. The adipose-derived stem cells in the control group were cultured with Dulbecco’s modified Eagle’s medium+10%fetal bovine serum culture medium, and the adipose-derived stem cells in the other five groups were induced with corresponding dose of retinoic acid and testosterone on the basis of control group. After cultured for 36 hours, the flow cytometry was used to detect the changes of cellcycle. RESULTS AND CONCLUSION:Compared with the control group, cellproportions in phase G 1 of 10-5 mol/L retinoic acid group and 10-6 mol/L retinoic acid group were increased significantly, and the cellproportions in phase S were decreased. Compared with control group, the cellproportion in phase G 1 of testosterone group was significantly reduced, and the cellproportion in phase S was increased. Compared with 10-5 mol/L retinoic acid group and 10-6 mol/L retinoic acid group, cellproportions in phase G 1 of 10-5 mol/L retinoic acid+testosterone group and 10-6 mol/L retinoic acid+testosterone group were reduced significantly and the cellproportions in phase S were increased. Retinoic acid can inhibit the

  14. Analysis of cell-cycle regulation following exposure of lung-derived cells to γ-rays

    Science.gov (United States)

    Trani, D.; Lucchetti, C.; Cassone, M.; D'Agostino, L.; Caputi, M.; Giordano, A.

    Acute exposure of mammalian cells to ionizing radiation results in a delay of cell-cycle progression and/or augmentation of apoptosis. Following ionizing radiation-induced DNA damage, cell-cycle arrest in the G1- or G2-phase of the cell-cycle prevents or delays DNA replication or mitosis, providing time for the DNA repair machinery to exert its function. Deregulation or failing of cell-cycle checkpoints and/or DNA repair mechanisms may lead normal cells bearing chromosome mutations to acquire neoplastic autonomy, which in turn can trigger the onset of cancer. Existing studies have focused on the impact of p53 status on the radiation response of lung cancer (LC) cell lines in terms of both cell-cycle regulation and apoptosis, while no comparative studies have been performed on the radiation response of lung derived normal and cancerous epithelial cells. To investigate the radiation response in normal and cancerous phenotypes, along with the role and impact of p53 status, and possible correlations with pRb/p105 or other proteins involved in carcinogenesis and cell-cycle regulation, we selected two lung-derived epithelial cell lines, one normal (NL20, p53 wild-type) and one non-small cell lung cancer (NSCLC), H358 (known to be p53-deficient). We compared the levels of γ-induced cell proliferation ability, cell-cycle arrest, apoptotic index, and expression levels of cell-cycle regulating and regulated proteins. The different cell sensitivity, apoptotic response and protein expression profiles resulting from our study for NL20 and H358 cells suggest that still unknown mechanisms involving p53, pRb/p105 and their target molecules might play a pivotal role in determining cell sensitivity and resistance upon exposure to ionizing radiation.

  15. {gamma}-irradiation deregulates cell cycle control and apoptosis in nevoid basal cell carcinomas syndrome-derived cells

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Katsunori; Miyashita, Toshiyuki; Yamada, Masao [National Children' s Medical Research Center, Tokyo (Japan); Takanashi, Jun-ichi; Sugita, Katsuo; Kohno, Yoichi; Nishie, Haruko; Yasumoto, Shin-ichiro; Furue, Masutaka

    1999-12-01

    The nevoid basal cell carcinoma syndrome (NBCCS) is an autosomal dominant disorder characterized by nevi, palmar and plantar pits, falx calcification, vertebrate anomalies and basal cell carcinomas. It is well known in NBCCS that {gamma}-irradiation to the skin induces basal cell carcinomas or causes an enlargement of the tumor size, although the details of the mechanism remain unknown. We have established lymphoblastoid cell lines from three NBCCS patients, and we present here the first evidence of abnormal cell cycle and apoptosis regulations. A novel mutation (single nucleotide deletion) in the coding region of the human patched gene, PTCH, was identified in two sibling patients, but no apparent abnormalities were detected in the gene of the remaining patient. Nevertheless, the three established cell lines showed similar features in the following analyses. Flow cytometric analyses revealed that the NBCCS-derived cells were accumulated in the G{sub 2}M phase after {gamma}-irradiation, whereas normal cells showed cell cycle arrest both in the G{sub 0}G{sub 1} and G{sub 2}M phases. The fraction of apoptotic cells after {gamma}-irradiation was smaller in the NBCCS cells. The level of p27 expression markedly decreased after {gamma}-irradiation in the NBCCS cells, although the effects of the irradiation on the expression profiles for p53, p21 and Rb did not differ in normal and NBCCS cells. These findings may provide a clue to the molecular mechanisms of tumorigenesis in NBCCS. (author)

  16. PKA-mediated responses in females' estrous cycle affect cocaine-induced responses in dopamine-mediated intracellular cascades.

    Science.gov (United States)

    Weiner, J; Sun, W Lun; Zhou, L; Kreiter, C M; Jenab, S; Quiñones-Jenab, V

    2009-07-01

    An extensive body of literature provides evidence for both sexual dimorphism and menstrual cycle effects in drug abuse patterns and behavioral responses. However, the cellular mechanisms underlying sexually dimorphic responses to and hormonal effects on cocaine use remain unclear. We hypothesized that endogenous hormonal fluctuations during the estrous cycle of rats modulate cocaine's effects on dopamine- and PKA-mediated intracellular responses. To test this hypothesis, intact female rats at different stages of their cycle received a single injection of saline or cocaine (20 mg/kg) and were sacrificed after 15 or 60 min. The nucleus accumbens (NAc) and caudate putamen (CPu) were dissected and analyzed via Western blot for total and phosphorylated (p-thr34) dopamine- and 3'-5'-cyclic AMP-regulated phosphoprotein with molecular weight 32 kDa (DARPP-32), PP1, PP2B (CNA1 and CNB1 subunits), PKA, CREB, cFOS, and Delta-FosB. Our results show that saline-treated rats had estrous cycle-related differences in protein levels of pCREB, DARPP-32, p-thr34-DARPP-32, PP1, and CNA1. Saline-treated female rats in the estrus stage had higher levels of pCREB in the NAc, but cocaine-treatment lowered pCREB levels. The estrous cycle also significantly affected the magnitude of change for p-thr34-DARPP-32 protein levels in both the NAc and CPu. Sixty minutes of cocaine administration increased p-thr34-DARPP-32 levels in the NAc of rats during estrus and proestrus and in the CPu of rats in diestrus. Furthermore, cocaine-induced changes in PP1 protein levels in the NAc were also affected by the stage of the cycle; 60 min of cocaine administration increased PP1 levels in the NAc of rats during diestrus, whereas PP-1 levels decreased in rats during estrus. Taken together, these novel findings suggest that hormonal fluctuations during the estrous cycle may contribute to the previously reported sex differences in the PKA pathway and in behavioral responses to cocaine. PMID:19348873

  17. Shorter Fallow Cycles Affect the Availability of Noncrop Plant Resources in a Shifting Cultivation System

    Directory of Open Access Journals (Sweden)

    Sylvie de Blois

    2006-12-01

    Full Text Available Shifting cultivation systems, one of the most widely distributed forms of agriculture in the tropics, provide not only crops of cultural significance, but also medicinal, edible, ritual, fuel, and forage resources, which contribute to the livelihoods, health, and cultural identity of local people. In many regions across the globe, shifting cultivation systems are undergoing important changes, one of the most pervasive being a shortening of the fallow cycle. Although there has been much attention drawn to declines in crop yields in conjunction with reductions in fallow times, little if any research has focused on the dynamics of noncrop plant resources. In this paper, we use a data set of 26 fields of the same age, i.e., ~1.5 yr, but differing in the length and frequency of past fallow cycles, to examine the impact of shorter fallow periods on the availability of noncrop plant resources. The resources examined are collected in shifting cultivation fields by the Yucatec Maya in Quintana Roo, Mexico. These included firewood, which is cut from remnant trees and stumps spared at the time of felling, and 17 forage species that form part of the weed vegetation. Firewood showed an overall decrease in basal area with shorter fallow cycles, which was mostly related to the smaller diameter of the spared stumps and trees in short-fallow milpas. In contrast, forage species showed a mixed response. Species increasing in abundance in short-fallow milpas tended to be short-lived herbs and shrubs often with weedy habits, whereas those declining in abundance were predominantly pioneer trees and animal-dispersed species. Coppicing tree species showed a neutral response to fallow intensity. Within the cultural and ecological context of our study area, we expect that declines in firewood availability will be most significant for livelihoods because of the high reliance on firewood for local fuel needs and the fact that the main alternative source of firewood, forest

  18. Getting to S: CDK functions and targets on the path to cell-cycle commitment

    Science.gov (United States)

    Fisher, Robert P.

    2016-01-01

    How and when eukaryotic cells make the irrevocable commitment to divide remain central questions in the cell-cycle field. Parallel studies in yeast and mammalian cells seemed to suggest analogous control mechanisms operating during the G1 phase—at Start or the restriction (R) point, respectively—to integrate nutritional and developmental signals and decide between distinct cell fates: cell-cycle arrest or exit versus irreversible commitment to a round of division. Recent work has revealed molecular mechanisms underlying this decision-making process in both yeast and mammalian cells but also cast doubt on the nature and timing of cell-cycle commitment in multicellular organisms. These studies suggest an expanded temporal window of mitogen sensing under certain growth conditions, illuminate unexpected obstacles and exit ramps on the path to full cell-cycle commitment, and raise new questions regarding the functions of cyclin-dependent kinases (CDKs) that drive G1 progression and S-phase entry.

  19. Antiproliferative effect of rapamycin on human T-cell leukemia cell line Jurkat by cell cycle arrest and telomerase inhibition

    Institute of Scientific and Technical Information of China (English)

    Yan-min ZHAO; Qian ZHOU; Yun XU; Xiao-yu LAI; He HUANG

    2008-01-01

    Aim:To examine the ability of rapamycin to suppress growth and regulate telomerase activity in the human T-cell leukemia cell line Jurkat. Methods:Cell proliferation was assessed after exposure to rapamycin by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Cell cycle progression and apoptosis were determined by flow cytometry. The proteins important for cell cycle progres-sion and Akt/mammalian target of rapamycin signaling cascade were assessed by Western blotting. Telomerase activity was quantified by telomeric repeat amplication protocol assay. The human telomerase reverse transcriptase (hTERT) mRNA levels were determined by semi-quantitative RT-PCR. Results:Rapamycin inhibited the proliferation of Jurkat, induced G1 phase arrest, unregulated the pro-tein level of p21 as well as p27, and downregulated cyclinD3, phospho-p70s6k, and phospho-s6, but had no effect on apoptosis. Treatment with rapamycin reduced telomerase activity, and reduced hTERT mRNA and protein expression. Conclusion:Rapamycin displayed a potent antileukemic effect in the human T-cell leukemia cell line by inhibition of cell proliferation through G1 cell cycle arrest and also through the suppression of telomerase activity, suggesting that rapamycin may have potential clinical implications in the treatment of some leukemias.

  20. Radioprotection and Cell Cycle Arrest of Intestinal Epithelial Cells by Darinaparsin, a Tumor Radiosensitizer

    International Nuclear Information System (INIS)

    Purpose: It was recently reported that the organic arsenic compound darinaparsin (DPS) is a cytotoxin and radiosensitizer of tumor cells in vitro and in subcutaneous xenograft tumors. Surprisingly, it was also found that DPS protects normal intestinal crypt epithelial cells (CECs) from clonogenic death after ionizing radiation (IR). Here we tested the DPS radiosensitizing effect in a clinically relevant model of prostate cancer and explored the radioprotective effect and mechanism of DPS on CECs. Methods and Materials: The radiation modification effect of DPS was tested in a mouse model of orthotopic xenograft prostate cancer and of IR-induced acute gastrointestinal syndrome. The effect of DPS on CEC DNA damage and DNA damage responses was determined by immunohistochemistry. Results: In the mouse model of IR-induced gastrointestinal syndrome, DPS treatment before IR accelerated recovery from body weight loss and increased animal survival. DPS decreased post-IR DNA damage and cell death, suggesting that the radioprotective effect was mediated by enhanced DNA damage repair. Shortly after DPS injection, significant cell cycle arrest was observed in CECs at both G1/S and G2/M checkpoints, which was accompanied by the activation of cell cycle inhibitors p21 and growth arrest and DNA-damage-inducible protein 45 alpha (GADD45A). Further investigation revealed that DPS activated ataxia telangiectasia mutated (ATM), an important inducer of DNA damage repair and cell cycle arrest. Conclusions: DPS selectively radioprotected normal intestinal CECs and sensitized prostate cancer cells in a clinically relevant model. This effect may be, at least in part, mediated by DNA damage response activation and has the potential to significantly increase the therapeutic index of radiation therapy

  1. Radioprotection and Cell Cycle Arrest of Intestinal Epithelial Cells by Darinaparsin, a Tumor Radiosensitizer

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Junqiang; Doi, Hiroshi [Department of Radiation Oncology, School of Medicine, Stanford University, Stanford, California (United States); Saar, Matthias; Santos, Jennifer [Department of Urology, School of Medicine, Stanford University, Stanford, California (United States); Li, Xuejun; Peehl, Donna M. [Department of Radiation Oncology, School of Medicine, Stanford University, Stanford, California (United States); Knox, Susan J., E-mail: sknox@stanford.edu [Department of Radiation Oncology, School of Medicine, Stanford University, Stanford, California (United States)

    2013-12-01

    Purpose: It was recently reported that the organic arsenic compound darinaparsin (DPS) is a cytotoxin and radiosensitizer of tumor cells in vitro and in subcutaneous xenograft tumors. Surprisingly, it was also found that DPS protects normal intestinal crypt epithelial cells (CECs) from clonogenic death after ionizing radiation (IR). Here we tested the DPS radiosensitizing effect in a clinically relevant model of prostate cancer and explored the radioprotective effect and mechanism of DPS on CECs. Methods and Materials: The radiation modification effect of DPS was tested in a mouse model of orthotopic xenograft prostate cancer and of IR-induced acute gastrointestinal syndrome. The effect of DPS on CEC DNA damage and DNA damage responses was determined by immunohistochemistry. Results: In the mouse model of IR-induced gastrointestinal syndrome, DPS treatment before IR accelerated recovery from body weight loss and increased animal survival. DPS decreased post-IR DNA damage and cell death, suggesting that the radioprotective effect was mediated by enhanced DNA damage repair. Shortly after DPS injection, significant cell cycle arrest was observed in CECs at both G1/S and G2/M checkpoints, which was accompanied by the activation of cell cycle inhibitors p21 and growth arrest and DNA-damage-inducible protein 45 alpha (GADD45A). Further investigation revealed that DPS activated ataxia telangiectasia mutated (ATM), an important inducer of DNA damage repair and cell cycle arrest. Conclusions: DPS selectively radioprotected normal intestinal CECs and sensitized prostate cancer cells in a clinically relevant model. This effect may be, at least in part, mediated by DNA damage response activation and has the potential to significantly increase the therapeutic index of radiation therapy.

