WorldWideScience

Sample records for affecting osteoblastic activity

  1. Urokinase plasminogen activator receptor affects bone homeostasis by regulating osteoblast and osteoclast function

    DEFF Research Database (Denmark)

    Furlan, Federico; Galbiati, Clara; Jørgensen, Niklas R;

    2007-01-01

    The uPAR and its ligand uPA are expressed by both osteoblasts and osteoclasts. Their function in bone remodeling is unknown. We report that uPAR-lacking mice display increased BMD, increased osteogenic potential of osteoblasts, decreased osteoclasts formation, and altered cytoskeletal reorganizat......The uPAR and its ligand uPA are expressed by both osteoblasts and osteoclasts. Their function in bone remodeling is unknown. We report that uPAR-lacking mice display increased BMD, increased osteogenic potential of osteoblasts, decreased osteoclasts formation, and altered cytoskeletal...... to mechanical tests. UPAR KO calvaria osteoblasts were characterized by proliferation assays, RT-PCR for important proteins secreted during differentiation, and immunoblot for activator protein 1 (AP-1) family members. In vitro osteoclast formation was tested with uPAR KO bone marrow monocytes in the presence...

  2. Urokinase plasminogen activator receptor affects bone homeostasis by regulating osteoblast and osteoclast function

    DEFF Research Database (Denmark)

    Furlan, Federico; Galbiati, Clara; Jørgensen, Niklas R;

    2007-01-01

    reorganization in mature osteoclasts. INTRODUCTION: Urokinase receptor (uPAR) is actively involved in the regulation of important cell functions, such as proliferation, adhesion, and migration. It was previously shown that the major players in bone remodeling, osteoblasts and osteoclasts, express u...... with other osteoblasts markers. On the resorptive side, the number of osteoclasts formed in vitro from uPAR KO monocytes was decreased. Podosome imaging in uPAR KO osteoclasts revealed a defect in actin ring formation. CONCLUSIONS: The defective proliferation and differentiation of bone cells, coincident......The uPAR and its ligand uPA are expressed by both osteoblasts and osteoclasts. Their function in bone remodeling is unknown. We report that uPAR-lacking mice display increased BMD, increased osteogenic potential of osteoblasts, decreased osteoclasts formation, and altered cytoskeletal...

  3. A proteome study of secreted prostatic factors affecting osteoblastic activity: identification and characterisation of cyclophilin A

    DEFF Research Database (Denmark)

    Andersen, H; Jensen, Ole Nørregaard; Eriksen, E F

    2003-01-01

    Prostate cancer cells metastasise to bone causing a predominantly osteosclerotic response. It has previously been shown that PC3 cells secrete factors which stimulate the mitogenic activity of human bone marrow stromal (hBMS) cells. Some of these mitogens have been found to be proteins...... with a molecular weight between 20 and 30 kDa. Even though a number of investigations have been performed to identify the osteoblastic mitogenic factor or factors produced by prostate cancer cells, it is still unknown what causes the mitogenic activation of osteoblasts. Therefore, the aim of this study...... effects seen when prostate cancer metastasises to bone....

  4. Osteoblast differentiation and migration are regulated by Dynamin GTPase activity

    OpenAIRE

    Pierre P. Eleniste; Huang, Su; Wayakanon, Kornchanok; Largura, Heather W.; Bruzzaniti, Angela

    2013-01-01

    Bone formation is controlled by osteoblasts but the signaling proteins that control osteoblast differentiation and function are still unclear. We examined if the dynamin GTPase, which is associated with actin remodeling and migration in other cells, plays a role in osteoblast differentiation and migration. Dynamin mRNA was expressed in primary osteoblasts throughout differentiation (0–21 days). However, alkaline phosphatase (ALP) activity, a marker of osteoblast differentiation, was decreased...

  5. Osteoblast differentiation and migration are regulated by dynamin GTPase activity.

    Science.gov (United States)

    Eleniste, Pierre P; Huang, Su; Wayakanon, Kornchanok; Largura, Heather W; Bruzzaniti, Angela

    2014-01-01

    Bone formation is controlled by osteoblasts, but the signaling proteins that control osteoblast differentiation and function are still unclear. We examined if the dynamin GTPase, which is associated with actin remodeling and migration in other cells, plays a role in osteoblast differentiation and migration. Dynamin mRNA was expressed in primary osteoblasts throughout differentiation (0-21 days). However, alkaline phosphatase (ALP) activity, a marker of osteoblast differentiation, was decreased in osteoblasts over-expressing dynamin. Conversely, ALP activity was increased following shRNA-mediated knockdown of dynamin and in osteoblasts treated with the dynamin inhibitor, dynasore. Dynasore also reduced c-fos and osterix expression, markers of early osteoblasts, suggesting a role for dynamin in pre-osteoblast to osteoblast differentiation. Since dynamin GTPase activity is regulated by tyrosine phosphorylation, we examined the mechanism of dynamin dephosphorylation in osteoblasts. Dynamin formed a protein complex with the tyrosine phosphatase PTP-PEST and inhibition of phosphatase activity increased the level of phosphorylated dynamin. Further, PTP-PEST blocked the Src-mediated increase in the phosphorylation and GTPase activity of wild-type dynamin but not the phosphorylation mutant dynY231F/Y597F. Although ALP activity was increased in osteoblasts expressing GTPase-defective dynK44A, and to a lesser extent dynY231F/Y597F, osteoblast migration was significantly inhibited by dynK44A and dynY231F/Y597F. These studies demonstrate a novel role for dynamin GTPase activity and phosphorylation in osteoblast differentiation and migration, which may be important for bone formation. PMID:24387844

  6. Histological examination on osteoblastic activities in the alveolar bone of transgenic mice with induced ablation of osteocytes.

    Science.gov (United States)

    Li, Minqi; Hasegawa, Tomoka; Hogo, Hiromi; Tatsumi, Sawako; Liu, Zhusheng; Guo, Ying; Sasaki, Muneteru; Tabata, Chihiro; Yamamoto, Tsuneyuki; Ikeda, Kyoji; Amizuka, Norio

    2013-03-01

    The purpose of this study was to examine histological alterations on osteoblasts from the alveolar bone of transgenic mice with targeted ablation of osteoctyes. Eighteen weeks-old transgenic mice based on the diphtheria toxin (DT) receptor-mediated cell knockout (TRECK) system were used in these experiments. Mice were injected intraperitoneally with 50 µg/kg of DT in PBS, or only PBS as control. Two weeks after injections, mice were subjected to transcardiac perfusion with 4% paraformaldehyde in 0.1M phosphate buffer (pH 7.4), and the available alveolar bone was removed for histochemical analyses. Approximately 75% of osteocytes from alveolar bones became apoptotic after DT administration, and most osteocytic lacunae became empty. Osteoblastic numbers and alkaline phosphatase (ALP) activity were markedly reduced at the endosteum of alveolar bone after DT administration compared with the control. Osteoblastic ALP activity in the periodontal ligament region, on the other hand, hardly showed any differences between the two groups even though numbers were reduced in the experiment group. Silver impregnation showed a difference in the distribution of bone canaliculi between the portions near the endosteum and the periodontal ligament: the former appeared regularly arranged in contrast to the latter's irregular distribution. Under transmission electron microscopy (TEM), the osteoblasts in the periodontal ligament showed direct contact with the Sharpey's fibers. Thus, osteoblastic activity was affected by osteocyte ablation in general, but osteoblasts in contact with the periodontal ligament were less affected than endosteal osteoblasts.

  7. Ethyl-2, 5-dihydroxybenzoate displays dual activity by promoting osteoblast differentiation and inhibiting osteoclast differentiation.

    Science.gov (United States)

    Kwon, Byeong-Ju; Lee, Mi Hee; Koo, Min-Ah; Kim, Min Sung; Seon, Gyeung Mi; Han, Jae-Jin; Park, Jong-Chul

    2016-03-11

    The interplay between bone-forming osteoblasts and bone-resorbing osteoclasts is essential for balanced bone remodeling. In this study, we evaluate the ability of ethyl-2, 5-dihyrdoxybenzoate (E-2, 5-DHB) to affect both osteoblast and osteoclast differentiation for bone regeneration. Osteogenic differentiation of human mesenchymal stem cells (hMSCs) was quantified by measuring alkaline phosphatase (ALP) activity and calcium deposition. To evaluate osteoclast differentiation, we investigated the effect of E-2, 5-DHB on RANKL-activated osteoclastogenesis in RAW 264.7 cells. E-2, 5-DHB enhanced ALP activity and inhibited RAW 264.7 cell osteoclastogenesis in vitro. To assess the in vivo activity of E-2, 5-DHB, hMSCs were delivered subcutaneosuly alone or in combination with E-2, 5-DHB in an alginate gel into the backs of nude-mice. Histological and immunohistochemical evaluation showed significantly higher calcium deposition in the E-2, 5-DHB group. Osteocalcin (OCN) was highly expressed in cells implanted in the gels containing E-2, 5-DHB. Our results suggest that E-2, 5-DHB can effectively enhance osteoblast differentiation and inhibit osteoclast differentiation both in vitro and in vivo. Understanding the dual function of E-2, 5-DHB on osteoblast and osteoclast differentiation will aid in future development of E-2, 5-DHB as a material for bone tissue engineering.

  8. Carbon nanohorns allow acceleration of osteoblast differentiation via macrophage activation

    Science.gov (United States)

    Hirata, Eri; Miyako, Eijiro; Hanagata, Nobutaka; Ushijima, Natsumi; Sakaguchi, Norihito; Russier, Julie; Yudasaka, Masako; Iijima, Sumio; Bianco, Alberto; Yokoyama, Atsuro

    2016-07-01

    Carbon nanohorns (CNHs), formed by a rolled graphene structure and terminating in a cone, are promising nanomaterials for the development of a variety of biological applications. Here we demonstrate that alkaline phosphatase activity is dramatically increased by coculture of human monocyte derived macrophages (hMDMs) and human mesenchymal stem cells (hMSCs) in the presence of CNHs. CNHs were mainly localized in the lysosome of macrophages more than in hMSCs during coculturing. At the same time, the amount of Oncostatin M (OSM) in the supernatant was also increased during incubation with CNHs. Oncostatin M (OSM) from activated macrophage has been reported to induce osteoblast differentiation and matrix mineralization through STAT3. These results suggest that the macrophages engulfed CNHs and accelerated the differentiation of mesenchymal stem cells into the osteoblast via OSM release. We expect that the proof-of-concept on the osteoblast differentiation capacity by CNHs will allow future studies focused on CNHs as ideal therapeutic materials for bone regeneration.Carbon nanohorns (CNHs), formed by a rolled graphene structure and terminating in a cone, are promising nanomaterials for the development of a variety of biological applications. Here we demonstrate that alkaline phosphatase activity is dramatically increased by coculture of human monocyte derived macrophages (hMDMs) and human mesenchymal stem cells (hMSCs) in the presence of CNHs. CNHs were mainly localized in the lysosome of macrophages more than in hMSCs during coculturing. At the same time, the amount of Oncostatin M (OSM) in the supernatant was also increased during incubation with CNHs. Oncostatin M (OSM) from activated macrophage has been reported to induce osteoblast differentiation and matrix mineralization through STAT3. These results suggest that the macrophages engulfed CNHs and accelerated the differentiation of mesenchymal stem cells into the osteoblast via OSM release. We expect that the

  9. Osteoclasts but not osteoblasts are affected by a calcified surface treated with zoledronic acid in vitro

    International Nuclear Information System (INIS)

    Bisphosphonates are potent inhibitors of osteoclast-mediated bone resorption. Recent interest has centered on the effects of bisphosphonates on osteoblasts. Chronic dosing of osteoblasts with solubilized bisphosphonates has been reported to enhance osteogenesis and mineralization in vitro. However, this methodology poorly reflects the in vivo situation, where free bisphosphonate becomes rapidly bound to mineralized bone surfaces. To establish a more clinically relevant cell culture model, we cultured bone cells on calcium phosphate coated quartz discs pre-treated with the potent nitrogen-containing bisphosphonate, zoledronic acid (ZA). Binding studies utilizing [14C]-labeled ZA confirmed that the bisphosphonate bound in a concentration-dependent manner over the 1-50 μM dose range. When grown on ZA-treated discs, the viability of bone-marrow derived osteoclasts was greatly reduced, while the viability and mineralization of the osteoblastic MC3T3-E1 cell line were largely unaffected. This suggests that only bone resorbing cells are affected by bound bisphosphonate. However, this system does not account for transient exposure to unbound bisphosphonate in the hours following a clinical dosing. To model this event, we transiently treated osteoblasts with ZA in the absence of a calcified surface. Osteoblasts proved highly resistant to all transitory treatment regimes, even when utilizing ZA concentrations that prevented mineralization and/or induced cell death when dosed chronically. This study represents a pharmacologically more relevant approach to modeling bisphosphonate treatment on cultured bone cells and implies that bisphosphonate therapies may not directly affect osteoblasts at bone surfaces

  10. Stem cell factor (SCF) protects osteoblasts from oxidative stress through activating c-Kit-Akt signaling

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Lei [Department of Orthopedics, Changzhou Wujin People’s Hospital-South Division, Affiliated Hospital of Jiangsu University, Changzhou (China); Wu, Zhong [Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai (China); Yin, Gang; Liu, Haifeng; Guan, Xiaojun; Zhao, Xiaoqiang [Department of Orthopedics, Changzhou Wujin People’s Hospital-South Division, Affiliated Hospital of Jiangsu University, Changzhou (China); Wang, Jianguang, E-mail: jianguangwang@163.com [Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai (China); Zhu, Jianguo, E-mail: gehujianguo68@163.com [Department of Orthopedics, Changzhou Wujin People’s Hospital-South Division, Affiliated Hospital of Jiangsu University, Changzhou (China)

    2014-12-12

    Highlights: • SCF receptor c-Kit is functionally expressed in primary and transformed osteoblasts. • SCF protects primary and transformed osteoblasts from H{sub 2}O{sub 2}. • SCF activation of c-Kit in osteoblasts, required for its cyto-protective effects. • c-Kit mediates SCF-induced Akt activation in cultured osteoblasts. • Akt activation is required for SCF-regulated cyto-protective effects in osteoblasts. - Abstract: Osteoblasts regulate bone formation and remodeling, and are main target cells of oxidative stress in the progression of osteonecrosis. The stem cell factor (SCF)-c-Kit pathway plays important roles in the proliferation, differentiation and survival in a range of cell types, but little is known about its functions in osteoblasts. In this study, we found that c-Kit is functionally expressed in both osteoblastic-like MC3T3-E1 cells and primary murine osteoblasts. Its ligand SCF exerted significant cyto-protective effects against hydrogen peroxide (H{sub 2}O{sub 2}). SCF activated its receptor c-Kit in osteoblasts, which was required for its cyto-protective effects against H{sub 2}O{sub 2}. Pharmacological inhibition (by Imatinib and Dasatinib) or shRNA-mediated knockdown of c-Kit thus inhibited SCF-mediated osteoblast protection. Further investigations showed that protection by SCF against H{sub 2}O{sub 2} was mediated via activation of c-Kit-dependent Akt pathway. Inhibition of Akt activation, through pharmacological or genetic means, suppressed SCF-mediated anti-H{sub 2}O{sub 2} activity in osteoblasts. In summary, we have identified a new SCF-c-Kit-Akt physiologic pathway that protects osteoblasts from H{sub 2}O{sub 2}-induced damages, and might minimize the risk of osteonecrosis caused by oxidative stress.

  11. P53 and Beta-Catenin Activity during Estrogen treatment of Osteoblasts

    Directory of Open Access Journals (Sweden)

    Kolman Kevin

    2005-07-01

    Full Text Available Abstract Background This study was undertaken to examine the relationship between the tumor suppressor gene p53 and the nuclear signaling protein beta-catenin during bone differentiation. Cross talk between p53 and beta-catenin pathways has been demonstrated and is important during tumorigenesis and DNA damage, where deregulation of beta catenin activates p53. In this study, we used estrogen treatment of osteoblasts as a paradigm to study the relationship between the two proteins during osteoblast differentiation. Results We exposed osteoblast-like ROS17/2.8 cells to 17-beta estradiol (E2, in a short term assay, and studied the cellular distribution and expression of beta-catenin. We found beta-catenin to be up regulated several fold following E2 treatment. Levels of p53 and its functional activity mirrored the quantitative changes seen in beta-catenin. Alkaline phosphatase, an early marker of osteoblast differentiation, was increased in a manner similar to beta-catenin and p53. In order to determine if there was a direct relationship between alkaline phosphatase expression and beta-catenin, we used two different approaches. In the first approach, treatment with LiCl, which is known to activate beta-catenin, caused a several fold increase in alkaline phosphatase activity. In the second approach, transient transfection of wild type beta-catenin into osteoblasts increased alkaline phosphatase activity two fold over basal levels, showing that beta catenin expression can directly affect alkaline phosphatase expression. However increase in beta catenin activity was not associated with an increase in its signaling activity through TCF/LEF mediated transcription. Immunofluorescence analyses of p53 and beta-catenin localization showed that E2 first caused an increase in cytosolic beta-catenin followed by the accumulation of beta-catenin in the nucleus. Nuclear p53 localization was detected in several cells. Expression of p53 was accompanied by

  12. Integrin α5β1-fimbriae binding and actin rearrangement are essential for Porphyromonas gingivalis invasion of osteoblasts and subsequent activation of the JNK pathway

    Directory of Open Access Journals (Sweden)

    Zhang Wenjian

    2013-01-01

    Full Text Available Abstract Background Chronic periodontitis is an infectious disease of the periodontium, which includes the gingival epithelium, periodontal ligament and alveolar bone. The signature clinical feature of periodontitis is resorption of alveolar bone and subsequent tooth loss. The Gram-negative oral anaerobe, Porphyromonas gingivalis, is strongly associated with periodontitis, and it has been shown previously that P. gingivalis is capable of invading osteoblasts in a dose- and time-dependent manner resulting in inhibition of osteoblast differentiation and mineralization in vitro. It is not yet clear which receptors and cytoskeletal components mediate the invasive process, nor how the signaling pathways and viability of osteoblasts are affected by bacterial internalization. This study aimed to investigate these issues using an in vitro model system involving the inoculation of P. gingivalis ATCC 33277 into primary osteoblast cultures. Results It was found that binding between P. gingivalis fimbriae and integrin α5β1 on osteoblasts, and subsequent peripheral condensation of actin, are essential for entry of P. gingivalis into osteoblasts. The JNK pathway was activated in invaded osteoblasts, and apoptosis was induced by repeated infections. Conclusions These observations indicate that P. gingivalis manipulates osteoblast function to promote its initial intracellular persistence by prolonging the host cell life span prior to its intercellular dissemination via host cell lysis. The identification of molecules critical to the interaction between P. gingivalis and osteoblasts will facilitate the development of new therapeutic strategies for the prevention of periodontal bone loss.

  13. Factors affecting growth, differentiation and apoptosis of osteoblastic and osteosarcoma cells

    OpenAIRE

    Li, Yan

    2008-01-01

    Osteoblasts play a fundamental role in determining bone structure and function. These cells originate from mesenchymal stem cells (MSCs) and through proliferation and differentiation develop into preosteoblasts and then into mature cells. Most of these cells undergo apoptosis before reaching their terminal differentiated stages of either osteocytes or bone lining cells. These processes, i.e. proliferation, differentiation, and apoptosis, are affected by systemic hormones and...

  14. The role of osteoblasts in regulating hematopoietic stem cell activity and tumor metastasis

    Directory of Open Access Journals (Sweden)

    Neiva K.

    2005-01-01

    Full Text Available Bone marrow stromal cells are critical regulators of hematopoiesis. Osteoblasts are part of the stromal cell support system in bone marrow and may be derived from a common precursor. Several studies suggested that osteoblasts regulate hematopoiesis, yet the entire mechanism is not understood. It is clear, however, that both hematopoietic precursors and osteoblasts interact for the production of osteoclasts and the activation of resorption. We observed that hematopoietic stem cells (HSCs regulate osteoblastic secretion of various growth factors, and that osteoblasts express some soluble factors exclusively in the presence of HSCs. Osteoblasts and hematopoietic cells are closely associated with each other in the bone marrow, suggesting a reciprocal relationship between them to develop the HSC niche. One critical component regulating the niche is stromal-derived factor-1 (SDF-1 and its receptor CXCR4 which regulates stem cell homing and, as we have recently demonstrated, plays a crucial role in facilitating those tumors which metastasize to bone. Osteoblasts produce abundant amounts of SDF-1 and therefore osteoblasts play an important role in metastasis. These findings are discussed in the context of the role of osteoblasts in marrow function in health and disease.

  15. Osteoblast-released Matrix Vesicles, Regulation of Activity and Composition by Sulfated and Non-sulfated Glycosaminoglycans.

    Science.gov (United States)

    Schmidt, Johannes R; Kliemt, Stefanie; Preissler, Carolin; Moeller, Stephanie; von Bergen, Martin; Hempel, Ute; Kalkhof, Stefan

    2016-02-01

    Our aging population has to deal with the increasing threat of age-related diseases that impair bone healing. One promising therapeutic approach involves the coating of implants with modified glycosaminoglycans (GAGs) that mimic the native bone environment and actively facilitate skeletogenesis. In previous studies, we reported that coatings containing GAGs, such as hyaluronic acid (HA) and its synthetically sulfated derivative (sHA1) as well as the naturally low-sulfated GAG chondroitin sulfate (CS1), reduce the activity of bone-resorbing osteoclasts, but they also induce functions of the bone-forming cells, the osteoblasts. However, it remained open whether GAGs influence the osteoblasts alone or whether they also directly affect the formation, composition, activity, and distribution of osteoblast-released matrix vesicles (MV), which are supposed to be the active machinery for bone formation. Here, we studied the molecular effects of sHA1, HA, and CS1 on MV activity and on the distribution of marker proteins. Furthermore, we used comparative proteomic methods to study the relative protein compositions of isolated MVs and MV-releasing osteoblasts. The MV proteome is much more strongly regulated by GAGs than the cellular proteome. GAGs, especially sHA1, were found to severely impact vesicle-extracellular matrix interaction and matrix vesicle activity, leading to stronger extracellular matrix formation and mineralization. This study shows that the regulation of MV activity is one important mode of action of GAGs and provides information on underlying molecular mechanisms. PMID:26598647

  16. Strontium ranelate affects signaling from mechanically-stimulated osteocytes towards osteoclasts and osteoblasts.

    Science.gov (United States)

    Bakker, Astrid D; Zandieh-Doulabi, Behrouz; Klein-Nulend, Jenneke

    2013-03-01

    Strontium Ranelate (SrRan) is used to decrease the risk of bone fractures. Any factor that alters the release of paracrine signals by osteocytes in response to mechanical stimuli potentially affects bone mass and structure, and thus fracture resistance. We hypothesized that SrRan affects paracrine signaling from mechanically-stimulated osteocytes towards osteoclast-precursors and osteoblasts. MLO-Y4 osteocytes were cultured for 24h with SrRan (0.1-3mM) and either or not mechanically stimulated by pulsating fluid flow (PFF; 0.7 ± 0.3 Pa, 5 Hz) for 60 min. Nitric oxide (NO) and prostaglandin E(2) (PGE(2)) release, and expression of mechanoresponsive genes were quantified. Conditioned medium (CM) from osteocytes was added to mouse bone marrow cells for 7 days to assess osteoclastogenesis, or MC3T3-E1 osteoblasts for 4-16 days to measure osteogenic gene expression. SrRan (3mM) enhanced NO and PGE(2) release to the same extent in static osteocytes (NO: 1.6-fold; PGE(2): 2.8-fold) and PFF-stimulated osteocytes (NO: 1.3-fold; PGE(2): 2.6-fold). CM from PFF-treated osteocytes without SrRan enhanced Ki67 expression but reduced Runx2 and Ocn expression in osteoblasts. This effect on gene expression was not observed with CM obtained from osteocytes treated with the combination of PFF and 3mM SrRan. CM from PFF-treated osteocytes inhibited osteoclastogenesis by 1.9-fold. The combination of PFF and 3mM SrRan reduced osteocyte-stimulated osteoclastogenesis even more strongly (4.3-fold). In conclusion, SrRan affects paracrine signaling between mechanically-stimulated MLO-Y4 osteocytes and both osteoblasts and osteoclast precursors. The positive effects of SrRan on bone fracture resistance may thus be partly explained by altered paracrine signaling by osteocytes. PMID:23234812

  17. Osteoclast-derived microRNA-containing exosomes selectively inhibit osteoblast activity

    Science.gov (United States)

    Sun, Weijia; Zhao, Chenyang; Li, Yuheng; Wang, Liang; Nie, Guangjun; Peng, Jiang; Wang, Aiyuan; Zhang, Pengfei; Tian, Weiming; Li, Qi; Song, Jinping; Wang, Cheng; Xu, Xiaolong; Tian, Yanhua; Zhao, Dingsheng; Xu, Zi; Zhong, Guohui; Han, Bingxing; Ling, Shukuan; Chang, Yan-Zhong; Li, Yingxian

    2016-01-01

    MicroRNAs have an important role in bone homeostasis. However, the detailed mechanism of microRNA-mediated intercellular communication between bone cells remains elusive. Here, we report that osteoclasts secrete microRNA-enriched exosomes, by which miR-214 is transferred into osteoblasts to inhibit their function. In a coculture system, inhibition of exosome formation and secretion prevented miR-214 transportation. Exosomes specifically recognized osteoblasts through the interaction between ephrinA2 and EphA2. In osteoclast-specific miR-214 transgenic mice, exosomes were secreted into the serum, and miR-214 and ephrinA2 levels were elevated. Therefore, these exosomes have an inhibitory role in osteoblast activity. miR-214 and ephrinA2 levels in serum exosomes from osteoporotic patients and mice were upregulated substantially. These exosomes may significantly inhibit osteoblast activity. Inhibition of exosome secretion via Rab27a small interfering RNA prevented ovariectomized-induced osteoblast dysfunction in vivo. Taken together, these findings suggest that exosome-mediated transfer of microRNA plays an important role in the regulation of osteoblast activity. Circulating miR-214 in exosomes not only represents a biomarker for bone loss but could selectively regulate osteoblast function. PMID:27462462

  18. Factors circulating in the blood of type 2 diabetes mellitus patients affect osteoblast maturation – Description of a novel in vitro model

    International Nuclear Information System (INIS)

    Type 2 diabetes mellitus (T2DM) is one of the most frequent metabolic disorders in industrialized countries. Among other complications, T2DM patients have an increased fracture risk and delayed fracture healing. We have demonstrated that supraphysiological glucose and insulin levels inhibit primary human osteoblasts' maturation. We aimed at developing a more physiologically relevant in vitro model to analyze T2DM-mediated osteoblast changes. Therefore, SCP-1-immortalized pre-osteoblasts were differentiated with T2DM or control (non-obese and obese) sera. Between both control groups, no significant changes were observed. Proliferation was significantly increased (1.69-fold), while AP activity and matrix mineralization was significantly reduced in the T2DM group. Expression levels of osteogenic marker genes and transcription factors were altered, e.g. down-regulation of RUNX2 and SP-7 or up-regulation of STAT1, in the T2DM group. Active TGF-β levels were significantly increased (1.46-fold) in T2DM patients' sera. SCP-1 cells treated with these sera showed significantly increased TGF-β signaling (2.47-fold). Signaling inhibition effectively restored osteoblast maturation in the T2DM group. Summarizing our data, SCP-1 cells differentiated in the presence of T2DM patients' serum exhibit reduced osteoblast function. Thus, this model has a high physiological impact, as it can identify circulating factors in T2DM patients' blood that may affect bone function, e.g. TGF-β. - Highlights: • We present here a physiologically relevant in vitro model for diabetic osteopathy. • Blood of T2DM patients contains factors that affect osteoblasts' function. • The model developed here can be used to identify these factors, e.g. TGF-β. • Blocking TGF-β signaling partly rescues the osteoblasts' function in the T2DM group. • The model is useful to demonstrate the role of single factors in diabetic osteopathy

  19. Factors circulating in the blood of type 2 diabetes mellitus patients affect osteoblast maturation – Description of a novel in vitro model

    Energy Technology Data Exchange (ETDEWEB)

    Ehnert, Sabrina, E-mail: sabrina.ehnert@gmail.com [BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen (Germany); Freude, Thomas, E-mail: tfreude@bgu-tuebingen.de [BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen (Germany); Ihle, Christoph, E-mail: cihle@bgu-tuebingen.de [BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen (Germany); Mayer, Larissa, E-mail: lara.nk@gmail.com [BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen (Germany); Braun, Bianca, E-mail: bianca.braun@med.uni-tuebingen.de [BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen (Germany); Graeser, Jessica, E-mail: jessica.graeser@student.reutlingen-university.de [BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen (Germany); Flesch, Ingo, E-mail: iflesch@bgu-tuebingen.de [BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen (Germany); and others

    2015-03-15

    Type 2 diabetes mellitus (T2DM) is one of the most frequent metabolic disorders in industrialized countries. Among other complications, T2DM patients have an increased fracture risk and delayed fracture healing. We have demonstrated that supraphysiological glucose and insulin levels inhibit primary human osteoblasts' maturation. We aimed at developing a more physiologically relevant in vitro model to analyze T2DM-mediated osteoblast changes. Therefore, SCP-1-immortalized pre-osteoblasts were differentiated with T2DM or control (non-obese and obese) sera. Between both control groups, no significant changes were observed. Proliferation was significantly increased (1.69-fold), while AP activity and matrix mineralization was significantly reduced in the T2DM group. Expression levels of osteogenic marker genes and transcription factors were altered, e.g. down-regulation of RUNX2 and SP-7 or up-regulation of STAT1, in the T2DM group. Active TGF-β levels were significantly increased (1.46-fold) in T2DM patients' sera. SCP-1 cells treated with these sera showed significantly increased TGF-β signaling (2.47-fold). Signaling inhibition effectively restored osteoblast maturation in the T2DM group. Summarizing our data, SCP-1 cells differentiated in the presence of T2DM patients' serum exhibit reduced osteoblast function. Thus, this model has a high physiological impact, as it can identify circulating factors in T2DM patients' blood that may affect bone function, e.g. TGF-β. - Highlights: • We present here a physiologically relevant in vitro model for diabetic osteopathy. • Blood of T2DM patients contains factors that affect osteoblasts' function. • The model developed here can be used to identify these factors, e.g. TGF-β. • Blocking TGF-β signaling partly rescues the osteoblasts' function in the T2DM group. • The model is useful to demonstrate the role of single factors in diabetic osteopathy.

  20. Irisin promotes osteoblast proliferation and differentiation via activating the MAP kinase signaling pathways.

    Science.gov (United States)

    Qiao, Xiaoyong; Yong Qiao, Xiao; Nie, Ying; Ma, Yaxian; Xian Ma, Ya; Chen, Yan; Cheng, Ran; Yin, Weiyao; Yao Yinrg, Wei; Hu, Ying; Xu, Wenming; Ming Xu, Wen; Xu, Liangzhi; Zhi Xu, Liang

    2016-01-01

    Physical exercise is able to improve skeletal health. However, the mechanisms are poorly known. Irisin, a novel exercise-induced myokine, secreted by skeletal muscle in response to exercise, have been shown to mediate beneficial effects of exercise in many disorders. In the current study, we demonstrated that irisin promotes osteoblast proliferation, and increases the expression of osteoblastic transcription regulators, such as Runt-related transcription factor-2, osterix/sp7; and osteoblast differentiation markers, including alkaline phosphatase, collagen type 1 alpha-1, osteocalcin, and osteopontin in vitro. Irisin also increase ALP activity and calcium deposition in cultured osteoblast. These osteogenic effects were mediated by activating the p38 mitogen-activated protein kinase (p-p38 MAPK) and extracellular signal-regulated kinase (ERK). Inhibition of p38 MAPK by SB023580 or pERK by U0126 abolished the proliferation and up-regulatory effects of irisin on Runx2 expression and ALP activity. Together our observation suggest that irisin directly targets osteoblast, promoting osteoblast proliferation and differentiation via activating P38/ERK MAP kinase signaling cascades in vitro. Whether irisin can be utilized as the therapeutic agents for osteopenia and osteoporosis is worth to be further pursued. PMID:26738434

  1. Telomerase activity promotes osteoblast differentiation by modulating IGF-signaling pathway

    DEFF Research Database (Denmark)

    Saeed, Hamid; Qiu, Weimin; Li, Chen;

    2015-01-01

    The contribution of deficient telomerase activity to age-related decline in osteoblast functions and bone formation is poorly studied. We have previously demonstrated that telomerase over-expression led to enhanced osteoblast differentiation of human bone marrow skeletal (stromal) stem cells (h......MSC) in vitro and in vivo. Here, we investigated the signaling pathways underlying the regulatory functions of telomerase in osteoblastic cells. Comparative microarray analysis and Western blot analysis of telomerase-over expressing hMSC (hMSC-TERT) versus primary hMSC revealed significant up....... In addition, telomerase deficiency caused significant reduction in IGF signaling proteins in osteoblastic cells cultured from telomerase deficient mice (Terc (-/-)). The low bone mass exhibited by Terc (-/-) mice was associated with significant reduction in serum levels of IGF1 and IGFBP3 as well as reduced...

  2. Photodynamic activation as a molecular switch to promote osteoblast cell differentiation via AP-1 activation.

    Science.gov (United States)

    Kushibiki, Toshihiro; Tu, Yupeng; Abu-Yousif, Adnan O; Hasan, Tayyaba

    2015-01-01

    In photodynamic therapy (PDT), cells are impregnated with a photosensitizing agent that is activated by light irradiation, thereby photochemically generating reactive oxygen species (ROS). The amounts of ROS produced depends on the PDT dose and the nature of the photosensitizer. Although high levels of ROS are cytotoxic, at physiological levels they play a key role as second messengers in cellular signaling pathways, pluripotency, and differentiation of stem cells. To investigate further the use of photochemically triggered manipulation of such pathways, we exposed mouse osteoblast precursor cells and rat primary mesenchymal stromal cells to low-dose PDT. Our results demonstrate that low-dose PDT can promote osteoblast differentiation via the activation of activator protein-1 (AP-1). Although PDT has been used primarily as an anti-cancer therapy, the use of light as a photochemical "molecular switch" to promote differentiation should expand the utility of this method in basic research and clinical applications. PMID:26279470

  3. Neuropeptides stimulate human osteoblast activity and promote gap junctional intercellular communication.

    Science.gov (United States)

    Ma, Wenhui; Zhang, Xuemin; Shi, Shushan; Zhang, Yingze

    2013-06-01

    Neuropeptides released from the skeletal nerve fibers have neurotransmitter and immunoregulatory roles; they exert paracrine biological effects on bone cells present close to the nerve endings expressing these signaling molecules. The aims of this study were a systematic investigation of the effects of the neuropeptides substance P (SP), calcitonin gene-related peptide (CGRP), vasoactive intestinal polypeptide (VIP), Neuropeptide Y (NPY) and tyrosine hydroxylase (TH) on the cell viability and function of the human osteoblasts, and comparing their difference in the role of regulating bone formation. Cultures of normal human osteoblasts were treated with SP, CGRP, VIP, NPY or TH at three concentrations. We found that each of the five neuropeptides induced increases in cell viability of human osteoblasts. The stimulatory action of NPY was the highest, followed by VIP, SP and TH, while CGRP had the lowest stimulatory effect. The viability index of osteoblasts was inversely associated with the concentration of neuropeptides, and positively with the time of exposure. Moreover, the five neuropeptides increased the ALP activity and osteocalcin to different extents in a dose-dependent manner. The GJIC of osteoblasts was significantly promoted by neuropeptides. The results demonstrated that neuropeptides released from skeletal nerve endings after a stimulus appeared to be able to induce the proliferation and activity of osteoblasts via enhancing GJIC between cells, and further influence the bone formation. These findings may contribute toward a better understanding of the neural influence on bone remodeling and improving treatments related to bone diseases.

  4. Staphylococcus aureus - induced tumor necrosis factor - related apoptosis - inducing ligand expression mediates apoptosis and caspase-8 activation in infected osteoblasts

    Directory of Open Access Journals (Sweden)

    Bost Kenneth L

    2003-04-01

    Full Text Available Abstract Background Staphylococcus aureus infection of normal osteoblasts induces expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL. Results Normal osteoblasts were incubated in the presence of purified bacterial products over a range of concentrations. Results demonstrate that purified surface structures and a selected superantigen present in the extracellular environment are not capable of inducing TRAIL expression by osteoblasts. Osteoblasts were co-cultured with S. aureus at various multiplicities of infection utilizing cell culture chamber inserts. Results of those experiments suggest that direct contact between bacteria and osteoblasts is necessary for optimal TRAIL induction. Finally, S. aureus infection of osteoblasts in the presence of anti-TRAIL antibody demonstrates that TRAIL mediates caspase-8 activation and apoptosis of infected cells. Conclusions Collectively, these findings suggest a mechanism whereby S. aureus mediates bone destruction via induction of osteoblast apoptosis.

  5. Sphingosine 1-phosphate receptor activation enhances BMP-2-induced osteoblast differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Chieri [Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501 (Japan); Iwasaki, Tsuyoshi, E-mail: tsuyo-i@huhs.ac.jp [Division of Pharmacotherapy, Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, 1-3-6 Minatojima, Chuo-ku, Kobe 650-8530 (Japan); Kitano, Sachie; Tsunemi, Sachi; Sano, Hajime [Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501 (Japan)

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer We investigated the role of S1P signaling for osteoblast differentiation. Black-Right-Pointing-Pointer Both S1P and FTY enhanced BMP-2-stimulated osteoblast differentiation by C2C12 cells. Black-Right-Pointing-Pointer S1P signaling enhanced BMP-2-stimulated Smad and ERK phosphorylation by C2C12 cells. Black-Right-Pointing-Pointer MEK/ERK signaling is a pathway underlying S1P signaling for osteoblast differentiation. -- Abstract: We previously demonstrated that sphingosine 1-phosphate (S1P) receptor-mediated signaling induced proliferation and prostaglandin productions by synovial cells from rheumatoid arthritis (RA) patients. In the present study we investigated the role of S1P receptor-mediated signaling for osteoblast differentiation. We investigated osteoblast differentiation using C2C12 myoblasts, a cell line derived from murine satellite cells. Osteoblast differentiation was induced by the treatment of bone morphogenic protein (BMP)-2 in the presence or absence of either S1P or FTY720 (FTY), a high-affinity agonist of S1P receptors. Osteoblast differentiation was determined by osteoblast-specific transcription factor, Runx2 mRNA expression, alkaline phosphatase (ALP) activity and osteocalcin production by the cells. Smad1/5/8 and extracellular signal-regulated kinase (ERK) 1/2 phosphorylation was examined by Western blotting. Osteocalcin production by C2C12 cells were determined by ELISA. Runx2 expression and ALP activity by BMP-2-stimulated C2C12 cells were enhanced by addition of either S1P or FTY. Both S1P and FTY enhanced BMP-2-induced ERK1/2 and Smad1/5/8 phosphorylation. The effect of FTY was stronger than that of S1P. S1P receptor-mediated signaling on osteoblast differentiation was inhibited by addition of mitogen-activated protein kinase/ERK kinase (MEK) 1/2 inhibitor, indicating that the S1P receptor-mediated MEK1/2-ERK1/2 signaling pathway enhanced BMP-2-Smad signaling. These results indicate that S1P

  6. Calcitonin gene-related peptide induces proliferation and monocyte chemoattractant protein-1 expression via extracellular signal-regulated kinase activation in rat osteoblasts

    Institute of Scientific and Technical Information of China (English)

    HAN Na; ZHANG Dian-ying; WANG Tian-bing; ZHANG Pei-xun; JIANG Bao-guo

    2010-01-01

    Background Calcitonin gene-related peptide (CGRP), a sensory neuropeptide, affects osteoblast proliferation and bone formation. However, the mechanisms are not fully understood. Monocyte chemoattractant protein-1 (MCP-1) is a chemokine that stimulates the migration of monocytes and plays important roles in regulating bone remolding during fracture repair, In this study, we investigated the effects of CGRP on proliferation and MCP-1 expression in cultured rat osteoblasts.Methods Primary rat osteoblasts were isolated from fetal rats calvariae. Cells were exposed to gradient concentrations (10-9 to 10-7 mol/L) of CGRP. Protein and mRNA levels of MCP-1 were quantified by Western blotting and semiquantitative reverse transcription-polymerase chain reaction, respectively. The protein level of MCP-1 was investigated and compared in cell culture media by enzyme linked immunosorbent assay (ELISA). Phospho-extracellular signal-regulated kinase (ERK) expression was detected by Western blotting. Cell proliferative activity was measured by 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) and BrdU assay. The effects of MAPK/ERK kinase (MEK)-inhibitor U0126 on CGRP-induced MCP-1 expression in primary rat osteoblasts were examined.Results CGRP effectively enhanced primary rat osteoblast proliferation and led to significant increases in the expression of MCP-1 mRNA and protein in time- and dose-dependent manners. CGRP activated the ERK pathway.Pretreatment of cultured rat osteoblasts with MEK inhibitor U0126 resulted in dose-dependent inhibitions of CGRP-induced MCP-1 mRNA and protein levels. Thus, CGRP promoted cell proliferation and stimulated MCP-1 expression in cultured rat osteoblasts.Conclusion These studies document novel links between CGRP and MCP-1 and illuminate the effects of CGRP in regulating bone remodeling.

  7. Effects of fluoridation of porcine hydroxyapatite on osteoblastic activity of human MG63 cells

    Science.gov (United States)

    Li, Zhipeng; Huang, Baoxin; Mai, Sui; Wu, Xiayi; Zhang, Hanqing; Qiao, Wei; Luo, Xin; Chen, Zhuofan

    2015-06-01

    Biological hydroxyapatite, derived from animal bones, is the most widely used bone substitute in orthopedic and dental treatments. Fluorine is the trace element involved in bone remodeling and has been confirmed to promote osteogenesis when administered at the appropriate dose. To take advantage of this knowledge, fluorinated porcine hydroxyapatite (FPHA) incorporating increasing levels of fluoride was derived from cancellous porcine bone through straightforward chemical and thermal treatments. Physiochemical characteristics, including crystalline phases, functional groups and dissolution behavior, were investigated on this novel FPHA. Human osteoblast-like MG63 cells were cultured on the FPHA to examine cell attachment, cytoskeleton, proliferation and osteoblastic differentiation for in vitro cellular evaluation. Results suggest that fluoride ions released from the FPHA play a significant role in stimulating osteoblastic activity in vitro, and appropriate level of fluoridation (1.5 to 3.1 atomic percents of fluorine) for the FPHA could be selected with high potential for use as a bone substitute.

  8. Polycythemia is associated with bone loss and reduced osteoblast activity in mice

    NARCIS (Netherlands)

    Oikonomidou, P R; Casu, C; Yang, Z; Crielaard, B; Shim, J H; Rivella, S; Vogiatzi, M G

    2015-01-01

    Increased fragility has been described in humans with polycythemia vera (PV). Herein, we describe an osteoporotic phenotype associated with decreased osteoblast activity in a mouse model of PV and another mouse of polycythemia and elevated circulating erythropoietin (EPO). Our results are important

  9. Dexamethasone-induced apoptosis of osteocytic and osteoblastic cells is mediated by TAK1 activation.

    Science.gov (United States)

    Ding, Heyuan; Wang, Tao; Xu, Dongli; Cha, Bingbing; Liu, Jun; Li, Yiming

    2015-05-01

    Increased apoptosis of osteoblasts and osteocytes is the main mechanism of glucocorticoid (GC)-induced osteonecrosis. In the current study, we investigated whether dexamethasone (Dex)-induced osteoblastic and osteocytic cell apoptosis is mediated through activation of transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1), and whether TAK1 inhibition could promote survival opposing the deleterious effects of Dex. We found that TAK1 was activated by Dex in both osteocytic MLO-Y4 and osteoblastic OB-6 cells, which was prevented by two known anti-oxidants N-acetylcysteine (NAC) and ebselen. TAK1 inhibitors, including LYTAK1 and 5Z-7-oxozeaenol (57-OZ), inhibited Dex-induced apoptosis of MLO-Y4 and OB-6 cells. Meanwhile shRNA-mediated knockdown of TAK1 also suppressed Dex-induced damages to MLO-Y4 and OB-6 cells. On the other hand, exogenously over-expressing TAK1 enhanced Dex-induced MLO-Y4 and OB-6 cell apoptosis. At the molecular level, we found that TAK1 mediated Dex-induced pro-apoptotic Pyk2-JNK activation. Inhibition or silencing of TAK1 almost abolished Pyk2-JNK phosphorylations by Dex in MLO-Y4 and OB-6 cells. TAK1 over-expression, on the other hand, increased Dex's activity on Pyk2-JNK phosphorylations in above cells. We conclude that part of the pro-apoptotic actions of Dex on osteoblastic and osteocytic cells are mediated through TAK1 activation, and that inhibition of TAK1 might protect from GC-induced damages to osteoblasts and osteocytes. PMID:25753204

  10. Induced Microcracking Affects Osteoblast Attachment on Hydroxyapatite Scaffolds for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Ian O. Smith

    2006-01-01

    Full Text Available Bone microdamage caused by routine activity plays an important role in triggering targeted and nontargeted bone remodeling. Targeted remodeling occurs near localized areas of microdamage[1-4]. We hypothesize that bone remodeling may be directly and positively influenced by inducing microcracks in hydroxyapatite (HA scaffolds for bone tissue engineering. A study by Case et al. showed microcracking in HA discs having >98% theoretical density[5]. These microcracks occurred without the application of external stress, likely as a result of thermal expansion anisotropy (TEA. TEA generates microcracks only when the specimen grain size exceeds a critical value (GCR. Due to conflicting data in the literature on the thermal expansion along the crystallographic axes of HA, it is difficult to estimate GCR precisely for HA, but GCR likely ranges from a few tenths of microns to several microns[6]. As the grain size of a polycrystalline specimen increases above the critical grain size, the number of microcracks also increases but the number density of microcracks is difficult to control. Therefore, in this study we used Vickers microindentation to induce controlled microcracks in >99% dense HA discs. The effect of microcracking on the osteoblast (OB attachment was then quantified. Control HA discs and microcracked HA were seeded with MC3T3-E1 OBs and cultured for 4 hours. The OBs were then stained with Rhodamine-Phalloidin and Hoechst fluorescent dyes to identify the actin fibers and nuclei, respectively. OB attachment was quantified using fluorescent light microscopy. OB attachment at 4 hours was 29% ± 7.6% of the initial seeded OBs for the microcracked HA specimens and 18% ± 6.1% of initial seeded OBs for the non-microcracked control HA specimens. The difference in these OB attachment values was statistically significant as determined via the Student t-test (p = 0.004, with p < 0.05 taken to indicate significance.

  11. Dehydroepiandrosterone indirectly inhibits human osteoclastic resorption via activating osteoblastic viability by the MAPK pathway

    Institute of Scientific and Technical Information of China (English)

    WANG Yu-dong; TAO Min-fang; CHENG Wei-wei; LIU Xiao-hua; WAN Xiao-ping; KeMi Cui

    2012-01-01

    Background Dehydroepiandrosterone (DHEA) is widely known for its beneficial effect on postmenopausal osteoporosis,although the underlying mechanisms remain mainly unclear.In this study,we tried to determine the activation of mitogen-activated protein kinase signal pathways during DHEA treatment and the indirect role of osteoblasts (OBs) on osteoclasts under the DHEA treatment of postmenopausal osteoporosis.@@Methods Primary human OBs and osteoclast-like cells were cultured and,we pretreated OBs with or without U0126 (a highly selective inhibitor of both MEK1 and MEK2).The OBs were treated with DHEA.We then tested the effects of DHEA on human osteoblastic viability,osteoprotegerin production and the expression of phosphor-ERK1/2 (extracellular signal-regulated kinase).In the presence or absence of OBs,the function of osteoclastic resorption upon DHEA treatment was calculated.@@Results DHEA promoted the human osteoblastic proliferation and inhibited the osteoblastic apoptosis within the concentration range of 108-10-6 mol/L (P <0.05,P <0.01,respectively).Within the effective concentration range,the expression of phosphor-ERK1/2 and osteoprotegerin was increased by DHEA and blocked by U0126.In the presence of OBs,DHEA could significantly decrease the number and the area of bone resorption lacuna (P <0.05 and P <0.01,respectively).Without OBs,however,the effects of DHEA on the bone resorption lacuna were almost completely abolished.@@Conclusions DHEA could indirectly inhibit the human osteoclastic resorption through promoting the osteoblastic viability and osteoprotegerin production,which is mediated by mitogen-activated protein kinases signal pathway involving the phosphor-ERK1/2.

  12. The aryl hydrocarbon receptor suppresses osteoblast proliferation and differentiation through the activation of the ERK signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Haitao; Du, Yuxuan; Zhang, Xulong; Sun, Ying; Li, Shentao; Dou, Yunpeng [Department of Immunology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing 100069 (China); Li, Zhanguo [Department of Rheumatology and Immunology, Clinical Immunology Center, Peking University People' s Hospital, No. 11 Xizhimen South Street, Beijing 100044 (China); Yuan, Huihui, E-mail: huihui_yuan@163.com [Department of Immunology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing 100069 (China); Zhao, Wenming, E-mail: zhao-wenming@163.com [Department of Immunology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing 100069 (China)

    2014-11-01

    Ahr activation is known to be associated with synovitis and exacerbated rheumatoid arthritis (RA), but its contributions to bone loss have not been completely elucidated. Osteoblast proliferation and differentiation are abnormal at the erosion site in RA. Here, we reported that the expression of Ahr was increased in the hind paws' bone upon collagen-induced arthritis (CIA) in mice, and the levels of Ahr were negatively correlated with bone mineral density (BMD). In addition, immunofluorescent staining showed that the high expression of Ahr was mainly localized in osteoblasts from the CIA mice compared to normal controls. Moreover, the luciferase intensity of Ahr in the nucleus increased by 12.5% in CIA osteoblasts compared to that in normal controls. In addition, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) activation of the Ahr inhibited pre-osteoblast MC3T3-E1 cellular proliferation and differentiation in a dose-dependent manner. Interestingly, the levels of alkaline phosphatase (ALP) mRNA expression in the osteoblasts of CIA mice were reduced compared to normal controls. In contrast, decreased ALP expression by activated Ahr was completely reversed after pretreatment with an Ahr inhibitor (CH-223191) in MC3T3-E1 cell lines and primary osteoblasts on day 5. Our data further showed that activation of Ahr promoted the phosphorylation of ERK after 5 days. Moreover, Ahr-dependent activation of the ERK signaling pathway decreased the levels of proliferation cells and inhibited ALP activity in MC3T3-E1 cells. These results demonstrated that the high expression of Ahr may suppress osteoblast proliferation and differentiation through activation of the ERK signaling pathway, further enabling bone erosion in CIA mice. - Highlights: • The upregulation of Ahr was localized in osteoblasts of CIA mice. • The overexpression of Ahr suppressed osteoblast development. • The Ahr activated ERK signaling pathway to exacerbate bone erosion.

  13. Histone H4-related osteogenic growth peptide (OGP): a novel circulating stimulator of osteoblastic activity.

    OpenAIRE

    Bab, I; Gazit, D.; Chorev, M; Muhlrad, A; Shteyer, A; Greenberg, Z; Namdar, M; Kahn, A.

    1992-01-01

    It has been established that regenerating marrow induces an osteogenic response in distant skeletal sites and that this activity is mediated by factors released into the circulation by the healing tissue. In the present study we have characterized one of these factors, a 14 amino acid peptide named osteogenic growth peptide (OGP). Synthetic OGP, identical in structure to the native molecule, stimulates the proliferation and alkaline phosphatase activity of osteoblastic cells in vitro and incr...

  14. Antiosteoporotic Activity of Anthraquinones from Morinda officinalis on Osteoblasts and Osteoclasts

    Directory of Open Access Journals (Sweden)

    Cheng-Jian Zheng

    2009-01-01

    Full Text Available Bioactivity-guided fractionation led to the successful isolation of antiosteoporotic components, i.e. physicion (1, rubiadin-1-methyl ether (2, 2-hydroxy-1-methoxy- anthraquinone (3, 1,2-dihydroxy-3-methylanthraquinone (4, 1,3,8-trihydroxy-2-methoxy- anthraquinone (5, 2-hydroxymethyl-3-hydroxyanthraquinone (6, 2-methoxyanthraquinone (7 and scopoletin (8 from an ethanolic extract of the roots of Morinda officinalis. Compounds 4-8 are isolated for the first time from M. officinalis. Among them, compounds 2 and 3 promoted osteoblast proliferation, while compounds 4, 5 increased osteoblast ALP activity. All of the isolated compounds inhibited osteoclast TRAP activity and bone resorption, and the inhibitory effects on osteoclastic bone resorption of compounds 1 and 5 were stronger than that of other compounds. Taken together, antiosteoporotic activity of M. officinalis and its anthraquinones suggest therapeutic potential against osteoporosis.

  15. Antiosteoporotic activity of anthraquinones from Morinda officinalis on osteoblasts and osteoclasts.

    Science.gov (United States)

    Wu, Yan-Bin; Zheng, Cheng-Jian; Qin, Lu-Ping; Sun, Lian-Na; Han, Ting; Jiao, Lei; Zhang, Qiao-Yan; Wu, Jin-Zhong

    2009-01-01

    Bioactivity-guided fractionation led to the successful isolation of antiosteoporotic components, i.e. physicion (1), rubiadin-1-methyl ether (2), 2-hydroxy-1-methoxy- anthraquinone (3), 1,2-dihydroxy-3-methylanthraquinone (4), 1,3,8-trihydroxy-2-methoxy- anthraquinone (5), 2-hydroxymethyl-3-hydroxyanthraquinone (6), 2-methoxyanthraquinone (7) and scopoletin (8) from an ethanolic extract of the roots of Morinda officinalis. Compounds 4-8 are isolated for the first time from M. officinalis. Among them, compounds 2 and 3 promoted osteoblast proliferation, while compounds 4, 5 increased osteoblast ALP activity. All of the isolated compounds inhibited osteoclast TRAP activity and bone resorption, and the inhibitory effects on osteoclastic bone resorption of compounds 1 and 5 were stronger than that of other compounds. Taken together, antiosteoporotic activity of M. officinalis and its anthraquinones suggest therapeutic potential against osteoporosis. PMID:19169204

  16. Mechanical Stimulation and IGF-1 Enhance mRNA Translation Rate in Osteoblasts Via Activation of the AKT-mTOR Pathway.

    Science.gov (United States)

    Bakker, Astrid D; Gakes, Tom; Hogervorst, Jolanda M A; de Wit, Gerard M J; Klein-Nulend, Jenneke; Jaspers, Richard T

    2016-06-01

    Insulin-like growth factor-1 (IGF-1) is anabolic for muscle by enhancing the rate of mRNA translation via activation of AKT and subsequent activation of the mammalian target of rapamycin complex 1 (mTOR), thereby increasing cellular protein production. IGF-1 is also anabolic for bone, but whether the mTOR pathway plays a role in the rate of bone matrix protein production by osteoblasts is unknown. We hypothesized that anabolic stimuli such as mechanical loading and IGF-1 stimulate protein synthesis in osteoblasts via activation of the AKT-mTOR pathway. MC3T3-E1 osteoblasts were either or not subjected for 1 h to mechanical loading by pulsating fluid flow (PFF) or treated with or without human recombinant IGF-1 (1-100 ng/ml) for 0.5-6 h, to determine phosphorylation of AKT and p70S6K (downstream of mTOR) by Western blot. After 4 days of culture with or without the mTOR inhibitor rapamycin, total protein, DNA, and gene expression were quantified. IGF-1 (100 ng/ml) reduced IGF-1 gene expression, although PFF enhanced IGF-1 expression. IGF-1 did not affect collagen-I gene expression. IGF-1 dose-dependently enhanced AKT and p70S6K phosphorylation at 2 and 6 h. PFF enhanced phosphorylation of AKT and p70S6K already within 1 h. Both IGF-1 and PFF enhanced total protein per cell by ∼30%, but not in the presence of rapamycin. Our results show that IGF-1 and PFF activate mTOR, thereby stimulating the rate of mRNA translation in osteoblasts. The known anabolic effect of mechanical loading and IGF-1 on bone may thus be partly explained by mTOR-mediated enhanced protein synthesis in osteoblasts. PMID:26505782

  17. Mechanical Stimulation and IGF-1 Enhance mRNA Translation Rate in Osteoblasts Via Activation of the AKT-mTOR Pathway.

    Science.gov (United States)

    Bakker, Astrid D; Gakes, Tom; Hogervorst, Jolanda M A; de Wit, Gerard M J; Klein-Nulend, Jenneke; Jaspers, Richard T

    2016-06-01

    Insulin-like growth factor-1 (IGF-1) is anabolic for muscle by enhancing the rate of mRNA translation via activation of AKT and subsequent activation of the mammalian target of rapamycin complex 1 (mTOR), thereby increasing cellular protein production. IGF-1 is also anabolic for bone, but whether the mTOR pathway plays a role in the rate of bone matrix protein production by osteoblasts is unknown. We hypothesized that anabolic stimuli such as mechanical loading and IGF-1 stimulate protein synthesis in osteoblasts via activation of the AKT-mTOR pathway. MC3T3-E1 osteoblasts were either or not subjected for 1 h to mechanical loading by pulsating fluid flow (PFF) or treated with or without human recombinant IGF-1 (1-100 ng/ml) for 0.5-6 h, to determine phosphorylation of AKT and p70S6K (downstream of mTOR) by Western blot. After 4 days of culture with or without the mTOR inhibitor rapamycin, total protein, DNA, and gene expression were quantified. IGF-1 (100 ng/ml) reduced IGF-1 gene expression, although PFF enhanced IGF-1 expression. IGF-1 did not affect collagen-I gene expression. IGF-1 dose-dependently enhanced AKT and p70S6K phosphorylation at 2 and 6 h. PFF enhanced phosphorylation of AKT and p70S6K already within 1 h. Both IGF-1 and PFF enhanced total protein per cell by ∼30%, but not in the presence of rapamycin. Our results show that IGF-1 and PFF activate mTOR, thereby stimulating the rate of mRNA translation in osteoblasts. The known anabolic effect of mechanical loading and IGF-1 on bone may thus be partly explained by mTOR-mediated enhanced protein synthesis in osteoblasts.

  18. Orbital fluid shear stress promotes osteoblast metabolism, proliferation and alkaline phosphates activity in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Aisha, M.D. [Institute of Medical Molecular Biotechnology and Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor (Malaysia); Nor-Ashikin, M.N.K. [Institute of Medical Molecular Biotechnology and Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor (Malaysia); DDH, Universiti Teknologi MARA, ShahAlam 40450, Selangor (Malaysia); Sharaniza, A.B.R. [DDH, Universiti Teknologi MARA, ShahAlam 40450, Selangor (Malaysia); Nawawi, H. [Center for Pathology Diagnostic and Research Laboratories, Clinical Training Center, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor (Malaysia); I-PPerForM, Universiti Teknologi MARA, Selayang 47000 Selangor (Malaysia); Froemming, G.R.A., E-mail: gabriele@salam.uitm.edu.my [Institute of Medical Molecular Biotechnology and Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor (Malaysia); I-PPerForM, Universiti Teknologi MARA, Selayang 47000 Selangor (Malaysia)

    2015-09-10

    Prolonged disuse of the musculoskeletal system is associated with reduced mechanical loading and lack of anabolic stimulus. As a form of mechanical signal, the multidirectional orbital fluid shear stress transmits anabolic signal to bone forming cells in promoting cell differentiation, metabolism and proliferation. Signals are channeled through the cytoskeleton framework, directly modifying gene and protein expression. For that reason, we aimed to study the organization of Normal Human Osteoblast (NHOst) cytoskeleton with regards to orbital fluid shear (OFS) stress. Of special interest were the consequences of cytoskeletal reorganization on NHOst metabolism, proliferation, and osteogenic functional markers. Cells stimulated at 250 RPM in a shaking incubator resulted in the rearrangement of actin and tubulin fibers after 72 h. Orbital shear stress increased NHOst mitochondrial metabolism and proliferation, simultaneously preventing apoptosis. The ratio of RANKL/OPG was reduced, suggesting that orbital shear stress has the potential to inhibit osteoclastogenesis and osteoclast activity. Increase in ALP activity and OCN protein production suggests that stimulation retained osteoblast function. Shear stress possibly generated through actin seemed to hold an anabolic response as osteoblast metabolism and functional markers were enhanced. We hypothesize that by applying orbital shear stress with suitable magnitude and duration as a non-drug anabolic treatment can help improve bone regeneration in prolonged disuse cases. - Highlights: • OFS stress transmits anabolic signals to osteoblasts. • Actin and tubulin fibers are rearranged under OFS stress. • OFS stress increases mitochondrial metabolism and proliferation. • Reduced RANKL/OPG ratio in response to OFS inhibits osteoclastogenesis. • OFS stress prevents apoptosis and stimulates ALP and OCN.

  19. Activation of L-type calcium channels is required for gap junction-mediated intercellular calcium signaling in osteoblastic cells

    Science.gov (United States)

    Jorgensen, Niklas Rye; Teilmann, Stefan Cuoni; Henriksen, Zanne; Civitelli, Roberto; Sorensen, Ole Helmer; Steinberg, Thomas H.

    2003-01-01

    The propagation of mechanically induced intercellular calcium waves (ICW) among osteoblastic cells occurs both by activation of P2Y (purinergic) receptors by extracellular nucleotides, resulting in "fast" ICW, and by gap junctional communication in cells that express connexin43 (Cx43), resulting in "slow" ICW. Human osteoblastic cells transmit intercellular calcium signals by both of these mechanisms. In the current studies we have examined the mechanism of slow gap junction-dependent ICW in osteoblastic cells. In ROS rat osteoblastic cells, gap junction-dependent ICW were inhibited by removal of extracellular calcium, plasma membrane depolarization by high extracellular potassium, and the L-type voltage-operated calcium channel inhibitor, nifedipine. In contrast, all these treatments enhanced the spread of P2 receptor-mediated ICW in UMR rat osteoblastic cells. Using UMR cells transfected to express Cx43 (UMR/Cx43) we confirmed that nifedipine sensitivity of ICW required Cx43 expression. In human osteoblastic cells, gap junction-dependent ICW also required activation of L-type calcium channels and influx of extracellular calcium.

  20. Effect of vibration on osteoblastic and osteoclastic activities: Analysis of bone metabolism using goldfish scale as a model for bone

    Science.gov (United States)

    Suzuki, N.; Kitamura, K.; Nemoto, T.; Shimizu, N.; Wada, S.; Kondo, T.; Tabata, M. J.; Sodeyama, F.; Ijiri, K.; Hattori, A.

    In osteoclastic activity during space flight as well as hind limb unloading by tail suspension, inconsistent results have been reported in an in vivo study. The bone matrix plays an important role in the response to physical stress. However, there is no suitable in vitro co-culture system of osteoblasts and osteoclasts including bone matrix. On the other hand, fish scale is a calcified tissue that contains osteoblasts, osteoclasts, and bone matrix, all of which are similar to those found in human bones. Recently, we developed a new in vitro model system using goldfish scale. This system can detect the activities of osteoclasts and osteoblasts with tartrate-resistant acid phosphatase and alkaline phosphatase as the respective markers and precisely analyze the co-relationship between osteoblasts and osteoclasts. Using this system, we analyzed the bone metabolism under various degrees of acceleration (0.5-, 1-, 2-, 4-, and 6-G) by vibration with a G-load apparatus. After loading for 5 and 10 min, the scales were incubated for 6 and 24 h. The osteoblastic and osteoclastic activities were then measured. The osteoblastic activities gradually increased corresponding to 1-G to 6-G acceleration. In addition, ER mRNA expression was the highest under 6-G acceleration. On the other hand, the osteoclastic activity decreased at 24 h of incubation under low acceleration (0.5- and 1-G). This change coincided with TRAP mRNA expression. Under 2-G acceleration, the strength of suppression in osteoclastic activity was the highest. The strength of the inhibitory action under 4- and 6-G acceleration was lower than that under 2-G acceleration. In our co-culture system, osteoblasts and osteoclasts in the scale sensitively responded to several degrees of acceleration. Therefore, we strongly believe that our in vitro co-culture system is useful for the analysis of bone metabolism under loading or unloading.

  1. Alterations of metabolic activity in human osteoarthritic osteoblasts by lipid peroxidation end product 4-hydroxynonenal

    OpenAIRE

    Shi, Qin; Vaillancourt, France; Côté, Véronique; Fahmi, Hassan; Lavigne, Patrick; Afif, Hassan; Di Battista, John A.; Fernandes, Julio C; Benderdour, Mohamed

    2006-01-01

    4-Hydroxynonenal (HNE), a lipid peroxidation end product, is produced abundantly in osteoarthritic (OA) articular tissues, but its role in bone metabolism is ill-defined. In this study, we tested the hypothesis that alterations in OA osteoblast metabolism are attributed, in part, to increased levels of HNE. Our data showed that HNE/protein adduct levels were higher in OA osteoblasts compared to normal and when OA osteoblasts were treated with H2O2. Investigating osteoblast markers, we found t...

  2. Optimization of extraction and purification of active fractions from Schisandra chinensis (Turcz.) and its osteoblastic proliferation stimulating activity.

    Science.gov (United States)

    Caichompoo, Wanida; Zhang, Qiao-Yan; Hou, Ting-Ting; Gao, Hua-Juan; Qin, Lu-Ping; Zhou, Xiu-Jia

    2009-02-01

    Extraction and purification conditions of lignans from the fruits and seeds of Schisandra chinensis (Turcz.) were investigated through an orthogonal design of L(9)(3(4)) assay and macroporous resin technology. The extraction was optimized using 95% ethanol. For purification, the extract was dissolved in 30% ethanol, then adsorbed on a AB-8 macroporous resin and eluted with 30% ethanol and 70% ethanol successively, the latter resulting in a residue containing 65.2% of lignans. By HPLC analysis schisandrin, deoxyschisandrin and gamma-schisandrin were quantitatively determined. UMR 106 cells were used to examine the stimulatory activity of the lignans on osteoblasts in vitro. The lignans stimulated the proliferation of and the activity of alkaline phosphatase in the osteoblasts indicating their potential activity against osteoporosis. PMID:18698667

  3. Use of green fluorescent fusion protein to track activation of the transcription factor osterix during early osteoblast differentiation

    International Nuclear Information System (INIS)

    Osterix (Osx) is a transcription factor required for the differentiation of preosteoblasts into fully functioning osteoblasts. However, the pattern of Osx activation during preosteoblast differentiation and maturation has not been clearly defined. Our aim was to study Osx activation during these processes in osteoblasts differentiating from murine and human embryonic stem cells (ESC). To do this, we constructed an Osx-GFP fusion protein reporter system to track Osx translocation within the cells. The distribution of Osx-GFP at representative stages of differentiation was also investigated by screening primary osteoblasts, mesenchymal stem cells, synoviocytes, and pre-adipocytes. Our experiments revealed that Osx-GFP protein was detectable in the cytoplasm of cultured, differentiated ESC 4 days after plating of enzymatically dispersed embryoid bodies. Osterix-GFP protein became translocated into the nucleus on day 7 following transfer of differentiated ESC to osteogenic medium. After 14 days of differentiation, cells showing nuclear translocation of Osx-GFP formed rudimentary bone nodules that continued to increase in number over the following weeks (through day 21). We also found that Osx translocated into the nuclei of mesenchymal stem cells (C3H10T1/2) and pre-osteoblasts (MC3T3-E1) and showed partial activation in pre-adipocytes (MC3T3-L1). These data suggest that Osx activation occurs at a very early point in the differentiation of the mesenchymal-osteoblastic lineage

  4. Multiple signaling pathways involved in stimulation of osteoblast differentiation by N-methyl-D-aspartate receptors activation in vitro

    Institute of Scientific and Technical Information of China (English)

    Jie-li LI; Lin ZHAO; Bin CUI; Lian-fu DENG; Guang NING; Jian-min LIU

    2011-01-01

    Aim: Glutamate receptors are expressed in osteoblastic cells. The present study was undertaken to investigate the mechanisms underlying the stimulation of osteoblast differentiation by N-methyl-D-aspartate (NMDA) receptor activation in vitro.Methods: Primary culture of osteoblasts was prepared from SD rats. Microarray was used to detect the changes of gene expression.The effect of NMDA receptor agonist or antagonist on individual gene was examined using RT-PCR. The activity of alkaloid phosphotase (ALP) was assessed using a commercial ALP staining kit.Results: Microarray analyses revealed that 10 genes were up-regulated by NMDA (0.5 mmol/L) and down-regulated by MK801 (100μmol/L), while 13 genes down-regulated by NMDA (0.5 mmol/L) and up-regulated by MK801 (100 μmol/L). Pretreatment of osteoblasts with the specific PKC inhibitor Calphostin C (0.05 μmol/L), the PKA inhibitor H-89 (20 nmol/L), or the PI3K inhibitor wortmannin (100 nmol/L) blocked the ALP activity increase caused by NMDA (0.5 mmol/L). Furthermore, NMDA (0.5 mmol/L) rapidly increased PI3K phosphorylation, which could be blocked by pretreatment of wortmannin (100 nmol/L).Conclusion: The results suggest that activation of NMDA receptors stimulates osteoblasts differentiation through PKA, PKC, and PI3K signaling pathways, which is a new role for glutamate in regulating bone remodeling.

  5. Class I PI-3-Kinase Signaling Is Critical for Bone Formation Through Regulation of SMAD1 Activity in Osteoblasts.

    Science.gov (United States)

    Gámez, Beatriz; Rodríguez-Carballo, Edgardo; Graupera, Mariona; Rosa, José Luis; Ventura, Francesc

    2016-08-01

    Bone formation and homeostasis is carried out by osteoblasts, whose differentiation and activity are regulated by osteogenic signaling networks. A central mediator of these inputs is the lipid kinase phosphatidylinositol 3-kinase (PI3K). However, at present, there are no data on the specific role of distinct class IA PI3K isoforms in bone biology. Here, we performed osteoblast-specific deletion in mice to show that both p110α and p110β isoforms are required for survival and differentiation and function of osteoblasts and thereby control bone formation and postnatal homeostasis. Impaired osteogenesis arises from increased GSK3 activity and a depletion of SMAD1 protein levels in PI3K-deficient osteoblasts. Accordingly, pharmacological inhibition of GSK3 activity or ectopic expression of SMAD1 or SMAD5 normalizes bone morphogenetic protein (BMP) transduction and osteoblast differentiation. Together, these results identify the PI3K-GSK3-SMAD1 axis as a central node integrating multiple signaling networks that govern bone formation and homeostasis. © 2016 American Society for Bone and Mineral Research. PMID:26896753

  6. Mediatised affective activism

    DEFF Research Database (Denmark)

    Reestorff, Camilla Møhring

    2014-01-01

    bodies by addressing affective registers. The mediatised ‘affective environment’ (Massumi, 2009) cues bodies and generates spreadability, yet it also produces disconnections. These disconnections might redistribute the ‘economy of recognizability’ (Butler and Athanasiou, 2013); however, the Femen...

  7. Intercellular calcium signaling occurs between human osteoblasts and osteoclasts and requires activation of osteoclast P2X7 receptors

    DEFF Research Database (Denmark)

    Jørgensen, Niklas R; Henriksen, Zanne; Sørensen, Ole;

    2002-01-01

    Signaling between osteoblasts and osteoclasts is important in bone homeostasis. We previously showed that human osteoblasts propagate intercellular calcium signals via two mechanisms: autocrine activation of P2Y receptors, and gap junctional communication. In the current work we identified...... mechanically induced intercellular calcium signaling between osteoblasts and osteoclasts and among osteoclasts. Intercellular calcium responses in osteoclasts required P2 receptor activation but not gap junctional communication. Pharmacological studies and reverse transcriptase-PCR amplification demonstrated...... that human osteoclasts expressed functional P2Y1 receptors, but, unexpectedly, desensitization of P2Y1 did not block calcium signaling to osteoclasts. We also found that osteoclasts expressed functional P2X7 receptors and showed that pharmacological inhibition of these receptors blocked calcium signaling...

  8. Strontium Ranelate affects signaling from mechanically-stimulated osteocytes towards osteoclasts and osteoblasts

    NARCIS (Netherlands)

    A.D. Bakker; B. Zandieh-Doulabi; J. Klein-Nulend

    2013-01-01

    Strontium Ranelate (SrRan) is used to decrease the risk of bone fractures. Any factor that alters the release of paracrine signals by osteocytes in response to mechanical stimuli potentially affects bone mass and structure, and thus fracture resistance. We hypothesized that SrRan affects paracrine s

  9. Biglycan deficiency increases osteoclast differentiation and activity due to defective osteoblasts

    DEFF Research Database (Denmark)

    Bi, Yanming; Nielsen, Karina L; Kilts, Tina M;

    2006-01-01

    by osteogenic cells. We have previously shown that the extracellular matrix protein, biglycan (Bgn), plays an important role in the differentiation of osteoblast precursors. In this paper, we showed that Bgn is involved in regulating osteoclast differentiation through its effect on osteoblasts...

  10. Dioxin-induced up-regulation of the active form of vitamin D is the main cause for its inhibitory action on osteoblast activities, leading to developmental bone toxicity

    International Nuclear Information System (INIS)

    Dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin, TCDD) is known to cause bone toxicity, particularly during animal development, although its action mechanism to cause this toxicity has yet to be elucidated. Mouse pups were exposed to TCDD via dam's milk that were administered orally with 15 μg TCDD/kg b.w. on postnatal day 1. Here we report that TCDD causes up-regulation of vitamin D 1α-hydroxylase in kidney, resulting in a 2-fold increase in the active form of vitamin D, 1,25-dihydroxyvitamin D3, in serum. This action of TCDD is not caused by changes in parathyroid hormone, a decrease in vitamin D degrading enzyme, vitamin D 24-hydroxylase, or alterations in serum Ca2+ concentration. Vitamin D is known to affect bone mineralization. Our data clearly show that TCDD-exposed mice exhibit a marked decrease in osteocalcin and collagen type 1 as well as alkaline phosphatase gene expression in tibia by postnatal day 21, which is accompanied with a mineralization defect in the tibia, lowered activity of osteoblastic bone formation, and an increase in fibroblastic growth factor-23, a sign of increased vitamin D effect. Despite these significant effects of TCDD on osteoblast activities, none of the markers of osteoclast activities was found to be affected. Histomorphometry confirmed that osteoblastic activity, but not bone resorption activity, was altered by TCDD. A prominent lesion commonly observed in these TCDD-treated mice was impaired bone mineralization that is characterized by an increased volume and thickness of osteoids lining both the endosteum of the cortical bone and trabeculae. Together, these data suggest that the impaired mineralization resulting from reduction of the osteoblastic activity, which is caused by TCDD-induced up-regulation of vitamin D, is responsible for its bone developmental toxicity.

  11. Calcite as a bone substitute. Comparison with hydroxyapatite and tricalcium phosphate with regard to the osteoblastic activity

    Energy Technology Data Exchange (ETDEWEB)

    Monchau, F., E-mail: Francine.monchau@univ-artois.fr [Laboratoire Genie Civil et geo-Environnement (EA 4515, Universite Lille Nord de France), Equipe Biomateriaux Artois (Universite d' Artois), IUT/GMP, 1230, rue de l' Universite, BP 819, 62408 Bethune cedex (France); Hivart, Ph.; Genestie, B. [Laboratoire Genie Civil et geo-Environnement (EA 4515, Universite Lille Nord de France), Equipe Biomateriaux Artois (Universite d' Artois), IUT/GMP, 1230, rue de l' Universite, BP 819, 62408 Bethune cedex (France); Chai, F. [Laboratoire Medicaments et Biomateriaux a Liberation Controlee (INSERM U 1008, Universite Lille Nord de France), Groupe de Recherche sur les Biomateriaux (Universite Lille-2), Faculte de Medecine, 1, place de Verdun, 59045 Lille cedex (France); and others

    2013-01-01

    Close to the bone mineral phase, the calcic bioceramics, such as hydroxyapatite (HA) and {beta}-tricalcium phosphate ({beta}-TCP), are commonly used as substitutes or filling materials in bone surgery. Besides, calcium carbonate (CaCO{sub 3}) is also used for their excellent biocompatibility and bioactivity. However, the problem with the animal-origin aragonite demands the new technique to synthesize pure calcite capable of forming 3D bone implant. This study aims to manufacture and evaluate a highly-pure synthetic crystalline calcite with good cytocompatibility regarding to the osteoblasts, comparing to that of HA and {beta}-TCP. After the manufacture of macroporous bioceramic scaffolds with the identical internal architecture, their cytocompatibility is studied through MC3T3-E1 osteoblasts with the tests of cell viability, proliferation, vitality, etc. The results confirmed that the studied process is able to form a macroporous material with a controlled internal architecture, and this synthesized calcite is non-cytotoxic and facilitate the cell proliferation. Indeed requiring further improvement, the studied calcite is definitely an interesting alternative not only to coralline aragonite but also to calcium phosphate ceramics, particularly in bone sites with the large bone remodelling. Highlights: Black-Right-Pointing-Pointer Macroporous calcite manufacturing with controlled architecture as bone substitute Black-Right-Pointing-Pointer Cytotoxicity: adaptation of the colony-forming method with the target cells: MC3T3-E1 osteoblasts Black-Right-Pointing-Pointer Study of osteoblast proliferation and activity on calcite, HA and TCP.

  12. [Research on effect of Sargentodoxae caulis on activity of osteoclasts and proliferation differentiation of osteoblasts].

    Science.gov (United States)

    Chen, Li-zhen; Zhou, Ying; Huang, Jun-fei; Zhang, Xue; Feng, Ting-ting

    2015-11-01

    Through morphological observation, HE staining, TRAP staining and toluidine blue staining of bone resorption pits to identify osteoclasts which obtained by 1α, 25-(OH)2 VitD3 inducing rabbit bone marrow cells. Three indicators-TRAP staining, TRAP enzyme activity detecting and the number and area of bone resorption pits were adapted to detect the effect of Sargentodoxae caulis on the activity of osteoclasts. Culturing MC3T3-E1 Subclong 14 cells and detecting the effect of S. caulis on differentiation and proliferation of them by MTT and detecting the alkaline phosphatase in cells. The results show that all of the low, middle and high doses of water and alcohol extracts of S. caulis have significant inhibition on osteoclast differentiation and bone resorption ability in a dose-dependent manner. The low and middle doses of water and alcohol extracts of S. caulis can stimulate differentiation and proliferation of MC3T3-ElSubclone 14 cells, which indicates S. caulis can prevent osteoporosis and the function could be achieved by inhibiting osteoclast activity and promoting the proliferation and differentiation of osteoblasts. PMID:27097425

  13. (-)-Epicatechin gallate (ECG) stimulates osteoblast differentiation via Runt-related transcription factor 2 (RUNX2) and transcriptional coactivator with PDZ-binding motif (TAZ)-mediated transcriptional activation.

    Science.gov (United States)

    Byun, Mi Ran; Sung, Mi Kyung; Kim, A Rum; Lee, Cham Han; Jang, Eun Jung; Jeong, Mi Gyeong; Noh, Minsoo; Hwang, Eun Sook; Hong, Jeong-Ho

    2014-04-01

    Osteoporosis is a degenerative bone disease characterized by low bone mass and is caused by an imbalance between osteoblastic bone formation and osteoclastic bone resorption. It is known that the bioactive compounds present in green tea increase osteogenic activity and decrease the risk of fracture by improving bone mineral density. However, the detailed mechanism underlying these beneficial effects has yet to be elucidated. In this study, we investigated the osteogenic effect of (-)-epicatechin gallate (ECG), a major bioactive compound found in green tea. We found that ECG effectively stimulates osteoblast differentiation, indicated by the increased expression of osteoblastic marker genes. Up-regulation of osteoblast marker genes is mediated by increased expression and interaction of the transcriptional coactivator with PDZ-binding motif (TAZ) and Runt-related transcription factor 2 (RUNX2). ECG facilitates nuclear localization of TAZ through PP1A. PP1A is essential for osteoblast differentiation because inhibition of PP1A activity was shown to suppress ECG-mediated osteogenic differentiation. Taken together, the results showed that ECG stimulates osteoblast differentiation through the activation of TAZ and RUNX2, revealing a novel mechanism for green tea-stimulated osteoblast differentiation.

  14. Caveolin-1 is critical in the proliferative effect of leptin on osteoblasts through the activation of Akt.

    Science.gov (United States)

    Zou, Lin; Zhang, Guichun; Liu, Lifeng; Chen, Chen; Cao, Xuecheng; Cai, Jinfang

    2016-09-01

    Osteoblasts are critical in bone remodeling and the repair of bone fractures. Leptin is involved in bone metabolism and osteoblast survival through the downstream signaling pathway, however, the exact mechanism of the effect of leptin on osteoblasts remains to be fully elucidated. In the present study, hFOB 1.19 cells were used to observe the effects of leptin on cell proliferation and apoptosis, and to investigate the underlying mechanism. The results confirmed that treatment of hFOB 1.19 cells with leptin significantly induced cell proliferation. Western blot analysis showed that the expression of caveolin‑1 and the activation of Akt in the cells treated with leptin were significantly increased, compared with the control cells. Additionally, inhibiting Akt activation eliminated the effects on cell proliferation induced by leptin. The rates of cell apoptosis and cell cycle distribution were examined using flow cytometry, which revealed a decrease in the apoptotic rate and an increase in the proportion of cells in the S phase. This indicated that leptin was capable of inducing cell proliferation by inhibiting apoptosis and stimulating cell progression to the S phase. Transfection of the cells with caveolin‑1 small interfering RNA showed that the activation of Akt induced by leptin was significantly inhibited. Furthermore, caveolin‑1 knockdown and inhibiting Akt activation eliminated the increased proliferation, increased proportion of cells in the S phase and increased anti‑apoptotic effects induced by leptin. Taken together, the data obtained in the present study demonstrated that caveolin‑1 was critical in the proliferative effect of leptin on osteoblasts via the activation of Akt. PMID:27430651

  15. Communication between osteoblasts stimulated by electromagnetic fields

    Institute of Scientific and Technical Information of China (English)

    ZHANG JianBao; ZHANG XiaoJun

    2007-01-01

    Pulsed electromagnetic field can affect the proliferation of osteoblasts, but the mechanism is obscure yet. The communication between osteoblasts, isolated from calvaria bone of newborn SD rats and stimulated with the rectangular electromagnetic field of 15 Hz and 4 mT, was studied. Our results showed that the osteoblasts radiated a kind of light after they were stimulated with the electromagnetic field and it is the light that promotes the proliferation of un-stimulated osteoblasts.

