WorldWideScience

Sample records for affecting human drug

  1. Pharmacometabonomic identification of a significant host-microbiome metabolic interaction affecting human drug metabolism

    OpenAIRE

    Clayton, T. Andrew; Baker, David; Lindon, John C.; Everett, Jeremy R.; Nicholson, Jeremy K

    2009-01-01

    We provide a demonstration in humans of the principle of pharmacometabonomics by showing a clear connection between an individual's metabolic phenotype, in the form of a predose urinary metabolite profile, and the metabolic fate of a standard dose of the widely used analgesic acetaminophen. Predose and postdose urinary metabolite profiles were determined by 1H NMR spectroscopy. The predose spectra were statistically analyzed in relation to drug metabolite excretion to detect predose biomarker...

  2. Human Technology and Human Affects

    DEFF Research Database (Denmark)

    Fausing, Bent

    2009-01-01

    Human Technology and Human Affects  This year Samsung introduced a mobile phone with "Soul". It was made with a human touch and included itself a magical touch. Which function does technology and affects get in everyday aesthetics like this, its images and interactions included this presentation....... The paper will investigate how technology, humanity, affects, and synaesthesia are presented and combined with examples from everyday aesthetics, e.g. early computer tv-commercial, net-commercial for mobile phones. Technology and affects point, is the conclusion, towards a forgotten pre-human and not he...

  3. TIMP-1 overexpression does not affect sensitivity to HER2-targeting drugs in the HER2-gene-amplified SK-BR-3 human breast cancer cell line

    DEFF Research Database (Denmark)

    Deng, Xiaohong; Fogh, Louise; Lademann, Ulrik Axel;

    2013-01-01

    and lapatinib was studied in five selected single-cell subclones expressing TIMP-1 protein at various levels plus the parental SK-BR-3 cell line. Both trastuzumab and lapatinib reduced cell viability, as determined by MTT assay, but the sensitivity to the drugs was not associated with the expression level...... affect sensitivity to the HER2-targeting drugs trastuzumab and lapatinib. SK-BR-3 human breast cancer cells were stably transfected with TIMP-1, characterized with regard to TIMP-1 protein expression, proliferation, and functionality of the secreted TIMP-1, and the sensitivity to trastuzumab...

  4. How Do Beta Blocker Drugs Affect Exercise?

    Science.gov (United States)

    ... Stroke More How do beta blocker drugs affect exercise? Updated:Aug 5,2015 Beta blockers are a ... about them: Do they affect your ability to exercise? The answer can vary a great deal, depending ...

  5. Drug-drug interactions affecting fluoroquinolones.

    Science.gov (United States)

    Wijnands, G J; Vree, T B; Janssen, T J; Guelen, P J

    1989-12-29

    In a three-week study, the metabolism of the bronchodilator theophylline and its major metabolites formed by C-8 oxidation (1,3-dimethyluric acid) and N-demethylation (3-methylxanthine and 1-methyluric acid) was investigated in two healthy volunteers. Metabolic studies were performed following intravenous infusion of a single 6 mg/kg dose of aminophylline. During Week 1, theophylline was given alone (blank period), and during Weeks 2 and 3 it was given during oral coadministration of ofloxacin and enoxacin, respectively. Dosage of each quinolone was 200 mg twice daily for four days, starting three days prior to the theophylline infusion. During enoxacin coadministration, elimination half-lives of theophylline increased from 8.7 to 17.4 hours and from 6.1 to 12.3 hours, respectively. Total body clearance of theophylline decreased in both volunteers, whereas renal clearance did not alter. From this it was concluded that the decreased elimination results from a reduced metabolic clearance. During enoxacin coadministration, the formation of the metabolites 1-methyluric acid and 3-methylxanthine clearly was decreased, whereas the formation of 1,3-dimethyluric acid was less affected compared with the blank period. Interference with theophylline disposition by enoxacin is based predominantly on inhibition of microsomal N-demethylation. Ofloxacin comedication did not cause a change in the plasma parameters or renal excretion of theophylline and its metabolites compared with the blank period. PMID:2603893

  6. FACTORS AFFECTING PHARMACOKINETIC DISPOSITION OF DRUGS

    Directory of Open Access Journals (Sweden)

    Mehta Hiren R

    2011-05-01

    Full Text Available Absorption of drugs from the gastrointestinal tract is a complex process the variability of which is influenced by many physicochemical and physiologic factors. The two most important physicochemical factors that affect both the extent and the rate of absorption are lipophilicity and solubility. The rate and extent of absorption are governed by the solubility, permeability and stability of the drug, with solubility being a pH-dependent parameter for weak acids and bases. The gastrointestinal tract can be viewed as discrete sections with a variety of differential local pH environments ranging from the acidic stomach to the more basic small intestine. The multiple peaking, double peaking or secondary peaking phenomena can occur in the disposition of a variety of xenobiotics during drug development (the pre-clinical phase and in subsequent clinical studies and use. The physicochemical and physiological mechanisms underlying the occurrence of this phenomenon are often multi factorial and include but are not limited to solubility-limited absorption, modified-release formulations, complexation, enterohepatic recirculation, gastric emptying and the intestinal transit time, site-specific absorption, gastric secretion-enteral reabsorption. Double peak absorption has been described with several orally administered drugs such as cimetidine furosemide, piroxicam, ranitidine, talinolol, alprazolam and phenazopyridine.

  7. Trends affecting hospitals' human resources.

    Science.gov (United States)

    Neudeck, M M

    1985-01-01

    Hospital workers at every level--from administrators to housekeepers--will be affected by the interaction of changes already underway in the healthcare industry. Societal forces that will affect the hospital workforce include demographic change, the rise of the participatory ethic and decentralization, a growing philosophy of job entitlement, and new pressures for unionization. At the same time, the industry is faced with changing manpower requirements, cost containment, and the oversupply of physicians. This article identifies some of the likely effects of these changes on hospital human resources and suggests ways that administrators can prepare for them.

  8. Spectroscopic study of drug-binding characteristics of unmodified and pNPA-based acetylated human serum albumin: Does esterase activity affect microenvironment of drug binding sites on the protein?

    Energy Technology Data Exchange (ETDEWEB)

    Moradi, Nastaran [Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Faculty of Pharmaceutical Sciences, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Ashrafi-Kooshk, Mohammad Reza [Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Ghobadi, Sirous [Department of Biology, Faculty of Sciences, Razi University, Kermanshah (Iran, Islamic Republic of); Shahlaei, Mohsen [Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Faculty of Pharmaceutical Sciences, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Khodarahmi, Reza, E-mail: rkhodarahmi@mbrc.ac.ir [Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Faculty of Pharmaceutical Sciences, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of)

    2015-04-15

    Human serum albumin (HSA) is the most prominent extracellular protein in blood plasma. There are several binding sites on the protein which provide accommodation for structurally-unrelated endogenous and exogenous ligands and a wide variety of drugs. “Esterase-like” activity (hydrolysis of p-nitrophenyl esters) by the protein has been also reported. In the current study, we set out to investigate the interaction of indomethacin and ibuprofen with the unmodified and modified HSA (pNPA-modified HSA) using various spectroscopic techniques. Fluorescence data showed that 1:1 binding of drug to HSA is associated with quenching of the protein intrinsic fluorescence. Decrease of protein surface hydrophobicity (PSH), alteration in drug binding affinity and change of the protein stability, after esterase-like activity and permanent acetylation of HSA, were also documented. Analysis of the quenching and thermodynamic parameters indicated that forces involved in drug–HSA interactions change upon the protein modification. - Highlights: • Binding propensity of indomethacin extremely decreased upon the protein acetylation. • There is no ibuprofen binding after protein acetylation. • Protein stability changes upon drug binding as well as protein acetylation. • Drug pharmacokinetics may be influenced under co-administration of HSA-modifier drugs.

  9. Spectroscopic study of drug-binding characteristics of unmodified and pNPA-based acetylated human serum albumin: Does esterase activity affect microenvironment of drug binding sites on the protein?

    International Nuclear Information System (INIS)

    Human serum albumin (HSA) is the most prominent extracellular protein in blood plasma. There are several binding sites on the protein which provide accommodation for structurally-unrelated endogenous and exogenous ligands and a wide variety of drugs. “Esterase-like” activity (hydrolysis of p-nitrophenyl esters) by the protein has been also reported. In the current study, we set out to investigate the interaction of indomethacin and ibuprofen with the unmodified and modified HSA (pNPA-modified HSA) using various spectroscopic techniques. Fluorescence data showed that 1:1 binding of drug to HSA is associated with quenching of the protein intrinsic fluorescence. Decrease of protein surface hydrophobicity (PSH), alteration in drug binding affinity and change of the protein stability, after esterase-like activity and permanent acetylation of HSA, were also documented. Analysis of the quenching and thermodynamic parameters indicated that forces involved in drug–HSA interactions change upon the protein modification. - Highlights: • Binding propensity of indomethacin extremely decreased upon the protein acetylation. • There is no ibuprofen binding after protein acetylation. • Protein stability changes upon drug binding as well as protein acetylation. • Drug pharmacokinetics may be influenced under co-administration of HSA-modifier drugs

  10. Affective Biases in Humans and Animals.

    Science.gov (United States)

    Robinson, E S J; Roiser, J P

    2016-01-01

    Depression is one of the most common but poorly understood psychiatric conditions. Although drug treatments and psychological therapies are effective in some patients, many do not achieve full remission and some patients receive no apparent benefit. Developing new improved treatments requires a better understanding of the aetiology of symptoms and evaluation of novel therapeutic targets in pre-clinical studies. Recent developments in our understanding of the basic cognitive processes that may contribute to the development of depression and its treatment offer new opportunities for both clinical and pre-clinical research. This chapter discusses the clinical evidence supporting a cognitive neuropsychological model of depression and antidepressant efficacy, and how this information may be usefully translated to pre-clinical investigation. Studies using neuropsychological tests in depressed patients and at risk populations have revealed basic negative emotional biases and disrupted reward and punishment processing, which may also impact on non-affective cognition. These affective biases are sensitive to antidepressant treatments with early onset effects observed, suggesting an important role in recovery. This clinical work into affective biases has also facilitated back-translation to animals and the development of assays to study affective biases in rodents. These animal studies suggest that, similar to humans, rodents in putative negative affective states exhibit negative affective biases on decision-making and memory tasks. Antidepressant treatments also induce positive biases in these rodent tasks, supporting the translational validity of this approach. Although still in the early stages of development and validation, affective biases in depression have the potential to offer new insights into the clinical condition, as well as facilitating the development of more translational approaches for pre-clinical studies. PMID:27660073

  11. How computers affected the humanities

    OpenAIRE

    Salerno Emanuele

    2002-01-01

    This paper is concerned with the interactions between information technology and the humanities, and focuses on how the humanities have changed since adopting computers. The debate among humanists on the subject initially focuses on the alleged methodological changes brought about by the introduction of computing technology. It subsequently analyses the changes in research that were caused by IT not directly but indirectly, as a consequence of the changes effected on society as a whole. After...

  12. The support of human genetic evidence for approved drug indications.

    Science.gov (United States)

    Nelson, Matthew R; Tipney, Hannah; Painter, Jeffery L; Shen, Judong; Nicoletti, Paola; Shen, Yufeng; Floratos, Aris; Sham, Pak Chung; Li, Mulin Jun; Wang, Junwen; Cardon, Lon R; Whittaker, John C; Sanseau, Philippe

    2015-08-01

    Over a quarter of drugs that enter clinical development fail because they are ineffective. Growing insight into genes that influence human disease may affect how drug targets and indications are selected. However, there is little guidance about how much weight should be given to genetic evidence in making these key decisions. To answer this question, we investigated how well the current archive of genetic evidence predicts drug mechanisms. We found that, among well-studied indications, the proportion of drug mechanisms with direct genetic support increases significantly across the drug development pipeline, from 2.0% at the preclinical stage to 8.2% among mechanisms for approved drugs, and varies dramatically among disease areas. We estimate that selecting genetically supported targets could double the success rate in clinical development. Therefore, using the growing wealth of human genetic data to select the best targets and indications should have a measurable impact on the successful development of new drugs. PMID:26121088

  13. Factors That Affect Adolescent Drug Users' Suicide Attempts.

    Science.gov (United States)

    Park, Subin; Song, Hokwang

    2016-05-01

    Drug abuse has been widely linked to suicide risk. We examined the factors that affect adolescent drug users' suicide attempts in South Korea. This study analyzed the data of 311 adolescents who had used drugs such as inhalants, psychotropic drugs, and marijuana (195 males and 116 females). Among 311 subjects, 109 (35.0%) had attempted suicide during the last 12 months. After adjusting for other variables, depressive mood (OR=19.79) and poly-drug use (OR=2.79), and low/middle levels of academic achievement compared with a high level (OR=3.72 and 4.38) were independently associated with increased odds of a suicide attempt, while better perceived health (OR=0.32) was independently associated with reduced odds of a suicide attempt. For adolescent drug users, preventive work should be directed toward the active treatment of drug use, depression, and physical health and reinforcing proper coping strategies for academic and other stress. PMID:27247604

  14. How do humans affect wildlife nematodes?

    Science.gov (United States)

    Weinstein, Sara B.; Lafferty, Kevin D.

    2015-01-01

    Human actions can affect wildlife and their nematode parasites. Species introductions and human-facilitated range expansions can create new host–parasite interactions. Novel hosts can introduce parasites and have the potential to both amplify and dilute nematode transmission. Furthermore, humans can alter existing nematode dynamics by changing host densities and the abiotic conditions that affect larval parasite survival. Human impacts on wildlife might impair parasites by reducing the abundance of their hosts; however, domestic animal production and complex life cycles can maintain transmission even when wildlife becomes rare. Although wildlife nematodes have many possible responses to human actions, understanding host and parasite natural history, and the mechanisms behind the changing disease dynamics might improve disease control in the few cases where nematode parasitism impacts wildlife.

  15. Prenatal drug exposure affects neonatal brain functional connectivity.

    Science.gov (United States)

    Salzwedel, Andrew P; Grewen, Karen M; Vachet, Clement; Gerig, Guido; Lin, Weili; Gao, Wei

    2015-04-01

    Prenatal drug exposure, particularly prenatal cocaine exposure (PCE), incurs great public and scientific interest because of its associated neurodevelopmental consequences. However, the neural underpinnings of PCE remain essentially uncharted, and existing studies in school-aged children and adolescents are confounded greatly by postnatal environmental factors. In this study, leveraging a large neonate sample (N = 152) and non-invasive resting-state functional magnetic resonance imaging, we compared human infants with PCE comorbid with other drugs (such as nicotine, alcohol, marijuana, and antidepressant) with infants with similar non-cocaine poly drug exposure and drug-free controls. We aimed to characterize the neural correlates of PCE based on functional connectivity measurements of the amygdala and insula at the earliest stage of development. Our results revealed common drug exposure-related connectivity disruptions within the amygdala-frontal, insula-frontal, and insula-sensorimotor circuits. Moreover, a cocaine-specific effect was detected within a subregion of the amygdala-frontal network. This pathway is thought to play an important role in arousal regulation, which has been shown to be irregular in PCE infants and adolescents. These novel results provide the earliest human-based functional delineations of the neural-developmental consequences of prenatal drug exposure and thus open a new window for the advancement of effective strategies aimed at early risk identification and intervention.

  16. Humans process dog and human facial affect in similar ways.

    Directory of Open Access Journals (Sweden)

    Annett Schirmer

    Full Text Available Humans share aspects of their facial affect with other species such as dogs. Here we asked whether untrained human observers with and without dog experience are sensitive to these aspects and recognize dog affect with better-than-chance accuracy. Additionally, we explored similarities in the way observers process dog and human expressions. The stimulus material comprised naturalistic facial expressions of pet dogs and human infants obtained through positive (i.e., play and negative (i.e., social isolation provocation. Affect recognition was assessed explicitly in a rating task using full face images and images cropped to reveal the eye region only. Additionally, affect recognition was assessed implicitly in a lexical decision task using full faces as primes and emotional words and pseudowords as targets. We found that untrained human observers rated full face dog expressions from the positive and negative condition more accurately than would be expected by chance. Although dog experience was unnecessary for this effect, it significantly facilitated performance. Additionally, we observed a range of similarities between human and dog face processing. First, the facial expressions of both species facilitated lexical decisions to affectively congruous target words suggesting that their processing was equally automatic. Second, both dog and human negative expressions were recognized from both full and cropped faces. Third, female observers were more sensitive to affective information than were male observers and this difference was comparable for dog and human expressions. Together, these results extend existing work on cross-species similarities in facial emotions and provide evidence that these similarities are naturally exploited when humans interact with dogs.

  17. Aspergillus nidulans galactofuranose biosynthesis affects antifungal drug sensitivity.

    Science.gov (United States)

    Alam, Md Kausar; El-Ganiny, Amira M; Afroz, Sharmin; Sanders, David A R; Liu, Juxin; Kaminskyj, Susan G W

    2012-12-01

    The cell wall is essential for fungal survival in natural environments. Many fungal wall carbohydrates are absent from humans, so they are a promising source of antifungal drug targets. Galactofuranose (Galf) is a sugar that decorates certain carbohydrates and lipids. It comprises about 5% of the Aspergillus fumigatus cell wall, and may play a role in systemic aspergillosis. We are studying Aspergillus wall formation in the tractable model system, A. nidulans. Previously we showed single-gene deletions of three sequential A. nidulans Galf biosynthesis proteins each caused similar hyphal morphogenesis defects and 500-fold reduced colony growth and sporulation. Here, we generated ugeA, ugmA and ugtA strains controlled by the alcA(p) or niiA(p) regulatable promoters. For repression and expression, alcA(p)-regulated strains were grown on complete medium with glucose or threonine, whereas niiA(p)-regulated strains were grown on minimal medium with ammonium or nitrate. Expression was assessed by qPCR and colony phenotype. The alcA(p) and niiA(p) strains produced similar effects: colonies resembling wild type for gene expression, and resembling deletion strains for gene repression. Galf immunolocalization using the L10 monoclonal antibody showed that ugmA deletion and repression phenotypes correlated with loss of hyphal wall Galf. None of the gene manipulations affected itraconazole sensitivity, as expected. Deletion of any of ugmA, ugeA, ugtA, their repression by alcA(p) or niiA(p), OR, ugmA overexpression by alcA(p), increased sensitivity to Caspofungin. Strains with alcA(p)-mediated overexpression of ugeA and ugtA had lower caspofungin sensitivity. Galf appears to play an important role in A. nidulans growth and vigor.

  18. Modeling the effects of commonly used drugs on human metabolism.

    Science.gov (United States)

    Sahoo, Swagatika; Haraldsdóttir, Hulda S; Fleming, Ronan M T; Thiele, Ines

    2015-01-01

    Metabolism contributes significantly to the pharmacokinetics and pharmacodynamics of a drug. In addition, diet and genetics have a profound effect on cellular metabolism with respect to both health and disease. In the present study, we assembled a comprehensive, literature-based drug metabolic reconstruction of the 18 most highly prescribed drug groups, including statins, anti-hypertensives, immunosuppressants and analgesics. This reconstruction captures in detail our current understanding of their absorption, intracellular distribution, metabolism and elimination. We combined this drug module with the most comprehensive reconstruction of human metabolism, Recon 2, yielding Recon2_DM1796, which accounts for 2803 metabolites and 8161 reactions. By defining 50 specific drug objectives that captured the overall drug metabolism of these compounds, we investigated the effects of dietary composition and inherited metabolic disorders on drug metabolism and drug-drug interactions. Our main findings include: (a) a shift in dietary patterns significantly affects statins and acetaminophen metabolism; (b) disturbed statin metabolism contributes to the clinical phenotype of mitochondrial energy disorders; and (c) the interaction between statins and cyclosporine can be explained by several common metabolic and transport pathways other than the previously established CYP3A4 connection. This work holds the potential for studying adverse drug reactions and designing patient-specific therapies. PMID:25345908

  19. Human Factor Issues Affecting CAD Implementations

    Directory of Open Access Journals (Sweden)

    C. Short

    2000-01-01

    Full Text Available Industrial companies have been implementing Computer Aided Engineering tools for many years with varying degrees of success. In the early implementations considerable emphasis was placed upon the organisational structure necessary to receive and optimise system output. However, it is becoming increasingly clear that any successful CAE implementation has to satisfy three inter-related factors of technology, organisation and human issues. This paper presents the results of an investigation into human factors affecting successful CAD implementation, undertaken through selected case studies and a more general survey of UK industry.

  20. 37 CFR 1.775 - Calculation of patent term extension for a human drug, antibiotic drug or human biological product.

    Science.gov (United States)

    2010-07-01

    ... Human Services that applicant did not act with due diligence; (iii) One-half the number of days... extension for a human drug, antibiotic drug or human biological product. 1.775 Section 1.775 Patents... Review § 1.775 Calculation of patent term extension for a human drug, antibiotic drug or human...

  1. Human activities affecting trace gases and climate

    International Nuclear Information System (INIS)

    The Earth's climate has been in a constant state of change throughout geologic time due to natural perturbations in the global geobiosphere. However, various human activities have the potential to cause future global warming over a relatively short amount of time. These activities, which affect the Earth's climate by altering the concentrations of trace gases in the atmosphere, include energy consumption, particularly fossil-fuel consumption; industrial processes (production and use of chlorofluorocarbons, halons, and chlorocarbons, landfilling of wastes, and cement manufacture); changes in land use patterns, particularly deforestation and biomass burning; and agricultural practices (waste burning, fertilizer usage, rice production, and animal husbandry). Population growth is an important underlying factor affecting the level of growth in each activity. This paper describes how the human activities listed above contribute to atmospheric change, the current pattern of each activity, and how levels of each activity have changed since the early part of this century

  2. Effects of alcohol on human carboxylesterase drug metabolism

    Science.gov (United States)

    Parker, Robert B.; Hu, Zhe-Yi; Meibohm, Bernd; Laizure, S. Casey

    2015-01-01

    Background and Objective Human carboxylesterase-1 (CES1) and human carboxylesterase-2 (CES2) play an important role in metabolizing many medications. Alcohol is a known inhibitor of these enzymes but the relative effect on CES1 and CES2 is unknown. The aim of this study is to determine the impact of alcohol on the metabolism of specific probes for CES1 (oseltamivir) and CES2 (aspirin). Methods The effect of alcohol on CES1- and CES2-mediated probe drug hydrolysis was determined in vitro using recombinant human carboxylesterase. To characterize the in vivo effects of alcohol, healthy volunteers received each probe drug alone and in combination with alcohol followed by blood sample collection and determination of oseltamivir, aspirin, and respective metabolite pharmacokinetics. Results Alcohol significantly inhibited oseltamivir hydrolysis by CES1 in vitro but did not affect aspirin metabolism by CES2. Alcohol increased the oseltamivir area under the plasma concentration-time curve (AUC) from 0-6 h by 27% (range 11-46%, p=0.011) and decreased the metabolite/oseltamivir AUC 0-6 h ratio by 34% (range 25-41%, p<0.001). Aspirin pharmacokinetics were not affected by alcohol. Conclusions Alcohol significantly inhibited the hydrolysis of oseltamivir by CES1 both in vitro and in humans, but did not affect the hydrolysis of aspirin to salicylic acid by CES2. These results suggest that alcohol's inhibition of CES1 could potentially result in clinically significant drug interactions with other CES1-substrate drugs, but it is unlikely to significantly affect CES2-substrate drug hydrolysis. PMID:25511794

  3. Modelling Anxiety in Humans for Drug Development

    OpenAIRE

    Siepmann, Martin; Joraschky, Peter

    2007-01-01

    Animal behavioural profiles are commonly employed to investigate new therapeutic agents to treat anxiety disorders as well as to investigate the mechanism of action of anxiolytic drugs. However, many clinically important symptoms of anxiety can not be modelled directly in animals. Human models of anxiety should bridge between animal models and anxiety disorders. Experimental anxiety states in humans can be induced by either pharmacological means such as CO2 inhalation or psychological means s...

  4. Zoonotic helminths affecting the human eye

    Directory of Open Access Journals (Sweden)

    Eberhard Mark L

    2011-03-01

    Full Text Available Abstract Nowaday, zoonoses are an important cause of human parasitic diseases worldwide and a major threat to the socio-economic development, mainly in developing countries. Importantly, zoonotic helminths that affect human eyes (HIE may cause blindness with severe socio-economic consequences to human communities. These infections include nematodes, cestodes and trematodes, which may be transmitted by vectors (dirofilariasis, onchocerciasis, thelaziasis, food consumption (sparganosis, trichinellosis and those acquired indirectly from the environment (ascariasis, echinococcosis, fascioliasis. Adult and/or larval stages of HIE may localize into human ocular tissues externally (i.e., lachrymal glands, eyelids, conjunctival sacs or into the ocular globe (i.e., intravitreous retina, anterior and or posterior chamber causing symptoms due to the parasitic localization in the eyes or to the immune reaction they elicit in the host. Unfortunately, data on HIE are scant and mostly limited to case reports from different countries. The biology and epidemiology of the most frequently reported HIE are discussed as well as clinical description of the diseases, diagnostic considerations and video clips on their presentation and surgical treatment. Homines amplius oculis, quam auribus credunt Seneca Ep 6,5 Men believe their eyes more than their ears

  5. Do androgen deprivation drugs affect the immune cross-talk between mononuclear and prostate cancer cells?

    Science.gov (United States)

    Salman, Hertzel; Bergman, Michael; Blumberger, Naava; Djaldetti, Meir; Bessler, Hanna

    2014-02-01

    The aim of the study was to examine the effect of androgen deprivation drugs, i.e. leuprolide and bicalutamide on the immune cross-talk between human peripheral blood mononuclear cells (PBMC) and cells from PC-3 and LNCaP human prostate cancer lines. PBMC, PC-3 and LNCaP were separately incubated without and with two androgen-deprivation drugs, i.e. leuprolide and bicalutamide, and the secretion of IL-1β, IL-6, IL-1ra and IL-10 was examined. In addition, the effect of both drugs on the production of those cytokines was carried out after 24 hours incubation of PBMC with both types of cancer cells. Leuprolide or bicalutamide did not affect the production of the cytokines by PBMC or by the prostate cancer cells from the two lines. Incubation of PBMC with PC-3 or LNCaP cells caused increased production of IL-1β, IL-6 and IL-10 as compared with PBMC incubated without malignant cells. While 10(-7) M and 10(-8) M of leuprolide caused a decreased secretion of IL-1β by PBMC previously incubated with prostate cancer cells without the drug, bicalutamide did not affect this PBMC activity at any drug concentration. This observation suggests the existence of an additional mechanism explaining the effect of androgen deprivation therapy in prostate cancer patients.

  6. Gene duplication and divergence affecting drug content in Cannabis sativa.

    Science.gov (United States)

    Weiblen, George D; Wenger, Jonathan P; Craft, Kathleen J; ElSohly, Mahmoud A; Mehmedic, Zlatko; Treiber, Erin L; Marks, M David

    2015-12-01

    Cannabis sativa is an economically important source of durable fibers, nutritious seeds, and psychoactive drugs but few economic plants are so poorly understood genetically. Marijuana and hemp were crossed to evaluate competing models of cannabinoid inheritance and to explain the predominance of tetrahydrocannabinolic acid (THCA) in marijuana compared with cannabidiolic acid (CBDA) in hemp. Individuals in the resulting F2 population were assessed for differential expression of cannabinoid synthase genes and were used in linkage mapping. Genetic markers associated with divergent cannabinoid phenotypes were identified. Although phenotypic segregation and a major quantitative trait locus (QTL) for the THCA/CBDA ratio were consistent with a simple model of codominant alleles at a single locus, the diversity of THCA and CBDA synthase sequences observed in the mapping population, the position of enzyme coding loci on the map, and patterns of expression suggest multiple linked loci. Phylogenetic analysis further suggests a history of duplication and divergence affecting drug content. Marijuana is distinguished from hemp by a nonfunctional CBDA synthase that appears to have been positively selected to enhance psychoactivity. An unlinked QTL for cannabinoid quantity may also have played a role in the recent escalation of drug potency.

  7. THEORIES AND FACTORS AFFECTING MUCOADHESIVE DRUG DELIVERY SYSTEMS: A REVIEW

    Directory of Open Access Journals (Sweden)

    Alexander Amit

    2011-04-01

    Full Text Available Bioadhesion is an interfacial phenomenon in which two materials, at least one of which is biological, are held together by means of interfacial forces. When the associated biological system is mucous, it is called mucoadhesion. This property of certain polymeric systems have got place in the drug delivery research in order to prolong contact time in the various mucosal route of drug administration, as the ability to maintain a delivery system at a particular location for an extended period of time has a great appeal for both local action as well as systemic drug bioavailability. A complete and comprehensive theory that can predict adhesion based on the chemical and/or physical nature of a polymer is not yet available. Several theories have been proposed to explain the fundamental mechanisms of adhesion such as glues, adhesives, and paints, have been adopted to study the mucoadhesion. Mucoadhesion is a complex process and numerous theories have been presented to explain the mechanisms involved. These theories include mechanical-interlocking, electrostatic, diffusion–interpenetration, adsorption and fracture processes. They are Electronic theory, Adsorption theory, Wetting theory, Diffusion theory, Fracture theory. The objective of the study is to explain the different mechanisms involved in mucoadhesion and various factors affecting mucoadhesion.

  8. Gene duplication and divergence affecting drug content in Cannabis sativa.

    Science.gov (United States)

    Weiblen, George D; Wenger, Jonathan P; Craft, Kathleen J; ElSohly, Mahmoud A; Mehmedic, Zlatko; Treiber, Erin L; Marks, M David

    2015-12-01

    Cannabis sativa is an economically important source of durable fibers, nutritious seeds, and psychoactive drugs but few economic plants are so poorly understood genetically. Marijuana and hemp were crossed to evaluate competing models of cannabinoid inheritance and to explain the predominance of tetrahydrocannabinolic acid (THCA) in marijuana compared with cannabidiolic acid (CBDA) in hemp. Individuals in the resulting F2 population were assessed for differential expression of cannabinoid synthase genes and were used in linkage mapping. Genetic markers associated with divergent cannabinoid phenotypes were identified. Although phenotypic segregation and a major quantitative trait locus (QTL) for the THCA/CBDA ratio were consistent with a simple model of codominant alleles at a single locus, the diversity of THCA and CBDA synthase sequences observed in the mapping population, the position of enzyme coding loci on the map, and patterns of expression suggest multiple linked loci. Phylogenetic analysis further suggests a history of duplication and divergence affecting drug content. Marijuana is distinguished from hemp by a nonfunctional CBDA synthase that appears to have been positively selected to enhance psychoactivity. An unlinked QTL for cannabinoid quantity may also have played a role in the recent escalation of drug potency. PMID:26189495

  9. Excretion of drugs in human breast milk

    Energy Technology Data Exchange (ETDEWEB)

    Welch, R.M.; Findlay, J.W.

    1981-01-01

    The present report briefly discusses some of the morphological, physiological, and compositional aspects of animal and human breast milk and how these characteristics might be important for the accumulation of drugs and foreign compounds. In addition, a study is described confirming the presence of caffeine, codeine, morphine, phenacetin, acetaminophen, and salicylic acid in the breast milk of a lactating mother following oral administration of a combination analgesic containing aspirin, phenacetin, caffeine, and codeine. Although the study is limited to one subject, it has provided critically needed data on the rates of appearance in, and elimination of these drugs from, breast milk. A similar amount of information is presented on phenacetin, also a component of the analgesic mixture, which has not been previously reported to enter human milk. The distribution of these drugs between the slightly more acidic breast milk and the relatively neutral plasma is consistent with their weakly basic, acidic, or relatively neutral properties. In general, the study shows that codeine and morphine milk concentrations are higher than, salicylic acid milk levels are much lower than, and phenacetin, caffeine, and acetaminophen milk concentrations are relatively similar to their respective plasma levels. It is projected, from estimated steady-state milk concentrations of the drugs and their metabolites studied, that very low percentages of the therapeutic dosages (less than 0.7%) would be excreted in mother's milk, too low an amount to be clinically significant to the infant.

  10. 76 FR 65734 - Guidance for Industry on Evaluating the Safety of Flood-Affected Food Crops for Human Consumption...

    Science.gov (United States)

    2011-10-24

    ... HUMAN SERVICES Food and Drug Administration Guidance for Industry on Evaluating the Safety of Flood... entitled ``Guidance for Industry: Evaluating the Safety of Flood-Affected Food Crops for Human Consumption... industry entitled ``Evaluating the Safety of Flood-affected Food Crops for Human Consumption''...

  11. Albumin Supplement Affects the Metabolism and Metabolism-Related Drug-Drug Interaction of Fenoprofen Enantiomers.

    Science.gov (United States)

    Wang, Nan; Wang, Feng; Meng, Yu; Yang, Guo-Hui; Chen, Ju-Wu; Wang, Jia-Xiang

    2015-07-01

    The influence of albumin towards the metabolism behavior of fenoprofen enantiomers and relevant drug-drug interaction was investigated in the present study. The metabolic behavior of fenoprofen enantiomers was compared in a phase II metabolic incubation system with and without bovine serum albumin (BSA). BSA supplement increased the binding affinity parameter (Km) of (R)-fenoprofen towards human liver microsomes (HLMs) from 148.3 to 214.4 μM. In contrast, BSA supplement decreased the Km of (S)-fenoprofen towards HLMs from 218.2 to 123.5 μM. For maximum reaction velocity (Vmax), the addition of BSA increased the Vmax of (R)-fenoprofen from 1.3 to 1.6 nmol/min/mg protein. In the contrast, BSA supplement decreased the Vmax value from 3.3 to 1.5 nmol/min/mg protein. Andrographolide-fenoprofen interaction was used as an example to investigate the influence of BSA supplement towards fenoprofen-relevant drug-drug interaction. The addition of 0.2% BSA in the incubation system significantly decreased the inhibition potential of andrographolide towards (R)-fenoprofen metabolism (P andrographolide towards the metabolism of (S)-fenoprofen. BSA supplement also changed the inhibition kinetic type and parameter of andrographolide towards the metabolism of (S)-fenoprofen. In conclusion, albumin supplement changes the metabolic behavior of fenoprofen enantiomers and the fenoprofen-andrographolide interaction. PMID:26037509

  12. Membrane Drug Transporters and Chemoresistance in Human Pancreatic Carcinoma

    International Nuclear Information System (INIS)

    Pancreatic cancer ranks among the tumors most resistant to chemotherapy. Such chemoresistance of tumors can be mediated by various cellular mechanisms including dysregulated apoptosis or ineffective drug concentration at the intracellular target sites. In this review, we highlight recent advances in experimental chemotherapy underlining the role of cellular transporters in drug resistance. Such contribution to the chemoresistant phenotype of tumor cells or tissues can be conferred both by uptake and export transporters, as demonstrated by in vivo and in vitro data. Our studies used human pancreatic carcinoma cells, cells stably transfected with human transporter cDNAs, or cells in which a specific transporter was knocked down by RNA interference. We have previously shown that 5-fluorouracil treatment affects the expression profile of relevant cellular transporters including multidrug resistance proteins (MRPs), and that MRP5 (ABCC5) influences chemoresistance of these tumor cells. Similarly, cell treatment with the nucleoside drug gemcitabine or a combination of chemotherapeutic drugs can variably influence the expression pattern and relative amount of uptake and export transporters in pancreatic carcinoma cells or select for pre-existing subpopulations. In addition, cytotoxicity studies with MRP5-overexpressing or MRP5-silenced cells demonstrate a contribution of MRP5 also to gemcitabine resistance. These data may lead to improved strategies of future chemotherapy regimens using gemcitabine and/or 5-fluorouracil

  13. The Factors Affecting Drug Abuse Among Addicted Women

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Rahmati

    2002-10-01

    Full Text Available The aim of this article is to describe and analyse some background factors that has some effect on the formation and continuity of addictive behavior among a sample of 1500 addicted persons on the 10 provinces of Iran. The article explores the processes under which the addictive behavior occures. Based on the findings of a survey research on a sample of 1500 drug abusers, it is concluded that factors such as addiction to cigarettes, alcohol, drug type, and methods and situations of approaching and access to drugs are effective in beginning of addiction. At last , the article pays special attention to addiction among women as the drug abusers.

  14. Guide to Children Affected by Parental Drug Abuse

    Science.gov (United States)

    Davies, Leah

    2010-01-01

    A conservative estimate is that one in six children in school today has a parent dependent on or addicted to alcohol or other drugs. This places these students at high risk for social and emotional problems, as well as for school failure, drug use, and delinquency. Schools, however, are a logical place to reach them. Identifying children of those…

  15. Infrasound from Wind Turbines Could Affect Humans

    Science.gov (United States)

    Salt, Alec N.; Kaltenbach, James A.

    2011-01-01

    Wind turbines generate low-frequency sounds that affect the ear. The ear is superficially similar to a microphone, converting mechanical sound waves into electrical signals, but does this by complex physiologic processes. Serious misconceptions about low-frequency sound and the ear have resulted from a failure to consider in detail how the ear…

  16. THEORIES AND FACTORS AFFECTING MUCOADHESIVE DRUG DELIVERY SYSTEMS: A REVIEW

    OpenAIRE

    Alexander Amit; Sharma Sharad; Ajazuddin,; Khan Mohammed Junaid; Swarna

    2011-01-01

    Bioadhesion is an interfacial phenomenon in which two materials, at least one of which is biological, are held together by means of interfacial forces. When the associated biological system is mucous, it is called mucoadhesion. This property of certain polymeric systems have got place in the drug delivery research in order to prolong contact time in the various mucosal route of drug administration, as the ability to maintain a delivery system at a particular location for an extended period of...

  17. Factors affecting transmission of mucosal human papillomavirus

    NARCIS (Netherlands)

    N.J. Veldhuijzen; P.J. Snijders; P. Reiss; C.J. Meijer; J.H. van de Wijgert

    2010-01-01

    Human papillomavirus (HPV) is the most common sexually transmitted infection. The effect of HPV on public health is especially related to the burden of anogenital cancers, most notably cervical cancer. Determinants of exposure to HPV are similar to those for most sexually transmitted infections, but

  18. Does Globalization Affect Human Well-Being?

    Science.gov (United States)

    Tsai, Ming-Chang

    2007-01-01

    The prevailing theorizing of globalization's influence of human well-being suggests to assess both the favorable and unfavorable outcomes. This study formulates a dialectical model, adopts a comprehensive globalization measure and uses a three-wave panel data during 1980-2000 to empirically test direct and indirect effects of global flows' human…

  19. Human Factor Issues Affecting CAD Implementations

    OpenAIRE

    Short, C.; Cockerham, G

    2000-01-01

    Industrial companies have been implementing Computer Aided Engineering tools for many years with varying degrees of success. In the early implementations considerable emphasis was placed upon the organisational structure necessary to receive and optimise system output. However, it is becoming increasingly clear that any successful CAE implementation has to satisfy three inter-related factors of technology, organisation and human issues. This paper presents the results of an investigation into...

  20. Genetic polymorphisms affect efficacy and adverse drug reactions of DMARDs in rheumatoid arthritis.

    Science.gov (United States)

    Zhang, Ling Ling; Yang, Sen; Wei, Wei; Zhang, Xue Jun

    2014-11-01

    Disease-modifying antirheumatic drugs (DMARDs) and biological agents are critical in preventing the severe complications of rheumatoid arthritis (RA). However, the outcome of treatment with these drugs in RA patients is quite variable and unpredictable. Drug-metabolizing enzymes (dihydrofolate reductase, cytochrome P450 enzymes, N-acetyltransferases, etc.), drug transporters (ATP-binding cassette transporters), and drug targets (tumor necrosis factor-α receptors) are coded for by variant alleles. These gene polymorphisms may influence the pharmacokinetics, pharmacodynamics, and side effects of medicines. The cause for differences in efficacy and adverse drug reactions may be genetic variation in drug metabolism among individuals. Polymorphisms in drug transporter genes may change the distribution and excretion of medicines, and the sensitivity of the targets to drugs is strongly influenced by genetic variations. In this article, we review the genetic polymorphisms that affect the efficacy of DMARDs or the occurrence of adverse drug reactions associated with DMARDs in RA.

  1. Genetic polymorphisms affect efficacy and adverse drug reactions of DMARDs in rheumatoid arthritis.

    Science.gov (United States)

    Zhang, Ling Ling; Yang, Sen; Wei, Wei; Zhang, Xue Jun

    2014-11-01

    Disease-modifying antirheumatic drugs (DMARDs) and biological agents are critical in preventing the severe complications of rheumatoid arthritis (RA). However, the outcome of treatment with these drugs in RA patients is quite variable and unpredictable. Drug-metabolizing enzymes (dihydrofolate reductase, cytochrome P450 enzymes, N-acetyltransferases, etc.), drug transporters (ATP-binding cassette transporters), and drug targets (tumor necrosis factor-α receptors) are coded for by variant alleles. These gene polymorphisms may influence the pharmacokinetics, pharmacodynamics, and side effects of medicines. The cause for differences in efficacy and adverse drug reactions may be genetic variation in drug metabolism among individuals. Polymorphisms in drug transporter genes may change the distribution and excretion of medicines, and the sensitivity of the targets to drugs is strongly influenced by genetic variations. In this article, we review the genetic polymorphisms that affect the efficacy of DMARDs or the occurrence of adverse drug reactions associated with DMARDs in RA. PMID:25144752

  2. Translocations affecting human immunoglobulin heavy chain locus

    Directory of Open Access Journals (Sweden)

    Sklyar I. V.

    2014-03-01

    Full Text Available Translocations involving human immunoglobulin heavy chain (IGH locus are implicated in different leukaemias and lymphomas, including multiple myeloma, mantle cell lymphoma, Burkitt’s lymphoma and diffuse large B cell lymphoma. We have analysed published data and identified eleven breakpoint cluster regions (bcr related to these cancers within the IgH locus. These ~1 kbp bcrs are specific for one or several types of blood cancer. Our findings could help devise PCR-based assays to detect cancer-related translocations, to identify the mechanisms of translocations and to help in the research of potential translocation partners of the immunoglobulin locus at different stages of B-cell differentiation.

  3. Affectivity

    OpenAIRE

    Stenner, Paul; Greco, Monica

    2013-01-01

    The concept of affectivity has assumed central importance in much recent scholarship, and many in the social sciences and humanities now talk of an ‘affective turn’. The concept of affectivity at play in this ‘turn’ remains, however, somewhat vague and slippery. Starting with Silvan Tomkins’ influential theory of affect, this paper will explore the relevance of the general assumptions (or ‘utmost abstractions’) that inform thinking about affectivity. The technological and instrumentalist char...

  4. Generic substitution of antihypertensive drugs : does it affect adherence?

    NARCIS (Netherlands)

    Van Wijk, Boris L G; Klungel, Olaf H; Heerdink, Eibert R; de Boer, Anthonius

    2006-01-01

    BACKGROUND: Generic substitution is an important opportunity to reduce the costs of pharmaceutical care. However, pharmacists and physicians often find that patients and brand-name manufacturers have doubt about the equivalence of the substituted drug. This may be reflected by decreased adherence to

  5. Negative Affect in Human Robot Interaction

    DEFF Research Database (Denmark)

    Rehm, Matthias; Krogsager, Anders

    2013-01-01

    The vision of social robotics sees robots moving more and more into unrestricted social environments, where robots interact closely with users in their everyday activities, maybe even establishing relationships with the user over time. In this paper we present a field trial with a robot in a semi......-public place. Our analysis of the interactions with casual users shows that it is not enough to focus on modeling behavior that is similar to successful human interactions but that we have to take more deviant ways of interaction like abuse and impoliteness into account when we send robots into the users......’ environments. The analysis uses impoliteness theory as an analytical toolbox and exemplifies which strategies are employed by users in unexpected encounters with a humanoid robot....

  6. Towards drug quantification in human skin with confocal Raman microscopy.

    OpenAIRE

    Franzen, Lutz; Selzer, Dominik; Fluhr, Joachim W; Schaefer, Ulrich F.; Windbergs, Maike

    2013-01-01

    Understanding the penetration behaviour of drugs into human skin is a prerequisite for the rational development and evaluation of effective dermal drug delivery. The general procedure for the acquisition of quantitative drug penetration profiles in human skin is performed by sequential segmentation and extraction. Unfortunately, this technique is destructive, laborious and lacks spatial resolution. Confocal Raman microscopy bares the potential of a chemically selective, label free and nondest...

  7. Maggot excretions affect the human complement system.

    Science.gov (United States)

    Cazander, Gwendolyn; Schreurs, Marco W J; Renwarin, Lennaert; Dorresteijn, Corry; Hamann, Dörte; Jukema, Gerrolt N

    2012-01-01

    The complement system plays an important role in the activation of the inflammatory response to injury, although inappropriate complement activation (CA) can lead to severe tissue damage. Maggot therapy is successfully used to treat infected wounds. In this study, we hypothesized that maggot excretions/secretions influence CA in order to modulate the host's inflammatory response. Therefore, the effect of maggot excretions on CA was investigated in preoperatively and postoperatively obtained sera from patients. Our results show that maggot excretions reduce CA in healthy and postoperatively immune-activated human sera up to 99.9%, via all pathways. Maggot excretions do not specifically initiate or inhibit CA, but break down complement proteins C3 and C4 in a cation-independent manner and this effect proves to be temperature tolerant. This study indicates a CA-reducing substrate that is already successfully used in clinical practice and may explain part of the improved wound healing caused by maggot therapy. Furthermore, the complement activation-reducing substance present in maggot excretions could provide a novel treatment modality for several diseases, resulting from an (over)active complement system.

  8. 75 FR 59935 - Investigational New Drug Safety Reporting Requirements for Human Drug and Biological Products and...

    Science.gov (United States)

    2010-09-29

    ... ``E2A Clinical Safety Data Management: Definitions and Standards for Expedited Reporting'' (60 FR 11284... 0910-AG13 Investigational New Drug Safety Reporting Requirements for Human Drug and Biological Products... safety reporting for human biological products: Laura Rich, Center for Biologics Evaluation and...

  9. Abuse of Prescription (Rx) Drugs Affects Young Adults Most

    Science.gov (United States)

    ... Abuse; National Institutes of Health; U.S. Department of Health and Human Services. Related News Releases Athletic teens less likely to transition from prescription pain relievers to heroin ( July 2016 ) Co-prescribing naloxone in primary care ...

  10. Understanding drug resistance in human intestinal protozoa.

    Science.gov (United States)

    El-Taweel, Hend Aly

    2015-05-01

    Infections with intestinal protozoa continue to be a major health problem in many areas of the world. The widespread use of a limited number of therapeutic agents for their management and control raises concerns about development of drug resistance. Generally, the use of any antimicrobial agent should be accompanied by meticulous monitoring of its efficacy and measures to minimize resistance formation. Evidence for the occurrence of drug resistance in different intestinal protozoa comes from case studies and clinical trials, sometimes with a limited number of patients. Large-scale field-based assessment of drug resistance and drug sensitivity testing of clinical isolates are needed. Furthermore, the association of drug resistance with certain geographic isolates or genotypes deserves consideration. Drug resistance has been triggered in vitro and has been linked to modification of pyruvate:ferredoxin oxidoreductase, nitroreductases, antioxidant defense, or cytoskeletal system. Further mechanistic studies will have important implications in the development of second generation therapeutic agents.

  11. ELASTIC LIPOSOME: DRUG DELIVERY ACROSS HUMAN SKIN

    OpenAIRE

    Vardhan Harsh; Kumari Annu; Bhaskar Rahul; Jha Vandana

    2012-01-01

    Transdermal drug delivery is hardly an old technology, since 1800’s and the technology is no longer just adhesive patches. Due to recent advances in technology and the ability to apply the drug to the site of action without rupturing the skin membrane, transdermal route is becoming a widely accepted route of drug administration. Recently, various strategies have been used to augment the transdermal delivery of bioactives. Mainly, they include iontophoresis, electrophoresis, sonophoresis, chem...

  12. Anatomical and Histological Factors Affecting Intranasal Drug and Vaccine Delivery

    OpenAIRE

    Gizurarson, Sveinbjörn

    2012-01-01

    The aim of this review is to provide an understanding of the anatomical and histological structure of the nasal cavity, which is important for nasal drug and vaccine delivery as well as the development of new devices. The surface area of the nasal cavity is about 160 cm2, or 96 m2 if the microvilli are included. The olfactory region, however, is only about 5 cm2 (0.3 m2 including the microvilli). There are 6 arterial branches that serve the nasal cavity, making this region a very attractive r...

  13. Toward an Affective Pedagogy of Human Rights Education

    Science.gov (United States)

    Hung, Ruyu

    2014-01-01

    This paper explores the notion of Affective Pedagogy of Human Rights Education (APHRE) on a theoretical level and suggests a concept of curricular framework. APHRE highlights the significance of affectivity and body in the process of learning, factors usually neglected in the mainstream intellectualistic approach to learning, especially in areas…

  14. Analysis of variables affecting drug compliance in schizophrenia

    Directory of Open Access Journals (Sweden)

    Shakeel Ansari

    2014-01-01

    Full Text Available Context: As compliance of the patient during management of schizophrenia is crucial, the current study was conducted to find out the factors that affected compliance. Aims: The aim of the study was to analyze the prevalence of noncompliance and to find out different factors affecting compliance in schizophrenic patients. Materials and Methods: Observational cross-sectional study was conducted on 100 adult schizophrenic patients. Noncompliance was assessed using the rating of medication influence (ROMI scale. Severity of illness was measured using positive and negative syndrome scale (PANSS. Results: Prevalence of noncompliance was 37%. Using ROMI scale; positive relationship with psychiatrist, family pressure for taking medications, stigma, and substance abuse were found to be significant factors. Severity of illness was also found as determining factor. Conclusion: To improve the compliance in schizophrenia patients, roles of both psychiatrists and family members are crucial.

  15. Anatomical and histological factors affecting intranasal drug and vaccine delivery.

    Science.gov (United States)

    Gizurarson, Sveinbjörn

    2012-11-01

    The aim of this review is to provide an understanding of the anatomical and histological structure of the nasal cavity, which is important for nasal drug and vaccine delivery as well as the development of new devices. The surface area of the nasal cavity is about 160 cm2, or 96 m2 if the microvilli are included. The olfactory region, however, is only about 5 cm2 (0.3 m2 including the microvilli). There are 6 arterial branches that serve the nasal cavity, making this region a very attractive route for drug administration. The blood flow into the nasal region is slightly more than reabsorbed back into the nasal veins, but the excess will drain into the lymph vessels, making this region a very attractive route for vaccine delivery. Many of the side effects seen following intranasal administration are caused by some of the 6 nerves that serve the nasal cavity. The 5th cranial nerve (trigeminus nerve) is responsible for sensing pain and irritation following nasal administration but the 7th cranial nerve (facial nerve) will respond to such irritation by stimulating glands and cause facial expressions in the subject. The first cranial nerve (olfactory nerve), however, is the target when direct absorption into the brain is the goal, since this is the only site in our body where the central nervous system is directly expressed on the mucosal surface. The nasal mucosa contains 7 cell types and 4 types of glands. Four types of cells and 2 types of glands are located in the respiratory region but 6 cell types and 2 types of glands are found in the olfactory region. PMID:22788696

  16. How Does Human Capital Affect on Growth in Different Economies?

    Directory of Open Access Journals (Sweden)

    Mehdi Safdari

    2010-01-01

    Full Text Available Problem statement: The main objective of this study was to investigate how human capital can affect growth in different economies. Approach: For this purpose, we investigated the model, which the growth rate of total factor productivity depends on human capital stock level using a cross-country panel approach for 104 countries in five-year intervals during the 1980-2005. Results: The finding of this study showed that human capital through its effect on the speed of technology adoption from abroad has positive effect and significantly on growth in total samples of countries while human capital directly in developed countries enter negatively inverse developing countries. Conclusion: Moreover human capital affects growth in different ways it has more effects on per capital growth through technology/catch-up component than domestic innovation component. Moreover human capital of different ways has different effects on growth but in total it has positive effect on economic growth.

  17. ELASTIC LIPOSOME: DRUG DELIVERY ACROSS HUMAN SKIN

    Directory of Open Access Journals (Sweden)

    Vardhan Harsh

    2012-04-01

    Full Text Available Transdermal drug delivery is hardly an old technology, since 1800’s and the technology is no longer just adhesive patches. Due to recent advances in technology and the ability to apply the drug to the site of action without rupturing the skin membrane, transdermal route is becoming a widely accepted route of drug administration. Recently, various strategies have been used to augment the transdermal delivery of bioactives. Mainly, they include iontophoresis, electrophoresis, sonophoresis, chemical permeation enhancers, micro needles, and vesicular system. Among these strategies elastic liposomes appear promising. Elastic liposomes possess an infrastructure consisting of hydrophobic and hydrophilic moieties together and as a result can accommodate drug molecules with wide range of solubility. It is an ultra deformable vesicle, elastic in nature which can squeeze itself through a pore which is many times smaller than its size owing to its elasticity. They can deform and pass through narrow constriction (from 5 to 10 times less than their own diameter without measurable loss. This high deformability gives better penetration of intact vesicles. This system is much more efficient at delivering a low and high molecular weight drug to the skin in terms of quantity and depth. The article speaks specifically on various phenomenon associated with the properties of these vesicles and their transport mechanisms. It also throws light on the effectiveness of conventional and deformable vesicles as drug delivery systems as well as their possible mode of action as transdermal drug carriers.

  18. Host lifestyle affects human microbiota on daily timescales

    OpenAIRE

    David, Lawrence A; Materna, Arne C.; Friedman, Jonathan; Campos-Baptista, Maria I; Blackburn, Matthew C.; Perrotta, Allison; Erdman, Susan E; Eric J Alm

    2014-01-01

    Background Disturbance to human microbiota may underlie several pathologies. Yet, we lack a comprehensive understanding of how lifestyle affects the dynamics of human-associated microbial communities. Results Here, we link over 10,000 longitudinal measurements of human wellness and action to the daily gut and salivary microbiota dynamics of two individuals over the course of one year. These time series show overall microbial communities to be stable for months. However, rare events in each su...

  19. Drugs affecting HbA1c levels

    Directory of Open Access Journals (Sweden)

    Ranjit Unnikrishnan

    2012-01-01

    Full Text Available Glycated hemoglobin (HbA1c is an important indicator of glycemic control in diabetes mellitus, based on which important diagnostic and therapeutic decisions are routinely made. However, there are several situations in which the level of HbA1c may not faithfully reflect the glycemic control in a given patient. Important among these is the use of certain non-diabetic medications, which can affect the HbA1c levels in different ways. This review focuses on the non-diabetic medications which can inappropriately raise or lower the HbA1c levels, and the postulated mechanisms for the same.

  20. Factors affecting drug-induced liver injury: antithyroid drugs as instances.

    Science.gov (United States)

    Heidari, Reza; Niknahad, Hossein; Jamshidzadeh, Akram; Abdoli, Narges

    2014-09-01

    Methimazole and propylthiouracil have been used in the management of hyperthyroidism for more than half a century. However, hepatotoxicity is one of the most deleterious side effects associated with these medications. The mechanism(s) of hepatic injury induced by antithyroid agents is not fully recognized yet. Furthermore, there are no specific tools for predicting the occurrence of hepatotoxicity induced by these drugs. The purpose of this article is to give an overview on possible susceptibility factors in liver injury induced by antithyroid agents. Age, gender, metabolism characteristics, alcohol consumption, underlying diseases, immunologic mechanisms, and drug interactions are involved in enhancing antithyroid drugs-induced hepatic damage. An outline on the clinically used treatments for antithyroid drugs-induced hepatotoxicity and the potential therapeutic strategies found to be effective against this complication are also discussed.

  1. Neuronal ferritin heavy chain and drug abuse affect HIV-associated cognitive dysfunction.

    Science.gov (United States)

    Pitcher, Jonathan; Abt, Anna; Myers, Jaclyn; Han, Rachel; Snyder, Melissa; Graziano, Alessandro; Festa, Lindsay; Kutzler, Michele; Garcia, Fernando; Gao, Wen-Jun; Fischer-Smith, Tracy; Rappaport, Jay; Meucci, Olimpia

    2014-02-01

    Interaction of the chemokine CXCL12 with its receptor CXCR4 promotes neuronal function and survival during embryonic development and throughout adulthood. Previous studies indicated that μ-opioid agonists specifically elevate neuronal levels of the protein ferritin heavy chain (FHC), which negatively regulates CXCR4 signaling and affects the neuroprotective function of the CXCL12/CXCR4 axis. Here, we determined that CXCL12/CXCR4 activity increased dendritic spine density, and also examined FHC expression and CXCR4 status in opiate abusers and patients with HIV-associated neurocognitive disorders (HAND), which is typically exacerbated by illicit drug use. Drug abusers and HIV patients with HAND had increased levels of FHC, which correlated with reduced CXCR4 activation, within cortical neurons. We confirmed these findings in a nonhuman primate model of SIV infection with morphine administration. Transfection of a CXCR4-expressing human cell line with an iron-deficient FHC mutant confirmed that increased FHC expression deregulated CXCR4 signaling and that this function of FHC was independent of iron binding. Furthermore, examination of morphine-treated rodents and isolated neurons expressing FHC shRNA revealed that FHC contributed to morphine-induced dendritic spine loss. Together, these data implicate FHC-dependent deregulation of CXCL12/CXCR4 as a contributing factor to cognitive dysfunction in neuroAIDS.

  2. 21 CFR 300.50 - Fixed-combination prescription drugs for humans.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Fixed-combination prescription drugs for humans. 300.50 Section 300.50 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS FOR HUMAN USE GENERAL Combination Drugs § 300.50 Fixed-combination...

  3. Drug eluting stents: are human and animal studies comparable?

    OpenAIRE

    Virmani, R; Kolodgie, F D; Farb, A.; Lafont, A

    2003-01-01

    Animal models of stenting probably predict human responses as the stages of healing are remarkably similar. What is characteristically different is the temporal response to healing, which is substantially prolonged in humans. The prevention of restenosis in recent clinical trials of drug eluting stents may represent a near absent or incomplete phase of intimal healing. Continued long term follow up of patients with drug eluting stents for major adverse cardiac events and angiographic restenos...

  4. Human insulin: DNA technology's first drug.

    Science.gov (United States)

    The, M J

    1989-11-01

    The history, biologic activity, and immunogenicity of human insulin are described. Recombinant human insulin first entered clinical trials in humans in 1980. At that time, the A and B chains of the insulin molecule were produced separately and then combined by chemical techniques. Since 1986, a different recombinant process has been used. The human genetic coding for proinsulin is inserted into Escherichia coli cells, which are then grown by fermentation to produce proinsulin. The connecting peptide is cleaved enzymatically from proinsulin to produce human insulin. Studies indicate that there are no important differences between pork insulin and human insulin in terms of therapeutic efficacy and disposition after intravenous administration. Recombinant human insulin has a faster onset of action and lower immunogenicity than pork or beef insulin. Diabetic patients may have an improvement in glucose concentrations when their therapy is switched from animal-source insulin to human insulin. Such a change usually requires a dosage adjustment, which must be determined by a physician. Pharmacists are responsible for educating patients concerning all insulin products and for preventing patients from interchanging insulin products. The availability of human insulin as the first pharmaceutical product manufactured through recombinant DNA technology, however, has had little effect on the pharmacist's role in the care of such patients. The production of human insulin through recombinant DNA technology represents an important advance in the treatment of patients with diabetes. PMID:2690608

  5. Human NK Cell Subset Functions Are Differentially Affected by Adipokines

    OpenAIRE

    Huebner, Lena; Engeli, Stefan; Christiane D Wrann; Goudeva, Lilia; Laue, Tobias; Kielstein, Heike

    2013-01-01

    Background: Obesity is a risk factor for various types of infectious diseases and cancer. The increase in adipose tissue causes alterations in both adipogenesis and the production of adipocyte-secreted proteins (adipokines). Since natural killer (NK) cells are the host’s primary defense against virus-infected and tumor cells, we investigated how adipocyte-conditioned medium (ACM) affects functions of two distinct human NK cell subsets. Methods: Isolated human peripheral blood mononuclear cell...

  6. Imaging receptor changes in human drug abusers.

    Science.gov (United States)

    Cosgrove, Kelly P

    2010-01-01

    This chapter will review the literature on differences in the brain chemistry of alcohol- and drug-dependent individuals compared to healthy controls as measured with positron emission tomography and single photon emission computed tomography. Specifically, alterations in dopamine, serotonin, opioid, and GABA systems in cocaine, alcohol, nicotine, and heroin dependence have been examined. These neurochemical systems are integrated and play significant roles in a final common pathway mediating addiction in the brain. One recurrent finding is that dopaminergic dysfunction is prevalent in both alcohol and drug dependent populations, and specifically there is a lower availability of dopamine type 2/3 receptors in cocaine-, alcohol-, nicotine-, and heroin-dependent individuals compared to healthy controls. The development of novel radiotracers that target additional receptor systems will further our understanding of the neurochemical basis of addiction. PMID:21161754

  7. Imaging Receptor Changes in Human Drug Abusers

    OpenAIRE

    Cosgrove, Kelly P

    2010-01-01

    This chapter will review the literature on differences in the brain chemistry of alcohol- and drug-dependent individuals compared to healthy controls as measured with positron emission tomography and single photon emission computed tomography. Specifically, alterations in dopamine, serotonin, opioid, and GABA systems in cocaine, alcohol, nicotine, and heroin dependence have been examined. These neurochemical systems are integrated and play significant roles in a final common pathway mediating...

  8. Global water resources affected by human interventions and climate change

    NARCIS (Netherlands)

    Haddeland, I.; Heinke, J.; Biemans, H.; Eisner, S.; Flörke, M.; Hanasaki, N.; Konzmann, M.; Ludwig, F.; Masaki, Y.; Schewe, J.; Stacke, T.; Tessler, Z.; Wada, Y.; Wisser, D.

    2014-01-01

    Humans directly change the dynamics of the water cycle through dams constructed for water storage, and through water withdrawals for industrial, agricultural, or domestic purposes. Climate change is expected to additionally affect water supply and demand. Here, analyses of climate change and direct

  9. Global water resources affected by human interventionss and climate change

    NARCIS (Netherlands)

    Haddeland, I.; Heinke, J.; Biemans, H.; Eisner, S.; Florke, M.F.; Hanasaki, N.; Konzmann, M.; Ludwig, F.

    2014-01-01

    Humans directly change the dynamics of the water cycle through dams constructed for water storage, and through water withdrawals for industrial, agricultural, or domestic purposes. Climate change is expected to additionally affect water supply and demand. Here, analyses of climate change and direct

  10. How Do Volcanoes Affect Human Life? Integrated Unit.

    Science.gov (United States)

    Dayton, Rebecca; Edwards, Carrie; Sisler, Michelle

    This packet contains a unit on teaching about volcanoes. The following question is addressed: How do volcanoes affect human life? The unit covers approximately three weeks of instruction and strives to present volcanoes in an holistic form. The five subject areas of art, language arts, mathematics, science, and social studies are integrated into…

  11. Pathophysiological changes that affect drug disposition in protein-energy malnourished children

    Directory of Open Access Journals (Sweden)

    Oshikoya Kazeem A

    2009-12-01

    Full Text Available Abstract Protein-energy malnutrition (PEM is a major public health problem affecting a high proportion of infants and older children world-wide and accounts for a high childhood morbidity and mortality in the developing countries. The epidemiology of PEM has been extensively studied globally and management guidelines formulated by the World Health Organization (WHO. A wide spectrum of infections such as measles, malaria, acute respiratory tract infection, intestinal parasitosis, tuberculosis and HIV/AIDS may complicate PEM with two or more infections co-existing. Thus, numerous drugs may be required to treat the patients. In-spite of abundant literature on the epidemiology and management of PEM, focus on metabolism and therapeutic drug monitoring is lacking. A sound knowledge of pathophysiology of PEM and pharmacology of the drugs frequently used for their treatment is required for safe and rational treatment. In this review, we discuss the pathophysiological changes in children with PEM that may affect the disposition of drugs frequently used for their treatment. This review has established abnormal disposition of drugs in children with PEM that may require dosage modification. However, the relevance of these abnormalities to the clinical management of PEM remains inconclusive. At present, there are no good indications for drug dosage modification in PEM; but for drug safety purposes, further studies are required to accurately determine dosages of drugs frequently used for children with PEM.

  12. In Vitro Drug Metabolism by Human Carboxylesterase 1

    DEFF Research Database (Denmark)

    Thomsen, Ragnar; Rasmussen, Henrik B; Linnet, Kristian

    2014-01-01

    Carboxylesterase 1 (CES1) is the major hydrolase in human liver. The enzyme is involved in the metabolism of several important therapeutic agents, drugs of abuse, and endogenous compounds. However, no studies have described the role of human CES1 in the activation of two commonly prescribed...... angiotensin-converting enzyme inhibitors: enalapril and ramipril. Here, we studied recombinant human CES1- and CES2-mediated hydrolytic activation of the prodrug esters enalapril and ramipril, compared with the activation of the known substrate trandolapril. Enalapril, ramipril, and trandolapril were readily...... a panel of therapeutic drugs and drugs of abuse to assess their inhibition of the hydrolysis of p-nitrophenyl acetate by recombinant CES1 and human liver microsomes. The screening assay confirmed several known inhibitors of CES1 and identified two previously unreported inhibitors: the dihydropyridine...

  13. Comparative modelling of human β tubulin isotypes and implications for drug binding

    Science.gov (United States)

    Torin Huzil, J.; Ludueña, Richard F.; Tuszynski, Jack

    2006-02-01

    The protein tubulin is a target for several anti-mitotic drugs, which affect microtubule dynamics, ultimately leading to cell cycle arrest and apoptosis. Many of these drugs, including the taxanes and Vinca alkaloids, are currently used clinically in the treatment of several types of cancer. Another tubulin binding drug, colchicine, although too toxic to be used as a chemotherapeutic agent, is commonly used for the treatment of gout. The main disadvantage that all of these drugs share is that they bind tubulin indiscriminately, leading to the death of both cancerous and healthy cells. However, the broad cellular distribution of several tubulin isotypes provides a platform upon which to construct novel chemotherapeutic drugs that could differentiate between different cell types, reducing the undesirable side effects associated with current chemotherapeutic treatments. Here, we report an analysis of ten human β tubulin isotypes and discuss differences within each of the previously characterized paclitaxel, colchicine and vinblastine binding sites.

  14. "Not for human consumption": a review of emerging designer drugs.

    Science.gov (United States)

    Musselman, Megan E; Hampton, Jeremy P

    2014-07-01

    Synthetic, or "designer" drugs, are created by manipulating the chemical structures of other psychoactive drugs so that the resulting product is structurally similar but not identical to illegal psychoactive drugs. Originally developed in the 1960s as a way to evade existing drug laws, the use of designer drugs has increased dramatically over the past few years. These drugs are deceptively packaged as "research chemicals," "incense," "bath salts," or "plant food," among other names, with labels that may contain warnings such as "not for human consumption" or "not for sale to minors." The clinical effects of most new designer drugs can be described as either hallucinogenic, stimulant, or opioid-like. They may also have a combination of these effects due to designer side-chain substitutions. The easy accessibility and rapid emergence of new designer drugs have created challenges for health care providers when treating patients presenting with acute toxicity from these substances, many of which can produce significant and/or life-threatening adverse effects. Moreover, the health care provider has no way to verify the contents and/or potency of the agent ingested because it can vary between packages and distributors. Therefore, a thorough knowledge of the available designer drugs, common signs and symptoms of toxicity associated with these agents, and potential effective treatment modalities are essential to appropriately manage these patients.

  15. Drug Transport and Metabolism in Rat and Human Intestine

    OpenAIRE

    Berggren, Sofia

    2006-01-01

    One of the aims of this thesis was to investigate the involvement of efflux proteins, such as the P-glycoprotein (Pgp), in the drug transport in different regions of the rat and the human intestine. The intestinal extrusion of intracellularly formed CYP3A4 metabolites, including whether this extrusion might be mediated by Pgp, was also studied. The model drugs used were local anaesthetics (LA), which have been evaluated for inflammatory bowel disease, such as ropivacaine, lidocaine and bupiva...

  16. 75 FR 63189 - Draft Guidance for Industry on Investigational New Drug Applications-Determining Whether Human...

    Science.gov (United States)

    2010-10-14

    ... Boards (IRBs)) and the pharmaceutical industry, concerning whether various types of human research... HUMAN SERVICES Food and Drug Administration Draft Guidance for Industry on Investigational New Drug... Drug Administration (FDA) is announcing the availability of a draft guidance for industry...

  17. Antibiotic residues and drug resistance in human intestinal flora.

    OpenAIRE

    Corpet, D. E.

    1987-01-01

    The effect of residual levels of ampicillin on the drug resistance of fecal flora was studied in human volunteers given 1.5 mg of ampicillin orally per day for 21 days. This treatment failed to have any significant reproducible effect on the number of resistant Escherichia coli in their feces. The effect of continuous administration of small doses of ampicillin, chlortetracycline, or streptomycin in the drinking water was studied in gnotobiotic mice inoculated with a human fecal flora. In thi...

  18. Factors affecting the opinions of family physicians regarding generic drugs – a questionnaire based study

    Directory of Open Access Journals (Sweden)

    Pawel Lewek

    2014-12-01

    Full Text Available A range of factors are believed to exert a negative influence on opinions of physicians about generic drugs.The aim of this study was to survey the opinions of primary care doctors on generics, and determine the factors which may affect them. A questionnaire comprising thirty eight questions was distributed among primary care doctors working in seventy out-patient clinics of the Lodzkie province, Poland, during the period of January 1, 2010 – December 31, 2010. A total of170 of 183 participants completed the survey (average age 48.5; 70.0% women: a 92.9%response rate. While 38.8% of physicians claimed that generics were worse than brand name drugs, 54.1% considered them to be better. However, 36.5% of the doctors did not choose generics for their own use. Two key opinions were identified among the responses concerning the effectiveness of generic drugs: use of generic drugs by the physician (p<0.001, and their opinion that pharmacists do inform patients about generic drugs (p<0.05. Although existing evidence confirms that generic and brand name drugs are equally effective, many physicians doubt this, which prevents them from being used as cost effective drug therapy. In order to increase healthcare savings through the use of generics, these factors should be addressed: for example, convincing a physician to adopt generics for personal use may be an efficient way to support more cost effective treatment of his patients.

  19. Human NK cell subset functions are differentially affected by adipokines.

    Directory of Open Access Journals (Sweden)

    Lena Huebner

    Full Text Available BACKGROUND: Obesity is a risk factor for various types of infectious diseases and cancer. The increase in adipose tissue causes alterations in both adipogenesis and the production of adipocyte-secreted proteins (adipokines. Since natural killer (NK cells are the host's primary defense against virus-infected and tumor cells, we investigated how adipocyte-conditioned medium (ACM affects functions of two distinct human NK cell subsets. METHODS: Isolated human peripheral blood mononuclear cells (PBMCs were cultured with various concentrations of human and murine ACM harvested on two different days during adipogenesis and analyzed by fluorescent-activated cell sorting (FACS. RESULTS: FACS analyses showed that the expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL, granzyme A (GzmA and interferon (IFN-γ in NK cells was regulated in a subset-specific manner. ACM treatment altered IFN-γ expression in CD56(dim NK cells. The production of GzmA in CD56(bright NK cells was differentially affected by the distinct adipokine compositions harvested at different states of adipogenesis. Comparison of the treatment with either human or murine ACM revealed that adipokine-induced effects on NK cell expression of the leptin receptor (Ob-R, TRAIL and IFN-γ were species-specific. CONCLUSION: Considering the growing prevalence of obesity and the various disorders related to it, the present study provides further insights into the roles human NK cell subsets play in the obesity-associated state of chronic low-grade inflammation.

  20. 77 FR 43337 - Drugs for Human Use; Drug Efficacy Study Implementation; Certain Prescription Drugs Offered for...

    Science.gov (United States)

    2012-07-24

    ...-combination drugs containing antibiotics and sulfonamides lack substantial evidence of effectiveness (34 FR..., 10903 New Hampshire Ave., Bldg. 51, rm. 5173, Silver Spring, MD 20993-0002. ] FOR FURTHER INFORMATION... Hampshire Ave., Bldg. 51, rm. 5173, Silver Spring, MD 20993-0002, 301-796-3297, email:...

  1. Human likeness: cognitive and affective factors affecting adoption of robot-assisted learning systems

    Science.gov (United States)

    Yoo, Hosun; Kwon, Ohbyung; Lee, Namyeon

    2016-07-01

    With advances in robot technology, interest in robotic e-learning systems has increased. In some laboratories, experiments are being conducted with humanoid robots as artificial tutors because of their likeness to humans, the rich possibilities of using this type of media, and the multimodal interaction capabilities of these robots. The robot-assisted learning system, a special type of e-learning system, aims to increase the learner's concentration, pleasure, and learning performance dramatically. However, very few empirical studies have examined the effect on learning performance of incorporating humanoid robot technology into e-learning systems or people's willingness to accept or adopt robot-assisted learning systems. In particular, human likeness, the essential characteristic of humanoid robots as compared with conventional e-learning systems, has not been discussed in a theoretical context. Hence, the purpose of this study is to propose a theoretical model to explain the process of adoption of robot-assisted learning systems. In the proposed model, human likeness is conceptualized as a combination of media richness, multimodal interaction capabilities, and para-social relationships; these factors are considered as possible determinants of the degree to which human cognition and affection are related to the adoption of robot-assisted learning systems.

  2. Addictive drugs and their duration affecting on trace elements levels in men

    International Nuclear Information System (INIS)

    During the drug addiction the blood biochemistry particularly level of trace elements in blood is widely affected. Eighty male addicts of various age groups along with seventeen normal subjects were studied. The plasma Zinc and manganese concentration was high in addict person as compared to normal subjects. Where as a significant decrease in iron concentration was observed in addicts. The plasma copper concentration was also low in addicts as compared to normal subjects. In conclusion drug addiction leads to many biochemical changes that may have detritus effects on health status of addicts. (author)

  3. Toward an affective pedagogy of human rights education

    Directory of Open Access Journals (Sweden)

    Hung Ruyu

    2014-06-01

    Full Text Available This paper explores the notion of Affective Pedagogy of Human Rights Education (APHRE on a theoretical level and suggests a concept of curricular framework. APHRE highlights the significance of affectivity and body in the process of learning, factors usually neglected in the mainstream intellectualistic approach to learning, especially in areas under the Confucian tradition. The paper’s first section explores the thinking of three philosophers - Rorty, Merleau-Ponty, and Beardsley - who serve as sources for APHRE. The second section explains how their concepts contribute to APHRE’s development. In the third section, a practical curricular framework is presented. Finally, the paper discusses implementing the framework and concludes by recognizing APHRE as a pedagogic approach for crossing borders among nationalities, cultures, and languages

  4. Salinomycin as a Drug for Targeting Human Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Cord Naujokat

    2012-01-01

    Full Text Available Cancer stem cells (CSCs represent a subpopulation of tumor cells that possess self-renewal and tumor initiation capacity and the ability to give rise to the heterogenous lineages of malignant cells that comprise a tumor. CSCs possess multiple intrinsic mechanisms of resistance to chemotherapeutic drugs, novel tumor-targeted drugs, and radiation therapy, allowing them to survive standard cancer therapies and to initiate tumor recurrence and metastasis. Various molecular complexes and pathways that confer resistance and survival of CSCs, including expression of ATP-binding cassette (ABC drug transporters, activation of the Wnt/β-catenin, Hedgehog, Notch and PI3K/Akt/mTOR signaling pathways, and acquisition of epithelial-mesenchymal transition (EMT, have been identified recently. Salinomycin, a polyether ionophore antibiotic isolated from Streptomyces albus, has been shown to kill CSCs in different types of human cancers, most likely by interfering with ABC drug transporters, the Wnt/β-catenin signaling pathway, and other CSC pathways. Promising results from preclinical trials in human xenograft mice and a few clinical pilote studies reveal that salinomycin is able to effectively eliminate CSCs and to induce partial clinical regression of heavily pretreated and therapy-resistant cancers. The ability of salinomycin to kill both CSCs and therapy-resistant cancer cells may define the compound as a novel and an effective anticancer drug.

  5. Preanalytical Variables Affecting the Integrity of Human Biospecimens in Biobanking

    DEFF Research Database (Denmark)

    Ellervik, Christina; Vaught, Jim

    2015-01-01

    BACKGROUND: Most errors in a clinical chemistry laboratory are due to preanalytical errors. Preanalytical variability of biospecimens can have significant effects on downstream analyses, and controlling such variables is therefore fundamental for the future use of biospecimens in personalized...... medicine for diagnostic or prognostic purposes. CONTENT: The focus of this review is to examine the preanalytical variables that affect human biospecimen integrity in biobanking, with a special focus on blood, saliva, and urine. Cost efficiency is discussed in relation to these issues. SUMMARY: The quality...