  2. Cell cycle regulation and cytoskeletal remodelling are critical processes in the nutritional programming of embryonic development.

    Directory of Open Access Journals (Sweden)

    Angelina Swali

    Full Text Available Many mechanisms purport to explain how nutritional signals during early development are manifested as disease in the adult offspring. While these describe processes leading from nutritional insult to development of the actual pathology, the initial underlying cause of the programming effect remains elusive. To establish the primary drivers of programming, this study aimed to capture embryonic gene and protein changes in the whole embryo at the time of nutritional insult rather than downstream phenotypic effects. By using a cross-over design of two well established models of maternal protein and iron restriction we aimed to identify putative common "gatekeepers" which may drive nutritional programming.Both protein and iron deficiency in utero reduced the nephron complement in adult male Wistar and Rowett Hooded Lister rats (P<0.05. This occurred in the absence of damage to the glomerular ultrastructure. Microarray, proteomic and pathway analyses identified diet-specific and strain-specific gatekeeper genes, proteins and processes which shared a common association with the regulation of the cell cycle, especially the G1/S and G2/M checkpoints, and cytoskeletal remodelling. A cell cycle-specific PCR array confirmed the down-regulation of cyclins with protein restriction and the up-regulation of apoptotic genes with iron deficiency.The timing and experimental design of this study have been carefully controlled to isolate the common molecular mechanisms which may initiate the sequelae of events involved in nutritional programming of embryonic development. We propose that despite differences in the individual genes and proteins affected in each strain and with each diet, the general response to nutrient deficiency in utero is perturbation of the cell cycle, at the level of interaction with the cytoskeleton and the mitotic checkpoints, thereby diminishing control over the integrity of DNA which is allowed to replicate. These findings offer novel

  3. Knockdown of the cell cycle inhibitor p21 enhances cartilage formation by induced pluripotent stem cells.

    Science.gov (United States)

    Diekman, Brian O; Thakore, Pratiksha I; O'Connor, Shannon K; Willard, Vincent P; Brunger, Jonathan M; Christoforou, Nicolas; Leong, Kam W; Gersbach, Charles A; Guilak, Farshid

    2015-04-01

    The limited regenerative capacity of articular cartilage contributes to progressive joint dysfunction associated with cartilage injury or osteoarthritis. Cartilage tissue engineering seeks to provide a biological substitute for repairing damaged or diseased cartilage, but requires a cell source with the capacity for extensive expansion without loss of chondrogenic potential. In this study, we hypothesized that decreased expression of the cell cycle inhibitor p21 would enhance the proliferative and chondrogenic potential of differentiated induced pluripotent stem cells (iPSCs). Murine iPSCs were directed to differentiate toward the chondrogenic lineage with an established protocol and then engineered to express a short hairpin RNA (shRNA) to reduce the expression of p21. Cells expressing the p21 shRNA demonstrated higher proliferative potential during monolayer expansion and increased synthesis of glycosaminoglycans (GAGs) in pellet cultures. Furthermore, these cells could be expanded ∼150-fold over three additional passages without a reduction in the subsequent production of GAGs, while control cells showed reduced potential for GAG synthesis with three additional passages. In pellets from extensively passaged cells, knockdown of p21 attenuated the sharp decrease in cell number that occurred in control cells, and immunohistochemical analysis showed that p21 knockdown limited the production of type I and type X collagen while maintaining synthesis of cartilage-specific type II collagen. These findings suggest that manipulating the cell cycle can augment the monolayer expansion and preserve the chondrogenic capacity of differentiated iPSCs, providing a strategy for enhancing iPSC-based cartilage tissue engineering.

  4. Osthole inhibits proliferation of human breast cancer cells by inducing cell cycle arrest and apoptosis

    Institute of Scientific and Technical Information of China (English)

    Lintao Wang; Yanyan Peng; Kaikai Shi; Haixiao Wang; Jianlei Lu; Yanli Li; Changyan Ma

    2015-01-01

    Recent studies have revealed that osthole,an active constituent isolated from the fruit of Cnidium monnieri (L.) Cusson,a traditional Chinese medicine,possesses anticancer activity.However,its effect on breast cancer cells so far has not been elucidated clearly.In the present study,we evaluated the effects of osthole on the proliferation,cell cycle and apoptosis of human breast cancer cells MDA-MB 435.We demonstrated that osthole is effective in inhibiting the proliferation of MDA-MB 435 cells,The mitochondrion-mediated apoptotic pathway was involved in apoptosis induced by osthole,as indicated by activation of caspase-9 and caspase-3 followed by PARP degradation.The mechanism underlying its effect on the induction of G1 phase arrest was due to the up-regulation of p53 and p21 and down-regulation of Cdk2 and cyclin D1 expression.Were observed taken together,these findings suggest that the anticancer efficacy of osthole is mediated via induction of cell cycle arrest and apoptosis in human breast cancer cells and osthole may be a potential chemotherapeutic agent against human breast cancer.

  5. TRAP1 regulates cell cycle and apoptosis in thyroid carcinoma cells.

    Science.gov (United States)

    Palladino, Giuseppe; Notarangelo, Tiziana; Pannone, Giuseppe; Piscazzi, Annamaria; Lamacchia, Olga; Sisinni, Lorenza; Spagnoletti, Girolamo; Toti, Paolo; Santoro, Angela; Storto, Giovanni; Bufo, Pantaleo; Cignarelli, Mauro; Esposito, Franca; Landriscina, Matteo

    2016-09-01

    Tumor necrosis factor receptor-associated protein 1 (TRAP1) is a heat shock protein 90 (HSP90) molecular chaperone upregulated in several human malignancies and involved in protection from apoptosis and drug resistance, cell cycle progression, cell metabolism and quality control of specific client proteins. TRAP1 role in thyroid carcinoma (TC), still unaddressed at present, was investigated by analyzing its expression in a cohort of 86 human TCs and evaluating its involvement in cancer cell survival and proliferation in vitro Indeed, TRAP1 levels progressively increased from normal peritumoral thyroid gland, to papillary TCs (PTCs), follicular variants of PTCs (FV-PTCs) and poorly differentiated TCs (PDTCs). By contrast, anaplastic thyroid tumors exhibited a dual pattern, the majority being characterized by high TRAP1 levels, while a small subgroup completely negative. Consistently with a potential involvement of TRAP1 in thyroid carcinogenesis, TRAP1 silencing resulted in increased sensitivity to paclitaxel-induced apoptosis, inhibition of cell cycle progression and attenuation of ERK signaling. Noteworthy, the inhibition of TRAP1 ATPase activity by pharmacological agents resulted in attenuation of cell proliferation, inhibition of ERK signaling and reversion of drug resistance. These data suggest that TRAP1 inhibition may be regarded as potential strategy to target specific features of human TCs, i.e., cell proliferation and resistance to apoptosis. PMID:27422900

  6. Non-DBS DNA Repair Genes Regulate Radiation-induced Cytogenetic Damage Repair and Cell Cycle Progression

    Science.gov (United States)

    Zhang, Ye; Rohde, Larry H.; Emami, Kamal; Casey, Rachael; Wu, Honglu

    2008-01-01

    Changes of gene expression profile are one of the most important biological responses in living cells after ionizing radiation (IR) exposure. Although some studies have shown that genes up-regulated by IR may play important roles in DNA damage repair, the relationship between the regulation of gene expression by IR, particularly genes not known for their roles in DSB repair, and its impact on cytogenetic responses has not been systematically studied. In the present study, the expression of 25 genes selected on the basis of their transcriptional changes in response to IR was individually knocked down by transfection with small interfering RNA in human fibroblast cells. The purpose of this study is to identify new roles of these selected genes on regulating DSB repair and cell cycle progression , as measured in the micronuclei formation and chromosome aberration. In response to IR, the formation of MN was significantly increased by suppressed expression of 5 genes: Ku70 in the DSB repair pathway, XPA in the NER pathway, RPA1 in the MMR pathway, and RAD17 and RBBP8 in cell cycle control. Knocked-down expression of 4 genes (MRE11A, RAD51 in the DSB pathway, SESN1, and SUMO1) significantly inhibited cell cycle progression, possibly because of severe impairment of DNA damage repair. Furthermore, loss of XPA, P21, or MLH1 expression resulted in both significantly enhanced cell cycle progression and increased yields of chromosome aberrations, indicating that these gene products modulate both cell cycle control and DNA damage repair. Most of the 11 genes that affected cytogenetic responses are not known to have clear roles influencing DBS repair. Nine of these 11 genes were up-regulated in cells exposed to gamma radiation, suggesting that genes transcriptionally modulated by IR were critical to regulate the biological consequences after IR.

  7. Anandamide drives cell cycle progression through CB1 receptors in a rat model of synchronized liver regeneration.

    Science.gov (United States)

    Pisanti, Simona; Picardi, Paola; Pallottini, Valentina; Martini, Chiara; Petrosino, Stefania; Proto, Maria Chiara; Vitale, Mario; Laezza, Chiara; Gazzerro, Patrizia; Di Marzo, Vincenzo; Bifulco, Maurizio

    2015-12-01

    The endocannabinoid system, through cannabinoid receptor signaling by endocannabinoids, is involved in a wide range of functions and physiopathological conditions. To date, very little is known concerning the role of the endocannabinoids in the control and regulation of cell proliferation. An anti-proliferative action of CB1 signaling blockade in neurogenesis and angiogenesis argues in favor of proliferation-promoting functions of endocannabinoids through CB1 receptors when pro-growth signals are present. Furthermore, liver regeneration, a useful in vivo model of synchronized cell proliferation, is characterized by a peak of anandamide that elicits through CB1 receptor, the expression of critical mitosis genes. The aim of this study was to focus on the timing of endocannabinoid signaling changes during the different phases of the cell cycle, exploiting the rat liver regeneration model following partial hepatectomy, the most useful to study synchronized cell cycle in vivo. Hepatic regeneration led to increased levels of anandamide and endocannabinoid-like molecules oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) in the G1 phase of the cell cycle, with a concomitant increase in CB1 mRNA levels, whose protein expression peaked later during the S phase. Blocking of CB1 receptor with a low dose of the selective antagonist/inverse agonist SR141716 (0.7 mg/kg/dose) affected cell cycle progression reducing the expression of PCNA, and through the inhibition of pERK and pSTAT3 pathways. These results support the notion that the signaling mediated by anandamide through CB1 receptor may be important for the entry and progression of cells into the cell cycle and hence for their proliferation under mitogenic signals.

  8. The role of the cell cycle machinery in resumption of postembryonic development

    NARCIS (Netherlands)

    Barroco, R.M.; Poucke, van K.; Bergervoet, J.H.W.; Veylder, de L.; Groot, S.P.C.; Inze, D.; Engler, G.

    2005-01-01

    Cell cycle activity is required for plant growth and development, but its involvement in the early events that initiate seedling development remains to be clarified. We performed experiments aimed at understanding when cell cycle progression is activated during seed germination, and what its contrib

  9. Cell cycle genes and ovarian cancer susceptibility: a tagSNP analysis

    DEFF Research Database (Denmark)

    Cunningham, J M; Vierkant, R A; Sellers, T A;

    2009-01-01

    BACKGROUND: Dysregulation of the cell cycle is a hallmark of many cancers including ovarian cancer, a leading cause of gynaecologic cancer mortality worldwide. METHODS: We examined single nucleotide polymorphisms (SNPs) (n=288) from 39 cell cycle regulation genes, including cyclins, cyclin-depend...

  10. Factors affecting {sup 223}Ra therapy: clinical experience after 532 cycles from a single institution

    Energy Technology Data Exchange (ETDEWEB)

    Etchebehere, Elba C. [The University of Texas MD Anderson Cancer Center, Department of Nuclear Medicine, Houston, TX (United States); Campinas State University (Unicamp), Department of Nuclear Medicine, Campinas (Brazil); Milton, Denai R. [The University of Texas MD Anderson Cancer Center, Department of Biostatistics, Houston, TX (United States); Araujo, John C. [The University of Texas MD Anderson Cancer Center, Department of Genitourinary Medical Oncology, Houston, TX (United States); Swanston, Nancy M.; Macapinlac, Homer A.; Rohren, Eric M. [The University of Texas MD Anderson Cancer Center, Department of Nuclear Medicine, Houston, TX (United States)

    2016-01-15

    The aim of this study was to identify baseline features that predict outcome in {sup 223}Ra therapy. We retrospectively reviewed 110 patients with metastatic castration-resistant prostate cancer treated with {sup 223}Ra. End points were overall survival (OS), progression-free survival (PFS), bone event-free survival (BeFS), and bone marrow failure (BMF). The following parameters were evaluated prior to the first {sup 223}Ra cycle: serum levels of hemoglobin (Hb), prostate-specific antigen (PSA), alkaline phosphatase (ALP), Eastern Cooperative Oncology Group (ECOG) status, pain score, use of chemotherapy, and external beam radiation therapy (EBRT). During/after {sup 223}Ra we evaluated: the total number of radium cycles (Ra{sub Tot}), the PSA doubling time (PSA{sub DT}), and the use of chemotherapy, EBRT, abiraterone, and enzalutamide. A significant reduction of ALP (p < 0.001) and pain score (p = 0.041) occurred throughout the {sup 223} Ra cycles. The risk of progression was associated with declining ECOG status [hazard ratio (HR) = 3.79; p < 0.001] and decrease in PSA{sub DT} (HR = 8.22; p < 0.001). Ra{sub Tot}, ALP, initial ECOG status, initial pain score, and use of abiraterone were associated with OS (p ≤ 0.008), PFS (p ≤ 0.003), and BeFS (p ≤ 0.020). Ra{sub Tot}, ALP, initial ECOG status, and initial pain score were significantly associated with BMF (p ≤ 0.001) as well as Hb (p < 0.001) and EBRT (p = 0.009). On multivariable analysis, only Ra{sub Tot} and abiraterone remained significantly associated with OS (p < 0.001; p = 0.033, respectively), PFS (p < 0.001; p = 0.041, respectively), and BeFS (p < 0.001; p = 0.019, respectively). Additionally, Ra{sub Tot} (p = 0.027) and EBRT (p = 0.013) remained significantly associated with BMF. Concomitant use of abiraterone and {sup 223}Ra seems to have a beneficial effect, while the EBRT may increase the risk of BMF. (orig.)

