WorldWideScience

Sample records for affecting hippocampal cytogenesis

  1. Nortriptyline mediates behavioral effects without affecting hippocampal cytogenesis in a genetic rat depression model

    DEFF Research Database (Denmark)

    Petersén, Asa; Wörtwein, Gitta; Gruber, Susanne H M

    2009-01-01

    A prevailing hypothesis is that neurogenesis is reduced in depression and that the common mechanism for antidepressant treatments is to increase it in adult hippocampus. Reduced neurogenesis has been shown in healthy rats exposed to stress, but it has not yet been demonstrated in depressed patients....... Emerging studies now indicate that selective serotonin reuptake inhibitors can, exert behavioral effects without affecting neurogenesis in mice. Here we extend our previous findings demonstrating that the number of BrdU positive cells in hippocampus was significantly higher in a rat model of depression....... These results strengthen the arguments against hypothesis of neurogenesis being necessary in etiology of depression and as requisite for effects of antidepressants, and illustrate the importance of using a disease model and not healthy animals to assess effects of potential therapies for major depressive...

  2. Neuronal injury and cytogenesis after simple febrile seizures in the hippocampal dentate gyrus of juvenile rat.

    Science.gov (United States)

    Nazem, Amir; Jafarian, Amir Hossein; Sadraie, Seyed Homayoon; Gorji, Ali; Kheradmand, Hamed; Radmard, Mahla; Haghir, Hossein

    2012-11-01

    Although simple febrile seizures are frequently described as harmless, there is evidence which suggests that hippocampal damage may occur after simple febrile seizures. This study aimed to investigate possible neuronal damages as well as alterations in cytogenesis in the hippocampal dentate gyrus following simple febrile seizures. Simple febrile seizure was modeled by hyperthermia-induced seizures in 22-day-old male rats. The brains were removed 2 or 15 days after hyperthermia in all rats with (n=20) and without (n=10) occurrence of seizures as well as in control animals (n=10). The sections were stained with hematoxylin and eosin to estimate the surface numerical density of dark neurons. Ki-67 immunohistochemistry was performed to evaluate changes of cytogenesis following simple febrile seizures. Hyperthermia induced behavioral seizure activities in 67 % of the rats. The numerical densities of dark neurons as well as the mean Ki-67 index (the fraction of Ki-67-positive cells) were significantly increased in dentate gyrus after induction of seizures by hyperthermia compared to both controls and rats without seizure after hyperthermia. Both the seizure duration and intensity were correlated significantly with numerical densities of dark neurons (but not with Ki-67 index). The data indicate that simple febrile seizures can cause neuronal damages and enhancement of cytogenesis in the hippocampal dentate gyrus, which were still visible for at least 2 weeks. These findings also suggest the correlation of febrile seizure intensity and duration with neuronal damage.

  3. Escitalopram reduces increased hippocampal cytogenesis in a genetic rat depression model

    DEFF Research Database (Denmark)

    Petersén, Asa; Wörtwein, Gitta; Gruber, Susanne H M

    2008-01-01

    ) reduced by escitalopram treatment in maternally separated animals to the level found in non-separated animals. These results argue against the prevailing hypothesis that adult cytogenesis is reduced in depression and that the common mechanism underlying antidepressant treatments is to increase adult...... cytogenesis. The results also point to the importance of using a disease model and not healthy animals for testing effects of potential treatments for human depression and suggest other cellular mechanisms of action than those that had previously been proposed for escitalopram....

  4. Doxycycline inhibits proinflammatory cytokines but not acute cerebral cytogenesis after hypoxia-ischemia in neonatal rats.

    Science.gov (United States)

    Jantzie, Lauren L; Todd, Kathryn G

    2010-01-01

    Neonatal hypoxia-ischemia (HI) is a major cause of perinatal brain injury and is associated with a spectrum of neuropsychiatric disorders. Although very few treatment options are currently available, doxycycline (DOXY) has been reported to be neuroprotective in neontatal HI. Our objective was to investigate the effects of DOXY on neonatal brain development in normal and HI rat pups. We hypothesized that DOXY would inhibit microglial activation but that developmentally important processes, including cytogenesis and trophic responses, would not be impaired. To investigate the putative neurodevelopmental consequences of DOXY administration in a clinically relevant animal model of HI, we performed a time-course analysis such that postnatal rat pups received DOXY (10mg/kg) or vehicle immediately before HI (n >or= 6). We then assessed cytogenesis, proinflammatory cytokines, brain-derived neurotrophic factor (BDNF) and matrix metalloproteinases regionally and longitudinally. We found that DOXY significantly inhibits neuroinflammation in the frontal cortex, striatum and hippocampus; decreases interleukin-1Beta (IL-1Beta) and tumour necrosis factor-alpha (TNF-alpha); and augments BDNF following HI. In addition, DOXY-treated pups have significantly fewer 2-bromo-5-deoxyuridine (BrdU)-positive cells in the subventricular zone 6 hours post-HI. However, DOXY does not persistently affect cytogenesis in the subventricular zone or dentate gyrus up to 7 days post-HI. The BrdU-positive cells not expressing markers for mature neurons colabel with nestin, an intermediate filament protein typical of neuronal precursors. Our study investigates "acute" neurodevelopment over the first 7 days of life after HI injury. Further long-term investigations into adulthood are underway. Taken together, our results suggest the putative clinical potential of DOXY in the management of neonatal cerebral HI injury.

  5. Doxycycline inhibits proinflammatory cytokines but not acute cerebral cytogenesis after hypoxia–ischemia in neonatal rats

    Science.gov (United States)

    Jantzie, Lauren L.; Todd, Kathryn G.

    2010-01-01

    Background Neonatal hypoxia–ischemia (HI) is a major cause of perinatal brain injury and is associated with a spectrum of neuropsychiatric disorders. Although very few treatment options are currently available, doxycycline (DOXY) has been reported to be neuroprotective in neontatal HI. Our objective was to investigate the effects of DOXY on neonatal brain development in normal and HI rat pups. We hypothesized that DOXY would inhibit microglial activation but that developmentally important processes, including cytogenesis and trophic responses, would not be impaired. Methods To investigate the putative neurodevelopmental consequences of DOXY administration in a clinically relevant animal model of HI, we performed a time-course analysis such that postnatal rat pups received DOXY (10 mg/kg) or vehicle immediately before HI (n ≥ 6). We then assessed cytogenesis, proinflammatory cytokines, brain-derived neurotrophic factor (BDNF) and matrix metalloproteinases regionally and longitudinally. Results We found that DOXY significantly inhibits neuroinflammation in the frontal cortex, striatum and hippocampus; decreases interleukin-1β (IL-1β) and tumour necrosis factor-α (TNF-α); and augments BDNF following HI. In addition, DOXY-treated pups have significantly fewer 2-bromo-5-deoxyuridine (BrdU)-positive cells in the subventricular zone 6 hours post-HI. However, DOXY does not persistently affect cytogenesis in the subventricular zone or dentate gyrus up to 7 days post-HI. The BrdU-positive cells not expressing markers for mature neurons colabel with nestin, an intermediate filament protein typical of neuronal precursors. Limitations Our study investigates “acute” neurodevelopment over the first 7 days of life after HI injury. Further long-term investigations into adulthood are underway. Conclusion Taken together, our results suggest the putative clinical potential of DOXY in the management of neonatal cerebral HI injury. PMID:20040243

  6. Hippocampal Neurogenesis, Cognitive Deficits and Affective Disorder in Huntington's Disease

    Directory of Open Access Journals (Sweden)

    Mark I. Ransome

    2012-01-01

    Full Text Available Huntington’s disease (HD is a neurodegenerative disorder caused by a tandem repeat expansion encoding a polyglutamine tract in the huntingtin protein. HD involves progressive psychiatric, cognitive, and motor symptoms, the selective pathogenesis of which remains to be mechanistically elucidated. There are a range of different brain regions, including the cerebral cortex and striatum, known to be affected in HD, with evidence for hippocampal dysfunction accumulating in recent years. In this review we will focus on hippocampal abnormalities, in particular, deficits of adult neurogenesis. We will discuss potential molecular mechanisms mediating disrupted hippocampal neurogenesis, and how this deficit of cellular plasticity may in turn contribute to specific cognitive and affective symptoms that are prominent in HD. The generation of transgenic animal models of HD has greatly facilitated our understanding of disease mechanisms at molecular, cellular, and systems levels. Transgenic HD mice have been found to show progressive behavioral changes, including affective, cognitive, and motor abnormalities. The discovery, in multiple transgenic lines of HD mice, that adult hippocampal neurogenesis and synaptic plasticity is disrupted, may help explain specific aspects of cognitive and affective dysfunction. Furthermore, these mouse models have provided insight into potential molecular mediators of adult neurogenesis deficits, such as disrupted serotonergic and neurotrophin signaling. Finally, a number of environmental and pharmacological interventions which are known to enhance adult hippocampal neurogenesis have been found to have beneficial affective and cognitive effects in mouse models, suggesting common molecular targets which may have therapeutic utility for HD and related diseases.

  7. Amyloid Beta Peptides Differentially Affect Hippocampal Theta Rhythms In Vitro

    Directory of Open Access Journals (Sweden)

    Armando I. Gutiérrez-Lerma

    2013-01-01

    Full Text Available Soluble amyloid beta peptide (Aβ is responsible for the early cognitive dysfunction observed in Alzheimer's disease. Both cholinergically and glutamatergically induced hippocampal theta rhythms are related to learning and memory, spatial navigation, and spatial memory. However, these two types of theta rhythms are not identical; they are associated with different behaviors and can be differentially modulated by diverse experimental conditions. Therefore, in this study, we aimed to investigate whether or not application of soluble Aβ alters the two types of theta frequency oscillatory network activity generated in rat hippocampal slices by application of the cholinergic and glutamatergic agonists carbachol or DHPG, respectively. Due to previous evidence that oscillatory activity can be differentially affected by different Aβ peptides, we also compared Aβ25−35 and Aβ1−42 for their effects on theta rhythms in vitro at similar concentrations (0.5 to 1.0 μM. We found that Aβ25−35 reduces, with less potency than Aβ1−42, carbachol-induced population theta oscillatory activity. In contrast, DHPG-induced oscillatory activity was not affected by a high concentration of Aβ25−35 but was reduced by Aβ1−42. Our results support the idea that different amyloid peptides might alter specific cellular mechanisms related to the generation of specific neuronal network activities, instead of exerting a generalized inhibitory effect on neuronal network function.

  8. Rat hippocampal GABAergic molecular markers are differentially affected by ageing.

    Science.gov (United States)

    Vela, José; Gutierrez, Antonia; Vitorica, Javier; Ruano, Diego

    2003-04-01

    We previously reported that the pharmacological properties of the hippocampal GABAA receptor and the expression of several subunits are modified during normal ageing. However, correlation between these post-synaptic modifications and pre-synaptic deficits were not determined. To address this issue, we have analysed the mRNA levels of several GABAergic molecular markers in young and old rat hippocampus, including glutamic acid decarboxylase enzymes, parvalbumin, calretinin, somatostatin, neuropeptide Y and vasoactive intestinal peptide (VIP). There was a differential age-related decrease in these interneuronal mRNAs that was inversely correlated with up-regulation of the alpha1 GABA receptor subunit. Somatostatin and neuropeptide Y mRNAs were most frequently affected (75% of the animals), then calretinin and VIP mRNAs (50% of the animals), and parvalbumin mRNA (25% of the animals) in the aged hippocampus. This selective vulnerability was well correlated at the protein/cellular level as analysed by immunocytochemistry. Somatostatin interneurones, which mostly innervate principal cell distal dendrites, were more vulnerable than calretinin interneurones, which target other interneurones. Parvalbumin interneurones, which mostly innervate perisomatic domains of principal cells, were preserved. This age-dependent differential reduction of specific hippocampal inteneuronal subpopulations might produce functional alterations in the GABAergic tone which might be compensated, at the post-synaptic level, by up-regulation of the expression of the alpha1 GABAA receptor subunit.

  9. Factors affecting graded and ungraded memory loss following hippocampal lesions.

    Science.gov (United States)

    Winocur, Gordon; Moscovitch, Morris; Sekeres, Melanie J

    2013-11-01

    This review evaluates three current theories--Standard Consolidation (Squire & Wixted, 2011), Overshadowing (Sutherland, Sparks, & Lehmann, 2010), and Multiple Trace-Transformation (Winocur, Moscovitch, & Bontempi, 2010)--in terms of their ability to account for the role of the hippocampus in recent and remote memory in animals. Evidence, based on consistent findings from tests of spatial memory and memory for acquired food preferences, favours the transformation account, but this conclusion is undermined by inconsistent results from studies that measured contextual fear memory, probably the most commonly used test of hippocampal involvement in anterograde and retrograde memory. Resolution of this issue may depend on exercising greater control over critical factors (e.g., contextual environment, amount of pre-exposure to the conditioning chamber, the number and distribution of foot-shocks) that can affect the representation of the memory shortly after learning and over the long-term. Research strategies aimed at characterizing the neural basis of long-term consolidation/transformation, as well as other outstanding issues are discussed.

  10. Antenatal glucocorticoid treatment affects hippocampal development in mice.

    Directory of Open Access Journals (Sweden)

    Cornelle W Noorlander

    Full Text Available Synthetic glucocorticoids are administered to pregnant women at risk for preterm delivery, to enhance fetal lung maturation. The benefit of this treatment is well established, however caution is necessary because of possible unwanted side effects on development of different organ systems, including the brain. Actions of glucocorticoids are mediated by corticosteroid receptors, which are highly expressed in the hippocampus, a brain structure involved in cognitive functions. Therefore, we analyzed the effects of a single antenatal dexamethasone treatment on the development of the mouse hippocampus. A clinically relevant dose of dexamethasone (0.4 mg/kg was administered to pregnant mice at embryonic day 15.5 and the hippocampus was analyzed from embryonic day 16 until adulthood. We investigated the effects of dexamethasone treatment on anatomical changes, apoptosis and proliferation in the hippocampus, hippocampal volume and on total body weight. Our results show that dexamethasone treatment reduced body weight and hippocampal volume transiently during development, but these effects were no longer detected at adulthood. Dexamethasone treatment increased the number of apoptotic cells in the hippocampus until birth, but postnatally no effects of dexamethasone treatment on apoptosis were found. During the phase with increased apoptosis, dexamethasone treatment reduced the number of proliferating cells in the subgranular zone of the dentate gyrus. The number of proliferative cells was increased at postnatal day 5 and 10, but was decreased again at the adult stage. This latter long-term and negative effect of antenatal dexamethasone treatment on the number of proliferative cells in the hippocampus may have important implications for hippocampal network function.

  11. Antenatal glucocorticoid treatment affects hippocampal development in mice.

    Science.gov (United States)

    Noorlander, Cornelle W; Tijsseling, Deodata; Hessel, Ellen V S; de Vries, Willem B; Derks, Jan B; Visser, Gerard H A; de Graan, Pierre N E

    2014-01-01

    Synthetic glucocorticoids are administered to pregnant women at risk for preterm delivery, to enhance fetal lung maturation. The benefit of this treatment is well established, however caution is necessary because of possible unwanted side effects on development of different organ systems, including the brain. Actions of glucocorticoids are mediated by corticosteroid receptors, which are highly expressed in the hippocampus, a brain structure involved in cognitive functions. Therefore, we analyzed the effects of a single antenatal dexamethasone treatment on the development of the mouse hippocampus. A clinically relevant dose of dexamethasone (0.4 mg/kg) was administered to pregnant mice at embryonic day 15.5 and the hippocampus was analyzed from embryonic day 16 until adulthood. We investigated the effects of dexamethasone treatment on anatomical changes, apoptosis and proliferation in the hippocampus, hippocampal volume and on total body weight. Our results show that dexamethasone treatment reduced body weight and hippocampal volume transiently during development, but these effects were no longer detected at adulthood. Dexamethasone treatment increased the number of apoptotic cells in the hippocampus until birth, but postnatally no effects of dexamethasone treatment on apoptosis were found. During the phase with increased apoptosis, dexamethasone treatment reduced the number of proliferating cells in the subgranular zone of the dentate gyrus. The number of proliferative cells was increased at postnatal day 5 and 10, but was decreased again at the adult stage. This latter long-term and negative effect of antenatal dexamethasone treatment on the number of proliferative cells in the hippocampus may have important implications for hippocampal network function.

  12. Neuroinflammation negatively affects adult hippocampal neurogenesis and cognition: can exercise compensate?

    Science.gov (United States)

    Ryan, Sinéad M; Nolan, Yvonne M

    2016-02-01

    Adult hippocampal neurogenesis is believed to be integral for certain forms of learning and memory. Dysregulation of hippocampal neurogenesis has been shown to be an important mechanism underlying the cognitive impairment associated with normal aging, as well as the cognitive deficits evident in preclinical models of Alzheimer's disease and other neurodegenerative diseases. Neuroinflammation is a significant pathological feature of these conditions; it contributes to the observed cognitive decline, and recent evidence demonstrates that it also negatively affects hippocampal neurogenesis. Conversely, during the past twenty years, it has been robustly shown that exercise is a potent inducer of hippocampal neurogenesis, and it is believed that the positive beneficial effect of exercise on cognitive function is likely due to its pro-neurogenic effects. However, the interplay between exercise- and neuroinflammatory-induced changes in hippocampal neurogenesis and associated cognitive function has only recently begun to receive attention. Here we review the current literature on exercise-induced effects on hippocampal neurogenesis, cognitive function and neuroinflammation, and consider exercise as a potential pro-neurogenic and anti-inflammatory intervention for cognition.

  13. Ketamine Affects the Neurogenesis of the Hippocampal Dentate Gyrus in 7-Day-Old Rats.

    Science.gov (United States)

    Huang, He; Liu, Cun-Ming; Sun, Jie; Hao, Ting; Xu, Chun-Mei; Wang, Dan; Wu, Yu-Qing

    2016-08-01

    Ketamine has been reported to cause neonatal neurotoxicity via a neuronal apoptosis mechanism; however, no in vivo research has reported whether ketamine could affect postnatal neurogenesis in the hippocampal dentate gyrus (DG). A growing number of experiments suggest that postnatal hippocampal neurogenesis is the foundation of maintaining normal hippocampus function into adulthood. Therefore, this study investigated the effect of ketamine on hippocampal neurogenesis. Male Sprague-Dawley rats were divided into two groups: the control group (equal volume of normal saline), and the ketamine-anesthesia group (40 mg/kg ketamine in four injections at 1 h intervals). The S-phase marker 5-bromodeoxyuridine (BrdU) was administered after ketamine exposure to postnatal day 7 (PND-7) rats, and the neurogenesis in the hippocampal DG was assessed using single- or double-immunofluorescence staining. The expression of GFAP in the hippocampal DG was measured by western blot analysis. Spatial reference memory was tested by Morris water maze at 2 months after PND-7 rats exposed to ketamine treatment. The present results showed that neonatal ketamine exposure significantly inhibited neural stem cell (NSC) proliferation, decreased astrocytic differentiation, and markedly enhanced neuronal differentiation. The disruptive effect of ketamine on the proliferation and differentiation of NSCs lasted at least 1 week and disappeared by 2 weeks after ketamine exposure. Moreover, the migration of newborn neurons in the granule cell layer and the growth of astrocytes in the hippocampal DG were inhibited by ketamine on PND-37 and PND-44. Finally, ketamine caused a deficit in hippocampal-dependent spatial reference memory tasks at 2 months old. Our results suggested that ketamine may interfere with hippocampal neurogenesis and long-term neurocognitive function in PND-7 rats. These findings may provide a new perspective to explain the adult neurocognitive dysfunction induced by neonatal

  14. Brain-derived neurotrophic factor Val66Met polymorphism and early life adversity affect hippocampal volume.

    Science.gov (United States)

    Carballedo, Angela; Morris, Derek; Zill, Peter; Fahey, Ciara; Reinhold, Elena; Meisenzahl, Eva; Bondy, Brigitta; Gill, Michael; Möller, Hans-Jürgen; Frodl, Thomas

    2013-03-01

    The interaction between adverse life events during childhood and genetic factors is associated with a higher risk to develop major depressive disorder (MDD). One of the polymorphisms found to be associated with MDD is the Val66MET polymorphism of brain-derived neurotrophic factor (BDNF). The aim of our two-center study was to determine how the BDNF Val66Met polymorphism and childhood adversity affect the volumetric measures of the hippocampus in healthy individuals and people with MDD. In this two-center study, 62 adult patients with MDD and 71 healthy matched controls underwent high-resolution magnetic resonance imaging. We used manual tracing of the bilateral hippocampal structure with help of the software BRAINS2, assessed childhood adversity using the Childhood Trauma Questionnaire and genotyped Val66Met BDNF SNP (rs6265). MDD patients had smaller hippocampal volumes, both in the left and right hemispheres (F = 5.4, P = 0.022). We also found a significant interaction between BDNF allele and history of childhood adversity (F = 6.1, P = 0.015): Met allele carriers in our samples showed significantly smaller hippocampal volumes when they did have a history of childhood adversity, both in patients and controls. Our results highlight how relevant stress-gene interactions are for hippocampal volume reductions. Subjects exposed to early life adversity developed smaller hippocampal volumes when they carry the Met-allele of the BDNF polymorphism.

  15. Photoperiod affects the diurnal rhythm of hippocampal neuronal morphology of Siberian hamsters.

    Science.gov (United States)

    Ikeno, Tomoko; Weil, Zachary M; Nelson, Randy J

    2013-11-01

    Individuals of many species can regulate their physiology, morphology, and behavior in response to annual changes of day length (photoperiod). In mammals, the photoperiodic signal is mediated by a change in the duration of melatonin, leading to alterations in gene expressions, neuronal circuits, and hormonal secretion. The hippocampus is one of the most plastic structures in the adult brain and hippocampal neuronal morphology displays photoperiod-induced differences. Because the hippocampus is important for emotional and cognitive behaviors, photoperiod-driven remodeling of hippocampal neurons is implicated in seasonal differences of affect, including seasonal affective disorder (SAD) in humans. Because neuronal architecture is also affected by the day-night cycle in several brain areas, we hypothesized that hippocampal neuronal morphology would display a diurnal rhythm and that day length would influence that rhythm. In the present study, we examined diurnal and seasonal differences in hippocampal neuronal morphology, as well as mRNA expression of the neurotrophic factors (i.e., brain-derived neurotrophic factor [Bdnf], tropomyosin receptor kinase B [trkB; a receptor for BDNF], and vascular endothelial growth factor [Vegf]) and a circadian clock gene, Bmal1, in the hippocampus of Siberian hamsters. Diurnal rhythms in total length of dendrites, the number of primary dendrites, dendritic complexity, and distance of the furthest intersection from the cell body were observed only in long-day animals; however, diurnal rhythms in the number of branch points and mean length of segments were observed only in short-day animals. Spine density of dendrites displayed diurnal rhythmicity with different peak times between the CA1 and DG subregions and between long and short days. These results indicate that photoperiod affects daily morphological changes of hippocampal neurons and the daily rhythm of spine density, suggesting the possibility that photoperiod-induced adjustments

  16. Expression of neuronal nitric oxide synthase in the hippocampal formation in affective disorders

    Directory of Open Access Journals (Sweden)

    R.M.W. Oliveira

    2008-04-01

    Full Text Available Hippocampal output is increased in affective disorders and is mediated by increased glutamatergic input via N-methyl-D-aspartate (NMDA receptor and moderated by antidepressant treatment. Activation of NMDA receptors by glutamate evokes the release of nitric oxide (NO by the activation of neuronal nitric oxide synthase (nNOS. The human hippocampus contains a high density of NMDA receptors and nNOS-expressing neurons suggesting the existence of an NMDA-NO transduction pathway which can be involved in the pathogenesis of affective disorders. We tested the hypothesis that nNOS expression is increased in the human hippocampus from affectively ill patients. Immunocytochemistry was used to demonstrate nNOS-expressing neurons in sections obtained from the Stanley Consortium postmortem brain collection from patients with major depression (MD, N = 15, bipolar disorder (BD, N = 15, and schizophrenia (N = 15 and from controls (N = 15. nNOS-immunoreactive (nNOS-IR and Nissl-stained neurons were counted in entorhinal cortex, hippocampal CA1, CA2, CA3, and CA4 subfields, and subiculum. The numbers of Nissl-stained neurons were very similar in different diagnostic groups and correlated significantly with the number of nNOS-IR neurons. Both the MD and the BD groups had greater number of nNOS-IR neurons/400 µm² in CA1 (mean ± SEM: MD = 9.2 ± 0.6 and BD = 8.4 ± 0.6 and subiculum (BD = 6.7 ± 0.4 when compared to control group (6.6 ± 0.5 and this was significantly more marked in samples from the right hemisphere. These changes were specific to affective disorders since no changes were seen in the schizophrenic group (6.7 ± 0.8. The results support the current view of the NMDA-NO pathway as a target for the pathophysiology of affective disorders and antidepressant drug development.