  6. Drug-induced hypersensitivity syndrome with human herpesvirus-6 reactivation

    Directory of Open Access Journals (Sweden)

    Najeeba Riyaz

    2012-01-01

    Full Text Available A 45-year-old man, on carbamazepine for the past 3 months, was referred as a case of atypical measles. On examination, he had high-grade fever, generalized itchy rash, cough, vomiting and jaundice. A provisional diagnosis of drug hypersensitivity syndrome to carbamazepine was made with a differential diagnosis of viral exanthema with systemic complications. Laboratory investigations revealed leukocytosis with eosnophilia and elevated liver enzymes. Real-time multiplex polymerase chain reaction (PCR on throat swab and blood was suggestive of human herpesvirus-6 (HHV-6. Measles was ruled out by PCR and serology. The diagnosis of drug-induced hypersensitivity syndrome (DIHS was confirmed, which could explain all the features manifested by the patient. HHV-6 infects almost all humans by age 2 years. It infects and replicates in CD4 T lymphocytes and establishes latency in human peripheral blood monocytes or macrophages and early bone marrow progenitors. In DIHS, allergic reaction to the causative drug stimulates T cells, which leads to reactivation of the herpesvirus genome. DIHS is treated by withdrawal of the culprit drug and administration of systemic steroids. Our patient responded well to steroids and HHV-6 was negative on repeat real-time multiplex PCR at the end of treatment.

  7. Drug Discovery via Human-Derived Stem Cell Organoids

    Science.gov (United States)

    Liu, Fangkun; Huang, Jing; Ning, Bo; Liu, Zhixiong; Chen, Shen; Zhao, Wei

    2016-01-01

    Patient-derived cell lines and animal models have proven invaluable for the understanding of human intestinal diseases and for drug development although both inherently comprise disadvantages and caveats. Many genetically determined intestinal diseases occur in specific tissue microenvironments that are not adequately modeled by monolayer cell culture. Likewise, animal models incompletely recapitulate the complex pathologies of intestinal diseases of humans and fall short in predicting the effects of candidate drugs. Patient-derived stem cell organoids are new and effective models for the development of novel targeted therapies. With the use of intestinal organoids from patients with inherited diseases, the potency and toxicity of drug candidates can be evaluated better. Moreover, owing to the novel clustered regularly interspaced short palindromic repeats/CRISPR-associated protein-9 genome-editing technologies, researchers can use organoids to precisely modulate human genetic status and identify pathogenesis-related genes of intestinal diseases. Therefore, here we discuss how patient-derived organoids should be grown and how advanced genome-editing tools may be applied to research on modeling of cancer and infectious diseases. We also highlight practical applications of organoids ranging from basic studies to drug screening and precision medicine. PMID:27713700

  8. Household characteristics affecting drinking water quality and human health

    International Nuclear Information System (INIS)

    Pakistan's water crisis, especially serious water shortages have had a great impact on the health of the general population. Today majority of Pakistanis have no access to improved water sources which force people to consume polluted drinking water that results in the shape of waterborne diseases. In addition to this, household characteristics, includes mother's education and family income, also have an impact on drinking water quality and ultimately on human health. This study was conducted in three districts of Province Punjab both in urban and rural areas. The sample size of this study was 600 females of age group 20-60 years. From the data, it was concluded that mother's education and family income were affecting drinking water quality and human health. As the mother's years of education increased, the health issues decreased. Similarly, as the level of income increased, people suffered from water related diseases decreased. (author)

  9. Composition of human skin microbiota affects attractiveness to malaria mosquitoes.

    Directory of Open Access Journals (Sweden)

    Niels O Verhulst

    Full Text Available The African malaria mosquito Anopheles gambiae sensu stricto continues to play an important role in malaria transmission, which is aggravated by its high degree of anthropophily, making it among the foremost vectors of this disease. In the current study we set out to unravel the strong association between this mosquito species and human beings, as it is determined by odorant cues derived from the human skin. Microbial communities on the skin play key roles in the production of human body odour. We demonstrate that the composition of the skin microbiota affects the degree of attractiveness of human beings to this mosquito species. Bacterial plate counts and 16S rRNA sequencing revealed that individuals that are highly attractive to An. gambiae s.s. have a significantly higher abundance, but lower diversity of bacteria on their skin than individuals that are poorly attractive. Bacterial genera that are correlated with the relative degree of attractiveness to mosquitoes were identified. The discovery of the connection between skin microbial populations and attractiveness to mosquitoes may lead to the development of new mosquito attractants and personalized methods for protection against vectors of malaria and other infectious diseases.

  10. Novelty Seeking and Drug Addiction in Humans and Animals: From Behavior to Molecules.

    Science.gov (United States)

    Wingo, Taylor; Nesil, Tanseli; Choi, Jung-Seok; Li, Ming D

    2016-09-01

    Global treatment of drug addiction costs society billions of dollars annually, but current psychopharmacological therapies have not been successful at desired rates. The increasing number of individuals suffering from substance abuse has turned attention to what makes some people more vulnerable to drug addiction than others. One personality trait that stands out as a contributing factor is novelty seeking. Novelty seeking, affected by both genetic and environmental factors, is defined as the tendency to desire novel stimuli and environments. It can be measured in humans through questionnaires and in rodents using behavioral tasks. On the behavioral level, both human and rodent studies demonstrate that high novelty seeking can predict the initiation of drug use and a transition to compulsive drug use and create a propensity to relapse. These predictions are valid for several drugs of abuse, such as alcohol, nicotine, cocaine, amphetamine, and opiates. On the molecular level, both novelty seeking and addiction are modulated by the central reward system in the brain. Dopamine is the primary neurotransmitter involved in the overlapping neural substrates of both parameters. In sum, the novelty-seeking trait can be valuable for predicting individual vulnerability to drug addiction and for generating successful treatment for patients with substance abuse disorders. PMID:26481371

  11. A dual drug regimen synergistically blocks human parainfluenza virus infection

    Science.gov (United States)

    Bailly, Benjamin; Dirr, Larissa; El-Deeb, Ibrahim M.; Altmeyer, Ralf; Guillon, Patrice; von Itzstein, Mark

    2016-04-01

    Human parainfluenza type-3 virus (hPIV-3) is one of the principal aetiological agents of acute respiratory illness in infants worldwide and also shows high disease severity in the elderly and immunocompromised, but neither therapies nor vaccines are available to treat or prevent infection, respectively. Using a multidisciplinary approach we report herein that the approved drug suramin acts as a non-competitive in vitro inhibitor of the hPIV-3 haemagglutinin-neuraminidase (HN). Furthermore, the drug inhibits viral replication in mammalian epithelial cells with an IC50 of 30 μM, when applied post-adsorption. Significantly, we show in cell-based drug-combination studies using virus infection blockade assays, that suramin acts synergistically with the anti-influenza virus drug zanamivir. Our data suggests that lower concentrations of both drugs can be used to yield high levels of inhibition. Finally, using NMR spectroscopy and in silico docking simulations we confirmed that suramin binds HN simultaneously with zanamivir. This binding event occurs most likely in the vicinity of the protein primary binding site, resulting in an enhancement of the inhibitory potential of the N-acetylneuraminic acid-based inhibitor. This study offers a potentially exciting avenue for the treatment of parainfluenza infection by a combinatorial repurposing approach of well-established approved drugs.

  12. A dual drug regimen synergistically blocks human parainfluenza virus infection.

    Science.gov (United States)

    Bailly, Benjamin; Dirr, Larissa; El-Deeb, Ibrahim M; Altmeyer, Ralf; Guillon, Patrice; von Itzstein, Mark

    2016-01-01

    Human parainfluenza type-3 virus (hPIV-3) is one of the principal aetiological agents of acute respiratory illness in infants worldwide and also shows high disease severity in the elderly and immunocompromised, but neither therapies nor vaccines are available to treat or prevent infection, respectively. Using a multidisciplinary approach we report herein that the approved drug suramin acts as a non-competitive in vitro inhibitor of the hPIV-3 haemagglutinin-neuraminidase (HN). Furthermore, the drug inhibits viral replication in mammalian epithelial cells with an IC50 of 30 μM, when applied post-adsorption. Significantly, we show in cell-based drug-combination studies using virus infection blockade assays, that suramin acts synergistically with the anti-influenza virus drug zanamivir. Our data suggests that lower concentrations of both drugs can be used to yield high levels of inhibition. Finally, using NMR spectroscopy and in silico docking simulations we confirmed that suramin binds HN simultaneously with zanamivir. This binding event occurs most likely in the vicinity of the protein primary binding site, resulting in an enhancement of the inhibitory potential of the N-acetylneuraminic acid-based inhibitor. This study offers a potentially exciting avenue for the treatment of parainfluenza infection by a combinatorial repurposing approach of well-established approved drugs. PMID:27053240

  13. Affective consciousness: Core emotional feelings in animals and humans.

    Science.gov (United States)

    Panksepp, Jaak

    2005-03-01

    The position advanced in this paper is that the bedrock of emotional feelings is contained within the evolved emotional action apparatus of mammalian brains. This dual-aspect monism approach to brain-mind functions, which asserts that emotional feelings may reflect the neurodynamics of brain systems that generate instinctual emotional behaviors, saves us from various conceptual conundrums. In coarse form, primary process affective consciousness seems to be fundamentally an unconditional "gift of nature" rather than an acquired skill, even though those systems facilitate skill acquisition via various felt reinforcements. Affective consciousness, being a comparatively intrinsic function of the brain, shared homologously by all mammalian species, should be the easiest variant of consciousness to study in animals. This is not to deny that some secondary processes (e.g., awareness of feelings in the generation of behavioral choices) cannot be evaluated in animals with sufficiently clever behavioral learning procedures, as with place-preference procedures and the analysis of changes in learned behaviors after one has induced re-valuation of incentives. Rather, the claim is that a direct neuroscientific study of primary process emotional/affective states is best achieved through the study of the intrinsic ("instinctual"), albeit experientially refined, emotional action tendencies of other animals. In this view, core emotional feelings may reflect the neurodynamic attractor landscapes of a variety of extended trans-diencephalic, limbic emotional action systems-including SEEKING, FEAR, RAGE, LUST, CARE, PANIC, and PLAY. Through a study of these brain systems, the neural infrastructure of human and animal affective consciousness may be revealed. Emotional feelings are instantiated in large-scale neurodynamics that can be most effectively monitored via the ethological analysis of emotional action tendencies and the accompanying brain neurochemical/electrical changes. The

  14. Human therapeutic and agricultural uses of antibacterial drugs and resistance of the enteric flora of humans.

    Science.gov (United States)

    Siegel, D; Huber, W G; Drysdale, S

    1975-11-01

    Fecal samples were collected from five groups of people differing in the manner of their exposure to antibacterial drugs. The groups included: (i) people working on farms who were continuously in contact with the predominantly resistant florae of farm animals receiving rations containing antibacterial drugs, (ii) people residing on the same farms with no direct exposure to the farm animals, (iii) people treated with antibacterial drugs, (iv) untreated people residing with treated individuals, and (v) untreated people with no exposure to farm animals or treated individuals. The samples were examined by quantitative plating for proportions of antibiotic-resistant, gram-negative enteric organisms. Individual isolates were also examined for their susceptibility to 11 different antibacterial drugs. The results indicate that enteric florae unexposed directly to the selective effects of antibacterial drugs may be affected by contact with predominantly resistant florae directly exposed to antibacterial drugs.

  15. Potential drug development candidates for human soil-transmitted helminthiases.

    Directory of Open Access Journals (Sweden)

    Piero Olliaro

    2011-06-01

    Full Text Available BACKGROUND: Few drugs are available for soil-transmitted helminthiasis (STH; the benzimidazoles albendazole and mebendazole are the only drugs being used for preventive chemotherapy as they can be given in one single dose with no weight adjustment. While generally safe and effective in reducing intensity of infection, they are contra-indicated in first-trimester pregnancy and have suboptimal efficacy against Trichuris trichiura. In addition, drug resistance is a threat. It is therefore important to find alternatives. METHODOLOGY: We searched the literature and the animal health marketed products and pipeline for potential drug development candidates. Recently registered veterinary products offer advantages in that they have undergone extensive and rigorous animal testing, thus reducing the risk, cost and time to approval for human trials. For selected compounds, we retrieved and summarised publicly available information (through US Freedom of Information (FoI statements, European Public Assessment Reports (EPAR and published literature. Concomitantly, we developed a target product profile (TPP against which the products were compared. PRINCIPAL FINDINGS: The paper summarizes the general findings including various classes of compounds, and more specific information on two veterinary anthelmintics (monepantel, emodepside and nitazoxanide, an antiprotozoal drug, compiled from the EMA EPAR and FDA registration files. CONCLUSIONS/SIGNIFICANCE: Few of the compounds already approved for use in human or animal medicine qualify for development track decision. Fast-tracking to approval for human studies may be possible for veterinary compounds like emodepside and monepantel, but additional information remains to be acquired before an informed decision can be made.

  16. Alters Intratumoral Drug Distribution and Affects Therapeutic Synergy of Antiangiogenic Organoselenium Compound

    Directory of Open Access Journals (Sweden)

    Youcef M. Rustum

    2010-01-01

    Full Text Available Tumor differentiation enhances morphologic and microvascular heterogeneity fostering hypoxia that retards intratumoral drug delivery, distribution, and compromise therapeutic efficacy. In this study, the influence of tumor biologic heterogeneity on the interaction between cytotoxic chemotherapy and selenium was examined using a panel of human tumor xenografts representing cancers of the head and neck and lung along with tissue microarray analysis of human surgical samples. Tumor differentiation status, microvessel density, interstitial fluid pressure, vascular phenotype, and drug delivery were correlated with the degree of enhancement of chemotherapeutic efficacy by selenium. Marked potentiation of antitumor activity was observed in H69 tumors that exhibited a well-vascularized, poorly differentiated phenotype. In comparison, modulation of chemotherapeutic efficacy by antiangiogenic selenium was generally lower or absent in well-differentiated tumors with multiple avascular hypoxic, differentiated regions. Tumor histomorphologic heterogeneity was found prevalent in the clinical samples studied and represents a primary and critical physiological barrier to chemotherapy.

  17. 78 FR 29755 - Human Immunodeficiency Virus Patient-Focused Drug Development and Human Immunodeficiency Virus...

    Science.gov (United States)

    2013-05-21

    ... (78 FR 21613), FDA published a document that announced the disease ] areas for meetings in fiscal... Federal Register document for public comment that was published on September 24, 2012 (77 FR 58849), and a... HUMAN SERVICES Food and Drug Administration Human Immunodeficiency Virus Patient-Focused...

  18. 78 FR 46969 - Human Immunodeficiency Virus Patient-Focused Drug Development and Human Immunodeficiency Virus...

    Science.gov (United States)

    2013-08-02

    ... of May 21, 2013 (78 FR 29755). In that notice, FDA requested public comment regarding patients... INFORMATION: I. Background In the Federal Register of May 21, 2013 (78 FR 29755), FDA announced the notice of... HUMAN SERVICES Food and Drug Administration Human Immunodeficiency Virus Patient-Focused...

  19. 78 FR 72899 - Draft Guidance for Industry on Registration for Human Drug Compounding Outsourcing Facilities...

    Science.gov (United States)

    2013-12-04

    ... Compounding Outsourcing Facilities Under Section 503B of the Federal Food, Drug, and Cosmetic Act... ``Registration for Human Drug Compounding Outsourcing Facilities Under Section 503B of the Federal Food, Drug... intended to assist human drug compounders that choose to register as outsourcing facilities...

  20. 21 CFR 866.3950 - In vitro human immunodeficiency virus (HIV) drug resistance genotype assay.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false In vitro human immunodeficiency virus (HIV) drug... Serological Reagents § 866.3950 In vitro human immunodeficiency virus (HIV) drug resistance genotype assay. (a) Identification. The in vitro HIV drug resistance genotype assay is a device that consists of nucleic acid...

  1. Environmental layout complexity affects neural activity during navigation in humans.

    Science.gov (United States)

    Slone, Edward; Burles, Ford; Iaria, Giuseppe

    2016-05-01

    Navigating large-scale surroundings is a fundamental ability. In humans, it is commonly assumed that navigational performance is affected by individual differences, such as age, sex, and cognitive strategies adopted for orientation. We recently showed that the layout of the environment itself also influences how well people are able to find their way within it, yet it remains unclear whether differences in environmental complexity are associated with changes in brain activity during navigation. We used functional magnetic resonance imaging to investigate how the brain responds to a change in environmental complexity by asking participants to perform a navigation task in two large-scale virtual environments that differed solely in interconnection density, a measure of complexity defined as the average number of directional choices at decision points. The results showed that navigation in the simpler, less interconnected environment was faster and more accurate relative to the complex environment, and such performance was associated with increased activity in a number of brain areas (i.e. precuneus, retrosplenial cortex, and hippocampus) known to be involved in mental imagery, navigation, and memory. These findings provide novel evidence that environmental complexity not only affects navigational behaviour, but also modulates activity in brain regions that are important for successful orientation and navigation.

  2. A multifunctional drug combination shows highly potent therapeutic efficacy against human cancer xenografts in athymic mice.

    Directory of Open Access Journals (Sweden)

    Xiu-Jun Liu

    Full Text Available The tumor microenvironment plays a crucial role during tumor development. Integrated combination of drugs that target tumor microenvironment is a promising approach to anticancer therapy. Here, we report a multifunctional combination of low-cytotoxic drugs composed of dipyridamole, bestatin and dexamethasone (DBDx which mainly acts on the tumor microenvironment shows highly potent antitumor efficacy in vivo. In mouse hepatoma H22 model, the triple drug combination showed synergistic and highly potent antitumor efficacy. The combination indices of various combinations of the triple drugs were between 0.2 and 0.5. DBDx inhibited the growth of a panel of human tumor xenografts and showed no obvious systemic toxicity. At tolerated doses, DBDx suppressed the growth of human hepatocellular carcinoma BEL-7402, HepG2, and lung adenocarcinoma A549 xenografts by 94.5%, 93.7% and 96.9%, respectively. Clonogenic assay demonstrated that DBDx showed weak cytotoxicity. Western blot showed that Flk1 and Nos3 were down-regulated in the DBDx-treated group. Proteomic analysis showed that DBDx mainly affected the metabolic process and immune system process; in addition, the angiogenesis and VEGF signaling pathway were also affected. Conclusively, DBDx, a multifunctional drug combination of three low-cytotoxic drugs, shows synergistic and highly potent antitumor efficacy evidently mediated by the modulation of tumor microenvironment. Based on its low-cytotoxic attributes and its broad-spectrum antitumor therapeutic efficacy, this multifunctional combination might be useful in the treatment of cancers, especially those refractory to conventional chemotherapeutics.

  3. Psychological biases affecting human cognitive performance in dynamic operational environments

    International Nuclear Information System (INIS)

    In order to identify cognitive error mechanisms observed in the dynamic operational environment, the following materials were analyzed giving special attention to psychological biases, together with possible cognitive tasks and these location, and internal and external performance shaping factors: (a) 13 human factors analyses of US nuclear power plant accidents, (b) 14 cases of Japanese nuclear power plant incidents, and (c) 23 cases collected in simulator experiments. In the resulting analysis, the most frequently identified cognitive process associated with error productions was situation assessment, and following varieties were KB processes and response planning, all of that were the higher cognitive activities. Over 70% of human error cases, psychological bias was affecting to cognitive errors, especially those to higher cognitive activities. In addition, several error occurrence patterns, including relations between cognitive process, biases, and PSFs were identified by the multivariate analysis. According to the identified error patterns, functions that an operator support system have to equip were discussed and specified for design base considerations. (author)

  4. Requirements for Foreign and Domestic Establishment Registration and Listing for Human Drugs, Including Drugs That Are Regulated Under a Biologics License Application, and Animal Drugs. Final rule.

    Science.gov (United States)

    2016-08-31

    The Food and Drug Administration (FDA) is amending its regulations governing drug establishment registration and drug listing. These amendments reorganize, modify, and clarify current regulations concerning who must register establishments and list human drugs, human drugs that are also biological products, and animal drugs. The final rule requires electronic submission, unless waived in certain circumstances, of registration and listing information. This rulemaking pertains to finished drug products and to active pharmaceutical ingredients (APIs) alone or together with one or more other ingredients. The final rule describes how and when owners or operators of establishments at which drugs are manufactured or processed must register their establishments with FDA and list the drugs they manufacture or process. In addition, the rule makes certain changes to the National Drug Code (NDC) system. We are taking this action to improve management of drug establishment registration and drug listing requirements and make these processes more efficient and effective for industry and for us. This action also supports implementation of the electronic prescribing provisions of the Medicare Prescription Drug, Improvement, and Modernization Act of 2003 (MMA) and the availability of current drug labeling information through DailyMed, a computerized repository of drug information maintained by the National Library of Medicine. PMID:27580511

  5. Can celecoxib affect P-glycoprotein-mediated drug efflux? A microPET study

    International Nuclear Information System (INIS)

    Introduction: P-glycoprotein (Pgp) is an efflux pump that protects vital organs like the brain from toxic substances, but which is also associated with therapy resistance. The anti-inflammatory drug celecoxib potentiates the efficacy of several cytostatic and neurotropic drugs that are known Pgp substrates. To clarify whether Pgp is involved in the sensitizing effect of celecoxib, we investigated in vivo whether celecoxib is a substrate of Pgp and whether it can affect the efflux activity of the pump. Methods: In control rats and in rats treated with the Pgp modulator cyclosporin A (CsA), cerebral accumulation of radiolabeled [11C]celecoxib was investigated by ex vivo biodistribution and micro-positron emission tomography imaging. In addition, the effect of unlabeled celecoxib and CsA (positive control) on the cerebral uptake of the Pgp substrate [11C]verapamil was studied. Results: [11C]Celecoxib uptake in rat brain was relatively high and homogeneously distributed. Treatment of rats with CsA only marginally increased cerebral tracer uptake, which is most likely due to reduced tracer clearance from plasma. [11C]Verapamil brain uptake was more than 10-fold higher after treatment with CsA. In contrast, a high dose of celecoxib increased cerebral [11C]verapamil uptake only twofold, which was accompanied by a similar increase in tracer concentration in plasma. Conclusions: This study shows that celecoxib is not a substrate of Pgp and does not substantially affect the Pgp-mediated efflux of [11C]verapamil. Therefore, celecoxib-induced augmentation of the efficacy of chemotherapeutic and neurotropic drugs must be due to another mechanism than modulation of Pgp-mediated drug efflux

  6. Can celecoxib affect P-glycoprotein-mediated drug efflux? A microPET study

    Energy Technology Data Exchange (ETDEWEB)

    Vries, Erik F.J. de [Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB Groningen (Netherlands)], E-mail: e.f.j.de.vries@ngmb.umcg.nl; Doorduin, Janine; Vellinga, Namkje A.R.; Waarde, Aren van; Dierckx, Rudi A. [Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB Groningen (Netherlands); Klein, Hans C. [Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB Groningen (Netherlands); Department of Psychiatry, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB Groningen (Netherlands)

    2008-05-15

    Introduction: P-glycoprotein (Pgp) is an efflux pump that protects vital organs like the brain from toxic substances, but which is also associated with therapy resistance. The anti-inflammatory drug celecoxib potentiates the efficacy of several cytostatic and neurotropic drugs that are known Pgp substrates. To clarify whether Pgp is involved in the sensitizing effect of celecoxib, we investigated in vivo whether celecoxib is a substrate of Pgp and whether it can affect the efflux activity of the pump. Methods: In control rats and in rats treated with the Pgp modulator cyclosporin A (CsA), cerebral accumulation of radiolabeled [{sup 11}C]celecoxib was investigated by ex vivo biodistribution and micro-positron emission tomography imaging. In addition, the effect of unlabeled celecoxib and CsA (positive control) on the cerebral uptake of the Pgp substrate [{sup 11}C]verapamil was studied. Results: [{sup 11}C]Celecoxib uptake in rat brain was relatively high and homogeneously distributed. Treatment of rats with CsA only marginally increased cerebral tracer uptake, which is most likely due to reduced tracer clearance from plasma. [{sup 11}C]Verapamil brain uptake was more than 10-fold higher after treatment with CsA. In contrast, a high dose of celecoxib increased cerebral [{sup 11}C]verapamil uptake only twofold, which was accompanied by a similar increase in tracer concentration in plasma. Conclusions: This study shows that celecoxib is not a substrate of Pgp and does not substantially affect the Pgp-mediated efflux of [{sup 11}C]verapamil. Therefore, celecoxib-induced augmentation of the efficacy of chemotherapeutic and neurotropic drugs must be due to another mechanism than modulation of Pgp-mediated drug efflux.

  7. Human aspects of the management of drug discovery knowledge.

    Science.gov (United States)

    Davenport, Thomas H; Peitsch, Manuel C

    2005-01-01

    A well-defined strategy for knowledge management is a key success factor of any knowledge-intensive industry. This applies particularly well to pharmaceutical drug discovery, which is one of the most knowledge-intensive processes. The subject has only rarely been studied in the context of pharmaceutical firms and we can only extrapolate a limited number of findings from other industries. Here, we look at five key human aspects of knowledge management (social networks and communities of practice, the roles of professional knowledge managers, the behaviors and processes of knowledge workers, management strategies and tactics and the role of the external work environment) and how they apply to the drug discovery process.: PMID:24981937

  8. Cross-species affective neuroscience decoding of the primal affective experiences of humans and related animals.

    Directory of Open Access Journals (Sweden)

    Jaak Panksepp

    Full Text Available BACKGROUND: The issue of whether other animals have internally felt experiences has vexed animal behavioral science since its inception. Although most investigators remain agnostic on such contentious issues, there is now abundant experimental evidence indicating that all mammals have negatively and positively-valenced emotional networks concentrated in homologous brain regions that mediate affective experiences when animals are emotionally aroused. That is what the neuroscientific evidence indicates. PRINCIPAL FINDINGS: The relevant lines of evidence are as follows: 1 It is easy to elicit powerful unconditioned emotional responses using localized electrical stimulation of the brain (ESB; these effects are concentrated in ancient subcortical brain regions. Seven types of emotional arousals have been described; using a special capitalized nomenclature for such primary process emotional systems, they are SEEKING, RAGE, FEAR, LUST, CARE, PANIC/GRIEF and PLAY. 2 These brain circuits are situated in homologous subcortical brain regions in all vertebrates tested. Thus, if one activates FEAR arousal circuits in rats, cats or primates, all exhibit similar fear responses. 3 All primary-process emotional-instinctual urges, even ones as complex as social PLAY, remain intact after radical neo-decortication early in life; thus, the neocortex is not essential for the generation of primary-process emotionality. 4 Using diverse measures, one can demonstrate that animals like and dislike ESB of brain regions that evoke unconditioned instinctual emotional behaviors: Such ESBs can serve as 'rewards' and 'punishments' in diverse approach and escape/avoidance learning tasks. 5 Comparable ESB of human brains yield comparable affective experiences. Thus, robust evidence indicates that raw primary-process (i.e., instinctual, unconditioned emotional behaviors and feelings emanate from homologous brain functions in all mammals (see Appendix S1, which are regulated by

  9. Formulation variables affecting drug release from xanthan gum matrices at laboratory scale and pilot scale

    OpenAIRE

    Billa, Nashiru; Yuen, Kah-Hay

    2000-01-01

    The purpose of this research was to study processing variables at the laboratory and pilot scales that can affect hydration rates of xanthan gum matrices containing diclofenac sodium and the rate of drug release. Tablets from the laboratory scale and pilot scale proceedings were made by wet granulation. Swelling indices of xanthan gum formulations prepared with different amounts of water were measured in water under a magnifying lens. Granules were thermally treated in an oven at 60°C, 70°C, ...

  10. Role of Human Organic Cation Transporter 1 (hOCT1) Polymorphisms in Lamivudine (3TC) Uptake and Drug-Drug Interactions.

    Science.gov (United States)

    Arimany-Nardi, Cristina; Minuesa, Gerard; Keller, Thorsten; Erkizia, Itziar; Koepsell, Hermann; Martinez-Picado, Javier; Pastor-Anglada, Marçal

    2016-01-01

    Lamivudine (3TC), a drug used in the treatment of HIV infection, needs to cross the plasma membrane to exert its therapeutic action. Human Organic cation transporter 1 (hOCT1), encoded by the SLC22A1 gene, is the transporter responsible for its uptake into target cells. As SLC22A1 is a highly polymorphic gene, the aim of this study was to determine how SNPs in the OCT1-encoding gene affected 3TC internalization and its interaction with other co-administered drugs. HEK293 cells stably transfected with either the wild type form or the polymorphic variants of hOCT1 were used to perform kinetic and drug-drug interaction studies. Protein co-immunoprecipitation was used to assess the impact of selected polymorphic cysteines on the oligomerization of the transporter. Results showed that 3TC transport efficiency was reduced in all polymorphic variants tested (R61C, C88R, S189L, M420del, and G465R). This was not caused by lack of oligomerization in case of variants located at the transporter extracellular loop (R61C and C88R). Drug-drug interaction measurements showed that co-administered drugs [abacavir (ABC), zidovudine (AZT), emtricitabine (FTC), tenofovir diproxil fumarate (TDF), efavirenz (EFV) and raltegravir (RAL)], differently inhibited 3TC uptake depending upon the polymorphic variant analyzed. These data highlight the need for accurate analysis of drug transporter polymorphic variants of clinical relevance, because polymorphisms can impact on substrate (3TC) translocation but even more importantly they can differentially affect drug-drug interactions at the transporter level. PMID:27445813

  11. Role of Human Organic Cation Transporter 1 (hOCT1) Polymorphisms in Lamivudine (3TC) Uptake and Drug-Drug Interactions

    Science.gov (United States)

    Arimany-Nardi, Cristina; Minuesa, Gerard; Keller, Thorsten; Erkizia, Itziar; Koepsell, Hermann; Martinez-Picado, Javier; Pastor-Anglada, Marçal

    2016-01-01

    Lamivudine (3TC), a drug used in the treatment of HIV infection, needs to cross the plasma membrane to exert its therapeutic action. Human Organic cation transporter 1 (hOCT1), encoded by the SLC22A1 gene, is the transporter responsible for its uptake into target cells. As SLC22A1 is a highly polymorphic gene, the aim of this study was to determine how SNPs in the OCT1-encoding gene affected 3TC internalization and its interaction with other co-administered drugs. HEK293 cells stably transfected with either the wild type form or the polymorphic variants of hOCT1 were used to perform kinetic and drug-drug interaction studies. Protein co-immunoprecipitation was used to assess the impact of selected polymorphic cysteines on the oligomerization of the transporter. Results showed that 3TC transport efficiency was reduced in all polymorphic variants tested (R61C, C88R, S189L, M420del, and G465R). This was not caused by lack of oligomerization in case of variants located at the transporter extracellular loop (R61C and C88R). Drug-drug interaction measurements showed that co-administered drugs [abacavir (ABC), zidovudine (AZT), emtricitabine (FTC), tenofovir diproxil fumarate (TDF), efavirenz (EFV) and raltegravir (RAL)], differently inhibited 3TC uptake depending upon the polymorphic variant analyzed. These data highlight the need for accurate analysis of drug transporter polymorphic variants of clinical relevance, because polymorphisms can impact on substrate (3TC) translocation but even more importantly they can differentially affect drug-drug interactions at the transporter level. PMID:27445813

  12. Inhibition of human aromatase complex (CYP19) by antiepileptic drugs

    DEFF Research Database (Denmark)

    Jacobsen, Naja Wessel; Halling-Sørensen, Bent; Birkved, Franziska Maria A Kramer

    2008-01-01

    Antiepileptic drugs and epilepsy are often associated with sexual disorder in women such as hyperandrogenism, menstrual disorders and ovarian cysts. In children, until puberty, a hormone imbalance may influence many aspects of development, e.g. growth and sexual maturation. The aromatase complex ...... with valproate and phenobarbital. When adding carbamazepine to a range of valproate concentrations no additional inhibition was seen. The data for some of the AEDs show that side effects on steroid synthesis in humans due to inhibition of aromatase should be considered....

  13. Drug sensitivity and drug resistance profiles of human intrahepatic cholangiocarcinoma cell lines

    Institute of Scientific and Technical Information of China (English)

    Nisana Tepsiri; Liengchai Chaturat; Banchob Sripa; Wises Namwat; Sopit Wongkham; Vajarabhongsa Bhudhisawasdi; Wichittra Tassaneeyakul

    2005-01-01

    AIM: To study the effect of a number of chemotherapeutic drugs on five human intrahepatic cholangiocarcinoma (CCA) cell lines. The expressions of genes that have been proposed to influence the resistance of chemotherapeutic drugs including thymidylate synthase (TS), dihydropyrimidine dehydrogenase (DPD), glutathione-S-transferase P1 (GSTP1), multidrug resistance protein (MDR1) and multidrug resistance-associated proteins (MRPs) were also determined.METHODS: Five human CCA cell lines (KKU-100, KKU M055, KKU-M156, KKU-M214 and KKU-OCA17) weretreated with various chemotherapeutic drugs and growth inhibition was determined by 3-(4,5-dimethylthiazol-2-yl)5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay. Semi-quantitative levels of gene expression were determined by a reverse transcriptase polymerase chain reaction (RT-PCR). Results of IC50 values and the ratios of gene expression were analyzed by linear regression to predict their relationship. RESULTS: Among five CCA cell lines, KKU-M055 was the most sensitive cell line towards all chemotherapeutic drugs investigated, particularly taxane derivatives with IC50 values of 0.02-3 nmol/L, whereas KKU-100 was apparently the least sensitive cell line. When compared to other chemotherapeutic agents, doxorubicin and pirarubicin showed the lowest IC50 values (<5 μmol/L) in all five CCA cell lines. Results from RT-PCR showed that TS, MRP1, MRP3 and GSTP1 were highly expressed in these five CCA cell lines while DPD and MRP2 were only moderately expressed. It should be noted that MDR1 expression was detected only in KKU-OCA17 cell lines. A strong correlation was only found between the level of MRP3 expression and the IC50 values of etoposide, doxorubicin and pirarubicin (r = 0.86-0.98, ,P<0.05). CONCLUSION: Sensitivity to chemotherapeutic agents is not associated with the histological type of CCA. Choosing of the appropriate chemotherapeutic regimen for the treatment of CCA requires knowledge of drug

  14. Affective Man-Machine Interface: Unveiling Human Emotions through Biosignals

    Science.gov (United States)

    van den Broek, Egon L.; Lisý, Viliam; Janssen, Joris H.; Westerink, Joyce H. D. M.; Schut, Marleen H.; Tuinenbreijer, Kees

    As is known for centuries, humans exhibit an electrical profile. This profile is altered through various psychological and physiological proce-sses, which can be measured through biosignals; e.g., electromyography (EMG) and electrodermal activity (EDA). These biosignals can reveal our emotions and, as such, can serve as an advanced man-machine interface (MMI) for empathic consumer products. However, such a MMI requires the correct classification of biosignals to emotion classes. This chapter starts with an introduction on biosignals for emotion detection. Next, a state-of-the-art review is presented on automatic emotion classification. Moreover, guidelines are presented for affective MMI. Subsequently, a research is presented that explores the use of EDA and three facial EMG signals to determine neutral, positive, negative, and mixed emotions, using recordings of 21 people. A range of techniques is tested, which resulted in a generic framework for automated emotion classification with up to 61.31% correct classification of the four emotion classes, without the need of personal profiles. Among various other directives for future research, the results emphasize the need for parallel processing of multiple biosignals.

  15. Animal Farm: Considerations in Animal Gastrointestinal Physiology and Relevance to Drug Delivery in Humans.

    Science.gov (United States)

    Hatton, Grace B; Yadav, Vipul; Basit, Abdul W; Merchant, Hamid A

    2015-09-01

    "All animals are equal, but some are more equal than others" was the illustrious quote derived from British writer George Orwell's famed work, Animal Farm. Extending beyond the remit of political allegory, however, this statement would appear to hold true for the selection of appropriate animal models to simulate human physiology in preclinical studies. There remain definite gaps in our current knowledge with respect to animal physiology, notably those of intra- and inter-species differences in gastrointestinal (GI) function, which may affect oral drug delivery and absorption. Factors such as cost and availability have often influenced the choice of animal species without clear justification for their similarity to humans, and lack of standardization in techniques employed in past studies using various animals may also have contributed to the generation of contradictory results. As it stands, attempts to identify a single animal species as appropriately representative of human physiology and which may able to adequately simulate human in vivo conditions are limited. In this review, we have compiled and critically reviewed data from numerous studies of GI anatomy and physiology of various animal species commonly used in drug delivery modeling, commenting on the appropriateness of these animals for in vivo comparison and extrapolation to humans.

  16. Drugs associated with teratogenic mechanisms. Part II : a literature review of the evidence on human risks

    NARCIS (Netherlands)

    van Gelder, Marleen M. H. J.; de Jong-van den Berg, Lolkje T. W.; Roeleveld, Nel

    2014-01-01

    What is the current state of knowledge on the human risks of drugs suspected to be associated with teratogenic mechanisms? Evidence for the presence or absence of human risks of birth defects is scarce or non-existent for the majority of drugs associated with teratogenic mechanisms. Medical drugs su

  17. 78 FR 72897 - Draft Guidance for Industry on Interim Product Reporting for Human Drug Compounding Outsourcing...

    Science.gov (United States)

    2013-12-04

    ... Human Drug Compounding Outsourcing Facilities Under Section 503B of the Federal Food, Drug, and Cosmetic... entitled ``Interim Product Reporting for Human Drug Compounding Outsourcing Facilities Under Section 503B... register as outsourcing facilities (outsourcing facilities). DATES: Although you can comment on...

  18. 21 CFR 250.100 - Amyl nitrite inhalant as a prescription drug for human use.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Amyl nitrite inhalant as a prescription drug for... Prescription Status of Specific Drugs § 250.100 Amyl nitrite inhalant as a prescription drug for human use. (a) Amyl nitrite inhalant has been available over-the-counter for emergency use by the patient in...

  19. Regenerated keratin membrane to match the in vitro drug diffusion through human epidermis.

    Science.gov (United States)

    Selmin, Francesca; Cilurzo, Francesco; Aluigi, Annalisa; Franzè, Silvia; Minghetti, Paola

    2012-01-01

    This work aimed to develop membranes made of regenerated keratin and ceramides (CERs) to match the barrier property of the human stratum corneum in in vitro percutaneous absorption studies. The membrane composition was optimized on the basis of the in vitro drug diffusion profiles of ibuprofen, propranolol and testosterone chosen as model drugs on the basis of their different diffusion and solubility properties. The data were compared to those obtained using human epidermis. The ATR-FTIR and SEM analyses revealed that CERs were suspended into the regenerated keratin matrix, even if a partial solubilization occurred. It resulted in the membranes being physically stable after exposure to aqueous buffer and/or mineral oil and the fluxes of ibuprofen and propranolol from these vehicles through membranes and human skin were of the same order of magnitude. The best relationship with human epidermis data was obtained with 180 μm-thick membrane containing 1% ceramide III and 1% ceramide VI. The data on the testosterone diffusion were affected by the exposure of the membrane to a water/ethanol solution over a prolonged period of time, indicating that such an organic solvent was able to modify the supermolecular organization of keratin and CERs. The keratin/CER membranes can represent a simplified model to assay the in vitro skin permeability study of small molecules. PMID:25755997

  20. Multi-walled carbon nanotubes affect drug transport across cell membrane in rat astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xiao [School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030, Wuhan (China); Schluesener, Hermann J, E-mail: mornsmile@yahoo.com [Institute of Brain Research, University of Tuebingen, Calwerstrasse 3, D-72076, Tuebingen (Germany)

    2010-03-12

    The impact of carbon nanotubes on the cell membrane is an aspect of particular importance and interest in the study of carbon nanotubes' interactions with living systems. One of the many functions of the cell membrane is to execute substance transport into and out of the cell. We investigated the influence of multi-walled carbon nanotubes (MWCNTs) on the transport of several compounds across in the cell membrane of rat astrocytes using flow cytometry. These compounds are fluorescein diacetate, carboxyfluorescein diacetate, rhodamine 123 and doxorubicin, which are prosubstrate/substrates of multidrug transporter proteins. Results showed that MWCNTs significantly inhibited cellular uptake of doxorubicin but not the other drugs and the mode of loading made a significant difference in doxorubicin uptake. Retention of fluorescein, carboxyfluorescein and rhodamine 123 was remarkably higher in MWCNT-exposed cells after an efflux period. A kinetics study also demonstrated slower efflux of intracellular fluorescein and rhodamine 123. Data presented in this paper suggest that MWCNTs could affect drug transport across cell membranes. The implications of the findings are discussed.

  1. Multi-walled carbon nanotubes affect drug transport across cell membrane in rat astrocytes

    Science.gov (United States)

    Chen, Xiao; Schluesener, Hermann J.

    2010-03-01

    The impact of carbon nanotubes on the cell membrane is an aspect of particular importance and interest in the study of carbon nanotubes' interactions with living systems. One of the many functions of the cell membrane is to execute substance transport into and out of the cell. We investigated the influence of multi-walled carbon nanotubes (MWCNTs) on the transport of several compounds across in the cell membrane of rat astrocytes using flow cytometry. These compounds are fluorescein diacetate, carboxyfluorescein diacetate, rhodamine 123 and doxorubicin, which are prosubstrate/substrates of multidrug transporter proteins. Results showed that MWCNTs significantly inhibited cellular uptake of doxorubicin but not the other drugs and the mode of loading made a significant difference in doxorubicin uptake. Retention of fluorescein, carboxyfluorescein and rhodamine 123 was remarkably higher in MWCNT-exposed cells after an efflux period. A kinetics study also demonstrated slower efflux of intracellular fluorescein and rhodamine 123. Data presented in this paper suggest that MWCNTs could affect drug transport across cell membranes. The implications of the findings are discussed.

  2. Multi-walled carbon nanotubes affect drug transport across cell membrane in rat astrocytes

    International Nuclear Information System (INIS)

    The impact of carbon nanotubes on the cell membrane is an aspect of particular importance and interest in the study of carbon nanotubes' interactions with living systems. One of the many functions of the cell membrane is to execute substance transport into and out of the cell. We investigated the influence of multi-walled carbon nanotubes (MWCNTs) on the transport of several compounds across in the cell membrane of rat astrocytes using flow cytometry. These compounds are fluorescein diacetate, carboxyfluorescein diacetate, rhodamine 123 and doxorubicin, which are prosubstrate/substrates of multidrug transporter proteins. Results showed that MWCNTs significantly inhibited cellular uptake of doxorubicin but not the other drugs and the mode of loading made a significant difference in doxorubicin uptake. Retention of fluorescein, carboxyfluorescein and rhodamine 123 was remarkably higher in MWCNT-exposed cells after an efflux period. A kinetics study also demonstrated slower efflux of intracellular fluorescein and rhodamine 123. Data presented in this paper suggest that MWCNTs could affect drug transport across cell membranes. The implications of the findings are discussed.

  3. Should the Specificity of Human Capital Affect Unemployment Insurance Generosity ?

    OpenAIRE

    Cerdan, Ophélie

    2013-01-01

    This article examines the argument whereby the more specific the human capital of the workforce is, the less such individuals can expect to receive in benefits if and when they experience unemployment. We present a theoretical model for understanding how the composition of human capital determines the level of unemployment benefits. This model shows that, depending on the scenario chosen for the management of the insurance fund, the proportion of individuals with specific human capital can le...

  4. Cooperative binding of drugs on human serum albumin

    Science.gov (United States)

    Varela, L. M.; Pérez-Rodríguez, M.; García, M.

    In order to explain the adsorption isotherms of the amphiphilic penicillins nafcillin and cloxacillin onto human serum albumin (HSA), a cooperative multilayer adsorption model is introduced, combining the Brunauer-Emmet-Teller (BET) adsorption isotherm with an amphiphilic ionic adsorbate, whose chemical potential is derived from Guggenheim's theory. The non-cooperative model has been previously proved to qualitatively predict the measured adsorption maxima of these drugs [Varela, L. M., García, M., Pérez-Rodríguez, M., Taboada, P., Ruso, J. M., and Mosquera, V., 2001, J. chem. Phys., 114, 7682]. The surface interactions among adsorbed drug molecules are modelled in a mean-field fashion, so the chemical potential of the adsorbate is assumed to include a term proportional to the surface coverage, the constant of proportionality being the lateral interaction energy between bound molecules. The interaction energies obtained from the empirical binding isotherms are of the order of tenths of the thermal energy, therefore suggesting the principal role of van der Waals forces in the binding process.

  5. Application of allometric principles for the prediction of pharmacokinetics in human and veterinary drug development.

    Science.gov (United States)

    Mahmood, Iftekhar

    2007-09-30

    The concept of correlating pharmacokinetic parameters with body weight (termed as pharmacokinetic interspecies scaling) from different animal species has become a useful tool in drug development. Interspecies scaling is based on the power function, where the body weight of the species is plotted against the pharmacokinetic parameter of interest. Clearance, volume of distribution, and elimination half-life are the three most frequently extrapolated pharmacokinetic parameters. The predicted pharmacokinetic parameter clearance can be used for estimating a first-in-human dose. Over the years, many approaches have been suggested to improve the prediction of aforementioned pharmacokinetic parameters in humans from animal data. A literature review indicates that there are different degrees of success with different methods for different drugs. Interspecies scaling is also a very useful tool in veterinary medicine. The knowledge of pharmacokinetics in veterinary medicine is important for dosage selection, particularly in the treatment of large animals such as horses, camels, elephants, or other large zoo animals. Despite the potential for extrapolation error, the reality is that interspecies scaling is needed across many veterinary practice situations, and therefore will be used. For this reason, it is important to consider mechanisms for reducing the risk of extrapolation errors that can seriously affect animal safety and therapeutic response. Overall, although interspecies scaling requires continuous refinement and better understanding, the rationale approach of interspecies scaling has a lot of potential during the drug development process. PMID:17826864

  6. Chemotherapeutic response to cisplatin-like drugs in human breast cancer cells probed by vibrational microspectroscopy.

    Science.gov (United States)

    Batista de Carvalho, A L M; Pilling, M; Gardner, P; Doherty, J; Cinque, G; Wehbe, K; Kelley, C; Batista de Carvalho, L A E; Marques, M P M

    2016-06-23

    Studies of drug-cell interactions in cancer model systems are essential in the preclinical stage of rational drug design, which relies on a thorough understanding of the mechanisms underlying cytotoxic activity and biological effects, at a molecular level. This study aimed at applying complementary vibrational spectroscopy methods to evaluate the cellular impact of two Pt(ii) and Pd(ii) dinuclear chelates with spermine (Pt2Spm and Pd2Spm), using cisplatin (cis-Pt(NH3)2Cl2) as a reference compound. Their effects on cellular metabolism were monitored in a human triple-negative metastatic breast cancer cell line (MDA-MB-231) by Raman and synchrotron-radiation infrared microspectroscopies, for different drug concentrations (2-8 μM) at 48 h exposure. Multivariate data analysis was applied (unsupervised PCA), unveiling drug- and concentration-dependent effects: apart from discrimination between control and drug-treated cells, a clear separation was obtained for the different agents studied - mononuclear vs. polynuclear, and Pt(ii) vs. Pd(ii). Spectral biomarkers of drug action were identified, as well as the cellular response to the chemotherapeutic insult. The main effect of the tested compounds was found to be on DNA, lipids and proteins, the Pd(ii) agent having a more significant impact on proteins while its Pt(ii) homologue affected the cellular lipid content at lower concentrations, which suggests the occurrence of distinct and unconventional pathways of cytotoxicity for these dinuclear polyamine complexes. Raman and FTIR microspectroscopies were confirmed as powerful non-invasive techniques to obtain unique spectral signatures of the biochemical impact and physiological reaction of cells to anticancer agents. PMID:27063935

  7. Effect of honokiol on the induction of drug-metabolizing enzymes in human hepatocytes.

    Science.gov (United States)

    Cho, Yong-Yeon; Jeong, Hyeon-Uk; Kim, Jeong-Han; Lee, Hye Suk

    2014-01-01

    Honokiol, 2-(4-hydroxy-3-prop-2-enyl-phenyl)-4-prop-2-enyl-phenol, an active component of Magnolia officinalis and Magnolia grandiflora, exerts various pharmacological activities such as antitumorigenic, antioxidative, anti-inflammatory, neurotrophic, and antithrombotic effects. To investigate whether honokiol acts as a perpetrator in drug interactions, messenger ribonucleic acid (mRNA) levels of phase I and II drug-metabolizing enzymes, including cytochrome P450 (CYP), UDP-glucuronosyltransferase (UGT), and sulfotransferase 2A1 (SULT2A1), were analyzed by real-time reverse transcription polymerase chain reaction following 48-hour honokiol exposure in three independent cryopreserved human hepatocyte cultures. Honokiol treatment at the highest concentration tested (50 μM) increased the CYP2B6 mRNA level and CYP2B6-catalyzed bupropion hydroxylase activity more than two-fold in three different hepatocyte cultures, indicating that honokiol induces CYP2B6 at higher concentrations. However, honokiol treatment (0.5-50 μM) did not significantly alter the mRNA levels of phase I enzymes (CYP1A2, CYP3A4, CYP2C8, CYP2C9, and CYP2C19) or phase II enzymes (UGT1A1, UGT1A4, UGT1A9, UGT2B7, and SULT2A1) in cryopreserved human hepatocyte cultures. CYP1A2-catalyzed phenacetin O-deethylase and CYP3A4-catalyzed midazolam 1'-hydroxylase activities were not affected by 48-hour honokiol treatment in cryopreserved human hepatocytes. These results indicate that honokiol is a weak CYP2B6 inducer and is unlikely to increase the metabolism of concomitant CYP2B6 substrates and cause pharmacokinetic-based drug interactions in humans.

  8. Analysis of Intra- and Intersubject Variability in Oral Drug Absorption in Human Bioequivalence Studies of 113 Generic Products.

    Science.gov (United States)

    Sugihara, Masahisa; Takeuchi, Susumu; Sugita, Masaru; Higaki, Kazutaka; Kataoka, Makoto; Yamashita, Shinji

    2015-12-01

    In this study, the data of 113 human bioequivalence (BE) studies of immediate release (IR) formulations of 74 active pharmaceutical ingredients (APIs) conducted at Sawai Pharmaceutical Co., Ltd., was analyzed to understand the factors affecting intra- and intersubject variabilities in oral drug absorption. The ANOVA CV (%) calculated from area under the time-concentration curve (AUC) in each BE study was used as an index of intrasubject variability (Vintra), and the relative standard deviation (%) in AUC was used as that of intersubject variability (Vinter). Although no significant correlation was observed between Vintra and Vinter of all drugs, Vintra of class 3 drugs was found to increase in association with a decrease in drug permeability (P(eff)). Since the absorption of class 3 drugs was rate-limited by the permeability, it was suggested that, for such drugs, the low P(eff) might be a risk factor to cause a large intrasubject variability. To consider the impact of poor water solubility on the variability in BE study, a parameter of P(eff)/Do (Do; dose number) was defined to discriminate the solubility-limited and dissolution-rate-limited absorption of class 2 drugs. It was found that the class 2 drugs with a solubility-limited absorption (P(eff)/Do class 1 drugs, effects of drug metabolizing enzymes were investigated. It was demonstrated that intrasubject variability was high for drugs metabolized by CYP3A4 while intersubject variability was high for drugs metabolized by CYP2D6. For CYP3A4 substrate drugs, the Km value showed the significant relation with Vintra, indicating that the affinity to the enzyme can be a parameter to predict the risk of high intrasubject variability. In conclusion, by analyzing the in house data of human BE study, low permeability, solubility-limited absorption, and high affinity to CYP3A4 are identified as risk factors for high intrasubject variability in oral drug absorption. This information is of importance to design the human BE

  9. Human and organizational biases affecting the management of safety

    International Nuclear Information System (INIS)

    Management of safety is always based on underlying models or theories of organization, human behavior and system safety. The aim of the article is to review and describe a set of potential biases in these models and theories. We will outline human and organizational biases that have an effect on the management of safety in four thematic areas: beliefs about human behavior, beliefs about organizations, beliefs about information and safety models. At worst, biases in these areas can lead to an approach where people are treated as isolated and independent actors who make (bad) decisions in a social vacuum and who pose a threat to safety. Such an approach aims at building barriers and constraints to human behavior and neglects the measures aiming at providing prerequisites and organizational conditions for people to work effectively. This reductionist view of safety management can also lead to too drastic a strong separation of so-called human factors from technical issues, undermining the holistic view of system safety. Human behavior needs to be understood in the context of people attempting (together) to make sense of themselves and their environment, and act based on perpetually incomplete information while relying on social conventions, affordances provided by the environment and the available cognitive heuristics. In addition, a move toward a positive view of the human contribution to safety is needed. Systemic safety management requires an increased understanding of various normal organizational phenomena - in this paper discussed from the point of view of biases - coupled with a systemic safety culture that encourages and endorses a holistic view of the workings and challenges of the socio-technical system in question. - Highlights: → Biases in safety management approaches are reviewed and described. → Four thematic areas are covered: human behavior, organizations, information, safety models. → The biases influence how safety management is defined

  10. Toward affective brain-computer interfaces : exploring the neurophysiology of affect during human media interaction

    NARCIS (Netherlands)

    Mühl, Christian

    2012-01-01

    Affective Brain-Computer Interfaces (aBCI), the sensing of emotions from brain activity, seems a fantasy from the realm of science fiction. But unlike faster-than-light travel or teleportation, aBCI seems almost within reach due to novel sensor technologies, the advancement of neuroscience, and the

  11. In vitro permeation of several drugs through the human nail plate: relationship between physicochemical properties and nail permeability of drugs.

    Science.gov (United States)

    Kobayashi, Yoichi; Komatsu, Tsunehisa; Sumi, Machiko; Numajiri, Sachihiko; Miyamoto, Misao; Kobayashi, Daisuke; Sugibayashi, Kenji; Morimoto, Yasunori

    2004-03-01

    The objectives of the present study are to clarify the relationship between the physicochemical properties and the nail permeability of drugs through human nail plates. Homologous p-hydroxybenzoic acid esters were used to investigate the relationship between the octanol/water partition coefficient and the permeability coefficient of several drugs. The nail permeability was found to be independent of the lipophilicity of a penetrating drug. However, the nail permeability of several model drugs was found to markedly decrease as their molecular weights increased. The nail permeability of an ionic drug was found to be significantly lower than that of a non-ionic drug, and the nail permeability of these drugs markedly decreased as their molecular weights increased. The permeation of a model drug, 5-fluorouracil (5-FU), through healthy nail plates was also determined and compared with that through nail plates with fungal infections. The drug permeation through a nail plate decreased with an increase in nail plate thickness. Nail plates with fungal infections exhibited approximately the same 5-FU permeation as healthy nail plates. We suggest that the permeability of a drug is mainly influenced by its molecular weight and permeability through nails with fungal infection can be estimated from data on healthy nail permeability.

  12. A human rights view on access to controlled substances for medical purposes under the international drug control framework.

    Science.gov (United States)

    Gispen, Marie Elske C

    2013-11-01

    The world is confronted with a major public health deficit caused by poor access to controlled essential medicines under the international drug control framework. This is affecting millions of patients on a daily basis and resulting in numerous human rights violations. The present review contextualises this deficit from a human rights perspective. Drug control efforts are informed by a twofold objective stemming from the double nature of scheduled substances: free access for medical purposes should be ensured, though non-medical use of substances such as opium should be restricted. The international drug control framework is, in theory, based on this twofold notion, however at the level of interpretation, monitoring, and implementation, a one-sided emphasis is demonstrated. By tracing a parallel between the obligations of states under the international drug control framework and those that derive from human rights law, the review shows that the two systems seem incoherent and conflicting in nature and flags the importance of cross-disciplinary research into drug control and human rights.

  13. Major diet-drug interactions affecting the kinetic characteristics and hypolipidaemic properties of statins.

    Science.gov (United States)

    Vaquero, M P; Sánchez Muniz, F J; Jiménez Redondo, S; Prats Oliván, P; Higueras, F J; Bastida, S

    2010-01-01

    Concomitant administration of statins with food may alter statin pharmacokinetics or pharmacodynamics, increasing the risk of adverse reactions such as myopathy or rhabdomyolysis or reducing their pharmacological action. This paper reviews major interactions between statins and dietary compounds. Consumption of pectin or oat bran together with Lovastatin reduces absorption of the drug, while alcohol intake does not appear to affect the efficacy and safety of Fluvastatin treatment. Grapefruit juice components inhibit cytochrome P-4503A4, reducing the presystemic metabolism of drugs such as Simvastatin, Lovastatin and Atorvastatin. Follow-up studies on the therapeutic effect of statins in patients consuming a Mediterranean-style diet are necessary to assure the correct prescription because the oil-statin and minor oil compound-statin possible interactions have been only briefly studied. Preliminary study suggests that olive oil can increase the hypolipaemiant effect of Simvastatin with respect sunflower oil. The consumption of polyunsaturated rich oils, throughout the cytochrome P- 450 activation could decrease the half-life of some statins and therefore their hypolipaemic effects. The statins and n-3 fatty acids combined therapy gives rise to pharmacodinamic interaction that improves the lipid profile and leads greater cardioprotection. Although statins are more effective in high endogenous cholesterol production subjects and plant sterols are more effective in high cholesterol absorption efficacy subjects, plant esterols-statins combined therapy generates very positive complementary effects. This review ends suggesting possible diet-stain interactions that require further investigations (e.g. types of olive oils, fruit juices other than grapefruit, fibre or consumption of alcoholic beverages rich in polyphenols or ethanol).

  14. Aversive Pavlovian Responses Affect Human Instrumental Motor Performance

    Science.gov (United States)

    Rigoli, Francesco; Pavone, Enea Francesco; Pezzulo, Giovanni

    2012-01-01

    In neuroscience and psychology, an influential perspective distinguishes between two kinds of behavioral control: instrumental (habitual and goal-directed) and Pavlovian. Understanding the instrumental-Pavlovian interaction is fundamental for the comprehension of decision-making. Animal studies (as those using the negative auto-maintenance paradigm), have demonstrated that Pavlovian mechanisms can have maladaptive effects on instrumental performance. However, evidence for a similar effect in humans is scarce. In addition, the mechanisms modulating the impact of Pavlovian responses on instrumental performance are largely unknown, both in human and non-human animals. The present paper describes a behavioral experiment investigating the effects of Pavlovian conditioned responses on performance in humans, focusing on the aversive domain. Results showed that Pavlovian responses influenced human performance, and, similar to animal studies, could have maladaptive effects. In particular, Pavlovian responses either impaired or increased performance depending on modulator variables such as threat distance, task controllability, punishment history, amount of training, and explicit punishment expectancy. Overall, these findings help elucidating the computational mechanisms underlying the instrumental-Pavlovian interaction, which might be at the base of apparently irrational phenomena in economics, social behavior, and psychopathology. PMID:23060738

  15. Aversive Pavlovian responses affect human instrumental motor performance

    Directory of Open Access Journals (Sweden)

    Francesco eRigoli

    2012-10-01

    Full Text Available In neuroscience and psychology, an influential perspective distinguishes between two kinds of behavioural control: instrumental (habitual and goal-directed and Pavlovian. Understanding the instrumental-Pavlovian interaction is fundamental for the comprehension of decision-making. Animal studies (as those using the negative auto-maintenance paradigm, have demonstrated that Pavlovian mechanisms can have maladaptive effects on instrumental performance. However, evidence for a similar effect in humans is scarce. In addition, the mechanisms modulating the impact of Pavlovian responses on instrumental performance are largely unknown, both in human and non-human animals. The present paper describes a behavioural experiment investigating the effects of Pavlovian conditioned responses on performance in humans, focusing on the aversive domain. Results showed that Pavlovian responses influenced human performance, and, similar to animal studies, could have maladaptive effects. In particular, Pavlovian responses either impaired or increased performance depending on modulator variables such as threat distance, task controllability, punishment history, amount of training, and explicit punishment expectancy. Overall, these findings help elucidating the computational mechanisms underlying the instrumental-Pavlovian interaction, which might be at the base of apparently irrational phenomena in economics, social behaviour, and psychopathology.

  16. Positive Affect and the Complex Dynamics of Human Flourishing

    Science.gov (United States)

    Fredrickson, Barbara L.; Losada, Marcial F.

    2005-01-01

    Extending B. L. Fredrickson's (1998) broaden-and-build theory of positive emotions and M. Losada's (1999) nonlinear dynamics model of team performance, the authors predict that a ratio of positive to negative affect at or above 2.9 will characterize individuals in flourishing mental health. Participants (N=188) completed an initial survey to…

  17. Early adoption of cyclosporine and recombinant human erythropoietin: clinical, economic, and policy issues with emergence of high-cost drugs.

    Science.gov (United States)

    Powe, N R; Eggers, P W; Johnson, C B

    1994-07-01

    The discovery of new drugs and their introduction into US markets will become an intense area of focus should health care reform result in Medicare insurance coverage for prescription drugs. Particular attention will be focused on high-cost drugs. Two high-cost drugs, cyclosporine and recombinant human erythropoietin (rHuEPO), introduced into the clinical management of patients with kidney disease during the past decade, provide some experience concerning the forces affecting the use of expensive drugs in a cost-conscious health care system. The decision to prescribe a drug will depend on provider's judgements of the drug's clinical benefits and costs compared with those of other possible therapies. It may also depend on payment policy. Both cyclosporine and rHuEPO were adopted rapidly and extensively by providers of end-stage renal disease care following US Food and Drug Administration approval, despite their high costs. Both drugs were remarkably effective, relatively safe, and able to be administered without great difficulty compared with the therapies they have replaced. There was no additional payment to hospitals for the initial use of cyclosporine, which was introduced in 1983 at the time when Medicare's prospective payment was established, since choice of immunosuppressive agent did not affect the fixed, per-admission payment determined by the diagnosis-related group for kidney transplantation. Medicare coverage for continuing outpatient use of cyclosporine was not initially provided, in contrast to rHuEPO, which was introduced in 1989 with Medicare outpatient coverage and payment of 80% of the allowed charge. Despite their high costs and different methods of insurance payment both drugs achieved a rather quick and high penetration rate into their respective populations.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8023822

  18. 21 CFR 201.100 - Prescription drugs for human use.

    Science.gov (United States)

    2010-04-01

    ... required for prescription drug products packaged in unit-dose, unit-of-use, on other packaging format in..., or graphic matter containing no representation or suggestion relating to the drug product. If...

  19. Affective Man-Machine Interface: Unveiling human emotions through biosignals

    NARCIS (Netherlands)

    Broek, van den Egon L.; Lisy, Viliam; Janssen, Joris H.; Westerink, Joyce H.D.M.; Schut, Marleen H.; Tuinenbreijer, Kees; Fred, A.; Filipe, J.; Gamboa, H.

    2010-01-01

    As is known for centuries, humans exhibit an electrical profile. This profile is altered through various psychological and physiological processes, which can be measured through biosignals; e.g., electromyography (EMG) and electrodermal activity (EDA). These biosignals can reveal our emotions and, a

  20. Human breast cancer resistance protein : Interactions with steroid drugs, hormones, the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo(4,5-b)pyridine, and transport of cimetidine

    NARCIS (Netherlands)

    Pavek, P; Merino, G; Wagenaar, E; Bolscher, E; Novotna, M; Jonker, JW; Schinkel, AH

    2005-01-01

    The breast cancer resistance protein (BCRP/ABCG2) is an ATP-binding cassette drug efflux transporter that extrudes xenotoxins from cells, mediating drug resistance and affecting the pharmacological behavior of many compounds. To study the interaction of human wild-type BCRP with steroid drugs, hormo

  1. Disposition and pharmacokinetics of the antimigraine drug, rizatriptan, in humans.

    Science.gov (United States)

    Vyas, K P; Halpin, R A; Geer, L A; Ellis, J D; Liu, L; Cheng, H; Chavez-Eng, C; Matuszewski, B K; Varga, S L; Guiblin, A R; Rogers, J D

    2000-01-01

    The absorption and disposition of rizatriptan (MK-0462, Maxalt(TM)), a selective 5-HT(1B/1D) receptor agonist used in the treatment of migraine headaches, was investigated in humans. In a two-period, single i.v. (3 mg, 30-min infusion), and single oral (10 mg) dose study with [(14)C]rizatriptan in six healthy human males, total recovery of radioactivity was approximately 94%, with unchanged rizatriptan and its metabolites being excreted mainly in the urine (89% i.v. dose, 82% p.o. dose). Approximately 26 and 14% of i.v. and oral rizatriptan doses, respectively, were excreted in urine as intact parent drug. In a second, high-dose study (60 mg p.o.), five metabolites excreted into urine were identified using liquid chromatography-tandem mass spectrometry and NMR methods. They were triazolomethyl-indole-3-acetic acid, rizatriptan-N(10)-oxide, 6-hydroxy-rizatriptan, 6-hydroxy-rizatriptan sulfate, and N(10)-monodesmethyl-rizatriptan. Urinary excretion of triazolomethyl-indole-3-acetic acid after i.v. and oral administrations of rizatriptan accounted for 35 and 51% of the dose, respectively, whereas the corresponding values for rizatriptan-N(10)-oxide were 4 and 2% of the dose. Plasma clearance (CL) and renal clearance (CL(r)) were 1325 and 349 ml/min, respectively, after i.v. administration. A similar CL(r) value was obtained after oral administration (396 ml/min). The primary route of rizatriptan elimination occurred via nonrenal route(s) (i.e., metabolism) because the CL(r) of rizatriptan accounted for 25% of total CL. Furthermore, the CL(r) was higher than normal glomerular filtration rate ( approximately 130 ml/min), indicating that this compound was actively secreted by renal tubules. The absorption of rizatriptan was approximately 90%, but it experienced a moderate first-pass effect, resulting in a bioavailability estimate of 47%. PMID:10611145

  2. Effect of honokiol on the induction of drug-metabolizing enzymes in human hepatocytes

    Directory of Open Access Journals (Sweden)

    Cho YY

    2014-11-01

    Full Text Available Yong-Yeon Cho,1 Hyeon-Uk Jeong,1 Jeong-Han Kim,2 Hye Suk Lee1 1College of Pharmacy, The Catholic University of Korea, Bucheon, Korea; 2Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea Abstract: Honokiol, 2-(4-hydroxy-3-prop-2-enyl-phenyl-4-prop-2-enyl-phenol, an active component of Magnolia officinalis and Magnolia grandiflora, exerts various pharmacological activities such as antitumorigenic, antioxidative, anti-inflammatory, neurotrophic, and antithrombotic effects. To investigate whether honokiol acts as a perpetrator in drug interactions, messenger ribonucleic acid (mRNA levels of phase I and II drug-metabolizing enzymes, including cytochrome P450 (CYP, UDP-glucuronosyltransferase (UGT, and sulfotransferase 2A1 (SULT2A1, were analyzed by real-time reverse transcription polymerase chain reaction following 48-hour honokiol exposure in three independent cryopreserved human hepatocyte cultures. Honokiol treatment at the highest concentration tested (50 µM increased the CYP2B6 mRNA level and CYP2B6-catalyzed bupropion hydroxylase activity more than two-fold in three different hepatocyte cultures, indicating that honokiol induces CYP2B6 at higher concentrations. However, honokiol treatment (0.5–50 µM did not significantly alter the mRNA levels of phase I enzymes (CYP1A2, CYP3A4, CYP2C8, CYP2C9, and CYP2C19 or phase II enzymes (UGT1A1, UGT1A4, UGT1A9, UGT2B7, and SULT2A1 in cryopreserved human hepatocyte cultures. CYP1A2-catalyzed phenacetin O-deethylase and CYP3A4-catalyzed midazolam 1'-hydroxylase activities were not affected by 48-hour honokiol treatment in cryopreserved human hepatocytes. These results indicate that honokiol is a weak CYP2B6 inducer and is unlikely to increase the metabolism of concomitant CYP2B6 substrates and cause pharmacokinetic-based drug interactions in humans. Keywords: honokiol, human hepatocytes, drug interactions, cytochrome P450, UDP-glucuronosyltransferases

  3. Binding of the Multimodal Antidepressant Drug Vortioxetine to the Human Serotonin Transporter

    DEFF Research Database (Denmark)

    Andersen, Jacob; Ladefoged, Lucy Kate; Wang, Danyang;

    2015-01-01

    Selective inhibitors of the human serotonin transporter (hSERT) have been first-line treatment against depression for several decades. Recently, vortioxetine was approved as a new therapeutic option for the treatment of depression. Vortioxetine represents a new class of antidepressant drugs with ......-based drug discovery of novel multimodal drugs with fine-tuned selectivity across different transporter and receptor proteins in the human brain.......Selective inhibitors of the human serotonin transporter (hSERT) have been first-line treatment against depression for several decades. Recently, vortioxetine was approved as a new therapeutic option for the treatment of depression. Vortioxetine represents a new class of antidepressant drugs...

  4. Affected in the nightclub

    DEFF Research Database (Denmark)

    Demant, Jakob Johan

    2013-01-01

    simultaneously with the affects of love, joy, sympathy and so on. Alcohol, illicit drugs, bouncers, music and other human or non-human actants are part of the place. It is within this heterogeneous assemblage that affects become embodied. The data consists of 273 cases from a large Copenhagen nightclub where...

  5. Human recombinant RNASET2: A potential anti-cancer drug

    Science.gov (United States)

    Roiz, Levava; Smirnoff, Patricia; Lewin, Iris; Shoseyov, Oded; Schwartz, Betty

    2016-01-01

    The roles of cell motility and angiogenetic processes in metastatic spread and tumor aggressiveness are well established and must be simultaneously targeted to maximize antitumor drug potency. This work evaluated the antitumorigenic capacities of human recombinant RNASET2 (hrRNASET2), a homologue of the Aspergillus niger T2RNase ACTIBIND, which has been shown to display both antitumorigenic and antiangiogenic activities. hrRNASET2 disrupted intracellular actin filament and actin-rich extracellular extrusion organization in both CT29 colon cancer and A375SM melanoma cells and induced a significant dose-dependent inhibition of A375SM cell migration. hrRNASET2 also induced full arrest of angiogenin-induced tube formation and brought to a three-fold lower relative HT29 colorectal and A375SM melanoma tumor volume, when compared to Avastin-treated animals. In parallel, mean blood vessel counts were 36.9% lower in hrRNASET2-vs. Avastin-treated mice and survival rates of hrRNASET2-treated mice were 50% at 73 days post-treatment, while the median survival time for untreated animals was 22 days. Moreover, a 60-day hrRNASET2 treatment period reduced mean A375SM lung metastasis foci counts by three-fold when compared to untreated animals. Taken together, the combined antiangiogenic and antitumorigenic capacities of hrRNASET2, seemingly arising from its direct interaction with intercellular and extracellular matrices, render it an attractive anticancer therapy candidate. PMID:27014725

  6. Research & market strategy: how choice of drug discovery approach can affect market position.

    Science.gov (United States)

    Sams-Dodd, Frank

    2007-04-01

    In principal, drug discovery approaches can be grouped into target- and function-based, with the respective aims of developing either a target-selective drug or a drug that produces a specific biological effect irrespective of its mode of action. Most analyses of drug discovery approaches focus on productivity, whereas the strategic implications of the choice of drug discovery approach on market position and ability to maintain market exclusivity are rarely considered. However, a comparison of approaches from the perspective of market position indicates that the functional approach is superior for the development of novel, innovative treatments. PMID:17395091

  7. Drugs associated with teratogenic mechanisms. Part II: a literature review of the evidence on human risks

    NARCIS (Netherlands)

    Gelder, M.M.H.J. van; Jong-van den Berg, L.T. de; Roeleveld, N.

    2014-01-01

    STUDY QUESTION: What is the current state of knowledge on the human risks of drugs suspected to be associated with teratogenic mechanisms? SUMMARY ANSWER: Evidence for the presence or absence of human risks of birth defects is scarce or non-existent for the majority of drugs associated with teratoge

  8. The sexuality assemblage: Desire, affect, anti-humanism

    OpenAIRE

    Fox, NJ; Alldred, P

    2013-01-01

    Two theoretical moves are required to resist the ‘humanist enticements’ associated with sexuality. Post-structuralism supplies the first, showing how the social produces culturally-specific sexual knowledgeabilities. A second anti-humanist move is then needed to overturn anthropocentric privileging of the human body and subject as the locus of sexuality. In this paper we establish a language and landscape for a Deleuze inspired anti-humanist sociology of sexuality that shifts the location of ...

  9. Diurnal Human Activity and Introduced Species Affect Occurrence of Carnivores in a Human-Dominated Landscape.

    Science.gov (United States)

    Moreira-Arce, Dario; Vergara, Pablo M; Boutin, Stan

    2015-01-01

    Diurnal human activity and domestic dogs in agro-forestry mosaics should theoretically modify the diurnal habitat use patterns of native carnivores, with these effects being scale-dependent. We combined intensive camera trapping data with Bayesian occurrence probability models to evaluate both diurnal and nocturnal patterns of space use by carnivores in a mosaic of land-use types in southern Chile. A total of eight carnivores species were recorded, including human-introduced dogs. During the day the most frequently detected species were the culpeo fox and the cougar. Conversely, during the night, the kodkod and chilla fox were the most detected species. The best supported models showed that native carnivores responded differently to landscape attributes and dogs depending on both the time of day as well as the spatial scale of landscape attributes. The positive effect of native forest cover at 250 m and 500 m radius buffers was stronger during the night for the Darwin's fox and cougar. Road density at 250 m scale negatively affected the diurnal occurrence of Darwin´s fox, whereas at 500 m scale roads had a stronger negative effect on the diurnal occurrence of Darwin´s foxes and cougars. A positive effect of road density on dog occurrence was evidenced during both night and day. Patch size had a positive effect on cougar occurrence during night whereas it affected negatively the occurrence of culpeo foxes and skunks during day. Dog occurrence had a negative effect on Darwin's fox occurrence during day-time and night-time, whereas its negative effect on the occurrence of cougar was evidenced only during day-time. Carnivore occurrences were not influenced by the proximity to a conservation area. Our results provided support for the hypothesis that diurnal changes to carnivore occurrence were associated with human and dog activity. Landscape planning in our study area should be focused in reducing both the levels of diurnal human activity in native forest remnants

  10. The use of human resources literature regarding the relationship between affect and student academic performance

    OpenAIRE

    Chris W. Callaghan; Elmarie Papageorgiou

    2014-01-01

    Orientation: In human resources literature affect, or affectivity, has been identified as contributing, either negatively or positively, to different forms of performance in a range of different contexts.Research purpose: The aim of the study was to empirically test theory that predicts that affect can influence performance; in this case the academic performance of students in the South African higher education context.Motivation for the study: Human resources job performance theory seems...

  11. Basic human needs affected for arterial hypertension and Lifestyle

    OpenAIRE

    Gleudson Alves Xavier; Maysa Oliveira Rolim; Vera Maria da Conceição Lopes de Sousa; Maria Euridéa de Castro

    2003-01-01

    Knowing that hypertension is a chronic disease, in which the individual may have his basic needs changed, resulting in having to learn to deal with a new life-style, we considered it appropriate to study this theme. It was designed to identify the affected basic needs and to discover the influence of life-style and of hypertension in alteration of those needs. The study is a descriptive-exploratory, accomplished at the Campus of a State Public University in Fortaleza – Ceará, Brazil. This stu...

  12. DrugMetZ DB: an anthology of human drug metabolizing Chytochrome P450 enzymes

    OpenAIRE

    Antony, Tresa Remya Thomas; Nagarajan, Shanthi

    2006-01-01

    Understandings the basics of Cytochrome P450 (P450 or CYP) will help to discern drug metabolism. CYP, a super-family of heme-thiolate proteins, are found in almost all living organisms and is involved in the biotransformation of a diverse range of xenobiotics, therapeutic drugs and toxins. Here, we describe DrugMetZ DB, a database for CYP metabolizing drugs. The DB is implemented in MySQL, PHP and HTML. Availability www.bicpu.edu.in/DrugMetZDB/

  13. Identification of multiple cellular uptake pathways of polystyrene nanoparticles and factors affecting the uptake: relevance for drug delivery systems.