  11. Factors affecting 223Ra therapy: clinical experience after 532 cycles from a single institution

    International Nuclear Information System (INIS)

    The aim of this study was to identify baseline features that predict outcome in 223Ra therapy. We retrospectively reviewed 110 patients with metastatic castration-resistant prostate cancer treated with 223Ra. End points were overall survival (OS), progression-free survival (PFS), bone event-free survival (BeFS), and bone marrow failure (BMF). The following parameters were evaluated prior to the first 223Ra cycle: serum levels of hemoglobin (Hb), prostate-specific antigen (PSA), alkaline phosphatase (ALP), Eastern Cooperative Oncology Group (ECOG) status, pain score, use of chemotherapy, and external beam radiation therapy (EBRT). During/after 223Ra we evaluated: the total number of radium cycles (RaTot), the PSA doubling time (PSADT), and the use of chemotherapy, EBRT, abiraterone, and enzalutamide. A significant reduction of ALP (p < 0.001) and pain score (p = 0.041) occurred throughout the 223 Ra cycles. The risk of progression was associated with declining ECOG status [hazard ratio (HR) = 3.79; p < 0.001] and decrease in PSADT (HR = 8.22; p < 0.001). RaTot, ALP, initial ECOG status, initial pain score, and use of abiraterone were associated with OS (p ≤ 0.008), PFS (p ≤ 0.003), and BeFS (p ≤ 0.020). RaTot, ALP, initial ECOG status, and initial pain score were significantly associated with BMF (p ≤ 0.001) as well as Hb (p < 0.001) and EBRT (p = 0.009). On multivariable analysis, only RaTot and abiraterone remained significantly associated with OS (p < 0.001; p = 0.033, respectively), PFS (p < 0.001; p = 0.041, respectively), and BeFS (p < 0.001; p = 0.019, respectively). Additionally, RaTot (p = 0.027) and EBRT (p = 0.013) remained significantly associated with BMF. Concomitant use of abiraterone and 223Ra seems to have a beneficial effect, while the EBRT may increase the risk of BMF. (orig.)

  12. Idas, a novel phylogenetically conserved geminin-related protein, binds to geminin and is required for cell cycle progression.

    Science.gov (United States)

    Pefani, Dafni-Eleutheria; Dimaki, Maria; Spella, Magda; Karantzelis, Nickolas; Mitsiki, Eirini; Kyrousi, Christina; Symeonidou, Ioanna-Eleni; Perrakis, Anastassis; Taraviras, Stavros; Lygerou, Zoi

    2011-07-01

    Development and homeostasis of multicellular organisms relies on an intricate balance between cell proliferation and differentiation. Geminin regulates the cell cycle by directly binding and inhibiting the DNA replication licensing factor Cdt1. Geminin also interacts with transcriptional regulators of differentiation and chromatin remodelling factors, and its balanced interactions are implicated in proliferation-differentiation decisions during development. Here, we describe Idas (Idas being a cousin of the Gemini in Ancient Greek Mythology), a previously uncharacterised coiled-coil protein related to Geminin. We show that human Idas localizes to the nucleus, forms a complex with Geminin both in cells and in vitro through coiled-coil mediated interactions, and can change Geminin subcellular localization. Idas does not associate with Cdt1 and prevents Geminin from binding to Cdt1 in vitro. Idas depletion from cells affects cell cycle progression; cells accumulate in S phase and are unable to efficiently progress to mitosis. Idas protein levels decrease in anaphase, whereas its overexpression causes mitotic defects. During development, we show that Idas exhibits high level expression in the choroid plexus and the cortical hem of the mouse telencephalon. Our data highlight Idas as a novel Geminin binding partner, implicated in cell cycle progression, and a putative regulator of proliferation-differentiation decisions during development. PMID:21543332

  13. Hypoxia and the Presence of Human Vascular Endothelial Cells Affect Prostate Cancer Cell Invasion and Metabolism

    Directory of Open Access Journals (Sweden)

    Ellen Ackerstaff

    2007-12-01

    Full Text Available Tumor progression and metastasis are influenced by hypoxia, as well as by interactions between cancer cells and components of the stroma, such as endothelial cells. Here, we have used a magnetic resonance (MRcompatible invasion assay to further understand the effects of hypoxia on human prostate cancer cell invasion and metabolism in the presence and absence of human umbilical vein endothelial cells (HUVECs. Additionally, we compared endogenous activities of selected proteases related to invasion in PC-3 cells and HUVECs, profiled gene expression of PC-3 cells by microarray, evaluated cell proliferation of PC-3 cells and HUVECs by flow cytometry, under hypoxic and oxygenated conditions. The invasion of less-invasive DU-145 cells was not affected by either hypoxia or the presence of HUVECs. However, hypoxia significantly decreased the invasion of PC-3 cells. This hypoxia-induced decrease was attenuated by the presence of HUVECs, whereas under oxygenated conditions, HUVECs did not alter the invasion of PC-3 cells. Cell metabolism changed distinctly with hypoxia and invasion. The endogenous activity of selected extracellular proteases, although altered by hypoxia, did not fully explain the hypoxia-induced changes in invasion. Gene expression profiling indicated that hypoxia affects multiple cellular functions and pathways.

  14. SON controls cell-cycle progression by coordinated regulation of RNA splicing.

    Science.gov (United States)

    Ahn, Eun-Young; DeKelver, Russell C; Lo, Miao-Chia; Nguyen, Tuyet Ann; Matsuura, Shinobu; Boyapati, Anita; Pandit, Shatakshi; Fu, Xiang-Dong; Zhang, Dong-Er

    2011-04-22

    It has been suspected that cell-cycle progression might be functionally coupled with RNA processing. However, little is known about the role of the precise splicing control in cell-cycle progression. Here, we report that SON, a large Ser/Arg (SR)-related protein, is a splicing cofactor contributing to efficient splicing of cell-cycle regulators. Downregulation of SON leads to severe impairment of spindle pole separation, microtubule dynamics, and genome integrity. These molecular defects result from inadequate RNA splicing of a specific set of cell-cycle-related genes that possess weak splice sites. Furthermore, we show that SON facilitates the interaction of SR proteins with RNA polymerase II and other key spliceosome components, suggesting its function in efficient cotranscriptional RNA processing. These results reveal a mechanism for controlling cell-cycle progression through SON-dependent constitutive splicing at suboptimal splice sites, with strong implications for its role in cancer and other human diseases.

  15. The regulatory effects of radiation and histone deacetylase inhibitor on liver cancer cell cycle

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Ho; Choi, Hyung Seok; Jang, Dong Gun; Lee, Hong Je; Yang, Seoung Oh [Dept. Nuclear Medicine, Dongnam Institute of Radiological and Medicine Sciences Cancer Center, Busan (Korea, Republic of)

    2013-11-15

    Radiation has been an effective tool for treating cancer for a long time. Radiation therapy induces DNA damage within cancer cells and destroys their ability to reproduce. Radiation therapy is often combined with other treatments, like surgery and chemotherapy. Here, we describe the effects of radiation and histone deacetylase inhibitor, Trichostain A, on cell cycle regulation in hepatoma cells. Results demonstrate that the treatment of radiation TSA induces cell cycle arrest, thereby stimulating cell death in hepatoma cells. In addition, since different cells or tissues have different reactivity to radiation and TSA, these results might be an indicator for the combination therapy with radiation and drugs in diverse cancers.

  16. Genome Wide Expression Profiling of Cancer Cell Lines Cultured in Microgravity Reveals Significant Dysregulation of Cell Cycle and MicroRNA Gene Networks.

    Directory of Open Access Journals (Sweden)

    Prasanna Vidyasekar

    Full Text Available Zero gravity causes several changes in metabolic and functional aspects of the human body and experiments in space flight have demonstrated alterations in cancer growth and progression. This study reports the genome wide expression profiling of a colorectal cancer cell line-DLD-1, and a lymphoblast leukemic cell line-MOLT-4, under simulated microgravity in an effort to understand central processes and cellular functions that are dysregulated among both cell lines. Altered cell morphology, reduced cell viability and an aberrant cell cycle profile in comparison to their static controls were observed in both cell lines under microgravity. The process of cell cycle in DLD-1 cells was markedly affected with reduced viability, reduced colony forming ability, an apoptotic population and dysregulation of cell cycle genes, oncogenes, and cancer progression and prognostic markers. DNA microarray analysis revealed 1801 (upregulated and 2542 (downregulated genes (>2 fold in DLD-1 cultures under microgravity while MOLT-4 cultures differentially expressed 349 (upregulated and 444 (downregulated genes (>2 fold under microgravity. The loss in cell proliferative capacity was corroborated with the downregulation of the cell cycle process as demonstrated by functional clustering of DNA microarray data using gene ontology terms. The genome wide expression profile also showed significant dysregulation of post transcriptional gene silencing machinery and multiple microRNA host genes that are potential tumor suppressors and proto-oncogenes including MIR22HG, MIR17HG and MIR21HG. The MIR22HG, a tumor-suppressor gene was one of the highest upregulated genes in the microarray data showing a 4.4 log fold upregulation under microgravity. Real time PCR validated the dysregulation in the host gene by demonstrating a 4.18 log fold upregulation of the miR-22 microRNA. Microarray data also showed dysregulation of direct targets of miR-22, SP1, CDK6 and CCNA2.

  17. Rising cyclin-CDK levels order cell cycle events.

    Directory of Open Access Journals (Sweden)

    Catherine Oikonomou

    Full Text Available BACKGROUND: Diverse mitotic events can be triggered in the correct order and time by a single cyclin-CDK. A single regulator could confer order and timing on multiple events if later events require higher cyclin-CDK than earlier events, so that gradually rising cyclin-CDK levels can sequentially trigger responsive events: the "quantitative model" of ordering. METHODOLOGY/PRINCIPAL FINDINGS: This 'quantitative model' makes predictions for the effect of locking cyclin at fixed levels for a protracted period: at low cyclin levels, early events should occur rapidly, while late events should be slow, defective, or highly variable (depending on threshold mechanism. We titrated the budding yeast mitotic cyclin Clb2 within its endogenous expression range to a stable, fixed level and measured time to occurrence of three mitotic events: growth depolarization, spindle formation, and spindle elongation, as a function of fixed Clb2 level. These events require increasingly more Clb2 according to their normal order of occurrence. Events occur efficiently and with low variability at fixed Clb2 levels similar to those observed when the events normally occur. A second prediction of the model is that increasing the rate of cyclin accumulation should globally advance timing of all events. Moderate (<2-fold overexpression of Clb2 accelerates all events of mitosis, resulting in consistently rapid sequential cell cycles. However, this moderate overexpression also causes a significant frequency of premature mitoses leading to inviability, suggesting that Clb2 expression level is optimized to balance the fitness costs of variability and catastrophe. CONCLUSIONS/SIGNIFICANCE: We conclude that mitotic events are regulated by discrete cyclin-CDK thresholds. These thresholds are sequentially triggered as cyclin increases, yielding reliable order and timing. In many biological processes a graded input must be translated into discrete outputs. In such systems, expression of

  18. The effects of fluoride on testicular cell cycle and cell apoptosis of male rats

    Institute of Scientific and Technical Information of China (English)

    张筱文

    2014-01-01

    Objective To observe the effects of fluoride on testicular cell cycle and cell apoptosis of male rats.Methods Thirty-two healthy male Wistar rats,weighting 150-180 g,were randomly divided into 4 groups by body weight using random number table,normal sodium(control),the low-dose,medium-dose and high-dose groups(100,200,300 mg·kg-1·d-1Na F,respectively)by intragastric administration for 90 days,and bodyweight

  19. Nivalenol and deoxynivalenol affect rat intestinal epithelial cells: a concentration related study.

    Science.gov (United States)

    Bianco, Giuseppe; Fontanella, Bianca; Severino, Lorella; Quaroni, Andrea; Autore, Giuseppina; Marzocco, Stefania

    2012-01-01

    The integrity of the gastrointestinal tract represents a crucial first level defence against ingested toxins. Among them, Nivalenol is a trichotecenes mycotoxin frequently found on cereals and processed grains; when it contaminates human food and animal feed it is often associated with another widespread contaminant, Deoxynivalenol. Following their ingestion, intestinal epithelial cells are exposed to concentrations of these trichothecenes high enough to cause mycotoxicosis. In this study we have investigated the effects of Nivalenol and Deoxynivalenol on intestinal cells in an in vitro model system utilizing the non-tumorigenic rat intestinal epithelial cell line IEC-6. Both Nivalenol and Deoxynivalenol (5-80 µM) significantly affected IEC-6 viability through a pro-apoptotic process which mainly involved the following steps: (i) Bax induction; (ii) Bcl-2 inhibition, and (iii) caspase-3 activation. Moreover, treatment with Nivalenol produced a significant cell cycle arrest of IEC-6 cells, primarily at the G(0)/G(1) interphase and in the S phase, with a concomitant reduction in the fraction of cells in G(2). Interestingly, when administered at lower concentrations (0.1-2.5 µM), both Nivalenol and Deoxynivalenol affected epithelial cell migration (restitution), representing the initial step in gastrointestinal wound healing in the gut. This reduced motility was associated with significant remodelling of the actin cytoskeleton, and changes in expression of connexin-43 and focal adhesion kinase. The concentration range of Nivalenol or Deoxynivalenol we have tested is comparable with the mean estimated daily intake of consumers eating contaminated food. Thus, our results further highlight the risks associated with intake of even low levels of these toxins.

  20. Nivalenol and deoxynivalenol affect rat intestinal epithelial cells: a concentration related study.

    Science.gov (United States)

    Bianco, Giuseppe; Fontanella, Bianca; Severino, Lorella; Quaroni, Andrea; Autore, Giuseppina; Marzocco, Stefania

    2012-01-01

    The integrity of the gastrointestinal tract represents a crucial first level defence against ingested toxins. Among them, Nivalenol is a trichotecenes mycotoxin frequently found on cereals and processed grains; when it contaminates human food and animal feed it is often associated with another widespread contaminant, Deoxynivalenol. Following their ingestion, intestinal epithelial cells are exposed to concentrations of these trichothecenes high enough to cause mycotoxicosis. In this study we have investigated the effects of Nivalenol and Deoxynivalenol on intestinal cells in an in vitro model system utilizing the non-tumorigenic rat intestinal epithelial cell line IEC-6. Both Nivalenol and Deoxynivalenol (5-80 µM) significantly affected IEC-6 viability through a pro-apoptotic process which mainly involved the following steps: (i) Bax induction; (ii) Bcl-2 inhibition, and (iii) caspase-3 activation. Moreover, treatment with Nivalenol produced a significant cell cycle arrest of IEC-6 cells, primarily at the G(0)/G(1) interphase and in the S phase, with a concomitant reduction in the fraction of cells in G(2). Interestingly, when administered at lower concentrations (0.1-2.5 µM), both Nivalenol and Deoxynivalenol affected epithelial cell migration (restitution), representing the initial step in gastrointestinal wound healing in the gut. This reduced motility was associated with significant remodelling of the actin cytoskeleton, and changes in expression of connexin-43 and focal adhesion kinase. The concentration range of Nivalenol or Deoxynivalenol we have tested is comparable with the mean estimated daily intake of consumers eating contaminated food. Thus, our results further highlight the risks associated with intake of even low levels of these toxins. PMID:23251682

  1. Tumorigenicity of hypoxic respiring cancer cells revealed by a hypoxia–cell cycle dual reporter

    Science.gov (United States)

    Le, Anne; Stine, Zachary E.; Nguyen, Christopher; Afzal, Junaid; Sun, Peng; Hamaker, Max; Siegel, Nicholas M.; Gouw, Arvin M.; Kang, Byung-hak; Yu, Shu-Han; Cochran, Rory L.; Sailor, Kurt A.; Song, Hongjun; Dang, Chi V.