  17. Prenatal ethanol exposure differentially affects hippocampal neurogenesis in the adolescent and aged brain.

    Science.gov (United States)

    Gil-Mohapel, J; Titterness, A K; Patten, A R; Taylor, S; Ratzlaff, A; Ratzlaff, T; Helfer, J; Christie, B R

    2014-07-25

    Exposure to ethanol in utero is associated with a myriad of sequelae for the offspring. Some of these effects are morphological in nature and noticeable from birth, while others involve more subtle changes to the brain that only become apparent later in life when the individuals are challenged cognitively. One brain structure that shows both functional and structural deficits following prenatal ethanol exposure is the hippocampus. The hippocampus is composed of two interlocking gyri, the cornu ammonis (CA) and the dentate gyrus (DG), and they are differentially affected by prenatal ethanol exposure. The CA shows a more consistent loss in neuronal numbers, with different ethanol exposure paradigms, than the DG, which in contrast shows more pronounced and consistent deficits in synaptic plasticity. In this study we show that significant deficits in adult hippocampal neurogenesis are apparent in aged animals following prenatal ethanol exposure. Deficits in hippocampal neurogenesis were not apparent in younger animals. Surprisingly, even when ethanol exposure occurred in conjunction with maternal stress, deficits in neurogenesis did not occur at this young age, suggesting that the capacity for neurogenesis is highly conserved early in life. These findings are unique in that they demonstrate for the first time that deficits in neurogenesis associated with prenatal ethanol consumption appear later in life.

  18. Fluoxetine Dose and Administration Method Differentially Affect Hippocampal Plasticity in Adult Female Rats

    Directory of Open Access Journals (Sweden)

    Jodi L. Pawluski

    2014-01-01

    Full Text Available Selective serotonin reuptake inhibitor medications are one of the most common treatments for mood disorders. In humans, these medications are taken orally, usually once per day. Unfortunately, administration of antidepressant medications in rodent models is often through injection, oral gavage, or minipump implant, all relatively stressful procedures. The aim of the present study was to investigate how administration of the commonly used SSRI, fluoxetine, via a wafer cookie, compares to fluoxetine administration using an osmotic minipump, with regards to serum drug levels and hippocampal plasticity. For this experiment, adult female Sprague-Dawley rats were divided over the two administration methods: (1 cookie and (2 osmotic minipump and three fluoxetine treatment doses: 0, 5, or 10 mg/kg/day. Results show that a fluoxetine dose of 5 mg/kg/day, but not 10 mg/kg/day, results in comparable serum levels of fluoxetine and its active metabolite norfluoxetine between the two administration methods. Furthermore, minipump administration of fluoxetine resulted in higher levels of cell proliferation in the granule cell layer (GCL at a 5 mg dose compared to a 10 mg dose. Synaptophysin expression in the GCL, but not CA3, was significantly lower after fluoxetine treatment, regardless of administration method. These data suggest that the administration method and dose of fluoxetine can differentially affect hippocampal plasticity in the adult female rat.

  19. A study of hippocampal shape anomaly in schizophrenia and in families multiply affected by schizophrenia or bipolar disorder

    Energy Technology Data Exchange (ETDEWEB)

    Connor, S.E.J. [Department of Neuroradiology, Kings Healthcare NHS Trust, King' s College Hospital, Denmark Hill, SE5 9RS, London (United Kingdom); Ng, V. [Department of Neuroimaging, Maudsley Hospital, London (United Kingdom); McDonald, C.; Schulze, K.; Morgan, K.; Dazzan, P.; Murray, R.M. [Division of Psychological Medicine, Institute of Psychiatry, London (United Kingdom)

    2004-07-01

    Hippocampal shape anomaly (HSA), characterised by a rounded hippocampus, has been documented in congenital malformations and epileptic patients. Subtle structural hippocampal abnormalities have been demonstrated in patients with schizophrenia. We tested the hypothesis that HSA is more frequent in schizophrenia, particularly in patients from families multiply affected by schizophrenia, and that HSA is transmitted within these families. We also aimed to define the anatomical features of the hippocampus and other cerebral structures in the HSA spectrum and to determine the prevalence of HSA in a control group. We reviewed the magnetic resonance imaging of a large number of subjects with schizophrenia and bipolar disorder, many of who came from multiply affected families, relatives of the affected probands, and controls. Quantitative measures of hippocampal shape and position and other qualitative anatomical measures were performed (including depth of dominant sulcus cortical cap, angle of dominant sulcus and hippocampal fissure, bulk of collateral white matter, prominence of temporal horn lateral recess and blurring of internal hippocampal architecture) on subjects with HSA. A spectrum of mild, moderate and severe HSA was defined. The prevalence of HSA was, 7.8% for the controls (n=218), 9.3% for all schizophrenic subjects (n=151) and 12.3% for familial schizophrenic subjects (n=57). There was a greater prevalence of moderate or severe forms of HSA in familial schizophrenics than controls. However, there was no increase in the prevalence of HSA in the unaffected first-degree relatives of schizophrenic patients or in patients with familial bipolar disorder. HSA was rarely transmitted in families. HSA was frequently associated with a deep, vertical collateral/occipito-temporal sulcus and a steep hippocampal fissure. Our data raise the possibility that HSA is linked to disturbances of certain neurodevelopmental genes associated with schizophrenia. However, the lack of

  20. Trait positive affect is associated with hippocampal volume and change in caudate volume across adolescence.

    Science.gov (United States)

    Dennison, Meg; Whittle, Sarah; Yücel, Murat; Byrne, Michelle L; Schwartz, Orli; Simmons, Julian G; Allen, Nicholas B

    2015-03-01

    Trait positive affect (PA) in childhood confers both risk and resilience to psychological and behavioral difficulties in adolescence, although explanations for this association are lacking. Neurodevelopment in key areas associated with positive affect is ongoing throughout adolescence, and is likely to be related to the increased incidence of disorders of positive affect during this period of development. The aim of this study was to prospectively explore the relationship between trait indices of PA and brain development in subcortical reward regions during early to mid-adolescence in a community sample of adolescents. A total of 89 (46 male, 43 female) adolescents participated in magnetic resonance imaging assessments during both early and mid-adolescence (mean age at baseline = 12.6 years, SD = 0.45; mean follow-up period = 3.78 years, SD = 0.21) and also completed self-report measures of trait positive and negative affect (at baseline). To examine the specificity of these effects, the relation between negative affect and brain development was also examined. The degree of volume reduction in the right caudate over time was predicted by PA. Independent of time, larger hippocampal volumes were associated with higher PA, and negative affect was associated with smaller left amygdala volume. The moderating effect of negative affect on the development of the left caudate varied as a function of lifetime psychiatric history. These findings suggest that early to mid-adolescence is an important period whereby neurodevelopmental processes may underlie key phenotypes conferring both risk and resilience for emotional and behavioral difficulties later in life.

  1. Arteriolosclerosis that affects multiple brain regions is linked to hippocampal sclerosis of ageing

    Science.gov (United States)

    Neltner, Janna H.; Abner, Erin L.; Baker, Steven; Schmitt, Frederick A.; Kryscio, Richard J.; Jicha, Gregory A.; Smith, Charles D.; Hammack, Eleanor; Kukull, Walter A.; Brenowitz, Willa D.; Van Eldik, Linda J.

    2014-01-01

    Hippocampal sclerosis of ageing is a prevalent brain disease that afflicts older persons and has been linked with cerebrovascular pathology. Arteriolosclerosis is a subtype of cerebrovascular pathology characterized by concentrically thickened arterioles. Here we report data from multiple large autopsy series (University of Kentucky Alzheimer’s Disease Centre, Nun Study, and National Alzheimer’s Coordinating Centre) showing a specific association between hippocampal sclerosis of ageing pathology and arteriolosclerosis. The present analyses incorporate 226 cases of autopsy-proven hippocampal sclerosis of ageing and 1792 controls. Case–control comparisons were performed including digital pathological assessments for detailed analyses of blood vessel morphology. We found no evidence of associations between hippocampal sclerosis of ageing pathology and lacunar infarcts, large infarcts, Circle of Willis atherosclerosis, or cerebral amyloid angiopathy. Individuals with hippocampal sclerosis of ageing pathology did not show increased rates of clinically documented hypertension, diabetes, or other cardiac risk factors. The correlation between arteriolosclerosis and hippocampal sclerosis of ageing pathology was strong in multiple brain regions outside of the hippocampus. For example, the presence of arteriolosclerosis in the frontal cortex (Brodmann area 9) was strongly associated with hippocampal sclerosis of ageing pathology (P ageing (n = 15) and control (n = 42) cases. Following technical studies to optimize immunostaining methods for small blood vessel visualization, our analyses focused on sections immunostained for smooth muscle actin (a marker of arterioles) and CD34 (an endothelial marker), with separate analyses on grey and white matter. A total of 43 834 smooth muscle actin-positive vascular profiles and 603 798 CD34-positive vascular profiles were evaluated. In frontal cortex of cases with hippocampal sclerosis of ageing, smooth muscle actin

  2. Genetic variation of the serotonin 2a receptor affects hippocampal novelty processing in humans.

    Directory of Open Access Journals (Sweden)

    Björn H Schott

    Full Text Available Serotonin (5-hydroxytryptamine, 5-HT is an important neuromodulator in learning and memory processes. A functional genetic polymorphism of the 5-HT 2a receptor (5-HTR2a His452Tyr, which leads to blunted intracellular signaling, has previously been associated with explicit memory performance in several independent cohorts, but the underlying neural mechanisms are thus far unclear. The human hippocampus plays a critical role in memory, particularly in the detection and encoding of novel information. Here we investigated the relationship of 5-HTR2a His452Tyr and hippocampal novelty processing in 41 young, healthy subjects using functional magnetic resonance imaging (fMRI. Participants performed a novelty/familiarity task with complex scene stimuli, which was followed by a delayed recognition memory test 24 hours later. Compared to His homozygotes, Tyr carriers exhibited a diminished hippocampal response to novel stimuli and a higher tendency to judge novel stimuli as familiar during delayed recognition. Across the cohort, the false alarm rate during delayed recognition correlated negatively with the hippocampal novelty response. Our results suggest that previously reported effects of 5-HTR2a on explicit memory performance may, at least in part, be mediated by alterations of hippocampal novelty processing.

  3. Genetic variation of the serotonin 2a receptor affects hippocampal novelty processing in humans.

    Science.gov (United States)

    Schott, Björn H; Seidenbecher, Constanze I; Richter, Sylvia; Wüstenberg, Torsten; Debska-Vielhaber, Grazyna; Schubert, Heike; Heinze, Hans-Jochen; Richardson-Klavehn, Alan; Düzel, Emrah

    2011-01-18

    Serotonin (5-hydroxytryptamine, 5-HT) is an important neuromodulator in learning and memory processes. A functional genetic polymorphism of the 5-HT 2a receptor (5-HTR2a His452Tyr), which leads to blunted intracellular signaling, has previously been associated with explicit memory performance in several independent cohorts, but the underlying neural mechanisms are thus far unclear. The human hippocampus plays a critical role in memory, particularly in the detection and encoding of novel information. Here we investigated the relationship of 5-HTR2a His452Tyr and hippocampal novelty processing in 41 young, healthy subjects using functional magnetic resonance imaging (fMRI). Participants performed a novelty/familiarity task with complex scene stimuli, which was followed by a delayed recognition memory test 24 hours later. Compared to His homozygotes, Tyr carriers exhibited a diminished hippocampal response to novel stimuli and a higher tendency to judge novel stimuli as familiar during delayed recognition. Across the cohort, the false alarm rate during delayed recognition correlated negatively with the hippocampal novelty response. Our results suggest that previously reported effects of 5-HTR2a on explicit memory performance may, at least in part, be mediated by alterations of hippocampal novelty processing.

  4. Hippocampal sclerosis affects fMR-adaptation of lyrics and melodies in songs

    Directory of Open Access Journals (Sweden)

    Irene eAlonso

    2014-02-01

    Full Text Available Songs constitute a natural combination of lyrics and melodies, but it is unclear whether and how these two song components are integrated during the emergence of a memory trace. Network theories of memory suggest a prominent role of the hippocampus, together with unimodal sensory areas, in the build-up of conjunctive representations. The present study tested the modulatory influence of the hippocampus on neural adaptation to songs in lateral temporal areas. Patients with unilateral hippocampal sclerosis and healthy matched controls were presented with blocks of short songs in which lyrics and/or melodies were varied or repeated in a crossed factorial design. Neural adaptation effects were taken as correlates of incidental emergent memory traces. We hypothesized that hippocampal lesions, particularly in the left hemisphere, would weaken adaptation effects, especially the integration of lyrics and melodies. Results revealed that lateral temporal lobe regions showed weaker adaptation to repeated lyrics as well as a reduced interaction of the adaptation effects for lyrics and melodies in patients with left hippocampal sclerosis. This suggests a deficient build-up of a sensory memory trace for lyrics and a reduced integration of lyrics with melodies, compared to healthy controls. Patients with right hippocampal sclerosis showed a similar profile of results although the effects did not reach significance in this population. We highlight the finding that the integrated representation of lyrics and melodies typically shown in healthy participants is likely tied to the integrity of the left medial temporal lobe. This novel finding provides the first neuroimaging evidence for the role of the hippocampus during repetitive exposure to lyrics and melodies and their integration into a song.

  5. Membrane voltage differently affects mIPSCs and current responses recorded from somatic excised patches in rat hippocampal cultures.

    Science.gov (United States)

    Pytel, Maria; Mozrzymas, Jerzy W

    2006-01-30

    Recent analysis of current responses to exogenous GABA applications recorded from excised patches indicated that membrane voltage affected the GABAA receptor gating mainly by altering desensitization and binding [M. Pytel, K. Mercik, J.W. Mozrzymas, Membrane voltage modulates the GABAA receptor gating in cultured rat hippocampal neurons, Neuropharmacology, in press]. In order investigate the impact of such voltage effect on GABAA receptors in conditions of synaptic transmission, mIPSCs and current responses to rapid GABA applications were recorded from the same culture of rat hippocampal neurons. We found that I-V relationship for mIPSCs amplitudes showed a clear outward rectification while for current responses an inward rectification was seen, except for very low GABA concentrations. A clear shift in amplitude cumulative distributions indicated that outward rectification resulted from the voltage effect on the majority of mIPSCs. Moreover, the decaying phase of mIPSCs was clearly slowed down at positive voltages and this effect was represented by a shift in cumulative distributions of weighted decaying time constants. In contrast, deactivation of current responses was only slightly affected by membrane depolarization. These data indicate that the mechanisms whereby the membrane voltage modulates synaptic and extrasynaptic receptors are qualitatively different but the mechanism underlying this difference is not clear.

  6. Amphetamine withdrawal differentially affects hippocampal and peripheral corticosterone levels in response to stress.

    Science.gov (United States)

    Bray, Brenna; Scholl, Jamie L; Tu, Wenyu; Watt, Michael J; Renner, Kenneth J; Forster, Gina L

    2016-08-01

    Amphetamine withdrawal is associated with heightened anxiety-like behavior, which is directly driven by blunted stress-induced glucocorticoid receptor-dependent serotonin release in the ventral hippocampus. This suggests that glucocorticoid availability in the ventral hippocampus during stress may be reduced during amphetamine withdrawal. Therefore, we tested whether amphetamine withdrawal alters either peripheral or hippocampal corticosterone stress responses. Adult male rats received amphetamine (2.5mg/kg, ip) or saline for 14 days followed by 2 weeks of withdrawal. Contrary to our prediction, microdialysis samples from freely-moving rats revealed that restraint stress-induced corticosterone levels in the ventral hippocampus are enhanced by amphetamine withdrawal relative to controls. In separate groups of rats, plasma corticosterone levels increased immediately after 20min of restraint and decreased to below stress-naïve levels after 1h, indicating negative feedback regulation of corticosterone following stress. However, plasma corticosterone responses were similar in amphetamine-withdrawn and control rats. Neither amphetamine nor stress exposure significantly altered protein expression or enzyme activity of the steroidogenic enzymes 11β-hydroxysteroid dehydrogenase (11β-HSD1) or hexose-6-phosphate dehydrogenase (H6PD) in the ventral hippocampus. Our findings demonstrate for the first time that amphetamine withdrawal potentiates stress-induced corticosterone in the ventral hippocampus, which may contribute to increased behavioral stress sensitivity previously observed during amphetamine withdrawal. However, this is not mediated by either changes in plasma corticosterone or hippocampal steroidogenic enzymes. Establishing enhanced ventral hippocampal corticosterone as a direct cause of greater stress sensitivity may identify the glucocorticoid system as a novel target for treating behavioral symptoms of amphetamine withdrawal. Copyright © 2016 Elsevier B

  7. 916 MHz electromagnetic field exposure affects rat behavior and hippocampal neuronal discharge

    Institute of Scientific and Technical Information of China (English)

    Dongmei Hao; Lei Yang; Su Chen; Yonghao Tian; Shuicai Wu

    2012-01-01

    Wistar rats were exposed to a 916 MHz,10 W/m2 mobile phone electromagnetic field for 6 hours a day,5 days a week.Average completion times in an eight-arm radial maze were longer in the exposed rats than control rats after 4-5 weeks of exposure.Error rates in the exposed rats were greater than the control rats at 6 weeks.Hippocampal neurons from the exposed rats showed irregular firing patterns during the experiment,and they exhibited decreased spiking activity 6-9 weeks compared with that after 2-5 weeks of exposure.These results indicate that 916 MHz electromagnetic fields influence learning and memory in rats during exposure,but long-term effects are not obvious.

  8. Dietary Restriction reduces hippocampal neurogenesis and granule cell neuron density without affecting the density of mossy fibers.

    Science.gov (United States)

    Staples, Miranda C; Fannon-Pavlich, McKenzie J; Mysore, Karthik K; Dutta, Rahul R; Ongjoco, Alexandria T; Quach, Leon W; Kharidia, Khush M; Somkuwar, Sucharita S; Mandyam, Chitra D

    2017-03-08

    The hippocampal formation undergoes significant morphological and functional changes after prolonged caloric and dietary restriction (DR). In this study we tested whether prolonged DR results in deleterious alterations in hippocampal neurogenesis, density of granule cell neurons and mossy fibers, all of which support plasticity in the dentate gyrus. Young adult animals either experienced free access to food (control condition), or every-other-day feeding regimen (DR condition) for 3 months. The number of Ki-67 cells and 28-day old 5-bromo-2'-deoxyuridine (BrdU) cells were quantified in the dorsal and ventral dentate gyrus to determine the effect of DR on cellular proliferation and survival of neural progenitor cells in the anatomically defined regions of the dentate gyrus. The density of granule cell neurons and synaptoporin were also quantified to determine the effect of DR on granule cell neurons and mossy fiber projections in the dentate gyrus. Our results show that DR increases cellular proliferation and concurrently reduces survival of newly born neurons in the ventral dentate gyrus without effecting the number of cells in the dorsal dentate gyrus. DR reduced density of granule cell neurons in the dorsal dentate gyrus. These alterations in the number of granule cell neurons did not affect mossy fiber density in DR animals, which was visualized as no differences in synaptoporin expression. Our findings demonstrate that granule cell neurons in the dentate gyrus are vulnerable to chronic DR and that the reorganization of granule cells in the dentate gyrus subregions is not producing concomitant alterations in dentate gyrus neuronal circuitry with this type of dietary restriction.

  9. HERC 1 Ubiquitin Ligase Mutation Affects Neocortical, CA3 Hippocampal and Spinal Cord Projection Neurons: An Ultrastructural Study.

    Science.gov (United States)

    Ruiz, Rocío; Pérez-Villegas, Eva María; Bachiller, Sara; Rosa, José Luis; Armengol, José Angel

    2016-01-01

    The spontaneous mutation tambaleante is caused by the Gly483Glu substitution in the highly conserved N terminal RCC1-like domain of the HERC1 protein, which leads to the increase of mutated protein levels responsible for cerebellar Purkinje cell death by autophagy. Until now, Purkinje cells have been the only central nervous neurons reported as being targeted by the mutation, and their degeneration elicits an ataxic syndrome in adult mutant mice. However, the ultrastructural analysis performed here demonstrates that signs of autophagy, such as autophagosomes, lysosomes, and altered mitochondria, are present in neocortical pyramidal, CA3 hippocampal pyramidal, and spinal cord motor neurons. The main difference is that the reduction in the number of neurons affected in the tambaleante mutation in the neocortex, the hippocampus, and the spinal cord is not so evident as the dramatic loss of cerebellar Purkinje cells. Interestingly, signs of autophagy are absent in both interneurons and neuroglia cells. Affected neurons have in common that they are projection neurons which receive strong and varied synaptic inputs, and possess the highest degree of neuronal activity. Therefore, because the integrity of the ubiquitin-proteasome system is essential for protein degradation and hence, for normal protein turnover, it could be hypothesized that the deleterious effects of the misrouting of these pathways would depend directly on the neuronal activity.

  10. HERC 1 ubiquitin ligase mutation affects neocortical, CA3 hippocampal and spinal cord projection neurons. An ultrastructural study

    Directory of Open Access Journals (Sweden)

    Rocío eRuiz

    2016-04-01

    Full Text Available The spontaneous mutation tambaleante is caused by the Gly483Glu substitution in the highly conserved N terminal RCC1-like domain of the HERC1 protein, which leads to the increase of mutated protein levels responsible for cerebellar Purkinje cell death by autophagy. Until now, Purkinje cells have been the only central nervous neurons reported as being targeted by the mutation, and their degeneration elicits an ataxic syndrome in adult mutant mice. However, the ultrastructural analysis performed here demonstrates that signs of autophagy, such as autophagosomes, lysosomes, and altered mitochondria, are present in neocortical pyramidal, CA3 hippocampal pyramidal, and spinal cord motor neurons. The main difference is that the reduction in the number of neurons affected in the tambaleante mutation in the neocortex, the hippocampus, and the spinal cord is not so evident as the dramatic loss of cerebellar Purkinje cells. Interestingly, signs of autophagy are absent in both interneurons and neuroglia cells. Affected neurons have in common that they are projection neurons which receive strong and varied synaptic inputs, and possess the highest degree of neuronal activity. Therefore, because the integrity of the ubiquitin-proteasome system is essential for protein degradation and, hence, for normal protein turnover, it could be hypothesized that the deleterious effects of the misrouting of these pathways would depend directly on the neuronal activity.