    Science.gov (United States)

    Firdessa, Rebuma; Oelschlaeger, Tobias A; Moll, Heidrun

    2014-01-01

    Nanoparticles may address challenges by human diseases through improving diagnosis, vaccination and treatment. The uptake mechanism regulates the type of threat a particle poses on the host cells and how a cell responds to it. Hence, understanding the uptake mechanisms and cellular interactions of nanoparticles at the cellular and subcellular level is a prerequisite for their effective biomedical applications. The present study shows the uptake mechanisms of polystyrene nanoparticles and factors affecting their uptake in bone marrow-derived macrophages, 293T kidney epithelial cells and L929 fibroblasts. Labeling with the endocytic marker FM4-64 and transmission electron microscopy studies show that the nanoparticles were internalized rapidly via endocytosis and accumulated in intracellular vesicles. Soon after their internalizations, nanoparticles trafficked to organelles with acidic pH. Analysis of the ultrastructural morphology of the plasma membrane invaginations or extravasations provides clear evidence for the involvement of several uptake routes in parallel to internalize a given type of nanoparticles by mammalian cells, highlighting the complexity of the nanoparticle-cell interactions. Blocking the specific endocytic pathways by different pharmacological inhibitors shows similar outcomes. The potential to take up nanoparticles varies highly among different cell types in a particle sizes-, time- and energy-dependent manner. Furthermore, infection and the activation status of bone marrow-derived macrophages significantly affect the uptake potential of the cells, indicating the need to understand the diseases' pathogenesis to establish effective and rational drug-delivery systems. This study enhances our understanding of the application of nanotechnology in biomedical sciences. PMID:25224362

  14. Culture conditions affect photoreactivating enzyme levels in human fibroblasts

    International Nuclear Information System (INIS)

    Photoreactivation of pyrimidine dimers occured under the experimental conditions given in this study, but has not been observed under conditions used by others. Three possible differences were tested in experimental procedures including dimer separation and analysis methods, illumination conditions and cell culture techniques. The methods in this study of dimer separation and analysis indeed measure cis-syn pyrimidine dimers and give results in quantitative agreement with the methods of others. It was found that white light pre-illumination of fibroblasts from the xeroderma pigmentosum line XP12BE or of normal cells does not affect the cellular capacity for dimer photoreactivation. However, the cell culture conditions can affect photoreactivating enzyme levels, and thus cellular dimer photoreactivation capacity. Cells grown in Eagle's minimal essential medium (supplemented with 15% fetal bovine serum) contain very low levels of photoreactivating enzyme and cannot photoreactivate dimers in their DNA; but companion cultures maintained in Dulbecco's modified Eagle's minimal medium do contain photoreactivating enzyme and can reactivate photoreactive cellular dimers

  15. Drug/drug interaction of common NSAIDs with antiplatelet effect of aspirin in human platelets.

    Science.gov (United States)

    Saxena, Aaruni; Balaramnavar, Vishal M; Hohlfeld, Thomas; Saxena, Anil K

    2013-12-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) may interfere with the anti-platelet activity of aspirin at the level of the platelet cyclooxygenase-1 (COX-1) enzyme. In order to examine the interference of common NSAIDs with the anti-platelet activity of aspirin the human platelet rich plasma from voluntary donors was used for arachidonic acid-induced aggregation and determination of thromboxane synthesis. Further, docking studies were used to explain the molecular basis of the NSAID/aspirin interaction. The experimental results showed that celecoxib, dipyrone (active metabolite), ibuprofen, flufenamic acid, naproxen, nimesulide, oxaprozin, and piroxicam significantly interfere with the anti-platelet activity of aspirin, while diclofenac, ketorolac and acetaminophen do not. Docking studies suggested that NSAIDs forming hydrogen bonds with Ser530, Arg120, Tyr385 and other amino acids of the COX-1 hydrophobic channel interfere with antiplatelet activity of aspirin while non interfering NSAIDs do not form relevant hydrogen bond interactions within the aspirin binding site. In conclusion, docking analysis of NSAID interactions at the COX-1 active site appears useful to predict their interference with the anti-platelet activity of aspirin. The results, demonstrate that some NSAIDs do not interfere with the antiplatelet action of aspirin while many others do and provide a basis for understanding the observed differences among individual non-aspirin NSAIDs. PMID:24075938

  16. Regulation of human hepatic drug transporter activity and expression by diesel exhaust particle extract.

    Directory of Open Access Journals (Sweden)

    Marc Le Vee

    Full Text Available Diesel exhaust particles (DEPs are common environmental air pollutants primarily affecting the lung. DEPs or chemicals adsorbed on DEPs also exert extra-pulmonary effects, including alteration of hepatic drug detoxifying enzyme expression. The present study was designed to determine whether organic DEP extract (DEPe may target hepatic drug transporters that contribute in a major way to drug detoxification. Using primary human hepatocytes and transporter-overexpressing cells, DEPe was first shown to strongly inhibit activities of the sinusoidal solute carrier (SLC uptake transporters organic anion-transporting polypeptides (OATP 1B1, 1B3 and 2B1 and of the canalicular ATP-binding cassette (ABC efflux pump multidrug resistance-associated protein 2, with IC50 values ranging from approximately 1 to 20 μg/mL and relevant to environmental exposure situations. By contrast, 25 μg/mL DEPe failed to alter activities of the SLC transporter organic cation transporter (OCT 1 and of the ABC efflux pumps P-glycoprotein and bile salt export pump (BSEP, whereas it only moderately inhibited those of sodium taurocholate co-transporting polypeptide and of breast cancer resistance protein (BCRP. Treatment by 25 μg/mL DEPe was next demonstrated to induce expression of BCRP at both mRNA and protein level in cultured human hepatic cells, whereas it concomitantly repressed mRNA expression of various transporters, including OATP1B3, OATP2B1, OCT1 and BSEP. Such changes in transporter expression were found to be highly correlated to those caused by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, a reference activator of the aryl hydrocarbon receptor (AhR pathway. This suggests that DEPe, which is enriched in known ligands of AhR like polycyclic aromatic hydrocarbons, alters drug transporter expression via activation of the AhR cascade. Taken together, these data established human hepatic transporters as targets of organic chemicals containing in DEPs, which may contribute

  17. PAN-811 Blocks Chemotherapy Drug-Induced In Vitro Neurotoxicity, While Not Affecting Suppression of Cancer Cell Growth

    Directory of Open Access Journals (Sweden)

    Zhi-Gang Jiang

    2016-01-01

    Full Text Available Chemotherapy often results in cognitive impairment, and no neuroprotective drug is now available. This study aimed to understand underlying neurotoxicological mechanisms of anticancer drugs and to evaluate neuroprotective effects of PAN-811. Primary neurons in different concentrations of antioxidants (AOs were insulted for 3 days with methotrexate (MTX, 5-fluorouracil (5-FU, or cisplatin (CDDP in the absence or presence of PAN-811·Cl·H2O. The effect of PAN-811 on the anticancer activity of tested drugs was also examined using mouse and human cancer cells (BNLT3 and H460 to assess any negative interference. Cell membrane integrity, survival, and death and intramitochondrial reactive oxygen species (ROS were measured. All tested anticancer drugs elicited neurotoxicity only under low levels of AO and elicited a ROS increase. These results suggested that ROS mediates neurotoxicity of tested anticancer drugs. PAN-811 dose-dependently suppressed increased ROS and blocked the neurotoxicity when neurons were insulted with a tested anticancer drug. PAN-811 did not interfere with anticancer activity of anticancer drugs against BNLT3 cells. PAN-811 did not inhibit MTX-induced death of H460 cells but, interestingly, demonstrated a synergistic effect with 5-FU or CDDP in reducing cancer cell viability. Thus, PAN-811 can be a potent drug candidate for chemotherapy-induced cognitive impairment.

  18. Disturbances of electrodynamic activity affect abortion in human

    International Nuclear Information System (INIS)

    Biochemical research of biological systems is highly developed, and it has disclosed a spectrum of chemical reactions, genetic processes, and the pathological development of various diseases. The fundamental hypothesis of physical processes in biological systems, in particular of coherent electrically polar vibrations and electromagnetic activity, was formulated by H. Fröhlich; he assumed connection of cancer process with degradation of coherent electromagnetic activity. But the questions of cellular structures capable of the coherent electrical polar oscillation, mechanisms of energy supply, and the specific role of the endogenous electromagnetic fields in transport, organisation, interactions, and information transfer remained open. The nature of physical disturbances caused by some diseases (including the recurrent abortion in humans and the cancer) was unknown. We have studied the reasons of recurrent abortions in humans by means of the cell mediated immunity (using immunologic active RNA prepared from blood of inbred laboratory mice strain C3H/H2K, infected with the lactate dehydrogenase elevating virus-LD V) and the cytogenetic examination from karyotype pictures. The recurrent abortion group contained women with dg. spontaneous abortion (n = 24) and the control group was composed of 30 healthy pregnant women. Our hypothesis was related to quality of endometrium in relation to nidation of the blastocyst. The energetic insufficiency (ATP) inhibits normal development of fetus and placenta. We hope that these ideas might have impact on further research, which could provide background for effective interdisciplinary cooperation of malignant and non-malignant diseases.

  19. Disturbances of electrodynamic activity affect abortion in human

    Science.gov (United States)

    Jandová, A.; Nedbalová, M.; Kobilková, J.; Čoček, A.; Dohnalová, A.; Cifra, M.; Pokorný, J.

    2011-12-01

    Biochemical research of biological systems is highly developed, and it has disclosed a spectrum of chemical reactions, genetic processes, and the pathological development of various diseases. The fundamental hypothesis of physical processes in biological systems, in particular of coherent electrically polar vibrations and electromagnetic activity, was formulated by H. Fröhlich he assumed connection of cancer process with degradation of coherent electromagnetic activity. But the questions of cellular structures capable of the coherent electrical polar oscillation, mechanisms of energy supply, and the specific role of the endogenous electromagnetic fields in transport, organisation, interactions, and information transfer remained open. The nature of physical disturbances caused by some diseases (including the recurrent abortion in humans and the cancer) was unknown. We have studied the reasons of recurrent abortions in humans by means of the cell mediated immunity (using immunologic active RNA prepared from blood of inbred laboratory mice strain C3H/H2K, infected with the lactate dehydrogenase elevating virus-LD V) and the cytogenetic examination from karyotype pictures. The recurrent abortion group contained women with dg. spontaneous abortion (n = 24) and the control group was composed of 30 healthy pregnant women. Our hypothesis was related to quality of endometrium in relation to nidation of the blastocyst. The energetic insufficiency (ATP) inhibits normal development of fetus and placenta. We hope that these ideas might have impact on further research, which could provide background for effective interdisciplinary cooperation of malignant and non-malignant diseases.

  20. Multiple Factors Affecting Human Repregnancy after Microsurgical Vasovasostomy

    Institute of Scientific and Technical Information of China (English)

    黄明孔; 吴晓庆; 付成善; 邹平; 高晓平; 黄强

    1997-01-01

    To determine the factors which might affect the recover), of fertility after an accurate microsurgical vasovasostomy, we conducted a 3 year-follow-up study in 56 men after microsurgical vasovasostomy. Twenty-two variables as putative factors associated with recovery of fertility were measured. The results of Logistic regression and ather statistical analyses suggest that 8 factors including age of husband, age of wife, history of past pregnancies of current wife, number of vasovasostomies, serum FSH, LH and T before vasovasostomy, and sperm granuloma of vas nodule are of no significance in recovery of fertility, whereas 14 factors including years after vasectomy, sperm concentration, progressive motility, sperm motility, viability, normal morphology, sperm egg penetration rate, TAT and SIT before and after vasovasostomy, MAR, IBT adherent IgG and IgA after vasovasostomy are significantly, associated with repregnancy.

  1. Covariate analysis of QTc and T-wave morphology: new possibilities in the evaluation of drugs that affect cardiac repolarization

    DEFF Research Database (Denmark)

    Graff, Claus; Struijk, Johannes J.; Matz, J;

    2010-01-01

    This study adds the dimension of a T-wave morphology composite score (MCS) to the QTc interval-based evaluation of drugs that affect cardiac repolarization. Electrocardiographic recordings from 62 subjects on placebo and 400 mg moxifloxacin were compared with those from 21 subjects on 160 and 320...

  2. Potential Drug Development Candidates for Human Soil-Transmitted Helminthiases

    OpenAIRE

    Piero Olliaro; Jürg Seiler; Annette Kuesel; John Horton; Jeffrey N Clark; Robert Don; Jennifer Keiser

    2011-01-01

    BACKGROUND: Few drugs are available for soil-transmitted helminthiasis (STH); the benzimidazoles albendazole and mebendazole are the only drugs being used for preventive chemotherapy as they can be given in one single dose with no weight adjustment. While generally safe and effective in reducing intensity of infection, they are contra-indicated in first-trimester pregnancy and have suboptimal efficacy against Trichuris trichiura. In addition, drug resistance is a threat. It is therefore impor...

  3. Psychoactive-drug response is affected by acute low-level microwave irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lai, H.; Horita, A.; Chou, C.K.; Guy, A.W.

    1983-01-01

    The effects of various psychoactive drugs were studied in rats exposed for 45 min in a circularly polarized, pulsed microwave field (2450 MHz; SAR 0.6 W/kg; 2-microseconds pulses, 500 pps). Apomorphine-induced hypothermia and stereotypy were enhanced by irradiation. Amphetamine-induced hyperthermia was attenuated while stereotypy was unaffected. Morphine-induced catalepsy and lethality were enhanced by irradiation at certain dosages of the drug. Since these drugs have different modes of action on central neural mechanisms and the effects of microwaves depend on the particular drug studied, these results show the complex nature of the effect of microwave irradiation on brain functions.

  4. Microvesicle formulations used in topical drugs and cosmetics affect product efficiency, performance and allergenicity

    DEFF Research Database (Denmark)

    Madsen, Jakob Torp; Ejner Andersen, Klaus

    2010-01-01

    Attempts to improve the formulations of topical products are continuing processes (ie, to increase cosmetic performance, enhance effects, and protect ingredients from degradation). The development of micro- and nanovesicular systems has led to the marketing of topical drugs and cosmetics that use...... transdermal delivery more efficient for a number of drugs. Vesicular systems may also allow a more precise drug delivery to the site of action (ie, the hair follicles) and thereby minimize the applied drug concentration, reducing potential side effects. On the other hand, this may increase the risk of other...

  5. Data sources and methods for ascertaining human exposure to drugs.

    Science.gov (United States)

    Jones, J K; Kennedy, D L

    Estimates of population exposure based on drug use data are critical elements in the post marketing surveillance of drugs and provide a context for assessing the various risks and benefits associated with drug treatment. Such information is important in predicting morbidity and planning public health protection strategies, indepth studies, and regulatory actions. Knowledge that a population of one thousand instead of one million may potentially be exposed to a drug can help determine how a particular regulatory problem will be handled and would obviously be a major determinant in designing a case-control or cohort study. National estimates of drug use give an overview of the most commonly used drug therapies in current practice. They also furnish valuable comparison data for specific studies of drug use limited to one group of drugs, one geographic region, or one medical care setting. The FDA has access to several different national drug use data bases, each measuring a different point in the drug distribution channels. None covers the entire spectrum of drug exposures. The major "holes" in this patchwork of data bases are the inability to measure OTC drug use with any accuracy and the lack of qualitative information on drug use in hospitals. In addition, there is no patient linkage with the data. The data can only show trends in drug use. They impart no sense of the longitudinal use of drugs for individual patients. There is no direct connection between the different data bases, all of which have their own sampling frames and their own projection methodologies. The market research companies have complete control over these methodologies and they are subject to periodic changes, a situation not entirely satisfactory for epidemiologic research. Sometimes it is a struggle to keep up with these changes. Over the past two years, every one of these data bases has undergone some type of sampling or projection methodology change. One important limitation to the use of all

  6. Poisoning of dogs and cats by drugs intended for human use.

    Science.gov (United States)

    Cortinovis, Cristina; Pizzo, Fabiola; Caloni, Francesca

    2015-01-01

    One of the main causes of poisoning of small animals is exposure to drugs intended for human use. Poisoning may result from misuse by pet owners, off-label use of medicines or, more frequently, accidental ingestion of drugs that are improperly stored. This review focuses on classes of drugs intended for human use that are most commonly involved in the poisoning of small animals and provides an overview of poisoning episodes reported in the literature. To perform this review a comprehensive search of public databases (PubMed, Web of Science, Scopus, Google Scholar) using key search terms was conducted. Additionally, relevant textbooks and reference lists of articles pertaining to the topic were reviewed to locate additional related articles. Most published information on small animal poisoning by drugs intended for human use was from animal and human poison control centres or from single case reports. The dog was the species most frequently poisoned. The major drugs involved included analgesics (nonsteroidal anti-inflammatory drugs), antihistamines (H1-antihistamines), cardiovascular drugs (calcium channel blockers), central nervous system drugs (selective serotonin reuptake inhibitors, baclofen, benzodiazepines and zolpidem), gastrointestinal drugs (loperamide), nutritional supplements (vitamin D and iron salts) and respiratory drugs (β2-adrenergic receptor agonists). PMID:25475169

  7. Can celecoxib affect P-glycoprotein-mediated drug efflux? A microPET study

    NARCIS (Netherlands)

    De Vries, Erik F. J.; Doorduin, Janine; Vellinga, Namkje A. R.; Van Waarde, Aren; Dierckx, Rudi A.; Klein, Hans C.

    2008-01-01

    Introduction: P-glycoprotein (Pgp) is an efflux pump that protects vital organs like the brain from toxic substances, but which is also associated with therapy resistance. The anti-inflammatory drug celecoxib potentiates the efficacy of several cytostatic and neurotropic drugs that are known Pgp sub

  8. Modulators of drug dependence phenomena : factors affecting morphine withdrawal syndrome and cocaine-intake in rodents

    NARCIS (Netherlands)

    S.L.T. Cappendijk (Susanne)

    1995-01-01

    textabstractThis thesis compiles the experimental studies on several drugs, which modulate drug dependence phenomena in rodents. The main part of the studies is related to the morphine withdrawal (chapters 3-7), while a minor part is dealing with cocaine psychic dependence (chapter 9).

  9. Family poverty affects the rate of human infant brain growth.

    Directory of Open Access Journals (Sweden)

    Jamie L Hanson

    Full Text Available Living in poverty places children at very high risk for problems across a variety of domains, including schooling, behavioral regulation, and health. Aspects of cognitive functioning, such as information processing, may underlie these kinds of problems. How might poverty affect the brain functions underlying these cognitive processes? Here, we address this question by observing and analyzing repeated measures of brain development of young children between five months and four years of age from economically diverse backgrounds (n = 77. In doing so, we have the opportunity to observe changes in brain growth as children begin to experience the effects of poverty. These children underwent MRI scanning, with subjects completing between 1 and 7 scans longitudinally. Two hundred and three MRI scans were divided into different tissue types using a novel image processing algorithm specifically designed to analyze brain data from young infants. Total gray, white, and cerebral (summation of total gray and white matter volumes were examined along with volumes of the frontal, parietal, temporal, and occipital lobes. Infants from low-income families had lower volumes of gray matter, tissue critical for processing of information and execution of actions. These differences were found for both the frontal and parietal lobes. No differences were detected in white matter, temporal lobe volumes, or occipital lobe volumes. In addition, differences in brain growth were found to vary with socioeconomic status (SES, with children from lower-income households having slower trajectories of growth during infancy and early childhood. Volumetric differences were associated with the emergence of disruptive behavioral problems.

  10. Induction of metabolism and transport in human intestine : Validation of precision-cut slices as a tool to study induction of drug metabolism in human intestine in vitro

    NARCIS (Netherlands)

    van de Kerkhof, Esther; De Graaf, Inge A. M.; Ungell, Anna-Lena B.; Groothuis, Geny M. M.

    2008-01-01

    Induction of drug enzyme activity in the intestine can strongly determine plasma levels of drugs. It is therefore important to predict drug-drug interactions in human intestine in vitro. We evaluated the applicability of human intestinal precision-cut slices for induction studies in vitro. Morpholog

  11. Ebola Virus Infection: Review of the Pharmacokinetic and Pharmacodynamic Properties of Drugs Considered for Testing in Human Efficacy Trials.

    Science.gov (United States)

    Madelain, Vincent; Nguyen, Thi Huyen Tram; Olivo, Anaelle; de Lamballerie, Xavier; Guedj, Jérémie; Taburet, Anne-Marie; Mentré, France

    2016-08-01

    The 2014-2015 outbreak of Ebola virus disease is the largest epidemic to date in terms of the number of cases, deaths, and affected areas. In October 2015, no antiviral agents had proven antiviral efficacy in patients. However, in September 2014, the World Health Organization inventoried and has since regularly updated a list of potential drug candidates with demonstrated antiviral efficacy in in vitro or animal models. This includes agents belonging to various therapeutic classes, namely direct antiviral agents (favipiravir and BCX4430), a combination of antibodies (ZMapp), type I interferons, RNA interference-based drugs (TKM-Ebola and AVI-7537), and anticoagulant drugs (rNAPc2). Here, we review the pharmacokinetic and pharmacodynamic information presently available for these drugs, using data obtained in healthy volunteers for pharmacokinetics and data obtained in human clinical trials or animal models for pharmacodynamics. Future studies evaluating these drugs in clinical trials are critical to confirm their efficacy in humans, propose appropriate doses, and evaluate the possibility of treatment combinations. PMID:26798032

  12. Cesium's Affects on Morphological Changes of Human Erythrocytes%Cesium's Affects on Morphological Changes of Human Erythrocytes

    Institute of Scientific and Technical Information of China (English)

    Feng, Yunxiao; La, Ming

    2012-01-01

    Cesium could play a toxic role in several pathological processes. Atomic force microscopy (AFM) was used to study morphological changes of human erythrocytes after incubating with different concentrations of CsCI, and the Raman spectra were used to study the effects of CsCl on the chemistry components of erythrocyte membrane. The AFM images showed that the "domain structures" that appeared after incubation with higher concentration of CsCl (150 mmol-L-1), are featured by the particles aggregated to form ranges and the separations among them enlarged to gorges, and this change may increase the permeability of cell membranes. The Raman results showed that the polar part of membrane phospholipid become more order and with the increasing of the concentration of CsCl, the longitudinal order of nonpolar parts first decreased and then increased. It is concluded that the aggregation of mem- brane proteins and the order changes of the phospholipid cause a change in the distribution and conformation of the phospholipid membrane. And the effects of CsCl on the erythrocyte membrane are mainly dependent on its concentration.

  13. Predicting enzyme targets for cancer drugs by profiling human Metabolic reactions in NCI-60 cell lines

    Directory of Open Access Journals (Sweden)

    Ching Wai-Ki

    2010-10-01

    Full Text Available Abstract Background Drugs can influence the whole metabolic system by targeting enzymes which catalyze metabolic reactions. The existence of interactions between drugs and metabolic reactions suggests a potential way to discover drug targets. Results In this paper, we present a computational method to predict new targets for approved anti-cancer drugs by exploring drug-reaction interactions. We construct a Drug-Reaction Network to provide a global view of drug-reaction interactions and drug-pathway interactions. The recent reconstruction of the human metabolic network and development of flux analysis approaches make it possible to predict each metabolic reaction's cell line-specific flux state based on the cell line-specific gene expressions. We first profile each reaction by its flux states in NCI-60 cancer cell lines, and then propose a kernel k-nearest neighbor model to predict related metabolic reactions and enzyme targets for approved cancer drugs. We also integrate the target structure data with reaction flux profiles to predict drug targets and the area under curves can reach 0.92. Conclusions The cross validations using the methods with and without metabolic network indicate that the former method is significantly better than the latter. Further experiments show the synergism of reaction flux profiles and target structure for drug target prediction. It also implies the significant contribution of metabolic network to predict drug targets. Finally, we apply our method to predict new reactions and possible enzyme targets for cancer drugs.

  14. How various drugs affect anxiety-related behavior in male and female rats prenatally exposed to methamphetamine.

    Science.gov (United States)

    Macúchová, E; Ševčíková, M; Hrebíčková, I; Nohejlová, K; Šlamberová, R

    2016-06-01

    Different forms of anxiety-related behavior have been reported after a single drug use of many abused substances, however, less is known about how males and females are affected differently from exposure to various drugs. Furthermore, chronic prenatal methamphetamine (MA) exposure was shown to predispose the animal to an increased sensitivity to drugs administrated in adulthood. Using the Elevated plus-maze test (EPM), the first aim of the present study was to examine how male and female rats are affected by acute drug treatment with subcutaneously (s.c.) administrated (a) MA (1mg/kg); (b) drugs with a similar mechanism of action to MA: amphetamine (AMP, 1mg/kg), cocaine (COC, 5mg/kg), 3,4-methylenedioxymethamphetamine (MDMA, 5mg/kg); and (c) drugs with different mechanisms of action: morphine (MOR, 5mg/kg), and Δ 9-tetrahydrocannabinol (THC, 2mg/kg). The second aim was to determine if prenatally MA-exposed (5mg/kg) animals show an increased sensitivity to adult drug treatment. The parameters analyzed were divided into two categories: anxiety-related behavior and anxiety-unrelated/exploratory behavior. Our results showed in female rats a decreased percentage of the time spent in the closed arms (CA) after MA, and an increased percentage of the time spent in the open arms (OA) after MA, AMP, and COC treatment, indicating an anxiolytic-like effect. In females, MDMA and THC treatment increased the percentage of the time spent in the CA. An increased percentage of the time spent in the CA was also seen after MOR treatment in females as well as in males, indicating an anxiogenic-like effect. As far as the interaction between prenatal MA exposure and adult drug treatment is concerned, there was no effect found. In conclusion, it seems that: (a) in some cases female rats are more vulnerable to acute drug treatment, in terms of either anxiogenic- or anxiolytic-like effects; (b) prenatal MA exposure does not sensitize animals to the anxiety-related effects of any of the

  15. Activity of antiretroviral drugs in human infections by opportunistic agents

    Directory of Open Access Journals (Sweden)

    Izabel Galhardo Demarchi

    2012-03-01

    Full Text Available Highly active antiretroviral therapy (HAART is used in patients infected with HIV. This treatment has been shown to significantly decrease opportunist infections such as those caused by viruses, fungi and particularly, protozoa. The use of HAART in HIV-positive persons is associated with immune reconstitution as well as decreased prevalence of oral candidiasis and candidal carriage. Antiretroviral therapy benefits patients who are co-infected by the human immunodeficiency virus (HIV, human herpes virus 8 (HHV-8, Epstein-Barr virus, hepatitis B virus (HBV, parvovirus B19 and cytomegalovirus (CMV. HAART has also led to a significant reduction in the incidence, and the modification of characteristics, of bacteremia by etiological agents such as Staphylococcus aureus, coagulase negative staphylococcus, non-typhoid species of Salmonella, Streptococcus pneumoniae, Pseudomonas aeruginosa, and Mycobacterium tuberculosis. HAART can modify the natural history of cryptosporidiosis and microsporidiosis, and restore mucosal immunity, leading to the eradication of Cryptosporidium parvum. A similar restoration of immune response occurs in infections by Toxoplasma gondii. The decline in the incidence of visceral leishmaniasis/HIV co-infection can be observed after the introduction of protease inhibitor therapy. Current findings are highly relevant for clinical medicine and may serve to reduce the number of prescribed drugs thereby improving the quality of life of patients with opportunistic diseases.A terapia HAART (terapia antirretroviral altamente ativa é usada em pacientes infectados pelo vírus da imunodeficiência humana (HIV e demonstrou diminuição significativa de infecções oportunistas, tais como as causadas por vírus, fungos, protozoários e bactérias. O uso da HAART está associado com a reconstituição imunológica e diminuição na prevalência de candidíase oral. A terapia antirretroviral beneficia pacientes co-infectados pelo HIV, v

  16. Human hepatoma cell lines on gas foaming templated alginate scaffolds for in vitro drug-drug interaction and metabolism studies.

    Science.gov (United States)

    Stampella, A; Rizzitelli, G; Donati, F; Mazzarino, M; de la Torre, X; Botrè, F; Giardi, M F; Dentini, M; Barbetta, A; Massimi, M

    2015-12-25

    Liver in vitro systems that allow reliable prediction of major human in vivo metabolic pathways have a significant impact in drug screening and drug metabolism research. In the present study, a novel porous scaffold composed of alginate was prepared by employing a gas-in-liquid foaming approach. Galactose residues were introduced on scaffold surfaces to promote cell adhesion and to enhance liver specific functions of the entrapped HepG2/C3A cells. Hepatoma cells in the gal-alginate scaffold showed higher levels of liver specific products (albumin and urea) and were more responsive to specific inducers (e.g. dexamethasone) and inhibitors (e.g. ketoconazole) of the CYP3A4 system than in conventional monolayer culture. HepG2/C3A cells were also more efficient in terms of rapid elimination of testosterone, used as a model substance, at rates comparable to those of in vivo excretion. In addition, an improvement in metabolism of testosterone, in terms of phase II metabolite formation, was also observed when the more differentiated HepaRG cells were used. Together the data suggest that hepatocyte/gas templated alginate-systems provide an innovative high throughput platform for in vitro drug metabolism and drug-drug interaction studies, with broad fields of application, and might provide a valid tool for minimizing animal use in preclinical testing of human relevance. PMID:26456671

  17. 76 FR 36543 - Draft Guidance for Industry and Food and Drug Administration Staff: Applying Human Factors and...

    Science.gov (United States)

    2011-06-22

    ... and Food and Drug Administration Staff: Applying Human Factors and Usability Engineering to Optimize... HUMAN SERVICES Food and Drug Administration Draft Guidance for Industry and Food and Drug Administration Staff: Applying Human Factors and Usability Engineering To Optimize Medical Device Design;...

  18. Inhibitory effects of psychotropic drugs on mexiletine metabolism in human liver microsomes: prediction of in vivo drug interactions.

    Science.gov (United States)

    Hara, Y; Nakajima, M; Miyamoto, K-I; Yokoi, T

    2005-06-01

    Mexiletine, an anti-arrhythmic agent, is used for the control of ventricular arrhythmias and for neuropathic pain from cancer or diabetes mellitus. It is sometimes used together with psychotropic drugs in patients with depression, schizophrenia or sleep disorder. It is metabolized mainly by cytochrome P450 (CYP) 2 D 6 and, to a minor extent, by CYP1A2. To predict possible drug interactions between mexiletine and psychotropic drugs, the inhibitory effects of 14 psychotropic drugs (phenytoin, carbamazepine, fluvoxamine, paroxetine, fluoxetine, citalopram, sertraline, imipramine, desipramine, haloperidol, thioridazine, olanzapine, etizolam, and quazepam) on mexiletine metabolism in human liver microsomes were determined. Fluoxetine (Ki=0.6+/- 0.1 microM), sertraline (Ki=7.6+/- 0.8 microM) and desipramine (Ki=3.2+/- 0.5 microM) competitively inhibited the mexiletine p-hydroxylation in human liver microsomes. Thioridazine (Kis=0.5+/- 0.2 microM; Kii =3.6+/-1.6 microM) and paroxetine (Kis=1.7+/- 0.7 microM; Kii=3.6+/- 0.9 microM) exhibited a mixed-type inhibition (competitive and non-competitive) toward mexiletine p-hydroxylation in human liver microsomes. The changes of the in vivo clearance of mexiletine by the psychotropic drugs were predicted by 1+(I/Ki) using the in vitro Ki and unbound inhibitor concentrations in liver. The values were calculated as 2.4 for paroxetine, 5.5 for fluoxetine, 1.1 for sertraline, 2.8 for desipramine and 2.2 for thioridazine. In addition, paroxetine exhibited a mechanism-based inactivation with Ki=0.7 microM and Kinact=0.15 min(-1). The present study predicted the possibility of drug interactions between mexiletine and paroxetine, fluoxetine, desipramine, and thioridazine in clinical use. PMID:16192107

  19. Affective computing with primary and secondary emotions in a virtual human

    OpenAIRE

    Becker-Asano, Christian; Wachsmuth, Ipke

    2010-01-01

    We introduce the WASABI ([W]ASABI [A]ffect [S]imulation for [A] gents with [B]elievable [I]nteractivity) Affect Simulation Architecture, in which a virtual human's cognitive reasoning capabilities are combined with simulated embodiment to achieve the simulation of primary and secondary emotions. In modeling primary emotions we follow the idea of "Core Affect" in combination with a continuous progression of bodily feeling in three-dimensional emotion space ( PAD space), that is subsequently ca...

  20. The use of human resources literature regarding the relationship between affect and student academic performance

    Directory of Open Access Journals (Sweden)

    Chris W. Callaghan

    2014-02-01

    Full Text Available Orientation: In human resources literature affect, or affectivity, has been identified as contributing, either negatively or positively, to different forms of performance in a range of different contexts.Research purpose: The aim of the study was to empirically test theory that predicts that affect can influence performance; in this case the academic performance of students in the South African higher education context.Motivation for the study: Human resources job performance theory seems to offer important insights when extended into other contexts of individual performance. The specific potential influence of affect on student performance is unclear in this context.Research design, approach and method: A non-probability comprehensive sample of all students registered for first-year accountancy (n = 719 was used. Confirmatory factor analysis, exploratory factor analysis and bivariate tests of association were used to empirically test theory predicting relationships between affect and student academic performance.Main findings: In general the findings support the predications derived from affect theory, that negative affect is negatively associated with student performance and that positive affect is positively associated with student performance. Yet, the results suggest that affect might not, in this context, reflect the two-dimensional theoretical structure. In particular, negative affectivity might better be considered as a three-dimensioned construct.Practical/managerial implications: These results suggest that proactive measures may need to be taken by higher education institutions to support first-year students affectively. Student advisors or counsellors should be appointed, with a specific focus on providing support for student anxiety and other contextual frustrations to which individuals with higher levels of negative affect might be particularly vulnerable.Contribution: These findings provide new insights into the importance of

  1. Pharmacogenomics of the human ABC transporter ABCG2: from functional evaluation to drug molecular design

    Science.gov (United States)

    Ishikawa, Toshihisa; Tamura, Ai; Saito, Hikaru; Wakabayashi, Kanako; Nakagawa, Hiroshi

    2005-10-01

    In the post-genome-sequencing era, emerging genomic technologies are shifting the paradigm for drug discovery and development. Nevertheless, drug discovery and development still remain high-risk and high-stakes ventures with long and costly timelines. Indeed, the attrition of drug candidates in preclinical and development stages is a major problem in drug design. For at least 30% of the candidates, this attrition is due to poor pharmacokinetics and toxicity. Thus, pharmaceutical companies have begun to seriously re-evaluate their current strategies of drug discovery and development. In that light, we propose that a transport mechanism-based design might help to create new, pharmacokinetically advantageous drugs, and as such should be considered an important component of drug design strategy. Performing enzyme- and/or cell-based drug transporter, interaction tests may greatly facilitate drug development and allow the prediction of drug-drug interactions. We recently developed methods for high-speed functional screening and quantitative structure-activity relationship analysis to study the substrate specificity of ABC transporters and to evaluate the effect of genetic polymorphisms on their function. These methods would provide a practical tool to screen synthetic and natural compounds, and these data can be applied to the molecular design of new drugs. In this review article, we present an overview on the genetic polymorphisms of human ABC transporter ABCG2 and new camptothecin analogues that can circumvent AGCG2-associated multidrug resistance of cancer.

  2. [Progress in quantitative methods based on liquid chromatography-mass spectrometry for drug metabolizing enzymes in human liver microsomes].

    Science.gov (United States)

    Wang, Huanhuan; Lu, Yayao; Peng, Bo; Qian, Xiaohong; Zhang, Yangjun

    2015-06-01

    Cytochrome P450 (CYP) enzymes and uridine 5-diphospho-glucuronosyltransferase (UGT) enzymes are critical enzymes for drug metabolism. Both chemical drugs and traditional Chinese medicines are converted to more readily excreted compounds by drug metabolizing enzymes in human livers. Because of the disparate expression of CYP and UGT enzymes among different individuals, accurate quantification of these enzymes is essential for drug pharmacology, drug-drug interactions and drug clinical applications. The research progress in quantitative methods based on liquid chromatography-mass spectrometry for drug metabolizing enzymes in human liver microsomes in the recent decade is reviewed.

  3. Multiple Drug Transport Pathways through Human P-Glycoprotein.

    Science.gov (United States)

    McCormick, James W; Vogel, Pia D; Wise, John G

    2015-07-21

    P-Glycoprotein (P-gp) is a plasma membrane efflux pump that is commonly associated with therapy resistances in cancers and infectious diseases. P-gp can lower the intracellular concentrations of many drugs to subtherapeutic levels by translocating them out of the cell. Because of the broad range of substrates transported by P-gp, overexpression of P-gp causes multidrug resistance. We reported previously on dynamic transitions of P-gp as it moved through conformations based on crystal structures of homologous ABCB1 proteins using in silico targeted molecular dynamics techniques. We expanded these studies here by docking transport substrates to drug binding sites of P-gp in conformations open to the cytoplasm, followed by cycling the pump through conformations that opened to the extracellular space. We observed reproducible transport of two substrates, daunorubicin and verapamil, by an average of 11-12 Å through the plane of the membrane as P-gp progressed through a catalytic cycle. Methylpyrophosphate, a ligand that should not be transported by P-gp, did not show this movement through P-gp. Drug binding to either of two subsites on P-gp appeared to determine the initial pathway used for drug movement through the membrane. The specific side-chain interactions with drugs within each pathway seemed to be, at least in part, stochastic. The docking and transport properties of a P-gp inhibitor, tariquidar, were also studied. A mechanism of inhibition by tariquidar that involves stabilization of an outward open conformation with tariquidar bound in intracellular loops or at the drug binding domain of P-gp is presented.

  4. Regenerated keratin membrane to match the in vitro drug diffusion through human epidermis

    OpenAIRE

    Selmin, Francesca; Cilurzo, Francesco; Aluigi, Annalisa; Franzè, Silvia; Minghetti, Paola

    2012-01-01

    This work aimed to develop membranes made of regenerated keratin and ceramides (CERs) to match the barrier property of the human stratum corneum in in vitro percutaneous absorption studies. The membrane composition was optimized on the basis of the in vitro drug diffusion profiles of ibuprofen, propranolol and testosterone chosen as model drugs on the basis of their different diffusion and solubility properties. The data were compared to those obtained using human epidermis. The ATR-FTIR and ...

  5. A comparative analysis of protein targets of withdrawn cardiovascular drugs in human and mouse

    OpenAIRE

    Zhao, Yuqi; Wang, Jingwen; Wang, Yanjie; Huang, Jingfei

    2012-01-01

    Background Mouse is widely used in animal testing of cardiovascular disease. However, a large number of cardiovascular drugs that have been experimentally proved to work well on mouse were withdrawn because they caused adverse side effects in human. Methods In this study, we investigate whether binding patterns of withdrawn cardiovascular drugs are conserved between mouse and human through computational dockings and molecular dynamic simulations. In addition, we also measured the level of con...

  6. "Narco" Emotions: Affect and Desensitization in Social Media during the Mexican Drug War

    OpenAIRE

    De Choudhury, Munmun; Monroy-Hernández, Andrés; Mark, Gloria

    2015-01-01

    Social media platforms have emerged as prominent information sharing ecosystems in the context of a variety of recent crises, ranging from mass emergencies, to wars and political conflicts. We study affective responses in social media and how they might indicate desensitization to violence experienced in communities embroiled in an armed conflict. Specifically, we examine three established affect measures: negative affect, activation, and dominance as observed on Twitter in relation to a numb...

  7. Emergence of the silicon human and network targeting drugs

    NARCIS (Netherlands)

    Kolodkin, Alexey; Boogerd, Fred C.; Plant, Nick; Bruggeman, Frank J.; Goncharuk, Valeri; Lunshof, Jeantine; Moreno-Sanchez, Rafael; Yilmaz, Nilgun; Bakker, Barbara M.; Snoep, Jacky L.; Balling, Rudi; Westerhoff, Hans V.

    2012-01-01

    The development of disease may be characterized as a pathological shift of homeostasis; the main goal of contemporary drug treatment is, therefore, to return the pathological homeostasis back to the normal physiological range. From the view point of systems biology, homeostasis emerges from the inte

  8. Higher-order Multivariable Polynomial Regression to Estimate Human Affective States.

    Science.gov (United States)

    Wei, Jie; Chen, Tong; Liu, Guangyuan; Yang, Jiemin

    2016-01-01

    From direct observations, facial, vocal, gestural, physiological, and central nervous signals, estimating human affective states through computational models such as multivariate linear-regression analysis, support vector regression, and artificial neural network, have been proposed in the past decade. In these models, linear models are generally lack of precision because of ignoring intrinsic nonlinearities of complex psychophysiological processes; and nonlinear models commonly adopt complicated algorithms. To improve accuracy and simplify model, we introduce a new computational modeling method named as higher-order multivariable polynomial regression to estimate human affective states. The study employs standardized pictures in the International Affective Picture System to induce thirty subjects' affective states, and obtains pure affective patterns of skin conductance as input variables to the higher-order multivariable polynomial model for predicting affective valence and arousal. Experimental results show that our method is able to obtain efficient correlation coefficients of 0.98 and 0.96 for estimation of affective valence and arousal, respectively. Moreover, the method may provide certain indirect evidences that valence and arousal have their brain's motivational circuit origins. Thus, the proposed method can serve as a novel one for efficiently estimating human affective states. PMID:26996254

  9. Higher-order Multivariable Polynomial Regression to Estimate Human Affective States

    Science.gov (United States)

    Wei, Jie; Chen, Tong; Liu, Guangyuan; Yang, Jiemin

    2016-03-01

    From direct observations, facial, vocal, gestural, physiological, and central nervous signals, estimating human affective states through computational models such as multivariate linear-regression analysis, support vector regression, and artificial neural network, have been proposed in the past decade. In these models, linear models are generally lack of precision because of ignoring intrinsic nonlinearities of complex psychophysiological processes; and nonlinear models commonly adopt complicated algorithms. To improve accuracy and simplify model, we introduce a new computational modeling method named as higher-order multivariable polynomial regression to estimate human affective states. The study employs standardized pictures in the International Affective Picture System to induce thirty subjects’ affective states, and obtains pure affective patterns of skin conductance as input variables to the higher-order multivariable polynomial model for predicting affective valence and arousal. Experimental results show that our method is able to obtain efficient correlation coefficients of 0.98 and 0.96 for estimation of affective valence and arousal, respectively. Moreover, the method may provide certain indirect evidences that valence and arousal have their brain’s motivational circuit origins. Thus, the proposed method can serve as a novel one for efficiently estimating human affective states.

  10. Comparative pharmacokinetics and the evaluation of human food safety for veterinary drugs

    Institute of Scientific and Technical Information of China (English)

    CraiA

    2002-01-01

    The evaluation of human food safety for veterinary drugs used in food animals is required as part of the veterinary drug approval process in most countries.Two elements necessary to demonstrate human food safety are toxicology data concerning the acute and chronic toxicity of the parent drug and its metabolites,and data describing the pharmacokinetics of residues of the drug and metabolites in the species of animals in which the drug will be used.Interspecies differences in metabolism can be qualitative and quantitative.In most food animals,qualitative differences in metabolism of veterinary drugs is not seen.Differences are almost always in the amounts of individual metabolites and their distribution.Because residues are composed of the parent drug and metabolites,interspecies comparisons must involve consideration of comparative xenobiotic metabolism.Aspects of comparative food animal drug metabolism which can afect the composition of residues will be reviewed.Additionally,the residue studies which are required to establish human food safety,and interspecies differences and similarities in the pharmacokinetics of drugs which impact residues of drugs in animal derived foods will be studied.To illustrate the factors which can complicate and assist these comparisons,two drugs will be examined in detail;ivemectin and fenbendazole.The results of recent residue studies exploring comparative pharmacokinetics and metabolism in avian species will be presented.Lastly,the activities of two US programs,FARAD and The NRSP-7 Minor Use Animal Drug Program,which routinely address interspecies comparisons will be presented along with potential strategies which may be employed in the study of species diffecences.

  11. Maternal Drug Use during Pregnancy: Are Preterm and Full-Term Infants Affected Differently?

    Science.gov (United States)

    Brown, Josephine V.; Bakeman, Roger; Coles, Claire D.; Sexson, William R.; Demi, Alice S.

    1998-01-01

    Examined effects of prenatal drug exposure on infants born preterm and full-term to African American mothers. Found more extreme fetal growth deficits in later-born infants, and more extreme irritability increases in earlier-born infants. Gestation length did not moderate cardiorespiratory reactivity effects. Exposure effects occurred for…

  12. Significance of MDR1 and multiple drug resistance in refractory human epileptic brain

    Directory of Open Access Journals (Sweden)

    Dini Gabriele

    2004-10-01

    Full Text Available Abstract Background The multiple drug resistance protein (MDR1/P-glycoprotein is overexpressed in glia and blood-brain barrier (BBB endothelium in drug refractory human epileptic tissue. Since various antiepileptic drugs (AEDs can act as substrates for MDR1, the enhanced expression/function of this protein may increase their active extrusion from the brain, resulting in decreased responsiveness to AEDs. Methods Human drug resistant epileptic brain tissues were collected after surgical resection. Astrocyte cell cultures were established from these tissues, and commercially available normal human astrocytes were used as controls. Uptake of fluorescent doxorubicin and radioactive-labeled Phenytoin was measured in the two cell populations, and the effect of MDR1 blockers was evaluated. Frozen human epileptic brain tissue slices were double immunostained to locate MDR1 in neurons and glia. Other slices were exposed to toxic concentrations of Phenytoin to study cell viability in the presence or absence of a specific MDR1 blocker. Results MDR1 was overexpressed in blood vessels, astrocytes and neurons in human epileptic drug-resistant brain. In addition, MDR1-mediated cellular drug extrusion was increased in human 'epileptic' astrocytes compared to 'normal' ones. Concomitantly, cell viability in the presence of cytotoxic compounds was increased. Conclusions Overexpression of MDR1 in different cell types in drug-resistant epileptic human brain leads to functional alterations, not all of which are linked to drug pharmacokinetics. In particular, the modulation of glioneuronal MDR1 function in epileptic brain in the presence of toxic concentrations of xenobiotics may constitute a novel cytoprotective mechanism.

  13. Effect of acidity of drugs on the prediction of human oral absorption by biopartitioning micellar chromatography

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Biopartitioning micellar chromatography(BMC)is a potentially high throughput and low cost alternative for in vitro prediction of drug absorption,which can mimic the drug partitioning process in biological systems.In this paper,a data set of 56 compounds representing acidic,basic,neutral and amphoteric drugs from various structure classes with human oral absorption(HOA)data available were employed to show the effect of acidity of drugs in oral absorption prediction.HOA was reciprocally correlated to the nega...

  14. Is it the real deal? Perception of virtual characters versus humans: an affective cognitive neuroscience perspective

    Directory of Open Access Journals (Sweden)

    Aline W. ede Borst

    2015-05-01

    Full Text Available Recent developments in neuroimaging research support the increased use of naturalistic stimulus material such as film, animations, or androids. These stimuli allow for a better understanding of how the brain processes information in complex situations while maintaining experimental control. While avatars and androids are well suited to study human cognition, they should not be equated to human stimuli. For example, the Uncanny Valley hypothesis theorizes that artificial agents with high human-likeness may evoke feelings of eeriness in the human observer. Here we review if, when, and how the perception of human-like avatars and androids differs from the perception of humans and consider how this influences their utilization as stimulus material in social and affective neuroimaging studies. First, we discuss how the appearance of virtual characters affects perception. When stimuli are morphed across categories from non-human to human, the most ambiguous stimuli, rather than the most human-like stimuli, show prolonged classification times and increased eeriness. Human-like to human stimuli show a positive linear relationship with familiarity. Secondly, we show that expressions of emotions in human-like avatars can be perceived similarly to human emotions, with corresponding behavioral, physiological and neuronal activations, with exception of physical dissimilarities. Subsequently, we consider if and when one perceives differences in action representation by artificial agents versus humans. Motor resonance and predictive coding models may account for empirical findings, such as an interference effect on action for observed human-like, natural moving characters. However, the expansion of these models to explain more complex behavior, such as empathy, still needs to be investigated in more detail. Finally, we broaden our outlook to social interaction, where virtual reality stimuli can be utilized to imitate complex social situations.

  15. Predicting Drug Extraction in the Human Gut Wall: Assessing Contributions from Drug Metabolizing Enzymes and Transporter Proteins using Preclinical Models.

    Science.gov (United States)

    Peters, Sheila Annie; Jones, Christopher R; Ungell, Anna-Lena; Hatley, Oliver J D

    2016-06-01

    Intestinal metabolism can limit oral bioavailability of drugs and increase the risk of drug interactions. It is therefore important to be able to predict and quantify it in drug discovery and early development. In recent years, a plethora of models-in vivo, in situ and in vitro-have been discussed in the literature. The primary objective of this review is to summarize the current knowledge in the quantitative prediction of gut-wall metabolism. As well as discussing the successes of current models for intestinal metabolism, the challenges in the establishment of good preclinical models are highlighted, including species differences in the isoforms; regional abundances and activities of drug metabolizing enzymes; the interplay of enzyme-transporter proteins; and lack of knowledge on enzyme abundances and availability of empirical scaling factors. Due to its broad specificity and high abundance in the intestine, CYP3A is the enzyme that is frequently implicated in human gut metabolism and is therefore the major focus of this review. A strategy to assess the impact of gut wall metabolism on oral bioavailability during drug discovery and early development phases is presented. Current gaps in the mechanistic understanding and the prediction of gut metabolism are highlighted, with suggestions on how they can be overcome in the future.

  16. Stress, alcohol and drug interaction: an update of human research

    OpenAIRE

    Uhart, Magdalena; Wand, Gary S.

    2008-01-01

    A challenging question that continues unanswered in the field of addiction is why some individuals are more vulnerable to substance use disorders than others. Numerous risk factors for alcohol and other drugs of abuse, including exposure to various forms of stress, have been identified in clinical studies. However, the neurobiological mechanisms that underlie this relationship remain unclear. Critical neurotransmitters, hormones and neurobiological sites have been recognized, which may provid...

  17. Visualizing the site of drug action in living human brain

    Energy Technology Data Exchange (ETDEWEB)

    Suhara, Tetsuya [National Inst. of Radiological Sciences, Chiba (Japan)

    1997-03-01

    PET is the only technique available to date to measure molecular interactions in vivo, but the basic mechanism of molecular interaction in vivo is not yet fully understood. However, PET can allow visualization of various phenomena which we can not observe with in vitro techniques. Progress in PET study will provide a new viewpoint for drug development and the study of molecular mechanism in the brain. (J.P.N.)

  18. Thyroid organotypic rat and human cultures used to investigate drug effects on thyroid function, hormone synthesis and release pathways

    International Nuclear Information System (INIS)

    Drug induced thyroid effects were evaluated in organotypic models utilizing either a rat thyroid lobe or human thyroid slices to compare rodent and human response. An inhibition of thyroid peroxidase (TPO) function led to a perturbation in the expression of key genes in thyroid hormone synthesis and release pathways. The clinically used thiourea drugs, methimazole (MMI) and 6-n-propyl-2-thioruacil (PTU), were used to evaluate thyroid drug response in these models. Inhibition of TPO occurred early as shown in rat thyroid lobes (2 h) and was sustained in both rat (24–48 h) and human (24 h) with ≥ 10 μM MMI. Thyroid from rats treated with single doses of MMI (30–1000 mg/kg) exhibited sustained TPO inhibition at 48 h. The MMI in vivo thyroid concentrations were comparable to the culture concentrations (∼ 15–84 μM), thus demonstrating a close correlation between in vivo and ex vivo thyroid effects. A compensatory response to TPO inhibition was demonstrated in the rat thyroid lobe with significant up-regulation of genes involved in the pathway of thyroid hormone synthesis (Tpo, Dio1, Slc5a5, Tg, Tshr) and the megalin release pathway (Lrp2) by 24 h with MMI (≥ 10 μM) and PTU (100 μM). Similarly, thyroid from the rat in vivo study exhibited an up-regulation of Dio1, Slc5a5, Lrp2, and Tshr. In human thyroid slices, there were few gene expression changes (Slc5a5, ∼ 2-fold) and only at higher MMI concentrations (≥ 1500 μM, 24 h). Extended exposure (48 h) resulted in up-regulation of Tpo, Dio1 and Lrp2, along with Slc5a5 and Tshr. In summary, TPO was inhibited by similar MMI concentrations in rat and human tissue, however an increased sensitivity to drug treatment in rat is indicated by the up-regulation of thyroid hormone synthesis and release gene pathways at concentrations found not to affect human tissue. -- Highlights: ► Novel model of rat thyroid or human thyroid slices to evaluate pathways of injury. ► TPO inhibition by MMI or PTU altered

  19. Evaluation of neurotoxic and neuroprotective pathways affected by antiepileptic drugs in cultured hippocampal neurons

    OpenAIRE

    Morte, Maria I.; Carreira, Bruno P.; Falcão, Maria J.; Ambrosio, António M.; Soares-da-Silva, Patrício; Araújo, Inês M.; Carvalho, Caetana M.

    2013-01-01

    In this study we evaluated the neurotoxicity of eslicarbazepine acetate (ESL), and of its in vivo metabolites eslicarbazepine (S-Lic) and R-licarbazepine (R-Lic), as compared to the structurally-related compounds carbamazepine (CBZ) and oxcarbazepine (OXC), in an in vitro model of cultured rat hippocampal neurons. The non-related antiepileptic drugs (AEDs) lamotrigine (LTG) and sodium valproate (VPA) were also studied. We assessed whether AEDs modulate pro-survival/pro-apoptotic p...

  20. Biases affecting injected doses of an experimental drug during clinical trials

    OpenAIRE

    Perrottet, Nancy; Brunner-Ferber, Françoise; Grouzmann, Eric; Spertini, François; Biollaz, Jérôme; Buclin, Thierry; Widmer, Nicolas

    2016-01-01

    Background During clinical trials, researchers rarely question nominal doses specified on labels of investigational products, overlooking the potential for inaccuracies that may result when calculating pharmacokinetic and pharmacodynamic parameters. This study evaluated the disparity between nominal doses and the doses actually administered in two Phase I trials of a biosimilar drug. Methods In Trial A, 12 healthy volunteers received various doses of an interferon β-1a biosimilar via either s...

  1. Did FDA Decisionmaking Affect Anti-Psychotic Drug Prescribing in Children?: A Time-Trend Analysis.

    Directory of Open Access Journals (Sweden)

    Bo Wang

    Full Text Available Following Food and Drug Administration (FDA approval, many drugs are prescribed for non-FDA-approved ("off-label" uses. If substantial evidence supports the efficacy and safety of off-label indications, manufacturers can pursue formal FDA approval through supplemental new drug applications (sNDAs. We evaluated the effect of FDA determinations on pediatric sNDAs for antipsychotic drugs on prescribing of these products in children.Retrospective, segmented time-series analysis using new prescription claims during 2003-2012 for three atypical antipsychotics (olanzapine, quetiapine, ziprasidone. FDA approved the sNDAs for pediatric use of olanzapine and quetiapine in December 2009, but did not approve the sNDA for pediatric use of ziprasidone.During the months before FDA approval of its pediatric sNDA, new prescriptions of olanzapine decreased for both children and adults. After FDA approval, the increase in prescribing trends was similar for both age groups (P = 0.47 for schizophrenia and bipolar disorder; P = 0.37 for other indications. Comparable decreases in use of quetiapine were observed between pediatrics and adults following FDA approval of its pediatric sNDA (P = 0.88; P = 0.63. Prescribing of ziprasidone decreased similarly for pediatric and adult patients after FDA non-approval of its pediatric sNDA (P = 0.61; P = 0.79.The FDA's sNDA determinations relating to use of antipsychotics in children did not result in changes in use that favored the approved sNDAs and disfavored the unapproved sNDA. Improved communication may help translate the agency's expert judgments to clinical practice.

  2. Computational drug design strategies applied to the modelling of human immunodeficiency virus-1 reverse transcriptase inhibitors.

    Science.gov (United States)

    Santos, Lucianna Helene; Ferreira, Rafaela Salgado; Caffarena, Ernesto Raúl

    2015-11-01

    Reverse transcriptase (RT) is a multifunctional enzyme in the human immunodeficiency virus (HIV)-1 life cycle and represents a primary target for drug discovery efforts against HIV-1 infection. Two classes of RT inhibitors, the nucleoside RT inhibitors (NRTIs) and the nonnucleoside transcriptase inhibitors are prominently used in the highly active antiretroviral therapy in combination with other anti-HIV drugs. However, the rapid emergence of drug-resistant viral strains has limited the successful rate of the anti-HIV agents. Computational methods are a significant part of the drug design process and indispensable to study drug resistance. In this review, recent advances in computer-aided drug design for the rational design of new compounds against HIV-1 RT using methods such as molecular docking, molecular dynamics, free energy calculations, quantitative structure-activity relationships, pharmacophore modelling and absorption, distribution, metabolism, excretion and toxicity prediction are discussed. Successful applications of these methodologies are also highlighted. PMID:26560977

  3. Computational drug design strategies applied to the modelling of human immunodeficiency virus-1 reverse transcriptase inhibitors

    Directory of Open Access Journals (Sweden)

    Lucianna Helene Santos

    2015-11-01

    Full Text Available Reverse transcriptase (RT is a multifunctional enzyme in the human immunodeficiency virus (HIV-1 life cycle and represents a primary target for drug discovery efforts against HIV-1 infection. Two classes of RT inhibitors, the nucleoside RT inhibitors (NRTIs and the nonnucleoside transcriptase inhibitors are prominently used in the highly active antiretroviral therapy in combination with other anti-HIV drugs. However, the rapid emergence of drug-resistant viral strains has limited the successful rate of the anti-HIV agents. Computational methods are a significant part of the drug design process and indispensable to study drug resistance. In this review, recent advances in computer-aided drug design for the rational design of new compounds against HIV-1 RT using methods such as molecular docking, molecular dynamics, free energy calculations, quantitative structure-activity relationships, pharmacophore modelling and absorption, distribution, metabolism, excretion and toxicity prediction are discussed. Successful applications of these methodologies are also highlighted.

  4. Promoter strength of folic acid synthesis genes affects sulfa drug resistance in Saccharomyces cerevisiae.

    Science.gov (United States)

    Iliades, Peter; Berglez, Janette; Meshnick, Steven; Macreadie, Ian

    2003-01-01

    The enzyme dihydropteroate synthase (DHPS) is an important target for sulfa drugs in both prokaryotic and eukaryotic microbes. However, the understanding of DHPS function and the action of antifolates in eukaryotes has been limited due to technical difficulties and the complexity of DHPS being a part of a bifunctional or trifunctional protein that comprises the upstream enzymes involved in folic acid synthesis (FAS). Here, yeast strains have been constructed to study the effects of FOL1 expression on growth and sulfa drug resistance. A DHPS knockout yeast strain was complemented by yeast vectors expressing the FOL1 gene under the control of promoters of different strengths. An inverse relationship was observed between the growth rate of the strains and FOL1 expression levels. The use of stronger promoters to drive FOL1 expression led to increased sulfamethoxazole resistance when para-aminobenzoic acid (pABA) levels were elevated. However, high FOL1 expression levels resulted in increased susceptibility to sulfamethoxazole in pABA free media. These data suggest that up-regulation of FOL1 expression can lead to sulfa drug resistance in Saccharomyces cerevisiae.

  5. Decreased Core Crystallinity Facilitated Drug Loading in Polymeric Micelles without Affecting Their Biological Performances.

    Science.gov (United States)

    Gou, Jingxin; Feng, Shuangshuang; Xu, Helin; Fang, Guihua; Chao, Yanhui; Zhang, Yu; Xu, Hui; Tang, Xing

    2015-09-14

    Cargo-loading capacity of polymeric micelles could be improved by reducing the core crystallinity and the improvement in the amount of loaded cargo was cargo-polymer affinity dependent. The effect of medium chain triglyceride (MCT) in inhibiting PCL crystallization was confirmed by DSC and polarized microscope. When incorporating MCT into polymeric micelles, the maximum drug loading of disulfiram (DSF), cabazitaxel (CTX), and TM-2 (a taxane derivative) increased from 2.61 ± 0.100%, 13.5 ± 0.316%, and 20.9 ± 1.57% to 8.34 ± 0.197%, 21.7 ± 0.951%, and 28.0 ± 1.47%, respectively. Moreover, the prepared oil-containing micelles (OCMs) showed well-controlled particle size, good stability, and decreased drug release rate. MCT incorporation showed little influence on the performances of micelles in cell studies or pharmacokinetics. These results indicated that MCT incorporation could be a core construction module applied in the delivery of hydrophobic drugs. PMID:26314832

  6. Study of Excipients Affecting Dissolution Profile of Drug with Special Emphasis on Co Processed Excipients

    Directory of Open Access Journals (Sweden)

    Parmar K

    2013-06-01

    Full Text Available The main aim of present work is to study the impact of various excipients and co-processed excipientson dissolution rate. Direct compression is the preferred method for the preparation of tablets. Coprocessing is the one of the most widely explored and commercially utilized method for the preparationof directly compressible vehicle. The objective of present study is to prepare and characterize various coprocessed excipients and its application in tablet formulation. Co-processed excipient prepared wascharacterized by flow properties, solubility, Hardness, Friability, % drug content in tablet formulation.FTIR and SEM show no physical interaction between them with no chemical change. Co processing ofexcipients was evaluated for Drug release, mean dissolution time and dissolution efficiency Sucrose:MCC (2:1 used to extend the drug release up to 6 hr, we can prepare sustain release tablet of this COprocessing by incorporation of sustain release polymer. MCC: Kyron was used to prepare immediatedrug release. So based on these properties we was prepared immediate release formulation and sustainrelease formulation. Co-processing of Sucrose: MCC have been used to achieve sustain release byincorporation of pectin, by using this combination we can achieve sustain release up to 10 hr similarlyKyron: MCC was used in immediate release formulation. Comparison with both IR and SR marketedproduct and evaluated for F2 test shows there is similarity in dissolution profile between both thebatches.

  7. Effects of Ospemifene on Drug Metabolism Mediated by Cytochrome P450 Enzymes in Humans in Vitro and in Vivo

    Directory of Open Access Journals (Sweden)

    Mika Scheinin

    2013-07-01

    Full Text Available The objective of these investigations was to determine the possible effects of the novel selective estrogen receptor modulator, ospemifene, on cytochrome P450 (CYP-mediated drug metabolism. Ospemifene underwent testing for possible effects on CYP enzyme activity in human liver microsomes and in isolated human hepatocytes. Based on the results obtained in vitro, three Phase 1 crossover pharmacokinetic studies were conducted in healthy postmenopausal women to assess the in vivo effects of ospemifene on CYP-mediated drug metabolism. Ospemifene and its main metabolites 4-hydroxyospemifene and 4'-hydroxyospemifene weakly inhibited a number of CYPs (CYP2B6, CYP2C9, CYP2C19, CYP2C8, and CYP2D6 in vitro. However, only CYP2C9 activity was inhibited by 4-hydroxyospemifene at clinically relevant concentrations. Induction of CYPs by ospemifene in cultured human hepatocytes was 2.4-fold or less. The in vivo studies showed that ospemifene did not have significant effects on the areas under the plasma concentration-time curves of the tested CYP substrates warfarin (CYP2C9, bupropion (CYP2B6 and omeprazole (CYP2C19, demonstrating that pretreatment with ospemifene did not alter their metabolism. Therefore, the risk that ospemifene will affect the pharmacokinetics of drugs that are substrates for CYP enzymes is low.

  8. Preclinical models for interrogating drug action in human cancers using Stable Isotope Resolved Metabolomics (SIRM)

    Science.gov (United States)

    Lane, Andrew N.; Higashi, Richard M.; Fan, Teresa W-M.

    2016-01-01

    Aims In this review we compare the advantages and disadvantages of different model biological systems for determining the metabolic functions of cells in complex environments, how they may change in different disease states, and respond to therapeutic interventions. Background All preclinical drug-testing models have advantages and drawbacks. We compare and contrast established cell, organoid and animal models with ex vivo organ or tissue culture and in vivo human experiments in the context of metabolic readout of drug efficacy. As metabolism reports directly on the biochemical state of cells and tissues, it can be very sensitive to drugs and/or other environmental changes. This is especially so when metabolic activities are probed by stable isotope tracing methods, which can also provide detailed mechanistic information on drug action. We have developed and been applying Stable Isotope-Resolved Metabolomics (SIRM) to examine metabolic reprogramming of human lung cancer cells in monoculture, in mouse xenograft/explant models, and in lung cancer patients in situ (Lane et al. 2011; T. W. Fan et al. 2011; T. W-M. Fan et al. 2012; T. W. Fan et al. 2012; Xie et al. 2014b; Ren et al. 2014a; Sellers et al. 2015b). We are able to determine the influence of the tumor microenvironment using these models. We have now extended the range of models to fresh human tissue slices, similar to those originally described by O. Warburg (Warburg 1923), which retain the native tissue architecture and heterogeneity with a paired benign versus cancer design under defined cell culture conditions. This platform offers an unprecedented human tissue model for preclinical studies on metabolic reprogramming of human cancer cells in their tissue context, and response to drug treatment (Xie et al. 2014a). As the microenvironment of the target human tissue is retained and individual patient's response to drugs is obtained, this platform promises to transcend current limitations of drug selection

  9. Activity of antiretroviral drugs in human infections by opportunistic agents

    OpenAIRE

    Izabel Galhardo Demarchi; Daniela Maira Cardozo; Sandra Mara Alessi Aristides; Ricardo Alberto Moliterno; Thaís Gomes Verzignassi Silveira; Rosilene Fressatti Cardoso; Dennis Armando Bertolini; Terezinha Inez Estivalet Svidzinski; Jorge Juarez Vieira Teixeira; Maria Valdrinez Campana Lonardoni

    2012-01-01

    Highly active antiretroviral therapy (HAART) is used in patients infected with HIV. This treatment has been shown to significantly decrease opportunist infections such as those caused by viruses, fungi and particularly, protozoa. The use of HAART in HIV-positive persons is associated with immune reconstitution as well as decreased prevalence of oral candidiasis and candidal carriage. Antiretroviral therapy benefits patients who are co-infected by the human immunodeficiency virus (HIV), human ...

  10. Polarized location of SLC and ABC drug transporters in monolayer-cultured human hepatocytes.

    Science.gov (United States)

    Le Vee, Marc; Jouan, Elodie; Noel, Gregory; Stieger, Bruno; Fardel, Olivier

    2015-08-01

    Human hepatocytes cultured in a monolayer configuration represent a well-established in vitro model in liver toxicology, notably used in drug transporter studies. Polarized status of drug transporters, i.e., their coordinated location at sinusoidal or canalicular membranes, remains however incompletely documented in these cultured hepatocytes. The present study was therefore designed to analyze transporter expression and location in such cells. Most of drug transporters were first shown to be present at notable mRNA levels in monolayer-cultured human hepatocytes. Cultured human hepatocytes, which morphologically exhibited bile canaliculi-like structures, were next demonstrated, through immunofluorescence staining, to express the influx transporters organic anion transporting polypeptide (OATP) 1B1, OATP2B1 and organic cation transporter (OCT) 1 and the efflux transporter multidrug resistance-associated protein (MRP) 3 at their sinusoidal pole. In addition, the efflux transporters P-glycoprotein and MRP2 were detected at the canalicular pole of monolayer-cultured human hepatocytes. Moreover, canalicular secretion of reference substrates for the efflux transporters bile salt export pump, MRP2 and P-glycoprotein as well as sinusoidal drug transporter activities were observed. This polarized and functional expression of drug transporters in monolayer-cultured human hepatocytes highlights the interest of using this human in vitro cell model in xenobiotic transport studies. PMID:25862123

  11. Factors affecting antimicrobial activity of MUC7 12-mer, a human salivary mucin-derived peptide

    Directory of Open Access Journals (Sweden)

    Bobek Libuse A

    2007-11-01

    Full Text Available Abstract Background MUC7 12-mer (RKSYKCLHKRCR, a cationic antimicrobial peptide derived from the human low-molecular-weight salivary mucin MUC7, possesses potent antimicrobial activity in vitro. In order to evaluate the potential therapeutic application of the MUC7 12-mer, we examined the effects of mono- and divalent cations, EDTA, pH, and temperature on its antimicrobial activity. Methods Minimal Inhibitory Concentrations (MICs were determined using a liquid growth inhibition assay in 96-well microtiter plates. MUC7 12-mer was added at concentrations of 1.56–50 μM. MICs were determined at three endpoints: MIC-0, MIC-1, and MIC-2 (the lowest drug concentration showing 10%, 25% and 50% of growth, respectively. To examine the effect of salts or EDTA, a checkerboard microdilution technique was used. Fractional inhibitory concentration index (FICi was calculated on the basis of MIC-0. The viability of microbial cells treated with MUC7 12-mer in the presence of sodium or potassium was also determined by killing assay or flow cytometry. Results The MICs of MUC7 12-mer against organisms tested ranged from 6.25–50 μM. For C. albicans, antagonism (FICi 4.5 was observed for the combination of MUC7 12-mer and calcium; however, there was synergism (FICi 0.22 between MUC7 12-mer and EDTA, and the synergism was retained in the presence of calcium at its physiological concentration (1–2 mM. No antagonism but additivity or indifference (FICi 0.55–2.5 was observed for the combination of MUC7 12-mer and each K+, Na+, Mg2+, or Zn2+. MUC7 12-mer peptide (at 25 μM also exerted killing activity in the presence of NaCl, (up to 25 mM for C. albicans and up to 150 mM for E. coli, a physiological concentration of sodium in the oral cavity and serum, respectively and retained candidacidal activity in the presence of KCl (up to 40 mM. The peptide exhibited higher inhibitory activity against C. albicans at pH 7, 8, and 9 than at pH 5 and 6, and temperature up to

  12. The brain's emotional foundations of human personality and the Affective Neuroscience Personality Scales.

    Science.gov (United States)

    Davis, Kenneth L; Panksepp, Jaak

    2011-10-01

    Six of the primary-process subcortical brain emotion systems - SEEKING, RAGE, FEAR, CARE, GRIEF and PLAY - are presented as foundational for human personality development, and hence as a potentially novel template for personality assessment as in the Affective Neurosciences Personality Scales (ANPS), described here. The ANPS was conceptualized as a potential clinical research tool, which would help experimentalists and clinicians situate subjects and clients in primary-process affective space. These emotion systems are reviewed in the context of a multi-tiered framing of consciousness spanning from primary affect, which encodes biological valences, to higher level tertiary (thought mediated) processing. Supporting neuroscience research is presented along with comparisons to Cloninger's Temperament and Character Inventory and the Five Factor Model (FFM). Suggestions are made for grounding the internal structure of the FFM on the primal emotional systems recognized in affective neuroscience, which may promote substantive dialog between human and animal research traditions. Personality is viewed in the context of Darwinian "continuity" with the inherited subcortical brain emotion systems being foundational, providing major forces for personality development in both humans and animals, and providing an affective infrastructure for an expanded five factor descriptive model applying to normal and clinical human populations as well as mammals generally. Links with ontogenetic and epigenetic models of personality development are also presented. Potential novel clinical applications of the CARE maternal-nurturance system and the PLAY system are also discussed.

  13. Human cytomegalovirus and transplantation: drug development and regulatory issues.

    Science.gov (United States)

    McIntosh, Megan; Hauschild, Benjamin; Miller, Veronica

    2016-01-01

    Cytomegalovirus (CMV) infection is highly prevalent worldwide and can cause serious disease among immunocompromised individuals, including persons with HIV and transplant recipients on immunosuppressive therapies. It can also result in congenital cytomegalovirus when women are infected during pregnancy. Treatment and prevention of CMV in solid organ and haematopoietic stem cell transplant recipients is accomplished in one of three ways: (1) prophylactic therapy to prevent CMV viraemia; (2) pre-emptive therapy for those with low levels of replicating virus; and (3) treatment for established disease. Despite the high prevalence of CMV, there are few available approved drug therapies, and those that are available are hampered by toxicity and less-than-optimal efficacy. New therapies are being developed and tested; however, inconsistency in standardisation of virus levels and questions about potential endpoints in clinical trials present regulatory hurdles that must be addressed. This review covers the current state of CMV therapy, drugs currently under investigation, and clinical trial issues and questions that are in need of resolution. PMID:27482453

  14. Metallomics in drug development: characterization of a liposomal cisplatin drug formulation in human plasma by CE-ICP-MS.

    Science.gov (United States)

    Nguyen, Tam T T N; Østergaard, Jesper; Stürup, Stefan; Gammelgaard, Bente

    2013-02-01

    A capillary electrophoresis inductively coupled plasma mass spectrometry method for separation of free cisplatin from liposome-encapsulated cisplatin and protein-bound cisplatin was developed. A liposomal formulation of cisplatin based on PEGylated liposomes was used as model drug formulation. The effect of human plasma matrix on the analysis of liposome-encapsulated cisplatin and intact cisplatin was studied. The presence of 1 % of dextran and 4 mM of sodium dodecyl sulfate in HEPES buffer was demonstrated to be effective in improving the separation of liposomes and cisplatin bound to proteins in plasma. A detection limit of 41 ng/mL of platinum and a precision of 2.1 % (for 10 μg/mL of cisplatin standard) were obtained. Simultaneous measurements of phosphorous and platinum allows the simultaneous monitoring of the liposomes, liposome-encapsulated cisplatin, free cisplatin and cisplatin bound to plasma constituents in plasma samples. It was demonstrated that this approach is suitable for studies of the stability of liposome formulations as leakage of active drug from the liposomes and subsequent binding to biomolecules in plasma can be monitored. This methodology has not been reported before and will improve characterization of liposomal drugs during drug development and in studies on kinetics.

  15. Paclitaxel loading in PLGA nanospheres affected the in vitro drug cell accumulation and antiproliferative activity

    Directory of Open Access Journals (Sweden)

    De Maria Ruggero

    2008-07-01

    Full Text Available Abstract Background PTX is one of the most widely used drug in oncology due to its high efficacy against solid tumors and several hematological cancers. PTX is administered in a formulation containing 1:1 Cremophor® EL (polyethoxylated castor oil and ethanol, often responsible for toxic effects. Its encapsulation in colloidal delivery systems would gain an improved targeting to cancer cells, reducing the dose and frequency of administration. Methods In this paper PTX was loaded in PLGA NS. The activity of PTX-NS was assessed in vitro against thyroid, breast and bladder cancer cell lines in cultures. Cell growth was evaluated by MTS assay, intracellular NS uptake was performed using coumarin-6 labelled NS and the amount of intracellular PTX was measured by HPLC. Results NS loaded with 3% PTX (w/w had a mean size Conclusion These findings suggest that the greater biological effect of PTX-NS could be due to higher uptake of the drug inside the cells as shown by intracellular NS uptake and cell accumulation studies.

  16. Evaluation of neurotoxic and neuroprotective pathways affected by antiepileptic drugs in cultured hippocampal neurons.

    Science.gov (United States)

    Morte, Maria I; Carreira, Bruno P; Falcão, Maria J; Ambrósio, António F; Soares-da-Silva, Patrício; Araújo, Inês M; Carvalho, Caetana M

    2013-12-01

    In this study we evaluated the neurotoxicity of eslicarbazepine acetate (ESL), and of its in vivo metabolites eslicarbazepine (S-Lic) and R-licarbazepine (R-Lic), as compared to the structurally-related compounds carbamazepine (CBZ) and oxcarbazepine (OXC), in an in vitro model of cultured rat hippocampal neurons. The non-related antiepileptic drugs (AEDs) lamotrigine (LTG) and sodium valproate (VPA) were also studied. We assessed whether AEDs modulate pro-survival/pro-apoptotic pathways, such as extracellular-regulated kinase (ERK1/2), Akt and stress activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK). We found that neither ESL nor its metabolites, CBZ or LTG, up to 0.3mM, for 24h of exposure, decreased cell viability. OXC was the most toxic drug decreasing cell viability in a concentration-dependent manner, leading to activation of caspase-3 and PARP cleavage. VPA caused the appearance of the apoptotic markers, but did not alter cell viability. ESL, S-Lic and OXC decreased the levels of phospho-ERK1/2 and of phospho-Akt, when compared to basal levels, whereas CBZ decreased phospho-SAPK/JNK and phospho-Akt levels. LTG and VPA increased the phosphorylation levels of SAPK/JNK. These results suggest that ESL and its main metabolite S-Lic, as well as CBZ, LTG and VPA, are less toxic to hippocampal neurons than OXC, which was the most toxic agent. PMID:24055897

  17. Factors affecting the within-river spawning migration of Atlantic salmon, with emphasis on human impacts

    DEFF Research Database (Denmark)

    Thorstad, E.B.; Okland, F.; Aarestrup, Kim;

    2008-01-01

    We review factors affecting the within-river spawning migration of Atlantic salmon. With populations declining across the entire distribution range, it is important that spawners survive in the last phase of the spawning migration. Knowledge on the factors affecting migration is essential...... migration. Impacts of human activities may also cause altered migration patterns, affect the within-river distribution of the spawning population, and severe barriers may result in displacement of the spawning population to other rivers. Factors documented to affect within-river migration include previous...... experience, water discharge, water temperature, water velocity, required jump heights, fish size, fish acclimatisation, light, water quality/pollution, time of the season, and catch and handling stress. How each of these factors affects the upstream migration is to a varying extent understood; however...

  18. Digging Up the Human Genome: Current Progress in Deciphering Adverse Drug Reactions

    Directory of Open Access Journals (Sweden)

    Shih-Chi Su

    2014-01-01

    Full Text Available Adverse drug reactions (ADRs are a major clinical problem. In addition to their clinical impact on human health, there is an enormous cost associated with ADRs in health care and pharmaceutical industry. Increasing studies revealed that genetic variants can determine the susceptibility of individuals to ADRs. The development of modern genomic technologies has led to a tremendous advancement of improving the drug safety and efficacy and minimizing the ADRs. This review will discuss the pharmacogenomic techniques used to unveil the determinants of ADRs and summarize the current progresses concerning the identification of biomarkers for ADRs, with a focus on genetic variants for genes encoding drug-metabolizing enzymes, drug-transporter proteins, and human leukocyte antigen (HLA. The knowledge gained from these cutting-edge findings will form the basis for better prediction and management for ADRs, ultimately making the medicine personalized.

  19. Effect of drugs and environmental pollutants on human spermatogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Krause, W.