  16. Low-level Ga-Al-As laser irradiation enhances osteoblast proliferation through activation of Hedgehog signaling pathway

    Science.gov (United States)

    Li, Qiushi; Qu, Zhou; Chen, Yingxin; Liu, Shujie; Zhou, Yanmin

    2014-12-01

    Low-level laser irradiation has been reported to promote bone formation, but the molecular mechanism is still unclear. Hedgehog signaling pathway has been reported to play an important role in promoting bone formation. The aim of the present study was to examine whether low-level Ga-Al-As laser (808 nm) irradiation could have an effect on Hedgehog signaling pathway during osteoblast proliferation in vitro. Mouse osteoblastic cell line MC3T3-E1 was cultured in vitro. The cultures after laser irradiation (3.75J/cm2) were treated with recombinant N-terminals Sonic Hedgehog (N-Shh)or Hedgehog inhibitor cyclopamine (cy). The experiment was divided into 4 group, group 1:laser irradiation, group 2: laser irradiation and N-Shh, group 3: laser irradiation and cy, group 4:control with no laser irradiation. On day 1,2 and 3,cell proliferation was determined by cell counting, Cell Counting Kit-8.On 12 h and 24 h, cell cycle was detected by flow cytometry. Proliferation activity of laser irradiation and N-Shh group was remarkably increased compared with those of laser irradiation group. Proliferation activity of laser irradiation and cy group was remarkably decreased compared with those of laser irradiation group, however proliferation activity of laser irradiation and cy group was remarkably increased compared with those of control group. These results suggest that low-level Ga-Al-As laser irradiation activate Hedgehog signaling pathway during osteoblast proliferation in vitro. Hedgehog signaling pathway is one of the signaling pathways by which low-level Ga-Al-As laser irradiation regulates osteoblast proliferation.

  17. The thiocarbamate disulphide drug, disulfiram induces osteopenia in rats by inhibition of osteoblast function due to suppression of acetaldehyde dehydrogenase activity.

    Science.gov (United States)

    Mittal, Monika; Khan, Kainat; Pal, Subhashis; Porwal, Konica; China, Shyamsundar Pal; Barbhuyan, Tarun K; Baghel, Khemraj S; Rawat, Tara; Sanyal, Sabyasachi; Bhadauria, Smrati; Sharma, Vishnu L; Chattopadhyay, Naibedya

    2014-05-01

    Dithiocarbamates (DTC), a sulfhydryl group containing compounds, are extensively used by humans that include metam and thiram due to their pesticide properties, and disulfiram (DSF) as an alcohol deterrent. We screened these DTC in an osteoblast viability assay. DSF exhibited the highest cytotoxicity (IC50 488nM). Loss in osteoblast viability and proliferation was due to induction of apoptosis via G1 arrest. DSF treatment to osteoblasts reduced glutathione (GSH) levels and exogenous addition of GSH prevented DSF-induced reactive oxygen species generation and osteoblast apoptosis. DSF also inhibited osteoblast differentiation in vitro and in vivo, and the effect was associated with inhibition of aldehyde dehydrogenase (ALDH) activity. Out of various ALDH isozymes, osteoblasts expressed only ALDH2 and DSF downregulated its transcript as well as activity. Alda-1, a specific activator of ALDH2, stimulated osteoblast differentiation. Subcutaneous injection of DSF over the calvarium of new born rats reduced the differentiation phenotype of calvarial osteoblasts but increased the mRNA levels of Runx-2 and osteocalcin. DSF treatment at a human-equivalent dose of 30 mg/kg p.o. to adult Sprague Dawley rats caused trabecular osteopenia and suppressed the formation of mineralized nodule by bone marrow stromal cells. Moreover, DSF diminished bone regeneration at the fracture site. In growing rats, DSF diminished growth plate height, primary and secondary spongiosa, mineralized osteoid and trabecular strength. Substantial decreased bone formation was also observed in the cortical site of these rats. We conclude that DSF has a strong osteopenia inducing effect by impairing osteoblast survival and differentiation due to the inhibition of ALDH2 function. PMID:24496638

  18. Monocytes induce STAT3 activation in human mesenchymal stem cells to promote osteoblast formation.

    Directory of Open Access Journals (Sweden)

    Vicky Nicolaidou

    Full Text Available A major therapeutic challenge is how to replace bone once it is lost. Bone loss is a characteristic of chronic inflammatory and degenerative diseases such as rheumatoid arthritis and osteoporosis. Cells and cytokines of the immune system are known to regulate bone turnover by controlling the differentiation and activity of osteoclasts, the bone resorbing cells. However, less is known about the regulation of osteoblasts (OB, the bone forming cells. This study aimed to investigate whether immune cells also regulate OB differentiation. Using in vitro cell cultures of human bone marrow-derived mesenchymal stem cells (MSC, it was shown that monocytes/macrophages potently induced MSC differentiation into OBs. This was evident by increased alkaline phosphatase (ALP after 7 days and the formation of mineralised bone nodules at 21 days. This monocyte-induced osteogenic effect was mediated by cell contact with MSCs leading to the production of soluble factor(s by the monocytes. As a consequence of these interactions we observed a rapid activation of STAT3 in the MSCs. Gene profiling of STAT3 constitutively active (STAT3C infected MSCs using Illumina whole human genome arrays showed that Runx2 and ALP were up-regulated whilst DKK1 was down-regulated in response to STAT3 signalling. STAT3C also led to the up-regulation of the oncostatin M (OSM and LIF receptors. In the co-cultures, OSM that was produced by monocytes activated STAT3 in MSCs, and neutralising antibodies to OSM reduced ALP by 50%. These data indicate that OSM, in conjunction with other mediators, can drive MSC differentiation into OB. This study establishes a role for monocyte/macrophages as critical regulators of osteogenic differentiation via OSM production and the induction of STAT3 signalling in MSCs. Inducing the local activation of STAT3 in bone cells may be a valuable tool to increase bone formation in osteoporosis and arthritis, and in localised bone remodelling during fracture repair.

  19. Poly(lactic-co-glycolic Acid/Nanohydroxyapatite Scaffold Containing Chitosan Microspheres with Adrenomedullin Delivery for Modulation Activity of Osteoblasts and Vascular Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Lin Wang

    2013-01-01

    Full Text Available Adrenomedullin (ADM is a bioactive regulatory peptide that affects migration and proliferation of diverse cell types, including endothelial cells, smooth muscle cells, and osteoblast-like cells. This study investigated the effects of sustained release of ADM on the modulation activity of osteoblasts and vascular endothelial cells in vitro. Chitosan microspheres (CMs were developed for ADM delivery. Poly(lactic-co-glycolic acid and nano-hydroxyapatite were used to prepare scaffolds containing microspheres with ADM. The CMs showed rough surface morphology and high porosity, and they were well-distributed. The scaffolds exhibited relatively uniform pore sizes with interconnected pores. The addition of CMs improved the mechanical properties of the scaffolds without affecting their high porosity. In vitro degradation tests indicated that the addition of CMs increased the water absorption of the scaffolds and inhibited pH decline of phosphate-buffered saline medium. The expression levels of osteogenic-related and angiogenic-related genes were determined in MG63 cells and in human umbilical vein endothelial cells cultured on the scaffolds, respectively. The expression levels of osteogenic-related and angiogenic-related proteins were also detected by western blot analysis. Their expression levels in cells were improved on the ADM delivery scaffolds at a certain time point. The in vitro evaluation suggests that the microsphere-scaffold system is suitable as a model for bone tissue engineering.

  20. Strain energy density gradients in bone marrow predict osteoblast and osteoclast activity: a finite element study.

    Science.gov (United States)

    Webster, Duncan; Schulte, Friederike A; Lambers, Floor M; Kuhn, Gisela; Müller, Ralph

    2015-03-18

    Huiskes et al. hypothesized that mechanical strains sensed by osteocytes residing in trabecular bone dictate the magnitude of load-induced bone formation. More recently, the mechanical environment in bone marrow has also been implicated in bone׳s response to mechanical stimulation. In this study, we hypothesize that trabecular load-induced bone formation can be predicted by mechanical signals derived from an integrative µFE model, incorporating a description of both the bone and marrow phase. Using the mouse tail loading model in combination with in vivo micro-computed tomography (µCT) we tracked load induced changes in the sixth caudal vertebrae of C57BL/6 mice to quantify the amount of newly mineralized and eroded bone volumes. To identify the mechanical signals responsible for adaptation, local morphometric changes were compared to micro-finite element (µFE) models of vertebrae prior to loading. The mechanical parameters calculated were strain energy density (SED) on trabeculae at bone forming and resorbing surfaces, SED in the marrow at the boundary between bone forming and resorbing surfaces, along with SED in the trabecular bone and marrow volumes. The gradients of each parameter were also calculated. Simple regression analysis showed mean SED gradients in the trabecular bone matrix to significantly correlate with newly mineralized and eroded bone volumes R(2)=0.57 and 0.41, respectively, pbone marrow plays a significant role in determining osteoblast and osteoclast activity.

  1. MEK5 suppresses osteoblastic differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Kaneshiro, Shoichi [Department of Orthopaedic Surgery, Japan Community Health Care Organization Osaka Hospital, 4-2-78 Fukushima, Fukushima Ward, Osaka City, Osaka 553-0003 (Japan); Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Otsuki, Dai; Yoshida, Kiyoshi; Yoshikawa, Hideki [Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Higuchi, Chikahisa, E-mail: c-higuchi@umin.ac.jp [Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2015-07-31

    Extracellular signal-regulated kinase 5 (ERK5) is a member of the mitogen-activated protein kinase (MAPK) family and is activated by its upstream kinase, MAPK kinase 5 (MEK5), which is a member of the MEK family. Although the role of MEK5 has been investigated in several fields, little is known about its role in osteoblastic differentiation. In this study, we have demonstrated the role of MEK5 in osteoblastic differentiation in mouse preosteoblastic MC3T3-E1 cells and bone marrow stromal ST2 cells. We found that treatment with BIX02189, an inhibitor of MEK5, increased alkaline phosphatase (ALP) activity and the gene expression of ALP, osteocalcin (OCN) and osterix, as well as it enhanced the calcification of the extracellular matrix. Moreover, osteoblastic cell proliferation decreased at a concentration of greater than 0.5 μM. In addition, knockdown of MEK5 using siRNA induced an increase in ALP activity and in the gene expression of ALP, OCN, and osterix. In contrast, overexpression of wild-type MEK5 decreased ALP activity and attenuated osteoblastic differentiation markers including ALP, OCN and osterix, but promoted cell proliferation. In summary, our results indicated that MEK5 suppressed the osteoblastic differentiation, but promoted osteoblastic cell proliferation. These results implied that MEK5 may play a pivotal role in cell signaling to modulate the differentiation and proliferation of osteoblasts. Thus, inhibition of MEK5 signaling in osteoblasts may be of potential use in the treatment of osteoporosis. - Highlights: • MEK5 inhibitor BIX02189 suppresses proliferation of osteoblasts. • MEK5 knockdown and MEK5 inhibitor promote differentiation of osteoblasts. • MEK5 overexpression inhibits differentiation of osteoblasts.

  2. Bio-functionalization of polycaprolactone infiltrated BCP scaffold with silicon and fibronectin enhances osteoblast activity in vitro

    Science.gov (United States)

    Kwak, Kyung-A.; Kim, Young-Hee; Kim, Minsung; Lee, Byong-Taek; Song, Ho-Yeon

    2013-08-01

    The surface property of a biomaterial plays a fundamental role in cell attachment, proliferation, differentiation, resorption, and biomolecular expression. In this study, the surface of a polycaprolactone-infiltrated biphasic calcium phosphate scaffold was biofunctionalized by silicon (Si) and fibronectin (FN) coating to evaluate the osteoblast-like cells activity in vitro. The surfaces of all scaffolds were characterized by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), whereas the presence of the functional group was determined by Fourier-transform infrared spectroscopy (FT-IR). Coomassie brilliant blue staining was applied to confirm the presence of FN on the scaffold surface. The in vitro bioactivity of the osteoblast-like cells was determined by one cell morphology and proliferation assay at 3, 7, and 14 days by SEM. Cell viability assay by MTT showed higher cell viability rate on coated scaffolds than in those coated with Si only or non-coated surfaces. The mRNA expressions of alkaline phosphatase (ALP) and osteocalcin (OC) were determined using RT-PCR and the expressions of osteopontin (OPN), type I collagen, and osteocalcin (OC) proteins were determined using Western blot. Thus the expression of genes and proteins further confirmed both early and intermediate phases of osteoblast-like cell activity which was found increased by Si-and Fn coating on PCL infiltrated BCP surfaces.

  3. Bio-functionalization of polycaprolactone infiltrated BCP scaffold with silicon and fibronectin enhances osteoblast activity in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Kyung-A.; Kim, Young-Hee [Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan, Chungnum 330-090 (Korea, Republic of); Kim, Minsung; Lee, Byong-Taek [Department of Biomedical Engineering and Materials, School of Medicine, Soonchunhyang University, Cheonan, Chungnum 330-090 (Korea, Republic of); Song, Ho-Yeon, E-mail: songmic@sch.ac.kr [Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan, Chungnum 330-090 (Korea, Republic of)

    2013-08-15

    The surface property of a biomaterial plays a fundamental role in cell attachment, proliferation, differentiation, resorption, and biomolecular expression. In this study, the surface of a polycaprolactone-infiltrated biphasic calcium phosphate scaffold was biofunctionalized by silicon (Si) and fibronectin (FN) coating to evaluate the osteoblast-like cells activity in vitro. The surfaces of all scaffolds were characterized by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), whereas the presence of the functional group was determined by Fourier-transform infrared spectroscopy (FT-IR). Coomassie brilliant blue staining was applied to confirm the presence of FN on the scaffold surface. The in vitro bioactivity of the osteoblast-like cells was determined by one cell morphology and proliferation assay at 3, 7, and 14 days by SEM. Cell viability assay by MTT showed higher cell viability rate on coated scaffolds than in those coated with Si only or non-coated surfaces. The mRNA expressions of alkaline phosphatase (ALP) and osteocalcin (OC) were determined using RT-PCR and the expressions of osteopontin (OPN), type I collagen, and osteocalcin (OC) proteins were determined using Western blot. Thus the expression of genes and proteins further confirmed both early and intermediate phases of osteoblast-like cell activity which was found increased by Si-and Fn coating on PCL infiltrated BCP surfaces.

  4. Proteinase-activated receptor-2 is required for normal osteoblast and osteoclast differentiation during skeletal growth and repair.

    Science.gov (United States)

    Georgy, S R; Pagel, C N; Ghasem-Zadeh, A; Zebaze, R M D; Pike, R N; Sims, N A; Mackie, E J

    2012-03-01

    Proteinase-activated receptor-2 (PAR(2)) is a G-protein coupled receptor expressed by osteoblasts and monocytes. PAR(2) is activated by a number of proteinases including coagulation factors and proteinases released by inflammatory cells. The aim of the current study was to investigate the role of PAR(2) in skeletal growth and repair using wild type (WT) and PAR(2) knockout (KO) mice. Micro computed tomography and histomorphometry were used to examine the structure of tibias isolated from uninjured mice at 50 and 90 days of age, and from 98-day-old mice in a bone repair model in which a hole had been drilled through the tibias. Bone marrow was cultured and investigated for the presence of osteoblast precursors (alkaline phosphatase-positive fibroblastic colonies), and osteoclasts were counted in cultures treated with M-CSF and RANKL. Polymerase chain reaction (PCR) was used to determine which proteinases that activate PAR(2) are expressed in bone marrow. Regulation of PAR(2) expression in primary calvarial osteoblasts from WT mice was investigated by quantitative PCR. Cortical and trabecular bone volumes were significantly greater in the tibias of PAR(2) KO mice than in those of WT mice at 50 days of age. In trabecular bone, osteoclast surface, osteoblast surface and osteoid volume were significantly lower in KO than in WT mice. Bone marrow cultures from KO mice showed significantly fewer alkaline phosphatase-positive colony-forming units and osteoclasts compared to cultures from WT mice. Significantly less new bone and significantly fewer osteoclasts were observed in the drill sites of PAR(2) KO mice compared to WT mice 7 days post-surgery. A number of activators of PAR(2), including matriptase and kallikrein 4, were found to be expressed by normal bone marrow. Parathyroid hormone, 1,25 dihydroxyvitamin D(3), or interleukin-6 in combination with its soluble receptor down-regulated PAR(2) mRNA expression, and fibroblast growth factor-2 or thrombin stimulated PAR(2

  5. Mechanical loading and the synthesis of 1,25(OH)2D in primary human osteoblasts.

    Science.gov (United States)

    van der Meijden, K; Bakker, A D; van Essen, H W; Heijboer, A C; Schulten, E A J M; Lips, P; Bravenboer, N

    2016-02-01

    The metabolite 1,25-dihydroxyvitamin D (1,25(OH)2D) is synthesized from its precursor 25-hydroxyvitamin D (25(OH)D) by human osteoblasts leading to stimulation of osteoblast differentiation in an autocrine or paracrine way. Osteoblast differentiation is also stimulated by mechanical loading through activation of various responses in bone cells such as nitric oxide signaling. Whether mechanical loading affects osteoblast differentiation through an enhanced synthesis of 1,25(OH)2D by human osteoblasts is still unknown. We hypothesized that mechanical loading stimulates the synthesis of 1,25(OH)2D from 25(OH)D in primary human osteoblasts. Since the responsiveness of bone to mechanical stimuli can be altered by various endocrine factors, we also investigated whether 1,25(OH)2D or 25(OH)D affect the response of primary human osteoblasts to mechanical loading. Primary human osteoblasts were pre-incubated in medium with/without 25(OH)D3 (400 nM) or 1,25(OH)2D3 (100 nM) for 24h and subjected to mechanical loading by pulsatile fluid flow (PFF). The response of osteoblasts to PFF was quantified by measuring nitric oxide, and by PCR analysis. The effect of PFF on the synthesis of 1,25(OH)2D3 was determined by subjecting osteoblasts to PFF followed by 24h post-incubation in medium with/without 25(OH)D3 (400 nM). We showed that 1,25(OH)2D3 reduced the PFF-induced NO response in primary human osteoblasts. 25(OH)D3 did not significantly alter the NO response of primary human osteoblasts to PFF, but 25(OH)D3 increased osteocalcin and RANKL mRNA levels, similar to 1,25(OH)2D3. PFF did not increase 1,25(OH)2D3 amounts in our model, even though PFF did increase CYP27B1 mRNA levels and reduced VDR mRNA levels. CYP24 mRNA levels were not affected by PFF, but were strongly increased by both 25(OH)D3 and 1,25(OH)2D3. In conclusion, 1,25(OH)2D3 may affect the response of primary human osteoblasts to mechanical stimuli, at least with respect to NO production. Mechanical stimuli may affect

  6. Quercetin Protects Primary Human Osteoblasts Exposed to Cigarette Smoke through Activation of the Antioxidative Enzymes HO-1 and SOD-1

    Directory of Open Access Journals (Sweden)

    Karl F. Braun

    2011-01-01

    Full Text Available Smokers frequently suffer from impaired fracture healing often due to poor bone quality and stability. Cigarette smoking harms bone cells and their homeostasis by increased formation of reactive oxygen species (ROS. The aim of this study was to investigate whether Quercetin, a naturally occurring antioxidant, can protect osteoblasts from the toxic effects of smoking. Human osteoblasts exposed to cigarette smoke medium (CSM rapidly produced ROS and their viability decreased concentration- and time-dependently. Co-, pre- and postincubation with Quercetin dose-dependently improved their viability. Quercetin increased the expression of the anti-oxidative enzymes heme-oxygenase- (HO- 1 and superoxide-dismutase- (SOD- 1. Inhibiting HO-1 activity abolished the protective effect of Quercetin. Our results demonstrate that CSM damages human osteoblasts by accumulation of ROS. Quercetin can diminish this damage by scavenging the radicals and by upregulating the expression of HO-1 and SOD-1. Thus, a dietary supplementation with Quercetin could improve bone matter, stability and even fracture healing in smokers.

  7. Endothelin‑1 induces oncostatin M expression in osteoarthritis osteoblasts by trans‑activating the oncostatin M gene promoter via Ets‑1.

    Science.gov (United States)

    Wu, Ren; Wang, Wanchun; Huang, Guoliang; Mao, Xinzhan; Chen, You; Tang, Qi; Liao, Lele

    2016-04-01

    Oncostatin M (OSM) contributes to cartilage degeneration in osteoarthritis (OA) and was demonstrated to be expressed in OA osteoblasts. Endothelin‑1 (ET‑1) is implicated in the degradation of OA articular cartilage, and osteoblast proliferation and bone development. In the present study, the effects of ET‑1 on OSM expression in human OA osteoblasts were investigated, to the best of our knowledge, for the first time. Primary human OA osteoblasts were treated with ET‑1 (1, 5, 10, 20 and 30 nM) for 0.5, 1, 2, 3 and 4 h with or without the selective ETA receptor (ETAR) antagonist, BQ123, ETB receptor antagonist, BQ788 or the phosphatidylinositol 3‑kinase (PI3K) inhibitor, BKM120. ET‑1 treatment induced OSM mRNA expression, and the intracellular and secreted protein levels of OA osteoblasts in a dose‑dependent manner. This effect was suppressed by BQ123 and BKM120, but not BQ788 administration. In combination with electrophoretic mobility shift assays, deletional and mutational analyses on the activity of a human OSM promoter/luciferase reporter demonstrated that ET‑1 induced OSM expression in OA osteoblasts by trans‑activating the OSM gene promoter through specific binding of Ets‑1 to an Ets‑1 binding site in the OSM promoter in an ETAR‑ and PI3K‑dependent manner. Furthermore, ET‑1 treatment increased the expression of Ets‑1 in a dose‑dependent manner, however the knockdown of Ets‑1 suppressed the ET1‑induced expression of OSM in OA osteoblasts. In conclusion, the present study demonstrated that ET‑1 induces the expression of OSM in OA osteoblasts by trans‑activating the OSM gene promoter primarily through increasing the expression level of Ets‑1 in an ETAR‑ and PI3K‑dependent manner. The current study suggested novel insights into the mechanistic role of ET‑1 in the pathophysiology of OA. PMID:26934912

  8. Study of gelatinized marrow stroma osteoblasts and true bone ceramic active bone

    Institute of Scientific and Technical Information of China (English)

    GONG Tai-fang; XIA Ren-yun; YANG Cai-hong; CHEN An-min; LUO Yong-xiang

    2005-01-01

    Objective:To investigate a new method to construct tissue-engineering bone that will be applicable clinically.   Methods: The cultured 5th generation rabbit bone marrow stroma osteoblasts (MSO) was dissolved in 3% sodium alginate solution (the final concentration of sodium alginate in the solution being 1%, and MSO, 5×106/L), and then inoculated into prepared true bone ceramic (TBC) and gelatinized the bone by dribbling with calcium gluconate. The standard bone defect models were made in 48 adult New Zealand rabbits both radius. Among the 48 rabbits, 24 were in Groups A and B, in which the left radius was implanted with gelatinized MSO-TBC (Group A) and right radius implanted with autograft-bone (Group B); and the other 24 were in control group whose left radius was implanted with non-gelatinized MSO-TBC (Group C) and right radius implanted with gelatinized TBC (Group D). Outcomes of the implanted bones were assessed by radiology, pathological histology, osteogenetic quantitative analysis, and biomechanics at 2, 4, 8,12 weeks postoperatively. Results: In Groups A and B, a satisfactory bone reparation and bony union was noted within 12 weeks. In Groups C and D, bone reparation was not satisfied compared with Group A in terms of ostogenetic quantity and biomechanics.  Conclusions: Gelatinized MSO-TBC is an ideal artificial active bone that overcomes TBC shortcomings of fragileness and smooth surface that is not eligible for seed cells adhesion. It is promising to put into clinical use extensively.

  9. DHEA promotes osteoblast differentiation by regulating the expression of osteoblast-related genes and Foxp3(+) regulatory T cells.

    Science.gov (United States)

    Qiu, Xuemin; Gui, Yuyan; Xu, Yingping; Li, Dajin; Wang, Ling

    2015-10-01

    Several studies have reported that dehydroepiandrosterone (DHEA) promotes osteoblast proliferation and inhibits osteoblast apoptosis and that DHEA inhibits osteoclast maturation. However, whether DHEA regulates osteoblast differentiation remains unclear. The present study first examined the effect of DHEA on bone morphology in vivo. DHEA was found to increase bone volume (BV), bone mineral density (BMD), and the number of trabeculae in bone (Th.N) and it was found to decrease trabecular spacing in bone (Th.sp) in ovariectomized (OVX) mice. Next, the effect of DHEA on osteoblast differentiation was examined in vitro and osteoblastogenesis-related marker genes, such as Runx2, Osterix, Collagen1, and Osteocalcin, were also detected. DHEA increased osteoblast production in mesenchymal stem cells (MSCs) cultured in osteoblastogenic medium, and DHEA increased the expression of Runx2 and osterix, thereby increasing the expression of osteocalcin and collagen1. Immune cells and bone interact, so changes in immune cells were detected in vivo. DHEA increased the number of Foxp3(+) regulatory T cells (Tregs) in the spleen but it did not affect CTLA-4 or IL-10. When MSCs were treated with DHEA in the presence of Tregs, alkaline phosphatase (ALP) activity increased. Osteoblasts and adipocytes are both generated by MSCs. If osteoblast differentiation increases, adipocyte differentiation will decrease, and the reverse also holds true. DHEA was found to increase the number of adipocytes in osteoblastogenic medium but it had no effect on the number of adipocytes and expression of PPARγ mRNA in adipogenic medium. This finding suggests that osteoblasts may be involved in adipocyte production. In conclusion, the current results suggest that DHEA can improve postmenopausal osteoporosis (PMO) by up-regulating osteoblast differentiation via the up-regulation of the expression of osteoblastogenesis-related genes and via an increase in Foxp3(+) Tregs. PMID:26559023

  10. DNA–PKcs–SIN1 complexation mediates low-dose X-ray irradiation (LDI)-induced Akt activation and osteoblast differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yong; Fang, Shi-ji [The Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215000 (China); Zhu, Li-juan [Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215021 (China); Zhu, Lun-qing, E-mail: xiaodongwangsz@163.com [The Center of Diagnosis and Treatment for Children’s Bone Diseases, The Children’s Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215000 (China); Zhou, Xiao-zhong, E-mail: zhouxz@suda.edu.cn [The Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215000 (China)

    2014-10-24

    Highlights: • LDI increases ALP activity, promotes type I collagen (Col I)/Runx2 mRNA expression. • LDI induces DNA–PKcs activation, which is required for osteoblast differentiation. • Akt activation mediates LDI-induced ALP activity and Col I/Runx2 mRNA increase. • DNA–PKcs–SIN1 complexation mediates LDI-induced Akt Ser-473 phosphorylation. • DNA–PKcs–SIN1 complexation is important for osteoblast differentiation. - Abstract: Low-dose irradiation (LDI) induces osteoblast differentiation, however the underlying mechanisms are not fully understood. In this study, we explored the potential role of DNA-dependent protein kinase catalytic subunit (DNA–PKcs)–Akt signaling in LDI-induced osteoblast differentiation. We confirmed that LDI promoted mouse calvarial osteoblast differentiation, which was detected by increased alkaline phosphatase (ALP) activity as well as mRNA expression of type I collagen (Col I) and runt-related transcription factor 2 (Runx2). In mouse osteoblasts, LDI (1 Gy) induced phosphorylation of DNA–PKcs and Akt (mainly at Ser-473). The kinase inhibitors against DNA–PKcs (NU-7026 and NU-7441) or Akt (LY294002, perifosine and MK-2206), as well as partial depletion of DNA–PKcs or Akt1 by targeted-shRNA, dramatically inhibited LDI-induced Akt activation and mouse osteoblast differentiation. Further, siRNA-knockdown of SIN1, a key component of mTOR complex 2 (mTORC2), also inhibited LDI-induced Akt Ser-473 phosphorylation as well as ALP activity increase and Col I/Runx2 expression in mouse osteoblasts. Co-immunoprecipitation (Co-IP) assay results demonstrated that LDI-induced DNA–PKcs–SIN1 complexation, which was inhibited by NU-7441 or SIN1 siRNA-knockdown in mouse osteoblasts. In summary, our data suggest that DNA–PKcs–SIN1 complexation-mediated Akt activation (Ser-473 phosphorylation) is required for mouse osteoblast differentiation.

  11. Regulation of Osteoblast Survival by the Extracellular Matrix and Gravity

    Science.gov (United States)

    Globus. Ruth K.; Almeida, Eduardo A. C.; Searby, Nancy D.; Bowley, Susan M. (Technical Monitor)

    2000-01-01

    Spaceflight adversely affects the skeleton, posing a substantial risk to astronaut's health during long duration missions. The reduced bone mass observed in growing animals following spaceflight is due at least in part to inadequate bone formation by osteoblasts. Thus, it is of central importance to identify basic cellular mechanisms underlying normal bone formation. The fundamental ideas underlying our research are that interactions between extracellular matrix proteins, integrin adhesion receptors, cytoplasmic signaling and cytoskeletal proteins are key ingredients for the proper functioning of osteoblasts, and that gravity impacts these interactions. As an in vitro model system we used primary fetal rat calvarial cells which faithfully recapitulate osteoblast differentiation characteristically observed in vivo. We showed that specific integrin receptors ((alpha)3(beta)1), ((alpha)5(beta)1), ((alpha)8(betal)1) and extracellular matrix proteins (fibronectin, laminin) were needed for the differentiation of immature osteoblasts. In the course of maturation, cultured osteoblasts switched from depending on fibronectin and laminin for differentiation to depending on these proteins for their very survival. Furthermore, we found that manipulating the gravity vector using ground-based models resulted in activation of key intracellular survival signals generated by integrin/extracellular matrix interactions. We are currently testing the in vivo relevance of some of these observations using targeted transgenic technology. In conclusion, mechanical factors including gravity may participate in regulating survival via cellular interactions with the extracellular matrix. This leads us to speculate that microgravity adversely affects the survival of osteoblasts and contributes to spaceflight-induced osteoporosis.

  12. Dual reporter transgene driven by 2.3Col1a1 promoter is active in differentiated osteoblasts

    Science.gov (United States)

    Marijanovic, Inga; Jiang, Xi; Kronenberg, Mark S.; Stover, Mary Louise; Erceg, Ivana; Lichtler, Alexander C.; Rowe, David W.

    2003-01-01

    AIM: As quantitative and spatial analyses of promoter reporter constructs are not easily performed in intact bone, we designed a reporter gene specific to bone, which could be analyzed both visually and quantitatively by using chloramphenicol acetyltransferase (CAT) and a cyan version of green fluorescent protein (GFPcyan), driven by a 2.3-kb fragment of the rat collagen promoter (Col2.3). METHODS: The construct Col2.3CATiresGFPcyan was used for generating transgenic mice. Quantitative measurement of promoter activity was performed by CAT analysis of different tissues derived from transgenic animals; localization was performed by visualized GFP in frozen bone sections. To assess transgene expression during in vitro differentiation, marrow stromal cell and neonatal calvarial osteoblast cultures were analyzed for CAT and GFP activity. RESULTS: In mice, CAT activity was detected in the calvaria, long bone, teeth, and tendon, whereas histology showed that GFP expression was limited to osteoblasts and osteocytes. In cell culture, increased activity of CAT correlated with increased differentiation, and GFP activity was restricted to mineralized nodules. CONCLUSION: The concept of a dual reporter allows a simultaneous visual and quantitative analysis of transgene activity in bone.

  13. Adiponectin and AMP kinase activator stimulate proliferation, differentiation, and mineralization of osteoblastic MC3T3-E1 cells

    Directory of Open Access Journals (Sweden)

    Yamauchi Mika

    2007-11-01

    Full Text Available Abstract Background Adiponectin is a key mediator of the metabolic syndrome that is caused by visceral fat accumulation. Adiponectin and its receptors are known to be expressed in osteoblasts, but their actions with regard to bone metabolism are still unclear. In this study, we investigated the effects of adiponectin on the proliferation, differentiation, and mineralization of osteoblastic MC3T3-E1 cells. Results Adiponectin receptor type 1 (AdipoR1 mRNA was detected in the cells by RT-PCR. The adenosine monophosphate-activated protein kinase (AMP kinase was phosphorylated by both adiponectin and a pharmacological AMP kinase activator, 5-amino-imidazole-4-carboxamide-riboside (AICAR, in the cells. AdipoR1 small interfering RNA (siRNA transfection potently knocked down the receptor mRNA, and the effect of this knockdown persisted for as long as 10 days after the transfection. The transfected cells showed decreased expressions of type I collagen and osteocalcin mRNA, as determined by real-time PCR, and reduced ALP activity and mineralization, as determined by von Kossa and Alizarin red stainings. In contrast, AMP kinase activation by AICAR (0.01–0.5 mM in wild-type MC3T3-E1 cells augmented their proliferation, differentiation, and mineralization. BrdU assay showed that the addition of adiponectin (0.01–1.0 μg/ml also promoted their proliferation. Osterix, but not Runx-2, appeared to be involved in these processes because AdipoR1 siRNA transfection and AICAR treatments suppressed and enhanced osterix mRNA expression, respectively. Conclusion Taken together, this study suggests that adiponectin stimulates the proliferation, differentiation, and mineralization of osteoblasts via the AdipoR1 and AMP kinase signaling pathways in autocrine and/or paracrine fashions.

  14. Staphylococcus aureus protein A binding to osteoblast tumour necrosis factor receptor 1 results in activation of nuclear factor kappa B and release of interleukin-6 in bone infection.

    Science.gov (United States)

    Claro, Tânia; Widaa, Amro; McDonnell, Cormac; Foster, Timothy J; O'Brien, Fergal J; Kerrigan, Steven W

    2013-01-01

    Staphylococcus aureus is the major pathogen among the staphylococci and the most common cause of bone infections. These infections are mainly characterized by bone destruction and inflammation, and are often debilitating and very difficult to treat. Previously we demonstrated that S. aureus protein A (SpA) can bind to osteoblasts, which results in inhibition of osteoblast proliferation and mineralization, apoptosis, and activation of osteoclasts. In this study we used small interfering RNA (siRNA) to demonstrate that osteoblast tumour necrosis factor receptor-1 (TNFR-1) is responsible for the recognition of and binding to SpA. TNFR-1 binding to SpA results in the activation of nuclear factor kappa B (NFκB). In turn, NFκB translocates to the nucleus of the osteoblast, which leads to release of interleukin 6 (IL-6). Silencing TNFR-1 in osteoblasts or disruption of the spa gene in S. aureus prevented both NFκB activation and IL-6 release. As well as playing a key role in proinflammatory reactions, IL-6 is also an important osteotropic factor. Release of IL-6 from osteoblasts results in the activation of the bone-resorbing cells, the osteoclasts. Consistent with our results described above, both silencing TNFR-1 in osteoblasts and disruption of spa in S. aureus prevented osteoclast activation. These studies are the first to demonstrate the importance of the TNFR-1-SpA interaction in bone infection, and may help explain the mechanism through which osteoclasts become overactivated, leading to bone destruction. Anti-inflammatory drug therapy could be used either alone or in conjunction with antibiotics to treat osteomyelitis or for prophylaxis in high-risk patients.

  15. Activation of L-type calcium channels is required for gap junction-mediated intercellular calcium signaling in osteoblastic cells

    DEFF Research Database (Denmark)

    Jørgensen, Niklas Rye; Teilmann, Stefan Cuoni; Henriksen, Zanne;

    2003-01-01

    in "slow" ICW. Human osteoblastic cells transmit intercellular calcium signals by both of these mechanisms. In the current studies we have examined the mechanism of slow gap junction-dependent ICW in osteoblastic cells. In ROS rat osteoblastic cells, gap junction-dependent ICW were inhibited by removal...

  16. Autocrine stimulation of osteoblast activity by Wnt5a in response to TNF-α in human mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Briolay, A. [ICBMS, UMR CNRS 5246, University of Lyon 1, Bâtiment Raulin, 43 Bd du 11 novembre 1918, 69622 Villeurbanne Cedex (France); Lencel, P. [Physiopathology of Inflammatory Bone Diseases, EA4490, ULCO. Quai Masset, Bassin Napoléon BP120, 62327 Boulogne/Mer (France); Bessueille, L. [ICBMS, UMR CNRS 5246, University of Lyon 1, Bâtiment Raulin, 43 Bd du 11 novembre 1918, 69622 Villeurbanne Cedex (France); Caverzasio, J. [Service of Bone Diseases, Department of Internal Medicine Specialties, University Hospital of Geneva, CH-1211 Geneva 14 (Switzerland); Buchet, R. [ICBMS, UMR CNRS 5246, University of Lyon 1, Bâtiment Raulin, 43 Bd du 11 novembre 1918, 69622 Villeurbanne Cedex (France); Magne, D., E-mail: david.magne@univ-lyon1.fr [ICBMS, UMR CNRS 5246, University of Lyon 1, Bâtiment Raulin, 43 Bd du 11 novembre 1918, 69622 Villeurbanne Cedex (France)

    2013-01-18

    Highlights: ► Ankylosing spondylitis (AS) leads to bone fusions and ankylosis. ► TNF-α stimulates osteoblasts through growth factors in AS. ► We compare the involvement of canonical vs non-canonical Wnt signaling. ► Canonical Wnt signaling is not involved in TNF-α effects in differentiating hMSCs. ► TNF-α stimulates osteoblasts through Wnt5a autocrine secretion in hMSCs. -- Abstract: Although anti-tumor necrosis factor (TNF)-α treatments efficiently block inflammation in ankylosing spondylitis (AS), they are inefficient to prevent excessive bone formation. In AS, ossification seems more prone to develop in sites where inflammation has resolved following anti-TNF therapy, suggesting that TNF-α indirectly stimulates ossification. In this context, our objectives were to determine and compare the involvement of Wnt proteins, which are potent growth factors of bone formation, in the effects of TNF-α on osteoblast function. In human mesenchymal stem cells (MSCs), TNF-α significantly increased the levels of Wnt10b and Wnt5a. Associated with this effect, TNF-α stimulated tissue-non specific alkaline phosphatase (TNAP) and mineralization. This effect was mimicked by activation of the canonical β-catenin pathway with either anti-Dkk1 antibodies, lithium chloride (LiCl) or SB216763. TNF-α reduced, and activation of β-catenin had little effect on expression of osteocalcin, a late marker of osteoblast differentiation. Surprisingly, TNF-α failed to stabilize β-catenin and Dkk1 did not inhibit TNF-α effects. In fact, Dkk1 expression was also enhanced in response to TNF-α, perhaps explaining why canonical signaling by Wnt10b was not activated by TNF-α. However, we found that Wnt5a also stimulated TNAP in MSCs cultured in osteogenic conditions, and increased the levels of inflammatory markers such as COX-2. Interestingly, treatment with anti-Wnt5a antibodies reduced endogenous TNAP expression and activity. Collectively, these data suggest that increased

  17. Neuropeptide Y, substance P, and human bone morphogenetic protein 2 stimulate human osteoblast osteogenic activity by enhancing gap junction intercellular communication

    Energy Technology Data Exchange (ETDEWEB)

    Ma, W.H.; Liu, Y.J.; Wang, W.; Zhang, Y.Z. [The Third Hospital of Hebei Medical University, The Provincial Key Laboratory for Orthopedic Biomechanics of Hebei, Shijiazhuang, Hebei Province (China)

    2015-02-13

    Bone homeostasis seems to be controlled by delicate and subtle “cross talk” between the nervous system and “osteo-neuromediators” that control bone remodeling. The purpose of this study was to evaluate the effect of interactions between neuropeptides and human bone morphogenetic protein 2 (hBMP2) on human osteoblasts. We also investigated the effects of neuropeptides and hBMP2 on gap junction intercellular communication (GJIC). Osteoblasts were treated with neuropeptide Y (NPY), substance P (SP), or hBMP2 at three concentrations. At various intervals after treatment, cell viability was measured by the MTT assay. In addition, cellular alkaline phosphatase (ALP) activity and osteocalcin were determined by colorimetric assay and radioimmunoassay, respectively. The effects of NPY, SP and hBMP on GJIC were determined by laser scanning confocal microscopy. The viability of cells treated with neuropeptides and hBMP2 increased significantly in a time-dependent manner, but was inversely associated with the concentration of the treatments. ALP activity and osteocalcin were both reduced in osteoblasts exposed to the combination of neuropeptides and hBMP2. The GJIC of osteoblasts was significantly increased by the neuropeptides and hBMP2. These results suggest that osteoblast activity is increased by neuropeptides and hBMP2 through increased GJIC. Identification of the GJIC-mediated signal transduction capable of modulating the cellular activities of bone cells represents a novel approach to studying the biology of skeletal innervation.

  18. The role of osteoblasts in peri-prosthetic osteolysis.

    LENUS (Irish Health Repository)

    O'Neill, S C

    2013-08-01

    Peri-prosthetic osteolysis and subsequent aseptic loosening is the most common reason for revising total hip replacements. Wear particles originating from the prosthetic components interact with multiple cell types in the peri-prosthetic region resulting in an inflammatory process that ultimately leads to peri-prosthetic bone loss. These cells include macrophages, osteoclasts, osteoblasts and fibroblasts. The majority of research in peri-prosthetic osteolysis has concentrated on the role played by osteoclasts and macrophages. The purpose of this review is to assess the role of the osteoblast in peri-prosthetic osteolysis. In peri-prosthetic osteolysis, wear particles may affect osteoblasts and contribute to the osteolytic process by two mechanisms. First, particles and metallic ions have been shown to inhibit the osteoblast in terms of its ability to secrete mineralised bone matrix, by reducing calcium deposition, alkaline phosphatase activity and its ability to proliferate. Secondly, particles and metallic ions have been shown to stimulate osteoblasts to produce pro inflammatory mediators in vitro. In vivo, these mediators have the potential to attract pro-inflammatory cells to the peri-prosthetic area and stimulate osteoclasts to absorb bone. Further research is needed to fully define the role of the osteoblast in peri-prosthetic osteolysis and to explore its potential role as a therapeutic target in this condition.

  19. UV-activated 7-dehydrocholesterol-coated titanium implants promote differentiation of human umbilical cord mesenchymal stem cells into osteoblasts.

    Science.gov (United States)

    Satué, María; Ramis, Joana M; Monjo, Marta

    2016-01-01

    Vitamin D metabolites are essential for bone regeneration and mineral homeostasis. The vitamin D precursor 7-dehydrocholesterol can be used after UV irradiation to locally produce active vitamin D by osteoblastic cells. Furthermore, UV-irradiated 7-dehydrocholesterol is a biocompatible coating for titanium implants with positive effects on osteoblast differentiation. In this study, we examined the impact of titanium implants surfaces coated with UV-irradiated 7-dehydrocholesterol on the osteogenic differentiation of human umbilical cord mesenchymal stem cells. First, the synthesis of cholecalciferol (D3) was achieved through the incubation of the UV-activated 7-dehydrocholesterol coating for 48 h at 23℃. Further, we investigated in vitro the biocompatibility of this coating in human umbilical cord mesenchymal stem cells and its potential to enhance their differentiation towards the osteogenic lineage. Human umbilical cord mesenchymal stem cells cultured onto UV-irradiated 7-dehydrocholesterol-coated titanium implants surfaces, combined with osteogenic supplements, upregulated the gene expression of several osteogenic markers and showed higher alkaline phosphatase activity and calcein blue staining, suggesting increased mineralization. Thus, our results show that the use of UV irradiation on 7-dehydrocholesterol -treated titanium implants surfaces generates a bioactive coating that promotes the osteogenic differentiation of human umbilical cord mesenchymal stem cells, with regenerative potential for improving osseointegration in titanium-based bone anchored implants.

  20. FHL2 mediates dexamethasone-induced mesenchymal cell differentiation into osteoblasts by activating Wnt/beta-catenin signaling-dependent Runx2 expression.

    Science.gov (United States)

    Hamidouche, Zahia; Haÿ, Eric; Vaudin, Pascal; Charbord, Pierre; Schüle, Roland; Marie, Pierre J; Fromigué, Olivia

    2008-11-01

    The differentiation of bone marrow mesenchymal stem cells (MSCs) into osteoblasts is a crucial step in bone formation. However, the mechanisms involved in the early stages of osteogenic differentiation are not well understood. In this study, we identified FHL2, a member of the LIM-only subclass of the LIM protein superfamily, that is up-regulated during early osteoblast differentiation induced by dexamethasone in murine and human MSCs. Gain-of-function studies showed that FHL2 promotes the expression of the osteoblast transcription factor Runx2, alkaline phosphatase, type I collagen, as well as in vitro extracellular matrix mineralization in murine and human mesenchymal cells. Knocking down FHL2 using sh-RNA reduces basal and dexamethasone-induced osteoblast marker gene expression in MSCs. We demonstrate that FHL2 interacts with beta-catenin, a key player involved in bone formation induced by Wnt signaling. FHL2-beta-catenin interaction potentiates beta-catenin nuclear translocation and TCF/LEF transcription, resulting in increased Runx2 and alkaline phosphatase expression, which was inhibited by the Wnt inhibitor DKK1. Reduction of Runx2 transcriptional activity using a mutant Runx2 results in inhibition of FHL2-induced alkaline phosphatase expression in MSCs. These findings reveal that FHL2 acts as an endogenous activator of mesenchymal cell differentiation into osteoblasts and mediates osteogenic differentiation induced by dexamethasone in MSCs through activation of Wnt/beta-catenin signaling- dependent Runx2 expression. PMID:18653765

  1. Normal hematopoiesis and lack of β-catenin activation in osteoblasts of patients and mice harboring Lrp5 gain-of-function mutations

    DEFF Research Database (Denmark)

    Galán-Díez, Marta; Isa, Adiba; Ponzetti, Marco;

    2016-01-01

    of hematopoiesis and leukemogenic properties of β-catenin activation in osteoblasts, that lead to development of acute myeloid leukemia (AML). Using mice with gain-of-function (GOF) Lrp5 alleles (Lrp5(A214V)) that recapitulate the human high bone mass (HBM) phenotype, as well as patients with the T253I HBM Lrp5......Osteoblasts are emerging regulators of myeloid malignancies since genetic alterations in them, such as constitutive activation of β-catenin, instigate their appearance. The LDL receptor-related protein 5 (LRP5), initially proposed to be a co-receptor for Wnt proteins, in fact favors bone formation...... patients showed normal hematopoiesis, normal percentage of myeloid cells, and lack of anemia. We conclude that Lrp5 GOF mutations do not activate β-catenin signaling in osteoblasts. As a result, myeloid lineage differentiation is normal in HBM patients and mice. This article is part of a Special Issue...

  2. Activation of β–catenin Signaling in MLO-Y4 Osteocytic Cells versus 2T3 Osteoblastic Cells by Fluid Flow Shear Stress and PGE2: Implications for the Study of Mechanosensation in Bone

    OpenAIRE

    Kamel, Mohamed A; Picconi, Jason L; Lara-Castillo, Nuria; Johnson, Mark L.

    2010-01-01

    The osteocyte is hypothesized to be the mechanosensory cell in bone. However, osteoblastic cell models have been most commonly used to investigate mechanisms of mechanosensation in bone. Therefore, we sought to determine if differences might exist between osteocytic and osteoblastic cell models relative to the activation of β-catenin signaling in MLO-Y4 osteocytic, 2T3 osteoblastic and primary neonatal calvarial cells (NCCs) in response to pulsatile fluid flow shear stress (PFFSS). β–catenin ...

  3. Osteoblasts in Bone Physiology—Mini Review

    Directory of Open Access Journals (Sweden)

    Orit Rosenberg

    2012-04-01

    Full Text Available Bone structural integrity and shape are maintained by removal of old matrix by osteoclasts and in-situ synthesis of new bone by osteoblasts. These cells comprise the basic multicellular unit (BMU. Bone mass maintenance is determined by the net anabolic activity of the BMU, when the matrix elaboration of the osteoblasts equals or exceeds the bone resorption by the osteoclasts. The normal function of the BMU causes a continuous remodeling process of the bone, with deposition of bony matrix (osteoid along the vectors of the generated force by gravity and attached muscle activity. The osteoblasts are derived from mesenchymal stem cells (MSCs. Circulating hormones and locally produced cytokines and growth factors modulate the replication and differentiation of osteoclast and osteoblast progenitors. The appropriate number of the osteoblasts in the BMU is determined by the differentiation of the precursor bone-marrow stem cells into mature osteoblasts, their proliferation with subsequent maturation into metabolically active osteocytes, and osteoblast degradation by apoptosis. Thus, the two crucial points to target when planning to control the osteoblast population are the processes of cell proliferation and apoptosis, which are regulated by cellular hedgehog and Wnt pathways that involve humoral and mechanical stimulations. Osteoblasts regulate both bone matrix synthesis and mineralization directly by their own synthetic activities, and bone resorption indirectly by its paracrinic effects on osteoclasts. The overall synthetic and regulatory activities of osteoblasts govern bone tissue integrity and shape.

  4. Synergistic effect of vasoactive intestinal peptides on TNF-alpha-induced IL-6 synthesis in osteoblasts: amplification of p44/p42 MAP kinase activation.

    Science.gov (United States)

    Natsume, Hideo; Tokuda, Haruhiko; Mizutani, Jun; Adachi, Seiji; Matsushima-Nishiwaki, Rie; Minamitani, Chiho; Kato, Kenji; Kozawa, Osamu; Otsuka, Takanobu

    2010-05-01

    We previously showed that tumor necrosis factor-alpha (TNF-alpha) stimulates synthesis of interleukin-6 (IL-6), a potent bone resorptive agent, via p44/p42 mitogen-activated protein (MAP) kinase and phosphatidylinositol 3-kinase/Akt in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the effect of vasoactive intestinal peptide (VIP) on TNF-alpha-induced IL-6 synthesis in these cells. VIP, which by itself slightly stimulated IL-6 synthesis, synergistically enhanced the TNF-alpha-induced IL-6 synthesis in MC3T3-E1 cells. The synergistic effect of VIP on the TNF-alpha-induced IL-6 synthesis was concentration-dependent in the range between 1 and 70 nM. We previously reported that VIP stimulated cAMP production in MC3T3-E1 cells. Forskolin, a direct activator of adenylyl cyclase, or 8-bromoadenosine-3',5'-cyclic monophosphate (8bromo-cAMP), a plasma membrane-permeable cAMP analogue, markedly enhanced the TNF-alpha-induced IL-6 synthesis as well as VIP. VIP markedly up-regulated the TNF-alpha-induced p44/p42 MAP kinase phosphorylation. The Akt phosphorylation stimulated by TNF-alpha was only slightly affected by VIP. PD98059, a specific inhibitor of MEK1/2, significantly suppressed the enhancement of TNF-alpha-induced IL-6 synthesis by VIP. The synergistic effect of a combination of VIP and TNF-alpha on the phosphorylation of p44/p42 MAP kinase was diminished by H-89, an inhibitor of cAMP-dependent protein kinase. These results strongly suggest that VIP synergistically enhances TNF-alpha-stimulated IL-6 synthesis via up-regulating p44/p42 MAP kinase through the adenylyl cyclase-cAMP system in osteoblasts.

  5. CCAAT/enhancer-binding protein delta activates insulin-like growth factor-I gene transcription in osteoblasts. Identification of a novel cyclic AMP signaling pathway in bone

    Science.gov (United States)

    Umayahara, Y.; Ji, C.; Centrella, M.; Rotwein, P.; McCarthy, T. L.

    1997-01-01

    Insulin-like growth factor-I (IGF-I) plays a key role in skeletal growth by stimulating bone cell replication and differentiation. We previously showed that prostaglandin E2 (PGE2) and other cAMP-activating agents enhanced IGF-I gene transcription in cultured primary rat osteoblasts through promoter 1, the major IGF-I promoter, and identified a short segment of the promoter, termed HS3D, that was essential for hormonal regulation of IGF-I gene expression. We now demonstrate that CCAAT/enhancer-binding protein (C/EBP) delta is a major component of a PGE2-stimulated DNA-protein complex involving HS3D and find that C/EBPdelta transactivates IGF-I promoter 1 through this site. Competition gel shift studies first indicated that a core C/EBP half-site (GCAAT) was required for binding of a labeled HS3D oligomer to osteoblast nuclear proteins. Southwestern blotting and UV-cross-linking studies showed that the HS3D probe recognized a approximately 35-kDa nuclear protein, and antibody supershift assays indicated that C/EBPdelta comprised most of the PGE2-activated gel-shifted complex. C/EBPdelta was detected by Western immunoblotting in osteoblast nuclear extracts after treatment of cells with PGE2. An HS3D oligonucleotide competed effectively with a high affinity C/EBP site from the rat albumin gene for binding to osteoblast nuclear proteins. Co-transfection of osteoblast cell cultures with a C/EBPdelta expression plasmid enhanced basal and PGE2-activated IGF-I promoter 1-luciferase activity but did not stimulate a reporter gene lacking an HS3D site. By contrast, an expression plasmid for the related protein, C/EBPbeta, did not alter basal IGF-I gene activity but did increase the response to PGE2. In osteoblasts and in COS-7 cells, C/EBPdelta, but not C/EBPbeta, transactivated a reporter gene containing four tandem copies of HS3D fused to a minimal promoter; neither transcription factor stimulated a gene with four copies of an HS3D mutant that was unable to bind osteoblast

  6. Up-regulation of gelatinases and tissue type plasminogen activator by root canal sealers in human osteoblastic cells.

    Science.gov (United States)

    Huang, Fu-Mei; Yang, Shun-Fa; Chang, Yu-Chao

    2008-03-01

    Histologic investigations have demonstrated that root canal sealers can induce mild to severe inflammatory alternations. However, there is little information on the precise mechanisms about root canal sealer-induced inflammatory reaction. The proteolysis of extracellular matrix by matrix metalloproteinases (MMPs) and plasminogen activators (PAs) seems to be a key initiating event for the progression of the inflammatory process. The aim of this study was to investigate the effects of epoxy resin-based root canal sealer AH26 and zinc oxide-eugenol-based root canal sealer Canals and one paste sealer N2 on the expression of MMPs and PAs in human osteoblastic cell line U2OS cells. The levels of gelatinolytic and caseinolytic activities were measured by gelatin and casein zymography. The results showed that AH26, Canals, and N2 were cytotoxic to U2OS cells in a concentration-dependent manner (P inflammation.

  7. IL-6 alters osteocyte signaling toward osteoblasts but not osteoclasts.

    Science.gov (United States)

    Bakker, A D; Kulkarni, R N; Klein-Nulend, J; Lems, W F

    2014-04-01

    Mechanosensitive osteocytes regulate bone mass in adults. Interleukin 6 (IL-6), such as present during orthodontic tooth movement, also strongly affects bone mass, but little is known about the effect of IL-6 on osteocyte function. Therefore we aimed to determine in vitro whether IL-6 affects osteocyte mechanosensitivity, and osteocyte regulation of osteoclastogenesis and osteoblast differentiation. MLO-Y4 osteocytes were incubated with/without IL-6 (1 or 10 pg/mL) for 24 hr. Subsequently, osteocytes were subjected to mechanical loading by pulsating fluid flow (PFF) for 1 hr. Mouse osteoclast precursors were cultured for 7 days on top of IL-6-treated osteocytes. Conditioned medium from osteocytes treated with/without IL-6 was added to MC3T3-E1 pre-osteoblasts for 14 days. Exogenous IL-6 (10 pg/mL) did not alter the osteocyte response to PFF. PFF significantly enhanced IL-6 production by osteocytes. IL-6 enhanced Rankl expression but reduced caspase 3/7 activity by osteocytes, and therefore did not affect osteocyte-stimulated osteoclastogenesis. Conditioned medium from IL-6-treated osteocytes reduced alkaline phosphatase (ALP) activity and Runx2 expression in osteoblasts, but increased expression of the proliferation marker Ki67 and osteocalcin. Our results suggest that IL-6 is produced by shear-loaded osteocytes and that IL-6 may affect bone mass by modulating osteocyte communication toward osteoblasts. PMID:24492932

  8. Peroxisomes in Different Skeletal Cell Types during Intramembranous and Endochondral Ossification and Their Regulation during Osteoblast Differentiation by Distinct Peroxisome Proliferator-Activated Receptors.

    Directory of Open Access Journals (Sweden)

    Guofeng Qian

    Full Text Available Ossification defects leading to craniofacial dysmorphism or rhizomelia are typical phenotypes in patients and corresponding knockout mouse models with distinct peroxisomal disorders. Despite these obvious skeletal pathologies, to date no careful analysis exists on the distribution and function of peroxisomes in skeletal tissues and their alterations during ossification. Therefore, we analyzed the peroxisomal compartment in different cell types of mouse cartilage and bone as well as in primary cultures of calvarial osteoblasts. The peroxisome number and metabolism strongly increased in chondrocytes during endochondral ossification from the reserve to the hypertrophic zone, whereas in bone, metabolically active osteoblasts contained a higher numerical abundance of this organelle than osteocytes. The high abundance of peroxisomes in these skeletal cell types is reflected by high levels of Pex11β gene expression. During culture, calvarial pre-osteoblasts differentiated into secretory osteoblasts accompanied by peroxisome proliferation and increased levels of peroxisomal genes and proteins. Since many peroxisomal genes contain a PPAR-responsive element, we analyzed the gene expression of PPARɑ/ß/ɣ in calvarial osteoblasts and MC3T3-E1 cells, revealing higher levels for PPARß than for PPARɑ and PPARɣ. Treatment with different PPAR agonists and antagonists not only changed the peroxisomal compartment and associated gene expression, but also induced complex alterations of the gene expression patterns of the other PPAR family members. Studies in M3CT3-E1 cells showed that the PPARß agonist GW0742 activated the PPRE-mediated luciferase expression and up-regulated peroxisomal gene transcription (Pex11, Pex13, Pex14, Acox1 and Cat, whereas the PPARß antagonist GSK0660 led to repression of the PPRE and a decrease of the corresponding mRNA levels. In the same way, treatment of calvarial osteoblasts with GW0742 increased in peroxisome number and

  9. Harmine promotes osteoblast differentiation through bone morphogenetic protein signaling

    Energy Technology Data Exchange (ETDEWEB)

    Yonezawa, Takayuki [Department of Nutriproteomics, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Research Institute for Biological Functions, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501 (Japan); Lee, Ji-Won [Research Institute for Biological Functions, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501 (Japan); Hibino, Ayaka; Asai, Midori [Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501 (Japan); Hojo, Hironori [Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Cha, Byung-Yoon [Research Institute for Biological Functions, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501 (Japan); Teruya, Toshiaki [Research Institute for Biological Functions, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501 (Japan); Faculty of Education, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213 (Japan); Nagai, Kazuo [Research Institute for Biological Functions, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501 (Japan); Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501 (Japan); Chung, Ung-Il [Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Yagasaki, Kazumi [Department of Nutriproteomics, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Division of Applied Biological Chemistry, Institute of Agriculture, Tokyo Noko University, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509 (Japan); and others

    2011-06-03

    Highlights: {yields} Harmine promotes the activity and mRNA expression of ALP. {yields} Harmine enhances the expressions of osteocalcin mRNA and protein. {yields} Harmine induces osteoblastic mineralization. {yields} Harmine upregulates the mRNA expressions of BMPs, Runx2 and Osterix. {yields} BMP signaling pathways are involved in the actions of harmine. -- Abstract: Bone mass is regulated by osteoblast-mediated bone formation and osteoclast-mediated bone resorption. We previously reported that harmine, a {beta}-carboline alkaloid, inhibits osteoclast differentiation and bone resorption in vitro and in vivo. In this study, we investigated the effects of harmine on osteoblast proliferation, differentiation and mineralization. Harmine promoted alkaline phosphatase (ALP) activity in MC3T3-E1 cells without affecting their proliferation. Harmine also increased the mRNA expressions of the osteoblast marker genes ALP and Osteocalcin. Furthermore, the mineralization of MC3T3-E1 cells was enhanced by treatment with harmine. Harmine also induced osteoblast differentiation in primary calvarial osteoblasts and mesenchymal stem cell line C3H10T1/2 cells. Structure-activity relationship studies using harmine-related {beta}-carboline alkaloids revealed that the C3-C4 double bond and 7-hydroxy or 7-methoxy group of harmine were important for its osteogenic activity. The bone morphogenetic protein (BMP) antagonist noggin and its receptor kinase inhibitors dorsomorphin and LDN-193189 attenuated harmine-promoted ALP activity. In addition, harmine increased the mRNA expressions of Bmp-2, Bmp-4, Bmp-6, Bmp-7 and its target gene Id1. Harmine also enhanced the mRNA expressions of Runx2 and Osterix, which are key transcription factors in osteoblast differentiation. Furthermore, BMP-responsive and Runx2-responsive reporters were activated by harmine treatment. Taken together, these results indicate that harmine enhances osteoblast differentiation probably by inducing the expressions of

  10. Icariin Stimulates Differentiation and Suppresses Adipocytic Transdifferentiation of Primary Osteoblasts Through Estrogen Receptor-Mediated Pathway.

    Science.gov (United States)

    Zhang, Dawei; Fong, Chichun; Jia, Zhenbin; Cui, Liao; Yao, Xinsheng; Yang, Mengsu

    2016-08-01

    Icariin, the main constituent of Herba Epimedii, appears to be a promising alternative to classic drugs used to treat osteoporosis. However, the detailed molecular mechanisms of its action and the role of icariin in the cross-talk between osteoblasts and adipocytes remain unclear. The present study was designed to investigate the gene expression profile of primary osteoblasts in the presence of icariin, and the effects of icariin on the differentiation and adipogenic transdifferentiation of osteoblasts. Cellular and molecular markers expressed during osteoblastic differentiation were assessed by cytochemical analysis, real-time quantitative PCR, Western blotting, and cDNA microarray analysis. Results indicated that icariin up-regulated the expression of runt-related transcription factor 2 (Runx2), bone morphogenetic protein 2 (Bmp2), and collagen type 1 (Col1) genes, and down-regulated the expression of the peroxisome proliferator-activated receptor γ (Pparg) and CCAAT/enhancer-binding protein β (Cebpb) genes. These effects were blocked by ICI 182,780, suggesting that icariin may be acting via the estrogen receptor (ER). Results also demonstrated that the ratio of osteoprotegerin (Opg)/receptor activator of nuclear factor kappa B ligand (Rankl) expression was up-regulated following treatment with icariin. In total, osteoblastic gene expression profile analysis suggested that 33 genes were affected by icariin; these could be sub-divided into nine functional categories. It appears that icariin could stimulate the differentiation and mineralization of osteoblasts, regulate the differentiation of osteoclasts, and inhibit the adipogenic transdifferentiation of osteoblasts, therefore increasing the number of osteoblasts undergoing differentiation to mature osteoblasts, via an ER-mediated pathway. In summary, icariin may exhibit beneficial effects on bone health, especially for patients with osteoporosis and obesity. PMID:27061090

  11. Small oscillatory accelerations, independent of matrix deformations, increase osteoblast activity and enhance bone morphology.

    Directory of Open Access Journals (Sweden)

    Russell Garman

    Full Text Available A range of tissues have the capacity to adapt to mechanical challenges, an attribute presumed to be regulated through deformation of the cell and/or surrounding matrix. In contrast, it is shown here that extremely small oscillatory accelerations, applied as unconstrained motion and inducing negligible deformation, serve as an anabolic stimulus to osteoblasts in vivo. Habitual background loading was removed from the tibiae of 18 female adult mice by hindlimb-unloading. For 20 min/d, 5 d/wk, the left tibia of each mouse was subjected to oscillatory 0.6 g accelerations at 45 Hz while the right tibia served as control. Sham-loaded (n = 9 and normal age-matched control (n = 18 mice provided additional comparisons. Oscillatory accelerations, applied in the absence of weight bearing, resulted in 70% greater bone formation rates in the trabeculae of the metaphysis, but similar levels of bone resorption, when compared to contralateral controls. Quantity and quality of trabecular bone also improved as a result of the acceleration stimulus, as evidenced by a significantly greater bone volume fraction (17% and connectivity density (33%, and significantly smaller trabecular spacing (-6% and structural model index (-11%. These in vivo data indicate that mechanosensory elements of resident bone cell populations can perceive and respond to acceleratory signals, and point to an efficient means of introducing intense physical signals into a biologic system without putting the matrix at risk of overloading. In retrospect, acceleration, as opposed to direct mechanical distortion, represents a more generic and safe, and perhaps more fundamental means of transducing physical challenges to the cells and tissues of an organism.

  12. Evaluation of antibacterial activity and osteoblast-like cell viability of TiN, ZrN and (Ti1-xZrx)N coating on titanium

    OpenAIRE

    Ji, Min-Kyung; Park, Sang-Won; Lee, Kwangmin; Kang, In-Chol; Yun, Kwi-Dug; Kim, Hyun-Seung; Lim, Hyun-Pil

    2015-01-01

    PURPOSE The aim of this study was to evaluate antibacterial activity and osteoblast-like cell viability according to the ratio of titanium nitride and zirconium nitride coating on commercially pure titanium using an arc ion plating system. MATERIALS AND METHODS Polished titanium surfaces were used as controls. Surface topography was observed by scanning electron microscopy, and surface roughness was measured using a two-dimensional contact stylus profilometer. Antibacterial activity was evalu...

  13. Advanced Glycation End Products Affect Osteoblast Proliferation and Function by Modulating Autophagy Via the Receptor of Advanced Glycation End Products/Raf Protein/Mitogen-activated Protein Kinase/Extracellular Signal-regulated Kinase Kinase/Extracellular Signal-regulated Kinase (RAGE/Raf/MEK/ERK) Pathway.

    Science.gov (United States)

    Meng, Hong-Zheng; Zhang, Wei-Lin; Liu, Fei; Yang, Mao-Wei

    2015-11-20

    The interaction between advanced glycation end products (AGEs) and receptor of AGEs (RAGE) is associated with the development and progression of diabetes-associated osteoporosis, but the mechanisms involved are still poorly understood. In this study, we found that AGE-modified bovine serum albumin (AGE-BSA) induced a biphasic effect on the viability of hFOB1.19 cells; cell proliferation was stimulated after exposure to low dose AGE-BSA, but cell apoptosis was stimulated after exposure to high dose AGE-BSA. The low dose AGE-BSA facilitates proliferation of hFOB1.19 cells by concomitantly promoting autophagy, RAGE production, and the Raf/MEK/ERK signaling pathway activation. Furthermore, we investigated the effects of AGE-BSA on the function of hFOB1.19 cells. Interestingly, the results suggest that the short term effects of low dose AGE-BSA increase osteogenic function and decrease osteoclastogenic function, which are likely mediated by autophagy and the RAGE/Raf/MEK/ERK signal pathway. In contrast, with increased treatment time, the opposite effects were observed. Collectively, AGE-BSA had a biphasic effect on the viability of hFOB1.19 cells in vitro, which was determined by the concentration of AGE-BSA and treatment time. A low concentration of AGE-BSA activated the Raf/MEK/ERK signal pathway through the interaction with RAGE, induced autophagy, and regulated the proliferation and function of hFOB1.19 cells.

  14. Photothermal effects of laser-activated surface plasmonic gold nanoparticles on the apoptosis and osteogenesis of osteoblast-like cells

    Directory of Open Access Journals (Sweden)

    Rau LR

    2016-07-01

    Full Text Available Lih-Rou Rau,1 Wan-Yu Huang,1 Jiunn-Woei Liaw,2–5 Shiao-Wen Tsai1,3,6 1Graduate Institute of Biochemical and Biomedical Engineering, 2Department of Mechanical Engineering, 3Center for Biomedical Engineering, Chang Gung University, 4Institute for Radiological Research, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, 5Center for Advanced Molecular Imaging and Translation, 6Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Linkou, Taiwan, Republic of China Abstract: The specific properties of gold nanoparticles (AuNPs make them a novel class of photothermal agents that can induce cancer cell damage and even death through the conversion of optical energy to thermal energy. Most relevant studies have focused on increasing the precision of cell targeting, improving the efficacy of energy transfer, and exploring additional functions. Nevertheless, most cells can uptake nanosized particles through nonspecific endocytosis; therefore, before hyperthermia via AuNPs can be applied for clinical use, it is important to understand the adverse optical–thermal effects of AuNPs on nontargeted cells. However, few studies have investigated the thermal effects induced by pulsed laser-activated AuNPs on nearby healthy cells due to nonspecific treatment. The aim of this study is to evaluate the photothermal effects induced by AuNPs plus a pulsed laser on MG63, an osteoblast-like cell line, specifically examining the effects on cell morphology, viability, death program, and differentiation. The cells were treated with media containing 50 nm AuNPs at a concentration of 5 ppm for 1 hour. Cultured cells were then exposed to irradiation at 60 mW/cm2 and 80 mW/cm2 by a Nd:YAG laser (532 nm wavelength. We observed that the cytoskeletons of MG63 cells treated with bare AuNPs followed by pulsed laser irradiation were damaged, and these cells had few bubbles on the cell membrane compared with those that were not treated (control or were

  15. Effects of different magnitudes of mechanical strain on Osteoblasts in vitro

    International Nuclear Information System (INIS)

    In addition to systemic and local factors, mechanical strain plays a crucial role in bone remodeling during growth, development, and fracture healing, and especially in orthodontic tooth movement. Although many papers have been published on the effects of mechanical stress on osteoblasts or osteoblastic cells, little is known about the effects of different magnitudes of mechanical strain on such cells. In the present study, we investigated how different magnitudes of cyclic tensile strain affected osteoblasts. MC3T3-E1 osteoblastic cells were subjected to 0%, 6%, 12% or 18% elongation for 24 h using a Flexercell Strain Unit, and then the mRNA and protein expressions of osteoprotegerin (OPG) and receptor activator of nuclear factor-κB ligand (RANKL) were examined. The results showed that cyclic tensile strain induced a magnitude-dependent increase (0%, 6%, 12%, and 18%) in OPG synthesis and a concomitant decrease in RANKL mRNA expression and sRANKL release from the osteoblasts. Furthermore, the induction of OPG mRNA expression by stretching was inhibited by indomethacin or genistein, and the stretch-induced reduction of RANKL mRNA was inhibited by PD098059. These results indicate that different magnitudes of cyclic tensile strain influence the biological behavior of osteoblasts, which profoundly affects bone remodeling

  16. NPNT is Expressed by Osteoblasts and Mediates Angiogenesis via the Activation of Extracellular Signal-regulated Kinase

    Science.gov (United States)

    Kuek, Vincent; Yang, Zhifan; Chim, Shek Man; Zhu, Sipin; Xu, Huazi; Chow, Siu To; Tickner, Jennifer; Rosen, Vicki; Erber, Wendy; Li, Xiucheng; An, Qin; Qian, Yu; Xu, Jiake

    2016-01-01

    Angiogenesis plays an important role in bone development and remodeling and is mediated by a plethora of potential angiogenic factors. However, data regarding specific angiogenic factors that are secreted within the bone microenvironment to regulate osteoporosis is lacking. Here, we report that Nephronectin (NPNT), a member of the epidermal growth factor (EGF) repeat superfamily proteins and a homologue of EGFL6, is expressed in osteoblasts. Intriguingly, the gene expression of NPNT is reduced in the bone of C57BL/6J ovariectomised mice and in osteoporosis patients. In addition, the protein levels of NPNT and CD31 are also found to be reduced in the tibias of OVX mice. Exogenous addition of mouse recombinant NPNT on endothelial cells stimulates migration and tube-like structure formation in vitro. Furthermore, NPNT promotes angiogenesis in an ex vivo fetal mouse metatarsal angiogenesis assay. We show that NPNT stimulates the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 mitogen-activated kinase (MAPK) in endothelial cells. Inhibition of ERK1/2 impaired NPNT-induced endothelial cell migration, tube-like structure formation and angiogenesis. Taken together, these results demonstrate that NPNT is a paracrine angiogenic factor and may play a role in pathological osteoporosis. This may lead to new targets for treatment of bone diseases and injuries. PMID:27782206

  17. 不同表面处理方法对钛表面成骨细胞膜片 ALP活性的影响%Active Changes of ALP of Osteoblasts Cell Sheet with Different Treated Titanium Surfaces

    Institute of Scientific and Technical Information of China (English)

    毛久凤; 夏茜; 吴镭; 杨红; 周成菊; 方艺; 董强

    2016-01-01

    目的:探讨不同表面处理方法对钛表面的成骨细胞膜片碱性磷酸酶( ALP)活性的影响。方法:原代培养大鼠成骨细胞,通过形态学及ALP鉴定成骨细胞;以机械抛光处理的钛片为对照组,以棕刚玉颗粒喷砂材料处理的钛片为喷砂酸蚀( SLA)组,分别构建成骨细胞膜片,膜片连续培养1周或2周时,测量成骨细胞膜片中反映成骨效应的ALP活性的改变。结果:原代培养细胞ALP阳性,经形态及特性鉴定为成骨细胞;连续培养1周或2周时,SLA组ALP活性均高于对照组,差异有统计学意义( P<0.05);各组膜片ALP活性第1周高于第2周,差异有统计学意义( P<0.05)。结论:钛表面性质能够影响成骨细胞膜片的成骨分化能力。%[ Abstract]Objective:To study the ontogenesis of osteoblasts cell sheets with different treated surface of titanium. Methods:Primary cultured rat osteoblasts were identified through morphology observa-tion,alkaline phosphatase staining. Mechanically polished titanium sheets served as control group. The cell sheets were treated with brown fused alumina material as SLA group. Constructing osteoblast cell sheets respectively,and cultured successively for 1 or 2 weeks. Then,measuring changes of ALP activity. Results:Primary cultured cell ALP was positive,the morphology of cells conformed to the characteristics of osteoblasts. The alkaline phosphatase activity of the SLA group was higher than that of control group when cultured successively for 1 or 2 weeks,differences were statistically significant ( P<0 . 05 ). The alkaline phosphatase activity of the cell sheets formed in 1 st week was higher than that of 2nd week,differences were statistically significant(P<0. 05). Conclusion:The surface prop-erties of titanium could affect the osteogenic capacity of cell sheet.

  18. Gene profile analysis of osteoblast genes differentially regulated by histone deacetylase inhibitors

    Directory of Open Access Journals (Sweden)

    Lamblin Anne-Francoise

    2007-10-01

    Full Text Available Abstract Background Osteoblast differentiation requires the coordinated stepwise expression of multiple genes. Histone deacetylase inhibitors (HDIs accelerate the osteoblast differentiation process by blocking the activity of histone deacetylases (HDACs, which alter gene expression by modifying chromatin structure. We previously demonstrated that HDIs and HDAC3 shRNAs accelerate matrix mineralization and the expression of osteoblast maturation genes (e.g. alkaline phosphatase, osteocalcin. Identifying other genes that are differentially regulated by HDIs might identify new pathways that contribute to osteoblast differentiation. Results To identify other osteoblast genes that are altered early by HDIs, we incubated MC3T3-E1 preosteoblasts with HDIs (trichostatin A, MS-275, or valproic acid for 18 hours in osteogenic conditions. The promotion of osteoblast differentiation by HDIs in this experiment was confirmed by osteogenic assays. Gene expression profiles relative to vehicle-treated cells were assessed by microarray analysis with Affymetrix GeneChip 430 2.0 arrays. The regulation of several genes by HDIs in MC3T3-E1 cells and primary osteoblasts was verified by quantitative real-time PCR. Nine genes were differentially regulated by at least two-fold after exposure to each of the three HDIs and six were verified by PCR in osteoblasts. Four of the verified genes (solute carrier family 9 isoform 3 regulator 1 (Slc9a3r1, sorbitol dehydrogenase 1, a kinase anchor protein, and glutathione S-transferase alpha 4 were induced. Two genes (proteasome subunit, beta type 10 and adaptor-related protein complex AP-4 sigma 1 were suppressed. We also identified eight growth factors and growth factor receptor genes that are significantly altered by each of the HDIs, including Frizzled related proteins 1 and 4, which modulate the Wnt signaling pathway. Conclusion This study identifies osteoblast genes that are regulated early by HDIs and indicates pathways that

  19. Calcitonin gene-related peptide promotes the expression of osteoblastic genes and activates the WNT signal transduction pathway in bone marrow stromal stem cells

    Science.gov (United States)

    ZHOU, RI; YUAN, ZHI; LIU, JIERONG; LIU, JIAN

    2016-01-01

    Calcitonin gene-related peptide (CGRP) is known to induce osteoblastic differentiation and alkaline phosphatase activity in bone marrow stromal stem cells (BMSCs). However, it has remained elusive whether this effect is mediated by CGRP receptors directly or whether other signaling pathways are involved. The present study assessed the possible involvement of the Wnt/β-catenin signaling pathway in the activation of CGRP signaling during the differentiation of BMSCs. First, the differentiation of BMSCs was induced in vitro and the expression of CGRP receptors was examined by western blot analysis. The effects of exogenous CGRP and LiCl, a stimulator of the Wnt/β-catenin signaling pathway, on the osteoblastic differentiation of BMSCs were assessed; furthermore, the expression of mRNA and proteins involved in the Wnt/β-catenin signaling pathway was assessed using quantitative PCR and western blot analyses. The results revealed that CGRP receptors were expressed throughout the differentiation of BMSCs, at days 7 and 14. Incubation with CGRP and LiCl led to the upregulation of the expression of osteoblastic genes associated with the Wnt/β-catenin pathway, including the mRNA of c-myc, cyclin D1, Lef1, Tcf7 and β-catenin as well as β-catenin protein. However, the upregulation of these genes and β-catenin protein was inhibited by CGRP receptor antagonist or secreted frizzled-related protein, an antagonist of the Wnt/β-catenin pathway. The results of the present study therefore suggested that the Wnt/β-catenin signaling pathway may be involved in CGRP- and LiCl-promoted osteoblastic differentiation of BMSCs. PMID:27082317

  20. The Rho-GEF Kalirin regulates bone mass and the function of osteoblasts and osteoclasts.

    Science.gov (United States)

    Huang, Su; Eleniste, Pierre P; Wayakanon, Kornchanok; Mandela, Prashant; Eipper, Betty A; Mains, Richard E; Allen, Matthew R; Bruzzaniti, Angela

    2014-03-01

    Bone homeostasis is maintained by the balance between bone resorption by osteoclasts and bone formation by osteoblasts. Dysregulation in the activity of the bone cells can lead to osteoporosis, a disease characterized by low bone mass and an increase in bone fragility and risk of fracture. Kalirin is a novel GTP-exchange factor protein that has been shown to play a role in cytoskeletal remodeling and dendritic spine formation in neurons. We examined Kalirin expression in skeletal tissue and found that it was expressed in osteoclasts and osteoblasts. Furthermore, micro-CT analyses of the distal femur of global Kalirin knockout (Kal-KO) mice revealed significantly reduced trabecular and cortical bone parameters in Kal-KO mice, compared to WT mice, with significantly reduced bone mass in 8, 14 and 36week-old female Kal-KO mice. Male mice also exhibited a decrease in bone parameters but not to the level seen in female mice. Histomorphometric analyses also revealed decreased bone formation rate in 14week-old female Kal-KO mice, as well as decreased osteoblast number/bone surface and increased osteoclast surface/bone surface. Consistent with our in vivo findings, the bone resorbing activity and differentiation of Kal-KO osteoclasts was increased in vitro. Although alkaline phosphatase activity by Kal-KO osteoblasts was increased in vitro, Kal-KO osteoblasts showed decreased mineralizing activity, as well as decreased secretion of OPG, which was inversely correlated with ERK activity. Taken together, our findings suggest that deletion of Kalirin directly affects osteoclast and osteoblast activity, leading to decreased OPG secretion by osteoblasts which is likely to alter the RANKL/OPG ratio and promote osteoclastogenesis. Therefore, Kalirin may play a role in paracrine and/or endocrine signaling events that control skeletal bone remodeling and the maintenance of bone mass. PMID:24380811

  1. Artificial Extracellular Matrices with Oversulfated Glycosaminoglycan Derivatives Promote the Differentiation of Osteoblast-Precursor Cells and Premature Osteoblasts

    Directory of Open Access Journals (Sweden)

    Ute Hempel

    2014-01-01

    Full Text Available Sulfated glycosaminoglycans (GAG are components of the bone marrow stem cell niche and to a minor extent of mature bone tissue with important functions in regulating stem cell lineage commitment and differentiation. We anticipated that artificial extracellular matrices (aECM composed of collagen I and synthetically oversulfated GAG derivatives affect preferentially the differentiation of osteoblast-precursor cells and early osteoblasts. A set of gradually sulfated chondroitin sulfate and hyaluronan derivatives was used for the preparation of aECM. All these matrices were analysed with human bone marrow stromal cells to identify the most potent aECM and to determine the influence of the degree and position of sulfate groups and the kind of disaccharide units on the osteogenic differentiation. Oversulfated GAG derivatives with a sulfate group at the C-6 position of the N-acetylglycosamine revealed the most pronounced proosteogenic effect as determined by tissue nonspecific alkaline phosphatase activity and calcium deposition. A subset of the aECM was further analysed with different primary osteoblasts and cell lines reflecting different maturation stages to test whether the effect of sulfated GAG derivatives depends on the maturation status of the cells. It was shown that the proosteogenic effect of aECM was most prominent in early osteoblasts.

  2. Identification of Rorβ targets in cultured osteoblasts and in human bone

    Energy Technology Data Exchange (ETDEWEB)

    Roforth, Matthew M., E-mail: roforth.matthew@mayo.edu; Khosla, Sundeep, E-mail: khosla.sundeep@mayo.edu; Monroe, David G., E-mail: monroe.david@mayo.edu

    2013-11-01

    Highlights: •We examine the gene expression patterns controlled by Rorβ in osteoblasts. •Genes involved in extracellular matrix regulation and proliferation are affected. •Rorβ mRNA levels increase in aged, human bone biopsies. •Rorβ may affect osteoblast activity by modulation of these pathways. -- Abstract: Control of osteoblastic bone formation involves the cumulative action of numerous transcription factors, including both activating and repressive functions that are important during specific stages of differentiation. The nuclear receptor retinoic acid receptor-related orphan receptor β (Rorβ) has been recently shown to suppress the osteogenic phenotype in cultured osteoblasts, and is highly upregulated in bone marrow-derived osteogenic precursors isolated from aged osteoporotic mice, suggesting Rorβ is an important regulator of osteoblast function. However the specific gene expression patterns elicited by Rorβ are unknown. Using microarray analysis, we identified 281 genes regulated by Rorβ in an MC3T3-E1 mouse osteoblast cell model (MC3T3-Rorβ-GFP). Pathway analysis revealed alterations in genes involved in MAPK signaling, genes involved in extracellular matrix (ECM) regulation, and cytokine-receptor interactions. Whereas the identified Rorβ-regulated ECM genes normally decline during osteoblastic differentiation, they were highly upregulated in this non-mineralizing MC3T3-Rorβ-GFP model system, suggesting that Rorβ may exert its anti-osteogenic effects through ECM disruption. Consistent with these in vitro findings, the expression of both RORβ and a subset of RORβ-regulated genes were increased in bone biopsies from postmenopausal women (73 ± 7 years old) compared to premenopausal women (30 ± 5 years old), suggesting a role for RORβ in human age-related bone loss. Collectively, these data demonstrate that Rorβ regulates known osteogenic pathways, and may represent a novel therapeutic target for age-associated bone loss.

  3. Dexamethasone, BMP-2, and 1,25-dihydroxyvitamin D enhance a more differentiated osteoblast phenotype

    DEFF Research Database (Denmark)

    Jørgensen, Niklas Rye; Henriksen, Z; Sørensen, O H;

    2004-01-01

    D), 100 nM Dex, and/or 100 ng/ml BMP-2. The osteoblast phenotype was assessed as alkaline phosphatase (AP) activity/staining, production of osteocalcin and procollagen type 1 (P1NP), parathyroid hormone (PTH)-induced cyclic adenosine mono-phosphate (cAMP) production, and in vitro mineralization. AP...... activity was increased by Dex, but not by BMP-2 treatment. P1NP production was decreased after Dex treatment, while BMP-2 had no effect on P1NP levels. Osteocalcin production was low in cultures not stimulated with vitamin D. Dex or BMP-2 treatment alone did not affect the basic osteocalcin levels, but in...... osteoblastic cells with different phenotypic characteristics, and a selective activation of some of the most important genes and functions of the mature osteoblast can thus be performed in vitro....