  11. Acute Stress Affects the Expression of Hippocampal Mu Oscillations in an Age-Dependent Manner

    Directory of Open Access Journals (Sweden)

    Samir Takillah

    2017-09-01

    Full Text Available Anxiolytic drugs are widely used in the elderly, a population particularly sensitive to stress. Stress, aging and anxiolytics all affect low-frequency oscillations in the hippocampus and prefrontal cortex (PFC independently, but the interactions between these factors remain unclear. Here, we compared the effects of stress (elevated platform, EP and anxiolytics (diazepam, DZP on extracellular field potentials (EFP in the PFC, parietal cortex and hippocampus (dorsal and ventral parts of adult (8 months and aged (18 months Wistar rats. A potential source of confusion in the experimental studies in rodents comes from locomotion-related theta (6–12 Hz oscillations, which may overshadow the direct effects of anxiety on low-frequency and especially on the high-amplitude oscillations in the Mu range (7–12 Hz, related to arousal. Animals were restrained to avoid any confound and isolate the direct effects of stress from theta oscillations related to stress-induced locomotion. We identified transient, high-amplitude oscillations in the 7–12 Hz range (“Mu-bursts” in the PFC, parietal cortex and only in the dorsal part of hippocampus. At rest, aged rats displayed more Mu-bursts than adults. Stress acted differently on Mu-bursts depending on age: it increases vs. decreases burst, in adult and aged animals, respectively. In contrast DZP (1 mg/kg acted the same way in stressed adult and age animal: it decreased the occurrence of Mu-bursts, as well as their co-occurrence. This is consistent with DZP acting as a positive allosteric modulator of GABAA receptors, which globally potentiates inhibition and has anxiolytic effects. Overall, the effect of benzodiazepines on stressed animals was to restore Mu burst activity in adults but to strongly diminish them in aged rats. This work suggests Mu-bursts as a neural marker to study the impact of stress and DZP on age.

  12. Neonatal intramuscular injection of plasmid encoding glucagon-like peptide-1 affects anxiety behaviour and expression of the hippocampal glucocorticoid receptor in adolescent rats

    Indian Academy of Sciences (India)

    Huitao Fan; Lina Wang; Feng Guo; Shi Wei; Ruqian Zhao

    2010-03-01

    Early-life endocrine intervention may programme hippocampal glucocorticoid receptor (GR) expression and cause psychiatric disorders in later life. Glucagon-like peptide-1 (GLP-1) has been implicated in the regulation of neuroendocrine and behavioural responses, but it is yet to be determined whether and how neonatal GLP-1 overexpression may modify hippocampal GR expression and thus programme adolescent behaviour in rats. Two-dayold pups were injected intramuscularly with vacant plasmid (VP) or plasmid DNA encoding secretory GLP-1 (GP). Anxiety-related behaviour was assessed in the elevated plus maze (EPM) test at 8 weeks of age. Plasma corticosterone levels were measured with enzyme immunoassay (EIA). Protein and mRNA levels were determined by western blot and real-time polymerase chain reaction (PCR), respectively. The DNA methylation status of the GR exon 17 promoter was determined by bisulphate sequencing PCR (BSP). GP rats exhibited anxiolytic behaviour compared with their VP counterparts. Hippocampal GLP-1 receptor (GLP-1R) and GR mRNA expression were significantly elevated in GP rats without a significant difference in plasma corticosterone. Significant reduction in DNA methyltransferase 1 (DNMT1) expression was observed in GP rats disconnected with alterations in DNA methylation of the GR exon 17 promoter. Nevertheless, mRNA expression of nerve growth factor-inducible protein A (NGFI-A) was significantly elevated in GP rats. These results suggest that neonatal intramuscular injection of plasmid DNA encoding GLP-1 affects anxiety behaviour in adolescent rats, probably through NGFI-A-activated upregulation of hippocampal GR expression.

  13. Amyloid β-protein differentially affects NMDA receptor- and GABAA receptor-mediated currents in rat hippocampal CA1 neurons

    Institute of Scientific and Technical Information of China (English)

    Junfang Zhang; Lei Hou; Xiuping Gao; Fen Guo; Wei Jing; Jinshun Qi; Jiantian Qiao

    2009-01-01

    Although the aggregated amyloid β-protein (Aβ) in senile plaques is one of the key neuropathological features of Alzheimer's disease (AD), soluble forms of Aβ also interfere with synaptic plasticity at the early stage of AD. The suppressive action of acute application of Aβ on hippocampal long-term potentiation (LTP) has been reported widely, whereas the mechanism underlying the effects of Aβ is still mostly unknown. The present study, using the whole-cell patch clamp technique, investigated the effects of Aβ fragments (Aβ25-35 and Aβ31-35) on the LTP induction-related postsynaptic ligand-gated channel currents in isolated hippocampal CA1 neurons. The results showed a rapid but opposite action of both peptides on excitatory and inhibitory receptor currents. Glutamate application-induced currents were suppressed by A β25-35 in a dose-dependent manner, and further N-methyl-I>aspartate (NMDA) receptor-mediated currents were selec-tively inhibited. In contrast, pretreatment with Aβ fragments potentiated γ-aminobutyric acid (GABA)-induced whole-cell currents. As a control, Aβ35-31 the reversed sequence of Aβ35-31 showed no effect on the currents induced by glutamate, NMDA or GABA. These results may partly explain the impaired effects of Aβ on hippocampal LTP, and suggest that the functional down-regulation of N M DA receptors and up-regulation of GABAA receptors may play an important role in remodeling the hippocampal synaptic plasticity in early AD.

  14. Cerebral Hemispheric Lateralization Associated with Hippocampal Sclerosis May Affect Interictal Cardiovascular Autonomic Functions in Temporal Lobe Epilepsy

    Directory of Open Access Journals (Sweden)

    Rokia Ghchime

    2016-01-01

    Full Text Available It is well established that the temporal lobe epilepsy (TLE is linked to the autonomic nervous system dysfunctions. Seizures alter the function of different systems such as the respiratory, cardiovascular, gastrointestinal, and urogenital systems. The aim of this work was to evaluate the possible factors which may be involved in interictal cardiovascular autonomic function in temporal lobe epilepsy with complex partial seizures, and with particular attention to hippocampal sclerosis. The study was conducted in 30 patients with intractable temporal lobe epilepsy (19 with left hippocampal sclerosis, 11 with right hippocampal sclerosis. All subjects underwent four tests of cardiac autonomic function: heart rate changes in response to deep breathing, heart rate, and blood pressure variations throughout resting activity and during hand grip, mental stress, and orthostatic tests. Our results show that the right cerebral hemisphere predominantly modulates sympathetic activity, while the left cerebral hemisphere mainly modulates parasympathetic activity, which mediated tachycardia and excessive bradycardia counterregulation, both of which might be involved as a mechanism of sudden unexpected death in epilepsy patients (SUDEP.

  15. NMDA and mGluR1 receptor subtypes as major players affecting depotentiation in the hippocampal CA1-region

    Directory of Open Access Journals (Sweden)

    Amira Latif-Hernandez

    2014-03-01

    Full Text Available Neurons have the ability to modify their structure and function which ultimately serves for learning (Abraham and Bear, 1996. Dendritic events provide a major contribution to such modifications. For example, natural and artificial patterns of afferent activation have been shown to induce persistent forms of synaptic plasticity, such as long-term potentiation (LTP and long-term depression (LTD at distinct dendritic synapses. LTP and LTD are both assumed to occur during the physiological processes of learning and memory formation and to sustain the latter (Abraham, 2008. In recent years, there has been a burgeoning interest in the understanding of metaplasticity, which refers to the plasticity of synaptic plasticity (Abraham and Bear, 1996. In particular, depotentiation (DP is the mechanism by which synapses that have recently undergone LTP can reverse their synaptic strengthening in response to low frequency stimulation (LFS; Abraham, 2008. Typically, DP is thought to prevent the saturation of synaptic potentiation by resetting synapses into a more efficient state to store new information. The detailed mechanisms that underlie DP still remain unclear. Bortolotto et al. (1994 first identified metabotropic glutamate receptors (mGluRs as being involved in DP. Experimental evidence indicates that both subtypes of group I mGluRs (mGluR1 and mGluR5 have distinct functions in synaptic plasticity in the hippocampal CA1 region (Gladding et al., 2008. However, their role in DP was not addressed yet in detail and appear to be distinct from those involved in NMDAR-dependent DP (Zho et al., 2002. Therefore, we investigated the precise mechanisms responsible for NMDAR and mGluR-dependent DP by combining electrophysiological recordings in vitro and pharmacological approach. Transverse hippocampal slices (400 µm thick were prepared from the right hippocampus with a tissue chopper and placed into a submerged-type chamber, where they were continuously perfused

  16. Prolonged protein deprivation differentially affects calretinin- and parvalbumin-containing interneurons in the hippocampal dentate gyrus of adult rats.

    Science.gov (United States)

    Hipólito-Reis, José; Pereira, Pedro Alberto; Andrade, José Paulo; Cardoso, Armando

    2013-10-25

    Protein deprivation is a detrimental nutritional state that induces several deleterious changes in the rat hippocampal formation. In this study, we compared the effects of protein deprivation in the number of parvalbumin (PV)-immunoreactive and calretinin (CR)-immunoreactive interneurons of the dentate gyrus, which are involved in the control of calcium homeostasis and fine tuning of the hippocampal circuits. Two month-old rats were randomly assigned to control and low-protein diet groups. The rats of the latter group were fed with a low-protein diet (8% casein) for 6 months. All animals were perfused at 8 months of age. The number of neurons expressing CR in the molecular layer and in the hilus of dentate gyrus was reduced in protein-deprived rats. Conversely, protein deprivation increased the number of PV-containing interneurons in the dentate granule cell layer and hilus. These results support the view that protein deprivation may disturb calcium homeostasis, leading to neuronal death including GABAergic interneurons expressing CR. In the other hand, the up-regulation of PV cells may reflect a protective mechanism to counteract the calcium overload and protect the remaining neurons of the dentate gyrus.

  17. The signaling mechanisms of hippocampal endoplasmic reticulum stress affecting neuronal plasticity-related protein levels in high fat diet-induced obese rats and the regulation of aerobic exercise.

    Science.gov (United States)

    Cai, Ming; Wang, Hong; Li, Jing-Jing; Zhang, Yun-Li; Xin, Lei; Li, Feng; Lou, Shu-Jie

    2016-10-01

    High fat diet (HFD)-induced obesity has been shown to reduce the levels of neuronal plasticity-related proteins, specifically brain-derived neurotrophic factor (BDNF) and synaptophysin (SYN), in the hippocampus. However, the underlying mechanisms are not fully clear. Endoplasmic reticulum stress (ERS) has been reported to play a key role in regulating gene expression and protein production by affecting stress signaling pathways and ER functions of protein folding and post-translational modification in peripheral tissues of obese rodent models. Additionally, HFD that is associated with hyperglycemia could induce hippocampal ERS, thus impairing insulin signaling and cognitive health in HFD mice. One goal of this study was to determine whether hyperglycemia and hyperlipidemia could cause hippocampal ERS in HFD-induced obese SD rats, and explore the potential mechanisms of ERS regulating hippocampal BDNF and SYN proteins production. Additionally, although regular aerobic exercise could reduce central inflammation and elevate hippocampal BDNF and SYN levels in obese rats, the regulated mechanisms are poorly understood. Nrf2-HO-1 pathways play roles in anti-ERS, anti-inflammation and anti-apoptosis in peripheral tissues. Therefore, the other goal of this study was to determine whether aerobic exercise could activate Nrf2-HO-1 in hippocampus to alleviate obesity-induced hippocampal ERS, which would lead to increased BDNF and SYN levels. Male SD rats were fed on HFD for 8weeks to establish the obese model. Then, 8weeks of aerobic exercise treadmill intervention was arranged for the obese rats. Results showed that HFD-induced obesity caused hyperglycemia and hyperlipidemia, and significantly promoted hippocampal glucose transporter 3 (GLUT3) and fatty acid transport protein 1 (FATP1) protein expression. These results were associated with the activation of hippocampal ERS and ERS-mediated apoptosis. At the same time, we found that excessive hippocampal ERS not only

  18. Daily acclimation handling does not affect hippocampal long-term potentiation or cause chronic sleep deprivation in mice.

    Science.gov (United States)

    Vecsey, Christopher G; Wimmer, Mathieu E J; Havekes, Robbert; Park, Alan J; Perron, Isaac J; Meerlo, Peter; Abel, Ted

    2013-04-01

    Gentle handling is commonly used to perform brief sleep deprivation in rodents. It was recently reported that daily acclimation handling, which is often used before behavioral assays, causes alterations in sleep, stress, and levels of N-methyl-D-aspartate receptor subunits prior to the actual period of sleep deprivation. It was therefore suggested that acclimation handling could mediate some of the observed effects of subsequent sleep deprivation. Here, we examine whether acclimation handling, performed as in our sleep deprivation studies, alters sleep/wake behavior, stress, or forms of hippocampal synaptic plasticity that are impaired by sleep deprivation. Adult C57BL/6J mice were either handled daily for 6 days or were left undisturbed in their home cages. On the day after the 6(th) day of handling, long-term potentiation (LTP) was induced in hippocampal slices with spaced four-train stimulation, which we previously demonstrated to be impaired by brief sleep deprivation. Basal synaptic properties were also assessed. In three other sets of animals, activity monitoring, polysomnography, and stress hormone measurements were performed during the 6 days of handling. Daily gentle handling alone does not alter LTP, rest/activity patterns, or sleep/wake architecture. Handling initially induces a minimal stress response, but by the 6(th) day, stress hormone levels are unaltered by handling. It is possible to handle mice daily to accustom them to the researcher without causing alterations in sleep, stress, or synaptic plasticity in the hippocampus. Therefore, effects of acclimation handling cannot explain the impairments in signaling mechanisms, synaptic plasticity, and memory that result from brief sleep deprivation.

  19. Developmental exposure to T-2 toxin reversibly affects postnatal hippocampal neurogenesis and reduces neural stem cells and progenitor cells in mice.

    Science.gov (United States)

    Tanaka, Takeshi; Abe, Hajime; Kimura, Masayuki; Onda, Nobuhiko; Mizukami, Sayaka; Yoshida, Toshinori; Shibutani, Makoto

    2016-08-01

    To determine the developmental exposure effects of T-2 toxin on postnatal hippocampal neurogenesis, pregnant ICR mice were provided a diet containing T-2 toxin at 0, 1, 3, or 9 ppm from gestation day 6 to day 21 on weaning after delivery. Offspring were maintained through postnatal day (PND) 77 without T-2 toxin exposure. In the hippocampal dentate gyrus of male PND 21 offspring, GFAP(+) and BLBP(+) type-1 stem cells and PAX6(+) and TBR2(+) type-2 progenitor cells decreased in the subgranular zone (SGZ) at 9 and ≥3 ppm, respectively, in parallel with increased apoptosis at ≥3 ppm. In the dentate hilus, reelin(+) γ-aminobutyric acid (GABA)-ergic interneurons increased at 9 ppm, suggesting reflection of neuronal mismigration. T-2 toxin decreased transcript levels of cholinergic and glutamate receptor subunits (Chrna4, Chrnb2 and Gria2) and glutamate transporter (Slc17a6) in the dentate gyrus, suggesting decreased cholinergic signals on hilar GABAergic interneurons innervating type-2 cells and decreased glutamatergic signals on type-1 and type-2 cells. T-2 toxin decreased SGZ cells expressing stem cell factor (SCF) and increased cells accumulating malondialdehydes. Neurogenesis-related changes disappeared on PND 77, suggesting that T-2 toxin reversibly affects neurogenesis by inducing apoptosis of type-1 and type-2 cells with different threshold levels. Decreased cholinergic and glutamatergic signals may decrease type-2 cells at ≥3 ppm. Additionally, decreased SCF/c-Kit interactions and increased oxidative stress may decrease type-1 and type-2 cells at 9 ppm. The no-observed-adverse-effect level for offspring neurogenesis was determined to be 1 ppm (0.14-0.49 mg/kg body weight/day).

  20. Ovarian cycle-linked plasticity of δ-GABAA receptor subunits in hippocampal interneurons affects γ oscillations in vivo

    Directory of Open Access Journals (Sweden)

    Albert Miklos Barth

    2014-08-01

    Full Text Available GABAA receptors containing δ subunits (δ-GABAARs are GABA-gated ion channels with extra- and perisynaptic localization, strong sensitivity to neurosteroids (NS, and a high degree of plasticity. In selective brain regions they are expressed on specific principal cells and interneurons (INs, and generate a tonic conductance that controls neuronal excitability and oscillations. Plasticity of δ-GABAARs in principal cells has been described during states of altered NS synthesis including acute stress, puberty, ovarian cycle, pregnancy and the postpartum period, with direct consequences on neuronal excitability and network dynamics. The defining network events implicated in cognitive function, memory formation and encoding are γ oscillations (30-120 Hz, a well-timed loop of excitation and inhibition between principal cells and PV-expressing INs (PV+INs. The δ-GABAARs of INs can modify γ oscillations, and a lower expression of δ-GABAARs on INs during pregnancy alters γ frequency recorded in vitro. The ovarian cycle is another physiological event with large fluctuations in NS levels and δ-GABAARs. Stages of the cycle are paralleled by swings in memory performance, cognitive function, and mood in both humans and rodents. Here we show δ-GABAARs changes during the mouse ovarian cycle in hippocampal cell types, with enhanced expression during diestrus in principal cells and specific INs. The plasticity of δ-GABAARs on PV-INs decreases the magnitude of γ oscillations continuously recorded in area CA1 throughout several days in vivo during diestrus and increases it during estrus. Such recurring changes in γ magnitude were not observed in non-cycling wild-type (WT females, cycling females lacking δ-GABAARs only on PV-INs (PV-Gabrd-/-, and in male mice during a time course equivalent to the ovarian cycle. Our findings may explain the impaired memory and cognitive performance experienced by women with premenstrual syndrome (PMS or premenstrual

  1. Restoration of hippocampal growth hormone reverses stress-induced hippocampal impairment

    Directory of Open Access Journals (Sweden)

    Caitlin M. Vander Weele

    2013-06-01

    Full Text Available Though growth hormone (GH is synthesized by hippocampal neurons, where its expression is influenced by stress exposure, its function is poorly characterized. Here, we show that a regimen of chronic stress that impairs hippocampal function in rats also leads to a profound decrease in hippocampal GH levels. Restoration of hippocampal GH in the dorsal hippocampus via viral-mediated gene transfer completely reversed stress-related impairment of two hippocampus-dependent behavioral tasks, auditory trace fear conditioning and contextual fear conditioning, without affecting hippocampal function in unstressed control rats. GH overexpression reversed stress-induced decrements in both fear acquisition and long-term fear memory. These results suggest that loss of hippocampal GH contributes to hippocampal dysfunction following prolonged stress and demonstrate that restoring hippocampal GH levels following stress can promote stress resilience.

  2. A novel in-frame deletion affecting the BAR domain of OPHN1 in a family with intellectual disability and hippocampal alterations.

    Science.gov (United States)

    Santos-Rebouças, Cíntia Barros; Belet, Stefanie; Guedes de Almeida, Luciana; Ribeiro, Márcia Gonçalves; Medina-Acosta, Enrique; Bahia, Paulo Roberto Valle; Alves da Silva, Antônio Francisco; Lima dos Santos, Flávia; Borges de Lacerda, Glenda Corrêa; Pimentel, Márcia Mattos Gonçalves; Froyen, Guy

    2014-05-01

    Oligophrenin-1 (OPHN1) is one of at least seven genes located on chromosome X that take part in Rho GTPase-dependent signaling pathways involved in X-linked intellectual disability (XLID). Mutations in OPHN1 were primarily described as an exclusive cause of non-syndromic XLID, but the re-evaluation of the affected individuals using brain imaging displayed fronto-temporal atrophy and cerebellar hypoplasia as neuroanatomical marks. In this study, we describe clinical, genetic and neuroimaging data of a three generation Brazilian XLID family co-segregating a novel intragenic deletion in OPHN1. This deletion results in an in-frame loss of exon 7 at transcription level (c.781_891del; r.487_597del), which is predicted to abolish 37 amino acids from the highly conserved N-terminal BAR domain of OPHN1. cDNA expression analysis demonstrated that the mutant OPHN1 transcript is stable and no abnormal splicing was observed. Features shared by the affected males of this family include neonatal hypotonia, strabismus, prominent root of the nose, deep set eyes, hyperactivity and instability/intolerance to frustration. Cranial MRI scans showed large lateral ventricles, vermis hypoplasia and cystic dilatation of the cisterna magna in all affected males. Interestingly, hippocampal alterations that have not been reported in patients with loss-of-function OPHN1 mutations were found in three affected individuals, suggesting an important function for the BAR domain in the hippocampus. This is the first description of an in-frame deletion within the BAR domain of OPHN1 and could provide new insights into the role of this domain in relation to brain and cognitive development or function.

  3. Hippocampal formation

    NARCIS (Netherlands)

    Cappaert, N.L.M.; van Strien, N.M.; Witter, M.P.; Paxinos, G.

    2015-01-01

    The hippocampal formation and parahippocampal region are prominent components of the rat nervous system and play a crucial role in learning, memory, and spatial navigation. Many new details regarding the entorhinal cortex have been discovered since the previous edition, and the growing interest in t

  4. Maternal postpartum corticosterone and fluoxetine differentially affect adult male and female offspring on anxiety-like behavior, stress reactivity, and hippocampal neurogenesis.

    Science.gov (United States)

    Gobinath, Aarthi R; Workman, Joanna L; Chow, Carmen; Lieblich, Stephanie E; Galea, Liisa A M

    2016-02-01

    Postpartum depression (PPD) affects approximately 15% of mothers, disrupts maternal care, and can represent a form of early life adversity for the developing offspring. Intriguingly, male and female offspring are differentially vulnerable to the effects of PPD. Antidepressants, such as fluoxetine, are commonly prescribed for treating PPD. However, fluoxetine can reach offspring via breast milk, raising serious concerns regarding the long-term consequences of infant exposure to fluoxetine. The goal of this study was to examine the long-term effects of maternal postpartum corticosterone (CORT, a model of postpartum stress/depression) and concurrent maternal postpartum fluoxetine on behavioral, endocrine, and neural measures in adult male and female offspring. Female Sprague-Dawley dams were treated daily with either CORT or oil and fluoxetine or saline from postnatal days 2-23, and offspring were weaned and left undisturbed until adulthood. Here we show that maternal postpartum fluoxetine increased anxiety-like behavior and impaired hypothalamic-pituitary-adrenal (HPA) axis negative feedback in adult male, but not female, offspring. Furthermore, maternal postpartum fluoxetine increased the density of immature neurons (doublecortin-expressing) in the hippocampus of adult male offspring but decreased the density of immature neurons in adult female offspring. Maternal postpartum CORT blunted HPA axis negative feedback in males and tended to increase density of immature neurons in males but decreased it in females. These results indicate that maternal postpartum CORT and fluoxetine can have long-lasting effects on anxiety-like behavior, HPA axis negative feedback, and adult hippocampal neurogenesis and that adult male and female offspring are differentially affected by these maternal manipulations.

  5. Exposure to GSM RF fields does not affect calcium homeostasis in human endothelial cells, rat pheocromocytoma cells or rat hippocampal neurons.