    1983-01-01

    Following a short description of the dynamics of spermatogenesis possible pharmacological effects are discussed. These are: 1st a directly cytotoxic effect, 2nd a peripheral endocrine effect (androgen inhibition), and 3rd a central endocrin eff (gonadotrophin inhibition). Cytostatic drugs are the substances most dangerous to the seminiferous epithelium. If the treatment period takes more than 6 months, the damage is irreversible. After shorter periods the risk of chromosomal disarrangements is enhanced in the phase of regeneration. The widespread environmental pesticides act in a similar manner. Also retinoids, sulfasalazine and heavy metals have predominantly cytotoxic effects. Hormones administered in pharmacological doses will exert endocrine effects. The clinical symptoms are mainly those of disturbed sexual function, as the lack of testosterone is visible at first in peripheral organs. Estrogens, gestagens and antiandrogens act in a similar manner, but even exogenous testosterone will inhibit the spermatogenesis.

  20. Iontophoretic delivery of lipophilic and hydrophilic drugs from lipid nanoparticles across human skin.

    Science.gov (United States)

    Charoenputtakun, Ponwanit; Li, S Kevin; Ngawhirunpat, Tanansait

    2015-11-10

    The combined effects of iontophoresis and lipid nanoparticles on drug delivery across human epidermal membrane (HEM) were investigated. The delivery of lipophilic and hydrophilic drugs, all trans-retinoic acid (ATRA), salicylate (SA), and acyclovir (ACV), across HEM from lipid nanoparticles, solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC), was compared in passive and iontophoresis experiments in vitro. Iontophoresis experiments were also performed with synthetic Nuclepore membrane for comparison. Drug distribution in the skin after iontophoretic delivery with the lipid nanoparticles was examined using a model probe rhodamine B base (RhoB). The drug-loaded lipid nanoparticles had average sizes of ∼ 118-169 nm and a negative zeta potential. Iontophoresis did not enhance the delivery of ATRA across HEM from SLN and NLC. However, HEM distribution study of RhoB suggested that lipophilic drugs could be delivered into the deeper layer of the skin following iontophoretic delivery of the drugs from the lipid nanoparticles. Iontophoresis enhanced the delivery of hydrophilic drug SA with the lipid nanoparticles. Similarly, iontophoresis enhanced the delivery of ACV when it was loaded in SLN. These results suggest that lipid nanoparticles are a promising drug delivery method that can be combined with iontophoresis to improve skin delivery of hydrophilic drugs.

  1. [Viewpoint on the methodology of drug trials affecting cognition of elderly patients].

    Science.gov (United States)

    Allain, H; Bernard, P M; Dartigues, J F; Dérouesné, C; Dubois, B; Hugonot, L; Laurent, B; Léger, J M; Malauzat, D; Michel, B

    1994-01-01

    Clinical trials for cognitive disorders in the elderly require specific methodological guidelines. They must take into account the psychosocial dimension of the patient and his family and must be based on serious neurobiologic knowledge. In degenerative dementias the progress of research concern genetics, molecular intercellular recognition and astrocytic cells. Biology of cognition like hippocampal long term potentiation provides good pharmacologic basis for trials. In normal brain aging several ways must be developed: aminergic systems, free radicals, excitotoxic amino-acid, nerves growth factors. Clinical trials bring informations for pharmacology and epidemiology. Cholinergic neurons are the main pharmacologic target but there are many other ones: GABA-ergic system, Tau protein, amyloid. A rigourous selection of patients allows to precise the nosology of illness responsible of cognitive disorders and to point-out early clinical signs that represent a more sensitive target. Diagnostic criteria are useful in Alzheimer's disease, memory impairment, vascular dementias and other dementias. Evaluation of stage and evolution of dementia, comorbidity, limits of age and caregiver are practical problems. The effects of drugs used to treat cognitive functions are subtle so it is necessary to detect them to choose the best tests in function of each trial. Laboratory investigations can be used to evaluate the response to drug administration. Ethical point of view is represented by the fact that old people with cognitive impairment must not be away from therapeutic progress. In this field we must consider carefully the consequences of cognitive impairment on patient judgment and consent to clinical trial. Legal problems are regulated by supranational rules and French directives of Huriet law.

  2. Systematic investigation of different formulations for drug delivery through the human nail plate "in vitro"

    OpenAIRE

    Vejnoviċ, Ivana

    2010-01-01

    Human nails do not have only protective and decorative role, but can also be considered as an alternative pathway for drug delivery, especially in nail diseases such as onychomycosis or psoriasis. These nail diseases are widely spread in the population, particularly among elderly and immunocompromised patients. Oral therapies are accompanied by systemic side effects and drug interactions, while topical therapies are limited by the low permeation rate through the nail plate. For the successful...

  3. Streptococcus suis, an Emerging Drug-Resistant Animal and Human Pathogen

    OpenAIRE

    Palmieri, Claudio; Varaldo, Pietro E.; Facinelli, Bruna

    2011-01-01

    Streptococcus suis, a major porcine pathogen, has been receiving growing attention not only for its role in severe and increasingly reported infections in humans, but also for its involvement in drug resistance. Recent studies and the analysis of sequenced genomes have been providing important insights into the S. suis resistome, and have resulted in the identification of resistance determinants for tetracyclines, macrolides, aminoglycosides, chloramphenicol, antifolate drugs, streptothricin,...

  4. Does social capital affect investment in human capital? Family ties and schooling decisions

    NARCIS (Netherlands)

    Falco, Di Salvatore; Bulte, Erwin

    2015-01-01

    We analyse whether traditional sharing norms within kinship networks affect education decisions of poor black households in KwaZulu-Natal. Theory predicts that the size of the kinship network ambiguously impacts on the incentive to invest in human capital (due to opposing ‘empathy’ and ‘free-ride

  5. Ranking factors affecting the productivity of human resources using MADM techniques

    Directory of Open Access Journals (Sweden)

    G. A. Shekari

    2012-12-01

    Full Text Available For improving and efficient uses of various resources such as labor, capital, materials, energy and information, productivity is the purpose of all economic and industrial organizations and service enterprises. The human factor is the main strategic resource and the realization axis of productivity for each type of organization. Therefore the factors affecting the productivity, depends on suitable conditions for labor. This study is performed to identification and prioritization the factors affecting the productivity of human resources in Khorasan Razavi Gas Company. The objective of this research is an applied and the data collection methods and conclusions are descriptive - survey. Statistical sample size by using Cochran's formula is considered equal to 120. To perform this study with the Delphi method, we identify the factors affecting the productivity of human resources in Khorasan Razavi Gas Company and by using MADM techniques, prioritization of these factors has been done. Also Team Expert Choice2000 software have used for analysis. Research results show that factors affecting the productivity of human resources in Khorasan Razavi Gas Company in order of importance are: Health aspects, leadership style, motivational factors, organizational commitment, work experience, general and applied education, demographic characteristics, physical environment within the organization, external environment and competitive spirit.

  6. Does social capital affect investment in human capital? Family ties and schooling decisions

    NARCIS (Netherlands)

    Di Falco, Salvatore; Bulte, E.H.

    2015-01-01

    We analyse whether traditional sharing norms within kinship networks affect education decisions of poor black households in KwaZulu-Natal. Theory predicts that the size of the kinship network ambiguously impacts on the incentive to invest in human capital (due to opposing ‘empathy’ and ‘free-rider’

  7. Affective Education: A Teacher's Manual to Promote Student Self-Actualization and Human Relations Skills.

    Science.gov (United States)

    Snyder, Thomas R.

    This teacher's manual presents affective education as a program to promote student self-actualization and human relations skills. Abraham Maslow's hierarchy of needs and Erik Erikson's life stages of psychosocial development form the conceptual base for this program. The goals and objectives of this manual are concerned with problem-solving…

  8. Effects of immunosuppressive drugs on human adipose tissue metabolism

    OpenAIRE

    Pereira, Maria J

    2012-01-01

    The immunosuppressive agents (IAs) rapamycin, cyclosporin A and tacrolimus, as well as glucocorticoids are used to prevent rejection of transplanted organs and to treat autoimmune disorders. Despite their desired action on the immune system, these agents have serious longterm metabolic side-effects, including dyslipidemia and new onset diabetes mellitus after transplantation. The overall aim is to study the effects of IAs on human adipose tissue glucose and lipid metabolism, and to incr...

  9. CRITICAL ROLE OF STAT3 IN IL-6-MEDIATED DRUG RESISTANCE IN HUMAN NEUROBLASTOMA

    OpenAIRE

    Ara, Tasnim; Nakata, Rie; Sheard, Michael A.; Shimada, Hiroyuki; Buettner, Ralf; Groshen, Susan G.; Ji, Lingyun; Yu, Hua; Jove, Richard; Seeger, Robert C.; DeClerck, Yves A

    2013-01-01

    Drug resistance is a major cause of treatment failure in cancer. Here we have evaluated the role of STAT3 in environment-mediated drug resistance (EMDR) in human neuroblastoma. We determined that STAT3 was not constitutively active in most neuroblastoma cell lines but was rapidly activated upon treatment with interleukin-6 (IL-6) alone and in combination with the soluble IL-6 receptor (sIL-6R). Treatment of neuroblastoma cells with IL-6 protected them from drug-induced apoptosis in a STAT3-de...

  10. Evaluation of human pharmacokinetics, therapeutic dose and exposure predictions using marketed oral drugs.

    Science.gov (United States)

    McGinnity, D F; Collington, J; Austin, R P; Riley, R J

    2007-06-01

    In this article approaches to predict human pharmacokinetics (PK) are discussed and the capability of the exemplified methodologies to estimate individual PK parameters and therapeutic dose for a set of marketed oral drugs has been assessed. For a set of 63 drugs where the minimum efficacious concentration (MEC) and human PK were known, the clinical dose was shown to be well predicted or in some cases over-estimated using a simple one-compartment oral PK model. For a subset of these drugs, in vitro potency against the primary human targets was gathered, and compared to the observed MEC. When corrected for plasma protein binding, the MEC of the majority of compounds was GFR. For approximately 90% of compounds studied, the predicted CL using in vitro-in vivo (IVIV) extrapolation together with a CL(renal) estimate, where appropriate, was within 2-fold of that observed clinically. Encouragingly volume of distribution at steady state (V(ss)) estimated in preclinical species (rat and dog) when corrected for plasma protein binding, predicted human V(ss) successfully on the majority of occasions--73% of compounds within 2-fold. In this laboratory, absorption estimated from oral rat PK studies was lower than the observed human absorption for most drugs, even when solubility and permeability appeared not to be limiting. Preliminary data indicate absorption in the dog may be more representative of human for compounds absorbed via the transcellular pathway. Using predicted PK and MEC values estimated from in vitro potency assays there was a good correlation between predicted and observed dose. This analysis suggests that for oral therapies, human PK parameters and clinical dose can be estimated from a consideration of data obtained from in vitro screens using human derived material and in vivo animal studies. The benefits and limitations of this holistic approach to PK and dose prediction within the drug discovery process are exemplified and discussed.

  11. How treatment affects the brain: meta-analysis evidence of neural substrates underpinning drug therapy and psychotherapy in major depression.

    Science.gov (United States)

    Boccia, Maddalena; Piccardi, Laura; Guariglia, Paola

    2016-06-01

    The idea that modifications of affect, behavior and cognition produced by psychotherapy are mediated by biological underpinnings predates the advent of the modern neurosciences. Recently, several studies demonstrated that psychotherapy outcomes are linked to modifications in specific brain regions. This opened the debate over the similarities and dissimilarities between psychotherapy and pharmacotherapy. In this study, we used activation likelihood estimation meta-analysis to investigate the effects of psychotherapy (PsyTh) and pharmacotherapy (DrugTh) on brain functioning in Major Depression (MD). Our results demonstrate that the two therapies modify different neural circuits. Specifically, PsyTh induces selective modifications in the left inferior and superior frontal gyri, middle temporal gyrus, lingual gyrus and middle cingulate cortex, as well as in the right middle frontal gyrus and precentral gyrus. Otherwise, DrugTh selectively affected brain activation in the right insula in MD patients. These results are in line with previous evidence of the synergy between psychotherapy and pharmacotherapy but they also demonstrate that the two therapies have different neural underpinnings. PMID:26164169

  12. Do Nonsteroidal Anti-Inflammatory Drugs Affect Bone Healing? A Critical Analysis

    Directory of Open Access Journals (Sweden)

    Ippokratis Pountos

    2012-01-01

    Full Text Available Nonsteroidal anti-inflammatory drugs (NSAIDs play an essential part in our approach to control pain in the posttraumatic setting. Over the last decades, several studies suggested that NSAIDs interfere with bone healing while others contradict these findings. Although their analgesic potency is well proven, clinicians remain puzzled over the potential safety issues. We have systematically reviewed the available literature, analyzing and presenting the available in vitro animal and clinical studies on this field. Our comprehensive review reveals the great diversity of the presented data in all groups of studies. Animal and in vitro studies present so conflicting data that even studies with identical parameters have opposing results. Basic science research defining the exact mechanism with which NSAIDs could interfere with bone cells and also the conduction of well-randomized prospective clinical trials are warranted. In the absence of robust clinical or scientific evidence, clinicians should treat NSAIDs as a risk factor for bone healing impairment, and their administration should be avoided in high-risk patients.

  13. Class I antiarrhythmic drugs inhibit human cardiac two-pore-domain K(+) (K2 ₂p) channels.

    Science.gov (United States)

    Schmidt, Constanze; Wiedmann, Felix; Schweizer, Patrick A; Becker, Rüdiger; Katus, Hugo A; Thomas, Dierk

    2013-12-01

    Class IC antiarrhythmic drugs are commonly used for rhythm control in atrial fibrillation. In addition, class I drugs are administered to suppress ventricular tachyarrhythmia in selected cases. The multichannel blocking profile of class I compounds includes reduction of cardiac potassium currents in addition to their primary mechanism of action, sodium channel inhibition. Blockade of two-pore-domain potassium (K2P) channels in the heart causes action potential prolongation and may provide antiarrhythmic action in atrial fibrillation. This study was designed to elucidate inhibitory effects of class I antiarrhythmic drugs on K2P channels. Human K2P2.1 (TREK1) and hK2P3.1 (TASK1) channels were systematically tested for their sensitivity to clinically relevant class IA (ajmaline), class IB (mexiletine), and class IC (propafenone) antiarrhythmic compounds using whole-cell patch clamp and two-electrode voltage clamp electrophysiology in Chinese hamster ovary cells and in Xenopus oocytes. Mexiletine and propafenone inhibited hK2P2.1 (IC50,mexiletine=173µM; IC50,propafenone=7.6µM) and hK2P3.1 channels (IC50,mexiletine=97.3µM; IC50,propafenone=5.1µM) in mammalian cells. Ajmaline did not significantly reduce current amplitudes. K2P channels were blocked in open and closed states, resulting in resting membrane potential depolarization. Open rectification properties of the channels were not affected by class I drugs. In summary, class I antiarrhythmic drugs target cardiac K2P K(+) channels. Blockade of hK2P2.1 and hK2P3.1 potassium currents provides mechanistic evidence to establish cardiac K2P channels as antiarrhythmic drug targets. PMID:24070813

  14. Prescriptive Oriented Drug Analysis of Multiple Sclerosis Disease by LC-UV in Whole Human Blood.

    Science.gov (United States)

    Suneetha, A; Rajeswari, Raja K

    2016-02-01

    As a polytherapy treatment, multiple sclerosis disease demands prescriptions with more than one drug. Polytherapy is sometimes rational for drug combinations chosen to minimize adverse effects. Estimation of drugs that are concomitantly administered in polytherapy is acceptable as it shortens the analytical timepoints and also the usage of biological matrices. In clinical phase trials, the withdrawal of biofluids is a critical issue for each analysis. Estimating all the coadminsitered drugs in a single shot will be more effective and economical for pharmaceuticals. A single, simple, rapid and sensitive high-performance liquid chromatography assay method has been developed with UV detection and fully validated for the quantification of 14 drugs (at random combinations) used in the treatment of multiple sclerosis disease. The set of combinations was based on prescriptions to patients. Separations were achieved on an X-Terra MS C18 (100 × 3.9 mm, 5 µm) column. The analytes were extracted from 50 µL aliquots of whole human blood with protein precipitation using acetonitrile. All the drugs were sufficiently stable during storage for 24 h at room temperature and for 23 days at 2-8°C. The percentage recoveries of all drugs were between 90 and 115%, with RSD values drug interaction studies.

  15. Use of Human Plasma Samples to Identify Circulating Drug Metabolites that Inhibit Cytochrome P450 Enzymes.

    Science.gov (United States)

    Eng, Heather; Obach, R Scott

    2016-08-01

    Drug interactions elicited through inhibition of cytochrome P450 (P450) enzymes are important in pharmacotherapy. Recently, greater attention has been focused on not only parent drugs inhibiting P450 enzymes but also on possible inhibition of these enzymes by circulating metabolites. In this report, an ex vivo method whereby the potential for circulating metabolites to be inhibitors of P450 enzymes is described. To test this method, seven drugs and their known plasma metabolites were added to control human plasma at concentrations previously reported to occur in humans after administration of the parent drug. A volume of plasma for each drug based on the known inhibitory potency and time-averaged concentration of the parent drug was extracted and fractionated by high-pressure liquid chromatography-mass spectrometry, and the fractions were tested for inhibition of six human P450 enzyme activities (CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4). Observation of inhibition in fractions that correspond to the retention times of metabolites indicates that the metabolite has the potential to contribute to P450 inhibition in vivo. Using this approach, norfluoxetine, hydroxyitraconazole, desmethyldiltiazem, desacetyldiltiazem, desethylamiodarone, hydroxybupropion, erythro-dihydrobupropion, and threo-dihydrobupropion were identified as circulating metabolites that inhibit P450 activities at a similar or greater extent as the parent drug. A decision tree is presented outlining how this method can be used to determine when a deeper investigation of the P450 inhibition properties of a drug metabolite is warranted. PMID:27271369

  16. Human infant faces provoke implicit positive affective responses in parents and non-parents alike.

    Science.gov (United States)

    Senese, Vincenzo Paolo; De Falco, Simona; Bornstein, Marc H; Caria, Andrea; Buffolino, Simona; Venuti, Paola

    2013-01-01

    Human infants' complete dependence on adult caregiving suggests that mechanisms associated with adult responsiveness to infant cues might be deeply embedded in the brain. Behavioural and neuroimaging research has produced converging evidence for adults' positive disposition to infant cues, but these studies have not investigated directly the valence of adults' reactions, how they are moderated by biological and social factors, and if they relate to child caregiving. This study examines implicit affective responses of 90 adults toward faces of human and non-human (cats and dogs) infants and adults. Implicit reactions were assessed with Single Category Implicit Association Tests, and reports of childrearing behaviours were assessed by the Parental Style Questionnaire. The results showed that human infant faces represent highly biologically relevant stimuli that capture attention and are implicitly associated with positive emotions. This reaction holds independent of gender and parenthood status and is associated with ideal parenting behaviors. PMID:24282537

  17. Human infant faces provoke implicit positive affective responses in parents and non-parents alike.

    Directory of Open Access Journals (Sweden)

    Vincenzo Paolo Senese

    Full Text Available Human infants' complete dependence on adult caregiving suggests that mechanisms associated with adult responsiveness to infant cues might be deeply embedded in the brain. Behavioural and neuroimaging research has produced converging evidence for adults' positive disposition to infant cues, but these studies have not investigated directly the valence of adults' reactions, how they are moderated by biological and social factors, and if they relate to child caregiving. This study examines implicit affective responses of 90 adults toward faces of human and non-human (cats and dogs infants and adults. Implicit reactions were assessed with Single Category Implicit Association Tests, and reports of childrearing behaviours were assessed by the Parental Style Questionnaire. The results showed that human infant faces represent highly biologically relevant stimuli that capture attention and are implicitly associated with positive emotions. This reaction holds independent of gender and parenthood status and is associated with ideal parenting behaviors.

  18. Controlled delivery of antiangiogenic drug to human eye tissue using a MEMS device

    KAUST Repository

    Pirmoradi, Fatemeh Nazly

    2013-01-01

    We demonstrate an implantable MEMS drug delivery device to conduct controlled and on-demand, ex vivo drug transport to human eye tissue. Remotely operated drug delivery to human post-mortem eyes was performed via a MEMS device. The developed curved packaging cover conforms to the eyeball thereby preventing the eye tissue from contacting the actuating membrane. By pulsed operation of the device, using an externally applied magnetic field, the drug released from the device accumulates in a cavity adjacent to the tissue. As such, docetaxel (DTX), an antiangiogenic drug, diffuses through the eye tissue, from sclera and choroid to retina. DTX uptake by sclera and choroid were measured to be 1.93±0.66 and 7.24±0.37 μg/g tissue, respectively, after two hours in pulsed operation mode (10s on/off cycles) at 23°C. During this period, a total amount of 192 ng DTX diffused into the exposed tissue. This MEMS device shows great potential for the treatment of ocular posterior segment diseases such as diabetic retinopathy by introducing a novel way of drug administration to the eye. © 2013 IEEE.

  19. 'Ecstasy' as a social drug: MDMA preferentially affects responses to emotional stimuli with social content.

    Science.gov (United States)

    Wardle, Margaret C; Kirkpatrick, Matthew G; de Wit, Harriet

    2014-08-01

    3,4-Methylenedioxymethamphetamine (MDMA, 'ecstasy') is used recreationally to improve mood and sociability, and has generated clinical interest as a possible adjunct to psychotherapy. One way that MDMA may produce positive 'prosocial' effects is by changing responses to emotional stimuli, especially stimuli with social content. Here, we examined for the first time how MDMA affects subjective responses to positive, negative and neutral emotional pictures with and without social content. We hypothesized that MDMA would dose-dependently increase reactivity to positive emotional stimuli and dampen reactivity to negative stimuli, and that these effects would be most pronounced for pictures with people in them. The data were obtained from two studies using similar designs with healthy occasional MDMA users (total N = 101). During each session, participants received MDMA (0, 0.75 and 1.5 mg/kg oral), and then rated their positive and negative responses to standardized positive, negative and neutral pictures with and without social content. MDMA increased positive ratings of positive social pictures, but reduced positive ratings of non-social positive pictures. We speculate this 'socially selective' effect contributes to the prosocial effects of MDMA by increasing the comparative value of social contact and closeness with others. This effect may also contribute to its attractiveness to recreational users.

  20. The Control of Human Immunosystem by Using Paeony Root Drug

    Directory of Open Access Journals (Sweden)

    Hideo Tsuboi

    2010-10-01

    Full Text Available Paeoniflorin (PF, isolated from paeony root, has been used as a herbal medicine for more than 1200 years in China, Korea and Japan for its anti-allergic, anti-inflamatory and immunoregulatory effects. In this study, we found that PF induces apoptosis in both murine T-lineage cells and human T-cell leukemia Jurkat cells. This apoptosis was mediated through the reduction of mitochondrial membrane potential, activation of caspase and fragmentation of DNA. Interestingly, PF induced generation of reactive oxygen species (ROS and a reducing agent, dithiothreitol (DTT, and a ROS scavenger, N-acetyl cysteine (NAC, successfully attenuated the PF-induced apoptosis. Additionally, PF induced the phosphorylation of three mitogen-activated protein (MAP family kinases, extracellular signal-regulated kinase, c-Jun amino-terminal kinase (JNK and p38 MAP kinase. Curcumin, an anti-oxidant and JNK inhibitor, inhibited PF-induced apoptosis, suggesting the possible involvement of curcumin-sensitive JNK or other redox-sensitive elements in PF-induced apoptosis. These results partially explain the action mechanism of PF-containing paeony root as a herbal medicine.

  1. UDP-galactopyranose mutase, a potential drug target against human pathogenic nematode Brugia malayi.

    Science.gov (United States)

    Misra, Sweta; Valicherla, Guru R; Mohd Shahab; Gupta, Jyoti; Gayen, Jiaur R; Misra-Bhattacharya, Shailja

    2016-08-01

    Lymphatic filariasis, a vector-borne neglected tropical disease affects millions of population in tropical and subtropical countries. Vaccine unavailability and emerging drug resistance against standard antifilarial drugs necessitate search of novel drug targets for developing alternate drugs. Recently, UDP-galactopyranose mutases (UGM) have emerged as a promising drug target playing an important role in parasite virulence and survival. This study deals with the cloning and characterization of Brugia malayi UGM and further exploring its antifilarial drug target potential. The recombinant protein was actively involved in conversion of UDP-galactopyranose (substrate) to UDP-galactofuranose (product) revealing Km and Vmax to be ∼51.15 μM and ∼1.27 μM/min, respectively. The purified protein appeared to be decameric in native state and its 3D homology modeling using Aspergillus fumigatus UGM enzyme as template revealed conservation of active site residues. Two specific prokaryotic inhibitors (compounds A and B) of the enzyme inhibited B. malayi UGM enzymatic activity competitively depicting Ki values ∼22.68 and ∼23.0 μM, respectively. These compounds were also active in vitro and in vivo against B. malayi The findings suggest that B. malayi UGM could be a potential antifilarial therapeutic drug target. PMID:27465638

  2. Cholangiocytes derived from human induced pluripotent stem cells for disease modeling and drug validation

    Science.gov (United States)

    Sampaziotis, Fotios; Bertero, Alessandro; Saeb-Parsy, Kourosh; Soares, Filipa A. C.; Schrumpf, Elisabeth; Melum, Espen; Karlsen, Tom H.; Bradley, J. Andrew; Gelson, William TH; Davies, Susan; Baker, Alastair; Kaser, Arthur; Alexander, Graeme J.

    2016-01-01

    The study of biliary disease has been constrained by a lack of primary human cholangiocytes. Here we present an efficient, serum-free protocol for directed differentiation of human induced pluripotent stem cells into cholangiocyte-like cells (CLCs). CLCs show functional characteristics of cholangiocytes, including bile acids transfer, alkaline phosphatase activity, gamma-glutamyl-transpeptidase activity and physiological responses to secretin, somatostatin and VEGF. We use CLCs to model in vitro key features of Alagille syndrome, polycystic liver disease and cystic fibrosis (CF)-associated cholangiopathy. Furthermore, we use CLCs generated from healthy individuals and patients with polycystic liver disease to reproduce the effects of the drugs verapamil and octreotide, and we show that the experimental CF drug VX809 rescues the disease phenotype of CF cholangiopathy in vitro. Our differentiation protocol will facilitate the study of biological mechanisms controlling biliary development as well as disease modeling and drug screening. PMID:26167629

  3. How does hospitalization affect continuity of drug therapy: an exploratory study

    Science.gov (United States)

    Blozik, Eva; Signorell, Andri; Reich, Oliver

    2016-01-01

    Introduction Transitions between different levels of health care, such as hospital admission and discharge, pose a significant threat to the quality and continuity of medication therapy. This study aims to explore the role of hospitalization on medication changes as patients are transferred from and back to ambulatory care. Methods Secondary analysis of claims data from Swiss residents with basic health insurance at the Helsana Group was performed. We evaluated medication invoices of patients who were hospitalized in a Swiss private hospital group in the year 2013. Medication changes were defined as discontinuation, new prescription, or change in the Anatomical Therapeutic Chemical (ATC) Classification System level 4, which is equivalent to a change in the chemical/therapeutic/pharmacological subgroup. Multiple Poisson regression analysis was applied to evaluate whether medication change was predicted by socioeconomic or clinical patient characteristics or by a system factor (physician dispensing of medication allowed in canton of residence). Results We investigated a total of 10,123 hospitalized patients, among whom a mean number of 3.85 (median 3.00) changes were identified. Change most frequently affected antihypertensives, analgesics, and antirheumatics. If patients were enrolled in a managed care plan, they were less likely to undergo changes. If a patient resided in a canton, in which physicians were allowed to dispense medication directly, the patient was more likely to experience change. Conclusion There is considerable change in medication when patients shift between ambulatory and inpatient health care levels. This interruption of medication continuity is in part desirable as it responds to clinical needs. However, we hypothesize that there is also a significant proportion of change due to unwarranted factors such as financial incentives for change of products. PMID:27578981

  4. Disease modeling and drug screening for neurological diseases using human induced pluripotent stem cells

    Institute of Scientific and Technical Information of China (English)

    Xiao-hong XU; Zhong ZHONG

    2013-01-01

    With the general decline of pharmaceutical research productivity,there are concerns that many components of the drug discovery process need to be redesigned and optimized.For example,the human immortalized cell lines or animal primary cells commonly used in traditional drug screening may not faithfully recapitulate the pathological mechanisms of human diseases,leading to biases in assays,targets,or compounds that do not effectively address disease mechanisms.Recent advances in stem cell research,especially in the development of induced pluripotent stem cell (iPSC) technology,provide a new paradigm for drug screening by permitting the use of human cells with the same genetic makeup as the patients without the typical quantity constraints associated with patient primary cells.In this article,we will review the progress made to date on cellular disease models using human stem cells,with a focus on patient-specific iPSCs for neurological diseases.We will discuss the key challenges and the factors that associated with the success of using stem cell models for drug discovery through examples from monogenic diseases,diseases with various known genetic components,and complex diseases caused by a combination of genetic,environmental and other factors.

  5. Out of Nature: Why Drugs from Plants Matter to the Future of Humanity

    Directory of Open Access Journals (Sweden)

    Kris Gremillion

    2013-06-01

    Full Text Available Review of Out of Nature: Why Drugs from Plants Matter to the Future of Humanity. Kara Rogers. 2012. The University of Arizona Press, Tucson. Pp. 216. $19.95 (paper. ISBN 978-0-8165-2969-8.

  6. FLUPIRTINE: A HUMAN DRUG WITH POTENTIAL FOR USE IN THE VETERINARY FIELD

    OpenAIRE

    Mario Giorgi; Helen Owen

    2012-01-01

    Flupirtine is a nonopioid drug without antipyretic or antiphlogistic properties and with a favorable tolerability in humans. It constitutes a unique class within the group of nonsteroidal analgesics and displays a peculiar pharmacokinetic/dynamic profile that could have large potentialities of applications in the veterinary field. This review describes and evaluates the pharmacologic literature concerning flupirtine and addresses its potential in veterinary medicine.

  7. Drug permeation through the three layers of the human nail plate.

    Science.gov (United States)

    Kobayashi, Y; Miyamoto, M; Sugibayashi, K; Morimoto, Y

    1999-03-01

    The in-vitro permeation characteristics of a water soluble model drug, 5-fluorouracil, and a poorly water soluble model drug, flurbiprofen, were investigated through three layers of the human nail plate (namely, the dorsal, intermediate and ventral nail plates), using a modified side-by-side diffusion cell. The dorsal-filed nail plate, the ventral-filed nail plate and the dorsal-and-ventral-filed nail plate were prepared to known thicknesses and then used with the full-thickness nail plate to investigate the permeation characteristics of each single layer. Most of the lipids in the human nail plate were found in the dorsal and ventral layers. The rank orders of the permeation fluxes for 5-fluorouracil and flurbiprofen were both: dorsal-and-ventral-filed nail plate > dorsal-filed nail plate > ventral-filed nail plate > full-thickness nail plate. With respect to 5-fluorouracil permeation through each single layer, the permeability coefficient of the intermediate layer was higher than those of other single layers. However in the case of flurbiprofen, the permeability coefficient of the ventral layer was higher than other single layers. The diffusion coefficients of 5-fluorouracil and flurbiprofen in the dorsal layer were the lowest of any single layer. The drug concentration in each layer was estimated using each respective permeation parameter. The drug concentration in the nail plate was observed to be dependent on the solubility and the flux of the drug. From these findings, we suggest that the human nail plate behaves like a hydrophilic gel membrane rather than a lipophilic partition membrane and that the upper layer functions as the main nail barrier to drug permeation through its low diffusivity against the drugs.

  8. Recombinant human serum albumin hydrogel as a novel drug delivery vehicle

    International Nuclear Information System (INIS)

    Serum albumin acts as a physiological carrier for various compounds including drugs. A hydrogel consisting of recombinant human serum albumin (rHSA) was prepared to take advantage of drug binding ability of albumin for a sustained drug release carrier. The hydrogel was prepared by mixing rHSA and dithiothreitol and casted to a polystyrene mold. Hydrogel formation was thought to occur through the intermolecular interaction of the hydrophobic groups by protein denaturation. The release of sodium benzoate and salicylic acid from the hydrogel completed in 2 h, while warfarin release continued for 24 h. The total amounts of the drugs released from 100 mg of 15 and 5% rHSA hydrogel were 2.3 and 1.4 μmol for warfarin, 1.4 and 1.1 μmol for salicylic acid and 0.9 and 0.9 μmol for sodium benzoate. These results reflected the order of the binding ability of drugs for intact albumin indicating that the drug binding ability of HSA still remained after the hydrogel formation. However, fibroblast cells attached and proliferated well on the hydrogel, indicating that denaturation of rHSA proceeded to the extent to allow the cell attachment. The present rHSA hydrogel might be suitable for a sustained release carrier of drugs having affinity for albumin.

  9. Psychedelics and cognitive liberty: Reimagining drug policy through the prism of human rights.

    Science.gov (United States)

    Walsh, Charlotte

    2016-03-01

    This paper reimagines drug policy--specifically psychedelic drug policy--through the prism of human rights. Challenges to the incumbent prohibitionist paradigm that have been brought from this perspective to date--namely by calling for exemptions from criminalisation on therapeutic or religious grounds--are considered, before the assertion is made that there is a need to go beyond such reified constructs, calling for an end to psychedelic drug prohibitions on the basis of the more fundamental right to cognitive liberty. This central concept is explicated, asserted as being a crucial component of freedom of thought, as enshrined within Article 9 of the European Convention on Human Rights (ECHR). It is argued that the right to cognitive liberty is routinely breached by the existence of the system of drug prohibition in the United Kingdom (UK), as encoded within the Misuse of Drugs Act 1971 (MDA). On this basis, it is proposed that Article 9 could be wielded to challenge the prohibitive system in the courts. This legal argument is supported by a parallel and entwined argument grounded in the political philosophy of classical liberalism: namely, that the state should only deploy the criminal law where an individual's actions demonstrably run a high risk of causing harm to others. Beyond the courts, it is recommended that this liberal, rights-based approach also inform psychedelic drug policy activism, moving past the current predominant focus on harm reduction, towards a prioritization of benefit maximization. How this might translate in to a different regulatory model for psychedelic drugs, a third way, distinct from the traditional criminal and medical systems of control, is tentatively considered. However, given the dominant political climate in the UK--with its move away from rights and towards a more authoritarian drug policy--the possibility that it is only through underground movements that cognitive liberty will be assured in the foreseeable future is

  10. Psychedelics and cognitive liberty: Reimagining drug policy through the prism of human rights.

    Science.gov (United States)

    Walsh, Charlotte

    2016-03-01

    This paper reimagines drug policy--specifically psychedelic drug policy--through the prism of human rights. Challenges to the incumbent prohibitionist paradigm that have been brought from this perspective to date--namely by calling for exemptions from criminalisation on therapeutic or religious grounds--are considered, before the assertion is made that there is a need to go beyond such reified constructs, calling for an end to psychedelic drug prohibitions on the basis of the more fundamental right to cognitive liberty. This central concept is explicated, asserted as being a crucial component of freedom of thought, as enshrined within Article 9 of the European Convention on Human Rights (ECHR). It is argued that the right to cognitive liberty is routinely breached by the existence of the system of drug prohibition in the United Kingdom (UK), as encoded within the Misuse of Drugs Act 1971 (MDA). On this basis, it is proposed that Article 9 could be wielded to challenge the prohibitive system in the courts. This legal argument is supported by a parallel and entwined argument grounded in the political philosophy of classical liberalism: namely, that the state should only deploy the criminal law where an individual's actions demonstrably run a high risk of causing harm to others. Beyond the courts, it is recommended that this liberal, rights-based approach also inform psychedelic drug policy activism, moving past the current predominant focus on harm reduction, towards a prioritization of benefit maximization. How this might translate in to a different regulatory model for psychedelic drugs, a third way, distinct from the traditional criminal and medical systems of control, is tentatively considered. However, given the dominant political climate in the UK--with its move away from rights and towards a more authoritarian drug policy--the possibility that it is only through underground movements that cognitive liberty will be assured in the foreseeable future is

  11. ALTERED MRP IS ASSOCIATED WITH MULTIDRUG-RESISTANCE AND REDUCED DRUG ACCUMULATION IN HUMAN SW-1573 CELLS

    NARCIS (Netherlands)

    EIJDEMS, EWHM; ZAMAN, GJR; DEHAAS, M; VERSANTVOORT, CHM; FLENS, MJ; SCHEPER, RJ; KAMST, E; BORST, P; BAAS, F

    1995-01-01

    We have analysed the contribution of several parameters, e.g. drug accumulation, MDR1 P-glycoprotein (P-gp), multidrug resistance-associated protein (MRP) and topoisomerase (topo) II, to drug resistance in a large set of drug-resistant variants of the human non-small-cell lung cancer cell line SW-15

  12. Human hepatocytes derived from pluripotent stem cells: a promising cell model for drug hepatotoxicity screening.

    Science.gov (United States)

    Gómez-Lechón, María José; Tolosa, Laia

    2016-09-01

    Drug-induced liver injury (DILI) is a frequent cause of failure in both clinical and post-approval stages of drug development, and poses a key challenge to the pharmaceutical industry. Current animal models offer poor prediction of human DILI. Although several human cell-based models have been proposed for the detection of human DILI, human primary hepatocytes remain the gold standard for preclinical toxicological screening. However, their use is hindered by their limited availability, variability and phenotypic instability. In contrast, pluripotent stem cells, which include embryonic and induced pluripotent stem cells (iPSCs), proliferate extensively in vitro and can be differentiated into hepatocytes by the addition of soluble factors. This provides a stable source of hepatocytes for multiple applications, including early preclinical hepatotoxicity screening. In addition, iPSCs also have the potential to establish genotype-specific cells from different individuals, which would increase the predictivity of toxicity assays allowing more successful clinical trials. Therefore, the generation of human hepatocyte-like cells derived from pluripotent stem cells seems to be promising for overcoming limitations of hepatocyte preparations, and it is expected to have a substantial repercussion in preclinical hepatotoxicity risk assessment in early drug development stages. PMID:27325232

  13. Determination of platinum drug release and liposome stability in human plasma by CE-ICP-MS

    DEFF Research Database (Denmark)

    Nguyen, Trinh Thi Nhu Tam; Ostergaard, Jesper; Stürup, Stefan;

    2013-01-01

    of the encapsulation efficiency of the formulation, the physical stability of liposomes as well as cisplatin leakage in human plasma. The method was applied for studying the disintegration of liposomes and the interactions of leaked cisplatin with plasma components. Triggered release of the drug into plasma......An in vitro method for simultaneous assessment of platinum release and liposome stability of liposomal formulations in human plasma is demonstrated. The development and assessment of the method was performed on a PEGylated liposomal formulation containing cisplatin. Complete separation of free...... by sonication was also demonstrated. Analysis of liposomal formulations with alternative phospholipid compositions containing oxaliplatin showed similar results. Thus, the present in vitro method is suitable for mimicking the in vivo drug release profile in human plasma after administration of liposomal...

  14. Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction

    NARCIS (Netherlands)

    Martignoni, Marcella; Groothuis, Geny M. M.; de Kanter, Ruben

    2006-01-01

    Animal models are commonly used in the preclinical development of new drugs to predict the metabolic behaviour of new compounds in humans. It is, however, important to realise that humans differ from animals with regards to isoform composition, expression and catalytic activities of drug-metabolisin

  15. 78 FR 72901 - Draft Guidance; Pharmacy Compounding of Human Drug Products Under Section 503A of the Federal...

    Science.gov (United States)

    2013-12-04

    ... November 23, 1998 (63 FR 64723), FDA announced the availability of a guidance entitled ``Enforcement Policy... withdrawn. In a notice published in the Federal Register of June 7, 2002 (67 FR 39409), FDA announced the... HUMAN SERVICES Food and Drug Administration Draft Guidance; Pharmacy Compounding of Human Drug...

  16. Examining human rights and mental health among women in drug abuse treatment centers in Afghanistan

    Directory of Open Access Journals (Sweden)

    Abadi MH

    2012-04-01

    Full Text Available Melissa Harris Abadi1, Stephen R Shamblen1, Knowlton Johnson1, Kirsten Thompson1, Linda Young1, Matthew Courser1, Jude Vanderhoff1, Thom Browne21Pacific Institute for Research and Evaluation – Louisville Center, Louisville, KY, USA; 2United States Department of State, Bureau of International Narcotics and Law Enforcement, Washington, DC, USAAbstract: Denial of human rights, gender disparities, and living in a war zone can be associated with severe depression and poor social functioning, especially for female drug abusers. This study of Afghan women in drug abuse treatment (DAT centers assesses (a the extent to which these women have experienced human rights violations and mental health problems prior to entering the DAT centers, and (b whether there are specific risk factors for human rights violations among this population. A total of 176 in-person interviews were conducted with female patients admitted to three drug abuse treatment centers in Afghanistan in 2010. Nearly all women (91% reported limitations with social functioning. Further, 41% of the women indicated they had suicide ideation and 27% of the women had attempted suicide at least once 30 days prior to entering the DAT centers due to feelings of sadness or hopelessness. Half of the women (50% experienced at least one human rights violation in the past year prior to entering the DAT centers. Risk factors for human rights violations among this population include marital status, ethnicity, literacy, employment status, entering treatment based on one’s own desire, limited social functioning, and suicide attempts. Conclusions stemming from the results are discussed.Keywords: Afghanistan, women, human rights, mental health, drug abuse treatment

  17. Modeling of Pharmacokinetics of Cocaine in Human Reveals the Feasibility for Development of Enzyme Therapies for Drugs of Abuse

    OpenAIRE

    Fang Zheng; Chang-Guo Zhan

    2012-01-01

    A promising strategy for drug abuse treatment is to accelerate the drug metabolism by administration of a drug-metabolizing enzyme. The question is how effectively an enzyme can actually prevent the drug from entering brain and producing physiological effects. In the present study, we have developed a pharmacokinetic model through a combined use of in vitro kinetic parameters and positron emission tomography data in human to examine the effects of a cocaine-metabolizing enzyme in plasma on th...

  18. Imagination in human social cognition, autism, and psychotic-affective conditions.

    Science.gov (United States)

    Crespi, Bernard; Leach, Emma; Dinsdale, Natalie; Mokkonen, Mikael; Hurd, Peter

    2016-05-01

    Complex human social cognition has evolved in concert with risks for psychiatric disorders. Recently, autism and psychotic-affective conditions (mainly schizophrenia, bipolar disorder, and depression) have been posited as psychological 'opposites' with regard to social-cognitive phenotypes. Imagination, considered as 'forming new ideas, mental images, or concepts', represents a central facet of human social evolution and cognition. Previous studies have documented reduced imagination in autism, and increased imagination in association with psychotic-affective conditions, yet these sets of findings have yet to be considered together, or evaluated in the context of the diametric model. We first review studies of the components, manifestations, and neural correlates of imagination in autism and psychotic-affective conditions. Next, we use data on dimensional autism in healthy populations to test the hypotheses that: (1) imagination represents the facet of autism that best accounts for its strongly male-biased sex ratio, and (2) higher genetic risk of schizophrenia is associated with higher imagination, in accordance with the predictions of the diametric model. The first hypothesis was supported by a systematic review and meta-analysis showing that Imagination exhibits the strongest male bias of all Autism Quotient (AQ) subscales, in non-clinical populations. The second hypothesis was supported, for males, by associations between schizophrenia genetic risk scores, derived from a set of single-nucleotide polymorphisms, and the AQ Imagination subscale. Considered together, these findings indicate that imagination, especially social imagination as embodied in the default mode human brain network, mediates risk and diametric dimensional phenotypes of autism and psychotic-affective conditions. PMID:26896903

  19. Human Laboratory Settings for Assessing Drug Craving; Implications for the Evaluation of Treatment Efficacy

    Directory of Open Access Journals (Sweden)

    Zahra Alam Mehrjerdi

    2011-04-01

    Full Text Available Research on assessing craving in laboratory settings often involves inducing and then measuring craving in subjects. Cue-induced craving is studied in laboratory settings using the cue reactivity paradigm, in which drug-related photos, videos, evocative scripts, olfactory cues, and paraphernalia may induce craving. Cue-induced craving evoked by drug-related stimuli could be associated with relapse and recurrence of drug addiction. In this article, the authors review different methods of assessing craving in laboratory settings and explain how human laboratory settings can bridge the gap between randomized clinical trials (RCTs and animal models on pharmacological treatments for drug dependence. The brief reviewed literature provides strong evidence that laboratory-based studies of craving may improve our understanding of how subjective reports of drug craving are related to objective measures of drug abuse and laboratory settings provide an opportunity to measure the degree to which they co-vary during pharmacological interventions. This issue has important implications inclinical studies.

  20. Ecology of conflict: marine food supply affects human-wildlife interactions on land

    Science.gov (United States)

    Artelle, Kyle A.; Anderson, Sean C.; Reynolds, John D.; Cooper, Andrew B.; Paquet, Paul C.; Darimont, Chris T.

    2016-01-01

    Human-wildlife conflicts impose considerable costs to people and wildlife worldwide. Most research focuses on proximate causes, offering limited generalizable understanding of ultimate drivers. We tested three competing hypotheses (problem individuals, regional population saturation, limited food supply) that relate to underlying processes of human-grizzly bear (Ursus arctos horribilis) conflict, using data from British Columbia, Canada, between 1960–2014. We found most support for the limited food supply hypothesis: in bear populations that feed on spawning salmon (Oncorhynchus spp.), the annual number of bears/km2 killed due to conflicts with humans increased by an average of 20% (6–32% [95% CI]) for each 50% decrease in annual salmon biomass. Furthermore, we found that across all bear populations (with or without access to salmon), 81% of attacks on humans and 82% of conflict kills occurred after the approximate onset of hyperphagia (July 1st), a period of intense caloric demand. Contrary to practices by many management agencies, conflict frequency was not reduced by hunting or removal of problem individuals. Our finding that a marine resource affects terrestrial conflict suggests that evidence-based policy for reducing harm to wildlife and humans requires not only insight into ultimate drivers of conflict, but also management that spans ecosystem and jurisdictional boundaries. PMID:27185189

  1. Ecology of conflict: marine food supply affects human-wildlife interactions on land.

    Science.gov (United States)

    Artelle, Kyle A; Anderson, Sean C; Reynolds, John D; Cooper, Andrew B; Paquet, Paul C; Darimont, Chris T

    2016-01-01

    Human-wildlife conflicts impose considerable costs to people and wildlife worldwide. Most research focuses on proximate causes, offering limited generalizable understanding of ultimate drivers. We tested three competing hypotheses (problem individuals, regional population saturation, limited food supply) that relate to underlying processes of human-grizzly bear (Ursus arctos horribilis) conflict, using data from British Columbia, Canada, between 1960-2014. We found most support for the limited food supply hypothesis: in bear populations that feed on spawning salmon (Oncorhynchus spp.), the annual number of bears/km(2) killed due to conflicts with humans increased by an average of 20% (6-32% [95% CI]) for each 50% decrease in annual salmon biomass. Furthermore, we found that across all bear populations (with or without access to salmon), 81% of attacks on humans and 82% of conflict kills occurred after the approximate onset of hyperphagia (July 1(st)), a period of intense caloric demand. Contrary to practices by many management agencies, conflict frequency was not reduced by hunting or removal of problem individuals. Our finding that a marine resource affects terrestrial conflict suggests that evidence-based policy for reducing harm to wildlife and humans requires not only insight into ultimate drivers of conflict, but also management that spans ecosystem and jurisdictional boundaries. PMID:27185189

  2. Are drug companies living up to their human rights responsibilities? The Merck perspective.

    Directory of Open Access Journals (Sweden)

    Geralyn S Ritter

    2010-09-01

    Full Text Available BACKGROUND TO THE DEBATE: The human rights responsibilities of drug companies have been considered for years by nongovernmental organizations, but were most sharply defined in a report by the UN Special Rapporteur on the right to health, submitted to the United Nations General Assembly in August 2008. The "Human Rights Guidelines for Pharmaceutical Companies in relation to Access to Medicines" include responsibilities for transparency, management, monitoring and accountability, pricing, and ethical marketing, and against lobbying for more protection in intellectual property laws, applying for patents for trivial modifications of existing medicines, inappropriate drug promotion, and excessive pricing. Two years after the release of the Guidelines, the PLoS Medicine Debate asks whether drug companies are living up to their human rights responsibilities. Sofia Gruskin and Zyde Raad from the Harvard School of Public Health say more assessment is needed of such responsibilities; Geralyn Ritter, Vice President of Global Public Policy and Corporate Responsibility at Merck & Co. argues that multiple stakeholders could do more to help States deliver the right to health; and Paul Hunt and Rajat Khosla introduce Mr. Hunt's work as the UN Special Rapporteur on the right to the highest attainable standard of health, regarding the human rights responsibilities of pharmaceutical companies and access to medicines.

  3. Contribution of human hepatic cytochrome p450 isoforms to the metabolism of psychotropic drugs.

    Science.gov (United States)

    Niwa, Toshiro; Shiraga, Toshifumi; Ishii, Ikuko; Kagayama, Akira; Takagi, Akira

    2005-09-01

    The metabolic activities of six psychotropic drugs, diazepam, clotiazepam, tofisopam, etizolam, tandospirone, and imipramine, were determined for 14 isoforms of recombinant human hepatic cytochrome P450s (CYPs) and human liver microsomes by measuring the disappearance rate of parent compounds. In vitro kinetic studies revealed that Vmax/Km values in human liver microsomes were the highest for tofisopam, followed by tandospirone>clotiazepam>imipramine, diazepam, and etizolam. Among the recombinant CYPs, CYP3A4 exhibited the highest metabolic activities of all compounds except for clotiazepam and imipramine. The metabolism of clotiazepam was catalyzed by CYP2B6, CYP3A4, CYP2C18, and CYP2C19, and imipramine was metabolized by CYP2D6 most efficiently. In addition, the metabolic activities of diazepam, clotiazepam, and etizolam in human liver microsomes were inhibited by 2.5 microM ketoconazole, a CYP3A4 inhibitor, by 97.5%, 65.1%, and 83.5%, respectively, and the imipramine metabolism was not detected after the addition of 1 or 10 microM quinidine, a CYP2D6 inhibitor. These results suggest that the psychotropic drugs investigated are metabolized predominantly by CYP3A4, except that CYP2D6 catalyzes the metabolism of imipramine. In addition, this approach based on the disappearance rate appears to be useful for the identification of the responsible CYP isoform(s) of older drugs, for which metabolic profiles have not been reported. PMID:16141545

  4. The voice of emotion across species: how do human listeners recognize animals' affective states?

    Directory of Open Access Journals (Sweden)

    Marina Scheumann

    Full Text Available Voice-induced cross-taxa emotional recognition is the ability to understand the emotional state of another species based on its voice. In the past, induced affective states, experience-dependent higher cognitive processes or cross-taxa universal acoustic coding and processing mechanisms have been discussed to underlie this ability in humans. The present study sets out to distinguish the influence of familiarity and phylogeny on voice-induced cross-taxa emotional perception in humans. For the first time, two perspectives are taken into account: the self- (i.e. emotional valence induced in the listener versus the others-perspective (i.e. correct recognition of the emotional valence of the recording context. Twenty-eight male participants listened to 192 vocalizations of four different species (human infant, dog, chimpanzee and tree shrew. Stimuli were recorded either in an agonistic (negative emotional valence or affiliative (positive emotional valence context. Participants rated the emotional valence of the stimuli adopting self- and others-perspective by using a 5-point version of the Self-Assessment Manikin (SAM. Familiarity was assessed based on subjective rating, objective labelling of the respective stimuli and interaction time with the respective species. Participants reliably recognized the emotional valence of human voices, whereas the results for animal voices were mixed. The correct classification of animal voices depended on the listener's familiarity with the species and the call type/recording context, whereas there was less influence of induced emotional states and phylogeny. Our results provide first evidence that explicit voice-induced cross-taxa emotional recognition in humans is shaped more by experience-dependent cognitive mechanisms than by induced affective states or cross-taxa universal acoustic coding and processing mechanisms.

  5. Mitoxantrone-loaded superparamagnetic iron oxide nanoparticles as drug carriers for cancer therapy: Uptake and toxicity in primary human tubular epithelial cells.

    Science.gov (United States)

    Cicha, Iwona; Scheffler, Laura; Ebenau, Astrid; Lyer, Stefan; Alexiou, Christoph; Goppelt-Struebe, Margarete

    2016-06-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) are in use for many clinical diagnostic and experimental therapeutic applications, for example, for targeted drug delivery. To analyze the cellular responses to mitoxantrone-carrying SPIONs (SPION-MTO), and to the drug released from SPIONs, we used an in vitro system that allows comparison of primary human cells with different endocytotic capacities, namely, epithelial cells from proximal and distal parts of the nephron. SPIONs were selectively and rapidly internalized by proximal tubular cells with high endocytotic potential, but not by distal tubular cells. Uptake did not affect cell viability or morphology. In both cell types, free MTO (10-100 nM) induced double-strand DNA breaks and senescence, cell hypertrophy and reduced cell proliferation. However, cadherin-mediated cell-cell adhesion, cytoskeletal structures or polarity of the cells were not affected. Interestingly, a comparable response was also observed upon treatment with SPION-MTO and was independent of uptake of the particles. The effect of SPION-MTO on cells which did not internalize particles was primarily related to the release of MTO from drug-coated particles upon incubation in serum-containing cell growth medium. In conclusion, we show that whereas the uptake of SPIONs does not affect cellular functions or viability, the toxicity of drug-loaded SPIONs depends essentially on the type of drug bound to nanoparticles. Due to the relatively low systemic toxicity of MTO, the effects of MTO-SPIONs on human tubular cells were moderate, but they may become clinically relevant when more nephrotoxic drugs are bound to SPIONs. PMID:26468004

  6. Inference of Human Affective States from Psychophysiological Measurements Extracted under Ecologically Valid Conditions

    Directory of Open Access Journals (Sweden)

    Alberto eBetella

    2014-09-01

    Full Text Available Compared to standard laboratory protocols, the measurement of psychophysiological signals in real world experiments poses technical and methodological challenges due to external factors that cannot be directly controlled. To address this problem, we propose a hybrid approach based on an immersive and human accessible space called the eXperience Induction Machine (XIM, that incorporates the advantages of a laboratory within a life-like setting. The XIM integrates unobtrusive wearable sensors for the acquisition of psychophysiological signals suitable for ambulatory emotion research. In this paper, we present results from two different studies conducted to validate the XIM as a general-purpose sensing infrastructure for the study of human affective states under ecologically valid conditions. In the first investigation, we recorded and classified signals from subjects exposed to pictorial stimuli corresponding to a range of arousal levels, while they were free to walk and gesticulate. In the second study, we designed an experiment that follows the classical conditioning paradigm, a well-known procedure in the behavioral sciences, with the additional feature that participants were free to move in the physical space, as opposed to similar studies measuring physiological signals in constrained laboratory settings. Our results indicate that, by using our sensing infrastructure, it is indeed possible to infer human event-elicited affective states through measurements of psychophysiological signals under ecological conditions.

  7. Nonsense mutations in the human β-globin gene affect mRNA metabolism

    International Nuclear Information System (INIS)

    A number of premature translation termination mutations (nonsense mutations) have been described in the human α- and β-globin genes. Studies on mRNA isolated from patients with β0-thalassemia have shown that for both the β-17 and the β-39 mutations less than normal levels of β-globin mRNA accumulate in peripheral blood cells. (The codon at which the mutation occurs designates the name of the mutation; there are 146 codons in human β-globin mRNA). In vitro studies using the cloned β-39 gene have reproduced this effect in a heterologous transfection system and have suggested that the defect resides in intranuclear metabolism. The authors have asked if this phenomenon of decreased mRNA accumulation is a general property of nonsense mutations and if the effect depends on the location or the type of mutation. Toward this end, they have studied the effect of five nonsense mutations and two missense mutations on the expression of human β-globin mRNA in a heterologous transfection system. In all cases studied, the presence of a translation termination codon correlates with a decrease in the steady-state level of mRNA. The data suggest that the metabolism of a mammalian mRNA is affected by the presence of a mutation that affects translation

  8. Experimental Psychiatric Illness and Drug Abuse Models: From Human to Animal, an Overview

    OpenAIRE

    Edwards, Scott; Koob, George F.

    2012-01-01

    Preclinical animal models have supported much of the recent rapid expansion of neuroscience research and have facilitated critical discoveries that undoubtedly benefit patients suffering from psychiatric disorders. This overview serves as an introduction for the following chapters describing both in vivo and in vitro preclinical models of psychiatric disease components and briefly describes models related to drug dependence and affective disorders. Although there are no perfect animal models ...

  9. Investigation on a Potential Targeting Drug Delivery System Consisting of Folate, Mitoxantrone and Human Serum Albumin

    Institute of Scientific and Technical Information of China (English)

    ZHOU Qiu-Jua; BI Ya-Jing; XIANG Jun-Feng; TANG Ya-Lin; YANG Qian-Fan; XU Guang-Zhi

    2008-01-01

    A potential targeting drug delivery system consisting of folate (FA), the targeting molecule, human serum al- bumin (HSA), the carrier, and mitoxantrone (MTO), the medicine, has been designed. Data obtained by UV absorp-tion, fluorescence, and NMR techniques indicated the formation of ternary complexes and possible application to building a targeting drug delivery system by using FA, MTO and HSA. Furthermore, cytotoxicity assay indicated that the toxicity of the FA-HSA-MTO against PC-3 cell line was 79.95%, which was much higher than that of free MTO tested in totally the same conditions. About 30% increase of the toxicity should be owed to the targeting ef-fect of FA. Thus, the feasibility and validity of a novel targeting drug delivery system, FA-HSA-MTO, was con-firmed.

  10. Recombinant human elastin-like magnetic microparticles for drug delivery and targeting.

    Science.gov (United States)

    Ciofani, Gianni; Genchi, Giada Graziana; Guardia, Pablo; Mazzolai, Barbara; Mattoli, Virgilio; Bandiera, Antonella

    2014-05-01

    Bioinspired recombinant polypeptides represent a highly promising tool in biomedical research, being protein intrinsic constituents of both cells and their natural matrices. In this regard, a very interesting model is represented by polypeptides inspired by elastin, which naturally confers rubber-like elasticity to tissues, and is able to undergo wide deformations without rupture. In this paper, a microparticle system based on a recombinant human elastin-like polypeptide (HELP) is reported for drug delivery applications. HELP microparticles are prepared through a water-in-oil emulsion of an aqueous solution of recombinant polypeptide in isoctane, followed by enzymatic cross-linking. Superparamagnetic iron oxide nanoparticles are introduced in this system with the purpose of conferring magnetic properties to the microspheres, and thus controlling their targeting and tracking as drug vectors. The obtained microparticles are characterized in terms of morphology, structure, magnetic properties, drug release, and magnetic drivability, showing interesting and promising results for further biomedical applications. PMID:24318291

  11. Familial Dysautonomia (FD Human Embryonic Stem Cell Derived PNS Neurons Reveal that Synaptic Vesicular and Neuronal Transport Genes Are Directly or Indirectly Affected by IKBKAP Downregulation.

    Directory of Open Access Journals (Sweden)

    Sharon Lefler

    Full Text Available A splicing mutation in the IKBKAP gene causes Familial Dysautonomia (FD, affecting the IKAP protein expression levels and proper development and function of the peripheral nervous system (PNS. Here we found new molecular insights for the IKAP role and the impact of the FD mutation in the human PNS lineage by using a novel and unique human embryonic stem cell (hESC line homozygous to the FD mutation originated by pre implantation genetic diagnosis (PGD analysis. We found that IKBKAP downregulation during PNS differentiation affects normal migration in FD-hESC derived neural crest cells (NCC while at later stages the PNS neurons show reduced intracellular colocalization between vesicular proteins and IKAP. Comparative wide transcriptome analysis of FD and WT hESC-derived neurons together with the analysis of human brains from FD and WT 12 weeks old embryos and experimental validation of the results confirmed that synaptic vesicular and neuronal transport genes are directly or indirectly affected by IKBKAP downregulation in FD neurons. Moreover we show that kinetin (a drug that corrects IKBKAP alternative splicing promotes the recovery of IKAP expression and these IKAP functional associated genes identified in the study. Altogether, these results support the view that IKAP might be a vesicular like protein that might be involved in neuronal transport in hESC derived PNS neurons. This function seems to be mostly affected in FD-hESC derived PNS neurons probably reflecting some PNS neuronal dysfunction observed in FD.

  12. How does domain replacement affect fibril formation of the rabbit/human prion proteins.

    Directory of Open Access Journals (Sweden)

    Xu Yan

    Full Text Available It is known that in vivo human prion protein (PrP have the tendency to form fibril deposits and are associated with infectious fatal prion diseases, while the rabbit PrP does not readily form fibrils and is unlikely to cause prion diseases. Although we have previously demonstrated that amyloid fibrils formed by the rabbit PrP and the human PrP have different secondary structures and macromolecular crowding has different effects on fibril formation of the rabbit/human PrPs, we do not know which domains of PrPs cause such differences. In this study, we have constructed two PrP chimeras, rabbit chimera and human chimera, and investigated how domain replacement affects fibril formation of the rabbit/human PrPs.As revealed by thioflavin T binding assays and Sarkosyl-soluble SDS-PAGE, the presence of a strong crowding agent dramatically promotes fibril formation of both chimeras. As evidenced by circular dichroism, Fourier transform infrared spectroscopy, and proteinase K digestion assays, amyloid fibrils formed by human chimera have secondary structures and proteinase K-resistant features similar to those formed by the human PrP. However, amyloid fibrils formed by rabbit chimera have proteinase K-resistant features and secondary structures in crowded physiological environments different from those formed by the rabbit PrP, and secondary structures in dilute solutions similar to the rabbit PrP. The results from transmission electron microscopy show that macromolecular crowding caused human chimera but not rabbit chimera to form short fibrils and non-fibrillar particles.We demonstrate for the first time that the domains beyond PrP-H2H3 (β-strand 1, α-helix 1, and β-strand 2 have a remarkable effect on fibrillization of the rabbit PrP but almost no effect on the human PrP. Our findings can help to explain why amyloid fibrils formed by the rabbit PrP and the human PrP have different secondary structures and why macromolecular crowding has different

  13. Alteration of human hepatic drug transporter activity and expression by cigarette smoke condensate.

    Science.gov (United States)

    Sayyed, Katia; Vee, Marc Le; Abdel-Razzak, Ziad; Jouan, Elodie; Stieger, Bruno; Denizot, Claire; Parmentier, Yannick; Fardel, Olivier

    2016-07-01

    Smoking is well-known to impair pharmacokinetics, through inducing expression of drug metabolizing enzymes. In the present study, we demonstrated that cigarette smoke condensate (CSC) also alters activity and expression of hepatic drug transporters, which are now recognized as major actors of hepatobiliary elimination of drugs. CSC thus directly inhibited activities of sinusoidal transporters such as OATP1B1, OATP1B3, OCT1 and NTCP as well as those of canalicular transporters like P-glycoprotein, MRP2, BCRP and MATE1, in hepatic transporters-overexpressing cells. CSC similarly counteracted constitutive OATP, NTCP and OCT1 activities in human highly-differentiated hepatic HepaRG cells. In parallel, CSC induced expression of BCRP at both mRNA and protein level in HepaRG cells, whereas it concomitantly repressed mRNA expression of various transporters, including OATP1B1, OATP2B1, OAT2, NTCP, OCT1 and BSEP, and enhanced that of MRP4. Such changes in transporter gene expression were found to be highly correlated to those caused by 2,3,7,8-tetrachlorodibenzo-p-dioxin, a reference activator of the aryl hydrocarbon receptor (AhR) pathway, and were counteracted, for some of them, by siRNA-mediated AhR silencing. This suggests that CSC alters hepatic drug transporter levels via activation of the AhR cascade. Importantly, drug transporter expression regulations as well as some transporter activity inhibitions occurred for a range of CSC concentrations similar to those required for inducing drug metabolizing enzymes and may therefore be hypothesized to be relevant for smokers. Taken together, these data established human hepatic transporters as targets of cigarette smoke, which could contribute to known alteration of pharmacokinetics and some liver adverse effects caused by smoking. PMID:27450509

  14. Epigenetics and transcriptomics to detect adverse drug effects in model systems of human development.

    Science.gov (United States)

    Balmer, Nina V; Leist, Marcel

    2014-07-01

    Prenatal exposure to environmental chemicals or drugs has been associated with functional or structural deficits and the development of diseases in later life. For example, developmental neurotoxicity (DNT) is triggered by lead, and this compound may predispose to neurodegenerative diseases in later life. The molecular memory for such late consequences of early exposure is not known, but epigenetic mechanisms (modification of the chromatin structure) could take this role. Examples and underlying mechanisms have been compiled here for the field of DNT. Moreover, we addressed the question as to what readout is suitable for addressing drug memory effects. We summarize how complex developmental processes can be modelled in vitro by using the differentiation of human stem cells. Although cellular models can never replicate the final human DNT phenotype, they can model the adverse effect that a chemical has on key biological processes essential for organ formation and function. Highly information-rich transcriptomics data may inform on these changes and form the bridge from in vitro models to human prediction. We compiled data showing that transcriptome analysis can indicate toxicity patterns of drugs. A crucial question to be answered in our systems is when and how transcriptome changes indicate adversity (as opposed to transient adaptive responses), and how drug-induced changes are perpetuated over time even after washout of the drug. We present evidence for the hypothesis that changes in the histone methylation pattern could represent the persistence detector of an early insult that is transformed to an adverse effect at later time-points in life. PMID:24476462

  15. IGF-1 receptor targeted nanoparticles for image-guided therapy of stroma-rich and drug resistant human cancer

    Science.gov (United States)

    Zhou, Hongyu; Qian, Weiping; Uckun, Fatih M.; Zhou, Zhiyang; Wang, Liya; Wang, Andrew; Mao, Hui; Yang, Lily

    2016-05-01

    Low drug delivery efficiency and drug resistance from highly heterogeneous cancer cells and tumor microenvironment represent major challenges in clinical oncology. Growth factor receptor, IGF-1R, is overexpressed in both human tumor cells and tumor associated stromal cells. The level of IGF-1R expression is further up-regulated in drug resistant tumor cells. We have developed IGF-1R targeted magnetic iron oxide nanoparticles (IONPs) carrying multiple anticancer drugs into human tumors. This IGF-1R targeted theranostic nanoparticle delivery system has an iron core for non-invasive MR imaging, amphiphilic polymer coating to ensure the biocompatibility as well as for drug loading and conjugation of recombinant human IGF-1 as targeting molecules. Chemotherapy drugs, Doxorubicin (Dox), was encapsulated into the polymer coating and/or conjugated to the IONP surface by coupling with the carboxyl groups. The ability of IGF1R targeted theranostic nanoparticles to penetrate tumor stromal barrier and enhance tumor cell killing has been demonstrated in human pancreatic cancer patient tissue derived xenograft (PDX) models. Repeated systemic administrations of those IGF-1R targeted theranostic IONP carrying Dox led to breaking the tumor stromal barrier and improved therapeutic effect. Near infrared (NIR) optical and MR imaging enabled noninvasive monitoring of nanoparticle-drug delivery and therapeutic responses. Our results demonstrated that IGF-1R targeted nanoparticles carrying multiple drugs are promising combination therapy approaches for image-guided therapy of stroma-rich and drug resistant human cancer, such as pancreatic cancer.

  16. Numerical investigation of aerosolized drug delivery in the human lungs under mechanical ventilator conditions

    Science.gov (United States)

    Vanrhein, Timothy; Banerjee, Arindam

    2010-11-01

    Particle deposition for aerosolized drug delivery in the human airways is heavily dependent upon flow conditions. Numerical modeling techniques have proven valuable for determining particle deposition characteristics under steady flow conditions. For the case of patients under mechanical ventilation, however, flow conditions change drastically and there is an increased importance to understand particle deposition characteristics. This study focuses on mechanically ventilated conditions in the upper trachea-bronchial (TB) region of the human airways. Solution of the continuous phase flow is done under ventilator waveform conditions with a suitable turbulence model in conjunction with a realistic model of upper TB airways. A discrete phase Euler-Lagrange approach is applied to solve for particle deposition characteristics with a focus on the effect of the ventilator inlet waveform. The purpose of this study is to accurately model flow conditions in the upper TB airways under mechanically ventilated conditions with a focus on real-time patient specific targeted aerosolized drug delivery.

  17. Drug Trafficking: A crime against humanity in the Rome Statue of the International Criminal Court?

    Directory of Open Access Journals (Sweden)

    Salvador Cuenca Curbelo

    2014-03-01

    Full Text Available Drug trafficking is a criminal activity that has become an international problem of growing magnitude. In some regions it is an emerging source of instability that threatens to jeopardize international security. Given the danger of this phenome- non, some states have tried to make acts of drug trafficking fall within the jurisdic- tion of an international criminal court. Although no agreement about its inclusion in the Rome Statute of the International Criminal Court was finally reached, the possibility of qualifying such acts as crimes against humanity has been raised from different fronts. This would allow their investigation or prosecution by the Inter- national Criminal Court itself. This paper analyses to what extent criminal orga- nizations involved in drug trafficking can fulfill the contextual elements of crimes against humanity as defined by the Rome Statute and, if so, to what extent acts of drug trafficking, despite not being expressly included in the Rome Statute, can be considered as “other inhumane acts” of a similar character to the acts referred to in Article 7 (1 of the Rome Statute.

  18. Human engineered heart tissue as a model system for drug testing.

    Science.gov (United States)

    Eder, Alexandra; Vollert, Ingra; Hansen, Arne; Eschenhagen, Thomas

    2016-01-15

    Drug development is time- and cost-intensive and, despite extensive efforts, still hampered by the limited value of current preclinical test systems to predict side effects, including proarrhythmic and cardiotoxic effects in clinical practice. Part of the problem may be related to species-dependent differences in cardiomyocyte biology. Therefore, the event of readily available human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CM) has raised hopes that this human test bed could improve preclinical safety pharmacology as well as drug discovery approaches. However, hiPSC-CM are immature and exhibit peculiarities in terms of ion channel function, gene expression, structural organization and functional responses to drugs that limit their present usefulness. Current efforts are thus directed towards improving hiPSC-CM maturity and high-content readouts. Culturing hiPSC-CM as 3-dimensional engineered heart tissue (EHT) improves CM maturity and anisotropy and, in a 24-well format using silicone racks, enables automated, multiplexed high content readout of contractile function. This review summarizes the principal technology and focuses on advantages and disadvantages of this technology and its potential for preclinical drug screening.

  19. Modern Virtual Reality. And the effects of affecting human senses to increase immersion

    OpenAIRE

    Ekros, Matthias

    2015-01-01

    Modern virtual reality is an ever growing subject in today’s society. I delved deeper into some key moments in the development of modern virtual reality. Oculus Rift has shown incredible potential. Some developments even seek to envelope the human senses in virtual reality as well.   With several different approaches to the same solution there are many ways that the experience can affect the overall immersion of a consumer into the product.  The tests I performed were primarily focused around...

  20. Health in the hot zone - How could global warming affect humans?

    Energy Technology Data Exchange (ETDEWEB)

    Monastersky, R.

    1996-04-06

    A soon-to-be-released report from the World Health Organization examines the health effects of global warming, calling climate change one of the largest public health challenges for the upcoming century. The issue extends beyond tropical illness: deaths caused directly by heat, dwindling agricultural yields etc. could all affect human health. This article looks at the following health related effects and gives an overview of the scientific information available on each: temperature and mortality; tropical trouble, including vecorborne diseases and increase in susceptable populations; and waterborne problems such as cholera, harmful algal bloomes, food shortages.

  1. Does correlated color temperature affect the ability of humans to identify veins?

    Science.gov (United States)

    Argyraki, Aikaterini; Clemmensen, Line Katrine Harder; Petersen, Paul Michael

    2016-01-01

    In the present study we provide empirical evidence and demonstrate statistically that white illumination settings can affect the human ability to identify veins in the inner hand vasculature. A special light-emitting diode lamp with high color rendering index (CRI 84-95) was developed and the effect of correlated color temperature was evaluated, in the range between 2600 and 5700 K at an illuminance of 40±9  lx on the ability of adult humans to identify veins. It is shown that the ability to identify veins can, on average, be increased up to 24% when white illumination settings that do not resemble incandescent light are applied. The illuminance reported together with the effect of white illumination settings on direct visual perception of biosamples are relevant for clinical investigations during the night. PMID:26831595

  2. AFFECTIVE AND EMOTIONAL ASPECTS OF HUMAN-COMPUTER INTERACTION: Game-Based and Innovative Learning Approaches

    Directory of Open Access Journals (Sweden)

    A. Askim GULUMBAY, Anadolu University, TURKEY

    2006-07-01

    Full Text Available This book was edited by, Maja Pivec, an educator at the University of Applied Sciences, and published by IOS Pres in 2006. The learning process can be seen as an emotional and personal experience that is addictive and leads learners to proactive behavior. New research methods in this field are related to affective and emotional approaches to computersupported learning and human-computer interactions.Bringing together scientists and research aspects from psychology, educational sciences, cognitive sciences, various aspects of communication and human computer interaction, interface design andcomputer science on one hand and educators and game industry on the other, this should open gates to evolutionary changes of the learning industry. The major topics discussed are emotions, motivation, games and game-experience.

  3. Research into human factors affecting the railway system; Studien zu menschlichen Einflussfaktoren im Eisenbahnsystem

    Energy Technology Data Exchange (ETDEWEB)

    Hammerl, Malte; Feldmann, Frederike; Rumke, Axel; Pelz, Markus [DLR e.V., Braunschweig (Germany). Inst. fuer Verkehrssystemtechnik

    2010-07-01

    The Institute for Transportation Systems (ITS) at the German Aerospace Center DLR in Braunschweig has for many years been conducting research into current and future topics relating to railway transportation. Supplementing the in-house technical infrastructure including e.g. RailSiTe {sup registered} (Rail Simulation and Testing) and RailDriVE {sup registered} (Rail Driving Validation Environment), a new test environment for Rail Human Factors Research has been established to investigate such factors as they affect locomotive drivers. The aim is to analyse current issues and new concepts regarding human-machine interaction and test them under conditions that are as true-to-life as possible without exposure to real-life safety-critical situations. The test environment allows for investigation across the spectrum, starting with workplace analysis and going on from potential modifications to existing user interfaces through to the analysis of prototype assistance systems. (orig.)

  4. Ivermectin Mass Drug Administration to Humans Disrupts Malaria Parasite Transmission in Senegalese Villages

    OpenAIRE

    Kobylinski, Kevin C.; Sylla, Massamba; Chapman, Phillip L; Sarr, Moussa D; Foy, Brian D

    2011-01-01

    Ivermectin mass drug administration (MDA) to humans is used to control onchocerciasis and lymphatic filariasis. Recent field studies have shown an added killing effect of ivermectin MDA against malaria vectors. We report that ivermectin MDA reduced the proportion of Plasmodium falciparum infectious Anopheles gambiae sensu stricto (s.s.) in treated villages in southeastern Senegal. Ivermectin MDA is a different delivery method and has a different mode of action from current malaria control age...

  5. Targeted Skipping of Human Dystrophin Exons in Transgenic Mouse Model Systemically for Antisense Drug Development

    OpenAIRE

    Bo Wu; Ehsan Benrashid; Peijuan Lu; Caryn Cloer; Allen Zillmer; Mona Shaban; Qi Long Lu

    2011-01-01

    Antisense therapy has recently been demonstrated with great potential for targeted exon skipping and restoration of dystrophin production in cultured muscle cells and in muscles of Duchenne Muscular Dystrophy (DMD) patients. Therapeutic values of exon skipping critically depend on efficacy of the drugs, antisense oligomers (AOs). However, no animal model has been established to test AO targeting human dystrophin exon in vivo systemically. In this study, we applied Vivo-Morpholino to the hDMD/...

  6. FLUPIRTINE: A HUMAN DRUG WITH POTENTIAL FOR USE IN THE VETERINARY FIELD

    Directory of Open Access Journals (Sweden)

    Mario Giorgi

    2012-01-01

    Full Text Available Flupirtine is a nonopioid drug without antipyretic or antiphlogistic properties and with a favorable tolerability in humans. It constitutes a unique class within the group of nonsteroidal analgesics and displays a peculiar pharmacokinetic/dynamic profile that could have large potentialities of applications in the veterinary field. This review describes and evaluates the pharmacologic literature concerning flupirtine and addresses its potential in veterinary medicine.