    2014-01-01

    Although aerobic glycolysis provides an advantage in the hypoxic tumor microenvironment, some cancer cells can also respire via oxidative phosphorylation. These respiring (“non-Warburg”) cells were previously thought not to play a key role in tumorigenesis and thus fell from favor in the literature. We sought to determine whether subpopulations of hypoxic cancer cells have different metabolic phenotypes and gene-expression profiles that could influence tumorigenicity and therapeutic response, and we therefore developed a dual fluorescent protein reporter, HypoxCR, that detects hypoxic [hypoxia-inducible factor (HIF) active] and/or cycling cells. Using HEK293T cells as a model, we identified four distinct hypoxic cell populations by flow cytometry. The non-HIF/noncycling cell population expressed a unique set of genes involved in mitochondrial function. Relative to the other subpopulations, these hypoxic “non-Warburg” cells had highest oxygen consumption rates and mitochondrial capacity consistent with increased mitochondrial respiration. We found that these respiring cells were unexpectedly tumorigenic, suggesting that continued respiration under limiting oxygen conditions may be required for tumorigenicity. PMID:25114222

  2. Effects of Genistein on Cell Cycle and Apoptosis of Two Murine Melanoma Cell Lines

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The effects of genistein on several tumor cell lines were investigated to study the effects of genistein on cell growth, cell cycle, and apoptosis of two murine melanoma cell lines, B16 and K1735M2. These two closely related murine melanoma cell lines, however, have different responses to the genistein treatment. Genistein inhibits the growth of both the B16 and K1735M2 cell lines and arrests the growth at the G2/M phase. After treatment with 60 μmol/L genistein for 72 h, apoptosis and caspase activities were detected in B16 cells, while such effects were not found in K1735M2. Further tests showed that after genistein treatment the protein content and mRNA levels of p53 increased in B16, but remained the same in K1735M2. The protein content and mRNA levels of p21WAF1/CIP1 increased in both cell lines after treatment.The results show that genistein might induce apoptosis in B16 cells by damaging the DNA, inhibiting topoisomerase Ⅱ, increasing p53 expression, releasing cytochrome c from the mitochondria, and activating the caspases which will lead to apoptosis.

  3. Re-thinking cell cycle regulators : the cross-talk with metabolism.

    Directory of Open Access Journals (Sweden)

    Lluis eFajas

    2013-01-01

    Full Text Available Analyses of genetically engineered mice deficient for cell cycle regulators, including E2F1, cdk4, or, pRB showed that the major phenotypes are metabolic perturbations. These key cell cycle regulators contribute to lipid synthesis, glucose production, insulin secretion, and glycolytic metabolism and it has been shown how deregulation of those pathways can lead to metabolic perturbations and related metabolic diseases, such as obesity and type II diabetes. The cyclin-cdk-Rb-E2F1 pathway regulates adipogenesis in addition to its well-described roles in cell cycle regulation and cancer. It was also proved that E2F1 directly participates in the regulation of pancreatic growth and function. Similarly, cyclin D3, cdk4, and cdk9 are also adipogenic factors with strong effects on whole organism metabolism. These examples illustrate the growing notion that cell cycle regulatory proteins can also modulate metabolic processes. Cell cycle regulators are activated by insulin and glucose, even in non-proliferating cells. Most importantly cell cycle regulators trigger the adaptive metabolic switch that normal and cancer cells require in order to proliferate. These changes include increased lipid synthesis, decreased oxidative, and increased glycolytic metabolism. In summary, cell cycle regulators are essential in the control of anabolic, biosynthetic processes, and block at the same time oxidative and catabolic pathways, which are the metabolic hallmarks of cancer.

  4. Cell Cycle Phase Abnormalities Do Not Account for Disordered Proliferation in Barrett's Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Pierre Lao-Sirieix

    2004-11-01

    Full Text Available Barrett's esophagus (BE epithelium is the precursor lesion for esophageal adenocarcinoma. Cell cycle proteins have been advocated as biomarkers to predict the malignant potential in BE. However, whether disruption of the cell cycle plays a causal role in Barrett's carcinogenesis is not clear. Specimens from the Barrett's dysplasia—carcinoma sequence were immunostained for cell cycle phase markers (cyclin D1 for G1; cyclin A for S, G2, and M; cytoplasmic cyclin B1 for G2; and phosphorylated histone 3 for M phase and expressed as a proportion of proliferating cells. Flow cytometric analysis of the cell cycle phase of prospective biopsies was also performed. The proliferation status of nondysplastic BE was similar to gastric antrum and D2, but the proliferative compartment extended to the luminal surface. In dysplastic samples, the number of proliferating cells correlated with the degree of dysplasia (P < .001. The overall levels of cyclins A and B1 correlated with the degree of dysplasia (P < .001. However, the cell cycle phase distribution measured with both immunostaining and flow cytometry was conserved during all stages of BE, dysplasia, and cancer. Hence, the increased proliferation seen in Barrett's carcinogenesis is due to abnormal cell cycle entry or exit, rather than a primary abnormality within the cell cycle.

  5. Intermittent Stem Cell Cycling Balances Self-Renewal and Senescence of the C. elegans Germ Line.

    Directory of Open Access Journals (Sweden)

    Amanda Cinquin

    2016-04-01

    Full Text Available Self-renewing organs often experience a decline in function in the course of aging. It is unclear whether chronological age or external factors control this decline, or whether it is driven by stem cell self-renewal-for example, because cycling cells exhaust their replicative capacity and become senescent. Here we assay the relationship between stem cell cycling and senescence in the Caenorhabditis elegans reproductive system, defining this senescence as the progressive decline in "reproductive capacity," i.e. in the number of progeny that can be produced until cessation of reproduction. We show that stem cell cycling diminishes remaining reproductive capacity, at least in part through the DNA damage response. Paradoxically, gonads kept under conditions that preclude reproduction keep cycling and producing cells that undergo apoptosis or are laid as unfertilized gametes, thus squandering reproductive capacity. We show that continued activity is in fact beneficial inasmuch as gonads that are active when reproduction is initiated have more sustained early progeny production. Intriguingly, continued cycling is intermittent-gonads switch between active and dormant states-and in all likelihood stochastic. Other organs face tradeoffs whereby stem cell cycling has the beneficial effect of providing freshly-differentiated cells and the detrimental effect of increasing the likelihood of cancer or senescence; stochastic stem cell cycling may allow for a subset of cells to preserve proliferative potential in old age, which may implement a strategy to deal with uncertainty as to the total amount of proliferation to be undergone over an organism's lifespan.

  6. Nonlinear optical imaging and Raman microspectrometry of the cell nucleus throughout the cell cycle.

    Science.gov (United States)

    Pliss, Artem; Kuzmin, Andrey N; Kachynski, Aliaksandr V; Prasad, Paras N

    2010-11-17

    Fundamental understanding of cellular processes at molecular level is of considerable importance in cell biology as well as in biomedical disciplines for early diagnosis of infection and cancer diseases, and for developing new molecular medicine-based therapies. Modern biophotonics offers exclusive capabilities to obtain information on molecular composition, organization, and dynamics in a cell by utilizing a combination of optical spectroscopy and optical imaging. We introduce here a combination of Raman microspectrometry, together with coherent anti-Stokes Raman scattering (CARS) and two-photon excited fluorescence (TPEF) nonlinear optical microscopy, to study macromolecular organization of the nucleus throughout the cell cycle. Site-specific concentrations of proteins, DNA, RNA, and lipids were determined in nucleoli, nucleoplasmic transcription sites, nuclear speckles, constitutive heterochromatin domains, mitotic chromosomes, and extrachromosomal regions of mitotic cells by quantitative confocal Raman microspectrometry. A surprising finding, obtained in our study, is that the local concentration of proteins does not increase during DNA compaction. We also demonstrate that postmitotic DNA decondensation is a gradual process, continuing for several hours. The quantitative Raman spectroscopic analysis was corroborated with CARS/TPEF multimodal imaging to visualize the distribution of protein, DNA, RNA, and lipid macromolecules throughout the cell cycle.

  7. Role of Kupffer Cells in Thioacetamide-Induced Cell Cycle Dysfunction

    Directory of Open Access Journals (Sweden)

    Mirandeli Bautista

    2011-09-01

    Full Text Available It is well known that gadolinium chloride (GD attenuates drug-induced hepatotoxicity by selectively inactivating Kupffer cells. In the present study the effect of GD in reference to cell cycle and postnecrotic liver regeneration induced by thioacetamide (TA in rats was studied. Two months male rats, intraveously pretreated with a single dose of GD (0.1 mmol/Kg, were intraperitoneally injected with TA (6.6 mmol/Kg. Samples of blood and liver were obtained from rats at 0, 12, 24, 48, 72 and 96 h following TA intoxication. Parameters related to liver damage were determined in blood. In order to evaluate the mechanisms involved in the post-necrotic regenerative state, the levels of cyclin D and cyclin E as well as protein p27 and Proliferating Cell Nuclear Antigen (PCNA were determined in liver extracts because of their roles in the control of cell cycle check-points. The results showed that GD significantly reduced the extent of necrosis. Noticeable changes were detected in the levels of cyclin D1, cyclin E, p27 and PCNA when compared to those induced by thioacetamide. Thus GD pre-treatment reduced TA-induced liver injury and accelerated the postnecrotic liver regeneration. These results demonstrate that Kupffer cells are involved in TA-induced liver and also in the postnecrotic proliferative liver states.

  8. Effects of 60Co γ rays on the cell cycle progress of MCF-7 cells

    International Nuclear Information System (INIS)

    To investigate the effects of ionizing radiation on cell cycle progress of tumor cell lines, the human breast cancer MCF-7 cell line cultured in vitro was exposed to 60Co γ rays and the alterations in cell cycle progress after irradiation were measured by flow cytometry. The results indicated that the MCF-7 cells showed a transient S arrest continuing for about 6 h and an obvious G2 arrest continuing for about 63 h after irradiation with 5.0 Gy γ rays. S and G2 arrest culminated at 9 h and 18 h respectively after irradiation and the peak values of S and G2 arrest reached respectively 1.6 times and 6.2 times as many as normal value. The dose-effect curve examined 9 h after irradiation was quite different from that examined 18 h after irradiation. Both of the S arrest at 9 h after irradiation and the G2 arrest at 18 h after irradiation presented significant relationship with irradiation dose

  9. Tumor-suppressor genes, cell cycle regulatory checkpoints, and the skin

    Directory of Open Access Journals (Sweden)

    Ana Maria Abreu Velez

    2015-01-01

    Full Text Available The cell cycle (or cell-division cycle is a series of events that take place in a cell, leading to its division and duplication. Cell division requires cell cycle checkpoints (CPs that are used by the cell to both monitor and regulate the progress of the cell cycle. Tumor-suppressor genes (TSGs or antioncogenes are genes that protect the cell from a single event or multiple events leading to cancer. When these genes mutate, the cell can progress to a cancerous state. We aimed to perform a narrative review, based on evaluation of the manuscripts published in MEDLINE-indexed journals using the Medical Subject Headings (MeSH terms "tumor suppressor′s genes," "skin," and "cell cycle regulatory checkpoints." We aimed to review the current concepts regarding TSGs, CPs, and their association with selected cutaneous diseases. It is important to take into account that in some cell cycle disorders, multiple genetic abnormalities may occur simultaneously. These abnormalities may include intrachromosomal insertions, unbalanced division products, recombinations, reciprocal deletions, and/or duplication of the inserted segments or genes; thus, these presentations usually involve several genes. Due to their complexity, these disorders require specialized expertise for proper diagnosis, counseling, personal and family support, and genetic studies. Alterations in the TSGs or CP regulators may occur in many benign skin proliferative disorders, neoplastic processes, and genodermatoses.

  10. Cyclin A2:At the crossroads of cell cycle and cell invasion

    Institute of Scientific and Technical Information of China (English)

    Abdelhalim; Loukil; Caroline; T; Cheung; Nawal; Bendris; Bénédicte; Lemmers; Marion; Peter; Jean; Marie; Blanchard

    2015-01-01

    Cyclin A2 is an essential regulator of the cell division cycle through the activation of kinases that participate to the regulation of S phase as well as the mitotic entry. However,whereas its degradation by the proteasome in mid mitosis was thought to be essential for mitosis to proceed,recent observations show that a small fraction of cyclin A2 persists beyond metaphase and is degraded by autophagy. Its implication in the control of cytoskeletal dynamics and cell movement has unveiled its role in the modulation of Rho A activity. Since this GTPase is involved in both cell rounding early in mitosis and later,in the formation of the cleavage furrow,this suggests that cyclin A2 is a novel actor in cytokinesis. Taken together,these data point to this cyclin as a potential mediator of cell-niche interactions whose dysregulation could be taken as a hallmark of metastasis.

  11. Alterations in the cell cycle in the cerebellum of hyperbilirubinemic Gunn rat: a possible link with apoptosis?

    Directory of Open Access Journals (Sweden)

    María Celeste Robert

    Full Text Available Severe hyperbilirubinemia causes neurological damage both in humans and rodents. The hyperbilirubinemic Gunn rat shows a marked cerebellar hypoplasia. More recently bilirubin ability to arrest the cell cycle progression in vascular smooth muscle, tumour cells, and, more importantly, cultured neurons has been demonstrated. However, the involvement of cell cycle perturbation in the development of cerebellar hypoplasia was never investigated before. We explored the effect of sustained spontaneous hyperbilirubinemia on cell cycle progression and apoptosis in whole cerebella dissected from 9 day old Gunn rat by Real Time PCR, Western blot and FACS analysis. The cerebellum of the hyperbilirubinemic Gunn rats exhibits an increased cell cycle arrest in the late G0/G1 phase (p < 0.001, characterized by a decrease in the protein expression of cyclin D1 (15%, p < 0.05, cyclin A/A1 (20 and 30%, p < 0.05 and 0.01, respectively and cyclin dependent kinases2 (25%, p < 0.001. This was associated with a marked increase in the 18 kDa fragment of cyclin E (67%, p < 0.001 which amplifies the apoptotic pathway. In line with this was the increase of the cleaved form of Poly (ADP-ribose polymerase (54%, p < 0.01 and active Caspase3 (two fold, p < 0.01. These data indicate that the characteristic cerebellar alteration in this developing brain structure of the hyperbilirubinemic Gunn rat may be partly due to cell cycle perturbation and apoptosis related to the high bilirubin concentration in cerebellar tissue mainly affecting granular cells. These two phenomena might be intimately connected.