  4. Human activities affecting trace gases and climate

    International Nuclear Information System (INIS)

    The Earth's climate has been in a constant state of change throughout geologic time due to natural perturbations in the global geobiosphere. However, various human activities have the potential to cause future global warming over a relatively short amount of time. These activities, which affect the Earth's climate by altering the concentrations of trace gases in the atmosphere, include energy consumption, particularly fossil-fuel consumption; industrial processes (production and use of chlorofluorocarbons, halons, and chlorocarbons, landfilling of wastes, and cement manufacture); changes in land use patterns, particularly deforestation and biomass burning; and agricultural practices (waste burning, fertilizer usage, rice production, and animal husbandry). Population growth is an important underlying factor affecting the level of growth in each activity. This paper describes how the human activities listed above contribute to atmospheric change, the current pattern of each activity, and how levels of each activity have changed since the early part of this century

  5. Effect of La3+ on osteoblastic differentiation of rat bone marrow stromal cells

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In the present work, the effect of La3+ on osteoblastic differentiation of primary rat bone marrow stromal cells (MSCs) as well as the related mechanisms are studied. Differentiation is monitored by detection of alkaline phosphatase (ALP) activity, osteocalcin secretion, the mRNA levels of Type I collagen and osteocalcin, and matrix mineralization. The results show that La3+ inhibits osteoblastic differentiation of MSCs in the early and middle stages of culture, as demonstrated by the decrease of ALP activity, osteocalcin secretion, and down-regulation of the mRNA level of osteocalcin. However, La3+ does not affect the matrix mineralization in advanced MSCs, because it up-regulates the mRNA levels of Type I collagen, and promotes ALP activity and osteocalcin secretion in MSCs in the late stage of culture. In addition, Western blot analysis exhibits that La3+ induces the phosphorylation and activation of mitogen-activated protein kinase (MAPK). Furthermore, MAPK kinase inhibitor PD98059 completely blocks the inhibitory effect of La3+ on ALP activity of MSCs in the middle stage of culture. These results suggest that La3+ affects MSCs osteoblastic differentiation depending on differentiation stages. La3+ inhibits osteoblastic differentiation of MSCs in the early and middle stages by a MAPK-dependent mechanism, but does not affect the matrix mineralization in advanced MSCs.

  6. Whence Induced Demand: How Access Affects Activity

    OpenAIRE

    Levinson, David; Kanchi, Seshasai

    2000-01-01

    Additional highway capacity, by increasing travel speed, affects the individual share of time within a 24-hour budget allocated to various activities (time spent at and traveling to home, shop, work and other), some activities will be undertaken more, others less. This paper extends previous research that identified and quantified induced demand in terms of vehicle miles traveled, by considering questions of what type of demand is induced and which activities are consequently reduced. This pa...

  7. Effect of Blood Component Coatings of Enosseal Implants on Proliferation and Synthetic Activity of Human Osteoblasts and Cytokine Production of Peripheral Blood Mononuclear Cells

    Science.gov (United States)

    Hulejova, Hana; Bartova, Jirina; Riedel, Tomas; Pesakova, Vlasta

    2016-01-01

    The study monitored in vitro early response of connective tissue cells and immunocompetent cells to enosseal implant materials coated by different blood components (serum, activated plasma, and plasma/platelets) to evaluate human osteoblast proliferation and synthetic activity and inflammatory response presented as a cytokine profile of peripheral blood mononuclear cells (PBMCs) under conditions imitating the situation upon implantation. The cells were cultivated on coated Ti-plasma-sprayed (Ti-PS), Ti-etched (Ti-Etch), Ti-hydroxyapatite (Ti-HA), and ZrO2 surfaces. The plasma/platelets coating supported osteoblast proliferation only on osteoconductive Ti-HA and Ti-Etch whereas activated plasma enhanced proliferation on all surfaces. Differentiation (BAP) and IL-8 production remained unchanged or decreased irrespective of the coating and surface; only the serum and plasma/platelets-coated ZrO2 exhibited higher BAP and IL-8 expression. RANKL production increased on serum and activated plasma coatings. PBMCs produced especially cytokines playing role in inflammatory phase of wound healing, that is, IL-6, GRO-α, GRO, ENA-78, IL-8, GM-CSF, EGF, and MCP-1. Cytokine profiles were comparable for all tested surfaces; only ENA-78, IL-8, GM-CSF, and MCP-1 expression depended on materials and coatings. The activated plasma coating led to uniformed surfaces and represented a favorable treatment especially for bioinert Ti-PS and ZrO2 whereas all coatings had no distinctive effect on bioactive Ti-HA and Ti-Etch.

  8. Avenanthramides Prevent Osteoblast and Osteocyte Apoptosis and Induce Osteoclast Apoptosis in Vitro in an Nrf2-Independent Manner

    Directory of Open Access Journals (Sweden)

    Gretel G. Pellegrini

    2016-07-01

    Full Text Available Oats contain unique bioactive compounds known as avenanthramides (AVAs with antioxidant properties. AVAs might enhance the endogenous antioxidant cellular response by activation of the transcription factor Nrf2. Accumulation of reactive oxygen species plays a critical role in many chronic and degenerative diseases, including osteoporosis. In this disease, there is an imbalance between bone formation by osteoblasts and bone resorption by osteoclasts, which is accompanied by increased osteoblast/osteocyte apoptosis and decreased osteoclast apoptosis. We investigated the ability of the synthethic AVAs 2c, 2f and 2p, to 1-regulate gene expression in bone cells, 2-affect the viability of osteoblasts, osteocytes and osteoclasts, and the generation of osteoclasts from their precursors, and 3-examine the potential involvement of the transcription factor Nrf2 in these actions. All doses of AVA 2c and 1 and 5 µM dose of 2p up-regulated collagen 1A expression. Lower doses of AVAs up-regulated OPG (osteoprotegerin in OB-6 osteoblastic cells, whereas 100 μM dose of 2f and all concentrations of 2c down-regulated RANKL gene expression in MLO-Y4 osteocytic cells. AVAs did not affect apoptosis of OB-6 osteoblastic cells or MLO-Y4 osteocytic cells; however, they prevented apoptosis induced by the DNA topoisomerase inhibitor etoposide, the glucocorticoid dexamethasone, and hydrogen peroxide. AVAs prevented apoptosis of both wild type (WT and Nrf2 Knockout (KO osteoblasts, demonstrating that AVAs-induced survival does not require Nrf2 expression. Further, KO osteoclast precursors produced more mature osteoclasts than WT; and KO cultures exhibited less apoptotic osteoclasts than WT cultures. Although AVAs did not affect WT osteoclasts, AVA 2p reversed the low apoptosis of KO osteoclasts. These in vitro results demonstrate that AVAs regulate, in part, the function of osteoblasts and osteocytes and prevent osteoblast/osteocyte apoptosis and increase osteoclast

  9. Avenanthramides Prevent Osteoblast and Osteocyte Apoptosis and Induce Osteoclast Apoptosis in Vitro in an Nrf2-Independent Manner.

    Science.gov (United States)

    Pellegrini, Gretel G; Morales, Cynthya C; Wallace, Taylor C; Plotkin, Lilian I; Bellido, Teresita

    2016-01-01

    Oats contain unique bioactive compounds known as avenanthramides (AVAs) with antioxidant properties. AVAs might enhance the endogenous antioxidant cellular response by activation of the transcription factor Nrf2. Accumulation of reactive oxygen species plays a critical role in many chronic and degenerative diseases, including osteoporosis. In this disease, there is an imbalance between bone formation by osteoblasts and bone resorption by osteoclasts, which is accompanied by increased osteoblast/osteocyte apoptosis and decreased osteoclast apoptosis. We investigated the ability of the synthethic AVAs 2c, 2f and 2p, to 1-regulate gene expression in bone cells, 2-affect the viability of osteoblasts, osteocytes and osteoclasts, and the generation of osteoclasts from their precursors, and 3-examine the potential involvement of the transcription factor Nrf2 in these actions. All doses of AVA 2c and 1 and 5 µM dose of 2p up-regulated collagen 1A expression. Lower doses of AVAs up-regulated OPG (osteoprotegerin) in OB-6 osteoblastic cells, whereas 100 μM dose of 2f and all concentrations of 2c down-regulated RANKL gene expression in MLO-Y4 osteocytic cells. AVAs did not affect apoptosis of OB-6 osteoblastic cells or MLO-Y4 osteocytic cells; however, they prevented apoptosis induced by the DNA topoisomerase inhibitor etoposide, the glucocorticoid dexamethasone, and hydrogen peroxide. AVAs prevented apoptosis of both wild type (WT) and Nrf2 Knockout (KO) osteoblasts, demonstrating that AVAs-induced survival does not require Nrf2 expression. Further, KO osteoclast precursors produced more mature osteoclasts than WT; and KO cultures exhibited less apoptotic osteoclasts than WT cultures. Although AVAs did not affect WT osteoclasts, AVA 2p reversed the low apoptosis of KO osteoclasts. These in vitro results demonstrate that AVAs regulate, in part, the function of osteoblasts and osteocytes and prevent osteoblast/osteocyte apoptosis and increase osteoclast apoptosis; further

  10. Photothermal effects of laser-activated surface plasmonic gold nanoparticles on the apoptosis and osteogenesis of osteoblast-like cells

    Science.gov (United States)

    Rau, Lih-Rou; Huang, Wan-Yu; Liaw, Jiunn-Woei; Tsai, Shiao-Wen

    2016-01-01

    The specific properties of gold nanoparticles (AuNPs) make them a novel class of photothermal agents that can induce cancer cell damage and even death through the conversion of optical energy to thermal energy. Most relevant studies have focused on increasing the precision of cell targeting, improving the efficacy of energy transfer, and exploring additional functions. Nevertheless, most cells can uptake nanosized particles through nonspecific endocytosis; therefore, before hyperthermia via AuNPs can be applied for clinical use, it is important to understand the adverse optical–thermal effects of AuNPs on nontargeted cells. However, few studies have investigated the thermal effects induced by pulsed laser-activated AuNPs on nearby healthy cells due to nonspecific treatment. The aim of this study is to evaluate the photothermal effects induced by AuNPs plus a pulsed laser on MG63, an osteoblast-like cell line, specifically examining the effects on cell morphology, viability, death program, and differentiation. The cells were treated with media containing 50 nm AuNPs at a concentration of 5 ppm for 1 hour. Cultured cells were then exposed to irradiation at 60 mW/cm2 and 80 mW/cm2 by a Nd:YAG laser (532 nm wavelength). We observed that the cytoskeletons of MG63 cells treated with bare AuNPs followed by pulsed laser irradiation were damaged, and these cells had few bubbles on the cell membrane compared with those that were not treated (control) or were treated with AuNPs or the laser alone. There were no significant differences between the AuNPs plus laser treatment group and the other groups in terms of cell viability, death program analysis results, or alkaline phosphatase and calcium accumulation during culture for up to 21 days. However, the calcium deposit areas in the cells treated with AuNPs plus laser were larger than those in other groups during the early culture period. PMID:27555768

  11. Photothermal effects of laser-activated surface plasmonic gold nanoparticles on the apoptosis and osteogenesis of osteoblast-like cells.

    Science.gov (United States)

    Rau, Lih-Rou; Huang, Wan-Yu; Liaw, Jiunn-Woei; Tsai, Shiao-Wen

    2016-01-01

    The specific properties of gold nanoparticles (AuNPs) make them a novel class of photothermal agents that can induce cancer cell damage and even death through the conversion of optical energy to thermal energy. Most relevant studies have focused on increasing the precision of cell targeting, improving the efficacy of energy transfer, and exploring additional functions. Nevertheless, most cells can uptake nanosized particles through nonspecific endocytosis; therefore, before hyperthermia via AuNPs can be applied for clinical use, it is important to understand the adverse optical-thermal effects of AuNPs on nontargeted cells. However, few studies have investigated the thermal effects induced by pulsed laser-activated AuNPs on nearby healthy cells due to nonspecific treatment. The aim of this study is to evaluate the photothermal effects induced by AuNPs plus a pulsed laser on MG63, an osteoblast-like cell line, specifically examining the effects on cell morphology, viability, death program, and differentiation. The cells were treated with media containing 50 nm AuNPs at a concentration of 5 ppm for 1 hour. Cultured cells were then exposed to irradiation at 60 mW/cm(2) and 80 mW/cm(2) by a Nd:YAG laser (532 nm wavelength). We observed that the cytoskeletons of MG63 cells treated with bare AuNPs followed by pulsed laser irradiation were damaged, and these cells had few bubbles on the cell membrane compared with those that were not treated (control) or were treated with AuNPs or the laser alone. There were no significant differences between the AuNPs plus laser treatment group and the other groups in terms of cell viability, death program analysis results, or alkaline phosphatase and calcium accumulation during culture for up to 21 days. However, the calcium deposit areas in the cells treated with AuNPs plus laser were larger than those in other groups during the early culture period. PMID:27555768

  12. Expression of integrin alpha 10 is transcriptionally activated by pRb in mouse osteoblasts and is downregulated in multiple solid tumors.

    Science.gov (United States)

    Engel, B E; Welsh, E; Emmons, M F; Santiago-Cardona, P G; Cress, W D

    2013-11-28

    pRb is known as a classic cell cycle regulator whose inactivation is an important initiator of tumorigenesis. However, more recently, it has also been linked to tumor progression. This study defines a role for pRb as a suppressor of the progression to metastasis by upregulating integrin α10. Transcription of this integrin subunit is herein found to be pRb dependent in mouse osteoblasts. Classic pRb partners in cell cycle control, E2F1 and E2F3, do not repress transcription of integrin α10 and phosphorylation of pRb is not necessary for activation of the integrin α10 promoter. Promoter deletion revealed a pRb-responsive region between -108 bp to -55 bp upstream of the start of the site of transcription. pRb activation of transcription also leads to increased levels of integrin α10 protein and a greater concentration of the integrin α10 protein at the cell membrane of mouse osteoblasts. These higher levels of integrin α10 correspond to increased binding to collagen substrate. Consistent with our findings in mouse osteoblasts, we found that integrin α10 is significantly underexpressed in multiple solid tumors that have frequent inactivation of the pRb pathway. Bioinformatically, we identified data consistent with an 'integrin switch' that occurs in multiple solid tumors consisting of underexpression of integrins α7, α8, and α10 with concurrent overexpression of integrin β4. pRb promotes cell adhesion by inducing expression of integrins necessary for cell adhesion to a substrate. We propose that pRb loss in solid tumors exacerbates aggressiveness by debilitating cellular adhesion, which in turn facilitates tumor cell detachment and metastasis.

  13. Decreased oxygen tension lowers reactive oxygen species and apoptosis and inhibits osteoblast matrix mineralization through changes in early osteoblast differentiation.

    Science.gov (United States)

    Nicolaije, Claudia; Koedam, Marijke; van Leeuwen, Johannes P T M

    2012-04-01

    Accumulating data show that oxygen tension can have an important effect on cell function and fate. We used the human pre-osteoblastic cell line SV-HFO, which forms a mineralizing extracellular matrix, to study the effect of low oxygen tension (2%) on osteoblast differentiation and mineralization. Mineralization was significantly reduced by 60-70% under 2% oxygen, which was paralleled by lower intracellular levels of reactive oxygen species (ROS) and apoptosis. Following this reduction in ROS the cells switched to a lower level of protection by down-regulating their antioxidant enzyme expression. The downside of this is that it left the cells more vulnerable to a subsequent oxidative challenge. Total collagen content was reduced in the 2% oxygen cultures and expression of matrix genes and matrix-metabolizing enzymes was significantly affected. Alkaline phosphatase activity and RNA expression as well as RUNX2 expression were significantly reduced under 2% oxygen. Time phase studies showed that high oxygen in the first phase of osteoblast differentiation and prior to mineralization is crucial for optimal differentiation and mineralization. Switching to 2% or 20% oxygen only during mineralization phase did not change the eventual level of mineralization. In conclusion, this study shows the significance of oxygen tension for proper osteoblast differentiation, extra cellular matrix (ECM) formation, and eventual mineralization. We demonstrated that the major impact of oxygen tension is in the early phase of osteoblast differentiation. Low oxygen in this phase leaves the cells in a premature differentiation state that cannot provide the correct signals for matrix maturation and mineralization.

  14. Methylsulfonylmethane enhances BMP‑2‑induced osteoblast differentiation in mesenchymal stem cells.

    Science.gov (United States)

    Kim, Don Nam; Joung, Youn Hee; Darvin, Pramod; Kang, Dong Young; Sp, Nipin; Byun, Hyo Joo; Cho, Kwang Hyun; Park, Kyung Do; Lee, Hak Kyo; Yang, Young Mok

    2016-07-01

    As human lifespans have increased, the incidence of osteoporosis has also increased. Methylsulfonylmethane (MSM) affects the process of mesenchymal stem cell (MSC) differentiation into osteoblasts via the Janus kinase 2 (Jak2)/signal transducer and activator of transcription (STAT)5b signaling pathway, and bone morphogenetic protein 2 (BMP‑2) is also known to significantly affect bone health. In addition, the phosphorylation of small mothers against decapentaplegic (Smad)1/5/8 regulates the Runt‑related transcription factor 2 (Runx2) gene, which encodes a transcription factor for osteoblast differentiation markers. In the present study, the differentiation of MSCs treated with MSM, BMP‑2, and their combination were examined. The differentiation of osteoblasts was demonstrated through observation of morphological changes and mineralization, using alizarin red and Von Kossa staining. Western blotting analysis demonstrated that the combination of MSM and BMP-2 increased the phosphorylation of the BMP signaling-associated protein, Smad1/5/8. Combination of MSM and BMP-2 significantly increased osteogenic differentiation and mineralization of the MSCs compared with either MSM or BMP-2 alone. Additionally, reverse transcription-polymerase chain reaction analysis demonstrated that combination of MSM and BMP-2 increased the expression level of the Runx2 gene and the osteoblast differentiation marker genes, alkaline phosphatase, bone sialoprotein and osteocalcin, in MSCs compared with controls. Thus, the combination of MSM and BMP-2 may promote the differentiation of MSCs into osteoblasts. PMID:27175741

  15. Active Affective Learning for Accelerated Schools.

    Science.gov (United States)

    Richardson, Robert B.

    This paper provides the groundwork for Active Affective Learning and teaching adapted to the needs of the disadvantaged, at-risk students served by the Accelerated Schools Movement. One of the "golden rules" for the practice of Accelerated Learning, according to psychiatrist Georgi Lozanov, has been to maintain an "up-beat" classroom presentation…

  16. AMPK Activation Affects Glutamate Metabolism in Astrocytes

    DEFF Research Database (Denmark)

    Voss, Caroline Marie; Pajęcka, Kamilla; Stridh, Malin H;

    2015-01-01

    skeleton into the TCA cycle was reduced. On the other hand, glutamate uptake into the astrocytes as well as its conversion to glutamine catalyzed by glutamine synthetase was not affected by AMPK activation. Interestingly, synthesis and release of citrate, which are hallmarks of astrocytic function, were...

  17. Prunetin signals via G-protein-coupled receptor, GPR30(GPER1): Stimulation of adenylyl cyclase and cAMP-mediated activation of MAPK signaling induces Runx2 expression in osteoblasts to promote bone regeneration.

    Science.gov (United States)

    Khan, Kainat; Pal, Subhashis; Yadav, Manisha; Maurya, Rakesh; Trivedi, Arun Kumar; Sanyal, Sabyasachi; Chattopadhyay, Naibedya

    2015-12-01

    Prunetin is found in red clover and fruit of Prunus avium (red cherry). The effect of prunetin on osteoblast function, its mode of action and bone regeneration in vivo were investigated. Cultures of primary osteoblasts, osteoblastic cell line and HEK293T cells were used for various in vitro studies. Adult female rats received drill-hole injury at the femur diaphysis to assess the bone regenerative effect of prunetin. Prunetin at 10nM significantly (a) increased proliferation and differentiation of primary cultures of osteoblasts harvested from rats and (b) promoted formation of mineralized nodules by bone marrow stromal/osteoprogenitor cells. At this concentration, prunetin did not activate any of the two nuclear estrogen receptors (α and β). However, prunetin triggered signaling via a G-protein-coupled receptor, GPR30/GPER1, and enhanced cAMP levels in osteoblasts. G15, a selective GPR30 antagonist, abolished prunetin-induced increases in osteoblast proliferation, differentiation and intracellular cAMP. In osteoblasts, prunetin up-regulated runt-related transcription factor 2 (Runx2) protein through cAMP-dependent Erk/MAP kinase activation that ultimately resulted in the up-regulation of GPR30. Administration of prunetin at 0.25mg/kg given to rats stimulated bone regeneration at the site of drill hole and up-regulated Runx2 expression in the fractured callus and the effect was comparable to human parathyroid hormone, the only clinically used osteogenic therapy. We conclude that prunetin promotes osteoinduction in vivo and the mechanism is defined by signaling through GPR30 resulting in the up-regulation of the key osteogenic gene Runx2 that in turn up-regulates GPR30. PMID:26345541

  18. Acidosis inhibits mineralization in human osteoblasts.

    Science.gov (United States)

    Takeuchi, Shoko; Hirukawa, Koji; Togari, Akifumi

    2013-09-01

    Osteoblasts and osteoclasts maintain bone volume. Acidosis affects the function of these cells including mineral metabolism. We examined the effect of acidosis on the expression of transcription factors and mineralization in human osteoblasts in vitro. Human osteoblasts (SaM-1 cells) derived from the ulnar periosteum were cultured with α-MEM containing 50 μg/ml ascorbic acid and 5 mM β-glycerophosphate (calcifying medium). Acidosis was induced by incubating the SaM-1 cells in 10 % CO₂ (pH approximately 7.0). Mineralization, which was augmented by the calcifying medium, was completely inhibited by acidosis. Acidosis depressed c-Jun mRNA and increased osteoprotegerin (OPG) production in a time-dependent manner. Depressing c-Jun mRNA expression using siRNA increased OPG production and inhibited mineralization. In addition, depressing OPG mRNA expression with siRNA enhanced mineralization in a dose-dependent manner. Acidosis or the OPG protein strongly inhibited mineralization in osteoblasts from neonatal mice. The present study was the first to demonstrate that acidosis inhibited mineralization, depressed c-Jun mRNA expression, and induced OPG production in human osteoblasts. These results suggest that OPG is involved in mineralization via c-Jun in human osteoblasts.

  19. Promoter-dependent and -independent activation of insulin-like growth factor binding protein-5 gene expression by prostaglandin E2 in primary rat osteoblasts

    Science.gov (United States)

    McCarthy, T. L.; Casinghino, S.; Mittanck, D. W.; Ji, C. H.; Centrella, M.; Rotwein, P.

    1996-01-01

    Insulin-like growth factor (IGF) action is mediated by high affinity cell surface IGF receptors and modulated by a family of secreted IGF binding proteins (IGFBPs). IGFBP-5, the most conserved of six IGFBPs characterized to date, uniquely potentiates the anabolic actions of IGF-I for skeletal cells. In osteoblasts, IGFBP-5 production is stimulated by prostaglandin E2 (PGE2), a local factor that mediates certain effects induced by parathyroid hormone, cytokines such as interleukin-1 and transforming growth factor-beta, and mechanical strain. In this study, we show that transcriptional and post-transcriptional events initiated by PGE2 collaborate to enhance IGFBP-5 gene expression in primary fetal rat osteoblast cultures. PGE2 treatment stimulated up to a 7-fold rise in steady-state levels of IGFBP-5 mRNA throughout 32 h of incubation. Analysis of nascent IGFBP-5 mRNA suggested that PGE2 had only a modest stimulatory effect on IGFBP-5 gene transcription, and transient transfection studies with IGFBP-5 promoter-reporter genes confirmed that PGE2 enhanced promoter activity by approximately 2-fold. Similar stimulatory effects were seen with forskolin. A DNA fragment with only 51 base pairs of the 5'-flanking sequence retained hormonal responsiveness, which may be mediated by a binding site for transcription factor AP-2 located at positions -44 to -36 in the proximal IGFBP-5 promoter. Incubation of osteoblasts with the mRNA transcriptional inhibitor 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole demonstrated that PGE2 enhanced IGFBP-5 mRNA stability by 2-fold, increasing the t1/2 from 9 to 18 h. The effects of PGE2 on steady-state IGFBP-5 transcripts were abrogated by preincubating cells with cycloheximide, indicating that the effects of PGE2 on both gene transcription and mRNA stability required ongoing protein synthesis. Therefore, both promoter-dependent and -independent pathways converge to enhance IGFBP-5 gene expression in response to PGE2 in osteoblasts.

  20. Do recreational activities affect coastal biodiversity?

    Science.gov (United States)

    Riera, Rodrigo; Menci, Cristiano; Sanabria-Fernández, José Antonio; Becerro, Mikel A.

    2016-09-01

    Human activities are largely affecting coastal communities worldwide. Recreational perturbations have been overlooked in comparison to other perturbations, yet they are potential threats to marine biodiversity. They affect coastal communities in different ways, underpinning consistent shifts in fish and invertebrates assemblages. Several sites were sampled subjected to varying effects by recreational fishermen (low and high pressure) and scuba divers (low and high) in an overpopulated Atlantic island. Non-consistent differences in ecological, trophic and functional diversity were found in coastal communities, considering both factors ("diving" and "fishing"). Multivariate analyses only showed significant differences in benthic invertebrates between intensively-dived and non-dived sites. The lack of clear trends may be explained by the depletion of coastal resources in the study area, an extensively-affected island by overfishing.

  1. Electrical activity of ferroelectric biomaterials and its effects on the adhesion, growth and enzymatic activity of human osteoblast-like cells

    Science.gov (United States)

    Vaněk, P.; Kolská, Z.; Luxbacher, T.; García, J. A. L.; Lehocký, M.; Vandrovcová, M.; Bačáková, L.; Petzelt, J.

    2016-05-01

    Ferroelectrics have been, among others, studied as electroactive implant materials. Previous investigations have indicated that such implants induce improved bone formation. If a ferroelectric is immersed in a liquid, an electric double layer and a diffusion layer are formed at the interface. This is decisive for protein adsorption and bioactive behaviour, particularly for the adhesion and growth of cells. The charge distribution can be characterized, in a simplified way, by the zeta potential. We measured the zeta potential in dependence on the surface polarity on poled ferroelectric single crystalline LiNbO3 plates. Both our results and recent results of colloidal probe microscopy indicate that the charge distribution at the surface can be influenced by the surface polarity of ferroelectrics under certain ‘ideal’ conditions (low ionic strength, non-contaminated surface, very low roughness). However, suggested ferroelectric coatings on the surface of implants are far from ideal: they are rough, polycrystalline, and the body fluid is complex and has high ionic strength. In real cases, it can therefore be expected that there is rather low influence of the sign of the surface polarity on the electric diffusion layer and thus on the specific adsorption of proteins. This is supported by our results from studies of the adhesion, growth and the activity of alkaline phosphatase of human osteoblast-like Saos-2 cells on ferroelectric LiNbO3 plates in vitro.

  2. Approximating bone ECM: Crosslinking directs individual and coupled osteoblast/osteoclast behavior.

    Science.gov (United States)

    Hwang, Mintai P; Subbiah, Ramesh; Kim, In Gul; Lee, Kyung Eun; Park, Jimin; Kim, Sang Heon; Park, Kwideok

    2016-10-01

    Osteoblast and osteoclast communication (i.e. osteocoupling) is an intricate process, in which the biophysical profile of bone ECM is an aggregate product of their activities. While the effect of microenvironmental cues on osteoblast and osteoclast maturation has been resolved into individual variables (e.g. stiffness or topography), a single cue can be limited with regards to reflecting the full biophysical scope of natural bone ECM. Additionally, the natural modulation of bone ECM, which involves collagenous fibril and elastin crosslinking via lysyl oxidase, has yet to be reflected in current synthetic platforms. Here, we move beyond traditional substrates and use cell-derived ECM to examine individual and coupled osteoblast and osteoclast behavior on a physiological platform. Specifically, preosteoblast-derived ECM is crosslinked with genipin, a biocompatible crosslinker, to emulate physiological lysyl oxidase-mediated ECM crosslinking. We demonstrate that different concentrations of genipin yield changes to ECM density, stiffness, and roughness while retaining biocompatibility. By approximating various bone ECM profiles, we examine how individual and coupled osteoblast and osteoclast behavior are affected. Ultimately, we demonstrate an increase in osteoblast and osteoclast differentiation on compact and loose ECM, respectively, and identify ECM crosslinking density as an underlying force in osteocoupling behavior. PMID:27376556

  3. Effects of radiation on macrophage colony stimulating factor in primary osteoblasts

    International Nuclear Information System (INIS)

    Objective: To investigate the radiation effect on the expression of macrophage colony stimulating factor (M-CSF) in primary osteoblasts and the molecular mechanism of bone injury induced by radiation. Methods: Osteoblasts differentiated from bone marrow stromal cells (BMSCs) were analyzed by real-time PCR and Western blot after 2 Gy or 4 Gy 137Cs γ-irradiation. Results: M-CSF mRNA and protein expression level were up-regulated after 2 Gy and 4 Gy irradiation (t=-17.329, P<0.01; t=-3.841, P<0.05) in osteoblasts. 4 Gy irradiation increased M-CSF mRNA in osteoblast precursors (t=-4.478, P<0.05), but do not affect the protein expression level. Conclusions: These results indicated that up-regulated M-CSF in osteoblasts could enhance the function of osteoclasts' differentiation and maturation which induced by receptor activator of nuclear factor κB ligand after 2 Gy and 4 Gy irradiation. Further more,up-regulated M-CSF expression could enhance osteoclastic bone resorption of mature osteoclasts. (authors)

  4. Morphological and proteomic analysis of early stage of osteoblast differentiation in osteoblastic progenitor cells

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Dun [Population Council, 1230 York Avenue, New York, NY 10065 (United States); Orthopedic Department, Taizhou Hospital, Wenzhou Medical College, Linhai, Zhejiang 317000 (China); Chen, Hai-Xiao, E-mail: Hxchen-1@163.net [Orthopedic Department, Taizhou Hospital, Wenzhou Medical College, Linhai, Zhejiang 317000 (China); Yu, Hai-Qiang [Proteomics Resource Center, The Rockefeller University, 1230 York Avenue, New York, NY 10065 (United States); Liang, Yong; Wang, Carrie [Population Council, 1230 York Avenue, New York, NY 10065 (United States); Lian, Qing-Quan [The 2nd Affiliated Hospital, Wenzhou Medical College, Wenzhou, Zhejiang 325000 (China); Deng, Hai-Teng, E-mail: dengh@mail.rockefeller.edu [Proteomics Resource Center, The Rockefeller University, 1230 York Avenue, New York, NY 10065 (United States); Ge, Ren-Shan, E-mail: rge@popcbr.rockefeller.edu [Population Council, 1230 York Avenue, New York, NY 10065 (United States); The 2nd Affiliated Hospital, Wenzhou Medical College, Wenzhou, Zhejiang 325000 (China)

    2010-08-15

    Bone remodeling relies on a dynamic balance between bone formation and resorption, mediated by osteoblasts and osteoclasts, respectively. Under certain stimuli, osteoprogenitor cells may differentiate into premature osteoblasts and further into mature osteoblasts. This process is marked by increased alkaline phosphatase (ALP) activity and mineralized nodule formation. In this study, we induced osteoblast differentiation in mouse osteoprogenitor MC3T3-E1 cells and divided the process into three stages. In the first stage (day 3), the MC3T3-E1 cell under osteoblast differentiation did not express ALP or deposit a mineralized nodule. In the second stage, the MC3T3-E1 cell expressed ALP but did not form a mineralized nodule. In the third stage, the MC3T3-E1 cell had ALP activity and formed mineralized nodules. In the present study, we focused on morphological and proteomic changes of MC3T3-E1 cells in the early stage of osteoblast differentiation - a period when premature osteoblasts transform into mature osteoblasts. We found that mean cell area and mean stress fiber density were increased in this stage due to enhanced cell spreading and decreased cell proliferation. We further analyzed the proteins in the signaling pathway of regulation of the cytoskeleton using a proteomic approach and found upregulation of IQGAP1, gelsolin, moesin, radixin, and Cfl1. After analyzing the focal adhesion signaling pathway, we found the upregulation of FLNA, LAMA1, LAMA5, COL1A1, COL3A1, COL4A6, and COL5A2 as well as the downregulation of COL4A1, COL4A2, and COL4A4. In conclusion, the signaling pathway of regulation of the cytoskeleton and focal adhesion play critical roles in regulating cell spreading and actin skeleton formation in the early stage of osteoblast differentiation.

  5. Effect of Blood Component Coatings of Enosseal Implants on Proliferation and Synthetic Activity of Human Osteoblasts and Cytokine Production of Peripheral Blood Mononuclear Cells

    Science.gov (United States)

    Hulejova, Hana; Bartova, Jirina; Riedel, Tomas; Pesakova, Vlasta

    2016-01-01

    The study monitored in vitro early response of connective tissue cells and immunocompetent cells to enosseal implant materials coated by different blood components (serum, activated plasma, and plasma/platelets) to evaluate human osteoblast proliferation and synthetic activity and inflammatory response presented as a cytokine profile of peripheral blood mononuclear cells (PBMCs) under conditions imitating the situation upon implantation. The cells were cultivated on coated Ti-plasma-sprayed (Ti-PS), Ti-etched (Ti-Etch), Ti-hydroxyapatite (Ti-HA), and ZrO2 surfaces. The plasma/platelets coating supported osteoblast proliferation only on osteoconductive Ti-HA and Ti-Etch whereas activated plasma enhanced proliferation on all surfaces. Differentiation (BAP) and IL-8 production remained unchanged or decreased irrespective of the coating and surface; only the serum and plasma/platelets-coated ZrO2 exhibited higher BAP and IL-8 expression. RANKL production increased on serum and activated plasma coatings. PBMCs produced especially cytokines playing role in inflammatory phase of wound healing, that is, IL-6, GRO-α, GRO, ENA-78, IL-8, GM-CSF, EGF, and MCP-1. Cytokine profiles were comparable for all tested surfaces; only ENA-78, IL-8, GM-CSF, and MCP-1 expression depended on materials and coatings. The activated plasma coating led to uniformed surfaces and represented a favorable treatment especially for bioinert Ti-PS and ZrO2 whereas all coatings had no distinctive effect on bioactive Ti-HA and Ti-Etch. PMID:27651560

  6. Abdominal Fat and Sarcopenia in Women Significantly Alter Osteoblasts Homeostasis In Vitro by a WNT/β-Catenin Dependent Mechanism

    OpenAIRE

    Francesca Wannenes; Vincenza Papa; Greco, Emanuela A.; Rachele Fornari; Chiara Marocco; Carlo Baldari; Luigi Di Luigi; Gian Pietro Emerenziani; Eleonora Poggiogalle; Laura Guidetti; Donini, Lorenzo M.; Andrea Lenzi; Silvia Migliaccio

    2014-01-01

    Obesity and sarcopenia have been associated with mineral metabolism derangement and low bone mineral density (BMD). We investigated whether imbalance of serum factors in obese or obese sarcopenic patients could affect bone cell activity in vitro. To evaluate and characterize potential cellular and molecular changes of human osteoblasts, cells were exposed to sera of four groups of patients: (1) affected by obesity with normal BMD (O), (2) affected by obesity with low BMD (OO), (3) affected by...

  7. Osteoblast-secreted collagen upregulates paracrine Sonic hedgehog signaling by prostate cancer cells and enhances osteoblast differentiation

    Directory of Open Access Journals (Sweden)

    Zunich Samantha M

    2012-07-01

    Full Text Available Abstract Background Induction of osteoblast differentiation by paracrine Sonic hedgehog (Shh signaling may be a mechanism through which Shh-expressing prostate cancer cells initiate changes in the bone microenvironment and promote metastases. A hallmark of osteoblast differentiation is the formation of matrix whose predominant protein is type 1 collagen. We investigated the formation of a collagen matrix by osteoblasts cultured with prostate cancer cells, and its effects on interactions between prostate cancer cells and osteoblasts. Results In the presence of exogenous ascorbic acid (AA, a co-factor in collagen synthesis, mouse MC3T3 pre-osteoblasts in mixed cultures with human LNCaP prostate cancer cells or LNCaP cells modified to overexpress Shh (LNShh cells formed collagen matrix with distinct fibril ultrastructural characteristics. AA increased the activity of alkaline phosphatase and the expression of the alkaline phosphatase gene Akp2, markers of osteoblast differentiation, in MC3T3 pre-osteoblasts cultured with LNCaP or LNShh cells. However, the AA-stimulated increase in Akp2 expression in MC3T3 pre-osteoblasts cultured with LNShh cells far exceeded the levels observed in MC3T3 cells cultured with either LNCaP cells with AA or LNShh cells without AA. Therefore, AA and Shh exert a synergistic effect on osteoblast differentiation. We determined whether the effect of AA on LNShh cell-induced osteoblast differentiation was mediated by Shh signaling. AA increased the expression of Gli1 and Ptc1, target genes of the Shh pathway, in MC3T3 pre-osteoblasts cultured with LNShh cells to at least twice their levels without AA. The ability of AA to upregulate Shh signaling and enhance alkaline phosphatase activity was blocked in MC3T3 cells that expressed a dominant negative form of the transcription factor GLI1. The AA-stimulated increase in Shh signaling and Shh-induced osteoblast differentiation was also inhibited by the specific collagen synthesis

  8. The effect of a new direct Factor Xa inhibitor on human osteoblasts: an in-vitro study comparing the effect of rivaroxaban with enoxaparin

    LENUS (Irish Health Repository)

    Solayar, Gandhi N

    2011-10-28

    Abstract Background Current treatments for the prevention of thromboembolism include heparin and low-molecular weight heparins (LMWHs). A number of studies have suggested that long term administration of these drugs may adversely affect osteoblasts and therefore, bone metabolism. Xarelto™ (Rivaroxaban) is a new anti-thrombotic drug for the prevention of venous thromboembolism in adult patients undergoing elective hip and knee replacement surgery. The aim of this in vitro study was to investigate the possible effects of rivaroxaban on osteoblast viability, function and gene expression compared to enoxaparin, a commonly used LMWH. Methods Primary human osteoblast cultures were treated with varying concentrations of rivaroxaban (0.013, 0.13, 1.3 and 13 μg\\/ml) or enoxaparin (1, 10 and 100 μg\\/ml). The effect of each drug on osteoblast function was evaluated by measuring alkaline phosphatase activity. The MTS assay was used to assess the effect of drug treatments on cell proliferation. Changes in osteocalcin, Runx2 and BMP-2 messenger RNA (mRNA) expression following drug treatments were measured by real-time polymerase chain reaction (PCR). Results Rivaroxaban and enoxaparin treatment did not adversely affect osteoblast viability. However, both drugs caused a significant reduction in osteoblast function, as measured by alkaline phosphatase activity. This reduction in osteoblast function was associated with a reduction in the mRNA expression of the bone marker, osteocalcin, the transcription factor, Runx2, and the osteogenic factor, BMP-2. Conclusions These data show that rivaroxaban treatment may negatively affect bone through a reduction in osteoblast function.

  9. Brain Activity, Personality Traits and Affect: Electrocortical Activity in Reaction to Affective Film Stimuli

    Science.gov (United States)

    Makvand Hosseini, Sh.; Azad Fallah, P.; Rasoolzadeh Tabatabaei, S. K.; Ghannadyan Ladani, S. H.; Heise, C.

    We studied the patterns of activation over the cerebral cortex in reaction to affective film stimuli in four groups of extroverts, introverts, neurotics and emotionally stables. Measures of extraversion and neuroticism were collected and resting EEG was recorded from 40 right handed undergraduate female students (19-23) on one occasion for five 30s periods in baseline condition and in affective states. Mean log-transformed absolute alpha power was extracted from 12 electrode sites and analyzed. Patterns of activation were different in personality groups. Different patterns of asymmetries were observed in personality groups in reaction to affective stimuli. Results were partly consistent with approach and withdrawal model and provided supportive evidence for the role of right frontal asymmetry in negative affects in two groups (introverts and emotionally stables) as well as the role of right central asymmetry (increase on right and decrease on left) in active affective states (anxiety and happiness) in all personality groups. Results were also emphasized on the role of decrease activity relative to baseline in cortical regions (bilaterally in frontal and unilaterally in left parietal and temporal regions) in moderating of positive and negative emotion.

  10. Activation of the transcription factor FosB/activating protein-1 (AP-1) is a prominent downstream signal of the extracellular nucleotide receptor P2RX7 in monocytic and osteoblastic cells.

    Science.gov (United States)

    Gavala, Monica L; Hill, Lindsay M; Lenertz, Lisa Y; Karta, Maya R; Bertics, Paul J

    2010-10-29

    Activation of the ionotropic P2RX7 nucleotide receptor by extracellular ATP has been implicated in modulating inflammatory disease progression. Continuous exposure of P2RX7 to ligand can result in apoptosis in many cell types, including monocytic cells, whereas transient activation of P2RX7 is linked to inflammatory mediator production and the promotion of cell growth. Given the rapid hydrolysis of ATP in the circulation and interstitial space, transient activation of P2RX7 appears critically important for its action, yet its effects on gene expression are unclear. The present study demonstrates that short-term stimulation of human and mouse monocytic cells as well as mouse osteoblasts with P2RX7 agonists substantially induces the expression of several activating protein-1 (AP-1) members, particularly FosB. The potent activation of FosB after P2RX7 stimulation is especially noteworthy considering that little is known concerning the role of FosB in immunological regulation. Interestingly, the magnitude of FosB activation induced by P2RX7 stimulation appears greater than that observed with other known inducers of FosB expression. In addition, we have identified a previously unrecognized role for FosB in osteoblasts with respect to nucleotide-induced expression of cyclooxygenase-2 (COX-2), which is the rate-limiting enzyme in prostaglandin biosynthesis from arachidonic acid and is critical for osteoblastic differentiation and immune behavior. The present studies are the first to link P2RX7 action to FosB/AP-1 regulation in multiple cell types, including a role in nucleotide-induced COX-2 expression, and support a role for FosB in the control of immune and osteogenic function by P2RX7. PMID:20813842

  11. Prolonged Survival of Transplanted Osteoblastic Cells Does Not Directly Accelerate the Healing of Calvarial Bone Defects.

    Science.gov (United States)

    Kitami, Megumi; Kaku, Masaru; Rocabado, Juan Marcelo Rosales; Ida, Takako; Akiba, Nami; Uoshima, Katsumi

    2016-09-01

    Considering the increased interest in cell-based bone regeneration, it is necessary to reveal the fate of transplanted cells and their substantive roles in bone regeneration. The aim of this study was to analyze the fate of transplanted cells and the effect of osteogenic cell transplantation on calvarial bone defect healing. An anti-apoptotic protein, heat shock protein (HSP) 27, was overexpressed in osteoblasts. Then, the treated osteoblasts were transplanted to calvarial bone defect and their fate was analyzed to evaluate the significance of transplanted cell survival. Transient overexpression of Hsp27 rescued MC3T3-E1 osteoblastic cells from H2 O2 -induced apoptosis without affecting osteoblastic differentiation in culture. Transplantation of Hsp27-overexpressing cells, encapsulated in collagen gel, showed higher proliferative activity, and fewer apoptotic cells in comparison with control cells. After 4-week of transplantation, both control cell- and Hsp27 overexpressed cell-transplanted groups showed significantly higher new bone formation in comparison with cell-free gel-transplantation group. Interestingly, the prolonged survival of transplanted osteoblastic cells by Hsp27 did not provide additional effect on bone healing. The transplanted cells in collagen gel survived for up to 4-week but did not differentiate into bone-forming osteoblasts. In conclusion, cell-containing collagen gel accelerated calvarial bone defect healing in comparison with cell-free collagen gel. However, prolonged survival of transplanted cells by Hsp27 overexpression did not provide additional effect. These results strongly indicate that cell transplantation-based bone regeneration cannot be explained only by the increment of osteogenic cells. Further studies are needed to elucidate the practical roles of transplanted cells that will potentiate successful bone regeneration. J. Cell. Physiol. 231: 1974-1982, 2016. © 2016 Wiley Periodicals, Inc.

  12. The effects of 6-gingerol on proliferation, differentiation, and maturation of osteoblast-like MG-63 cells

    Energy Technology Data Exchange (ETDEWEB)

    Fan, J.Z.; Yang, X.; Bi, Z.G. [Department of Orthopedic Surgery, First Affiliated Hospital, Harbin Medicine University, Harbin (China)

    2015-04-28

    We investigated whether 6-gingerol affects the maturation and proliferation of osteoblast-like MG63 cells in vitro. Osteoblast-like MG63 cells were treated with 6-gingerol under control conditions, and experimental inflammation was induced by tumor necrosis factor-α (TNF-α). Expression of different osteogenic markers and cytokines was analyzed by real-time PCR, Western blotting, and enzyme-linked immunosorbent assay. In addition, alkaline phosphatase (ALP) enzyme activity and biomineralization as markers for differentiation were measured. Treatment with 6-gingerol resulted in insignificant effects on the proliferation rate. 6-Gingerol induced the differentiation of osteoblast-like cells with increased transcription levels of osteogenic markers, upregulated ALP enzyme activity, and enhanced mineralized nodule formation. Stimulation with TNF-α led to enhanced interleukin-6 and nuclear factor-κB expression and downregulated markers of osteoblastic differentiation. 6-Gingerol reduced the degree of inflammation in TNF-α-treated MG-63 cells. In conclusion, 6-gingerol stimulated osteoblast differentiation in normal physiological and inflammatory settings, and therefore, 6-gingerol represents a promising agent for treating osteoporosis or bone inflammation.

  13. Three-dimensional culture of rat calvarial osteoblasts in porous biodegradable polymers

    Science.gov (United States)

    Ishaug-Riley, S. L.; Crane-Kruger, G. M.; Yaszemski, M. J.; Mikos, A. G.

    1998-01-01

    Neonatal rat calvarial osteoblasts were cultured in 90% porous, 75:25 poly(DL-lactic-co-glycolic acid) (PLGA) foam scaffolds for up to 56 days to examine the effects of the cell seeding density, scaffold pore size, and foam thickness on the proliferation and function of the cells in this three-dimensional environment. Osteoblasts were seeded at either 11.1 x 10(5) or 22.1 x 10(5) cells per cm2 onto PLGA scaffolds having pore sizes in the range of 150-300 or 500-710 microm with a thickness of either 1.9 or 3.2 mm. After 1 day in culture, 75.6 and 68.6% of the seeded cells attached and proliferated on the 1.9 mm thick scaffolds of 150-300 microm pore size for the low and high seeding densities, respectively. The number of osteoblasts continued to increase throughout the study and eventually leveled off near 56 days, as indicated by a quantitative DNA assay. Osteoblast/foam constructs with a low cell seeding density achieved comparable DNA content and alkaline phosphatase (ALPase) activity after 14 days, and mineralization results after 56 days to those with a high cell seeding density. A maximum penetration depth of osseous tissue of 220+/-40 microm was reached after 56 days in the osteoblast/foam constructs of 150-300 microm pore size initially seeded with a high cell density. For constructs of 500-710 microm pore size, the penetration depth was 190+/-40 microm under the same conditions. Scaffold pore size and thickness did not significantly affect the proliferation or function of osteoblasts as demonstrated by DNA content, ALPase activity, and mineralized tissue formation. These data show that comparable bone-like tissues can be engineered in vitro over a 56 day period using different rat calvarial osteoblast seeding densities onto biodegradable polymer scaffolds with pore sizes in the range of 150-710 microm. When compared with the results of a previous study where similar polymer scaffolds were seeded and cultured with marrow stromal cells, this study

  14. Induction of cAMP-dependent protein kinase A activity in human skin fibroblasts and rat osteoblasts by extremely low-frequency electromagnetic fields.

    Science.gov (United States)

    Thumm, S; Löschinger, M; Glock, S; Hämmerle, H; Rodemann, H P

    1999-09-01

    Sinusoidal extremely low-frequency electromagnetic fields (ELF-EMF; 7-8 mT, 20 Hz) have already been shown to inhibit proliferation and to accelerate terminal differentiation of human skin fibroblasts in vitro. In order to elucidate the underlying processes of signal transduction, we analysed the activity of cAMP-dependent protein kinase (PKA). EMF exposure for 60 min resulted in an increased PKA activity in human skin fibroblasts (2-fold) and rat embryonic osteoblasts (1.7-fold). Long-term exposure for up to 7 days with a constant 1 h-on/1 h-off EMF exposure rhythm indicated a transient stimulation of PKA activity during the first two exposure rhythms followed by a decrease to the baseline levels of sham-exposed controls. Based on these results, we postulate that a modulation of proliferation and differentiation processes in cells of mesenchymal origin is triggered by an immediate and transient EMF-induced increase in PKA activity. PMID:10525956

  15. Abdominal Fat and Sarcopenia in Women Significantly Alter Osteoblasts Homeostasis In Vitro by a WNT/β-Catenin Dependent Mechanism

    Directory of Open Access Journals (Sweden)

    Francesca Wannenes

    2014-01-01

    Full Text Available Obesity and sarcopenia have been associated with mineral metabolism derangement and low bone mineral density (BMD. We investigated whether imbalance of serum factors in obese or obese sarcopenic patients could affect bone cell activity in vitro. To evaluate and characterize potential cellular and molecular changes of human osteoblasts, cells were exposed to sera of four groups of patients: (1 affected by obesity with normal BMD (O, (2 affected by obesity with low BMD (OO, (3 affected by obesity and sarcopenia (OS, and (4 affected by obesity, sarcopenia, and low BMD (OOS as compared to subjects with normal body weight and normal BMD (CTL. Patients were previously investigated and characterized for body composition, biochemical and bone turnover markers. Then, sera of different groups of patients were used to incubate human osteoblasts and evaluate potential alterations in cell homeostasis. Exposure to OO, OS, and OOS sera significantly reduced alkaline phosphatase, osteopontin, and BMP4 expression compared to cells exposed to O and CTL, indicating a detrimental effect on osteoblast differentiation. Interestingly, sera of all groups of patients induced intracellular alteration in Wnt/β-catenin molecular pathway, as demonstrated by the significant alteration of specific target genes expression and by altered β-catenin cellular compartmentalization and GSK3β phosphorylation. In conclusion our results show for the first time that sera of obese subjects with low bone mineral density and sarcopenia significantly alter osteoblasts homeostasis in vitro, indicating potential detrimental effects of trunk fat on bone formation and skeletal homeostasis.

  16. Chronic alcohol abuse and endosseous implants: Linkage of in vitro osteoblast dysfunction to titanium osseointegration rate

    International Nuclear Information System (INIS)

    Chronic alcohol consumption is associated with pathological effects on bone, and it is correlated with the increasing risk of osteoporosis and fractures. The negative effects of alcohol intake also influence bone repair processes and the osseointegration of implants. The aim of the present in vitro study was to investigate the proliferation and synthetic activity of osteoblasts isolated from the trabecular bone of rats previously exposed to 7-week intermittent exposure to ethanol vapour (EE-OB), and sham-aged rats (SA-OB), when cultured on standard commercially pure Ti (cpTi). Osteoblast proliferation (WST-1), alkaline phosphatase (ALP), osteocalcin (OC), collagen type I (CICP), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and transforming growth factor-β1 (TGF-β1) were measured at 1, 7, and 14 days of culture. Our results showed a decrease in the cell viability and synthetic activity of osteoblasts exposed to ethanol when cultured on cpTi. Moreover, the release of local regulatory factors from osteoblasts was imbalanced: TGF-β1 production was reduced and TNF-α and IL-6 were up-regulated. These in vitro data suggest that alcohol abuse affects bone repair and decreases the ability to form bone around standard cpTi. Innovative surfaces and adjuvant therapies could be useful when implants are required in alcoholics

  17. Glial cell line-derived neurotrophic factor influences proliferation of osteoblastic cells.

    Science.gov (United States)

    Gale, Zoe; Cooper, Paul R; Scheven, Ben A

    2012-02-01

    Little is known about the role of neurotrophic growth factors in bone metabolism. This study investigated the short-term effects of glial cell line-derived neurotrophic factor (GDNF) on calvarial-derived MC3T3-E1 osteoblasts. MC3T3-E1 expressed GDNF as well as its canonical receptors, GFRα1 and RET. Addition of recombinant GDNF to cultures in serum-containing medium modestly inhibited cell growth at high concentrations; however, under serum-free culture conditions GDNF dose-dependently increased cell proliferation. GDNF effects on cell growth were inversely correlated with its effect on alkaline phosphatase (AlP) activity showing a significant dose-dependent inhibition of relative AlP activity with increasing concentrations of GDNF in serum-free culture medium. Live/dead and lactate dehydrogenase assays demonstrated that GDNF did not significantly affect cell death or survival under serum-containing and serum-free conditions. The effect of GDNF on cell growth was abolished in the presence of inhibitors to GFRα1 and RET indicating that GDNF stimulated calvarial osteoblasts via its canonical receptors. Finally, this study found that GDNF synergistically increased tumor necrosis factor-α (TNF-α)-stimulated MC3T3-E1 cell growth suggesting that GDNF interacted with TNF-α-induced signaling in osteoblastic cells. In conclusion, this study provides evidence for a direct, receptor-mediated effect of GDNF on osteoblasts highlighting a novel role for GDNF in bone physiology.

  18. Short time administration of antirheumatic drugs - Methotrexate as a strong inhibitor of osteoblast's proliferation in vitro

    Directory of Open Access Journals (Sweden)

    Annussek Tobias

    2012-09-01

    Full Text Available Abstract Introduction Due to increasing use of disease modifying antirheumatic drugs (DMARDs as first line therapy in rheumatic diseases, dental and maxillofacial practitioner should be aware of drug related adverse events. Especially effects on bone-metabolism and its cells are discussed controversially. Therefore we investigate the in vitro effect of short time administration of low dose methotrexate (MTX on osteoblasts as essential part of bone remodelling cells. Methods Primary bovine osteoblasts (OBs were incubated with various concentrations of MTX, related to tissue concentrations, over a period of fourteen days by using a previously established standard protocol. The effect on cell proliferation as well as mitochondrial activity was assessed by using 3-(4, 5-dimethylthiazol-2-yl 2, 5-diphenyltetrazolium bromide (MTT assay, imaging and counting of living cells. Additionally, immunostaining of extracellular matrix proteins was used to survey osteogenic differentiation. Results All methods indicate a strong inhibition of osteoblast`s proliferation by short time administration of low dose MTX within therapeutically relevant concentrations of 1 to 1000nM, without affecting cell differentiation of middle-stage differentiated OBs in general. More over a significant decrease of cell numbers and mitochondrial activity was found at these MTX concentrations. The most sensitive method seems to be the MTT-assay. MTX-concentration of 0,01nM and concentrations below had no inhibitory effects anymore. Conclusion Even low dose methotrexate acts as a potent inhibitor of osteoblast’s proliferation and mitochondrial metabolism in vitro, without affecting main differentiation of pre-differentiated osteoblasts. These results suggest possible negative effects of DMARDs concerning bone healing and for example osseointegration of dental implants. Especially the specifics of the jaw bone with its high vascularisation and physiological high tissue metabolism

  19. IL-1β-induced matrix metalloproteinase-13 is activated by a disintegrin and metalloprotease-28-regulated proliferation of human osteoblast-like cells

    Energy Technology Data Exchange (ETDEWEB)

    Ozeki, Nobuaki; Kawai, Rie; Yamaguchi, Hideyuki; Hiyama, Taiki; Kinoshita, Katsue; Hase, Naoko; Nakata, Kazuhiko [Department of Endodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi 464-8651 (Japan); Kondo, Ayami [Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto, Chikusa-ku, Nagoya, Aichi 464-8650 (Japan); Mogi, Makio, E-mail: makio@dpc.agu.ac.jp [Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto, Chikusa-ku, Nagoya, Aichi 464-8650 (Japan); Nakamura, Hiroshi [Department of Endodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi 464-8651 (Japan)

    2014-04-15

    We reported previously that matrix metalloproteinase (MMP)-13 accelerates bone remodeling in oral periradicular lesions, and indicated a potentially unique role for MMP-13 in wound healing and regeneration of alveolar bone. The ADAM (a disintegrin and metalloprotease) family is a set of multifunctional cell surface and secreted glycoproteins, of which ADAM-28 has been localized in bone and bone-like tissues. In this study, we show that interleukin (IL)-1β induces the expression of MMP-13 and ADAM-28 in homogeneous α7 integrin-positive human skeletal muscle stem cell (α7{sup +}hSMSC)-derived osteoblast-like (α7{sup +}hSMSC-OB) cells, and promotes proliferation while inhibiting apoptosis in these cells. At higher concentrations, however, IL-1β failed to induce the expression of these genes and caused an increase in apoptosis. We further employed ADAM-28 small interfering RNA (siRNA) to investigate whether IL-1β-induced MMP-13 expression is linked to this IL-1β-mediated changes in cell proliferation and apoptosis. Silencing ADAM-28 expression potently suppressed IL-1β-induced MMP-13 expression and activity, decreased cell proliferation and increased apoptosis in α7{sup +}hSMSC-OB cells. In contrast, MMP-13 siRNA had no effect on ADAM-28 expression, suggesting ADAM-28 regulates MMP-13. Exogenous MMP-13 induced α7{sup +}hSMSC-OB cell proliferation and could rescue ADAM-28 siRNA-induced apoptosis, and we found that proMMP-13 is partially cleaved into its active form by ADAM-28 in vitro. Overall, our results suggest that IL-1β-induced MMP-13 expression and changes in cell proliferation and apoptosis in α7{sup +}hSMSC-OB cells are regulated by ADAM-28. - Highlights: • IL-1β induces the MMP-13 and ADAM-28 expression in human osteoblast-like cells. • IL-1β-induced MMP-13 expression increases proliferation and decreased apoptosis. • MMP-13 expression induced by IL-1β is regulated by ADAM-28. • proMMP-13 appears to be cleaved into its active form via

  20. IL-1β-induced matrix metalloproteinase-13 is activated by a disintegrin and metalloprotease-28-regulated proliferation of human osteoblast-like cells

    International Nuclear Information System (INIS)

    We reported previously that matrix metalloproteinase (MMP)-13 accelerates bone remodeling in oral periradicular lesions, and indicated a potentially unique role for MMP-13 in wound healing and regeneration of alveolar bone. The ADAM (a disintegrin and metalloprotease) family is a set of multifunctional cell surface and secreted glycoproteins, of which ADAM-28 has been localized in bone and bone-like tissues. In this study, we show that interleukin (IL)-1β induces the expression of MMP-13 and ADAM-28 in homogeneous α7 integrin-positive human skeletal muscle stem cell (α7+hSMSC)-derived osteoblast-like (α7+hSMSC-OB) cells, and promotes proliferation while inhibiting apoptosis in these cells. At higher concentrations, however, IL-1β failed to induce the expression of these genes and caused an increase in apoptosis. We further employed ADAM-28 small interfering RNA (siRNA) to investigate whether IL-1β-induced MMP-13 expression is linked to this IL-1β-mediated changes in cell proliferation and apoptosis. Silencing ADAM-28 expression potently suppressed IL-1β-induced MMP-13 expression and activity, decreased cell proliferation and increased apoptosis in α7+hSMSC-OB cells. In contrast, MMP-13 siRNA had no effect on ADAM-28 expression, suggesting ADAM-28 regulates MMP-13. Exogenous MMP-13 induced α7+hSMSC-OB cell proliferation and could rescue ADAM-28 siRNA-induced apoptosis, and we found that proMMP-13 is partially cleaved into its active form by ADAM-28 in vitro. Overall, our results suggest that IL-1β-induced MMP-13 expression and changes in cell proliferation and apoptosis in α7+hSMSC-OB cells are regulated by ADAM-28. - Highlights: • IL-1β induces the MMP-13 and ADAM-28 expression in human osteoblast-like cells. • IL-1β-induced MMP-13 expression increases proliferation and decreased apoptosis. • MMP-13 expression induced by IL-1β is regulated by ADAM-28. • proMMP-13 appears to be cleaved into its active form via ADAM-28

  1. Quercus infectoria Gall Extract Enhanced the Proliferation and Activity of Human Fetal Osteoblast Cell Line (hFOB 1.19)

    OpenAIRE

    Hapidin, Hermizi; ROZELAN, Dalila; ABDULLAH, Hasmah; WAN HANAFFI, Wan Nurhidayah; Soelaiman, Ima Nirwana

    2015-01-01

    Background: The present study investigated the effects of Quercus infectoria (QI) gall extract on the proliferation, alkaline phosphatase (ALP), osteocalcin, and the morphology of a human fetal osteoblast cell line (hFOB 1.19).

  2. Exploration of the mouse osteoblast transcriptome

    NARCIS (Netherlands)

    Vaes, Bart Laurens Theo

    2007-01-01

    The frequently occurring bone disorder osteoporosis is characterized by a strong increase in bone fracture risk, caused by a dramatically disturbed balance in the activity of the cells that degrade bone (osteoclasts) and cells that synthesize new bone (osteoblasts). Therapies against osteoporosis ar

  3. Microgravity induces pelvic bone loss through osteoclastic activity, osteocytic osteolysis, and osteoblastic cell cycle inhibition by CDKN1a/p21.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Blaber

    Full Text Available Bone is a dynamically remodeled tissue that requires gravity-mediated mechanical stimulation for maintenance of mineral content and structure. Homeostasis in bone occurs through a balance in the activities and signaling of osteoclasts, osteoblasts, and osteocytes, as well as proliferation and differentiation of their stem cell progenitors. Microgravity and unloading are known to cause osteoclast-mediated bone resorption; however, we hypothesize that osteocytic osteolysis, and cell cycle arrest during osteogenesis may also contribute to bone loss in space. To test this possibility, we exposed 16-week-old female C57BL/6J mice (n = 8 to microgravity for 15-days on the STS-131 space shuttle mission. Analysis of the pelvis by µCT shows decreases in bone volume fraction (BV/TV of 6.29%, and bone thickness of 11.91%. TRAP-positive osteoclast-covered trabecular bone surfaces also increased in microgravity by 170% (p = 0.004, indicating osteoclastic bone degeneration. High-resolution X-ray nanoCT studies revealed signs of lacunar osteolysis, including increases in cross-sectional area (+17%, p = 0.022, perimeter (+14%, p = 0.008, and canalicular diameter (+6%, p = 0.037. Expression of matrix metalloproteinases (MMP 1, 3, and 10 in bone, as measured by RT-qPCR, was also up-regulated in microgravity (+12.94, +2.98 and +16.85 fold respectively, p<0.01, with MMP10 localized to osteocytes, and consistent with induction of osteocytic osteolysis. Furthermore, expression of CDKN1a/p21 in bone increased 3.31 fold (p<0.01, and was localized to osteoblasts, possibly inhibiting the cell cycle during tissue regeneration as well as conferring apoptosis resistance to these cells. Finally the apoptosis inducer Trp53 was down-regulated by -1.54 fold (p<0.01, possibly associated with the quiescent survival-promoting function of CDKN1a/p21. In conclusion, our findings identify the pelvic and femoral region of the mouse skeleton as an active site of

  4. 28 CFR 55.15 - Affected activities.

    Science.gov (United States)

    2010-07-01

    ... RIGHTS ACT REGARDING LANGUAGE MINORITY GROUPS Minority Language Materials and Assistance § 55.15 Affected... of applicable language minority groups to be effectively informed of and participate effectively...

  5. Alpha-adrenergic blocker mediated osteoblastic stem cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yoon Jung [Craniomaxillofacial Reconstructive Sciences Major, College of Dentistry, Seoul National University, Seoul 110-749 (Korea, Republic of); Lee, Jue Yeon [Craniomaxillofacial Reconstructive Sciences Major, College of Dentistry, Seoul National University, Seoul 110-749 (Korea, Republic of); Research Center, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul (Korea, Republic of); Lee, Seung Jin [Department of Industrial Pharmacy, College of Pharmacy, Ewha Womans University, Seoul (Korea, Republic of); Research Center, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul (Korea, Republic of); Chung, Chong-Pyoung [Department of Periodontology, School of Dentistry, Seoul National University, Seoul (Korea, Republic of); Research Center, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul (Korea, Republic of); Park, Yoon Jeong, E-mail: parkyj@snu.ac.kr [Craniomaxillofacial Reconstructive Sciences Major, College of Dentistry, Seoul National University, Seoul 110-749 (Korea, Republic of); Research Center, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul (Korea, Republic of)

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer Doxazocin directly up-regulated bone metabolism at a low dose. Black-Right-Pointing-Pointer Doxazocin induced osteoblastic stem cell differentiation without affecting cell proliferation. Black-Right-Pointing-Pointer This osteogenic stem cell differentiation is mediated by ERK-signal dependent pathway. -- Abstract: Recent researches have indicated a role for antihypertensive drugs including alpha- or beta-blockers in the prevention of bone loss. Some epidemiological studies reported the protective effects of those agents on fracture risk. However, there is limited information on the association with those agents especially at the mechanism of action. In the present study, we investigated the effects of doxazosin, an alpha-blocker that is clinically used for the treatment of benign prostatic hyperplasia (BPH) along with antihypertensive medication, on the osteogenic stem cell differentiation. We found that doxazosin increased osteogenic differentiation of human mesenchymal stem cells, detected by Alizarin red S staining and calcein. Doxazosin not only induced expression of alkaline phosphatase, type I collagen, osteopontin, and osteocalcin, it also resulted in increased phosphorylation of extracellular signal-regulated kinase (ERK1/2), a MAP kinase involved in osteoblastic differentiation. Treatment with U0126, a MAP kinase inhibitor, significantly blocked doxazosin-induced osteoblastic differentiation. Unrelated to activation of osteogenic differentiation by doxazosin, we found that there were no significant changes in adipogenic differentiation or in the expression of adipose-specific genes, including peroxisome proliferator-activated receptor {gamma}, aP2, or LPL. In this report, we suggest that doxazosin has the ability to increase osteogenic cell differentiation via ERK1/2 activation in osteogenic differentiation of adult stem cells, which supports the protective effects of antihypertensive drug on fracture risk and

  6. Enhanced and suppressed mineralization by acetoacetate and β-hydroxybutyrate in osteoblast cultures.

    Science.gov (United States)

    Saito, Akihiro; Yoshimura, Kentaro; Miyamoto, Yoichi; Kaneko, Kotaro; Chikazu, Daichi; Yamamoto, Matsuo; Kamijo, Ryutaro

    2016-04-29

    It is known that diabetes aggravates alveolar bone loss associated with periodontitis. While insulin depletion increases the blood concentration of ketone bodies, i.e., acetoacetate and β-hydroxybutyrate, their roles in bone metabolism have not been much studied until today. We investigated the effects of acetoacetate and β-hydroxybutyrate on mineralization of extracellular matrix in cultures of mouse osteoblastic MC3T3-E1 cells and primary mouse osteoblasts in the presence and absence of bone morphogenetic protein-2. Acetoacetate potentiated alkaline phosphatase activity in MC3T3-E1 cells in a concentration-dependent manner, ranging from physiological to pathological concentrations (0.05-5 mmol/L). In contrast, β-hydroxybutyrate lowered it in the same experimental settings. Mineralization in cultures of these cells was also up-regulated by acetoacetate and down-regulated by β-hydroxybutyrate. Similar results were obtained in cultures of mouse primary osteoblasts. Neither alkaline phosphatase mRNA nor its protein expression in MC3T3-E1 cells was affected by acetoacetate or β-hydroxybutyrate, indicating that these ketone bodies control the enzyme activity of alkaline phosphatase in osteoblasts and hence their mineralization bi-directionally. Finally, either gene silencing of monocarboxylate transporter-1, a major transmembrate transporter for ketone bodies, nullified the effects of ketone bodies on alkaline phosphatase activity in MC3T3-E1 cells. Collectively, we found that ketone bodies bidirectionally modulates osteoblast functions, which suggests that ketone bodies are important endogenous factors that regulate bone metabolism in both physiological and pathological situations.

  7. Effect of nanocoating with rhamnogalacturonan-I on surface properties and osteoblasts response.

    Science.gov (United States)

    Gurzawska, Katarzyna; Svava, Rikke; Syberg, Susanne; Yihua, Yu; Haugshøj, Kenneth Brian; Damager, Iben; Ulvskov, Peter; Christensen, Leif Højslet; Gotfredsen, Klaus; Jørgensen, Niklas Rye

    2012-03-01

    Long-term stability of titanium implants are dependent on a variety of factors. Nanocoating with organic molecules is one of the methods used to improve osseointegration. Therefore, the aim of this study is to evaluate the in vitro effect of nanocoating with pectic rhamnogalacturonan-I (RG-I) on surface properties and osteoblasts response. Three different RG-Is from apple and lupin pectins were modified and coated on amino-functionalized tissue culture polystyrene plates (aminated TCPS). Surface properties were evaluated by scanning electron microscopy, contact angle measurement, atomic force microscopy, and X-ray photoelectron spectroscopy. The effects of nanocoating on proliferation, matrix formation and mineralization, and expression of genes (real-time PCR) related to osteoblast differentiation and activity were tested using human osteoblast-like SaOS-2 cells. It was shown that RG-I coatings affected the surface properties. All three RG-I induced bone matrix formation and mineralization, which was also supported by the finding that gene expression levels of alkaline phosphatase, osteocalcin, and collagen type-1 were increased in cells cultured on the RG-I coated surface, indicating a more differentiated osteoblastic phenotype. This makes RG-I coating a promising and novel candidate for nanocoatings of implants. PMID:22213456

  8. Inositol hexakisphosphate inhibits mineralization of MC3T3-E1 osteoblast cultures.

    Science.gov (United States)

    Addison, William N; McKee, Marc D

    2010-04-01

    Inositol hexakisphosphate (IP6, phytic acid) is an endogenous compound present in mammalian cells and tissues. Differentially phosphorylated forms of inositol are well-documented to have important roles in signal transduction, cell proliferation and differentiation, and IP6 in particular has been suggested to inhibit soft tissue calcification (specifically renal and vascular calcification) by binding extracellularly to calcium oxalate and calcium phosphate crystals. However, the effects of IP6 on bone mineralization are largely unknown. In this study, we used MC3T3-E1 osteoblast cultures to examine the effects of exogenous IP6 on osteoblast function and matrix mineralization. IP6 at physiologic concentrations caused a dose-dependent inhibition of mineralization without affecting cell viability, proliferation or collagen deposition. Osteoblast differentiation markers, including tissue-nonspecific alkaline phosphatase activity, bone sialoprotein and osteocalcin mRNA levels, were not adversely affected by IP6 treatment. On the other hand, IP6 markedly increased protein and mRNA levels of osteopontin, a potent inhibitor of crystal growth and matrix mineralization. Inositol alone (without phosphate), as well as inositol hexakis-sulphate, a compound with a high negative charge similar to IP6, had no effect on mineralization or osteopontin induction. Binding of IP6 to mineral crystals from the osteoblast cultures, as well as to synthetic hydroxyapatite crystals, was confirmed by a colorimetric assay for IP6. In summary, IP6 inhibits mineralization of osteoblast cultures by binding to growing crystals through negatively charged phosphate groups and by induction of inhibitory osteopontin expression. These data suggest that IP6 may regulate physiologic bone mineralization by directly acting extracellularly, and by serving as a specific signal at the cellular level for the regulation of osteopontin gene expression.

  9. Estrogen-related receptor α regulates osteoblast differentiation via Wnt/β-catenin signaling.

    Science.gov (United States)

    Auld, Kathryn L; Berasi, Stephen P; Liu, Yan; Cain, Michael; Zhang, Ying; Huard, Christine; Fukayama, Shoichi; Zhang, Jing; Choe, Sung; Zhong, Wenyan; Bhat, Bheem M; Bhat, Ramesh A; Brown, Eugene L; Martinez, Robert V

    2012-04-01

    Based on its homology to the estrogen receptor and its roles in osteoblast and chondrocyte differentiation, the orphan nuclear receptor estrogen-related receptor α (ERRα (ESRRA)) is an intriguing therapeutic target for osteoporosis and other bone diseases. The objective of this study was to better characterize the molecular mechanisms by which ERRα modulates osteoblastogenesis. Experiments from multiple systems demonstrated that ERRα modulates Wnt signaling, a crucial pathway for proper regulation of bone development. This was validated using a Wnt-luciferase reporter, where ERRα showed co-activator-dependent (peroxisome proliferator-activated receptor gamma co-activator 1α, PGC-1α) stimulatory effects. Interestingly, knockdown of ERRα expression also enhanced WNT signaling. In combination, these data indicated that ERRα could serve to either activate or repress Wnt signaling depending on the presence or absence of its co-activator PGC-1α. The observed Wnt pathway modulation was cell intrinsic and did not alter β-catenin nuclear translocation but was dependent on DNA binding of ERRα. We also found that expression of active ERRα correlated with Wnt pathway effects on osteoblastic differentiation in two cell types, consistent with a role for ERRα in modulating the Wnt pathway. In conclusion, this work identifies ERRα, in conjunction with co-activators such as PGC-1α, as a new regulator of the Wnt-signaling pathway during osteoblast differentiation, through a cell-intrinsic mechanism not affecting β-catenin nuclear translocation.

  10. Irisin Enhances Osteoblast Differentiation In Vitro

    Directory of Open Access Journals (Sweden)

    Graziana Colaianni

    2014-01-01

    Full Text Available It has been recently demonstrated that exercise activity increases the expression of the myokine Irisin in skeletal muscle, which is able to drive the transition of white to brown adipocytes, likely following a phenomenon of transdifferentiation. This new evidence supports the idea that muscle can be considered an endocrine organ, given its ability to target adipose tissue by promoting energy expenditure. In accordance with these new findings, we hypothesized that Irisin is directly involved in bone metabolism, demonstrating its ability to increase the differentiation of bone marrow stromal cells into mature osteoblasts. Firstly, we confirmed that myoblasts from mice subjected to 3 weeks of free wheel running increased Irisin expression compared to nonexercised state. The conditioned media (CM collected from myoblasts of exercised mice induced osteoblast differentiation in vitro to a greater extent than those of mice housed in resting conditions. Furthermore, the differentiated osteoblasts increased alkaline phosphatase and collagen I expression by an Irisin-dependent mechanism. Our results show, for the first time, that Irisin directly targets osteoblasts, enhancing their differentiation. This finding advances notable perspectives in future studies which could satisfy the ongoing research of exercise-mimetic therapies with anabolic action on the skeleton.

  11. Proinflammatory Response of Human Osteoblastic Cell Lines and Osteoblast-Monocyte Interaction upon Infection with Brucella spp.▿

    Science.gov (United States)

    Delpino, M. Victoria; Fossati, Carlos A.; Baldi, Pablo C.

    2009-01-01

    The ability of Brucella spp. to infect human osteoblasts and the cytokine response of these cells to infection were investigated in vitro. Brucella abortus, B. suis, B. melitensis, and B. canis were able to infect the SaOS-2 and MG-63 osteoblastic cell lines, and the first three species exhibited intracellular replication. B. abortus internalization was not significantly affected by pretreatment of cells with cytochalasin D but was inhibited up to 92% by colchicine. A virB10 mutant of B. abortus could infect but not replicate within osteoblasts, suggesting a role for the type IV secretion system in intracellular survival. Infected osteoblasts produced low levels of chemokines (interleukin-8 [IL-8] and macrophage chemoattractant protein 1 [MCP-1]) and did not produce proinflammatory cytokines (IL-1β, IL-6, and tumor necrosis factor alpha [TNF-α]). However, osteoblasts stimulated with culture supernatants from Brucella-infected human monocytes (THP-1 cell line) produced chemokines at levels 12-fold (MCP-1) to 17-fold (IL-8) higher than those of infected osteoblasts and also produced IL-6. In the inverse experiment, culture supernatants from Brucella-infected osteoblasts induced the production of IL-8, IL-1β, IL-6, and TNF-α by THP-1 cells. The induction of TNF-α and IL-1β was largely due to granulocyte-macrophage colony-stimulating factor produced by infected osteoblasts, as demonstrated by inhibition with a specific neutralizing antibody. This study shows that Brucella can invade and replicate within human osteoblastic cell lines, which can directly and indirectly mount a proinflammatory response. Both phenomena may have a role in the chronic inflammation and bone and joint destruction observed in osteoarticular brucellosis. PMID:19103778

  12. Ultrastructural and metabolic changes in osteoblasts exposed to uranyl nitrate

    Energy Technology Data Exchange (ETDEWEB)

    Tasat, D.R. [Universidad Nacional de San Martin, Escuela de Ciencia y Tecnologia, Pcia de Bs.As. (Argentina); Universidad de Buenos Aires, Catedra de Histologia y Embriologia, Facultad de Odontologia, Buenos Aires (Argentina); Orona, N.S. [Universidad Nacional de San Martin, Escuela de Ciencia y Tecnologia, Pcia de Bs.As. (Argentina); Mandalunis, P.M. [Universidad de Buenos Aires, Catedra de Histologia y Embriologia, Facultad de Odontologia, Buenos Aires (Argentina); Cabrini, R.L. [Comision Nacional de Energia Atomica, Departamento de Radiobiologia, Buenos Aires (Argentina); Ubios, A.M. [Comision Nacional de Energia Atomica, Departamento de Radiobiologia, Buenos Aires (Argentina); Universidad de Buenos Aires, Catedra de Histologia y Embriologia, Facultad de Odontologia, Buenos Aires (Argentina)

    2007-05-15

    Exposure to uranium is an occupational hazard to workers who continually handle uranium and an environmental risk to the population at large. Since the cellular and molecular pathways of uranium toxicity in osteoblast cells are still unknown, the aim of the present work was to evaluate the adverse effects of uranyl nitrate (UN) on osteoblasts both in vivo and in vitro. Herein we studied the osteoblastic ultrastructural changes induced by UN in vivo and analyzed cell proliferation, generation of reactive oxygen species (ROS), apoptosis, and alkaline phosphatase (APh) activity in osteoblasts exposed to various UN concentrations (0.1, 1, 10, and 100 {mu}M) in vitro. Cell proliferation was quantified by means of the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, ROS was determined using the nitro blue tetrazolium test, apoptosis was morphologically determined using Hoechst 3332 and APh activity was assayed spectrophotometrically. Electron microscopy revealed that the ultrastructure of active and inactive osteoblasts exposed to uranium presented cytoplasmic and nuclear alterations. In vitro, 1-100 {mu}M UN failed to modify cell proliferation ratio and to induce apoptosis. ROS generation increased in a dose-dependent manner in all tested doses. APh activity was found to decrease in 1-100 {mu}M UN-treated cells vs. controls. Our results show that UN modifies osteoblast cell metabolism by increasing ROS generation and reducing APh activity, suggesting that ROS may play a more complex role in cell physiology than simply causing oxidative damage. (orig.)

  13. Ultrastructural and metabolic changes in osteoblasts exposed to uranyl nitrate

    International Nuclear Information System (INIS)

    Exposure to uranium is an occupational hazard to workers who continually handle uranium and an environmental risk to the population at large. Since the cellular and molecular pathways of uranium toxicity in osteoblast cells are still unknown, the aim of the present work was to evaluate the adverse effects of uranyl nitrate (UN) on osteoblasts both in vivo and in vitro. Herein we studied the osteoblastic ultrastructural changes induced by UN in vivo and analyzed cell proliferation, generation of reactive oxygen species (ROS), apoptosis, and alkaline phosphatase (APh) activity in osteoblasts exposed to various UN concentrations (0.1, 1, 10, and 100 μM) in vitro. Cell proliferation was quantified by means of the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, ROS was determined using the nitro blue tetrazolium test, apoptosis was morphologically determined using Hoechst 3332 and APh activity was assayed spectrophotometrically. Electron microscopy revealed that the ultrastructure of active and inactive osteoblasts exposed to uranium presented cytoplasmic and nuclear alterations. In vitro, 1-100 μM UN failed to modify cell proliferation ratio and to induce apoptosis. ROS generation increased in a dose-dependent manner in all tested doses. APh activity was found to decrease in 1-100 μM UN-treated cells vs. controls. Our results show that UN modifies osteoblast cell metabolism by increasing ROS generation and reducing APh activity, suggesting that ROS may play a more complex role in cell physiology than simply causing oxidative damage. (orig.)

  14. Pyk2 and Megakaryocytes Regulate Osteoblast Differentiation and Migration Via Distinct and Overlapping Mechanisms.

    Science.gov (United States)

    Eleniste, Pierre P; Patel, Vruti; Posritong, Sumana; Zero, Odette; Largura, Heather; Cheng, Ying-Hua; Himes, Evan R; Hamilton, Matthew; Baughman, Jenna; Kacena, Melissa A; Bruzzaniti, Angela

    2016-06-01

    Osteoblast differentiation and migration are necessary for bone formation during bone remodeling. Mice lacking the proline-rich tyrosine kinase Pyk2 (Pyk2-KO) have increased bone mass, in part due to increased osteoblast proliferation. Megakaryocytes (MKs), the platelet-producing cells, also promote osteoblast proliferation in vitro and bone-formation in vivo via a pathway that involves Pyk2. In the current study, we examined the mechanism of action of Pyk2, and the role of MKs, on osteoblast differentiation and migration. We found that Pyk2-KO osteoblasts express elevated alkaline phosphatase (ALP), type I collagen and osteocalcin mRNA levels as well as increased ALP activity, and mineralization, confirming that Pyk2 negatively regulates osteoblast function. Since Pyk2 Y402 phosphorylation is important for its catalytic activity and for its protein-scaffolding functions, we expressed the phosphorylation-mutant (Pyk2(Y402F) ) and kinase-mutant (Pyk2(K457A) ) in Pyk2-KO osteoblasts. Both Pyk2(Y402F) and Pyk2(K457A) reduced ALP activity, whereas only kinase-inactive Pyk2(K457A) inhibited Pyk2-KO osteoblast migration. Consistent with a role for Pyk2 on ALP activity, co-culture of MKs with osteoblasts led to a decrease in the level of phosphorylated Pyk2 (pY402) as well as a decrease in ALP activity. Although, Pyk2-KO osteoblasts exhibited increased migration compared to wild-type osteoblasts, Pyk2 expression was not required necessary for the ability of MKs to stimulate osteoblast migration. Together, these data suggest that osteoblast differentiation and migration are inversely regulated by MKs via distinct Pyk2-dependent and independent signaling pathways. Novel drugs that distinguish between the kinase-dependent or protein-scaffolding functions of Pyk2 may provide therapeutic specificity for the control of bone-related diseases. J. Cell. Biochem. 117: 1396-1406, 2016. © 2015 Wiley Periodicals, Inc. PMID:26552846

  15. Effects of IL-23 and IL-27 on osteoblasts and osteoclasts: inhibitory effects on osteoclast differentiation.

    Science.gov (United States)

    Kamiya, Sadahiro; Nakamura, Chika; Fukawa, Takeshi; Ono, Katsuhiro; Ohwaki, Toshiyuki; Yoshimoto, Takayuki; Wada, Seiki

    2007-01-01

    Interleukin (IL)-23 and IL-27 are IL-6/IL-12 family members that play a role in the regulation of T helper 1 cell differentiation. Cytokines are known to be involved in the bone remodeling process, although the effects of IL-23 and IL-27 have not been clarified. In this study, we examined the possible roles of these cytokines on osteoblast phenotypes and osteoclastogenesis. We found that IL-27 induced signal transducers and activators of transcription 3 activation in osteoblasts. However, neither IL-23 nor IL-27 showed any significant effects on alkaline phosphatase activity, receptor activator of nuclear factor kappaB ligand (RANKL) expression, mRNA expression such as alkaline phosphatase type I procollagen, or the proliferation of osteoblasts. Osteoclastogenesis from bone marrow cells induced by soluble RANKL was partially inhibited by IL-23 and IL-27 with reduced multinucleated cell numbers, but these interleukins did not affect the proliferation of osteoclast progenitor cells. These results indicate that IL-23 and IL-27 could partly modify cell fusion or the survival of multinucleated osteoclasts. On the other hand, partially purified T cells, which are activated by 2 microg/ml anti-CD3 antibody, completely inhibited osteoclastogenesis by M-CSF/RANKL. On using T cells activated with 0.2 microg/ml anti-CD3 antibody, in which osteoclastogenesis was partially inhibited, the interleukins had additive effects for inhibiting osteoclastogenesis. Although the consequences of phosphorylated signals in osteoblasts have not been identified, IL-23 and IL-27, partly and indirectly through activated T cells, inhibited osteoclastogenesis, indicating that these interleukins may protect against bone destructive autoimmune disorders. PMID:17704992

  16. Human osteoblasts from younger normal and osteoporotic donors show differences in proliferation and TGF beta-release in response to cyclic strain.