  7. Protein kinase C-dependent regulation of human hepatic drug transporter expression.

    Science.gov (United States)

    Mayati, Abdullah; Le Vee, Marc; Moreau, Amélie; Jouan, Elodie; Bucher, Simon; Stieger, Bruno; Denizot, Claire; Parmentier, Yannick; Fardel, Olivier

    2015-12-15

    Hepatic drug transporters are now recognized as major actors of hepatobiliary elimination of drugs. Characterization of their regulatory pathways is therefore an important issue. In this context, the present study was designed to analyze the potential regulation of human hepatic transporter expression by protein kinase C (PKC) activation. Treatment by the reference PKC activator phorbol 12-myristate 13-acetate (PMA) for 48h was shown to decrease mRNA expression of various sinusoidal transporters, including OATP1B1, OATP2B1, NTCP, OCT1 and MRP3, but to increase that of OATP1B3, whereas mRNA expression of canalicular transporters was transiently enhanced (MDR1), decreased (BSEP and MRP2) or unchanged (BCRP) in human hepatoma HepaRG cells. The profile of hepatic transporter mRNA expression changes in PMA-treated HepaRG cells was correlated to that found in PMA-exposed primary human hepatocytes and was similarly observed in response to the PKC-activating marketed drug ingenol mebutate. It was associated with concomitant repression of OATP1B1 and OATP2B1 protein expression and reduction of OATP, OCT1, NTCP and MRP2 activity. The use of chemical PKC inhibitors further suggested a contribution of novel PKCs isoforms to PMA-mediated regulations of transporter mRNA expression. PMA was finally shown to cause epithelial-mesenchymal transition (EMT) in HepaRG cells and exposure to various additional EMT inducers, i.e., hepatocyte growth factor, tumor growth factor-β1 or the HNF4α inhibitor BI6015, led to transporter expression alterations highly correlated to those triggered by PMA. Taken together, these data highlight PKC-dependent regulation of human hepatic drug transporter expression, which may be closely linked to EMT triggered by PKC activation. PMID:26462574

  8. Prevalence of Human Immunodeficiency Virus Infection among Injection Drug Users Released from Jail

    OpenAIRE

    Moradi, Ali Reza; Emdadi, Abbas; Soori, Bahram; Mostafavi, Ehsan

    2012-01-01

    Background Injecting drug users (IDUs) and prisoners are considered to be highly vulnerable to human immunodeficiency virus (HIV) infection in Iran. This study was carried out to determine the prevalence of HIV infection among IDUs released from jail in Bahar (Hamadan, Iran). Methods In a cross-sectional study, 118 IDUs who were prisoners during 2001-07 were evaluated. Their demographic and personal characteristics were assessed by a questionnaire. In order to determine HIV-positive individua...

  9. Dominant factors affecting temperature rise in simulations of human thermoregulation during RF exposure

    International Nuclear Information System (INIS)

    Numerical models of the human thermoregulatory system can be used together with realistic voxel models of the human anatomy to simulate the body temperature increases caused by the power absorption from radio-frequency electromagnetic fields. In this paper, the Pennes bioheat equation with a thermoregulatory model is used for calculating local peak temperatures as well as the body-core-temperature elevation in a realistic human body model for grounded plane-wave exposures at frequencies 39, 800 and 2400 MHz. The electromagnetic power loss is solved by the finite-difference time-domain (FDTD) method, and the discretized bioheat equation is solved by the geometric multigrid method. Human thermoregulatory models contain numerous thermophysiological and computational parameters—some of which may be subject to considerable uncertainty—that affect the simulated core and local temperature elevations. The goal of this paper is to find how greatly the computed temperature is influenced by changes in various modelling parameters, such as the skin blood flow rate, models for vasodilation and sweating, and clothing and air movement. The results show that the peak temperature rises are most strongly affected by the modelling of tissue blood flow and its temperature dependence, and mostly unaffected by the central control mechanism for vasodilation and sweating. Almost the opposite is true for the body-core-temperature rise, which is however typically greatly lower than the peak temperature rise. It also seems that ignoring the thermoregulation and the blood temperature increase is a good approximation when the local 10 g averaged specific absorption rate is smaller than 10 W kg−1.

  10. Drug metabolism in human brain: high levels of cytochrome P4503A43 in brain and metabolism of anti-anxiety drug alprazolam to its active metabolite.

    Directory of Open Access Journals (Sweden)

    Varsha Agarwal

    Full Text Available Cytochrome P450 (P450 is a super-family of drug metabolizing enzymes. P450 enzymes have dual function; they can metabolize drugs to pharmacologically inactive metabolites facilitating their excretion or biotransform them to pharmacologically active metabolites which may have longer half-life than the parent drug. The variable pharmacological response to psychoactive drugs typically seen in population groups is often not accountable by considering dissimilarities in hepatic metabolism. Metabolism in brain specific nuclei may play a role in pharmacological modulation of drugs acting on the CNS and help explain some of the diverse response to these drugs seen in patient population. P450 enzymes are also present in brain where drug metabolism can take place and modify therapeutic action of drugs at the site of action. We have earlier demonstrated an intrinsic difference in the biotransformation of alprazolam (ALP in brain and liver, relatively more alpha-hydroxy alprazolam (alpha-OHALP is formed in brain as compared to liver. In the present study we show that recombinant CYP3A43 metabolizes ALP to both alpha-OHALP and 4-hydroxy alprazolam (4-OHALP while CYP3A4 metabolizes ALP predominantly to its inactive metabolite, 4-OHALP. The expression of CYP3A43 mRNA in human brain samples correlates with formation of relatively higher levels of alpha-OH ALP indicating that individuals who express higher levels of CYP3A43 in the brain would generate larger amounts of alpha-OHALP. Further, the expression of CYP3A43 was relatively higher in brain as compared to liver across different ethnic populations. Since CYP3A enzymes play a prominent role in the metabolism of drugs, the higher expression of CYP3A43 would generate metabolite profile of drugs differentially in human brain and thus impact the pharmacodynamics of psychoactive drugs at the site of action.

  11. Functional assessment of human coding mutations affecting skin pigmentation using zebrafish.

    Directory of Open Access Journals (Sweden)

    Zurab R Tsetskhladze

    Full Text Available A major challenge in personalized medicine is the lack of a standard way to define the functional significance of the numerous nonsynonymous, single nucleotide coding variants that are present in each human individual. To begin to address this problem, we have used pigmentation as a model polygenic trait, three common human polymorphisms thought to influence pigmentation, and the zebrafish as a model system. The approach is based on the rescue of embryonic zebrafish mutant phenotypes by "humanized" zebrafish orthologous mRNA. Two hypomorphic polymorphisms, L374F in SLC45A2, and A111T in SLC24A5, have been linked to lighter skin color in Europeans. The phenotypic effect of a second coding polymorphism in SLC45A2, E272K, is unclear. None of these polymorphisms had been tested in the context of a model organism. We have confirmed that zebrafish albino fish are mutant in slc45a2; wild-type slc45a2 mRNA rescued the albino mutant phenotype. Introduction of the L374F polymorphism into albino or the A111T polymorphism into slc24a5 (golden abolished mRNA rescue of the respective mutant phenotypes, consistent with their known contributions to European skin color. In contrast, the E272K polymorphism had no effect on phenotypic rescue. The experimental conclusion that E272K is unlikely to affect pigmentation is consistent with a lack of correlation between this polymorphism and quantitatively measured skin color in 59 East Asian humans. A survey of mutations causing human oculocutaneous albinism yielded 257 missense mutations, 82% of which are theoretically testable in zebrafish. The developed approach may be extended to other model systems and may potentially contribute to our understanding the functional relationships between DNA sequence variation, human biology, and disease.

  12. 3-Bromopyruvate induces rapid human prostate cancer cell death by affecting cell energy metabolism, GSH pool and the glyoxalase system.

    Science.gov (United States)

    Valenti, Daniela; Vacca, Rosa A; de Bari, Lidia

    2015-12-01

    3-bromopyruvate (3-BP) is an anti-tumour drug effective on hepatocellular carcinoma and other tumour cell types, which affects both glycolytic and mitochondrial targets, depleting cellular ATP pool. Here we tested 3-BP on human prostate cancer cells showing, differently from other tumour types, efficient ATP production and functional mitochondrial metabolism. We found that 3-BP rapidly induced cultured androgen-insensitive (PC-3) and androgen-responsive (LNCaP) prostate cancer cell death at low concentrations (IC(50) values of 50 and 70 μM, respectively) with a multimodal mechanism of action. In particular, 3-BP-treated PC-3 cells showed a selective, strong reduction of glyceraldeide 3-phosphate dehydrogenase activity, due to the direct interaction of the drug with the enzyme. Moreover, 3-BP strongly impaired both glutamate/malate- and succinate-dependent mitochondrial respiration, membrane potential generation and ATP synthesis, concomitant with the inhibition of respiratory chain complex I, II and ATP synthase activities. The drastic reduction of cellular ATP levels and depletion of GSH pool, associated with significant increase in cell oxidative stress, were found after 3-BP treatment of PC-3 cells. Interestingly, the activity of both glyoxalase I and II, devoted to the elimination of the cytotoxic methylglyoxal, was strongly inhibited by 3-BP. Both N-acetylcysteine and aminoguanidine, GSH precursor and methylglyoxal scavenger, respectively, prevented 3-BP-induced PC-3 cell death, showing that impaired cell antioxidant and detoxifying capacities are crucial events leading to cell death. The provided information on the multi-target cytotoxic action of 3-BP, finally leading to PC-3 cell necrosis, might be useful for future development of 3-BP as a therapeutic option for prostate cancer treatment. PMID:26530987

  13. Parasite Mitogen-Activated Protein Kinases as Drug Discovery Targets to Treat Human Protozoan Pathogens

    Directory of Open Access Journals (Sweden)

    Michael J. Brumlik

    2011-01-01

    Full Text Available Protozoan pathogens are a highly diverse group of unicellular organisms, several of which are significant human pathogens. One group of protozoan pathogens includes obligate intracellular parasites such as agents of malaria, leishmaniasis, babesiosis, and toxoplasmosis. The other group includes extracellular pathogens such as agents of giardiasis and amebiasis. An unfortunate unifying theme for most human protozoan pathogens is that highly effective treatments for them are generally lacking. We will review targeting protozoan mitogen-activated protein kinases (MAPKs as a novel drug discovery approach towards developing better therapies, focusing on Plasmodia, Leishmania, and Toxoplasma, about which the most is known.

  14. Season of conception in rural gambia affects DNA methylation at putative human metastable epialleles.

    Directory of Open Access Journals (Sweden)

    Robert A Waterland

    Full Text Available Throughout most of the mammalian genome, genetically regulated developmental programming establishes diverse yet predictable epigenetic states across differentiated cells and tissues. At metastable epialleles (MEs, conversely, epigenotype is established stochastically in the early embryo then maintained in differentiated lineages, resulting in dramatic and systemic interindividual variation in epigenetic regulation. In the mouse, maternal nutrition affects this process, with permanent phenotypic consequences for the offspring. MEs have not previously been identified in humans. Here, using an innovative 2-tissue parallel epigenomic screen, we identified putative MEs in the human genome. In autopsy samples, we showed that DNA methylation at these loci is highly correlated across tissues representing all 3 embryonic germ layer lineages. Monozygotic twin pairs exhibited substantial discordance in DNA methylation at these loci, suggesting that their epigenetic state is established stochastically. We then tested for persistent epigenetic effects of periconceptional nutrition in rural Gambians, who experience dramatic seasonal fluctuations in nutritional status. DNA methylation at MEs was elevated in individuals conceived during the nutritionally challenged rainy season, providing the first evidence of a permanent, systemic effect of periconceptional environment on human epigenotype. At MEs, epigenetic regulation in internal organs and tissues varies among individuals and can be deduced from peripheral blood DNA. MEs should therefore facilitate an improved understanding of the role of interindividual epigenetic variation in human disease.

  15. Antiretroviral therapy and drug resistance in human immunodeficiency virus type 2 infection.

    Science.gov (United States)

    Menéndez-Arias, Luis; Alvarez, Mar

    2014-02-01

    One to two million people worldwide are infected with the human immunodeficiency virus type 2 (HIV-2), with highest prevalences in West African countries, but also present in Western Europe, Asia and North America. Compared to HIV-1, HIV-2 infection undergoes a longer asymptomatic phase and progresses to AIDS more slowly. In addition, HIV-2 shows lower transmission rates, probably due to its lower viremia in infected individuals. There is limited experience in the treatment of HIV-2 infection and several antiretroviral drugs used to fight HIV-1 are not effective against HIV-2. Effective drugs against HIV-2 include nucleoside analogue reverse transcriptase (RT) inhibitors (e.g. zidovudine, tenofovir, lamivudine, emtricitabine, abacavir, stavudine and didanosine), protease inhibitors (saquinavir, lopinavir and darunavir), and integrase inhibitors (raltegravir, elvitegravir and dolutegravir). Maraviroc, a CCR5 antagonist blocking coreceptor binding during HIV entry, is active in vitro against CCR5-tropic HIV-2 but more studies are needed to validate its use in therapeutic treatments against HIV-2 infection. HIV-2 strains are naturally resistant to a few antiretroviral drugs developed to suppress HIV-1 propagation such as nonnucleoside RT inhibitors, several protease inhibitors and the fusion inhibitor enfuvirtide. Resistance selection in HIV-2 appears to be faster than in HIV-1. In this scenario, the development of novel drugs specific for HIV-2 is an important priority. In this review, we discuss current anti-HIV-2 therapies and mutational pathways leading to drug resistance. PMID:24345729

  16. Food and drug reward: overlapping circuits in human obesity and addiction

    International Nuclear Information System (INIS)

    Both drug addiction and obesity can be defined as disorders in which the saliency value of one type of reward (drugs and food, respectively) becomes abnormally enhanced relative to, and at the expense of others. This model is consistent with the fact that both drugs and food have powerful reinforcing effects - partly mediated by dopamine increases in the limbic system - that, under certain circumstances or in vulnerable individuals, could overwhelm the brain's homeostatic control mechanisms. Such parallels have generated significant interest in understanding the shared vulnerabilities and trajectories between addiction and obesity. Now, brain imaging discoveries have started to uncover common features between these two conditions and to delineate some of the overlapping brain circuits whose dysfunctions may explain stereotypic and related behavioral deficits in human subjects. These results suggest that both obese and drug addicted individuals suffer from impairments in dopaminergic pathways that regulate neuronal systems associated not only with reward sensitivity and incentive motivation, but also with conditioning (memory/learning), impulse control (behavioral inhibition), stress reactivity and interoceptive awareness. Here, we integrate findings predominantly derived from positron emission tomography that investigate the role of dopamine in drug addiction and in obesity and propose an updated working model to help identify treatment strategies that may benefit both of these conditions.

  17. Food and drug reward: overlapping circuits in human obesity and addiction

    Energy Technology Data Exchange (ETDEWEB)

    Volkow N. D.; Wang G.; Volkow, N.D.; Wang, G.-J.; Fowler, J.S.; Tomasi, D.; Baler, R.

    2012-12-01

    Both drug addiction and obesity can be defined as disorders in which the saliency value of one type of reward (drugs and food, respectively) becomes abnormally enhanced relative to, and at the expense of others. This model is consistent with the fact that both drugs and food have powerful reinforcing effects - partly mediated by dopamine increases in the limbic system - that, under certain circumstances or in vulnerable individuals, could overwhelm the brain's homeostatic control mechanisms. Such parallels have generated significant interest in understanding the shared vulnerabilities and trajectories between addiction and obesity. Now, brain imaging discoveries have started to uncover common features between these two conditions and to delineate some of the overlapping brain circuits whose dysfunctions may explain stereotypic and related behavioral deficits in human subjects. These results suggest that both obese and drug addicted individuals suffer from impairments in dopaminergic pathways that regulate neuronal systems associated not only with reward sensitivity and incentive motivation, but also with conditioning (memory/learning), impulse control (behavioral inhibition), stress reactivity and interoceptive awareness. Here, we integrate findings predominantly derived from positron emission tomography that investigate the role of dopamine in drug addiction and in obesity and propose an updated working model to help identify treatment strategies that may benefit both of these conditions.

  18. Functional expression of parasite drug targets and their human orthologs in yeast.

    Directory of Open Access Journals (Sweden)

    Elizabeth Bilsland

    2011-10-01

    Full Text Available BACKGROUND: The exacting nutritional requirements and complicated life cycles of parasites mean that they are not always amenable to high-throughput drug screening using automated procedures. Therefore, we have engineered the yeast Saccharomyces cerevisiae to act as a surrogate for expressing anti-parasitic targets from a range of biomedically important pathogens, to facilitate the rapid identification of new therapeutic agents. METHODOLOGY/PRINCIPAL FINDINGS: Using pyrimethamine/dihydrofolate reductase (DHFR as a model parasite drug/drug target system, we explore the potential of engineered yeast strains (expressing DHFR enzymes from Plasmodium falciparum, P. vivax, Homo sapiens, Schistosoma mansoni, Leishmania major, Trypanosoma brucei and T. cruzi to exhibit appropriate differential sensitivity to pyrimethamine. Here, we demonstrate that yeast strains (lacking the major drug efflux pump, Pdr5p expressing yeast ((ScDFR1, human ((HsDHFR, Schistosoma ((SmDHFR, and Trypanosoma ((TbDHFR and (TcDHFR DHFRs are insensitive to pyrimethamine treatment, whereas yeast strains producing Plasmodium ((PfDHFR and (PvDHFR DHFRs are hypersensitive. Reassuringly, yeast strains expressing field-verified, drug-resistant mutants of P. falciparum DHFR ((Pfdhfr(51I,59R,108N are completely insensitive to pyrimethamine, further validating our approach to drug screening. We further show the versatility of the approach by replacing yeast essential genes with other potential drug targets, namely phosphoglycerate kinases (PGKs and N-myristoyl transferases (NMTs. CONCLUSIONS/SIGNIFICANCE: We have generated a number of yeast strains that can be successfully harnessed for the rapid and selective identification of urgently needed anti-parasitic agents.

  19. Targeted skipping of human dystrophin exons in transgenic mouse model systemically for antisense drug development.

    Directory of Open Access Journals (Sweden)

    Bo Wu

    Full Text Available Antisense therapy has recently been demonstrated with great potential for targeted exon skipping and restoration of dystrophin production in cultured muscle cells and in muscles of Duchenne Muscular Dystrophy (DMD patients. Therapeutic values of exon skipping critically depend on efficacy of the drugs, antisense oligomers (AOs. However, no animal model has been established to test AO targeting human dystrophin exon in vivo systemically. In this study, we applied Vivo-Morpholino to the hDMD mouse, a transgenic model carrying the full-length human dystrophin gene, and achieved for the first time more than 70% efficiency of targeted human dystrophin exon skipping in vivo systemically. We also established a GFP-reporter myoblast culture to screen AOs targeting human dystrophin exon 50. Antisense efficiency for most AOs is consistent between the reporter cells, human myoblasts and in the hDMD mice in vivo. However, variation in efficiency was also clearly observed. A combination of in vitro cell culture and a Vivo-Morpholino based evaluation in vivo systemically in the hDMD mice therefore may represent a prudent approach for selecting AO drug and to meet the regulatory requirement.

  20. The rule of unity for human intestinal absorption 2: application to pharmaceutical drugs that are marketed as salts.

    Science.gov (United States)

    Patel, Raj B; Admire, Brittany; Yalkowsky, Samuel H

    2015-01-01

    The efficiency of the human intestinal absorption (HIA) of the 59 drugs which are marketed as salts is predicted using the rule of unity. Intrinsic aqueous solubilities and partition coefficients along with the drug dose are used to calculate modified absorption potential (MAP) values. These values are shown to be related to the fraction of the dose that is absorbed upon oral administration in humans (FA). It is shown that the MAP value can distinguish between drugs that are poorly absorbed (FA unity based solely on in vitro data for predicting whether or not a drug will be well absorbed at a given dose.

  1. Troubled families and individualised solutions: an institutional discourse analysis of alcohol and drug treatment practices involving affected others.

    Science.gov (United States)

    Selbekk, Anne Schanche; Sagvaag, Hildegunn

    2016-09-01

    Research shows that members of the families with patients suffering from alcohol and other drug-related issues (AOD) experience stress and strain. An important question is, what options do AOD treatment have for them when it comes to support? To answer this, we interviewed directors and clinicians from three AOD treatment institutions in Norway. The study revealed that family-oriented practices are gaining ground as a 'going concern'. However, the relative position of family-orientation in the services, is constrained and shaped by three other going concerns related to: (i) discourse on health and illness, emphasising that addiction is an individual medical and psychological phenomenon, rather than a relational one; (ii) discourse on rights and involvement, emphasising the autonomy of the individual patient and their right to define the format of their own treatment; and (iii) discourse on management, emphasising the relationship between cost and benefit, where family-oriented practices are defined as not being cost-effective. All three discourses are connected to underpin the weight placed on individualised practices. Thus, the findings point to a paradox: there is a growing focus on the needs of children and affected family members, while the possibility of performing integrated work on families is limited.

  2. Comparative genomics allowed the identification of drug targets against human fungal pathogens

    Directory of Open Access Journals (Sweden)

    Martins Natalia F

    2011-01-01

    Full Text Available Abstract Background The prevalence of invasive fungal infections (IFIs has increased steadily worldwide in the last few decades. Particularly, there has been a global rise in the number of infections among immunosuppressed people. These patients present severe clinical forms of the infections, which are commonly fatal, and they are more susceptible to opportunistic fungal infections than non-immunocompromised people. IFIs have historically been associated with high morbidity and mortality, partly because of the limitations of available antifungal therapies, including side effects, toxicities, drug interactions and antifungal resistance. Thus, the search for alternative therapies and/or the development of more specific drugs is a challenge that needs to be met. Genomics has created new ways of examining genes, which open new strategies for drug development and control of human diseases. Results In silico analyses and manual mining selected initially 57 potential drug targets, based on 55 genes experimentally confirmed as essential for Candida albicans or Aspergillus fumigatus and other 2 genes (kre2 and erg6 relevant for fungal survival within the host. Orthologs for those 57 potential targets were also identified in eight human fungal pathogens (C. albicans, A. fumigatus, Blastomyces dermatitidis, Paracoccidioides brasiliensis, Paracoccidioides lutzii, Coccidioides immitis, Cryptococcus neoformans and Histoplasma capsulatum. Of those, 10 genes were present in all pathogenic fungi analyzed and absent in the human genome. We focused on four candidates: trr1 that encodes for thioredoxin reductase, rim8 that encodes for a protein involved in the proteolytic activation of a transcriptional factor in response to alkaline pH, kre2 that encodes for α-1,2-mannosyltransferase and erg6 that encodes for Δ(24-sterol C-methyltransferase. Conclusions Our data show that the comparative genomics analysis of eight fungal pathogens enabled the identification of

  3. Transmission distortion affecting human noncrossover but not crossover recombination: a hidden source of meiotic drive.

    Directory of Open Access Journals (Sweden)

    Linda Odenthal-Hesse

    2014-02-01

    Full Text Available Meiotic recombination ensures the correct segregation of homologous chromosomes during gamete formation and contributes to DNA diversity through both large-scale reciprocal crossovers and very localised gene conversion events, also known as noncrossovers. Considerable progress has been made in understanding factors such as PRDM9 and SNP variants that influence the initiation of recombination at human hotspots but very little is known about factors acting downstream. To address this, we simultaneously analysed both types of recombinant molecule in sperm DNA at six highly active hotspots, and looked for disparity in the transmission of allelic variants indicative of any cis-acting influences. At two of the hotspots we identified a novel form of biased transmission that was exclusive to the noncrossover class of recombinant, and which presumably arises through differences between crossovers and noncrossovers in heteroduplex formation and biased mismatch repair. This form of biased gene conversion is not predicted to influence hotspot activity as previously noted for SNPs that affect recombination initiation, but does constitute a powerful and previously undetected source of recombination-driven meiotic drive that by extrapolation may affect thousands of recombination hotspots throughout the human genome. Intriguingly, at both of the hotspots described here, this drive favours strong (G/C over weak (A/T base pairs as might be predicted from the well-established correlations between high GC content and recombination activity in mammalian genomes.

  4. Transmission distortion affecting human noncrossover but not crossover recombination: a hidden source of meiotic drive.

    Science.gov (United States)

    Odenthal-Hesse, Linda; Berg, Ingrid L; Veselis, Amelia; Jeffreys, Alec J; May, Celia A

    2014-02-01

    Meiotic recombination ensures the correct segregation of homologous chromosomes during gamete formation and contributes to DNA diversity through both large-scale reciprocal crossovers and very localised gene conversion events, also known as noncrossovers. Considerable progress has been made in understanding factors such as PRDM9 and SNP variants that influence the initiation of recombination at human hotspots but very little is known about factors acting downstream. To address this, we simultaneously analysed both types of recombinant molecule in sperm DNA at six highly active hotspots, and looked for disparity in the transmission of allelic variants indicative of any cis-acting influences. At two of the hotspots we identified a novel form of biased transmission that was exclusive to the noncrossover class of recombinant, and which presumably arises through differences between crossovers and noncrossovers in heteroduplex formation and biased mismatch repair. This form of biased gene conversion is not predicted to influence hotspot activity as previously noted for SNPs that affect recombination initiation, but does constitute a powerful and previously undetected source of recombination-driven meiotic drive that by extrapolation may affect thousands of recombination hotspots throughout the human genome. Intriguingly, at both of the hotspots described here, this drive favours strong (G/C) over weak (A/T) base pairs as might be predicted from the well-established correlations between high GC content and recombination activity in mammalian genomes. PMID:24516398

  5. Rapid and Quantitative Assay of Amyloid-Seeding Activity in Human Brains Affected with Prion Diseases.

    Directory of Open Access Journals (Sweden)

    Hanae Takatsuki

    Full Text Available The infectious agents of the transmissible spongiform encephalopathies are composed of amyloidogenic prion protein, PrPSc. Real-time quaking-induced conversion can amplify very small amounts of PrPSc seeds in tissues/body fluids of patients or animals. Using this in vitro PrP-amyloid amplification assay, we quantitated the seeding activity of affected human brains. End-point assay using serially diluted brain homogenates of sporadic Creutzfeldt-Jakob disease patients demonstrated that 50% seeding dose (SD50 is reached approximately 10(10/g brain (values varies 10(8.79-10.63/g. A genetic case (GSS-P102L yielded a similar level of seeding activity in an autopsy brain sample. The range of PrPSc concentrations in the samples, determined by dot-blot assay, was 0.6-5.4 μg/g brain; therefore, we estimated that 1 SD50 unit was equivalent to 0.06-0.27 fg of PrPSc. The SD50 values of the affected brains dropped more than three orders of magnitude after autoclaving at 121°C. This new method for quantitation of human prion activity provides a new way to reduce the risk of iatrogenic prion transmission.

  6. Hypoxia and the Presence of Human Vascular Endothelial Cells Affect Prostate Cancer Cell Invasion and Metabolism

    Directory of Open Access Journals (Sweden)

    Ellen Ackerstaff

    2007-12-01

    Full Text Available Tumor progression and metastasis are influenced by hypoxia, as well as by interactions between cancer cells and components of the stroma, such as endothelial cells. Here, we have used a magnetic resonance (MRcompatible invasion assay to further understand the effects of hypoxia on human prostate cancer cell invasion and metabolism in the presence and absence of human umbilical vein endothelial cells (HUVECs. Additionally, we compared endogenous activities of selected proteases related to invasion in PC-3 cells and HUVECs, profiled gene expression of PC-3 cells by microarray, evaluated cell proliferation of PC-3 cells and HUVECs by flow cytometry, under hypoxic and oxygenated conditions. The invasion of less-invasive DU-145 cells was not affected by either hypoxia or the presence of HUVECs. However, hypoxia significantly decreased the invasion of PC-3 cells. This hypoxia-induced decrease was attenuated by the presence of HUVECs, whereas under oxygenated conditions, HUVECs did not alter the invasion of PC-3 cells. Cell metabolism changed distinctly with hypoxia and invasion. The endogenous activity of selected extracellular proteases, although altered by hypoxia, did not fully explain the hypoxia-induced changes in invasion. Gene expression profiling indicated that hypoxia affects multiple cellular functions and pathways.

  7. Transient p53 Suppression Increases Reprogramming of Human Fibroblasts without Affecting Apoptosis and DNA Damage

    Directory of Open Access Journals (Sweden)

    Mikkel A. Rasmussen

    2014-09-01

    Full Text Available The discovery of human-induced pluripotent stem cells (iPSCs has sparked great interest in the potential treatment of patients with their own in vitro differentiated cells. Recently, knockout of the Tumor Protein 53 (p53 gene was reported to facilitate reprogramming but unfortunately also led to genomic instability. Here, we report that transient suppression of p53 during nonintegrative reprogramming of human fibroblasts leads to a significant increase in expression of pluripotency markers and overall number of iPSC colonies, due to downstream suppression of p21, without affecting apoptosis and DNA damage. Stable iPSC lines generated with or without p53 suppression showed comparable expression of pluripotency markers and methylation patterns, displayed normal karyotypes, contained between 0 and 5 genomic copy number variations and produced functional neurons in vitro. In conclusion, transient p53 suppression increases reprogramming efficiency without affecting genomic stability, rendering the method suitable for in vitro mechanistic studies with the possibility for future clinical translation.

  8. Repercussion of mitochondria deformity induced by anti-Hsp90 drug 17AAG in human tumor cells

    KAUST Repository

    Vishal, Chaturvedi

    2011-06-07

    Inhibiting Hsp90 chaperone roles using 17AAG induces cytostasis or apoptosis in tumor cells through destabilization of several mutated cancer promoting proteins. Although mitochondria are central in deciding the fate of cells, 17AAG induced effects on tumor cell mitochondria were largely unknown. Here, we show that Hsp90 inhibition with 17AAG first affects mitochondrial integrity in different human tumor cells, neuroblastoma, cervical cancer and glial cells. Using human neuroblastoma tumor cells, we found the early effects associated with a change in mitochondrial membrane potential, elongation and engorgement of mitochondria because of an increased matrix vacuolization. These effects are specific to Hsp90 inhibition as other chemotherapeutic drugs did not induce similar mitochondrial deformity. Further, the effects are independent of oxidative damage and cytoarchitecture destabilization since cytoskeletal disruptors and mitochondrial metabolic inhibitors also do not induce similar deformity induced by 17AAG. The 1D PAGE LC MS/ MS mitochondrial proteome analysis of 17AAG treated human neuroblastoma cells showed a loss of 61% proteins from membrane, metabolic, chaperone and ribonucleoprotein families. About 31 unmapped protein IDs were identified from proteolytic processing map using Swiss-Prot accession number, and converted to the matching gene name searching the ExPASy proteomics server. Our studies display that Hsp90 inhibition effects at first embark on mitochondria of tumor cells and compromise mitochondrial integrity. the author(s), publisher and licensee Libertas Academica Ltd.

  9. Innovative methods to study human intestinal drug metabolism in vitro : Precision-cut slices compared with Ussing chamber preparations

    NARCIS (Netherlands)

    van de Kerkhof, Esther G.; Ungell, Anna-Lena B.; Sjoberg, Asa K.; de Jager, Marina H.; Hilgendorf, Constanze; de Graaf, Inge A. M.; Groothuis, Geny M. M.

    2006-01-01

    Predictive in vitro methods to investigate drug metabolism in the human intestine using intact tissue are of high importance. Therefore, we studied the metabolic activity of human small intestinal and colon slices and compared it with the metabolic activity of the same human intestinal segments usin

  10. Fractional derivatives in the transport of drugs across biological materials and human skin

    Science.gov (United States)

    Caputo, Michele; Cametti, Cesare

    2016-11-01

    The diffusion of drugs across a composite structure such as a biological membrane is a rather complex phenomenon, because of its inhomogeneous nature, yielding a diffusion rate and a drug solubility strongly dependent on the local position across the membrane itself. These problems are particularly strengthened in composite structures of a considerable thickness like, for example, the human skin, where the high heterogeneity provokes the transport through different simultaneous pathways. In this note, we propose a generalization of the diffusion model based on Fick's 2nd equation by substituting a diffusion constant by means of the memory formalism approach (diffusion with memory). In particular, we employ two different definitions of the fractional derivative, i.e., the usual Caputo fractional derivative and a new definition recently proposed by Caputo and Fabrizio. The model predictions have been compared to experimental results concerning the permeation of two different compounds through human skin in vivo, such as piroxicam, an anti-inflammatory drug, and 4-cyanophenol, a test chemical model compound. Moreover, we have also considered water penetration across human stratum corneum and the diffusion of an antiviral agent employed as model drugs across the skin of male hairless rats. In all cases, a satisfactory good agreement based on the diffusion with memory has been found. However, the model based on the new definition of fractional derivative gives a better description of the experimental data, on the basis of the residuals analysis. The use of the new definition widens the applicability of the fractional derivative to diffusion processes in highly heterogeneous systems.

  11. Human in vivo regional intestinal permeability: quantitation using site-specific drug absorption data.

    Science.gov (United States)

    Sjögren, Erik; Dahlgren, David; Roos, Carl; Lennernäs, Hans

    2015-06-01

    Application of information on regional intestinal permeability has been identified as a key aspect of successful pharmaceutical product development. This study presents the results and evaluation of an approach for the indirect estimation of site-specific in vivo intestinal effective permeability (Peff) in humans. Plasma concentration-time profiles from 15 clinical studies that administered drug solutions to specific intestinal regions were collected and analyzed. The intestinal absorption rate for each drug was acquired by deconvolution, using historical intravenous data as reference, and used with the intestinal surface area and the dose remaining in the lumen to estimate the Peff. Forty-three new Peff values were estimated (15 from the proximal small intestine, 11 from the distal small intestine, and 17 from the large intestine) for 14 active pharmaceutical ingredients representing a wide range of biopharmaceutical properties. A good correlation (r(2) = 0.96, slope = 1.24, intercept = 0.030) was established between these indirect jejunal Peff estimates and jejunal Peff measurements determined directly using the single-pass perfusion double balloon technique. On average, Peff estimates from the distal small intestine and large intestine were 90% and 40%, respectively, of those from the proximal small intestine. These results support the use of the evaluated deconvolution method for indirectly estimating regional intestinal Peff in humans. This study presents the first comprehensive data set of estimated human regional intestinal permeability values for a range of drugs. These biopharmaceutical data can be used to improve the accuracy of gastrointestinal absorption predictions used in drug development decision-making.

  12. Human in vivo regional intestinal permeability: importance for pharmaceutical drug development.

    Science.gov (United States)

    Lennernäs, Hans

    2014-01-01

    Both the development and regulation of pharmaceutical dosage forms have undergone significant improvements and development over the past 25 years, due primarily to the extensive application of the biopharmaceutical classification system (BCS). The Biopharmaceutics Drug Disposition Classification System, which was published in 2005, has also been a useful resource for predicting the influence of transporters in several pharmacokinetic processes. However, there remains a need for the pharmaceutical industry to develop reliable in vitro/in vivo correlations and in silico methods for predicting the rate and extent of complex gastrointestinal (GI) absorption, the bioavailability, and the plasma concentration-time curves for orally administered drug products. Accordingly, a more rational approach is required, one in which high quality in vitro or in silico characterizations of active pharmaceutical ingredients and formulations are integrated into physiologically based in silico biopharmaceutics models to capture the full complexity of GI drug absorption. The need for better understanding of the in vivo GI process has recently become evident after an unsuccessful attempt to predict the GI absorption of BCS class II and IV drugs. Reliable data on the in vivo permeability of the human intestine (Peff) from various intestinal regions is recognized as one of the key biopharmaceutical requirements when developing in silico GI biopharmaceutics models with improved predictive accuracy. The Peff values for human jejunum and ileum, based on historical open, single-pass, perfusion studies are presented in this review. The main objective of this review is to summarize and discuss the relevance and current status of these human in vivo regional intestinal permeability values.

  13. Use of genotoxicity tests in a TIE to identify chemicals potentially affecting human health

    International Nuclear Information System (INIS)

    Imperial Oil operates a sour gas processing plant in southern Alberta that has, for the past several years, been the focus of considerable public and regulatory concern over perceived contamination of soils and groundwater on a nearby ranch. Elevated concentrations of DOC (∼140 mg/L) have been received in groundwater underlying the plant site. Two process-related chemicals, sulfolane and diisopropanolamine (DIPA), had been previously identified as the primary components of the DOC plume, although the chemicals associated with 30% of the DOC could not be identified. A risk assessment was initiated in 1994 to determine whether off-site migration of sulfolane and DIPA or of other unidentified contaminants poses a risks to human health and/or ecological receptors. One component of the risk assessment included conducting a TIE to help identify the chemical(s) in contaminated groundwater underlying the gas plant that might adversely affect human health. Three endpoints were utilized in the TIE: MicroTox, SOS-Chromotest and the Ames test. MicroTox was used since it exhibited a response to whole groundwater from the site, while the genotoxicity tests were used because DIPA reportedly causes a response in the Ames test and because of the concern over potential human health affects arising from other unidentified contaminants. Results of the TIE indicated that the chemicals causing the toxicity in the groundwater sample were water soluble compounds, with similar characteristics to the process chemicals used at the gas plant and detected at high concentrations in groundwater from the plant site. These results provided additional evidence to help focus the risk assessment on the chemicals sulfolane and diisopropanolamine

  14. Radiation effects on the stability of benzimidazole, which directly affects the stability of human DNA

    International Nuclear Information System (INIS)

    As all of us know that DNA is the genetic material and that is therefore stood at the very center of the study of life. Among the four important nitrogenous bases found in DNA one is purine which is nothing but a benzimidazole structure substituted by two nitrogens at 1 and 3 positions. Denaturation and renaturation duo to radiation are the two important incidents in DNA life which are the reason of many diseases and also the remedy of many diseases. These two incidents occur due to environmental effect on the parent part of DNA such as purine or we may say that benzimidazole structure. Since benzimidazole is an important part of human DNA structure so its response on different environment causes e huge effect on human gen. To study such response different types of benzimidazole molecules have been studied and two of such benzimidazole molecules are 2-Acetyl Benzomidazole (2ABI) and 2-Benzoyl Benzimidazole (2BBI). Usually these molecules show excited state proton transfer characteristics in polar and nonpolar environment. Proton transfer effect is very important behavior in DNA bases which is the fundamental phenomenon of different drug designing. To control such effect or to produce the effect as much as we want we have tried to restrict the molecule in different nano cavities. Michroheterogeneous media such as micelles as usual has enormous environmental effect on charge transfer phenomenon. The specialty of this media is that they have an ability to concentrate guest molecules into relatively small effective volumes and then to promote the re-encounter of such molecules. This property also makes micelles a good device for inducing efficient electrostatic interactions between the micelle head groups and the guest molecules. This electrostatic interaction has a direct effect on the stability of 2ABI and 2BBI molecule in ground state as well as in excited state due to micellization and this stability has enormous effect on human gene stability. (authors)

  15. Human Disease Insight: An integrated knowledge-based platform for disease-gene-drug information.

    Science.gov (United States)

    Tasleem, Munazzah; Ishrat, Romana; Islam, Asimul; Ahmad, Faizan; Hassan, Md Imtaiyaz

    2016-01-01

    The scope of the Human Disease Insight (HDI) database is not limited to researchers or physicians as it also provides basic information to non-professionals and creates disease awareness, thereby reducing the chances of patient suffering due to ignorance. HDI is a knowledge-based resource providing information on human diseases to both scientists and the general public. Here, our mission is to provide a comprehensive human disease database containing most of the available useful information, with extensive cross-referencing. HDI is a knowledge management system that acts as a central hub to access information about human diseases and associated drugs and genes. In addition, HDI contains well-classified bioinformatics tools with helpful descriptions. These integrated bioinformatics tools enable researchers to annotate disease-specific genes and perform protein analysis, search for biomarkers and identify potential vaccine candidates. Eventually, these tools will facilitate the analysis of disease-associated data. The HDI provides two types of search capabilities and includes provisions for downloading, uploading and searching disease/gene/drug-related information. The logistical design of the HDI allows for regular updating. The database is designed to work best with Mozilla Firefox and Google Chrome and is freely accessible at http://humandiseaseinsight.com.

  16. Hep G2 cell line as a human model for sulphate conjugation of drugs.

    Science.gov (United States)

    Shwed, J A; Walle, U K; Walle, T

    1992-08-01

    1. The objective of this study was to examine the usefulness of the hepatoma cell line Hep G2 as a model for human sulphoconjugation of drugs, in particular stereoselective conjugation. 2. Using the substrates p-nitrophenol and dopamine, we found sulphation activities consistent with the presence of both the phenol (P) and the monoamine (M) form of the human phenolsulphotransferases in these cells. 3. The Kmapp was 3.0 microM for the sulphation of p-nitrophenol. This activity was inhibited selectively by 2,6-dichloro-4-nitrophenol, IC50 6 microM. The Kmapp was 39 microM for the sulphation of dopamine. This activity was selectively inhibited by elevated temperature. 4. The chiral adrenergic drugs (+/-)-terbutaline and (+/-)-4-hydroxypropranolol were both sulphated stereoselectively with Kmapp and Vmaxapp values for each enantiomer virtually identical to previous observations with human liver cytosol. 5. In a direct comparison, the estimated activity of the P form of phenolsulphotransferase in the Hep G2 cell line was 30% of that in human liver, whereas, surprisingly, the activity of the M form of phenolsulphotransferase was 4.5 times higher in the Hep G2 cells than in the liver. PMID:1329363

  17. The impact of pre- and/or probiotics on human colonic metabolism: does it affect human health?

    Science.gov (United States)

    De Preter, Vicky; Hamer, Henrike M; Windey, Karen; Verbeke, Kristin

    2011-01-01

    Since many years, the role of the colonic microbiota in maintaining the host's overall health and well-being has been recognized. Dietary modulation of the microbiota composition and activity has been achieved by the use of pre-, pro- and synbiotics. In this review, we will summarize the available evidence on the modification of bacterial metabolism by dietary intervention with pre-, pro- and synbiotics. Enhanced production of SCFA as a marker of increased saccharolytic fermentation is well documented in animal and in vitro studies. Decreased production of potentially toxic protein fermentation metabolites, such as sulfides, phenolic and indolic compounds, has been less frequently demonstrated. Besides, pre-, pro- and synbiotics also affect other metabolic pathways such as the deconjugation of secondary bile acids, bacterial enzyme activities and mineral absorption. Data from human studies are less conclusive. The emergence of new analytical techniques such as metabolite profiling has revealed new pathways affected by dietary intervention. However, an important challenge for current and future research is to relate changes in bacterial metabolism to concrete health benefits. Potential targets and expected benefits have been identified: reduced risk for the metabolic syndrome and prevention of colorectal cancer. PMID:21207512

  18. In vivo evaluation of the penetration of topically applied drugs into human skin by spectroscopic methods.

    Science.gov (United States)

    Sennhenn, B; Giese, K; Plamann, K; Harendt, N; Kölmel, K

    1993-01-01

    Spectroscopic techniques are reported on which allow to study in vivo the penetration behaviour of topically applied light-absorbing drugs into human skin. Remittance spectroscopy, a purely optical method, provides a good tool in both, skin adaptation by use of a remote viewing head coupled to the spectrometer via optical fibres, and adequate sensitivity for the detection of small amounts of the applied drugs. The measuring depth in the skin is determined by the wavelength-dependent optical penetration depth, which itself depends on light absorption and light scattering. In the UV-spectral region the optical penetration depth is of the order of the thickness of the stratum corneum (UV-A) or of only a superficial part of it (UV-B, UV-C). Fluorescence spectroscopy, another optical method, offers two kinds of drug detection, a direct one in case of self-fluorescent drugs or an indirect one being based on the light absorption of the drug, which may give rise to a screening of the self-fluorescence of the skin itself or of an applied marker. The measuring depth is comparable to that achieved with remittance spectroscopy. A third method is photothermal spectroscopy which is determined by thermal properties of the skin in addition to optical properties. Photothermal spectroscopy is unique in that it allows depth profiles of drug concentration to be measured non-invasively, as the photothermal measuring depth can be changed by varying the modulation frequency of the intensity-modulated incident light. Results of measurements demonstrating the potentials of these spectroscopic methods are presented.

  19. Genetic analysis of human traits in vitro: drug response and gene expression in lymphoblastoid cell lines.

    Directory of Open Access Journals (Sweden)

    Edwin Choy

    2008-11-01

    Full Text Available Lymphoblastoid cell lines (LCLs, originally collected as renewable sources of DNA, are now being used as a model system to study genotype-phenotype relationships in human cells, including searches for QTLs influencing levels of individual mRNAs and responses to drugs and radiation. In the course of attempting to map genes for drug response using 269 LCLs from the International HapMap Project, we evaluated the extent to which biological noise and non-genetic confounders contribute to trait variability in LCLs. While drug responses could be technically well measured on a given day, we observed significant day-to-day variability and substantial correlation to non-genetic confounders, such as baseline growth rates and metabolic state in culture. After correcting for these confounders, we were unable to detect any QTLs with genome-wide significance for drug response. A much higher proportion of variance in mRNA levels may be attributed to non-genetic factors (intra-individual variance--i.e., biological noise, levels of the EBV virus used to transform the cells, ATP levels than to detectable eQTLs. Finally, in an attempt to improve power, we focused analysis on those genes that had both detectable eQTLs and correlation to drug response; we were unable to detect evidence that eQTL SNPs are convincingly associated with drug response in the model. While LCLs are a promising model for pharmacogenetic experiments, biological noise and in vitro artifacts may reduce power and have the potential to create spurious association due to confounding.

  20. 4-Methylthiobutyl isothiocyanate (Erucin) from rocket plant dichotomously affects the activity of human immunocompetent cells.

    Science.gov (United States)

    Gründemann, Carsten; Garcia-Käufer, Manuel; Lamy, Evelyn; Hanschen, Franziska S; Huber, Roman

    2015-03-15

    Isothiocyanates (ITC) from the Brassicaceae plant family are regarded as promising for prevention and treatment of cancer. However, experimental settings consider their therapeutic action without taking into account the risk of unwanted effects on healthy tissues. In the present study we investigated the effects of Eruca sativa seed extract containing MTBITC (Erucin) and pure Erucin from rocket plant on healthy cells of the human immune system in vitro. Hereby, high doses of the plant extract as well as of Erucin inhibited cell viability of human lymphocytes via induction of apoptosis to comparable amounts. Non-toxic low concentrations of the plant extract and pure Erucin altered the expression of the interleukin (IL)-2 receptor but did not affect further T cell activation, proliferation and the release of the effector molecules interferon (IFN)-gamma and IL-2 of T-lymphocytes. However, the activity of NK-cells was significantly reduced by non-toxic concentrations of the plant extract and pure Erucin. These results indicate that the plant extract and pure Erucin interfere with the function of human T lymphocytes and decreases the activity of NK-cells in comparable concentrations. Long-term clinical studies with ITC-enriched plant extracts from Brassicaceae should take this into account.

  1. The cross-mammalian neurophenomenology of primal emotional affects: From animal feelings to human therapeutics.

    Science.gov (United States)

    Panksepp, Jaak

    2016-06-01

    The neural correlates of human emotions are easy to harvest. In contrast, the neural constitution of emotional feelings in humans has resisted systematic scientific analysis. This review summarizes how preclinical affective neuroscience initiatives are making progress in decoding the neural nature of such feelings in animal brains. This has been achieved by studying the rewarding and punishing effects of deep brain stimulation (DBS) of subcortical emotional networks (labeled SEEING, RAGE, FEAR, LUST, CARE, PANIC, and PLAY systems) that evoke distinct emotion action patterns, as well as rewarding and punishing effects in animals. The implications of this knowledge for development of new psychiatric interventions, especially depression, are discussed. Three new antidepressive therapeutics arising from this work are briefly noted: 1) DBS of the medial forebrain bundle (MFB) in humans, 2) reduction of psychological pain that may arise from excessive PANIC arousal, and 3) facilitation of social joy through the study of social play in rats The overall argument is that we may more readily develop new psychiatric interventions through preclinical models if we take animal emotional feelings seriously, as opposed to just behavioral changes, as targets for development of new treatments. PMID:26876723

  2. Can the usage of human growth hormones affect facial appearance and the accuracy of face recognition systems?

    Science.gov (United States)

    Rose, Jake; Martin, Michael; Bourlai, Thirimachos

    2014-06-01

    In law enforcement and security applications, the acquisition of face images is critical in producing key trace evidence for the successful identification of potential threats. The goal of the study is to demonstrate that steroid usage significantly affects human facial appearance and hence, the performance of commercial and academic face recognition (FR) algorithms. In this work, we evaluate the performance of state-of-the-art FR algorithms on two unique face image datasets of subjects before (gallery set) and after (probe set) steroid (or human growth hormone) usage. For the purpose of this study, datasets of 73 subjects were created from multiple sources found on the Internet, containing images of men and women before and after steroid usage. Next, we geometrically pre-processed all images of both face datasets. Then, we applied image restoration techniques on the same face datasets, and finally, we applied FR algorithms in order to match the pre-processed face images of our probe datasets against the face images of the gallery set. Experimental results demonstrate that only a specific set of FR algorithms obtain the most accurate results (in terms of the rank-1 identification rate). This is because there are several factors that influence the efficiency of face matchers including (i) the time lapse between the before and after image pre-processing and restoration face photos, (ii) the usage of different drugs (e.g. Dianabol, Winstrol, and Decabolan), (iii) the usage of different cameras to capture face images, and finally, (iv) the variability of standoff distance, illumination and other noise factors (e.g. motion noise). All of the previously mentioned complicated scenarios make clear that cross-scenario matching is a very challenging problem and, thus, further investigation is required.

  3. Do animal models provide a valid analogue for human drug lapse and relapse? Comment on Leri and Stewart (2002).

    Science.gov (United States)

    Marlatt, G Alan

    2002-11-01

    Prior research on animal models of drug relapse has demonstrated that passive exposure to an addictive substance following acquisition and extinction of drug self-administration has a "priming effect" on subsequent drug use. The validity of this animal analogue of human relapse can be criticized, however, because most human drug relapses are precipitated by the user's voluntary self-administration of a substance. The results of the present study by F. Leri and J. Stewart (2002) clearly show that if the initial heroin lapse is self-administered by rats, subsequent heroin seeking during the relapse test is significantly greater than if the heroin is externally administered. These results help bridge the gap between animal and human models of drug use and highlight the significance of both behavioral and environmental determinants of relapse. PMID:12498331

  4. Neural coding of cooperative vs. affective human interactions: 150 ms to code the action's purpose.

    Directory of Open Access Journals (Sweden)

    Alice Mado Proverbio

    Full Text Available The timing and neural processing of the understanding of social interactions was investigated by presenting scenes in which 2 people performed cooperative or affective actions. While the role of the human mirror neuron system (MNS in understanding actions and intentions is widely accepted, little is known about the time course within which these aspects of visual information are automatically extracted. Event-Related Potentials were recorded in 35 university students perceiving 260 pictures of cooperative (e.g., 2 people dragging a box or affective (e.g., 2 people smiling and holding hands interactions. The action's goal was automatically discriminated at about 150-170 ms, as reflected by occipito/temporal N170 response. The swLORETA inverse solution revealed the strongest sources in the right posterior cingulate cortex (CC for affective actions and in the right pSTS for cooperative actions. It was found a right hemispheric asymmetry that involved the fusiform gyrus (BA37, the posterior CC, and the medial frontal gyrus (BA10/11 for the processing of affective interactions, particularly in the 155-175 ms time window. In a later time window (200-250 ms the processing of cooperative interactions activated the left post-central gyrus (BA3, the left parahippocampal gyrus, the left superior frontal gyrus (BA10, as well as the right premotor cortex (BA6. Women showed a greater response discriminative of the action's goal compared to men at P300 and anterior negativity level (220-500 ms. These findings might be related to a greater responsiveness of the female vs. male MNS. In addition, the discriminative effect was bilateral in women and was smaller and left-sided in men. Evidence was provided that perceptually similar social interactions are discriminated on the basis of the agents' intentions quite early in neural processing, differentially activating regions devoted to face/body/action coding, the limbic system and the MNS.

  5. Recombinant human erythropoietin alpha improves the efficacy of radiotherapy of a human tumor xenograft, affecting tumor cells and microvessels

    Energy Technology Data Exchange (ETDEWEB)

    Loevey, J. [Dept. of Radiotherapy, National Inst. of Oncology, Budapest (Hungary); Bereczky, B.; Gilly, R.; Kenessey, I.; Raso, E.; Simon, E.; Timar, J. [Dept. of Tumor Progression, National Inst. of Oncology, Budapest (Hungary); Dobos, J. [Dept. of Tumor Progression, National Inst. of Oncology, Budapest (Hungary); National Koranyi Inst. of TBC and Pulmonology, Budapest (Hungary); Vago, A. [Central Lab., National Inst. of Oncology, Budapest (Hungary); Kasler, M. [Head and Neck Surgery, National Inst. of Oncology, Budapest (Hungary); Doeme, B. [National Koranyi Inst. of TBC and Pulmonology, Budapest (Hungary); Tovari, J. [National Koranyi Inst. of TBC and Pulmonology, Budapest (Hungary); 1. Inst. of Pathology and Experimental Cancer Research, Semmelweis Univ., Budapest (Hungary)

    2008-01-15

    Background and purpose: tumor-induced anemia often occurs in cancer patients, and is corrected by recombinant human erythropoietins (rHuEPOs). Recent studies indicated that, besides erythroid progenitor cells, tumor and endothelial cells express erythropoietin receptor (EPOR) as well; therefore, rHuEPO may affect their functions. Here, the effect of rHuEPO{alpha} on irradiation in EPOR-positive human squamous cell carcinoma xenograft was tested. Material and methods: A431 tumor-bearing SCID mice were treated from the tumor implantation with rHuEPO{alpha} at human-equivalent dose. Xenografts were irradiated (5 Gy) on day 14, and the final tumor mass was measured on day 22. The systemic effects of rHuEPO{alpha} on the hemoglobin level, on tumor-associated blood vessels and on hypoxia-inducible factor-(HIF-)1{alpha} expression of the tumor xenografts were monitored. The proliferation, apoptosis and clonogenic capacity of A431 cancer cells treated with rHuEPO{alpha} and irradiation were also tested in vitro. Results: in vitro, rHuEPO{alpha} treatment alone did not modify the proliferation of EPOR-positive A431 tumor cells but enhanced the effect of irradiation on proliferation, apoptosis and clonogenic capacity. In vivo, rHuEPO{alpha} administration compensated the tumor-induced anemia in SCID mice and decreased tumoral HIF-1{alpha} expression but had no effect on tumor growth. At the same time rHuEPO{alpha} treatment significantly increased the efficacy of radiotherapy in vivo (tumor weight of 23.9 {+-} 4.7 mg and 34.9 {+-} 4.6 mg, respectively), mediated by increased tumoral blood vessel destruction. Conclusion: rHuEPO{alpha} treatment may modulate the efficacy of cancer radiotherapy not only by reducing systemic hypoxia and tumoral HIF-1{alpha} expression, but also by destroying tumoral vessels. (orig.)

  6. Local NSAID infusion does not affect protein synthesis and gene expression in human muscle after eccentric exercise

    DEFF Research Database (Denmark)

    Mikkelsen, U R; Schjerling, P.; Langberg, Henning;

    2011-01-01

    Unaccustomed exercise leads to satellite cell proliferation and increased skeletal muscle protein turnover. Several growth factors and cytokines may be involved in the adaptive responses. Non-steroidal anti-inflammatory drugs (NSAIDs) negatively affect muscle regeneration and adaptation in animal...

  7. Study the interactions between human serum albumin and two antifungal drugs: fluconazole and its analogue DTP.

    Science.gov (United States)

    Zhang, Shao-Lin; Yao, Huankai; Wang, Chenyin; Tam, Kin Y

    2014-11-01

    Binding affinities of fluconazole and its analogue 2-(2,4-dichlorophenyl)-1,3-di(1H-1,2,4-triazol-yl)-2-propanol (DTP) to human serum albumin (HSA) were investigated under approximately human physiological conditions. The obtained result indicated that HSA could generate fluorescent quenching by fluconazole and DTP because of the formation of non-fluorescent ground-state complexes. Binding parameters calculated from the Stern-Volmer and the Scatchard equations showed that fluconazole and DTP bind to HSA with binding affinities of the order 10(4)L/mol. The thermodynamic parameters revealed that the binding was characterized by negative enthalpy and positive entropy changes, suggesting that the binding reaction was exothermic. Hydrogen bonds and hydrophobic interaction were found to be the predominant intermolecular forces stabilizing the drug-protein. The effect of metal ions on the binding constants of fluconazole-HSA complex suggested that the presence of Mg(2+) and Zn(2+) ions could decrease the free drug level and extend the half-life in the systematic circulation. Docking experiments revealed that fluconazole and DTP binds in HSA mainly by hydrophobic interaction with the possibility of hydrogen bonds formation between the drugs and the residues Arg 222, Lys 199 and Lys 195 in HSA.

  8. Drug resistance profile of human Mycobacterium avium complex strains from India

    Directory of Open Access Journals (Sweden)

    Venugopal D

    2007-01-01

    Full Text Available Purpose: To determine minimum inhibitory concentration (MIC of various anti-tuberculosis drugs for Mycobacterium avium complex (MAC strains isolated from clinical samples. Methods: Forty-nine human isolates of MAC were tested for susceptibility to nine chemotherapeutic agents. All isolates were from Indian patients suffering from chronic pulmonary mycobacteriosis. Drug susceptibility was performed both by agar dilution and MIC method. MIC values were analysed, both visually and by enzyme-linked immunosorbent assay reader. Results: More than 40% of the MAC isolates were sensitive to ciprofloxacine (48.98%, amikacin (46.94% and roxithromycin (42.86% by the MIC method. In contrast, the isolates showed high degree of resistance to the first line antituberculosis drugs: only 28.6% were sensitive to rifampicine, 22.85% to isoniazid and ethambutol each and 36.7% were sensitive to streptomycin. In addition, 22.85% of the strains were sensitive to clofazimine and 34.7% to kanamycin. Conclusions: Results of the study confirm the suitability of the rapid broth micro dilution (MIC method as a simple yet reliable method to assay for the drug susceptibility of nontuberculosis mycobacterium.

  9. Seroprevalence of Human Herpesvirus 8 and Hepatitis C Virus among Drug Users in Shanghai, China

    Directory of Open Access Journals (Sweden)

    Tiejun Zhang

    2014-06-01

    Full Text Available To elucidate and compare the seroprevalence of human herpesvirus 8 (HHV8 and hepatitis C virus (HCV among Chinese drug users, a cross-sectional study of 441 participants, was conducted in Shanghai, China, from 2012 through 2013. Seventy-seven (17.5% participants were found to be positive for HHV8 antibodies, while 271 (61.5% participants were positive for HCV. No significant association between HHV8 seropositivity and drug use characteristics, sexual behaviors, HCV, or syphilis was observed. In contrast, a statistically significant association between HCV seropositivity and injected drug history (OR, 2.18, 95% CI 1.41–3.37 was detected, whereas no statistically significant association between HCV seropositivity and syphilis infection (OR, 7.56, 95% CI 0.94–60.57 were observed. Pairwise comparisons showed no significant differences between latent and lytic antibodies regarding HCV and HHV8 serostatus. The study demonstrated a moderate but elevated prevalence of HHV8 infection among drug users. The discordance between HHV8 and HCV infections suggests that blood borne transmission of HHV8 might not be the predominant mode of transmission in this population, which is in contrast to HCV.

  10. Diffusion profile of macromolecules within and between human skin layers for (trans)dermal drug delivery.

    Science.gov (United States)

    Römgens, Anne M; Bader, Dan L; Bouwstra, Joke A; Baaijens, Frank P T; Oomens, Cees W J

    2015-10-01

    Delivering a drug into and through the skin is of interest as the skin can act as an alternative drug administration route for oral delivery. The development of new delivery methods, such as microneedles, makes it possible to not only deliver small molecules into the skin, which are able to pass the outer layer of the skin in therapeutic amounts, but also macromolecules. To provide insight into the administration of these molecules into the skin, the aim of this study was to assess the transport of macromolecules within and between its various layers. The diffusion coefficients in the epidermis and several locations in the papillary and reticular dermis were determined for fluorescein dextran of 40 and 500 kDa using a combination of fluorescent recovery after photobleaching experiments and finite element analysis. The diffusion coefficient was significantly higher for 40 kDa than 500 kDa dextran, with median values of 23 and 9 µm(2)/s in the dermis, respectively. The values only marginally varied within and between papillary and reticular dermis. For the 40 kDa dextran, the diffusion coefficient in the epidermis was twice as low as in the dermis layers. The adopted method may be used for other macromolecules, which are of interest for dermal and transdermal drug delivery. The knowledge about diffusion in the skin is useful to optimize (trans)dermal drug delivery systems to target specific layers or cells in the human skin. PMID:26151288

  11. Electrochemical oxidation of amphetamine-like drugs and application to electroanalysis of ecstasy in human serum.

    Science.gov (United States)

    Garrido, E M P J; Garrido, J M P J; Milhazes, N; Borges, F; Oliveira-Brett, A M

    2010-08-01

    Amphetamine and amphetamine-like drugs are popular recreational drugs of abuse because they are powerful stimulants of the central nervous system. Due to a dramatic increase in the abuse of methylenedioxylated derivatives, individually and/or in a mixture, and to the incoherent and contradictory interpretation of the electrochemical data available on this subject, a comprehensive study of the redox properties of amphetamine-like drugs was accomplished. The oxidative behaviour of amphetamine (A), methamphetamine (MA), methylenedioxyamphetamine (MDA) and methylenedioxymethamphetamine (MDMA) was studied in different buffer systems by cyclic, differential pulse and square-wave voltammetry using a glassy carbon electrode. A quantitative electroanalytical method was developed and successfully applied to the determination of MDMA in seized samples and in human serum. Validation parameters, such as sensitivity, precision and accuracy, were evaluated. The results found using the developed electroanalytical methodology enabled to gather some information about the content and amount of MDMA present in ecstasy tablets found in Portugal. Moreover, the data found in this study outlook the possibility of using the voltammetric methods to investigate the potential harmful effects of interaction between drugs such as MDMA and methamphetamine and other substances often used together in ecstasy tablets.

  12. Exposure to phthalates affects calcium handling and intercellular connectivity of human stem cell-derived cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Nikki Gillum Posnack

    Full Text Available The pervasive nature of plastics has raised concerns about the impact of continuous exposure to plastic additives on human health. Of particular concern is the use of phthalates in the production of flexible polyvinyl chloride (PVC products. Di-2-ethylhexyl-phthalate (DEHP is a commonly used phthalate ester plasticizer that imparts flexibility and elasticity to PVC products. Recent epidemiological studies have reported correlations between urinary phthalate concentrations and cardiovascular disease, including an increased risk of high blood pressure and coronary risk. Yet, there is little direct evidence linking phthalate exposure to adverse effects in human cells, including cardiomyocytes.The effect of DEHP on calcium handling was examined using monolayers of gCAMP3 human embryonic stem cell-derived cardiomyocytes, which contain an endogenous calcium sensor. Cardiomyocytes were exposed to DEHP (5 - 50 μg/mL, and calcium transients were recorded using a Zeiss confocal imaging system. DEHP exposure (24 - 72 hr had a negative chronotropic and inotropic effect on cardiomyocytes, increased the minimum threshold voltage required for external pacing, and modified connexin-43 expression. Application of Wy-14,643 (100 μM, an agonist for the peroxisome proliferator-activated receptor alpha, did not replicate DEHP's effects on calcium transient morphology or spontaneous beating rate.Phthalates can affect the normal physiology of human cardiomyocytes, including DEHP elicited perturbations in cardiac calcium handling and intercellular connectivity. Our findings call for additional studies to clarify the extent by which phthalate exposure can alter cardiac function, particularly in vulnerable patient populations who are at risk for high phthalate exposure.

  13. Spectroscopic investigations of the interactions of tramadol hydrochloride and 5-azacytidine drugs with human serum albumin and human hemoglobin proteins.

    Science.gov (United States)

    Tunç, Sibel; Cetinkaya, Ahmet; Duman, Osman

    2013-03-01

    The interactions of tramadol hydrochloride (THC) and 5-azacytidine (AZA) drugs with human serum albumin (HSA) and human hemoglobin (HMG) proteins were investigated by fluorescence, UV absorption and circular dichroism (CD) spectroscopy at pH 7.4 and different temperatures. The UV absorption spectra and the fluorescence quenching of HSA and HMG proteins indicated the formation of HSA-THC and HMG-THC complexes via static quenching mechanism. AZA did not interact with HSA and HMG proteins. It was found that the formation of HMG-THC complex was stronger than that of HSA-THC complex. The stability of HSA-THC and HMG-THC complexes decreased with increasing temperature. The number of binding site was found as one for HSA-THC and HMG-THC systems. Negative enthalpy change (ΔH) and Gibbs free energy change (ΔG) and positive entropy change (ΔS) values were obtained for these systems. The binding of THC-HSA and HMG proteins was spontaneous and exothermic. In addition, electrostatic interactions between protein and drug molecules played an important role in the binding processes. The results of CD analysis revealed that the addition of THC led to a significant conformational change in the secondary structure of HSA protein, on the contrary to HMG protein. PMID:23428887

  14. 21 CFR 310.543 - Drug products containing active ingredients offered over-the-counter (OTC) for human use in...

    Science.gov (United States)

    2010-04-01

    ... pancreatic insufficiency drug products. Pancreatin and pancrelipase are composed of enzymes: amylase, trypsin... potential for serious risk to patients using these drug products. The bioavailability of pancreatic enzymes... offered over-the-counter (OTC) for human use in exocrine pancreatic insufficiency. 310.543 Section...

  15. Factors Affecting the Efficacy of Nonsteroidal Anti-inflammatory Drugs in Preventing Post–Endoscopic Retrograde Cholangiopancreatography Pancreatitis

    Science.gov (United States)

    Rustagi, Tarun; Njei, Basile

    2016-01-01

    Objectives To identify the factors affecting the efficacy of nonsteroidal anti-inflammatory drugs (NSAIDs) in preventing post–endoscopic retrograde cholangiopancreatography (ERCP) pancreatitis (PEP). Methods We systematically searched databases for relevant studies published from inception to November 2013. Results A meta-analysis of 11 randomized trials (n = 2497) revealed a significant reduction in PEP in patients who received NSAIDs compared with that in patients who received placebo (relative risk [RR], 0.59; 95% confidence interval [CI], 0.41–0.85; P = 0.005). In subgroup analysis by treatment type, indomethacin had no significant effect (RR, 0.66; 95% CI, 0.38–1.15; P = 0.14), whereas other NSAIDs showed significant benefit (RR, 0.51; 95% CI, 0.29–0.91; P = 0.02). Only rectal administration significantly reduced the incidence of PEP (RR, 0.43; 95% CI, 0.32–0.58; P < 0.00001). The risk for PEP was the lowest among patients who received NSAIDs before ERCP (RR, 0.48; 95% CI, 0.29–0.78; P = 0.003). NSAIDs did not significantly reduce the risk of PEP in men (RR, 0.61; 95% CI, 0.34–1.09), patients with sphincter of Oddi dysfunction (RR, 0.98; 95% CI, 0.38–2.54), or patients with pancreatic duct injection (RR, 0.64; 95% CI, 0.35–1.18). Conclusions Rectal administration of NSAIDs (especially diclofenac), before ERCP, seemed to be the most effective strategy for preventing PEP. PMID:26168316

  16. Human serum albumin unfolding pathway upon drug binding: A thermodynamic and spectroscopic description

    Energy Technology Data Exchange (ETDEWEB)

    Cheema, Mohammad Arif [Grupo de Fisica de Coloides y Polimeros, Departamento de Fisica de la Materia Condensada, Facultad de Fisica, Universidad de Santiago de Compostela, E-15782, Santiago de Compostela (Spain); Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Taboada, Pablo [Grupo de Fisica de Coloides y Polimeros, Departamento de Fisica de la Materia Condensada, Facultad de Fisica, Universidad de Santiago de Compostela, E-15782, Santiago de Compostela (Spain); Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan)], E-mail: pablo.taboada@usc.es; Barbosa, Silvia; Juarez, Josue; Gutierrez-Pichel, Manuel [Grupo de Fisica de Coloides y Polimeros, Departamento de Fisica de la Materia Condensada, Facultad de Fisica, Universidad de Santiago de Compostela, E-15782, Santiago de Compostela (Spain); Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Siddiq, Mohammad [Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Mosquera, Victor [Grupo de Fisica de Coloides y Polimeros, Departamento de Fisica de la Materia Condensada, Facultad de Fisica, Universidad de Santiago de Compostela, E-15782, Santiago de Compostela (Spain); Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan)

    2009-04-15

    The interest on phenothiazine drugs has been increased during last years due to their proved utility in the treatment of several diseases and biomolecular processes. In the present work, the binding of the amphiphilic phenothiazines promazine and thioridazine hydrochlorides to the carrier protein human serum albumin (HSA) has been examined by {zeta}-potential, isothermal titration calorimetry (ITC), fluorescence and circular dichorism (CD) spectroscopies, and dynamic light scattering (DLS) at physiological pH with the aim of analyzing the role of the different interactions in the drug complexation process with this protein. The {zeta}-potential results were used to check the existence of complexation. This is confirmed by a progressive screening of the protein charge up to a reversal point as a consequence of drug binding. On the other hand, binding causes alterations on the tertiary and secondary structures of the protein, which were observed by fluorescence and CD spectroscopies, involving a two-step, three-state transition. The thermodynamics of the binding process was derived from ITC results. The binding enthalpies were negative, which reveal the existence of electrostatic interactions between protein and drug molecules. In addition, increases in entropy are consistent with the predominance of hydrophobic interactions. Two different classes of binding sites were detected, viz. Binding to the first class of binding sites is dominated by an enthalpic contribution due to electrostatic interactions whereas binding to a second class of binding sites is dominated by hydrophobic bonding. In the light of these results, protein conformational change resembles the acid-induced denaturation of HSA with accumulation of an intermediate state. Binding isotherms were derived from microcalorimetric results by using a theoretical model based on the Langmuir isotherm. On the other hand, the population distribution of the different species in solution and their sizes were

  17. Antimicrobial drug resistance of Salmonella isolates from meat and humans, Denmark

    DEFF Research Database (Denmark)

    Skov, Marianne; Andersen, Jens Strodl; Aabo, Søren;

    2007-01-01

    We compared 8,144 Salmonella isolates collected from meat imported to or produced in Denmark, as well as from Danish patients. Isolates from imported meat showed a higher rate of antimicrobial drug resistance, including multidrug resistance, than did isolates from domestic meat. Isolates from hum...... humans showed resistance rates lower than those found in imported meat but higher than in domestic meat. These findings indicate that programs for controlling resistant Salmonella spp. are a global issue.......We compared 8,144 Salmonella isolates collected from meat imported to or produced in Denmark, as well as from Danish patients. Isolates from imported meat showed a higher rate of antimicrobial drug resistance, including multidrug resistance, than did isolates from domestic meat. Isolates from...

  18. Antimicrobial drug resistance of Salmonella isolates from meat and humans, Denmark

    DEFF Research Database (Denmark)

    Skov, Marianne Nielsine; Andersen, Jens Strodl; Aabo, Søren;

    2007-01-01

    We compared 8,144 Salmonella isolates collected from meat imported to or produced in Denmark, as well as from Danish patients. Isolates from imported meat showed a higher rate of antimicrobial drug resistance, including multidrug resistance, than did isolates from domestic meat. Isolates from hum...... humans showed resistance rates lower than those found in imported meat but higher than in domestic meat. These findings indicate that programs for controlling resistant Salmonella spp. are a global issue......We compared 8,144 Salmonella isolates collected from meat imported to or produced in Denmark, as well as from Danish patients. Isolates from imported meat showed a higher rate of antimicrobial drug resistance, including multidrug resistance, than did isolates from domestic meat. Isolates from...

  19. Postmarketing safety reports for human drug and biological products; electronic submission requirements. Final rule.

    Science.gov (United States)

    2014-06-10

    The Food and Drug Administration (FDA or we) is amending its postmarketing safety reporting regulations for human drug and biological products to require that persons subject to mandatory reporting requirements submit safety reports in an electronic format that FDA can process, review, and archive. FDA is taking this action to improve the Agency's systems for collecting and analyzing postmarketing safety reports. The change will help the Agency to more rapidly review postmarketing safety reports, identify emerging safety problems, and disseminate safety information in support of FDA's public health mission. In addition, the amendments will be a key element in harmonizing FDA's postmarketing safety reporting regulations with international standards for the electronic submission of safety information.

  20. Human Serum Albumin Nanoparticles for Use in Cancer Drug Delivery: Process Optimization and In Vitro Characterization

    Directory of Open Access Journals (Sweden)

    Nikita Lomis

    2016-06-01

    Full Text Available Human serum albumin nanoparticles (HSA-NPs are widely-used drug delivery systems with applications in various diseases, like cancer. For intravenous administration of HSA-NPs, the particle size, surface charge, drug loading and in vitro release kinetics are important parameters for consideration. This study focuses on the development of stable HSA-NPs containing the anti-cancer drug paclitaxel (PTX via the emulsion-solvent evaporation method using a high-pressure homogenizer. The key parameters for the preparation of PTX-HSA-NPs are: the starting concentrations of HSA, PTX and the organic solvent, including the homogenization pressure and its number cycles, were optimized. Results indicate a size of 143.4 ± 0.7 nm and 170.2 ± 1.4 nm with a surface charge of −5.6 ± 0.8 mV and −17.4 ± 0.5 mV for HSA-NPs and PTX-HSA-NPs (0.5 mg/mL of PTX, respectively. The yield of the PTX-HSA-NPs was ~93% with an encapsulation efficiency of ~82%. To investigate the safety and effectiveness of the PTX-HSA-NPs, an in vitro drug release and cytotoxicity assay was performed on human breast cancer cell line (MCF-7. The PTX-HSA-NPs showed dose-dependent toxicity on cells of 52%, 39.3% and 22.6% with increasing concentrations of PTX at 8, 20.2 and 31.4 μg/mL, respectively. In summary, all parameters involved in HSA-NPs’ preparation, its anticancer efficacy and scale-up are outlined in this research article.

  1. DR_SEQAN: a PC/Windows-based software to evaluate drug resistance using human immunodeficiency virus type 1 genotypes

    Directory of Open Access Journals (Sweden)

    Menéndez-Arias Luis

    2006-03-01

    Full Text Available Abstract Background Genotypic assays based on DNA sequencing of part or the whole reverse transcriptase (RT- and protease (PR-coding regions of the human immunodeficiency virus type 1 (HIV-1 genome have become part of the routine clinical management of HIV-infected individuals. However, the results are difficult to interpret due to complex interactions between mutations found in viral genes. Results DR_SEQAN is a tool to analyze RT and PR sequences. The program output includes a list containing all of the amino acid changes found in the query sequence in comparison with the sequence of a wild-type HIV-1 strain. Translation of codons containing nucleotide mixtures can result in potential ambiguities or heterogeneities in the amino acid sequence. The program identifies all possible combinations of 2 or 3 amino acids that derive from translation of triplets containing nucleotide mixtures. In addition, when ambiguities affect codons relevant for drug resistance, DR_SEQAN allows the user to select the appropriate mutation to be considered by the program's drug resistance interpretation algorithm. Resistance is predicted using a rule-based algorithm, whose efficiency and accuracy has been tested with a large set of drug susceptibility data. Drug resistance predictions given by DR_SEQAN were consistent with phenotypic data and coherent with predictions provided by other publicly available algorithms. In addition, the program output provides two tables showing published drug susceptibility data and references for mutations and combinations of mutations found in the analyzed sequence. These data are retrieved from an integrated relational database, implemented in Microsoft Access, which includes two sets of non-redundant core tables (one for combinations of mutations in the PR and the other for combinations in the RT. Conclusion DR_SEQAN is an easy to use off-line application that provides expert advice on HIV genotypic resistance interpretation. It is

  2. Expression of human solute carrier family transporters in skin: possible contributor to drug-induced skin disorders

    OpenAIRE

    Ryoichi Fujiwara; Saya Takenaka; Mitsuhiro Hashimoto; Tomoya Narawa; Tomoo Itoh

    2014-01-01

    Solute carrier (SLC) transporters play important roles in absorption and disposition of drugs in cells; however, the expression pattern of human SLC transporters in the skin has not been determined. In the present study, the expression patterns of 28 human SLC transporters were determined in the human skin. Most of the SLC transporter family members were either highly or moderately expressed in the liver, while their expression was limited in the skin and small intestine. Treatment of human k...

  3. Does cannabis affect dopaminergic signaling in the human brain? A systematic review of evidence to date.

    Science.gov (United States)

    Sami, Musa Basser; Rabiner, Eugenii A; Bhattacharyya, Sagnik

    2015-08-01

    A significant body of epidemiological evidence has linked psychotic symptoms with both acute and chronic use of cannabis. Precisely how these effects of THC are mediated at the neurochemical level is unclear. While abnormalities in multiple pathways may lead to schizophrenia, an abnormality in dopamine neurotransmission is considered to be the final common abnormality. One would thus expect cannabis use to be associated with dopamine signaling alterations. This is the first systematic review of all studies, both observational as well as experimental, examining the acute as well as chronic effect of cannabis or its main psychoactive ingredient, THC, on the dopamine system in man. We aimed to review all studies conducted in man, with any reported neurochemical outcomes related to the dopamine system after cannabis, cannabinoid or endocannabinoid administration or use. We identified 25 studies reporting outcomes on over 568 participants, of which 244 participants belonged to the cannabis/cannabinoid exposure group. In man, there is as yet little direct evidence to suggest that cannabis use affects acute striatal dopamine release or affects chronic dopamine receptor status in healthy human volunteers. However some work has suggested that acute cannabis exposure increases dopamine release in striatal and pre-frontal areas in those genetically predisposed for, or at clinical high risk of psychosis. Furthermore, recent studies are suggesting that chronic cannabis use blunts dopamine synthesis and dopamine release capacity. Further well-designed studies are required to definitively delineate the effects of cannabis use on the dopaminergic system in man. PMID:26068702

  4. HOW MICRORNAS AFFECT THE EXPRESSION OF HUMAN LEUKOCYTE ANTIGENG IN PREGNANCY

    Directory of Open Access Journals (Sweden)

    Ayla Carmel Kempers

    2012-01-01

    Full Text Available The expression of Human Leukocyte Antigen G (HLA-G on Fetal Extravillous Trophoblast (EVT cells during pregnancy plays an important role in preventing the fetus from rejection by suppressing the maternal immune system. Decreased expression levels of HLA-G have already shown to be associated with several complications of pregnancy such as pre-eclampsia. However, it remains largely unknown how HLA-G gene expression is regulated with regard to its function and its complications. Polymorphisms and microRNAs affect HLA-G gene expression and the formation of isoforms. Interestingly, three microRNAs, miR-148a, miR 148b and miR-152, downregulate HLA-G expression with functional consequences. Since HLA-G expression levels are reduced in pre-eclampsia without a known cause, we hypothesize that these microRNAs are involved in the development of pre-eclampsia. This review discusses how microRNAs can affect HLA-G gene expression and its functions. Additionally, the role of microRNAs in the development of pre-eclampsia will be reviewed.