    Directory of Open Access Journals (Sweden)

    Rodney P O'Connor

    Full Text Available In the course of modern daily life, individuals are exposed to numerous sources of electromagnetic radiation that are not present in the natural environment. The strength of the electromagnetic fields from sources such as hairdryers, computer display units and other electrical devices is modest. However, in many home and office environments, individuals can experience perpetual exposure to an "electromagnetic smog", with occasional peaks of relatively high electromagnetic field intensity. This has led to concerns that such radiation can affect health. In particular, emissions from mobile phones or mobile phone masts have been invoked as a potential source of pathological electromagnetic radiation. Previous reports have suggested that cellular calcium (Ca2+ homeostasis is affected by the types of radiofrequency fields emitted by mobile phones. In the present study, we used a high-throughput imaging platform to monitor putative changes in cellular Ca2+ during exposure of cells to 900 MHz GSM fields of differing power (specific absorption rate 0.012-2 W/Kg, thus mimicking the type of radiation emitted by current mobile phone handsets. Data from cells experiencing the 900 Mhz GSM fields were compared with data obtained from paired experiments using continuous wave fields or no field. We employed three cell types (human endothelial cells, PC-12 neuroblastoma and primary hippocampal neurons that have previously been suggested to be sensitive to radiofrequency fields. Experiments were designed to examine putative effects of radiofrequency fields on resting Ca2+, in addition to Ca2+ signals evoked by an InsP(3-generating agonist. Furthermore, we examined putative effects of radiofrequency field exposure on Ca2+ store emptying and store-operated Ca2+ entry following application of the Ca2+ATPase inhibitor thapsigargin. Multiple parameters (e.g., peak amplitude, integrated Ca2+ signal, recovery rates were analysed to explore potential impact of

  6. Exposure to GSM RF fields does not affect calcium homeostasis in human endothelial cells, rat pheocromocytoma cells or rat hippocampal neurons.

    Science.gov (United States)

    O'Connor, Rodney P; Madison, Steve D; Leveque, Philippe; Roderick, H Llewelyn; Bootman, Martin D

    2010-07-27

    In the course of modern daily life, individuals are exposed to numerous sources of electromagnetic radiation that are not present in the natural environment. The strength of the electromagnetic fields from sources such as hairdryers, computer display units and other electrical devices is modest. However, in many home and office environments, individuals can experience perpetual exposure to an "electromagnetic smog", with occasional peaks of relatively high electromagnetic field intensity. This has led to concerns that such radiation can affect health. In particular, emissions from mobile phones or mobile phone masts have been invoked as a potential source of pathological electromagnetic radiation. Previous reports have suggested that cellular calcium (Ca2+) homeostasis is affected by the types of radiofrequency fields emitted by mobile phones. In the present study, we used a high-throughput imaging platform to monitor putative changes in cellular Ca2+ during exposure of cells to 900 MHz GSM fields of differing power (specific absorption rate 0.012-2 W/Kg), thus mimicking the type of radiation emitted by current mobile phone handsets. Data from cells experiencing the 900 Mhz GSM fields were compared with data obtained from paired experiments using continuous wave fields or no field. We employed three cell types (human endothelial cells, PC-12 neuroblastoma and primary hippocampal neurons) that have previously been suggested to be sensitive to radiofrequency fields. Experiments were designed to examine putative effects of radiofrequency fields on resting Ca2+, in addition to Ca2+ signals evoked by an InsP(3)-generating agonist. Furthermore, we examined putative effects of radiofrequency field exposure on Ca2+ store emptying and store-operated Ca2+ entry following application of the Ca2+ATPase inhibitor thapsigargin. Multiple parameters (e.g., peak amplitude, integrated Ca2+ signal, recovery rates) were analysed to explore potential impact of radiofrequency field

  7. Neuron and neuroblast numbers and cytogenesis in the dentate gyrus of aged APPswe/PS1dE9 transgenic mice

    DEFF Research Database (Denmark)

    Olesen, Louise Ørum; Sivasaravanaparan, Mithula; Severino, Maurizio

    2017-01-01

    the longitudinal changes in the number of doublecortin-expressing neuroblasts and number of granular neurons in the dentate gyrus of APPswe/PS1dE9 transgenic mice. Furthermore, we investigated the effect of long-term paroxetine treatment on the number of neuroblasts and granular neurons, hippocampal amyloidosis...

  8. [Hippocampal stroke].

    Science.gov (United States)

    Rollnik, J D; Traitel, B; Dietrich, B; Lenz, O

    2015-02-01

    Unilateral cerebral ischemia of the hippocampus is very rare. This paper reviews the literature and presents the case of a 59-year-old woman with an amnestic syndrome due to a left hippocampal stroke. The patient suffered from retrograde amnesia which was most severe over the 2 days prior to presenting and a slight anterograde amnesia. In addition, a verbal memory disorder was confirmed 1 week after admission by neurological tests. As risk factors, arterial hypertension and a relative hyper-beta lipoproteinemia were found. This case shows that unilateral amnestic stroke, e.g. in the hippocampus region, may be the cause of an amnestic syndrome and should be included in the differential diagnostics.

  9. Prenatal exposure to alcohol does not affect radial maze learning and hippocampal mossy fiber sizes in three inbred strains of mouse

    Directory of Open Access Journals (Sweden)

    Bertholet Jean-Yves

    2005-04-01

    Full Text Available Abstract Background The aim of this study was to investigate the effects of prenatal alcohol exposure on radial-maze learning and hippocampal neuroanatomy, particularly the sizes of the intra- and infrapyramidal mossy fiber (IIPMF terminal fields, in three inbred strains of mice (C57BL/6J, BALB/cJ, and DBA/2J. Results Although we anticipated a modification of both learning and IIPMF sizes, no such effects were detected. Prenatal alcohol exposure did, however, interfere with reproduction in C57BL/6J animals and decrease body and brain weight (in interaction with the genotype at adult age. Conclusion Prenatal alcohol exposure influenced neither radial maze performance nor the sizes of the IIPMF terminal fields. We believe that future research should be pointed either at different targets when using mouse models for Fetal Alcohol Syndrome (e.g. more complicated behavioral paradigms, different hippocampal substructures, or other brain structures or involve different animal models.

  10. Disruption of ArhGAP15 results in hyperactive Rac1, affects the architecture and function of hippocampal inhibitory neurons and causes cognitive deficits

    Science.gov (United States)

    Zamboni, Valentina; Armentano, Maria; Sarò, Gabriella; Ciraolo, Elisa; Ghigo, Alessandra; Germena, Giulia; Umbach, Alessandro; Valnegri, Pamela; Passafaro, Maria; Carabelli, Valentina; Gavello, Daniela; Bianchi, Veronica; D’Adamo, Patrizia; de Curtis, Ivan; El-Assawi, Nadia; Mauro, Alessandro; Priano, Lorenzo; Ferri, Nicola; Hirsch, Emilio; Merlo, Giorgio R.

    2016-01-01

    During brain development, the small GTPases Rac1/Rac3 play key roles in neuronal migration, neuritogenesis, synaptic formation and plasticity, via control of actin cytoskeleton dynamic. Their activity is positively and negatively regulated by GEFs and GAPs molecules, respectively. However their in vivo roles are poorly known. The ArhGAP15 gene, coding for a Rac-specific GAP protein, is expressed in both excitatory and inhibitory neurons of the adult hippocampus, and its loss results in the hyperactivation of Rac1/Rac3. In the CA3 and dentate gyrus (DG) regions of the ArhGAP15 mutant hippocampus the CR+, PV+ and SST+ inhibitory neurons are reduced in number, due to reduced efficiency and directionality of their migration, while pyramidal neurons are unaffected. Loss of ArhGAP15 alters neuritogenesis and the balance between excitatory and inhibitory synapses, with a net functional result consisting in increased spike frequency and bursts, accompanied by poor synchronization. Thus, the loss of ArhGAP15 mainly impacts on interneuron-dependent inhibition. Adult ArhGAP15−/− mice showed defective hippocampus-dependent functions such as working and associative memories. These findings indicate that a normal architecture and function of hippocampal inhibitory neurons is essential for higher hippocampal functions, and is exquisitely sensitive to ArhGAP15-dependent modulation of Rac1/Rac3. PMID:27713499

  11. Apolipoprotein e4 affects topographical changes in hippocampal and cortical atrophy in Alzheimer's disease dementia: a five-year longitudinal study.

    Science.gov (United States)

    Kim, Yeo Jin; Cho, Hanna; Kim, Yun Joong; Ki, Chang-Seok; Chung, Sun Ju; Ye, Byoung Seok; Kim, Hee Jin; Kim, Jung-Hyun; Kim, Sung Tae; Lee, Kyung Han; Jeon, Seun; Lee, Jong-Min; Chin, Juhee; Kim, Jeong-Hun; Na, Duk L; Seong, Joon-Kyung; Seo, Sang Won

    2015-01-01

    Apolipoprotein E4 (APOE4) is a genetic risk factor for developing Alzheimer's disease (AD). Once AD manifests clinically, however, the effects of APOE4 are less clear. Therefore, we investigated the longitudinal effects of APOE4 on topographical changes in AD patient brain atrophy. We prospectively recruited 35 patients with AD (19 APOE4 carriers and 16 non-carriers), and 14 normal controls, then followed them for five years. We measured hippocampal deformities and cortical thickness. Hippocampal comparison between APOE4 carriers and non-carriers with AD showed carriers had rapid changes in the head and body, while non-carriers had rapid changes in a small portion of the body. Cortical thickness comparison between APOE4 carriers and non-carriers with AD dementia showed carriers had rapid thinning in the lateral frontal, temporal, and parietal regions, while no region showed more rapid cortical thinning in non-carriers than in carriers. These findings underlined the importance of the APOE4 allele for designing and interpreting future treatment trials in patients with AD dementia.

  12. Glycidol induces axonopathy by adult-stage exposure and aberration of hippocampal neurogenesis affecting late-stage differentiation by developmental exposure in rats.

    Science.gov (United States)

    Akane, Hirotoshi; Shiraki, Ayako; Imatanaka, Nobuya; Akahori, Yumi; Itahashi, Megu; Ohishi, Takumi; Mitsumori, Kunitoshi; Shibutani, Makoto

    2013-07-01

    To investigate the neurotoxicity profile of glycidol and its effect on developmental hippocampal neurogenesis, pregnant Sprague Dawley rats were given drinking water containing 0, 100, 300, or 1000 ppm glycidol from gestational day 6 until weaning on day 21 after delivery. At 1000 ppm, dams showed progressively worsening gait abnormalities, and histopathological examination showed generation of neurofilament-L(+) spheroids in the cerebellar granule layer and dorsal funiculus of the medulla oblongata, central chromatolysis in the trigeminal nerve ganglion cells, and axonal degeneration in the sciatic nerves. Decreased dihydropyrimidinase-like 3(+) immature granule cells in the subgranular zone (SGZ) and increased immature reelin(+) or calbindin-2(+) γ-aminobutyric acid-ergic interneurons and neuron-specific nuclear protein (NeuN)(+) mature neurons were found in the dentate hilus of the offspring of the 1000 ppm group on weaning. Hilar changes remained until postnatal day 77, with the increases in reelin(+) and NeuN(+) cells being present at ≥ 300 ppm, although the SGZ change disappeared. Thus, glycidol caused axon injury in the central and peripheral nervous systems of adult rats, suggesting that glycidol targets the newly generating nerve terminals of immature granule cells, resulting in the suppression of late-stage hippocampal neurogenesis. The sustained hilar changes may be a sign of continued aberrations in neurogenesis and migration. The no-observed-adverse-effect level was determined to be 300 ppm (48.8mg/kg body weight/day) for dams and 100 ppm (18.5mg/kg body weight/day) for offspring. The sustained developmental exposure effect on offspring neurogenesis was more sensitive than the adult axonal injury.

  13. Hippocampal subfield volumes in mood disorders.

    Science.gov (United States)

    Cao, B; Passos, I C; Mwangi, B; Amaral-Silva, H; Tannous, J; Wu, M-J; Zunta-Soares, G B; Soares, J C

    2017-01-24

    Volume reduction and shape abnormality of the hippocampus have been associated with mood disorders. However, the hippocampus is not a uniform structure and consists of several subfields, such as the cornu ammonis (CA) subfields CA1-4, the dentate gyrus (DG) including a granule cell layer (GCL) and a molecular layer (ML) that continuously crosses adjacent subiculum (Sub) and CA fields. It is known that cellular and molecular mechanisms associated with mood disorders may be localized to specific hippocampal subfields. Thus, it is necessary to investigate the link between the in vivo hippocampal subfield volumes and specific mood disorders, such as bipolar disorder (BD) and major depressive disorder (MDD). In the present study, we used a state-of-the-art hippocampal segmentation approach, and we found that patients with BD had reduced volumes of hippocampal subfields, specifically in the left CA4, GCL, ML and both sides of the hippocampal tail, compared with healthy subjects and patients with MDD. The volume reduction was especially severe in patients with bipolar I disorder (BD-I). We also demonstrated that hippocampal subfield volume reduction was associated with the progression of the illness. For patients with BD-I, the volumes of the right CA1, ML and Sub decreased as the illness duration increased, and the volumes of both sides of the CA2/3, CA4 and hippocampal tail had negative correlations with the number of manic episodes. These results indicated that among the mood disorders the hippocampal subfields were more affected in BD-I compared with BD-II and MDD, and manic episodes had focused progressive effect on the CA2/3 and CA4 and hippocampal tail.Molecular Psychiatry advance online publication, 24 January 2017; doi:10.1038/mp.2016.262.

  14. Hippocampal Neurogenesis and Ageing

    OpenAIRE

    Couillard-Després, Sébastien

    2012-01-01

    Although significant inconsistencies remain to be clarified, a role for neurogenesis in hippocampal functions, such as cognition, has been suggested by several reports. Yet, investigation in various species of mammals, including humans, revealed that rates of hippocampal neurogenesis are steadily declining with age. The very low levels of hippocampal neurogenesis persisting in the aged brain have been suspected to underlie the cognitive deficits observed in elderly. However, current evidence ...

  15. The Refsum disease marker phytanic acid, a branched chain fatty acid, affects Ca2+ homeostasis and mitochondria, and reduces cell viability in rat hippocampal astrocytes.

    Science.gov (United States)

    Kahlert, Stefan; Schönfeld, Peter; Reiser, Georg

    2005-02-01

    The saturated branched chain fatty acid, phytanic acid, a degradation product of chlorophyll, accumulates in Refsum disease, an inherited peroxisomal disorder with neurological clinical features. To elucidate the pathogenic mechanism, we investigated the influence of phytanic acid on cellular physiology of rat hippocampal astrocytes. Phytanic acid (100 microM) induced an immediate transient increase in cytosolic Ca2+ concentration, followed by a plateau. The peak of this biphasic Ca2+ response was largely independent of extracellular Ca2+, indicating activation of cellular Ca2+ stores by phytanic acid. Phytanic acid depolarized mitochondria without causing in situ swelling of mitochondria. The slow decrease of mitochondrial potential is not consistent with fast and simultaneous opening of the mitochondrial permeability transition pore. However, phytanic acid induced substantial generation of reactive oxygen species. Phytanic acid caused astroglia cell death after a few hours of exposure. We suggest that the cytotoxic effect of phytanic acid seems to be due to a combined action on Ca2+ regulation, mitochondrial depolarization, and increased ROS generation in brain cells.

  16. Glycidol induces axonopathy and aberrations of hippocampal neurogenesis affecting late-stage differentiation by exposure to rats in a framework of 28-day toxicity study.

    Science.gov (United States)

    Akane, Hirotoshi; Shiraki, Ayako; Imatanaka, Nobuya; Akahori, Yumi; Itahashi, Megu; Abe, Hajime; Shibutani, Makoto

    2014-01-30

    Developmental exposure to glycidol induces aberrations of late-stage neurogenesis in the hippocampal dentate gyrus of rat offspring, whereas maternal animals develop axonopathy. To investigate the possibility whether similar effects on adult neurogenesis could be induced by exposure in a framework of 28-day toxicity study, glycidol was orally administered to 5-week-old male Sprague-Dawley rats by gavage at 0, 30 or 200 mg/kg for 28 days. At 200 mg/kg, animals revealed progressively worsening gait abnormalities as well as histopathological and immunohistochemical changes suggestive of axonal injury as evidenced by generation of neurofilament-L(+) spheroids in the cerebellar granule layer and dorsal funiculus of the medulla oblongata, central chromatolysis in the trigeminal nerve ganglion cells and axonal degeneration in the sciatic nerves. At the same dose, animals revealed aberrations in neurogenesis at late-stage differentiation as evidenced by decreases of both doublecortin(+) and dihydropyrimidinase-like 3(+) cells in the subgranular zone (SGZ) and increased reelin(+) or calbindin-2(+) γ-aminobutyric acid-ergic interneurons and neuron-specific nuclear protein(+) mature neurons in the dentate hilus. These effects were essentially similar to that observed in offspring after maternal exposure to glycidol. These results suggest that glycidol causes aberrations in adult neurogenesis in the SGZ at the late stage involving the process of neurite extension similar to the developmental exposure study in a standard 28-day toxicity study.

  17. Cholesterol does not affect the toxicity of amyloid beta fragment but mimics its effect on MTT formazan exocytosis in cultured rat hippocampal neurons.

    Science.gov (United States)

    Abe, K; Saito, H

    1999-12-01

    It has recently been reported that methyl-beta-cyclodextrin-solubilized cholesterol protects PC12 cells from amyloid beta protein (Abeta) toxicity. To ask if this is the case in brain neurons, we investigated its effect in primary cultured rat hippocampal neurons. In basal culture conditions with no addition of Abeta, methyl-beta-cyclodextrin-solubilized cholesterol at concentrations of 30-100 microM was toxic to neurons, but at concentrations of 1-10 microM promoted neuronal survival. Methyl-beta-cyclodextrin-solubilized cholesterol at 1-10 microM was also effective in protecting neurons from toxicity of 20 microM Abeta. However, these effects were all mimicked by methyl-beta-cyclodextrin alone, but not by cholesterol solubilized by dimethylsulfoxide or ethanol. The effects of methyl-beta-cyclodextrin-solubilized cholesterol on neuronal survival and Abeta toxicity are probably attributed to the action of methyl-beta-cyclodextrin, but not cholesterol. Alternatively, we found that methyl-beta-cyclodextrin-solubilized cholesterol at lower concentrations ( > 10 nM) inhibited cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2.5-diphenyltetrazolium bromide (MTT) by promoting the exocytosis of MTT formazan. This effect was shared by dimethylsulfoxide- or ethanol-solubilized cholesterol, but not by methyl-beta-cyclodextrin, supporting that it is attributed to the action of cholesterol. These results suggest that cholesterol does not protect neurons from Abeta toxicity, or rather inhibits cellular MTT reduction in a similar manner to Abeta.

  18. The Impact of Sleep Loss on Hippocampal Function

    Science.gov (United States)

    Prince, Toni-Moi; Abel, Ted

    2013-01-01

    Hippocampal cellular and molecular processes critical for memory consolidation are affected by the amount and quality of sleep attained. Questions remain with regard to how sleep enhances memory, what parameters of sleep after learning are optimal for memory consolidation, and what underlying hippocampal molecular players are targeted by sleep…

  19. The Impact of Sleep Loss on Hippocampal Function

    Science.gov (United States)

    Prince, Toni-Moi; Abel, Ted

    2013-01-01

    Hippocampal cellular and molecular processes critical for memory consolidation are affected by the amount and quality of sleep attained. Questions remain with regard to how sleep enhances memory, what parameters of sleep after learning are optimal for memory consolidation, and what underlying hippocampal molecular players are targeted by sleep…

  20. Empathy in hippocampal amnesia.

    Science.gov (United States)

    Beadle, J N; Tranel, D; Cohen, N J; Duff, M C

    2013-01-01

    Empathy is critical to the quality of our relationships with others and plays an important role in life satisfaction and well-being. The scientific investigation of empathy has focused on characterizing its cognitive and neural substrates, and has pointed to the importance of a network of brain regions involved in emotional experience and perspective taking (e.g., ventromedial prefrontal cortex, amygdala, anterior insula, cingulate). While the hippocampus has rarely been the focus of empathy research, the hallmark properties of the hippocampal declarative memory system (e.g., representational flexibility, relational binding, on-line processing capacity) make it well-suited to meet some of the crucial demands of empathy, and a careful investigation of this possibility could make a significant contribution to the neuroscientific understanding of empathy. The present study is a preliminary investigation of the role of the hippocampal declarative memory system in empathy. Participants were three patients (1 female) with focal, bilateral hippocampal (HC) damage and severe declarative memory impairments and three healthy demographically matched comparison participants. Empathy was measured as a trait through a battery of gold standard questionnaires and through on-line ratings and prosocial behavior in response to a series of empathy inductions. Patients with hippocampal amnesia reported lower cognitive and emotional trait empathy than healthy comparison participants. Unlike healthy comparison participants, in response to the empathy inductions hippocampal patients reported no increase in empathy ratings or prosocial behavior. The results provide preliminary evidence for a role for hippocampal declarative memory in empathy.

  1. Superficial amygdala and hippocampal activity during affective music listening observed at 3 T but not 1.5 T fMRI.

    Science.gov (United States)

    Skouras, Stavros; Gray, Marcus; Critchley, Hugo; Koelsch, Stefan

    2014-11-01

    The purpose of this study was to compare 3 T and 1.5 T fMRI results during emotional music listening. Stimuli comprised of psychoacoustically balanced instrumental musical pieces, with three different affective expressions (fear, neutral, joy). Participants (N=32) were split into two groups, one subjected to fMRI scanning using 3 T and another group scanned using 1.5 T. Whole brain t-tests (corrected for multiple comparisons) compared joy and fear in each of the two groups. The 3 T group showed significant activity differences between joy and fear localized in bilateral superficial amygdala, bilateral hippocampus and bilateral auditory cortex. The 1.5 T group showed significant activity differences between joy and fear localized in bilateral auditory cortex and cuneus. This is the first study to compare results obtained under different field strengths with regard to affective processes elicited by means of auditory/musical stimulation. The findings raise concern over false negatives in the superficial amygdala and hippocampus in affective studies conducted under 1.5 T and caution that imaging improvements due to increasing magnetic field strength can be influenced by region-specific characteristics.

  2. Cortisol, Cytokines, and Hippocampal Volume in the Elderly

    Directory of Open Access Journals (Sweden)

    Keith Daniel Sudheimer

    2014-07-01

    Full Text Available Separate bodies of literature report that elevated pro-inflammatory cytokines and cortisol negatively affect hippocampal structure and cognitive functioning, particularly in older adults. Although interactions between cytokines and cortisol occur through a variety of known mechanisms, few studies consider how their interactions affect brain structure. In this preliminary study, we assess the impact of interactions between circulating levels of IL-1Beta, IL-6, IL-8, IL-10, IL-12, TNF-alpha, and waking cortisol on hippocampal volume. Twenty-eight community-dwelling older adults underwent blood draws for quantification of circulating cytokines and saliva collections to quantify the cortisol awakening response. Hippocampal volume measurements were made using structural magnetic resonance imaging. Elevated levels of waking cortisol in conjunction with higher concentrations of IL-6 and TNF-alpha were associated with smaller hippocampal volumes. In addition, independent of cortisol, higher levels of IL-1beta and TNF-alpha were also associated with smaller hippocampal volumes. These data provide preliminary evidence that higher cortisol, in conjunction with higher IL-6 and TNF-alpha, are associated with smaller hippocampal volume in older adults. We suggest that the dynamic balance between the hypothalamic-pituitary adrenal axis and inflammation processes may explain hippocampal volume reductions in older adults better than either set of measures do in isolation.

  3. Neuropeptides and hippocampal neurogenesis.

    Science.gov (United States)

    Zaben, M J; Gray, W P

    2013-12-01

    Hippocampal neurogenesis is important for modulating the behavioural responses to stress and for certain forms of learning and memory. The mechanisms underlying the necessary coupling of neuronal activity to neural stem/progenitor cell (NSPC) function remain poorly understood. Within the dentate subgranular stem cell niche, local interneurons appear to play an important part in this excitation-neurogenesis coupling via GABAergic transmission, which promotes neuronal differentiation and integration. Neuropeptides such as neuropeptide Y (NPY), vasoactive intestinal peptide (VIP) and galanin have emerged as important mediators for signalling local and extrinsic interneuronal activity to subgranular zone precursors. Here we review the distribution of these neuropeptides and their receptors in the neurogenic area of the hippocampus and their precise effects on hippocampal neurogenesis. We also discuss neuropeptides' potential involvement in functional aspects of hippocampal neurogenesis particularly their involvement in the modulation of learning and memory and behavior responses.