  12. Differential Roles of Two Homologous Cyclin-Dependent Kinase Inhibitor Genes in Regulating Cell Cycle and Innate Immunity in Arabidopsis.

    Science.gov (United States)

    Hamdoun, Safae; Zhang, Chong; Gill, Manroop; Kumar, Narender; Churchman, Michelle; Larkin, John C; Kwon, Ashley; Lu, Hua

    2016-01-01

    Precise cell-cycle control is critical for plant development and responses to pathogen invasion. Two homologous cyclin-dependent kinase inhibitor genes, SIAMESE (SIM) and SIM-RELATED 1 (SMR1), were recently shown to regulate Arabidopsis (Arabidopsis thaliana) defense based on phenotypes conferred by a sim smr1 double mutant. However, whether these two genes play differential roles in cell-cycle and defense control is unknown. In this report, we show that while acting synergistically to promote endoreplication, SIM and SMR1 play different roles in affecting the ploidy of trichome and leaf cells, respectively. In addition, we found that the smr1-1 mutant, but not sim-1, was more susceptible to a virulent Pseudomonas syringae strain, and this susceptibility could be rescued by activating salicylic acid (SA)-mediated defense. Consistent with these results, smr1-1 partially suppressed the dwarfism, high SA levels, and cell death phenotypes in acd6-1, a mutant used to gauge the change of defense levels. Thus, SMR1 functions partly through SA in defense control. The differential roles of SIM and SMR1 are due to differences in temporal and spatial expression of these two genes in Arabidopsis tissues and in response to P. syringae infection. In addition, flow-cytometry analysis of plants with altered SA signaling revealed that SA is necessary, but not sufficient, to change cell-cycle progression. We further found that a mutant with three CYCD3 genes disrupted also compromised disease resistance to P. syringae. Together, this study reveals differential roles of two homologous cyclin-dependent kinase inhibitors in regulating cell-cycle progression and innate immunity in Arabidopsis and provides insights into the importance of cell-cycle control during host-pathogen interactions. PMID:26561564

  13. Altered insulin receptor signalling and β-cell cycle dynamics in type 2 diabetes mellitus.

    Directory of Open Access Journals (Sweden)

    Franco Folli

    Full Text Available Insulin resistance, reduced β-cell mass, and hyperglucagonemia are consistent features in type 2 diabetes mellitus (T2DM. We used pancreas and islets from humans with T2DM to examine the regulation of insulin signaling and cell-cycle control of islet cells. We observed reduced β-cell mass and increased α-cell mass in the Type 2 diabetic pancreas. Confocal microscopy, real-time PCR and western blotting analyses revealed increased expression of PCNA and down-regulation of p27-Kip1 and altered expression of insulin receptors, insulin receptor substrate-2 and phosphorylated BAD. To investigate the mechanisms underlying these findings, we examined a mouse model of insulin resistance in β-cells--which also exhibits reduced β-cell mass, the β-cell-specific insulin receptor knockout (βIRKO. Freshly isolated islets and β-cell lines derived from βIRKO mice exhibited poor cell-cycle progression, nuclear restriction of FoxO1 and reduced expression of cell-cycle proteins favoring growth arrest. Re-expression of insulin receptors in βIRKO β-cells reversed the defects and promoted cell cycle progression and proliferation implying a role for insulin-signaling in β-cell growth. These data provide evidence that human β- and α-cells can enter the cell-cycle, but proliferation of β-cells in T2DM fails due to G1-to-S phase arrest secondary to defective insulin signaling. Activation of insulin signaling, FoxO1 and proteins in β-cell-cycle progression are attractive therapeutic targets to enhance β-cell regeneration in the treatment of T2DM.

  14. New common variants affecting susceptibility to basal cell carcinoma

    OpenAIRE

    Stacey, Simon N.; Sulem, Patrick; Masson, Gisli; Gudjonsson, Sigurjon A.; Thorleifsson, Gudmar; Jakobsdottir, Margret; Sigurdsson, Asgeir; Daniel F Gudbjartsson; Sigurgeirsson, Bardur; Benediktsdottir, Kristrun R.; Thorisdottir, Kristin; Ragnarsson, Rafn; Scherer, Dominique; Hemminki, Kari; Rudnai, Peter

    2009-01-01

    In a follow-up to our previously reported genome-wide association study of cutaneous basal cell carcinoma (BCC)1, we describe here several new susceptibility variants. SNP rs11170164, encoding a G138E substitution in the keratin 5 (KRT5) gene, affects risk of BCC (OR = 1.35, P = 2.1 × 10−9). A variant at 9p21 near CDKN2A and CDKN2B also confers susceptibility to BCC (rs2151280[C]; OR = 1.19, P = 6.9 × 10−9), as does rs157935[T] at 7q32 near the imprinted gene KLF14 (OR = 1.23, P = 5.7 × 10−10...

  15. Ras signalling linked to the cell-cycle machinery by the retinoblastoma protein

    OpenAIRE

    Peeper, D.S.; Upton, T.M.; Ladha, M H; Neuman, E; Zalvide, J; Bernards, R.A.; DeCaprio, J A; Ewen, M E

    1997-01-01

    The Ras proto-oncogene is a central component of mitogenic signal-transduction pathways, and is essential for cells both to leave a quiescent state (GO) and to pass through the GI/S transition of the cell cycle. The mechanism by which Ras signalling regulates cell-cycle progression is unclear, however. Here we report that the retinoblastoma tumour-suppressor protein (Rb), a regulator of GI exit, functionally links Ras to passage through the Gl phase. Inactivation of Ras in cycling cells cause...

  16. Contrasting quiescent G0 phase with mitotic cell cycling in the mouse immune system.

    Directory of Open Access Journals (Sweden)

    Michio Tomura

    Full Text Available A transgenic mouse line expressing Fucci (fluorescent ubiquitination-based cell-cycle indicator probes allows us to monitor the cell cycle in the hematopoietic system. Two populations with high and low intensities of Fucci signals for Cdt1(30/120 accumulation were identified by FACS analysis, and these correspond to quiescent G0 and cycling G1 cells, respectively. We observed the transition of immune cells between quiescent and proliferative phases in lymphoid organs during differentiation and immune responses.

  17. Timing the Drosophila Mid-Blastula Transition: A Cell Cycle-Centered View.

    Science.gov (United States)

    Yuan, Kai; Seller, Charles A; Shermoen, Antony W; O'Farrell, Patrick H

    2016-08-01

    At the mid-blastula transition (MBT), externally developing embryos refocus from increasing cell number to elaboration of the body plan. Studies in Drosophila reveal a sequence of changes in regulators of Cyclin:Cdk1 that increasingly restricts the activity of this cell cycle kinase to slow cell cycles during early embryogenesis. By reviewing these events, we provide an outline of the mechanisms slowing the cell cycle at and around the time of MBT. The perspectives developed should provide a guiding paradigm for the study of other MBT changes as the embryo transits from maternal control to a regulatory program centered on the expression of zygotic genes. PMID:27339317

  18. Regulation of the cell cycle via mitochondrial gene expression and energy metabolism in HeLa cells

    Institute of Scientific and Technical Information of China (English)

    Wei Xiong; Yang Jiao; Weiwei Huang; Mingxing Ma; Min Yu; Qinghua Cui; Deyong Tan

    2012-01-01

    Human cervical cancer HeLa cells have functional mitochondria.Recent studies have suggested that mitochondrial metabolism plays an essential role in tumor cell proliferation.Nevertheless,how cells coordinate mitochondrial dynamics and cell cycle progression remains to be clarified.To investigate the relationship between mitochondrial function and cell cycle regulation,the mitochondrial gene expression profile and cellular ATP levels were determined by cell cycle progress analysis in the present study.HeLa cells were synchronized in the G0/G1 phase by serum starvation,and re-entered cell cycle by restoring serum culture,time course experiment was performed to analyze the expression of mitochondrial transcription regulators and mitochondrial genes,mitochondrial membrane potential (MMP),cellular ATP levels,and cell cycle progression.The results showed that when arrested G0/G1 cells were stimulated in serum-containing medium,the amount of DNA and the expression levels of both mRNA and proteins in mitochondria started to increase at 2 h time point,whereas the MMP and ATP level elevated at 4 h.Furthermore,the cyclin D1 expression began to increase at 4 h after serum triggered cell cycle.ATP synthesis inhibitor-oligomycintreatment suppressed the cyclin D1 and cyclin B1 expression levels and blocked cell cycle progression.Taken together,our results suggested that increased mitochondrial gene expression levels,oxidative phosphorylation activation,and cellular ATP content increase are important events for triggering cell cycle.Finally,we demonstrated that mitochondrial gene expression levels and cellular ATP content are tightly regulated and might play a central role in regulating cell proliferation.

  19. Role of DNA methylation in cell cycle arrest induced by Cr (VI in two cell lines.

    Directory of Open Access Journals (Sweden)

    Jianlin Lou

    Full Text Available Hexavalent chromium [Cr(IV], a well-known industrial waste product and an environmental pollutant, is recognized as a human carcinogen. But its mechanisms of carcinogenicity remain unclear, and recent studies suggest that DNA methylation may play an important role in the carcinogenesis of Cr(IV. The aim of our study was to investigate the effects of Cr(IV on cell cycle progress, global DNA methylation, and DNA methylation of p16 gene. A human B lymphoblastoid cell line and a human lung cell line A549 were exposed to 5-15 µM potassium dichromate or 1.25-5 µg/cm² lead chromate for 2-24 hours. Cell cycle was arrested at G₁ phase by both compounds in 24 hours exposure group, but global hypomethylation occurred earlier than cell cycle arrest, and the hypomethylation status maintained for more than 20 hours. The mRNA expression of p16 was significantly up-regulated by Cr(IV, especially by potassium dichromate, and the mRNA expression of cyclin-dependent kinases (CDK4 and CDK6 was significantly down-regulated. But protein expression analysis showed very little change of p16 gene. Both qualitative and quantitative results showed that DNA methylation status of p16 remained unchanged. Collectively, our data suggested that global hypomethylation was possibly responsible for Cr(IV-induced G₁ phase arrest, but DNA methylation might not be related to up-regulation of p16 gene by Cr(IV.

  20. MeHg Developing Exposure Causes DNA Double-Strand Breaks and Elicits Cell Cycle Arrest in Spinal Cord Cells

    Directory of Open Access Journals (Sweden)

    Fabiana F. Ferreira

    2015-01-01

    Full Text Available The neurotoxicity caused by methylmercury (MeHg is well documented; however, the developmental neurotoxicity in spinal cord is still not fully understood. Here we investigated whether MeHg affects the spinal cord layers development. Chicken embryos at E3 were treated in ovo with 0.1 μg MeHg/50 μL saline solution and analyzed at E10. Thus, we performed immunostaining using anti-γ-H2A.X to recognize DNA double-strand breaks and antiphosphohistone H3, anti-p21, and anti-cyclin E to identify cells in proliferation and cell cycle proteins. Also, to identify neuronal cells, we used anti-NeuN and anti-βIII-tubulin antibodies. After the MeHg treatment, we observed the increase on γ-H2A.X in response to DNA damage. MeHg caused a decrease in the proliferating cells and in the thickness of spinal cord layers. Moreover, we verified that MeHg induced an increase in the number of p21-positive cells but did not change the cyclin E-positive cells. A significantly high number of TUNEL-positive cells indicating DNA fragmentation were observed in MeHg-treated embryos. Regarding the neuronal differentiation, MeHg induced a decrease in NeuN expression and did not change the expression of βIII-tubulin. These results showed that in ovo MeHg exposure alters spinal cord development by disturbing the cell proliferation and death, also interfering in early neuronal differentiation.

  1. MeHg Developing Exposure Causes DNA Double-Strand Breaks and Elicits Cell Cycle Arrest in Spinal Cord Cells

    Science.gov (United States)

    Ferreira, Fabiana F.; Ammar, Dib; Bourckhardt, Gilian F.; Kobus-Bianchini, Karoline; Müller, Yara M. R.; Nazari, Evelise M.

    2015-01-01

    The neurotoxicity caused by methylmercury (MeHg) is well documented; however, the developmental neurotoxicity in spinal cord is still not fully understood. Here we investigated whether MeHg affects the spinal cord layers development. Chicken embryos at E3 were treated in ovo with 0.1 μg MeHg/50 μL saline solution and analyzed at E10. Thus, we performed immunostaining using anti-γ-H2A.X to recognize DNA double-strand breaks and antiphosphohistone H3, anti-p21, and anti-cyclin E to identify cells in proliferation and cell cycle proteins. Also, to identify neuronal cells, we used anti-NeuN and anti-βIII-tubulin antibodies. After the MeHg treatment, we observed the increase on γ-H2A.X in response to DNA damage. MeHg caused a decrease in the proliferating cells and in the thickness of spinal cord layers. Moreover, we verified that MeHg induced an increase in the number of p21-positive cells but did not change the cyclin E-positive cells. A significantly high number of TUNEL-positive cells indicating DNA fragmentation were observed in MeHg-treated embryos. Regarding the neuronal differentiation, MeHg induced a decrease in NeuN expression and did not change the expression of βIII-tubulin. These results showed that in ovo MeHg exposure alters spinal cord development by disturbing the cell proliferation and death, also interfering in early neuronal differentiation. PMID:26793240

  2. 2-Methoxyestradiol induces cell cycle arrest and apoptosis of nasopharyngeal carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Ning-ning ZHOU; Xiao-feng ZHU; Jun-ming ZHOU; Man-zhi LI; Xiao-shi ZHANG; Peng HUANG; Wen-qi JIANG

    2004-01-01

    AIM: To investigate 2-methoxyestradiol induced apoptosis and its mechanism of action in CNE2 cell lines.METHODS: CNE2 cells were cultured in RPMI-1640 medium and treated with 2-methoxyestradiol in different concentrations. MTT assay was used to detect growth inhibition. Flow cytometry and DNA ladders were used to detect apoptosis. Western blotting was used to observe the expression of p53, p21WAF1, Bax, and Bcl-2 protein.RESULTS: 2-methoxyestradiol inhibited proliferation of nasopharyngeal carcinoma CNE2 cells with IC50 value of2.82 μrnol/L. The results of flow cytometry showed an accumulation of CNE2 cells in G2/M phase in response to2-methoxyestradiol. Treatment of CNE2 cells with 2-methoxyestradiol resulted in DNA fragmentation. The expression levels of protein p53 and Bcl-2 decreased following 2-methoxyestradiol treatment in CNE2 cells, whereas Bax and p21WAF1 protein expression were unaffected after treatment with 2-methoxyestradiol. CONCLUSION:These results suggest that 2-methoxyestradiol induced cell cycle arrest at G2/M phase and apoptosis of CNE2 cells which was associated to Bcl-2 down-regulation.