  5. Primary care physicians¹ clinical interests do not affect their adoption of new drugs. A pharmacoepidemiologic study

    DEFF Research Database (Denmark)

    Dybdahl, Torben; Søndergaard, Jens; Kragstrup, Jakob;

    2006-01-01

    Pharmacoepidemiol Drug Safety 2006;14(suppl. 1):S168. 21 st International Conference on Pharmacoepidemiology and Therapeutic RiskManagement, Lisbon, Portugal......Pharmacoepidemiol Drug Safety 2006;14(suppl. 1):S168. 21 st International Conference on Pharmacoepidemiology and Therapeutic RiskManagement, Lisbon, Portugal...

  6. Energy metabolism determines the sensitivity of human hepatocellular carcinoma cells to mitochondrial inhibitors and biguanide drugs.

    Science.gov (United States)

    Hsu, Chia-Chi; Wu, Ling-Chia; Hsia, Cheng-Yuan; Yin, Pen-Hui; Chi, Chin-Wen; Yeh, Tien-Shun; Lee, Hsin-Chen

    2015-09-01

    Human hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide particularly in Asia. Deregulation of cellular energetics was recently included as one of the cancer hallmarks. Compounds that target the mitochondria in cancer cells were proposed to have therapeutic potential. Biguanide drugs which inhibit mitochondrial complex I and repress mTOR signaling are clinically used to treat type 2 diabetes mellitus patients (T2DM) and were recently found to reduce the risk of HCC in T2DM patients. However, whether alteration of energy metabolism is involved in regulating the sensitivity of HCC to biguanide drugs is still unclear. In the present study, we treated four HCC cell lines with mitochondrial inhibitors (rotenone and oligomycin) and biguanide drugs (metformin and phenformin), and found that the HCC cells which had a higher mitochondrial respiration rate were more sensitive to these treatments; whereas the HCC cells which exhibited higher glycolysis were more resistant. When glucose was replaced by galactose in the medium, the altered energy metabolism from glycolysis to mitochondrial respiration in the HCC cells enhanced the cellular sensitivity to mitochondrial inhibitors and biguanides. The energy metabolism change enhanced AMP-activated protein kinase (AMPK) activation, mTOR repression and downregulation of cyclin D1 and Mcl-1 in response to the mitochondrial inhibitors and biguanides. In conclusion, our results suggest that increased mitochondrial oxidative metabolism upregulates the sensitivity of HCC to biguanide drugs. Enhancing the mitochondrial oxidative metabolism in combination with biguanide drugs may be a therapeutic strategy for HCC.

  7. Quiescence does not affect p53 and stress response by irradiation in human lung fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Jiawen [Molecular Radiobiology Laboratory, Division of Cellular and Molecular Research (Singapore); Itahana, Koji, E-mail: koji.itahana@duke-nus.edu.sg [Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School (Singapore); Baskar, Rajamanickam, E-mail: r.baskar@nccs.com.sg [Molecular Radiobiology Laboratory, Division of Cellular and Molecular Research (Singapore); Department of Radiation Oncology, National Cancer Centre (Singapore)

    2015-02-27

    Cells in many organs exist in both proliferating and quiescent states. Proliferating cells are more radio-sensitive, DNA damage pathways including p53 pathway are activated to undergo either G{sub 1}/S or G{sub 2}/M arrest to avoid entering S and M phase with DNA damage. On the other hand, quiescent cells are already arrested in G{sub 0}, therefore there may be fundamental difference of irradiation response between proliferating and quiescent cells, and this difference may affect their radiosensitivity. To understand these differences, proliferating and quiescent human normal lung fibroblasts were exposed to 0.10–1 Gy of γ-radiation. The response of key proteins involved in the cell cycle, cell death, and metabolism as well as histone H2AX phosphorylation were examined. Interestingly, p53 and p53 phosphorylation (Ser-15), as well as the cyclin-dependent kinase inhibitors p21 and p27, were induced similarly in both proliferating and quiescent cells after irradiation. Furthermore, the p53 protein half-life, and expression of cyclin A, cyclin E, proliferating cell nuclear antigen (PCNA), Bax, or cytochrome c expression as well as histone H2AX phosphorylation were comparable after irradiation in both phases of cells. The effect of radioprotection by a glycogen synthase kinase 3β inhibitor on p53 pathway was also similar between proliferating and quiescent cells. Our results showed that quiescence does not affect irradiation response of key proteins involved in stress and DNA damage at least in normal fibroblasts, providing a better understanding of the radiation response in quiescent cells, which is crucial for tissue repair and regeneration. - Highlights: • p53 response by irradiation was similar between proliferating and quiescent cells. • Quiescent cells showed similar profiles of cell cycle proteins after irradiation. • Radioprotection of GSK-3β inhibitor caused similar effects between these cells. • Quiescence did not affect p53 response despite its

  8. Quiescence does not affect p53 and stress response by irradiation in human lung fibroblasts

    International Nuclear Information System (INIS)

    Cells in many organs exist in both proliferating and quiescent states. Proliferating cells are more radio-sensitive, DNA damage pathways including p53 pathway are activated to undergo either G1/S or G2/M arrest to avoid entering S and M phase with DNA damage. On the other hand, quiescent cells are already arrested in G0, therefore there may be fundamental difference of irradiation response between proliferating and quiescent cells, and this difference may affect their radiosensitivity. To understand these differences, proliferating and quiescent human normal lung fibroblasts were exposed to 0.10–1 Gy of γ-radiation. The response of key proteins involved in the cell cycle, cell death, and metabolism as well as histone H2AX phosphorylation were examined. Interestingly, p53 and p53 phosphorylation (Ser-15), as well as the cyclin-dependent kinase inhibitors p21 and p27, were induced similarly in both proliferating and quiescent cells after irradiation. Furthermore, the p53 protein half-life, and expression of cyclin A, cyclin E, proliferating cell nuclear antigen (PCNA), Bax, or cytochrome c expression as well as histone H2AX phosphorylation were comparable after irradiation in both phases of cells. The effect of radioprotection by a glycogen synthase kinase 3β inhibitor on p53 pathway was also similar between proliferating and quiescent cells. Our results showed that quiescence does not affect irradiation response of key proteins involved in stress and DNA damage at least in normal fibroblasts, providing a better understanding of the radiation response in quiescent cells, which is crucial for tissue repair and regeneration. - Highlights: • p53 response by irradiation was similar between proliferating and quiescent cells. • Quiescent cells showed similar profiles of cell cycle proteins after irradiation. • Radioprotection of GSK-3β inhibitor caused similar effects between these cells. • Quiescence did not affect p53 response despite its known role in radio-resistance

  9. LMNA knock-down affects differentiation and progression of human neuroblastoma cells.

    Directory of Open Access Journals (Sweden)

    Giovanna Maresca

    Full Text Available BACKGROUND: Neuroblastoma (NB is one of the most aggressive tumors that occur in childhood. Although genes, such as MYCN, have been shown to be involved in the aggressiveness of the disease, the identification of new biological markers is still desirable. The induction of differentiation is one of the strategies used in the treatment of neuroblastoma. A-type lamins are components of the nuclear lamina and are involved in differentiation. We studied the role of Lamin A/C in the differentiation and progression of neuroblastoma. METHODOLOGY/PRINCIPAL FINDINGS: Knock-down of Lamin A/C (LMNA-KD in neuroblastoma cells blocked retinoic acid-induced differentiation, preventing neurites outgrowth and the expression of neural markers. The genome-wide gene-expression profile and the proteomic analysis of LMNA-KD cells confirmed the inhibition of differentiation and demonstrated an increase of aggressiveness-related genes and molecules resulting in augmented migration/invasion, and increasing the drug resistance of the cells. The more aggressive phenotype acquired by LMNA-KD cells was also maintained in vivo after injection into nude mice. A preliminary immunohistochemistry analysis of Lamin A/C expression in nine primary stages human NB indicated that this protein is poorly expressed in most of these cases. CONCLUSIONS/SIGNIFICANCE: We demonstrated for the first time in neuroblastoma cells that Lamin A/C plays a central role in the differentiation, and that the loss of this protein gave rise to a more aggressive tumor phenotype.

  10. Surface chemical functionalities affect the behavior of human adipose-derived stem cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xujie [State key laboratory of new ceramics and fine processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Feng, Qingling, E-mail: biomater@mail.tsinghua.edu.cn [State key laboratory of new ceramics and fine processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Bachhuka, Akash [Mawson Institute, University of South Australia, Mawson Lakes 5095 (Australia); Vasilev, Krasimir [Mawson Institute, University of South Australia, Mawson Lakes 5095 (Australia); School of Advanced Manufacturing, University of South Australia, Mawson Lakes 5095 (Australia)

    2013-04-01

    This study examines the effect of surface chemical functionalities on the behavior of human adipose-derived stem cells (hASCs) in vitro. Plasma polymerized films rich in amine (-NH{sub 2}), carboxyl (-COOH) and methyl (-CH{sub 3}), were generated on hydroxyapatite (HAp) substrates. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy (XPS). The ability of different substrates to absorb proteins was evaluated. The results showed that substrates modified with hydrophilic functional group (-COOH and -NH{sub 2}) can absorb more proteins than these modified with more hydrophobic functional group (-CH{sub 3}). The behavior of human adipose-derived stem cells (hASCs) cultured on different substrates was investigated in vitro: cell counting kit-8 (CCK-8) analysis was used to characterize cell proliferation, scanning electronic microscopy (SEM) analysis was used to characterize cell morphology and alkaline phosphatase (ALP) activity analysis was used to account for differentiation. The results of this study demonstrated that the -NH{sub 2} modified surfaces encourage osteogenic differentiation; the -COOH modified surfaces promote cell adhesion and spreading and the -CH{sub 3} modified surfaces have the lowest ability to induce osteogenic differentiation. These findings confirmed that the surface chemical states of biomaterials can affect the behavior of hASCs in vitro.

  11. Larval food quantity affects the capacity of adult mosquitoes to transmit human malaria

    Science.gov (United States)

    Shapiro, Lillian L. M.; Murdock, Courtney C.; Jacobs, Gregory R.; Thomas, Rachel J.; Thomas, Matthew B.

    2016-01-01

    Adult traits of holometabolous insects are shaped by conditions experienced during larval development, which might impact interactions between adult insect hosts and parasites. However, the ecology of larval insects that vector disease remains poorly understood. Here, we used Anopheles stephensi mosquitoes and the human malaria parasite Plasmodium falciparum, to investigate whether larval conditions affect the capacity of adult mosquitoes to transmit malaria. We reared larvae in two groups; one group received a standard laboratory rearing diet, whereas the other received a reduced diet. Emerging adult females were then provided an infectious blood meal. We assessed mosquito longevity, parasite development rate and prevalence of infectious mosquitoes over time. Reduced larval food led to increased adult mortality and caused a delay in parasite development and a slowing in the rate at which parasites invaded the mosquito salivary glands, extending the time it took for mosquitoes to become infectious. Together, these effects increased transmission potential of mosquitoes in the high food regime by 260–330%. Such effects have not, to our knowledge, been shown previously for human malaria and highlight the importance of improving knowledge of larval ecology to better understand vector-borne disease transmission dynamics. PMID:27412284

  12. Parallel artificial liquid membrane extraction of acidic drugs from human plasma

    DEFF Research Database (Denmark)

    Roldan-Pijuan, Mercedes; Pedersen-Bjergaard, Stig; Gjelstad, Astrid

    2015-01-01

    The new sample preparation concept “Parallel artificial liquid membrane extraction (PALME)” was evaluated for extraction of the acidic drugs ketoprofen, fenoprofen, diclofenac, flurbiprofen, ibuprofen, and gemfibrozil from human plasma samples. Plasma samples (250 μL) were loaded into individual......-performance liquid chromatography-ultraviolet detection of the individual acceptor solutions. Important PALME parameters including the chemical composition of the liquid membrane, extraction time, and sample pH were optimized, and the extraction performance was evaluated. Except for flurbiprofen, exhaustive...

  13. Genome-wide discovery of drug-dependent human liver regulatory elements.

    Directory of Open Access Journals (Sweden)

    Robin P Smith

    2014-10-01

    Full Text Available Inter-individual variation in gene regulatory elements is hypothesized to play a causative role in adverse drug reactions and reduced drug activity. However, relatively little is known about the location and function of drug-dependent elements. To uncover drug-associated elements in a genome-wide manner, we performed RNA-seq and ChIP-seq using antibodies against the pregnane X receptor (PXR and three active regulatory marks (p300, H3K4me1, H3K27ac on primary human hepatocytes treated with rifampin or vehicle control. Rifampin and PXR were chosen since they are part of the CYP3A4 pathway, which is known to account for the metabolism of more than 50% of all prescribed drugs. We selected 227 proximal promoters for genes with rifampin-dependent expression or nearby PXR/p300 occupancy sites and assayed their ability to induce luciferase in rifampin-treated HepG2 cells, finding only 10 (4.4% that exhibited drug-dependent activity. As this result suggested a role for distal enhancer modules, we searched more broadly to identify 1,297 genomic regions bearing a conditional PXR occupancy as well as all three active regulatory marks. These regions are enriched near genes that function in the metabolism of xenobiotics, specifically members of the cytochrome P450 family. We performed enhancer assays in rifampin-treated HepG2 cells for 42 of these sequences as well as 7 sequences that overlap linkage-disequilibrium blocks defined by lead SNPs from pharmacogenomic GWAS studies, revealing 15/42 and 4/7 to be functional enhancers, respectively. A common African haplotype in one of these enhancers in the GSTA locus was found to exhibit potential rifampin hypersensitivity. Combined, our results further suggest that enhancers are the predominant targets of rifampin-induced PXR activation, provide a genome-wide catalog of PXR targets and serve as a model for the identification of drug-responsive regulatory elements.

  14. Impact of antibacterial drugs on human serum paraoxonase-1 (hPON1) activity:an in vitro study

    Institute of Scientific and Technical Information of China (English)

    Hakan Syt; Elif Duygu Kaya; kr Beydemir

    2014-01-01

    Objective:To investigate the in vitro effects of the antibacterial drugs, meropenem trihydrate, piperacillin sodium, and cefoperazone sodium, on the activity of human serum paraoxonase Methods: hPON1 was purified from human serum using simple chromatographic methods, including DEAE-Sephadex anion exchange and Sephadex G-200 gel filtration chromatography. Results:The three antibacterial drugs decreased in vitro hPON1 activity. Inhibition mechanisms meropenem trihydrate was noncompetitive while piperacillin sodium and cefoperazone sodium were competitive. Conclusions:Our results showed that antibacterial drugs significantly inhibit hPON1 activity, both in vitro, with rank order meropenem trihydrate piperacillin sodium cefoperazone sodium in vitro.

  15. Development of an ionic-liquid-based dispersive liquid-liquid microextraction method for the determination of antichagasic drugs in human breast milk: Optimization by central composite design.

    Science.gov (United States)

    Padró, Juan M; Pellegrino Vidal, Rocío B; Echevarria, Romina N; Califano, Alicia N; Reta, Mario R

    2015-05-01

    Chagas disease constitutes a major public health problem in Latin America. Human breast milk is a biological sample of great importance for the analysis of therapeutic drugs, as unwanted exposure through breast milk could result in pharmacological effects in the nursing infant. Thus, the goal of breast milk drug analysis is to inquire to which extent a neonate may be exposed to a drug during lactation. In this work, we developed an analytical technique to quantify benznidazole and nifurtimox (the two antichagasic drugs currently available for medical treatment) in human breast milk, with a simple sample pretreatment followed by an ionic-liquid-based dispersive liquid-liquid microextraction combined with high-performance liquid chromatography and UV detection. For this technique, the ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate has been used as the "extraction solvent." A central composite design was used to find the optimum values for the significant variables affecting the extraction process: volume of ionic liquid, volume of dispersant solvent, ionic strength, and pH. At the optimum working conditions, the average recoveries were 77.5 and 89.7%, the limits of detection were 0.06 and 0.09 μg/mL and the interday reproducibilities were 6.25 and 5.77% for benznidazole and nifurtimox, respectively. The proposed methodology can be considered sensitive, simple, robust, accurate, and green. PMID:25711461

  16. Prediction of drug-related cardiac adverse effects in humans--B: use of QSAR programs for early detection of drug-induced cardiac toxicities.

    Science.gov (United States)

    Frid, Anna A; Matthews, Edwin J

    2010-04-01

    This report describes the use of three quantitative structure-activity relationship (QSAR) programs to predict drug-related cardiac adverse effects (AEs), BioEpisteme, MC4PC, and Leadscope Predictive Data Miner. QSAR models were constructed for 9 cardiac AE clusters affecting Purkinje nerve fibers (arrhythmia, bradycardia, conduction disorder, electrocardiogram, palpitations, QT prolongation, rate rhythm composite, tachycardia, and Torsades de pointes) and 5 clusters affecting the heart muscle (coronary artery disorders, heart failure, myocardial disorders, myocardial infarction, and valve disorders). The models were based on a database of post-marketing AEs linked to 1632 chemical structures, and identical training data sets were configured for three QSAR programs. Model performance was optimized and shown to be affected by the ratio of the number of active to inactive drugs. Results revealed that the three programs were complementary and predictive performances using any single positive, consensus two positives, or consensus three positives were as follows, respectively: 70.7%, 91.7%, and 98.0% specificity; 74.7%, 47.2%, and 21.0% sensitivity; and 138.2, 206.3, and 144.2 chi(2). In addition, a prospective study using AE data from the U.S. Food and Drug Administration's (FDA's) MedWatch Program showed 82.4% specificity and 94.3% sensitivity. Furthermore, an external validation study of 18 drugs with serious cardiotoxicity not considered in the models had 88.9% sensitivity. PMID:19941924

  17. Keratin film made of human hair as a nail plate model for studying drug permeation.

    Science.gov (United States)

    Lusiana; Reichl, Stephan; Müller-Goymann, Christel C

    2011-08-01

    The limited source of human nail plate for studying drug permeation inspired us to develop a nail plate model made of human hair keratin. The manufacturing process consisted of keratin extraction, dialysis, molding, solvent evaporation, and curing, producing a water-resistant film. The permeability of the film was examined using three markers: sodium fluorescein, rhodamine B, and fluorescein isothiocyanate-dextran as water-soluble, lipid-soluble, and large molecule models, respectively. Bovine hoof was used for comparison. First investigation showed that keratin films (thickness 120 μm) resembled hooves (thickness 100 μm) except that these films were more permeable to rhodamine B compared with hooves (1.8-fold, pnail plate substitute. However, inclusion of the penetration enhancer must be carefully interpreted. PMID:21791369

  18. Keratin film made of human hair as a nail plate model for studying drug permeation.

    Science.gov (United States)

    Lusiana; Reichl, Stephan; Müller-Goymann, Christel C

    2011-08-01

    The limited source of human nail plate for studying drug permeation inspired us to develop a nail plate model made of human hair keratin. The manufacturing process consisted of keratin extraction, dialysis, molding, solvent evaporation, and curing, producing a water-resistant film. The permeability of the film was examined using three markers: sodium fluorescein, rhodamine B, and fluorescein isothiocyanate-dextran as water-soluble, lipid-soluble, and large molecule models, respectively. Bovine hoof was used for comparison. First investigation showed that keratin films (thickness 120 μm) resembled hooves (thickness 100 μm) except that these films were more permeable to rhodamine B compared with hooves (1.8-fold, pnail plate substitute. However, inclusion of the penetration enhancer must be carefully interpreted.

  19. The preparation of albumin as a biological drug from human plasma by fiber filtration

    Directory of Open Access Journals (Sweden)

    Mousavi Hosseini K

    2011-08-01

    Full Text Available "nBackground: In recent years, consumption of whole-blood for the treatment of patients has decreased but use of biological plasma-derived medicines such as albumin, immunoglobulin and coagulation factors have increased instead. Paying attention to albumin molecular structure is important for its isolation from human plasma. Albumin is a single-chain protein consisting of about 585 amino acids and a molecular weight of 66500 Daltons. Albumin is a stable molecule and it is spherical in shape. There are different methods for human albumin preparation. Considering the large consumption of this biological drug in clinical settings, methods with fewer steps in production line are of big advantage in saving time and manufacturing more products."n "nMethods: In this project, we prepared human albumin using hollow fiber cartridges in order to omit the rework on fraction V+VI. Human albumin is usually produced by the application of cold ethanol method, where albumin is obtained from fraction V by doing a rework on fraction V+VI to separate fraction V."n "nResults: In the current work, human albumin was prepared from fraction V+VI by the help of hollow fiber cartridges. With a concentration of 20%, the obtained albumin had 96.5% of monomer and 3.5% of polymer and polymer aggregate."n "nConclusion: Comparing the obtained human albumin with a number of commercial human albumin samples by the use of SDS-page, the results were satisfactory regarding the 3.5 percent polymer and aggregate rate for the prepared albumin.

  20. Annual banned-substance review: analytical approaches in human sports drug testing.

    Science.gov (United States)

    Thevis, Mario; Kuuranne, Tiia; Walpurgis, Katja; Geyer, Hans; Schänzer, Wilhelm

    2016-01-01

    The aim of improving anti-doping efforts is predicated on several different pillars, including, amongst others, optimized analytical methods. These commonly result from exploiting most recent developments in analytical instrumentation as well as research data on elite athletes' physiology in general, and pharmacology, metabolism, elimination, and downstream effects of prohibited substances and methods of doping, in particular. The need for frequent and adequate adaptations of sports drug testing procedures has been incessant, largely due to the uninterrupted emergence of new chemical entities but also due to the apparent use of established or even obsolete drugs for reasons other than therapeutic means, such as assumed beneficial effects on endurance, strength, and regeneration capacities. Continuing the series of annual banned-substance reviews, literature concerning human sports drug testing published between October 2014 and September 2015 is summarized and reviewed in reference to the content of the 2015 Prohibited List as issued by the World Anti-Doping Agency (WADA), with particular emphasis on analytical approaches and their contribution to enhanced doping controls. PMID:26767774

  1. Structural Insights into Drug Processing by Human Carboxylesterase 1: Tamoxifen, Mevastatin, and Inhibition by Benzil

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, Christopher D.; Bencharit, Sompop; Edwards, Carol C.; Hyatt, Janice L.; Tsurkan, Lyudmila; Bai, Feng; Fraga, Charles; Morton, Christopher L.; Howard-Williams, Escher L.; Potter, Philip M.; Redinbo, Matthew R. (UNC); (SJCH)

    2010-07-19

    Human carboxylesterase 1 (hCE1) exhibits broad substrate specificity and is involved in xenobiotic processing and endobiotic metabolism. We present and analyze crystal structures of hCE1 in complexes with the cholesterol-lowering drug mevastatin, the breast cancer drug tamoxifen, the fatty acyl ethyl ester (FAEE) analogue ethyl acetate, and the novel hCE1 inhibitor benzil. We find that mevastatin does not appear to be a substrate for hCE1, and instead acts as a partially non-competitive inhibitor of the enzyme. Similarly, we show that tamoxifen is a low micromolar, partially non-competitive inhibitor of hCE1. Further, we describe the structural basis for the inhibition of hCE1 by the nanomolar-affinity dione benzil, which acts by forming both covalent and non-covalent complexes with the enzyme. Our results provide detailed insights into the catalytic and non-catalytic processing of small molecules by hCE1, and suggest that the efficacy of clinical drugs may be modulated by targeted hCE1 inhibitors.

  2. Expression of Genes for Drug Transporters in the Human Female Genital Tract and Modulatory Effect of Antiretroviral Drugs.

    Directory of Open Access Journals (Sweden)

    Karolin Hijazi

    Full Text Available Anti-retroviral (ARV -based microbicides are one of the strategies pursued to prevent HIV-1 transmission. Delivery of ARV drugs to subepithelial CD4+ T cells at concentrations for protection is likely determined by drug transporters expressed in the cervicovaginal epithelium. To define the role of drug transporters in mucosal disposition of topically applied ARV-based microbicides, these must be tested in epithelial cell line-based biopharmaceutical assays factoring the effect of relevant drug transporters. We have characterised gene expression of influx and efflux drug transporters in a panel of cervicovaginal cell lines and compared this to expression in cervicovaginal tissue. We also investigated the effect of dapivirine, darunavir and tenofovir, currently at advanced stages of microbicides development, on expression of drug transporters in cell lines. Expression of efflux ABC transporters in cervical tissue was best represented in HeLa, Ect1/E6E7 and End1/E6E7 cell lines. Expression of influx OCT and ENT transporters in ectocervix matched expression in Hela while expression of influx SLCO transporters in vagina was best reflected in VK2/E6E7 cell line. Stimulation with darunavir and dapivirine upregulated MRP transporters, including MRP5 involved in transport of tenofovir. Dapivirine also significantly downregulated tenofovir substrate MRP4 in cervical cell lines. Treatment with darunavir and dapivirine showed no significant effect on expression of BCRP, MRP2 and P-glycoprotein implicated in efflux of different ARV drugs. Darunavir strongly induced expression in most cell lines of CNT3 involved in cell uptake of nucleotide/nucleoside analogue reverse transcriptase inhibitors and SLCO drug transporters involved in cell uptake of protease inhibitors. This study provides insight into the suitability of cervicovaginal cell lines for assessment of ARV drugs in transport kinetics studies. The modulatory effect of darunavir and dapivirine on

  3. Effects of some analgesic anaesthetic drugs on human erythrocyte glutathione reductase: an in vitro study.

    Science.gov (United States)

    Senturk, Murat; Irfan Kufrevioglu, O; Ciftci, Mehmet

    2009-04-01

    Inhibitory effects of some analgesic and anaesthetic drugs on human erythrocyte glutathione reductase were investigated. For this purpose, human erythrocyte glutathione reductase was initially purified 2139-fold in a yield of 29% by using 2', 5'-ADP Sepharose 4B affinity gel and Sephadex G-200 gel filtration chromatography. SDS polyacrylamide gel electrophoresis confirmed the purity of the enzyme by sharing a single band. A constant temperature (+4 degrees C) was maintained during the purification process. Diclofenac sodium, ketoprofen, lornoxicam, tenoxicam, etomidate, morphine and propofol exhibited inhibitory effects on the enzyme in vitro using the Beutler assay method. K(i) constants and IC(50) values for drugs were determined from Lineweaver-Burk graphs and plotting activity % versus [I] graphs, respectively. The IC(50) values of diclofenac sodium, ketoprofen, lornoxicam, propofol, tenoxicam, etomidate and morphine were 7.265, 6.278, 0.3, 0.242, 0.082, 0.0523 and 0.0128 mM and the K(i) constants were 23.97 +/- 2.1, 22.14 +/- 7.6, 0.42 +/- 0.18, 0.418 +/- 0.056, 0.13 +/- 0.025, 0.0725 +/- 0.0029 and 0.0165 +/- 0.0013 mM, respectively. While diclofenac sodium, ketoprofen, lornoxicam, tenoxicam etomidate and morphine showed competitive inhibition, propofol displayed noncompetitive inhibition. PMID:18608753

  4. High-performance liquid chromatographic quantification of rifampicin in human plasma: method for Therapecutic drug monitoring

    International Nuclear Information System (INIS)

    A high performance liquid chromatography (HPLC) method has been developed that allows quantification of Rifampicin in human plasma. The method is based on the precipitation of proteins in human plasma with methanol. Optimal assay conditions were found with a C18 column and a simple mobile phase consisting of 0.05 M dipotassic hydrogen phosphate buffer and acetonitrile (53/47, V/V) with 0.086 % diethylamin, pH = 4.46. The flow-rate was 0.6 ml /mm and the drug was monitored at 340 nm. Results from the HPLC analyses showed that the assay method is linear in the concentration range of 1-40 micro g/ml, (r2 >0.99). The limit of quantification and limit of detection of Rifampicin were 0.632 micro g/ml and 0.208 micro g/ml, respectively. Intraday and interday coefficient of variation and bias were below 10% for all samples, suggesting good precision and accuracy of the method. Recoveries were greater than 90% in a plasma sample volume of 100 micro l. The method is being successfully applied to therapeutic drug monitoring of Rifapicin in plasma samples of tuberculosis and staphylococcal infections patients. (author)

  5. Optimization of magnetophoretic-guided drug delivery to the olfactory region in a human nose model.

    Science.gov (United States)

    Xi, Jinxiang; Zhang, Ze; Si, Xiuhua April; Yang, Jing; Deng, Wu

    2016-08-01

    Magnetophoretic-guided delivery has been shown to be able to improve the olfactory doses. However, due to the complex nasal structure and quick decay of magnetic intensity, precise control of particle motion in the human nose remains a challenge. In this study, an optimization model was developed for magnetophoretic olfactory delivery systems. The performance of the model was evaluated using a baseline device design in an MRI-based human nose geometry. Three key components of the delivery system were examined, which included the particle release position, the front magnet to minimize nasal valve depositions, and the top magnet to attract particles into the olfactory region. Results show that the magnetophoretic olfactory delivery device can be significantly improved by optimizing the product and operational parameters. The olfactory delivery efficiency was increased by 1.5-fold compared to the baseline design. The top magnet height and strength were shown to be the most influential factor in olfactory delivery, followed by the drug release position and the front magnet strength. The optimization framework developed in this study can be easily adapted for the optimization of intranasal drug delivery to other regions such as paranasal sinuses. PMID:26386567

  6. Analysis of Antimicrobial Resistance Genes in Multiple Drug Resistant (MDR) Salmonella enterica Isolated from Animals and Humans

    Science.gov (United States)

    Background: Multiple Drug Resistant (MDR) foodborne bacteria are a concern in animal and human health. Identification of resistance genes in foodborne pathogens is necessary to determine similarities of resistance mechanisms in animal, food and human clinical isolates. This information will help us ...

  7. Visual P2-N2 complex and arousal at the time of encoding predict the time domain characteristics of amnesia for multiple intravenous anesthetic drugs in humans

    Science.gov (United States)

    Pryor, Kane O.; Reinsel, Ruth A.; Mehta, Meghana; Li, Yuelin; Wixted, John T.; Veselis, Robert A.

    2010-01-01

    Background Intravenous anesthetics have marked effects on memory function, even at subclinical concentrations. Fundamental questions remain in characterizing anesthetic amnesia and identifying affected systems-level processes. We applied a mathematical model to evaluate time-domain components of anesthetic amnesia in human subjects. Methods 61 volunteers were randomized to receive propofol (n = 12), thiopental (13), midazolam (12), dexmedetomidine (12), or placebo (12). With drug present, subjects encoded pictures into memory using a 375-item continuous recognition task, with subsequent recognition later probed with drug absent. Memory function was sampled at up to 163 time points, and modeled over the time domain using a two-parameter, first-order negative power function. The parietal event-related P2-N2 complex was derived from electroencephalography, and arousal repeatedly sampled. Each drug was evaluated at two concentrations. Results The negative power function consistently described the course of amnesia (mean R2 = 0.854), but there were marked differences between drugs in the modulation of individual components (P < 0.0001). Initial memory strength was a function of arousal (P = 0.005), while subsequent decay was related to reaction time (P < 0.0001) and the P2-N2 complex (P = 0.007/0.002 for discrete components). Conclusions In humans, the amnesia caused by multiple intravenous anesthetic drugs is characterized by arousal-related effects on initial trace strength, and a subsequent decay predicted by attenuation of the P2-N2 complex at encoding. We propose that failure of normal memory consolidation follows drug-induced disruption of interregional synchrony critical for neuronal plasticity, and discuss our findings in the framework of memory systems theory. PMID:20613477

  8. PPARγ1 phosphorylation enhances proliferation and drug resistance in human fibrosarcoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Xiaojuan; Shu, Yuxin; Niu, Zhiyuan; Zheng, Wei; Wu, Haochen [State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing (China); Lu, Yan, E-mail: luyan@nju.edu.cn [State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing (China); Shen, Pingping, E-mail: ppshen@nju.edu.cn [State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing (China); Model Animal Research Center (MARC), Nanjing University, Nanjing (China)

    2014-03-10

    Post-translational regulation plays a critical role in the control of cell growth and proliferation. The phosphorylation of peroxisome proliferator-activated receptor γ (PPARγ) is the most important post-translational modification. The function of PPARγ phosphorylation has been studied extensively in the past. However, the relationship between phosphorylated PPARγ1 and tumors remains unclear. Here we investigated the role of PPARγ1 phosphorylation in human fibrosarcoma HT1080 cell line. Using the nonphosphorylation (Ser84 to alanine, S84A) and phosphorylation (Ser84 to aspartic acid, S84D) mutant of PPARγ1, the results suggested that phosphorylation attenuated PPARγ1 transcriptional activity. Meanwhile, we demonstrated that phosphorylated PPARγ1 promoted HT1080 cell proliferation and this effect was dependent on the regulation of cell cycle arrest. The mRNA levels of cyclin-dependent kinase inhibitor (CKI) p21{sup Waf1/Cip1} and p27{sup Kip1} descended in PPARγ1{sup S84D} stable HT1080 cell, whereas the expression of p18{sup INK4C} was not changed. Moreover, compared to the PPARγ1{sup S84A}, PPARγ1{sup S84D} up-regulated the expression levels of cyclin D1 and cyclin A. Finally, PPARγ1 phosphorylation reduced sensitivity to agonist rosiglitazone and increased resistance to anticancer drug 5-fluorouracil (5-FU) in HT1080 cell. Our findings establish PPARγ1 phosphorylation as a critical event in human fibrosarcoma growth. These findings raise the possibility that chemical compounds that prevent the phosphorylation of PPARγ1 could act as anticancer drugs. - Highlights: • Phosphorylation attenuates PPARγ1 transcriptional activity. • Phosphorylated PPARγ1 promotes HT1080 cells proliferation. • PPARγ1 phosphorylation regulates cell cycle by mediating expression of cell cycle regulators. • PPARγ1 phosphorylation reduces sensitivity to agonist and anticancer drug. • Our findings establish PPARγ1 phosphorylation as a critical event in HT1080

  9. Pyoverdine and proteases affect the response of Pseudomonas aeruginosa to gallium in human serum.

    Science.gov (United States)

    Bonchi, Carlo; Frangipani, Emanuela; Imperi, Francesco; Visca, Paolo

    2015-09-01

    Gallium is an iron mimetic which has recently been repurposed as an antibacterial agent due to its capability to disrupt bacterial iron metabolism. In this study, the antibacterial activity of gallium nitrate [Ga(NO3)3] was investigated in complement-free human serum (HS) on 55 Pseudomonas aeruginosa clinical isolates from cystic fibrosis and non-cystic fibrosis patients. The susceptibility of P. aeruginosa to Ga(NO3)3 in HS was dependent on the bacterial ability to acquire iron from serum binding proteins (i.e., transferrin). The extent of serum protein degradation correlated well with P. aeruginosa growth in HS, while pyoverdine production did not. However, pyoverdine-deficient P. aeruginosa strains were unable to grow in HS and overcome iron restriction, albeit capable of releasing proteases. Predigestion of HS with proteinase K promoted the growth of all strains, irrespective of their ability to produce proteases and/or pyoverdine. The MICs of Ga(NO3)3 were higher in HS than in an iron-poor Casamino Acids medium, where proteolysis does not affect iron availability. Coherently, strains displaying high proteolytic activity were less susceptible to Ga(NO3)3 in HS. Our data support a model in which both pyoverdine and proteases affect the response of P. aeruginosa to Ga(NO3)3 in HS. The relatively high Ga(NO3)3 concentration required to inhibit the growth of highly proteolytic P. aeruginosa isolates in HS poses a limitation to the potential of Ga(NO3)3 in the treatment of P. aeruginosa bloodstream infections. PMID:26149986

  10. Naturally occurring variants of human Α9 nicotinic receptor differentially affect bronchial cell proliferation and transformation.

    Directory of Open Access Journals (Sweden)

    Anna Chikova

    Full Text Available Isolation of polyadenilated mRNA from human immortalized bronchial epithelial cell line BEP2D revealed the presence of multiple isoforms of RNA coded by the CHRNA9 gene for α9 nicotinic acetylcholine receptor (nAChR. BEP2D cells were homozygous for the rs10009228 polymorphism encoding for N442S amino acid substitution, and also contained mRNA coding for several truncated isoforms of α9 protein. To elucidate the biologic significance of the naturally occurring variants of α9 nAChR, we compared the biologic effects of overexpression of full-length α9 N442 and S442 proteins, and the truncated α9 variant occurring due to a loss of the exon 4 sequence that causes frame shift and early termination of the translation. These as well as control vector were overexpressed in the BEP2D cells that were used in the assays of proliferation rate, spontaneous vs. tobacco nitrosamine 4-(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK-induced cellular transformation, and tumorigenicity in cell culture and mice. Overexpression of the S442 variant significantly increased cellular proliferation, and spontaneous and NNK-induced transformation. The N442 variant significantly decreased cellular transformation, without affecting proliferation rate. Overexpression of the truncated α9 significantly decreased proliferation and suppressed cellular transformation. These results suggested that α9 nAChR plays important roles in regulation of bronchial cell growth by endogenous acetylcholine and exogenous nicotine, and susceptibility to NNK-induced carcinogenic transformation. The biologic activities of α9 nAChR may be regulated at the splicing level, and genetic polymorphisms in CHRNA9 affecting protein levels, amino acid sequence and RNA splicing may influence the risk for lung cancer.

  11. Human experimental pain models: A review of standardized methods in drug development

    Directory of Open Access Journals (Sweden)

    K. Sunil kumar Reddy

    2012-01-01

    Full Text Available Human experimental pain models are essential in understanding the pain mechanisms and appear to be ideally suited to test analgesic compounds. The challenge that confronts both the clinician and the scientist is to match specific treatments to different pain-generating mechanisms and hence reach a pain treatment tailored to each individual patient. Experimental pain models offer the possibility to explore the pain system under controlled settings. Standardized stimuli of different modalities (i.e., mechanical, thermal, electrical, or chemical can be applied to the skin, muscles, and viscera for a differentiated and comprehensive assessment of various pain pathways and mechanisms. Using a multimodel-multistructure testing, the nociception arising from different body structures can be explored and modulation of specific biomarkers by new and existing analgesic drugs can be profiled. The value of human experimental pain models is to link animal and clinical pain studies, providing new possibilities for designing successful clinical trials. Spontaneous pain, the main compliant of the neuropathic patients, but currently there is no human model available that would mimic chronic pain. Therefore, current human pain models cannot replace patient studies for studying efficacy of analgesic compounds, although being helpful for proof-of-concept studies and dose finding.

  12. Estimation of internal radiation dose in human based on animal data. Application of methodology in drug metabolism and pharmacokinetics

    International Nuclear Information System (INIS)

    Before conducting human study on radiolabeled drug, internal radiation dose is evaluated based on the animal data. Generally, however, species difference in the elimination process of radioactivity, mostly in the hepatic metabolism, is ignored. The methodology of correction was described for drugs that are eliminated mostly by hepatic metabolism. We showed the validity of using the method where the hepatic clearance in animal and human are constructed by the hepatic blood flow, protein unbound fraction and metabolic rate in vitro, and the internal radiation exposure calculated is corrected by the animal/human ratio of the hepatic clearance. (author)

  13. Generation of Human Induced Pluripotent Stem Cells from Extraembryonic Tissues of Fetuses Affected by Monogenic Diseases.

    Science.gov (United States)

    Spitalieri, Paola; Talarico, Rosa V; Botta, Annalisa; Murdocca, Michela; D'Apice, Maria Rosaria; Orlandi, Augusto; Giardina, Emiliano; Santoro, Massimo; Brancati, Francesco; Novelli, Giuseppe; Sangiuolo, Federica

    2015-08-01

    The generation of human induced pluripotent stem cells (hiPSCs) derived from an autologous extraembryonic fetal source is an innovative personalized regenerative technology that can transform own-self cells into embryonic stem-like ones. These cells are regarded as a promising candidate for cell-based therapy, as well as an ideal target for disease modeling and drug discovery. Thus, hiPSCs enable researchers to undertake studies for treating diseases or for future applications of in utero therapy. We used a polycistronic lentiviral vector (hSTEMCCA-loxP) encoding OCT4, SOX2, KLF4, and cMYC genes and containing loxP sites, excisible by Cre recombinase, to reprogram patient-specific fetal cells derived from prenatal diagnosis for several genetic disorders, such as myotonic dystrophy type 1 (DM1), β-thalassemia (β-Thal), lymphedema-distichiasis syndrome (LDS), spinal muscular atrophy (SMA), cystic fibrosis (CF), as well as from wild-type (WT) fetal cells. Because cell types tested to create hiPSCs influence both the reprogramming process efficiency and the kinetics, we used chorionic villus (CV) and amniotic fluid (AF) cells, demonstrating how they represent an ideal cell resource for a more efficient generation of hiPSCs. The successful reprogramming of both CV and AF cells into hiPSCs was confirmed by specific morphological, molecular, and immunocytochemical markers and also by their teratogenic potential when inoculated in vivo. We further demonstrated the stability of reprogrammed cells over 10 and more passages and their capability to differentiate into the three embryonic germ layers, as well as into neural cells. These data suggest that hiPSCs-CV/AF can be considered a valid cellular model to accomplish pathogenesis studies and therapeutic applications. PMID:26474030

  14. Oxidized low density lipoprotein (LDL) affects hyaluronan synthesis in human aortic smooth muscle cells.

    Science.gov (United States)

    Viola, Manuela; Bartolini, Barbara; Vigetti, Davide; Karousou, Evgenia; Moretto, Paola; Deleonibus, Sara; Sawamura, Tatsuya; Wight, Thomas N; Hascall, Vincent C; De Luca, Giancarlo; Passi, Alberto

    2013-10-11

    Thickening of the vessel in response to high low density lipoprotein(s) (LDL) levels is a hallmark of atherosclerosis, characterized by increased hyaluronan (HA) deposition in the neointima. Human native LDL trapped within the arterial wall undergoes modifications such as oxidation (oxLDL). The aim of our study is to elucidate the link between internalization of oxLDL and HA production in vitro, using human aortic smooth muscle cells. LDL were used at an effective protein concentration of 20-50 μg/ml, which allowed 80% cell viability. HA content in the medium of untreated cells was 28.9 ± 3.7 nmol HA-disaccharide/cell and increased after oxLDL treatment to 53.9 ± 5.6. OxLDL treatments doubled the transcripts of HA synthase HAS2 and HAS3. Accumulated HA stimulated migration of aortic smooth muscle cells and monocyte adhesiveness to extracellular matrix. The effects induced by oxLDL were inhibited by blocking LOX-1 scavenger receptor with a specific antibody (10 μg/ml). The cholesterol moiety of LDL has an important role in HA accumulation because cholesterol-free oxLDL failed to induce HA synthesis. Nevertheless, cholesterol-free oxLDL and unmodified cholesterol (20 μg/ml) induce only HAS3 transcription, whereas 22,oxysterol affects both HAS2 and HAS3. Moreover, HA deposition was associated with higher expression of endoplasmic reticulum stress markers (CHOP and GRP78). Our data suggest that HA synthesis can be induced in response to specific oxidized sterol-related species delivered through oxLDL.

  15. Maternal dietary Alpine butter intake affects human milk: fatty acids and conjugated linoleic acid isomers.

    Science.gov (United States)

    Bertschi, Isabelle; Collomb, Marius; Rist, Lukas; Eberhard, Pius; Sieber, Robert; Bütikofer, Ulrich; Wechsler, Daniel; Folkers, Gerd; von Mandach, Ursula

    2005-06-01

    Consumption of CLA by lactating women affects the composition of their milk, but the pattern of the different CLA isomers is still unknown. We determined the effects of short maternal supplementation with CLA-rich Alpine butter on the occurrence of FA and CLA isomers in human milk. In an open randomized controlled study with a two-period cross-over design, milk FA and CLA isomer concentrations were measured on postpartum days > or = 20 in two parallel groups of lactating women before, during, and after consumption of defined quantities of Alpine butter or margarine with comparable fat content (10 d of butter followed by 10 d of margarine for one group, and vice versa in the other). In the 16 women who completed the study (8/group), Alpine butter supplementation increased the C16 and C18 FA, the sum of saturated FA, the 18:1 trans FA, and the trans FA with CLA. The CLA isomer 18:2 c9,t11 increased by 49.7%. Significant increases were also found for the isomers t9,t11, t7,c9, t11,c13, and t8,c10 18:2. The remaining nine of the total 14 detectable isomers showed no changes, and concentrations were <5 mg/100 g fat. A breastfeeding mother can therefore modulate the FA/CLA supply of her child by consuming Alpine butter. Further studies will show whether human milk containing this FA and CLA isomer pattern acts as a functional food for newborns. PMID:16149737

  16. Tyroserleutide tripeptide affects calcium homeostasis of human hepatocarcinoma BEL-7402 cells

    Institute of Scientific and Technical Information of China (English)

    FU Zheng; LU Rong; LI Guoli; ZHAO Lan; GAO Weizhen; CHE Xuchun; JIAN Xu; ZHOU Chunlei; YAO Zhi

    2005-01-01

    This study aimed to observe the effects of tyroserleutide (tyrosyl-seryl-leucine, YSL) on the growth of human hepatocarcinoma BEL-7402 that was transplanted into nude mice, and explore its anti-tumor mechanism preliminarily. YSL, at doses of 80 μg·kg-1·d-1, 160μg·kg-1·d-1 and 320μg·kg-1·d-1 significantly inhibited the growth of the human hepatocarcinoma BEL-7402 tumor in nude mice, producing inhibition of 21.66%, 41.34%, and 34.78%, respectively. Ultra structure of BEL-7402 tumor in nude mice showed that YSL could induce tumor cells apoptosis and necrosis, cell organelle mitochondria and endoplasmic reticulum damage, and calcium overload. By confocal laser scanning microscopy and flow cytometry, we found that 10 μg/mL YSL rapidly induced an increase of the concentration of cytoplasmic free calcium in BEL-7402 cells in vitro, and maintained high concentrations of cytoplasmic free calcium for 1 h. Then the calcium concentration began to decrease after 2 h, and was lower than that of the control group at 4 h and 24 h (p<0.05). YSL also decreased the mitochondrial transmembrane potential of BEL-7402 cells in vitro, but had no effect on the calcium homeostasis or mitochondrial transmembrane potential of Chang liver hepatocytes. So affecting calcium homeostasis, then inducing apoptosis and necrosis may be a mechanism by which YSL inhibits the tumor growth in animal model.

  17. Bioaerosols from a Food Waste Composting Plant Affect Human Airway Epithelial Cell Remodeling Genes

    Directory of Open Access Journals (Sweden)

    Ming-Wei Chang

    2013-12-01

    Full Text Available The composting procedure in food waste plants generates airborne bioaerosols that have the potential to damage human airway epithelial cells. Persistent inflammation and repair responses induce airway remodeling and damage to the respiratory system. This study elucidated the expression changes of airway remodeling genes in human lung mucoepidermoid NCI-H292 cells exposed to bioaerosols from a composting plant. Different types of microorganisms were detectable in the composting plant, using the agar culture method. Real-time polymerase chain reaction was used to quantify the level of Aspergillus fumigatus and the profile of remodeling genes. The real-time PCR results indicated that the amount of A. fumigatus in the composting hall was less than 102 conidia. The endotoxins in the field bioaerosols were determined using a limulus amebocyte lysate test. The endotoxin levels depended on the type of particulate matter (PM, with coarse particles (2.5–10 μm having higher endotoxin levels than did fine particles (0.5–2.5 μm. After exposure to the conditioned medium of field bioaerosol samples, NCI-H292 cells showed increased pro-inflammatory interleukin (IL-6 release and activated epidermal growth factor receptor (EGFR, transforming growth factor (TGF-β1 and cyclin-dependent kinase inhibitor 1 (p21WAF1/CIP1 gene expression, but not of matrix metallopeptidase (MMP-9. Airborne endotoxin levels were higher inside the composting hall than they were in other areas, and they were associated with PM. This suggested that airborne bioaerosols in the composting plant contained endotoxins and microorganisms besides A. fumigatus that cause the inflammatory cytokine secretion and augment the expression of remodeling genes in NCI-H292 cells. It is thus necessary to monitor potentially hazardous materials from bioaerosols in food composting plants, which could affect the health of workers.

  18. Genetic factors affecting gene transcription and catalytic activity of UDP-glucuronosyltransferases in human liver.

    Science.gov (United States)

    Liu, Wanqing; Ramírez, Jacqueline; Gamazon, Eric R; Mirkov, Snezana; Chen, Peixian; Wu, Kehua; Sun, Chang; Cox, Nancy J; Cook, Edwin; Das, Soma; Ratain, Mark J

    2014-10-15

    The aim of this study was to discover cis- and trans-acting factors significantly affecting mRNA expression and catalytic activity of human hepatic UDP-glucuronosyltransferases (UGTs). Transcription levels of five major hepatic UGT1A (UGT1A1, UGT1A3, UGT1A4, UGT1A6 and UGT1A9) and five UGT2B (UGT2B4, UGT2B7, UGT2B10, UGT2B15 and UGT2B17) genes were quantified in human liver tissue samples (n = 125) using real-time PCR. Glucuronidation activities of 14 substrates were measured in 47 livers. We genotyped 167 tagSNPs (single-nucleotide polymorphisms) in UGT1A (n = 43) and UGT2B (n = 124), as well as the known functional UGT1A1*28 and UGT2B17 CNV (copy number variation) polymorphisms. Transcription levels of 15 transcription factors (TFs) known to regulate these UGTs were quantified. We found that UGT expression and activity were highly variable among the livers (median and range of coefficient of variations: 135%, 74-217% and 52%, 39-105%, respectively). CAR, PXR and ESR1 were found to be the most important trans-regulators of UGT transcription (median and range of correlation coefficients: 46%, 6-58%; 47%, 9-58%; and 52%, 24-75%, respectively). Hepatic UGT activities were mainly determined by UGT gene transcription levels. Twenty-one polymorphisms were significantly (FDR-adjusted P transcription and testosterone glucuronidation rate, in addition to that attributable to the UGT2B17 CNV. Our study discovered novel pharmacogenetic markers and provided detailed insight into the genetic network regulating hepatic UGTs.

  19. Characterization of the comparative drug binding to intra- (liver fatty acid binding protein) and extra- (human serum albumin) cellular proteins.

    Science.gov (United States)

    Rowland, Andrew; Hallifax, David; Nussio, Matthew R; Shapter, Joseph G; Mackenzie, Peter I; Brian Houston, J; Knights, Kathleen M; Miners, John O

    2015-01-01

    1. This study compared the extent, affinity, and kinetics of drug binding to human serum albumin (HSA) and liver fatty acid binding protein (LFABP) using ultrafiltration and surface plasmon resonance (SPR). 2. Binding of basic and neutral drugs to both HSA and LFABP was typically negligible. Binding of acidic drugs ranged from minor (fu > 0.8) to extensive (fu LFABP was observed for the acidic drugs torsemide and sulfinpyrazone, and for β-estradiol (a polar, neutral compound). 3. The extent of binding of acidic drugs to HSA was up to 40% greater than binding to LFABP. SPR experiments demonstrated comparable kinetics and affinity for the binding of representative acidic drugs (naproxen, sulfinpyrazone, and torsemide) to HSA and LFABP. 4. Simulations based on in vitro kinetic constants derived from SPR experiments and a rapid equilibrium model were undertaken to examine the impact of binding characteristics on compartmental drug distribution. Simulations provided mechanistic confirmation that equilibration of intracellular unbound drug with the extracellular unbound drug is attained rapidly in the absence of active transport mechanisms for drugs bound moderately or extensively to HSA and LFABP. PMID:25801059

  20. A study of utilization pattern, efficacy and safety of drugs prescribed for opportunistic infections in Human Immunodeficiency Virus infected patients

    Directory of Open Access Journals (Sweden)

    Jigar D Kapadia

    2014-07-01

    Full Text Available Objectives: The aim was to evaluate the utilization pattern, efficacy and safety of drugs prescribed for opportunistic infections (OIs in human immunodeficiency virus (HIV positive patients. Materials and Methods: In this observational, prospective, single center study, HIV positive patients were followed-up for a period of 1 year to record the OIs; their clinical course and outcome. Utilization pattern, efficacy and safety of the drugs used were evaluated. Rationality of treatment was assessed using National AIDS Control Organization and Standard Treatment Guidelines. Results: A total of 222 OIs were detected in 134 patients. Majority of patients (90.2% were adults. The commonest OIs included tuberculosis (TB (89, oropharyngeal candidiasis (OPC (37, bacterial infections (30 and chronic diarrhea (22. Use of supportive drugs and empirical treatment of certain OIs contributed to a higher number of drugs (average of 3.5 drugs per prescription. Drugs, prescribed in accordance with the above mentioned guidelines, were effective in most cases. Drugs were well-tolerated with only two serious adverse drug reactions (ADRs reported. Majority of ADRs were associated with anti TB drugs. Conclusion: Tuberculosis, oropharyngeal candidiasis, bacterial infections and chronic diarrhea are the commonest OIs. Overall, a rational approach to therapy and good tolerability and efficacy of drugs was observed. Empirical treatment of infections should be minimized.

  1. Surface-enhanced Raman spectroscopy study of the interaction of antitumoral drug Paclitaxel with human serum albumin

    Science.gov (United States)

    Yan, Tianxiu; Gu, Huaimin; Yuan, Xiaojuan; Wu, Jiwei; Wei, Huajiang

    2008-12-01

    SERS spectroscopy was employed to study the interaction of the antitumoral drug paclitaxel with human serum albumin. The normal Raman spectrum of the paclitaxel was shown in this study for the first time. There were some differences existing in the surface-enhanced Raman scattering (SERS) spectrum of paclitaxel and its human serum albumin (HSA), which demonstrated that there was high bioaffinity of paclitaxel to human serum albumin. And it was also found that there existed some differences in the SERS of the paclitaxel/HSA complexes at different pH values, which may indicated some significant information on the binding site, by which paclitaxel binds to human serum albumin. It can provide significant instruction in the synthesis of the drug and in improving the therapeutic efficacy of this drug.

  2. Accumulation of distinct prelamin A variants in human diploid fibroblasts differentially affects cell homeostasis

    Energy Technology Data Exchange (ETDEWEB)

    Candelario, Jose; Borrego, Stacey [Department of Molecular Microbiology and Immunology, Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 (United States); Reddy, Sita, E-mail: sitaredd@usc.edu [Department of Biochemistry and Molecular Biology, Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 (United States); Comai, Lucio, E-mail: comai@usc.edu [Department of Molecular Microbiology and Immunology, Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 (United States)

    2011-02-01

    Lamin A is a component of the nuclear lamina that plays a major role in the structural organization and function of the nucleus. Lamin A is synthesized as a prelamin A precursor which undergoes four sequential post-translational modifications to generate mature lamin A. Significantly, a large number of point mutations in the LMNA gene cause a range of distinct human disorders collectively known as laminopathies. The mechanisms by which mutations in lamin A affect cell function and cause disease are unclear. Interestingly, recent studies have suggested that alterations in the normal lamin A pathway can contribute to cellular dysfunction. Specifically, we and others have shown, at the cellular level, that in the absence of mutations or altered splicing events, increased expression of wild-type prelamin A results in a growth defective phenotype that resembles that of cells expressing the mutant form of lamin A, termed progerin, associated with Hutchinson-Gilford Progeria syndrome (HGPS). Remarkably, the phenotypes of cells expressing elevated levels of wild-type prelamin A can be reversed by either treatment with farnesyltransferase inhibitors or overexpression of ZMPSTE24, a critical prelamin A processing enzyme, suggesting that minor increases in the steady-state levels of one or more prelamin A intermediates is sufficient to induce cellular toxicity. Here, to investigate the molecular basis of the lamin A pathway toxicity, we characterized the phenotypic changes occurring in cells expressing distinct prelamin A variants mimicking specific prelamin A processing intermediates. This analysis demonstrates that distinct prelamin A variants differentially affect cell growth, nuclear membrane morphology, nuclear distribution of lamin A and the fundamental process of transcription. Expression of prelamin A variants that are constitutively farnesylated induced the formation of lamin A aggregates and dramatic changes in nuclear membrane morphology, which led to reduced

  3. Flow cytometric assay for analysis of cytotoxic effects of potential drugs on human peripheral blood leukocytes

    Science.gov (United States)

    Nieschke, Kathleen; Mittag, Anja; Golab, Karolina; Bocsi, Jozsef; Pierzchalski, Arkadiusz; Kamysz, Wojciech; Tarnok, Attila

    2014-03-01

    Toxicity test of new chemicals belongs to the first steps in the drug screening, using different cultured cell lines. However, primary human cells represent the human organism better than cultured tumor derived cell lines. We developed a very gentle toxicity assay for isolation and incubation of human peripheral blood leukocytes (PBL) and tested it using different bioactive oligopeptides (OP). Effects of different PBL isolation methods (red blood cell lysis; Histopaque isolation among others), different incubation tubes (e.g. FACS tubes), anticoagulants and blood sources on PBL viability were tested using propidium iodide-exclusion as viability measure (incubation time: 60 min, 36°C) and flow cytometry. Toxicity concentration and time-depended effects (10-60 min, 36 °C, 0-100 μg /ml of OP) on human PBL were analyzed. Erythrocyte lysis by hypotonic shock (dH2O) was the fastest PBL isolation method with highest viability (>85%) compared to NH4Cl-Lysis (49%). Density gradient centrifugation led to neutrophil granulocyte cell loss. Heparin anticoagulation resulted in higher viability than EDTA. Conical 1.5 mL and 2 mL micro-reaction tubes (both polypropylene (PP)) had the highest viability (99% and 97%) compared to other tubes, i.e. three types of 5.0 mL round-bottom tubes PP (opaque-60%), PP (blue-62%), Polystyrene (PS-64%). Viability of PBL did not differ between venous and capillary blood. A gentle reproducible preparation and analytical toxicity-assay for human PBL was developed and evaluated. Using our assay toxicity, time-course, dose-dependence and aggregate formation by OP could be clearly differentiated and quantified. This novel assay enables for rapid and cost effective multiparametric toxicological screening and pharmacological testing on primary human PBL and can be adapted to high-throughput-screening.°z

  4. Cost of human immunodeficiency virus infection in Italy, 2007–2009: effective and expensive, are the new drugs worthwhile?

    Directory of Open Access Journals (Sweden)

    Rizzardini G

    2012-09-01

    Full Text Available Giuliano Rizzardini,1 Umberto Restelli,2 Paolo Bonfanti,3 Emanuele Porazzi,2 Elena Ricci,1 Emanuela Foglia,2 Laura Carenzi,1 Davide Croce21First Infectious Diseases Department, "Luigi Sacco" Hospital, Milan; 2Centre for Research on Health Economics, Social, and Health Care Management, Università Carlo Cattaneo, Castellanza; 3Infectious Diseases Department, "Alessandro Manzoni" Hospital, Lecco, ItalyBackground: In recent years, the increased efficacy and effectiveness of antiretroviral treatment has led to longer survival of patients infected with human immunodeficiency virus (HIV, but has also raised the question of what happens to consumption of resources. Early highly active antiretroviral treatment (HAART, management of hepatitis C virus (HCV coinfection, and expensive newly marketed drugs may affect the economic sustainability of treatment from the point of view of the National Healthcare Services. The present study aimed to provide information on the economic burden of HIV-positive patients resident in the Lombardy region using a three-year time horizon.Methods: This was a retrospective, observational, budget impact study, based on information collected for the period 2007–2009, including hospitalizations, outpatient services, and HAART and non-HAART drug utilization. Patients with confirmed HIV infection, aged ≥ 18 years, resident in the Lombardy region, and followed at the "L Sacco" Hospital in Milan from 2007 to 2009 were eligible.Results: A total of 483 patients (mean age 44.1 years were included in the study. The mean CD4+ cell count increased over the study period from 462 ± 242 cells/mm3 in 2007, to 513 ± 267 cells/mm3 in 2008, to 547 ± 262 cells/mm3 in 2009. In total, 162 subjects (33.5% were coinfected with HCV. Hospitalizations and HAART costs increased from 2007 to 2009, whereas outpatient visits and non-HAART drug costs decreased slightly over time. The total cost increase was also significant when limiting the analysis

  5. Culture temperature affects human chondrocyte messenger RNA expression in monolayer and pellet culture systems.

    Directory of Open Access Journals (Sweden)

    Akira Ito

    Full Text Available Cell-based therapy has been explored for articular cartilage regeneration. Autologous chondrocyte implantation is a promising cell-based technique for repairing articular cartilage defects. However, there are several issues such as chondrocyte de-differentiation. While numerous studies have been designed to overcome some of these issues, only a few have focused on the thermal environment that can affect chondrocyte metabolism and phenotype. In this study, the effects of different culture temperatures on human chondrocyte metabolism- and phenotype-related gene expression were investigated in 2D and 3D environments. Human chondrocytes were cultured in a monolayer or in a pellet culture system at three different culture temperatures (32°C, 37°C, and 41°C for 3 days. The results showed that the total RNA level, normalized to the threshold cycle value of internal reference genes, was higher at lower temperatures in both culture systems. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH and citrate synthase (CS, which are involved in glycolysis and the citric acid cycle, respectively, were expressed at similar levels at 32°C and 37°C in pellet cultures, but the levels were significantly lower at 41°C. Expression of the chondrogenic markers, collagen type IIA1 (COL2A1 and aggrecan (ACAN, was higher at 37°C than at 32°C and 41°C in both culture systems. However, this phenomenon did not coincide with SRY (sex-determining region Y-box 9 (SOX9, which is a fundamental transcription factor for chondrogenesis, indicating that a SOX9-independent pathway might be involved in this phenomenon. In conclusion, the expression of chondrocyte metabolism-related genes at 32°C was maintained or enhanced compared to that at 37°C. However, chondrogenesis-related genes were further induced at 37°C in both culture systems. Therefore, manipulating the culture temperature may be an advantageous approach for regulating human chondrocyte metabolic activity and

  6. Cell culture density affects the proliferation activity of human adipose tissue stem cells.

    Science.gov (United States)

    Kim, Dae Seong; Lee, Myoung Woo; Ko, Young Jong; Chun, Yong Hoon; Kim, Hyung Joon; Sung, Ki Woong; Koo, Hong Hoe; Yoo, Keon Hee

    2016-01-01

    In this study, we investigated the effect of cell density on the proliferation activity of human mesenchymal stem cells (MSCs) derived from adipose tissue (AT-MSCs) over time in culture. Passage #4 (P4) and #12 (P12) AT-MSCs from two donors were plated at a density of 200 (culture condition 1, CC1) or 5000 (culture condition 2, CC2) cells cm(-2) . After 7 days of incubation, P4 and P12 AT-MSCs cultured in CC1 were thin and spindle-shaped, whereas those cultured in CC2 had extensive cell-to-cell contacts and an expanded cell volume. In addition, P4 and P12 AT-MSCs in CC1 divided more than three times, while those in CC2 divided less than once on average. Flow cytometric analysis using 5(6)-carboxyfluorescein diacetate N-succinimidyl ester dye showed that the fluorescence intensity of AT-MSCs was lower in CC1 than in CC2. Furthermore, expression of proliferation-associated genes, such as CDC45L, CDC20A and KIF20A, in P4 AT-MSCs was higher in CC1 than in CC2, and this difference was also observed in P12 AT-MSCs. These data demonstrated that cell culture density affects the proliferation activity of MSCs, suggesting that it is feasible to design a strategy to prepare suitable MSCs using specific culture conditions.

  7. Cigarette Smoke Affects ABCAl Expression via Liver X Receptor Nuclear Translocation in Human Keratinocytes

    Directory of Open Access Journals (Sweden)

    Claudia Sticozzi

    2010-09-01

    Full Text Available Cutaneous tissue is the first barrier against outdoor insults. The outer most layer of the skin, the stratum corneum (SC, is formed by corneocytes embedded in a lipid matrix (cholesterol, ceramide and fatty acids. Therefore, the regulation of lipids and, in particular, of cholesterol homeostasis in the skin is of great importance. ABCA1 is a membrane transporter responsible for cholesterol efflux and plays a key role in maintaining cellular cholesterol levels. Among the many factors that have been associated with skin diseases, the environmental stressor cigarette smoke has been recently studied. In the present study, we demonstrate that ABCA1 expression in human cells (HaCaT was increased (both mRNA and protein levels after CS exposure. This effect was mediated by the inhibition of NFkB (aldehydes adducts formation that allows the translocation of liver X receptor (LXR. These findings suggest that passive smoking may play a role in skin cholesterol levels and thus affect cutaneous tissues functions.

  8. Gut Microbiota Profiling: Metabolomics Based Approach to Unravel Compounds Affecting Human Health.

    Science.gov (United States)

    Vernocchi, Pamela; Del Chierico, Federica; Putignani, Lorenza

    2016-01-01

    The gut microbiota is composed of a huge number of different bacteria, that produce a large amount of compounds playing a key role in microbe selection and in the construction of a metabolic signaling network. The microbial activities are affected by environmental stimuli leading to the generation of a wide number of compounds, that influence the host metabolome and human health. Indeed, metabolite profiles related to the gut microbiota can offer deep insights on the impact of lifestyle and dietary factors on chronic and acute diseases. Metagenomics, metaproteomics and metabolomics are some of the meta-omics approaches to study the modulation of the gut microbiota. Metabolomic research applied to biofluids allows to: define the metabolic profile; identify and quantify classes and compounds of interest; characterize small molecules produced by intestinal microbes; and define the biochemical pathways of metabolites. Mass spectrometry and nuclear magnetic resonance spectroscopy are the principal technologies applied to metabolomics in terms of coverage, sensitivity and quantification. Moreover, the use of biostatistics and mathematical approaches coupled with metabolomics play a key role in the extraction of biologically meaningful information from wide datasets. Metabolomic studies in gut microbiota-related research have increased, focusing on the generation of novel biomarkers, which could lead to the development of mechanistic hypotheses potentially applicable to the development of nutritional and personalized therapies. PMID:27507964

  9. Experimental Evidence for Anomalous Retroactive Influences on Human Cognition and Affect

    Science.gov (United States)

    Bem, Daryl J.

    2011-11-01

    Six experiments are described that take well-established psychological effects on human cognition and affect and "time-reverse" them so that the individual's responses are obtained before the putatively causal stimulus events occur. Two of the experiments tested for the retroactive facilitation of recall: It is well known that rehearsing or practicing a set of verbal materials enhances an individual's ability to recall them on a subsequent test. In our experiments, participants were first shown 48 common words one at a time and were then asked to recall as many of those words as they could. They were then given practice exercises on a randomly selected subset of those words. The results show that participants recalled more of the words they later practiced than the control words they did not practice. Two experiments on retroactive priming provide evidence for retroactive influence on an individual's response times when judging the pleasantness or unpleasantness of visual stimuli. Finally, two experiments provide evidence for the retroactive habituation to emotionally arousing visual stimuli. Each of the six experiments yielded statistically significant results, with a combined z = 3.66, p = .0001, and an effect size (d) of 0.25. The six experiments are a subset of nine retroactive influence experiments reported in Bem [1] that yielded a combined z = 6.66, p = 1.34×10-11, and an effect size of 0.22.

  10. Gut Microbiota Profiling: Metabolomics Based Approach to Unravel Compounds Affecting Human Health

    Science.gov (United States)

    Vernocchi, Pamela; Del Chierico, Federica; Putignani, Lorenza

    2016-01-01

    The gut microbiota is composed of a huge number of different bacteria, that produce a large amount of compounds playing a key role in microbe selection and in the construction of a metabolic signaling network. The microbial activities are affected by environmental stimuli leading to the generation of a wide number of compounds, that influence the host metabolome and human health. Indeed, metabolite profiles related to the gut microbiota can offer deep insights on the impact of lifestyle and dietary factors on chronic and acute diseases. Metagenomics, metaproteomics and metabolomics are some of the meta-omics approaches to study the modulation of the gut microbiota. Metabolomic research applied to biofluids allows to: define the metabolic profile; identify and quantify classes and compounds of interest; characterize small molecules produced by intestinal microbes; and define the biochemical pathways of metabolites. Mass spectrometry and nuclear magnetic resonance spectroscopy are the principal technologies applied to metabolomics in terms of coverage, sensitivity and quantification. Moreover, the use of biostatistics and mathematical approaches coupled with metabolomics play a key role in the extraction of biologically meaningful information from wide datasets. Metabolomic studies in gut microbiota-related research have increased, focusing on the generation of novel biomarkers, which could lead to the development of mechanistic hypotheses potentially applicable to the development of nutritional and personalized therapies. PMID:27507964

  11. Molecular basis of human transcobalamin II deficiency in an affected family

    Energy Technology Data Exchange (ETDEWEB)

    Li, N.; Seetharam, S.; Seetharam, B. [Medical College of Wisconsin, Milwaukee, WI (United States)] [and others

    1994-09-01

    Transcobalamin II (TC II) deficiency is an autosomal recessive disease leading to cobalamin (Cbl, Vitamin B{sub 12}) deficiency. Patients with this disorder fail to absorb and transport Cbl across cellular membranes and develop Cbl deficiency, symptoms of which include failure to thrive, megaloblastic anemia, impaired immunodefence and neurological disorders. The molecular basis for this disease is not known. By means of Southern blotting and sequence analysis of TC II, cDNA amplified from fibroblasts of an affected child and his parents, we have identified two mutant TC II alleles. The maternally derived allele had a gross deletion, while the paternally derived allele had a 4-nucleotide ({sup 1023}TCTG) deletion which caused a reading frame shift and generation of a premature termination codon, 146 nucleotides downstream from the deletion. Both these deletions caused markedly reduced levels of TC II mRNA and protein. In addition, these two deletions were unique to this family and were not detected in four other unrelated TC II deficient patients who also exhibited the same (TC II protein/mRNA deficiency) phenotypes. Based on this study we suggest, (1) that the molecular defect in the most common form of human TC II deficiency (lack of immunoprecipitable plasma TC II) is heterogeneous and (2) these mutations cause TC II mRNA and protein deficiency leading to defective plasma transport of Cbl and the development of Cbl deficiency.

  12. African dust carries microbes across the ocean: are they affecting human and ecosystem health?

    Science.gov (United States)

    Kellogg, Christina A.; Griffin, Dale W.

    2003-01-01

    Atmospheric transport of dust from northwest Africa to the western Atlantic Ocean region may be responsible for a number of environmental hazards, including the demise of Caribbean corals; red tides; amphibian diseases; increased occurrence of asthma in humans; and oxygen depletion (eutrophication) in estuaries. Studies of satellite images suggest that hundreds of millions of tons of dust are trans-ported annually at relatively low altitudes across the Atlantic Ocean to the Caribbean Sea and southeastern United States. The dust emanates from the expanding Sahara/Sahel desert region in Africa and carries a wide variety of bacteria and fungi. The U.S. Geological Survey, in collaboration with the NASA/Goddard Spaceflight Center, is conducting a study to identify microbes--bacteria, fungi, viruses--transported across the Atlantic in African soil dust. Each year, millions of tons of desert dust blow off the west African coast and ride the trade winds across the ocean, affecting the entire Caribbean basin, as well as the southeastern United States. Of the dust reaching the U.S., Florida receives about 50 percent, while the rest may range as far north as Maine or as far west as Colorado. The dust storms can be tracked by satellite and take about one week to cross the Atlantic.

  13. A dynamic evolution model of human opinion as affected by advertising

    Science.gov (United States)

    Luo, Gui-Xun; Liu, Yun; Zeng, Qing-An; Diao, Su-Meng; Xiong, Fei

    2014-11-01

    We propose a new model to investigate the dynamics of human opinion as affected by advertising, based on the main idea of the CODA model and taking into account two practical factors: one is that the marginal influence of an additional friend will decrease with an increasing number of friends; the other is the decline of memory over time. Simulations show several significant conclusions for both advertising agencies and the general public. A small difference of advertising’s influence on individuals or advertising coverage will result in significantly different advertising effectiveness within a certain interval of value. Compared to the value of advertising’s influence on individuals, the advertising coverage plays a more important role due to the exponential decay of memory. Meanwhile, some of the obtained results are in accordance with people’s daily cognition about advertising. The real key factor in determining the success of advertising is the intensity of exchanging opinions, and people’s external actions always follow their internal opinions. Negative opinions also play an important role.

  14. Calcium signalling in human neutrophil cell lines is not affected by low-frequency electromagnetic fields.

    Science.gov (United States)

    Golbach, Lieke A; Philippi, John G M; Cuppen, Jan J M; Savelkoul, Huub F J; Verburg-van Kemenade, B M Lidy

    2015-09-01

    We are increasingly exposed to low-frequency electromagnetic fields (LF EMFs) by electrical devices and power lines, but if and how these fields interact with living cells remains a matter of debate. This study aimed to investigate the potential effect of LF EMF exposure on calcium signalling in neutrophils. In neutrophilic granulocytes, activation of G-protein coupled receptors leads to efflux of calcium from calcium stores and influx of extracellular calcium via specialised calcium channels. The cytoplasmic rise of calcium induces cytoskeleton rearrangements, modified gene expression patterns, and cell migration. If LF EMF modulates intracellular calcium signalling, this will influence cellular behaviour and may eventually lead to health problems. We found that calcium mobilisation upon chemotactic stimulation was not altered after a short 30 min or long-term LF EMF exposure in human neutrophil-like cell lines HL-60 or PLB-985. Neither of the two investigated wave forms (Immunent and 50 Hz sine wave) at three magnetic flux densities (5 μT, 300 μT, and 500 μT) altered calcium signalling in vitro. Gene-expression patterns of calcium-signalling related genes also did not show any significant changes after exposure. Furthermore, analysis of the phenotypical appearance of microvilli by scanning electron microscopy revealed no alterations induced by LF EMF exposure. The findings above indicate that exposure to 50 Hz sinusoidal or Immunent LF EMF will not affect calcium signalling in neutrophils in vitro.

  15. Characterization of human arterial tissue affected by atherosclerosis using multimodal nonlinear optical microscopy

    Science.gov (United States)

    Baria, Enrico; Cicchi, Riccardo; Rotellini, Matteo; Nesi, Gabriella; Massi, Daniela; Pavone, Francesco S.

    2016-03-01

    Atherosclerosis is a widespread cardiovascular disease caused by the deposition of lipids (such as cholesterol and triglycerides) on the inner arterial wall. The rupture of an atherosclerotic plaque, resulting in a thrombus, is one of the leading causes of death in the Western World. Preventive assessment of plaque vulnerability is therefore extremely important and can be performed by studying collagen organization and lipid composition in atherosclerotic arterial tissues. Routinely used diagnostic methods, such as histopathological examination, are limited to morphological analysis of the examined tissues, whereas an exhaustive characterization requires immune-histochemical examination and a morpho-functional approach. Instead, a label-free and non-invasive alternative is provided by nonlinear microscopy. In this study, we combined SHG and FLIM microscopy in order to characterize collagen organization and lipids in human carotid ex vivo tissues affected by atherosclerosis. SHG and TPF images, acquired from different regions within atherosclerotic plaques, were processed through image pattern analysis methods (FFT, GLCM). The resulting information on collagen and cholesterol distribution and anisotropy, combined with collagen and lipids fluorescence lifetime measured from FLIM images, allowed characterization of carotid samples and discrimination of different tissue regions. The presented method can be applied for automated classification of atherosclerotic lesions and plaque vulnerability. Moreover, it lays the foundation for a potential in vivo diagnostic tool to be used in clinical setting.