  4. Empathy in hippocampal amnesia

    Directory of Open Access Journals (Sweden)

    Janelle N Beadle

    2013-03-01

    Full Text Available The scientific investigation of empathy has become a cornerstone in the field of social cognition. Empathy is critical to the quality of our relationships with others and plays an important role in life satisfaction and well-being. Scientific investigations of empathy have focused on characterizing its cognitive and neural substrates, pointing to a network of brain regions involved in emotional experience and perspective taking (e.g., ventromedial prefrontal cortex, amygdala, anterior insula, cingulate. While the hippocampus has rarely been the focus of empathy research, we propose that there are compelling reasons to inquire about the contribution of the hippocampus to social cognition. We propose that the hallmark properties of the hippocampal declarative memory system (e.g., representational flexibility, relational binding, on-line processing capacity make it well-suited to meet the demands of empathy. The present study is a preliminary investigation of the role of the hippocampal declarative memory system in empathy. Participants were three patients (1 female with focal, bilateral hippocampal (HC damage and severe declarative memory impairments and three healthy demographically matched comparison participants. Empathy was measured as a trait through a battery of gold standard questionnaires and through on-line ratings and prosocial behavior in response to a series of empathy inductions. Patients with hippocampal amnesia reported lower cognitive and emotional trait empathy than healthy comparison participants. In response to the empathy inductions, unlike healthy comparison participants, hippocampal patients reported no increase in empathy ratings or prosocial behavior from the control condition. Taken together, these results provide preliminary evidence for a role of hippocampal declarative memory in empathy.

  5. Maternal exposure to 3,3'-iminodipropionitrile targets late-stage differentiation of hippocampal granule cell lineages to affect brain-derived neurotrophic factor signaling and interneuron subpopulations in rat offspring.

    Science.gov (United States)

    Itahashi, Megu; Abe, Hajime; Tanaka, Takeshi; Mizukami, Sayaka; Kikuchihara, Yoh; Yoshida, Toshinori; Shibutani, Makoto

    2015-08-01

    3,3'-Iminodipropionitrile (IDPN) causes neurofilament (NF)-filled swellings in the proximal segments of many large-caliber myelinated axons. This study investigated the effect of maternal exposure to IDPN on hippocampal neurogenesis in rat offspring using pregnant rats supplemented with 0 (controls), 67 or 200 ppm IDPN in drinking water from gestational day 6 to day 21 after delivery. On postnatal day (PND) 21, female offspring subjected to analysis had decreased parvalbumin(+), reelin(+) and phospho-TrkB(+) interneurons in the dentate hilus at 200 ppm and increased granule cell populations expressing immediate-early gene products, Arc or c-Fos, at ≥  67 ppm. mRNA expression in the dentate gyrus examined at 200 ppm decreased with brain-derived neurotrophic factor (Bdnf) and very low density lipoprotein receptor. Immunoreactivity for phosphorylated NF heavy polypeptide decreased in the molecular layer of the dentate gyrus and the stratum radiatum of the cornu ammonis (CA) 3, portions showing axonal projections from mossy cells and pyramidal neurons, at 200 ppm on PND 21, whereas immunoreactivity for synaptophysin was unchanged in the dentate gyrus. Observed changes all disappeared on PND 77. There were no fluctuations in the numbers of apoptotic cells, proliferating cells and subpopulations of granule cell lineage in the subgranular zone on PND 21 and PND 77. Thus, maternal IDPN exposure may reversibly affect late-stage differentiation of granule cell lineages involving neuronal plasticity as evident by immediate-early gene responses to cause BDNF downregulation resulting in a reduction in parvalbumin(+) or reelin(+) interneurons and suppression of axonal plasticity in the mossy cells and CA3 pyramidal neurons.

  6. Abnormalities of hippocampal signal intensity in patients with familial mesial temporal lobe epilepsy

    Directory of Open Access Journals (Sweden)

    Coan A.C.

    2004-01-01

    Full Text Available Mesial temporal lobe epilepsy (MTLE is associated with hippocampal atrophy and hippocampal signal abnormalities. In our series of familial MTLE (FMTLE, we found a high proportion of hippocampal abnormalities. To quantify signal abnormalities in patients with FMTLE we studied 152 individuals (46 of them asymptomatic with FMTLE. We used NIH-Image® for volumetry and signal quantification in coronal T1 inversion recovery and T2 for all cross-sections of the hippocampus. Values diverging by 2 or more SD from the control mean were considered abnormal. T2 hippocampal signal abnormalities were found in 52% of all individuals: 54% of affected subjects and 48% of asymptomatic subjects. T1 hippocampal signal changes were found in 34% of all individuals: 42.5% of affected subjects and 15% of asymptomatic subjects. Analysis of the hippocampal head (first three slices revealed T2 abnormalities in 73% of all individuals (74% of affected subjects and 72% of asymptomatic subjects and T1 abnormalities in 59% (67% of affected subjects and 41% of asymptomatic subjects. Affected individuals had smaller volumes than controls (P < 0.0001. There was no difference in hippocampal volumes between asymptomatic subjects and controls, although 39% of asymptomatic patients had hippocampal atrophy. Patients with an abnormal hippocampal signal (133 individuals had smaller ipsilateral volume, but no linear correlation could be determined. Hippocampal signal abnormalities in FMTLE were more frequently found in the hippocampal head in both affected and asymptomatic family members, including those with normal volumes. These results indicate that subtle abnormalities leading to an abnormal hippocampal signal in FMTLE are not necessarily related to seizures and may be determined by genetic factors.

  7. Preservation of hippocampal neuron numbers and hippocampal subfield volumes in behaviorally characterized aged tree shrews

    NARCIS (Netherlands)

    Keuker, J.I.H.; de Biurrun, G.; Luiten, P.G.M.; Fuchs, E.

    2004-01-01

    Aging is associated with a decreased ability to store and retrieve information. The hippocampal formation plays a critical role in such memory processes, and its integrity is affected during normal aging. We used tree shrews (Tupaia belangeri) as an animal model of aging, because in many characteris

  8. Alcohol and adult hippocampal neurogenesis: Promiscuous drug, wanton effects

    OpenAIRE

    Geil, Chelsea R.; Hayes, Dayna M.; McClain, Justin A.; Liput, Daniel J.; Marshall, S. Alex; Chen, Kevin Y.; Nixon, Kimberly

    2014-01-01

    Adult neurogenesis is now widely accepted as an important contributor to hippocampal integrity and function but also dysfunction when adult neurogenesis is affected in neuropsychiatric diseases such as alcohol use disorders. Excessive alcohol consumption, the defining characteristic of alcohol use disorders, results in a variety of cognitive and behavioral impairments related wholly or in part to hippocampal structure and function. Recent preclinical work has shown that adult neurogenesis may...

  9. Culturing rat hippocampal neurons.

    Science.gov (United States)

    Audesirk, G; Audesirk, T; Ferguson, C

    2001-01-01

    Cultured neurons are widely used to investigate the mechanisms of neurotoxicity. Embryonic rat hippocampal neurons may be grown as described under a wide variety of conditions to suit differing experimental procedures, including electrophysiology, morphological analysis of neurite development, and various biochemical and molecular analyses.

  10. Food restriction modifies ultrastructure of hippocampal synapses.

    Science.gov (United States)

    Babits, Réka; Szőke, Balázs; Sótonyi, Péter; Rácz, Bence

    2016-04-01

    Consumption of high-energy diets may compromise health and may also impair cognition; these impairments have been linked to tasks that require hippocampal function. Conversely, food restriction has been shown to improve certain aspects of hippocampal function, including spatial memory and memory persistence. These diet-dependent functional changes raise the possibility that the synaptic structure underlying hippocampal function is also affected. To examine how short-term food restriction (FR) alters the synaptic structure of the hippocampus, we used quantitative electron microscopy to analyze the organization of neuropil in the CA1 stratum radiatum of the hippocampus in young rats, consequent to reduced food. While four weeks of FR did not modify the density, size, or shape of postsynaptic spines, the synapses established by these spines were altered, displaying increased mean length, and more frequent perforations of postsynaptic densities. That the number of perforated synapses (believed to be an indicator of synaptic enhancement) increased, and that the CA1 spine population had on average significantly longer PSDs suggests that synaptic efficacy of axospinous synapses also increased in the CA1. Taken together, our ultrastructural data reveal previously unrecognized structural changes at hippocampal synapses as a function of food restriction, supporting a link between metabolic balance and synaptic plasticity.

  11. Effects of Stress and Hippocampal NMDA Receptor Antagonism on Recognition Memory in Rats

    OpenAIRE

    Kevin B Baker; Kim, Jeansok J

    2002-01-01

    Exposures to uncontrollable stress have been shown to alter ensuing synaptic plasticity in the hippocampus and interfere with hippocampal-dependent spatial memory in rats. The present study examined whether stress, which impairs hippocampal long-term potentiation (LTP), also affects (nonspatial) hippocampal-dependent object-recognition memory, as tested on the visual paired comparison task (VPC) in rats. After undergoing an inescapable restraint–tailshock stress experience, rats exhibited mar...

  12. Alcohol and adult hippocampal neurogenesis: promiscuous drug, wanton effects.

    Science.gov (United States)

    Geil, Chelsea R; Hayes, Dayna M; McClain, Justin A; Liput, Daniel J; Marshall, S Alex; Chen, Kevin Y; Nixon, Kimberly

    2014-10-03

    Adult neurogenesis is now widely accepted as an important contributor to hippocampal integrity and function but also dysfunction when adult neurogenesis is affected in neuropsychiatric diseases such as alcohol use disorders. Excessive alcohol consumption, the defining characteristic of alcohol use disorders, results in a variety of cognitive and behavioral impairments related wholly or in part to hippocampal structure and function. Recent preclinical work has shown that adult neurogenesis may be one route by which alcohol produces hippocampal neuropathology. Alcohol is a pharmacologically promiscuous drug capable of interfering with adult neurogenesis through multiple mechanisms. This review will discuss the primary mechanisms underlying alcohol-induced changes in adult hippocampal neurogenesis including alcohol's effects on neurotransmitters, CREB and its downstream effectors, and the neurogenic niche.

  13. Preservation of hippocampal neuron numbers and hippocampal subfield volumes in behaviorally characterized aged tree shrews.

    Science.gov (United States)

    Keuker, Jeanine I H; de Biurrun, Gabriel; Luiten, Paul G M; Fuchs, Eberhard

    2004-01-19

    Aging is associated with a decreased ability to store and retrieve information. The hippocampal formation plays a critical role in such memory processes, and its integrity is affected during normal aging. We used tree shrews (Tupaia belangeri) as an animal model of aging, because in many characteristics, tree shrews are closer to primates than they are to rodents. Young and aged male tree shrews performed a holeboard spatial memory task, which permits assessment of reference and working memory. Upon completion of the behavioral measurements, we carried out modified stereological analyses of neuronal numbers in various subdivisions of the hippocampus and used the Cavalieri method to calculate the volumes of these subfields. Results showed that the working memory of aged tree shrews was significantly impaired compared with that of young animals, whereas the hippocampus-dependent reference memory remained unchanged by aging. Estimation of the number of neurons revealed preserved neuron numbers in the subiculum, in the subregions CA1, CA2, CA3, and in the hilus of the dentate gyrus. Volume measurements showed no aging-related changes in the volume of any of these hippocampal subregions, or in the molecular and granule cell layers of the dentate gyrus of tree shrews. We conclude that the observed changes in memory performance in aging tree shrews are not accompanied by observable reductions of hippocampal neuron numbers or hippocampal volume, rather, the changes in memory performance are more likely the result of modified subcellular mechanisms that are affected by the aging process.

  14. Hippocampal sclerosis dementia

    Science.gov (United States)

    Onyike, Chiadi U.; Pletnikova, Olga; Sloane, Kelly L.; Sullivan, Campbell; Troncoso, Juan C.; Rabins, Peter V.

    2013-01-01

    Objective To describe characteristics of hippocampal sclerosis dementia. Methods Convenience sample of Hippocampal sclerosis dementia (HSD) recruited from the Johns Hopkins University Brain Resource Center. Twenty-four cases with post-mortem pathological diagnosis of hippocampal sclerosis dementia were reviewed for clinical characterization. Results The cases showed atrophy and neuronal loss localized to the hippocampus, amygdala and entorrhinal cortex. The majority (79.2%) had amnesia at illness onset, and many (54.2%) showed abnormal conduct and psychiatric disorder. Nearly 42% presented with an amnesic state, and 37.5% presented with amnesia plus abnormal conduct and psychiatric disorder. All eventually developed a behavioral or psychiatric disorder. Disorientation, executive dysfunction, aphasia, agnosia and apraxia were uncommon at onset. Alzheimer disease (AD) was the initial clinical diagnosis in 89% and the final clinical diagnosis in 75%. Diagnosis of frontotemporal dementia (FTD) was uncommon (seen in 8%). Conclusion HSD shows pathological characteristics of FTD and clinical features that mimic AD and overlap with FTD. The findings, placed in the context of earlier work, support the proposition that HSD belongs to the FTD family, where it may be identified as an amnesic variant. PMID:24363834

  15. Hippocampal Neurogenesis, Depressive Disorders, and Antidepressant Therapy

    Directory of Open Access Journals (Sweden)

    Eleni Paizanis

    2007-01-01

    Full Text Available There is a growing body of evidence that neural stem cells reside in the adult central nervous system where neurogenesis occurs throughout lifespan. Neurogenesis concerns mainly two areas in the brain: the subgranular zone of the dentate gyrus in the hippocampus and the subventricular zone, where it is controlled by several trophic factors and neuroactive molecules. Neurogenesis is involved in processes such as learning and memory and accumulating evidence implicates hippocampal neurogenesis in the physiopathology of depression. We herein review experimental and clinical data demonstrating that stress and antidepressant treatments affect neurogenesis in opposite direction in rodents. In particular, the stimulation of hippocampal neurogenesis by all types of antidepressant drugs supports the view that neuroplastic phenomena are involved in the physiopathology of depression and underlie—at least partly—antidepressant therapy.

  16. Hippocampal Processing of Ambiguity Enhances Fear Memory.

    Science.gov (United States)

    Amadi, Ugwechi; Lim, Seh Hong; Liu, Elizabeth; Baratta, Michael V; Goosens, Ki A

    2017-02-01

    Despite the ubiquitous use of Pavlovian fear conditioning as a model for fear learning, the highly predictable conditions used in the laboratory do not resemble real-world conditions, in which dangerous situations can lead to unpleasant outcomes in unpredictable ways. In the current experiments, we varied the timing of aversive events after predictive cues in rodents and discovered that temporal ambiguity of aversive events greatly enhances fear. During fear conditioning with unpredictably timed aversive events, pharmacological inactivation of the dorsal hippocampus or optogenetic silencing of cornu ammonis 1 cells during aversive negative prediction errors prevented this enhancement of fear without affecting fear learning for predictable events. Dorsal hippocampal inactivation also prevented ambiguity-related enhancement of fear during auditory fear conditioning under a partial-reinforcement schedule. These results reveal that information about the timing and occurrence of aversive events is rapidly acquired and that unexpectedly timed or omitted aversive events generate hippocampal signals to enhance fear learning.

  17. Timing specific requirement of microRNA function is essential for embryonic and postnatal hippocampal development.

    Directory of Open Access Journals (Sweden)

    Qingsong Li

    Full Text Available The adult hippocampus consists of the dentate gyrus (DG and the CA1, CA2 and CA3 regions and is essential for learning and memory functions. During embryonic development, hippocampal neurons are derived from hippocampal neuroepithelial cells and dentate granular progenitors. The molecular mechanisms that control hippocampal progenitor proliferation and differentiation are not well understood. Here we show that noncoding microRNAs (miRNAs are essential for early hippocampal development in mice. Conditionally ablating the RNAase III enzyme Dicer at different embryonic time points utilizing three Cre mouse lines causes abnormal hippocampal morphology and affects the number of hippocampal progenitors due to altered proliferation and increased apoptosis. Lack of miRNAs at earlier stages causes early differentiation of hippocampal neurons, in particular in the CA1 and DG regions. Lack of miRNAs at a later stage specifically affects neuronal production in the CA3 region. Our results reveal a timing requirement of miRNAs for the formation of specific hippocampal regions, with the CA1 and DG developmentally hindered by an early loss of miRNAs and the CA3 region to a late loss of miRNAs. Collectively, our studies indicate the importance of the Dicer-mediated miRNA pathway in hippocampal development and functions.

  18. Role of adult hippocampal neurogenesis in stress resilience

    Directory of Open Access Journals (Sweden)

    Brunno R. Levone

    2015-01-01

    Full Text Available There is a growing appreciation that adult hippocampal neurogenesis plays a role in emotional and cognitive processes related to psychiatric disorders. Although many studies have investigated the effects of stress on adult hippocampal neurogenesis, most have not focused on whether stress-induced changes in neurogenesis occur specifically in animals that are more resilient or more susceptible to the behavioural and neuroendocrine effects of stress. Thus, in the present review we explore whether there is a clear relationship between stress-induced changes in adult hippocampal neurogenesis, stress resilience and antidepressant-induced recovery from stress-induced changes in behaviour. Exposure to different stressors is known to reduce adult hippocampal neurogenesis, but some stressors have also been shown to exert opposite effects. Ablation of neurogenesis does not lead to a depressive phenotype, but it can enhance responsiveness to stress and affect stress susceptibility. Monoaminergic-targeted antidepressants, environmental enrichment and adrenalectomy are beneficial for reversing stress-induced changes in behaviour and have been shown to do so in a neurogenesis-dependant manner. In addition, stress and antidepressants can affect hippocampal neurogenesis, preferentially in the ventral hippocampus. Together, these data show that adult hippocampal neurogenesis may play a role in the neuroendocrine and behavioural responses to stress, although it is not yet fully clear under which circumstances neurogenesis promotes resilience or susceptibility to stress. It will be important that future studies carefully examine how adult hippocampal neurogenesis can contribute to stress resilience/susceptibility so that it may be appropriately exploited for the development of new and more effective treatments for stress-related psychiatric disorders.

  19. Role of adult hippocampal neurogenesis in stress resilience

    Science.gov (United States)

    Levone, Brunno R.; Cryan, John F.; O'Leary, Olivia F.

    2014-01-01

    There is a growing appreciation that adult hippocampal neurogenesis plays a role in emotional and cognitive processes related to psychiatric disorders. Although many studies have investigated the effects of stress on adult hippocampal neurogenesis, most have not focused on whether stress-induced changes in neurogenesis occur specifically in animals that are more resilient or more susceptible to the behavioural and neuroendocrine effects of stress. Thus, in the present review we explore whether there is a clear relationship between stress-induced changes in adult hippocampal neurogenesis, stress resilience and antidepressant-induced recovery from stress-induced changes in behaviour. Exposure to different stressors is known to reduce adult hippocampal neurogenesis, but some stressors have also been shown to exert opposite effects. Ablation of neurogenesis does not lead to a depressive phenotype, but it can enhance responsiveness to stress and affect stress susceptibility. Monoaminergic-targeted antidepressants, environmental enrichment and adrenalectomy are beneficial for reversing stress-induced changes in behaviour and have been shown to do so in a neurogenesis-dependant manner. In addition, stress and antidepressants can affect hippocampal neurogenesis, preferentially in the ventral hippocampus. Together, these data show that adult hippocampal neurogenesis may play a role in the neuroendocrine and behavioural responses to stress, although it is not yet fully clear under which circumstances neurogenesis promotes resilience or susceptibility to stress. It will be important that future studies carefully examine how adult hippocampal neurogenesis can contribute to stress resilience/susceptibility so that it may be appropriately exploited for the development of new and more effective treatments for stress-related psychiatric disorders. PMID:27589664

  20. Sleep restriction by forced activity reduces hippocampal cell proliferation

    NARCIS (Netherlands)

    Roman, Viktor; Van der Borght, K; Leemburg, SA; Van der Zee, EA; Meerlo, P

    2005-01-01

    Mounting evidence suggests that sleep loss negatively affects learning and memory processes through disruption of hippocampal function. In the present study, we examined whether sleep loss alters the generation, differentiation, and survival of new cells in the dentate gyrus. Rats were sleep restric

  1. Amyloid Beta Peptide Slows Down Sensory-Induced Hippocampal Oscillations

    Directory of Open Access Journals (Sweden)

    Fernando Peña-Ortega

    2012-01-01

    Full Text Available Alzheimer’s disease (AD progresses with a deterioration of hippocampal function that is likely induced by amyloid beta (Aβ oligomers. Hippocampal function is strongly dependent on theta rhythm, and disruptions in this rhythm have been related to the reduction of cognitive performance in AD. Accordingly, both AD patients and AD-transgenic mice show an increase in theta rhythm at rest but a reduction in cognitive-induced theta rhythm. We have previously found that monomers of the short sequence of Aβ (peptide 25–35 reduce sensory-induced theta oscillations. However, considering on the one hand that different Aβ sequences differentially affect hippocampal oscillations and on the other hand that Aβ oligomers seem to be responsible for the cognitive decline observed in AD, here we aimed to explore the effect of Aβ oligomers on sensory-induced theta rhythm. Our results show that intracisternal injection of Aβ1–42 oligomers, which has no significant effect on spontaneous hippocampal activity, disrupts the induction of theta rhythm upon sensory stimulation. Instead of increasing the power in the theta band, the hippocampus of Aβ-treated animals responds to sensory stimulation (tail pinch with an increase in lower frequencies. These findings demonstrate that Aβ alters induced theta rhythm, providing an in vivo model to test for therapeutic approaches to overcome Aβ-induced hippocampal and cognitive dysfunctions.

  2. The Yin and Yang of Memory Consolidation: Hippocampal and Neocortical

    Science.gov (United States)

    Rossato, Janine I.; Jacobse, Justin; Grieves, Roddy M.; Spooner, Patrick A.; Battaglia, Francesco P.; Fernández, Guillen; Morris, Richard G. M.

    2017-01-01

    While hippocampal and cortical mechanisms of memory consolidation have long been studied, their interaction is poorly understood. We sought to investigate potential interactions with respect to trace dominance, strengthening, and interference associated with postencoding novelty or sleep. A learning procedure was scheduled in a watermaze that placed the impact of novelty and sleep in opposition. Distinct behavioural manipulations—context preexposure or interference during memory retrieval—differentially affected trace dominance and trace survival, respectively. Analysis of immediate early gene expression revealed parallel up-regulation in the hippocampus and cortex, sustained in the hippocampus in association with novelty but in the cortex in association with sleep. These findings shed light on dynamically interacting mechanisms mediating the stabilization of hippocampal and neocortical memory traces. Hippocampal memory traces followed by novelty were more dominant by default but liable to interference, whereas sleep engaged a lasting stabilization of cortical traces and consequent trace dominance after preexposure. PMID:28085883

  3. Exposure to a highly caloric palatable diet during pregestational and gestational periods affects hypothalamic and hippocampal endocannabinoid levels at birth and induces adiposity and anxiety-like behaviors in male rat offspring

    Directory of Open Access Journals (Sweden)

    Maria Teresa eRamírez-López

    2016-01-01

    Full Text Available Exposure to unbalanced diets during pre-gestational and gestational periods may result in long-term alterations in metabolism and behavior. The contribution of the endocannabinoid system to these long-term adaptive responses is unknown. In the present study, we investigated the impact of female rat exposure to a hypercaloric-hypoproteic palatable diet during pre-gestational, gestational and lactational periods on the development of male offspring. In addition, the hypothalamic and hippocampal endocannabinoid contents at birth and the behavioral performance in adulthood were investigated. Exposure to a palatable diet resulted in low weight offspring who exhibited low hypothalamic contents of arachidonic acid and the two major endocannabinoids (anandamide and 2-arachidonoylglycerol at birth. Palmitoylethanolamide, but not oleoylethanolamide, also decreased. Additionally, pups from palatable diet-fed dams displayed lower levels of anandamide and palmitoylethanolamide in the hippocampus. The low-weight male offspring, born from palatable diet exposed mothers, gained less weight during lactation and, although they recovered weight during the post-weaning period, they developed abdominal adiposity in adulthood. These animals exhibited anxiety-like behavior in the elevated plus-maze and open field test and a low preference for a chocolate diet in a food preference test, indicating that maternal exposure to a hypercaloric diet induces long-term behavioral alterations in male offspring. These results suggest that maternal diet alterations in the function of the endogenous cannabinoid system can mediate the observed phenotype of the offspring, since both hypothalamic and hippocampal endocannabinoids regulate feeding, metabolic adaptions to caloric diets, learning, memory and emotions.