    Science.gov (United States)

    Neidlinger-Wilke, C; Stalla, I; Claes, L; Brand, R; Hoellen, I; Rübenacker, S; Arand, M; Kinzl, L

    1995-12-01

    Mechanical stimulation of bone tissue by physical activity stimulates bone formation in normal bone and may attenuate bone loss of osteoporotic patients. However, altered responsiveness of osteoblasts in osteoporotic bone to mechanical stimuli may contribute to osteoporotic bone involution. The purpose of the present study was to investigate whether osteoblasts from osteoporotic patients and normal donors show differences in proliferation and TGF beta production in responses to cyclic strain. Human osteoblasts isolated from collagenase-treated bone explants of 10 osteoporotic patients (average age 70 +/- 6 yr) and 8 normal donors (average age 54 +/- 10 yr) were plated into elastic rectangular silicone dishes. Subconfluent cultures were stimulated by cyclic strain (1%, 1 Hz) in electromechanical cell stretching apparatus at three consecutive days for each 30 min. The cultures were assayed for proliferation, alkaline phosphatase activity and TGF beta release in each three parallel cultures. In all experiments, osteoblasts grown in the same elastic dishes but without mechanical stimulation served as controls. Significant differences between stimulated cultures and unstimulated controls were determined by a paired two-tailed Wilcoxon test. In comparison to the unstimulated controls, osteoblasts from normal donors significantly increased proliferation (p = 0.025) and TGF beta secretion (p = 0.009) into the conditioned culture medium. In contrast, osteoblasts from osteoporotic donors failed to increase both proliferation (p > 0.05) and TGF beta release (p > 0.05) in response to cyclic strain. Alkaline phosphatase activity was not significantly affected (p > 0.05) in normal as well as osteoporotic bone derived osteoblasts. These findings suggest a different responsiveness to 1% cyclic strain of osteoblasts isolated from normal and osteoporotic bone that could be influenced by both the disease of osteoporosis and the higher average age of the osteoporotic patient group

  17. The Effects of the Endocannabinoids Anandamide and 2-Arachidonoylglycerol on Human Osteoblast Proliferation and Differentiation.

    Directory of Open Access Journals (Sweden)

    Marie Smith

    Full Text Available The endocannabinoid system is expressed in bone, although its role in the regulation of bone growth is controversial. Many studies have examined the effect of endocannabinoids directly on osteoclast function, but few have examined their role in human osteoblast function, which was the aim of the present study. Human osteoblasts were treated from seeding with increasing concentrations of anandamide or 2-arachidonoylglycerol for between 1 and 21 days. Cell proliferation (DNA content and differentiation (alkaline phosphatase (ALP, collagen and osteocalcin secretion and calcium deposition were measured. Anandamide and 2-arachidonoylglycerol significantly decreased osteoblast proliferation after 4 days, associated with a concentration-dependent increase in ALP. Inhibition of endocannabinoid degradation enzymes to increase endocannabinoid tone resulted in similar increases in ALP production. 2-arachidonoylglycerol also decreased osteocalcin secretion. After prolonged (21 day treatment with 2-arachidonoylglycerol, there was a decrease in collagen content, but no change in calcium deposition. Anandamide did not affect collagen or osteocalcin, but reduced calcium deposition. Anandamide increased levels of phosphorylated CREB, ERK 1/2 and JNK, while 2-arachidonoylglycerol increased phosphorylated CREB and Akt. RT-PCR demonstrated the expression of CB2 and TRPV1, but not CB1 in HOBs. Anandamide-induced changes in HOB differentiation were CB1 and CB2-independent and partially reduced by TRPV1 antagonism, and reduced by inhibition of ERK 1/2 and JNK. Our results have demonstrated a clear involvement of anandamide and 2-arachidonoylglycerol in modulating the activity of human osteoblasts, with anandamide increasing early cell differentiation and 2-AG increasing early, but decreasing late osteoblast-specific markers of differentiation.

  18. Sonic hedgehog regulates osteoblast function by focal adhesion kinase signaling in the process of fracture healing.

    Directory of Open Access Journals (Sweden)

    Yuu Horikiri

    Full Text Available Several biological studies have indicated that hedgehog signaling plays an important role in osteoblast proliferation and differentiation, and sonic hedgehog (SHH expression is positively correlated with phosphorylated focal adhesion kinase (FAK Tyr(397. However, the relationship between them and their role in the process of normal fracture repair has not been clarified yet. Immunohistochemical analysis revealed that SHH and pFAK Tyr(397 were expressed in bone marrow cells and that pFAK Tyr(397 was also detected in ALP-positive osteoblasts near the TRAP-positive osteoclasts in the fracture site in the ribs of mice on day 5 after fracture. SHH and pFAK Tyr(397 were detectable in osteoblasts near the hypertrophic chondrocytes on day 14. In vitro analysis showed that SHH up-regulated the expression of FAK mRNA and pFAK Tyr(397 time dependently in osteoblastic MC3T3-E1 cells. Functional analysis revealed that 5 lentivirus encoding short hairpin FAK RNAs (shFAK-infected MC3T3-E1 cell groups displayed a round morphology and decreased proliferation, adhesion, migration, and differentiation. SHH stimulated the proliferation and differentiation of MC3T3-E1 cells, but had no effect on the shFAK-infected cells. SHH also stimulated osteoclast formation in a co-culture system containing MC3T3-E1 and murine CD11b(+ bone marrow cells, but did not affect the shFAK-infected MC3T3-E1 co-culture group. These data suggest that SHH signaling was activated in osteoblasts at the dynamic remodeling site of a bone fracture and regulated their proliferation and differentiation, as well as osteoclast formation, via FAK signaling.

  19. Nemo-like kinase (NLK) expression in osteoblastic cells and suppression of osteoblastic differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Nifuji, Akira, E-mail: nifuji-a@tsurumi-u.ac.jp [Transcriptome profiling group, National Institute of Radiological Sciences, Chiba (Japan); Department of Pharmacology, Tsurumi University School of Dental Medicine, Yokohama (Japan); Ideno, Hisashi [Transcriptome profiling group, National Institute of Radiological Sciences, Chiba (Japan); Ohyama, Yoshio [Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo (Japan); Takanabe, Rieko; Araki, Ryoko; Abe, Masumi [Transcriptome profiling group, National Institute of Radiological Sciences, Chiba (Japan); Noda, Masaki [Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo (Japan); Shibuya, Hiroshi [Department of Molecular Cell Biology, Medical Research Institute and School of Biomedical Science, Tokyo Medical and Dental University, Tokyo (Japan)

    2010-04-15

    Mitogen-activated protein kinases (MAPKs) regulate proliferation and differentiation in osteoblasts. The vertebral homologue of nemo, nemo-like kinase (NLK), is an atypical MAPK that targets several signaling components, including the T-cell factor/lymphoid enhancer factor (TCF/Lef1) transcription factor. Recent studies have shown that NLK forms a complex with the histone H3-K9 methyltransferase SETDB1 and suppresses peroxisome proliferator-activated receptor (PPAR)-gamma:: action in the mesenchymal cell line ST2. Here we investigated whether NLK regulates osteoblastic differentiation. We showed that NLK mRNA is expressed in vivo in osteoblasts at embryonic day 18.5 (E18.5) mouse calvariae. By using retrovirus vectors, we performed forced expression of NLK in primary calvarial osteoblasts (pOB cells) and the mesenchymal cell line ST2. Wild-type NLK (NLK-WT) suppressed alkaline phosphatase activity and expression of bone marker genes such as alkaline phosphatase, type I procollagen, runx2, osterix, steopontin and osteocalcin in these cells. NLK-WT also decreased type I collagen protein expression in pOB and ST2 cells. Furthermore, mineralized nodule formation was reduced in pOB cells overexpressing NLK-WT. In contrast, kinase-negative form of NLK (NLK-KN) did not suppress or partially suppress ALP activity and bone marker gene expression in pOB and ST2 cells. NLK-KN did not suppress nodule formation in pOB cells. In addition to forced expression, suppression of endogenous NLK expression by siRNA increased bone marker gene expression in pOB and ST2 cells. Finally, transcriptional activity analysis of gene promoters revealed that NLK-WT suppressed Wnt1 activation of TOP flash promoter and Runx2 activation of the osteocalcin promoter. Taken together, these results suggest that NLK negatively regulates osteoblastic differentiation.

  20. Biologically active extracts with kidney affections applications

    Science.gov (United States)

    Pascu (Neagu), Mihaela; Pascu, Daniela-Elena; Cozea, Andreea; Bunaciu, Andrei A.; Miron, Alexandra Raluca; Nechifor, Cristina Aurelia

    2015-12-01

    This paper is aimed to select plant materials rich in bioflavonoid compounds, made from herbs known for their application performances in the prevention and therapy of renal diseases, namely kidney stones and urinary infections (renal lithiasis, nephritis, urethritis, cystitis, etc.). This paper presents a comparative study of the medicinal plant extracts composition belonging to Ericaceae-Cranberry (fruit and leaves) - Vaccinium vitis-idaea L. and Bilberry (fruit) - Vaccinium myrtillus L. Concentrated extracts obtained from medicinal plants used in this work were analyzed from structural, morphological and compositional points of view using different techniques: chromatographic methods (HPLC), scanning electronic microscopy, infrared, and UV spectrophotometry, also by using kinetic model. Liquid chromatography was able to identify the specific compounds of the Ericaceae family, present in all three extracts, arbutosid, as well as specific components of each species, mostly from the class of polyphenols. The identification and quantitative determination of the active ingredients from these extracts can give information related to their therapeutic effects.

  1. The Effect of Cyclic Stretching on Matrix Production, Mineralization and Differentiation of Osteoblasts

    Institute of Scientific and Technical Information of China (English)

    Qin Jian(秦建); Tang Liling; Wang Yuanliang; Gu Li

    2003-01-01

    A four-point bending apparatus is used to investigate the effects of stretching on collagen synthesis, mineralization and differentiation of osteoblasts. Cells are stretched at 1500 με for 24 hours. The responses of osteoblasts to mechanical signal of physiological stretching are evaluated from three aspects: collagen production, extracellular inorganic calcium secretion and ALP activity. The results show that osteoblasts decrease the collagen synthesis, calcium secretion and ALP activity compared to the control cells (65.82%,73.51%,48.10% respectively), confirming that cyclic stretching at 1500 με inhabits the physiological activity of osteoblasts.

  2. Affective Response to Physical Activity: Testing for Measurement Invariance of the Physical Activity Affect Scale across Active and Non-Active Individuals

    Science.gov (United States)

    Carpenter, Laura C.; Tompkins, Sara Anne; Schmiege, Sarah J.; Nilsson, Renea; Bryan, Angela

    2010-01-01

    Affective responses to physical activity are assumed to play a role in exercise initiation and maintenance. The Physical Activity Affect Scale measures four dimensions of an individual's affective response to exercise. Group differences in the interpretation of scale items can impact the interpretability of mean differences, underscoring the need…

  3. Mechanical loading induced expression of bone morphogenetic protein-2,alkaline phosphatase activity,and collagen synthesis in osteoblastic MC3T3-E1 cells

    Institute of Scientific and Technical Information of China (English)

    LU Hong-fei; MAI Zhi-hui; XU Ye; WANG Wei; AI Hong

    2012-01-01

    Background Bone morphogenetic protein(BMP)-2,alkaline phosphatase(ALP),and collagen typeⅠ?are known to play a critical role in the process of bone remodeling.However,the relationship between mechanical strain and the expression of BMP-2,ALP,and COL-Ⅰ?in osteoblasts was still unknown.The purpose of this study was to investigate the effects of different magnitudes of mechanical strain on osteoblast morphology and on the expression of BMP-2,ALP,and COL-Ⅰ.Methods Osteoblast-like cells were flexed at four deformation rates(0,6%,12%,and 18% elongation).The expression of BMP-2 mRNA,ALP,and COL-Ⅰ?in osteoblast-like cells were determined by real-time quantitative reverse transcription polymerase chain reaction,respectively.The results were subjected to analysis of variance(ANOVA)using SPSS 13.0 statistical software.Results The cells changed to fusiform and grew in the direction of the applied strain after the mechanical strain was loaded.Expression level of the BMP-2,ALP,and COL-Ⅰ?increased magnitude-dependently with mechanical loading in the experimental groups,and the 12% elongation group had the highest expression(P<0.05).Conclusion Mechanical strain can induce morphological change and a magnitude-dependent increase in the expression of BMP-2,ALP,and COL-Ⅰ?mRNA in osteoblast-like cells,which might influence bone remodeling in orthodontic treatment.

  4. Bezafibrate enhances proliferation and differentiation of osteoblastic MC3T3-E1 cells via AMPK and eNOS activation

    Institute of Scientific and Technical Information of China (English)

    Xing ZHONG; Ling-ling XIU; Guo-hong WEI; Yuan-yuan LIU; Lei SU; Xiao-pei CAO; Yan-bing LI; Hai-peng XIAO

    2011-01-01

    Aim: To investigate the effects of bezafibrate on the proliferation and differentiation of osteoblastic MC3T3-E1 cells, and to determine the signaling pathway underlying the effects.Methods: MC3T3-E1 cells, a mouse osteoblastic cell line, were used. Cell viability and proliferation were examined using MTT assay and colorimetric BrdU incorporation assay, respectively. NO production was evaluated using the Griess reagent. The mRNA expression of ALP, collagen I, osteocalcin, BMP-2, and Runx-2 was measured using real-time PCR. Western blot analysis was used to detect the expression of AMPK and eNOS proteins.Results: Bezafibrate increased the viability and proliferation of MC3T3-E1 cells in a dose- and time-dependent manner. Bezafibrate (100 μmol/L) significantly enhanced osteoblastic mineralization and expression of the differentiation markers ALP, collagen I and osteocalcin. Bezaflbrate (100 μmol/L) increased phosphorylation of AMPK and eNOS, which led to an increase of NO production by 4.08-fold, and upregulating BMP-2 and Runx-2 mRNA expression. These effects could be blocked by AMPK inhibitor compound C (5 μmol/L), or the PPARβ inhibitor GSK0660 (0.5 μmol/L), but not by the PPARa inhibitor MK886 (10 μmol/L). Furthermore, GSK0660, compound C, or N-nitro-L-arginine methyl ester hydrochloride (L-NAME, 1 mmol/L) could reverse the stimulatory effects of bezafibrate (100 pmol/L) on osteoblast proliferation and differentiation, whereas MK886 only inhibited bezafibrate-induced osteoblast prolifera-tion.Conclusion: Bezafibrate stimulates proliferation and differentiation of MC3T3-E1 cells, mainly via a PPARβ-dependent mechanism. The drug might be beneficial for osteoporosis by promoting bone formation.

  5. Osteoblast cell response to surface-modified carbon nanotubes

    International Nuclear Information System (INIS)

    In order to investigate the interaction of cells with modified multi-walled carbon nanotubes (MWCNTs) for their potential biomedical applications, the MWCNTs were chemically modified with carboxylic acid groups (–COOH), polyvinyl alcohol (PVA) polymer and biomimetic apatite on their surfaces. Additionally, human osteoblast MG-63 cells were cultured in the presence of the surface-modified MWCNTs. The metabolic activities of osteoblastic cells, cell proliferation properties, as well as cell morphology were studied. The surface modification of MWCNTs with biomimetic apatite exhibited a significant increase in the cell viability of osteoblasts, up to 67.23%. In the proliferation phases, there were many more cells in the biomimetic apatite-modified MWCNT samples than in the MWCNTs–COOH. There were no obvious changes in cell morphology in osteoblastic MG-63 cells cultured in the presence of these chemically-modified MWCNTs. The surface modification of MWCNTs with apatite achieves an effective enhancement of their biocompatibility.

  6. Akt1 in osteoblasts and osteoclasts controls bone remodeling.

    Directory of Open Access Journals (Sweden)

    Naohiro Kawamura

    Full Text Available Bone mass and turnover are maintained by the coordinated balance between bone formation by osteoblasts and bone resorption by osteoclasts, under regulation of many systemic and local factors. Phosphoinositide-dependent serine-threonine protein kinase Akt is one of the key players in the signaling of potent bone anabolic factors. This study initially showed that the disruption of Akt1, a major Akt in osteoblasts and osteoclasts, in mice led to low-turnover osteopenia through dysfunctions of both cells. Ex vivo cell culture analyses revealed that the osteoblast dysfunction was traced to the increased susceptibility to the mitochondria-dependent apoptosis and the decreased transcriptional activity of runt-related transcription factor 2 (Runx2, a master regulator of osteoblast differentiation. Notably, our findings revealed a novel role of Akt1/forkhead box class O (FoxO 3a/Bim axis in the apoptosis of osteoblasts: Akt1 phosphorylates the transcription factor FoxO3a to prevent its nuclear localization, leading to impaired transactivation of its target gene Bim which was also shown to be a potent proapoptotic molecule in osteoblasts. The osteoclast dysfunction was attributed to the cell autonomous defects of differentiation and survival in osteoclasts and the decreased expression of receptor activator of nuclear factor-kappaB ligand (RANKL, a major determinant of osteoclastogenesis, in osteoblasts. Akt1 was established as a crucial regulator of osteoblasts and osteoclasts by promoting their differentiation and survival to maintain bone mass and turnover. The molecular network found in this study will provide a basis for rational therapeutic targets for bone disorders.

  7. Effects of pyrite bioleaching solution of Acidithiobacillus ferrooxidans on viability, differentiation and mineralization potentials of rat osteoblasts.

    Science.gov (United States)

    Zhou, Jian; Chen, Ke-Ming; Zhi, De-Juan; Xie, Qin-Jian; Xian, Cory J; Li, Hong-Yu

    2015-12-01

    Iron pyrite, an important component of traditional Chinese medicine, has a poor solubility, bioavailability, and patient compliance due to a high dose required and associated side effects, all of which have limited its clinical applications and experimental studies on its action mechanisms in improving fracture healing. This study investigated Acidithiobacillus ferrooxidans (A.f)-bioleaching of two kinds of pyrites and examined bioactivities of the derived solutions in viability and osteogenic differentiation in rat calvarial osteoblasts. A.f bioleaching improved element contents (Fe, Mn, Zn, Cu, and Se) in the derived solutions and the solutions concentration-dependently affected osteoblast viability and differentiation. While the solutions had no effects at low concentrations and inhibited the osteoblast alkaline phosphatase (ALP) activity at high concentrations, they improved ALP activity at their optimal concentrations. The improved osteoblast differentiation and osteogenic function at optimal concentrations were also revealed by levels of ALP cytochemical staining, calcium deposition, numbers and areas of mineralized nodules formed, mRNA and protein expression levels of osteogenesis-related genes (osteocalcin, Bmp-2, Runx-2, and IGF-1), and Runx-2 nuclear translocation. Data from this study will be useful in offering new strategies for improving pyrite bioavailability and providing a mechanistic explanation for the beneficial effects of pyrite in improving bone healing. PMID:26283321

  8. Rho-kinase limits FGF-2-stimulated VEGF release in osteoblasts.

    Science.gov (United States)

    Natsume, Hideo; Tokuda, Haruhiko; Adachi, Seiji; Takai, Shinji; Matsushima-Nishiwaki, Rie; Kato, Kenji; Minamitani, Chiho; Niida, Shunpei; Mizutani, Jun; Kozawa, Osamu; Otsuka, Takanobu

    2010-04-01

    We previously reported that basic fibroblast growth factor (FGF-2) stimulates the release of vascular endothelial growth factor (VEGF) via p44/p42 mitogen-activated protein (MAP) kinase and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) in osteoblast-like MC3T3-E1 cells and that FGF-2-activated p38 MAP kinase negatively regulates the VEGF release in osteoblast-like MC3T3-E1 cells. In the present study, we investigated whether Rho-kinase is involved in FGF-2-stimulated VEGF release in MC3T3-E1 cells. FGF-2 induced the phosphorylation of myosin phosphatase targeting subunit (MYPT-1), a substrate of Rho-kinase. Y27632, a specific inhibitor of Rho-kinase, which attenuated the MYPT-1 phosphorylation, significantly enhanced the FGF-2-stimulated VEGF release. Fasudil, another Rho-kinase inhibitor, also amplified the VEGF release. FGF-2 significantly stimulated VEGF accumulation and fasudil enhanced FGF-2-stimulated VEGF accumulation also in whole cell lysates. Neither Y27632 nor fasudil affected the phosphorylation levels of p44/p42 MAP kinase or p38 MAP kinase. Y27632 and fasudil markedly strengthened the FGF-2-induced phosphorylation of SAPK/JNK. Y27632 as well as fasudil enhanced FGF-2-stimulated VEGF release and Y27632 enhanced the FGF-2-induced phosphorylation levels of SAPK/JNK also in human osteoblasts. These results strongly suggest that Rho-kinase negatively regulates FGF-2-stimulated VEGF release in osteoblasts.

  9. Bone formation by three-dimensional stromal osteoblast culture in biodegradable polymer scaffolds

    Science.gov (United States)

    Ishaug, S. L.; Crane, G. M.; Miller, M. J.; Yasko, A. W.; Yaszemski, M. J.; Mikos, A. G.; McIntire, L. V. (Principal Investigator)

    1997-01-01

    Bone formation was investigated in vitro by culturing stromal osteoblasts in three-dimensional (3-D), biodegradable poly(DL-lactic-co-glycolic acid) foams. Three polymer foam pore sizes, ranging from 150-300, 300-500, and 500-710 microns, and two different cell seeding densities, 6.83 x 10(5) cells/cm2 and 22.1 x 10(5) cells/cm2, were examined over a 56-day culture period. The polymer foams supported the proliferation of seeded osteoblasts as well as their differentiated function, as demonstrated by high alkaline phosphatase activity and deposition of a mineralized matrix by the cells. Cell number, alkaline phosphatase activity, and mineral deposition increased significantly over time for all the polymer foams. Osteoblast foam constructs created by seeding 6.83 x 10(5) cells/cm2 on foams with 300-500 microns pores resulted in a cell density of 4.63 x 10(5) cells/cm2 after 1 day in culture; they had alkaline phosphatase activities of 4.28 x 10(-7) and 2.91 x 10(-6) mumol/cell/min on Days 7 and 28, respectively; and they had a cell density that increased to 18.7 x 10(5) cells/cm2 by Day 56. For the same constructs, the mineralized matrix reached a maximum penetration depth of 240 microns from the top surface of the foam and a value of 0.083 mm for mineralized tissue volume per unit of cross sectional area. Seeding density was an important parameter for the constructs, but pore size over the range tested did not affect cell proliferation or function. This study suggests the feasibility of using poly(alpha-hydroxy ester) foams as scaffolding materials for the transplantation of autogenous osteoblasts to regenerate bone tissue.

  10. Interplay between self-assembled structure of bone morphogenetic protein-2 (BMP-2) and osteoblast functions in three-dimensional titanium alloy scaffolds: Stimulation of osteogenic activity.

    Science.gov (United States)

    Nune, K C; Kumar, A; Murr, L E; Misra, R D K

    2016-02-01

    Three-dimensional cellular scaffolds are receiving significant attention in bone tissue engineering to treat segmental bone defects. However, there are indications of lack of significant osteoinductive ability of three-dimensional cellular scaffolds. In this regard, the objective of the study is to elucidate the interplay between bone morphogenetic protein (BMP-2) and osteoblast functions on 3D mesh structures with different porosities and pore size that were fabricated by electron beam melting. Self-assembled dendritic microstructure with interconnected cellular-type morphology of BMP-2 on 3D scaffolds stimulated osteoblast functions including adhesion, proliferation, and mineralization, with prominent effect on 2-mm mesh. Furthermore, immunofluorescence studies demonstrated higher density and viability of osteoblasts on lower porosity mesh structure (2 mm) as compared to 3- and 4-mm mesh structures. Enhanced filopodia cellular extensions with extensive cell spreading was observed on BMP-2 treated mesh structures, a behavior that is attributed to the unique self-assembled structure of BMP-2 that effectively communicates with the cells. The study underscores the potential of BMP-2 in imparting osteoinductive capability to the 3D printed scaffolds.

  11. Aging impairs osteoblast differentiation of mesenchymal stem cells grown on titanium by favoring adipogenesis

    Science.gov (United States)

    ABUNA, Rodrigo Paolo Flores; STRINGHETTA-GARCIA, Camila Tami; FIORI, Leonardo Pimentel; DORNELLES, Rita Cassia Menegati; ROSA, Adalberto Luiz; BELOTI, Marcio Mateus

    2016-01-01

    ABSTRACT Aging negatively affects bone/titanium implant interactions. Our hypothesis is that the unbalance between osteogenesis and adipogenesis induced by aging may be involved in this phenomenon. Objective We investigated the osteoblast and adipocyte differentiation of mesenchymal stem cells (MSCs) from young and aged rats cultured on Ti. Material and Methods Bone marrow MSCs derived from 1-month and 21-month rats were cultured on Ti discs under osteogenic conditions for periods of up to 21 days and osteoblast and adipocyte markers were evaluated. Results Cell proliferation, alkaline phosphatase (ALP) activity, extracellular matrix mineralization and gene expression of RUNX2, osterix, ALP, bone sialoprotein, osteopontin, and osteocalcin were reduced in cultures of 21-month rats compared with 1-month rats grown on Ti. Gene expression of PPAR-γ , adipocyte protein 2, and resistin and lipid accumulation were increased in cultures of 21-month rats compared with 1-month rats grown on the same conditions. Conclusions These results indicate that the lower osteogenic potential of MSCs derived from aged rats compared with young rats goes along with the higher adipogenic potential in cultures grown on Ti surface. This unbalance between osteoblast and adipocyte differentiation should be considered in dental implant therapy to the elderly population. PMID:27556209

  12. Effects of alpha-calcitonin gene-related peptide on osteoprotegerin and receptor activator of nuclear factor-κB ligand expression in MG-63 osteoblast-like cells exposed to polyethylene particles

    Directory of Open Access Journals (Sweden)

    Kauther Max D

    2010-11-01

    Full Text Available Abstract Background Recent studies demonstrated an impact of the nervous system on particle-induced osteolysis, the major cause of aseptic loosening of joint replacements. Methods In this study of MG-63 osteoblast-like cells we analyzed the influence of ultra-high molecular weight polyethylene (UHMWPE particles and the neurotransmitter alpha-calcitonin gene-related peptide (CGRP on the osteoprotegerin/receptor activator of nuclear factor-κB ligand/receptor activator of nuclear factorκB (OPG/RANKL/RANK system. MG-63 cells were stimulated by different UHMWPE particle concentrations (1:100, 1:500 and different doses of alpha-CGRP (10-7 M, 10-9 M, 10-11 M. RANKL and OPG mRNA expression and protein levels were measured by RT-PCR and Western blot. Results Increasing particle concentrations caused an up-regulation of RANKL after 72 hours. Alpha-CGRP showed a dose-independent depressive effect on particle-induced expression of RANKL mRNA in both cell-particle ratios. RANKL gene transcripts were significantly (P -7 M lead to an up-regulation of OPG protein. Conclusion In conclusion, a possible osteoprotective influence of the neurotransmitter alpha-CGRP on particle stimulated osteoblast-like cells could be shown. Alpha-CGRP might be important for bone metabolism under conditions of particle-induced osteolysis.

  13. How do oil prices affect oilrig activity? : an empirical investigation

    OpenAIRE

    2004-01-01

    Resume "How do oil prices affect oilrig activity? An empirical investigation" by Guro Børnes Ringlund. Supervisors: Knut Einar Rosendahl and Terje Skjerpen. In this thesis, I analyse the relationship between oilrig activity and oil price changes for several oil-producing regions in the world. Rig activity is a preparation for future production of oil, through exploration for new fields or development of existing fields, and is thus an indicator for the future level of oil production. ...

  14. OSTEOBLAST ADHESION OF BREAST CANCER CELLS WITH SCANNING ACOUSTIC MICROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    Chiaki Miyasaka; Robyn R. Mercer; Andrea M. Mastro; Ken L. Telschow

    2005-03-01

    Breast cancer frequently metastasizes to the bone. Upon colonizing bone tissue, the cancer cells stimulate osteoclasts (cells that break bone down), resulting in large lesions in the bone. The breast cancer cells also affect osteoblasts (cells that build new bone). Conditioned medium was collected from a bone-metastatic breast cancer cell line, MDA-MB-231, and cultured with an immature osteoblast cell line, MC3T3-E1. Under these conditions the osteoblasts acquired a changed morphology and appeared to adherer in a different way to the substrate and to each other. To characterize cell adhesion, MC3T3-E1 osteoblasts were cultured with or without MDA-MB-231 conditioned medium for two days, and then assayed with a mechanical scanning acoustic reflection microscope (SAM). The SAM indicated that in normal medium the MC3T3-E1 osteoblasts were firmly attached to their plastic substrate. However, MC3T3-E1 cells cultured with MDA-MB-231 conditioned medium displayed both an abnormal shape and poor adhesion at the substrate interface. The cells were fixed and stained to visualize cytoskeletal components using optical microscopic techniques. We were not able to observe these differences until the cells were quite confluent after 7 days of culture. However, using the SAM, we were able to detect these changes within 2 days of culture with MDA-MB-231 conditioned medium

  15. Daily low-intensity pulsed ultrasound-mediated osteogenic differentiation in rat osteoblasts

    Institute of Scientific and Technical Information of China (English)

    Akito Suzuki; Tadahiro Takayama; Naoto Suzuki; Michitomo Sato; Takeshi Fukuda; Koichi Ito

    2009-01-01

    There were few studies investigating the effects of the mechanical stimulation provided by daily low-intensity pulsed ultrasound (LIPUS) treatment. LIPUS is known to accelerate bone mineralization and regeneration; however, the precise cellular mechanism is unclear. Our purpose was to determine how daily LIPUS treat-ment affected cell viability, alkaline phosphatase activity, osteogenesis-related gene expression, and mineralized nodule formation in osteoblasts. The typical osteoblastic cell line ROS 17/2.8 cells were cul-tured in the absence or presence of LIPUS stimulation. Daily LIPUS treatments (1.5 MHz; 20 min) were admi-nistered at an intensity of 30 mW/cm2 for 14 days. Expression of osteogenesis-related genes was examined at mRNA levels using real-time polymerase chain reac-tion and at protein levels using western blotting analy-sis. LIPUS stimulation did not affect the rate of cell viability. Alkaline phosphatase activity was increased after 10 days of culture with daily LIPUS stimulation. LIPUS significantly increased the expression of mRNAs encoding Runx2, Msx2, DIx5, osterix, bone sialoprotein,and bone morphogenetic protein-2, whereas it signifi-cantly reduced the expression of mRNA encoding the transcription factor AJ18. Mineralized nodule for-mation was markedly increased on Day 14 of LIPUS stimulation. LIPUS stimulation directly affected osteo-genic cells, leading to mineralized nodule formation. LIPUS is likely to have a fundamental influence on key functional activities of osteoblasts in alveolar bone.

  16. Quercetin Partially Preserves Development of Osteoblast Phenotype in Fetal Rat Calvaria Cells in an Oxidative Stress Environment.

    Science.gov (United States)

    Messer, Jonathan G; La, Stephanie; Hopkins, Robin G; Kipp, Deborah E

    2016-12-01

    Studies are needed to improve understanding of the osteoblast antioxidant response, and the balance between oxidative homeostasis and osteoblast differentiation. The flavonol quercetin aglycone (QRC) up-regulates the osteoblast antioxidant response in vitro without suppressing osteoblast phenotype, suggesting that QRC may preserve osteoblast phenotypic development in cells subsequently exposed to oxidative stress, which suppresses osteoblast differentiation. The aims of this study were to assess the extent that QRC pretreatment preserved development of the osteoblast phenotype in cells subsequently cultured with hydrogen peroxide, an oxidative stressor, and to characterize alterations in the osteoblast antioxidant response and in key antioxidant signaling pathways. We hypothesized that pretreatment with QRC would preserve phenotypic development after hydrogen peroxide treatment, suppress the hydrogen peroxide-induced antioxidant response, and that the antioxidant response would involve alterations in Nrf2 and ERK1/2 signaling. Results showed that treating fetal rat calvarial osteoblasts for 4 days (D5-9) with 300 μM hydrogen peroxide resulted in fewer alkaline phosphatase-positive cells and mineralized nodules, altered cell morphology, and significantly lower osteoblast phenotypic gene expression (P stress response coincided with alterations in phosphorylated ERK1/2, but not Nrf2. These results suggest that QRC suppresses hydrogen peroxide-induced activation of the antioxidant response, and partially preserves osteoblast phenotypic development. J. Cell. Physiol. 231: 2779-2788, 2016. © 2016 Wiley Periodicals, Inc. PMID:27028516

  17. Nacre extract restores the mineralization capacity of subchondral osteoarthritis osteoblasts.

    Science.gov (United States)

    Brion, A; Zhang, G; Dossot, M; Moby, V; Dumas, D; Hupont, S; Piet, M H; Bianchi, A; Mainard, D; Galois, L; Gillet, P; Rousseau, M

    2015-12-01

    Osteoarthritis (OA) is the most common cause of joint chronic pain and involves the entire joints. Subchondral osteoarthritic osteoblasts present a mineralization defect and, to date, only a few molecules (Vitamin D3 and Bone Morphogenetic Protein2) could improve the mineralization potential of this cell type. In this context, we have tested for the first time the effect of nacre extract on the mineralization capacity of osteoblasts from OA patients. Nacre extract is known to contain osteogenic molecules which have demonstrated their activities notably on the MC3T3 pre-osteoblastic cell line. For this goal, molecules were extracted from nacre (ESM, Ethanol Soluble Matrix) and tested on osteoblasts of the subchondral bone from OA patients undergoing total knee replacement and on MC3T3 cells for comparison. We chose to investigate the mineralization with Alizarin Red staining and with the study of extracellular matrix (ECM) structure and composition. In a complementary way the structure of the ECM secreted during the mineralization phase was investigated using second harmonic generation (SHG). Nacre extract was able to induce the early presence (after 7 days) of precipitated calcium in cells. Raman spectroscopy and electron microscopy showed the presence of nanograins of an early crystalline form of calcium phosphate in OA osteoblasts ECM and hydroxyapatite in MC3T3 ECM. SHG collagen fibers signal was present in both cell types but lower for OA osteoblasts. In conclusion, nacre extract was able to rapidly restore the mineralization capacity of osteoarthritis osteoblasts, therefore confirming the potential of nacre as a source of osteogenic compounds.

  18. Osteoblast hydraulic conductivity is regulated by calcitonin and parathyroid hormone

    Science.gov (United States)

    Hillsley, M. V.; Frangos, J. A.

    1996-01-01

    It is our hypothesis that osteoblasts play a major role in regulating bone (re)modeling by regulating interstitial fluid (ISF) flow through individual bone compartments. We hypothesize that osteoblasts of the blood-bone membrane lining the bone surfaces are capable of regulating transosseous fluid flow. This regulatory function of the osteoblasts was tested in vitro by culturing a layer of rat calvarial osteoblasts on porous membranes. Such a layer of osteoblasts subjected to 7.3 mm Hg of hydrostatic pressure posed a significant resistance to fluid flow across the cell layer similar in magnitude to the resistance posed by endothelial monolayers in vitro. The hydraulic conductivity, the volumetric fluid flux per unit pressure drop, of the osteoblast layer was altered in response to certain hormones. Hydraulic conductivity decreased approximately 40% in response to 33 nM parathyroid hormone, while it exhibited biphasic behavior in response to calcitonin: increased 40% in response to 100 nM calcitonin and decreased 40% in response to 1000 nM calcitonin. Further, activation of adenylate cyclase by forskolin dramatically increased the hydraulic conductivity, while elevation of intracellular calcium, [Ca2+]i, by the calcium ionophore A23187 initially decreased the hydraulic conductivity at 5 minutes before increasing conductivity by 30 minutes. These results suggest that cyclic adenosine monophosphate (cAMP) and [Ca2+]i may mediate changes in the osteoblast hydraulic conductivity. The increase in hydraulic conductivity in response to 100 nM calcitonin and the decrease in response to PTH suggest that the stimulatory and inhibitory effects on bone formation of calcitonin and parathyroid hormone, respectively, may be due in part to alterations in bone fluid flow.

  19. ent-Kaurane diterpenoids from Croton tonkinensis stimulate osteoblast differentiation.

    Science.gov (United States)

    Dao, Trong-Tuan; Lee, Kwang-Youl; Jeong, Hyung-Min; Nguyen, Phi-Hung; Tran, Tien Lam; Thuong, Phuong-Thien; Nguyen, Bich-Thu; Oh, Won-Keun

    2011-12-27

    Four new ent-kaurane diterpenoids (1-4) were isolated from the leaves of Croton tonkinensis by bioactivity-guided fractionation using an in vitro osteoblast differentiation assay. Their structures were identified as ent-11β-acetoxykaur-16-en-18-ol (1), ent-11α-hydroxy-18-acetoxykaur-16-ene (2), ent-14β-hydroxy-18-acetoxykaur-16-ene (3), and ent-7α-hydroxy-18-acetoxykaur-16-ene (4). Compounds 1-4 significantly increased alkaline phosphatase activity and osteoblastic gene promoter activity. Compounds 1-3 also increased the levels of ALP and collagen type I alpha mRNA in C2C12 cells in a dose-dependent manner. These results suggest that ent-kaurane diterpenoids from C. tonkinensis have a direct stimulatory effect on osteoblast differentiation and may be potential therapeutic molecules against bone diseases such as osteoporosis. PMID:22085418

  20. NFAT Signaling in Osteoblasts Regulates the Hematopoietic Niche in the Bone Microenvironment

    Directory of Open Access Journals (Sweden)

    Cheryl L. Sesler

    2013-01-01

    Full Text Available Osteoblasts support hematopoietic cell development, including B lymphopoiesis. We have previously shown that the nuclear factor of activated T cells (NFAT negatively regulates osteoblast differentiation and bone formation. Interestingly, in smooth muscle, NFAT has been shown to regulate the expression of vascular cellular adhesion molecule-1 (VCAM-1, a mediator of cell adhesion and signaling during leukocyte development. To examine whether NFAT signaling in osteoblasts regulates hematopoietic development in vivo, we generated a mouse model expressing dominant-negative NFAT driven by the 2.3 kb fragment of the collagen-αI promoter to disrupt NFAT activity in osteoblasts (dnNFATOB. Bone histomorphometry showed that dnNFATOB mice have significant increases in bone volume (44% and mineral apposition rate (131% and decreased trabecular thickness (18%. In the bone microenvironment, dnNFATOB mice displayed a significant increase (87% in Lineage−cKit+Sca-1+ (LSK cells and significant decreases in B220+CD19−IgM− pre-pro-B cells (41% and B220+CD19+IgM+ immature B cells (40%. Concurrent with these findings, LSK cell differentiation into B220+ cells was inhibited when cocultured on differentiated primary osteoblasts harvested from dnNFATOB mice. Gene expression and protein levels of VCAM-1 in osteoblasts decreased in dnNFATOB mice compared to controls. These data suggest that osteoblast-specific NFAT activity mediates early B lymphopoiesis, possibly by regulating VCAM-1 expression on osteoblasts.

  1. Collagen-derived dipeptide prolyl-hydroxyproline promotes differentiation of MC3T3-E1 osteoblastic cells

    Energy Technology Data Exchange (ETDEWEB)

    Kimira, Yoshifumi, E-mail: kimira@josai.ac.jp [Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295 (Japan); Ogura, Kana; Taniuchi, Yuri [Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295 (Japan); Kataoka, Aya; Inoue, Naoki; Sugihara, Fumihito [Nitta Gelatin Inc., Peptide Division, 2-22 Futamata, Yao, Osaka 581-0024 (Japan); Nakatani, Sachie; Shimizu, Jun; Wada, Masahiro; Mano, Hiroshi [Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295 (Japan)

    2014-10-24

    Highlights: • Pro-Hyp did not affect MC3T3-E1 cell proliferation and matrix mineralization. • Pro-Hyp significantly increased alkaline phosphatase activity. • Pro-Hyp significantly upregulated gene expression of Runx2, Osterix, and Col1α1. - Abstract: Prolyl-hydroxyproline (Pro-Hyp) is one of the major constituents of collagen-derived dipeptides. The objective of this study was to investigate the effects of Pro-Hyp on the proliferation and differentiation of MC3T3-E1 osteoblastic cells. Addition of Pro-Hyp did not affect MC3T3-E1 cell proliferation and matrix mineralization but alkaline phosphatase activity was significantly increased. Furthermore, cells treated with Pro-Hyp significantly upregulated gene expression of Runx2, Osterix, and Col1α1. These results indicate that Pro-Hyp promotes osteoblast differentiation. This study demonstrates for the first time that Pro-Hyp has a positive effect on osteoblast differentiation with upregulation of Runx2, Osterix, and Collα1 gene expression.

  2. Monitoring Affect States during Effortful Problem Solving Activities

    Science.gov (United States)

    D'Mello, Sidney K.; Lehman, Blair; Person, Natalie

    2010-01-01

    We explored the affective states that students experienced during effortful problem solving activities. We conducted a study where 41 students solved difficult analytical reasoning problems from the Law School Admission Test. Students viewed videos of their faces and screen captures and judged their emotions from a set of 14 states (basic…

  3. Bioenergetics and mitochondrial transmembrane potential during differentiation of cultured osteoblasts

    Science.gov (United States)

    Komarova, S. V.; Ataullakhanov, F. I.; Globus, R. K.

    2000-01-01

    To evaluate the relationship between osteoblast differentiation and bioenergetics, cultured primary osteoblasts from fetal rat calvaria were grown in medium supplemented with ascorbate to induce differentiation. Before ascorbate treatment, the rate of glucose consumption was 320 nmol. h(-1). 10(6) cells(-1), respiration was 40 nmol. h(-1). 10(6) cells(-1), and the ratio of lactate production to glucose consumption was approximately 2, indicating that glycolysis was the main energy source for immature osteoblasts. Ascorbate treatment for 14 days led to a fourfold increase in respiration, a threefold increase in ATP production, and a fivefold increase in ATP content compared with that shown in immature cells. Confocal imaging of mitochondria stained with a transmembrane potential-sensitive vital dye showed that mature cells possessed abundant amounts of high-transmembrane-potential mitochondria, which were concentrated near the culture medium-facing surface. Acute treatment of mature osteoblasts with metabolic inhibitors showed that the rate of glycolysis rose to maintain the cellular energy supply constant. Thus progressive differentiation coincided with changes in cellular metabolism and mitochondrial activity, which are likely to play key roles in osteoblast function.

  4. Purification of a peptide from seahorse, that inhibits TPA-induced MMP, iNOS and COX-2 expression through MAPK and NF-kappaB activation, and induces human osteoblastic and chondrocytic differentiation.

    Science.gov (United States)

    Ryu, BoMi; Qian, Zhong-Ji; Kim, Se-Kwon

    2010-03-30

    Ongoing efforts to search for naturally occurring, bioactive substances for the amelioration of arthritis have led to the discovery of natural products with substantial bioactive properties. The seahorse (Hippocampus kuda Bleeler), a telelost fish, is one source of known beneficial products, yet has not been utilized for arthritis research. In the present work, we have purified and characterized a bioactive peptide from seahorse hydrolysis. Among the hydrolysates tested, pronase E-derived hydrolysate exhibited the highest alkaline phosphatase (ALP) activity, a phenotype marker of osteoblast and chondrocyte differentiation. After its separation from the hydrolysate by several purification steps, the peptide responsible for the ALP activity was isolated and its sequence was identified as LEDPFDKDDWDNWK (1821Da). We have shown that the isolated peptide induces differentiation of osteoblastic MG-63 and chondrocytic SW-1353 cells by measuring ALP activity, mineralization and collagen synthesis. Our results indicate that the peptide acts during early to late stages of differentiation in MG-63 and SW-1353 cells. We also assessed the concentration dependence of the peptide's inhibition of MMP (-1, -3 and -13), iNOS and COX-2 expression after treatment with 12-O-tetradecanoylphorbol-13-acetate (TPA), a common form of phorbol ester. The peptide also inhibited NO production in MG-63 and SW-1353 cells. To elucidate the mechanisms by which the peptide acted, we examined its effects on TPA-induced MAPKs/NF-kappaB activation and determined that the peptide treatment significantly reduced p38 kinase/NF-kappaB in MG-63 cells and MAPKs/NF-kappaB in SW-1353 cells. PMID:20004183

  5. Calcium signals and calcium channels in osteoblastic cells

    Science.gov (United States)

    Duncan, R. L.; Akanbi, K. A.; Farach-Carson, M. C.

    1998-01-01

    Calcium (Ca2+) channels are present in non-excitable as well as in excitable cells. In bone cells of the osteoblast lineage, Ca2+ channels play fundamental roles in cellular responses to external stimuli including both mechanical forces and hormonal signals. They are also proposed to modulate paracrine signaling between bone-forming osteoblasts and bone-resorbing osteoclasts at local sites of bone remodeling. Calcium signals are characterized by transient increases in intracellular Ca2+ levels that are associated with activation of intracellular signaling pathways that control cell behavior and phenotype, including patterns of gene expression. Development of Ca2+ signals is a tightly regulated cellular process that involves the concerted actions of plasma membrane and intracellular Ca2+ channels, along with Ca2+ pumps and exchangers. This review summarizes the current state of knowledge concerning the structure, function, and role of Ca2+ channels and Ca2+ signals in bone cells, focusing on the osteoblast.

  6. Chondrocytic Atf4 regulates osteoblast differentiation and function via Ihh

    OpenAIRE

    Wang, Weiguang; Lian, Na; Ma., Yun; LI, LINGZHEN; Gallant, Richard C.; Elefteriou, Florent; Yang, Xiangli

    2012-01-01

    Atf4 is a leucine zipper-containing transcription factor that activates osteocalcin (Ocn) in osteoblasts and indian hedgehog (Ihh) in chondrocytes. The relative contribution of Atf4 in chondrocytes and osteoblasts to the regulation of skeletal development and bone formation is poorly understood. Investigations of the Atf4–/–;Col2a1-Atf4 mouse model, in which Atf4 is selectively overexpressed in chondrocytes in an Atf4-null background, demonstrate that chondrocyte-derived Atf4 regulates osteog...

  7. Myeloma cells suppress osteoblasts through sclerostin secretion

    International Nuclear Information System (INIS)

    Wingless-type (Wnt) signaling through the secretion of Wnt inhibitors Dickkopf1, soluble frizzled-related protein-2 and -3 has a key role in the decreased osteoblast (OB) activity associated with multiple myeloma (MM) bone disease. We provide evidence that another Wnt antagonist, sclerostin, an osteocyte-expressed negative regulator of bone formation, is expressed by myeloma cells, that is, human myeloma cell lines (HMCLs) and plasma cells (CD138+ cells) obtained from the bone marrow (BM) of a large number of MM patients with bone disease. We demonstrated that BM stromal cells (BMSCs), differentiated into OBs and co-cultured with HMCLs showed, compared with BMSCs alone, reduced expression of major osteoblastic-specific proteins, decreased mineralized nodule formation and attenuated the expression of members of the activator protein 1 transcription factor family (Fra-1, Fra-2 and Jun-D). Moreover, in the same co-culture system, the addition of neutralizing anti-sclerostin antibodies restored OB functions by inducing nuclear accumulation of β-catenin. We further demonstrated that the upregulation of receptor activator of nuclear factor κ-B ligand and the downregulation of osteoprotegerin in OBs were also sclerostin mediated. Our data indicated that sclerostin secretion by myeloma cells contribute to the suppression of bone formation in the osteolytic bone disease associated to MM

  8. Estradiol influences the mechanical properties of human fetal osteoblasts through cytoskeletal changes

    Energy Technology Data Exchange (ETDEWEB)

    Muthukumaran, Padmalosini [Department of Bioengineering, National University of Singapore (Singapore); Lim, Chwee Teck [Department of Bioengineering, National University of Singapore (Singapore); Department of Mechanical Engineering, National University of Singapore (Singapore); Mechanobiology Institute, National University of Singapore (Singapore); Singapore-MIT Alliance for Research and Technology (SMART), National University of Singapore (Singapore); Lee, Taeyong, E-mail: bielt@nus.edu.sg [Department of Bioengineering, National University of Singapore (Singapore)

    2012-07-06

    Highlights: Black-Right-Pointing-Pointer Estradiol induced stiffness changes of osteoblasts were quantified using AFM. Black-Right-Pointing-Pointer Estradiol causes significant decrease in the stiffness of osteoblasts. Black-Right-Pointing-Pointer Decreased stiffness was caused by decreased density of f-actin network. Black-Right-Pointing-Pointer Stiffness changes were not associated with mineralized matrix of osteoblasts. Black-Right-Pointing-Pointer Estradiol increases inherent alkaline phosphatase activity of osteoblasts. -- Abstract: Estrogen is known to have a direct effect on bone forming osteoblasts and bone resorbing osteoclasts. The cellular and molecular effects of estrogen on osteoblasts and osteoblasts-like cells have been extensively studied. However, the effect of estrogen on the mechanical property of osteoblasts has not been studied yet. It is important since mechanical property of the mechanosensory osteoblasts could be pivotal to its functionality in bone remodeling. This is the first study aimed to assess the direct effect of estradiol on the apparent elastic modulus (E{sup Asterisk-Operator }) and corresponding cytoskeletal changes of human fetal osteoblasts (hFOB 1.19). The cells were cultured in either medium alone or medium supplemented with {beta}-estradiol and then subjected to Atomic Force Microscopy indentation (AFM) to determine E{sup Asterisk-Operator }. The underlying changes in cytoskeleton were studied by staining the cells with TRITC-Phalloidin. Following estradiol treatment, the cells were also tested for proliferation, alkaline phosphatase activity and mineralization. With estradiol treatment, E{sup Asterisk-Operator} of osteoblasts significantly decreased by 43-46%. The confocal images showed that the changes in f-actin network observed in estradiol treated cells can give rise to the changes in the stiffness of the cells. Estradiol also increases the inherent alkaline phosphatase activity of the cells. Estradiol induced stiffness

  9. Wnt3a upregulates transforming growth factor-β-stimulated VEGF synthesis in osteoblasts.

    Science.gov (United States)

    Natsume, Hideo; Tokuda, Haruhiko; Matsushima-Nishiwaki, Rie; Kato, Kenji; Yamakawa, Kengo; Otsuka, Takanobu; Kozawa, Osamu

    2011-07-01

    It is recognized that Wnt3a affects bone metabolism via the canonical Wnt/β-catenin signalling pathway. We have previously shown that transforming growth factor-β (TGF-β) stimulates the synthesis of vascular endothelial growth factor (VEGF) via p44/p42 mitogen-activated protein (MAP) kinase, stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK) and p38 MAP kinase in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the effect of Wnt3a on TGF-β-stimulated VEGF synthesis in these cells. Wnt3a, which alone had little effect on the VEGF levels, significantly enhanced the TGF-β-stimulated VEGF release. Lithium chloride and SB216763, inhibitors of glycogen synthase kinase 3β, markedly amplified the TGF-β-stimulated VEGF release. Wnt3a failed to affect the TGF-β-induced phosphorylation of Smad2, p44/p42 MAP kinase, p38 MAP kinase or SAPK/JNK. Wnt3a and lithium chloride strengthened the VEGF mRNA expression induced by TGF-β. These results strongly suggest that Wnt3a upregulates VEGF synthesis stimulated by TGF-β via activation of the canonical pathway in osteoblasts.

  10. Establishment of a new model for culturing rabbit osteoblasts in vitro

    International Nuclear Information System (INIS)

    To establish an experimental model for culturing rabbit osteoblasts in vitro, the osteoblasts were isolated from the calvarial bone of a 15-day old rabbit using a method of culturing the bone pieces in a medium after they had been digested by an enzyme for 15 min. The acquired cells were assayed by cell morphology, alkaline phosphatase activity and production of a mineralized matrix. The results showed that the cells had the morphologic characteristics and some biological behaviours of osteoblasts. Based on the primary isolation of osteoblasts from bone and combining digestion with explants, a novel model for culturing rabbit osteoblasts in vitro was established, which is easy, efficient and effective. This model can be used in many studies of osteogenesis mechanisms and bone replacement materials. (communication)

  11. Autocrine effects of neuromedin B stimulate the proliferation of rat primary osteoblasts.

    Science.gov (United States)

    Saito, Hiroki; Nakamachi, Tomoya; Inoue, Kazuhiko; Ikeda, Ryuji; Kitamura, Kazuo; Minamino, Naoto; Shioda, Seiji; Miyata, Atsuro

    2013-05-01

    Neuromedin B (NMB) is a mammalian bombesin-like peptide that regulates exocrine/endocrine secretion, smooth muscle contraction, body temperature, and the proliferation of some cell types. Here, we show that mRNA encoding Nmb and its receptor (Nmbr) are expressed in rat bone tissue. Immunohistochemical analysis demonstrated that NMB and NMBR colocalize in osteoblasts, epiphyseal chondrocytes, and proliferative chondrocytes of growth plates from mouse hind limbs. Then, we investigated the effect of NMB on the proliferation of rat primary cultured osteoblasts. Proliferation assays and 5-bromo-2'-deoxyuridine incorporation assays demonstrated that NMB augments the cell number and enhances DNA synthesis in osteoblasts. Pretreatment with the NMBR antagonist BIM23127 inhibited NMB-induced cell proliferation and DNA synthesis. Western blot analysis showed that NMB activates ERK1/2 MAPK signaling in osteoblasts. Pretreatment with the MAPK/ERK kinase inhibitor U0126 attenuated NMB-induced cell proliferation and DNA synthesis. We also investigated the effects of molecules that contribute to osteoblast proliferation and differentiation on Nmb expression in osteoblasts. Real-time PCR analysis demonstrated that 17β-estradiol (E2) and transforming growth factor β1 increase and decrease Nmb mRNA expression levels respectively. Finally, proliferation assays revealed that the NMBR antagonist BIM23127 suppresses E2-induced osteoblast proliferation. These results suggest that NMB/NMBR signaling plays an autocrine or paracrine role in osteoblast proliferation and contributes to the regulation of bone formation. PMID:23428580

  12. How does the anthropogenic activity affect the spring discharge?

    Science.gov (United States)

    Hao, Yonghong; Zhang, Juan; Wang, Jiaojiao; Li, Ruifang; Hao, Pengmei; Zhan, Hongbin

    2016-09-01

    Karst hydrological process has largely been altered by climate change and human activity. In many places throughout the world, human activity (e.g. groundwater pumping and dewatering from mining) has intensified and surpassed climate change, where human activity becomes the primary factor that affects groundwater system. But it is still largely unclear how the human activity affects spring discharge in magnitude and periodicity. This study investigates the effects of anthropogenic activity on spring discharge, using the Xin'an Springs of China as an example. The Xin'an Spring discharge were divided into two time periods: the pre-development period from 1956 to 1971 and the post-development period from 1972 to 2013. We confirm the dividing time (i.e. 1971) of these two periods using the Wilcoxon rank-sum test. Then the wavelet transform and wavelet coherence were used to analyze the karst hydrological processes for the two periods respectively. We analyze the correlations of precipitation and the Xin'an spring discharge with the monsoons including the Indian Summer Monsoon (ISM) and the West North Pacific Monsoon (WNPM) and the climate teleconnections including El Niño Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO), respectively. The results indicated that the spring discharge was attenuated about 19.63% under the influence of human activity in the Xin'an Springs basin. However, human activity did not alter the size of the resonance frequencies between the spring discharge and the monsoons. In contrast, it reinforced the periodicities of the monsoons-driven spring discharge. It suggested that human has adapted to the major climate periodicities, and human activity had the same rhyme with the primary climate periodicity. In return, human activity enhances the correlation between the monsoons and the spring discharge.

  13. Osteoblastogenesis and Role of Osteoblasts in Calcıum Homeostasis and Remodeling of Bone

    Directory of Open Access Journals (Sweden)

    Neslihan Başcıl Tütüncü

    2008-05-01

    Full Text Available Bone remodeling is very important for repair of microfractures and fatigue damage and prevention of excessive aging and its consequences. Bone remodeling lasts for about 6-9 months. During this period osteoclasts resorb damaged bone and osteoblasts synthesize new bone. The lifespan of mature osteoclasts is about 15 days and for osteoblasts 3 months. Therefore, the time required for the remodeling of a given segement of bone is much longer than the lifespan of its cells which perform remodeling. A supply of new osteoblasts and osteoclasts are therefore needed for succesful remodeling by the basic multicellular unit. The major event that triggers osteogenesis is the transition of mesenchymal stem cells into bone differentiating osteoblast cells. Osteoblast commitment and differentation are controlled by complex activities. Many factors are involved in the regulation of osteoblastogenesis. Bone morphogenetic proteins and the Wnt glycoproteins play crucial roles in signaling osteoblast commitment and differentiation, and are the only known factors capable of initiating osteoblastogenesis from uncommitted progenitors. They can initiate commitment of mesenchymal cells to osteoblastic lineage. The initial cell division is asymmetric, giving rise to another stem cell and a committed osteoprogenitor. After commitment to the osteoblastic lineage, a osteoprogenitor cell gives rise to the transit-amplifying compartment. At this stage osteoprogenitor cells proliferate intensively. After this stage, the cells are more differentiated and give rise to preosteoblasts which express both STRO1, alkaline phosphatase, pyrophosphate, and type 1 collagen. Preosteoblasts are committed to the osteoblast lineage with extensive replicative capacity, but have no self-renewal capacity. Preosteoblasts form the intermediate stage of osteoblastogenesis. The mature osteoblasts express osteopontin, alkaline phosphatase, bone sialoprotein, and osteocalcin. This stage is

  14. Affectivity

    OpenAIRE

    Stenner, Paul; Greco, Monica

    2013-01-01

    The concept of affectivity has assumed central importance in much recent scholarship, and many in the social sciences and humanities now talk of an ‘affective turn’. The concept of affectivity at play in this ‘turn’ remains, however, somewhat vague and slippery. Starting with Silvan Tomkins’ influential theory of affect, this paper will explore the relevance of the general assumptions (or ‘utmost abstractions’) that inform thinking about affectivity. The technological and instrumentalist char...

  15. Rac1 and Cdc42 GTPases regulate shear stress-driven β-catenin signaling in osteoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Qiaoqiao; Cho, Eunhye [Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202 (United States); Yokota, Hiroki [Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202 (United States); Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202 (United States); Na, Sungsoo, E-mail: sungna@iupui.edu [Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202 (United States)

    2013-04-19

    Highlights: •Shear stress increased TCF/LEF activity and stimulated β-catenin nuclear localization. •Rac1, Cdc42, and RhoA displayed distinct dynamic activity patterns under flow. •Rac1 and Cdc42, but not RhoA, regulate shear stress-driven TCF/LEF activation. •Cytoskeleton did not significantly affect shear stress-induced TCF/LEF activation. -- Abstract: Beta-catenin-dependent TCF/LEF (T-cell factor/lymphocyte enhancing factor) is known to be mechanosensitive and an important regulator for promoting bone formation. However, the functional connection between TCF/LEF activity and Rho family GTPases is not well understood in osteoblasts. Herein we investigated the molecular mechanisms underlying oscillatory shear stress-induced TCF/LEF activity in MC3T3-E1 osteoblast cells using live cell imaging. We employed fluorescence resonance energy transfer (FRET)-based and green fluorescent protein (GFP)-based biosensors, which allowed us to monitor signal transduction in living cells in real time. Oscillatory (1 Hz) shear stress (10 dynes/cm{sup 2}) increased TCF/LEF activity and stimulated translocation of β-catenin to the nucleus with the distinct activity patterns of Rac1 and Cdc42. The shear stress-induced TCF/LEF activity was blocked by the inhibition of Rac1 and Cdc42 with their dominant negative mutants or selective drugs, but not by a dominant negative mutant of RhoA. In contrast, constitutively active Rac1 and Cdc42 mutants caused a significant enhancement of TCF/LEF activity. Moreover, activation of Rac1 and Cdc42 increased the basal level of TCF/LEF activity, while their inhibition decreased the basal level. Interestingly, disruption of cytoskeletal structures or inhibition of myosin activity did not significantly affect shear stress-induced TCF/LEF activity. Although Rac1 is reported to be involved in β-catenin in cancer cells, the involvement of Cdc42 in β-catenin signaling in osteoblasts has not been identified. Our findings in this study demonstrate

  16. Effects of silicon on the activity of the nuclear transcription factor NF-kappa B in osteoblasts%离子硅对成骨细胞NF-kappa B核内转录因子活性的影响

    Institute of Scientific and Technical Information of China (English)

    邱小忠; 王永魁; 王乐禹; 余磊; 王国保

    2012-01-01

    Objective To explore the effects of silicon on the activity of nuclear transcription factor NF-kappa B in osteoblasts cultured in vitro. Methods MC3T3-E1 osteoablasts were processed by sodium silicate solution (SiO32) with the final concentration of lmM and 2 mM for 6h, 12h, 24h and 48h, respectively. Untreated cells were taken as the control groups. Flow cytometry was used to detect the cell cycle and calculate cell proliferation index. Western blotting was used to detect the expressions and changes of NF-kappa B signaling pathway related proteins. Results Compared with the controls, significant proliferation of MC3T3-E1 cells was found in the 24h and 48h groups treated with 1 mM silicon. Western blot analysis showed that the pro-proliferation effect of 1 mM silicon on osteoblasts was closely related to the high-expression of p-NF-kappa B. Conclusions Trace amounts of silicon released from bone materials can not cause damage of osteoblasts, on contrary, trace amounts of silicate may induce proliferation of osteoblasts by activating NF-kappa B signaling pathway.%目的 研究离子硅对体外培养的成骨细胞NF-kappa B核转录因子活性的影响.方法 分别用终浓度为1 mmol/L和2 mmol/L离子硅(SiO32-)处理MC3T3-E1成骨细胞,处理时间分别为6、12、24和48 h,设置对照组(不加处理因素);采用流式细胞术检测细胞周期,计算细胞的增殖指数;Western blotting方法检测NF-kappa B信号通路的相关蛋白表达量及其变化.结果 流式细胞术结果显示,与对照组相比,1 mmol/L浓度的离子硅处理24h组和48h组,MC3T3-E1细胞增殖明显;Western blot结果显示,1 mmol/L浓度的离子硅促进成骨细胞增殖与p-NF-kappa B表达上升密切相关. 结论 骨材料中释放的微量的硅不会引起成骨细胞损伤,相反,微量的硅酸盐可能通过激活NF-kappa B诱导成骨细胞增殖.

  17. Active house: A contemporary housing model for flood affected population

    Directory of Open Access Journals (Sweden)

    Stratimirović Tatjana

    2015-01-01

    Full Text Available The effectiveness of architectural knowledge in the struggle for a better future can be seen in the attitude that a good design or a good architectural solution, does not belong solely to the privileged ones as an improvement of the basic requirements, rather quite the opposite, that it is created as a response to a need. The goal of physical and emotional wellbeing, combined with a long term strategy for reducing the negative impact of the built environment by converting it into a positive influence upon the natural ecosystem, brings together and advances bioclimatic principles, architectural design and sustainable construction in the contemporary housing model dubbed the Active House. The Active House Workshop was held, as part of a wider student initiative New Housing Models for Flood Affected Population, at the University of Belgrade - Faculty of Architecture. The purpose of the campaign was to provide help to flood affected communities and assistance in efforts for repairing buildings in Serbia, hit by the severe floods of May 2014. Students came up with nine design solutions for small family homes, which incorporate the principles of Active House into existing construction techniques. In an architectural context, when concerning repair work after flooding, the need to consider problems related to contemporary living conditions through the ‘active’ category is seen in a new understanding of nature which allows the replacement of a passive restoration model, with an active models for designing in interaction with the environment.

  18. Chinese herbal compound affects osteoblast proliferation and bone mineral density%中药复方对成骨细胞增殖及骨密度的影响*

    Institute of Scientific and Technical Information of China (English)

    颜军礼; 李蒙; 李瑞玉; 吴立萍; 孙艳浮; 李会龙

    2013-01-01

      背景:复方中药是由多种矿物植物动物等物质组成的复方药物,在治疗骨代谢疾病方面,能通过多途径,多靶点发挥综合治疗作用。  目的:研究复方中药对成骨细胞增殖及骨密度的影响,探讨复方中药对骨质疏松症的药理作用。  方法:回顾性分析以往经实验研究证实的某些复方中药对骨质疏松症动物模型成骨细胞增殖分化及骨密度的影响,分析影响复方中药促进骨形成的因素,通过对成骨细胞体外培养方法进行筛选,找出促进细胞增殖分化、提高骨密度的药物适宜剂量,与化学药物结果进行对照研究。  结果与结论:复方中药能够促进成骨细胞增殖分化、提高骨密度,在治疗骨质疏松症方面具有标本兼治、毒副作用小等优点,但复方中药在改善骨密度水平方面不及化学药物,并且应通过长期、大样本的临床研究,降低骨质疏松性骨折风险的干预作用。%BACKGROUND:Compound Chinese medicine is a kind of compound drugs with the combination of minerals, plants and animals, which play the multi-target integrated treatment effects in the treatment of bone metabolic disease through various methods. OBJECTIVE:To research the effect of compound traditional Chinese medicine on the proliferation and bone mineral density of osteoblasts, and to explore the pharmacological effect of compound traditional Chinese medicine in the treatment of osteoporosis. METHODS: A retrospective analysis was performed to analyze the effect of some compound traditional Chinese medicines on the proliferation and bone mineral density of osteoblasts that identified in the previous studies, in order to analyze the factors of compound traditional Chinese medicines that can promote the bone formation. The appropriate dose of the drugs that can promote cel proliferation and differentiation and improve the bone mineral density was screened out

  19. Collagenlα1 promoter drives the expression of Cre recombinase in osteoblasts of transgenic mice

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Osteoblasts participate in bone formation,bone mineralization,osteoclast differentiation and many pathological processes.To study the function of genes in osteoblasts using Cre-LoxP system,we generated a mouse line expressing the Cre recombinase under the control of the rat Collagenlal (Coilal) promoter(Coilatl-Cre).Two founders were identified by genomic PCR from 16 offsprings.and the integration efficiency is 12.5%.In order tO determine the tissue distribution and the activity of Cre rccombinase in the transgenic mice,the Collal-Cre transgenic mice were bred with the ROSA26 reporter strain and a mouse strain that carries Smad4 conditional alleles (Smad4co/co).Multiple tissue PCR of Collal-Cre;Smad4co/+mice revealed the restricted Cre activity in bone tissues containing osteoblasts and tendon.LacZ staining in the Coilal-Cre;ROSA26 double transgenic mice revealed that the Cre recombinase began to express in the osteoblasts of calvaria at E14.5.Cre activity was observed in the osteoblasts and osteocytes of P10 double transgenic mice.All these data indicated that the Collal-Cre transgenic mice could Serve as a valuabletool for osteoblast lineage analysis and conditional gene knockout in osteoblasts.

  20. Integrin αv in the mechanical response of osteoblast lineage cells

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, Keiko [Department of Bone and Joint Disease, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511 (Japan); Ito, Masako [Medical Work-Life-Balance Center, Nagasaki University Hospital, Nagasaki 852-8501 (Japan); Naoe, Yoshinori [Department of Mechanism of Aging, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511 (Japan); Lacy-Hulbert, Adam [Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02114 (United States); Ikeda, Kyoji, E-mail: kikeda@ncgg.go.jp [Department of Bone and Joint Disease, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511 (Japan)

    2014-05-02

    Highlights: • Deletion of integrin αv in osteoblast lineage results in an impaired SOST response to loading in vivo. • c-Src–p130Cas–JNK–YAP/TAZ is activated via integrin αv on osteoblasts in response to FSS. • Deletion of integrin αv in osteoblasts results in impaired responses to mechanical stimulation. • Integrin αv is a key component of the mechanosensing machinery in bone. - Abstract: Although osteoblast lineage cells, especially osteocytes, are thought to be a primary mechanosensory cell in bone, the identity of the mechano-receptor and downstream mechano-signaling pathways remain largely unknown. Here we show using osteoblastic cell model of mechanical stimulation with fluid shear stress that in the absence of integrin αv, phosphorylation of the Src substrate p130Cas and JNK was impaired, culminating in an inhibition of nuclear translocation of YAP/TAZ and subsequent transcriptional activation of target genes. Targeted deletion of the integrin αv in osteoblast lineage cells results in an attenuated response to mechanical loading in terms of Sost gene expression, indicative of a role for integrin αv in mechanoreception in vivo. Thus, integrin αv may be integral to a mechanosensing machinery in osteoblastic cells and involved in activation of a Src–JNK–YAP/TAZ pathway in response to mechanical stimulation.

  1. Intracortical osteoblastic osteosarcoma with oncogenic rickets

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, T.; Hirohashi, Setsuo [Pathology Division, National Cancer Center Research Institute, Tokyo (Japan); Shimoda, Tadakazu [Clinical Laboratory Division, National Cancer Center Hospital, Tokyo (Japan); Yokoyama, Ryohei; Beppu, Yasuo [Orthopedic Division, National Cancer Center Hospital, Tokyo (Japan); Maeda, Shotaro [Department of Pathology, Nippon Medical School Hospital, Tokyo (Japan)

    1999-01-01

    Intracortical osteosarcoma is the rarest variant of osteosarcoma, occurring within, and usually confined to, the cortical bone. Oncogenic osteomalacia, or rickets, is an unusual clinicopathologic entity in which vitamin D-resistant osteomalacia, or rickets, occurs in association with some tumors of soft tissue or bone. We present a case of oncogenic rickets associated with intracortical osteosarcoma of the tibia in a 9-year-old boy, whose roentgenographic abnormalities of rickets disappeared and pertinent laboratory data except for serum alkaline phosphatase became normal after surgical resection of the tumor. Histologically, the tumor was an osteosarcoma with a prominent osteoblastic pattern. An unusual microscopic feature was the presence of matrix mineralization showing rounded calcified structures (calcified spherules). Benign osteoblastic tumors, such as osteoid osteoma and osteoblastoma, must be considered in the differential diagnosis because of the relatively low cellular atypia and mitotic activity of this tumor. The infiltrating pattern with destruction or engulfment of normal bone is a major clue to the correct diagnosis of intracortical osteosarcoma. The co-existing radiographic changes of rickets were due to the intracortical osteosarcoma. (orig.) With 8 figs., 25 refs.

  2. Environmental layout complexity affects neural activity during navigation in humans.

    Science.gov (United States)

    Slone, Edward; Burles, Ford; Iaria, Giuseppe

    2016-05-01

    Navigating large-scale surroundings is a fundamental ability. In humans, it is commonly assumed that navigational performance is affected by individual differences, such as age, sex, and cognitive strategies adopted for orientation. We recently showed that the layout of the environment itself also influences how well people are able to find their way within it, yet it remains unclear whether differences in environmental complexity are associated with changes in brain activity during navigation. We used functional magnetic resonance imaging to investigate how the brain responds to a change in environmental complexity by asking participants to perform a navigation task in two large-scale virtual environments that differed solely in interconnection density, a measure of complexity defined as the average number of directional choices at decision points. The results showed that navigation in the simpler, less interconnected environment was faster and more accurate relative to the complex environment, and such performance was associated with increased activity in a number of brain areas (i.e. precuneus, retrosplenial cortex, and hippocampus) known to be involved in mental imagery, navigation, and memory. These findings provide novel evidence that environmental complexity not only affects navigational behaviour, but also modulates activity in brain regions that are important for successful orientation and navigation.

  3. Osthole-mediated cell differentiation through bone morphogenetic protein-2/p38 and extracellular signal-regulated kinase 1/2 pathway in human osteoblast cells.

    Science.gov (United States)

    Kuo, Po-Lin; Hsu, Ya-Ling; Chang, Cheng-Hsiung; Chang, Jiunn-Kae

    2005-09-01

    The survival of osteoblast cells is one of the determinants of the development of osteoporosis in patients. Osthole (7-methoxy-8-isopentenoxycoumarin) is a coumarin derivative present in many medicinal plants. By means of alkaline phosphatase (ALP) activity, osteocalcin, osteopontin, and type I collagen, enzyme-linked immunosorbent assay, we have shown that osthole exhibits a significant induction of differentiation in two human osteoblast-like cell lines, MG-63 and hFOB. Induction of differentiation by osthole was associated with increased bone morphogenetic protein (BMP)-2 production and the activations of SMAD1/5/8 and p38 and extracellular signal-regulated kinase (ERK) 1/2 kinases. Addition of purified BMP-2 protein did not increase the up-regulation of ALP activity and osteocalcin by osthole, whereas the BMP-2 antagonist noggin blocked both osthole and BMP-2-mediated ALP activity enhancement, indicating that BMP-2 production is required in osthole-mediated osteoblast maturation. Pretreatment of osteoblast cells with noggin abrogated p38 activation but only partially decreased ERK1/2 activation, suggesting that BMP-2 signaling is required in p38 activation and is partially involved in ERK1/2 activation in osthole-treated osteoblast cells. Cotreatment of p38 inhibitor SB203580 [4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-1H-imidazole] or p38 small interfering RNA (siRNA) expression inhibited osthole-mediated activation of ALP but only slightly affected osteocalcin production. In contrast, the production of osteocalcin induced by osthole was inhibited by the mitogen-activated protein kinase kinase inhibitor PD98059 (2'-amino-3'-methoxyflavone) or by expression of an ERK2 siRNA. These data suggest that BMP-2/p38 pathway links to the early phase, whereas ERK1/2 pathway is associated with the later phase in osthole-mediated differentiation of osteoblast cells. In this study, we demonstrate that osthole is a promising agent for treating osteoporosis

  4. Effects of quercetin, a natural phenolic compound, in the differentiation of human mesenchymal stem cells (MSC) into adipocytes and osteoblasts.

    Science.gov (United States)

    Casado-Díaz, Antonio; Anter, Jaouad; Dorado, Gabriel; Quesada-Gómez, José Manuel

    2016-06-01

    Natural phenols may have beneficial properties against oxidative stress, which is associated with aging and major chronic aging-related diseases, such as loss of bone mineral mass (osteoporosis) and diabetes. The main aim of this study was to analyze the effect of quercetin, a major nutraceutical compound present in the "Mediterranean diet", on mesenchymal stem-cell (MSC) differentiation. Such cells were induced to differentiate into osteoblasts or adipocytes in the presence of two quercetin concentrations (0.1 and 10μM). Several physiological parameters and the expression of osteoblastogenesis and adipogenesis marker genes were monitored. Quercetin (10μM) inhibited cell proliferation, alkaline phosphatase (ALPL) activity and mineralization, down-regulating the expression of ALPL, collagen type I alpha 1 (COL1A1) and osteocalcin [bone gamma-carboxyglutamate protein (BGLAP)] osteoblastogenesis-related genes in MSC differentiating into osteoblasts. Moreover, in these cultures, CCAAT/enhancer-binding protein alpha (CEBPA) and peroxisome proliferator-activated receptor gamma 2 (PPARG2) adipogenic genes were induced, and cells differentiated into adipocytes were observed. Quercetin did not affect proliferation, but increased adipogenesis, mainly at 10-μM concentration in MSC induced to differentiate to adipocytes. β- and γ-catenin (plakoglobin) nuclear levels were reduced and increased, respectively, in quercetin-treated cultures. This suggests that the effect of high concentration of quercetin on MSC osteoblastic and adipogenic differentiation is mediated via Wnt/β-catenin inhibition. In conclusion, quercetin supplementation inhibited osteoblastic differentiation and promoted adipogenesis at the highest tested concentration. Such possible adverse effects of high quercetin concentrations should be taken into account in nutraceutical or pharmaceutical strategies using such flavonol. PMID:27142748

  5. Bone marrow osteoblast vulnerability to chemotherapy

    OpenAIRE

    Gencheva, Marieta; Hare, Ian; Kurian, Susan; Fortney, Jim; Piktel, Debbie; Wysolmerski, Robert; Gibson, Laura F.

    2013-01-01

    Osteoblasts are a major component of the bone marrow microenvironment which provide support for hematopoietic cell development. Functional disruption of any element of the bone marrow niche, including osteoblasts, can potentially impair hematopoiesis. We have studied the effect of two widely used drugs with different mechanisms of action, etoposide (VP16) and melphalan, on murine osteoblasts at distinct stages of maturation. VP16 and melphalan delayed maturation of preosteoblasts and altered ...

  6. Effects of Curcumin on the Proliferation and Mineralization of Human Osteoblast-Like Cells: Implications of Nitric Oxide

    Directory of Open Access Journals (Sweden)

    Juan D. Pedrera-Zamorano

    2012-11-01

    Full Text Available Curcumin (diferuloylmethane is found in the rhizomes of the turmeric plant (Curcuma longa L. and has been used for centuries as a dietary spice and as a traditional Indian medicine used to treat different conditions. At the cellular level, curcumin modulates important molecular targets: transcription factors, enzymes, cell cycle proteins, cytokines, receptors and cell surface adhesion molecules. Because many of the curcumin targets mentioned above participate in the regulation of bone remodeling, curcumin may affect the skeletal system. Nitric oxide (NO is a gaseous molecule generated from L-arginine during the catalization of nitric oxide synthase (NOS, and it plays crucial roles in catalization and in the nervous, cardiovascular and immune systems. Human osteoblasts have been shown to express NOS isoforms, and the exact mechanism(s by which NO regulates bone formation remain unclear. Curcumin has been widely described to inhibit inducible nitric oxide synthase expression and nitric oxide production, at least in part via direct interference in NF-κB activation. In the present study, after exposure of human osteoblast-like cells (MG-63, we have observed that curcumin abrogated inducible NOS expression and decreased NO levels, inhibiting also cell prolifieration. This effect was prevented by the NO donor sodium nitroprusside. Under osteogenic conditions, curcumin also decreased the level of mineralization. Our results indicate that NO plays a role in the osteoblastic profile of MG-63 cells.

  7. Osteoblast CFTR inactivation reduces differentiation and osteoprotegerin expression in a mouse model of cystic fibrosis-related bone disease.

    Directory of Open Access Journals (Sweden)

    Michael S Stalvey

    Full Text Available Low bone mass and increased fracture risk are recognized complications of cystic fibrosis (CF. CF-related bone disease (CFBD is characterized by uncoupled bone turnover--impaired osteoblastic bone formation and enhanced osteoclastic bone resorption. Intestinal malabsorption, vitamin D deficiency and inflammatory cytokines contribute to CFBD. However, epidemiological investigations and animal models also support a direct causal link between inactivation of skeletal cystic fibrosis transmembrane regulator (CFTR, the gene that when mutated causes CF, and CFBD. The objective of this study was to examine the direct actions of CFTR on bone. Expression analyses revealed that CFTR mRNA and protein were expressed in murine osteoblasts, but not in osteoclasts. Functional studies were then performed to investigate the direct actions of CFTR on osteoblasts using a CFTR knockout (Cftr-/- mouse model. In the murine calvarial organ culture assay, Cftr-/- calvariae displayed significantly less bone formation and osteoblast numbers than calvariae harvested from wildtype (Cftr+/+ littermates. CFTR inactivation also reduced alkaline phosphatase expression in cultured murine calvarial osteoblasts. Although CFTR was not expressed in murine osteoclasts, significantly more osteoclasts formed in Cftr-/- compared to Cftr+/+ bone marrow cultures. Indirect regulation of osteoclastogenesis by the osteoblast through RANK/RANKL/OPG signaling was next examined. Although no difference in receptor activator of NF-κB ligand (Rankl mRNA was detected, significantly less osteoprotegerin (Opg was expressed in Cftr-/- compared to Cftr+/+ osteoblasts. Together, the Rankl:Opg ratio was significantly higher in Cftr-/- murine calvarial osteoblasts contributing to a higher osteoclastogenesis potential. The combined findings of reduced osteoblast differentiation and lower Opg expression suggested a possible defect in canonical Wnt signaling. In fact, Wnt3a and PTH-stimulated canonical Wnt

  8. Expression of POEM, a positive regulator of osteoblast differentiation, is suppressed by TNF-α

    International Nuclear Information System (INIS)

    Highlights: → TNF-α inhibits POEM gene expression. → Inhibition of POEM gene expression is caused by NF-κB activation by TNF-α. → Over-expression of POEM recovers inhibition of osteoblast differentiation by TNF-α. -- Abstract: POEM, also known as nephronectin, is an extracellular matrix protein considered to be a positive regulator of osteoblast differentiation. In the present study, we found that tumor necrosis factor-α (TNF-α), a key regulator of bone matrix properties and composition that also inhibits terminal osteoblast differentiation, strongly inhibited POEM expression in the mouse osteoblastic cell line MC3T3-E1. TNF-α-induced down-regulation of POEM gene expression occurred in both time- and dose-dependent manners through the nuclear factor kappa B (NF-κB) pathway. In addition, expressions of marker genes in differentiated osteoblasts were down-regulated by TNF-α in a manner consistent with our findings for POEM, while over-expression of POEM recovered TNF-α-induced inhibition of osteoblast differentiation. These results suggest that TNF-α inhibits POEM expression through the NF-κB signaling pathway and down-regulation of POEM influences the inhibition of osteoblast differentiation by TNF-α.