  16. Genotoxic potential of selected cytostatic drugs in human and zebrafish cells.

    Science.gov (United States)

    Gajski, Goran; Gerić, Marko; Žegura, Bojana; Novak, Matjaž; Nunić, Jana; Bajrektarević, Džejla; Garaj-Vrhovac, Vera; Filipič, Metka

    2016-08-01

    Due to their increasing use, the residues of anti-neoplastic drugs have become emerging pollutants in aquatic environments. Most of them directly or indirectly interfere with the cell's genome, which classifies them into a group of particularly dangerous compounds. The aim of the present study was to conduct a comparative in vitro toxicological characterisation of three commonly used cytostatics with different mechanisms of action (5-fluorouracil [5-FU], cisplatin [CDDP] and etoposide [ET]) towards zebrafish liver (ZFL) cell line, human hepatoma (HepG2) cells and human peripheral blood lymphocytes (HPBLs). Cytotoxicity was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and acridine orange/ethidium bromide staining. All three drugs induced time- and dose-dependent decreases in cell viability. The sensitivity of ZFL and HepG2 cells towards the cytotoxicity of 5-FU was comparable (half maximal inhibitory concentration (IC50) 5.3 to 10.4 μg/mL). ZFL cells were more sensitive towards ET- (IC50 0.4 μg/mL) and HepG2 towards CDDP- (IC50 1.4 μg/mL) induced cytotoxicity. Genotoxicity was determined by comet assay and cytokinesis block micronucleus (CBMN) assay. ZFL cells were the most sensitive, and HPBLs were the least sensitive. In ZFL cells, induction of DNA strand breaks was a more sensitive genotoxicity endpoint than micronuclei (MNi) induction; the lowest effective concentration (LOEC) for DNA strand break induction was 0.001 μg/mL for ET, 0.01 μg/mL for 5-FU and 0.1 μg/mL for CDDP. In HepG2 cells, MNi induction was a more sensitive genotoxicity endpoint. The LOEC values were 0.01 μg/mL for ET, 0.1 μg/mL for 5-FU and 1 μg/mL for CDDP. The higher sensitivity of ZFL cells to cytostatic drugs raises the question of the impact of such compounds in aquatic ecosystem. Since little is known on the effect of such drugs on aquatic organisms, our results demonstrate that ZFL cells provide a relevant and sensitive tool to

  17. Bilberry extract, its major polyphenolic compounds, and the soy isoflavone genistein antagonize the cytostatic drug erlotinib in human epithelial cells.

    Science.gov (United States)

    Aichinger, G; Pahlke, G; Nagel, L J; Berger, W; Marko, D

    2016-08-10

    Erlotinib (Tarceva®) is a chemotherapeutic drug approved for the treatment of pancreatic cancer and non-small cell lung cancer. Its primary mode of action is the inhibition of the epidermal growth factor receptor (EGFR), a receptor tyrosine kinase (RTK). Recently, RTK-inhibiting polyphenols have been reported to interact synergistically with erlotinib. Furthermore some anthocyanidins and anthocyanin-rich berry extracts have been reported to inhibit tyrosine kinases, including the EGFR, which raises the question of potential interactions with erlotinib. Polyphenol-rich preparations such as berry- or soy-based products are commercially available as food supplements. In the present study we tested a bilberry extract, its major anthocyanin and potential intestinal degradation products, as well as genistein, with respect to possible interactions with erlotinib. Cell growth inhibition was assessed using the sulforhodamine B assay, while interactions with EGFR phosphorylation were analyzed by SDS-PAGE/western blotting with subsequent immunodetection. Genistein, bilberry extract, delphinidin-3-O-glucoside and delphinidin were found to antagonize erlotinib whereas phloroglucinol aldehyde was found to enhance cytostatic effects of the drug on human epithelial A431 cells. Genistein also antagonized the EGFR inhibitory effects of erlotinib, whereas bilberry anthocyanins showed no significant interactions in this regard. Our data indicate that different polyphenols are potentially able to impair the cytostatic effect of erlotinib in vitro. Genistein interacts via the modulation of erlotinib-mediated EGFR inhibition whereas bilberry anthocyanins modulated the growth-inhibitory effect of erlotinib without affecting EGFR phosphorylation, thus indicating a different mechanism of interference. PMID:27485636

  18. Incidence of adverse drug reactions in human immune deficiency virus-positive patients using highly active antiretroviral therapy

    Directory of Open Access Journals (Sweden)

    B Akshaya Srikanth

    2012-01-01

    Full Text Available To estimate the incidence of adverse drug reactions (ADRs in Human immune deficiency virus (HIV patients on highly active antiretroviral therapy (HAART. To identify the risk factors associated with ADRs in HIV patients. To analyze reported ADRs based on various parameters like causality, severity, predictability, and preventability. Retrospective case-control study. An 18-month retrospective case-control study of 208 patients newly registered in ART center, RIMS hospital, Kadapa, were intensively monitored for ADRs to HAART. Predictability was calculated based on the history of previous exposure to drug. Multivariate logistic regressions were used to identify the risk factors for ADRs. Data were analyzed using the chi-square test for estimating the correlation between ADRs and different variables. All statistical calculations were performed using EpiInfo version 3.5.3. Monitoring of 208 retrospective patients by active Pharmacovigilance identified 105 ADRs that were identified in 71 patients. Skin rash and anemia were the most commonly observed ADRs. The organ system commonly affected by ADR was skin and appendages (31.57%. The ADRs that were moderate were 90.14% of cases. The incidence of ADRs (53.52% was higher with Zidovudine + Lamivudine + Nevirapine combination. CD4 cell count less than <250 cells/μl were 80.28%, male gender were observed to be the risk factors for ADRs. Our study finding showed that there is a need of active pharmaceutical care with intensive monitoring for ADRs in Indian HIV-positive patients who are illiterate, of male and female gender, with CD4 count ≤250 cells/mm 3 with comorbid conditions.

  19. Incidence of adverse drug reactions in human immune deficiency virus-positive patients using highly active antiretroviral therapy.

    Science.gov (United States)

    Srikanth, B Akshaya; Babu, S Chandra; Yadav, Harlokesh Narayan; Jain, Sunil Kumar

    2012-01-01

    To estimate the incidence of adverse drug reactions (ADRs) in Human immune deficiency virus (HIV) patients on highly active antiretroviral therapy (HAART). To identify the risk factors associated with ADRs in HIV patients. To analyze reported ADRs based on various parameters like causality, severity, predictability, and preventability. Retrospective case-control study. An 18-month retrospective case-control study of 208 patients newly registered in ART center, RIMS hospital, Kadapa, were intensively monitored for ADRs to HAART. Predictability was calculated based on the history of previous exposure to drug. Multivariate logistic regressions were used to identify the risk factors for ADRs. Data were analyzed using the chi-square test for estimating the correlation between ADRs and different variables. All statistical calculations were performed using EpiInfo version 3.5.3. Monitoring of 208 retrospective patients by active Pharmacovigilance identified 105 ADRs that were identified in 71 patients. Skin rash and anemia were the most commonly observed ADRs. The organ system commonly affected by ADR was skin and appendages (31.57%). The ADRs that were moderate were 90.14% of cases. The incidence of ADRs (53.52%) was higher with Zidovudine + Lamivudine + Nevirapine combination. CD4 cell count less than <250 cells/μl were 80.28%, male gender were observed to be the risk factors for ADRs. Our study finding showed that there is a need of active pharmaceutical care with intensive monitoring for ADRs in Indian HIV-positive patients who are illiterate, of male and female gender, with CD4 count ≤250 cells/mm(3) with comorbid conditions. PMID:22470896

  20. Effects of targeting magnetic drug nanopar ticles on human cholangiocarcinoma xenografts in nude mice

    Institute of Scientific and Technical Information of China (English)

    Tao Tang; Jian-Wei Zheng; Bo Chen; Hong Li; Xi Li; Ke-Ying Xue; Xing Ai; Sheng-Quan Zou

    2007-01-01

    BACKGROUND: Targeting is a new therapeutic tool for malignant tumor as a result of combining nanotechnology with chemotherapeutics. The aim of our study was to investigate the effects of magnetic nanoparticles enveloping a chemotherapeutic drug on human cholangiocarcinoma xenografts in nude mice. METHODS:The human cholangiocarcinoma xenograft model was established in nude mice with the QBC939 cell line. The nude mice were randomly assigned to 7 groups. 0.9% saline or magnetic nanoparticles, including high (group 2), medium (group 4) and low (group 5) dosages, were given to nude mice through the tail vein 20 days after the QBC939 cell line was implanted. Calculations were made 35 days after treatment in order to compare the volumes, inhibition ratios and growth curves of the tumors in each group. Mice in each group were sacriifced randomly to collect tumor tissues and other organs for electron microscopy and pathological examination. RESULTS:The high and medium dosage groups were signiifcantly different from the control group (P CONCLUSION: Magnetic nanoparticles can inhibit the growth of human cholangiocarcinoma xenografts in nude mice.

  1. RETROVIRAL MEDIATED EFFICIENT TRANSFER ANDEXPRESSION OF MULTIPLE DRUG RESISTANCE GENE TO HUMAN LEUKEMIC CELLS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective: To investigate retroviral-mediated transfer and expression of human multidrug resistance (MDR) gene MDR1 in leukemic cells. Methods: Human myeloid cells, K562 and NB4, were infected by MDR retrovirus from the producer PA317/HaMDR, and the resistant cells were selected with cytotoxic drug. The transfer and expression of MDR1 gene was analyzed by using polymerase chain reaction (PCR), flow cytometry (FCM) and semisolid colonies cultivation. Results: The resistant cells, K562/MDR and NB4/MDR, in which integration of the exogenous MDR1 gene was confirmed by PCR analysis, displayed a typical MDR phenotype. The expression of MDR1 transgene was detected on truncated as well as full-length transcripts. Moreover, the resistant cells were P-glycoprotein postiive at 78.0% to 98.7% analyzed with FCM. The transduction efficieny in K562 cells was studied on suspension cultures and single-cell colonies. The transduction was more efficient in coculture system (67.9%~ 72.5%) than in supernatant system (33.1%~ 46.8%), while growth factors may improve the efficiency. Conclusion: Retrovirus could allow a functional transfer and expression of MDR1 gene in human leukemia cells, and MDR1 might act as a dominant selectable gene for coexpression with the genes of interest in gene therapy.

  2. Binding and inhibition of drug transport proteins by heparin: a potential drug transporter modulator capable of reducing multidrug resistance in human cancer cells.

    Science.gov (United States)

    Chen, Yunliang; Scully, Michael; Petralia, Gloria; Kakkar, Ajay

    2014-01-01

    A major problem in cancer treatment is the development of resistance to chemotherapeutic agents, multidrug resistance (MDR), associated with increased activity of transmembrane drug transporter proteins which impair cytotoxic treatment by rapidly removing the drugs from the targeted cells. Previously, it has been shown that heparin treatment of cancer patients undergoing chemotherapy increases survival. In order to determine whether heparin is capable reducing MDR and increasing the potency of chemotherapeutic drugs, the cytoxicity of a number of agents toward four cancer cell lines (a human enriched breast cancer stem cell line, two human breast cancer cell lines, MCF-7 and MDA-MB-231, and a human lung cancer cell line A549) was tested in the presence or absence of heparin. Results demonstrated that heparin increased the cytotoxicity of a range of chemotherapeutic agents. This effect was associated with the ability of heparin to bind to several of the drug transport proteins of the ABC and non ABC transporter systems. Among the ABC system, heparin treatment caused significant inhibition of the ATPase activity of ABCG2 and ABCC1, and of the efflux function observed as enhanced intracellular accumulation of specific substrates. Doxorubicin cytoxicity, which was enhanced by heparin treatment of MCF-7 cells, was found to be under the control of one of the major non-ABC transporter proteins, lung resistance protein (LRP). LRP was also shown to be a heparin-binding protein. These findings indicate that heparin has a potential role in the clinic as a drug transporter modulator to reduce multidrug resistance in cancer patients. PMID:24253450

  3. Selective fiber used for headspace solid-phase microextraction of abused drugs in human urine

    Directory of Open Access Journals (Sweden)

    Sunanta Wangkarn

    2007-09-01

    Full Text Available A sensitive and selective fiber for simultaneous analysis of three drugs of abuse (amphetamine, methamphetamine and ephedrine in urine samples was explored using headspace solid phase microextraction and gas chromatography with flame ionization detection. Several parameters affecting extraction such as extraction time, extraction temperature, pH of solution and salt concentrations were investigated. Among five commercially available fibers, divinylbenzene/carboxen/ polydimethylsiloxane is the most sensitive and selective fiber at pH 10.0, extraction temperature at 80 C for 20 min and desorption temperature at 220 C for 2 min. Under the optimal conditions, the proposed solid phase microextraction method provided good linearity in the ranges 0.1-10 µg/ml for amphetamine and methamphetamine and 0.5-20 µg/ml for ephedrine. The detection limits for amphetamine, methamphetamine and ephedrine were 9, 3 and 30 ng/ml, respectively. The recoveries of three drugs in urine samples were exceeding 85%.

  4. FACTORS AFFECT THE RELEASE OF PSEUDOEPHDRINE HYDROCHLORIDE FROM THE UNCOATED CATION EXCHANGE RESIN-BASED DRUG DELIVERY SYSTEM IN VITRO

    Institute of Scientific and Technical Information of China (English)

    LI Zhenhua; PI Hongqiong; HE Binglin

    2001-01-01

    In this paper, it was investigated that the effect of parameters such as the ionic strength,pH, counter-ion type of release medium, particle size, and cross linkage of cation exchange resin on the release of model drug pseudoephedrine hydrochloride (PE) from uncoated drug-resin complex.The drug-resin complex was prepared by the reaction of PE with strongly acidic cation exchange resin (001 ×4, 001 ×7, 001 ×14). The result showed that the loading of PE increased with the increase of temperatures. The release of PE from drug-resin complex at 37 ℃ was monitored in vitro.From the experiments, it was found that the release rate of PE depends on the pH, composition of the releasing media, increased at lower pH media or with increase of ionic strength of media. Moreover,the release rate of PE was inversely proportional to the cross-linkage and particle size of the cation exchange resin.

  5. FACTORS AFFECT THE RELEASE OF PSEUDOEPHDRINE HYDROCHLORIDE FROM THE UNCOATED CATION EXCHANGE RESIN—BASED DRUG DELIVERY SYSTEM IN VITRO

    Institute of Scientific and Technical Information of China (English)

    LIZhenhua; PIHongqiong; 等

    2001-01-01

    In this paper,it was investigated that the effect of parameters such as the ionic strength,pH.counter-ion type of release medium,particle size.and cross linkage of cation exchange resin on the release of model drug pseudoephedrine hydrochloride(PE) from uncoated drug-resin complex.The drug-resin complex was pepared by the reaction of PE with strongly acidic cation exchange resin(001×4,001×7,001×14) .The result showed that the loading of PE increased with the increase of temperatures.The release of PE from drug-resin complex at 37℃ was monitored in vitro.From the experiments,it was found that the release rate of PE depends on the pH.comosition of the releasing media,increased at lower pH media or with increase of ionic strength of media.Moreover,the release rate of PE was inversely proportional to the cross-linkage and particle size of the cation exchange resin.

  6. What Affects Reintegration of Female Drug Users after Prison Release? Results of a European Follow-Up Study

    Science.gov (United States)

    Zurhold, Heike; Moskalewicz, Jacek; Sanclemente, Cristina; Schmied, Gabriele; Shewan, David; Verthein, Uwe

    2011-01-01

    The main objective of this follow-up study is to explore factors influencing the success or failure of women in reintegrating after their release from prison. Female drug users in five European cities were tracked after being released from prison. Out of 234 female prisoners contacted in prisons, 59 were included in the follow-up study. Structured…

  7. Antiretroviral Drugs and Risk of Chronic Alanine Aminotransferase Elevation in Human Immunodeficiency Virus (HIV)-Monoinfected Persons

    DEFF Research Database (Denmark)

    Kovari, Helen; Sabin, Caroline A; Ledergerber, Bruno;

    2016-01-01

    Background.  Although human immunodeficiency virus (HIV)-positive persons on antiretroviral therapy (ART) frequently have chronic liver enzyme elevation (cLEE), the underlying cause is often unclear. Methods.  Data Collection on Adverse Events of Anti-HIV Drugs (D:A:D) Study participants without...... a consistent association between tenofovir and cLEE emerging within the first 2 years after drug initiation. This novel tenofovir-cLEE signal should be further investigated....

  8. Enzymatic synthesis of antibody-human serum albumin conjugate for targeted drug delivery using tyrosinase from Agaricus bisporus

    OpenAIRE

    Rollett, Alexandra; Thallinger, Barbara; Ohradanova-Repic, Anna; Machacek, Christian; Walenta, Evelyn; Paulo, Artur Cavaco; Birner-Gruenberger, Ruth; Bogner-Strauss, Juliane G.; Stockinger, Hannes; Guebitz, G.M.

    2013-01-01

    Highly specific targeted drug delivery devices can be obtained with antibody-human serum albumin (mAb-HSA) conjugates. However, their conventional production involves several reaction steps including chemical modification and activation of both proteins followed by cross-linking often involving toxic chemicals. Here, we describe the enzymatic synthesis of mAb-HSA conjugates for targeted drug delivery devices using tyrosinase from Agaricus bisporus under mild reaction conditions (pH 6.8, 25 [d...

  9. Use of Cassette Dosing in Sandwich-Cultured Rat and Human Hepatocytes to Identify Drugs that Inhibit Bile Acid Transport

    OpenAIRE

    Kristina K Wolf; Vora, Sapana; Webster, Lindsey O.; Generaux, Grant T.; Polli, Joseph W; Brouwer, Kim L.R.

    2009-01-01

    Hepatocellular accumulation of bile acids due to inhibition of the canalicular bile salt export pump (BSEP/ABCB11) is one proposed mechanism of drug-induced liver injury (DILI). Some hepatotoxic compounds also are potent inhibitors of bile acid uptake by Na+-dependent taurocholate cotransporting polypeptide (NTCP/SLC10A1). This study used a cassette dosing approach in rat and human sandwich-cultured hepatocytes (SCH) to determine whether known or suspected hepatotoxic drugs inhibit bile acid ...

  10. Modeling of pharmacokinetics of cocaine in human reveals the feasibility for development of enzyme therapies for drugs of abuse.

    Directory of Open Access Journals (Sweden)

    Fang Zheng

    Full Text Available A promising strategy for drug abuse treatment is to accelerate the drug metabolism by administration of a drug-metabolizing enzyme. The question is how effectively an enzyme can actually prevent the drug from entering brain and producing physiological effects. In the present study, we have developed a pharmacokinetic model through a combined use of in vitro kinetic parameters and positron emission tomography data in human to examine the effects of a cocaine-metabolizing enzyme in plasma on the time course of cocaine in plasma and brain of human. Without an exogenous enzyme, cocaine half-lives in both brain and plasma are almost linearly dependent on the initial cocaine concentration in plasma. The threshold concentration of cocaine in brain required to produce physiological effects has been estimated to be 0.22±0.07 µM, and the threshold area under the cocaine concentration versus time curve (AUC value in brain (denoted by AUC2(∞ required to produce physiological effects has been estimated to be 7.9±2.7 µM·min. It has been demonstrated that administration of a cocaine hydrolase/esterase (CocH/CocE can considerably decrease the cocaine half-lives in both brain and plasma, the peak cocaine concentration in brain, and the AUC2(∞. The estimated maximum cocaine plasma concentration which a given concentration of drug-metabolizing enzyme can effectively prevent from entering brain and producing physiological effects can be used to guide future preclinical/clinical studies on cocaine-metabolizing enzymes. Understanding of drug-metabolizing enzymes is key to the science of pharmacokinetics. The general insights into the effects of a drug-metabolizing enzyme on drug kinetics in human should be valuable also in future development of enzyme therapies for other drugs of abuse.

  11. DMSO inhibits human platelet activation through cyclooxygenase-1 inhibition. A novel agent for drug eluting stents?

    International Nuclear Information System (INIS)

    Background: DMSO is routinely infused together with hematopoietic cells in patients undergoing myeloablative therapy and was recently found to inhibit smooth muscle cells proliferation and arterial thrombus formation in the mouse by preventing tissue factor (TF), a key activator of the coagulation cascade. This study was designed to investigate whether DMSO prevents platelet activation and thus, whether it may represent an interesting agent to be used on drug eluting stents. Methods and results: Human venous blood from healthy volunteers was collected in citrated tubes and platelet activation was studied by cone and platelet analyzer (CPA) and rapid-platelet-function-assay (RPFA). CPA analysis showed that DMSO-treated platelets exhibit a lower adherence in response to shear stress (-15.54 ± 0.9427%, n = 5, P < 0.0001 versus control). Additionally, aggregometry studies revealed that DMSO-treated, arachidonate-stimulated platelets had an increased lag phase (18.0% ± 4.031, n = 9, P = 0.0004 versus control) as well as a decreased maximal aggregation (-6.388 ± 2.212%, n = 6, P = 0.0162 versus control). Inhibitory action of DMSO could be rescued by exogenous thromboxane A2 and was mediated, at least in part, by COX-1 inhibition. Conclusions: Clinically relevant concentrations of DMSO impair platelet activation by a thromboxane A2-dependent, COX-1-mediated effect. This finding may be crucial for the previously reported anti-thrombotic property displayed by DMSO. Our findings support a role for DMSO as a novel drug to prevent not only proliferation, but also thrombotic complications of drug eluting stents.

  12. New Mouse Models to Investigate the Efficacy of Drug Combinations in Human Chronic Myeloid Leukemia.

    Science.gov (United States)

    Lin, Hanyang; Woolfson, Adrian; Jiang, Xiaoyan

    2016-01-01

    Chronic myeloid leukemia (CML) comprises a simple and effective paradigm for generating new insights into the cellular origin, pathogenesis, and treatment of many types of human cancer. In particular, mouse models of CML have greatly facilitated the understanding of the underlying molecular mechanisms and pathogenesis of this disease and have led to the identification of new drug targets that in some cases offer the possibility of functional cure. There are currently three established CML mouse models: the BCR-ABL transgenic model, the BCR-ABL retroviral transduction/transplantation model, and the xenotransplant immunodeficient model. Each has its own unique advantages and disadvantages. Depending on the question of interest, some models may be more appropriate than others. In this chapter, we describe a newly developed xenotransplant mouse model to determine the efficacy of novel therapeutic agents, either alone or in combination. The model facilitates the evaluation of the frequency of leukemic stem cells with long-term leukemia-initiating activity, a critical subcellular population that causes disease relapse and progression, through the utilization of primary CD34(+) CML stem/progenitor cells obtained from CML patients at diagnosis and prior to drug treatment. We have also investigated the effectiveness of new combination treatment strategies designed to prevent the development of leukemia in vivo using BCR-ABL (+) blast crisis cells as a model system. These types of in vivo studies are important for the prediction of individual patient responses to drug therapy, and have the potential to facilitate the design of personalized combination therapy strategies. PMID:27581149

  13. DMSO inhibits human platelet activation through cyclooxygenase-1 inhibition. A novel agent for drug eluting stents?

    Energy Technology Data Exchange (ETDEWEB)

    Asmis, Lars [Institute for Clinical Hematology, University Hospital Zuerich, Zuerich (Switzerland); Tanner, Felix C. [Cardiovascular Research, Physiology Institute, University of Zuerich, Zuerich (Switzerland); Center for Integrative Human Physiology, University of Zuerich, Zuerich (Switzerland); Cardiology, Cardiovascular Center, University Hospital Zuerich, Zuerich (Switzerland); Sudano, Isabella [Cardiology, Cardiovascular Center, University Hospital Zuerich, Zuerich (Switzerland); Luescher, Thomas F. [Cardiovascular Research, Physiology Institute, University of Zuerich, Zuerich (Switzerland); Center for Integrative Human Physiology, University of Zuerich, Zuerich (Switzerland); Cardiology, Cardiovascular Center, University Hospital Zuerich, Zuerich (Switzerland); Camici, Giovanni G., E-mail: giovannic@access.uzh.ch [Cardiovascular Research, Physiology Institute, University of Zuerich, Zuerich (Switzerland); Center for Integrative Human Physiology, University of Zuerich, Zuerich (Switzerland)

    2010-01-22

    Background: DMSO is routinely infused together with hematopoietic cells in patients undergoing myeloablative therapy and was recently found to inhibit smooth muscle cells proliferation and arterial thrombus formation in the mouse by preventing tissue factor (TF), a key activator of the coagulation cascade. This study was designed to investigate whether DMSO prevents platelet activation and thus, whether it may represent an interesting agent to be used on drug eluting stents. Methods and results: Human venous blood from healthy volunteers was collected in citrated tubes and platelet activation was studied by cone and platelet analyzer (CPA) and rapid-platelet-function-assay (RPFA). CPA analysis showed that DMSO-treated platelets exhibit a lower adherence in response to shear stress (-15.54 {+-} 0.9427%, n = 5, P < 0.0001 versus control). Additionally, aggregometry studies revealed that DMSO-treated, arachidonate-stimulated platelets had an increased lag phase (18.0% {+-} 4.031, n = 9, P = 0.0004 versus control) as well as a decreased maximal aggregation (-6.388 {+-} 2.212%, n = 6, P = 0.0162 versus control). Inhibitory action of DMSO could be rescued by exogenous thromboxane A2 and was mediated, at least in part, by COX-1 inhibition. Conclusions: Clinically relevant concentrations of DMSO impair platelet activation by a thromboxane A2-dependent, COX-1-mediated effect. This finding may be crucial for the previously reported anti-thrombotic property displayed by DMSO. Our findings support a role for DMSO as a novel drug to prevent not only proliferation, but also thrombotic complications of drug eluting stents.

  14. Brazilian response to the human immunodeficiency virus/acquired immunodeficiency syndrome epidemic among injection drug users.

    Science.gov (United States)

    Mesquita, Fábio; Doneda, Denise; Gandolfi, Denise; Nemes, Maria Inês Battistella; Andrade, Tarcísio; Bueno, Regina; Piconez e Trigueiros, Daniela

    2003-12-15

    The Brazilian response to the human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS) epidemic is being observed all over the world because of its success. Understanding the role of injection drug users (IDUs) in the epidemic and the political response thereto is a key factor in the control of the epidemic in Brazil. This paper summarizes some of the most important analyses of the Brazilian response to the HIV/AIDS epidemic among and from IDUs. Key elements of the response include the support of the Brazilian Universal Public Health System, the provision of universal access to highly active antiretroviral therapy, and the creation of harm reduction projects that are politically and financially supported by the federal government. The response among and from IDUs is a key element in overall control of the HIV/AIDS epidemic. The response to the epidemic among and from IDUs has been headed in the correct direction since its beginning and is now being intensively expanded.

  15. The sensitivity of human tumour cells to quinone bioreductive drugs: what role for DT-diaphorase?

    Science.gov (United States)

    Robertson, N; Stratford, I J; Houlbrook, S; Carmichael, J; Adams, G E

    1992-08-01

    15 human tumour cell lines (lung, breast and colon) have been evaluated for their sensitivity to the quinone based anti-cancer drugs Mitomycin C, Porfiromycin, and EO9 (3-hydroxymethyl-5-aziridinyl-1-methyl-2-(IH-indole-4,7-dione)prop-beta- en-alpha-ol). Sensitivity has been compared with the intra-cellular levels of DT-diaphorase, an enzyme thought to be important in the reductive activation of these quinones. No correlation exists between levels of DT-diaphorase and sensitivity to Mitomycin C or Porfiromycin. However, for EO9 those cell lines showing highest levels of DT-diaphorase activity tend to be the most sensitive. PMID:1510692

  16. HPLC Determination of Fexofenadine in Human Plasma For Therapeutic Drug Monitoring and Pharmacokinetic Studies.

    Science.gov (United States)

    Helmy, S A; El Bedaiwy, H M

    2016-07-01

    A simple and sensitive method was developed for fexofenadine determination in human plasma by liquid chromatography with ultraviolet detection. Satisfactory separation was achieved on a Hypersil® BDS C18 column (250 × 4.6 mm, 5μm) using a mobile phase comprising 20 mm sodium dihydrogen phosphate-2 hydrate (pH adjusted to 3 with phosphoric acid)-acetonitrile at a ratio of 52:48, v/v. The elution was isocratic at ambient temperature with a flow rate of 1.0 mL/min. The UV detector was set at 215 nm for the drug and 330 nm for the internal standared (tinidazole). The total time for a chromatographic separation was ~6.5 min. Linearity was demonstrated over the concentration range 0.01-4 μg/mL. The observed within- and between-day assay precision ranged from 0.346 to 13.6%; accuracy varied between 100.4 and 111.2%. This method was successfully applied for therapeutic drug monitoring in patients treated with clinical doses of fexofenadine and for pharmacokinetic studies. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26577375

  17. Discovery of a Carbazole-Derived Lead Drug for Human African Trypanosomiasis.

    Science.gov (United States)

    Thomas, Sarah M; Purmal, Andrei; Pollastri, Michael; Mensa-Wilmot, Kojo

    2016-01-01

    The protozoan parasite Trypanosoma brucei causes the fatal illness human African trypanosomiasis (HAT). Standard of care medications currently used to treat HAT have severe limitations, and there is a need to find new chemical entities that are active against infections of T. brucei. Following a "drug repurposing" approach, we tested anti-trypanosomal effects of carbazole-derived compounds called "Curaxins". In vitro screening of 26 compounds revealed 22 with nanomolar potency against axenically cultured bloodstream trypanosomes. In a murine model of HAT, oral administration of compound 1 cured the disease. These studies established 1 as a lead for development of drugs against HAT. Pharmacological time-course studies revealed the primary effect of 1 to be concurrent inhibition of mitosis coupled with aberrant licensing of S-phase entry. Consequently, polyploid trypanosomes containing 8C equivalent of DNA per nucleus and three or four kinetoplasts were produced. These effects of 1 on the trypanosome are reminiscent of "mitotic slippage" or endoreplication observed in some other eukaryotes. PMID:27561392

  18. Human immunodeficiency virus type 1: drug resistance in treated and untreated Brazilian children

    Directory of Open Access Journals (Sweden)

    SRR Simonetti

    2003-09-01

    Full Text Available Twenty-two vertically human immunodeficiency virus type 1 (HIV-1 infected Brazilian children were studied for antiretroviral drug resistance. They were separated into 2 groups according to the administration of antiretroviral therapy into those who presented disease symptoms or without symptoms and no therapy. Viral genome sequencing reactions were loaded on an automated DNA sampler (TruGene, Visible Genetics and compared to a database of wild type HIV-1. In the former group 8 of 12 children presented isolates with mutations conferring resistance to protease inhibitors (PIs, 7 presented isolates resistant to nucleoside reverse transcriptase inhibitors (NRTIs and 2 presented isolates resistant to non-nucleoside reverse transcriptase inhibitors (NNRTIs. Ten children were included in the antiretroviral naïve group. Eight were susceptible to NRTIs and all of them were susceptible to PIs; one presented the V108I mutation, which confers low-level resistance to NNRTIs. The data report HIV mutant isolates both in treated and untreated infants. However, the frequency and the level of drug resistance were more frequent in the group receiving antiretroviral therapy, corroborating the concept of selective pressure acting on the emergence of resistant viral strains. The children who presented alterations at polymorphism sites should be monitored for the development of additional mutations occurring at relevant resistance codons.

  19. Overexpression of the human HAP1 protein sensitizes cells to the lethal effect of bioreductive drugs.

    Science.gov (United States)

    Prieto-Alamo, M J; Laval, F

    1999-03-01

    Abasic sites (AP sites) are generated in DNA either directly by DNA-damaging agents or by DNA glycosylases acting during base excision repair. These sites are repaired in human cells by the HAP1 protein, which, besides its AP-endonuclease activity, also possesses a redox function. To investigate the ability of HAP1 protein to modulate cell resistance to DNA-damaging agents, CHO cells were transfected with HAP1 cDNA, resulting in stable expression of the protein in the cell nuclei. The sensitivity of the transfected cells to the toxic effect of various agents, e.g. methylmethane sulfonate, bleomycin and H2O2, was not modified. However, the transfected cells became more sensitive to killing by mitomycin C, porfiromycin, daunorubicin and aziridinyl benzoquinone, drugs that are activated by reduction. To test whether the redox function of HAP1 protein was involved in this increased cytotoxicity, we have constructed a mutated HAP1 protein endowed with normal AP-endonuclease activity but deleted for redox function. When this mutated protein was expressed in the cells, elevated AP-endonuclease activity was measured, but sensitization to the lethal effects of compounds requiring bioreduction was no longer observed. These results suggest that HAP1 protein, besides its involvement in DNA repair, is able to activate bioreduction of alkylating drugs used in cancer chemotherapy. PMID:10190555

  20. Psychopathology in 90 consecutive human immunodeficiency virus-seropositive and acquired immune deficiency syndrome patients with mostly intravenous drug use history.

    Science.gov (United States)

    Perretta, P; Nisita, C; Zaccagnini, E; Lorenzetti, C; Nuccorini, A; Cassano, G B; Akiskal, H S

    1996-01-01

    This report presents systematic clinical data regarding psychiatric diagnoses, personal and family psychiatric histories, and symptomatologic aspects of 90 consecutive human immunodeficiency virus (HIV)-seropositive and acquired immune deficiency syndrome (AIDS) patients, of whom slightly less than two thirds were at risk due to intravenous drug abuse. In addition, a comparison was made between the distribution patterns of these variables at various stages of HIV illness and related at-risk behaviors. Eighty-four percent of the patients met criteria for a spectrum of DSM-III-R diagnoses (mostly affective) that were associated with high rates of affective and alcohol abuse disorders among first-degree relatives. Mood disorders did not differ significantly between the two main groups at risk (intravenous drug users [IVDUs] v others) by gender, age, or stage of illness. The overall data from the rating scales show high levels of psychic and somatic anxiety in the early stages of illness, whereas cognitive symptoms, retardation, and disorientation are dominant in later stages. A noteworthy finding in this study is that many depressed patients demonstrated current and/or past hypomanic, hyperthymic, or cyclothymic features with no evidence of brain damage detectable by computed axial tomography (CAT). These temperamental attributes, which preceded HIV infection, may have served as risk factors for both drug abuse and impulsive sexual behavior in all types of at-risk groups. PMID:8826691

  1. Predictivity of dog co-culture model, primary human hepatocytes and HepG2 cells for the detection of hepatotoxic drugs in humans

    Energy Technology Data Exchange (ETDEWEB)

    Atienzar, Franck A., E-mail: franck.atienzar@ucb.com [UCB Pharma SA, Non-Clinical Development, Chemin du Foriest, 1420 Braine-l' Alleud (Belgium); Novik, Eric I. [H mu rel Corporation, 675 U.S. Highway 1, North Brunswick, NJ 08902 (United States); Gerets, Helga H. [UCB Pharma SA, Non-Clinical Development, Chemin du Foriest, 1420 Braine-l' Alleud (Belgium); Parekh, Amit [H mu rel Corporation, 675 U.S. Highway 1, North Brunswick, NJ 08902 (United States); Delatour, Claude; Cardenas, Alvaro [UCB Pharma SA, Non-Clinical Development, Chemin du Foriest, 1420 Braine-l' Alleud (Belgium); MacDonald, James [Chrysalis Pharma Consulting, LLC, 385 Route 24, Suite 1G, Chester, NJ 07930 (United States); Yarmush, Martin L. [Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854 (United States); Dhalluin, Stéphane [UCB Pharma SA, Non-Clinical Development, Chemin du Foriest, 1420 Braine-l' Alleud (Belgium)

    2014-02-15

    Drug Induced Liver Injury (DILI) is a major cause of attrition during early and late stage drug development. Consequently, there is a need to develop better in vitro primary hepatocyte models from different species for predicting hepatotoxicity in both animals and humans early in drug development. Dog is often chosen as the non-rodent species for toxicology studies. Unfortunately, dog in vitro models allowing long term cultures are not available. The objective of the present manuscript is to describe the development of a co-culture dog model for predicting hepatotoxic drugs in humans and to compare the predictivity of the canine model along with primary human hepatocytes and HepG2 cells. After rigorous optimization, the dog co-culture model displayed metabolic capacities that were maintained up to 2 weeks which indicates that such model could be also used for long term metabolism studies. Most of the human hepatotoxic drugs were detected with a sensitivity of approximately 80% (n = 40) for the three cellular models. Nevertheless, the specificity was low approximately 40% for the HepG2 cells and hepatocytes compared to 72.7% for the canine model (n = 11). Furthermore, the dog co-culture model showed a higher superiority for the classification of 5 pairs of close structural analogs with different DILI concerns in comparison to both human cellular models. Finally, the reproducibility of the canine system was also satisfactory with a coefficient of correlation of 75.2% (n = 14). Overall, the present manuscript indicates that the dog co-culture model may represent a relevant tool to perform chronic hepatotoxicity and metabolism studies. - Highlights: • Importance of species differences in drug development. • Relevance of dog co-culture model for metabolism and toxicology studies. • Hepatotoxicity: higher predictivity of dog co-culture vs HepG2 and human hepatocytes.

  2. Predictivity of dog co-culture model, primary human hepatocytes and HepG2 cells for the detection of hepatotoxic drugs in humans

    International Nuclear Information System (INIS)

    Drug Induced Liver Injury (DILI) is a major cause of attrition during early and late stage drug development. Consequently, there is a need to develop better in vitro primary hepatocyte models from different species for predicting hepatotoxicity in both animals and humans early in drug development. Dog is often chosen as the non-rodent species for toxicology studies. Unfortunately, dog in vitro models allowing long term cultures are not available. The objective of the present manuscript is to describe the development of a co-culture dog model for predicting hepatotoxic drugs in humans and to compare the predictivity of the canine model along with primary human hepatocytes and HepG2 cells. After rigorous optimization, the dog co-culture model displayed metabolic capacities that were maintained up to 2 weeks which indicates that such model could be also used for long term metabolism studies. Most of the human hepatotoxic drugs were detected with a sensitivity of approximately 80% (n = 40) for the three cellular models. Nevertheless, the specificity was low approximately 40% for the HepG2 cells and hepatocytes compared to 72.7% for the canine model (n = 11). Furthermore, the dog co-culture model showed a higher superiority for the classification of 5 pairs of close structural analogs with different DILI concerns in comparison to both human cellular models. Finally, the reproducibility of the canine system was also satisfactory with a coefficient of correlation of 75.2% (n = 14). Overall, the present manuscript indicates that the dog co-culture model may represent a relevant tool to perform chronic hepatotoxicity and metabolism studies. - Highlights: • Importance of species differences in drug development. • Relevance of dog co-culture model for metabolism and toxicology studies. • Hepatotoxicity: higher predictivity of dog co-culture vs HepG2 and human hepatocytes

  3. Generation of enterocyte-like cells from human induced pluripotent stem cells for drug absorption and metabolism studies in human small intestine.

    Science.gov (United States)

    Ozawa, Tatsuya; Takayama, Kazuo; Okamoto, Ryota; Negoro, Ryosuke; Sakurai, Fuminori; Tachibana, Masashi; Kawabata, Kenji; Mizuguchi, Hiroyuki

    2015-11-12

    Enterocytes play an important role in drug absorption and metabolism. However, a widely used enterocyte model, Caco-2 cell, has difficulty in evaluating both drug absorption and metabolism because the expression levels of some drug absorption and metabolism-related genes in these cells differ largely from those of human enterocytes. Therefore, we decided to generate the enterocyte-like cells from human induced pluripotent stem (iPS) cells (hiPS-ELCs), which are applicable to drug absorption and metabolism studies. The efficiency of enterocyte differentiation from human iPS cells was significantly improved by using EGF, SB431542, and Wnt3A, and extending the differentiation period. The gene expression levels of cytochrome P450 3A4 (CYP3A4) and peptide transporter 1 in the hiPS-ELCs were higher than those in Caco-2 cells. In addition, CYP3A4 expression in the hiPS-ELCs was induced by treatment with 1, 25-dihydroxyvitamin D3 or rifampicin, which are known to induce CYP3A4 expression, indicating that the hiPS-ELCs have CYP3A4 induction potency. Moreover, the transendothelial electrical resistance (TEER) value of the hiPS-ELC monolayer was approximately 240 Ω*cm(2), suggesting that the hiPS-ELC monolayer could form a barrier. In conclusion, we succeeded in establishing an enterocyte model from human iPS cells which have potential to be applied for drug absorption and metabolism studies.

  4. E-Cigarette Affects the Metabolome of Primary Normal Human Bronchial Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Argo Aug

    Full Text Available E-cigarettes are widely believed to be safer than conventional cigarettes and have been even suggested as aids for smoking cessation. However, while reasonable with some regards, this judgment is not yet supported by adequate biomedical research data. Since bronchial epithelial cells are the immediate target of inhaled toxicants, we hypothesized that exposure to e-cigarettes may affect the metabolome of human bronchial epithelial cells (HBEC and that the changes are, at least in part, induced by oxidant-driven mechanisms. Therefore, we evaluated the effect of e-cigarette liquid (ECL on the metabolome of HBEC and examined the potency of antioxidants to protect the cells. We assessed the changes of the intracellular metabolome upon treatment with ECL in comparison of the effect of cigarette smoke condensate (CSC with mass spectrometry and principal component analysis on air-liquid interface model of normal HBEC. Thereafter, we evaluated the capability of the novel antioxidant tetrapeptide O-methyl-l-tyrosinyl-γ-l-glutamyl-l-cysteinylglycine (UPF1 to attenuate the effect of ECL. ECL caused a significant shift in the metabolome that gradually gained its maximum by the 5th hour and receded by the 7th hour. A second alteration followed at the 13th hour. Treatment with CSC caused a significant initial shift already by the 1st hour. ECL, but not CSC, significantly increased the concentrations of arginine, histidine, and xanthine. ECL, in parallel with CSC, increased the content of adenosine diphosphate and decreased that of three lipid species from the phosphatidylcholine family. UPF1 partially counteracted the ECL-induced deviations, UPF1's maximum effect occurred at the 5th hour. The data support our hypothesis that ECL profoundly alters the metabolome of HBEC in a manner, which is comparable and partially overlapping with the effect of CSC. Hence, our results do not support the concept of harmlessness of e-cigarettes.

  5. How Has Human-induced Climate Change Affected California Drought Risk?

    Science.gov (United States)

    Cheng, L.; Hoerling, M. P.; Aghakouchak, A.; Livneh, B.; Quan, X. W.; Eischeid, J. K.

    2015-12-01

    The current California drought has cast a heavy burden on statewide agriculture and water resources, further exacerbated by concurrent extreme high temperatures. Furthermore, industrial-era global radiative forcing brings into question the role of long-term climate change on CA drought. How has human-induced climate change affected California drought risk? Here, observations and model experimentation are applied to characterize this drought employing metrics that synthesize drought duration, cumulative precipitation deficit, and soil moisture depletion. The model simulations show that increases in radiative forcing since the late 19th Century induces both increased annual precipitation and increased surface temperature over California, consistent with prior model studies and with observed long-term change. As a result, there is no material difference in the frequency of droughts defined using bivariate indicators of precipitation and near-surface (10-cm) soil moisture, because shallow soil moisture responds most sensitively to increased evaporation driven by warming, which compensates the increase in the precipitation. However, when using soil moisture within a deep root zone layer (1-m) as co-variate, droughts become less frequent because deep soil moisture responds most sensitively to increased precipitation. The results illustrate the different land surface responses to anthropogenic forcing that are relevant for near-surface moisture exchange and for root zone moisture availability. The latter is especially relevant for agricultural impacts as the deep layer dictates moisture availability for plants, trees, and many crops. The results thus indicate the net effect of climate change has made agricultural drought less likely, and that the current severe impacts of drought on California's agriculture has not been substantially caused by long-term climate changes.

  6. In vitro study on human cytomegalovirus affecting early pregnancy villous EVT's invasion function

    Directory of Open Access Journals (Sweden)

    Juan Xiao

    2011-03-01

    Full Text Available Abstract Background Human cytomegalovirus (HCMV is the most common pathogen in uterus during pregnancy, which may lead to some serious results such as miscarriage, stillbirth, cerebellar malformation, fetus developmental retardation, but its pathogenesis has not been fully explained. The hypofunction of extravillous cytotrophoblast (EVT invasion is the essential pathologic base of some complications of pregnancy. c-erbB-2 is a kind of oncogene protein and closely linked with embryogenesis, tissue repair and regeneration. Matrix metalloproteinase (MMP is one of the key enzymes which affect EVT migration and invasion function. The expression level changes of c-erbB-2, MMP-2 and MMP-9 can reflect the changes of EVT invasion function. Results To explore the influence of HCMV on the invasion function of EVT, we tested the protein expression level changes of c-erbB-2, MMP-2 and MMP-9 in villous explant cultured in vitro infected by HCMV, with the use of immunohistochemistry SP method and western blot. We confirmed that HCMV can reproduce and spread in early pregnancy villus; c-erbB-2 protein mainly expressed in normal early pregnancy villous syncytiotrophoblast (ST remote plasma membrane and EVT, especially remote EVT cell membrane in villous stem cell column, little expressed in ST proximal end cell membrane and interstitial cells; MMP-2 protein primarily expressed in early pregnancy villous EVT endochylema and rarely in villous trophoblast (VT, ST and interstitial cells; MMP-9 protein largely expressed in early pregnancy villous mesenchyme, EVT and VT endochylema. Compared with control group, the three kinds of protein expression level in early pregnancy villus of virus group significantly decreased (P Conclusion HCMV can infect villus in vitro and cause the decrease of early pregnancy villous EVT's invasion function.

  7. Michaelis-Menten kinetic analysis of drugs of abuse to estimate their affinity to human P-glycoprotein.

    Science.gov (United States)

    Meyer, Markus R; Orschiedt, Tina; Maurer, Hans H

    2013-02-27

    The pharmacokinetics of various important drugs are known to be significantly influenced by the human ABC transporter P-glycoprotein (P-gp), which may lead to clinically relevant drug-drug interactions. In contrast to therapeutic drugs, emerging drugs of abuse (DOA) are sold and consumed without any safety pharmacology testing. Only some studies on their metabolism were published, but none about their affinity to the transporter systems. Therefore, 47 DOAs from various classes were tested for their P-gp affinity using human P-gp (hP-gp) to predict possible drug-drug interactions. DOAs were initially screened for general hP-gp affinity and further characterized by modeling classic Michaelis-Menten kinetics and assessing their K(m) and V(max) values. Among the tested drugs, 12 showed a stimulation of ATPase activity. The most intensive stimulating DOAs were further investigated and compared with the known P-gp model substrates sertraline and verapamil. ATPase stimulation kinetics could be modeled for the entactogen 3,4-methylenedioxy-α-ethylphenethylamine (3,4-BDB), the hallucinogen 2,5-dimethoxy-4-iodoamphetamine (DOI), the abused alkaloid glaucine, the opioid-like drugs N-iso-propyl-1,2-diphenylethylamine (NPDPA), and N-(1-phenylcyclohexyl)-3-ethoxypropanamine (PCEPA), with K(m) and V(max) values within the same range as for verapamil or sertraline. As a consequence interactions with other drugs being P-gp substrates might be considered to be very likely and further studies should be encouraged. PMID:23273999

  8. Calorimetric and spectroscopic studies on the interaction of anticancer drug mitoxantrone with human serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Keswani, Neelam [Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076 (India); Kishore, Nand, E-mail: nandk@chem.iitb.ac.in [Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076 (India)

    2011-09-15

    Highlights: > Human serum albumin exhibits two binding sites for mitoxantrone. > Discrepancies in calorimetric and spectroscopic results clarify binding sites. > Effect of ionic strength on binding permitted detailed analysis of interactions. > Electrostatic interactions predominate in binding. > One binding site on protein does not have tryptophan in immediate vicinity. - Abstract: Binding of the anticancer drug mitoxantrone with the protein human serum albumin (HSA) has been studied by using isothermal titration calorimetry (ITC), in combination with fluorescence, UV-visible, and circular dichroism spectroscopy. The thermodynamic parameters of binding have been evaluated from ITC and spectroscopic results and compared. The ITC results demonstrate that the binding of mitoxantrone with HSA occurs according to two sets of binding sites on the protein as opposed to the fluorescence and UV-visible spectroscopic results. Blockage of one binding site on HSA for mitoxantrone in the presence of NaCl indicates strong involvement of electrostatic interactions in the binding of the drug with the protein. An insignificant temperature dependence of the association constant observed in fluorescence measurements suggests a very low enthalpy of binding which is in close agreement with the results obtained from ITC measurements. Fluorescence life time measurements suggest formation of a static complex between mitoxantrone and HSA. The discrepancies in the ITC and fluorescence results suggest that one of the binding sites on the protein for mitoxantrone does not contain tryptophan residue in its immediate vicinity. The calorimetric and spectroscopic results have provided quantitative information on the binding of mitoxantrone with HSA and suggest that the binding is dominated by electrostatic interactions.

  9. Population dynamics of Onchocerca volvulus microfilariae in human host after six years of drug control

    Directory of Open Access Journals (Sweden)

    K.N. Opara

    2008-02-01

    Full Text Available Background & objectives: Mass administration of ivermectin drug was carried out annually between 1995 and 2001 in three villages that were endemic for onchocerciasis in the Lower Cross River Basin, Nigeria. The aim of this study was to evaluate the population dynamics (dispersion patterns, distribution, prevalence and intensity of Onchocerca volvulus microfilariae in their human host after six years of ivermectin treatment. Methods: A total of 1014 subjects from three rural areas in Etung Local Government Area of Cross River State, Nigeria were screened for skin microfilariae using standard parasitological method of diagnosis. Results: Ivermectin drug intervention had significantly reduced the prevalence of skin microfilariae (PMF from 69.3% pre-control to 39.3% and community microfilarial load (CMFL from 7.11 to 2.31 microfilariae per skin snip. Males (45% were significantly (p 0.05. The correlation between age-dependent parasite prevalence and mean abundance was also not significant (r = 0.42; p >0.05. The degree of dispersion as measured by variance to mean ratio (VMR, coefficient of variation (CV and exponent ‘K’ of the negative binomial model of distribution showed that the parasite aggregated, clumped and overdispersed in their human host. The relative index of potential infection of each age group showed that adults between the age of 21 and 50 yr accounted for 52.7% of microfilariae positive cases. Interpretation & conclusion: Aggregated and overdispersion of O. volvulus observed in this study showed that active transmission could still be going on, because the tendency of the vector, Simulium damnosum ingesting more microfilariae was high due to the aggregated and overdispersed nature of the parasite with its host.

  10. Stimulant drugs trigger transient volumetric changes in the human ventral striatum.

    Science.gov (United States)

    Hoekzema, Elseline; Carmona, Susana; Ramos-Quiroga, J Antoni; Canals, Clara; Moreno, Ana; Richarte Fernández, Vanesa; Picado, Marisol; Bosch, Rosa; Duñó, Lurdes; Soliva, Juan Carlos; Rovira, Mariana; Bulbena, Antonio; Tobeña, Adolf; Casas, Miguel; Vilarroya, Oscar

    2014-01-01

    The ventral striatum (VStr) integrates mesolimbic dopaminergic and corticolimbic glutamatergic afferents and forms an essential component of the neural circuitry regulating impulsive behaviour. This structure represents a primary target of psychostimulant medication, the first-choice treatment for attention-deficit/hyperactivity disorder (ADHD), and is biochemically modified by these drugs in animals. However, the effects of stimulants on the human VStr remain to be determined. We acquired anatomical brain MRI scans from 23 never-medicated adult patients with ADHD, 31 adult patients with a history of stimulant treatment and 32 control subjects, and VStr volumes were determined using individual rater-blinded region of interest delineation on high-resolution neuroanatomical scans. Furthermore, we also extracted VStr volumes before and after methylphenidate treatment in a subsample of the medication-naïve adult patients as well as in 20 never-medicated children with ADHD. We observed smaller VStr volumes in adult patients with a history of stimulant treatment in comparison to never-medicated patients. Moreover, our longitudinal analyses uncovered a reduction of grey matter volume in the bilateral VStr in adult patients after exposure to methylphenidate, which was followed by volumetric recovery to control level. In children, the same pattern of VStr volume changes was observed after treatment with methylphenidate. These findings suggest that the altered VStr volumes previously observed in patients with ADHD may represent a transitory effect of stimulant exposure rather than an intrinsic feature of the disorder. More generally, these data show that stimulant drugs can render plastic volume changes in human VStr neuroanatomy.

  11. Characterization of the binding of an anticancer drug, lapatinib to human serum albumin.

    Science.gov (United States)

    Kabir, Md Zahirul; Mukarram, Abdul Kadir; Mohamad, Saharuddin B; Alias, Zazali; Tayyab, Saad

    2016-07-01

    Interaction of a promising anticancer drug, lapatinib (LAP) with the major transport protein in human blood circulation, human serum albumin (HSA) was investigated using fluorescence and circular dichroism (CD) spectroscopy as well as molecular docking analysis. LAP-HSA complex formation was evident from the involvement of static quenching mechanism, as revealed by the fluorescence quenching data analysis. The binding constant, Ka value in the range of 1.49-1.01×10(5)M(-1), obtained at three different temperatures was suggestive of the intermediate binding affinity between LAP and HSA. Thermodynamic analysis of the binding data (∆H=-9.75kJmol(-1) and ∆S=+65.21Jmol(-1)K(-1)) suggested involvement of both hydrophobic interactions and hydrogen bonding in LAP-HSA interaction, which were in line with the molecular docking results. LAP binding to HSA led to the secondary and the tertiary structural alterations in the protein as evident from the far-UV and the near-UV CD spectral analysis, respectively. Microenvironmental perturbation around Trp and Tyr residues in HSA upon LAP binding was confirmed from the three-dimensional fluorescence spectral results. LAP binding to HSA improved the thermal stability of the protein. LAP was found to bind preferentially to the site III in subdomain IB on HSA, as probed by the competitive drug displacement results and supported by the molecular docking results. The effect of metal ions on the binding constant between LAP and HSA was also investigated and the results showed a decrease in the binding constant in the presence of these metal ions. PMID:27128364

  12. Biophysical and Structural Studies on the Capsid Protein of the Human Immunodeficiency Virus Type 1: A New Drug Target?

    Directory of Open Access Journals (Sweden)

    José L. Neira

    2009-01-01

    Full Text Available AIDS affects 30 million people worldwide and is one of the deadliest epidemics in human history. It is caused by a retrovirus, HIV, whose mature capsid (enclosing the RNA with other proteins is formed by the assembly of several hundred copies of a protein, CA*. The C-terminal domain of such protein, CAC, is a driving force in virus assembly and the connections in the mature capsid lattice indicate that CAC joins through homodimerization of the CA hexamers. In the first part of this work, I shall review the biophysical studies carried out with the dimeric wild-type CAC protein and a mutant monomeric variant. The results open new venues for the development of drugs able to interact either with the dimeric species, hampering its assembly, or with the monomeric species, obstructing its folding. In the second part of this review, I shall describe the structures of complexes of CAC with small molecules able to weaken its dimerization. Furthermore, interactions with other proteins and lipids are also described. The whole set of results suggests that much of the surface of CAC does not accommodate binding per se, but rather binding sites in the protein are predefined, i.e., there are “hot” spots for binding in CAC (whatever be the molecule to bind. These “hot” residues involve most of the dimerization interface (an α-helix of the CAC wild-type protein, but also polypeptide patches at the other helices.

  13. Roscovitine synergizes with conventional chemo-therapeutic drugs to induce efficient apoptosis of human colorectal cancer cells

    Institute of Scientific and Technical Information of China (English)

    Mohamed Salah I Abaza; Abdul-Majeed A Bahman; Rajaa J Al-Attiyah

    2008-01-01

    AIM:To examine the ability of cyclin-dependent kinase inhibitor(CDKI)roscovitine(Rosco)to enhance the antitumor effects of conventional chemotherapeutic agents acting by different mechanisms against human colorectal cancer.METHODS:Human colorectal cancer cells were treated,individually and in combination,with Rosco,taxol,5-Fluorouracil(S-FU),doxorubicine or vinblastine.The antiproliferative effects and the type of interaction of Rosco with tested chemotherapeutic drugs were determined.Cell cycle alterations were investigated by fluorescence-activated cell sorter FACS analysis.Apoptosis was determined by DNA fragmentation assay.RESULTS:Rosco inhibited the proliferation of tumor cells in a time- and dose-dependent manner.The efficacies of all tested chemotherapeutic drugs were markedly enhanced 3.0-8.42×103 and 130-5.28×103 fold in combination with 5 and 10 μg/mL Rosco,re-spectively.The combinatiou of Rosco and chemotherapeutic drugs inhibited the growth of human colorectal cancer cells in an additive or synergistic fashion,and in a time and dose dependent manner.Rosco induced apoptosis and synergized with tested chemotherapeutic drugs to induce efficient apoptosis in human colorectal cancer cells.Sequential,inverted sequential and simultaneous treatment of cancer cells with combinations of chemotherapeutic drugs and Rosco arrested the growth of human colorectal cancer cells at various phases of the cell cycle as follows:Taxol/Rosco(G2/M-and S-phases),5-FU/Rosco(S-phase),Dox/Rosco(S-phase)and Vinb/Rosco(G2/M-and S-phases).CONCLUSION:Since the efficacy of many anticancer drugs depends on their ability to induce apoptotic cell death,modulation of this parameter by Cell cycle inhibitors may provide a novel chemo-preventive and chemothempeutic strategy for human colorectal cancer.(C)2008 The WJG Press.All rights reserved.

  14. Prediction of human pharmacokinetics using physiologically based modeling: a retrospective analysis of 26 clinically tested drugs.

    Science.gov (United States)

    De Buck, Stefan S; Sinha, Vikash K; Fenu, Luca A; Nijsen, Marjoleen J; Mackie, Claire E; Gilissen, Ron A H J

    2007-10-01

    The aim of this study was to evaluate different physiologically based modeling strategies for the prediction of human pharmacokinetics. Plasma profiles after intravenous and oral dosing were simulated for 26 clinically tested drugs. Two mechanism-based predictions of human tissue-to-plasma partitioning (P(tp)) from physicochemical input (method Vd1) were evaluated for their ability to describe human volume of distribution at steady state (V(ss)). This method was compared with a strategy that combined predicted and experimentally determined in vivo rat P(tp) data (method Vd2). Best V(ss) predictions were obtained using method Vd2, providing that rat P(tp) input was corrected for interspecies differences in plasma protein binding (84% within 2-fold). V(ss) predictions from physicochemical input alone were poor (32% within 2-fold). Total body clearance (CL) was predicted as the sum of scaled rat renal clearance and hepatic clearance projected from in vitro metabolism data. Best CL predictions were obtained by disregarding both blood and microsomal or hepatocyte binding (method CL2, 74% within 2-fold), whereas strong bias was seen using both blood and microsomal or hepatocyte binding (method CL1, 53% within 2-fold). The physiologically based pharmacokinetics (PBPK) model, which combined methods Vd2 and CL2 yielded the most accurate predictions of in vivo terminal half-life (69% within 2-fold). The Gastroplus advanced compartmental absorption and transit model was used to construct an absorption-disposition model and provided accurate predictions of area under the plasma concentration-time profile, oral apparent volume of distribution, and maximum plasma concentration after oral dosing, with 74%, 70%, and 65% within 2-fold, respectively. This evaluation demonstrates that PBPK models can lead to reasonable predictions of human pharmacokinetics. PMID:17620347

  15. Prioritising the variables affecting human security in South-East Asia

    OpenAIRE

    Lautensach, Alexander K.; Sabina W. Lautensach

    2010-01-01

    Human security is usually framed as a multidimensional concept that depends on socio-political, economic, health-related, and ecological ‘pillars’. An assessment of human security requires an analysis of the nested relationships between those variables. Focusing on South-East Asian countries we illustrate how those relationships can be used to prioritise determinants of human security. Such priorities are important because policies directed at promoting human security require definite startin...

  16. Gemfibrozil, a Lipid-lowering Drug, Inhibits the Induction of Nitric-oxide Synthase in Human Astrocytes*

    OpenAIRE

    Pahan, Kalipada; Jana, Malabendu; Liu, Xiaojuan; Taylor, Bradley S.; Wood, Charles; Fischer, Susan M.

    2002-01-01

    Gemfibrozil, a lipid-lowering drug, inhibited cytokine-induced production of NO and the expression of inducible nitric-oxide synthase (iNOS) in human U373MG astroglial cells and primary astrocytes. Similar to gemfibrozil, clofibrate, another fibrate drug, also inhibited the expression of iNOS. Inhibition of human iNOS promoter-driven luciferase activity by gemfibrozil in cytokine-stimulated U373MG astroglial cells suggests that this compound inhibits the transcription of iNOS. Since gemfibroz...

  17. A Pontine Region is a Neural Correlate of the Human Affective Processing Network

    Directory of Open Access Journals (Sweden)

    Tatia M.C. Lee

    2015-11-01

    Full Text Available The in vivo neural activity of the pons during the perception of affective stimuli has not been studied despite the strong implications of its role in affective processing. To examine the activity of the pons during the viewing of affective stimuli, and to verify its functional and structural connectivity with other affective neural correlates, a multimodal magnetic resonance imaging methodology was employed in this study. We observed the in vivo activity of the pons when viewing affective stimuli. Furthermore, small-world connectivity indicated that the functional connectivity (FC between the pons and the cortico-limbic affective regions was meaningful, with the coefficient λ being positively associated with self-reported emotional reactivity. The FC between the pons and the cortico-limbic-striatal areas was related to self-reported negative affect. Corroborating this finding was the observation that the tract passing through the pons and the left hippocampus was negatively related to self-reported positive affect and positively correlated with emotional reactivity. Our findings support the framework that the pons works conjunctively with the distributed cortico-limbic-striatal systems in shaping individuals' affective states and reactivity. Our work paves the path for future research on the contribution of the pons to the precipitation and maintenance of affective disorders.

  18. Nitroester drug's effects and their antagonistic effects against morphine on human sphincter of Oddi motility

    Institute of Scientific and Technical Information of China (English)

    Shuo-Dong Wu; Zhen-Hai Zhang; Dong-Yan Li; Jun-Zhe Jin; Jing Kong; Zhong Tian; Wei Wang; Min-Fei Wang

    2005-01-01

    AIM: To evaluate the effects of nitroester drugs on human sphincter of Oddi (SO) motility and their antagonistic effects against morphine which shows excitatory effect on Oddi's sphincter motility.METHODS: The effects of these drugs on SO were evaluated by means of choledochofiberoscopy manometry.A total of 67 patients having T-tubes after cholecystectomy and choledochotomy were involved in the study, they were randomly divided into glyceryl trinitrate (GTN) group,isosorbide dinitrate (ISDN) group, pentaerythritol tetranitrate (PTN) group, morphine associated with GTN group, morphine associated with ISDN group and morphine associated with PTN group. Basal pressure of Oddi's sphincter (BPOS), amplitude of phasic contractions (SOCA), frequency of phasic contractions (SOF), duration of phasic contractions (SOD), duodenal pressure (DP) and common bile duct pressure (CBDP) were scored and analyzed. Morphine was given intramuscularly while nitroester drugs were applied sublingually.RESULTS: BPOS and SOCA decreased significantly after administration of ISDN and GTN, BPOS reduced from 10.95±7.49 mmHg to 5.92±4.04 mmHg (P<0.05) evidently after application of PTN. BPOS increased from 7.37±5.58mmHg to 16.60±13.87 mmHg, SOCA increased from 54.09±38.37 mmHg to 100.70±43.51 mmHg, SOF increased from 7.15±3.20 mmHg to 10.38±2.93 mmHg and CBDP increased 3.75±1.95 mmHg to 10.49±8.21 mmHg (P<0.01)evidently after injection of morphine. After associated application of ISDN and GTN, the four indications above decreased obviously. As for application associated with PTN,SOCA and SOF decreased separately from 100.64±44.99mmHg to 66.17±35.88 mmHg and from 10.70±2.76 mmHg to 9.04±1.71 mmHg (P<0.05) markedly.CONCLUSION: The regular dose of GTN, ISDN and PTN showed inhibitory effect on SO motility, morphine showed excitatory effect on SO while GTN, ISDN and PTN could antagonize the effect of morphine. Among the three nitroester drugs, the effect of ISDN on SO was most

  19. A Genomewide Screen in Schizosaccharomyces pombe for Genes Affecting the Sensitivity of Antifungal Drugs That Target Ergosterol Biosynthesis

    OpenAIRE

    Fang, Yue; Hu, Lingling; Zhou, Xin; Jaiseng, Wurentuya; Zhang, Ben; Takami, Tomonori; Kuno, Takayoshi

    2012-01-01

    We performed a genomewide screen for altered sensitivity to antifungal drugs, including clotrimazole and terbinafine, that target ergosterol biosynthesis using a Schizosaccharomyces pombe gene deletion library consisting of 3,004 nonessential haploid deletion mutants. We identified 109 mutants that were hypersensitive and 11 mutants that were resistant to these antifungals. Proteins whose absence rendered cells sensitive to these antifungals were classified into various functional categories,...

  20. What is the contribution of human FMO3 in the N-oxygenation of selected therapeutic drugs and drugs of abuse?

    Science.gov (United States)

    Wagmann, Lea; Meyer, Markus R; Maurer, Hans H

    2016-09-01

    Little is known about the role of flavin-containing monooxygenases (FMOs) in the metabolism of xenobiotics. FMO3 is the isoform in adult human liver with the highest impact on drug metabolism. The aim of the presented study was to elucidate the contribution of human FMO3 to the N-oxygenation of selected therapeutic drugs and drugs of abuse (DOAs). Its contribution to the in vivo hepatic net clearance of the N-oxygenation products was calculated by application of an extended relative activity factor (RAF) approach to differentiate from contribution of cytochrome P450 (CYP) isoforms. FMO3 and CYP substrates were identified using pooled human liver microsomes after heat inactivation and chemical inhibition, or single enzyme incubations. Kinetic parameters were subsequently determined using recombinant human enzymes and mass spectrometric analysis via authentic reference standards or simple peak areas of the products divided by those of the internal standard. FMO3 was identified as enzyme mainly responsible for the formation of N,N-diallyltryptamine N-oxide and methamphetamine hydroxylamine (>80% contribution for both). A contribution of 50 and 30% was calculated for the formation of N,N-dimethyltryptamine N-oxide and methoxypiperamide N-oxide, respectively. However, FMO3 contributed with less than 5% to the formation of 3-bromomethcathinone hydroxylamine, amitriptyline N-oxide, and clozapine N-oxide. There was no significant difference in the contributions when using calibrations with reference metabolite standards or peak area ratio calculations. The successful application of a modified RAF approach including FMO3 proved the importance of FMO3 in the N-oxygenation of DOAs in human metabolism. PMID:27320963

  1. Genome scan identifies a locus affecting gamma-globin expression in human beta-cluster YAC transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Lin, S.D.; Cooper, P.; Fung, J.; Weier, H.U.G.; Rubin, E.M.

    2000-03-01

    Genetic factors affecting post-natal g-globin expression - a major modifier of the severity of both b-thalassemia and sickle cell anemia, have been difficult to study. This is especially so in mice, an organism lacking a globin gene with an expression pattern equivalent to that of human g-globin. To model the human b-cluster in mice, with the goal of screening for loci affecting human g-globin expression in vivo, we introduced a human b-globin cluster YAC transgene into the genome of FVB mice . The b-cluster contained a Greek hereditary persistence of fetal hemoglobin (HPFH) g allele resulting in postnatal expression of human g-globin in transgenic mice. The level of human g-globin for various F1 hybrids derived from crosses between the FVB transgenics and other inbred mouse strains was assessed. The g-globin level of the C3HeB/FVB transgenic mice was noted to be significantly elevated. To map genes affecting postnatal g-globin expression, a 20 centiMorgan (cM) genome scan of a C3HeB/F VB transgenics [prime] FVB backcross was performed, followed by high-resolution marker analysis of promising loci. From this analysis we mapped a locus within a 2.2 cM interval of mouse chromosome 1 at a LOD score of 4.2 that contributes 10.4% of variation in g-globin expression level. Combining transgenic modeling of the human b-globin gene cluster with quantitative trait analysis, we have identified and mapped a murine locus that impacts on human g-globin expression in vivo.

  2. “First, do no harm”: legal guidelines for health programmes affecting adolescents aged 10–17 who sell sex or inject drugs

    Directory of Open Access Journals (Sweden)

    Brendan Conner

    2015-02-01

    Full Text Available Introduction: There is a strong evidence base that the stigma, discrimination and criminalization affecting adolescent key populations (KPs aged 10–17 is intensified due to domestic and international legal constructs that rely on law-enforcement-based interventions dependent upon arrest, pre-trial detention, incarceration and compulsory “rehabilitation” in institutional placement. While there exists evidence and rights-based technical guidelines for interventions among older cohorts, these guidelines have not yet been embraced by international public health actors for fear that international law applies different standards to adolescents aged 10–17 who engage in behaviours such as selling sex or injecting drugs. Discussion: As a matter of international human rights, health, juvenile justice and child protection law, interventions among adolescent KPs aged 10–17 must not involve arrest, prosecution or detention of any kind. It is imperative that interventions not rely on law enforcement, but instead low-threshold, voluntary services, shelter and support, utilizing peer-based outreach as much as possible. These services must be mobile and accessible, and permit alternatives to parental consent for the provision of life-saving support, including HIV testing, treatment and care, needle and syringe programmes, opioid substitution therapy, safe abortions, antiretroviral therapy and gender-affirming care and hormone treatment for transgender adolescents. To ensure enrolment in services, international guidance indicates that informed consent and confidentiality must be ensured, including by waiver of parental consent requirements. To remove the disincentive to health practitioners and researchers to engaging with adolescent KPs aged 10–17 government agencies and ethical review boards are advised to exempt or grant waivers for mandatory reporting. In the event that, in violation of international law and guidance, authorities seek to

  3. Construction and expression of retroviruses encoding dual drug resistance genes in human umbilical cord blood CD34+ cells

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A series of retroviral vectors encoding human mdr1 gene alone as well as in combination with either human mgmt gene or human mutant Ser31-dhfr gene are engineered. The resultant retroviruses are used to transduce human umbilical cord blood CD34+ cells. It has been shown that expression of dual drug resistance genes in transduced cells confers a broad range of resistance to both kinds of corresponding drugs. These data suggest a rationale for the use of such double chemoresistance gene constructs in an in vivo model in which transduced hematopoietic cells will acquire multiple protection against the cytotoxic side effects of combination chemotherapy and may have future application in chemoprotection of normal tissues, thus killing tumor cells more effectively.

  4. Safe Thinking and Affect Regulation (STAR): Human Immunodeficiency Virus Prevention in Alternative/Therapeutic Schools

    Science.gov (United States)

    Brown, Larry K.; Nugent, Nicole R.; Houck, Christopher D.; Lescano, Celia M.; Whiteley, Laura B.; Barker, David; Viau, Lisa; Zlotnick, Caron

    2011-01-01

    Objective: To evaluate the effectiveness of Safe Thinking and Affect Regulation (STAR), a 14-session HIV-prevention program for adolescents at alternative/therapeutic schools. Because these youth frequently have difficulties with emotions and cognitions, it was designed to improve sexuality-specific affect management and cognitive monitoring, as…

  5. Connecting art and science: An interdisciplinary strategy and its impact on the affective domain of community college human anatomy students

    Science.gov (United States)

    Petti, Kevin

    Educational objectives are often described within the framework of a three-domain taxonomy: cognitive, affective and psychomotor. While most of the research on educational objectives has focused on the cognitive domain, the research that has been conducted on the affective domain, which speaks to emotions, attitudes, and values, has identified a number of positive outcomes. One approach to enhancing the affective domain is that of interdisciplinary education. Science education research in the realm of interdisciplinary education and affective outcomes is limited; especially research conducted on community college students of human anatomy. This project investigated the relationship between an interdisciplinary teaching strategy and the affective domain in science education by utilizing an interdisciplinary lecture in a human anatomy class. Subjects were anatomy students in a California community college who listened to a one-hour lecture describing the cultural, historical and scientific significance of selected pieces of art depicting human dissection in European medieval and Renaissance universities. The focus was on how these renderings represent the state of anatomy education during their respective eras. After listening to the lecture, subjects were administered a 35-question survey that was composed of 14 demographic questions and 21 Likert-style statements that asked respondents to rate the extent to which the intervention influenced their affective domain. Descriptive statistics were then used to determine which component of the affective domain was most influenced, and multiple regression analysis was used to examine the extent to which individual differences along the affective continuum were explained by select demographic measures such as gender, race/ethnicity, education level, and previous exposure to science courses. Results indicate that the interdisciplinary intervention had a positive impact on every component of the affective domain hierarchy

  6. The Affective Dimension and Human Oriented Management of the Human Capital%人力资本的情感维度与人本管理

    Institute of Scientific and Technical Information of China (English)

    王晓峰

    2011-01-01

    现代管理正以前所未有的力度从物性向人性回归,组织员工越来越重视自身的情感满足,情感作为分析人力资本的一个重要维度,与体力维度、智力维度三者相互重叠、交互作用,构成人力资本的三重结构。随着情感在组织发展中的地位提升,情感维度对于开发与利用人力资本日渐重要,体现在战略管理上的意义就是人本管理。包含情感维度的人本管理是提升组织人力资本优势的重要途径之一。全面的人力资本与人本管理是组织实现绩效的有力管理工具,是组织挖掘潜在人力资源,提升核心竞争力的根本保证。在人力资本开发利用方面,情感维度能比体力、智力维度发挥更大作用,其协同效应将能创造更为显著的基于人本的竞争优势。%Modem management is more human oriented than physical property oriented. The stuff of any organization is attaching more and more importance to its own emotional satisfaction. The affection, an aspect of analyzing human capital, together with physical strength and intelligence, three of which overlap and interact with each other form the three structure of the human capital. With the role promotion of the affection in the development of the organization, its function is becoming more and more important in exploiting and using human capital, strategically, it is human oriented manage- ment. Affective human oriented management is one of the ways to promote the human capital advantage of the organization. The all-round human capital and human oriented management is an effective tool in the implementation of performance evaluation in the organization, and the basic guarantee of promoting its competitiveness through exploiting the human recourse potential. The function of affection is more significant than that of the physical strength and intelligence, its coordinating function can create more significant human oriented competitive

  7. How does enhancing cognition affect human values? How does this translate into social responsibility?

    Science.gov (United States)

    Cabrera, Laura Y

    2015-01-01

    The past decade has seen a rise in the use of different technologies aimed at enhancing cognition of normal healthy individuals. While values have been acknowledged to be an important aspect of cognitive enhancement practices, the discussion has predominantly focused on just a few values, such as safety, peer pressure, and authenticity. How are values, in a broader sense, affected by enhancing cognitive abilities? Is this dependent on the type of technology or intervention used to attain the enhancement, or does the cognitive domain targeted play a bigger role in how values are affected? Values are not only likely to be affected by cognitive enhancement practices; they also play a crucial role in defining the type of interventions that are likely to be undertaken. This paper explores the way values affect and are affected by enhancing cognitive abilities. Furthermore, it argues that knowledge of the interplay between values and cognitive enhancement makes a strong case for social responsibility around cognitive enhancement practices.

  8. Molecular modeling and multispectroscopic studies of the interaction of hepatitis B drug, adefovir dipivoxil with human serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Shahabadi, Nahid, E-mail: nahidshahabadi@yahoo.com [Department of Chemistry, Faculty of Science, Razi University, Kermanshah (Iran, Islamic Republic of); Medical Biology Research Center (MBRC) Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Falsafi, Monireh [Department of Chemistry, Faculty of Science, Razi University, Kermanshah (Iran, Islamic Republic of); Hadidi, Saba [Department of Chemistry, Faculty of Science, Razi University, Kermanshah (Iran, Islamic Republic of); Medical Biology Research Center (MBRC) Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of)

    2015-11-15

    The interaction of hepatitis B drug, adefovir dipivoxil with human serum albumin (HSA) was studied by using UV–vis, fluorometric, circular dichroism (CD) and molecular docking techniques. The results indicated that the binding of the drug to HSA caused fluorescence quenching through static quenching mechanism with binding constant of 1.3×103 M{sup −1}. The thermodynamic parameters indicated that the hydrophobic force contacts are the major forces in the stability of protein-drug complex (ΔH>0 and ΔS>0). The displacement experiments using the site probes viz., warfarin and ibuprofen showed that adefovir dipivoxil could bind to the site III of HSA. The results of CD and UV–vis spectroscopy indicated that the binding of the drug induced some conformational changes in HSA. Furthermore, the study of molecular docking also confirmed binding of adefovir dipivoxil to the site III of HSA by hydrophobic interaction. - Highlights: • The interaction of adefovir dipivoxil, drug for the treatment of HIV and HBV with human serum albumin (HSA) is investigated. • The drug bound to HSA by hydrophobic force and induced some conformational changes in HSA. • The study of molecular docking showed that adefovir dipivoxil could bind to the site III of HSA mainly.

  9. Molecular modeling and multispectroscopic studies of the interaction of hepatitis B drug, adefovir dipivoxil with human serum albumin

    International Nuclear Information System (INIS)

    The interaction of hepatitis B drug, adefovir dipivoxil with human serum albumin (HSA) was studied by using UV–vis, fluorometric, circular dichroism (CD) and molecular docking techniques. The results indicated that the binding of the drug to HSA caused fluorescence quenching through static quenching mechanism with binding constant of 1.3×103 M−1. The thermodynamic parameters indicated that the hydrophobic force contacts are the major forces in the stability of protein-drug complex (ΔH>0 and ΔS>0). The displacement experiments using the site probes viz., warfarin and ibuprofen showed that adefovir dipivoxil could bind to the site III of HSA. The results of CD and UV–vis spectroscopy indicated that the binding of the drug induced some conformational changes in HSA. Furthermore, the study of molecular docking also confirmed binding of adefovir dipivoxil to the site III of HSA by hydrophobic interaction. - Highlights: • The interaction of adefovir dipivoxil, drug for the treatment of HIV and HBV with human serum albumin (HSA) is investigated. • The drug bound to HSA by hydrophobic force and induced some conformational changes in HSA. • The study of molecular docking showed that adefovir dipivoxil could bind to the site III of HSA mainly

  10. A new system for profiling drug-induced calcium signal perturbation in human embryonic stem cell-derived cardiomyocytes.