  3. Methane and nitrous oxide emissions affect the life-cycle analysis of algal biofuels

    International Nuclear Information System (INIS)

    Researchers around the world are developing sustainable plant-based liquid transportation fuels (biofuels) to reduce petroleum consumption and greenhouse gas emissions. Algae are attractive because they promise large yields per acre compared to grasses, grains and trees, and because they produce oils that might be converted to diesel and gasoline equivalents. It takes considerable energy to produce algal biofuels with current technology; thus, the potential benefits of algal biofuels compared to petroleum fuels must be quantified. To this end, we identified key parameters for algal biofuel production using GREET, a tool for the life-cycle analysis of energy use and emissions in transportation systems. The baseline scenario produced 55 400 g CO2 equivalent per million BTU of biodiesel compared to 101 000 g for low-sulfur petroleum diesel. The analysis considered the potential for greenhouse gas emissions from anaerobic digestion processes commonly used in algal biofuel models. The work also studied alternative scenarios, e.g., catalytic hydrothermal gasification, that may reduce these emissions. The analysis of the nitrogen recovery step from lipid-extracted algae (residues) highlighted the importance of considering the fate of the unrecovered nitrogen fraction, especially that which produces N2O, a potent greenhouse gas with global warming potential 298 times that of CO2. (letter)

  4. Caffeine Affects Time to Exhaustion and Substrate Oxidation during Cycling at Maximal Lactate Steady State

    Directory of Open Access Journals (Sweden)

    Rogério Santos de Oliveira Cruz

    2015-06-01

    Full Text Available This study analyzed the effects of caffeine intake on whole-body substrate metabolism and exercise tolerance during cycling by using a more individualized intensity for merging the subjects into homogeneous metabolic responses (the workload associated with the maximal lactate steady state—MLSS. MLSS was firstly determined in eight active males (25 ± 4 years, 176 ± 7 cm, 77 ± 11 kg using from two to four constant-load tests of 30 min. On two following occasions, participants performed a test until exhaustion at the MLSS workload 1 h after taking either 6 mg/kg of body mass of caffeine or placebo (dextrose, in a randomized, double-blinded manner. Respiratory exchange ratio was calculated from gas exchange measurements. There was an improvement of 22.7% in time to exhaustion at MLSS workload following caffeine ingestion (95% confidence limits of ±10.3%, p = 0.002, which was accompanied by decrease in respiratory exchange ratio (p = 0.001. These results reinforce findings indicating that sparing of the endogenous carbohydrate stores could be one of the several physiological effects of caffeine during submaximal performance around 1 h.

  5. Morphogenesis checkpoint kinase Swe1 is the executor of lipolysis-dependent cell-cycle progression.

    Science.gov (United States)

    Chauhan, Neha; Visram, Myriam; Cristobal-Sarramian, Alvaro; Sarkleti, Florian; Kohlwein, Sepp D

    2015-03-10

    Cell growth and division requires the precise duplication of cellular DNA content but also of membranes and organelles. Knowledge about the cell-cycle-dependent regulation of membrane and storage lipid homeostasis is only rudimentary. Previous work from our laboratory has shown that the breakdown of triacylglycerols (TGs) is regulated in a cell-cycle-dependent manner, by activation of the Tgl4 lipase by the major cyclin-dependent kinase Cdc28. The lipases Tgl3 and Tgl4 are required for efficient cell-cycle progression during the G1/S (Gap1/replication phase) transition, at the onset of bud formation, and their absence leads to a cell-cycle delay. We now show that defective lipolysis activates the Swe1 morphogenesis checkpoint kinase that halts cell-cycle progression by phosphorylation of Cdc28 at tyrosine residue 19. Saturated long-chain fatty acids and phytosphingosine supplementation rescue the cell-cycle delay in the Tgl3/Tgl4 lipase-deficient strain, suggesting that Swe1 activity responds to imbalanced sphingolipid metabolism, in the absence of TG degradation. We propose a model by which TG-derived sphingolipids are required to activate the protein phosphatase 2A (PP2A(Cdc55)) to attenuate Swe1 phosphorylation and its inhibitory effect on Cdc28 at the G1/S transition of the cell cycle. PMID:25713391

  6. The correlation of factors affecting the endometrial thickness with pregnancy outcome in the IUI cycles

    Directory of Open Access Journals (Sweden)

    Hadiss Kamyab

    2011-01-01

    Full Text Available Background: Many studies have been carried out to understand the effect of endometrial thickness on the reproductive outcome while the factors affecting the pattern itself are still unknown. Objective: To determine the factors such as age and the number of follicles that could affect the endometrial thickness Materials and Methods: This study was conducted as a retrospective study on 680 infertile women considered for intrauterine insemination (IUI. IUI protocol was sequential regimen of clomid and gonadotropin. Endometrial thickness measurement was done on the day of HCG administration. Correlation between endometrial thickness and factors such as age, total follicle numbers, dominant follicle numbers, gonadotropine ampule numbers and pregnancy rate were assessed. Results: The mean endometrial thickness was 7.2±1.8 mm. The endometrium was thinner in older patients compared with younger ones. But in all age ranges pregnancy rate was higher in endometrial thickness 6< ET≤10 mm (p<0.05.Conclusion: We did not find any correlation between age, number of follicles and gonadotropine ampoules with endometrial thickness but in all age ranges, there is a possibility of higher chance of pregnancy in endometrial thickness 6 < ET≤10 mm.

  7. Dynamic expression of the translational machinery during Bacillus subtilis life cycle at a single cell level.

    Directory of Open Access Journals (Sweden)

    Alex Rosenberg

    Full Text Available The ability of bacteria to responsively regulate the expression of translation components is crucial for rapid adaptation to fluctuating environments. Utilizing Bacillus subtilis (B. subtilis as a model organism, we followed the dynamics of the translational machinery at a single cell resolution during growth and differentiation. By comprehensive monitoring the activity of the major rrn promoters and ribosomal protein production, we revealed diverse dynamics between cells grown in rich and poor medium, with the most prominent dissimilarities exhibited during deep stationary phase. Further, the variability pattern of translational activity varied among the cells, being affected by nutrient availability. We have monitored for the first time translational dynamics during the developmental process of sporulation within the two distinct cellular compartments of forespore and mother-cell. Our study uncovers a transient forespore specific increase in expression of translational components. Finally, the contribution of each rrn promoter throughout the bacterium life cycle was found to be relatively constant, implying that differential expression is not the main purpose for the existence of multiple rrn genes. Instead, we propose that coordination of the rrn operons serves as a strategy to rapidly fine tune translational activities in a synchronized fashion to achieve an optimal translation level for a given condition.

  8. Transcriptome changes and cAMP oscillations in an archaeal cell cycle

    Directory of Open Access Journals (Sweden)

    Soppa Jörg

    2007-06-01

    Full Text Available Abstract Background The cell cycle of all organisms includes mass increase by a factor of two, replication of the genetic material, segregation of the genome to different parts of the cell, and cell division into two daughter cells. It is tightly regulated and typically includes cell cycle-specific oscillations of the levels of transcripts, proteins, protein modifications, and signaling molecules. Until now cell cycle-specific transcriptome changes have been described for four eukaryotic species ranging from yeast to human, but only for two prokaryotic species. Similarly, oscillations of small signaling molecules have been identified in very few eukaryotic species, but not in any prokaryote. Results A synchronization procedure for the archaeon Halobacterium salinarum was optimized, so that nearly 100% of all cells divide in a time interval that is 1/4th of the generation time of exponentially growing cells. The method was used to characterize cell cycle-dependent transcriptome changes using a genome-wide DNA microarray. The transcript levels of 87 genes were found to be cell cycle-regulated, corresponding to 3% of all genes. They could be clustered into seven groups with different transcript level profiles. Cluster-specific sequence motifs were detected around the start of the genes that are predicted to be involved in cell cycle-specific transcriptional regulation. Notably, many cell cycle genes that have oscillating transcript levels in eukaryotes are not regulated on the transcriptional level in H. salinarum. Synchronized cultures were also used to identify putative small signaling molecules. H. salinarum was found to contain a basal cAMP concentration of 200 μM, considerably higher than that of yeast. The cAMP concentration is shortly induced directly prior to and after cell division, and thus cAMP probably is an important signal for cell cycle progression. Conclusion The analysis of cell cycle-specific transcriptome changes of H. salinarum

  9. A Triple Staining Method for Accurate Cell Cycle Analysis Using Multiparameter Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Lin Qiu

    2013-12-01

    Full Text Available Cell cycle analysis is important for cancer research. We present herein a novel method for accurate cell cycle analysis. This method analyzes the cell cycle by multiparameter flow cytometry based on simultaneously labeling the cell nuclear DNA, RNA, and phosphorylated mitotic nuclei protein, using Hoechst 33342, pyronin Y, and MPM-2-Cy5, respectively, and our results demonstrated that this method could effectively divide the cell cycle into G0, G1, S, G2, and M phases. We further tested this method using the clinical anticancer agents crizotinib and taxol, and the results clearly illustrated that crizotinib and taxol arrested Jurkat cells in G0 and M phase, respectively. These results indicate that this method could be a very useful tool for cytokinetic and pharmacological research.

  10. Fibroblast growth factor 8 increases breast cancer cell growth by promoting cell cycle progression and by protecting against cell death

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Emeli M., E-mail: Emeli.Nilsson@med.lu.se [Department of Laboratory Medicine, Tumour Biology, Lund University, CRC, Building 91, Plan 10, Entrance 72, UMAS, 205 02 Malmoe (Sweden); Brokken, Leon J.S., E-mail: Leon.Brokken@med.lu.se [Department of Laboratory Medicine, Tumour Biology, Lund University, CRC, Building 91, Plan 10, Entrance 72, UMAS, 205 02 Malmoe (Sweden); Haerkoenen, Pirkko L., E-mail: Pirkko.Harkonen@med.lu.se [Department of Laboratory Medicine, Tumour Biology, Lund University, CRC, Building 91, Plan 10, Entrance 72, UMAS, 205 02 Malmoe (Sweden)

    2010-03-10

    Fibroblast growth factor 8 (FGF-8) is expressed in a large proportion of breast cancers, whereas its level in normal mammary gland epithelium is low. Previous studies have shown that FGF-8b stimulates breast cancer cell growth in vitro and in vivo. To explore the mechanisms by which FGF-8b promotes growth, we studied its effects on cell cycle regulatory proteins and signalling pathways in mouse S115 and human MCF-7 breast cancer cells. We also studied the effect of FGF-8b on cell survival. FGF-8b induced cell cycle progression and up-regulated particularly cyclin D1 mRNA and protein in S115 cells. Silencing cyclin D1 with siRNA inhibited most but not all FGF-8b-induced proliferation. Inhibition of the FGF-8b-activated ERK/MAPK pathway decreased FGF-8b-stimulated proliferation. Blocking the constitutively active PI3K/Akt and p38 MAPK pathways also lowered FGF-8b-induced cyclin D1 expression and proliferation. Corresponding results were obtained in MCF-7 cells. In S115 and MCF-7 mouse tumours, FGF-8b increased cyclin D1 and Ki67 levels. Moreover, FGF-8b opposed staurosporine-induced S115 cell death which effect was blocked by inhibiting the PI3K/Akt pathway but not the ERK/MAPK pathway. In conclusion, our results suggest that FGF-8b increases breast cancer cell growth both by stimulating cell cycle progression and by protecting against cell death.

  11. Cell Cycle-dependent Regulation of the Forkhead Transcription Factor FOXK2 by CDK·Cyclin Complexes*

    OpenAIRE

    Marais, Anett; Ji, Zongling; Child, Emma S.; Krause, Eberhard; Mann, David J.; Sharrocks, Andrew D.

    2010-01-01

    Several mammalian forkhead transcription factors have been shown to impact on cell cycle regulation and are themselves linked to cell cycle control systems. Here we have investigated the little studied mammalian forkhead transcription factor FOXK2 and demonstrate that it is subject to control by cell cycle-regulated protein kinases. FOXK2 exhibits a periodic rise in its phosphorylation levels during the cell cycle, with hyperphosphorylation occurring in mitotic cells. Hyperphosphorylation occ...

  12. New common variants affecting susceptibility to basal cell carcinoma.

    Science.gov (United States)

    Stacey, Simon N; Sulem, Patrick; Masson, Gisli; Gudjonsson, Sigurjon A; Thorleifsson, Gudmar; Jakobsdottir, Margret; Sigurdsson, Asgeir; Gudbjartsson, Daniel F; Sigurgeirsson, Bardur; Benediktsdottir, Kristrun R; Thorisdottir, Kristin; Ragnarsson, Rafn; Scherer, Dominique; Hemminki, Kari; Rudnai, Peter; Gurzau, Eugene; Koppova, Kvetoslava; Botella-Estrada, Rafael; Soriano, Virtudes; Juberias, Pablo; Saez, Berta; Gilaberte, Yolanda; Fuentelsaz, Victoria; Corredera, Cristina; Grasa, Matilde; Höiom, Veronica; Lindblom, Annika; Bonenkamp, Johannes J; van Rossum, Michelle M; Aben, Katja K H; de Vries, Esther; Santinami, Mario; Di Mauro, Maria G; Maurichi, Andrea; Wendt, Judith; Hochleitner, Pia; Pehamberger, Hubert; Gudmundsson, Julius; Magnusdottir, Droplaug N; Gretarsdottir, Solveig; Holm, Hilma; Steinthorsdottir, Valgerdur; Frigge, Michael L; Blondal, Thorarinn; Saemundsdottir, Jona; Bjarnason, Hjördis; Kristjansson, Kristleifur; Bjornsdottir, Gyda; Okamoto, Ichiro; Rivoltini, Licia; Rodolfo, Monica; Kiemeney, Lambertus A; Hansson, Johan; Nagore, Eduardo; Mayordomo, José I; Kumar, Rajiv; Karagas, Margaret R; Nelson, Heather H; Gulcher, Jeffrey R; Rafnar, Thorunn; Thorsteinsdottir, Unnur; Olafsson, Jon H; Kong, Augustine; Stefansson, Kari

    2009-08-01

    In a follow-up to our previously reported genome-wide association study of cutaneous basal cell carcinoma (BCC), we describe here several new susceptibility variants. SNP rs11170164, encoding a G138E substitution in the keratin 5 (KRT5) gene, affects risk of BCC (OR = 1.35, P = 2.1 x 10(-9)). A variant at 9p21 near CDKN2A and CDKN2B also confers susceptibility to BCC (rs2151280[C]; OR = 1.19, P = 6.9 x 10(-9)), as does rs157935[T] at 7q32 near the imprinted gene KLF14 (OR = 1.23, P = 5.7 x 10(-10)). The effect of rs157935[T] is dependent on the parental origin of the risk allele. None of these variants were found to be associated with melanoma or fair-pigmentation traits. A melanoma- and pigmentation-associated variant in the SLC45A2 gene, L374F, is associated with risk of both BCC and squamous cell carcinoma. Finally, we report conclusive evidence that rs401681[C] in the TERT-CLPTM1L locus confers susceptibility to BCC but protects against melanoma. PMID:19578363

  13. Complex Systems Analysis of Arrested Neural Cell Differentiation during Development and Analogous Cell Cycling Models in Carcinogenesis

    OpenAIRE

    Baianu, Professor I.C.; Prisecaru, M.S. V

    2004-01-01

    A new approach to the modular, complex systems analysis of nonlinear dynamics of arrested neural cell Differentiation--induced cell proliferation during organismic development and the analogous cell cycling network transformations involved in carcinogenesis is proposed. Neural tissue arrested differentiation that induces cell proliferation during perturbed development and Carcinogenesis are complex processes that involve dynamically inter-connected biomolecules in the intercellular, membrane...