  9. Resveratrol augments the canonical Wnt signaling pathway in promoting osteoblastic differentiation of multipotent mesenchymal cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Haibin; Shang, Linshan; Li, Xi; Zhang, Xiyu; Gao, Guimin; Guo, Chenhong; Chen, Bingxi; Liu, Qiji [Key Laboratory of Experimental Teratology, MOE, Institute of Molecular Medicine and Genetics, Shandong University, 44 Wen Hua Xi Lu, Jinan, Shandong 250012 (China); Gong, Yaoqin, E-mail: yxg8@sdu.edu.cn [Key Laboratory of Experimental Teratology, MOE, Institute of Molecular Medicine and Genetics, Shandong University, 44 Wen Hua Xi Lu, Jinan, Shandong 250012 (China); Shao, Changshun, E-mail: shao@biology.rutgers.edu [Key Laboratory of Experimental Teratology, MOE, Institute of Molecular Medicine and Genetics, Shandong University, 44 Wen Hua Xi Lu, Jinan, Shandong 250012 (China); Department of Genetics, Rutgers University, Piscataway, NJ 08854 (United States)

    2009-10-15

    Resveratrol has been shown to possess many health-benefiting effects, including the promotion of bone formation. In this report we investigated the mechanism by which resveratrol promotes osteoblastic differentiation from pluripotent mesenchymal cells. Since Wnt signaling is well documented to induce osteoblastogenesis and bone formation, we characterized the factors involved in Wnt signaling in response to resveratrol treatment. Resveratrol treatment of mesenchymal cells led to an increase in stabilization and nuclear accumulation of {beta}-catenin dose-dependently and time-dependently. As a consequence of the increased nuclear accumulation of {beta}-catenin, the ability to activate transcription of {beta}-catenin-TCF/LEF target genes that are required for osteoblastic differentiation was upregulated. However, resveratrol did not affect the initial step of the Wnt signaling pathway, as resveratrol was as effective in upregulating the activity of {beta}-catenin in cells in which Lrp5 was knocked down as in control cells. In addition, while conditioned medium enriched in Wnt signaling antagonist Dkk1 was able to inhibit Wnt3a-induced {beta}-catenin upregulation, this inhibitory effect can be abolished in resveratrol-treated cells. Furthermore, we showed that the level of glycogen synthase kinase 3{beta} (GSK-3{beta}), which phosphorylates and destabilizes {beta}-catenin, was reduced in response to resveratrol treatment. The phosphorylation of GSK-3{beta} requires extracellular signal-regulated kinase (ERK)1/2. Together, our data indicate that resveratrol promotes osteoblastogenesis and bone formation by augmenting Wnt signaling.

  10. FACTORS AFFECTED DECARBOXYLATION ACTIVITY OF ENTEROCOCCUS FAECIUM ISOLATED FROM RABBIT

    Directory of Open Access Journals (Sweden)

    František Buňka

    2012-04-01

    Full Text Available Normal 0 21 false false false SK JA X-NONE Biogenic amines (BA are basic nitrogenous compounds formed mainly by decarboxylation of amino acids. There are generated in course of microbial, vegetable and animal metabolisms. The aim of the study was to monitor factors affected production of biogenic amines by Enterococcus faecium, which is found in rabbit meat. Biogenic amines were analyzed by means of UPLC (ultrahigh performance liquid chromatography equipped with a UV/VIS DAD detector. Decarboxylation activity of E. faecium was mainly influenced by the cultivation temperature and the amount of NaCl in this study. E. faecium produced most of the monitored biogenic amines levels: tyramine ˂2500 mg.l-1; putrescine ˂30 mg.l-1; spermidine ˂10 mg.l-1 and cadaverine ˂5 mg.l-1.doi:10.5219/182

  11. Gold nanoparticles stimulate differentiation and mineralization of primary osteoblasts through the ERK/MAPK signaling pathway

    International Nuclear Information System (INIS)

    Gold nanoparticles (AuNPs) have shown great promise for a variety of applications, including chemistry, biology, and medicine. Recently, AuNPs have found promising applications in cartilage and bone repair. However, to realize the above promised applications, more work needs to be carried out to clarify the interactions between biological systems and AuNPs. In the present study, primary osteoblasts were used to evaluate the biocompatibility of 20-nm and 40-nm AuNPs, including morphology, proliferation, differentiation, gene and protein expression, and the underlying mechanisms. The results demonstrated that AuNPs were taken up by osteoblasts and aggregated in perinuclear compartment and vescular structures, but no morphological changes were observed. AuNPs could significantly promote the proliferation of osteoblasts, enhance the ALP activities, and increase the number of bone nodules and calcium content in vitro. In addition, the expression of BMP-2, Runx-2, OCN and Col-1 was remarkably up-regulated in the presence of AuNPs. It is noteworthy that 20-nm AuNPs are more potent than 40-nm AuNPs in regulating osteoblast activities. Besides, AuNPs increased the level of ERK phosphorylation/total ERK, suggesting the activation of ERK/MAPK pathway is involved in above activities. In conclusion, AuNPs exhibited great biocompatibility with osteoblasts, and have tremendous potential to be used as drug and/or gene delivery carrier for bone and tissue engineering in the future. - Highlights: • AuNPs aggregated in perinuclear compartment and vescular structures of osteoblasts. • AuNPs up-regulated the expression of Runx-2, BMP-2, OCN and Col I of osteoblasts. • AuNPs enhanced osteoblast differentiation by activating the ERK/MAPK pathway. • The size of nanoparticles may be important to exhibit their biological effects. • AuNPs have tremendous potential in bone and tissue engineering in future

  12. MicroRNA-194 promotes osteoblast differentiation via downregulating STAT1

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jun [Department of Emergency, Shannxi Province People' s Hospital, Third Affiliated Hospital of Xi' an Jiaotong University, Xi' an 710052 (China); He, Xijing [Department of Orthopaedics, Second Affiliated Hospital of Xi' an Jiaotong University, Xi' an 710004 (China); Wei, Wenzhi [Department of Emergency, Shannxi Province People' s Hospital, Third Affiliated Hospital of Xi' an Jiaotong University, Xi' an 710052 (China); Zhou, Xiaobo, E-mail: xiaobozhouxa@163.com [Department of Immunology and Pathogenic Biology, Medical School, Xi' an Jiaotong University, Xi' an 710061 (China)

    2015-05-01

    Osteoblast differentiation is a vital process in maintaining bone homeostasis in which various transcriptional factors, signaling molecules, and microRNAs (miRNAs) are involved. Recently, signal transducer and activator of transcription 1 (STAT1) has been found to play an important role in regulating osteoblast differentiation. Here, we identified that STAT1 expression was regulated by miR-194. Using mouse bone mesenchymal stem cells (BMSCs), we found that miR-194 expression was significantly increased following osteoblast differentiation induction. Overexpression of miR-194 by lentivirus-mediated gene transfer markedly increased osteoblast differentiation, whereas inhibition of miR-194 significantly suppressed osteoblast differentiation of BMSCs. Using a dual-luciferase reporter assay, a direct interaction between miR-194 and the 3′-untranslated region (UTR) of STAT1 was confirmed. Additionally, miR-194 regulated mRNA and protein expression of STAT1 in BMSCs. Further analysis showed that miR-194 overexpression promoted the nuclear translocation of runt-related transcription factor 2 (Runx2), which is critical for osteoblast differentiation. In contrast, inhibition of miR-194 blocked the nuclear translocation of Runx2. Moreover, overexpression of STAT1 significantly blocked Runx2 nuclear translocation and osteoblast differentiation mediated by miR-194 overexpression. Taken together, our data suggest that miR-194 regulates osteoblast differentiation through modulating STAT1-mediated Runx2 nuclear translocation. - Highlights: • Overexpression of miR-194 significantly increased osteoblast differentiation. • miR-194 directly targeted the 3′- UTR of STAT1. • miR-194 regulated the expression of STAT1. • Overexpression of miR-194 promoted the nuclear translocation of Runx2.

  13. Dose-dependent Differential Effects of Risedronate on Gene Expression in Osteoblasts

    OpenAIRE

    Wang, J.; Stern, P H

    2011-01-01

    Bisphosphonates have multiple effects on bone. Their actions on osteoclasts lead to inhibition of bone resorption, at least partially through apoptosis. Effects on osteoblasts vary, with modifications in the molecule and concentration both resulting in qualitatively different responses. To understand the mechanism of the differential effects of high and low bisphosphonate concentrations on osteoblast activity, we compared the effects of 10−8M and 10−4M risedronate on gene expression in UMR-10...

  14. Mechanism involved in enhancement of osteoblast differentiation by hyaluronic acid

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, Michinao [Division of Maxillofacial Diagnostic and Surgical Science, Department of Oral and Maxillofacial Surgery, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Ariyoshi, Wataru [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Iwanaga, Kenjiro [Division of Maxillofacial Diagnostic and Surgical Science, Department of Oral and Maxillofacial Surgery, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Okinaga, Toshinori [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Habu, Manabu [Division of Maxillofacial Diagnostic and Surgical Science, Department of Oral and Maxillofacial Surgery, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Yoshioka, Izumi [Division of Oral and Maxillofacial Surgery, Department of Medicine of Sensory and Motor Organs, University of Miyazaki, Kiyotake, Miyazaki 889-1692 (Japan); Tominaga, Kazuhiro [Division of Maxillofacial Diagnostic and Surgical Science, Department of Oral and Maxillofacial Surgery, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Oral Bioresearch Center, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Nishihara, Tatsuji, E-mail: tatsujin@kyu-dent.ac.jp [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Oral Bioresearch Center, Kyushu Dental College, Kitakyushu 803-8580 (Japan)

    2011-02-25

    Research highlights: {yields} In this study was to investigate the effects of HA on osteoblast differentiation induced by BMP-2. {yields} MG63 cells were incubated with BMP-2 and HA for various time periods. {yields} Phosphorylation of Smad 1/5/8, p38, and ERK proteins was determined by western blot analysis. To elucidate the nuclear translocation of phosphorylated Smad 1/5/8, stimulated cells were subjected to immunofluorescence microscopy. {yields} HA enhanced BMP-2 induces osteoblastic differentiation in MG63 cells via down-regulation of BMP-2 antagonists and ERK phosphorylation. -- Abstract: Objectives: Bone morphogenetic protein-2 (BMP-2) is expected to be utilized to fill bone defects and promote healing of fractures. However, it is unable to generate an adequate clinical response for use in bone regeneration. Recently, it was reported that glycosaminoglycans, including heparin, heparan sulfate, keratan sulfate, dermatan sulfate, chondroitin-4-sulfate, chondroitin-6-sulfate, and hyaluronic acid (HA), regulate BMP-2 activity, though the mechanism by which HA regulates osteogenic activities has not been fully elucidated. The aim of this study was to investigate the effects of HA on osteoblast differentiation induced by BMP-2. Materials and methods: Monolayer cultures of osteoblastic lineage MG63 cells were incubated with BMP-2 and HA for various time periods. To determine osteoblastic differentiation, alkaline phosphatase (ALP) activity in the cell lysates was quantified. Phosphorylation of Smad 1/5/8, p38, and ERK proteins was determined by Western blot analysis. To elucidate the nuclear translocation of phosphorylated Smad 1/5/8, stimulated cells were subjected to immunofluorescence microscopy. To further elucidate the role of HA in enhancement of BMP-2-induced Smad signaling, mRNA expressions of the BMP-2 receptor antagonists noggin and follistatin were detected using real-time RT-PCR. Results: BMP-2-induced ALP activation, Smad 1/5/8 phosphorylation, and

  15. Human immunodeficiency virus type 1 enhancer-binding protein 3 is essential for the expression of asparagine-linked glycosylation 2 in the regulation of osteoblast and chondrocyte differentiation.

    Science.gov (United States)

    Imamura, Katsuyuki; Maeda, Shingo; Kawamura, Ichiro; Matsuyama, Kanehiro; Shinohara, Naohiro; Yahiro, Yuhei; Nagano, Satoshi; Setoguchi, Takao; Yokouchi, Masahiro; Ishidou, Yasuhiro; Komiya, Setsuro

    2014-04-01

    Human immunodeficiency virus type 1 enhancer-binding protein 3 (Hivep3) suppresses osteoblast differentiation by inducing proteasomal degradation of the osteogenesis master regulator Runx2. In this study, we tested the possibility of cooperation of Hivep1, Hivep2, and Hivep3 in osteoblast and/or chondrocyte differentiation. Microarray analyses with ST-2 bone stroma cells demonstrated that expression of any known osteochondrogenesis-related genes was not commonly affected by the three Hivep siRNAs. Only Hivep3 siRNA promoted osteoblast differentiation in ST-2 cells, whereas all three siRNAs cooperatively suppressed differentiation in ATDC5 chondrocytes. We further used microarray analysis to identify genes commonly down-regulated in both MC3T3-E1 osteoblasts and ST-2 cells upon knockdown of Hivep3 and identified asparagine-linked glycosylation 2 (Alg2), which encodes a mannosyltransferase residing on the endoplasmic reticulum. The Hivep3 siRNA-mediated promotion of osteoblast differentiation was negated by forced Alg2 expression. Alg2 suppressed osteoblast differentiation and bone formation in cultured calvarial bone. Alg2 was immunoprecipitated with Runx2, whereas the combined transfection of Runx2 and Alg2 interfered with Runx2 nuclear localization, which resulted in suppression of Runx2 activity. Chondrocyte differentiation was promoted by Hivep3 overexpression, in concert with increased expression of Creb3l2, whose gene product is the endoplasmic reticulum stress transducer crucial for chondrogenesis. Alg2 silencing suppressed Creb3l2 expression and chondrogenesis of ATDC5 cells, whereas infection of Alg2-expressing virus promoted chondrocyte maturation in cultured cartilage rudiments. Thus, Alg2, as a downstream mediator of Hivep3, suppresses osteogenesis, whereas it promotes chondrogenesis. To our knowledge, this study is the first to link a mannosyltransferase gene to osteochondrogenesis.

  16. Alkaline phosphatase in osteoblasts is down-regulated by pulsatile fluid flow

    Science.gov (United States)

    Hillsley, M. V.; Frangos, J. A.

    1997-01-01

    It is our hypothesis that interstitial fluid flow plays a role in the bone remodeling response to mechanical loading. The fluid flow-induced expression of three proteins (collagen, osteopontin, and alkaline phosphatase) involved in bone remodeling was investigated. Rat calvarial osteoblasts subjected to pulsatile fluid flow at an average shear stress of 5 dyne/cm2 showed decreased alkaline phosphatase (AP) mRNA expression after only 1 hour of flow. After 3 hours of flow, AP mRNA levels had decreased to 30% of stationary control levels and remained at this level for an additional 5 hours of flow. Steady flow (4 dyne/cm2 fluid shear stress), in contrast, resulted in a delayed and less dramatic decrease in AP mRNA expression to 63% of control levels after 8 hours of flow. The reduced AP mRNA expression under pulsatile flow conditions was followed by reduced AP enzyme activity after 24 hours. No changes in collagen or osteopontin mRNA expression were detected over 8 hours of pulsatile flow. This is the first time fluid flow has been shown to affect gene expression in osteoblasts.

  17. Human osteoblastic cells propagate intercellular calcium signals by two different mechanisms

    DEFF Research Database (Denmark)

    Jørgensen, Niklas Rye; Henriksen, Z; Brot, C;

    2000-01-01

    Effective bone remodeling requires the coordination of bone matrix deposition by osteoblastic cells, which may occur via soluble mediators or via direct intercellular communication. We have previously identified two mechanisms by which rat osteoblastic cell lines coordinate calcium signaling among...... intercellular calcium signaling, and if so, by which mechanisms. Upon mechanical stimulation, human osteoblasts propagated fast intercellular calcium waves, which required activation of P2 receptors and release of intracellular calcium stores but did not require calcium influx or gap junctional communication....... After the fast intercellular calcium waves were blocked, we observed slower calcium waves that were dependent on gap junctional communication and influx of extracellular calcium. These results show that human osteoblastic cells can propagate calcium signals from cell to cell by two markedly different...

  18. Centrifugation of Cultured Osteoblasts And Macrophages as a Model To Study How Gravity Regulates The Function of Skeletal Cells

    Science.gov (United States)

    Globus, Ruth K.; Searby, Nancy D.; Almeida, Eduardo A. C.; Sutijono, Darrell; Yu, Joon-Ho; Malouvier, Alexander; Doty, Steven B.; Morey-Holton, Emily; Weinstein, Steven L.; Dalton, Bonnie P. (Technical Monitor)

    2000-01-01

    Mechanical loading helps define the architecture of weight-bearing bone via the tightly regulated process of skeletal turnover. Turnover occurs by the concerted activity of osteoblasts, responsible for bone formation. and osteoclasts, responsible for bone resorption. Osteoclasts are specialized megakaryon macrophages, which differentiate from monocytes in response to resorption stimuli, such as reduced weight-bearing. Habitation in space dramatically alters musculoskeletal loading, which modulates both cell function and bone structure. Our long-term objective is to define the molecular and cellular mechanisms that mediate skeletal adaptations to altered gravity environments. Our experimental approach is to apply hypergravity loads by centrifugation to rodents and cultured cells. As a first step, we examined the influence of centrifugation on the structure of cancellous bone in rats to test the ability of hypergravity to change skeletal architecture. Since cancellous bone undergoes rapid turnover we expected the most dramatic structural changes to occur in the shape of trabeculae of weight-bearing, cancellous bone. To define the cellular responses to hypergravity loads, we exposed cultured osteoblasts and macrophages to centrifugation. The intraosseous and intramedullary pressures within long bones in vivo reportedly range from 12-40 mm Hg, which would correspond to 18-59 gravity (g) in our cultures. We assumed that hydrostatic pressure from the medium above the cell layer is at least one major component of the mechanical load generated by centrifuging cultured cells. and therefore we exposed the cells to 10-50g. In osteoblasts, we examined the structure of their actin and microtubule networks, production of prostaglandin E2 (PGE2), and cell survival. Analysis of the shape of the cytoskeletal networks provides evidence for the ability of centrifugation to affect cell structure, while the production of PGE2 serves as a convenient marker for mechanical stimulation. We

  19. Prevention of osteocyte and osteoblast apoptosis by bisphosphonates and calcitonin

    OpenAIRE

    Plotkin, Lilian I.; Weinstein, Robert S; Parfitt, A. Michael; Roberson, Paula K.; Manolagas, Stavros C.; Bellido, Teresita

    1999-01-01

    Glucocorticoid-induced osteoporosis may be due, in part, to increased apoptosis of osteocytes and osteoblasts, and bisphosphonates (BPs) are effective in the management of this condition. We have tested the hypothesis that BPs suppress apoptosis in these cell types. Etidronate, alendronate, pamidronate, olpadronate, or amino-olpadronate (IG9402, a bisphosphonate that lacks antiresorptive activity) at 10–9 to 10–6 M prevented apoptosis of murine osteocytic MLO-Y4 cells, whether it was induced ...

  20. Serine dipeptide lipids of Porphyromonas gingivalis inhibit osteoblast differentiation: Relationship to Toll-like receptor 2.

    Science.gov (United States)

    Wang, Yu-Hsiung; Nemati, Reza; Anstadt, Emily; Liu, Yaling; Son, Young; Zhu, Qiang; Yao, Xudong; Clark, Robert B; Rowe, David W; Nichols, Frank C

    2015-12-01

    Porphyromonas gingivalis is a periodontal pathogen strongly associated with loss of attachment and supporting bone for teeth. We have previously shown that the total lipid extract of P. gingivalis inhibits osteoblast differentiation through engagement of Toll-like receptor 2 (TLR2) and that serine dipeptide lipids of P. gingivalis engage both mouse and human TLR2. The purpose of the present investigation was to determine whether these serine lipids inhibit osteoblast differentiation in vitro and in vivo and whether TLR2 engagement is involved. Osteoblasts were obtained from calvaria of wild type or TLR2 knockout mouse pups that also express the Col2.3GFP transgene. Two classes of serine dipeptide lipids, termed Lipid 654 and Lipid 430, were tested. Osteoblast differentiation was monitored by cell GFP fluorescence and osteoblast gene expression and osteoblast function was monitored as von Kossa stained mineral deposits. Osteoblast differentiation and function were evaluated in calvarial cell cultures maintained for 21 days. Lipid 654 significantly inhibited GFP expression, osteoblast gene expression and mineral nodule formation and this inhibition was dependent on TLR2 engagement. Lipid 430 also significantly inhibited GFP expression, osteoblast gene expression and mineral nodule formation but these effects were only partially attributed to engagement of TLR2. More importantly, Lipid 430 stimulated TNF-α and RANKL gene expression in wild type cells but not in TLR2 knockout cells. Finally, osteoblast cultures were observed to hydrolyze Lipid 654 to Lipid 430 and this likely occurs through elevated PLA2 activity in the cultured cells. In conclusion, our results show that serine dipeptide lipids of P. gingivalis inhibit osteoblast differentiation and function at least in part through engagement of TLR2. The Lipid 430 serine class also increased the expression of genes that could increase osteoclast activity. We conclude that Lipid 654 and Lipid 430 have the potential

  1. Serine dipeptide lipids of Porphyromonas gingivalis inhibit osteoblast differentiation: Relationship to Toll-like receptor 2.

    Science.gov (United States)

    Wang, Yu-Hsiung; Nemati, Reza; Anstadt, Emily; Liu, Yaling; Son, Young; Zhu, Qiang; Yao, Xudong; Clark, Robert B; Rowe, David W; Nichols, Frank C

    2015-12-01

    Porphyromonas gingivalis is a periodontal pathogen strongly associated with loss of attachment and supporting bone for teeth. We have previously shown that the total lipid extract of P. gingivalis inhibits osteoblast differentiation through engagement of Toll-like receptor 2 (TLR2) and that serine dipeptide lipids of P. gingivalis engage both mouse and human TLR2. The purpose of the present investigation was to determine whether these serine lipids inhibit osteoblast differentiation in vitro and in vivo and whether TLR2 engagement is involved. Osteoblasts were obtained from calvaria of wild type or TLR2 knockout mouse pups that also express the Col2.3GFP transgene. Two classes of serine dipeptide lipids, termed Lipid 654 and Lipid 430, were tested. Osteoblast differentiation was monitored by cell GFP fluorescence and osteoblast gene expression and osteoblast function was monitored as von Kossa stained mineral deposits. Osteoblast differentiation and function were evaluated in calvarial cell cultures maintained for 21 days. Lipid 654 significantly inhibited GFP expression, osteoblast gene expression and mineral nodule formation and this inhibition was dependent on TLR2 engagement. Lipid 430 also significantly inhibited GFP expression, osteoblast gene expression and mineral nodule formation but these effects were only partially attributed to engagement of TLR2. More importantly, Lipid 430 stimulated TNF-α and RANKL gene expression in wild type cells but not in TLR2 knockout cells. Finally, osteoblast cultures were observed to hydrolyze Lipid 654 to Lipid 430 and this likely occurs through elevated PLA2 activity in the cultured cells. In conclusion, our results show that serine dipeptide lipids of P. gingivalis inhibit osteoblast differentiation and function at least in part through engagement of TLR2. The Lipid 430 serine class also increased the expression of genes that could increase osteoclast activity. We conclude that Lipid 654 and Lipid 430 have the potential

  2. Osteoblast growth behavior on porous-structure titanium surface

    Energy Technology Data Exchange (ETDEWEB)

    Tian Yuan; Ding Siyang; Peng Hui; Lu Shanming; Wang Guoping [Research Institute of Stomatology, Nanjing Medical University, Nanjing 210029 (China); Xia Lu, E-mail: shelueia@yahoo.com.cn [Research Institute of Stomatology, Nanjing Medical University, Nanjing 210029 (China); Wang Peizhi, E-mail: wangpzi@sina.com [Research Institute of Stomatology, Nanjing Medical University, Nanjing 210029 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Micro-arc oxidation technology formed a porous feature on titanium surface. Black-Right-Pointing-Pointer This porous surface accelerated adhesion, proliferation and differentiation compared with smooth surface. Black-Right-Pointing-Pointer Osteogenesis-related proteins and genes were up regulated by this porous surface. Black-Right-Pointing-Pointer It is anticipated that micro-arc oxidation surface could enhance osteoblastic activity and bone regeneration. - Abstract: A bioavailable surface generated by nano-technology could accelerate implant osteointegration, reduce healing time and enable implants to bear early loading. In this study, a nano-porous surface of titanium wafers was modified using micro-arc oxidation technique; surface of smooth titanium was used as control group. Surface characteristic was evaluated by investigating morphology, roughness and hydrophilicity of titanium wafers. In vitro studies, osteoblastic adhesion, proliferation and ALP activity, as well as gene and protein expressions relative to mineralization were assayed. Our results showed that a crater-liked nano-porous surface with greater roughness and better hydrophilicity were fabricated by micro-arc oxidation. It was further indicated that nano-porous surface could enhance adhesion, proliferation and ALP activity of osteoblasts compared with smooth surfaces. In addition, gene and protein expression of collagen-I, osteocalcin and osteopontin were also obviously increased. In summary, micro-arc oxidized techniques could form an irregular nano-porous morphology on implant surface which is favorable to improve osteoblastic function and prospected to be a potent modification of dental implant.

  3. Isoquercitrin and polyphosphate co-enhance mineralization of human osteoblast-like SaOS-2 cells via separate activation of two RUNX2 cofactors AFT6 and Ets1.

    Science.gov (United States)

    Wang, Xiaohong; Schröder, Heinz C; Feng, Qingling; Diehl-Seifert, Bärbel; Grebenjuk, Vladislav A; Müller, Werner E G

    2014-06-01

    Isoquercitrin, a dietary phytoestrogen, is a potential stimulator of bone mineralization used for prophylaxis of osteoporotic disorders. Here we studied the combined effects of isoquercitrin, a cell membrane permeable 3-O-glucoside of quercetin, and polyphosphate [polyP], a naturally occurring inorganic polymer inducing bone formation, on mineralization of human osteoblast-like SaOS-2 cells. Both compounds isoquercitrin and polyP induce at non-toxic concentrations the mineralization process of SaOS-2 cells. Co-incubation experiments revealed that isoquercitrin (at 0.1 and 0.3μM), if given simultaneously with polyP (as Ca(2+) salt; at 3, 10, 30 and 100μM) amplifies the mineralization-enhancing effect of the inorganic polymer. The biomineralization process induced by isoquercitrin and polyP is based on two different modes of action. After incubation of the cells with isoquercitrin or polyP the expression of the Runt-related transcription factor 2 [RUNX2] is significantly upregulated. In addition, isoquercitrin causes a strong increase of the steady-state-levels of the two co-activators of RUNX2, the activating transcription factor 6 [ATF6] and the Ets oncogene homolog 1 [Ets1]. The activating effect of isoquercitrin occurs via a signal transduction pathway involving ATF6, and by that, is independent from the induction cascade initiated by polyP. This conclusion is supported by the finding that isoquercitrin upregulates the expression of the gene encoding for osteocalcin, while polyP strongly increases the expression of the Ets1 gene and of the alkaline phosphatase. We show that the two compounds, polyP and isoquercitrin, have a co-enhancing effect on bone mineral formation and in turn might be of potential therapeutic value for prevention/treatment of osteoporosis. PMID:24726443

  4. Isoquercitrin and polyphosphate co-enhance mineralization of human osteoblast-like SaOS-2 cells via separate activation of two RUNX2 cofactors AFT6 and Ets1.

    Science.gov (United States)

    Wang, Xiaohong; Schröder, Heinz C; Feng, Qingling; Diehl-Seifert, Bärbel; Grebenjuk, Vladislav A; Müller, Werner E G

    2014-06-01

    Isoquercitrin, a dietary phytoestrogen, is a potential stimulator of bone mineralization used for prophylaxis of osteoporotic disorders. Here we studied the combined effects of isoquercitrin, a cell membrane permeable 3-O-glucoside of quercetin, and polyphosphate [polyP], a naturally occurring inorganic polymer inducing bone formation, on mineralization of human osteoblast-like SaOS-2 cells. Both compounds isoquercitrin and polyP induce at non-toxic concentrations the mineralization process of SaOS-2 cells. Co-incubation experiments revealed that isoquercitrin (at 0.1 and 0.3μM), if given simultaneously with polyP (as Ca(2+) salt; at 3, 10, 30 and 100μM) amplifies the mineralization-enhancing effect of the inorganic polymer. The biomineralization process induced by isoquercitrin and polyP is based on two different modes of action. After incubation of the cells with isoquercitrin or polyP the expression of the Runt-related transcription factor 2 [RUNX2] is significantly upregulated. In addition, isoquercitrin causes a strong increase of the steady-state-levels of the two co-activators of RUNX2, the activating transcription factor 6 [ATF6] and the Ets oncogene homolog 1 [Ets1]. The activating effect of isoquercitrin occurs via a signal transduction pathway involving ATF6, and by that, is independent from the induction cascade initiated by polyP. This conclusion is supported by the finding that isoquercitrin upregulates the expression of the gene encoding for osteocalcin, while polyP strongly increases the expression of the Ets1 gene and of the alkaline phosphatase. We show that the two compounds, polyP and isoquercitrin, have a co-enhancing effect on bone mineral formation and in turn might be of potential therapeutic value for prevention/treatment of osteoporosis.

  5. Lipopolysaccharide Enhances the Production of Nicotine-Induced Prostaglandin E2 by an Increase in Cyclooxygenase-2 Expression in Osteoblasts

    Institute of Scientific and Technical Information of China (English)

    Maiko SHOJI; Natsuko TANABE; Narihiro MITSUI; Naoto SUZUKI; Osamu TAKEICHI; Tomoko KATONO; Akira MOROZUMI; Masao MAENO

    2007-01-01

    Previous studies have indicated that lipopolysaccharide (LPS) from Gram-negative bacteria in plaque induces the release of prostaglandin E2 (PGE2),which promotes alveolar bone resorption in periodontitis,and that tobacco smoking might be an important risk factor for the development and severity of periodontitis.We determined the effect of nicotine and LPS on alkaline phosphatase (ALPase)activity,PGE2 production,and the expression of cyclooxygenase (COX-1,COX-2),PGE2 receptors Ep1-4,and macrophage colony stimulating factor(M-CSF)in human osteoblastic Saos-2 cells.The cells were cultured with 10-3 M nicotine in the presence of 0,1,or 10 μg/ml LPS,or with LPS alone.ALPase activity decreased in cells cultured with nicotine or LPS alone,and decreased further in those cultured with both nicotine and LPS,whereas PGE2 production significantly increased in the former and increased further in the latter.By itself,nicotine did not affect expression of COX-1,COX-2,any of the PGE2 receptors,or M-CSF,but when both nicotine and LPS were present,expression of COX-2,Ep3,Ep4,and M-CSF increased significantly.Simultaneous addition of 10-4 M indomethacin eliminated the effects of nicotine and LPS on ALPase activity,PGE2 production,and MCSF expression.Phosphorylation of protein kinase A was high in cells cultured with nicotine and LPS.These results suggest that LPS enhances the production of nicotine-induced PGE2 by an increase in COX-2 expression in osteoblasts,that nicotine-LPS-induced PGE2 interacts with the osteoblast Ep4 receptor primarily in autocrine or paracrine mode,and that the nicotine-LPS-induced PGE2 then decreases ALPase activity and increases M-CSF expression.

  6. Osteoblast function and bone histomorphometry in a murine model of Rett syndrome.

    Science.gov (United States)

    Blue, Mary E; Boskey, Adele L; Doty, Stephen B; Fedarko, Neal S; Hossain, Mir Ahamed; Shapiro, Jay R

    2015-07-01

    Rett syndrome (RTT) is an X-linked neurodevelopmental disorder due to mutations affecting the neural transcription factor MeCP2. Approximately 50% of affected females have decreased bone mass. We studied osteoblast function using a murine model of RTT. Female heterozygote (HET) and male Mecp2-null mice were compared to wild type (WT) mice. Micro-CT of tibia from 5 week-old Mecp2-null mice showed significant alterations in trabecular bone including reductions in bone volume fraction (-29%), number (-19%), thickness (-9%) and connectivity density (-32%), and increases in trabecular separation (+28%) compared to WT. We also found significant reductions in cortical bone thickness (-18%) and in polar moment of inertia (-45%). In contrast, cortical and trabecular bone from 8 week-old WT and HET female mice were not significantly different. However, mineral apposition rate, mineralizing surface and bone formation rate/bone surface were each decreased in HET and Mecp2-null mice compared to WT mice. Histomorphometric analysis of femurs showed decreased numbers of osteoblasts but similar numbers of osteoclasts compared to WT, altered osteoblast morphology and decreased tissue synthesis of alkaline phosphatase in Mecp2-null and HET mice. Osteoblasts cultured from Mecp2-null mice, which unlike WT osteoblasts did not express MeCP2, had increased growth rates, but reductions in mRNA expression of type I collagen, Runx2 and Osterix compared to WT osteoblasts. These results indicate that MeCP2 deficiency leads to altered bone growth. Osteoblast dysfunction was more marked in Mecp2-null male than in HET female mice, suggesting that expression of MeCP2 plays a critical role in bone development.

  7. Overexpression of RANKL in osteoblasts: a possible mechanism of susceptibility to bone disease in cystic fibrosis.

    Science.gov (United States)

    Delion, Martial; Braux, Julien; Jourdain, Marie-Laure; Guillaume, Christine; Bour, Camille; Gangloff, Sophie; Pimpec-Barthes, Françoise Le; Sermet-Gaudelus, Isabelle; Jacquot, Jacky; Velard, Frédéric

    2016-09-01

    Bone fragility and loss are a significant cause of morbidity in patients with cystic fibrosis (CF), and the lack of effective therapeutic options means that treatment is more often palliative rather than curative. A deeper understanding of the pathogenesis of CF-related bone disease (CFBD) is necessary to develop new therapies. Defective CF transmembrane conductance regulator (CFTR) protein and chronic inflammation in bone are important components of the CFBD development. The receptor activator of nuclear factor kappa-B ligand (RANKL) and osteoprotegerin (OPG) drive the regulation of bone turnover. To investigate their roles in CFBD, we evaluated the involvement of defective CFTR in their production level in CF primary human osteoblasts with and without inflammatory stimulation, in the presence or not of pharmacological correctors of the CFTR. No major difference in cell ultrastructure was noted between cultured CF and non-CF osteoblasts, but a delayed bone matrix mineralization was observed in CF osteoblasts. Strikingly, resting CF osteoblasts exhibited strong production of RANKL protein, which was highly localized at the cell membrane and was enhanced in TNF (TNF-α) or IL-17-stimulated conditions. Under TNF stimulation, a defective response in OPG production was observed in CF osteoblasts in contrast to the elevated OPG production of non-CF osteoblasts, leading to an elevated RANKL-to-OPG protein ratio in CF osteoblasts. Pharmacological inhibition of CFTR chloride channel conductance in non-CF osteoblasts replicated both the decreased OPG production and the enhanced RANKL-to-OPG ratio. Interestingly, using CFTR correctors such as C18, we significantly reduced the production of RANKL by CF osteoblasts, in both resting and TNF-stimulated conditions. In conclusion, the overexpression of RANKL and high membranous RANKL localization in osteoblasts are related to defective CFTR, and may worsen bone resorption, leading to bone loss in patients with CF. Targeting

  8. Morphology and Differentiation of MG63 Osteoblast Cells on Saliva Contaminated Implant Surfaces

    Directory of Open Access Journals (Sweden)

    Neda Shams

    2015-11-01

    Full Text Available Objectives: Osteoblasts are the most important cells in the osseointegration process. Despite years of study on dental Implants, limited studies have discussed the effect of saliva on the adhesion process of osteoblasts to implant surfaces. The aim of this in vitro study was to evaluate the effect of saliva on morphology and differentiation of osteoblasts attached to implant surfaces.Materials and Methods: Twelve Axiom dental implants were divided into two groups. Implants of the case group were placed in containers, containing saliva, for 40 minutes. Then, all the implants were separately stored in a medium containing MG63 human osteoblasts for a week. Cell morphology and differentiation were assessed using a scanning electron microscope and their alkaline phosphatase (ALP activity was determined. The t-test was used to compare the two groups.Results: Scanning electron microscopic observation of osteoblasts revealed round or square cells with fewer and shorter cellular processes in saliva contaminated samples, whereas elongated, fusiform and well-defined cell processes were seen in the control group. ALP level was significantly lower in case compared to control group (P<0.05.Conclusion: Saliva contamination alters osteoblast morphology and differentiation and may subsequently interfere with successful osseointegration. Thus, saliva contamination of bone and implant must be prevented or minimized.

  9. Analysis of Osteoblast Differentiation on Polymer Thin Films Embedded with Carbon Nanotubes.

    Directory of Open Access Journals (Sweden)

    Jin Woo Lee

    Full Text Available Osteoblast differentiation can be modulated by variations in order of nanoscale topography. Biopolymers embedded with carbon nanotubes can cause various orders of roughness at the nanoscale and can be used to investigate the dynamics of extracellular matrix interaction with cells. In this study, clear relationship between the response of osteoblasts to integrin receptor activation, their phenotype, and transcription of certain genes on polymer composites embedded with carbon nanotubes was demonstrated. We generated an ultrathin nanocomposite film embedded with carbon nanotubes and observed improved adhesion of pre-osteoblasts, with a subsequent increase in their proliferation. The expression of genes encoding integrin subunits α5, αv, β1, and β3 was significantly upregulated at the early of time-point when cells initially attached to the carbon nanotube/polymer composite. The advantage of ultrathin nanocomposite film for pre-osteoblasts was demonstrated by staining for the cytoskeletal protein vinculin and cell nuclei. The expression of essential transcription factors for osteoblastogenesis, such as Runx2 and Sp7 transcription factor 7 (known as osterix, was upregulated after 7 days. Consequently, the expression of genes that determine osteoblast phenotype, such as alkaline phosphatase, type I collagen, and osteocalcin, was accelerated on carbon nanotube embedded polymer matrix after 14 days. In conclusion, the ultrathin nanocomposite film generated various orders of nanoscale topography that triggered processes related to osteoblast bone formation.

  10. Effects of β-Tricalcium Phosphate on the Growth of Rat Osteoblasts

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Calcium-phosphate materials, such as β- TCP could be degraded in vivo , and in the cultured cells in vitro. However, it is still unknown how the materials changed the activity of the cells. In order to understand the mechanism of β- TCP treatment on osteoblasts , cell proliferation rate measurement and microscopic observation were performed during co-culture of rat osteoblasts and β-TCP biomaterials. It was observed that low concentrations of β-TCP-treated cell proliferation rate was a little less than control by MTT assay, while higher concentrations of β- TCP-treated cell proliferation rate was more than control. The proliferation rate of osteoblast trented by β-TCP with bioglass had a similar effect with β-TCP-treated cell. Neither calcium chloride nor sodium monophosphate treatment could stimulate the cell proliferation at the concentration from 0.25 mM to 5 mM. During the treatment of β-TCP , particles could be found in the cells. It suggested that β-TCP could stimulate cell proliferation rate of rat osteoblast with or without bioglass, while Ca2 + and PO43- ( provided by calcium chloride and sodium monophosphate , separately), the degraded products of β- TCP had no significant effect on osteoblast cell growth in a wide range. The stimulating effect of β- TCP on osteoblast cell proliferation might relate to the encapsulation of the material particles into the cells.

  11. The topographical properties of silica nanoparticle film preserve the osteoblast-like cell characteristics in vitro

    Science.gov (United States)

    Shim, Wooyoung; Lee, Seung Yun; Kim, Hyo-Sop; Kim, Jae-Ho

    2016-07-01

    The Transplantation of osteoblasts, along with an artificial implant, is experimentally considered as a therapeutics for degenerative bone diseases. However, osteoblasts have several limitations for application of transplantation in therapeutics, including a low-efficiency for bone mineralization and easy loss of characteristics in in vitro culture condition. In this study, we fabricated silica nano-particle (SNP) films using particles of different sizes to culture osteoblast-like cells for analysis the effect of topography on cellular behavior and characteristics. The physical parameters of films, such as intervals, height and roughness, were proportionally increased depending on the SNP diameter. When osteoblast-like cells were cultured on the various SNP films, the cell attachment rate on SNP-300 and SNP-700 was significantly decreased when it compared to tissue culture polystyrene (TCPS) group. In addition, the genes responsible for cell adhesion showed differential expression profiles in SNP films. The expression and activity of alkaline phosphatase were elevated in SNP-300 and SNP-700, and the extra-cellular matrix and osteoblast marker showed increased gene expression in these SNP films when compared to TCPS group. In the present study, we demonstrate that the topographical property of a nano-scale structure preserves the characteristics of osteoblast-like cells, and regulates the cellular behavior.

  12. The bone resorption inhibitors odanacatib and alendronate affect post-osteoclastic events differently in ovariectomized rabbits.

    Science.gov (United States)

    Jensen, Pia Rosgaard; Andersen, Thomas Levin; Pennypacker, Brenda L; Duong, Le T; Delaissé, Jean-Marie

    2014-02-01

    Odanacatib (ODN) is a bone resorption inhibitor which differs from standard antiresorptives by its ability to reduce bone resorption without decreasing bone formation. What is the reason for this difference? In contrast with other antiresorptives, such as alendronate (ALN), ODN targets only the very last step of the resorption process. We hypothesize that ODN may therefore modify the remodeling events immediately following osteoclastic resorption. These events belong to the reversal phase and include recruitment of osteoblasts, which is critical for connecting bone resorption to formation. We performed a histomorphometric study of trabecular remodeling in vertebrae of estrogen-deficient rabbits treated or not with ODN or ALN, a model where ODN, but not ALN, was previously shown to preserve bone formation. In line with our hypothesis, we found that ODN treatment compared to ALN results in a shorter reversal phase, faster initiation of osteoid deposition on the eroded surfaces, and higher osteoblast recruitment. The latter is reflected by higher densities of mature bone forming osteoblasts and an increased subpopulation of cuboidal osteoblasts. Furthermore, we found an increase in the interface between osteoclasts and surrounding osteoblast-lineage cells. This increase is expected to favor the osteoclast-osteoblast interactions required for bone formation. Regarding bone resorption itself, we show that ODN, but not ALN, treatment results in shallower resorption lacunae, a geometry favoring bone stiffness. We conclude that, compared to standard antiresorptives, ODN shows distinctive effects on resorption geometry and on reversal phase activities which positively affect osteoblast recruitment and may therefore favor bone formation. PMID:24085265

  13. Green tea polyphenol (-)-epigallocatechin gallate suppressed the differentiation of murine osteoblastic MC3T3-E1 cells.

    Science.gov (United States)

    Kamon, Masayoshi; Zhao, Ran; Sakamoto, Kazuichi

    2009-12-16

    Recently, various physiological effects of the tea polyphenol catechin for alleviating diseases such as cancer, arteriosclerosis, hyperlipidaemia and osteoporosis have been reported. However, the physiological effect of catechin on bone metabolism remains unclear. We examined the physiological effect of EGCG [(-)-epigallocatechin-3-gallate], which is the main component of green tea catechin, on osteoblast development using the precursor cell line of osteoblasts, MC3T3-E1, and co-culture of the osteoblasts from mouse newborn calvaria and mouse bone marrow cells. Although EGCG did not affect the viability and proliferation of MC3T3-E1 cells, EGCG inhibited the osteoblast differentiation. Furthermore, EGCG did not affect the mineralization of differentiated MC3T3-E1 cells, and reduced osteoclast formation in co-culture. These results suggest that EGCG can effectively suppress bone resorption, and can be used as an effective medicine in the treatment of the symptoms of osteoporosis.

  14. Calcification in human osteoblasts cultured in medium conditioned by the prostatic cancer cell line PC-3 and prostatic acid phosphatase.

    Science.gov (United States)

    Kimura, G; Sugisaki, Y; Masugi, Y; Nakazawa, N

    1992-01-01

    A medium that had been conditioned by PC-3 cells stimulated the calcification of a human osteoblastic cell line, Tak-10, in a nonmitogenic culture. The calcification of the osteoblasts was stimulated maximally at a 25% concentration of the conditioned medium. Calcification activity was markedly enhanced by the addition of both prostatic acid phosphatase (PAP) and its substrate, alpha-glycerophosphate, to the medium; however, PAP added alone did not enhance this activity. These results suggest that human prostatic carcinoma cells produce a factor that stimulates the calcification of the human osteoblasts. Results have also suggested that PAP is a requisite for osteogenesis provided that its substrates are abundant in the medium.

  15. Azadirachta indica triterpenoids promote osteoblast differentiation and mineralization in vitro and in vivo.

    Science.gov (United States)

    Kushwaha, Priyanka; Khedgikar, Vikram; Haldar, Saikat; Gautam, Jyoti; Mulani, Fayaj A; Thulasiram, Hirekodathakallu V; Trivedi, Ritu

    2016-08-01

    Terpenoids were isolated using chromatographic purification through solvent purification technique and identified as Azadirone (1), Epoxyazadiradione (2) Azadiradione (3) Gedunin (4) Nimbin (5) Salannin (6) Azadirachtin A (7) and Azadirachtin B (8) from Azadirachta indica. Out of eight compounds, only three compounds had osteogenic activity and enhanced osteoblast proliferation, differentiation and mineralization in osteoblast cells. Active compounds stimulated osteogenic genes ALP, RunX-2 and OCN expressions in vitro, but Azadirachtin A had a maximum ability to stimulate osteoblast differentiation and mineralization compared to other two active compounds. For in vivo study, Azadirachtin A injected subcutaneously in pups, which enhanced osteogenic gene expressions and promoted bone formation rate significantly. Here, we conclude that active compounds of Azadirachta indica have osteogenic activity and Azadirachtin A has a beneficial effects on bone. PMID:27317644

  16. Kaempferol as a flavonoid induces osteoblastic differentiation via estrogen receptor signaling

    Directory of Open Access Journals (Sweden)

    Guo Ava

    2012-04-01

    Full Text Available Abstract Background Flavonoids, a group of compounds mainly derived from vegetables and herbal medicines, chemically resemble estrogen and some have been used as estrogen substitutes. Kaempferol, a flavonol derived from the rhizome of Kaempferia galanga L., is a well-known phytoestrogen possessing osteogenic effects that is also found in a large number of plant foods. The herb K. galanga is a popular traditional aromatic medicinal plant that is widely used as food spice and in medicinal industries. In the present study, both the estrogenic and osteogenic properties of kaempferol are evaluated. Methods Kaempferol was first evaluated for its estrogenic properties, including its effects on estrogen receptors. The osteogenic properties of kaempferol were further determined its induction effects on specific osteogenic enzymes and genes as well as the mineralization process in cultured rat osteoblasts. Results Kaempferol activated the transcriptional activity of pERE-Luc (3.98 ± 0.31 folds at 50 μM and induced estrogen receptor α (ERα phosphorylation in cultured rat osteoblasts, and this ER activation was correlated with induction and associated with osteoblast differentiation biomarkers, including alkaline phosphatase activity and transcription of osteoblastic genes, e.g., type I collagen, osteonectin, osteocalcin, Runx2 and osterix. Kaempferol also promoted the mineralization process of osteoblasts (4.02 ± 0.41 folds at 50 μM. ER mediation of the kaempferol-induced effects was confirmed by pretreatment of the osteoblasts with an ER antagonist, ICI 182,780, which fully blocked the induction effect. Conclusion Our results showed that kaempferol stimulates osteogenic differentiation of cultured osteoblasts by acting through the estrogen receptor signaling.

  17. Nitroglycerin enhances proliferation and osteoblastic differentiation in human mesenchymal stem cells via nitric oxide pathway

    Institute of Scientific and Technical Information of China (English)

    Li HUANG; Ni QIU; Che ZHANG; Hong-yan WEI; Ya-lin LI; Hong-hao ZHOU; Zhou-sheng XIAO

    2008-01-01

    Aim: To investigate the effect of nitroglycerin (NTG) on cell proliferation and osteoblastic differentiation of human bone marrow-derived mesenchymal stem cells (HBMSC) and its mechanisms. Methods: Primary HBMSC were cultured in osteogenic differentiation medium consisting of phenol red-free or-minimum es-sential media plus 10% fetal bovine serum (dextran-coated charcoal stripped)supplemented with 10 nmol/L dexamethasone, 50 mg/L ascorbic acid, and l0 mmol/Lβ-glycerophosphate for inducing osteoblastic differentiation. The cells were treated with NTG (0.1-10 μmol/L) alone or concurrent incubation with different nitric oxide synthase (NOS) inhibitors. Nitric oxide (NO) production was measured by using a commercial NO kit. Cell proliferation was measured by 5-bromodeoxyuridine (BrdU) incorporation. The osteoblastic differentiation of HBMSC culture was evaluated by measuring cellular alkaline phosphatase (ALP) activity and calcium deposition, as well as osteoblastic markers by real-time RT-PCR. Results: The treatment of HBMSC with NTG (0.1-10 μmol/L) led to a dose-dependent increase of NO production in the conditional medium. The release of NO by NTG resulted in increased cell proliferation and osteoblastic differentiation of HBMSC, as evi-denced by the increment of the BrdU incorporation, the induction of ALP activity in the early stage, and the calcium deposition in the latter stage. The increment of NO production was also correlated with the upregulation of osteoblastic markers in HBMSC cultures. However, the stimulatory effect of NTG (10 μmol/L) could not be abolished by either NG-nitro-L-arginine methyl ester, an antagonist of endothe-lial NOS, or 1400W, a selective blocker of inducible NOS activity. Conclusion: NTG stimulates cell proliferation and osteoblastic differentiation of HBMSC through a direct release of NO, which is independent on intracellular NOS activity.

  18. Affect and Subsequent Physical Activity: An Ambulatory Assessment Study Examining the Affect-Activity Association in a Real-Life Context.

    Science.gov (United States)

    Niermann, Christina Y N; Herrmann, Christian; von Haaren, Birte; van Kann, Dave; Woll, Alexander

    2016-01-01

    Traditionally, cognitive, motivational, and volitional determinants have been used to explain and predict health behaviors such as physical activity. Recently, the role of affect in influencing and regulating health behaviors received more attention. Affects as internal cues may automatically activate unconscious processes of behavior regulation. The aim of our study was to examine the association between affect and physical activity in daily life. In addition, we studied the influence of the habit of being physically active on this relationship. An ambulatory assessment study in 89 persons (33.7% male, 25 to 65 years, M = 45.2, SD = 8.1) was conducted. Affect was assessed in the afternoon on 5 weekdays using smartphones. Physical activity was measured continuously objectively using accelerometers and subjectively using smartphones in the evening. Habit strength was assessed at the beginning of the diary period. The outcomes were objectively and subjectively measured moderate-to-vigorous physical activity (MVPA) performed after work. Multilevel regression models were used to analyze the association between affect and after work MVPA. In addition, the cross-level interaction of habit strength and affect on after work MVPA was tested. Positive affect was positively related to objectively measured and self-reported after work MVPA: the greater the positive affect the more time persons subsequently spent on MVPA. An inverse relationship was found for negative affect: the greater the negative affect the less time persons spent on MVPA. The cross-level interaction effect was significant only for objectively measured MVPA. A strong habit seems to strengthen both the positive influence of positive affect and the negative influence of negative affect. The results of this study confirm previous results and indicate that affect plays an important role for the regulation of physical activity behavior in daily life. The results for positive affect were consistent. However, in

  19. Affect and subsequent physical activity: An ambulatory assessment study examining the affect-activity association in a real-life context

    Directory of Open Access Journals (Sweden)

    Christina eNiermann

    2016-05-01

    Full Text Available Traditionally, cognitive, motivational and volitional determinants have been used to explain and predict health behaviors such as physical activity. Recently, the role of affect in influencing and regulating health behaviors received more attention. Affects as internal cues may automatically activate unconscious processes of behavior regulation. The aim of our study was to examine the association between affect and physical activity in daily life. In addition, we studied the influence of the habit of being physically active on this relationship.An ambulatory assessment study in 89 persons (33.7% male, 25 to 65 years, M=45.2, SD=8.1 was conducted. Affect was assessed in the afternoon on 5 weekdays using smartphones. Physical activity was measured continuously objectively using accelerometers and subjectively using smartphones in the evening. Habit strength was assessed at the beginning of the diary period. The outcomes were objectively and subjectively measured moderate-to-vigorous physical activity (MVPA performed after work. Multilevel regression models were used to analyze the association between affect and after work MVPA. In addition, the cross-level interaction of habit strength and affect on after work MVPA was tested.Positive affect was positively related to objectively measured and self-reported after work MVPA: the greater the positive affect the more time persons subsequently spent on MVPA. An inverse relationship was found for negative affect: the greater the negative affect the less time persons spent on MVPA. The cross-level interaction effect was significant only for objectively measured MVPA. A strong habit seems to strengthen both the positive influence of positive affect and the negative influence of negative affect.The results of this study confirm previous results and indicate that affect plays an important role for the regulation of physical activity behavior in daily life. The results for positive affect were consistent

  20. A proteome study of secreted prostatic factors affecting osteoblastic activity: galectin-1 is involved in differentiation of human bone marrow stromal cells

    DEFF Research Database (Denmark)

    Andersen, H; Jensen, Ole N; Moiseeva, Elena P;

    2003-01-01

    weight range from 5 to 30 kDa using proteome analysis. A protein profile of the CM from PC3 cells was performed by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). Thirty protein spots with molecular weights ranging from 5 to 30 kDa were analyzed by matrix assisted laser desorption....../ionization time of flight mass spectrometry (MALDI-TOF MS). One of these spots was identified as galectin-1. We examined whether PC3 CM, recombinant galectin-1 alone, or combined with insulin-like growth factor-I (IGF-I) had any effects on the proliferation or differentiation of human bone marrow stromal (h...

  1. Positive affect modulates activity in the visual cortex to images of high calorie foods.

    Science.gov (United States)

    Killgore, William D S; Yurgelun-Todd, Deborah A

    2007-05-01

    Activity within the visual cortex can be influenced by the emotional salience of a stimulus, but it is not clear whether such cortical activity is modulated by the affective status of the individual. This study used functional magnetic resonance imaging (fMRI) to examine the relationship between affect ratings on the Positive and Negative Affect Schedule and activity within the occipital cortex of 13 normal-weight women while viewing images of high calorie and low calorie foods. Regression analyses revealed that when participants viewed high calorie foods, Positive Affect correlated significantly with activity within the lingual gyrus and calcarine cortex, whereas Negative Affect was unrelated to visual cortex activity. In contrast, during presentations of low calorie foods, affect ratings, regardless of valence, were unrelated to occipital cortex activity. These findings suggest a mechanism whereby positive affective state may affect the early stages of sensory processing, possibly influencing subsequent perceptual experience of a stimulus. PMID:17464782

  2. Acerogenin A, a natural compound isolated from Acer nikoense Maxim, stimulates osteoblast differentiation through bone morphogenetic protein action

    Energy Technology Data Exchange (ETDEWEB)

    Kihara, Tasuku [Section of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Section of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Global Center of Excellence (GCOE) Program, International Research Center for Molecular Science in Tooth and Bone Diseases, Tokyo Medical and Dental University, Tokyo (Japan); Ichikawa, Saki [Section of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Yonezawa, Takayuki; Lee, Ji-Won [Research Institute for Biological Functions, Chubu University, Kasugai, Aichi (Japan); Akihisa, Toshihiro [College of Science and Technology, Nihon University, Tokyo (Japan); Woo, Je Tae [Research Institute for Biological Functions, Chubu University, Kasugai, Aichi (Japan); Michi, Yasuyuki; Amagasa, Teruo [Section of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Yamaguchi, Akira, E-mail: akira.mpa@tmd.ac.jp [Section of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Global Center of Excellence (GCOE) Program, International Research Center for Molecular Science in Tooth and Bone Diseases, Tokyo Medical and Dental University, Tokyo (Japan)

    2011-03-11

    Research highlights: {yields} Acerogenin A stimulated osteoblast differentiation in osteogenic cells. {yields} Acerogenin A-induced osteoblast differentiation was inhibited by noggin. {yields} Acerogenin A increased Bmp-2, Bmp-4 and Bmp-7 mRNA expression in MC3T3-E1 cells. {yields} Acerogenin A is a candidate agent for stimulating bone formation. -- Abstract: We investigated the effects of acerogenin A, a natural compound isolated from Acer nikoense Maxim, on osteoblast differentiation by using osteoblastic cells. Acerogenin A stimulated the cell proliferation of MC3T3-E1 osteoblastic cells and RD-C6 osteoblastic cells (Runx2-deficient cell line). It also increased alkaline phosphatase activity in MC3T3-E1 and RD-C6 cells and calvarial osteoblastic cells isolated from the calvariae of newborn mice. Acerogenin A also increased the expression of mRNAs related to osteoblast differentiation, including Osteocalcin, Osterix and Runx2 in MC3T3-E1 cells and primary osteoblasts: it also stimulated Osteocalcin and Osterix mRNA expression in RD-C6 cells. The acerogenin A treatment for 3 days increased Bmp-2, Bmp-4, and Bmp-7 mRNA expression levels in MC3T3-E1 cells. Adding noggin, a BMP specific-antagonist, inhibited the acerogenin A-induced increase in the Osteocalcin, Osterix and Runx2 mRNA expression levels. These results indicated that acerogenin A stimulates osteoblast differentiation through BMP action, which is mediated by Runx2-dependent and Runx2-independent pathways.

  3. Synthesis of benzofuran derivatives as selective inhibitors of tissue-nonspecific alkaline phosphatase: effects on cell toxicity and osteoblast-induced mineralization.

    Science.gov (United States)

    Marquès, Stéphanie; Buchet, René; Popowycz, Florence; Lemaire, Marc; Mebarek, Saïda

    2016-03-01

    Tissue-nonspecific alkaline phosphatase (TNAP) by hydrolyzing pyrophosphate, an inhibitor of apatite formation, promotes extracellular matrix calcification during bone formation and growth, as well as during ectopic calcification under pathological conditions. TNAP is a target for the treatment of soft tissue pathological ossification. We synthesized a series of benzofuran derivatives. Among these, SMA14, displayed TNAP activity better than levamisole. SMA14 was found to be not toxic at doses of up to 40μM in osteoblast-like Saos-2 cells and primary osteoblasts. As probed by Alizarin Red staining, this compound inhibited mineral formation in murine primary osteoblast and in osteoblast-like Saos-2 cells.

  4. Environmental polycyclic aromatic hydrocarbons affect androgen receptor activation in vitro

    DEFF Research Database (Denmark)

    Vinggaard, Anne Marie; Hnida, Christina; Larsen, John Christian

    2000-01-01

    of certain PAHs to activate the Ah receptor was assessed in H4IIE liver cancer cells, stably transfected with a luciferase reporter gene system. The positive control 2, 3,7, 8-tetrachlorodibenzodioxin (TCDD) caused a 13-14-fold induction of luciferase activity reaching maximum activity at 0.1 nM. DB[a,h]A, B...

  5. Bacteria induce osteoclastogenesis via an osteoblast-independent pathway.

    Science.gov (United States)

    Jiang, Yanling; Mehta, Chetan K; Hsu, Tun-Yi; Alsulaimani, Fahad F H

    2002-06-01

    Bacteria or their products may cause chronic inflammation and subsequent bone loss. This inflammation and bone loss may be associated with significant morbidity in chronic otitis media, periodontitis, endodontic lesions, and loosening of orthopedic implants caused by lipopolysaccharide (LPS)-contaminated implant particles. Currently, it is not clear how bacteria or endotoxin-induced bone resorption occurs and what cell types are involved. Here we report that Porphyromonas gingivalis, a periodontal pathogen, and Escherichia coli LPS induce osteoclastic cell formation from murine leukocytes in the absence of osteoblasts. In contrast, stimulation with parathyroid hormone had no effect. These multinucleated, tartrate-resistant acid phosphatase-positive cells were positive for receptor activator of NF-kappaB (RANK), the receptor for osteoprotegerin ligand (OPGL), also known as RANK ligand (RANKL). Blocking antibodies demonstrated that their formation was dependent upon expression of OPGL and, to a lesser extent, on tumor necrosis factor alpha. Mononuclear cells represented a significant source of OPGL production. In vivo, P. gingivalis injection stimulated OPGL expression in both mononuclear leukocytes and osteoblastic cells. Thus, these findings describe a pathway by which bacteria could enhance osteolysis independently of osteoblasts and suggest that the mix of cells that participate in inflammatory and physiologic bone resorption may be different. This may give insight into new targets of therapeutic intervention.

  6. MEG brain activities reflecting affection for visual food stimuli.

    Science.gov (United States)

    Kuriki, Shinya; Miyamura, Takahiro; Uchikawa, Yoshinori

    2010-01-01

    This study aimed to explore the modulation of alpha rhythm in response to food pictures with distinct affection values. We examined the method to discriminate subject's state, i.e., whether he/she liked the article of food or not, from MEG signals detected over the head. Pictures of familiar foods were used as affective stimuli, while those pictures with complementary color phase were used as non-affective stimuli. Alpha band signals in a narrow frequency window around the spectral peak of individual subjects were wavelet analyzed and phase-locked component to the stimulus onset was obtained as a complex number. The amplitude of the phase-locked component was averaged during 0-1 s after stimulus onset for 30 epochs in a measurement session and across 76 channels of MEG sensor. In statistical test of individual subjects, significant difference was found in the real part of the averaged phase-locked amplitude between the normal-color and reverse-color pictures. These results suggest that affective information processing of food pictures is reflected in the synchronized component of narrow band alpha rhythm. PMID:21096510

  7. How Do Sociodemographics and Activity Participations Affect Activity-Travel? Comparative Study between Women and Men

    Directory of Open Access Journals (Sweden)

    Min Yang

    2014-01-01

    Full Text Available Activity-travel behaviors of women and men are different because they have different social and household responsibilities. However, studies concerning gender differences are mainly limited in developed countries. This paper concentrates on gender role-based differences in activity-travel behavior in a typical developing country, namely, China. Using data from 3656 cases collected through surveys conducted in Shangyu, data processing, method choice, and descriptive analysis were conducted. Binary and ordered logistic regression models segmented by gender were developed to evaluate the mechanism through which individual sociodemographics, household characteristics, and activity participations affect the number of trip chain types and activities for women and men. The results show that women aged 30 to 50 perform less subsistence activities. However, the difference between the different age groups of men is not as significant. In addition, men with bicycles and electric bicycles have more subsistence and maintenance activities, whereas women do not have these attributes. Moreover, women with children under schooling age make more maintenance trip chains but less leisure trip chains and activities, whereas men are free from this influence. Furthermore, both women and men perform more subsistence activities if the duration increases, and men have less influences than women do.

  8. Stress affects salivary alpha-Amylase activity in bonobos.

    Science.gov (United States)

    Behringer, Verena; Deschner, Tobias; Möstl, Erich; Selzer, Dieter; Hohmann, Gottfried

    2012-01-18

    Salivary alpha-Amylase (sAA) is a starch digesting enzyme. In addition to its function in the context of nutrition, sAA has also turned out to be useful for monitoring sympathetic nervous system activity. Recent studies on humans have found a relationship between intra-individual changes in sAA activity and physical and psychological stress. In studies on primates and other vertebrates, non-invasive monitoring of short-term stress responses is usually based on measurements of cortisol levels, which are indicative of hypothalamic-pituitary-adrenal activity. The few studies that have used both cortisol levels and sAA activity indicate that these two markers may respond differently and independently to different types of stress such that variation in the degree of the activation of different stress response systems might reflect alternative coping mechanisms or individual traits. Here, we present the first data on intra- and inter-individual variation of sAA activity in captive bonobos and compare the results with information from other ape species and humans. Our results indicate that sAA activity in the bonobo samples was significantly lower than in the human samples but within the range of other great ape species. In addition, sAA activity was significantly higher in samples collected at times when subjects had been exposed to stressors (judged by changes in behavioral patterns and cortisol levels) than in samples collected at other times. Our results indicate that bonobos possess functioning sAA and, as in other species, sAA activity is influenced by autonomic nervous system activity. Monitoring sAA activity could therefore be a useful tool for evaluating stress in bonobos. PMID:21945369

  9. Glutamate Receptor Agonists and Glutamate Transporter Antagonists Regulate Differentiation of Osteoblast Lineage Cells.

    Science.gov (United States)

    Xie, Wenjie; Dolder, Silvia; Siegrist, Mark; Wetterwald, Antoinette; Hofstetter, Willy

    2016-08-01

    Development and function of osteoblast lineage cells are regulated by a complex microenvironment consisting of the bone extracellular matrix, cells, systemic hormones and cytokines, autocrine and paracrine factors, and mechanical load. Apart from receptors that transduce extracellular signals into the cell, molecular transporters play a crucial role in the cellular response to the microenvironment. Transporter molecules are responsible for cellular uptake of nutritional components, elimination of metabolites, ion transport, and cell-cell communication. In this report, the expression of molecular transporters in osteoblast lineage cells was investigated to assess their roles in cell development and activity. Low-density arrays, covering membrane and vesicular transport molecules, were used to assess gene expression in osteoblasts representing early and late differentiation states. Receptors and transporters for the amino acid glutamate were found to be differentially expressed during osteoblast development. Glutamate is a neurotransmitter in the central nervous system, and the mechanisms of its release, signal transduction, and cellular reabsorption in the synaptic cleft are well understood. Less clear, however, is the control of equivalent processes in peripheral tissues. In primary osteoblasts, inhibition of glutamate transporters with nonselective inhibitors leads to an increase in the concentration of extracellular glutamate. This change was accompanied by a decrease in osteoblast proliferation, stimulation of alkaline phosphatase, and the expression of transcripts encoding osteocalcin. Enzymatic removal of extracellular glutamate abolished these pro-differentiation effects, as did the inhibition of PKC- and Erk1/2-signaling pathways. These findings demonstrate that glutamate signaling promotes differentiation and activation of osteoblast lineage cells. Consequently, the glutamate system may represent a putative therapeutic target to induce an anabolic response

  10. Hydraulic Pressure during Fluid Flow Regulates Purinergic Signaling and Cytoskeleton Organization of Osteoblasts.

    Science.gov (United States)

    Gardinier, Joseph D; Gangadharan, Vimal; Wang, Liyun; Duncan, Randall L

    2014-06-01

    During physiological activities, osteoblasts experience a variety of mechanical forces that stimulate anabolic responses at the cellular level necessary for the formation of new bone. Previous studies have primarily investigated the osteoblastic response to individual forms of mechanical stimuli. However in this study, we evaluated the response of osteoblasts to two simultaneous, but independently controlled stimuli; fluid flow-induced shear stress (FSS) and static or cyclic hydrostatic pressure (SHP or CHP, respectively). MC3T3-E1 osteoblasts-like cells were subjected to 12dyn/cm(2) FSS along with SHP or CHP of varying magnitudes to determine if pressure enhances the anabolic response of osteoblasts during FSS. For both SHP and CHP, the magnitude of hydraulic pressure that induced the greatest release of ATP during FSS was 15 mmHg. Increasing the hydraulic pressure to 50 mmHg or 100 mmHg during FSS attenuated the ATP release compared to 15 mmHg during FSS. Decreasing the magnitude of pressure during FSS to atmospheric pressure reduced ATP release to that of basal ATP release from static cells and inhibited actin reorganization into stress fibers that normally occurred during FSS with 15 mmHg of pressure. In contrast, translocation of nuclear factor kappa B (NFκB) to the nucleus was independent of the magnitude of hydraulic pressure and was found to be mediated through the activation of phospholipase-C (PLC), but not src kinase. In conclusion, hydraulic pressure during FSS was found to regulate purinergic signaling and actin cytoskeleton reorganization in the osteoblasts in a biphasic manner, while FSS alone appeared to stimulate NFκB translocation. Understanding the effects of hydraulic pressure on the anabolic responses of osteoblasts during FSS may provide much needed insights into the physiologic effects of coupled mechanical stimuli on osteogenesis.

  11. Lysyl Hydroxylase 3 Glucosylates Galactosylhydroxylysine Residues in Type I Collagen in Osteoblast Culture*

    Science.gov (United States)

    Sricholpech, Marnisa; Perdivara, Irina; Nagaoka, Hideaki; Yokoyama, Megumi; Tomer, Kenneth B.; Yamauchi, Mitsuo

    2011-01-01

    Lysyl hydroxylase 3 (LH3), encoded by Plod3, is the multifunctional collagen-modifying enzyme possessing LH, hydroxylysine galactosyltransferase (GT), and galactosylhydroxylysine-glucosyltransferase (GGT) activities. Although an alteration in type I collagen glycosylation has been implicated in several osteogenic disorders, the role of LH3 in bone physiology has never been investigated. To elucidate the function of LH3 in bone type I collagen modifications, we used a short hairpin RNA technology in a mouse osteoblastic cell line, MC3T3-E1; generated single cell-derived clones stably suppressing LH3 (short hairpin (Sh) clones); and characterized the phenotype. Plod3 expression and the LH3 protein levels in the Sh clones were significantly suppressed when compared with the controls, MC3T3-E1, and the clone transfected with an empty vector. In comparison with controls, type I collagen synthesized by Sh clones (Sh collagen) showed a significant decrease in the extent of glucosylgalactosylhydroxylysine with a concomitant increase of galactosylhydroxylysine, whereas the total number of hydroxylysine residues was essentially unchanged. In an in vitro fibrillogenesis assay, Sh collagen showed accelerated fibrillogenesis compared with the controls. In addition, when recombinant LH3-V5/His protein was generated in 293 cells and subjected to GGT/GT activity assay, it showed GGT but not GT activity against denatured type I collagen. The results from this study clearly indicate that the major function of LH3 in osteoblasts is to glucosylate galactosylhydroxylysine residues in type I collagen and that an impairment of this LH3 function significantly affects type I collagen fibrillogenesis. PMID:21220425

  12. Lysyl hydroxylase 3 glucosylates galactosylhydroxylysine residues in type I collagen in osteoblast culture.

    Science.gov (United States)

    Sricholpech, Marnisa; Perdivara, Irina; Nagaoka, Hideaki; Yokoyama, Megumi; Tomer, Kenneth B; Yamauchi, Mitsuo

    2011-03-18

    Lysyl hydroxylase 3 (LH3), encoded by Plod3, is the multifunctional collagen-modifying enzyme possessing LH, hydroxylysine galactosyltransferase (GT), and galactosylhydroxylysine-glucosyltransferase (GGT) activities. Although an alteration in type I collagen glycosylation has been implicated in several osteogenic disorders, the role of LH3 in bone physiology has never been investigated. To elucidate the function of LH3 in bone type I collagen modifications, we used a short hairpin RNA technology in a mouse osteoblastic cell line, MC3T3-E1; generated single cell-derived clones stably suppressing LH3 (short hairpin (Sh) clones); and characterized the phenotype. Plod3 expression and the LH3 protein levels in the Sh clones were significantly suppressed when compared with the controls, MC3T3-E1, and the clone transfected with an empty vector. In comparison with controls, type I collagen synthesized by Sh clones (Sh collagen) showed a significant decrease in the extent of glucosylgalactosylhydroxylysine with a concomitant increase of galactosylhydroxylysine, whereas the total number of hydroxylysine residues was essentially unchanged. In an in vitro fibrillogenesis assay, Sh collagen showed accelerated fibrillogenesis compared with the controls. In addition, when recombinant LH3-V5/His protein was generated in 293 cells and subjected to GGT/GT activity assay, it showed GGT but not GT activity against denatured type I collagen. The results from this study clearly indicate that the major function of LH3 in osteoblasts is to glucosylate galactosylhydroxylysine residues in type I collagen and that an impairment of this LH3 function significantly affects type I collagen fibrillogenesis. PMID:21220425

  13. Icariine stimulates proliferation and differentiation of human osteoblasts by increasing production of bone morphogenetic protein 2

    Institute of Scientific and Technical Information of China (English)

    YIN Xiao-xue; CHEN Zhong-qiang; LIU Zhong-jun; MA Qing-jun; DANG Geng-ting

    2007-01-01

    Background lcariine is a flavonoid isolated from a traditional Chinese medicine Epimedium pubescens and is the main active compound of it. Recently, Epimedium pubescens was found to have a therapeutic effect on osteoporosis. But the mechanism is unclear. The aim of the study was to research the effect of lcariine on the proliferation and differentiation of human osteoblasts.Methods Human osteoblasts were obtained byinducing human marrow mesenchymal stem cells (hMSCs) directionally and were cultured in the presence of various concentrations of lcariine. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test was used to observe the effect of lcariine on cell proliferation. The activity of alkaline phosphatase (ALP) and the amount of calcified nodules were assayed to observe the effect on cell differentiation.The expression of bone morphogenetic protein 2 (BMP-2) mRNA was detected by reverse transcriptase-polymerase chain reaction (RT-PCR).Results Icariine (20 μg/ml) increased significantly the proliferation of human osteoblasts. And, lcariine (10 μg/ml and 20μg/ml) increased the activity of ALP and the amount of calcified nodules of human osteoblasts significantly (P<0.05).BMP-2 mRNA synthesis was elevated significantly in response to lcariine (20 μg/ml).Conclusions lcariine has a direct stimulatory effect on the proliferation and differentiation of cultured human osteoblastcells in vitro, which may be mediated by increasing production of BMP-2 in osteoblasts.

  14. Signal transduction pathways mediating parathyroid hormone regulation of osteoblastic gene expression

    Science.gov (United States)

    Partridge, N. C.; Bloch, S. R.; Pearman, A. T.

    1994-01-01

    Parathyroid hormone (PTH) plays a central role in regulation of calcium metabolism. For example, excessive or inappropriate production of PTH or the related hormone, parathyroid hormone related protein (PTHrP), accounts for the majority of the causes of hypercalcemia. Both hormones act through the same receptor on the osteoblast to elicit enhanced bone resorption by the osteoclast. Thus, the osteoblast mediates the effect of PTH in the resorption process. In this process, PTH causes a change in the function and phenotype of the osteoblast from a cell involved in bone formation to one directing the process of bone resorption. In response to PTH, the osteoblast decreases collagen, alkaline phosphatase, and osteopontin expression and increases production of osteocalcin, cytokines, and neutral proteases. Many of these changes have been shown to be due to effects on mRNA abundance through either transcriptional or post-transcriptional mechanisms. However, the signal transduction pathway for the hormone to cause these changes is not completely elucidated in any case. Binding of PTH and PTHrP to their common receptor has been shown to result in activation of protein kinases A and C and increases in intracellular calcium. The latter has not been implicated in any changes in mRNA of osteoblastic genes. On the other hand activation of PKA can mimic all the effects of PTH; protein kinase C may be involved in some responses. We will discuss possible mechanisms linking PKA and PKC activation to changes in gene expression, particularly at the nuclear level.

  15. Overexpression of Bcl2 in osteoblasts inhibits osteoblast differentiation and induces osteocyte apoptosis.

    Directory of Open Access Journals (Sweden)

    Takeshi Moriishi

    Full Text Available Bcl2 subfamily proteins, including Bcl2 and Bcl-X(L, inhibit apoptosis. As osteoblast apoptosis is in part responsible for osteoporosis in sex steroid deficiency, glucocorticoid excess, and aging, bone loss might be inhibited by the upregulation of Bcl2; however, the effects of Bcl2 overexpression on osteoblast differentiation and bone development and maintenance have not been fully investigated. To investigate these issues, we established two lines of osteoblast-specific BCL2 transgenic mice. In BCL2 transgenic mice, bone volume was increased at 6 weeks of age but not at 10 weeks of age compared with wild-type mice. The numbers of osteoblasts and osteocytes increased, but osteoid thickness and the bone formation rate were reduced in BCL2 transgenic mice with high expression at 10 weeks of age. The number of BrdU-positive cells was increased but that of TUNEL-positive cells was unaltered at 2 and 6 weeks of age. Osteoblast differentiation was inhibited, as shown by reduced Col1a1 and osteocalcin expression. Osteoblast differentiation of calvarial cells from BCL2 transgenic mice also fell in vitro. Overexpression of BCL2 in primary osteoblasts had no effect on osteoclastogenesis in co-culture with bone marrow cells. Unexpectedly, overexpression of BCL2 in osteoblasts eventually caused osteocyte apoptosis. Osteocytes, which had a reduced number of processes, gradually died with apoptotic structural alterations and the expression of apoptosis-related molecules, and dead osteocytes accumulated in cortical bone. These findings indicate that overexpression of BCL2 in osteoblasts inhibits osteoblast differentiation, reduces osteocyte processes, and causes osteocyte apoptosis.

  16. MiR-214 regulates the function of osteoblast under simulated microgravity by targeting ATF4

    Science.gov (United States)

    Li, Yingxian; Wang, Xiaogang; Li, Qi; Lv, Ke; Wan, Yumin; Li, Yinghui; Bai, Yanqiang

    Background: MicroRNAs (miRNAs) are small fragments of single-stranded RNA containing 18-24 nucleotides, and are generated from endogenous transcripts. MicroRNAs function in post-transcriptional gene silencing by targeting the 3'-untranslated region (UTR) of mRNAs, resulting in translational repression. Growing evidence shows that microRNAs (miRNAs) regu-late various developmental and homeostatic events in vertebrates and invertebrates. Osteoblast differentiation is a key step in proper skeletal development and acquisition of bone mass; How-ever, the physiological role of non-coding small RNAs, especially miRNAs, in osteoblast dif-ferentiation remains elusive. Methods: To study the potential involvement of miRNAs in osteoblast differentiation under stimulated microgravity, we analyzed the expression of 20 bone relative miRNAs using real time PCR platform to find particularly miRNAs whose expression is altered during osteoblast differentiation. TargetScan, miRBase and Miranda were used to predict the target gene of candidate miRNA. To investigate whether ATF4 can be directly targeted by miR-214, we engineered luciferase reporters that have either the wild-type 3'UTRs of these genes, or the mutant UTRs with a 6 base pair (bp) deletion in the target sites. Lastly, to address the in vivo role of miR-214 in bone formation, tail suspension mice model was used to simulate the change of osteoblast function and bone loss. Results: Recent studies have sug-gested that miRNAs might play a role in osteoblast differentiation and bone formation. Here, we identify miR-214 in MC3T3-E1 cells, which is a primary mouse osteoblasts cell line, to promote osteoblast differentiation by repressing Activating Transcription Factor4 (ATF4) ex-pression at the posttranscriptional level. What is more, miR-214 was found to be transcribed in C2C12 cells during bone morphogenetic protein 2-induced (BMP2-induced) osteogenesis, and overexpression of miR-214 attenuated BMP2-induced osteoblastogenesis

  17. Cell Cycle and Apoptosis Regulatory Protein (CARP)-1 is Expressed inOsteoblasts and Regulated by PTH

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Sonali; Mahalingam, Chandrika D.; Das, Varsha [Department of Internal Medicine/Endocrinology, Wayne State University School of Medicine, Detroit, MI 48201 (United States); Jamal, Shazia [Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201 (United States); Levi, Edi [Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201 (United States); Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201 (United States); Rishi, Arun K. [Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201 (United States); Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201 (United States); VA Medical Center, Wayne State University School of Medicine, Detroit, MI 48201 (United States); Datta, Nabanita S., E-mail: ndatta@med.wayne.edu [Department of Internal Medicine/Endocrinology, Wayne State University School of Medicine, Detroit, MI 48201 (United States); Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201 (United States); Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201 (United States)

    2013-07-12

    Highlights: •CARP-1 is identified for the first time in bone cells. •PTH downregulates CARP-1 expression in differentiated osteoblasts. •PTH displaces CARP-1 from nucleus to the cytoplasm in differentiated osteoblasts. •Downregulation of CARP-1 by PTH involves PKA, PKC and P-p38 MAPK pathways. -- Abstract: Bone mass is dependent on osteoblast proliferation, differentiation and life-span of osteoblasts. Parathyroid hormone (PTH) controls osteoblast cell cycle regulatory proteins and suppresses mature osteoblasts apoptosis. Intermittent administration of PTH increases bone mass but the mechanism of action are complex and incompletely understood. Cell Cycle and Apoptosis Regulatory Protein (CARP)-1 (aka CCAR1) is a novel transducer of signaling by diverse agents including cell growth and differentiation factors. To gain further insight into the molecular mechanism, we investigated involvement of CARP-1 in PTH signaling in osteoblasts. Immunostaining studies revealed presence of CARP-1 in osteoblasts and osteocytes, while a minimal to absent levels were noted in the chondrocytes of femora from 10 to 12-week old mice. Treatment of 7-day differentiated MC3T3-E1 clone-4 (MC-4) mouse osteoblastic cells and primary calvarial osteoblasts with PTH for 30 min to 5 h followed by Western blot analysis showed 2- to 3-fold down-regulation of CARP-1 protein expression in a dose- and time-dependent manner compared to the respective vehicle treated control cells. H-89, a Protein Kinase A (PKA) inhibitor, suppressed PTH action on CARP-1 protein expression indicating PKA-dependent mechanism. PMA, a Protein Kinase C (PKC) agonist, mimicked PTH action, and the PKC inhibitor, GF109203X, partially blocked PTH-dependent downregulation of CARP-1, implying involvement of PKC. U0126, a Mitogen-Activated Protein Kinase (MAPK) Kinase (MEK) inhibitor, failed to interfere with CARP-1 suppression by PTH. In contrast, SB203580, p38 inhibitor, attenuated PTH down-regulation of CARP-1

  18. Sampling frequency affects ActiGraph activity counts

    DEFF Research Database (Denmark)

    Brønd, Jan Christian; Arvidsson, Daniel

    in Matlab and sampled at frequencies of 30-100 Hz. Also, acceleration signals during indoor walking and running were sampled at 30 Hz using the ActiGraph GT3X and resampled in Matlab to frequencies of 40-100 Hz. All data was processed with the ActiLife software.Results: Acceleration frequencies between 5....... The difference increased with increasing activity intensity, with up to 1000 counts per minute at fast running.Discussion & conclusions: Activity counts from vigorous physical activity is highly attenuated with the ActiLife software. High frequency movement and noise information escape the bandpass filter...... depending on the sampling frequency of data collection, adding unexplained variation in activity counts. Therefore, the choice of sampling frequency may be an additional source of error with large impact on phsyical activty research as many investigators are using the ActiGraph with the ActiLife software...

  19. Disturbances of electrodynamic activity affect abortion in human

    OpenAIRE

    Jandová, A; Nedbalová, M.; Kobilková, J.; Čoček, A.; Dohnalová, A.; M. Cifra; Pokorný, J.

    2011-01-01

    Biochemical research of biological systems is highly developed, and it has disclosed a spectrum of chemical reactions, genetic processes, and the pathological development of various diseases. The fundamental hypothesis of physical processes in biological systems, in particular of coherent electrically polar vibrations and electromagnetic activity, was formulated by H. Fröhlich; he assumed connection of cancer process with degradation of coherent electromagnetic activity. But the questions of ...

  20. Wnt3a regulates tumor necrosis factor-α-stimulated interleukin-6 release in osteoblasts.

    Science.gov (United States)

    Natsume, Hideo; Tokuda, Haruhiko; Adachi, Seiji; Matsushima-Nishiwaki, Rie; Kato, Kenji; Minamitani, Chiho; Otsuka, Takanobu; Kozawa, Osamu

    2011-01-01

    It is recognized that Wnt pathways regulate bone metabolism. We have previously shown that tumor necrosis factor-α (TNF-α) stimulates synthesis of interleukin-6 (IL-6), a potent bone resorptive agent, via p44/p42 mitogen-activated protein (MAP) kinase and phosphatidylinositol 3-kinase (PI3-kinase)/Akt in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the effect of Wnt3a on TNF-α-stimulated IL-6 synthesis in these cells. Wnt3a, which alone did not affect the IL-6 levels, significantly suppressed the TNF-α-stimulated IL-6 release. Lithium Chloride (LiCl), which is an inhibitor of GSK3β, markedly reduced the TNF-α-stimulated IL-6 release, similar to the results with Wnt3a. The suppression by Wnt3a or LiCl was also observed in the intracellular protein levels of IL-6 elicited by TNF-α. Wnt3a failed to affect the TNF-α-induced phosphorylation of p44/p42 MAP kinase, Akt, IκB or NFκB. Either Wnt3a or LiCl failed to reduce, rather increased the IL-6 mRNA expression stimulated by TNF-α. Lactacystin, a proteasome inhibitor, and bafilomycin A1, a lysosomal protease inhibitor, significantly restored the suppressive effect of Wnt3a on TNF-α-stimulated IL-6 release. Taken together, our results strongly suggest that Wnt3a regulates IL-6 release stimulated by TNF-α at post-transcriptional level in osteoblasts.