  4. Neuropathologic correlates of hippocampal atrophy in the elderly: a clinical, pathologic, postmortem MRI study.

    Directory of Open Access Journals (Sweden)

    Robert J Dawe

    Full Text Available The volume of the hippocampus measured with structural magnetic resonance imaging (MRI is increasingly used as a biomarker for Alzheimer's disease (AD. However, the neuropathologic basis of structural MRI changes in the hippocampus in the elderly has not been directly assessed. Postmortem MRI of the aging human brain, combined with histopathology, could be an important tool to address this issue. Therefore, this study combined postmortem MRI and histopathology in 100 elderly subjects from the Rush Memory and Aging Project and the Religious Orders Study. First, to validate the information contained in postmortem MRI data, we tested the hypothesis that postmortem hippocampal volume is smaller in subjects with clinically diagnosed Alzheimer's disease compared to subjects with mild or no cognitive impairment, as observed in antemortem imaging studies. Subsequently, the relations of postmortem hippocampal volume to AD pathology, Lewy bodies, amyloid angiopathy, gross infarcts, microscopic infarcts, and hippocampal sclerosis were examined. It was demonstrated that hippocampal volume was smaller in persons with a clinical diagnosis of AD compared to those with no cognitive impairment (P = 2.6 × 10(-7 or mild cognitive impairment (P = 9.6 × 10(-7. Additionally, hippocampal volume was related to multiple cognitive abilities assessed proximate to death, with its strongest association with episodic memory. Among all pathologies investigated, the most significant factors related to lower hippocampal volume were shown to be AD pathology (P = 0.0018 and hippocampal sclerosis (P = 4.2 × 10(-7. Shape analysis allowed for visualization of the hippocampal regions most associated with volume loss for each of these two pathologies. Overall, this investigation confirmed the relation of hippocampal volume measured postmortem to clinical diagnosis of AD and measures of cognition, and concluded that both AD pathology and hippocampal sclerosis affect hippocampal

  5. Hippocampal activity during the transverse patterning task declines with cognitive competence but not with age

    Directory of Open Access Journals (Sweden)

    Leirer Vera M

    2010-09-01

    Full Text Available Abstract Background The hippocampus is a brain region that is particularly affected by age-related morphological changes. It is generally assumed that a loss in hippocampal volume results in functional deficits that contribute to age-related cognitive decline. In a combined cross-sectional behavioural and magnetoencephalography (MEG study we investigated whether hippocampal-associated neural current flow during a transverse patterning task - which requires learning relational associations between stimuli - correlates with age and whether it is modulated by cognitive competence. Results Better performance in several tests of verbal memory, verbal fluency and executive function was indeed associated with higher hippocampal neural activity. Age, however, was not related to the strength of hippocampal neural activity: elderly participants responded slower than younger individuals but on average produced the same neural mass activity. Conclusions Our results suggest that in non-pathological aging, hippocampal neural activity does not decrease with age but is rather related to cognitive competence.

  6. Melanin concentrating hormone induces hippocampal acetylcholine release via the medial septum in rats.

    Science.gov (United States)

    Lu, Zhi-Hong; Fukuda, Satoru; Minakawa, Yoichi; Yasuda, Atsushi; Sakamoto, Hidetoshi; Sawamura, Shigehito; Takahashi, Hidenori; Ishii, Noriko

    2013-06-01

    Among various actions of melanin concentrating hormone (MCH), its memory function has been focused in animal studies. Although MCH neurons project to various areas in the brain, one main target site of MCH is hippocampal formation for memory consolidation. Recent immunohistochemical study shows that MCH neurons directly project to the hippocampal formation and may indirectly affect the hippocampus through the medial septum nucleus (MS). It has been reported that sleep is necessary for memory and that hippocampal acetylcholine (ACh) release is indispensable for memory consolidation. However, there is no report how MCH actually influences the hippocampal ACh effluxes in accordance with the sleep-wake cycle changes. Thus, we investigated the modulatory function of intracerebroventricular (icv) injection of MCH on the sleep-wake cycle and ACh release using microdialysis techniques. Icv injection of MCH significantly increased the rapid eye movement (REM) and non-REM episode time and the hippocampal, not cortical, ACh effluxes. There was a significant correlation between REM episode time and hippocampal ACh effluxes, but not between REM episode time and cortical ACh effluxes. Microinjection of MCH into the MS increased the hippocampal ACh effluxes with no influence on the REM episode time. It appears that the effect sites of icv MCH for prolongation of REM episode time may be other neuronal areas than the cholinergic neurons in the MS. We conclude that MCH actually increases the hippocampal ACh release at least in part through the MS in rats.

  7. Novel genetic loci associated with hippocampal volume

    NARCIS (Netherlands)

    D.P. Hibar (Derrek); H.H.H. Adams (Hieab); N. Jahanshad (Neda); G. Chauhan (Ganesh); J.L. Stein; E. Hofer (Edith); M.E. Rentería (Miguel); J.C. Bis (Joshua); A. Arias-Vásquez (Alejandro); Ikram, M.K. (M. Kamran); S. Desrivières (Sylvane); M.W. Vernooij (Meike); L. Abramovic; S. Alhusaini (Saud); N. Amin (Najaf); M. Andersson (Micael); K. Arfanakis (Konstantinos); B. Aribisala (Benjamin); N.J. Armstrong (Nicola J.); L. Athanasiu (Lavinia); T. Axelsson (Tomas); A.H. Beecham (Ashley); A. Beiser (Alexa); M. Bernard (Manon); S.H. Blanton (Susan H.); M.M. Bohlken (Marc M.); M.P.M. Boks (Marco); L.B.C. Bralten (Linda); A.M. Brickman (Adam M.); Carmichael, O. (Owen); M.M. Chakravarty (M. Mallar); Q. Chen (Qiang); C.R.K. Ching (Christopher); V. Chouraki (Vincent); G. Cuellar-Partida (Gabriel); F. Crivello (Fabrice); A. den Braber (Anouk); Doan, N.T. (Nhat Trung); S.M. Ehrlich (Stefan); S. Giddaluru (Sudheer); A.L. Goldman (Aaron L.); R.F. Gottesman (Rebecca); O. Grimm (Oliver); M.D. Griswold (Michael); T. Guadalupe (Tulio); Gutman, B.A. (Boris A.); J. Hass (Johanna); U.K. Haukvik (Unn); D. Hoehn (David); A.J. Holmes (Avram); M. Hoogman (Martine); D. Janowitz (Deborah); T. Jia (Tianye); Jørgensen, K.N. (Kjetil N.); N. Karbalai (Nazanin); D. Kasperaviciute (Dalia); S. Kim (Shinseog); M. Klein (Marieke); B. Kraemer (Bernd); P.H. Lee (Phil); D.C. Liewald (David C.); L.M. Lopez (Lorna); M. Luciano (Michelle); C. MacAre (Christine); Marquand, A.F. (Andre F.); M. Matarin (Mar); R. Mather; M. Mattheisen (Manuel); McKay, D.R. (David R.); Milaneschi, Y. (Yuri); S. Muñoz Maniega (Susana); K. Nho (Kwangsik); A.C. Nugent (Allison); P. Nyquist (Paul); Loohuis, L.M.O. (Loes M. Olde); J. Oosterlaan (Jaap); M. Papmeyer (Martina); Pirpamer, L. (Lukas); B. Pütz (Benno); A. Ramasamy (Adaikalavan); Richards, J.S. (Jennifer S.); S.L. Risacher (Shannon); R. Roiz-Santiañez (Roberto); N. Rommelse (Nanda); S. Ropele (Stefan); E.J. Rose (Emma); N.A. Royle (Natalie); T. Rundek (Tatjana); P.G. Sämann (Philipp); Saremi, A. (Arvin); C.L. Satizabal (Claudia L.); L. Schmaal (Lianne); N.J. Schork (Nicholas); Shen, L. (Li); J. Shin (Jean); Shumskaya, E. (Elena); A.V. Smith (Albert Vernon); R. Sprooten (Roy); V.M. Strike (Vanessa); A. Teumer (Alexander); D. Tordesillas-Gutierrez (Diana); R. Toro (Roberto); D. Trabzuni (Danyah); S. Trompet (Stella); D. Vaidya (Dhananjay); J. van der Grond (Jeroen); S. van der Lee (Sven); Van Der Meer, D. (Dennis); M.M.J. Van Donkelaar (Marjolein M. J.); K.R. van Eijk (Kristel); T.G.M. van Erp (Theo G.); Van Rooij, D. (Daan); E. Walton (Esther); L.T. Westlye (Lars); C.D. Whelan (Christopher); B.G. Windham (B Gwen); A.M. Winkler (Anderson); K. Wittfeld (Katharina); G. Woldehawariat (Girma); A. Björnsson (Asgeir); Wolfers, T. (Thomas); L.R. Yanek (Lisa); Yang, J. (Jingyun); A.P. Zijdenbos; M.P. Zwiers (Marcel); I. Agartz (Ingrid); L. Almasy (Laura); D. Ames (David); Amouyel, P. (Philippe); O.A. Andreassen (Ole A.); S. Arepalli (Sampath); A.A. Assareh; S. Barral (Sandra); M.E. Bastin (Mark); Becker, D.M. (Diane M.); J.T. Becker; D.A. Bennett (David A.); J. Blangero (John); H. van Bokhoven (Hans); D.I. Boomsma (Dorret); H. Brodaty (Henry); R.M. Brouwer (Rachel); H.G. Brunner; M. Buckner; J.K. Buitelaar (Jan); K. Bulayeva (Kazima); W. Cahn (Wiepke); V.D. Calhoun Vince D. (V.); D.M. Cannon (Dara); G. Cavalleri (Gianpiero); Cheng, C.-Y. (Ching-Yu); S. Cichon (Sven); M.R. Cookson (Mark); A. Corvin (Aiden); B. Crespo-Facorro (Benedicto); J.E. Curran (Joanne); M. Czisch (Michael); A.M. Dale (Anders); G.E. Davies (Gareth); A.J. de Craen (Anton); E.J.C. de Geus (Eco); P.L. de Jager (Philip); G.I. de Zubicaray (Greig); I.J. Deary (Ian J.); S. Debette (Stéphanie); C. DeCarli (Charles); N. Delanty; C. Depondt (Chantal); A.L. DeStefano (Anita); A. Dillman (Allissa); S. Djurovic (Srdjan); D.J. Donohoe (Dennis); D.A. Drevets (Douglas); Duggirala, R. (Ravi); M.D. Dyer (Matthew); C. Enzinger (Christian); S. Erk; T. Espeseth (Thomas); Fedko, I.O. (Iryna O.); Fernández, G. (Guillén); L. Ferrucci (Luigi); S.E. Fisher (Simon); D. Fleischman (Debra); I. Ford (Ian); M. Fornage (Myriam); T. Foroud (Tatiana); P.T. Fox (Peter); C. Francks (Clyde); Fukunaga, M. (Masaki); Gibbs, J.R. (J. Raphael); D.C. Glahn (David); R.L. Gollub (Randy); H.H.H. Göring (Harald H.); R.C. Green (Robert C.); O. Gruber (Oliver); V. Gudnason (Vilmundur); S. Guelfi (Sebastian); Håberg, A.K. (Asta K.); N.K. Hansell (Narelle); J. Hardy (John); C.A. Hartman (C.); Hashimoto, R. (Ryota); K. Hegenscheid (Katrin); J. Heinz (Judith); S. Le Hellard (Stephanie); D.G. Hernandez (Dena); D.J. Heslenfeld (Dirk); Ho, B.-C. (Beng-Choon); P.J. Hoekstra (Pieter); W. Hoffmann (Wolfgang); A. Hofman (Albert); F. Holsboer (Florian); G. Homuth (Georg); N. Hosten (Norbert); J.J. Hottenga (Jouke Jan); M.J. Huentelman (Matthew); H.H. Pol; Ikeda, M. (Masashi); Jack, C.R. (Clifford R.); S. Jenkinson (Sarah); R. Johnson (Robert); Jönsson, E.G. (Erik G.); J.W. Jukema; R. Kahn; Kanai, R. (Ryota); I. Kloszewska (Iwona); Knopman, D.S. (David S.); P. Kochunov (Peter); Kwok, J.B. (John B.); S. Lawrie (Stephen); H. Lemaître (Herve); X. Liu (Xinmin); D.L. Longo (Dan L.); O.L. Lopez (Oscar L.); S. Lovestone (Simon); Martinez, O. (Oliver); J.-L. Martinot (Jean-Luc); V.S. Mattay (Venkata S.); McDonald, C. (Colm); A.M. McIntosh (Andrew); McMahon, F.J. (Francis J.); McMahon, K.L. (Katie L.); P. Mecocci (Patrizia); I. Melle (Ingrid); Meyer-Lindenberg, A. (Andreas); S. Mohnke (Sebastian); Montgomery, G.W. (Grant W.); D.W. Morris (Derek W); T.H. Mosley (Thomas H.); T.W. Mühleisen (Thomas); B. Müller-Myhsok (B.); M.A. Nalls (Michael); M. Nauck (Matthias); T.E. Nichols (Thomas); W.J. Niessen (Wiro); M.M. Nöthen (Markus); L. Nyberg (Lars); Ohi, K. (Kazutaka); R.L. Olvera (Rene); R.A. Ophoff (Roel); M. Pandolfo (Massimo); T. Paus (Tomas); Z. Pausova (Zdenka); B.W.J.H. Penninx (Brenda); Pike, G.B. (G. Bruce); S.G. Potkin (Steven); B.M. Psaty (Bruce); S. Reppermund; M. Rietschel (M.); J.L. Roffman (Joshua); N. Seiferth (Nina); J.I. Rotter (Jerome I.); M. Ryten (Mina); Sacco, R.L. (Ralph L.); P.S. Sachdev (Perminder); A.J. Saykin (Andrew); R. Schmidt (Reinhold); Schmidt, H. (Helena); C.J. Schofield (Christopher); Sigursson, S. (Sigurdur); Simmons, A. (Andrew); A. Singleton (Andrew); S.M. Sisodiya (Sanjay); Smith, C. (Colin); J.W. Smoller; H. Soininen (H.); V.M. Steen (Vidar); D.J. Stott (David J.); J. Sussmann (Jessika); A. Thalamuthu (Anbupalam); A.W. Toga (Arthur W.); B. Traynor (Bryan); J.C. Troncoso (Juan); M. Tsolaki (Magda); C. Tzourio (Christophe); A.G. Uitterlinden (André); Hernández, M.C.V. (Maria C. Valdés); M.P. van der Brug (Marcel); A. van der Lugt (Aad); N.J. van der Wee (Nic); N.E.M. van Haren (Neeltje E.); D. van 't Ent (Dennis); M.J.D. van Tol (Marie-José); B.N. Vardarajan (Badri); B. Vellas (Bruno); D.J. Veltman (Dick); H. Völzke (Henry); H.J. Walter (Henrik); J. Wardlaw (Joanna); A.M.J. Wassink (Annemarie); M.E. Weale (Michael); Weinberger, D.R. (Daniel R.); Weiner, M.W. (Michael W.); Wen, W. (Wei); E. Westman (Eric); T.J.H. White (Tonya); Wong, T.Y. (Tien Y.); Wright, C.B. (Clinton B.); R.H. Zielke (Ronald H.); A.B. Zonderman; N.G. Martin (Nicholas); C.M. van Duijn (Cock); M.J. Wright (Margaret); W.T. Longstreth Jr; G. Schumann (Gunter); H.J. Grabe (Hans Jörgen); B. Franke (Barbara); L.J. Launer (Lenore); S.E. Medland (Sarah Elizabeth); S. Seshadri (Sudha); P.M. Thompson (Paul); M.K. Ikram (Kamran)

    2017-01-01

    textabstractThe hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpi

  8. Novel genetic loci associated with hippocampal volume

    NARCIS (Netherlands)

    Hibar, Derrek P; Adams, Hieab H H; Jahanshad, Neda; Chauhan, Ganesh; Stein, Jason L; Hofer, Edith; Renteria, Miguel E; Bis, Joshua C; Arias-Vasquez, Alejandro; Ikram, M Kamran; Desrivières, Sylvane; Vernooij, Meike W; Abramovic, Lucija|info:eu-repo/dai/nl/34549072X; Alhusaini, Saud; Amin, Najaf; Andersson, Micael; Arfanakis, Konstantinos; Aribisala, Benjamin S; Armstrong, Nicola J; Athanasiu, Lavinia; Axelsson, Tomas; Beecham, Ashley H; Beiser, Alexa; Bernard, Manon; Blanton, Susan H; Bohlken, Marc M; Boks, Marco P|info:eu-repo/dai/nl/286852071; Bralten, Janita; Brickman, Adam M; Carmichael, Owen; Chakravarty, M Mallar; Chen, Qiang; Ching, Christopher R K; Chouraki, Vincent; Cuellar-Partida, Gabriel; Crivello, Fabrice; Den Braber, Anouk; Doan, Nhat Trung; Ehrlich, Stefan; Giddaluru, Sudheer; Goldman, Aaron L; Gottesman, Rebecca F; Grimm, Oliver; Griswold, Michael E; Guadalupe, Tulio; Gutman, Boris A; Hass, Johanna; Haukvik, Unn K; Hoehn, David; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Jørgensen, Kjetil N; Karbalai, Nazanin; Kasperaviciute, Dalia; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Liewald, David C M; Lopez, Lorna M; Luciano, Michelle; Macare, Christine; Marquand, Andre F; Matarin, Mar; Mather, Karen A; Mattheisen, Manuel; McKay, David R; Milaneschi, Yuri; Muñoz Maniega, Susana; Nho, Kwangsik; Nugent, Allison C; Nyquist, Paul; Loohuis, Loes M Olde; Oosterlaan, Jaap; Papmeyer, Martina; Pirpamer, Lukas; Pütz, Benno; Ramasamy, Adaikalavan; Richards, Jennifer S; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rommelse, Nanda; Ropele, Stefan; Rose, Emma J; Royle, Natalie A; Rundek, Tatjana; Sämann, Philipp G; Saremi, Arvin; Satizabal, Claudia L; Schmaal, Lianne; Schork, Andrew J; Shen, Li; Shin, Jean; Shumskaya, Elena; Smith, Albert V; Sprooten, Emma; Strike, Lachlan T; Teumer, Alexander; Tordesillas-Gutierrez, Diana; Toro, Roberto; Trabzuni, Daniah; Trompet, Stella; Vaidya, Dhananjay; Van der Grond, Jeroen; Van der Lee, Sven J; Van der Meer, Dennis; Van Donkelaar, Marjolein M J; Van Eijk, Kristel R|info:eu-repo/dai/nl/344497569; Van Erp, Theo G M; Van Rooij, Daan; Walton, Esther; Westlye, Lars T; Whelan, Christopher D; Windham, Beverly G; Winkler, Anderson M; Wittfeld, Katharina; Woldehawariat, Girma; Wolf, Christiane; Wolfers, Thomas; Yanek, Lisa R; Yang, Jingyun; Zijdenbos, Alex; Zwiers, Marcel P; Agartz, Ingrid; Almasy, Laura; Ames, David; Amouyel, Philippe; Andreassen, Ole A; Arepalli, Sampath; Assareh, Amelia A; Barral, Sandra; Bastin, Mark E; Becker, Diane M; Becker, James T; Bennett, David A; Blangero, John; van Bokhoven, Hans; Boomsma, Dorret I; Brodaty, Henry; Brouwer, Rachel M|info:eu-repo/dai/nl/304811432; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Bulayeva, Kazima B; Cahn, Wiepke|info:eu-repo/dai/nl/250566370; Calhoun, Vince D; Cannon, Dara M; Cavalleri, Gianpiero L; Cheng, Ching-Yu; Cichon, Sven; Cookson, Mark R; Corvin, Aiden; Crespo-Facorro, Benedicto; Curran, Joanne E; Czisch, Michael; Dale, Anders M; Davies, Gareth E; De Craen, Anton J M; De Geus, Eco J C; De Jager, Philip L; De Zubicaray, Greig I; Deary, Ian J; Debette, Stéphanie; DeCarli, Charles; Delanty, Norman; Depondt, Chantal; DeStefano, Anita; Dillman, Allissa; Djurovic, Srdjan; Donohoe, Gary; Drevets, Wayne C; Duggirala, Ravi; Dyer, Thomas D; Enzinger, Christian; Erk, Susanne; Espeseth, Thomas; Fedko, Iryna O; Fernández, Guillén; Ferrucci, Luigi; Fisher, Simon E; Fleischman, Debra A; Ford, Ian; Fornage, Myriam; Foroud, Tatiana M; Fox, Peter T; Francks, Clyde; Fukunaga, Masaki; Gibbs, J Raphael; Glahn, David C; Gollub, Randy L; Göring, Harald H H; Green, Robert C; Gruber, Oliver; Gudnason, Vilmundur; Guelfi, Sebastian; Håberg, Asta K; Hansell, Narelle K; Hardy, John; Hartman, Catharina A; Hashimoto, Ryota; Hegenscheid, Katrin; Heinz, Andreas; Le Hellard, Stephanie; Hernandez, Dena G; Heslenfeld, Dirk J; Ho, Beng-Choon; Hoekstra, Pieter J; Hoffmann, Wolfgang; Hofman, Albert; Holsboer, Florian; Homuth, Georg; Hosten, Norbert; Hottenga, Jouke-Jan; Huentelman, Matthew; Pol, Hilleke E Hulshoff|info:eu-repo/dai/nl/142348228; Ikeda, Masashi; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Jönsson, Erik G; Jukema, J Wouter; Kahn, René S|info:eu-repo/dai/nl/073778532; Kanai, Ryota; Kloszewska, Iwona; Knopman, David S; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Lemaître, Hervé; Liu, Xinmin; Longo, Dan L; Lopez, Oscar L; Lovestone, Simon; Martinez, Oliver; Martinot, Jean-Luc; Mattay, Venkata S; McDonald, Colm; McIntosh, Andrew M; McMahon, Francis J; McMahon, Katie L; Mecocci, Patrizia; Melle, Ingrid; Meyer-Lindenberg, Andreas; Mohnke, Sebastian; Montgomery, Grant W; Morris, Derek W; Mosley, Thomas H; Mühleisen, Thomas W; Müller-Myhsok, Bertram; Nalls, Michael A; Nauck, Matthias; Nichols, Thomas E; Niessen, Wiro J; Nöthen, Markus M; Nyberg, Lars; Ohi, Kazutaka; Olvera, Rene L; Ophoff, Roel A; Pandolfo, Massimo; Paus, Tomas; Pausova, Zdenka; Penninx, Brenda W J H; Pike, G Bruce; Potkin, Steven G; Psaty, Bruce M; Reppermund, Simone; Rietschel, Marcella; Roffman, Joshua L; Romanczuk-Seiferth, Nina; Rotter, Jerome I; Ryten, Mina; Sacco, Ralph L; Sachdev, Perminder S; Saykin, Andrew J; Schmidt, Reinhold; Schmidt, Helena; Schofield, Peter R; Sigursson, Sigurdur; Simmons, Andrew; Singleton, Andrew; Sisodiya, Sanjay M; Smith, Colin; Smoller, Jordan W; Soininen, Hilkka; Steen, Vidar M; Stott, David J; Sussmann, Jessika E; Thalamuthu, Anbupalam; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Tsolaki, Magda; Tzourio, Christophe; Uitterlinden, Andre G; Hernández, Maria C Valdés; Van der Brug, Marcel; van der Lugt, Aad; van der Wee, Nic J A; Van Haren, Neeltje E M|info:eu-repo/dai/nl/271562161; van 't Ent, Dennis; Van Tol, Marie-Jose; Vardarajan, Badri N; Vellas, Bruno; Veltman, Dick J; Völzke, Henry; Walter, Henrik; Wardlaw, Joanna M; Wassink, Thomas H; Weale, Michael E; Weinberger, Daniel R; Weiner, Michael W; Wen, Wei; Westman, Eric; White, Tonya; Wong, Tien Y; Wright, Clinton B; Zielke, Ronald H; Zonderman, Alan B; Martin, Nicholas G; Van Duijn, Cornelia M; Wright, Margaret J; Longstreth, W T; Schumann, Gunter; Grabe, Hans J; Franke, Barbara; Launer, Lenore J; Medland, Sarah E; Seshadri, Sudha; Thompson, Paul M; Ikram, M Arfan