    Science.gov (United States)

    Lewis, Kimberley J; Silvester, Nicole C; Barberini-Jammaers, Steven; Mason, Sammy A; Marsh, Sarah A; Lipka, Magdalena; George, Christopher H

    2015-03-01

    The emergence of human stem cell-derived cardiomyocyte (hSCCM)-based assays in the cardiovascular (CV) drug discovery sphere requires the development of improved systems for interrogating the rich information that these cell models have the potential to yield. We developed a new analytical framework termed SALVO (synchronization, amplitude, length, and variability of oscillation) to profile the amplitude and temporal patterning of intra- and intercellular calcium signals in hSCCM. SALVO quantified drug-induced perturbations in the calcium signaling "fingerprint" in spontaneously contractile hSCCM. Multiparametric SALVO outputs were integrated into a single index of in vitro cytotoxicity that confirmed the rank order of perturbation as astemizole > thioridazine > cisapride > flecainide > valdecoxib > sotalol > nadolol ≈ control. This rank order of drug-induced Ca(2+) signal disruption is in close agreement with the known arrhythmogenic liabilities of these compounds in humans. Validation of the system using a second set of compounds and hierarchical cluster analysis demonstrated the utility of SALVO to discriminate drugs based on their mechanisms of action. We discuss the utility of this new mechanistically agnostic system for the evaluation of in vitro drug cytotoxicity in hSCCM syncytia and the potential placement of SALVO in the early stage drug screening framework. PMID:25367900

  11. A New System for Profiling Drug-Induced Calcium Signal Perturbation in Human Embryonic Stem Cell–Derived Cardiomyocytes

    Science.gov (United States)

    Lewis, Kimberley J.; Silvester, Nicole C.; Barberini-Jammaers, Steven; Mason, Sammy A.; Marsh, Sarah A.; Lipka, Magdalena

    2015-01-01

    The emergence of human stem cell–derived cardiomyocyte (hSCCM)–based assays in the cardiovascular (CV) drug discovery sphere requires the development of improved systems for interrogating the rich information that these cell models have the potential to yield. We developed a new analytical framework termed SALVO (synchronization, amplitude, length, and variability of oscillation) to profile the amplitude and temporal patterning of intra- and intercellular calcium signals in hSCCM. SALVO quantified drug-induced perturbations in the calcium signaling “fingerprint” in spontaneously contractile hSCCM. Multiparametric SALVO outputs were integrated into a single index of in vitro cytotoxicity that confirmed the rank order of perturbation as astemizole > thioridazine > cisapride > flecainide > valdecoxib > sotalol > nadolol ≈ control. This rank order of drug-induced Ca2+ signal disruption is in close agreement with the known arrhythmogenic liabilities of these compounds in humans. Validation of the system using a second set of compounds and hierarchical cluster analysis demonstrated the utility of SALVO to discriminate drugs based on their mechanisms of action. We discuss the utility of this new mechanistically agnostic system for the evaluation of in vitro drug cytotoxicity in hSCCM syncytia and the potential placement of SALVO in the early stage drug screening framework. PMID:25367900

  12. A Cocaine Hydrolase Engineered from Human Butyrylcholinesterase Selectively Blocks Cocaine Toxicity and Reinstatement of Drug Seeking in Rats

    OpenAIRE

    Brimijoin, Stephen; Gao, Yang; Anker, Justin J.; Gliddon, Luke A.; LaFleur, David; Shah, R.; Zhao, Qinghai; Singh, M; Carroll, Marilyn E.

    2008-01-01

    Successive rational mutations of human butyrylcholinesterase (BChE) followed by fusion to human serum albumin have yielded an efficient hydrolase that offers realistic options for therapy of cocaine overdose and abuse. This albumin-BChE prevented seizures in rats given a normally lethal cocaine injection (100 mg/kg, i.p.), lowered brain cocaine levels even when administered after the drug, and provided rescue after convulsions commenced. Moreover, it selectively blocked cocaine-induced reinst...

  13. Environmental Levels of para-Nonylphenol Are Able to Affect Cytokine Secretion in Human Placenta

    OpenAIRE

    Bechi, Nicoletta; Ietta, Francesca; Romagnoli, Roberta; Jantra, Silke; Cencini, Marco; Galassi, Gianmichele; Serchi, Tommaso; Corsi, Ilaria; Focardi, Silvano; Paulesu, Luana

    2009-01-01

    Background para-Nonylphenol (p-NP) is a metabolite of alkylphenols widely used in the chemical industry and manufacturing. It accumulates in the environment, where it acts with estrogen-like activity. We previously showed that p-NP acts on human placenta by inducing trophoblast differentiation and apoptosis. Objective The aim of the present study was to investigate the effect of p-NP on cytokine secretion in human placenta. Methods In vitro cultures of chorionic villous explants from human pl...

  14. Analytical method development for powder characterization: Visualization of the critical drug loading affecting the processability of a formulation for direct compression.

    Science.gov (United States)

    Hirschberg, Cosima; Sun, Changquan Calvin; Rantanen, Jukka

    2016-09-01

    Characterization of particulate systems (powders) is one of the remaining scientific challenges. Evaluation of powder behaviour is often empirical and the decision-making processes are experience-based. There is a need for development of analytical instrumentation enabling more fundamental understanding of powder behaviour. Flowability and tabletability, two key factors in commercial scale manufacturing of tablets with direct compression (DC) approach, were analysed for formulations containing increasing amounts of several model active pharmaceutical ingredients (APIs). Flowability was investigated using a ring shear tester and tablets were prepared at four different compression pressures using a single punch tablet press. Thereby, a material sparing screening approach was developed to estimate the influence of APIs on behaviour of a given DC formulation. Additionally, this approach is useful for estimating the low threshold amount of API (wt%), at which the properties of an API start affecting the powder behaviour of a given formulation (API-excipient mixture). This threshold will be referred to as critical drug loading. The flowability of microcrystalline cellulose (reference grade pH 102) was used as a threshold for adequate flowability of model formulations. The threshold for tablet tensile strength was set to 2MPa. Simultaneous visual presentation of both- flowability and tabletability were used for a fast evaluation of manufacturability of a given formulation. The results confirmed that flowability is more sensitive to drug loading than tabletability, and that the critical drug loading for a DC formulation is strongly affected by particulate properties of API. For example, decreasing the particle size of paracetamol led to rapid decrease in flowability index, whereas the tabletability was not affected. PMID:27368089

  15. Factors affecting the development of adverse drug reactions to β-blockers in hospitalized cardiac patient population

    Science.gov (United States)

    Mugoša, Snežana; Djordjević, Nataša; Djukanović, Nina; Protić, Dragana; Bukumirić, Zoran; Radosavljević, Ivan; Bošković, Aneta; Todorović, Zoran

    2016-01-01

    The aim of the present study was to undertake a study on the prevalence of cytochrome P450 2D6 (CYP2D6) poor metabolizer alleles (*3, *4, *5, and *6) on a Montenegrin population and its impact on developing adverse drug reactions (ADRs) of β-blockers in a hospitalized cardiac patient population. A prospective study was conducted in the Cardiology Center of the Clinical Center of Montenegro and included 138 patients who had received any β-blocker in their therapy. ADRs were collected using a specially designed questionnaire, based on the symptom list and any signs that could point to eventual ADRs. Data from patients’ medical charts, laboratory tests, and other available parameters were observed and combined with the data from the questionnaire. ADRs to β-blockers were observed in 15 (10.9%) patients. There was a statistically significant difference in the frequency of ADRs in relation to genetically determined enzymatic activity (Phospitalization, CYP2D6 poor metabolizer phenotype, and the concomitant use of other CYP2D6-metabolizing drugs. Therefore, in hospitalized patients with polypharmacy CYP2D6 genotyping might be useful in detecting those at risk of ADRs.

  16. The CYP3A4 inhibitor intraconazole does not affect the pharmacokinetics of a new calcium-sensitizing drug levosimendan.

    Science.gov (United States)

    Antila, S; Honkanen, T; Lehtonen, L; Neuvonen, P J

    1998-08-01

    Itraconazole is a potent inhibitor of CYP3A4 isoenzyme and it can cause clinically significant interactions with some other drugs. Levosimendan is a new calcium-sensitizing drug intended for congestive heart failure. We aimed to study possible interactions of itraconazole with levosimendan in healthy volunteers. Twelve healthy male volunteers were included into a randomized, double-blind, two-phase crossover study. A wash-out period of 4 weeks was held between the phases. The subjects were given orally itraconazole 200 mg or placebo daily for 5 days. On the fifth day, they received a single oral dose of 2 mg of levosimendan. Levosimendan plasma concentrations were determined up to 12 hours and ECG, heart rate, and blood pressure followed-up to 8 hours after intake of levosimendan. Itraconazole had no significant effects on the pharmacokinetic parameters of levosimendan. Neither were there any differences in heart rate, PQ-, QTc- or QRS intervals between the placebo and itraconazole phases. The systolic blood pressure was decreased slightly more (p < 0.05) during the itraconazole phase than during the placebo phase. In conclusion, because the potent CYP3A4 inhibitor itraconazole had no significant pharmacokinetic interaction with levosimendan, interactions with CYP3A4 inhibitor, and oral levosimendan are unlikely.

  17. Repurposing of approved drugs from the human pharmacopoeia to target Wolbachia endosymbionts of onchocerciasis and lymphatic filariasis

    Directory of Open Access Journals (Sweden)

    Kelly L. Johnston

    2014-12-01

    Full Text Available Lymphatic filariasis and onchocerciasis are debilitating diseases caused by parasitic filarial nematodes infecting around 150 million people throughout the tropics with more than 1.5 billion at risk. As with other neglected tropical diseases, classical drug-discovery and development is lacking and a 50 year programme of macrofilaricidal discovery failed to deliver a drug which can be used as a public health tool. Recently, antibiotic targeting of filarial Wolbachia, an essential bacterial symbiont, has provided a novel drug treatment for filariasis with macrofilaricidal activity, although the current gold-standard, doxycycline, is unsuitable for use in mass drug administration (MDA. The anti-Wolbachia (A·WOL Consortium aims to identify novel anti-Wolbachia drugs, compounds or combinations that are suitable for use in MDA. Development of a Wolbachia cell-based assay has enabled the screening of the approved human drug-pharmacopoeia (∼2600 drugs for a potential repurposing. This screening strategy has revealed that approved drugs from various classes show significant bacterial load reduction equal to or superior to the gold-standard doxycycline, with 69 orally available hits from different drug categories being identified. Based on our defined hit criteria, 15 compounds were then selectively screened in a Litomosoides sigmodontis mouse model, 4 of which were active. These came from the tetracycline, fluoroquinolone and rifamycin classes. This strategy of repurposing approved drugs is a promising development in the goal of finding a novel treatment against filariasis and could also be a strategy applicable for other neglected tropical diseases.

  18. Repurposing of approved drugs from the human pharmacopoeia to target Wolbachia endosymbionts of onchocerciasis and lymphatic filariasis.

    Science.gov (United States)

    Johnston, Kelly L; Ford, Louise; Umareddy, Indira; Townson, Simon; Specht, Sabine; Pfarr, Kenneth; Hoerauf, Achim; Altmeyer, Ralf; Taylor, Mark J

    2014-12-01

    Lymphatic filariasis and onchocerciasis are debilitating diseases caused by parasitic filarial nematodes infecting around 150 million people throughout the tropics with more than 1.5 billion at risk. As with other neglected tropical diseases, classical drug-discovery and development is lacking and a 50 year programme of macrofilaricidal discovery failed to deliver a drug which can be used as a public health tool. Recently, antibiotic targeting of filarial Wolbachia, an essential bacterial symbiont, has provided a novel drug treatment for filariasis with macrofilaricidal activity, although the current gold-standard, doxycycline, is unsuitable for use in mass drug administration (MDA). The anti-Wolbachia (A·WOL) Consortium aims to identify novel anti-Wolbachia drugs, compounds or combinations that are suitable for use in MDA. Development of a Wolbachia cell-based assay has enabled the screening of the approved human drug-pharmacopoeia (∼2600 drugs) for a potential repurposing. This screening strategy has revealed that approved drugs from various classes show significant bacterial load reduction equal to or superior to the gold-standard doxycycline, with 69 orally available hits from different drug categories being identified. Based on our defined hit criteria, 15 compounds were then selectively screened in a Litomosoides sigmodontis mouse model, 4 of which were active. These came from the tetracycline, fluoroquinolone and rifamycin classes. This strategy of repurposing approved drugs is a promising development in the goal of finding a novel treatment against filariasis and could also be a strategy applicable for other neglected tropical diseases. PMID:25516838

  19. Probing the binding sites of antibiotic drugs doxorubicin and N-(trifluoroacetyl doxorubicin with human and bovine serum albumins.

    Directory of Open Access Journals (Sweden)

    Daniel Agudelo

    Full Text Available We located the binding sites of doxorubicin (DOX and N-(trifluoroacetyl doxorubicin (FDOX with bovine serum albumin (BSA and human serum albumins (HSA at physiological conditions, using constant protein concentration and various drug contents. FTIR, CD and fluorescence spectroscopic methods as well as molecular modeling were used to analyse drug binding sites, the binding constant and the effect of drug complexation on BSA and HSA stability and conformations. Structural analysis showed that doxorubicin and N-(trifluoroacetyl doxorubicin bind strongly to BSA and HSA via hydrophilic and hydrophobic contacts with overall binding constants of K(DOX-BSA = 7.8 (± 0.7 × 10(3 M(-1, K(FDOX-BSA = 4.8 (± 0.5× 10(3 M(-1 and K(DOX-HSA = 1.1 (± 0.3× 10(4 M(-1, K(FDOX-HSA = 8.3 (± 0.6× 10(3 M(-1. The number of bound drug molecules per protein is 1.5 (DOX-BSA, 1.3 (FDOX-BSA 1.5 (DOX-HSA, 0.9 (FDOX-HSA in these drug-protein complexes. Docking studies showed the participation of several amino acids in drug-protein complexation, which stabilized by H-bonding systems. The order of drug-protein binding is DOX-HSA > FDOX-HSA > DOX-BSA > FDOX>BSA. Drug complexation alters protein conformation by a major reduction of α-helix from 63% (free BSA to 47-44% (drug-complex and 57% (free HSA to 51-40% (drug-complex inducing a partial protein destabilization. Doxorubicin and its derivative can be transported by BSA and HSA in vitro.

  20. The structure of the leukemia drug imatinib bound to human quinone reductase 2 (NQO2

    Directory of Open Access Journals (Sweden)

    Winger Jonathan A

    2009-02-01

    Full Text Available Abstract Background Imatinib represents the first in a class of drugs targeted against chronic myelogenous leukemia to enter the clinic, showing excellent efficacy and specificity for Abl, Kit, and PDGFR kinases. Recent screens carried out to find off-target proteins that bind to imatinib identified the oxidoreductase NQO2, a flavoprotein that is phosphorylated in a chronic myelogenous leukemia cell line. Results We examined the inhibition of NQO2 activity by the Abl kinase inhibitors imatinib, nilotinib, and dasatinib, and obtained IC50 values of 80 nM, 380 nM, and >100 μM, respectively. Using electronic absorption spectroscopy, we show that imatinib binding results in a perturbation of the protein environment around the flavin prosthetic group in NQO2. We have determined the crystal structure of the complex of imatinib with human NQO2 at 1.75 Å resolution, which reveals that imatinib binds in the enzyme active site, adjacent to the flavin isoalloxazine ring. We find that phosphorylation of NQO2 has little effect on enzyme activity and is therefore likely to regulate other aspects of NQO2 function. Conclusion The structure of the imatinib-NQO2 complex demonstrates that imatinib inhibits NQO2 activity by competing with substrate for the active site. The overall conformation of imatinib when bound to NQO2 resembles the folded conformation observed in some kinase complexes. Interactions made by imatinib with residues at the rim of the active site provide an explanation for the binding selectivity of NQO2 for imatinib, nilotinib, and dasatinib. These interactions also provide a rationale for the lack of inhibition of the related oxidoreductase NQO1 by these compounds. Taken together, these studies provide insight into the mechanism of NQO2 inhibition by imatinib, with potential implications for drug design and treatment of chronic myelogenous leukemia in patients.

  1. Expression Profile of Genes Related to Drug Metabolism in Human Brain Tumors.

    Directory of Open Access Journals (Sweden)

    Pantelis Stavrinou

    Full Text Available Endogenous and exogenous compounds as well as carcinogens are metabolized and detoxified by phase I and II enzymes, the activity of which could be crucial to the inactivation and hence susceptibility to carcinogenic factors. The expression of these enzymes in human brain tumor tissue has not been investigated sufficiently. We studied the association between tumor pathology and the expression profile of seven phase I and II drug metabolizing genes (CYP1A1, CYP1B1, ALDH3A1, AOX1, GSTP1, GSTT1 and GSTM3 and some of their proteins.Using qRT-PCR and western blotting analysis the gene and protein expression in a cohort of 77 tumors were investigated. The major tumor subtypes were meningioma, astrocytoma and brain metastases, -the later all adenocarcinomas from a lung primary.Meningeal tumors showed higher expression levels for AOX1, CYP1B1, GSTM3 and GSTP1. For AOX1, GSTM and GSTP1 this could be verified on a protein level as well. A negative correlation between the WHO degree of malignancy and the strength of expression was identified on both transcriptional and translational level for AOX1, GSTM3 and GSTP1, although the results could have been biased by the prevalence of meningiomas and glioblastomas in the inevitably bipolar distribution of the WHO grades. A correlation between the gene expression and the protein product was observed for AOX1, GSTP1 and GSTM3 in astrocytomas.The various CNS tumors show different patterns of drug metabolizing gene expression. Our results suggest that the most important factor governing the expression of these enzymes is the histological subtype and to a far lesser extent the degree of malignancy itself.

  2. Impact of antibacterial drugs on human serum paraoxonase-1(hPON1)activity:an in vitro study

    Institute of Scientific and Technical Information of China (English)

    Hakan; Syt; Elif; Duygu; Kaya; Skr; Beydemir

    2014-01-01

    Objective:To investigate the in vitro effects of the antihacterial drugs,mcropenem trihydrate.piperacillin sodium,and cefoperazone sodium,on the activity of human serum paraoxonase mPOND.Methods:hPQN1 was purified from human serum using simple chromatographic methods.including DEAE-Sephadex anion exchange and Sephadex G-200 gel filtration chromatography.Results:The three antihacterial drugs decreased in vitro hPON1 activity.Inhibition mechanisms meropcnem trihydrate was noncompetitive while piperacillin sodium and cefoperazone sodium were competitive.Conclusions:Our results showed that antihacterial drugs significantly inhibit hPON1 activity,both in vitro,with rank order meropenem trihydrate piperacillin sodium cefoperazone sodium in vitro.

  3. Characterization of the binding of metoprolol tartrate and guaifenesin drugs to human serum albumin and human hemoglobin proteins by fluorescence and circular dichroism spectroscopy.

    Science.gov (United States)

    Duman, Osman; Tunç, Sibel; Kancı Bozoğlan, Bahar

    2013-07-01

    The interactions of metoprolol tartrate (MPT) and guaifenesin (GF) drugs with human serum albumin (HSA) and human hemoglobin (HMG) proteins at pH 7.4 were studied by fluorescence and circular dichroism (CD) spectroscopy. Drugs quenched the fluorescence spectra of HSA and HMG proteins through a static quenching mechanism. For each protein-drug system, the values of Stern-Volmer quenching constant, bimolecular quenching constant, binding constant and number of binding site on the protein molecules were determined at 288.15, 298.15, 310.15 and 318.15 K. It was found that the binding constants of HSA-MPT and HSA-GF systems were smaller than those of HMG-MPT and HMG-GF systems. For both drugs, the affinity of HMG was much higher than that of HSA. An increase in temperature caused a negative effect on the binding reactions. The number of binding site on blood proteins for MPT and GF drugs was approximately one. Thermodynamic parameters showed that MPT interacted with HSA through electrostatic attraction forces. However, hydrogen bonds and van der Waals forces were the main interaction forces in the formation of HSA-GF, HMG-MPT and HMG-GF complexes. The binding processes between protein and drug molecules were exothermic and spontaneous owing to negative ∆H and ∆G values, respectively. The values of binding distance between protein and drug molecules were calculated from Förster resonance energy transfer theory. It was found from CD analysis that the bindings of MPT and GF drugs to HSA and HMG proteins altered the secondary structure of HSA and HMG proteins. PMID:23471625

  4. Human Genetics in Rheumatoid Arthritis Guides a High-Throughput Drug Screen of the CD40 Signaling Pathway

    NARCIS (Netherlands)

    Li, Gang; Diogo, Dorothee; Wu, Di; Spoonamore, Jim; Dancik, Vlado; Franke, Lude; Kurreeman, Fina; Rossin, Elizabeth J.; Duclos, Grant; Hartland, Cathy; Zhou, Xuezhong; Li, Kejie; Liu, Jun; De Jager, Philip L.; Siminovitch, Katherine A.; Zhernakova, Alexandra; Raychaudhuri, Soumya; Bowes, John; Eyre, Steve; Padyukov, Leonid; Gregersen, Peter K.; Worthington, Jane; Gupta, Namrata; Clemons, Paul A.; Stahl, Eli; Tolliday, Nicola; Plenge, Robert M.

    2013-01-01

    Although genetic and non-genetic studies in mouse and human implicate the CD40 pathway in rheumatoid arthritis (RA), there are no approved drugs that inhibit CD40 signaling for clinical care in RA or any other disease. Here, we sought to understand the biological consequences of a CD40 risk variant

  5. Effect of Antimicrobial Use in Agricultural Animals on Drug-resistant Foodborne Campylobacteriosis in Humans: A Systematic Literature Review.

    Science.gov (United States)

    McCrackin, M A; Helke, Kristi L; Galloway, Ashley M; Poole, Ann Z; Salgado, Cassandra D; Marriott, Bernadette P

    2016-10-01

    Controversy continues concerning antimicrobial use in food animals and its relationship to drug-resistant infections in humans. We systematically reviewed published literature for evidence of a relationship between antimicrobial use in agricultural animals and drug-resistant foodborne campylobacteriosis in humans. Based on publications from the United States (U.S.), Canada and Denmark from 2010 to July 2014, 195 articles were retained for abstract review, 50 met study criteria for full article review with 36 retained for which data are presented. Two publications reported increase in macrolide resistance of Campylobacter coli isolated from feces of swine receiving macrolides in feed, and one of these described similar findings for tetracyclines and fluoroquinolones. A study in growing turkeys demonstrated increased macrolide resistance associated with therapeutic dosing with Tylan® in drinking water. One publication linked tetracycline-resistant C. jejuni clone SA in raw cow's milk to a foodborne outbreak in humans. No studies that identified farm antimicrobial use also traced antimicrobial-resistant Campylobacter from farm to fork. Recent literature confirms that on farm antibiotic selection pressure can increase colonization of animals with drug-resistant Campylobacter spp. but is inadequately detailed to establish a causal relationship between use of antimicrobials in agricultural animals and prevalence of drug-resistant foodborne campylobacteriosis in humans. PMID:26580432

  6. 21 CFR 250.11 - Thyroid-containing drug preparations intended for treatment of obesity in humans.

    Science.gov (United States)

    2010-04-01

    ... condition is directly related to hypothyroidism and there exists a concurrent need for appetite control (in... obesity not related to hypothyroidism are regarded as misbranded. Such combinations when offered for obesity in humans directly attributable to established hypothyroidism are regarded as new drugs within...

  7. Characterization of human seminomas : apoptosis, stem cell factor and mutant RAS affect in vitro behavior

    NARCIS (Netherlands)

    R.A. Olie (Robert)

    1995-01-01

    textabstractThis thesis contains the results of a research project aimed at obtaining cell lines of seminomas, relatively rare human tumors. Seminoma cell lines, thus far lacking, would be important in the study of the pathobiology of human genn cell tumors. Seminomas represent one of the two types

  8. Hundreds of variants clustered in genomic loci and biological pathways affect human height

    DEFF Research Database (Denmark)

    Lango Allen, Hana; Estrada, Karol; Lettre, Guillaume;

    2010-01-01

    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions...

  9. Hundreds of variants clustered in genomic loci and biological pathways affect human height

    NARCIS (Netherlands)

    Allen, Hana Lango; Estrada, Karol; Lettre, Guillaume; Berndt, Sonja I.; Weedon, Michael N.; Rivadeneira, Fernando; Willer, Cristen J.; Jackson, Anne U.; Vedantam, Sailaja; Raychaudhuri, Soumya; Ferreira, Teresa; Wood, Andrew R.; Weyant, Robert J.; Segre, Ayellet V.; Speliotes, Elizabeth K.; Wheeler, Eleanor; Soranzo, Nicole; Park, Ju-Hyun; Yang, Jian; Gudbjartsson, Daniel; Heard-Costa, Nancy L.; Randall, Joshua C.; Qi, Lu; Smith, Albert Vernon; Maegi, Reedik; Pastinen, Tomi; Liang, Liming; Heid, Iris M.; Luan, Jian'an; Thorleifsson, Gudmar; Winkler, Thomas W.; Goddard, Michael E.; Lo, Ken Sin; Palmer, Cameron; Workalemahu, Tsegaselassie; Aulchenko, Yurii S.; Johansson, Asa; Zillikens, M. Carola; Feitosa, Mary F.; Esko, Tonu; Johnson, Toby; Ketkar, Shamika; Kraft, Peter; Mangino, Massimo; Prokopenko, Inga; Absher, Devin; Albrecht, Eva; Ernst, Florian; Glazer, Nicole L.; Hayward, Caroline; Hottenga, Jouke-Jan; Jacobs, Kevin B.; Knowles, Joshua W.; Kutalik, Zoltan; Monda, Keri L.; Polasek, Ozren; Preuss, Michael; Rayner, Nigel W.; Robertson, Neil R.; Steinthorsdottir, Valgerdur; Tyrer, Jonathan P.; Voight, Benjamin F.; Wiklund, Fredrik; Xu, Jianfeng; Zhao, Jing Hua; Nyholt, Dale R.; Pellikka, Niina; Perola, Markus; Perry, John R. B.; Surakka, Ida; Tammesoo, Mari-Liis; Altmaier, Elizabeth L.; Amin, Najaf; Aspelund, Thor; Bhangale, Tushar; Boucher, Gabrielle; Chasman, Daniel I.; Chen, Constance; Coin, Lachlan; Cooper, Matthew N.; Dixon, Anna L.; Gibson, Quince; Grundberg, Elin; Hao, Ke; Junttila, M. Juhani; Kaplan, Lee M.; Kettunen, Johannes; Koenig, Inke R.; Kwan, Tony; Lawrence, Robert W.; Levinson, Douglas F.; Lorentzon, Mattias; McKnight, Barbara; Morris, Andrew P.; Mueller, Martina; Ngwa, Julius Suh; Purcell, Shaun; Rafelt, Suzanne; Salem, Rany M.; Salvi, Erika; Sanna, Serena; Shi, Jianxin; Sovio, Ulla; Thompson, John R.; Turchin, Michael C.; Vandenput, Liesbeth; Verlaan, Dominique J.; Vitart, Veronique; White, Charles C.; Ziegler, Andreas; Almgren, Peter; Balmforth, Anthony J.; Campbell, Harry; Citterio, Lorena; De Grandi, Alessandro; Dominiczak, Anna; Duan, Jubao; Elliott, Paul; Elosua, Roberto; Eriksson, Johan G.; Freimer, Nelson B.; Geus, Eco J. C.; Glorioso, Nicola; Haiqing, Shen; Hartikainen, Anna-Liisa; Havulinna, Aki S.; Hicks, Andrew A.; Hui, Jennie; Igl, Wilmar; Illig, Thomas; Jula, Antti; Kajantie, Eero; Kilpelaeinen, Tuomas O.; Koiranen, Markku; Kolcic, Ivana; Koskinen, Seppo; Kovacs, Peter; Laitinen, Jaana; Liu, Jianjun; Lokki, Marja-Liisa; Marusic, Ana; Maschio, Andrea; Meitinger, Thomas; Mulas, Antonella; Pare, Guillaume; Parker, Alex N.; Peden, John F.; Petersmann, Astrid; Pichler, Irene; Pietilainen, Kirsi H.; Pouta, Anneli; Riddertrale, Martin; Rotter, Jerome I.; Sambrook, Jennifer G.; Sanders, Alan R.; Schmidt, Carsten Oliver; Sinisalo, Juha; Smit, Jan H.; Stringham, Heather M.; Walters, G. Bragi; Widen, Elisabeth; Wild, Sarah H.; Willemsen, Gonneke; Zagato, Laura; Zgaga, Lina; Zitting, Paavo; Alavere, Helene; Farrall, Martin; McArdle, Wendy L.; Nelis, Mari; Peters, Marjolein J.; Ripatti, Samuli; vVan Meurs, Joyce B. J.; Aben, Katja K.; Ardlie, Kristin G.; Beckmann, Jacques S.; Beilby, John P.; Bergman, Richard N.; Bergmann, Sven; Collins, Francis S.; Cusi, Daniele; den Heijer, Martin; Eiriksdottir, Gudny; Gejman, Pablo V.; Hall, Alistair S.; Hamsten, Anders; Huikuri, Heikki V.; Iribarren, Carlos; Kahonen, Mika; Kaprio, Jaakko; Kathiresan, Sekar; Kiemeney, Lambertus; Kocher, Thomas; Launer, Lenore J.; Lehtimaki, Terho; Melander, Olle; Mosley, Tom H.; Musk, Arthur W.; Nieminen, Markku S.; O'Donnell, Christopher J.; Ohlsson, Claes; Oostra, Ben; Palmer, Lyle J.; Raitakari, Olli; Ridker, Paul M.; Rioux, John D.; Rissanen, Aila; Rivolta, Carlo; Schunkert, Heribert; Shuldiner, Alan R.; Siscovick, David S.; Stumvoll, Michael; Toenjes, Anke; Tuomilehto, Jaakko; van Ommen, Gert-Jan; Viikari, Jorma; Heath, Andrew C.; Martin, Nicholas G.; Montgomery, Grant W.; Province, Michael A.; Kayser, Manfred; Arnold, Alice M.; Atwood, Larry D.; Boerwinkle, Eric; Chanock, Stephen J.; Deloukas, Panos; Gieger, Christian; Gronberg, Henrik; Hall, Per; Hattersley, Andrew T.; Hengstenberg, Christian; Hoffman, Wolfgang; Lathrop, G. Mark; Salomaa, Veikko; Schreiber, Stefan; Uda, Manuela; Waterworth, Dawn; Wright, Alan F.; Assimes, Themistocles L.; Barroso, Ines; Hofman, Albert; Mohlke, Karen L.; Boomsma, Dorret I.; Caulfield, Mark J.; Cupples, L. Adrienne; Erdmann, Jeanette; Fox, Caroline S.; Gudnason, Vilmundur; Gyllensten, Ulf; Harris, Tamara B.; Hayes, Richard B.; Jarvelin, Marjo-Ritta; Mooser, Vincent; Munroe, Patricia B.; Ouwehand, Willem H.; Penninx, Brenda W.; Pramstaller, Peter P.; Quertermous, Thomas; Rudan, Igor; Samani, Nilesh J.; Spector, Timothy D.; Voelzke, Henry; Watkins, Hugh; Wilson, James F.; Groop, Leif C.; Haritunians, Talin; Hu, Frank B.; Kaplan, Robert C.; Metspalu, Andres; North, Kari E.; Schlessinger, David; Wareham, Nicholas J.; Hunter, David J.; O'Connell, Jeffrey R.; Strachan, David P.; Schadt, H. -Erich; Thorsteinsdottir, Unnur; Peltonen, Leena; Uitterlinden, Andre G.; Visscher, Peter M.; Chatterjee, Nilanjan; Loos, Ruth J. F.; Boehnke, Michael; McCarthy, Mark I.; Ingelsson, Erik; Lindgren, Cecilia M.; Abecasis, Goncalo R.; Stefansson, Kari; Frayling, Timothy M.; Hirschhorn, Joel N.

    2010-01-01

    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits(1), but these typically explain small fractions

  10. Hundreds of variants clustered in genomic loci and biological pathways affect human height

    NARCIS (Netherlands)

    H.L. Allen; K. Estrada Gil (Karol); G. Lettre (Guillaume); S.I. Berndt (Sonja); F. Rivadeneira Ramirez (Fernando); C.J. Willer (Cristen); A.U. Jackson (Anne); S. Vedantam (Sailaja); S. Raychaudhuri (Soumya); T. Ferreira (Teresa); A.R. Wood (Andrew); R.J. Weyant (Robert); A.V. Segrè (Ayellet); E.K. Speliotes (Elizabeth); E. Wheeler (Eleanor); N. Soranzo (Nicole); J.H. Park; J. Yang (Joanna); D.F. Gudbjartsson (Daniel); N.L. Heard-Costa (Nancy); J.C. Randall (Joshua); L. Qi (Lu); A.V. Smith (Albert Vernon); R. Mägi (Reedik); T. Pastinen (Tomi); L. Liang (Liming); I.M. Heid (Iris); J. Luan; G. Thorleifsson (Gudmar); T.W. Winkler (Thomas); M.E. Goddard (Michael); K.S. Lo; C. Palmer (Cameron); T. Workalemahu (Tsegaselassie); Y.S. Aulchenko (Yurii); A. Johansson (Åsa); M.C. Zillikens (Carola); M.F. Feitosa (Mary Furlan); T. Esko (Tõnu); T. Johnson (Toby); S. Ketkar (Shamika); P. Kraft (Peter); M. Mangino (Massimo); I. Prokopenko (Inga); D. Absher (Devin); E. Albrecht (Eva); F.D.J. Ernst (Florian); N.L. Glazer (Nicole); C. Hayward (Caroline); J.J. Hottenga (Jouke Jan); K.B. Jacobs (Kevin); J.W. Knowles (Joshua); Z. Kutalik (Zoltán); K.L. Monda (Keri); O. Polasek (Ozren); M. Preuss (Michael); N.W. Rayner (Nigel William); N.R. Robertson (Neil); V. Steinthorsdottir (Valgerdur); J.P. Tyrer (Jonathan); B.F. Voight (Benjamin); F. Wiklund (Fredrik); J. Xu (Jianfeng); J.H. Zhao; D.R. Nyholt (Dale); N. Pellikka (Niina); M. Perola (Markus); J.R.B. Perry (John); I. Surakka (Ida); M.L. Tammesoo; E.L. Altmaier (Elizabeth); N. Amin (Najaf); T. Aspelund (Thor); T. Bhangale (Tushar); G. Boucher (Gabrielle); D.I. Chasman (Daniel); C. Chen (Constance); L. Coin (Lachlan); M.N. Cooper (Matthew); A.L. Dixon (Anna); Q. Gibson (Quince); E. Grundberg (Elin); K. Hao (Ke); M.J. Junttila (Juhani); R.C. Kaplan (Robert); J. Kettunen (Johannes); I.R. König (Inke); T. Kwan (Tony); R.W. Lawrence (Robert); D.F. Levinson (Douglas); M. Lorentzon (Mattias); B. McKnight (Barbara); A.D. Morris (Andrew); M. Müller (Martina); J.S. Ngwa; S. Purcell (Shaun); S. Rafelt (Suzanne); R.M. Salem (Rany); E. Salvi (Erika); S. Sanna (Serena); J. Shi (Jianxin); U. Sovio (Ulla); J.R. Thompson (John); M.C. Turchin (Michael); L. Vandenput (Liesbeth); D.J. Verlaan (Dominique); V. Vitart (Veronique); C.C. White (Charles); A. Ziegler (Andreas); P. Almgren (Peter); A.J. Balmforth (Anthony); H. Campbell (Harry); L. Citterio (Lorena); A. de Grandi (Alessandro); A. Dominiczak (Anna); J. Duan (Jubao); P. Elliott (Paul); R. Elosua (Roberto); J.G. Eriksson (Johan); N.B. Freimer (Nelson); E.J.C. Geus (Eco); N. Glorioso (Nicola); S. Haiqing (Shen); A.L. Hartikainen; A.S. Havulinna (Aki); A.A. Hicks (Andrew); J. Hui (Jennie); W. Igl (Wilmar); T. Illig (Thomas); A. Jula (Antti); E. Kajantie (Eero); T.O. Kilpeläinen (Tuomas); M. Koiranen (Markku); I. Kolcic (Ivana); S. Koskinen (Seppo); P. Kovacs (Peter); J. Laitinen (Jaana); J. Liu (Jianjun); M.L. Lokki; A. Marusic (Ana); A. Maschio; T. Meitinger (Thomas); A. Mulas (Antonella); G. Paré (Guillaume); A.N. Parker (Alex); J. Peden (John); A. Petersmann (Astrid); I. Pichler (Irene); K.H. Pietilainen (Kirsi Hannele); A. Pouta (Anneli); M. Ridderstråle (Martin); J.I. Rotter (Jerome); J.G. Sambrook (Jennifer); A.R. Sanders (Alan); C.O. Schmidt (Carsten Oliver); J. Sinisalo (Juha); J.H. Smit (Jan); H.M. Stringham (Heather); G.B. Walters (Bragi); E. Widen (Elisabeth); S.H. Wild (Sarah); G.A.H.M. Willemsen (Gonneke); L. Zagato (Laura); L. Zgaga (Lina); P. Zitting (Paavo); H. Alavere (Helene); M. Farrall (Martin); W.L. McArdle (Wendy); M. Nelis (Mari); M.J. Peters (Marjolein); S. Ripatti (Samuli); J.B.J. van Meurs (Joyce); K.K.H. Aben (Katja); J.S. Beckmann (Jacques); J.P. Beilby (John); R.N. Bergman (Richard); S.M. Bergmann (Sven); F.S. Collins (Francis); D. Cusi (Daniele); M. den Heijer (Martin); G. Eiriksdottir (Gudny); P.V. Gejman (Pablo); A.S. Hall (Alistair); A. Hamsten (Anders); H.V. Huikuri (Heikki); C. Iribarren (Carlos); M. Kähönen (Mika); J. Kaprio (Jaakko); S. Kathiresan (Sekar); L.A.L.M. Kiemeney (Bart); T. Kocher (Thomas); L.J. Launer (Lenore); T. Lehtimäki (Terho); O. Melander (Olle); T.H. Mosley (Thomas); A.W. Musk (Arthur); M.S. Nieminen (Markku); C.J. O'Donnell (Christopher); C. Ohlsson (Claes); B.A. Oostra (Ben); O. Raitakari (Olli); P.M. Ridker (Paul); J.D. Rioux (John); A. Rissanen (Aila); C. Rivolta (Carlo); H. Schunkert (Heribert); A.R. Shuldiner (Alan); D.S. Siscovick (David); M. Stumvoll (Michael); A. Tönjes (Anke); J. Tuomilehto (Jaakko); G.J. van Ommen (Gert); J. Viikari (Jorma); A.C. Heath (Andrew); N.G. Martin (Nicholas); G.W. Montgomery (Grant); M.A. Province (Mike); M.H. Kayser (Manfred); A.M. Arnold (Alice); L.D. Atwood (Larry); E.A. Boerwinkle (Eric); S.J. Chanock (Stephen); P. Deloukas (Panagiotis); C. Gieger (Christian); H. Grönberg (Henrik); A.T. Hattersley (Andrew); C. Hengstenberg (Christian); W. Hoffman (Wolfgang); G.M. Lathrop (Mark); V. Salomaa (Veikko); S. Schreiber (Stefan); M. Uda (Manuela); D. Waterworth (Dawn); A.F. Wright (Alan); T.L. Assimes (Themistocles); I. Barroso (Inês); A. Hofman (Albert); K.L. Mohlke (Karen); D.I. Boomsma (Dorret); M. Caulfield (Mark); L.A. Cupples (Adrienne); C.S. Fox (Caroline); V. Gudnason (Vilmundur); U. Gyllensten (Ulf); T.B. Harris (Tamara); R.B. Hayes (Richard); M.R. Järvelin; V. Mooser (Vincent); P. Munroe (Patricia); W.H. Ouwehand (Willem); B.W.J.H. Penninx (Brenda); P.P. Pramstaller (Peter Paul); T. Quertermous (Thomas); I. Rudan (Igor); N.J. Samani (Nilesh); T.D. Spector (Timothy); H. Völzke (Henry); H. Watkins (Hugh); J.F. Wilson (James); L. Groop (Leif); T. Haritunians (Talin); F.B. Hu (Frank); A. Metspalu (Andres); K.E. North (Kari); D. Schlessinger; N.J. Wareham (Nick); D.J. Hunter (David); J.R. O´Connell; D.P. Strachan (David); H.E. Wichmann (Heinz Erich); I.B. Borecki (Ingrid); C.M. van Duijn (Cock); E.E. Schadt (Eric); U. Thorsteinsdottir (Unnur); L. Peltonen (Leena Johanna); A.G. Uitterlinden (André); P.M. Visscher (Peter); N. Chatterjee (Nilanjan); J. Erdmann (Jeanette); R.J.F. Loos (Ruth); M. Boehnke (Michael); M.I. McCarthy (Mark); E. Ingelsson (Erik); C.M. Lindgren (Cecilia); G.R. Abecasis (Gonçalo); K. Stefansson (Kari); T.M. Frayling (Timothy); J.N. Hirschhorn (Joel); K.G. Ardlie (Kristin); M.N. Weedon (Michael)

    2010-01-01

    textabstractMost common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits1, but these typically explain small

  11. Factors affecting the development of adverse drug reactions to β-blockers in hospitalized cardiac patient population

    Directory of Open Access Journals (Sweden)

    Mugoša S

    2016-08-01

    Full Text Available Snežana Mugoša,1,2 Nataša Djordjević,3 Nina Djukanović,4 Dragana Protić,5 Zoran Bukumirić,6 Ivan Radosavljević,7 Aneta Bošković,8 Zoran Todorović5,9 1Department of Pharmacotherapy, Faculty of Pharmacy, University of Montenegro, 2Clinical Trial Department, Agency for Medicines and Medical Devices of Montenegro, Podgorica, Montenegro; 3Department of Pharmacology and Toxicology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, 4High Medical School “Milutin Milanković”, Belgrade, 5Department of Pharmacology, Clinical Pharmacology and Toxicology, 6Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, 7Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia; 8Clinic for Heart Diseases, Clinical Centre of Montenegro, Podgorica, Montenegro; 9Department of Clinical Immunology and Allergy, Medical Center “Bežanijska kosa”, Belgrade, Serbia Abstract: The aim of the present study was to undertake a study on the prevalence of cytochrome P450 2D6 (CYP2D6 poor metabolizer alleles (*3, *4, *5, and *6 on a Montenegrin population and its impact on developing adverse drug reactions (ADRs of β-blockers in a hospitalized cardiac patient population. A prospective study was conducted in the Cardiology Center of the Clinical Center of Montenegro and included 138 patients who had received any β-blocker in their therapy. ADRs were collected using a specially designed questionnaire, based on the symptom list and any signs that could point to eventual ADRs. Data from patients’ medical charts, laboratory tests, and other available parameters were observed and combined with the data from the questionnaire. ADRs to β-blockers were observed in 15 (10.9% patients. There was a statistically significant difference in the frequency of ADRs in relation to genetically determined enzymatic activity (P<0.001, with ADRs’ occurrence significantly

  12. Proteomic profiling in incubation medium of mouse, rat and human precision-cut liver slices for biomarker detection regarding acute drug-induced liver injury

    NARCIS (Netherlands)

    van Swelm, Rachel P. L.; Hadi, Mackenzie; Laarakkers, Coby M. M.; Masereeuw, Rosalinde; Groothuis, Geny M. M.; Russel, Frans G. M.

    2014-01-01

    Drug-induced liver injury is one of the leading causes of drug withdrawal from the market. In this study, we investigated the applicability of protein profiling of the incubation medium of human, mouse and rat precision-cut liver slices (PCLS) exposed to liver injury-inducing drugs for biomarker ide

  13. Is drug discontinuation risk of adalimumab compared with etanercept affected by concomitant methotrexate dose in patients with rheumatoid arthritis?

    Directory of Open Access Journals (Sweden)

    Chen HH

    2016-02-01

    Full Text Available Hsin-Hua Chen,1–6 Der-Yuan Chen,1–3,6–8 Yi-Ming Chen,1–3 Chao-Hsiun Tang9 1Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan, Republic of China; 2School of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China; 3Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan, Republic of China; 4Institute of Public Health and Community Medicine Research Center, National Yang-Ming University, Taiwan, Republic of China; 5Institute of Hospital and Health Care Administration, National Yang-Ming University, Taipei, Taiwan, Republic of China; 6School of Medicine, Chung-Shan Medical University, Taichung, Taiwan, Republic of China; 7Institute of Biomedical Science, Chung-Hsing University, Taichung, Taiwan, Republic of China; 8Department of Medical Education, Taichung Veterans General Hospital, Taichung, Taiwan, Republic of China; 9School of Health Care Administration, Taipei Medical University, Taipei, Taiwan, Republic of China Objective: To compare drug discontinuation risk between adalimumab (ADA and etanercept (ETN treatment among anti-tumor necrosis factor (anti-TNF-naïve rheumatoid arthritis (RA patients, in particular the influence of concomitant dose of methotrexate (MTX.Methods: This retrospective nationwide population-based cohort study identified 4,592 anti-TNF-naïve RA patients in whom ETN (n=2,609 or ADA (n=1,983 was initiated using National Health Insurance claims data. After adjustment for prior medication, concomitant medication, and baseline demographic data, the relative risk of drug discontinuation in ADA users compared with ETN users was quantified by calculating adjusted hazard ratios (aHRs with 95% confidence intervals (CIs using Cox proportional hazard regression analyses, stratified by the follow-up time (≤1 year, >1 year and/or concomitant MTX dose (≤10 mg/wk, >10 mg/wk.Results: ADA users

  14. A human genome-wide loss-of-function screen identifies effective chikungunya antiviral drugs

    Science.gov (United States)

    Karlas, Alexander; Berre, Stefano; Couderc, Thérèse; Varjak, Margus; Braun, Peter; Meyer, Michael; Gangneux, Nicolas; Karo-Astover, Liis; Weege, Friderike; Raftery, Martin; Schönrich, Günther; Klemm, Uwe; Wurzlbauer, Anne; Bracher, Franz; Merits, Andres; Meyer, Thomas F.; Lecuit, Marc

    2016-01-01

    Chikungunya virus (CHIKV) is a globally spreading alphavirus against which there is no commercially available vaccine or therapy. Here we use a genome-wide siRNA screen to identify 156 proviral and 41 antiviral host factors affecting CHIKV replication. We analyse the cellular pathways in which human proviral genes are involved and identify druggable targets. Twenty-one small-molecule inhibitors, some of which are FDA approved, targeting six proviral factors or pathways, have high antiviral activity in vitro, with low toxicity. Three identified inhibitors have prophylactic antiviral effects in mouse models of chikungunya infection. Two of them, the calmodulin inhibitor pimozide and the fatty acid synthesis inhibitor TOFA, have a therapeutic effect in vivo when combined. These results demonstrate the value of loss-of-function screening and pathway analysis for the rational identification of small molecules with therapeutic potential and pave the way for the development of new, host-directed, antiviral agents. PMID:27177310

  15. Human Lipocalin-Type Prostaglandin D Synthase-Based Drug Delivery System for Poorly Water-Soluble Anti-Cancer Drug SN-38.

    Science.gov (United States)

    Nakatsuji, Masatoshi; Inoue, Haruka; Kohno, Masaki; Saito, Mayu; Tsuge, Syogo; Shimizu, Shota; Ishida, Atsuko; Ishibashi, Osamu; Inui, Takashi

    2015-01-01

    Lipocalin-type prostaglandin D synthase (L-PGDS) is a member of the lipocalin superfamily, which is composed of secretory transporter proteins, and binds a wide variety of small hydrophobic molecules. Using this function, we have reported the feasibility of using L-PGDS as a novel drug delivery vehicle for poorly water-soluble drugs. In this study, we show the development of a drug delivery system using L-PGDS, one that enables the direct clinical use of 7-ethyl-10-hydroxy-camptothecin (SN-38), a poorly water-soluble anti-cancer drug. In the presence of 2 mM L-PGDS, the concentration of SN-38 in PBS increased 1,130-fold as compared with that in PBS. Calorimetric experiments revealed that L-PGDS bound SN-38 at a molecular ratio of 1:3 with a dissociation constant value of 60 μM. The results of an in vitro growth inhibition assay revealed that the SN-38/L-PGDS complexes showed high anti-tumor activity against 3 human cancer cell lines, i.e., Colo201, MDA-MB-231, and PC-3 with a potency similar to that of SN-38 used alone. The intravenous administration of SN-38/L-PGDS complexes to mice bearing Colo201 tumors showed a pronounced anti-tumor effect. Intestinal mucositis, which is one of the side effects of this drug, was not observed in mice administered SN-38/L-PGDS complexes. Taken together, L-PGDS enables the direct usage of SN-38 with reduced side effects.

  16. Human Lipocalin-Type Prostaglandin D Synthase-Based Drug Delivery System for Poorly Water-Soluble Anti-Cancer Drug SN-38.

    Directory of Open Access Journals (Sweden)

    Masatoshi Nakatsuji

    Full Text Available Lipocalin-type prostaglandin D synthase (L-PGDS is a member of the lipocalin superfamily, which is composed of secretory transporter proteins, and binds a wide variety of small hydrophobic molecules. Using this function, we have reported the feasibility of using L-PGDS as a novel drug delivery vehicle for poorly water-soluble drugs. In this study, we show the development of a drug delivery system using L-PGDS, one that enables the direct clinical use of 7-ethyl-10-hydroxy-camptothecin (SN-38, a poorly water-soluble anti-cancer drug. In the presence of 2 mM L-PGDS, the concentration of SN-38 in PBS increased 1,130-fold as compared with that in PBS. Calorimetric experiments revealed that L-PGDS bound SN-38 at a molecular ratio of 1:3 with a dissociation constant value of 60 μM. The results of an in vitro growth inhibition assay revealed that the SN-38/L-PGDS complexes showed high anti-tumor activity against 3 human cancer cell lines, i.e., Colo201, MDA-MB-231, and PC-3 with a potency similar to that of SN-38 used alone. The intravenous administration of SN-38/L-PGDS complexes to mice bearing Colo201 tumors showed a pronounced anti-tumor effect. Intestinal mucositis, which is one of the side effects of this drug, was not observed in mice administered SN-38/L-PGDS complexes. Taken together, L-PGDS enables the direct usage of SN-38 with reduced side effects.

  17. Preoperative Stress Conditioning in Humans: Is Oxygen the Drug of Choice?

    Science.gov (United States)

    Perdrizet, G A

    2016-01-01

    Complications following invasive medical and surgical procedures are common and costly. No clinical protocols exist to actively condition patients prior to these high risk interventions. Effective preconditioning algorithms have been repeatedly demonstrated in animal models for more than a quarter century, where brief exposures to hyperthermia (heat shock), ischemia (ischemic preconditioning) or hypoxia have been employed. Heat shock pretreatment confers protection against experimental acute ischemia-reperfusion, endotoxin challenge and other stressors. The resulting state of protection is short lived (hours) and is associated with new gene expression, typical of a cell stress response (CSR). We aim to use the CSR to actively precondition patients before surgery, a process termed stress conditioning (SC). SC is a procedure in which tissues are briefly exposed to a conditioning stressor and recovered to permit the development of a transient state of resistance to ischemia-reperfusion injury. Successful SC of humans prior to surgery may reduce postoperative complications related to periods of hypotension, hypoxia, or ischemia. Stressors such as heat shock, acute ischemia, endotoxin, heavy metals or hypoxia can induce this protected state but are themselves harmful and of limited clinical utility. The identification of a stressor that could induce the CSR in a non-harmful manner seemed unlikely, until high dose oxygen was considered. Human microvascular endothelial cells (HMEC-1) exposed to high dose oxygen at 2.4 ATA × 60-90 min developed increased resistance to an oxidant challenge in vitro (peroxide). The molecular changes described here, together with our understanding of the CSR and SC phenomena, suggest high dose oxygen may be the drug of choice for clinical preconditioning protocols and should be systematically tested in clinical trials. Oxygen dosing includes the following ranges: room air exposure is 0.21 ATA, clinical oxygen therapy 0.3-1.0 ATA (normobaric

  18. Major HGF-mediated regenerative pathways are similarly affected in human and canine cirrhosis

    OpenAIRE

    Spee, Bart; Arends, Brigitte; van den Ingh, Ted SGAM; Roskams, Tania; Rothuizen, Jan; Penning, Louis C

    2007-01-01

    Background The availability of non-rodent animal models for human cirrhosis is limited. We investigated whether privately-owned dogs (Canis familiaris) are potential model animals for liver disease focusing on regenerative pathways. Several forms of canine hepatitis were examined: Acute Hepatitis (AH), Chronic Hepatitis (CH), Lobular Dissecting Hepatitis (LDH, a specific form of micronodulair cirrhosis), and Cirrhosis (CIRR). Canine cirrhotic samples were compared to human liver samples from ...

  19. Ecology of conflict: marine food supply affects human-wildlife interactions on land

    OpenAIRE

    Artelle, Kyle A.; Anderson, Sean C.; John D. Reynolds; Andrew B Cooper; Paquet, Paul C.; Darimont, Chris T.

    2016-01-01

    Human-wildlife conflicts impose considerable costs to people and wildlife worldwide. Most research focuses on proximate causes, offering limited generalizable understanding of ultimate drivers. We tested three competing hypotheses (problem individuals, regional population saturation, limited food supply) that relate to underlying processes of human-grizzly bear (Ursus arctos horribilis) conflict, using data from British Columbia, Canada, between 1960–2014. We found most support for the limite...

  20. Allitridi induces apoptosis by affecting Bcl-2 expression and caspase-3 activity in human gastric cancer cells

    Institute of Scientific and Technical Information of China (English)

    Hong LAN; You-yong LU

    2004-01-01

    AIM: To investigate the mechanism of allitridi-induced apoptosis in human gastric cancer cell line BGC823.METHODS: Growth inhibition by allitridi was analyzed using cell growth curve and MTT assay. Apoptotic cells were detected using staining with Hoechst 33342, and confirmed by flow cytometric analysis and DNA fragmentation analysis. The protein expression affected by allitridi was determined using Western blot. The activity of caspase-3 was measured using a fluorescence assay. RESULTS: Allitridi induced apoptosis, and then inhibited cells proliferation in human gastric cancer cell line BGC823. The protein level of Bcl-2 was decreased dramatically,while Bax and p53 were not significantly affected by allitridi. The expression and activity of caspase-3 started to increase after allitridi treatment for 72 h. CONCLUSION: Allitridi induced apoptosis through down-regulation of Bcl-2, and increased caspase-3 expression and its activity.

  1. How does enhancing cognition affect human values? How does this translate into social responsibility?

    Science.gov (United States)

    Cabrera, Laura Y

    2015-01-01

    The past decade has seen a rise in the use of different technologies aimed at enhancing cognition of normal healthy individuals. While values have been acknowledged to be an important aspect of cognitive enhancement practices, the discussion has predominantly focused on just a few values, such as safety, peer pressure, and authenticity. How are values, in a broader sense, affected by enhancing cognitive abilities? Is this dependent on the type of technology or intervention used to attain the enhancement, or does the cognitive domain targeted play a bigger role in how values are affected? Values are not only likely to be affected by cognitive enhancement practices; they also play a crucial role in defining the type of interventions that are likely to be undertaken. This paper explores the way values affect and are affected by enhancing cognitive abilities. Furthermore, it argues that knowledge of the interplay between values and cognitive enhancement makes a strong case for social responsibility around cognitive enhancement practices. PMID:25048389

  2. Sleeping Beauty-Mediated Drug Resistance Gene Transfer in Human Hematopoietic Progenitor Cells.

    Science.gov (United States)

    Hyland, Kendra A; Olson, Erik R; McIvor, R Scott

    2015-10-01

    The Sleeping Beauty (SB) transposon system can insert sequences into mammalian chromosomes, supporting long-term expression of both reporter and therapeutic genes. Hematopoietic progenitor cells (HPCs) are an ideal therapeutic gene transfer target as they are used in therapy for a variety of hematologic and metabolic conditions. As successful SB-mediated gene transfer into human CD34(+) HPCs has been reported by several laboratories, we sought to extend these studies to the introduction of a therapeutic gene conferring resistance to methotrexate (MTX), potentially providing a chemoprotective effect after engraftment. SB-mediated transposition of hematopoietic progenitors, using a transposon encoding an L22Y variant dihydrofolate reductase fused to green fluorescent protein, conferred resistance to methotrexate and dipyridamole, a nucleoside transport inhibitor that tightens MTX selection conditions, as assessed by in vitro hematopoietic colony formation. Transposition of individual transgenes was confirmed by sequence analysis of transposon-chromosome junctions recovered by linear amplification-mediated PCR. These studies demonstrate the potential of SB-mediated transposition of HPCs for expression of drug resistance genes for selective and chemoprotective applications. PMID:26176276

  3. Anti-rods/rings: a human model of drug-induced autoantibody generation

    Directory of Open Access Journals (Sweden)

    S. John eCalise

    2015-02-01

    Full Text Available In recent years, autoantibodies targeting subcellular structures described as the rods and rings pattern in HEp-2 ANA have been presented as a unique case of autoantibody generation. These rod and ring structures (RR are at least partially composed of inosine monophosphate dehydrogenase type 2 (IMPDH2, and their formation can be induced in vitro by several small-molecule inhibitors, including some IMPDH2 inhibitors. Autoantibodies targeting these relatively unknown structures have been almost exclusively observed in hepatitis C (HCV patients who have undergone treatment with pegylated interferon-α/ribavirin (IFN/RBV combination therapy. To date, anti-RR antibodies have not been found in treatment-naïve HCV patients or in patients from any other disease groups, with few reported exceptions. Here, we describe recent advances in characterizing the RR structure and the strong association between anti-RR antibody response and HCV patients treated with IFN/RBV, detailing why anti-RR can be considered a human model of drug-induced autoantibody generation.

  4. The discovery of antidepressant drugs by computer-analyzed human cerebral bio-electrical potentials (CEEG).

    Science.gov (United States)

    Itil, T M

    1983-01-01

    Antidepressant properties of six compounds were predicted based on their computer-analyzed human electroencephalographical (CEEG) profiles. The clinical investigations with mianserin (GB-94) confirmed the CEEG prediction. This compound has now been marketed as the first antidepressant of which the clinical effects were discovered solely by the quantitative pharmaco-EEG method. As predicted by the CEEG, clinical antidepressant properties of GC-46, mesterolone, and estradiol valerate were observed in preliminary investigations. No extensive studies with definite statistical results were yet carried out with these compounds. No systematic large studies could be conducted with cyclozocine and cyproterone acetate because of the intolerable side effects with these compounds. The optical isomers of mianserin, GF-59 and GF-60, both predicted as antidepressant by the computer EEG data base, have not yet been tested in depressive patients. None of these compounds possess the "typical" pharmacological and/or biochemical profiles of marketed antidepressants. Thus, the discovery of the established antidepressant properties of mianserin (GB-94) by computer analyzed EEG method challenges the well-known biochemical hypotheses of depression and the "classical" development of antidepressant drugs. PMID:6142498

  5. Disease Modeling and Phenotypic Drug Screening for Diabetic Cardiomyopathy using Human Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Faye M. Drawnel

    2014-11-01

    Full Text Available Diabetic cardiomyopathy is a complication of type 2 diabetes, with known contributions of lifestyle and genetics. We develop environmentally and genetically driven in vitro models of the condition using human-induced-pluripotent-stem-cell-derived cardiomyocytes. First, we mimic diabetic clinical chemistry to induce a phenotypic surrogate of diabetic cardiomyopathy, observing structural and functional disarray. Next, we consider genetic effects by deriving cardiomyocytes from two diabetic patients with variable disease progression. The cardiomyopathic phenotype is recapitulated in the patient-specific cells basally, with a severity dependent on their original clinical status. These models are incorporated into successive levels of a screening platform, identifying drugs that preserve cardiomyocyte phenotype in vitro during diabetic stress. In this work, we present a patient-specific induced pluripotent stem cell (iPSC model of a complex metabolic condition, showing the power of this technique for discovery and testing of therapeutic strategies for a disease with ever-increasing clinical significance.

  6. Gene Silencing of Human Neuronal Cells for Drug Addiction Therapy using Anisotropic Nanocrystals

    Science.gov (United States)

    Law, Wing-Cheung; Mahajan, Supriya D.; Kopwitthaya, Atcha; Reynolds, Jessica L.; Liu, Maixian; Liu, Xin; Chen, Guanying; Erogbogbo, Folarin; Vathy, Lisa; Aalinkeel, Ravikumar; Schwartz, Stanley A.; Yong, Ken-Tye; Prasad, Paras N.

    2012-01-01

    Theranostic platform integrating diagnostic imaging and therapeutic function into a single system has become a new direction of nanoparticle research. In the process of treatment, therapeutic efficacy is monitored. The use of theranostic nanoparticle can add an additional "layer" to keep track on the therapeutic agent such as the pharmacokinetics and biodistribution. In this report, we have developed quantum rod (QR) based formulations for the delivery of small interfering RNAs (siRNAs) to human neuronal cells. PEGlyated QRs with different surface functional groups (amine and maleimide) were designed for selectively down-regulating the dopaminergic signaling pathway which is associated with the drug abuse behavior. We have demonstrated that the DARPP-32 siRNAs were successfully delivered to dopaminergic neuronal (DAN) cells which led to drastic knockdown of specific gene expression by both the electrostatic and covalent bond conjugation regimes. The PEGlyated surface offered high biocompatibilities and negligible cytotoxicities to the QR formulations that may facilitate the in vivo applications of these nanoparticles. PMID:22896771

  7. Influence of environmental chemicals on drug therapy in humans: studies with contraceptive steroids.

    Science.gov (United States)

    Breckenridge, A M; Back, D J; Cross, K; Crawford, F; MacIver, M; Orme, M L; Rowe, P H; Smith, E

    1980-01-01

    The effects have been studied of various environmental factors on the variability in response to oral contraceptive steroid therapy in women. Ten- to thirty-fold variations in plasma concentrations of norethisterone, L-norgestrel and ethinyloestradiol have been shown in samples taken 12 h after administration of oral contraceptives in mid-menstrual cycle. Factors shown to be responsible for this variation include passage into the enterohepatic circulation, a variable first-pass effect, and changes in metabolism in the gut wall or liver due to diet, disease, smoking or administration of drugs. Phenobarbitone and the antibiotic rifampicin increase both oestrogen and progestogen metabolism in women and in experimental animals by increasing hepatic and gut wall metabolism. In animals, other antibiotics (ampicillin, neomycin and lincomycin) suppress the gut flora that normally hydrolyse steroid conjugates excreted in bile; enterohepatic circulation or oral contraceptive steroids is thus reduced and their plasma concentrations lowered by up to 90%. In the human, ampicillin has a variable but less dramatic effect on elimination of oral contraceptives. Samples of gut wall mucosa obtained from patients with coeliac disease are defective in their ability to metabolize oral contraceptives. Cigarette smokers eliminate ethinyloestradiol more rapidly than non-smokers; an increased production of reactive steroid metabolites may thus be a cause of vascular disease in women who smoke and take contraceptive steroids. PMID:6906266

  8. The discovery of antidepressant drugs by computer-analyzed human cerebral bio-electrical potentials (CEEG).

    Science.gov (United States)

    Itil, T M

    1983-01-01

    Antidepressant properties of six compounds were predicted based on their computer-analyzed human electroencephalographical (CEEG) profiles. The clinical investigations with mianserin (GB-94) confirmed the CEEG prediction. This compound has now been marketed as the first antidepressant of which the clinical effects were discovered solely by the quantitative pharmaco-EEG method. As predicted by the CEEG, clinical antidepressant properties of GC-46, mesterolone, and estradiol valerate were observed in preliminary investigations. No extensive studies with definite statistical results were yet carried out with these compounds. No systematic large studies could be conducted with cyclozocine and cyproterone acetate because of the intolerable side effects with these compounds. The optical isomers of mianserin, GF-59 and GF-60, both predicted as antidepressant by the computer EEG data base, have not yet been tested in depressive patients. None of these compounds possess the "typical" pharmacological and/or biochemical profiles of marketed antidepressants. Thus, the discovery of the established antidepressant properties of mianserin (GB-94) by computer analyzed EEG method challenges the well-known biochemical hypotheses of depression and the "classical" development of antidepressant drugs.

  9. A PC-based software test for measuring alcohol and drug effects in human subjects.

    Science.gov (United States)

    Mills, K C; Parkman, K M; Spruill, S E

    1996-12-01

    A new software-based visual search and divided-attention test of cognitive performance was developed and evaluated in an alcohol dose-response study with 24 human subjects aged 21-62 years. The test used language-free, color, graphic displays to represent the visuospatial demands of driving. Cognitive demands were increased over previous hardware-based tests, and the motor skills required for the test involved minimal eye movements and eye-hand coordination. Repeated performance on the test was evaluated with a latin-square design by using a placebo and two alcohol doses, low (0.48 g/kg/LBM) and moderate (0.72 g/kg/LBM). The data on 7 females and 17 males yielded significant falling and rising impairment effects coincident with moderate rising and falling breath alcohol levels (mean peak BrALs = 0.045 g/dl and 0.079 g/dl). None of the subjects reported eye-strain or psychomotor fatigue as compared with previous tests. The high sensitivity/variance relative to use in basic and applied research, and worksite fitness-for-duty testing, was discussed. The most distinct advantage of a software-based test that operates on readily available PCs is that it can be widely distributed to researchers with a common reference to compare a variety of alcohol and drug effects. PMID:8986207

  10. National Drug Code Directory

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Drug Listing Act of 1972 requires registered drug establishments to provide the Food and Drug Administration (FDA) with a current list of all drugs...

  11. Taste Masked Orally Disintegrating Pellets of Antihistaminic and Mucolytic Drug: Formulation, Characterization, and In Vivo Studies in Human

    Science.gov (United States)

    Taj, Yasmeen; Pai, Roopa S.; Kusum Devi, V.; Singh, Gurinder

    2014-01-01

    The main aim of the present study was to evaluate the potential of orally disintegrating pellets (ODPs) as an approach for taste masking of bitter drugs, namely, Ambroxol hydrochloride (A-HCl) and Cetirizine dihydrochloride (C-DHCl). Pellets were prepared by extrusion/spheronization with Eudragit EPO, kyron T-134, Kyron T-314, mannitol, sorbitol, MCC (Avicel PH-101), sucralose, chocolate flavor, and 5% xanthum gum. The prepared pellets were characterized for percentage yield, drug content, particle size, in vitro drug release, and in vivo evaluation on humans for taste, mouth feel, and in vivo disintegration time. The results revealed that the average size of pellets was influenced greatly by the percentage of binder and extrusion speed. The optimized ODPs disintegrated in less than 20 s and showed more than 98% of drugs in ODPs dissolved within 15 min. Taste perception study was carried out on human volunteers to evaluate the taste masking ability of ODPs for taste, mouth feel, and in vivo disintegration time. Crystalline state evaluation of drugs in the optimized ODPs was conducted for X-ray powder diffraction. In conclusion, the study confirmed that ODPs can be utilized as an alternative approach for effective taste masking and rapid disintegration in the oral cavity. PMID:27379290

  12. Taste Masked Orally Disintegrating Pellets of Antihistaminic and Mucolytic Drug: Formulation, Characterization, and In Vivo Studies in Human.

    Science.gov (United States)

    Taj, Yasmeen; Pai, Roopa S; Kusum Devi, V; Singh, Gurinder

    2014-01-01

    The main aim of the present study was to evaluate the potential of orally disintegrating pellets (ODPs) as an approach for taste masking of bitter drugs, namely, Ambroxol hydrochloride (A-HCl) and Cetirizine dihydrochloride (C-DHCl). Pellets were prepared by extrusion/spheronization with Eudragit EPO, kyron T-134, Kyron T-314, mannitol, sorbitol, MCC (Avicel PH-101), sucralose, chocolate flavor, and 5% xanthum gum. The prepared pellets were characterized for percentage yield, drug content, particle size, in vitro drug release, and in vivo evaluation on humans for taste, mouth feel, and in vivo disintegration time. The results revealed that the average size of pellets was influenced greatly by the percentage of binder and extrusion speed. The optimized ODPs disintegrated in less than 20 s and showed more than 98% of drugs in ODPs dissolved within 15 min. Taste perception study was carried out on human volunteers to evaluate the taste masking ability of ODPs for taste, mouth feel, and in vivo disintegration time. Crystalline state evaluation of drugs in the optimized ODPs was conducted for X-ray powder diffraction. In conclusion, the study confirmed that ODPs can be utilized as an alternative approach for effective taste masking and rapid disintegration in the oral cavity.

  13. Transcriptome profiling of patient-specific human iPSC-cardiomyocytes predicts individual drug safety and efficacy responses in vitro

    Science.gov (United States)

    Matsa, Elena; Burridge, Paul W.; Yu, Kun-Hsing; Ahrens, John H.; Termglinchan, Vittavat; Wu, Haodi; Liu, Chun; Shukla, Praveen; Sayed, Nazish; Churko, Jared M.; Shao, Ningyi; Woo, Nicole A.; Chao, Alexander S.; Gold, Joseph D.; Karakikes, Ioannis; Snyder, Michael P.; Wu, Joseph C.

    2016-01-01

    SUMMARY Understanding individual susceptibility to drug-induced cardiotoxicity is key to improving patient safety and preventing drug attrition. Human induced pluripotent stem cells (hiPSCs) enable the study of pharmacological and toxicological responses in patient-specific cardiomyocytes (CMs), and may serve as preclinical platforms for precision medicine. Transcriptome profiling in hiPSC-CMs from seven individuals lacking known cardiovascular disease-associated mutations, and in three isogenic human heart tissue and hiPSC-CM pairs, showed greater inter-patient variation than intra-patient variation, verifying that reprogramming and differentiation preserve patient-specific gene expression, particularly in metabolic and stress-response genes. Transcriptome-based toxicology analysis predicted and risk-stratified patient-specific susceptibility to cardiotoxicity, and functional assays in hiPSC-CMs using tacrolimus and rosiglitazone, drugs targeting pathways predicted to produce cardiotoxicity, validated inter-patient differential responses. CRISPR/Cas9-mediated pathway correction prevented drug-induced cardiotoxicity. Our data suggest that hiPSC-CMs can be used in vitro to predict and validate patient-specific drug safety and efficacy, potentially enabling future clinical approaches to precision medicine. PMID:27545504

  14. Taste Masked Orally Disintegrating Pellets of Antihistaminic and Mucolytic Drug: Formulation, Characterization, and In Vivo Studies in Human.

    Science.gov (United States)

    Taj, Yasmeen; Pai, Roopa S; Kusum Devi, V; Singh, Gurinder

    2014-01-01

    The main aim of the present study was to evaluate the potential of orally disintegrating pellets (ODPs) as an approach for taste masking of bitter drugs, namely, Ambroxol hydrochloride (A-HCl) and Cetirizine dihydrochloride (C-DHCl). Pellets were prepared by extrusion/spheronization with Eudragit EPO, kyron T-134, Kyron T-314, mannitol, sorbitol, MCC (Avicel PH-101), sucralose, chocolate flavor, and 5% xanthum gum. The prepared pellets were characterized for percentage yield, drug content, particle size, in vitro drug release, and in vivo evaluation on humans for taste, mouth feel, and in vivo disintegration time. The results revealed that the average size of pellets was influenced greatly by the percentage of binder and extrusion speed. The optimized ODPs disintegrated in less than 20 s and showed more than 98% of drugs in ODPs dissolved within 15 min. Taste perception study was carried out on human volunteers to evaluate the taste masking ability of ODPs for taste, mouth feel, and in vivo disintegration time. Crystalline state evaluation of drugs in the optimized ODPs was conducted for X-ray powder diffraction. In conclusion, the study confirmed that ODPs can be utilized as an alternative approach for effective taste masking and rapid disintegration in the oral cavity. PMID:27379290

  15. Interaction between Hsp60 and Bax in normal human myocardium and in myocardium affected by dilated cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Tykhonkova I. O.

    2009-04-01

    Full Text Available The main functional compartments of molecular chaperone Hsp60 are mitochondria and cytoplasm. Up to 30 % of Hsp60 are located in cytoplasm of cardiomyocytes. The interaction between molecular chaperone Hsp60 and proapoptotic Bax protein in the cytoplasmic fraction from normal human heart tissue has been revealed by co-immunoprecipitation in contrast to myocardium affected by dilated cardiomyopathy, where this interaction has not been observed

  16. Arousal Regulation and Affective Adaptation to Human Responsiveness by a Robot that Explores and Learns a Novel Environment

    OpenAIRE

    Antoine eHiolle; Matthew eLewis; Lola eCañamero

    2014-01-01

    In the context of our work in developmental robotics regarding robot-human caregiver interactions, in this paper we investigate how a ``baby'' robot that explores and learns novel environments can adapt its affective regulatory behavior of soliciting help from a ``caregiver'' to the preferences shown by the caregiver in terms of varying responsiveness. We build on two strands of previous work that assessed independently (a) the differences between two ``idealized'' robot profiles -- a ``needy...

  17. Human Factors Research in Anesthesia Patient Safety: Techniques to Elucidate Factors Affecting Clinical Task Performance and Decision Making

    OpenAIRE

    Weinger, Matthew B.; Slagle, Jason

    2002-01-01

    Patient safety has become a major public concern. Human factors research in other high-risk fields has demonstrated how rigorous study of factors that affect job performance can lead to improved outcome and reduced errors after evidence-based redesign of tasks or systems. These techniques have increasingly been applied to the anesthesia work environment. This paper describes data obtained recently using task analysis and workload assessment during actual patient care and the use of cognitive ...

  18. Availability of human induced pluripotent stem cell-derived cardiomyocytes in assessment of drug potential for QT prolongation

    Energy Technology Data Exchange (ETDEWEB)

    Nozaki, Yumiko, E-mail: yumiko-nozaki@ds-pharma.co.jp [Preclinical Research Laboratories, Dainippon Sumitomo Pharma. Co., Ltd., Suita, Osaka 564-0053 (Japan); Honda, Yayoi, E-mail: yayoi-honda@ds-pharma.co.jp [Preclinical Research Laboratories, Dainippon Sumitomo Pharma. Co., Ltd., Suita, Osaka 564-0053 (Japan); Tsujimoto, Shinji, E-mail: shinji-tsujimoto@ds-pharma.co.jp [Regenerative and Cellular Medicine Office, Dainippon Sumitomo Pharma. Co., Ltd., Chuo-ku, Tokyo 104-0031 (Japan); Watanabe, Hitoshi, E-mail: hitoshi-1-watanabe@ds-pharma.co.jp [Preclinical Research Laboratories, Dainippon Sumitomo Pharma. Co., Ltd., Suita, Osaka 564-0053 (Japan); Kunimatsu, Takeshi, E-mail: takeshi-kunimatsu@ds-pharma.co.jp [Preclinical Research Laboratories, Dainippon Sumitomo Pharma. Co., Ltd., Suita, Osaka 564-0053 (Japan); Funabashi, Hitoshi, E-mail: hitoshi-funabashi@ds-pharma.co.jp [Preclinical Research Laboratories, Dainippon Sumitomo Pharma. Co., Ltd., Suita, Osaka 564-0053 (Japan)

    2014-07-01

    Field potential duration (FPD) in human-induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs), which can express QT interval in an electrocardiogram, is reported to be a useful tool to predict K{sup +} channel and Ca{sup 2+} channel blocker effects on QT interval. However, there is no report showing that this technique can be used to predict multichannel blocker potential for QT prolongation. The aim of this study is to show that FPD from MEA (Multielectrode array) of hiPS-CMs can detect QT prolongation induced by multichannel blockers. hiPS-CMs were seeded onto MEA and FPD was measured for 2 min every 10 min for 30 min after drug exposure for the vehicle and each drug concentration. I{sub Kr} and I{sub Ks} blockers concentration-dependently prolonged corrected FPD (FPDc), whereas Ca{sup 2+} channel blockers concentration-dependently shortened FPDc. Also, the multichannel blockers Amiodarone, Paroxetine, Terfenadine and Citalopram prolonged FPDc in a concentration dependent manner. Finally, the I{sub Kr} blockers, Terfenadine and Citalopram, which are reported to cause Torsade de Pointes (TdP) in clinical practice, produced early afterdepolarization (EAD). hiPS-CMs using MEA system and FPDc can predict the effects of drug candidates on QT interval. This study also shows that this assay can help detect EAD for drugs with TdP potential. - Highlights: • We focused on hiPS-CMs to replace in vitro assays in preclinical screening studies. • hiPS-CMs FPD is useful as an indicator to predict drug potential for QT prolongation. • MEA assay can help detect EAD for drugs with TdP potentials. • MEA assay in hiPS-CMs is useful for accurately predicting drug TdP risk in humans.