  1. Oxygen-induced transcriptional dynamics in human osteoblasts are most prominent at the onset of mineralization.

    Science.gov (United States)

    Nicolaije, Claudia; van de Peppel, Jeroen; van Leeuwen, Johannes P T M

    2013-09-01

    Oxygen tension plays an important role in the regulation of cellular processes. During hematopoietic stem cell (HSC) differentiation, HSCs migrate from one stem cell niche to the next, each with a different oxygen tension that determines which signaling pathways are on and off, determining the differentiation stage of the cell. Oxygen tension influences osteoblast differentiation and mineralization. Low oxygen levels inhibit matrix formation and mineralization. We were interested in the regulatory mechanisms that underlie this inhibition and wondered whether a switch in oxygen tension could have varying effects depending on the differentiation phase of the osteoblasts. We performed an oxygen tension switch phase study in which we switched osteoblasts from high to low oxygen tension during their 3 week differentiation and mineralization process. We performed microarray expression profiling on samples collected during this 3 week period and analyzed biochemical and histo-chemical endpoint parameters to determine the effect of a switch in oxygen levels on mineralization. We found that low oxygen tension has the most profound impact on mineralization when administered during the period of matrix maturation. Additionally, a large set of genes was regulated by oxygen, independent of the differentiation phase. These genes were involved in cell metabolisms and matrix formation. Our study demonstrates that variation in oxygen tension strongly affects gene expression in differentiating osteoblasts. The magnitude of this change for either expression levels or the number of regulated probes, depends on the osteoblast differentiation stage, with the phase prior to the onset of mineralization being most sensitive.

  2. Zirconium ions up-regulate the BMP/SMAD signaling pathway and promote the proliferation and differentiation of human osteoblasts.

    Directory of Open Access Journals (Sweden)

    Yongjuan Chen

    Full Text Available Zirconium (Zr is an element commonly used in dental and orthopedic implants either as zirconia (ZrO2 or in metal alloys. It can also be incorporated into calcium silicate-based ceramics. However, the effects of in vitro culture of human osteoblasts (HOBs with soluble ionic forms of Zr have not been determined. In this study, primary culture of human osteoblasts was conducted in the presence of medium containing either ZrCl4 or Zirconium (IV oxynitrate (ZrO(NO32 at concentrations of 0, 5, 50 and 500 µM, and osteoblast proliferation, differentiation and calcium deposition were assessed. Incubation of human osteoblast cultures with Zr ions increased the proliferation of human osteoblasts and also gene expression of genetic markers of osteoblast differentiation. In 21 and 28 day cultures, Zr ions at concentrations of 50 and 500 µM increased the deposition of calcium phosphate. In addition, the gene expression of BMP2 and BMP receptors was increased in response to culture with Zr ions and this was associated with increased phosphorylation of SMAD1/5. Moreover, Noggin suppressed osteogenic gene expression in HOBs co-treated with Zr ions. In conclusion, Zr ions appear able to induce both the proliferation and the differentiation of primary human osteoblasts. This is associated with up-regulation of BMP2 expression and activation of BMP signaling suggesting this action is, at least in part, mediated by BMP signaling.

  3. Toxicity of iron oxide nanoparticles against osteoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Shi Sifeng [Shanghai Jiao Tong University, Department of Orthopaedic Surgery, Shanghai Sixth People' s Hospital (China); Jia Jingfu [Shanghai Jiao Tong University, School of Chemistry and Chemical Technology (China); Guo Xiaokui [Shanghai Jiao Tong University School of Medicine, Department of Medical Microbiology and Parasitology, Institutes of Medical Sciences (China); Zhao Yaping [Shanghai Jiao Tong University, School of Chemistry and Chemical Technology (China); Liu Boyu [Shanghai Jiao Tong University School of Medicine, Department of Medical Microbiology and Parasitology, Institutes of Medical Sciences (China); Chen Desheng; Guo Yongyuan; Zhang Xianlong, E-mail: zhangxianlong20101@163.com [Shanghai Jiao Tong University, Department of Orthopaedic Surgery, Shanghai Sixth People' s Hospital (China)

    2012-09-15

    Magnetic nanoparticles have been widely used for tissue repair, magnetic resonance imaging, immunoassays and drug delivery. They are very promising in orthopaedic applications and several magnetic nanoparticles have been exploited for the treatment of orthopaedic disease. Here, we conducted an in vitro study to examine the interaction of magnetic iron oxide nanoparticles with human osteoblasts to evaluate the dose-related toxicity of the nanoparticles on osteoblasts. A transmission electron microscope was used to visualise the internalised magnetic nanoparticles in osteoblasts. The CCK-8 results revealed increased cell viability (107.5 % vitality compared with the control group) when co-cultured at a low concentration (20 {mu}g/mL) and decreased cell viability (59.5 % vitality in a concentration of 300 {mu}g/mL and 25.9 % in 500 {mu}g/mL) when co-cultured in high concentrations. The flow cytometric detection revealed similar results with 5.48 % of apoptosis in a concentration of 20 {mu}g/mL, 23.40 % of apoptosis in a concentration of 300 {mu}g/mL and 28.49 % in a concentration of 500 {mu}g/mL. The disrupted cytoskeleton of osteoblasts was also revealed using a laser scanning confocal microscope. We concluded that use of a low concentration of magnetic iron oxide nanoparticles is important to avoid damage to osteoblasts.

  4. Toxicity of iron oxide nanoparticles against osteoblasts

    International Nuclear Information System (INIS)

    Magnetic nanoparticles have been widely used for tissue repair, magnetic resonance imaging, immunoassays and drug delivery. They are very promising in orthopaedic applications and several magnetic nanoparticles have been exploited for the treatment of orthopaedic disease. Here, we conducted an in vitro study to examine the interaction of magnetic iron oxide nanoparticles with human osteoblasts to evaluate the dose-related toxicity of the nanoparticles on osteoblasts. A transmission electron microscope was used to visualise the internalised magnetic nanoparticles in osteoblasts. The CCK-8 results revealed increased cell viability (107.5 % vitality compared with the control group) when co-cultured at a low concentration (20 μg/mL) and decreased cell viability (59.5 % vitality in a concentration of 300 μg/mL and 25.9 % in 500 μg/mL) when co-cultured in high concentrations. The flow cytometric detection revealed similar results with 5.48 % of apoptosis in a concentration of 20 μg/mL, 23.40 % of apoptosis in a concentration of 300 μg/mL and 28.49 % in a concentration of 500 μg/mL. The disrupted cytoskeleton of osteoblasts was also revealed using a laser scanning confocal microscope. We concluded that use of a low concentration of magnetic iron oxide nanoparticles is important to avoid damage to osteoblasts.

  5. Microdamage induced calcium efflux from bone matrix activates intracellular calcium signaling in osteoblasts via L-type and T-type voltage-gated calcium channels.

    Science.gov (United States)

    Jung, Hyungjin; Best, Makenzie; Akkus, Ozan

    2015-07-01

    Mechanisms by which bone microdamage triggers repair response are not completely understood. It has been shown that calcium efflux ([Ca(2+)]E) occurs from regions of bone undergoing microdamage. Such efflux has also been shown to trigger intracellular calcium signaling ([Ca(2+)]I) in MC3T3-E1 cells local to damaged regions. Voltage-gated calcium channels (VGCCs) are implicated in the entry of [Ca(2+)]E to the cytoplasm. We investigated the involvement of VGCC in the extracellular calcium induced intracellular calcium response (ECIICR). MC3T3-E1 cells were subjected to one dimensional calcium efflux from their basal aspect which results in an increase in [Ca(2+)]I. This increase was concomitant with membrane depolarization and it was significantly reduced in the presence of Bepridil, a non-selective VGCC inhibitor. To identify specific type(s) of VGCC in ECIICR, the cells were treated with selective inhibitors for different types of VGCC. Significant changes in the peak intensity and the number of [Ca(2+)]I oscillations were observed when L-type and T-type specific VGCC inhibitors (Verapamil and NNC55-0396, respectively) were used. So as to confirm the involvement of L- and T-type VGCC in the context of microdamage, cells were seeded on devitalized notched bone specimen, which were loaded to induce microdamage in the presence and absence of Verapamil and NNC55-0396. The results showed significant decrease in [Ca(2+)]I activity of cells in the microdamaged regions of bone when L- and T-type blockers were applied. This study demonstrated that extracellular calcium increase in association with damage depolarizes the cell membrane and the calcium ions enter the cell cytoplasm by L- and T-type VGCCs.

  6. Local origins impart conserved bone type-related differences in human osteoblast behaviour.

    Science.gov (United States)

    Shah, M; Gburcik, V; Reilly, P; Sankey, R A; Emery, R J; Clarkin, C E; Pitsillides, A A

    2015-03-04

    Osteogenic behaviour of osteoblasts from trabecular, cortical and subchondral bone were examined to determine any bone type-selective differences in samples from both osteoarthritic (OA) and osteoporotic (OP) patients. Cell growth, differentiation; alkaline phosphatase (TNAP) mRNA and activity, Runt-related transcription factor-2 (RUNX2), SP7-transcription factor (SP7), bone sialoprotein-II (BSP-II), osteocalcin/bone gamma-carboxyglutamate (BGLAP), osteoprotegerin (OPG, TNFRSF11B), receptor activator of nuclear factor-κβ ligand (RANKL, TNFSF11) mRNA levels and proangiogenic vascular endothelial growth factor-A (VEGF-A) mRNA and protein release were assessed in osteoblasts from paired humeral head samples from age-matched, human OA/OP (n = 5/4) patients. Initial outgrowth and increase in cell number were significantly faster (p origins in OA and trabecular origins in OP. We found virtually identical bone type-related differences, however, in TNFRSF11B:TNFSF11 in OA and OP, consistent with greater potential for paracrine effects on osteoclasts in trabecular osteoblasts. Subchondral osteoblasts (OA) exhibited highest VEGF-A mRNA levels and release. Our data indicate that human osteoblasts in trabecular, subchondral and cortical bone have inherent, programmed diversity, with specific bone type-related differences in growth, differentiation and pro-angiogenic potential in vitro.

  7. Toward understanding how the lactone moiety of discodermolide affects activity.

    Science.gov (United States)

    Shaw, Simon J; Sundermann, Kurt F; Burlingame, Mark A; Myles, David C; Freeze, B Scott; Xian, Ming; Brouard, Ignacio; Smith, Amos B

    2005-05-11

    A series of simplified discodermolide analogues have been designed and synthesized in an attempt to understand the role of the lactone ring. These synthetic efforts have led to an unsubstituted butyrolactone 9 being generated, which shows improved activity over the natural product.

  8. Neural activities during affective processing in people with Alzheimer's disease

    NARCIS (Netherlands)

    Lee, Tatia M. C.; Sun, Delin; Leung, Mei-Kei; Chu, Leung-Wing; Keysers, Christian

    2013-01-01

    This study examined brain activities in people with Alzheimer's disease when viewing happy, sad, and fearful facial expressions of others. A functional magnetic resonance imaging and a voxel-based morphometry methodology together with a passive viewing of emotional faces paradigm were employed to co

  9. Inhibition of Nek2 by Small Molecules Affects Proteasome Activity

    Directory of Open Access Journals (Sweden)

    Lingyao Meng

    2014-01-01

    Full Text Available Background. Nek2 is a serine/threonine kinase localized to the centrosome. It promotes cell cycle progression from G2 to M by inducing centrosome separation. Recent studies have shown that high Nek2 expression is correlated with drug resistance in multiple myeloma patients. Materials and Methods. To investigate the role of Nek2 in bortezomib resistance, we ectopically overexpressed Nek2 in several cancer cell lines, including multiple myeloma lines. Small-molecule inhibitors of Nek2 were discovered using an in-house library of compounds. We tested the inhibitors on proteasome and cell cycle activity in several cell lines. Results. Proteasome activity was elevated in Nek2-overexpressing cell lines. The Nek2 inhibitors inhibited proteasome activity in these cancer cell lines. Treatment with these inhibitors resulted in inhibition of proteasome-mediated degradation of several cell cycle regulators in HeLa cells, leaving them arrested in G2/M. Combining these Nek2 inhibitors with bortezomib increased the efficacy of bortezomib in decreasing proteasome activity in vitro. Treatment with these novel Nek2 inhibitors successfully mitigated drug resistance in bortezomib-resistant multiple myeloma. Conclusion. Nek2 plays a central role in proteasome-mediated cell cycle regulation and in conferring resistance to bortezomib in cancer cells. Taken together, our results introduce Nek2 as a therapeutic target in bortezomib-resistant multiple myeloma.

  10. Isolation and characterization of a novel plasma membrane protein, osteoblast induction factor (obif, associated with osteoblast differentiation

    Directory of Open Access Journals (Sweden)

    Minami Takashi

    2009-12-01

    Full Text Available Abstract Background While several cell types are known to contribute to bone formation, the major player is a common bone matrix-secreting cell type, the osteoblast. Chondrocytes, which plays critical roles at several stages of endochondral ossification, and osteoblasts are derived from common precursors, and both intrinsic cues and signals from extrinsic cues play critical roles in the lineage decision of these cell types. Several studies have shown that cell fate commitment within the osteoblast lineage requires sequential, stage-specific signaling to promote osteoblastic differentiation programs. In osteoblastic differentiation, the functional mechanisms of transcriptional regulators have been well elucidated, however the exact roles of extrinsic molecules in osteoblastic differentiation are less clear. Results We identify a novel gene, obif (osteoblast induction factor, encoding a transmembrane protein that is predominantly expressed in osteoblasts. During mouse development, obif is initially observed in the limb bud in a complementary pattern to Sox9 expression. Later in development, obif is highly expressed in osteoblasts at the stage of endochondral ossification. In cell line models, obif is up-regulated during osteoblastic differentiation. Exogenous obif expression stimulates osteoblastic differentiation and obif knockdown inhibits osteoblastic differentiation in preosteblastic MC3T3-E1 cells. In addition, the extracellular domain of obif protein exhibits functions similar to the full-length obif protein in induction of MC3T3-E1 differentiation. Conclusions Our results suggest that obif plays a role in osteoblastic differentiation by acting as a ligand.

  11. Mechanobiological modulation of cytoskeleton and calcium influx in osteoblastic cells by short-term focused acoustic radiation force.

    Directory of Open Access Journals (Sweden)

    Shu Zhang

    Full Text Available Mechanotransduction has demonstrated potential for regulating tissue adaptation in vivo and cellular activities in vitro. It is well documented that ultrasound can produce a wide variety of biological effects in biological systems. For example, pulsed ultrasound can be used to noninvasively accelerate the rate of bone fracture healing. Although a wide range of studies has been performed, mechanism for this therapeutic effect on bone healing is currently unknown. To elucidate the mechanism of cellular response to mechanical stimuli induced by pulsed ultrasound radiation, we developed a method to apply focused acoustic radiation force (ARF (duration, one minute on osteoblastic MC3T3-E1 cells and observed cellular responses to ARF using a spinning disk confocal microscope. This study demonstrates that the focused ARF induced F-actin cytoskeletal rearrangement in MC3T3-E1 cells. In addition, these cells showed an increase in intracellular calcium concentration following the application of focused ARF. Furthermore, passive bending movement was noted in primary cilium that were treated with focused ARF. Cell viability was not affected. Application of pulsed ultrasound radiation generated only a minimal temperature rise of 0.1°C, and induced a streaming resulting fluid shear stress of 0.186 dyne/cm(2, suggesting that hyperthermia and acoustic streaming might not be the main causes of the observed cell responses. In conclusion, these data provide more insight in the interactions between acoustic mechanical stress and osteoblastic cells. This experimental system could serve as basis for further exploration of the mechanosensing mechanism of osteoblasts triggered by ultrasound.

  12. Synergistic effects of tributyltin and 2,3,7,8-tetrachlorodibenzo-p-dioxin on differentiating osteoblasts and osteoclasts

    Energy Technology Data Exchange (ETDEWEB)

    Koskela, Antti, E-mail: antti.koskela@oulu.fi [University of Oulu, Department of Anatomy and Cell Biology, Oulu (Finland); Viluksela, Matti [National Institute for Health and Welfare, Department of Environmental Health, Kuopio (Finland); Keinänen, Meeri; Tuukkanen, Juha [University of Oulu, Department of Anatomy and Cell Biology, Oulu (Finland); Korkalainen, Merja [National Institute for Health and Welfare, Department of Environmental Health, Kuopio (Finland)

    2012-09-01

    The purpose of this study was to examine the effects of the persistent and accumulative environmental pollutants tributyltin (TBT) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) individually and in combination on differentiating bone cells. TBT and TCDD are chemically distinct compounds with different mechanisms of toxicity, but they typically have the same sources of exposure and both have been shown to affect bone development at low exposure levels. Bone marrow stem cells were isolated from femurs and tibias of C57BL/6 J mice, differentiated in culture into osteoblasts or osteoclasts and exposed to 0.1–10 nM TBT, 0.01–1 nM TCDD or 10 nM TBT + 1 nM TCDD. In osteoblasts, the combined exposure to TBT and TCDD significantly decreased the mRNA expression of alkaline phosphatase and osteocalcin more than TBT or TCDD alone. PCR array showed different gene expression profiles for TBT and TCDD individually, and the combination evoked several additional alterations in gene expression. Expression of aryl hydrocarbon receptor repressor (AHRR) was increased by TCDD as expected, but simultaneous exposure to TBT prevented the increase thus potentially strengthening AHR-mediated effects of TCDD. The number of osteoclasts was reduced by TCDD alone and in combination with TBT, but TBT alone had no effect. However, the total area of resorbed bone was remarkably lower after combined exposure than after TBT or TCDD alone. In conclusion, very low concentrations of TBT and TCDD have synergistic deleterious effects on bone formation and additive effects on bone resorption. -- Highlights: ► Combined exposure to TCDD and TBT evoked a unique gene expression profile. ► Osteoblast differentiation was synergistically disturbed after combined exposure. ► Bone resorbing activity was additively decreased after combined exposure.

  13. Seasonal Pacing - Match Importance Affects Activity in Professional Soccer

    Science.gov (United States)

    Link, Daniel; de Lorenzo, Michael F.

    2016-01-01

    This research explores the influence of match importance on player activity in professional soccer. Therefore, we used an observational approach and analyzed 1,211 matches of German Bundesliga and 2nd Bundesliga. The importance measurement employed is based on post season consequences of teams involved in a match. This means, if a match result could potentially influence the final rank, and this rank would lead to different consequences for a team, such as qualification for Champions League opposed to qualification for Europe League, then this match is classified as important; otherwise not. Activity was quantified by TOTAL DISTANCE COVERED, SPRINTS, FAST RUNS, DUELS, FOULS and ATTEMPTS. Running parameters were recorded using a semi-automatic optical tracking system, while technical variables were collected by professional data loggers. Based on our importance classification, low important matches occurred at the beginning of round 29. A two-way ANOVA indicates significantly increased FAST RUNS (+4%, d = 0.3), DUELS (+16%, d = 1.0) and FOULS (+36%, d = 1.2) in important matches compared to low important ones. For FAST RUNS and FOULS, this effect only exists in Bundesliga. A comparison of the two leagues show that TOTAL DISTANCE COVERED (+3%, d = 0.9), SPRINTS (+25%, d = 1.4) and FAST RUNS (+15%, d = 1.4) are higher compared to 2nd Bundesliga, whilst FOULS is less in Bundesliga (-7%, d = 0.3). No difference in player activity was found between matches at the beginning of a season (round 1–6) and at the end of a season (round 29–34). We conclude that match importance influences player activity in German professional soccer. The most reasonable explanation is a conscious or unconscious pacing strategy, motivated by preserving abilities or preventing injury. Since this tendency mainly exists in Bundesliga, this may suggest that more skilled players show a higher awareness for the need of pacing. PMID:27281051

  14. New thiazolidinediones affect endothelial cell activation and angiogenesis.

    Science.gov (United States)

    Rudnicki, Martina; Tripodi, Gustavo L; Ferrer, Renila; Boscá, Lisardo; Pitta, Marina G R; Pitta, Ivan R; Abdalla, Dulcineia S P

    2016-07-01

    Thiazolidinediones (TZDs) are peroxisome proliferator-activated receptor-γ (PPARγ) agonists used in treating type 2 diabetes that may exhibit beneficial pleiotropic effects on endothelial cells. In this study, we characterized the effects of three new TZDs [GQ-32 (3-biphenyl-4-ylmethyl-5-(4-nitro-benzylidene)-thiazolidine-2,4-dione), GQ-169 (5-(4-chloro-benzylidene)-3-(2,6-dichloro-benzyl)-thiazolidine-2,4-dione), and LYSO-7 (5-(5-bromo-1H-indol-3-ylmethylene)-3-(4-chlorobenzyl)-thiazolidine-2,4-dione)] on endothelial cells. The effects of the new TZDs were evaluated on the production of nitric oxide (NO) and reactive oxygen species (ROS), cell migration, tube formation and the gene expression of adhesion molecules and angiogenic mediators in human umbilical vein endothelial cells (HUVECs). PPARγ activation by new TZDs was addressed with a reporter gene assay. The three new TZDs activated PPARγ and suppressed the tumor necrosis factor α-induced expression of vascular cell adhesion molecule 1 and intercellular adhesion molecule 1. GQ-169 and LYSO-7 also inhibited the glucose-induced ROS production. Although NO production assessed with 4-amino-5-methylamino-2',7'-difluorofluorescein-FM probe indicated that all tested TZDs enhanced intracellular levels of NO, only LYSO-7 treatment significantly increased the release of NO from HUVEC measured by chemiluminescence analysis of culture media. Additionally, GQ-32 and GQ-169 induced endothelial cell migration and tube formation by the up-regulation of angiogenic molecules expression, such as vascular endothelial growth factor A and interleukin 8. GQ-169 also increased the mRNA levels of basic fibroblast growth factor, and GQ-32 enhanced transforming growth factor-β expression. Together, the results of this study reveal that these new TZDs act as partial agonists of PPARγ and modulate endothelial cell activation and endothelial dysfunction besides to stimulate migration and tube formation. PMID:27108791

  15. Seasonal Pacing - Match Importance Affects Activity in Professional Soccer.

    Science.gov (United States)

    Link, Daniel; de Lorenzo, Michael F

    2016-01-01

    This research explores the influence of match importance on player activity in professional soccer. Therefore, we used an observational approach and analyzed 1,211 matches of German Bundesliga and 2nd Bundesliga. The importance measurement employed is based on post season consequences of teams involved in a match. This means, if a match result could potentially influence the final rank, and this rank would lead to different consequences for a team, such as qualification for Champions League opposed to qualification for Europe League, then this match is classified as important; otherwise not. Activity was quantified by TOTAL DISTANCE COVERED, SPRINTS, FAST RUNS, DUELS, FOULS and ATTEMPTS. Running parameters were recorded using a semi-automatic optical tracking system, while technical variables were collected by professional data loggers. Based on our importance classification, low important matches occurred at the beginning of round 29. A two-way ANOVA indicates significantly increased FAST RUNS (+4%, d = 0.3), DUELS (+16%, d = 1.0) and FOULS (+36%, d = 1.2) in important matches compared to low important ones. For FAST RUNS and FOULS, this effect only exists in Bundesliga. A comparison of the two leagues show that TOTAL DISTANCE COVERED (+3%, d = 0.9), SPRINTS (+25%, d = 1.4) and FAST RUNS (+15%, d = 1.4) are higher compared to 2nd Bundesliga, whilst FOULS is less in Bundesliga (-7%, d = 0.3). No difference in player activity was found between matches at the beginning of a season (round 1-6) and at the end of a season (round 29-34). We conclude that match importance influences player activity in German professional soccer. The most reasonable explanation is a conscious or unconscious pacing strategy, motivated by preserving abilities or preventing injury. Since this tendency mainly exists in Bundesliga, this may suggest that more skilled players show a higher awareness for the need of pacing. PMID:27281051

  16. Disturbances of electrodynamic activity affect abortion in human

    International Nuclear Information System (INIS)

    Biochemical research of biological systems is highly developed, and it has disclosed a spectrum of chemical reactions, genetic processes, and the pathological development of various diseases. The fundamental hypothesis of physical processes in biological systems, in particular of coherent electrically polar vibrations and electromagnetic activity, was formulated by H. Fröhlich; he assumed connection of cancer process with degradation of coherent electromagnetic activity. But the questions of cellular structures capable of the coherent electrical polar oscillation, mechanisms of energy supply, and the specific role of the endogenous electromagnetic fields in transport, organisation, interactions, and information transfer remained open. The nature of physical disturbances caused by some diseases (including the recurrent abortion in humans and the cancer) was unknown. We have studied the reasons of recurrent abortions in humans by means of the cell mediated immunity (using immunologic active RNA prepared from blood of inbred laboratory mice strain C3H/H2K, infected with the lactate dehydrogenase elevating virus-LD V) and the cytogenetic examination from karyotype pictures. The recurrent abortion group contained women with dg. spontaneous abortion (n = 24) and the control group was composed of 30 healthy pregnant women. Our hypothesis was related to quality of endometrium in relation to nidation of the blastocyst. The energetic insufficiency (ATP) inhibits normal development of fetus and placenta. We hope that these ideas might have impact on further research, which could provide background for effective interdisciplinary cooperation of malignant and non-malignant diseases.

  17. Disturbances of electrodynamic activity affect abortion in human

    Science.gov (United States)

    Jandová, A.; Nedbalová, M.; Kobilková, J.; Čoček, A.; Dohnalová, A.; Cifra, M.; Pokorný, J.

    2011-12-01

    Biochemical research of biological systems is highly developed, and it has disclosed a spectrum of chemical reactions, genetic processes, and the pathological development of various diseases. The fundamental hypothesis of physical processes in biological systems, in particular of coherent electrically polar vibrations and electromagnetic activity, was formulated by H. Fröhlich he assumed connection of cancer process with degradation of coherent electromagnetic activity. But the questions of cellular structures capable of the coherent electrical polar oscillation, mechanisms of energy supply, and the specific role of the endogenous electromagnetic fields in transport, organisation, interactions, and information transfer remained open. The nature of physical disturbances caused by some diseases (including the recurrent abortion in humans and the cancer) was unknown. We have studied the reasons of recurrent abortions in humans by means of the cell mediated immunity (using immunologic active RNA prepared from blood of inbred laboratory mice strain C3H/H2K, infected with the lactate dehydrogenase elevating virus-LD V) and the cytogenetic examination from karyotype pictures. The recurrent abortion group contained women with dg. spontaneous abortion (n = 24) and the control group was composed of 30 healthy pregnant women. Our hypothesis was related to quality of endometrium in relation to nidation of the blastocyst. The energetic insufficiency (ATP) inhibits normal development of fetus and placenta. We hope that these ideas might have impact on further research, which could provide background for effective interdisciplinary cooperation of malignant and non-malignant diseases.

  18. Nanostructured niobium oxide coatings influence osteoblast adhesion.

    Science.gov (United States)

    Eisenbarth, E; Velten, D; Müller, M; Thull, R; Breme, J

    2006-10-01

    The interaction of osteoblasts was correlated to the roughness of nanosized surface structures of Nb(2)O(5) coatings on polished CP titanium grade 2. Nb(2)O(5) sol-gel coatings were selected as a model surface to study the interaction of osteoblasts with nanosized surface structures. The surface roughness was quantified by determination of the average surface finish (Ra number) by means of atomic force microscopy. Surface topographies with Ra = 7, 15, and 40 nm were adjusted by means of the annealing process parameters (time and temperature) within a sol-gel coating procedure. The observed osteoblast migration was fastest on smooth surfaces with Ra = 7 nm. The adhesion strength, spreading area, and collagen-I synthesis showed the best results on an intermediate roughness of Ra = 15 nm. The surface roughness of Ra = 40 nm was rather peaked and reduced the speed of cell reactions belonging to the adhesion process. PMID:16788971

  19. Palmitate attenuates osteoblast differentiation of fetal rat calvarial cells

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Lee-Chuan C.; Ford, Jeffery J. [Department of Biochemistry, The University of Texas Health Science Center at San Antonio, TX (United States); Lee, John C. [Department of Biochemistry, The University of Texas Health Science Center at San Antonio, TX (United States); The Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, TX (United States); Adamo, Martin L., E-mail: adamo@biochem.uthscsa.edu [Department of Biochemistry, The University of Texas Health Science Center at San Antonio, TX (United States); The Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, TX (United States)

    2014-07-18

    Highlights: • Palmitate inhibits osteoblast differentiation. • Fatty acid synthase. • PPARγ. • Acetyl Co-A carboxylase inhibitor TOFA. • Fetal rat calvarial cell culture. - Abstract: Aging is associated with the accumulation of ectopic lipid resulting in the inhibition of normal organ function, a phenomenon known as lipotoxicity. Within the bone marrow microenvironment, elevation in fatty acid levels may produce an increase in osteoclast activity and a decrease in osteoblast number and function, thus contributing to age-related osteoporosis. However, little is known about lipotoxic mechanisms in intramembraneous bone. Previously we reported that the long chain saturated fatty acid palmitate inhibited the expression of the osteogenic markers RUNX2 and osteocalcin in fetal rat calvarial cell (FRC) cultures. Moreover, the acetyl CoA carboxylase inhibitor TOFA blocked the inhibitory effect of palmitate on expression of these two markers. In the current study we have extended these observations to show that palmitate inhibits spontaneous mineralized bone formation in FRC cultures in association with reduced mRNA expression of RUNX2, alkaline phosphatase, osteocalcin, and bone sialoprotein and reduced alkaline phosphatase activity. The effects of palmitate on osteogenic marker expression were inhibited by TOFA. Palmitate also inhibited the mRNA expression of fatty acid synthase and PPARγ in FRC cultures, and as with osteogenic markers, this effect was inhibited by TOFA. Palmitate had no effect on FRC cell proliferation or apoptosis, but inhibited BMP-7-induced alkaline phosphatase activity. We conclude that palmitate accumulation may lead to lipotoxic effects on osteoblast differentiation and mineralization and that increases in fatty acid oxidation may help to prevent these lipotoxic effects.

  20. Palmitate attenuates osteoblast differentiation of fetal rat calvarial cells

    International Nuclear Information System (INIS)

    Highlights: • Palmitate inhibits osteoblast differentiation. • Fatty acid synthase. • PPARγ. • Acetyl Co-A carboxylase inhibitor TOFA. • Fetal rat calvarial cell culture. - Abstract: Aging is associated with the accumulation of ectopic lipid resulting in the inhibition of normal organ function, a phenomenon known as lipotoxicity. Within the bone marrow microenvironment, elevation in fatty acid levels may produce an increase in osteoclast activity and a decrease in osteoblast number and function, thus contributing to age-related osteoporosis. However, little is known about lipotoxic mechanisms in intramembraneous bone. Previously we reported that the long chain saturated fatty acid palmitate inhibited the expression of the osteogenic markers RUNX2 and osteocalcin in fetal rat calvarial cell (FRC) cultures. Moreover, the acetyl CoA carboxylase inhibitor TOFA blocked the inhibitory effect of palmitate on expression of these two markers. In the current study we have extended these observations to show that palmitate inhibits spontaneous mineralized bone formation in FRC cultures in association with reduced mRNA expression of RUNX2, alkaline phosphatase, osteocalcin, and bone sialoprotein and reduced alkaline phosphatase activity. The effects of palmitate on osteogenic marker expression were inhibited by TOFA. Palmitate also inhibited the mRNA expression of fatty acid synthase and PPARγ in FRC cultures, and as with osteogenic markers, this effect was inhibited by TOFA. Palmitate had no effect on FRC cell proliferation or apoptosis, but inhibited BMP-7-induced alkaline phosphatase activity. We conclude that palmitate accumulation may lead to lipotoxic effects on osteoblast differentiation and mineralization and that increases in fatty acid oxidation may help to prevent these lipotoxic effects

  1. (--Epigallocatechin Gallate Reduces Platelet-Derived Growth Factor-BB-Stimulated Interleukin-6 Synthesis in Osteoblasts: Suppression of SAPK/JNK

    Directory of Open Access Journals (Sweden)

    Osamu Kozawa

    2009-01-01

    Full Text Available We previously showed that the mitogen-activated protein (MAP kinase superfamily, p44/p42 MAP kinase, p38 MAP kinase, and stress-activated protein kinase (SAPK/c-Jun N-terminal (JNK, positively plays a part in the platelet-derived growth factor-BB- (PDGF-BB- stimulated synthesis of interleukin-6 (IL-6, a potent bone resorptive agent, in osteoblast-like MC3T3-E1 cells while Akt and p70 S6 kinase negatively regulates the synthesis. In the present study, we investigated whether (--epigallocatechin gallate (EGCG, one of the major green tea flavonoids, affects the synthesis of IL-6 in these cells and the mechanism. EGCG significantly reduced the IL-6 synthesis and IL-6 mRNA expression stimulated by PDGF-BB, EGCG reduced the PDGF-BB-stimulated IL-6 synthesis also in primary-cultured osteoblasts. EGCG had no effect on the levels of osteocalcin and osteoprotegerin in MC3T3-E1 cells. The PDGF-BB-induced autophosphorylation of PDGF receptor β was not suppressed by EGCG. The PDGF-BB-induced phosphorylation of p44/p42 MAP kinase and p38 MAP kinase was not affected by EGCG. On the other hand, EGCG markedly suppressed the PDGF-BB-induced phosphorylation of SAPK/JNK. Finally, the PDGF-BB-induced phosphorylation of Akt and p70 S6 kinase was not affected by EGCG. These results strongly suggest that EGCG inhibits the PDGF-BB-stimulated synthesis of IL-6 via suppression of SAPK/JNK pathway in osteoblasts.

  2. Disturbances of electrodynamic activity affect abortion in animals

    Science.gov (United States)

    Nedbalova, M.; Jandova, A.; Dohnalova, A.

    2011-12-01

    A specific kind of intracellular organelles, the mitochondria, is the place of metabolic energy production by oxidative mechanism. We used cell mediated immunity method for verification of the energy metabolism (ATP production). The antigen (immunological functional RNA) was obtained from blood of inbred laboratory mice strain C3H/H2K, infected with the lactate dehydrogenase elevating virus (LDV) and prepared by the high pressure gel chromatography (HPGC). We have studied the immunological adaptability of LDH viral antigen in 62 pigs (12 parents and 50 piglings). Exitus of piglings was in case of positive imunological response on LDV. The statement results from a comparison of the relative frequency of an incidence of identical findings in male piglets and sows and from identical findings in female piglets and pigs. The efficient elaboration and utilization of energy in cell may be damaged by the changes of energy production systems and also by long-term parasitary depletion of ATP energy. Biological activity is based not only on biochemical but also on biophysical mechanisms. Biophysical processes are also involved in the transfer of information and its processing for making decisions and providing control, which are important parts of biological activity. These experimental results were used for the same study in human.

  3. Disturbances of electrodynamic activity affect abortion in animals

    International Nuclear Information System (INIS)

    A specific kind of intracellular organelles, the mitochondria, is the place of metabolic energy production by oxidative mechanism. We used cell mediated immunity method for verification of the energy metabolism (ATP production). The antigen (immunological functional RNA) was obtained from blood of inbred laboratory mice strain C3H/H2K, infected with the lactate dehydrogenase elevating virus (LDV) and prepared by the high pressure gel chromatography (HPGC). We have studied the immunological adaptability of LDH viral antigen in 62 pigs (12 parents and 50 piglings). Exitus of piglings was in case of positive imunological response on LDV. The statement results from a comparison of the relative frequency of an incidence of identical findings in male piglets and sows and from identical findings in female piglets and pigs. The efficient elaboration and utilization of energy in cell may be damaged by the changes of energy production systems and also by long-term parasitary depletion of ATP energy. Biological activity is based not only on biochemical but also on biophysical mechanisms. Biophysical processes are also involved in the transfer of information and its processing for making decisions and providing control, which are important parts of biological activity. These experimental results were used for the same study in human.

  4. Human immunodeficiency syndromes affecting human natural killer cell cytolytic activity

    Directory of Open Access Journals (Sweden)

    Daniel Denis Billadeau

    2014-01-01

    Full Text Available NK cells are lymphocytes of the innate immune system that secrete cytokines upon activation and mediate the killing of tumor cells and virus-infected cells, especially those that escape the adaptive T-cell response caused by the down regulation of MHC-I. The induction of cytotoxicity requires that NK cells contact target cells through adhesion receptors, and initiate activation signaling leading to increased adhesion and accumulation of F-actin at the NK cell cytotoxic synapse. Concurrently, lytic granules undergo minus-end directed movement and accumulate at the microtubule-organizing center (MTOC through the interaction with microtubule motor proteins, followed by polarization of the lethal cargo toward the target cell. Ultimately, myosin-dependent movement of the lytic granules toward the NK cell plasma membrane through F-actin channels, along with SNARE-dependent fusion promotes lytic granule release into the cleft between the NK cell and target cell resulting in target cell killing. Herein, we will discuss several disease-causing mutations in primary immunodeficiency syndromes and how they impact NK cell-mediated killing by disrupting distinct steps of this tightly regulated process.

  5. The Role of KV7.3 in Regulating Osteoblast Maturation and Mineralization.

    Science.gov (United States)

    Yang, Ji Eun; Song, Min Seok; Shen, Yiming; Ryu, Pan Dong; Lee, So Yeong

    2016-01-01

    KCNQ (KV7) channels are voltage-gated potassium (KV) channels, and the function of KV7 channels in muscles, neurons, and sensory cells is well established. We confirmed that overall blockade of KV channels with tetraethylammonium augmented the mineralization of bone-marrow-derived human mesenchymal stem cells during osteogenic differentiation, and we determined that KV7.3 was expressed in MG-63 and Saos-2 cells at the mRNA and protein levels. In addition, functional KV7 currents were detected in MG-63 cells. Inhibition of KV7.3 by linopirdine or XE991 increased the matrix mineralization during osteoblast differentiation. This was confirmed by alkaline phosphatase, osteocalcin, and osterix in MG-63 cells, whereas the expression of Runx2 showed no significant change. The extracellular glutamate secreted by osteoblasts was also measured to investigate its effect on MG-63 osteoblast differentiation. Blockade of KV7.3 promoted the release of glutamate via the phosphorylation of extracellular signal-regulated kinase 1/2-mediated upregulation of synapsin, and induced the deposition of type 1 collagen. However, activation of KV7.3 by flupirtine did not produce notable changes in matrix mineralization during osteoblast differentiation. These results suggest that KV7.3 could be a novel regulator in osteoblast differentiation. PMID:26999128

  6. The Role of KV7.3 in Regulating Osteoblast Maturation and Mineralization

    Directory of Open Access Journals (Sweden)

    Ji Eun Yang

    2016-03-01

    Full Text Available KCNQ (KV7 channels are voltage-gated potassium (KV channels, and the function of KV7 channels in muscles, neurons, and sensory cells is well established. We confirmed that overall blockade of KV channels with tetraethylammonium augmented the mineralization of bone-marrow-derived human mesenchymal stem cells during osteogenic differentiation, and we determined that KV7.3 was expressed in MG-63 and Saos-2 cells at the mRNA and protein levels. In addition, functional KV7 currents were detected in MG-63 cells. Inhibition of KV7.3 by linopirdine or XE991 increased the matrix mineralization during osteoblast differentiation. This was confirmed by alkaline phosphatase, osteocalcin, and osterix in MG-63 cells, whereas the expression of Runx2 showed no significant change. The extracellular glutamate secreted by osteoblasts was also measured to investigate its effect on MG-63 osteoblast differentiation. Blockade of KV7.3 promoted the release of glutamate via the phosphorylation of extracellular signal-regulated kinase 1/2-mediated upregulation of synapsin, and induced the deposition of type 1 collagen. However, activation of KV7.3 by flupirtine did not produce notable changes in matrix mineralization during osteoblast differentiation. These results suggest that KV7.3 could be a novel regulator in osteoblast differentiation.

  7. Cobalt in alluvial Egyptian soils as affected by industrial activities

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Twenty-five surface (0-20 cm) soil samples were collected from different locations in Egypt representing non-polluted,moderately and highly polluted soils. The aim of this study was to evaluate total Co content in alluvial soils of Delta in Egypt using the delayed Neturen activation analysis technique (DNAA). The two prominent gamma ray lines at 1173.2 and 1332.5 keV was efficiently used for 60Co determination. Co content in non-polluted soil samples ranged between 13.12 to 23.20 ppm Co with an average of 18.16*4.38 ppm. Cobalt content in moderately polluted soils ranged between 26.5 to 30.00 ppm with an average of 28.3*1.3 ppm. The highest Co levels (ranged from 36 to 64.69 ppm with an average of 51.9*9.5); were observed in soil samples collected from, either highly polluted agricultural soils due to prolonged irrigation with industrial wastewater or surface soil samples from industrial sites.

  8. Tasting calories differentially affects brain activation during hunger and satiety.

    Science.gov (United States)

    van Rijn, Inge; de Graaf, Cees; Smeets, Paul A M

    2015-02-15

    An important function of eating is ingesting energy. Our objectives were to assess whether oral exposure to caloric and non-caloric stimuli elicits discriminable responses in the brain and to determine in how far these responses are modulated by hunger state and sweetness. Thirty women tasted three stimuli in two motivational states (hunger and satiety) while their brain responses were measured using functional magnetic resonance imaging in a randomized crossover design. Stimuli were solutions of sucralose (sweet, no energy), maltodextrin (non-sweet, energy) and sucralose+maltodextrin (sweet, energy). We found no main effect of energy content and no interaction between energy content and sweetness. However, there was an interaction between hunger state and energy content in the median cingulate (bilaterally), ventrolateral prefrontal cortex, anterior insula and thalamus. This indicates that the anterior insula and thalamus, areas in which hunger state and taste of a stimulus are integrated, also integrate hunger state with caloric content of a taste stimulus. Furthermore, in the median cingulate and ventrolateral prefrontal cortex, tasting energy resulted in more activation during satiety compared to hunger. This finding indicates that these areas, which are known to be involved in processes that require approach and avoidance, are also involved in guiding ingestive behavior. In conclusion, our results suggest that energy sensing is a hunger state dependent process, in which the median cingulate, ventrolateral prefrontal cortex, anterior insula and thalamus play a central role by integrating hunger state with stimulus relevance.

  9. Involvement of the G-protein-coupled receptor 4 in RANKL expression by osteoblasts in an acidic environment.

    Science.gov (United States)

    Okito, Asuka; Nakahama, Ken-Ichi; Akiyama, Masako; Ono, Takashi; Morita, Ikuo

    2015-03-01

    Osteoclast activity is enhanced in acidic environments following systemic or local inflammation. However, the regulatory mechanism of receptor activator of NF-κB ligand (RANKL) expression in osteoblasts under acidic conditions is not fully understood. In the present paper, we detected the mRNA expression of the G-protein-coupled receptor (GPR) proton sensors GPR4 and GPR65 (T-cell death-associated gene 8, TDAG8), in osteoblasts. RANKL expression and the cyclic AMP (cAMP) level in osteoblasts were up-regulated under acidic culture conditions. Acidosis-induced up-regulation of RANKL was abolished by the protein kinase A inhibitor H89. To clarify the role of GPR4 in RANKL expression, GPR4 gain and loss of function experiments were performed. Gene knockdown and forced expression of GPR4 caused reduction and induction of RANKL expression, respectively. These results suggested that, at least in part, RANKL expression by osteoblasts in an acidic environment was mediated by cAMP/PKA signaling resulting from GPR4 activation. A comprehensive microarray analysis of gene expression of osteoblasts revealed that, under acidic conditions, the phenotype of osteoblasts was that of an osteoclast supporting cell rather than that of a mineralizing cell. These findings will contribute to a molecular understanding of bone disruption in an acidic environment. PMID:25668130

  10. Rapid oriented fibril formation of fish scale collagen facilitates early osteoblastic differentiation of human mesenchymal stem cells.

    Science.gov (United States)

    Matsumoto, Rena; Uemura, Toshimasa; Xu, Zhefeng; Yamaguchi, Isamu; Ikoma, Toshiyuki; Tanaka, Junzo

    2015-08-01

    We studied the effect of fibril formation of fish scale collagen on the osteoblastic differentiation of human mesenchymal stem cells (hMSCs). We found that hMSCs adhered easily to tilapia scale collagen, which remarkably accelerated the early stage of osteoblastic differentiation in hMSCs during in vitro cell culture. Osteoblastic markers such as ALP activity, osteopontin, and bone morphogenetic protein 2 were markedly upregulated when the hMSCs were cultured on a tilapia collagen surface, especially in the early osteoblastic differentiation stage. We hypothesized that this phenomenon occurs due to specific fibril formation of tilapia collagen. Thus, we examined the time course of collagen fibril formation using high-speed atomic force microscopy. Moreover, to elucidate the effect of the orientation of fibril formation on the differentiation of hMSCs, we measured ALP activity of hMSCs cultured on two types of tilapia scale collagen membranes with different degrees of fibril formation. The ALP activity in hMSCs cultured on a fibrous collagen membrane was significantly higher than on a non-fibrous collagen membrane even before adding osteoblastic differentiation medium. These results showed that the degree of the fibril formation of tilapia collagen was essential for the osteoblastic differentiation of hMSCs. PMID:25546439

  11. Involvement of the G-protein-coupled receptor 4 in RANKL expression by osteoblasts in an acidic environment

    Energy Technology Data Exchange (ETDEWEB)

    Okito, Asuka [Department of Cellular Physiological Chemistry, Tokyo Medical and Dental University, Tokyo (Japan); Department of Orthodontic Science, Tokyo Medical and Dental University, Tokyo (Japan); Nakahama, Ken-ichi, E-mail: nakacell@tmd.ac.jp [Department of Cellular Physiological Chemistry, Tokyo Medical and Dental University, Tokyo (Japan); Akiyama, Masako [Department of Cellular Physiological Chemistry, Tokyo Medical and Dental University, Tokyo (Japan); Ono, Takashi [Department of Orthodontic Science, Tokyo Medical and Dental University, Tokyo (Japan); Morita, Ikuo [Department of Cellular Physiological Chemistry, Tokyo Medical and Dental University, Tokyo (Japan)

    2015-03-06

    Osteoclast activity is enhanced in acidic environments following systemic or local inflammation. However, the regulatory mechanism of receptor activator of NF-κB ligand (RANKL) expression in osteoblasts under acidic conditions is not fully understood. In the present paper, we detected the mRNA expression of the G-protein-coupled receptor (GPR) proton sensors GPR4 and GPR65 (T-cell death-associated gene 8, TDAG8), in osteoblasts. RANKL expression and the cyclic AMP (cAMP) level in osteoblasts were up-regulated under acidic culture conditions. Acidosis-induced up-regulation of RANKL was abolished by the protein kinase A inhibitor H89. To clarify the role of GPR4 in RANKL expression, GPR4 gain and loss of function experiments were performed. Gene knockdown and forced expression of GPR4 caused reduction and induction of RANKL expression, respectively. These results suggested that, at least in part, RANKL expression by osteoblasts in an acidic environment was mediated by cAMP/PKA signaling resulting from GPR4 activation. A comprehensive microarray analysis of gene expression of osteoblasts revealed that, under acidic conditions, the phenotype of osteoblasts was that of an osteoclast supporting cell rather than that of a mineralizing cell. These findings will contribute to a molecular understanding of bone disruption in an acidic environment. - Highlights: • RANKL expression was increased in osteoblasts under acidosis via cAMP/PKA pathway. • GRP4 knockdown resulted in decrease of RANKL expression. • GRP4 overexpression resulted in increase of RANKL expression. • Osteoblast mineralization was reduced under acidic condition.

  12. Chronic skin inflammation leads to bone loss by IL-17-mediated inhibition of Wnt signaling in osteoblasts.

    Science.gov (United States)

    Uluçkan, Özge; Jimenez, Maria; Karbach, Susanne; Jeschke, Anke; Graña, Osvaldo; Keller, Johannes; Busse, Björn; Croxford, Andrew L; Finzel, Stephanie; Koenders, Marije; van den Berg, Wim; Schinke, Thorsten; Amling, Michael; Waisman, Ari; Schett, Georg; Wagner, Erwin F

    2016-03-16

    Inflammation has important roles in tissue regeneration, autoimmunity, and cancer. Different inflammatory stimuli can lead to bone loss by mechanisms that are not well understood. We show that skin inflammation induces bone loss in mice and humans. In psoriasis, one of the prototypic IL-17A-mediated inflammatory human skin diseases, low bone formation and bone loss correlated with increased serum IL-17A levels. Similarly, in two mouse models with chronic IL-17A-mediated skin inflammation,K14-IL17A(ind)andJunB(Δep), strong inhibition of bone formation was observed, different from classical inflammatory bone loss where osteoclast activation leads to bone degradation. We show that under inflammatory conditions, skin-resident cells such as keratinocytes, γδ T cells, and innate lymphoid cells were able to express IL-17A, which acted systemically to inhibit osteoblast and osteocyte function by a mechanism involving Wnt signaling. IL-17A led to decreased Wnt signaling in vitro, and importantly, pharmacological blockade of IL-17A rescued Wnt target gene expression and bone formation in vivo. These data provide a mechanism where IL-17A affects bone formation by regulating Wnt signaling in osteoblasts and osteocytes. This study suggests that using IL-17A blocking agents in psoriasis could be beneficial against bone loss in these patients. PMID:27089206

  13. Evaluation of epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes and concerns on osteoblasts.

    Science.gov (United States)

    Chu, Chenyu; Deng, Jia; Xiang, Lin; Wu, Yingying; Wei, Xiawei; Qu, Yili; Man, Yi

    2016-10-01

    Collagen membranes have ideal biological and mechanical properties for supporting infiltration and proliferation of osteoblasts and play a vital role in guided bone regeneration (GBR). However, pure collagen can lead to inflammation, resulting in progressive bone resorption. Therefore, a method for regulating the level of inflammatory cytokines at surgical sites is paramount for the healing process. Epigallocatechin-3-gallate (EGCG) is a component extracted from green tea with numerous biological activities including an anti-inflammatory effect. Herein, we present a novel cross-linked collagen membrane containing different concentrations of EGCG (0.0064%, 0.064%, and 0.64%) to regulate the level of inflammatory factors secreted by pre-osteoblast cells; improve cell proliferation; and increase the tensile strength, wettability, and thermal stability of collagen membranes. Scanning electron microscope images show that the surfaces of collagen membranes became smoother and the collagen fiber diameters became larger with EGCG treatment. Measurement of the water contact angle demonstrated that introducing EGCG improved membrane wettability. Fourier transform infrared spectroscopy analyses indicated that the backbone of collagen was intact, and the thermal stability was significant improved in differential scanning calorimetry. The mechanical properties of 0.064% and 0.64% EGCG-treated collagen membranes were 1.5-fold greater than those of the control. The extent of cross-linking was significantly increased, as determined by a 2,4,6-trinitrobenzenesulfonic acid solution assay. The Cell Counting Kit-8 (CCK-8) and live/dead assays revealed that collagen membrane cross-linked by 0.0064% EGCG induced greater cell proliferation than pure collagen membranes. Additionally, real-time polymerase chain reaction and enzyme-linked immunosorbent assay results showed that EGCG significantly affected the production of inflammatory factors secreted by MC3T3-E1 cells. Taken together, our

  14. Potential of Resveratrol Analogues as Antagonists of Osteoclasts and Promoters of Osteoblasts

    DEFF Research Database (Denmark)

    Kupisiewicz, Katarzyna; Boissy, Patrice; Abdallah, Basem M;

    2010-01-01

    The plant phytoalexin resveratrol was previously demonstrated to inhibit the differentiation and bone resorbing activity of osteoclasts, to promote the formation of osteoblasts from mesenchymal precursors in cultures, and inhibit myeloma cell proliferation, when used at high concentrations....... In the current study, we screened five structurally modified resveratrol analogues for their ability to modify the differentiation of osteoclasts and osteoblasts and proliferation of myeloma cells. Compared to resveratrol, analogues showed an up to 5,000-fold increased potency to inhibit osteoclast...... differentiation. To a lesser extent, resveratrol analogues also promoted osteoblast maturation. However, they did not antagonize the proliferation of myeloma cells. The potency of the best-performing candidate in vitro was tested in vivo in an ovariectomy-induced model of osteoporosis, but an effect on bone loss...

  15. Cultures of human embryonic osteoblasts. A new in vitro model for biocompatibility studies.

    Science.gov (United States)

    Riccio, V; Della Ragione, F; Marrone, G; Palumbo, R; Guida, G; Oliva, A

    1994-11-01

    Cell populations derived from human embryonic bone were isolated according to the ability of osteoblasts to migrate from bone onto glass fragments. Morphologic and biochemical assays showed (1) osteoblast-like appearance; (2) elevated alkaline phosphatase 1,25(OH)2D3 responsive activity associated with plasma membranes and matrix vesicles; (3) production of a thick extracellular matrix, mainly composed of Type I collagen, which mineralized in the presence of 10 mM beta-glycerophosphate; and (4) higher growth rate and viability when compared with their mature counterpart. Cultures of embryonic cells were challenged with particles of several biomaterials, and their effects on morphology, vitality, and osteogenic capacity of the cultured cells were tested. Stainless steel, titanium alloy, Co-Cr-Mo alloy (vitallium), carbon fiber-reinforced polybutylene terephtalate, ultra-high molecular weight polyethylene, ceramic, calcium phosphate, and hydroxyapatite did not exert any significant deleterious effects on the cultured human osteoblasts. PMID:7955704

  16. Bone development and its relation to fracture repair. The role of mesenchymal osteoblasts and surface osteoblasts

    OpenAIRE

    Shapiro, F

    2008-01-01

    Bone development occurs by two mechanisms: intramembranous bone formation and endochondral bone formation. Bone tissue forms by eventual differentiation of osteoprogenitor cells into either mesenchymal osteoblasts (MOBL), which synthesize woven bone in random orientation, or surface osteoblasts (SOBL), which synthesize bone on surfaces in a well oriented lamellar array. Bone repair uses the same formation patterns as bone development but the specific mechanism of repair is determined by the b...

  17. Taurine inhibits serum deprivation-induced osteoblast apoptosis via the taurine transporter/ERK signaling pathway

    OpenAIRE

    Lei-Yi Zhang; Yue-Ying Zhou; Fei Chen; Bing Wang; Jing Li; You-Wen Deng; Wei-Dong Liu; Zheng-Guang Wang; Ya-Wei Li; Dong-Zhe Li; Guo-Hua Lv; Bang-Liang Yin

    2011-01-01

    Taurine has positive effects on bone metabolism. However, the effects of taurine on osteoblast apoptosis in vitro have not been reported. The aim of this study was to investigate the activity of taurine on apoptosis of mouse osteoblastic MC3T3-E1 cells. The data showed that 1, 5, 10, or 20 mM taurine resulted in 16.7, 34.2, 66.9, or 63.75% reduction of MC3T3-E1 cell apoptosis induced by the serum deprivation (serum-free α-MEM), respectively. Taurine (1, 5, or 10 mM) also reduced cytochrome c ...

  18. Nanoscale topography of nanocrystalline diamonds promotes differentiation of osteoblasts.

    Science.gov (United States)

    Kalbacova, M; Rezek, B; Baresova, V; Wolf-Brandstetter, C; Kromka, A

    2009-10-01

    The excellent mechanical, tribological and biochemical properties of diamond coatings are promising for improving orthopedic or stomatology implants. A crucial prerequisite for such applications is an understanding and control of the biological response of the diamond coatings. This study concentrates on the correlation of diamond surface properties with osteoblast behavior. Nanocrystalline diamond (NCD) films (grain size up to 200 nm, surface roughness 20 nm) were deposited on silicon substrates of varying roughnesses (1, 270 and 500 nm) and treated by oxygen plasma to generate a hydrophilic surface. Atomic force microscopy was used for topographical characterization of the films. As a reference surface, tissue culture polystyrene (PS) was used. Scanning electron microscopy and immunofluorescence staining was used to visualize cell morphological features as a function of culture time. Metabolic activity, alkaline phosphatase activity, and calcium and phosphate deposition was also monitored. The results show an enhanced osteoblast adhesion as well as increased differentiation (raised alkaline phosphatase activity and mineral deposition) on NCD surfaces (most significantly on RMS 20 nm) compared to PS. This is attributed mainly to the specific surface topography as well as to the biocompatible properties of diamond. Hence the controlled (topographically structured) diamond coating of various substrates is promising for preparation of better implants, which offer faster colonization by specific cells as well as longer-term stability. PMID:19433140

  19. Osteoblastic cell behavior on nanostructured metal implants.

    NARCIS (Netherlands)

    Guehennec, L Le; Martin, F.; Lopez-Heredia, M.A.; Louarn, G.; Amouriq, Y.; Cousty, J.; Layrolle, P.

    2008-01-01

    AIMS: Surface modifications at the nanometric scale may promote protein adsorption, cell adhesion and thus favor the osseointegration of metal implants. The behavior of osteoblastic cells was studied on mirror-polished (Smooth-SS) and nanostructured (Nano-SS) stainless steel surfaces. MATERIALS & ME

  20. Mathematical model of electrotaxis in osteoblastic cells

    NARCIS (Netherlands)

    Vanegas-Acosta, J.C.; Garzón-Alvarado, D.A.; Zwamborn, A.P.M.

    2012-01-01

    Electrotaxis is the cell migration in the presence of an electric field (EF). This migration is parallel to the EF vector and overrides chemical migration cues. In this paper we introduce a mathematical model for the electrotaxis in osteoblastic cells. The model is evaluated using different EF stren

  1. Inhibition of methylation decreases osteoblast differentiation via a non-DNA-dependent methylation mechanism.

    Science.gov (United States)

    Vaes, Bart L T; Lute, Carolien; van der Woning, Sebastian P; Piek, Ester; Vermeer, Jenny; Blom, Henk J; Mathers, John C; Müller, Michael; de Groot, Lisette C P G M; Steegenga, Wilma T

    2010-02-01

    S-adenosylmethionine (SAM)-dependent methylation of biological molecules including DNA and proteins is rapidly being uncovered as a critical mechanism for regulation of cellular processes. We investigated the effects of reduced SAM-dependent methylation on osteoblast differentiation by using periodate oxidized adenosine (ADOX), an inhibitor of SAM-dependent methyltransferases. The capacity of this agent to modulate osteoblast differentiation was analyzed under non-osteogenic control conditions and during growth factor-induced differentiation and compared with the effect of inhibition of DNA methylation by 5-Aza-2'-deoxycytidine (5-Aza-CdR). Without applying specific osteogenic triggers, both ADOX and 5-Aza-CdR induced mRNA expression of the osteoblast markers Alp, Osx, and Ocn in murine C2C12 cells. Under osteogenic conditions, ADOX inhibited differentiation of both human mesenchymal stem cells and C2C12 cells. Gene expression analysis of early (Msx2, Dlx5, Runx2) and late (Alp, Osx, Ocn) osteoblast markers during bone morphogenetic protein 2-induced C2C12 osteoblast differentiation revealed that ADOX only reduced expression of the late phase Runx2 target genes. By using a Runx2-responsive luciferase reporter (6xOSE), we showed that ADOX reduced the activity of Runx2, while 5-Aza-CdR had no effect. Taken together, our data suggest that decreased SAM-dependent methyltransferase activity leads to impaired osteoblast differentiation via non-DNA-dependent methylation mechanisms and that methylation is a regulator of Runx2-controlled gene expression.

  2. Youth perceptions of how neighborhood physical environment and peers affect physical activity: a focus group study

    OpenAIRE

    Smith, Alan L.; Troped, Philip J; McDonough, Meghan H; DeFreese, J.D.

    2015-01-01

    Objective There is need for a youth-informed conceptualization of how environmental and social neighborhood contexts influence physical activity. We assessed youths’ perceptions of their neighborhood physical and peer environments as affecting physical activity. Methods Thirty-three students (20 girls; ages 12-14 years) participated in focus groups about the physical environment and peers within their neighborhoods, and their understanding of how they affect physical activity. Results Inducti...

  3. Osteoblastic response to pectin nanocoating on titanium surfaces.

    Science.gov (United States)

    Gurzawska, Katarzyna; Svava, Rikke; Yihua, Yu; Haugshøj, Kenneth Brian; Dirscherl, Kai; Levery, Steven B; Byg, Inge; Damager, Iben; Nielsen, Martin W; Jørgensen, Bodil; Jørgensen, Niklas Rye; Gotfredsen, Klaus

    2014-10-01

    Osseointegration of titanium implants can be improved by organic and inorganic nanocoating of the surface. The aim of our study was to evaluate the effect of organic nanocoating of titanium surface with unmodified and modified pectin Rhamnogalacturonan-Is (RG-Is) isolated from potato and apple with respect to surface properties and osteogenic response in osteoblastic cells. Nanocoatings on titanium surfaces were evaluated by scanning electron microscopy, contact angle measurements, atomic force microscopy, and X-ray photoelectron spectroscopy. The effect of coated RG-Is on cell adhesion, cell viability, bone matrix formation and mineralization was tested using SaOS-2 cells. Nanocoating with pectin RG-Is affected surface properties and in consequence changed the environment for cellular response. The cells cultured on surfaces coated with RG-Is from potato with high content of linear 1.4-linked galactose produced higher level of mineralized matrix compared with control surfaces and surfaces coated with RG-I with low content of linear 1.4-linked galactose. The study showed that the pectin RG-Is nanocoating not only changed chemical and physical titanium surface properties, but also specific coating with RG-Is containing high amount of galactan increased mineralized matrix formation of osteoblastic cells in vitro. PMID:25175196

  4. Vibrational force alters mRNA expression in osteoblasts

    Science.gov (United States)

    Tjandrawinata, R. R.; Vincent, V. L.; Hughes-Fulford, M.

    1997-01-01

    Serum-deprived mouse osteoblastic (MC3T3E1) cells were subjected to a vibrational force modeled by NASA to simulate a space shuttle launch (7.83 G rms). The mRNA levels for eight genes were investigated to determine the effect of vibrational force on mRNA expression. The mRNA levels of two growth-related protooncogenes, c-fos and c-myc, were up-regulated significantly within 30 min after vibration, whereas those of osteocalcin as well as transforming growth factor-beta1 were decreased significantly within 3 h after vibration. No changes were detected in the levels of beta-actin, histone H4, or cytoplasmic phospholipase A2 after vibration. No basal levels of cyclooxygenase-2 expression were detected. In addition, the extracellular concentrations of prostaglandin E2 (PGE2), a potent autocrine/paracrine growth factor in bone, were not significantly altered after vibration most likely due to the serum deprivation state of the osteoblasts. In comparison with the gravitational launch profile, vibrational-induced changes in gene expression were greater both in magnitude and number of genes activated. Taken together, these data suggest that the changes in mRNA expression are due to a direct mechanical effect of the vibrational force on the osteoblast cells and not to changes in the local PGE2 concentrations. The finding that launch forces induce gene expression is of utmost importance since many of the biological experiments do not dampen vibrational loads on experimental samples. This lack of dampening of vibrational forces may partially explain why 1-G onboard controls sometimes do not reflect 1-G ground controls. These data may also suggest that scientists use extra ground controls that are exposed to launch forces, have these forces dampened on launched samples, or use facilities such as Biorack that provide an onboard 1-G centrufuge in order to control for space shuttle launch forces.

  5. Momentary affective states are associated with momentary volume, prospective trends and fluctuation of daily physical activity

    Directory of Open Access Journals (Sweden)

    Martina K. Kanning

    2016-05-01

    Full Text Available Several interventions aiming to enhance physical activity in everyday life showed mixed effects. Affective constructs are thought to potentially support health behavior change. However, little is known about within-subject associations between momentary affect and subsequent physical activity in everyday life. This study analyzed the extent to which three dimensions of affective states (valence, calmness, and energetic arousal were associated with different components of daily activity trajectories. Sixty-five undergraduates’ students (Age: M = 24.6; SD = 3.2; females: 57% participated in this study. Physical activity was assessed objectively through accelerometers during 24 hours. Affective states assessments were conducted randomly every 45min using an e-diary with a six-item mood scale that was especially designed for ambulatory assessment. We conducted three-level multi-level analyses to investigate the extent to which momentary affect accounted for momentary volume, prospective trends and stability vs. fluctuation of physical activity in everyday life. All three affect dimensions were significantly associated with momentary activity volumes and prospective trends over 45 minute periods. Physical activity didn’t fluctuate freely, but featured significant autocorrelation across repeated measurements, suggesting some stability of physical activity across 5-minute assessments. After adjusting for the autoregressive structure in physical activity assessments, only energetic arousal remained a significant predictor. Feeling energized and awake was associated with an increased momentary volume of activity and initially smaller but gradually growing decreases in subsequent activity within the subsequent 45 minutes. Although not related to trends in physical activity, higher valence predicted lower stability in physical activity across subsequent 45 minutes, suggesting more short-term fluctuations in daily activity the more participants reported

  6. Severe hypocalcaemia associated with extensive osteoblastic metastases in a patient with prostate cancer

    NARCIS (Netherlands)

    Fokkema, MI; de Heide, LJM; van Schelven, WD; Hamdy, NAT

    2005-01-01

    A patient with an untreated carcinoma of the prostate was admitted with dehydration, stupor and a surprisingly deep hypocalcaemia. The severe hypocalcaemia was largely attributed to extensive osteoblastic activity due to widespread skeletal metastases although contributing factors to the severity of

  7. Two populations of endochondral osteoblasts with differential sensitivity to Hedgehog signalling

    NARCIS (Netherlands)

    Hammond, Christina Lindsey; Schulte-Merker, Stefan

    2009-01-01

    Hedgehog (Hh) signalling has been implicated in the development of osteoblasts and osteoclasts whose balanced activities are critical for proper bone formation. As many mouse mutants in the Hh pathway are embryonic lethal, questions on the exact effects of Hh signalling on osteogenesis remain. Using

  8. Comparative study on the cellular activities of osteoblast-like cells and new bone formation of anorganic bone mineral coated with tetra-cell adhesion molecules and synthetic cell binding peptide

    OpenAIRE

    Yu, Hyeon-Seok; Noh, Woo-Chang; Park, Jin-Woo; Lee, Jae-Mok; Yang, Dong-Jun; Park, Kwang-Bum; Suh, Jo-Young

    2011-01-01

    Purpose We have previously reported that tetra-cell adhesion molecule (T-CAM) markedly enhanced the differentiation of osteoblast-like cells grown on anorganic bone mineral (ABM). T-CAM comprises recombinant peptides containing the Arg-Gly-Asp (RGD) sequence in the tenth type III domain, Pro-His-Ser-Arg-Asn (PHSRN) sequence in the ninth type III domain of fibronectin (FN), and the Glu-Pro-Asp-Ilu-Met (EPDIM) and Tyr-His (YH) sequence in the fourth fas-1 domain of βig-h3. Therefore, the purpos...

  9. Interleukin-1β, lipocalin 2 and nitric oxide synthase 2 are mechano-responsive mediators of mouse and human endothelial cell-osteoblast crosstalk.

    Science.gov (United States)

    Veeriah, Vimal; Zanniti, Angelo; Paone, Riccardo; Chatterjee, Suvro; Rucci, Nadia; Teti, Anna; Capulli, Mattia

    2016-01-01

    Endothelial cells are spatially close to osteoblasts and regulate osteogenesis. Moreover, they are sensitive to mechanical stimuli, therefore we hypothesized that they are implicated in the regulation of bone metabolism during unloading. Conditioned media from endothelial cells (EC-CM) subjected to simulated microgravity (0.08g and 0.008g) increased osteoblast proliferation and decreased their differentiation compared to unit gravity (1g) EC-CM. Microgravity-EC-CM increased the expression of osteoblast Rankl and subsequent osteoclastogenesis, and induced the osteoblast de-differentiating factor, Lipocalin 2 (Lcn2), whose downregulation recovered osteoblast activity, decreased Rankl expression and reduced osteoclastogenesis. Microgravity-EC-CM enhanced osteoblast NO-Synthase2 (NOS2) and CycloOXygenase2 (COX2) expression. Inhibition of NOS2 or NO signaling reduced osteoblast proliferation and rescued their differentiation. Nuclear translocation of the Lcn2/NOS2 transcription factor, NF-κB, occurred in microgravity-EC-CM-treated osteoblasts and in microgravity-treated endothelial cells, alongside high expression of the NF-κB activator, IL-1β. IL-1β depletion and NF-κB inhibition reduced osteoblast proliferation and rescued differentiation. Lcn2 and NOS2 were incremented in ex vivo calvarias cultured in microgravity-EC-CM, and in vivo tibias and calvarias injected with microgravity-EC-CM. Furthermore, tibias of botulin A toxin-treated and tail-suspended mice, which featured unloading and decreased bone mass, showed higher expression of IL-1β, Lcn2 and Nos2, suggesting their pathophysiologic involvement in endothelial cell-osteoblast crosstalk. PMID:27430980

  10. Affecting osteoblastic responses with in vivo engineered potato pectin fragments

    DEFF Research Database (Denmark)

    Kokkonen, Hanna; Verhoef, Renè; Kauppinen, Kyösti;

    2012-01-01

    Pectins, complex plant-derived polysaccharides, are novel candidates for biomaterial nanocoatings. Pectic rhamnogalacturonan-I regions (RG-I) can be enzymatically treated to so-called modified hairy regions (MHR). We surveyed the growth and differentiation of murine preosteoblastic MC3T3-E1 cells......; 6 mol % arabinose). Wild-type (modified hairy region from potato pectin (MHRP)_WT) fragment contained default amounts (58 mol % galactose; 13 mol % arabinose) of both sugars. Focal adhesions (FAs) indicating cellular attachment were quantified. Reverse transcriptase polymerase chain reaction (RT...... any of the pectin samples, of which the MHRP_WT seemed to function best. FA length was greater on MHRPTR_GAL than on other pectin samples, otherwise the mutants did not significantly deviate. RT-PCR results indicate that differences between the samples at the gene expression level might be even...

  11. Contribution of human osteoblasts and macrophages to bone matrix degradation and proinflammatory cytokine release after exposure to abrasive endoprosthetic wear particles.

    Science.gov (United States)

    Jonitz-Heincke, Anika; Lochner, Katrin; Schulze, Christoph; Pohle, Diana; Pustlauk, Wera; Hansmann, Doris; Bader, Rainer

    2016-08-01

    One of the major reasons for failure after total joint arthroplasty is aseptic loosening of the implant. At articulating surfaces, defined as the interface between implant and surrounding bone cement, wear particles can be generated and released into the periprosthetic tissue, resulting in inflammation and osteolysis. The aim of the present study was to evaluate the extent to which osteoblasts and macrophages are responsible for the osteolytic and inflammatory reactions following contact with generated wear particles from Ti‑6Al‑7Nb and Co‑28Cr‑6Mo hip stems. To this end, human osteoblasts and THP‑1 monocytic cells were incubated with the experimentally generated wear particles as well as reference particles (0.01 and 0.1 mg/ml) for 48 h under standard culture conditions. To evaluate the impact of these particles on the two cell types, the release of different bone matrix degrading matrix metalloproteinases (MMPs), tissue inhibitors of MMPs (TIMPs), and relevant cytokines were determined by multiplex enzyme‑linked immunosorbent assays. Following incubation with wear particles, human osteoblasts showed a significant upregulation of MMP1 and MMP8, whereas macrophages reacted with enhanced MMP3, MMP8 and MMP10 production. Moreover, the synthesis of TIMPs 1 and 2 was inhibited. The osteoblasts and macrophages also responded with modified expression of the inflammatory mediators interleukin (IL)‑6, IL‑8, monocyte chemoattractant protein‑1 and vascular endothelial growth factor. These results demonstrate that the release of wear particles affects the release of proinflammatory cytokines and has a negative impact on bone matrix formation during the first 48 h of particle exposure. Human osteoblasts are directly involved in the proinflammatory cascade of bone matrix degradation. The simultaneous activation and recruitment of monocytes/macrophages boosted osteolytic processes in the periprosthetic tissue. By the downregulation of TIMP production and the

  12. MG63 osteoblast-like cells exhibit different behavior when grown on electrospun collagen matrix versus electrospun gelatin matrix.

    Directory of Open Access Journals (Sweden)

    Shiao-Wen Tsai

    Full Text Available Electrospinning is a simple and efficient method of fabricating a non-woven polymeric nanofiber matrix. However, using fluorinated alcohols as a solvent for the electrospinning of proteins often results in protein denaturation. TEM and circular dichroism analysis indicated a massive loss of triple-helical collagen from an electrospun collagen (EC matrix, and the random coils were similar to those found in gelatin. Nevertheless, from mechanical testing we found the Young's modulus and ultimate tensile stresses of EC matrices were significantly higher than electrospun gelatin (EG matrices because matrix stiffness can affect many cell behaviors such as cell adhesion, proliferation and differentiation. We hypothesize that the difference of matrix stiffness between EC and EG will affect intracellular signaling through the mechano-transducers Rho kinase (ROCK and focal adhesion kinase (FAK and subsequently regulates the osteogenic phenotype of MG63 osteoblast-like cells. From the results, we found there was no significant difference between the EC and EG matrices with respect to either cell attachment or proliferation rate. However, the gene expression levels of OPN, type I collagen, ALP, and OCN were significantly higher in MG63 osteoblast-like cells grown on the EC than in those grown on the EG. In addition, the phosphorylation levels of Y397-FAK, ERK1/2, BSP, and OPN proteins, as well as ALP activity, were also higher on the EC than on the EG. We further inhibited ROCK activation with Y27632 during differentiation to investigate its effects on matrix-mediated osteogenic differentiation. Results showed the extent of mineralization was decreased with inhibition after induction. Moreover, there is no significant difference between EC and EG. From the results of the protein levels of phosphorylated Y397-FAK, ERK1/2, BSP and OPN, ALP activity and mineral deposition, we speculate that the mechanism that influences the osteogenic differentiation of MG63

  13. Effects of extracellular calcium concentration on the glutamate release by bioactive glass (BG60S) preincubated osteoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Valerio, P; Leite, M Fatima [Department of Physiology and Biophysics, Federal University of Minas Gerais (Brazil); Pereira, M M [Department of Metallurgical Engineering, Federal University of Minas Gerais (Brazil); Goes, A M, E-mail: patricia.valerio@terra.com.b, E-mail: leitemd@dedalus.lcc.ufmg.b, E-mail: mpereira@demet.ufmg.b, E-mail: goes@icb.ufmg.b [Department of Biochemistry and Immunology, Federal University of Minas Gerais (Brazil)

    2009-08-15

    Glutamate released by osteoblasts sharing similarities with its role in neuronal transmission is a very new scientific concept which actually changed the understanding of bone physiology. Since glutamate release is a calcium (Ca{sup 2+})-dependent process and considering that we have previously demonstrated that the dissolution of bioactive glass with 60% of silicon (BG60S) can alter osteoblast Ca{sup 2+}-signaling machinery, we investigated whether BG60S induces glutamate secretion in osteoblasts and whether it requires an increase in intracellular Ca{sup 2+}. Here we showed that the extracellular Ca{sup 2+} increase due to BG60S dissolution leads to an intracellular Ca{sup 2+} increase in the osteoblast, through the activation of an inositol 1,4,5-triphosphate receptor (InsP{sub 3}R) and a ryanodine receptor (RyR). Additionally, we also demonstrated that glutamate released by osteoblasts can be profoundly altered by BG60S. The modulation of osteoblast glutamate released by the extracellular Ca{sup 2+} concentration opens a new window in the field of tissue engineering, since many biomaterials used for bone repair are able to increase the extracellular Ca{sup 2+} concentration due to their dissolution products.

  14. Feeding blueberry diets in early life prevent senescence of osteoblasts and bone loss in ovariectomized adult female rats.

    Directory of Open Access Journals (Sweden)

    Jian Zhang

    Full Text Available BACKGROUND: Appropriate nutrition during early development is essential for maximal bone mass accretion; however, linkage between early nutrition, childhood bone mass, peak bone mass in adulthood, and prevention of bone loss later in life has not been studied. METHODOLOGY AND PRINCIPAL FINDINGS: In this report, we show that feeding a high quality diet supplemented with blueberries (BB to pre-pubertal rats throughout development or only between postnatal day 20 (PND20 and PND34 prevented ovariectomy (OVX-induced bone loss in adult life. This protective effect of BB is due to suppression of osteoblastic cell senescence associated with acute loss of myosin expression after OVX. Early exposure of pre-osteoblasts to serum from BB-fed rats was found to consistently increase myosin expression. This led to maintenance osteoblastic cell development and differentiation and delay of cellular entrance into senescence through regulation of the Runx2 gene. High bone turnover after OVX results in insufficient collagenous matrix support for new osteoblasts and their precursors to express myosin and other cytoskeletal elements required for osteoblast activity and differentiation. CONCLUSIONS/SIGNIFICANCE: These results indicate: 1 a significant prevention of OVX-induced bone loss from adult rats can occur with only 14 days consumption of a BB-containing diet immediately prior to puberty; and 2 the molecular mechanisms underlying these effects involves increased myosin production which stimulates osteoblast differentiation and reduces mesenchymal stromal cell senescence.

  15. Apoptosis Induced by Zinc Deficiency in Rat Osteoblast: Possible Involvement of Protein Kinase C

    Institute of Scientific and Technical Information of China (English)

    CEN XIAO-BO; WANG RUI-SHU; AND WANG HANG

    1999-01-01

    Rat osteoblasts were isolated from the 21-day fetal rat calvarias. The cells were grown in DMEM plus 10% FBS, and were treated for 24 h. With 10 μmol/L TPEN or 10 μmol/L TPEN supplemented with 10 μmol/L Zn2+ . Apoptosis of osteoblasts were measured by flow cytometry, electron microscopy and DNA fragmentation analyzed by gel electrophoresis. In addition, IP3 production and PKC activity were measured in order to show whether they are involved in apoptosis in osteoblast induced by zinc deficiency. The results showed that 10 μmol/L TPEN could induce apoptosis in osteoblast in 24 h. But cells treated with 10 μmol/L TPEN supplemented with 10 μmol/L Zn2+showed no apoptotic changes in 24 h. TPEN significantly reduced the formation of IP3 and PKC activity after 24 h incubation. No differences were observed between the cells treated with TPEN supplemented with Zn2 + simultaneously and the untreated cells. It can be inferred that apoptosis induced by zinc deficiency may be due to the decreased activity of PKC which is impaired by reduced formation of IP3.

  16. Assessing the osteoblast transcriptome in a model of enhanced bone formation due to constitutive G{sub s}–G protein signaling in osteoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Wattanachanya, Lalita, E-mail: lalita_md@yahoo.com [Endocrine Research Unit, Veterans Affairs Medical Center and Departments of Medicine and Physiology, University of California, San Francisco, CA (United States); Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok (Thailand); Wang, Liping, E-mail: lipingwang05@yahoo.com [Endocrine Research Unit, Veterans Affairs Medical Center and Departments of Medicine and Physiology, University of California, San Francisco, CA (United States); Millard, Susan M., E-mail: susan.millard@mater.uq.edu.au [Endocrine Research Unit, Veterans Affairs Medical Center and Departments of Medicine and Physiology, University of California, San Francisco, CA (United States); Lu, Wei-Dar, E-mail: weidar_lu@yahoo.com [Endocrine Research Unit, Veterans Affairs Medical Center and Departments of Medicine and Physiology, University of California, San Francisco, CA (United States); O’Carroll, Dylan, E-mail: dylancocarroll@gmail.com [Endocrine Research Unit, Veterans Affairs Medical Center and Departments of Medicine and Physiology, University of California, San Francisco, CA (United States); Hsiao, Edward C., E-mail: Edward.Hsiao@ucsf.edu [Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Francisco, CA (United States); Conklin, Bruce R., E-mail: bconklin@gladstone.ucsf.edu [Gladstone Institute of Cardiovascular Disease, San Francisco, CA (United States); Department of Medicine, University of California, San Francisco, CA (United States); Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA (United States); Nissenson, Robert A., E-mail: Robert.Nissenson@ucsf.edu [Endocrine Research Unit, Veterans Affairs Medical Center and Departments of Medicine and Physiology, University of California, San Francisco, CA (United States)

    2015-05-01

    G protein-coupled receptor (GPCR) signaling in osteoblasts (OBs) is an important regulator of bone formation. We previously described a mouse model expressing Rs1, an engineered constitutively active G{sub s}-coupled GPCR, under the control of the 2.3 kb Col I promoter. These mice showed a dramatic age-dependent increase in trabecular bone of femurs. Here, we further evaluated the effects of enhanced G{sub s} signaling in OBs on intramembranous bone formation by examining calvariae of 1- and 9-week-old Col1(2.3)/Rs1 mice and characterized the in vivo gene expression specifically occurring in osteoblasts with activated G{sub s} G protein-coupled receptor signaling, at the cellular level rather than in a whole bone. Rs1 calvariae displayed a dramatic increase in bone volume with partial loss of cortical structure. By immunohistochemistry, Osterix was detected in cells throughout the inter-trabecular space while Osteocalcin was expressed predominantly in cells along bone surfaces, suggesting the role of paracrine mediators secreted from OBs driven by 2.3 kb Col I promoter could influence early OB commitment, differentiation, and/or proliferation. Gene expression analysis of calvarial OBs revealed that genes affected by Rs1 signaling include those encoding proteins important for cell differentiation, cytokines and growth factors, angiogenesis, coagulation, and energy metabolism. The set of G{sub s}-GPCRs and other GPCRs that may contribute to the observed skeletal phenotype and candidate paracrine mediators of the effect of G{sub s} signaling in OBs were also determined. Our results identify novel detailed in vivo cellular changes of the anabolic response of the skeleton to G{sub s} signaling in mature OBs. - Highlights: • OB expression of an engineered G{sub s}-coupled receptor dramatically increases bone mass. • We investigated the changes in gene expression in vivo in enhanced OB G{sub s} signaling. • Genes in cell cycle and transcription were increased in

  17. Situational Motivation and Perceived Intensity: Their Interaction in Predicting Changes in Positive Affect from Physical Activity

    Directory of Open Access Journals (Sweden)

    Eva Guérin

    2012-01-01

    Full Text Available There is evidence that affective experiences surrounding physical activity can contribute to the proper self-regulation of an active lifestyle. Motivation toward physical activity, as portrayed by self-determination theory, has been linked to positive affect, as has the intensity of physical activity, especially of a preferred nature. The purpose of this experimental study was to examine the interaction between situational motivation and intensity [i.e., ratings of perceived exertion (RPE] in predicting changes in positive affect following an acute bout of preferred physical activity, namely, running. Fourty-one female runners engaged in a 30-minute self-paced treadmill run in a laboratory context. Situational motivation for running, pre- and post-running positive affect, and RPE were assessed via validated self-report questionnaires. Hierarchical regression analyses revealed a significant interaction effect between RPE and introjection (P<.05 but not between RPE and identified regulation or intrinsic motivation. At low levels of introjection, the influence of RPE on the change in positive affect was considerable, with higher RPE ratings being associated with greater increases in positive affect. The implications of the findings in light of SDT principles as well as the potential contingencies between the regulations and RPE in predicting positive affect among women are discussed.