    2017-01-01

    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hi

  9. Novel genetic loci associated with hippocampal volume

    NARCIS (Netherlands)

    D.P. Hibar (Derrek); H.H.H. Adams (Hieab); N. Jahanshad (Neda); G. Chauhan (Ganesh); J.L. Stein; E. Hofer (Edith); M.E. Rentería (Miguel); J.C. Bis (Joshua); A. Arias-Vásquez (Alejandro); Ikram, M.K. (M. Kamran); S. Desrivières (Sylvane); M.W. Vernooij (Meike); L. Abramovic; S. Alhusaini (Saud); N. Amin (Najaf); M. Andersson (Micael); K. Arfanakis (Konstantinos); B. Aribisala (Benjamin); N.J. Armstrong (Nicola J.); L. Athanasiu (Lavinia); T. Axelsson (Tomas); A.H. Beecham (Ashley); A. Beiser (Alexa); M. Bernard (Manon); S.H. Blanton (Susan H.); M.M. Bohlken (Marc M.); M.P.M. Boks (Marco); L.B.C. Bralten (Linda); A.M. Brickman (Adam M.); Carmichael, O. (Owen); M.M. Chakravarty (M. Mallar); Q. Chen (Qiang); C.R.K. Ching (Christopher); V. Chouraki (Vincent); G. Cuellar-Partida (Gabriel); F. Crivello (Fabrice); A. den Braber (Anouk); Doan, N.T. (Nhat Trung); S.M. Ehrlich (Stefan); S. Giddaluru (Sudheer); A.L. Goldman (Aaron L.); R.F. Gottesman (Rebecca); O. Grimm (Oliver); M.D. Griswold (Michael); T. Guadalupe (Tulio); Gutman, B.A. (Boris A.); J. Hass (Johanna); U.K. Haukvik (Unn); D. Hoehn (David); A.J. Holmes (Avram); M. Hoogman (Martine); D. Janowitz (Deborah); T. Jia (Tianye); Jørgensen, K.N. (Kjetil N.); N. Karbalai (Nazanin); D. Kasperaviciute (Dalia); S. Kim (Shinseog); M. Klein (Marieke); B. Kraemer (Bernd); P.H. Lee (Phil); D.C. Liewald (David C.); L.M. Lopez (Lorna); M. Luciano (Michelle); C. MacAre (Christine); Marquand, A.F. (Andre F.); M. Matarin (Mar); R. Mather; M. Mattheisen (Manuel); McKay, D.R. (David R.); Milaneschi, Y. (Yuri); S. Muñoz Maniega (Susana); K. Nho (Kwangsik); A.C. Nugent (Allison); P. Nyquist (Paul); Loohuis, L.M.O. (Loes M. Olde); J. Oosterlaan (Jaap); M. Papmeyer (Martina); Pirpamer, L. (Lukas); B. Pütz (Benno); A. Ramasamy (Adaikalavan); Richards, J.S. (Jennifer S.); S.L. Risacher (Shannon); R. Roiz-Santiañez (Roberto); N. Rommelse (Nanda); S. Ropele (Stefan); E.J. Rose (Emma); N.A. Royle (Natalie); T. Rundek (Tatjana); P.G. Sämann (Philipp); Saremi, A. (Arvin); C.L. Satizabal (Claudia L.); L. Schmaal (Lianne); N.J. Schork (Nicholas); Shen, L. (Li); J. Shin (Jean); Shumskaya, E. (Elena); A.V. Smith (Albert Vernon); R. Sprooten (Roy); V.M. Strike (Vanessa); A. Teumer (Alexander); D. Tordesillas-Gutierrez (Diana); R. Toro (Roberto); D. Trabzuni (Danyah); S. Trompet (Stella); D. Vaidya (Dhananjay); J. van der Grond (Jeroen); S. van der Lee (Sven); Van Der Meer, D. (Dennis); M.M.J. Van Donkelaar (Marjolein M. J.); K.R. van Eijk (Kristel); T.G.M. van Erp (Theo G.); Van Rooij, D. (Daan); E. Walton (Esther); L.T. Westlye (Lars); C.D. Whelan (Christopher); B.G. Windham (B Gwen); A.M. Winkler (Anderson); K. Wittfeld (Katharina); G. Woldehawariat (Girma); A. Björnsson (Asgeir); Wolfers, T. (Thomas); L.R. Yanek (Lisa); Yang, J. (Jingyun); A.P. Zijdenbos; M.P. Zwiers (Marcel); I. Agartz (Ingrid); L. Almasy (Laura); D. Ames (David); Amouyel, P. (Philippe); O.A. Andreassen (Ole A.); S. Arepalli (Sampath); A.A. Assareh; S. Barral (Sandra); M.E. Bastin (Mark); Becker, D.M. (Diane M.); J.T. Becker; D.A. Bennett (David A.); J. Blangero (John); H. van Bokhoven (Hans); D.I. Boomsma (Dorret); H. Brodaty (Henry); R.M. Brouwer (Rachel); H.G. Brunner; M. Buckner; J.K. Buitelaar (Jan); K. Bulayeva (Kazima); W. Cahn (Wiepke); V.D. Calhoun Vince D. (V.); D.M. Cannon (Dara); G. Cavalleri (Gianpiero); Cheng, C.-Y. (Ching-Yu); S. Cichon (Sven); M.R. Cookson (Mark); A. Corvin (Aiden); B. Crespo-Facorro (Benedicto); J.E. Curran (Joanne); M. Czisch (Michael); A.M. Dale (Anders); G.E. Davies (Gareth); A.J. de Craen (Anton); E.J.C. de Geus (Eco); P.L. de Jager (Philip); G.I. de Zubicaray (Greig); I.J. Deary (Ian J.); S. Debette (Stéphanie); C. DeCarli (Charles); N. Delanty; C. Depondt (Chantal); A.L. DeStefano (Anita); A. Dillman (Allissa); S. Djurovic (Srdjan); D.J. Donohoe (Dennis); D.A. Drevets (Douglas); Duggirala, R. (Ravi); M.D. Dyer (Matthew); C. Enzinger (Christian); S. Erk; T. Espeseth (Thomas); Fedko, I.O. (Iryna O.); Fernández, G. (Guillén); L. Ferrucci (Luigi); S.E. Fisher (Simon); D. Fleischman (Debra); I. Ford (Ian); M. Fornage (Myriam); T. Foroud (Tatiana); P.T. Fox (Peter); C. Francks (Clyde); Fukunaga, M. (Masaki); Gibbs, J.R. (J. Raphael); D.C. Glahn (David); R.L. Gollub (Randy); H.H.H. Göring (Harald H.); R.C. Green (Robert C.); O. Gruber (Oliver); V. Gudnason (Vilmundur); S. Guelfi (Sebastian); Håberg, A.K. (Asta K.); N.K. Hansell (Narelle); J. Hardy (John); C.A. Hartman (C.); Hashimoto, R. (Ryota); K. Hegenscheid (Katrin); J. Heinz (Judith); S. Le Hellard (Stephanie); D.G. Hernandez (Dena); D.J. Heslenfeld (Dirk); Ho, B.-C. (Beng-Choon); P.J. Hoekstra (Pieter); W. Hoffmann (Wolfgang); A. Hofman (Albert); F. Holsboer (Florian); G. Homuth (Georg); N. Hosten (Norbert); J.J. Hottenga (Jouke Jan); M.J. Huentelman (Matthew); H.H. Pol; Ikeda, M. (Masashi); Jack, C.R. (Clifford R.); S. Jenkinson (Sarah); R. Johnson (Robert); Jönsson, E.G. (Erik G.); J.W. Jukema; R. Kahn; Kanai, R. (Ryota); I. Kloszewska (Iwona); Knopman, D.S. (David S.); P. Kochunov (Peter); Kwok, J.B. (John B.); S. Lawrie (Stephen); H. Lemaître (Herve); X. Liu (Xinmin); D.L. Longo (Dan L.); O.L. Lopez (Oscar L.); S. Lovestone (Simon); Martinez, O. (Oliver); J.-L. Martinot (Jean-Luc); V.S. Mattay (Venkata S.); McDonald, C. (Colm); A.M. McIntosh (Andrew); McMahon, F.J. (Francis J.); McMahon, K.L. (Katie L.); P. Mecocci (Patrizia); I. Melle (Ingrid); Meyer-Lindenberg, A. (Andreas); S. Mohnke (Sebastian); Montgomery, G.W. (Grant W.); D.W. Morris (Derek W); T.H. Mosley (Thomas H.); T.W. Mühleisen (Thomas); B. Müller-Myhsok (B.); M.A. Nalls (Michael); M. Nauck (Matthias); T.E. Nichols (Thomas); W.J. Niessen (Wiro); M.M. Nöthen (Markus); L. Nyberg (Lars); Ohi, K. (Kazutaka); R.L. Olvera (Rene); R.A. Ophoff (Roel); M. Pandolfo (Massimo); T. Paus (Tomas); Z. Pausova (Zdenka); B.W.J.H. Penninx (Brenda); Pike, G.B. (G. Bruce); S.G. Potkin (Steven); B.M. Psaty (Bruce); S. Reppermund; M. Rietschel (M.); J.L. Roffman (Joshua); N. Seiferth (Nina); J.I. Rotter (Jerome I.); M. Ryten (Mina); Sacco, R.L. (Ralph L.); P.S. Sachdev (Perminder); A.J. Saykin (Andrew); R. Schmidt (Reinhold); Schmidt, H. (Helena); C.J. Schofield (Christopher); Sigursson, S. (Sigurdur); Simmons, A. (Andrew); A. Singleton (Andrew); S.M. Sisodiya (Sanjay); Smith, C. (Colin); J.W. Smoller; H. Soininen (H.); V.M. Steen (Vidar); D.J. Stott (David J.); J. Sussmann (Jessika); A. Thalamuthu (Anbupalam); A.W. Toga (Arthur W.); B. Traynor (Bryan); J.C. Troncoso (Juan); M. Tsolaki (Magda); C. Tzourio (Christophe); A.G. Uitterlinden (André); Hernández, M.C.V. (Maria C. Valdés); M.P. van der Brug (Marcel); A. van der Lugt (Aad); N.J. van der Wee (Nic); N.E.M. van Haren (Neeltje E.); D. van 't Ent (Dennis); M.J.D. van Tol (Marie-José); B.N. Vardarajan (Badri); B. Vellas (Bruno); D.J. Veltman (Dick); H. Völzke (Henry); H.J. Walter (Henrik); J. Wardlaw (Joanna); A.M.J. Wassink (Annemarie); M.E. Weale (Michael); Weinberger, D.R. (Daniel R.); Weiner, M.W. (Michael W.); Wen, W. (Wei); E. Westman (Eric); T.J.H. White (Tonya); Wong, T.Y. (Tien Y.); Wright, C.B. (Clinton B.); R.H. Zielke (Ronald H.); A.B. Zonderman; N.G. Martin (Nicholas); C.M. van Duijn (Cock); M.J. Wright (Margaret); W.T. Longstreth Jr; G. Schumann (Gunter); H.J. Grabe (Hans Jörgen); B. Franke (Barbara); L.J. Launer (Lenore); S.E. Medland (Sarah Elizabeth); S. Seshadri (Sudha); P.M. Thompson (Paul); M.K. Ikram (Kamran)

    2017-01-01

    textabstractThe hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpi

  10. Stress and adolescent hippocampal neurogenesis: diet and exercise as cognitive modulators

    Science.gov (United States)

    Hueston, C M; Cryan, J F; Nolan, Y M

    2017-01-01

    Adolescence is a critical period for brain maturation. Deciphering how disturbances to the central nervous system at this time affect structure, function and behavioural outputs is important to better understand any long-lasting effects. Hippocampal neurogenesis occurs during development and continues throughout life. In adulthood, integration of these new cells into the hippocampus is important for emotional behaviour, cognitive function and neural plasticity. During the adolescent period, maturation of the hippocampus and heightened levels of hippocampal neurogenesis are observed, making alterations to neurogenesis at this time particularly consequential. As stress negatively affects hippocampal neurogenesis, and adolescence is a particularly stressful time of life, it is important to investigate the impact of stressor exposure at this time on hippocampal neurogenesis and cognitive function. Adolescence may represent not only a time for which stress can have long-lasting effects, but is also a critical period during which interventions, such as exercise and diet, could ameliorate stress-induced changes to hippocampal function. In addition, intervention at this time may also promote life-long behavioural changes that would aid in fostering increased hippocampal neurogenesis and cognitive function. This review addresses both the acute and long-term stress-induced alterations to hippocampal neurogenesis and cognition during the adolescent period, as well as changes to the stress response and pubertal hormones at this time which may result in differential effects than are observed in adulthood. We hypothesise that adolescence may represent an optimal time for healthy lifestyle changes to have a positive and long-lasting impact on hippocampal neurogenesis, and to protect against stress-induced deficits. We conclude that future research into the mechanisms underlying the susceptibility of the adolescent hippocampus to stress, exercise and diet and the consequent effect

  11. Investigations on Alterations of Hippocampal Circuit Function Following Mild Traumatic Brain Injury

    OpenAIRE

    2012-01-01

    Traumatic Brain Injury (TBI) afflicts more than 1.7 million people in the United States each year and even mild TBI can lead to persistent neurological impairments 1. Two pervasive and disabling symptoms experienced by TBI survivors, memory deficits and a reduction in seizure threshold, are thought to be mediated by TBI-induced hippocampal dysfunction 2,3. In order to demonstrate how altered hippocampal circuit function adversely affects behavior after TBI in mice, we employ lateral fluid per...

  12. Hippocampal Abnormalities and Seizure Recurrence

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2006-08-01

    Full Text Available Hippocampal volumetry and T2 relaxometry were performed on 84 consecutive patients (adolescents and adults with partial epilepsy submitted to antiepileptic drug (AED withdrawal after at least 2 years of seizure control, in a study at State University of Campinas-UNICAMP, Brazil.

  13. Role of adult hippocampal neurogenesis in cognition in physiology and disease: pharmacological targets and biomarkers.

    Science.gov (United States)

    Costa, Veronica; Lugert, Sebastian; Jagasia, Ravi

    2015-01-01

    Adult hippocampal neurogenesis is a remarkable form of brain structural plasticity by which new functional neurons are generated from adult neural stem cells/precursors. Although the precise role of this process remains elusive, adult hippocampal neurogenesis is important for learning and memory and it is affected in disease conditions associated with cognitive impairment, depression, and anxiety. Immature neurons in the adult brain exhibit an enhanced structural and synaptic plasticity during their maturation representing a unique population of neurons to mediate specific hippocampal function. Compelling preclinical evidence suggests that hippocampal neurogenesis is modulated by a broad range of physiological stimuli which are relevant in cognitive and emotional states. Moreover, multiple pharmacological interventions targeting cognition modulate adult hippocampal neurogenesis. In addition, recent genetic approaches have shown that promoting neurogenesis can positively modulate cognition associated with both physiology and disease. Thus the discovery of signaling pathways that enhance adult neurogenesis may lead to therapeutic strategies for improving memory loss due to aging or disease. This chapter endeavors to review the literature in the field, with particular focus on (1) the role of hippocampal neurogenesis in cognition in physiology and disease; (2) extrinsic and intrinsic signals that modulate hippocampal neurogenesis with a focus on pharmacological targets; and (3) efforts toward novel strategies pharmacologically targeting neurogenesis and identification of biomarkers of human neurogenesis.

  14. Ecologically relevant spatial memory use modulates hippocampal neurogenesis

    OpenAIRE

    LaDage, Lara D.; Roth, Timothy C.; Fox, Rebecca A.; Pravosudov, Vladimir V.

    2009-01-01

    The adult hippocampus in birds and mammals undergoes neurogenesis and the resulting new neurons appear to integrate structurally and functionally into the existing neural architecture. However, the factors underlying the regulation of new neuron production is still under scrutiny. In recent years, the concept that spatial memory affects adult hippocampal neurogenesis has gained acceptance, although results attempting to causally link memory use to neurogenesis remain inconclusive, possibly ow...

  15. Structural correlates of impaired working memory in hippocampal sclerosis

    OpenAIRE

    Winston, Gavin P.; Stretton, Jason; Sidhu, Meneka K; Symms, Mark R.; Thompson, Pamela J; Duncan, John S.

    2013-01-01

    Purpose: Temporal lobe epilepsy (TLE) has been considered to impair long-term memory, whilst not affecting working memory, but recent evidence suggests that working memory is compromised. Functional MRI (fMRI) studies demonstrate that working memory involves a bilateral frontoparietal network the activation of which is disrupted in hippocampal sclerosis (HS). A specific role of the hippocampus to deactivate during working memory has been proposed with this mechanism faulty in patients with HS...

  16. Memory Dysfunction in Type 2 Diabetes Mellitus Correlates with Reduced Hippocampal CA1 and Subiculum Volumes

    Institute of Scientific and Technical Information of China (English)

    Yan-Wei Zhang; Jiu-Quan Zhang; Chen Liu; Ping Wei; Xiao Zhang; Qiao-Ying Yuan; Xun-Tao Yin

    2015-01-01

    Background:Little attention has been paid to the role of subcortical deep gray matter (SDGM) structures in type 2 diabetes mellitus (T2DM)-induced cognitive impairment,especially hippocampal subfields.Our aims were to assess the in vivo volumes of SDGM structures and hippocampal subfields using magnetic resonance imaging (MRI) and to test their associations with cognitive performance in T2DM.Methods:A total of 80 T2DM patients and 80 neurologically unimpaired healthy controls matched by age,sex and education level was enrolled in this study.We assessed the volumes of the SDGM structures and seven hippocampal subfields on MRI using a novel technique that enabled automated volumetry.We used Mini-Mental State Examination and Montreal Cognitive Assessment (MoCA) scores as measures of cognitive performance.The association of glycosylated hemoglobin (HbAlc) with SDGM structures and neuropsychological tests and correlations between hippocampal subfields and neuropsychological tests were assessed by partial correlation analysis in T2DM.Results:Bilaterally,the hippocampal volumes were smaller in T2DM patients,mainly in the CA1 and subiculum subfields.Partial correlation analysis showed that the MoCA scores,particularly those regarding delayed memory,were significantly positively correlated with reduced hippocampal CA 1 and subiculum volumes in T2DM patients.Additionally,higher HbA1c levels were significantly associated with poor memory performance and hippocampal atrophy among T2DM patients.Conclusions:These data indicate that the hippocampus might be the main affected region among the SDGM structures in T2DM.These structural changes in the hippocampal CA1 and subiculum areas might be at the core of underlying neurobiological mechanisms of hippocampal dysfunction,suggesting that degeneration in these regions could be responsible for memory impairments in T2DM patients.

  17. Memory Dysfunction in Type 2 Diabetes Mellitus Correlates with Reduced Hippocampal CA1 and Subiculum Volumes

    Directory of Open Access Journals (Sweden)

    Yan-Wei Zhang

    2015-01-01

    Full Text Available Background: Little attention has been paid to the role of subcortical deep gray matter (SDGM structures in type 2 diabetes mellitus (T2DM-induced cognitive impairment, especially hippocampal subfields. Our aims were to assess the in vivo volumes of SDGM structures and hippocampal subfields using magnetic resonance imaging (MRI and to test their associations with cognitive performance in T2DM. Methods: A total of 80 T2DM patients and 80 neurologically unimpaired healthy controls matched by age, sex and education level was enrolled in this study. We assessed the volumes of the SDGM structures and seven hippocampal subfields on MRI using a novel technique that enabled automated volumetry. We used Mini-Mental State Examination and Montreal Cognitive Assessment (MoCA scores as measures of cognitive performance. The association of glycosylated hemoglobin (HbA1c with SDGM structures and neuropsychological tests and correlations between hippocampal subfields and neuropsychological tests were assessed by partial correlation analysis in T2DM. Results: Bilaterally, the hippocampal volumes were smaller in T2DM patients, mainly in the CA1 and subiculum subfields. Partial correlation analysis showed that the MoCA scores, particularly those regarding delayed memory, were significantly positively correlated with reduced hippocampal CA1 and subiculum volumes in T2DM patients. Additionally, higher HbA1c levels were significantly associated with poor memory performance and hippocampal atrophy among T2DM patients. Conclusions: These data indicate that the hippocampus might be the main affected region among the SDGM structures in T2DM. These structural changes in the hippocampal CA1 and subiculum areas might be at the core of underlying neurobiological mechanisms of hippocampal dysfunction, suggesting that degeneration in these regions could be responsible for memory impairments in T2DM patients.

  18. Low-intensity daily walking activity is associated with hippocampal volume in older adults.

    Science.gov (United States)

    Varma, Vijay R; Chuang, Yi-Fang; Harris, Gregory C; Tan, Erwin J; Carlson, Michelle C

    2015-05-01

    suggest the importance of examining whether increasing nonexercise, lifestyle physical activities may produce measurable cognitive benefits and affect hippocampal volume through molecular pathways unique to those related to moderate-intensity exercise.

  19. Hippocampal sclerosis in dementia, epilepsy, and ischemic injury: differential vulnerability of hippocampal subfields.

    Science.gov (United States)

    Hatanpaa, Kimmo J; Raisanen, Jack M; Herndon, Emily; Burns, Dennis K; Foong, Chan; Habib, Amyn A; White, Charles L

    2014-02-01

    Severe neuronal loss in the hippocampus, that is, hippocampal sclerosis (HS), can be seen in 3 main clinical contexts: dementia (particularly frontotemporal lobar degeneration [FTLD]), temporal lobe epilepsy (TLE), and hippocampal ischemic injury (H-I). It has been suggested that shared pathogenetic mechanisms may underlie selective vulnerability of the hippocampal subfields such as the CA1 in these conditions. We determined the extent of neuronal loss in cases of HS-FTLD (n=14), HS-TLE (n=35), and H-I (n=20). Immunohistochemistry for zinc transporter 3 was used to help define the CA3/CA2 border in the routinely processed human autopsy tissue samples. The subiculum was involved in 57% of HS-FTLD, 10% of H-I, and 0% of HS-TLE cases (p<0.0001). The CA regions other than CA1 were involved in 57% of HS-TLE, 30% of H-I, and 0% of HS-FTLD cases (p=0.0003). The distal third of CA1 was involved in 79% of HS-FTLD, 35% of H-I, and 37% of HS-TLE cases (p=0.02). The distal third of CA1 was the only area involved in 29% of HS-FTLD, 3% of HS-TLE, and 0% of H-I cases (p=0.019). The proximal-middle CA1 was the only area affected in 50% of H-I, 29% of HS-TLE, and 0% of HS-FTLD cases (p=0.004). These findings support heterogeneity in the pathogenesis of HS.