  14. Modulation of pentose phosphate pathway during cell cycle progression in human colon adenocarcinoma cell line HT29

    NARCIS (Netherlands)

    P. Vizan; G. Alcarraz-Vizan; S. Diaz-Moralli; O.N. Solovjeva; W.M. Frederiks; M. Cascante

    2009-01-01

    Cell cycle regulation is dependent on multiple cellular and molecular events. Cell proliferation requires metabolic sources for the duplication of DNA and cell size. However, nucleotide reservoirs are not sufficient to support cell duplication and, therefore, bio-synthetic pathways should be upregul

  15. Performance of Lithium Ion Cell Anode Graphites Under Various Cycling Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ridgway, Paul; Zheng, Honghe; Liu, Gao; Song, Xiangun; Guerfi, Abdelbast; Charest, Patrick; Zaghib, Karim; Battaglia, Vincent

    2009-06-15

    Graphites MCMB-2810 and OMAC-15 (made by Osaka Gas Inc.), and SNG12 (Hydro Quebec, Inc.) were evaluated (in coin cells with lithium counter electrodes) as anode materials for lithium-ion cells intended for use in hybrid electric vehicles. Though the reversible capacity obtained for SNG was slightly higher than that of OMAC or MCMB, its 1st cycle efficiency was lower. Voltage vs capacity plots of cycling data show that the discharge and charge limits shift to higher capacity values due to continuation of anode side reactions. Varying the cycle charge and discharge limits was found to have no significant effect on fractional capacity shift per cycle.

  16. Boletus edulis biologically active biopolymers induce cell cycle arrest in human colon adenocarcinoma cells.

    Science.gov (United States)

    Lemieszek, Marta Kinga; Cardoso, Claudia; Ferreira Milheiro Nunes, Fernando Hermínio; Ramos Novo Amorim de Barros, Ana Isabel; Marques, Guilhermina; Pożarowski, Piotr; Rzeski, Wojciech

    2013-04-25

    The use of biologically active compounds isolated from edible mushrooms against cancer raises global interest. Anticancer properties are mainly attributed to biopolymers including mainly polysaccharides, polysaccharopeptides, polysaccharide proteins, glycoproteins and proteins. In spite of the fact that Boletus edulis is one of the widely occurring and most consumed edible mushrooms, antitumor biopolymers isolated from it have not been exactly defined and studied so far. The present study is an attempt to extend this knowledge on molecular mechanisms of their anticancer action. The mushroom biopolymers (polysaccharides and glycoproteins) were extracted with hot water and purified by anion-exchange chromatography. The antiproliferative activity in human colon adenocarcinoma cells (LS180) was screened by means of MTT and BrdU assays. At the same time fractions' cytotoxicity was examined on the human colon epithelial cells (CCD 841 CoTr) by means of the LDH assay. Flow cytometry and Western blotting were applied to cell cycle analysis and protein expression involved in anticancer activity of the selected biopolymer fraction. In vitro studies have shown that fractions isolated from Boletus edulis were not toxic against normal colon epithelial cells and in the same concentration range elicited a very prominent antiproliferative effect in colon cancer cells. The best results were obtained in the case of the fraction designated as BE3. The tested compound inhibited cancer cell proliferation which was accompanied by cell cycle arrest in the G0/G1-phase. Growth inhibition was associated with modulation of the p16/cyclin D1/CDK4-6/pRb pathway, an aberration of which is a critical step in the development of many human cancers including colon cancer. Our results indicate that a biopolymer BE3 from Boletus edulis possesses anticancer potential and may provide a new therapeutic/preventive option in colon cancer chemoprevention.

  17. Auxins differentially regulate root system architecture and cell cycle protein levels in maize seedlings.

    Science.gov (United States)

    Martínez-de la Cruz, Enrique; García-Ramírez, Elpidio; Vázquez-Ramos, Jorge M; Reyes de la Cruz, Homero; López-Bucio, José

    2015-03-15

    Maize (Zea mays) root system architecture has a complex organization, with adventitious and lateral roots determining its overall absorptive capacity. To generate basic information about the earlier stages of root development, we compared the post-embryonic growth of maize seedlings germinated in water-embedded cotton beds with that of plants obtained from embryonic axes cultivated in liquid medium. In addition, the effect of four different auxins, namely indole-3-acetic acid (IAA), 1-naphthaleneacetic acid (NAA), indole-3-butyric acid (IBA) and 2,4-dichlorophenoxyacetic acid (2,4-D) on root architecture and levels of the heat shock protein HSP101 and the cell cycle proteins CKS1, CYCA1 and CDKA1 were analyzed. Our data show that during the first days after germination, maize seedlings develop several root types with a simultaneous and/or continuous growth. The post-embryonic root development started with the formation of the primary root (PR) and seminal scutellar roots (SSR) and then continued with the formation of adventitious crown roots (CR), brace roots (BR) and lateral roots (LR). Auxins affected root architecture in a dose-response fashion; whereas NAA and IBA mostly stimulated crown root formation, 2,4-D showed a strong repressing effect on growth. The levels of HSP101, CKS1, CYCA1 and CDKA in root and leaf tissues were differentially affected by auxins and interestingly, HSP101 registered an auxin-inducible and root specific expression pattern. Taken together, our results show the timing of early branching patterns of maize and indicate that auxins regulate root development likely through modulation of the HSP101 and cell cycle proteins. PMID:25615607

  18. Oridonin induces apoptosis and cell cycle arrest of gallbladder cancer cells via the mitochondrial pathway

    International Nuclear Information System (INIS)

    Gallbladder cancer is the most frequent malignancy of the bile duct with high aggressive and extremely poor prognosis. The main objective of the paper was to investigate the inhibitory effects of oridonin, a diterpenoid isolated from Rabdosia rubescens, on gallbladder cancer both in vitro and in vivo and to explore the mechanisms underlying oridonin-induced apoptosis and cell cycle arrest. The anti-tumor activity of oridonin on SGC996 and NOZ cells was assessed by the MTT and colony forming assays. Cell cycle changes were detected by flow cytometric analysis. Apoptosis was detected by annexin V/PI double-staining and Hoechst 33342 staining assays. Loss of mitochondrial membrane potential was observed by Rhodamine 123 staining. The in vivo efficacy of oridonin was evaluated using a NOZ xenograft model in athymic nude mice. The expression of cell cycle- and apoptosis-related proteins in vitro and in vivo was analyzed by western blot analysis. Activation of caspases (caspase-3, -8 and -9) was measured by caspases activity assay. Oridonin induced potent growth inhibition, S-phase arrest, apoptosis, and colony-forming inhibition in SGC996 and NOZ cells in a dose-dependent manner. Intraperitoneal injection of oridonin (5, 10, or 15 mg/kg) for 3 weeks significantly inhibited the growth of NOZ xenografts in athymic nude mice. We demonstrated that oridonin regulated cell cycle-related proteins in response to S-phase arrest by western blot analysis. In contrast, we observed inhibition of NF-κB nuclear translocation and an increase Bax/Bcl-2 ratio accompanied by activated caspase-3, caspase-9 and PARP-1 cleavage after treatment with oridonin, which indicate that the mitochondrial pathway is involved in oridonin-mediated apoptosis. Oridonin possesses potent anti-gallbladder cancer activities that correlate with regulation of the mitochondrial pathway, which is critical for apoptosis and S-phase arrest. Therefore, oridonin has potential as a novel anti-tumor therapy for the

  19. Intermittent Stem Cell Cycling Balances Self-Renewal and Senescence of the C. elegans Germ Line

    OpenAIRE

    Cinquin, A.; Chiang, M.; Paz, A.; Hallman, S; Yuan, O; Vysniauskaite, I; Fowlkes, CC; Cinquin, O.

    2016-01-01

    Self-renewing organs often experience a decline in function in the course of aging. It is unclear whether chronological age or external factors control this decline, or whether it is driven by stem cell self-renewal-for example, because cycling cells exhaust their replicative capacity and become senescent. Here we assay the relationship between stem cell cycling and senescence in the Caenorhabditis elegans reproductive system, defining this senescence as the progressive decline in "reproducti...

  20. CD10 is a marker for cycling cells with propensity to apoptosis in childhood ALL

    OpenAIRE

    G. Cutrona; Tasso, P; Dono, M; Roncella, S; M. ULIVI; Carpaneto, E M; Fontana, V; Comis, M; F. Morabito; Spinelli, M.; Frascella, E.; Boffa, L C; G. Basso; Pistoia, V.; Ferrarini, M.

    2002-01-01

    CD10 constitutes a favourable prognostic marker for childhood acute lymphoblastic leukaemia. Since correlations between CD10, cell cycle and apoptotic abilities were demonstrated in various cell types, we investigated whether differences existed in the cycling/apoptotic abilities of CD10-positive and CD10-negative B acute lymphoblastic leukaemia cells. Twenty-eight cases of childhood acute lymphoblastic leukaemia (mean age of 6.8 years) were subdivided into two groups according to high (17 ca...

  1. Scaffolding during the cell cycle by A-kinase anchoring proteins

    OpenAIRE

    Han, B.; Poppinga, W J; Schmidt, M.

    2015-01-01

    Cell division relies on coordinated regulation of the cell cycle. A process including a well-defined series of strictly regulated molecular mechanisms involving cyclin-dependent kinases, retinoblastoma protein, and polo-like kinases. Dysfunctions in cell cycle regulation are associated with disease such as cancer, diabetes, and neurodegeneration. Compartmentalization of cellular signaling is a common strategy used to ensure the accuracy and efficiency of cellular responses. Compartmentalizati...

  2. Intestinal lamina propria dendritic cells maintain T cell homeostasis but do not affect commensalism

    OpenAIRE

    Welty, Nathan E.; Staley, Christopher; Ghilardi, Nico; Sadowsky, Michael J.; Igyártó, Botond Z.; Kaplan, Daniel H.

    2013-01-01

    Dendritic cells (DCs) in the intestinal lamina propria (LP) are composed of two CD103+ subsets that differ in CD11b expression. We report here that Langerin is expressed by human LP DCs and that transgenic human langerin drives expression in CD103+CD11b+ LP DCs in mice. This subset was ablated in huLangerin-DTA mice, resulting in reduced LP Th17 cells without affecting Th1 or T reg cells. Notably, cognate DC–T cell interactions were not required for Th17 development, as this response was inta...

  3. Trace metal partitioning over a tidal cycle in an estuary affected by acid mine drainage (Tinto estuary, SW Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Hierro, A. [Department of Physics, Universitat Autònoma de Barcelona, 08193 Bellaterra (Spain); Department of Applied Physics, Facultad de Ciencias Experimentales, University of Huelva, Campus de El Carmen, Campus de Excelencia Internacional del Mar CEIMAR, 21071 Huelva (Spain); Olías, M., E-mail: manuel.olias@dgyp.uhu.es [Department of Geodynamics and Paleontology, Facultad de Ciencias Experimentales, University of Huelva, Campus de El Carmen, Campus de Excelencia Internacional del Mar CEIMAR, 21071 Huelva (Spain); Cánovas, C.R. [Department of Geodynamics and Paleontology, Facultad de Ciencias Experimentales, University of Huelva, Campus de El Carmen, Campus de Excelencia Internacional del Mar CEIMAR, 21071 Huelva (Spain); Martín, J.E.; Bolivar, J.P. [Department of Applied Physics, Facultad de Ciencias Experimentales, University of Huelva, Campus de El Carmen, Campus de Excelencia Internacional del Mar CEIMAR, 21071 Huelva (Spain)

    2014-11-01

    The Tinto River estuary is highly polluted with the acid lixiviates from old sulphide mines. In this work the behaviour of dissolved and particulate trace metals under strong chemical gradients during a tidal cycle is studied. The pH values range from 4.4 with low tide to 6.9 with high tide. Precipitation of Fe and Al is intense during rising tides and As and Pb are almost exclusively found in the particulate matter (PM). Sorption processes are very important in controlling the mobility (and hence bioavailability) of some metals and particularly affect Cu below pH 6. Above pH ∼ 6 Cu is desorbed, probably by the formation of Cu(I)–chloride complexes. Although less pronounced than Cu, also Zn desorption above pH 6.5 seems to occur. Mn and Co are affected by sorption processes at pH higher than ca. 6. Cd behaves conservatively and Ni is slightly affected by sorption processes. - Highlights: • The Tinto estuary shows strong pH gradients and high trace elements concentrations. • PM has a hysteretic relationship with tides and high contents of Fe, Al, As and Pb. • Co and Mn are controlled by river and sea water mixing and sorption processes. • Sorption processes strongly affect Cu below pH 6, above this value Cu is desorpted. • Cadmium behaves conservatively along the pH range studied (4.4–6.9)

  4. Trace metal partitioning over a tidal cycle in an estuary affected by acid mine drainage (Tinto estuary, SW Spain)

    International Nuclear Information System (INIS)

    The Tinto River estuary is highly polluted with the acid lixiviates from old sulphide mines. In this work the behaviour of dissolved and particulate trace metals under strong chemical gradients during a tidal cycle is studied. The pH values range from 4.4 with low tide to 6.9 with high tide. Precipitation of Fe and Al is intense during rising tides and As and Pb are almost exclusively found in the particulate matter (PM). Sorption processes are very important in controlling the mobility (and hence bioavailability) of some metals and particularly affect Cu below pH 6. Above pH ∼ 6 Cu is desorbed, probably by the formation of Cu(I)–chloride complexes. Although less pronounced than Cu, also Zn desorption above pH 6.5 seems to occur. Mn and Co are affected by sorption processes at pH higher than ca. 6. Cd behaves conservatively and Ni is slightly affected by sorption processes. - Highlights: • The Tinto estuary shows strong pH gradients and high trace elements concentrations. • PM has a hysteretic relationship with tides and high contents of Fe, Al, As and Pb. • Co and Mn are controlled by river and sea water mixing and sorption processes. • Sorption processes strongly affect Cu below pH 6, above this value Cu is desorpted. • Cadmium behaves conservatively along the pH range studied (4.4–6.9)

  5. Oriented cell division affects the global stress and cell packing geometry of a monolayer under stretch.

    Science.gov (United States)

    Xu, Guang-Kui; Liu, Yang; Zheng, Zhaoliang

    2016-02-01

    Cell division plays a vital role in tissue morphogenesis and homeostasis, and the division plane is crucial for cell fate. For isolated cells, extensive studies show that the orientation of divisions is sensitive to cell shape and the direction of extrinsic mechanical forces. However, it is poorly understood that how the cell divides within a cell monolayer and how the local stress change, due to the division, affects the global stress of epithelial monolayers. Here, we use the vertex dynamics models to investigate the effects of division orientation on the configurations and mechanics of a cell monolayer under stretch. We examine three scenarios of the divisions: dividing along the stretch axis, dividing along the geometric long axis of cells, and dividing at a random angle. It is found that the division along the long cell axis can induce the minimal energy difference, and the global stress of the monolayer after stretch releases more rapidly in this case. Moreover, the long-axis division can result in more random cell orientations and more isotropic cell shapes within the monolayer, comparing with other two cases. This study helps understand the division orientation of cells within a monolayer under mechanical stimuli, and may shed light on linking individual cell's behaviors to the global mechanics and patterns of tissues.