  18. Effect of peroxisome proliferator activated receptor γ agonist on the proliferation and differentiation of rat osteoblasts in vitro%过氧化物酶体增殖物活化受体激动剂对大鼠成骨细胞增殖分化的影响

    Institute of Scientific and Technical Information of China (English)

    吴艳; 夏秦

    2011-01-01

    Objective To study the effect of rosiglitazone (RSG), the agonist of peroxisome proliferator activated receptor γ (PPARγ), on the proliferation and differentiation of rat osteoblasts and the related mechanisms. Methods The identification of rat primary osteoblasts was performed by alkaline phosphatase (ALP) staining and mineralized nodules. The 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT) assay and p-nitrophenyl phosphate (PNPP) assay were used to observe the effects of different concentrations of RSG on proliferation and differentiation of the osteoblasts. The reverse transcription polymerase chain reaction (RT-PCR) were used to detect the expression of connective tissue growth factor (CTGF) mRNA. The effects of the different concentrations (0,1,2,5,10 and 20 μmol/L) of RSG on TGF-β1-induced CTGF mRNA expression in osteoblasts were detected. Results (1)Different concentrations of RSG could not change the proliferation of osteoblasts (P>0. 05). (2)Compared with control group, all different concentrations of RSG could suppress ALP activity in osteoblasts (P<0. 01 ). (3) RSG suppressed the osteoblats CTGF mRNA expression induced by TGF-β1 in a dose-dependent manner (P<0. 01). Conclusions In vitro, RSG can inhibit the TGF-β1 induced rat osteoblasts CTGF mRNA expression. RSG may play a potential role in preventing the differentiation of the rat osteoblasts.%目的 研究过氧化物酶体增殖物激活受体(peroxisome proliferator activated receptor,PPARγ)激动剂罗格列酮(RSG)对大鼠成骨细胞增殖分化能力的影响,并探讨其对成骨细胞作用的可能路径.方法 取新生SD大鼠颅骨进行原代培养,经碱性磷酸酶染色和茜素红矿化结节染色检测鉴定为成骨细胞.应用比色法(MTT)法和4-硝基苯基磷酸二钠盐偶氮(PNPP)法检测不同浓度RSG刺激对大鼠成骨细胞增殖和碱性磷酸酶活性的影响.运用荧光定量反转录聚合酶链反应(RT-PCR)检测6

  19. Insights into the Alteration of Osteoblast Mechanical Properties upon Adhesion on Chitosan

    Directory of Open Access Journals (Sweden)

    Antonia G. Moutzouri

    2014-01-01

    Full Text Available Cell adhesion on substrates is accompanied by significant changes in shape and cytoskeleton organization, which affect subsequent cellular and tissue responses, determining the long-term success of an implant. Alterations in osteoblast stiffness upon adhesion on orthopaedic implants with different surface chemical composition and topography are, thus, of central interest in the field of bone implant research. This work aimed to study the mechanical response of osteoblasts upon adhesion on chitosan-coated glass surfaces and to investigate possible correlations with the level of adhesion, spreading, and cytoskeleton reorganization. Using the micropipette aspiration technique, the osteoblast elastic modulus was found higher on chitosan-coated than on uncoated control substrates, and it was found to increase in the course of spreading for both substrates. The cell-surface contact area was measured throughout several time points of adhesion to quantify cell spreading kinetics. Significant differences were found between chitosan and control surfaces regarding the response of cell spreading, while both groups displayed a sigmoidal kinetical behavior with an initially elevated spreading rate which stabilizes in the second hour of attachment. Actin filament structural changes were confirmed after observation with confocal microscope. Biomaterial surface modification can enhance osteoblast mechanical response and induce favorable structural organization for the implant integration.

  20. Puerarin Suppress Apoptosis of Human Osteoblasts via ERK Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Ling-juan Liu

    2013-01-01

    Full Text Available Puerarin, the main isoflavone glycoside extracted from Radix Puerariae, is an isoflavone traditional Chinese herb. Previous studies have demonstrated that puerarin could regulate osteoblast proliferation and differentiation to promote bone formation. However, the effect of puerarin on the process of human osteoblasts (hOBs apoptosis is still unclear. In this study, we detected the function of puerarin on serum-free-induced cell apoptosis using ELISA and TUNEL arrays and then found that the mortality of hOBs was significantly decreased after exposure to 10−10–10−6 M puerarin and reached the maximal antiapoptotic effect at the concentration of 10−8 M. In addition, compared with the control group, puerarin notably increased the Bcl-2 protein levels while it decreased the Bax protein levels in the hOBs in a dose-dependent way. 10−7 M puerarin decreased the Bax/Bcl-2 ratio with a maximal decrease to 0.08. Moreover, puerarin activated ERK signaling pathways in hOBs, and the antiapoptotic effect induced by puerarin was abolished by incubation of ERK inhibitor PD98059. Similarly, the estrogen receptor antagonist ICI182780 also suppressed the inhibitory effect of puerarin on hOBs apoptosis. In conclusion, puerarin could prevent hOBs apoptosis via ERK signaling pathway, which might be effective in providing protection against bone loss and bone remolding associated with osteoporosis.

  1. Titanium Oxide: A Bioactive Factor in Osteoblast Differentiation

    Directory of Open Access Journals (Sweden)

    P. Santiago-Medina

    2015-01-01

    Full Text Available Titanium and titanium alloys are currently accepted as the gold standard in dental applications. Their excellent biocompatibility has been attributed to the inert titanium surface through the formation of a thin native oxide which has been correlated to the excellent corrosion resistance of this material in body fluids. Whether this titanium oxide layer is essential to the outstanding biocompatibility of titanium surfaces in orthopedic biomaterial applications is still a moot point. To study this critical aspect further, human fetal osteoblasts were cultured on thermally oxidized and microarc oxidized (MAO surfaces and cell differentiation, a key indicator in bone tissue growth, was quantified by measuring the expression of alkaline phosphatase (ALP using a commercial assay kit. Cell attachment was similar on all the oxidized surfaces although ALP expression was highest on the oxidized titanium alloy surfaces. Untreated titanium alloy surfaces showed a distinctly lower degree of ALP activity. This indicates that titanium oxide clearly upregulates ALP expression in human fetal osteoblasts and may be a key bioactive factor that causes the excellent biocompatibility of titanium alloys. This result may make it imperative to incorporate titanium oxide in all hard tissue applications involving titanium and other alloys.

  2. Osteoblast response on co-modified titanium surfaces via anodization and electrospinning

    Energy Technology Data Exchange (ETDEWEB)

    Bayram, Cem [Nanotechnology and Nanomedicine Division, Hacettepe University, Ankara, Beytepe, 06800 (Turkey); Chemistry Department, Aksaray University, Aksaray, 68100 (Turkey); Demirbilek, Murat; Yalçın, Eda [Nanotechnology and Nanomedicine Division, Hacettepe University, Ankara, Beytepe, 06800 (Turkey); Bozkurt, Murat; Doğan, Metin [Orthopaedics and Traumatology Division, Yıldırım Beyazıt University, School of Medicine, Cankaya, 06550 (Turkey); Denkbaş, Emir Baki, E-mail: denkbas@hacettepe.edu.tr [Chemistry Department, Hacettepe University, Ankara, Beytepe, 06800 (Turkey)

    2014-01-01

    Topography plays a key role in osseointegration and surface modifications at the subcellular level, increasing initial cell attachment in the early period. In the past decade, nanosized texture on metal like a nanotube layer and also more recently extracellular matrix like surface modifications – such as polymeric nanofibrils – have been proposed for a better osseointegration in the literature. Here, we investigate two types of nanoscaled modifications alone and together for the first time. We characterized different types of surface modifications morphologically and investigated how they affected osteoblast cells in vitro, in terms of cell adhesion, proliferation, alkaline phosphatase activity and calcium content. We anodized titanium samples with a thickness of 0.127 mm to obtain a nanotubular titania layer and the silk fibroin (SF), as a biocompatible polymeric material, was electrospun onto both anodized and unanodized samples to acquire 4 sample groups. We analyzed the resulting samples morphologically by scanning electron microscopy (SEM). Cell adhesion, proliferation, alkaline phosphatase (ALP) activity and calcium content were evaluated at 3, 7 and 14 days. We found that cell proliferation increased by 70% on the groups having two modifications respect to unmodified titanium and after 7 days, ALP activity and calcium content were 110% and 150%, respectively, higher on surfaces having both surface treatments than that of unmodified group. In conclusion, a nanotube layer and SF nanofibers on a titanium surface enhanced cell attachment and proliferation most. Comodification of titanium surfaces by anodization and SF electrospinning may be useful to enhance osseointegration but it requires in vivo confirmation.

  3. Age of donor alters the effect of cyclic hydrostatic pressure on production by human macrophages and osteoblasts of sRANKL, OPG and RANK

    Directory of Open Access Journals (Sweden)

    Mylchreest S

    2006-03-01

    Full Text Available Abstract Background Cyclic hydrostatic pressure within bone has been proposed both as a stimulus of aseptic implant loosening and associated bone resorption and of bone formation. We showed previously that cyclical hydrostatic pressure influenced macrophage synthesis of several factors linked to osteoclastogenesis. The osteoprotegerin/soluble receptor activator of NF-kappa β ligand /receptor activator of NF-kappa β (OPG/ RANKL/ RANK triumvirate has been implicated in control of bone resorption under various circumstances. We studied whether cyclical pressure might affect bone turnover via effects on OPG/ sRANKL/ RANK. Methods In this study, cultures of human osteoblasts or macrophages (supplemented with osteoclastogenic factors or co-cultures of macrophages and osteoblasts (from the same donor, were subjected to cyclic hydrostatic pressure. Secretion of OPG and sRANKL was assayed in the culture media and the cells were stained for RANK and osteoclast markers. Data were analysed by nonparametric statistics. Results In co-cultures of macrophages and osteoblasts, pressure modulated secretion of sRANKL or OPG in a variable manner. Examination of the OPG:sRANKL ratio in co cultures without pressurisation showed that the ratio was greater in donors 70 years. However, with pressure the difference in the OPG:sRANKL ratios between young and old donors was not significant. It was striking that in some patients the OPG:sRANKL ratio increased with pressure whereas in some it decreased. The tendency was for the ratio to decrease with pressure in patients younger than 70 years, and increase in patients ≥ 70 years (Fishers exact p Cultures of osteoblasts alone showed a significant increase in both sRANKL and OPG with pressure, and again there was a decrease in the ratio of OPG:RANKL. Secretion of sRANKL by cultures of macrophages alone was not modulated by pressure. Only sRANKL was assayed in this study, but transmembrane RANKL may also be important in

  4. Effect of porosity of alumina and zirconia ceramics towards pre-osteoblast response

    Directory of Open Access Journals (Sweden)

    Chrystalleni eHadjicharalambous

    2015-10-01

    Full Text Available It is acknowledged that cellular responses are highly affected by biomaterial porosity. The investigation of this effect is important for the development of implanted biomaterials that integrate with bone tissue. Zirconia and alumina ceramics exhibit outstanding mechanical properties and are among the most popular implant materials used in orthopedics, but few data exist regarding the effect of porosity on cellular responses to these materials. The present study investigates the effect of porosity on the attachment and proliferation of pre-osteoblastic cells on zirconia and alumina. For each composition, ceramics of three different porosities are fabricated by sintering, and characterized using scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray powder diffraction. Cell proliferation is quantified, and microscopy is employed to qualitatively support the proliferation results and evaluate cell morphology. Cell adhesion and metabolic activity are found comparable among low porosity zirconia and alumina. In contrast, higher porosity favors better cell spreading on zirconia and improves growth, but does not significantly affect cell response on alumina. Between the highest porosity materials, cell response on zirconia is found superior to alumina. Results show that an average pore size of ~150 µm and ~50% porosity can be considered beneficial to cellular growth on zirconia ceramics.

  5. Effects of bioglass powders with and without mesoporous structures on fibroblast and osteoblast responses

    Energy Technology Data Exchange (ETDEWEB)

    Shih, Chi-Jen, E-mail: cjshih@kmu.edu.tw [Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, 100 Shi-Chuan 1st Road, Kaohsiung 80708, Taiwan (China); Lu, Pei-Shan [Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, 100 Shi-Chuan 1st Road, Kaohsiung 80708, Taiwan (China); Hsieh, Chih-Hsin [Department of Orthopaedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Chen, Wen-Cheng [Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, College of Engineering, Feng Chia University, Taichung 40724, Taiwan (China); Chen, Jian-Chih [Department of Orthopaedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Department of Orthopaedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China)

    2014-09-30

    Highlights: • Fluorescent microscopy images show that BG-M has excellent cellular affinity. • Both the BG and BG-M substrates had positive effects on the proliferation of the osteoblastic cells. • Cells cultured on BG-M had approximately 1.4 times higher proliferation activity. - Abstract: The main objective of this study was to compare the responses of fibroblasts and osteoblasts to bioglass (BG) and bioglass-containing mesoporous structure (BG-M) powders. The BG-M powders exhibited specific surface areas approximately three times larger than those of the BG powders. The formation of a hysteresis loop also signified the presence of mesoporous structures in the BG-M samples; however, a hysteresis loop was not observed for the BG samples, resulting in 1/5 the pore volume of the BG-M samples. The viabilities of the fibroblasts and osteoblasts cultured in media containing the BG-M powders for 1, 2, and 3 days were greater than 90%. Importantly, the results of fluorescent microscopy images show that BG-M has excellent cellular affinity. Both the BG and BG-M substrates had positive effects on the proliferation of the osteoblastic cells. However, cells cultured on BG-M had approximately 1.4 times higher proliferation activity.

  6. Effects of bioglass powders with and without mesoporous structures on fibroblast and osteoblast responses

    International Nuclear Information System (INIS)

    Highlights: • Fluorescent microscopy images show that BG-M has excellent cellular affinity. • Both the BG and BG-M substrates had positive effects on the proliferation of the osteoblastic cells. • Cells cultured on BG-M had approximately 1.4 times higher proliferation activity. - Abstract: The main objective of this study was to compare the responses of fibroblasts and osteoblasts to bioglass (BG) and bioglass-containing mesoporous structure (BG-M) powders. The BG-M powders exhibited specific surface areas approximately three times larger than those of the BG powders. The formation of a hysteresis loop also signified the presence of mesoporous structures in the BG-M samples; however, a hysteresis loop was not observed for the BG samples, resulting in 1/5 the pore volume of the BG-M samples. The viabilities of the fibroblasts and osteoblasts cultured in media containing the BG-M powders for 1, 2, and 3 days were greater than 90%. Importantly, the results of fluorescent microscopy images show that BG-M has excellent cellular affinity. Both the BG and BG-M substrates had positive effects on the proliferation of the osteoblastic cells. However, cells cultured on BG-M had approximately 1.4 times higher proliferation activity

  7. Amylin(1-8) is devoid of anabolic activity in bone

    DEFF Research Database (Denmark)

    Ellegaard, Maria; Thorkildsen, Christian; Vibe-Petersen, Solveig;

    2010-01-01

    Amylin(1-8), a cyclic peptide consisting of the eight N-terminal amino acids of the 37-amino acid peptide amylin, has been shown to induce proliferation of primary osteoblasts and to induce bone formation in healthy male mice, whereas no data on efficacy in bone disease-related models have been r......, our results indicate that amylin(1-8) does not show agonist activity on amylin receptors, does not affect osteoblast proliferation, and is devoid of anabolic activity in bone....

  8. Proliferation of osteoblast cells on nanotubes

    Institute of Scientific and Technical Information of China (English)

    F.WATARI; T.AKASAKA; Xiaoming LI; M.UO; A.YOKOYAMA

    2009-01-01

    Carbon nanotubes (CNT) have a unique structme and feature. In the present study, cell proliferation was performed on the scaffolds of single-walled CNTs (SWCNT), multiwalled CNTs (MWCNT), and on gra-phita, one of the representative isomorphs of pure carbon,for the sake of comparison. Scanning electron microscopy observation of the growth of osteoblast-like cells (Saps2) cultttred on CNTs showed the morphology fully developed for the whole direction, which is different from that extended to one direction on the usual scaffold. Numerous filopodia were grown from cell edge, extended far long and combined with the CNT meshwork. CNTs showed the affinity for collagen and proteins. Proliferated cell numbers are largest on SWCNTs, followed by MWCNTs, and are very low on graphite. This is in good agreement with the sequence in the results of the adsorbed amount of proteins and expression of alkaline phosphatase activity for these scaffolds. The adsorption of protains would be one of the most influential factors to make a contrast difference in cell attachment and proliferation between graphite and CNTs,both of which are isomorphs of carbon and composed of similar graphene sheet crystal structure. In addition, the nanosize meshwork structure with large porosity is another properly responsible for the excellent cell adhesion and growth on CNTs. CNTs could be the favorable materials for biomedical applications.CNTs with different structures and compositions have been synthesized and discovered [3]. Nanomaterials [2-9] and nanocomposites [10-15] may have various effects onliving organisms. In this study, a fundamental study for biomedical application, cell proliferation was performed on various nanotubes (biT), including (1) single-walled CNTs (SWCNT), (2) multiwalled CNTs (MWCNT), and on graphite, an isomorph of CNT, as a comparison.Figure 1 shows the schematic figures of two different crystal structures of carbon: graphite and CNT. Graphite has the layer-by-layer laminated

  9. Culture and regulation of osteoblasts in multiple myeloma patients

    Institute of Scientific and Technical Information of China (English)

    高珊

    2014-01-01

    Objective To investigate the biological characteristics of osteoblasts cultured in vitro from bone marrow(BM)of multiple myeloma(MM)patients and to explore their generation and osteogenic potential.Effects of some factors such as bortezomib and MM patient serum on the osteoblasts were observed.Methods Twenty MM patients and 10 healthy donors as controls were enrolled in this study.Osteoblasts from MM patients’BM were cultured

  10. Curcumin increases rat mesenchymal stem cell osteoblast differentiation but inhibits adipocyte differentiation

    Directory of Open Access Journals (Sweden)

    Qiaoli Gu

    2012-01-01

    Full Text Available Background: Curcumin is a phenolic natural product isolated from the rhizome of Curcuma longa (turmeric and has effects on bone health and fat formation. The bone marrow mesenchymal stem cells (MSCs are multipotent cells capable of differentiating into osteoblasts and adipocytes. Osteoblast differentiation of MSCs can be a result of upregulation of heme oxygenase (HO-1 expression. Curcumin can potently induce HO-1 expression. Objective: The present study describes the effects of curcumin on rat MSC (rMSCs differentiation into osteoblasts and adipocytes. Materials and Methods: Rat bone marrow MSCs were isolated and treated with or without curcumin. Osteoblast differentiation was confirmed and determined by alkaline phosphatase (ALP activity, mineralized nodule formation, the expression of Runx2 (runt-related transcription factor 2 and osteocalcin. Adipocyte differentiation was determined by Oil red O staining and the expression of peroxisome proliferator-activated receptor-γ 2 (PPARγ2 and CCAAT/enhancer-binding protein (C/EBP α. Results: Curcumin increased ALP activity and osteoblast-specific mRNA expression of Runx2 and osteocalcin when rMSCs were cultured in osteogenic medium. In contrast, curcumin decreased adipocyte differentiation and inhibited adipocyte-specific mRNA expression of PPARγ2 and C/EBPα when rMSCs were cultured in adipogenic medium. HO-1 expression was increased during osteogenic differentiation of rMSCs. Conclusions: These findings demonstrate that curcumin can promote osteogenic differentiation of rMSCs and inhibit adipocyte formation. The effect of curcumin on osteogenic differentiation of rMSCs is correlated with HO-1 expression.

  11. Neural Activation Underlying Cognitive Control in the Context of Neutral and Affectively Charged Pictures in Children

    Science.gov (United States)

    Lamm, Connie; White, Lauren K.; McDermott, Jennifer Martin; Fox, Nathan A.

    2012-01-01

    The neural correlates of cognitive control for typically developing 9-year-old children were examined using dense-array ERPs and estimates of cortical activation (LORETA) during a go/no-go task with two conditions: a neutral picture condition and an affectively charged picture condition. Activation was estimated for the entire cortex after which…

  12. Sphingosine kinase-1 mediates androgen-induced osteoblast cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Claire [CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse F-31000 (France); Universite de Toulouse, UPS, IPBS, Toulouse F-31000 (France); Lafosse, Jean-Michel [CHU Toulouse, Hopital Rangueil, Service d' orthopedie et Traumatologie, Toulouse F-31000 (France); Malavaud, Bernard [CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse F-31000 (France); Universite de Toulouse, UPS, IPBS, Toulouse F-31000 (France); CHU Toulouse, Hopital Rangueil, Service d' Urologie et de Transplantation Renale, Toulouse F-31000 (France); Cuvillier, Olivier, E-mail: olivier.cuvillier@ipbs.fr [CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse F-31000 (France); Universite de Toulouse, UPS, IPBS, Toulouse F-31000 (France)

    2010-01-01

    Herein we report that the lipid kinase sphingosine kinase-1 (SphK1) is instrumental in mediating androgen-induced cell proliferation in osteoblasts. Dihydrotestosterone (DHT) triggered cell growth in steroid-deprived MC3T3 cells, which was associated with a rapid stimulation of SphK1 and activation of both Akt and ERK signaling pathways. This mechanism relied on functional androgen receptor/PI3K/Akt nongenotropic signaling as pharmacological antagonists could block SphK1 stimulation by DHT and its consequences. Finally, SphK1 inhibition not only abrogated DHT-induced ERK activation but also blocked cell proliferation, while ERK inhibition had no impact, suggesting that SphK1 was critical for DHT signaling yet independently of the ERK.

  13. Dioscin promotes osteoblastic proliferation and differentiation via Lrp5 and ER pathway in mouse and human osteoblast-like cell lines

    OpenAIRE

    Zhang, Chunfang; Peng, Jinyong; Wu, Shan; Jin, Yue; Xia, Fan; Wang, Changyuan; Liu, Kexin; Sun, Huijun; Liu, Mozhen

    2014-01-01

    Background Dioscin, a typical steroid saponin, is isolated from Dioscorea nipponica Makino and Dioscorea zingiberensis Wright. It has estrogenic activity and many studies have also reported that dioscorea plants have an effect in preventing and treating osteoporosis. However, the molecular mechanisms underlying their effect on osteoporosis treatment are poorly understood. Therefore, the present study aims to investigate the mechanism (s) by which dioscin promotes osteoblastic proliferation an...

  14. Serotonin regulates osteoblast proliferation and function in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Dai, S.Q.; Yu, L.P. [Department of Orthopedic Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu (China); Shi, X. [Department of Obstetrics and Gynecology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu (China); Wu, H. [Emergency Department, The First Affiliated Hospital, Soochow University, Suzhou (China); Shao, P.; Yin, G.Y.; Wei, Y.Z. [Department of Orthopedic Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu (China)

    2014-08-01

    The monoamine serotonin (5-hydroxytryptamine, 5-HT), a well-known neurotransmitter, also has important functions outside the central nervous system. The objective of this study was to investigate the role of 5-HT in the proliferation, differentiation, and function of osteoblasts in vitro. We treated rat primary calvarial osteoblasts with various concentrations of 5-HT (1 nM to 10 µM) and assessed the rate of osteoblast proliferation, expression levels of osteoblast-specific proteins and genes, and the ability to form mineralized nodules. Next, we detected which 5-HT receptor subtypes were expressed in rat osteoblasts at different stages of osteoblast differentiation. We found that 5-HT could inhibit osteoblast proliferation, differentiation, and mineralization at low concentrations, but this inhibitory effect was mitigated at relatively high concentrations. Six of the 5-HT receptor subtypes (5-HT{sub 1A}, 5-HT{sub 1B}, 5-HT{sub 1D}, 5-HT{sub 2A}, 5-HT{sub 2B}, and 5-HT{sub 2C}) were found to exist in rat osteoblasts. Of these, 5-HT{sub 2A} and 5-HT{sub 1B} receptors had the highest expression levels, at both early and late stages of differentiation. Our results indicated that 5-HT can regulate osteoblast proliferation and function in vitro.

  15. Azanitrile Cathepsin K Inhibitors: Effects on Cell Toxicity, Osteoblast-Induced Mineralization and Osteoclast-Mediated Bone Resorption.

    Directory of Open Access Journals (Sweden)

    Zhong-Yuan Ren

    Full Text Available The cysteine protease cathepsin K (CatK, abundantly expressed in osteoclasts, is responsible for the degradation of bone matrix proteins, including collagen type 1. Thus, CatK is an attractive target for new anti-resorptive osteoporosis therapies, but the wider effects of CatK inhibitors on bone cells also need to be evaluated to assess their effects on bone. Therefore, we selected, among a series of synthetized isothiosemicarbazides, two molecules which are highly selective CatK inhibitors (CKIs to test their effects on osteoblasts and osteoclasts.Cell viability upon treatment of CKIs were was assayed on human osteoblast-like Saos-2, mouse monocyte cell line RAW 264.7 and mature mouse osteoclasts differentiated from bone marrow. Osteoblast-induced mineralization in Saos-2 cells and in mouse primary osteoblasts from calvaria, with or without CKIs,; were was monitored by Alizarin Red staining and alkaline phosphatase activity, while osteoclast-induced bone resorption was performed on bovine slices.Treatments with two CKIs, CKI-8 and CKI-13 in human osteoblast-like Saos-2, murine RAW 264.7 macrophages stimulated with RANKL and mouse osteoclasts differentiated from bone marrow stimulated with RANKL and MCSF were found not to be toxic at doses of up to 100 nM. As probed by Alizarin Red staining, CKI-8 did not inhibit osteoblast-induced mineralization in mouse primary osteoblasts as well as in osteoblast-like Saos-2 cells. However, CKI-13 led to a reduction in mineralization of around 40% at 10-100 nM concentrations in osteoblast-like Saos-2 cells while it did not in primary cells. After a 48-hour incubation, both CKI-8 and CKI-13 decreased bone resorption on bovine bone slices. CKI-13 was more efficient than the commercial inhibitor E-64 in inhibiting bone resorption induced by osteoclasts on bovine bone slices. Both CKI-8 and CKI-13 created smaller bone resorption pits on bovine bone slices, suggesting that the mobility of osteoclasts was slowed

  16. Porphyromonas gingivalis decreases osteoblast proliferation through IL-6-RANKL/OPG and MMP-9/TIMPs pathways

    Directory of Open Access Journals (Sweden)

    Le Xuan

    2009-01-01

    Full Text Available Background: Porphyromonas gingivalis, an important periodontal pathogen, is closely associated with inflammatory alveolar bone resorption. This bacterium exerts its pathogenic effect indirectly through multiple virulence factors, such as lipopolysaccharides, fimbriae, and proteases. Another possible pathogenic path may be through a direct interaction with the host′s soft and hard tissues (e.g., alveolar bone, which could lead to periodontitis. Aims and Objectives: The aim of the present study was to investigate the direct effect of live and heat-inactivated P gingivalis on bone resorption, using an in vitro osteoblast culture model. Results: Optical microscopy and 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide MTT assay revealed that live P gingivalis induced osteoblast detachment and reduced their proliferation. This effect was specific to live bacteria and was dependent on their concentration. Live P gingivalis increased IL-6 mRNA expression and protein production and downregulated RANKL and OPG mRNA expression. The effect of live P gingivalis on bone resorption was strengthened by an increase in MMP-9 expression and its activity. This increase was accompanied by an increase in TIMP-1 and TIMP-2 mRNA expression and protein production by osteoblasts infected with live P gingivalis. Conclusion: Overall, the results suggest that direct contact of P gingivalis with osteoblasts induces bone resorption through an inflammatory pathway that involves IL-6, RANKL/OPG, and MMP-9/TIMPs.

  17. Expression of osterix Is Regulated by FGF and Wnt/β-Catenin Signalling during Osteoblast Differentiation.

    Directory of Open Access Journals (Sweden)

    Katharina Felber

    Full Text Available Osteoblast differentiation from mesenchymal cells is regulated by multiple signalling pathways. Here we have analysed the roles of Fibroblast Growth Factor (FGF and canonical Wingless-type MMTV integration site (Wnt/β-Catenin signalling pathways on zebrafish osteogenesis. We have used transgenic and chemical interference approaches to manipulate these pathways and have found that both pathways are required for osteoblast differentiation in vivo. Our analysis of bone markers suggests that these pathways act at the same stage of differentiation to initiate expression of the osteoblast master regulatory gene osterix (osx. We use two independent approaches that suggest that osx is a direct target of these pathways. Firstly, we manipulate signalling and show that osx gene expression responds with similar kinetics to that of known transcriptional targets of the FGF and Wnt pathways. Secondly, we have performed ChIP with transcription factors for both pathways and our data suggest that a genomic region in the first intron of osx mediates transcriptional activation. Based upon these data, we propose that FGF and Wnt/β-Catenin pathways act in part by directing transcription of osx to promote osteoblast differentiation at sites of bone formation.

  18. In vitro culture and characterization of alveolar bone osteoblasts isolated from type 2 diabetics

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Dao-Cai [Department of Implant Dentistry, School of Stomatology, Fourth Military Medical University, Xi' an (China); Department of Stomatology, The 291st Hospital of P.L.A, Baotou (China); Li, De-Hua [Department of Implant Dentistry, School of Stomatology, Fourth Military Medical University, Xi' an (China); Ji, Hui-Cang [Military Sanatorium of Retired Cadres, Baotou (China); Rao, Guo-Zhou [Center of Laboratory, School of Stomatology, Xi' an Jiaotong University, Xi' an (China); Liang, Li-Hua [Department of Implant Dentistry, School of Stomatology, Fourth Military Medical University, Xi' an (China); Ma, Ai-Jie [Xi' an Technology University, Xi' an (China); Xie, Chao; Zou, Gui-Ke; Song, Ying-Liang [Department of Implant Dentistry, School of Stomatology, Fourth Military Medical University, Xi' an (China)

    2012-04-05

    In order to understand the mechanisms of poor osseointegration following dental implants in type 2 diabetics, it is important to study the biological properties of alveolar bone osteoblasts isolated from these patients. We collected alveolar bone chips under aseptic conditions and cultured them in vitro using the tissue explants adherent method. The biological properties of these cells were characterized using the following methods: alkaline phosphatase (ALP) chemical staining for cell viability, Alizarin red staining for osteogenic characteristics, MTT test for cell proliferation, enzyme dynamics for ALP contents, radio-immunoassay for bone gla protein (BGP) concentration, and ELISA for the concentration of type I collagen (COL-I) in the supernatant. Furthermore, we detected the adhesion ability of two types of cells from titanium slices using non-specific immunofluorescence staining and cell count. The two cell forms showed no significant difference in morphology under the same culture conditions. However, the alveolar bone osteoblasts received from type 2 diabetic patients had slower growth, lower cell activity and calcium nodule formation than the normal ones. The concentration of ALP, BGP and COL-I was lower in the supernatant of alveolar bone osteoblasts received from type 2 diabetic patients than in that received from normal subjects (P < 0.05). The alveolar bone osteoblasts obtained from type 2 diabetic patients can be successfully cultured in vitro with the same morphology and biological characteristics as those from normal patients, but with slower growth and lower concentration of specific secretion and lower combining ability with titanium than normal ones.

  19. Zinc-modified titanium surface enhances osteoblast differentiation of dental pulp stem cells in vitro.

    Science.gov (United States)

    Yusa, Kazuyuki; Yamamoto, Osamu; Takano, Hiroshi; Fukuda, Masayuki; Iino, Mitsuyoshi

    2016-01-01

    Zinc is an essential trace element that plays an important role in differentiation of osteoblasts and bone modeling. This in vitro study aimed to evaluate the osteoblast differentiation of human dental pulp stem cells (DPSCs) on zinc-modified titanium (Zn-Ti) that releases zinc ions from its surface. Based on real-time PCR, alkaline phosphatase (ALP) activity and Western blot analysis data, we investigated osteoblast differentiation of DPSCs cultured on Zn-Ti and controls. DPSCs cultured on Zn-Ti exhibited significantly up-regulated gene expression levels of osteoblast-related genes of type I collagen (Col I), bone morphogenetic protein 2 (BMP2), ALP, runt-related transcription factor 2 (Runx2), osteopontin (OPN), and vascular endothelial growth factor A (VEGF A), as compared with controls. We also investigated extracellular matrix (ECM) mineralization by Alizarin Red S (ARS) staining and found that Zn-Ti significantly promoted ECM mineralization when compared with controls. These findings suggest that the combination of Zn-Ti and DPSCs provides a novel approach for bone regeneration therapy. PMID:27387130

  20. A Receptor Tyrosine Kinase Inhibitor, Dovitinib (TKI-258), Enhances BMP-2-Induced Osteoblast Differentiation In Vitro

    Science.gov (United States)

    Lee, Yura; Bae, Kyoung Jun; Chon, Hae Jung; Kim, Seong Hwan; Kim, Soon Ae; Kim, Jiyeon

    2016-01-01

    Dovitinib (TKI258) is a small molecule multi-kinase inhibitor currently in clinical phase I/II/III development for the treatment of various types of cancers. This drug has a safe and effective pharmacokinetic/pharmacodynamic profile. Although dovitinib can bind several kinases at nanomolar concentrations, there are no reports relating to osteoporosis or osteoblast differentiation. Herein, we investigated the effect of dovitinib on human recombinant bone morphogenetic protein (BMP)-2-induced osteoblast differentiation in a cell culture model. Dovitinib enhanced the BMP-2-induced alkaline phosphatase (ALP) induction, which is a representative marker of osteoblast differentiation. Dovitinib also stimulated the translocation of phosphorylated Smad1/5/8 into the nucleus and phosphorylation of mitogen-activated protein kinases, including ERK1/2 and p38. In addition, the mRNA expression of BMP-4, BMP-7, ALP, and OCN increased with dovitinib treatment. Our results suggest that dovitinib has a potent stimulating effect on BMP-2-induced osteoblast differentiation and this existing drug has potential for repositioning in the treatment of bone-related disorders. PMID:27025387

  1. In vitro culture and characterization of alveolar bone osteoblasts isolated from type 2 diabetics

    International Nuclear Information System (INIS)

    In order to understand the mechanisms of poor osseointegration following dental implants in type 2 diabetics, it is important to study the biological properties of alveolar bone osteoblasts isolated from these patients. We collected alveolar bone chips under aseptic conditions and cultured them in vitro using the tissue explants adherent method. The biological properties of these cells were characterized using the following methods: alkaline phosphatase (ALP) chemical staining for cell viability, Alizarin red staining for osteogenic characteristics, MTT test for cell proliferation, enzyme dynamics for ALP contents, radio-immunoassay for bone gla protein (BGP) concentration, and ELISA for the concentration of type I collagen (COL-I) in the supernatant. Furthermore, we detected the adhesion ability of two types of cells from titanium slices using non-specific immunofluorescence staining and cell count. The two cell forms showed no significant difference in morphology under the same culture conditions. However, the alveolar bone osteoblasts received from type 2 diabetic patients had slower growth, lower cell activity and calcium nodule formation than the normal ones. The concentration of ALP, BGP and COL-I was lower in the supernatant of alveolar bone osteoblasts received from type 2 diabetic patients than in that received from normal subjects (P < 0.05). The alveolar bone osteoblasts obtained from type 2 diabetic patients can be successfully cultured in vitro with the same morphology and biological characteristics as those from normal patients, but with slower growth and lower concentration of specific secretion and lower combining ability with titanium than normal ones

  2. Osteoblasts generate an osteogenic microenvironment when grown on surfaces with rough microtopographies

    Directory of Open Access Journals (Sweden)

    Boyan B. D.

    2003-10-01

    Full Text Available Osteoblasts respond to microarchitectural features of their substrate. On smooth surfaces (tissue culture plastic, tissue culture glass, and titanium, the cells attach and proliferate but they exhibit relatively low expression of differentiation markers in monolayer cultures, even when confluent. When grown on microrough Ti surfaces with an average roughness (Ra of 4-7 µm, proliferation is reduced but differentiation is enhanced and in some cases, is synergistic with the effects of surface microtopography. In addition, cells on microrough Ti substrates form hydroxyapatite in a manner that is more typical of bone than do cells cultured on smooth surfaces. Osteoblasts also respond to growth factors and cytokines in a surface-dependent manner. On rougher surfaces, the effects of regulatory factors like 1alpha,25(OH2D3 or 17beta-estradiol are enhanced. The response to the surface is mediated by integrins, which signal to the cell through many of the same mechanisms used by growth factors and hormones. Studies using PEG-modified surfaces indicate that increased differentiation may be related to altered attachment to the surface. When osteoblasts are grown on surfaces with chemistries or microarchitectures that reduce cell attachment and proliferation, and enhance differentiation, the cells tend to increase production of factors like TGF-beta1 that promote osteogenesis while decreasing osteoclastic activity. Thus, on microrough Ti surface, osteoblasts create a microenvironment conducive to new bone formation.

  3. Culture of osteoblasts on bio-derived bones

    Institute of Scientific and Technical Information of China (English)

    LAN Xu; YANG Zhi-ming; GE Bao-feng; LIU Xue-mei

    2005-01-01

    Objective: To study the effect of bio-derived bones, as substitutes of autogenous bone grafts and demineralized cadaver bones, on the attachment, spreading and proliferation of isolated osteoblasts. Methods: Osteoblasts were isolated from the calvaria of a fetal rabbit through sequential collagenase digestion. In the attachment study, the osteoblasts labeled with 3H-leucine were incubated with the bio-derived bone materials in sterile microcentrifugale tubes for 15, 90 and 180 minutes, and 24 hours, respectively. The attached cells were collected and the radioactivity was measured with liquid scintillation spectrometry. In the proliferation study, the osteoblasts were cultured with the bio-derived bone materials for 24 hours and 3H-thymidine was added during the last 2 hours of the incubation. The attached cells were collected and the radioactivity was measured with liquid scintillation spectrometry. Osteoblasts were seeded on the bone graft materials for 60 or 120 minutes, 24 or 48 hours, and 3 or 7 days, then the co-culture was processed for scanning electron microscopy to observe the interaction of osteoblasts and the bio-derived bone materials. Results: Osteoblasts attached to the bio-derived bone materials in a time-dependent manner. There were significantly (P<0.05) more attached cells after 180 minutes than after 15 and 90 minutes of incubations (P<0.05). Osteoblasts were proliferated in a large amount on the surface and in the materials. Osteoblasts seeded onto 100 mg bio-derived bones resulted in significantly (P<0.05) more measurable proliferation than those seeded onto 10 mg bones. Osteoblasts appeared round as they attached to the materials, then flattened and spread over with time passing. Conclusions: Bio-derived bones can provide a good environment for the attachment and proliferation of osteoblasts.

  4. Identification of microRNAs involved in osteoblast differentiation of murine embryonic stem cells

    OpenAIRE

    Kaniowska, Dorota

    2012-01-01

    Skeletal development requires stringent control of programs for gene activation and suppression in response to physiological cues. There has been a principal focus on the identification of the mechanisms by which a particular cell phenotype is activated. MicroRNAs (miRNAs, miRs) have emerged as key negative regulators of diverse biological and pathological processes, including developmental timing, organogenesis, apoptosis, cell proliferation and differentiation; how they regulate osteoblast ...

  5. Affective response to a loved one's pain: insula activity as a function of individual differences.

    Directory of Open Access Journals (Sweden)

    Viridiana Mazzola

    Full Text Available Individual variability in emotion processing may be associated with genetic variation as well as with psychological predispositions such as dispositional affect styles. Our previous fMRI study demonstrated that amygdala reactivity was independently predicted by affective-cognitive styles (phobic prone or eating disorders prone and genotype of the serotonin transporter in a discrimination task of fearful facial expressions. Since the insula is associated with the subjective evaluation of bodily states and is involved in human feelings, we explored whether its activity could also vary in function of individual differences. In the present fMRI study, the association between dispositional affects and insula reactivity has been examined in two groups of healthy participants categorized according to affective-cognitive styles (phobic prone or eating disorders prone. Images of the faces of partners and strangers, in both painful and neutral situations, were used as visual stimuli. Interaction analyses indicate significantly different activations in the two groups in reaction to a loved one's pain: the phobic prone group exhibited greater activation in the left posterior insula. These results demonstrate that affective-cognitive style is associated with insula activity in pain empathy processing, suggesting a greater involvement of the insula in feelings for a certain cohort of people. In the mapping of individual differences, these results shed new light on variability in neural networks of emotion.

  6. Osteogenic differentiation of mesenchymal stem cells is regulated by osteocyte and osteoblast cells in a simplified bone niche

    Directory of Open Access Journals (Sweden)

    LM McNamara

    2012-01-01

    Full Text Available Mesenchymal stem cells (MSCs within their native environment of the stem cell niche in bone receive biochemical stimuli from surrounding cells. These stimuli likely influence how MSCs differentiate to become bone precursors. The ability of MSCs to undergo osteogenic differentiation is well established in vitro;however, the role of the natural cues from bone’s regulatory cells, osteocytes and osteoblasts in regulating the osteogenic differentiation of MSCs in vivo are unclear. In this study we delineate the role of biochemical signalling from osteocytes and osteoblasts, using conditioned media and co-culture experiments, to understand how they direct osteogenic differentiation of MSCs. Furthermore, the synergistic relationship between osteocytes and osteoblasts is examined by transwell co-culturing of MSCs with both simultaneously. Osteogenic differentiation of MSCs was quantified by monitoring alkaline phosphatase (ALP activity, calcium deposition and cell number. Intracellular ALP was found to peak earlier and there was greater calcium deposition when MSCs were co-cultured with osteocytes rather than osteoblasts, suggesting that osteocytes are more influential than osteoblasts in stimulating osteogenesis in MSCs. Osteoblasts initially stimulated an increase in the number of MSCs, but ultimately regulated MSC differentiation down the same pathway. Our novel co-culture system confirmed a synergistic relationship between osteocytes and osteoblasts in producing biochemical signals to stimulate the osteogenic differentiation of MSCs. This study provides important insights into the mechanisms at work within the native stem cell niche to stimulate osteogenic differentiation and outlines a possible role for the use of co-culture or conditioned media methodologies for tissue engineering applications.

  7. Osteoblastic response to pectin nanocoating on titanium surfaces

    International Nuclear Information System (INIS)

    Osseointegration of titanium implants can be improved by organic and inorganic nanocoating of the surface. The aim of our study was to evaluate the effect of organic nanocoating of titanium surface with unmodified and modified pectin Rhamnogalacturonan-Is (RG-Is) isolated from potato and apple with respect to surface properties and osteogenic response in osteoblastic cells. Nanocoatings on titanium surfaces were evaluated by scanning electron microscopy, contact angle measurements, atomic force microscopy, and X-ray photoelectron spectroscopy. The effect of coated RG-Is on cell adhesion, cell viability, bone matrix formation and mineralization was tested using SaOS-2 cells. Nanocoating with pectin RG-Is affected surface properties and in consequence changed the environment for cellular response. The cells cultured on surfaces coated with RG-Is from potato with high content of linear 1.4-linked galactose produced higher level of mineralized matrix compared with control surfaces and surfaces coated with RG-I with low content of linear 1.4-linked galactose. The study showed that the pectin RG-Is nanocoating not only changed chemical and physical titanium surface properties, but also specific coating with RG-Is containing high amount of galactan increased mineralized matrix formation of osteoblastic cells in vitro. - Highlights: • Surface nanocoating with plant-derived Rhamnogalacturonan-I (RG-I) is proposed. • Titanium surface became more hydrophilic after RG-Is nanocoating. • RG-Is with high galactose content resulted in high level of mineralized matrix. • RG-I is a new candidate for improvement of bone healing and osseointegration

  8. Osteoblastic response to pectin nanocoating on titanium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Gurzawska, Katarzyna, E-mail: kagu@sund.ku.dk [Research Center for Ageing and Osteoporosis, Departments of Medicine and Diagnostics, Copenhagen University Hospital Glostrup, Ndr. Ringvej 57, 2600 Glostrup (Denmark); Institute of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Allé 20, 2200 Copenhagen N (Denmark); Svava, Rikke [Department of Plant Environment Sciences, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C (Denmark); Copenhagen Center for Glycomics, Institute for Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N (Denmark); Yihua, Yu; Haugshøj, Kenneth Brian [Microtechnology and Surface Analysis, Danish Technological Institute, Gregersensvej 8, 2630 Taastrup (Denmark); Dirscherl, Kai [Dansk Fundamental Metrologi A/S, Matematiktorvet 307, 2800 Lyngby (Denmark); Levery, Steven B. [Copenhagen Center for Glycomics, Institute for Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N (Denmark); Byg, Inge [Department of Plant Environment Sciences, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C (Denmark); Damager, Iben [Novozymes A/S, Krogshoejvej 36, 2880 Bagsvaerd (Denmark); Nielsen, Martin W. [Department of Systems Biology, Technical University of Denmark, Matematiktorvet, Building 301, Kgs. Lyngby DK-2800 (Denmark); Jørgensen, Bodil [Department of Plant Environment Sciences, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C (Denmark); Jørgensen, Niklas Rye [Research Center for Ageing and Osteoporosis, Departments of Medicine and Diagnostics, Copenhagen University Hospital Glostrup, Ndr. Ringvej 57, 2600 Glostrup (Denmark); and others

    2014-10-01

    Osseointegration of titanium implants can be improved by organic and inorganic nanocoating of the surface. The aim of our study was to evaluate the effect of organic nanocoating of titanium surface with unmodified and modified pectin Rhamnogalacturonan-Is (RG-Is) isolated from potato and apple with respect to surface properties and osteogenic response in osteoblastic cells. Nanocoatings on titanium surfaces were evaluated by scanning electron microscopy, contact angle measurements, atomic force microscopy, and X-ray photoelectron spectroscopy. The effect of coated RG-Is on cell adhesion, cell viability, bone matrix formation and mineralization was tested using SaOS-2 cells. Nanocoating with pectin RG-Is affected surface properties and in consequence changed the environment for cellular response. The cells cultured on surfaces coated with RG-Is from potato with high content of linear 1.4-linked galactose produced higher level of mineralized matrix compared with control surfaces and surfaces coated with RG-I with low content of linear 1.4-linked galactose. The study showed that the pectin RG-Is nanocoating not only changed chemical and physical titanium surface properties, but also specific coating with RG-Is containing high amount of galactan increased mineralized matrix formation of osteoblastic cells in vitro. - Highlights: • Surface nanocoating with plant-derived Rhamnogalacturonan-I (RG-I) is proposed. • Titanium surface became more hydrophilic after RG-Is nanocoating. • RG-Is with high galactose content resulted in high level of mineralized matrix. • RG-I is a new candidate for improvement of bone healing and osseointegration.

  9. Dose-dependent effect of estrogen suppresses the osteo-adipogenic transdifferentiation of osteoblasts via canonical Wnt signaling pathway.

    Directory of Open Access Journals (Sweden)

    Bo Gao

    Full Text Available Fat infiltration within marrow cavity is one of multitudinous features of estrogen deficiency, which leads to a decline in bone formation functionality. The origin of this fat is unclear, but one possibility is that it is derived from osteoblasts, which transdifferentiate into adipocytes that produce bone marrow fat. We examined the dose-dependent effect of 17β-estradiol on the ability of MC3T3-E1 cells and murine bone marrow-derived mesenchymal stem cell (BMMSC-derived osteoblasts to undergo osteo-adipogenic transdifferentiation. We found that 17β-estradiol significantly increased alkaline phosphatase activity (P<0.05; calcium deposition; and Alp, Col1a1, Runx2, and Ocn expression levels dose-dependently. By contrast, 17β-estradiol significantly decreased the number and size of lipid droplets, and Fabp4 and PPARγ expression levels during osteo-adipogenic transdifferentiation (P<0.05. Moreover, the expression levels of brown adipocyte markers (Myf5, Elovl3, and Cidea and undifferentiated adipocyte markers (Dlk1, Gata2, and Wnt10b were also affected by 17β-estradiol during osteo-adipogenic transdifferentiation. Western blotting and immunostaining further showed that canonical Wnt signaling can be activated by estrogen to exert its inhibitory effect of osteo-adipogenesis. This is the first study to demonstrate the dose-dependent effect of 17β-estradiol on the osteo-adipogenic transdifferentiation of MC3T3-E1 cells and BMMSCs likely via canonical Wnt signaling. In summary, our results indicate that osteo-adipogenic transdifferentiation modulated by canonical Wnt signaling pathway in bone metabolism may be a new explanation for the gradually increased bone marrow fat in estrogen-inefficient condition.

  10. The level of physical activity affects the health of older adults despite being active.

    Science.gov (United States)

    Fernandez-Alonso, Lorena; Muñoz-García, Daniel; La Touche, Roy

    2016-06-01

    Health care in the ageing population is becoming a crucial issue, due to the quality of life. Physical activity, is of primary importance for older adults. This report compared the physical activity in two active older adults population with functionality, quality of life, and depression symptoms. A cross-sectional study was developed with 64 older adults. Physical activity was assessed through the Yale Physical Activity Survey for classification into a less activity (LA) group and a more activity (MA) group. Afterwards, the other health variables were measured through specific questionnaires: the quality of life with the EuroQol (EuroQol five dimensions questionnaire, EQ-5D), functionality with the Berg balance scale (BBS) and depression symptoms with the geriatric depression scale (GDS). There is a statistical significant difference between groups for the BBS (t=2.21; P=0.03, d=0.27). The Pearson correlation analysis shows in LA group a moderate correlation between the BBS and age (r=-0.539; PActive older adults with different amounts of physical activity differ in the BBS. This functional score was higher in the MA group. When observing to quality of life, only the LA group was negatively associated with age while in both groups were associated with depression index.

  11. Alteration of membrane phospholipid methylation by adenosine analogs does not affect T lymphocyte activation

    International Nuclear Information System (INIS)

    Membrane phospholipid methylation has been described during activation of various immune cells. Moreover recent data indicated modulation of immune cells functions by adenosine. As S-adenosyl-methionine and S-adenosyl-homocysteine are adenosine analogs and modulators of transmethylation reactions, the effects of SAH and SAM were investigated on membrane phospholipid methylation and lymphocyte activation. SAM was shown to induce the membrane phospholipid methylation as assessed by the 3Hmethyl-incorporation in membrane extract. This effect was inhibited by SAH. In contrast SAM and SAH did not affect the phytohemagglutinin-induced proliferative response of peripheral blood mononuclear cells. SAH neither modified the early internalization of membrane CD3 antigens nor did it prevent the late expression of HLA-DR antigens on lymphocytes activated by phytohemagglutinin. These results indicate that in vitro alteration of phospholipid methylation does not affect subsequent steps of human T lymphocyte activation and proliferation

  12. Affect and achievement goals in physical activity: a meta-analysis.

    Science.gov (United States)

    Ntoumanis, N; Biddle, S J

    1999-12-01

    Achievement goal orientation theory has been the subject of extensive research in recent years. In view of the importance of identifying the motivational antecedents of affect in physical activity, this study examined through meta-analysis the conflicting evidence regarding the links between different achievement goals and emotions. Using the formulas of Hunter and Schmidt (1), correlations were gathered from 41 independent samples and were corrected for both sampling and measurement errors. The results showed that task orientation and positive affect were moderately-to-highly correlated and in a positive fashion, whereas the relationship between task orientation and negative affect was negative and moderate to small. Both correlations were found to be heterogeneous, and so moderators were sought. The relationships between ego orientation and positive and negative affect were positive but very small, with the former being heterogeneous. Moderators coded were the time frame of affect (independent of context vs. after an athletic event), the physical activity setting (school physical education vs. recreation vs. competitive sport), age (university vs. school students), nationality (British vs. American), nature of negative affect (high vs. low arousal), and the publication status of the studies (published vs. unpublished). Lastly, a subset of the corrected correlations were inserted into a structural equation modelling analysis in order to look concurrently at the relationships among all the variables.

  13. Glimepiride promotes osteogenic differentiation in rat osteoblasts via the PI3K/Akt/eNOS pathway in a high glucose microenvironment.

    Science.gov (United States)

    Ma, Pan; Gu, Bin; Xiong, Wei; Tan, Baosheng; Geng, Wei; Li, Jun; Liu, Hongchen

    2014-01-01

    Our previous studies demonstrated that glimepiride enhanced the proliferation and differentiation of osteoblasts and led to activation of the PI3K/Akt pathway. Recent genetic evidence shows that endothelial nitric oxide synthase (eNOS) plays an important role in bone homeostasis. In this study, we further elucidated the roles of eNOS, PI3K and Akt in bone formation by osteoblasts induced by glimepiride in a high glucose microenvironment. We demonstrated that high glucose (16.5 mM) inhibits the osteogenic differentiation potential and proliferation of rat osteoblasts. Glimepiride activated eNOS expression in rat osteoblasts cultured with two different concentrations of glucose. High glucose-induced osteogenic differentiation was significantly enhanced by glimepiride. Down-regulation of PI3K P85 levels by treatment with LY294002 (a PI3K inhibitor) led to suppression of P-eNOS and P-AKT expression levels, which in turn resulted in inhibition of RUNX2, OCN and ALP mRNA expression in osteoblasts induced by glimepiride at both glucose concentrations. ALP activity was partially inhibited by 10 µM LY294002. Taken together, our results demonstrate that glimepiride-induced osteogenic differentiation of osteoblasts occurs via eNOS activation and is dependent on the PI3K/Akt signaling pathway in a high glucose microenvironment. PMID:25391146

  14. Glimepiride promotes osteogenic differentiation in rat osteoblasts via the PI3K/Akt/eNOS pathway in a high glucose microenvironment.

    Directory of Open Access Journals (Sweden)

    Pan Ma

    Full Text Available Our previous studies demonstrated that glimepiride enhanced the proliferation and differentiation of osteoblasts and led to activation of the PI3K/Akt pathway. Recent genetic evidence shows that endothelial nitric oxide synthase (eNOS plays an important role in bone homeostasis. In this study, we further elucidated the roles of eNOS, PI3K and Akt in bone formation by osteoblasts induced by glimepiride in a high glucose microenvironment. We demonstrated that high glucose (16.5 mM inhibits the osteogenic differentiation potential and proliferation of rat osteoblasts. Glimepiride activated eNOS expression in rat osteoblasts cultured with two different concentrations of glucose. High glucose-induced osteogenic differentiation was significantly enhanced by glimepiride. Down-regulation of PI3K P85 levels by treatment with LY294002 (a PI3K inhibitor led to suppression of P-eNOS and P-AKT expression levels, which in turn resulted in inhibition of RUNX2, OCN and ALP mRNA expression in osteoblasts induced by glimepiride at both glucose concentrations. ALP activity was partially inhibited by 10 µM LY294002. Taken together, our results demonstrate that glimepiride-induced osteogenic differentiation of osteoblasts occurs via eNOS activation and is dependent on the PI3K/Akt signaling pathway in a high glucose microenvironment.

  15. The level of physical activity affects the health of older adults despite being active

    Science.gov (United States)

    Fernandez-Alonso, Lorena; Muñoz-García, Daniel; La Touche, Roy

    2016-01-01

    Health care in the ageing population is becoming a crucial issue, due to the quality of life. Physical activity, is of primary importance for older adults. This report compared the physical activity in two active older adults population with functionality, quality of life, and depression symptoms. A cross-sectional study was developed with 64 older adults. Physical activity was assessed through the Yale Physical Activity Survey for classification into a less activity (LA) group and a more activity (MA) group. Afterwards, the other health variables were measured through specific questionnaires: the quality of life with the EuroQol (EuroQol five dimensions questionnaire, EQ-5D), functionality with the Berg balance scale (BBS) and depression symptoms with the geriatric depression scale (GDS). There is a statistical significant difference between groups for the BBS (t=2.21; P=0.03, d=0.27). The Pearson correlation analysis shows in LA group a moderate correlation between the BBS and age (r=−0.539; P<0.01) and EQ-5D (r=0.480; P<0.01). Moreover, both groups had a moderate negative correlation between GDS and the the EQ-5D time trade-off (r=−0.543; P=0.02). Active older adults with different amounts of physical activity differ in the BBS. This functional score was higher in the MA group. When observing to quality of life, only the LA group was negatively associated with age while in both groups were associated with depression index. PMID:27419115

  16. Does Mixed Reimbursement Schemes Affect Hospital Activity and Productivity? An Analysis of the Case of Denmark

    DEFF Research Database (Denmark)

    Hansen, Xenia Brun; Bech, Mickael; Jakobsen, Mads Leth;

    2013-01-01

    The majority of public hospitals in Scandinavia are reimbursed through a mixture of two prospective reimbursement schemes, block grants (a fixed amount independent of the number of patients treated) and activity-based financing (ABF). This article contributes theoretically to the existing...... whether different incentives affects the performance of hospitals regarding activity and productivity differently. Information on Danish reimbursement schemes has been collected from documents provided by the regional governments and through interviews with regional administrations. The data cover...

  17. CES1 genetic variation affects the activation of angiotensin-converting enzyme inhibitors.

    Science.gov (United States)

    Wang, X; Wang, G; Shi, J; Aa, J; Comas, R; Liang, Y; Zhu, H-J

    2016-06-01

    The aim of the study was to determine the effect of carboxylesterase 1 (CES1) genetic variation on the activation of angiotensin-converting enzyme inhibitor (ACEI) prodrugs. In vitro incubation study of human liver, intestine and kidney s9 fractions demonstrated that the ACEI prodrugs enalapril, ramipril, perindopril, moexipril and fosinopril are selectively activated by CES1 in the liver. The impact of CES1/CES1VAR and CES1P1/CES1P1VAR genotypes and diplotypes on CES1 expression and activity on enalapril activation was investigated in 102 normal human liver samples. Neither the genotypes nor the diplotypes affected hepatic CES1 expression and activity. Moreover, among several CES1 nonsynonymous variants studied in transfected cell lines, the G143E (rs71647871) was a loss-of-function variant for the activation of all ACEIs tested. The CES1 activity on enalapril activation in human livers with the 143G/E genotype was approximately one-third of that carrying the 143G/G. Thus, some functional CES1 genetic variants (for example, G143E) may impair ACEI activation, and consequently affect therapeutic outcomes of ACEI prodrugs. PMID:26076923

  18. 二甲双胍对骨向分化骨髓基质细胞增殖和分化的影响%Effects of Metformin on Proliferation and Differentiation of Bone Marrow Stromal Cells in Osteoblastic Medium.

    Institute of Scientific and Technical Information of China (English)

    张海波; 粱伟之; 高莺; 胡静

    2011-01-01

    Objective To investigate the possible effects of metformin, a commonly used drug for the patients with type 2 diabetes, on the proliferation and differentiation of rat bone marrow stromal cells ( BMSCs) cultured in osteoblatic medium. Methods The BMSCs used in this study were isolated from the femurs and tibiae of Sprague - Dawley rats and then cultured in the osteoblatic medium with or without 100 μmol/L metforrain. MTT assay was performed to evaluate the proliferation of the cells cultured in osteoblastic medium with or without metformin, while alkaline phosphate (ALP) activities analysis and mineralization nodules assessment were performed to evaluate the osteoblastic differentiation of these cells. At last, real time RT - PCR was further performed to quantify the mRNA expression levels of osteoblastic marker genes in osteoblastic differentiation cells treated with or without metformin. Results The number of BMSCs in two groups both increased over time, and metformin induced more cells. By contrast, the cells affected by metformin showed higher ALP activities, more nodules in the culture and more calcium deposition in mineralized nodules, as examined by ARS staining. The optical density of ARS destaining solution in metformin group was significantly higher than that of control group. Moreover, the promotive effects of metformin on osteoblastic differentiation were further examined by testing the mRNA levels of osteoblastic marker genes using real - time RT - PCR. The metformin - containing medium yielded higher levels of mRNA levels for osteoblastic markers. Conclusion Metformin may promote the proliferation and differentiation of BMSCs cultured in osteoblastic medium.%目的 探讨二甲双胍对骨向分化的大鼠骨髓基质细胞增殖和分化的影响.方法 体外分离培养大鼠骨髓基质细胞,对其进行骨向诱导分化,并于实验组添加100μ mol/L二甲双胍,应用四甲基偶氮唑盐法(MTT)检测细胞增

  19. Elements of Design-Based Science Activities That Affect Students' Motivation

    Science.gov (United States)

    Jones, Brett D.; Chittum, Jessica R.; Akalin, Sehmuz; Schram, Asta B.; Fink, Jonathan; Schnittka, Christine; Evans, Michael A.; Brandt, Carol

    2015-01-01

    The primary purpose of this study was to examine the ways in which a 12-week after-school science and engineering program affected middle school students' motivation to engage in science and engineering activities. We used current motivation research and theory as a conceptual framework to assess 14 students' motivation through questionnaires,…

  20. Agar composition affects in vitro screening of biocontrol activity of antagonistic microorganisms

    NARCIS (Netherlands)

    Bosmans, Lien; De Bruijn, I.; de Mot, Rene; Readers, Hans; Lievens, Bart

    2016-01-01

    Agar-based screening assays are the method of choice when evaluating antagonistic potential of bacterial biocontrol-candidates against pathogens.Weshowed thatwhen using the samemedium, but different agar compositions, the activity of a bacterial antagonist against Agrobacteriumwas strongly affected.

  1. Temporal Dynamics of Physical Activity and Affect in Depressed and Nondepressed Individuals

    NARCIS (Netherlands)

    Stavrakakis, Nikolaos; Booij, Sanne H.; Roest, Annelieke M.; de Jonge, Peter; Oldehinkel, Albertine J.; Bos, Elisabeth H.

    2015-01-01

    Objective: The association between physical activity and affect found in longitudinal observational studies is generally small to moderate. It is unknown how this association generalizes to individuals. The aim of the present study was to investigate interindividual differences in the bidirectional

  2. Glomalin in a mediterranean ecosystem affected by mining activities and its contribution to heavy metals sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Cornejo, P.; Meier, F.; Borie, G.; Borie, F.

    2009-07-01

    Glomalin-related soil protein (GRSP), a glycoprotein produced by arbuscular mycorrhizal fungi (AMF) and usually presents in high amounts in soil, may stabilize heavy metals such as Cu an Zn in soils affected by mining activities, as large areas of central Chile. (Author)

  3. Watered depressions as ecological phenomena in regions affected by mining activities

    International Nuclear Information System (INIS)

    This paper presents the results of the importance of mine watered depressions in a landscape affected by mining activities (model localities - Louky nad Olsi, Orlova and Horni Sucha, Karvina district) from an ecological point of view - conservation and formation of wetland and water ecosystems, genetic resources and biodiversity conservation

  4. Dual Effect of Chrysanthemum indicum Extract to Stimulate Osteoblast Differentiation and Inhibit Osteoclast Formation and Resorption In Vitro

    Directory of Open Access Journals (Sweden)

    Jong Min Baek

    2014-01-01

    Full Text Available The risk of bone-related diseases increases due to the imbalance between bone resorption and bone formation by osteoclasts and osteoblasts, respectively. The goal in the development of antiosteoporotic treatments is an agent that will improve bone through simultaneous osteoblast stimulation and osteoclast inhibition without undesirable side effects. To achieve this goal, numerous studies have been performed to identify novel approaches using natural oriental herbs to treat bone metabolic diseases. In the present study, we investigated the effect of Chrysanthemum indicum extract (CIE on the differentiation of osteoclastic and osteoblastic cells. CIE inhibited the formation of TRAP-positive mature osteoclasts and of filamentous-actin rings and disrupted the bone-resorbing activity of mature osteoclasts in a dose-dependent manner. CIE strongly inhibited Akt, GSK3β, and IκB phosphorylation in RANKL-stimulated bone marrow macrophages and did not show any effects on MAP kinases, including p38, ERK, and JNK. Interestingly, CIE also enhanced primary osteoblast differentiation via upregulation of the expression of alkaline phosphatase and the level of extracellular calcium concentrations during the early and terminal stages of differentiation, respectively. Our results revealed that CIE could have a potential therapeutic role in bone-related disorders through its dual effects on osteoclast and osteoblast differentiation.

  5. ORALLY LACTATE CALCIUM AND SWIMMING DECREASE OSTEOCLAST AND INCREASE OSTEOBLAST IN RADIAL PERIMENOPAUSAL MICE (MUS MUSCULUS BONE

    Directory of Open Access Journals (Sweden)

    Muliani **

    2013-04-01

    Full Text Available Calcium and moderate intensity swimming exercise can increase bone density. The aim of this research is to see the effect of orally calcium consumption and swimming activity to decrease osteoclast and increase osteoblast in radial perimenopausal mice (Mus musculus bone. Pretest and pos#est control group design was used in this research. Research subject used 15-16 aged mice (Mus musculus which divided into 4 groups (each group consisted of 13 mice, that was control, lactate calcium, swimming and lactate calcium and swimming. Treatment was given 90 days. This study showed a significant difference of the mean of the pos#est osteoblast between control and experimental groups (P<0.05. There was no significant difference between lactate calcium and swimming groups (P>0.05. Enhancement of osteoblast mean in combination group was greater than the other experimental groups. There was a significant difference of the mean of the pos#est  osteoclast between control and experimental groups (P<0.05, without significant difference between lactate calcium,   swimming groups and combination of lactate calcium and swimming group (P>0.05.  Conclusion: either lactate calcium or swimming decreases osteoclast and increases osteoblast of the mice but the osteoblast enhancement will be bigger when they are given together at once

  6. Aurantio-obtusin stimulates chemotactic migration and differentiation of MC3T3-E1 osteoblast cells.

    Science.gov (United States)

    Vishnuprasad, Chethala N; Tsuchiya, Tomoko; Kanegasaki, Shiro; Kim, Joon Ho; Han, Sung Soo

    2014-05-01

    Osteoporosis is one of the major metabolic bone diseases and is among the most challenging noncommunicable diseases to treat. Although there is an increasing interest in identifying bioactive molecules for the prevention and management of osteoporosis, such studies principally focus only on differentiation and mineralization of osteoblasts or inhibition of osteoclast activity. Stimulation of osteoblast migration must be a promising osteoanabolic strategy for improved metabolic bone disease therapy. In this study, we show that an anthraquinone derivative, aurantio-obtusin, stimulated chemotactic migration of MC3T3-E1 osteoblast cells in a concentration-dependent manner. The use of a real-time chemotaxis analyzing system, TAXIScan, facilitated the evaluation of both velocity and directionality of osteoblast migration in response to the compound. Besides migration, the compound stimulated osteoblast differentiation and mineralization. Taken together, the data presented in this paper demonstrate that aurantio-obtusin is a promising osteoanabolic compound of natural origin with potential therapeutic applications in the prevention of osteoporosis and other metabolic bone diseases.

  7. Fluid flow induced calcium response in osteoblasts: mathematical modeling.

    Science.gov (United States)

    Su, J H; Xu, F; Lu, X L; Lu, T J

    2011-07-28

    Fluid flow in the bone lacuno-canalicular network can induce dynamic fluctuation of intracellular calcium concentration ([Ca(2+)](i)) in osteoblasts, which plays an important role in bone remodeling. There has been limited progress in the mathematical modeling of this process probably due to its complexity, which is controlled by various factors such as Ca(2+) channels and extracellular messengers. In this study we developed a mathematical model to describe [Ca(2+)](i) response induced by fluid shear stress (SS) by integrating the major factors involved and analyzed the effects of different experimental setups (e.g. [Ca(2+)](i) baseline, pretreatment with ATP). In this model we considered the ATP release process and the activities of multiple ion channels and purinergic receptors. The model was further verified quantitatively by comparing the simulation results with experimental data reported in literature. The results showed that: (i) extracellular ATP concentration has more significant effect on [Ca(2+)](i) baseline (73% increase in [Ca(2+)](i) with extracellular ATP concentration varying between 0 and 10 μM), as compared to that induced by SS (25% variation in [Ca(2+)](i) with SS varying from 0 to 3.5 Pa); (ii) Pretreatment with ATP-medium results in different [Ca(2+)](i) response as compared to the control group (ATP-free medium) under SS; (iii) Relative [Ca(2+)](i) fluctuation over baseline is more reliable to show the [Ca(2+)](i) response process than the absolute [Ca(2+)](i) response peak. The developed model may improve the experimental design and facilitate our understanding of the mechanotransduction process in osteoblasts. PMID:21665208

  8. Osteoblast-specific deletion of Pkd2 leads to low-turnover osteopenia and reduced bone marrow adiposity.

    Directory of Open Access Journals (Sweden)

    Zhousheng Xiao

    Full Text Available Polycystin-1 (Pkd1 interacts with polycystin-2 (Pkd2 to form an interdependent signaling complex. Selective deletion of Pkd1 in the osteoblast lineage reciprocally regulates osteoblastogenesis and adipogenesis. The role of Pkd2 in skeletal development has not been defined. To this end, we conditionally inactivated Pkd2 in mature osteoblasts by crossing Osteocalcin (Oc-Cre;Pkd2+/null mice with floxed Pkd2 (Pkd2flox/flox mice. Oc-Cre;Pkd2flox/null (Pkd2Oc-cKO mice exhibited decreased bone mineral density, trabecular bone volume, cortical thickness, mineral apposition rate and impaired biomechanical properties of bone. Pkd2 deficiency resulted in diminished Runt-related transcription factor 2 (Runx2 expressions in bone and impaired osteoblastic differentiation ex vivo. Expression of osteoblast-related genes, including, Osteocalcin, Osteopontin, Bone sialoprotein (Bsp, Phosphate-regulating gene with homologies to endopeptidases on the X chromosome (Phex, Dentin matrix protein 1 (Dmp1, Sclerostin (Sost, and Fibroblast growth factor 23 (FGF23 were reduced proportionate to the reduction of Pkd2 gene dose in bone of Oc-Cre;Pkd2flox/+ and Oc-Cre;Pkd2flox/null mice. Loss of Pkd2 also resulted in diminished peroxisome proliferator-activated receptor γ (PPARγ expression and reduced bone marrow fat in vivo and reduced adipogenesis in osteoblast culture ex vivo. Transcriptional co-activator with PDZ-binding motif (TAZ and Yes-associated protein (YAP, reciprocally acting as co-activators and co-repressors of Runx2 and PPARγ, were decreased in bone of Oc-Cre;Pkd2flox/null mice. Thus, Pkd1 and Pkd2 have coordinate effects on osteoblast differentiation and opposite effects on adipogenesis, suggesting that Pkd1 and Pkd2 signaling pathways can have independent effects on mesenchymal lineage commitment in bone.

  9. Sonme Factors that Affect the Free Radical-scavenging Activity of Tea Extracts

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Some factors that affect the free radical-scavenging activety of two tea extracts were studied in vitro. It was found that concentration of tea extract or heating tea extract or treating with activated carbon and diatomite all had obvious effect on the scavenging activety of green tea extract ,but heating or treating with diaomite had less effect on the scavenging activity of black tea extract. Ascorbic acid, for having synergic effect with tea extracts, could enhance the scavenging activity of tea extracts markedly, and the contrary was cupric ion. Reducing sugars such as fructose and glucose also had some syncrgic effect to tea extracts.

  10. Antifungal activity of different natural dyes against traditional products affected fungal pathogens

    Institute of Scientific and Technical Information of China (English)

    R Mari selvam; AJA Ranjit Singh; K Kalirajan

    2012-01-01

    Objective: In the present study to evaluate the anti fungal activity of natural dyes against traditional products affected fungal pathogens. Methods: Many traditional craft products affected fungal pathogens were isolated using potato dextrose agar medium. The isolated fungus were identified by morphological and microscopically characterization using Alexopolus manual. 50μl of Turmeric, Terminalli, Guava and Henna natural dyes were poured into the wells of the culture plates. If antifungal activity was present on the plates, it was indicated by an inhibition zone surrounding the well containing the natural dye. Result: At a dose level of 50μl of terminalli dye was able to inhibit the growth of all the fungi tested. The absorbance rate of natural dyes analyzed by UV Spectrophotometer. The absorbance rate is high in terminalli (2.266) and turmeric (2.255). Conclusions: Natural dyes were bound with traditional products to give good colour and good antimicrobial activity against isolated fungal pathogens.

  11. Resveratrol inhibits myeloma cell growth, prevents osteoclast formation, and promotes osteoblast differentiation

    DEFF Research Database (Denmark)

    Boissy, Patrice; Andersen, Thomas L; Abdallah, Basem M;

    2005-01-01

    Multiple myeloma is characterized by the accumulation of clonal malignant plasma cells in the bone marrow, which stimulates bone destruction by osteoclasts and reduces bone formation by osteoblasts. In turn, the changed bone microenvironment sustains survival of myeloma cells. Therefore......, a challenge for treating multiple myeloma is discovering drugs targeting not only myeloma cells but also osteoclasts and osteoblasts. Because resveratrol (trans-3,4',5-trihydroxystilbene) is reported to display antitumor activities on a variety of human cancer cells, we investigated the effects...... of this natural compound on myeloma and bone cells. We found that resveratrol reduces dose-dependently the growth of myeloma cell lines (RPMI 8226 and OPM-2) by a mechanism involving cell apoptosis. In cultures of human primary monocytes, resveratrol inhibits dose-dependently receptor activator of nuclear factor...

  12. Does cypermethrin affect enzyme activity, respiration rate and walking behavior of the maize weevil (Sitophilus zeamais)?

    Institute of Scientific and Technical Information of China (English)

    Ronnie Von Santos Veloso; Eliseu José G.Pereira; Raul Narciso C.Guedes; Maria Goreti A.Oliveira

    2013-01-01

    Insecticides cause a range of sub-lethal effects on targeted insects,which are frequently detrimental to them.However,targeted insects are able to cope with insecticides within sub-lethal ranges,which vary with their susceptibility.Here we assessed the response of three strains of the maize weevil Sitophilus zeamais Motschulsky (Coleoptera:Curculionidae) to sub-lethal exposure to the pyrethoid insecticide cypermethrin.We expected enzyme induction associated with cypermethrin resistance since it would aid the resistant insects in surviving such exposure.Lower respiration rate and lower activity were also expected in insecticide-resistant insects since these traits are also likely to favor survivorship under insecticide exposure.Curiously though,cypermethrin did not affect activity of digestive and energy metabolism enzymes,and even reduced the activity of some enzymes (particularly for cellulase and cysteine-proteinase activity in this case).There was strain variation in response,which may be (partially) related to insecticide resistance in some strains.Sub-lethal exposure to cypermethrin depressed proteolytic and mainly cellulolytic activity in the exposed insects,which is likely to impair their fitness.However,such exposure did not affect respiration rate and walking behavior of the insects (except for the susceptible strain where walking activity was reduced).Walking activity varies with strain and may minimize insecticide exposure,which should be a concern,particularly if associated with (physiological) insecticide resistance.

  13. Osteogenic gene expression of murine osteoblastic (MC3T3-E1) cells under cyclic tension

    Science.gov (United States)

    Kao, C. T.; Chen, C. C.; Cheong, U.-I.; Liu, S. L.; Huang, T. H.

    2014-08-01

    Low-level laser therapy (LLLT) can promote cell proliferation. The remodeling ability of the tension side of orthodontic teeth affects post-orthodontic stability. The purpose of the present study was to investigate the osteogenic effects of LLLT on osteoblast-like cells treated with a simulated tension system that provides a mechanical tension regimen. Murine osteoblastic (MC3T3-E1) cells were cultured in a Flexcell strain unit with programmed loads of 12% elongation at a frequency of 0.5 Hz for 24 and 48 h. The cultured cells were treated with a low-level diode laser using powers of 5 J and 10 J. The proliferation of MC3T3-E1 cells was determined using the Alamar Blue assay. The expression of osteogenic genes (type I collagen (Col-1), osteopontin (OPN), osteocalcin (OC), osteoprotegerin (OPG), receptor activator of nuclear factor kappa B ligand (RANKL), bone morphologic protein (BMP-2), and bone morphologic protein (BMP-4)) in MC3T3-E1 cells was analyzed using reverse transcription polymerase chain reaction (RT-PCR). The data were analyzed using one-way analysis of variance. The proliferation rate of tension-cultured MC3T3-E1 cells under 5 J and 10 J LLLT increased compared with that of the control group (p < 0.05). Prominent mineralization of the MC3T3-E1 cells was visible using a von Kossa stain in the 5 J LLLT group. Osteogenic genes (Col-1, OC, OPG and BMP-2) were significantly expressed in the MC3T3-E1 cells treated with 5 J and 10 J LLLT (p < 0.05). LLLT in tension-cultured MC3T3-E1 cells showed synergistic osteogenic effects, including increases in cell proliferation and Col-1, OPN, OC, OPG and BMP-2 gene expression. LLLT might be beneficial for bone remodeling on the tension side of orthodontics.

  14. Exosomes derived from mineralizing osteoblasts promote ST2 cell osteogenic differentiation by alteration of microRNA expression.

    Science.gov (United States)

    Cui, Yazhou; Luan, Jing; Li, Haiying; Zhou, Xiaoyan; Han, Jinxiang

    2016-01-01

    Mineralizing osteoblasts (MOBs) can release exosomes, although the functional significance remains unclear. In the present study, we demonstrate that exosomes derived from mineralizing pre-osteoblast MC3T3-E1 cells can promote bone marrow stromal cell (ST2) differentiation to osteoblasts. We reveal that MOB-derived exosomes significantly influence miRNA profiles in recipient ST2 cells, and these changes tend to activate the Wnt signaling pathway by inhibiting Axin1 expression and increasing β-catenin expression. We also suggest that MOB derived-exosomes partly induce the variation in miRNA expression in recipient ST2 cells by exosomal miRNA transfer. These findings suggest an exosome-mediated mode of cell-to-cell communication in the osteogenic microenvironment, and also indicate the potential of MOB exosomes in bone tissue engineering.

  15. Effect of dual delivery of antibiotics (vancomycin and cefazolin) and BMP-7 from chitosan microparticles on Staphylococcus epidermidis and pre-osteoblasts in vitro.

    Science.gov (United States)

    Mantripragada, Venkata P; Jayasuriya, Ambalangodage C

    2016-10-01

    The main aims of this manuscript are to: i) determine the effect of commonly used antibiotics to treat osteoarticular infections on osteoblast viability, ii) study the dual release of the growth factor (BMP-7) and antibiotics (vancomycin and cefazolin) from chitosan microparticles iii) demonstrate the bioactivity of the antibiotics released in vitro on Staphylococcus epidermidis. The novelty of this work is dual delivery of growth factor and antibiotic from the chitosan microparticles in a controlled manner without affecting their bioactivity. Cefazolin and vancomycin have different therapeutic concentrations for their action in vivo and therefore, two different concentrations of the drugs were used. Osteoblast cytotoxicity test concluded that cefazolin concentrations of 50 and 100μg/ml were found to have positive influence on osteoblast proliferation. A significant increase in osteoblast proliferation was observed in the presence of cefazolin and BMP-7 in comparison with BMP-7 alone group; indicating cefazolin might play a role in osteoblast proliferation. On the other hand, vancomycin concentration of 1000μg/ml was found to significantly reduce (p<0.01) osteoblast proliferation in comparison with controls. The microbial study indicated that cefazolin at a minimum concentration of 21.5μg/ml could inhibit ~85% growth of S. epidermidis, whereas vancomycin at a concentration of 30μg/ml was found to inhibit ~80% bacterial growth. PMID:27287137

  16. Parathyroid Hormone Stimulates Phosphatidylethanolamine Hydrolysis by Phospholipase D in Osteoblastic Cells

    OpenAIRE

    Singh, Amareshwar T.K.; Frohman, Michael A.; Stern, Paula H.

    2005-01-01

    Parathyroid hormone (PTH) and phorbol-12,13-dibutyrate (PDBu) stimulate phospholipase D (PLD) activity and phosphatidylcholine (PC) hydrolysis in UMR-106 osteoblastic cells [1]. The current studies were designed to determine whether ethanolamine-containing phospholipids, and specifically phosphatidylethanolamine (PE), could also be substrates. In cells labeled with 14C-ethanolamine PTH and PDBu treatment decreased 14C-phosphatidylethanolamine. In cells co-labeled with 3H-choline and 14C-ethan...

  17. The Degradation Interface of Magnesium Based Alloys in Direct Contact with Human Primary Osteoblast Cells

    OpenAIRE

    Ahmad Agha, Nezha; Willumeit-Römer, Regine; Laipple, Daniel; Luthringer, Bérengère; Feyerabend, Frank

    2016-01-01

    Magnesium alloys have been identified as a new generation material of orthopaedic implants. In vitro setups mimicking physiological conditions are promising for material / degradation analysis prior to in vivo studies however the direct influence of cell on the degradation mechanism has never been investigated. For the first time, the direct, active, influence of human primary osteoblasts on magnesium-based materials (pure magnesium, Mg-2Ag and Mg-10Gd alloys) is studied for up to 14 days. Se...

  18. Pyk2 Regulates Megakaryocyte-Induced Increases in Osteoblast Number and Bone Formation

    OpenAIRE

    Cheng, Ying-Hua; Hooker, R. Adam; NGUYEN, Khanh; Gerard-O’Riley, Rita; Waning, David L.; Chitteti, Brahmananda R; Meijome, Tomas E.; Chua, Hui Lin; Plett, Artur P.; Orschell, Christie M.; Srour, Edward F.; Mayo, Lindsey D.; Pavalko, Fredrick M; Bruzzaniti, Angela; Kacena, Melissa A.

    2013-01-01

    Pre-clinical and clinical evidence from megakaryocyte (MK) related diseases suggest that MKs play a significant role in maintaining bone homeostasis. Findings from our laboratories reveal that MKs significantly increase osteoblast (OB) number through direct MK-OB contact and the activation of integrins. We therefore examined the role of Pyk2, a tyrosine kinase known to be regulated downstream of integrins, in the MK-mediated enhancement of OBs. When OBs were co-cultured with MKs, total Pyk2 l...

  19. The Rho-GEF Kalirin regulates bone mass and the function of osteoblasts and osteoclasts

    OpenAIRE

    Huang, Su; Pierre P. Eleniste; Wayakanon, Kornchanok; Mandela, Prashant; Eipper, Betty A.; Mains, Richard E.; Allen, Matthew R; Bruzzaniti, Angela

    2013-01-01

    Bone homeostasis is maintained by the balance between bone resorption by osteoclasts and bone formation by osteoblasts. Dysregulation in the activity of the bone cells can lead to osteoporosis, a disease characterized by low bone mass and an increase in bone fragility and risk of fracture. Kalirin is a novel GTP-exchange factor protein that has been shown to play a role in cytoskeletal remodeling and dendritic spine formation in neurons. We examined Kalirin expression in skeletal tissue and f...

  20. Effects of salubrinal on development of osteoclasts and osteoblasts from bone marrow-derived cells

    OpenAIRE

    Yokota, Hiroki; Hamamura, Kazunori; Chen,Andy; Dodge, Todd R.; Tanjung, Nancy; Abedinpoor, Aysan; Zhang, Ping

    2013-01-01

    Background Osteoporosis is a skeletal disease leading to an increased risk of bone fracture. Using a mouse osteoporosis model induced by administration of a receptor activator of nuclear factor kappa-B ligand (RANKL), salubrinal was recently reported as a potential therapeutic agent. To evaluate the role of salubrinal in cellular fates as well as migratory and adhesive functions of osteoclast/osteoblast precursors, we examined the development of primary bone marrow-derived cells in the presen...

  1. Osteoblast response to the surface of amino acid-functionalized hydroxyapatite.

    Science.gov (United States)

    Lee, Wing-Hin; Loo, Ching-Yee; Chrzanowski, Wojciech; Rohanizadeh, Ramin

    2015-06-01

    Interactions between proteins and the surface of biomaterials are crucial for the biological function and success of materials implanted in the human body. In this study, hydroxyapatite (HA) with negative and positive surface charges were fabricated by functionalizing the HA surface with acidic or basic amino acids. The influence of HA surface charge on protein adsorption and cell activities was studied. The crystallinity, morphology, and surface charge of amino acid-functionalized HA (AA-HA) particles and the stability of amino acids on the HA surface were determined. Both AA-HA and unmodified HA were studied for their capacity to adsorb proteins present in biological medium. The results showed that the presence of glutamic acid; Glu (acidic amino acids) and arginine; Arg (basic amino acids) on the HA surface resulted in higher protein adsorption owing to stronger electrostatic attraction between the HA particles and the proteins in medium. Functionalizing HA with Glu and Arg significantly promoted osteoblast adhesion on the surface of treated HA. No significant differences in cell proliferation between negatively and positively charged HA was observed. Significantly higher alkaline phosphatase (ALP) activity of osteoblasts on both charged surfaces was seen as compared to the unmodified HA. The study demonstrated that immobilization of amino acids (Glu and Arg) on the surface of HA promoted osteoblast proliferation and ALP activity. PMID:25346517

  2. Osteoblast recruitment routes in human cancellous bone remodeling

    DEFF Research Database (Denmark)

    Kristensen, Helene B; Levin Andersen, Thomas; Marcussen, Niels;

    2014-01-01

    It is commonly proposed that bone forming osteoblasts recruited during bone remodeling originate from bone marrow perivascular cells, bone remodeling compartment canopy cells, or bone lining cells. However, an assessment of osteoblast recruitment during adult human cancellous bone remodeling is...... lacking. We addressed this question by quantifying cell densities, cell proliferation, osteoblast differentiation markers, and capillaries in human iliac crest biopsy specimens. We found that recruitment occurs on both reversal and bone-forming surfaces, as shown by the cell density and osterix levels on...

  3. Osteoblast Adhesion of Breast Cancer Cells with Scanning Acoustic Microscopy

    Science.gov (United States)

    Miyasaka, C.; Mercer, R. R.; Mastro, A. M.

    Conditioned medium was collected from a bone-metastatic breast cancer cell line, MDA-MB-231, and cultured with an immature osteoblast cell line, MC3T3-E1. Under these conditions the osteoblasts acquired a changed morphology and appeared to adhere in a different way to the substrate and to each other. To characterize cellular adhesion, MC3T3-E1 osteoblasts were cultured with or without MDA-MB-231 conditioned medium for two days. With mechanical scanning acoustic reflection microscopy, we were able to detect a change in the adhesive condition of the interface between the cell and the substrate, but not with optical microscopy

  4. SOME IMPORTANT FACTORS AFFECTING EVOLUTION OF ACTIVITY BASED COSTING (ABC SYSTEM IN EGYPTIAN MANUFACTURING FIRMS

    Directory of Open Access Journals (Sweden)

    Karim MAMDOUH ABBAS

    2014-04-01

    Full Text Available The present investigation aims to determine the factors affecting evolution of Activity Based Costing (ABC system in Egyptian case. The study used the survey method to describe and analyze these factors in some Egyptian firms. The population of the study is Egyptian manufacturing firms. Accordingly, the number of received questionnaires was 392 (23 Egyptian manufacturing firms in the first half of 2013. Finally, the study stated some influencing factors for evolution this system (ABC in Egyptian manufacturing firms.

  5. Compensatory premotor activity during affective face processing in subclinical carriers of a single mutant Parkin allele

    OpenAIRE

    Anders, Silke; Sack, Benjamin; Pohl, Anna; Münte, Thomas; Pramstaller, Peter; Klein, Christine; Binkofski, Ferdinand

    2012-01-01

    Patients with Parkinson's disease suffer from significant motor impairments and accompanying cognitive and affective dysfunction due to progressive disturbances of basal ganglia–cortical gating loops. Parkinson's disease has a long presymptomatic stage, which indicates a substantial capacity of the human brain to compensate for dopaminergic nerve degeneration before clinical manifestation of the disease. Neuroimaging studies provide evidence that increased motor-related cortical activity can ...

  6. Sex differences in how stress affects brain activity during face viewing

    OpenAIRE

    Mather, Mara; Lighthall, Nichole R.; Nga, Lin; Marissa A Gorlick

    2010-01-01

    Under stress, men tend to withdraw socially while women seek social support. The current functional magnetic resonance imaging study indicates that stress also affects brain activity while viewing emotional faces differently for men and women. Fusiform face area (FFA) response to faces was diminished by acute stress in males but increased by stress in females. Furthermore, among stressed males viewing angry faces, brain regions involved in interpreting and understanding others' emotions (the ...

  7. SOME IMPORTANT FACTORS AFFECTING EVOLUTION OF ACTIVITY BASED COSTING (ABC) SYSTEM IN EGYPTIAN MANUFACTURING FIRMS

    OpenAIRE

    Karim MAMDOUH ABBAS

    2014-01-01

    The present investigation aims to determine the factors affecting evolution of Activity Based Costing (ABC) system in Egyptian case. The study used the survey method to describe and analyze these factors in some Egyptian firms. The population of the study is Egyptian manufacturing firms. Accordingly, the number of received questionnaires was 392 (23 Egyptian manufacturing firms) in the first half of 2013. Finally, the study stated some influencing factors for evolution this system (ABC) in Eg...

  8. Factors affecting hospital stay in psychiatric patients: the role of active comorbidity

    OpenAIRE

    Douzenis, Athanassios; Seretis, Dionysios; Nika, Stella; Nikolaidou, Paraskevi; Papadopoulou, Athanassia; Rizos, Emmanouil N; Christodoulou, Christos; Tsopelas, Christos; Mitchell, Dominic; Lykouras, Lefteris

    2012-01-01

    Background Research on length of stay (LOS) of psychiatric inpatients is an under-investigated issue. In this naturalistic study factors which affect LOS of two groups of patients were investigated, focusing on the impact on LOS of medical comorbidity severe enough to require referral. Methods Active medical comorbidity was quantified using referral as the criterion. The study sample consisted of 200 inpatients with the diagnosis of schizophrenia and 228 inpatients suffering from bipolar diso...

  9. Compatibility of Chinese nourishing kidney herbs influences osteoblast activity and Smad4 mRNA expression%补肾中药成分配伍对成骨细胞成骨活性及Smad4 mRNA表达的影响

    Institute of Scientific and Technical Information of China (English)

    贾英民; 李瑞玉; 武密山; 霍瑞楼; 李彬; 郭雅静

    2015-01-01

    Sprague-Dawley rat osteoblasts cultured by Chinese nourishing kidney herbs with different compatibility so as to find out the optimal compatibility of Chinese nourishing kidney herbs. METHODS: Passage 5 osteoblasts were divided into five groups: group A, 1×10-5mol/L icarin; group B, 1×10-5mol/L icarin+1×10-5 mol/L naringin; group C, 1×10-5mol/L icarin+1×10-5 mol/L diosgenin; group D, 1×10-5mol/L icarin+ 1×10-5mol/L catalpol; group E, 10 μL normal saline (control group). There were six wels in each group. RESULTS AND CONCLUSION: Compared with the group E, the proliferative ability of osteoblasts and expression of Smad4 mRNA were increased in the groups B and C; until the 72nd hour, the proliferative ability of osteoblasts in the group B reached the peak. At 48 hours of culture, the activity of alkaline phosphatase in groups B and C was higher than that in group E; at 72 hours of culture, the activity of alkaline phosphatase in groups B and D was higher than that in group E. These findings indicate that the compatibility of Chinese nourishing kidney herbs can influence the activity of osteoblasts, and icarin+naringin has the strongest effect.

  10. Leptin promotes osteoblast differentiation and mineralization of primary cultures of vascular smooth muscle cells by inhibiting glycogen synthase kinase (GSK)-3{beta}

    Energy Technology Data Exchange (ETDEWEB)

    Zeadin, Melec G.; Butcher, Martin K.; Shaughnessy, Stephen G. [Department of Medicine, McMaster University, Hamilton, ON (Canada); Thrombosis and Atherosclerosis Research Institute, Hamilton, ON (Canada); Werstuck, Geoff H., E-mail: Geoff.Werstuck@taari.ca [Department of Medicine, McMaster University, Hamilton, ON (Canada); Thrombosis and Atherosclerosis Research Institute, Hamilton, ON (Canada)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer Leptin promotes osteoblast differentiation of primary smooth muscle cells. Black-Right-Pointing-Pointer Leptin regulates the expression of genes involved in osteoblast differentiation. Black-Right-Pointing-Pointer Constitutively active GSK-3{beta} attenuates leptin-induced osteoblast differentiation. Black-Right-Pointing-Pointer This suggests that leptin signals through GSK-3{beta} to promote osteoblast differentiation. -- Abstract: In this study, we begin to investigate the underlying mechanism of leptin-induced vascular calcification. We found that treatment of cultured bovine aortic smooth muscle cells (BASMCs) with leptin (0.5-4 {mu}g/ml) induced osteoblast differentiation in a dose-dependent manner. Furthermore, we found that leptin significantly increased the mRNA expression of osteopontin and bone sialoprotein, while down-regulating matrix gla protein (MGP) expression in BASMCs. Key factors implicated in osteoblast differentiation, including members of the Wnt signaling pathway, were examined. Exposure to leptin enhanced phosphorylation of GSK-3{beta} on serine-9 thereby inhibiting activity and promoting the nuclear accumulation of {beta}-catenin. Transfection of BASMCs with an adenovirus that expressed constitutively active GSK-3{beta} (Ad-GSK-3{beta} S9A) resulted in a >2-fold increase in GSK-3{beta} activity and a significant decrease in leptin-induced alkaline phosphatase (ALP) activity. In addition, qRT-PCR analysis showed that GSK-3{beta} activation resulted in a significant decrease in the expression of osteopontin and bone sialoprotein, but a marked increase in MGP mRNA expression. When taken together, our results suggest a mechanism by which leptin promotes osteoblast differentiation and vascular calcification in vivo.

  11. Patients With High Bone Mass Phenotype Exhibit Enhanced Osteoblast Differentiation and Inhibition of Adipogenesis of Human Mesenchymal Stem Cells

    DEFF Research Database (Denmark)

    Qiu, Weimin; Andersen, Tom; Bollerslev, Jens;

    2007-01-01

    ectopic mineralized bone when implanted subcutaneously with hydroxyapatite/tricalcium phosphate in SCID/NOD mice. Conclusions: LRP5 mutations and the level of Wnt signaling determine differentiation fate of hMSCs into osteoblasts or adipocytes. Activation of Wnt signaling can thus provide a novel approach...

  12. Effect of metformin on proliferation and related genes expression of human osteoblast MG63 under high glucose

    Institute of Scientific and Technical Information of China (English)

    曹小俊

    2013-01-01

    Objective To study the effect of metformin on proliferation and related genes expression of human osteoblast.Methods The proliferation of MG63 cells under high glucose intervened with metformin was measured by CCK-8 assay. The activity of intracellular alkaline phosphatase

  13. The affect of industrial activities on zinc in alluvial Egyptian soil determined using neutron activation analysis

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Thirty-two surface (0-20 cm) soil samples were collected from different locations in Egypt representing non-polluted,moderately and highly polluted soils.The aim of this study was to evaluate total Zn content in alluvial soils of Nile Delta in Egypt by using the delayed neutron activation analysis technique (DNAA),in the irradiation facilities of the first Egyptian research reactor (ET-RR-1).The gamma-ray spectra were recorded with a hyper pure germanium detection system.The well resolved gamma-ray peak at 1116.0 kev was efficiently used for 65Zn content determination.Zn content in non-polluted soil samples ranged between 74.1 and 103.8 ppm with an average of 98.5 + 5.1 ppm.Zn content in moderately polluted soils ranged between 136.0 and 232.5 ppm with an average of 180.1 + 32.6 ppm.The highest Zn levels ranging from 240.0 and 733.0 ppm with an average of 410.3 + 54.4 ppm,were observed in soil samples collected from,either highly polluted agricultural soils exposed to prolonged irrigation with industrial wastewater or surface soil samples from industrial sites.

  14. Biocompatibility evaluation in vitro. Part Ⅲ: Cytotoxicity expression of human and animal osteoblasts on the biomaterials

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Exclusion and imflammation in the clinic are observed for various reasons including material chemical composition, physical properties as well as macro- and micro-structure of the implants, surface condition of the implants, and also patient dependent factors. Cytotoxicity expression of cells is a central issue in current biocompatibility to screen the potential implant materials and drugs. This study was aimed at investigation reaction between the potential implant materials and surround tissue. Cytotoxicity of human and mt osteoblast in the material extracts was determinated by testing standards such as GHS assay, MTI assay, alkaline phosphatase activity assay, LDH assay, and Lowry assay. Research results demonstrated that compared with the control condition polystyrene culture plate both human and rat osteoblast cells have normal phenotypie expression in hydroxyapatite extract, and this expression was statistically restricted in hydroxyapatite-spinel extract. However, this restrict, e.g. cytotoxicity could be partially eliminated by immersion treatment of the materials in culture medium.

  15. Dysregulated Gene Expression in the Primary Osteoblasts and Osteocytes Isolated from Hypophosphatemic Hyp Mice

    Science.gov (United States)

    Miyagawa, Kazuaki; Yamazaki, Miwa; Kawai, Masanobu; Nishino, Jin; Koshimizu, Takao; Ohata, Yasuhisa; Tachikawa, Kanako; Mikuni-Takagaki, Yuko; Kogo, Mikihiko; Ozono, Keiichi; Michigami, Toshimi

    2014-01-01

    Osteocytes express multiple genes involved in mineral metabolism including PHEX, FGF23, DMP1 and FAM20C. In Hyp mice, a murine model for X-linked hypophosphatemia (XLH), Phex deficiency results in the overproduction of FGF23 in osteocytes, which leads to hypophosphatemia and impaired vitamin D metabolism. In this study, to further clarify the abnormality in osteocytes of Hyp mice, we obtained detailed gene expression profiles in osteoblasts and osteocytes isolated from the long bones of 20-week-old Hyp mice and wild-type (WT) control mice. The expression of Fgf23, Dmp1, and Fam20c was higher in osteocytic cells than in osteoblastic cells in both genotypes, and was up-regulated in Hyp cells. Interestingly, the up-regulation of these genes in Hyp bones began before birth. On the other hand, the expression of Slc20a1 encoding the sodium/phosphate (Na+/Pi) co-transporter Pit1 was increased in osteoblasts and osteocytes from adult Hyp mice, but not in Hyp fetal bones. The direct effects of extracellular Pi and 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] on isolated osteoblastic and osteocytic cells were also investigated. Twenty-four-hour treatment with 10−8 M 1,25(OH)2D3 increased the expression of Fgf23 in WT osteoblastic cells but not in osteocytic cells. Dmp1 expression in osteocytic cells was increased due to the 24-hour treatment with 10 mM Pi and was suppressed by 10−8 M 1,25(OH)2D3 in WT osteocytic cells. We also found the up-regulation of the genes for FGF1, FGF2, their receptors, and Egr-1 which is a target of FGF signaling, in Hyp osteocytic cells, suggesting the activation of FGF/FGFR signaling. These results implicate the complex gene dysregulation in osteoblasts and osteocytes of Hyp mice, which might contribute to the pathogenesis. PMID:24710520

  16. Dysregulated gene expression in the primary osteoblasts and osteocytes isolated from hypophosphatemic Hyp mice.

    Directory of Open Access Journals (Sweden)

    Kazuaki Miyagawa

    Full Text Available Osteocytes express multiple genes involved in mineral metabolism including PHEX, FGF23, DMP1 and FAM20C. In Hyp mice, a murine model for X-linked hypophosphatemia (XLH, Phex deficiency results in the overproduction of FGF23 in osteocytes, which leads to hypophosphatemia and impaired vitamin D metabolism. In this study, to further clarify the abnormality in osteocytes of Hyp mice, we obtained detailed gene expression profiles in osteoblasts and osteocytes isolated from the long bones of 20-week-old Hyp mice and wild-type (WT control mice. The expression of Fgf23, Dmp1, and Fam20c was higher in osteocytic cells than in osteoblastic cells in both genotypes, and was up-regulated in Hyp cells. Interestingly, the up-regulation of these genes in Hyp bones began before birth. On the other hand, the expression of Slc20a1 encoding the sodium/phosphate (Na+/Pi co-transporter Pit1 was increased in osteoblasts and osteocytes from adult Hyp mice, but not in Hyp fetal bones. The direct effects of extracellular Pi and 1,25-dihydroxyvitamin D3 [1,25(OH2D3] on isolated osteoblastic and osteocytic cells were also investigated. Twenty-four-hour treatment with 10-8 M 1,25(OH2D3 increased the expression of Fgf23 in WT osteoblastic cells but not in osteocytic cells. Dmp1 expression in osteocytic cells was increased due to the 24-hour treatment with 10 mM Pi and was suppressed by 10-8 M 1,25(OH2D3 in WT osteocytic cells. We also found the up-regulation of the genes for FGF1, FGF2, their receptors, and Egr-1 which is a target of FGF signaling, in Hyp osteocytic cells, suggesting the activation of FGF/FGFR signaling. These results implicate the complex gene dysregulation in osteoblasts and osteocytes of Hyp mice, which might contribute to the pathogenesis.

  17. Receptors and effects of gut hormones in three osteoblastic cell lines

    Directory of Open Access Journals (Sweden)

    Wilson Peter JM

    2011-07-01

    obestatin. ALP showed higher levels in Saos-2 after GIP, GHR and OB and in TE-85 after GHR. P1NP showed higher levels after GIP and OB in Saos-2. Decreased levels of P1NP were observed in TE-85 and MG-63 after GLP-1, GLP-2 and OB. MG-63 showed opposite responses in osteocalcin levels after GLP-2. Conclusions These results suggest that osteoblast activity modulation varies according to different development stage under different nutrition related-peptides.

  18. Estrogen and phenol red free medium for osteoblast culture: study of the mineralization ability.

    Science.gov (United States)

    de Faria, A N; Zancanela, D C; Ramos, A P; Torqueti, M R; Ciancaglini, P

    2016-08-01

    To design an estrogen and phenol red free medium for cell culture and check its effectiveness and safety on osteoblast growth it is necessary to maintain the estrogen receptors free for tests. For this purpose, we tested some modifications of the traditional culture media: estrogen depleted fetal bovine serum; estrogen charcoal stripped fetal bovine serum and phenol red free α-MEM. The aim of this work is to examine the effects of its depletion in the proliferation, differentiation, and toxicity of mesenchymal stromal cells differentiated into osteoblasts to obtain an effective interference free culture medium for in vitro studies, focused on non-previously studied estrogen receptors. We performed viability tests using the following techniques: MTT, alkaline phosphatase specific activity, formation of mineralized matrix by Alizarin technique and analysis of SEM/EDX of mineralized nodules. The results showed that the culture media with estrogen free α-MEM + phenol red free α-MEM did not impact viability, alkaline phosphatase activity and mineralization of the osteoblasts culture compared to control. In addition, its nodules possess Ca/P ratio similar to hydroxyapatite nodules on the 14th and 21st day. In conclusion, the modified culture medium with phenol red free α-MEM with estrogen depleted fetal bovine serum can be safely used in experiments where the estrogen receptors need to be free. PMID:25634598

  19. Comparison on the Effects of Three Sex Hormones on the Fetal Rat Calvarial Osteoblasts

    Institute of Scientific and Technical Information of China (English)

    CHEN Lulu; ZENG Tianshu; XIA Wenfang; KE Li

    2000-01-01

    17β-estradiol(E2), progesterone (P) and testosterone (T) were investigated for their effects on the proliferation and differentiation of primary rat calvarial osteoblasts in vitro. Rat calvarial osteoblasts were cultured with l0-10 mol/L E2, 10-9-10-6 mol/L P and l0-10 mol/L T for 20days. Cell proliferation was determined by 3H-thymidine incorporation and cell counting. Cell differentiation was examined by measuring alkaline phosphatase (ALP) activity, osteocalcin gene expression and production, bone nodule formation in different periods of culture. Our results showed that no effect of three sex hormones was observed on cell proliferation, but, the responses of cell differentiation to the hormones were more or less different. Among these three hormones used in this study, P appeared to have multi-stimulating effect on cell differentiation. Effect of T seemed not so significant as that of P on cell differentiation. Although ALP activity and osteocalcin production were increased significantly by T, it had slight effect on osteocalcin mRNA and bone nodule formation. Besides, E2 did not demonstrate any effect on cell differentiation. It is concluded that the proliferation of rat calvarial osteoblasts was independent of the presence of sex hormones. However, the differentiation of these cells were stimulated in different levels and to different extent either by P or T. P appeared to be a multi-stimulator on differentiation of such cells.

  20. In vitro vitamin K(2) and 1α,25-dihydroxyvitamin D(3) combination enhances osteoblasts anabolism of diabetic mice.

    Science.gov (United States)

    Poon, Christina C W; Li, Rachel W S; Seto, Sai Wang; Kong, Siu Kai; Ho, Ho Pui; Hoi, Maggie P M; Lee, Simon M Y; Ngai, Sai Ming; Chan, Shun Wan; Leung, George P H; Kwan, Yiu Wa

    2015-11-15

    In this study, we evaluated the anabolic effect and the underlying cellular mechanisms involved of vitamin K2 (10 nM) and 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) (10 nM), alone and in combination, on primary osteoblasts harvested from the iliac crests of C57BL/KsJ lean (+/+) and obese/diabetic (db/db) mice. A lower alkaline phosphatase (ALP) activity plus a reduced expression of bone anabolic markers and bone formation transcription factors (osteocalcin, Runx2, Dlx5, ATF4 and OSX) were consistently detected in osteoblasts of db/db mice compared to lean mice. A significantly higher calcium deposits formation in osteoblasts was observed in lean mice when compared to db/db mice. Co-administration of vitamin K2 (10 nM) and 1,25(OH)2D3 (10 nM) caused an enhancement of calcium deposits in osteoblasts in both strains of mice. Vitamins K2 and 1,25(OH)2D3 co-administration time-dependently (7, 14 and 21 days) increased the levels of bone anabolic markers and bone formation transcription factors, with a greater magnitude of increase observed in osteoblasts of db/db mice. Combined vitamins K2 plus 1,25(OH)2D3 treatment significantly enhanced migration and the re-appearance of surface microvilli and ruffles of osteoblasts of db/db mice. Thus, our results illustrate that vitamins K2 plus D3 combination could be a novel therapeutic strategy in treating diabetes-associated osteoporosis.

  1. Low-intensity pulsed ultrasound regulates proliferation and differentiation of osteoblasts through osteocytes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lei, E-mail: geraldleelei@163.com [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu (China); Yang, Zheng [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu (China); Zhang, Hai [Department of Restorative Dentistry, School of Dentistry, University of Washington, Seattle, WA (United States); Chen, Wenchuan [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu (China); Chen, Mengshi [Department of Biomechanics, Sichuan University, Chengdu (China); Zhu, Zhimin, E-mail: hxzhimin@163.com [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu (China)

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer CM from LIPUS-stimulated osteocytes inhibits proliferation of osteoblasts. Black-Right-Pointing-Pointer CM from LIPUS-stimulated osteocytes enhances differentiation of osteoblasts. Black-Right-Pointing-Pointer LIPUS stimulates MLO-Y4 cells to secrete PGE{sub 2} and NO. -- Abstract: Low-intensity pulsed ultrasound (LIPUS) has been used as a safe and effective modality to enhance fracture healing. As the most abundant cells in bone, osteocytes orchestrate biological activities of effector cells via direct cell-to-cell contacts and by soluble factors. In this study, we have used the osteocytic MLO-Y4 cells to study the effects of conditioned medium from LIPUS-stimulated MLO-Y4 cells on proliferation and differentiation of osteoblastic MC3T3-E1 cells. Conditioned media from LIPUS-stimulated MLO-Y4 cells (LIPUS-Osteocyte-CM) were collected and added on MC3T3-E1 cell cultures. MC3T3-E1 cells cultured in LIPUS-Osteocyte-CM demonstrated a significant inhibition of proliferation and an increased alkaline phosphatase activity. The results of PGE{sub 2} and NO assay showed that LIPUS could enhance PGE{sub 2} and NO secretion from MLO-Y4 cells at all time points within 24 h after LIPUS stimulation. We conclude that LIPUS regulates proliferation and differentiation of osteoblasts through osteocytes in vitro. Increased secretion of PGE{sub 2} from osteocytes may play a role in this effect.

  2. Mechanical strain promotes osteoblastic differentiation through integrin-β1-mediated β-catenin signaling.

    Science.gov (United States)

    Yan, Yuxian; Sun, Haoyang; Gong, Yuanwei; Yan, Zhixiong; Zhang, Xizheng; Guo, Yong; Wang, Yang

    2016-08-01

    As integrins are mechanoresponsive, there exists an intimate relationship between integrins and mechanical strain. Integrin-β1 mediates the impact of mechanical strain on bone. Mechanical strain induces bone formation through the activation of β-catenin pathways, which suggests that integrin-β1 mediates β-catenin signaling in osteoblasts in response to mechanical strain. In the present study, we examined the role of integrin-β1 in Wnt/β-catenin signal transduction in mechanically strained osteoblasts. MC3T3-E1 osteoblastic cells were transfected with integrin-β1 small interfering RNA (si-Itgβ1), and exposed to mechanical tensile strain of 2,500 microstrain (µε) using a four-point bending device. The mechanical strain enhanced the mRNA expression of integrin-β1, the protein levels of phosphorylated (p-) glycogen synthase kinase-3β (GSK‑3β) and β-catenin, simultaneously increased the mRNA levels of runt-related transcriptional factor 2 (Runx2) and osteocalcin (OCN), the protein levels of bone morphogenetic protein (BMP)-2 and -4 and enhanced the alkaline phosphatase (ALP) activity of the ME3T3-E1 cells. The elevations were inhibited by si-Itgβ1. Additionally, the mechanical strain induced the nuclear translocation of β-catenin into the nucleus, which was also inhibited by si-Itgβ1. These findings indicated that mechanical strain promoted osteoblastic differentiation through integrin‑β1‑mediated β-catenin signaling.

  3. Craniosynostosis-Associated Fgfr2C342Y Mutant Bone Marrow Stromal Cells Exhibit Cell Autonomous Abnormalities in Osteoblast Differentiation and Bone Formation

    Directory of Open Access Journals (Sweden)

    J. Liu

    2013-01-01

    Full Text Available We recently reported that cranial bones of craniosynostotic mice are diminished in density when compared to those of wild type mice, and that cranial bone cells isolated from the mutant mice exhibit inhibited late stage osteoblast differentiation. To provide further support for the idea that craniosynostosis-associated Fgfr mutations lead to cell autonomous defects in osteoblast differentiation and mineralized tissue formation, here we tested bone marrow stromal cells isolated from mice for their ability to differentiate into osteoblasts. Additionally, to determine if the low bone mass phenotype of Crouzon syndrome includes the appendicular skeleton, long bones were assessed by micro CT. cells showed increased osteoblastic gene expression during early osteoblastic differentiation but decreased expression of alkaline phosphatase mRNA and enzyme activity, and decreased mineralization during later stages of differentiation, when cultured under 2D in vitro conditions. Cells isolated from mice also formed less bone when allowed to differentiate in a 3D matrix in vivo. Cortical bone parameters were diminished in long bones of mice. These results demonstrate that marrow stromal cells of mice have an autonomous defect in osteoblast differentiation and bone mineralization, and that the mutation influences both the axial and appendicular skeletons.

  4. Glucocorticoids affect the metabolism of bone marrow stromal cells and lead to osteonecrosis of the femoral head: a review

    Institute of Scientific and Technical Information of China (English)

    TAN Gang; KANG Peng-de; PEI Fu-xing

    2012-01-01

    Objective To review the recent developments in the mechanisms of glucocorticoids induced osteonecrosis of femoral head (ONFH) and introduce a new theory of ONFH.Data sources Both Chinese- and English-language literatures were searched using MEDLINE (1997-2011),Pubmed (1997-2011 ) and the Index of Chinese-language Literature (1997-2011 ).Study selection Data from published articles about mechanisms of glucocorticoids induced ONFH in recent domestic and foreign literature were selected.Data extraction Data were mainly extracted from 61 articles which are listed in the reference section of this review.Results Glucocorticoids are steroid hormones secreted by the adrenal cortex that play a pivotal role in the regulation of a variety of developmental,metabolic and immune functions.However,high dose of exogenous glucocorticoids usage is the most common non-traumatic cause of ON FH.Glucocorticoids can affect the metabolisms of osteoblasts,osteoclasts,bone marrow stromal cells and adipocytes which decrease osteoblasts formation but increase adipocytes formation and cause ONFH finally.Conclusions Glucocorticoids affect the differentiation of mesenchymal stem cells,through activating or inhibiting the related transcript regulators of osteogenesis and adipogenesis.At last,the size and volume of mesenchymal stem cells derived adipocytes will increase amazingly,but the osteoblasts will be decreased obviously.In the meantime,the activity of the osteoclasts will be activated.So,these mechanisms work together and lead to ONFH.

  5. Characteristics of the activity-affect association in inactive people: an ambulatory assessment study in daily life.

    Directory of Open Access Journals (Sweden)

    Birte eVon Haaren

    2013-04-01

    Full Text Available Acute and regular exercise as well as physical activity is related to wellbeing and positive affect. Recent studies have shown that even daily, unstructured physical activities increase positive affect. However, the attempt to achieve adherence to physical activity or exercise in inactive people through public health interventions has often been unsuccessful. Most studies analyzing the activity-affect association in daily life, did not report participants´ habitual activity behavior. Thus, samples included active and inactive people, but they did not necessarily exhibit the same affective reactions to physical activity in daily life. Therefore the present study investigated whether the association between physical activity and subsequent affective state in daily life can also be observed in inactive individuals. We conducted a pilot study with 29 inactive university students (mean age 21.3 yrs ± 1.7 using the method of ambulatory assessment. Affect was assessed via electronic diary and physical activity was measured with accelerometers. Participants had to rate affect every two hours on a six item bipolar scale reflecting the three basic mood dimensions energetic arousal, valence and calmness. We calculated activity intensity level (mean Metabolic Equivalent (MET value and the amount of time spent in light activity over the last 15 minutes before every diary prompt and conducted within-subject correlations. We did not find significant associations between activity intensity and the three mood dimensions. Due to the high variability in within-subject correlations we conclude that not all inactive people show the same affective reactions to physical activity in daily life. Analyzing the physical activity-affect association of inactive people was difficult due to little variance and distribution of the assessed variables. Interactive assessment and randomized controlled trials might help solving these problems. Future studies should examine

  6. Recql4 haploinsufficiency in mice leads to defects in osteoblast progenitors: Implications for low bone mass phenotype

    International Nuclear Information System (INIS)

    The cellular and molecular mechanisms that underlie skeletal abnormalities in defective Recql4-related syndromes are poorly understood. Our objective in this study was to explore the function of Recql4 in osteoblast biology both in vitro and in vivo. Immunohistochemistry on adult mouse bone showed Recql4 protein localization in active osteoblasts around growth plate, but not in fully differentiated osteocytes. Consistent with this finding, Recql4 gene expression was high in proliferating mouse osteoblastic MC3T3.E1 cells and decreased as cells progressively lost their proliferation activity during differentiation. Recql4 overexpression in osteoblastic cells exhibited higher proliferation activity, while its depletion impeded cell growth. In addition, bone marrow stromal cells from male Recql4+/- mice had fewer progenitor cells, including osteoprogenitors, indicated by reduced total fibroblast colony forming units (CFU-f) and alkaline phosphatase-positive CFU-f colonies concomitant with reduced bone mass. These findings provide evidence that Recql4 functions as a regulatory protein during osteoprogenitor proliferation, a critical cellular event during skeleton development

  7. Vertically, interconnected carbon nanowalls as biocompatible scaffolds for osteoblast cells

    Science.gov (United States)

    Ion, Raluca; Vizireanu, Sorin; Luculescu, Catalin; Cimpean, Anisoara; Dinescu, Gheorghe

    2016-07-01

    The response of MC3T3-E1 pre-osteoblasts to vertically aligned, interconnected carbon nanowalls prepared by plasma enhanced chemical vapor deposition on silicon substrate has been evaluated in terms of cell adhesion, viability and cell proliferation. The behavior of osteoblasts seeded on carbon nanowalls was analyzed in parallel and compared with the behavior of the cells maintained in contact with tissue culture polystyrene (TCPS). The results demonstrate that osteoblasts adhere and remain viable in the long term on carbon nanowalls. Moreover, on the investigated scaffold cell proliferation was significantly promoted, although to a lower extent than on TCPS. Overall, the successful culture of osteoblasts on carbon nanowalls coated substrate confirms the biocompatibility of this scaffold, which could have potential applications in the development of orthopedic biomaterials.

  8. Thin films of single-walled carbon nanotubes promote human osteoblastic cells (Saos-2) proliferation in low serum concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Akasaka, Tsukasa, E-mail: akasaka@den.hokudai.ac.jp [Graduate School of Dental Medicine, Hokkaido University, Kita 13 Nishi 7, Kita-ku, Sapporo, 060-8586 (Japan); Yokoyama, Atsuro; Matsuoka, Makoto [Graduate School of Dental Medicine, Hokkaido University, Kita 13 Nishi 7, Kita-ku, Sapporo, 060-8586 (Japan); Hashimoto, Takeshi [Meijo Nano Carbon Co., Ltd., Otsubashi Bldg. 4F, 3-4-10, Marunouchi, Naka-ku, Nagoya, 460-0002 (Japan); Watari, Fumio [Graduate School of Dental Medicine, Hokkaido University, Kita 13 Nishi 7, Kita-ku, Sapporo, 060-8586 (Japan)

    2010-04-06

    One strategy used for the regeneration of bone is the development of cell culture substrates and scaffolds that can control osteoblast proliferation and differentiation. In recent investigations, carbon nanotubes (CNTs) have been utilized as scaffolds for osteoblastic cell cultures; however, there are only a few reports describing the proliferation of osteoblastic cells on thin CNT films; in particular, the effects of serum concentration on cell proliferation have not been studied. In the present study, we prepared culture dishes with homogeneous thin or thick films of non-modified CNTs and examined the effect of serum concentrations on human osteoblastic cells (Saos-2) proliferation in these culture dishes. We demonstrated that the ratio of cell proliferation was strongly affected by the concentration of serum. Interestingly, single-walled carbon nanotube (SWNT) thin films were found to be the most effective substrate for the proliferation of Saos-2 cells in low concentrations of serum. Thus, thin SWNT films may be used as an effective biomaterial for the culture of Saos-2 cells in low serum concentrations.

  9. In situ quantitative evaluation of osteoblastic collagen synthesis under cyclic strain by using second-harmonic-generation microscope

    Science.gov (United States)

    Matsubara, Oki; Hase, Eiji; Minamikawa, Takeo; Yasui, Takeshi; Sato, Katsuya

    2016-03-01

    Osteoblast-produced collagen matrix in bone is influenced by the mechanical stimulus from their surroundings. However, it has been still unclear how mechanical stimulus affects collagen production by osteoblasts. Therefore, it is strongly required to investigate the characteristics of osteoblastic bone regenerative tissue engineering. Recently, second-harmonic-generation (SHG) microscope has attracted attention for in situ visualization of collagen fiber because of less invasiveness, unstaining and no fixation, as well as high spatial resolution and 3D imaging. Using SHG microscopy, one can track the temporal dynamics of collagen fiber during the cultured period of the sample. We applied cyclic stretch strain to osteoblasts (MC3T3-E1) by using originally developed cell stretching device. The stimulation time was set to 5min or 3hours with same strain 5% and same frequency 0.5Hz. Cells were seeded onto the PDMS (polydimethylsiloxane) rubber chamber at a density of 50,000 cells/cm2 and cultured in α-MEM with 10% FBS, 1% P/S, 1% Ascorbic acid, 0.2% hydrocortisone and 2% β-Glycerophosphate. SHG imaging was carried out every 7 days. As a result, we confirmed from SHG image that the collagen production was enhanced by the cyclic stretch strain, stretch stimulation time and stretch application term.

  10. Biofilm activity and sludge characteristics affected by exogenous N-acyl homoserine lactones in biofilm reactors.

    Science.gov (United States)

    Hu, Huizhi; He, Junguo; Liu, Jian; Yu, Huarong; Zhang, Jie

    2016-07-01

    This study verified the effect of N-acyl homoserine lactone (AHL) concentrations on mature biofilm systems. Three concentrations of an AHL mixture were used in the batch test. Introducing of 5nM AHLs significantly increased biofilm activity and increased sludge characteristics, which resulted in better pollutant removal performance, whereas exogenous 50nM and 500nM AHLs limited pollutant removal, especially COD and nitrogen removal. To further identify how exogenous signal molecular affects biofilm system nitrogen removal, analyzing of nitrifying bacteria through real-time polymerase chain reaction (RT-PCR) revealed that these additional signal molecules affect nitrifying to total bacteria ratio. In addition, the running state of the system was stable during 15days of operation without an AHL dose, which suggests that the changes in the system due to AHL are irreversible. PMID:27030953

  11. Nicotine Treatment Induces Expression of Matrix Metalloproteinases in Human Osteoblastic Saos-2 Cells

    Institute of Scientific and Technical Information of China (English)

    Tomoko KATONO; Takayuki KAWATO; Natsuko TANABE; Naoto SUZUKI; Kazuhiro YAMANAKA; Hitoshi OKA; Masafumi MOTOHASHI; Masao MAENO

    2006-01-01

    Tobacco smoking is an important risk factor for the development of severe periodontitis.Recently, we showed that nicotine affected mineralized nodule formation, and that nicotine and lipopolysaccharide stimulated the formation of osteoclast-like cells by increasing production of macrophage colony-stimulating factor (M-CSF) and prostaglandin E2 (PGE2) by human osteoblastic Saos-2 cells. In the present study, we examined the effects of nicotine on the expression of matrix metalloproteinases (MMPs),tissue inhibitors of matrix metalloproteinases (TIMPs), the plasminogen activation system including the component of tissue-type plasminogen activator (tPA), urokinase-type PA (uPA), and PA inhibitor type 1(PAI- 1), α7 nicotine receptor, and c-fos. We also examined the effect of the nicotine antagonist D-tubocurarine on nicotine-induced expression of MMP-1. Gene expression was examined using real-time polymerase chain reaction (PCR) to estimate mRNA levels. In addition, expression of the MMP, TIMP, uPA, tPA, and PAI-1proteins was determined by Western blotting analysis. Nicotine treatment caused expression of MMP-1, 2, 3,and 13, but not MMP-14, to increase significantly after 5 or 10 d of culture; MMP-14 expression did not change through day 14. Enhancement of MMP-1 expression by nicotine treatment was eliminated by simultaneous treatment with D-tubocurarine. In the presence of nicotine, expression of uPA, PAI-1, or TIMP-1, 2, 3, or 4 did not change over 14 d of culture, whereas expression of tPA increased significantly by day 7. Nicotine also increased expression of the α7 nicotine receptor and c-fos genes. These results suggest that nicotine stimulates bone matrix turnover by increasing production of tPA and MMP-1, 2, 3, and 13,thereby tipping the balance between bone matrix formation and resorption toward the latter process.

  12. Affective and physiological responses to the suffering of others: compassion and vagal activity.

    Science.gov (United States)

    Stellar, Jennifer E; Cohen, Adam; Oveis, Christopher; Keltner, Dacher

    2015-04-01

    Compassion is an affective response to another's suffering and a catalyst of prosocial behavior. In the present studies, we explore the peripheral physiological changes associated with the experience of compassion. Guided by long-standing theoretical claims, we propose that compassion is associated with activation in the parasympathetic autonomic nervous system through the vagus nerve. Across 4 studies, participants witnessed others suffer while we recorded physiological measures, including heart rate, respiration, skin conductance, and a measure of vagal activity called respiratory sinus arrhythmia (RSA). Participants exhibited greater RSA during the compassion induction compared with a neutral control (Study 1), another positive emotion (Study 2), and a prosocial emotion lacking appraisals of another person's suffering (Study 3). Greater RSA during the experience of compassion compared with the neutral or control emotion was often accompanied by lower heart rate and respiration but no difference in skin conductance. In Study 4, increases in RSA during compassion positively predicted an established composite of compassion-related words, continuous self-reports of compassion, and nonverbal displays of compassion. Compassion, a core affective component of empathy and prosociality, is associated with heightened parasympathetic activity.

  13. Do the physical properties of occlusal-indicating media affect muscle activity [EMG) during use?

    Science.gov (United States)

    Forrester, Stephanie E; Pain, Matthew T G; Presswood, Ron; Toy, Andy

    2009-06-01

    Four occlusal marking media (Parkell film, articulating silk, articulating paper and T-Scan foil) were tested to assess whether they affected neuromuscular function during occlusal marking events. Muscle activity of the anterior temporalis (TA) and superficial masseter (MS) muscles were obtained from surface EMG measurements during a slow closure to occlusion followed immediately by a forceful bite and a maximum clench onto each of the various occlusal indicating media. Muscle activity during the whole period of activation and immediately following onset were investigated. Significant differences in neuromuscular function between the occlusal marking media were observed, particularly between the Parkell film and articulating silk as opposed to the articulating paper and the T-Scan foil. The Parkell film and articulating silk gave neuromuscular function very similar to that of natural dentition occlusal contact, while the articulating paper and T-Scan foil showed similarities to occluding onto cotton rolls as previously reported (1). These results suggest that both the thickness and plasticity of the indicating media affect neuromuscular function during occlusion.

  14. Rapid and Quantitative Assay of Amyloid-Seeding Activity in Human Brains Affected with Prion Diseases.

    Directory of Open Access Journals (Sweden)

    Hanae Takatsuki

    Full Text Available The infectious agents of the transmissible spongiform encephalopathies are composed of amyloidogenic prion protein, PrPSc. Real-time quaking-induced conversion can amplify very small amounts of PrPSc seeds in tissues/body fluids of patients or animals. Using this in vitro PrP-amyloid amplification assay, we quantitated the seeding activity of affected human brains. End-point assay using serially diluted brain homogenates of sporadic Creutzfeldt-Jakob disease patients demonstrated that 50% seeding dose (SD50 is reached approximately 10(10/g brain (values varies 10(8.79-10.63/g. A genetic case (GSS-P102L yielded a similar level of seeding activity in an autopsy brain sample. The range of PrPSc concentrations in the samples, determined by dot-blot assay, was 0.6-5.4 μg/g brain; therefore, we estimated that 1 SD50 unit was equivalent to 0.06-0.27 fg of PrPSc. The SD50 values of the affected brains dropped more than three orders of magnitude after autoclaving at 121°C. This new method for quantitation of human prion activity provides a new way to reduce the risk of iatrogenic prion transmission.

  15. Environmental noise levels affect the activity budget of the Florida manatee

    Science.gov (United States)

    Miksis-Olds, Jennifer L.; Donaghay, Percy L.; Miller, James H.; Tyack, Peter L.

    2005-09-01

    Manatees inhabit coastal bays, lagoons, and estuaries because they are dependent on the aquatic vegetation that grows in shallow waters. Food requirements force manatees to occupy the same areas in which human activities are the greatest. Noise produced from human activities has the potential to affect these animals by eliciting responses ranging from mild behavioral changes to extreme aversion. This study quantifies the behavioral responses of manatees to both changing levels of ambient noise and transient noise sources. Results indicate that elevated environmental noise levels do affect the overall activity budget of this species. The proportion of time manatees spend feeding, milling, and traveling in critical habitats changed as a function of noise level. More time was spent in the directed, goal-oriented behaviors of feeding and traveling, while less time was spent milling when noise levels were highest. The animals also responded to the transient noise of approaching vessels with changes in behavioral state and movements out of the geographical area. This suggests that manatees detect and respond to changes in environmental noise levels. Whether these changes legally constitute harassment and produce biologically significant effects need to be addressed with hypothesis-driven experiments and long-term monitoring. [For Animal Bioacoustics Best Student Paper Award.

  16. Do government brochures affect physical activity cognition? A pilot study of Canada's physical activity guide to healthy active living.

    Science.gov (United States)

    Kliman, Aviva M; Rhodes, Ryan

    2008-08-01

    Health Canada has published national physical activity (PA) guidelines, which are included in their 26-page Physical Activity Guide to Healthy Active Living (CPAG). To date, the use of CPAG as a motivational instrument for PA promotion has not been evaluated. The purpose of this study was to determine whether reading CPAG 1) increased motivational antecedents to engage in regular PA, and 2) increased regular PA intention and behaviour over 1 month. Participants included 130 randomly sampled Canadian adults (18 years or older) who were randomly mailed pack ages consisting of either 1) a questionnaire and a copy of CPAG, or 2) a questionnaire. Questionnaire items pertained to participants' sociodemographics, previous PA behaviours (Godin Leisure-Time Questionnaire) and PA motivation (theory of planned behaviour). Participants were then sent a follow-up questionnaire pertaining to their PA behaviours throughout the previous month. Results revealed significant interactions between the guide condition and previous activity status on instrumental behavioural beliefs about strength activities and subjective norms about endurance activities (p behavioural control) and outcomes (intention, behaviour) seem unaffected. PMID:18825580

  17. Biphasic Response to Luteolin in MG-63 Osteoblast-Like Cells under High Glucose‑Induced Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Naser Abbasi

    2016-03-01

    Full Text Available Background: Clinical evidence indicates the diabetes-induced impairment of osteogenesis caused by a decrease in osteoblast activity. Flavonoids can increase the differentiation and mineralization of osteoblasts in a high-glucose state. However, some flavonoids such as luteolin may have the potential to induce cytotoxicity in osteoblast-like cells. This study was performed to investigate whether a cytoprotective concentration range of luteolin could be separated from a cytotoxic concentration range in human MG-63 osteoblast-like cells in high-glucose condition. Methods: Cells were cultured in a normal- or high-glucose medium. Cell viability was determined with the MTT assay. The formation of intracellular reactive oxygen species (ROS was measured using probe 2’,7’ -dichlorofluorescein diacetate, and osteogenic differentiation was evaluated with an alkaline phosphatase bioassay. Results: ROS generation, reduction in alkaline phosphatase activity, and cell death induced by high glucose were inhibited by lower concentrations of luteolin (EC50, 1.29±0.23 µM. Oxidative stress mediated by high glucose was also overcome by N-acetyl-L-cysteine. At high concentrations, luteolin caused osteoblast cell death in normal- and high-glucose states (IC50, 34±2.33 and 27±2.42 µM, respectively, as represented by increased ROS and decreased alkaline phosphatase activity. Conclusion: Our results indicated that the cytoprotective action of luteolin in glucotoxic condition was manifested in much lower concentrations, by a factor of approximately 26 and 20, than was its cytotoxic activity, which occurred under normal or glucotoxic condition, respectively.

  18. Light induced hydrophilicity and osteoblast adhesion promotion on amorphous TiO2.

    Science.gov (United States)

    Terriza, Antonia; Díaz-Cuenca, Aránzazu; Yubero, Francisco; Barranco, Angel; González-Elipe, Agustín R; Gonzalez Caballero, Juan Luis; Vilches, José; Salido, Mercedes

    2013-04-01

    We have studied the effect of the UV induced superhydrophilic wetting of TiO(2) thin films on the osteoblasts cell adhesion and cytoskeletal organization on its surface. To assess any effect of the photo-catalytic removal of adventitious carbon as a factor for the enhancement of the osteoblast development, 100 nm amorphous TiO(2) thin layers were deposited on polyethylene terephthalate (PET), a substrate well known for its poor adhesion and limited wettability and biocompatibility. The TiO(2) /PET materials were characterized by X-ray photoelectron spectroscopy, and atomic force microscopy and their wetting behavior under light illumination studied by the sessile drop method. The amorphous TiO(2) thin films showed a very poor photo-catalytic activity even if becoming superhydrophilic after illumination. The illuminated samples recovered partially its initial hydrophobic state only after their storage in the dark for more than 20 days. Osteoblasts (HOB) were seeded both on bare PET and on TiO(2) /PET samples immediately after illumination and also after four weeks storage in darkness. Cell attachment was much more efficient on the immediately illuminated TiO(2)/PET samples, with development of focal adhesions and cell traction forces. Although we cannot completely discard some photo-catalytic carbon removal as a factor contributing to this cell enhanced attachment, our photodegradation experiments on amorphous TiO(2) are conclusive to dismiss this effect as the major cause for this behavior. PMID:22965473

  19. Omentin-1 Stimulates Human Osteoblast Proliferation through PI3K/Akt Signal Pathway

    Directory of Open Access Journals (Sweden)

    Shan-Shan Wu

    2013-01-01

    Full Text Available It has been presumed that adipokines deriving from adipose tissue may play important roles in bone metabolism. Omentin-1, a novel adipokine, which is selectively expressed in visceral adipose tissue, has been reported to stimulate proliferation and inhibit differentiation of mouse osteoblast. However, little information refers to the effect of omentin-1 on human osteoblast (hOB proliferation. The current study examined the potential effects of omentin-1 on proliferation in hOB and the signal pathway involved. Omentin-1 promoted hOB proliferation in a dose-dependent manner as determined by [3H]thymidine incorporation. Western blot analysis revealed that omentin-1 induced activation of Akt (phosphatidylinositol-3 kinase downstream effector and such effect was impeded by transfection of hOB with Akt-siRNA. Furthermore, LY294002 (a selective PI3K inhibitor and HIMO (a selective Akt inhibitor abolished the omentin-1-induced hOB proliferation. These findings indicate that omentin-1 induces hOB proliferation via the PI3K/Akt signaling pathway and suggest that osteoblast is a direct target of omentin-1.

  20. Differential expression of neuroleukin in osseous tissues and its involvement in mineralization during osteoblast differentiation

    Science.gov (United States)

    Zhi, J.; Sommerfeldt, D. W.; Rubin, C. T.; Hadjiargyrou, M.

    2001-01-01

    Osteoblast differentiation is a multistep process that involves critical spatial and temporal regulation of cellular processes marked by the presence of a large number of differentially expressed molecules. To identify key functional molecules, we used differential messenger RNA (mRNA) display and compared RNA populations isolated from the defined transition phases (proliferation, matrix formation, and mineralization) of the MC3T3-E1 osteoblast-like cell line. Using this approach, a complementary DNA (cDNA) fragment was isolated and identified as neuroleukin (NLK), a multifunctional cytokine also known as autocrine motility factor (AMF), phosphoglucose isomerase (PGI; phosphohexose isomerase [PHI]), and maturation factor (MF). Northern analysis showed NLK temporal expression during MC3T3-E1 cell differentiation with a 3.5-fold increase during matrix formation and mineralization. Immunocytochemical studies revealed the presence of NLK in MC3T3-E1 cells as well as in the surrounding matrix, consistent with a secreted molecule. In contrast, the NLK receptor protein was detected primarily on the cell membrane. In subsequent studies, a high level of NLK expression was identified in osteoblasts and superficial articular chondrocytes in bone of 1-, 4-, and 8-month-old normal mice, as well as in fibroblasts, proliferating chondrocytes, and osteoblasts within a fracture callus. However, NLK was not evident in hypertrophic chondrocytes or osteocytes. In addition, treatment of MC3T3 cells with 6-phosphogluconic acid (6PGA; a NLK inhibitor) resulted in diminishing alkaline phosphatase (ALP) activity and mineralization in MC3T3-E1 cells, especially during the matrix formation stage of differentiating cells. Taken together, these data show specific expression of NLK in discrete populations of bone and cartilage cells and suggest a possible role for this secreted protein in bone development and regeneration.

  1. REDD1 protects osteoblast cells from gamma radiation-induced premature senescence.

    Directory of Open Access Journals (Sweden)

    Xiang Hong Li

    Full Text Available Radiotherapy is commonly used for cancer treatment. However, it often results in side effects due to radiation damage in normal tissue, such as bone marrow (BM failure. Adult hematopoietic stem and progenitor cells (HSPC reside in BM next to the endosteal bone surface, which is lined primarily by hematopoietic niche osteoblastic cells. Osteoblasts are relatively more radiation-resistant than HSPCs, but the mechanisms are not well understood. In the present study, we demonstrated that the stress response gene REDD1 (regulated in development and DNA damage responses 1 was highly expressed in human osteoblast cell line (hFOB cells after γ irradiation. Knockdown of REDD1 with siRNA resulted in a decrease in hFOB cell numbers, whereas transfection of PCMV6-AC-GFP-REDD1 plasmid DNA into hFOB cells inhibited mammalian target of rapamycin (mTOR and p21 expression and protected these cells from radiation-induced premature senescence (PS. The PS in irradiated hFOB cells were characterized by significant inhibition of clonogenicity, activation of senescence biomarker SA-β-gal, and the senescence-associated cytokine secretory phenotype (SASP after 4 or 8 Gy irradiation. Immunoprecipitation assays demonstrated that the stress response proteins p53 and nuclear factor κ B (NFkB interacted with REDD1 in hFOB cells. Knockdown of NFkB or p53 gene dramatically suppressed REDD1 protein expression in these cells, indicating that REDD1 was regulated by both factors. Our data demonstrated that REDD1 is a protective factor in radiation-induced osteoblast cell premature senescence.

  2. Modulation of human osteoblasts by metal surface chemistry.

    Science.gov (United States)

    Hofstetter, Wilhelm; Sehr, Harald; de Wild, Michael; Portenier, Jeannette; Gobrecht, Jens; Hunziker, Ernst B

    2013-08-01

    The use of metal implants in dental and orthopedic surgery is continuously expanding and highly successful. While today longevity and load-bearing capacity of the implants fulfill the expectations of the patients, acceleration of osseointegration would be of particular benefit to shorten the period of convalescence. To further clarify the options to accelerate the kinetics of osseointegration, within this study, the osteogenic properties of structurally identical surfaces with different metal coatings were investigated. To assess the development and function of primary human osteoblasts on metal surfaces, cell viability, differentiation, and gene expression were determined. Titanium surfaces were used as positive, and surfaces coated with gold were used as negative controls. Little differences in the cellular parameters tested for were found when the cells were grown on titanium discs sputter coated with titanium, zirconium, niobium, tantalum, gold, and chromium. Cell number, activity of cell layer-associated alkaline phosphatase (ALP), and levels of transcripts encoding COL1A1 and BGLAP did not vary significantly in dependence of the surface chemistry. Treatment of the cell cultures with 1,25(OH)2 D3 /Dex, however, significantly increased ALP activity and BGLAP messenger RNA levels. The data demonstrate that the metal layer coated onto the titanium discs exerted little modulatory effects on cell behavior. It is suggested that the microenvironment regulated by the peri-implant tissues is more effective in regulating the tissue response than is the material of the implant itself. PMID:23359530

  3. Modulation of human osteoblasts by metal surface chemistry.

    Science.gov (United States)

    Hofstetter, Wilhelm; Sehr, Harald; de Wild, Michael; Portenier, Jeannette; Gobrecht, Jens; Hunziker, Ernst B

    2013-08-01

    The use of metal implants in dental and orthopedic surgery is continuously expanding and highly successful. While today longevity and load-bearing capacity of the implants fulfill the expectations of the patients, acceleration of osseointegration would be of particular benefit to shorten the period of convalescence. To further clarify the options to accelerate the kinetics of osseointegration, within this study, the osteogenic properties of structurally identical surfaces with different metal coatings were investigated. To assess the development and function of primary human osteoblasts on metal surfaces, cell viability, differentiation, and gene expression were determined. Titanium surfaces were used as positive, and surfaces coated with gold were used as negative controls. Little differences in the cellular parameters tested for were found when the cells were grown on titanium discs sputter coated with titanium, zirconium, niobium, tantalum, gold, and chromium. Cell number, activity of cell layer-associated alkaline phosphatase (ALP), and levels of transcripts encoding COL1A1 and BGLAP did not vary significantly in dependence of the surface chemistry. Treatment of the cell cultures with 1,25(OH)2 D3 /Dex, however, significantly increased ALP activity and BGLAP messenger RNA levels. The data demonstrate that the metal layer coated onto the titanium discs exerted little modulatory effects on cell behavior. It is suggested that the microenvironment regulated by the peri-implant tissues is more effective in regulating the tissue response than is the material of the implant itself.

  4. The expression of insulin-like growth factor-Ⅰ mRNA and polypeptide in rat osteoblasts with exposure to parathyroid hormone

    Institute of Scientific and Technical Information of China (English)

    张克勤; 陈家伟; 王美莲; 汪承亚; 李光富; 郑肇熙; 赵人铮

    2003-01-01

    Objective To investigate the insulin-like growth factor-Ⅰ (IGF-Ⅰ) gene and polypeptide expression in cultured rat osteoblast (ROB) and the role of IGF-Ⅰ in mediating the cell-to-cell communication by mimicking the pharmacokinetics of parathyroid hormone (PTH).Methods The ROB was cultured with three kinds of treatment: (1) Control (Ctr), the cells were cultured without PTH during the first 6 hours and the subsequent 42 hours in a 48-hour cycle; (2) Intermittent exposure to PTH (Itm), the cells were cultured with PTH during the first 6 hours, but without PTH in the subsequent 42 hours; and (3) Continuous exposure to PTH (Ctu), the cells were cultured with PTH during the first 6 hours and the subsequent 42 hours.Results The bone-forming activities of ROB were increased in Itm and inhibited in Ctu. The IGF-Ⅰ mRNA content in Itm cells was elevated only during the first 6 hours and that in Ctu cells was elevated at any time during an incubation cycle. The free IGF-Ⅰ concentration in the medium of Itm cells was generally higher and that of the Ctu cells was generally lower compared with those of the Ctr cells. The IGF-Ⅰ antibody significantly reduced the alkaline phosphatase activity within the cells of Ctr and Itm.Conclusions PTH rapidly and constantly stimulates the IGF-Ⅰ gene transcription of osteoblast. There was an obvious discrepancy between the IGF-Ⅰ mRNA content within the osteoblast and the free IGF-Ⅰ level around the osteoblast in either mode of PTH action. The IGF-Ⅰ might be important for osteoblast-osteoblast communication and bone-forming activity, not only in intermittent PTH administration, but also in the physiological functioning of osteoblasts.

  5. Neuropathic pain in neuromyelitis optica affects activities of daily living and quality of life.

    Science.gov (United States)

    Zhao, Sizheng; Mutch, Kerry; Elsone, Liene; Nurmikko, Turo; Jacob, Anu

    2014-10-01

    Though pain in neuromyelitis optica (NMO) has been described in two recent reports, the proportion with true neuropathic pain (NP), its features, impact on activities of daily living (ADL) and quality of life has not been well characterised. A cross-sectional study of 50 NMO patients with transverse myelitis was performed using Douleur Neuropathique 4, Brief Pain Inventory, Extended Disability Status Scale and Short Form 36. NP was identified in 62% of patients. Pain was constant in 68% affecting most ADL. Pain was associated with significant reduction of the SF36 Mental Composite Score. The high prevalence of NP and associated disability necessitates an in-depth enquiry in patients with NMO.

  6. Story understanding of a nonexplanatory film affects viewers' premotor activity and empathy for fictional characters

    Directory of Open Access Journals (Sweden)

    Ogawa Y

    2016-07-01

    Full Text Available Yukiko Ogawa,1 Sotaro Shimada2 1Faculty of Social Sciences, Hosei University, Tokyo, 2Department of Electronics and Bioinformatics, School of Science and Technology, Meiji University, Kanagawa, Japan Objective: The present study aimed to examine whether the story understanding of a nonexplanatory film affects mirror neuron system (MNS activity and to discuss the interactive process involved in generating empathy for fictional characters during participants’ viewing of the film under natural viewing conditions.Methods: The material of the experiment was a Japanese film entitled Dolls. It is a nonexplanatory fiction film, in which the two (male and female main characters show only minimal actions or facial expressions; therefore, the viewers hardly understand the story until it has been developed to some extent. We measured twelve participants’ MNS activity by using near-infrared spectroscopy during the viewing of the first 20 minutes of the film. Additionally, we measured the brain activity while performing their own hand and leg motions after viewing the film to identify their motor cortices.Results: The results showed that the viewer’s MNS activity increased gradually as the introductory part of the story developed. Subsequent analyses revealed a significant increase in MNS activity in the later chapters of the film at the right premotor and supplementary motor cortices (P<0.05. Furthermore, there was a significant correlation between the MNS activity and the Interpersonal Reactivity Index scores (P<0.05.Conclusion: These results indicate that the viewer’s MNS activity was enhanced by the story understanding of a fiction film. We suggest that MNS activity during viewing fiction films can be used as a measure of how much the story, and rhetoric of a narrative, induces empathy in the viewers even if characters show only minimal actions or facial expressions. Keywords: mirror neuron system, MNS, empathy, nonexplanatory film, story

  7. Therapeutic Doses of Nonsteroidal Anti-Inflammatory Drugs Inhibit Osteosarcoma MG-63 Osteoblast-Like Cells Maturation, Viability, and Biomineralization Potential

    Directory of Open Access Journals (Sweden)

    E. De Luna-Bertos

    2013-01-01

    Full Text Available Nonsteroidal anti-inflammatory drugs (NSAIDs are frequently used to reduce pain and inflammation. However, their effect on bone metabolisms is not well known, and results in the literature are contradictory. The present study focusses on the effect of dexketoprofen, ketorolac, metamizole, and acetylsalicylic acid, at therapeutic doses, on different biochemical and phenotypic pathways in human osteoblast-like cells. Osteoblasts (MG-63 cell line were incubated in culture medium with 1–10 μM of dexketoprofen, ketorolac, metamizole, and acetylsalicylic acid. Flow cytometry was used to study antigenic profile and phagocytic activity. The osteoblastic differentiation was evaluated by mineralization and synthesis of collagen fibers by microscopy and alkaline phosphatase activity (ALP by spectrophotometric assay. Short-term treatment with therapeutic doses of NSAIDs modulated differentiation, antigenic profile, and phagocyte activity of osteoblast-like cells. The treatment reduced ALP synthesis and matrix mineralization. However, nonsignificant differences were observed on collagen syntheses after treatments. The percentage of CD54 expression was increased with all treatments. CD80, CD86, and HLA-DR showed a decreased expression, which depended on NSAID and the dose applied. The treatments also decreased phagocyte activity in this cellular population. The results of this paper provide evidences that NSAIDs inhibit the osteoblast differentiation process thus reducing their ability to produce new bone mineralized extracellular matrix.

  8. Testosterone affects hormone-sensitive lipase (HSL) activity and lipid metabolism in the left ventricle.

    Science.gov (United States)

    Langfort, Jozef; Jagsz, Slawomir; Dobrzyn, Pawel; Brzezinska, Zofia; Klapcinska, Barbara; Galbo, Henrik; Gorski, Jan

    2010-09-01

    Fatty acids, which are the major cardiac fuel, are derived from lipid droplets stored in cardiomyocytes, among other sources. The heart expresses hormone-sensitive lipase (HSL), which regulates triglycerides (TG) breakdown, and the enzyme is under hormonal control. Evidence obtained from adipose tissue suggests that testosterone regulates HSL activity. To test whether this is also true in the heart, we measured HSL activity in the left ventricle of sedentary male rats that had been treated with testosterone supplementation or orchidectomy with or without testosterone substitution. Left ventricle HSL activity against TG was significantly elevated in intact rats supplemented with testosterone. HSL activity against both TG and diacylglyceride was reduced by orchidectomy, whereas testosterone replacement fully reversed this effect. Moreover, testosterone increased left ventricle free fatty acid levels, caused an inhibitory effect on carbohydrate metabolism in the heart, and elevated left ventricular phosphocreatine and ATP levels as compared to control rats. These data indicate that testosterone is involved in cardiac HSL activity regulation which, in turn, may affect cardiac lipid and carbohydrate metabolism.

  9. Experimental evidence that livestock grazing intensity affects the activity of a generalist predator

    Science.gov (United States)

    Villar, Nacho; Lambin, Xavier; Evans, Darren; Pakeman, Robin; Redpath, Steve

    2013-05-01

    Grazing by domestic ungulates has substantial impacts on ecosystem structure and composition. In grasslands of the northern hemisphere, livestock grazing limits populations of small mammals, which are a main food source for a variety of vertebrate predators. However, no experimental studies have described the impact of livestock grazing on vertebrate predators. We experimentally manipulated sheep and cattle grazing intensity in the Scottish uplands to test its impact on a relatively abundant small mammal, the field vole (Microtus agrestis), and its archetypal generalist predator, the red fox (Vulpes vulpes). We demonstrate that ungulate grazing had a strong consistent negative impact on both vole densities and indices of fox activity. Ungulate grazing did not substantially affect the relationship between fox activity and vole densities. However, the data suggested that, as grazing intensity increased i) fox activity indices tended to be higher when vole densities were low, and ii) the relationship between fox activity and vole density was weaker. All these patterns are surprising given the relative small scale of our experiment compared to large red fox territories in upland habitats of Britain, and suggest that domestic grazing intensity causes a strong response in the activity of generalist predators important for their conservation in grassland ecosystems.

  10. Neuronal Heterotopias Affect the Activities of Distant Brain Areas and Lead to Behavioral Deficits.

    Science.gov (United States)

    Ishii, Kazuhiro; Kubo, Ken-ichiro; Endo, Toshihiro; Yoshida, Keitaro; Benner, Seico; Ito, Yukiko; Aizawa, Hidenori; Aramaki, Michihiko; Yamanaka, Akihiro; Tanaka, Kohichi; Takata, Norio; Tanaka, Kenji F; Mimura, Masaru; Tohyama, Chiharu; Kakeyama, Masaki; Nakajima, Kazunori

    2015-09-01

    Neuronal heterotopia refers to brain malformations resulting from deficits of neuronal migration. Individuals with heterotopias show a high incidence of neurological deficits, such as epilepsy. More recently, it has come to be recognized that focal heterotopias may also show a range of psychiatric problems, including cognitive and behavioral impairments. However, because focal heterotopias are not always located in the brain areas responsible for the symptoms, the causal relationship between the symptoms and heterotopias remains elusive. In this study, we showed that mice with focal heterotopias in the somatosensory cortex generated by in utero electroporation exhibited spatial working memory deficit and low competitive dominance behavior, which have been shown to be closely associated with the activity of the medial prefrontal cortex (mPFC) in rodents. Analysis of the mPFC activity revealed that the immediate-early gene expression was decreased and the local field potentials of the mPFC were altered in the mice with heterotopias compared with the control mice. Moreover, activation of these ectopic and overlying sister neurons using the DREADD (designer receptor exclusively activated by designer drug) system improved the working memory deficits. These findings suggest that cortical regions containing focal heterotopias can affect distant brain regions and give rise to behavioral abnormalities. Significance statement: Recent studies reported that patients with heterotopias have a variety of clinical symptoms, such as cognitive disturbance, psychiatric symptoms, and autistic behavior. However, the causal relationship between the symptoms and heterotopias remains elusive. Here we showed that mice with focal heterotopias in the somatosensory cortex generated by in utero electroporation exhibited behavioral deficits that have been shown to be associated with the mPFC activity in rodents. The existence of heterotopias indeed altered the neural activities of the mPFC, and

  11. Dietary fatty acid composition affects aminopeptidase activities in the testes of mice.

    Science.gov (United States)

    Arechaga, Garbiñe; Prieto, Isabel; Segarra, Ana B; Alba, Francisco; Ruiz-Larrea, María B; Ruiz-Sanz, José I; de Gasparo, Marc; Ramirez, Manuel

    2002-04-01

    The autocrine/paracrine control mechanisms of local factors, such as the renin-angiotensin system and the thyrotropin-releasing hormone (TRH), seem to play a relevant role in testicular physiology. It has been proposed that dietary fat composition influences male reproductive function modifying the cholesterol-phospholipid composition of testicular plasma membranes. Modifications in the composition and physical properties of the membranes may lead to alterations in the activities of membrane-bound (M-B) enzymes. We have previously demonstrated that cholesterol and steroid hormones affect aminopeptidase (AP) activities. Dietary fatty acids with different degrees of saturation modified AP activities in the serum of mice and an olive oil supplemented diet influenced the AP activities in the testes of mice. We hypothesized that the modification of dietary fat composition may affect angiotensin- [glutamyl-AP (GluAP), aspartyl-AP (AspAP)] and TRH- [pyroglutamyl-AP (pGluAP)] degrading activities in the testis. In this study, we investigated the effect of diets supplemented with sunflower oil (SFO), fish oil (FO), olive oil (OO), lard (L) or coconut oil (CO) on soluble (Sol) and M-B GluAP, AspAP and pGluAP in mice testis, using arylamides as substrates. Sol GluAP activity did not show differences among groups. However, Sol AspAP and Sol pGluAP progressively decreased with the degree of saturation of the fatty acid used in the diet. In contrast, M-B GluAP progressively increased with the degree of saturation of the fatty acid used in the diet. For M-B AspAP activity, mice fed diets containing FO showed significantly higher levels than those fed diets containing SFO, OO and L but not those containing CO. For M-B pGluAP activity, the highest levels were observed for mice fed diets containing FO and OO. The present data suggest that the type of fat used in the diet may influence the autocrine/paracrine functions of locally synthesized angiotensin peptides and TRH in the testis

  12. AMP-activated protein kinase (AMPK) activation regulates in vitro bone formation and bone mass.

    Science.gov (United States)

    Shah, M; Kola, B; Bataveljic, A; Arnett, T R; Viollet, B; Saxon, L; Korbonits, M; Chenu, C

    2010-08-01

    Adenosine 5'-monophosphate-activated protein kinase (AMPK), a regulator of energy homeostasis, has a central role in mediating the appetite-modulating and metabolic effects of many hormones and antidiabetic drugs metformin and glitazones. The objective of this study was to determine if AMPK can be activated in osteoblasts by known AMPK modulators and if AMPK activity is involved in osteoblast function in vitro and regulation of bone mass in vivo. ROS 17/2.8 rat osteoblast-like cells were cultured in the presence of AMPK activators (AICAR and metformin), AMPK inhibitor (compound C), the gastric peptide hormone ghrelin and the beta-adrenergic blocker propranolol. AMPK activity was measured in cell lysates by a functional kinase assay and AMPK protein phosphorylation was studied by Western Blotting using an antibody recognizing AMPK Thr-172 residue. We demonstrated that treatment of ROS 17/2.8 cells with AICAR and metformin stimulates Thr-172 phosphorylation of AMPK and dose-dependently increases its activity. In contrast, treatment of ROS 17/2.8 cells with compound C inhibited AMPK phosphorylation. Ghrelin and propranolol dose-dependently increased AMPK phosphorylation and activity. Cell proliferation and alkaline phosphatase activity were not affected by metformin treatment while AICAR significantly inhibited ROS 17/2.8 cell proliferation and alkaline phosphatase activity at high concentrations. To study the effect of AMPK activation on bone formation in vitro, primary osteoblasts obtained from rat calvaria were cultured for 14-17days in the presence of AICAR, metformin and compound C. Formation of 'trabecular-shaped' bone nodules was evaluated following alizarin red staining. We demonstrated that both AICAR and metformin dose-dependently increase trabecular bone nodule formation, while compound C inhibits bone formation. When primary osteoblasts were co-treated with AICAR and compound C, compound C suppressed the stimulatory effect of AICAR on bone nodule formation

  13. Evolution of the osteoblast: skeletogenesis in gar and zebrafish

    Directory of Open Access Journals (Sweden)

    Eames B Frank

    2012-03-01

    Full Text Available Abstract Background Although the vertebrate skeleton arose in the sea 500 million years ago, our understanding of the molecular fingerprints of chondrocytes and osteoblasts may be biased because it is informed mainly by research on land animals. In fact, the molecular fingerprint of teleost osteoblasts differs in key ways from that of tetrapods, but we do not know the origin of these novel gene functions. They either arose as neofunctionalization events after the teleost genome duplication (TGD, or they represent preserved ancestral functions that pre-date the TGD. Here, we provide evolutionary perspective to the molecular fingerprints of skeletal cells and assess the role of genome duplication in generating novel gene functions. We compared the molecular fingerprints of skeletogenic cells in two ray-finned fish: zebrafish (Danio rerio--a teleost--and the spotted gar (Lepisosteus oculatus--a "living fossil" representative of a lineage that diverged from the teleost lineage prior to the TGD (i.e., the teleost sister group. We analyzed developing embryos for expression of the structural collagen genes col1a2, col2a1, col10a1, and col11a2 in well-formed cartilage and bone, and studied expression of skeletal regulators, including the transcription factor genes sox9 and runx2, during mesenchymal condensation. Results Results provided no evidence for the evolution of novel functions among gene duplicates in zebrafish compared to the gar outgroup, but our findings shed light on the evolution of the osteoblast. Zebrafish and gar chondrocytes both expressed col10a1 as they matured, but both species' osteoblasts also expressed col10a1, which tetrapod osteoblasts do not express. This novel finding, along with sox9 and col2a1 expression in developing osteoblasts of both zebrafish and gar, demonstrates that osteoblasts of both a teleost and a basally diverging ray-fin fish express components of the supposed chondrocyte molecular fingerprint. Conclusions Our

  14. Short-Term Thyroid Hormone Excess Affects the Heart but Does not Affect Adrenal Activity in Rats

    Energy Technology Data Exchange (ETDEWEB)

    Szkudlarek, Ariani Cavazzani, E-mail: arianiinaira@yahoo.com.br; Aldenucci, Bruno; Miyagui, Nelson Itiro; Silva, Ilana Kassouf [Universidade Federal do Paraná, Curitiba, PR (Brazil); Moraes, Rosana Nogueira [Pontifícia Universidade Federal do Paraná, Curitiba, PR (Brazil); Ramos, Helton Estrela [Universidade Federal da Bahia, Salvador, BA (Brazil); Fogaça, Rosalva Tadeu Hochmuller [Universidade Federal do Paraná, Curitiba, PR (Brazil)

    2014-03-15

    Hyperthyroidism (Hy) exerts a broad range of influences on a variety of physiological parameters. Its disruptive effect on cardiovascular system is one of its most remarkable impacts. Moreover, Hy has been clinically associated with stress - induced hyperactivation of the hypothalamic-pituitary-adrenal axis. Evaluate the impact of short-term Hy on cardiac performance and adrenal activity of rats. Induction of Hy in Wistar rats through injections of T3 (150 µg/kg) for 10 days (hyperthyroid group - HG) or vehicle (control group). The cardiovascular performance was evaluated by: echocardiography (ECHO); heart weight/body weight (mg/gr) ratio; contractility of isolated papillary muscles (IPM) and direct measurement of blood pressures. Adrenal activity was evaluated by adrenal weight/body weight (mg/gr) ratio and 24-hour fecal corticosterone (FC) levels on the, 5{sup th} and 10{sup th} days of T3 treatment. In HG, the ECHO showed reduction of the End Systolic and End Diastolic Volumes, Ejection, Total Diastolic and Isovolumic Relaxation Times, Diastolic and Systolic Areas and E/A ratio. Heart Rate, Ejection Fraction and Cardiac Output increased. The heart weight/body weight ratio was higher. Similarly, in IPM, the maximum rate of force decay during relaxation was higher in all extracellular calcium concentrations. Systolic blood pressure (SBP) levels were higher. (p ≤ 0.05). On the other hand, there was no difference in the adrenal weight/body weight ratio or in the 24-hour FC levels. Hy induces positive inotropic, chronotropic and lusitropic effects on the heart by direct effects of T3 and increases SBP. Those alterations are not correlated with changes in the adrenal activity.

  15. Harvest date affects aronia juice polyphenols, sugars, and antioxidant activity, but not anthocyanin stability.

    Science.gov (United States)

    Bolling, Bradley W; Taheri, Rod; Pei, Ruisong; Kranz, Sarah; Yu, Mo; Durocher, Shelley N; Brand, Mark H

    2015-11-15

    The goal of this work was to characterize how the date of harvest of 'Viking' aronia berry impacts juice pigmentation, sugars, and antioxidant activity. Aronia juice anthocyanins doubled at the fifth week of the harvest, and then decreased. Juice hydroxycinnamic acids decreased 33% from the first week, while proanthocyanidins increased 64%. Juice fructose and glucose plateaued at the fourth week, but sorbitol increased 40% to the seventh harvest week. Aronia juice pigment density increased due to anthocyanin concentration, and polyphenol copigmentation did not significantly affect juice pigmentation. Anthocyanin stability at pH 4.5 was similar between weeks. However, addition of quercetin, sorbitol, and chlorogenic acid to aronia anthocyanins inhibited pH-induced loss of color. Sorbitol and citric acid may be partially responsible for weekly variation in antioxidant activity, as addition of these agents inhibited DPPH scavenging 13-30%. Thus, aronia polyphenol and non-polyphenol components contribute to its colorant and antioxidant functionality.

  16. Harvest date affects aronia juice polyphenols, sugars, and antioxidant activity, but not anthocyanin stability.

    Science.gov (United States)

    Bolling, Bradley W; Taheri, Rod; Pei, Ruisong; Kranz, Sarah; Yu, Mo; Durocher, Shelley N; Brand, Mark H

    2015-11-15

    The goal of this work was to characterize how the date of harvest of 'Viking' aronia berry impacts juice pigmentation, sugars, and antioxidant activity. Aronia juice anthocyanins doubled at the fifth week of the harvest, and then decreased. Juice hydroxycinnamic acids decreased 33% from the first week, while proanthocyanidins increased 64%. Juice fructose and glucose plateaued at the fourth week, but sorbitol increased 40% to the seventh harvest week. Aronia juice pigment density increased due to anthocyanin concentration, and polyphenol copigmentation did not significantly affect juice pigmentation. Anthocyanin stability at pH 4.5 was similar between weeks. However, addition of quercetin, sorbitol, and chlorogenic acid to aronia anthocyanins inhibited pH-induced loss of color. Sorbitol and citric acid may be partially responsible for weekly variation in antioxidant activity, as addition of these agents inhibited DPPH scavenging 13-30%. Thus, aronia polyphenol and non-polyphenol components contribute to its colorant and antioxidant functionality. PMID:25977015

  17. Cognitive-affective neural plasticity following active-controlled mindfulness intervention

    DEFF Research Database (Denmark)

    Allen, Micah Galen

    Mindfulness meditation is a set of attention-based, regulatory and self-inquiry training regimes. Although the impact of mindfulness meditation training (MT) on self-regulation is well established, the neural mechanisms supporting such plasticity are poorly understood. MT is thought to act through...... for cognitive and treatment effects with an active control group. We measured behavioral metacognition and whole-brain Blood Oxygenation Level Dependent (BOLD) signals using functional MRI during an affective Stroop task before and after intervention in healthy human subjects. Although both groups improved...... prefrontal cortex (mPFC), and right anterior insula during negative valence processing. Our findings highlight the importance of active control in MT research, indicate unique neural mechanisms for progressive stages of mindfulness training, and suggest that optimal application of MT may differ depending...

  18. Heat Shock Protein 90 Indirectly Regulates ERK Activity by Affecting Raf Protein Metabolism

    Institute of Scientific and Technical Information of China (English)

    Fei DOU; Liu-Di YUAN; Jing-Jing ZHU

    2005-01-01

    Extracellular signal-regulated protein kinase (ERK) has been implicated in the pathogenesis of several nerve system diseases. As more and more kinases have been discovered to be the client proteins of the molecular chaperone Hsp90, the use of Hsp90 inhibitors to reduce abnormal kinase activity is a new treatment strategy for nerve system diseases. This study investigated the regulation of the ERK pathway by Hsp90. We showed that Hsp90 inhibitors reduce ERK phosphorylation without affecting the total ERK protein level. Further investigation showed that Raf, the upstream kinase in the Ras-Raf-MEK-ERK pathway,forms a complex with Hsp90 and Hsp70. Treating cells with Hsp90 inhibitors facilitates Raf degradation,thereby down-regulating the activity of ERK.

  19. Procyanidins Negatively Affect the Activity of the Phosphatases of Regenerating Liver.

    Directory of Open Access Journals (Sweden)

    Sven Stadlbauer

    Full Text Available Natural polyphenols like oligomeric catechins (procyanidins derived from green tea and herbal medicines are interesting compounds for pharmaceutical research due to their ability to protect against carcinogenesis in animal models. It is nevertheless still unclear how intracellular pathways are modulated by polyphenols. Monomeric polyphenols were shown to affect the activity of some protein phosphatases (PPs. The three phosphatases of regenerating liver (PRLs are close relatives and promising therapeutic targets in cancer. In the present study we show that several procyanidins inhibit the activity of all three members of the PRL family in the low micromolar range, whereas monomeric epicatechins show weak inhibitory activity. Increasing the number of catechin units in procyanidins to more than three does not further enhance the potency. Remarkably, the tested procyanidins showed selectivity in vitro when compared to other PPs, and over 10-fold selectivity toward PRL-1 over PRL-2 and PRL-3. As PRL overexpression induces cell migration compared to control cells, the effect of procyanidins on this phenotype was studied. Treatment with procyanidin C2 led to a decrease in cell migration of PRL-1- and PRL-3-overexpressing cells, suggesting the compound-dependent inhibition of PRL-promoted cell migration. Treatment with procyanidin B3 led to selective suppression of PRL-1 overexpressing cells, thereby corroborating the selectivity toward PRL-1- over PRL-3 in vitro. Together, our results show that procyanidins negatively affect PRL activity, suggesting that PRLs could be targets in the polypharmacology of natural polyphenols. Furthermore, they are interesting candidates for the development of PRL-1 inhibitors due to their low cellular toxicity and the selectivity within the PRL family.

  20. Embodied simulation as part of affective evaluation processes: task dependence of valence concordant EMG activity.

    Science.gov (United States)

    Weinreich, André; Funcke, Jakob Maria

    2014-01-01

    Drawing on recent findings, this study examines whether valence concordant electromyography (EMG) responses can be explained as an unconditional effect of mere stimulus processing or as somatosensory simulation driven by task-dependent processing strategies. While facial EMG over the Corrugator supercilii and the Zygomaticus major was measured, each participant performed two tasks with pictures of album covers. One task was an affective evaluation task and the other was to attribute the album covers to one of five decades. The Embodied Emotion Account predicts that valence concordant EMG is more likely to occur if the task necessitates a somatosensory simulation of the evaluative meaning of stimuli. Results support this prediction with regard to Corrugator supercilii in that valence concordant EMG activity was only present in the affective evaluation task but not in the non-evaluative task. Results for the Zygomaticus major were ambiguous. Our findings are in line with the view that EMG activity is an embodied part of the evaluation process and not a mere physical outcome.

  1. Muscular activity level during pedalling is not affected by crank inertial load.

    Science.gov (United States)

    Duc, S; Villerius, V; Bertucci, W; Pernin, J N; Grappe, F

    2005-10-01

    The aim of the present study was to investigate the influence of gear ratio (GR) and thus crank inertial load (CIL), on the activity levels of lower limb muscles. Twelve competitive cyclists performed three randomised trials with their own bicycle equipped with a SRM crankset and mounted on an Axiom ergometer. The power output ( approximately 80% of maximal aerobic power) and the pedalling cadence were kept constant for each subject across all trials but three different GR (low, medium and high) were indirectly obtained for each trial by altering the electromagnetic brake of the ergometer. The low, medium and high GR (mean +/- SD) resulted in CIL of 44 +/- 3.7, 84 +/- 6.5 and 152 +/- 17.9 kg.m(2), respectively. Muscular activity levels of the gluteus maximus (GM), the vastus medialis (VM), the vastus lateralis (VL), the rectus femoris (RF), the medial hamstrings (MHAM), the gastrocnemius (GAS) and the soleus (SOL) muscles were quantified an