  6. Technology for cell cycle research with unstressed steady-state cultures

    OpenAIRE

    Lebleu, Valerie S.; Thornton, Maureen; Gonda, Steven R.; Helmstetter, Charles E.

    2006-01-01

    A culture system for performing cell cycle analyses on cells in undisturbed steady-state populations was designed and tested. In this system, newborn cells are shed continuously from an immobilized, perfused culture rotating about the horizontal axis. As a result of this arrangement, the number of newborn cells released into the effluent medium each generation is identical to the number of cells residing in the immobilized population, indicating that one of the two new daughter cells is shed ...

  7. Effect of elevated temperatures on cell cycle kinetics of rat gliosarcoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Ross-Riveros, P.

    1978-07-01

    9L rat gliosarcoma cells were examined in vitro for survival response to hyperthermic temperatures ranging from 39.0/sup 0/ to 45.0/sup 0/C for graded exposure times. At 43.0/sup 0/C, the split exposure response was also studied. Changes in cell cycle kinetics resulting from hyperthermia were compared for isosurvival levels achieved by appropriate exposure time to either 42.5/sup 0/C or 43.0/sup 0/C. After heat treatment, cells were held at 37.0/sup 0/C for varying recovery periods. Cells were then either prepared for flow microfluorometry (FMF), or exposed to tritiated thymidine (/sup 3/HTdR) for autoradiography. The survival studies indicated that the rate of change in cell killing for each increasing degree centigrade was greater for temperatures below 43.0/sup 0/C than for temperatures above 43.0/sup 0/C. The shoulder width of the survival curves was maximal at 42.5/sup 0/C. The shoulder width represents an important parameter since it describes a threshold time after which significant cell killing occurs. Thus both 43.0/sup 0/C, the temperature at which mortality kinetics changed, and 42.5/sup 0/C, the temperature at which the shoulder width was maximum, represent critical temperatures for the 9L cells. When 9L cells were given an initial conditioning exposure to 43.0/sup 0/C, then returned to 37/sup 0/C for 3 hrs, followed by graded exposure intervals at 43.0/sup 0/, the resulting survival curve indicated that cells required longer times for equal cell killing than for the single exposure condition, suggesting that the cells possess a capability to adapt to the higher temperature.

  8. Measurement and modeling of transcriptional noise in the cell cycle regulatory network.

    Science.gov (United States)

    Ball, David A; Adames, Neil R; Reischmann, Nadine; Barik, Debashis; Franck, Christopher T; Tyson, John J; Peccoud, Jean

    2013-10-01

    Fifty years of genetic and molecular experiments have revealed a wealth of molecular interactions involved in the control of cell division. In light of the complexity of this control system, mathematical modeling has proved useful in analyzing biochemical hypotheses that can be tested experimentally. Stochastic modeling has been especially useful in understanding the intrinsic variability of cell cycle events, but stochastic modeling has been hampered by a lack of reliable data on the absolute numbers of mRNA molecules per cell for cell cycle control genes. To fill this void, we used fluorescence in situ hybridization (FISH) to collect single molecule mRNA data for 16 cell cycle regulators in budding yeast, Saccharomyces cerevisiae. From statistical distributions of single-cell mRNA counts, we are able to extract the periodicity, timing, and magnitude of transcript abundance during the cell cycle. We used these parameters to improve a stochastic model of the cell cycle to better reflect the variability of molecular and phenotypic data on cell cycle progression in budding yeast.

  9. Synchronization of Cell Cycle Oscillator by Multi-pulse Chemical Perturbations

    Science.gov (United States)

    Lin, Yihan; Li, Ying; Dinner, Aaron; Scherer, Norbert

    2011-03-01

    Oscillators underlie biological rhythms in various organisms and provide a timekeeping mechanism. Cell cycle oscillator, for example, controls the progression of cell cycle stage and drives cyclic reproduction in both prokaryotes and eukaryotes. The understanding of the underlying nonlinear regulatory network allows experimental design of external perturbations to interact and control cell cycle oscillation. We have previously demonstrated in experiment and in simulation that the cell cycle coherence of a model bacterium can be progressively tuned by the level of a histidine kinase. Here, we present our recent effort to synchronize the division of a population of bacterium cells by external pulsatile chemical perturbations. We were able to synchronize the cell population by phase-locking approach: the external oscillator (i.e. periodic perturbation) entrains the internal cell cycle oscillator which is in analogous to the phase-locking of circadian clock to external light/dark oscillator. We explored the ranges of frequencies for two external oscillators of different amplitudes where phase-locking occurred. To our surprise, non-periodic chemical perturbations could also cause synchronization of a cell population, suggesting a Markovian cell cycle oscillation dynamics.

  10. Computational and genetic reduction of a cell cycle to its simplest, primordial components.

    Directory of Open Access Journals (Sweden)

    Seán M Murray

    2013-12-01

    Full Text Available What are the minimal requirements to sustain an asymmetric cell cycle? Here we use mathematical modelling and forward genetics to reduce an asymmetric cell cycle to its simplest, primordial components. In the Alphaproteobacterium Caulobacter crescentus, cell cycle progression is believed to be controlled by a cyclical genetic circuit comprising four essential master regulators. Unexpectedly, our in silico modelling predicted that one of these regulators, GcrA, is in fact dispensable. We confirmed this experimentally, finding that ΔgcrA cells are viable, but slow-growing and elongated, with the latter mostly due to an insufficiency of a key cell division protein. Furthermore, suppressor analysis showed that another cell cycle regulator, the methyltransferase CcrM, is similarly dispensable with simultaneous gcrA/ccrM disruption ameliorating the cytokinetic and growth defect of ΔgcrA cells. Within the Alphaproteobacteria, gcrA and ccrM are consistently present or absent together, rather than either gene being present alone, suggesting that gcrA/ccrM constitutes an independent, dispensable genetic module. Together our approaches unveil the essential elements of a primordial asymmetric cell cycle that should help illuminate more complex cell cycles.

  11. Differential expression of cell cycle regulators in CDK5-dependent medullary thyroid carcinoma tumorigenesis.

    Science.gov (United States)

    Pozo, Karine; Hillmann, Antje; Augustyn, Alexander; Plattner, Florian; Hai, Tao; Singh, Tanvir; Ramezani, Saleh; Sun, Xiankai; Pfragner, Roswitha; Minna, John D; Cote, Gilbert J; Chen, Herbert; Bibb, James A; Nwariaku, Fiemu E

    2015-05-20

    Medullary thyroid carcinoma (MTC) is a neuroendocrine cancer of thyroid C-cells, for which few treatment options are available. We have recently reported a role for cyclin-dependent kinase 5 (CDK5) in MTC pathogenesis. We have generated a mouse model, in which MTC proliferation is induced upon conditional overexpression of the CDK5 activator, p25, in C-cells, and arrested by interrupting p25 overexpression. Here, we identify genes and proteins that are differentially expressed in proliferating versus arrested benign mouse MTC. We find that downstream target genes of the tumor suppressor, retinoblastoma protein, including genes encoding cell cycle regulators such as CDKs, cyclins and CDK inhibitors, are significantly upregulated in malignant mouse tumors in a CDK5-dependent manner. Reducing CDK5 activity in human MTC cells down-regulated these cell cycle regulators suggesting that CDK5 activity is critical for cell cycle progression and MTC proliferation. Finally, the same set of cell cycle proteins was consistently overexpressed in human sporadic MTC but not in hereditary MTC. Together these findings suggest that aberrant CDK5 activity precedes cell cycle initiation and thus may function as a tumor-promoting factor facilitating cell cycle protein expression in MTC. Targeting aberrant CDK5 or its downstream effectors may be a strategy to halt MTC tumorigenesis. PMID:25900242

  12. Growth inhibitory effect of 4-phenyl butyric acid on human gastric cancer cells is associated with cell cycle arrest

    Institute of Scientific and Technical Information of China (English)

    Long-Zhu Li; Hong-Xia Deng; Wen-Zhu Lou; Xue-Yan Sun; Meng-Wan Song; Jing Tao; Bing-Xiu Xiao; Jun-Ming Guo

    2012-01-01

    AIM: To investigate the growth effects of 4-phenyl butyric acid (PBA) on human gastric carcinoma cells and their mechanisms. METHODS: Moderately-differentiated human gastric carcinoma SGC-7901 and lowly-differentiated MGC-803 cells were treated with 5, 10, 20, 40, and 60 μmol/L PBA for 1-4 d. Cell proliferation was detected using the MTT colorimetric assay. Cell cycle distributions were examined using flow cytometry. RESULTS: The proliferation of gastric carcinoma cells was inhibited by PBA in a dose- and time-dependent fashion. Flow cytometry showed that SGC-7901 cells treated with low concentrations of PBA were arrested at the G0/G1 phase, whereas cells treated with high concentrations of PBA were arrested at the G2/M phase. Although MGC-803 cells treated with low concentrations of PBA were also arrested at the G0/G1 phase, cells treated with high concentrations of PBA were arrested at the S phase. CONCLUSION: The growth inhibitory effect of PBA on gastric cancer cells is associated with alteration of the cell cycle. For moderately-differentiated gastric cancer cells, the cell cycle was arrested at the G0/G1 and G2/M phases. For lowly-differentiated gastric cancer cells, the cell cycle was arrested at the G0/G1 and S phases.

  13. Upregulation of long non-coding RNA PRNCR1 in colorectal cancer promotes cell proliferation and cell cycle progression.

    Science.gov (United States)

    Yang, Liu; Qiu, Mantang; Xu, Youtao; Wang, Jie; Zheng, Yanyan; Li, Ming; Xu, Lin; Yin, Rong

    2016-01-01

    Colorectal cancer (CRC) is one of the most common cancers worldwide. Long non-coding RNAs (lncRNAs) have been confirmed to play a critical regulatory role in various biological processes including carcinogenesis, which indicates that lncRNAs are valuable biomarkers and therapeutic targets. The novel lncRNA prostate cancer non-coding RNA 1 (PRNCR1) is located in the susceptible genomic area of CRC, however the functional role of PRNCR1 remains unknown. Thus, we aimed to investigate the clinical significance and biological function of PRNCR1 in CRC. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to assess the expression profile of PRNCR1 in CRC tissues and cell lines. An antisense oligonucleotide (ASO) was designed to knock down PRNCR1. In a cohort of 63 patients, PRNCR1 was significantly overexpressed in CRC tissues compared with the expression in adjacent tissues, with an average fold increase of 10.55 (P=0.006). Additionally, a high level of PRNCR1 was associated with large tumor volume (Pline (FHC), PRNCR1 was upregulated in most CRC cell lines (HCT116, SW480, LoVo and HT-29). After knockdown of PRNCR1 by ASO, CRC cell proliferation ability was significantly inhibited. We further found that PRNCR1 knockdown induced cell cycle arrest in the G0/G1 phase and a significant decrease in the proportion of cells in the S phases. In contrast, PRNCR1 knockdown did not affect cell apoptosis or invasive ability. Hence, these data indicate that PRNCR1 promotes the proliferation of CRC cells and is a potential oncogene of CRC.

  14. Sorting of cells of the same size, shape, and cell cycle stage for a single cell level assay without staining

    Directory of Open Access Journals (Sweden)

    Yomo Tetsuya

    2006-06-01

    Full Text Available Abstract Background Single-cell level studies are being used increasingly to measure cell properties not directly observable in a cell population. High-performance data acquisition systems for such studies have, by necessity, developed in synchrony. However, improvements in sample purification techniques are also required to reveal new phenomena. Here we assessed a cell sorter as a sample-pretreatment tool for a single-cell level assay. A cell sorter is routinely used for selecting one type of cells from a heterogeneous mixture of cells using specific fluorescence labels. In this case, we wanted to select cells of exactly the same size, shape, and cell-cycle stage from a population, without using a specific fluorescence label. Results We used four light scatter parameters: the peak height and area of the forward scatter (FSheight and FSarea and side scatter (SSheight and SSarea. The rat pheochromocytoma PC12 cell line, a neuronal cell line, was used for all experiments. The living cells concentrated in the high FSarea and middle SSheight/SSarea fractions. Single cells without cell clumps were concentrated in the low SS and middle FS fractions, and in the higher FSheight/FSarea and SSheight/SSarea fractions. The cell populations from these viable, single-cell-rich fractions were divided into twelve subfractions based on their FSarea-SSarea profiles, for more detailed analysis. We found that SSarea was proportional to the cell volume and the FSarea correlated with cell roundness and elongation, as well as with the level of DNA in the cell. To test the method and to characterize the basic properties of the isolated single cells, sorted cells were cultured in separate wells. The cells in all subfractions survived, proliferated and differentiated normally, suggesting that there was no serious damage. The smallest, roundest, and smoothest cells had the highest viability. There was no correlation between proliferation and differentiation. NGF increases

  15. Systematic identification of cell cycle regulated transcription fa