  20. Hippocampal volume reduction in congenital central hypoventilation syndrome.

    Directory of Open Access Journals (Sweden)

    Paul M Macey

    Full Text Available Children with congenital central hypoventilation syndrome (CCHS, a genetic disorder characterized by diminished drive to breathe during sleep and impaired CO(2 sensitivity, show brain structural and functional changes on magnetic resonance imaging (MRI scans, with impaired responses in specific hippocampal regions, suggesting localized injury.We assessed total volume and regional variation in hippocampal surface morphology to identify areas affected in the syndrome. We studied 18 CCHS (mean age+/-std: 15.1+/-2.2 years; 8 female and 32 healthy control (age 15.2+/-2.4 years; 14 female children, and traced hippocampi on 1 mm(3 resolution T1-weighted scans, collected with a 3.0 Tesla MRI scanner. Regional hippocampal volume variations, adjusted for cranial volume, were compared between groups based on t-tests of surface distances to the structure midline, with correction for multiple comparisons. Significant tissue losses emerged in CCHS patients on the left side, with a trend for loss on the right; however, most areas affected on the left also showed equivalent right-sided volume reductions. Reduced regional volumes appeared in the left rostral hippocampus, bilateral areas in mid and mid-to-caudal regions, and a dorsal-caudal region, adjacent to the fimbria.The volume losses may result from hypoxic exposure following hypoventilation during sleep-disordered breathing, or from developmental or vascular consequences of genetic mutations in the syndrome. The sites of change overlap regions of abnormal functional responses to respiratory and autonomic challenges. Affected hippocampal areas have roles associated with memory, mood, and indirectly, autonomic regulation; impairments in these behavioral and physiological functions appear in CCHS.

  1. A grading system for hippocampal sclerosis based on the degree of hippocampal mossy fiber sprouting

    NARCIS (Netherlands)

    Gispen, W.H.; Proper, E.A.; Jansen, G.H.; Veelen, C.W. van; Rijen, P.C. van; Graan, P.N.E. de

    2001-01-01

    Abstract. In patients suffering from temporal lobe epilepsy (TLE) a highly variable degree of hippocampal sclerosis (HS) can be observed. For standard neuropathological evaluation after hippocampal resection, neuronal cell loss in the hippocampal subareas is assessed (Wyler score 0-4) [Wyler et al.

  2. Hippocampal GABA transporter distribution in patients with temporal lobe epilepsy and hippocampal sclerosis

    NARCIS (Netherlands)

    Schijns, O.; Karaca, U.; Andrade, P.; Nijs, L. de; Kusters, B.; Peeters, A.; Dings, J.; Pannek, H.; Ebner, A.; Rijkers, K.; Hoogland, G.

    2015-01-01

    PURPOSE: To determine hippocampal expression of neuronal GABA-transporter (GAT-1) and glial GABA-transporter (GAT-3) in patients with temporal lobe epilepsy (TLE) and hippocampal sclerosis (HS). METHODS: Hippocampal sections were immunohistochemically stained for GABA-transporter 1 and GABA-transpor

  3. Hippocampal amnesia disrupts creative thinking.

    Science.gov (United States)

    Duff, Melissa C; Kurczek, Jake; Rubin, Rachael; Cohen, Neal J; Tranel, Daniel

    2013-12-01

    Creativity requires the rapid combination and recombination of existing mental representations to create novel ideas and ways of thinking. The hippocampal system, through its interaction with neocortical storage sites, provides a relational database necessary for the creation, updating, maintenance, and juxtaposition of mental representations used in service of declarative memory. Given this functionality, we hypothesized that hippocampus would play a critical role in creative thinking. We examined creative thinking, as measured by verbal and figural forms of the torrance tests of creative thinking (TTCT), in a group of participants with hippocampal damage and severe declarative memory impairment as well as in a group of demographically matched healthy comparison participants. The patients with bilateral hippocampal damage performed significantly worse than comparison participants on both the verbal and figural portions of the TTCT. These findings suggest that hippocampus plays a role critical in creative thinking, adding to a growing body of work pointing to the diverse ways the hallmark processing features of hippocampus serve a variety of behaviors that require flexible cognition.

  4. Hippocampal subfield volumes in short- and long-term lithium-treated patients with bipolar I disorder.

    Science.gov (United States)

    Simonetti, Alessio; Sani, Gabriele; Dacquino, Claudia; Piras, Fabrizio; De Rossi, Pietro; Caltagirone, Carlo; Coryell, William; Spalletta, Gianfranco

    2016-06-01

    Patients diagnosed with bipolar disorder (BP) may experience hippocampal atrophy. Lithium exposure has been associated with increased hippocampal volumes. However, its effects on hippocampal subfields remain to be clarified. We investigated the effects of short- and long-term lithium exposure on the hippocampus and its subfields in patients affected by bipolar I disorder (BP-I). Hippocampal subfields and total hippocampal volumes were measured in 60 subjects divided into four groups: 15 patients with BP-I who were never exposed to lithium [no-exposure group (NE)], 15 patients with BP-I exposed to lithium for lithium for > 24 months [long-exposure group (LE)], and 15 healthy control subjects (HC). The SE and NE groups showed smaller total hippocampal volumes and smaller bilateral cornu ammonis CA2-3, CA4-dentate gyrus (DG), presubiculum, and subiculum volumes compared with HC. The LE group showed larger total hippocampal volumes and bilateral CA2-3, left CA4-DG, left presubiculum, and right subiculum volumes compared with the NE group, and larger volumes of the right CA2-3, left CA4-DG, left presubiculum, and right subiculum compared with the SE group. No differences were found between the LE group and HC or between the SE and NE groups. Long-term, but not short-term, exposure to lithium treatment may exert neuroprotective effects on specific hippocampal subfields linked to disease progression. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. HIPPOCAMPAL SCLEROSIS, HIPPOCAMPAL NEURON LOSS PATTERNS AND TDP-43 IN THE AGED POPULATION.

    Science.gov (United States)

    Hokkanen, Suvi R K; Hunter, Sally; Polvikoski, Tuomo M; Keage, Hannah A D; Minett, Thais; Matthews, Fiona E; Brayne, Carol

    2017-08-18

    Hippocampal neuron loss is a common neuropathological feature in old age with various underlying aetiologies. Hippocampal sclerosis of aging (HS-Aging) is neuropathologically characterized by severe CA1 neuronal loss and frequent presence of transactive response DNA-binding protein of 43kDa (TDP-43) aggregations. Its aetiology is unclear and currently no standardized approaches to measure HS-Aging exist. We developed a semi-quantitative protocol, which captures various hippocampal neuron loss patterns, and compared their occurrence in the context of HS-Aging, TDP-43, vascular and tau pathology in 672 brains (TDP-43 staining n=642/672, 96%) donated for the population-based Cambridge City over-75s Cohort and the Cognitive Function and Ageing Study. HS-Aging was first evaluated independently from the protocol using the most common criteria defined in literature, and then described in detail through examination of neuron loss patterns and associated pathologies. 34 (5%) cases were identified, with a maximum of five pyramidal neurons in each of over half CA1 fields-of-view (x200 magnification), no vascular damage, no neuron loss in CA2-CA4, but consistent TDP-43 neuronal solid inclusions and neurites. We also report focal CA1 neuron loss with vascular pathology to affect predominantly CA1 bordering CA2 (Fisher's exact, p=0.009), whereas neuron loss in the subicular end of CA1 was associated with TDP-43 inclusions (Fisher's exact, pTDP-43. We conclude that hippocampal neuron loss patterns are associated with different aetiologies within CA1, and propose that these patterns can be used to form objective criteria for HS-Aging diagnosis. Finally, based on our results we hypothesize that neuron loss leading to HS-Aging starts from the subicular end of CA1 when it is associated with TDP-43 pathology, and that this neurodegenerative process is likely to be significantly more common than "end-stage" HS-Aging only. This article is protected by copyright. All rights reserved.

  6. Modulation of Hippocampal Neural Plasticity by Glucose-Related Signaling

    Directory of Open Access Journals (Sweden)

    Marco Mainardi

    2015-01-01

    Full Text Available Hormones and peptides involved in glucose homeostasis are emerging as important modulators of neural plasticity. In this regard, increasing evidence shows that molecules such as insulin, insulin-like growth factor-I, glucagon-like peptide-1, and ghrelin impact on the function of the hippocampus, which is a key area for learning and memory. Indeed, all these factors affect fundamental hippocampal properties including synaptic plasticity (i.e., synapse potentiation and depression, structural plasticity (i.e., dynamics of dendritic spines, and adult neurogenesis, thus leading to modifications in cognitive performance. Here, we review the main mechanisms underlying the effects of glucose metabolism on hippocampal physiology. In particular, we discuss the role of these signals in the modulation of cognitive functions and their potential implications in dysmetabolism-related cognitive decline.

  7. Modulation of hippocampal neural plasticity by glucose-related signaling.

    Science.gov (United States)

    Mainardi, Marco; Fusco, Salvatore; Grassi, Claudio

    2015-01-01

    Hormones and peptides involved in glucose homeostasis are emerging as important modulators of neural plasticity. In this regard, increasing evidence shows that molecules such as insulin, insulin-like growth factor-I, glucagon-like peptide-1, and ghrelin impact on the function of the hippocampus, which is a key area for learning and memory. Indeed, all these factors affect fundamental hippocampal properties including synaptic plasticity (i.e., synapse potentiation and depression), structural plasticity (i.e., dynamics of dendritic spines), and adult neurogenesis, thus leading to modifications in cognitive performance. Here, we review the main mechanisms underlying the effects of glucose metabolism on hippocampal physiology. In particular, we discuss the role of these signals in the modulation of cognitive functions and their potential implications in dysmetabolism-related cognitive decline.

  8. Neuro-protective effects of CNTF on hippocampal neurons via an unknown signal transduction pathway

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In our previous study, we proposed that there may be an unknown pathway in the upper stream of the known signal transduction pathway of Ciliary neurotrophic factor (CNTF) that mediates the neuro-protective function of CNTF. In the present experiment, we observed that the neuro-protective function of the non-classic signal transduction pathway in a L-NMDA (a glutamic acid ion type receptor atagonist) induced hippocampal neuron injury model, using primary culture rat hippocampal neurons, continuous photography and gp130 immunohistochemical assay. The results showed that L-NMDA induced injurious reaction of hippocampal neurons, and CNTF was able to inhibit the toxic action of L-NMDA on hippocampal neurons. Additionally, when JAK/STATs in the known classic signal transduction pathway of CNTF were blocked by PTPi-2, the protective effect of CNTF against L-NMDA injury still existed. L-NMDA caused a rapid increase in the concentration of hippocampal intracellular free [Ca2+]i. CNTF was able to attenuate L-NMDA-induced elevation of [Ca2+]i, and blocking JAK/STATs in the known classic signal trans- duction pathway of CNTF did not affect L-NMDA- induced elevation of [Ca2+]i, indicating that, apart from the known classic signal transduction pathway, there may be some other transduction pathways for CNTF to exert the protective effect on hippocampal neurons, and this pathway is related to [Ca2+].

  9. The relationship between hippocampal asymmetry and temperament in adolescent borderline and antisocial personality pathology.

    Science.gov (United States)

    Jovev, Martina; Whittle, Sarah; Yücel, Murat; Simmons, Julian Guy; Allen, Nicholas B; Chanen, Andrew M

    2014-02-01

    Investigating etiological processes early in the life span represents an important step toward a better understanding of the development of personality pathology. The current study evaluated the interaction between an individual difference risk factor (i.e., temperament) and a biological risk factor for aggressive behavior (i.e., atypical [larger] rightward hippocampal asymmetry) in predicting the emergence of borderline personality disorder (BPD) and antisocial personality disorder symptoms during early adolescence. The sample consisted of 153 healthy adolescents (M = 12.6 years, SD = 0.4, range = 11.4-13.7) who were selected from a larger sample to maximize variation in temperament. Interactions between four temperament factors (effortful control, negative affectivity, surgency, and affiliativeness), based on the Early Adolescent Temperament Questionnaire-Revised, and volumetric measures of hippocampal asymmetry were examined as cross-sectional predictors of BPD and antisocial personality disorder symptoms. Boys were more likely to have elevated BPD symptoms if they were high on affiliation and had larger rightward hippocampal asymmetry. In boys, low affiliation was a significant predictor of BPD symptoms in the presence of low rightward hippocampal asymmetry. For girls, low effortful control was associated with elevated BPD symptoms in the presence of atypical rightward hippocampal asymmetry. This study builds on previous work reporting significant associations between atypical hippocampal asymmetry and poor behavioral regulation.

  10. Structural hippocampal alterations, perceived stress, and coping deficiencies in patients with anorexia nervosa.

    Science.gov (United States)

    Burkert, Nathalie T; Koschutnig, Karl; Ebner, Franz; Freidl, Wolfgang

    2015-09-01

    Anorexia nervosa (AN) is a severe mental illness that mainly affects young females. Studies have found a reduction of the hippocampus-amygdala formation in people with AN, a brain region that is especially vulnerable to stress. In addition, patients with AN were found to perceive higher stress levels and to have more coping deficiencies than healthy controls. No prior study has considered a connection between stress, coping, and the hippocampal volume in AN. Therefore, the purpose of our study was to analyze the volume of hippocampal substructures, and its relation to stress and coping. We tested 21 females currently affected by AN and 21 age-matched normal controls (NC). Demographic and behavioral data were assessed. A magnetic resonance (MR) scanner was used to collect data reflecting volume of cortical structures. We performed comparisons between groups and calculated correlations between the hippocampal volume and coping strategies or stress. The results showed a significant reduction of the hippocampal fimbria and a significant enlargement of the hippocampal fissure in patients with AN compared to the NC. In addition, patients with AN were found to report higher stress levels and to have more coping deficiencies than healthy controls. The hippocampal volume showed a trend-level association with stress in patients with AN. In sum, our study provides the first-available evidence that perceived stress in patients with AN could be related to hippocampal volume. Our results may contribute to a better understanding of the pathophysiology of AN and, therefore, help to improve the treatment. © 2015 Wiley Periodicals, Inc.

  11. Recruitment of Perisomatic Inhibition during Spontaneous Hippocampal Activity In Vitro.

    Directory of Open Access Journals (Sweden)

    Anna Beyeler

    Full Text Available It was recently shown that perisomatic GABAergic inhibitory postsynaptic potentials (IPSPs originating from basket and chandelier cells can be recorded as population IPSPs from the hippocampal pyramidal layer using extracellular electrodes (eIPSPs. Taking advantage of this approach, we have investigated the recruitment of perisomatic inhibition during spontaneous hippocampal activity in vitro. Combining intracellular and extracellular recordings from pyramidal cells and interneurons, we confirm that inhibitory signals generated by basket cells can be recorded extracellularly, but our results suggest that, during spontaneous activity, eIPSPs are mostly confined to the CA3 rather than CA1 region. CA3 eIPSPs produced the powerful time-locked inhibition of multi-unit activity expected from perisomatic inhibition. Analysis of the temporal dynamics of spike discharges relative to eIPSPs suggests significant but moderate recruitment of excitatory and inhibitory neurons within the CA3 network on a 10 ms time scale, within which neurons recruit each other through recurrent collaterals and trigger powerful feedback inhibition. Such quantified parameters of neuronal interactions in the hippocampal network may serve as a basis for future characterisation of pathological conditions potentially affecting the interactions between excitation and inhibition in this circuit.

  12. Neuroprotective function for ramified microglia in hippocampal excitotoxicity

    Directory of Open Access Journals (Sweden)

    Vinet Jonathan

    2012-01-01

    Full Text Available Abstract Background Most of the known functions of microglia, including neurotoxic and neuroprotective properties, are attributed to morphologically-activated microglia. Resting, ramified microglia are suggested to primarily monitor their environment including synapses. Here, we show an active protective role of ramified microglia in excitotoxicity-induced neurodegeneration. Methods Mouse organotypic hippocampal slice cultures were treated with N-methyl-D-aspartic acid (NMDA to induce excitotoxic neuronal cell death. This procedure was performed in slices containing resting microglia or slices that were chemically or genetically depleted of their endogenous microglia. Results Treatment of mouse organotypic hippocampal slice cultures with 10-50 μM N-methyl-D-aspartic acid (NMDA induced region-specific excitotoxic neuronal cell death with CA1 neurons being most vulnerable, whereas CA3 and DG neurons were affected less. Ablation of ramified microglia severely enhanced NMDA-induced neuronal cell death in the CA3 and DG region rendering them almost as sensitive as CA1 neurons. Replenishment of microglia-free slices with microglia restored the original resistance of CA3 and DG neurons towards NMDA. Conclusions Our data strongly suggest that ramified microglia not only screen their microenvironment but additionally protect hippocampal neurons under pathological conditions. Morphological activation of ramified microglia is thus not required to influence neuronal survival.

  13. Inflammation subverts hippocampal synaptic plasticity in experimental multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Robert Nisticò

    Full Text Available Abnormal use-dependent synaptic plasticity is universally accepted as the main physiological correlate of memory deficits in neurodegenerative disorders. It is unclear whether synaptic plasticity deficits take place during neuroinflammatory diseases, such as multiple sclerosis (MS and its mouse model, experimental autoimmune encephalomyelitis (EAE. In EAE mice, we found significant alterations of synaptic plasticity rules in the hippocampus. When compared to control mice, in fact, hippocampal long-term potentiation (LTP induction was favored over long-term depression (LTD in EAE, as shown by a significant rightward shift in the frequency-synaptic response function. Notably, LTP induction was also enhanced in hippocampal slices from control mice following interleukin-1β (IL-1β perfusion, and both EAE and IL-1β inhibited GABAergic spontaneous inhibitory postsynaptic currents (sIPSC without affecting glutamatergic transmission and AMPA/NMDA ratio. EAE was also associated with selective loss of GABAergic interneurons and with reduced gamma-frequency oscillations in the CA1 region of the hippocampus. Finally, we provided evidence that microglial activation in the EAE hippocampus was associated with IL-1β expression, and hippocampal slices from control mice incubated with activated microglia displayed alterations of GABAergic transmission similar to those seen in EAE brains, through a mechanism dependent on enhanced IL-1β signaling. These data may yield novel insights into the basis of cognitive deficits in EAE and possibly of MS.

  14. Postnatal morphine administration alters hippocampal development in rats.

    Science.gov (United States)

    Traudt, Christopher M; Tkac, Ivan; Ennis, Kathleen M; Sutton, Leah M; Mammel, Daniel M; Rao, Raghavendra

    2012-01-01

    Morphine is frequently used as an analgesic and sedative in preterm infants. Adult rats exposed to morphine have an altered hippocampal neurochemical profile and decreased neurogenesis in the dentate gyrus of the hippocampus. To evaluate whether neonatal rats are similarly affected, rat pups were injected twice daily with 2 mg/kg morphine or normal saline from postnatal days 3 to 7. On postnatal day 8, the hippocampal neurochemical profile was determined using in vivo (1)H NMR spectroscopy. The mRNA and protein concentrations of specific analytes were measured in hippocampus, and cell division in dentate gyrus was assessed using bromodeoxyuridine. The concentrations of γ-aminobutyric acid (GABA), taurine, and myo-insotol were decreased, whereas concentrations of glutathione, phosphoethanolamine, and choline-containing compounds were increased in morphine-exposed rats relative to control rats. Morphine decreased glutamic acid decarboxylase enzyme levels and myelin basic protein mRNA expression in the hippocampus. Bromodeoxyuridine labeling in the dentate gyrus was decreased by 60-70% in morphine-exposed rats. These results suggest that recurrent morphine administration during brain development alters hippocampal structure.

  15. Hippocampal complex atrophy in poststroke and mild cognitive impairment.

    Science.gov (United States)

    Selnes, Per; Grambaite, Ramune; Rincon, Mariano; Bjørnerud, Atle; Gjerstad, Leif; Hessen, Erik; Auning, Eirik; Johansen, Krisztina; Almdahl, Ina S; Due-Tønnessen, Paulina; Vegge, Kjetil; Bjelke, Börje; Fladby, Tormod

    2015-11-01

    To investigate putative interacting or distinct pathways for hippocampal complex substructure (HCS) atrophy and cognitive affection in early-stage Alzheimer's disease (AD) and cerebrovascular disease (CVD), we recruited healthy controls, patients with mild cognitive impairment (MCI) and poststroke patients. HCSs were segmented, and quantitative white-matter hyperintensity (WMH) load and cerebrospinal fluid (CSF) amyloid-β concentrations were determined. The WMH load was higher poststroke. All examined HCSs were smaller in amyloid-positive MCI than in controls, and the subicular regions were smaller poststroke. Memory was reduced in amyloid-positive MCI, and psychomotor speed and executive function were reduced in poststroke and amyloid-positive MCI. Size of several HCS correlated with WMH load poststroke and with CSF amyloid-β concentrations in MCI. In poststroke and amyloid-positive MCI, neuropsychological function correlated with WMH load and hippocampal volume. There are similar patterns of HCS atrophy in CVD and early-stage AD, but different HCS associations with WMH and CSF biomarkers. WMHs add to hippocampal atrophy and the archetypal AD deficit delayed recall. In line with mounting evidence of a mechanistic link between primary AD pathology and CVD, these additive effects suggest interacting pathologic processes.

  16. Influence of Slow Oscillation on Hippocampal Activity and Ripples Through Cortico-Hippocampal Synaptic Interactions, Analyzed by a Cortical-CA3-CA1 Network Model

    Directory of Open Access Journals (Sweden)

    Jiannis eTaxidis

    2013-02-01

    Full Text Available Hippocampal sharp wave-ripple complexes (SWRs involve the synchronous discharge of thousands of cells throughout the CA3-CA1-subiculum-entorhinal cortex axis. Their strong transient output affects cortical targets, rendering SWRs a possible means for memory transfer from the hippocampus to the neocortex for long-term storage. Neurophysiological observations of hippocampal activity modulation by the cortical slow oscillation (SO during deep sleep and anesthesia, and correlations between ripples and UP states, support the role of SWRs in memory consolidation through a cortico-hippocampal feedback loop. We couple a cortical network exhibiting SO with a hippocampal CA3-CA1 computational network model exhibiting SWRs, in order to model such cortico-hippocampal correlations and uncover important parameters and coupling mechanisms controlling them. The cortical oscillatory output entrains the CA3 network via connections representing the mossy fiber input, and the CA1 network via the temporoammonic pathway. The spiking activity in CA3 and CA1 is shown to depend on the excitation-to-inhibition ratio, induced by combining the two hippocampal inputs, with mossy fiber input controlling the UP-state correlation of CA3 population bursts and corresponding SWRs, whereas the temporoammonic input affects the overall CA1 spiking activity. Ripple characteristics and pyramidal spiking participation to SWRs are shaped by the strength of the Schaffer collateral drive. A set of in vivo recordings from the rat hippocampus confirms a model-predicted segregation of pyramidal cells into subgroups according to the SO state where they preferentially fire and their response to SWRs. These groups can potentially play distinct functional roles in the replay of spike sequences.

  17. Dendrosomatic Sonic Hedgehog Signaling in Hippocampal Neurons Regulates Axon Elongation

    Science.gov (United States)

    Petralia, Ronald S.; Ott, Carolyn; Wang, Ya-Xian; Lippincott-Schwartz, Jennifer; Mattson, Mark P.

    2015-01-01

    The presence of Sonic Hedgehog (Shh) and its signaling components in the neurons of the hippocampus raises a question about what role the Shh signaling pathway may play in these neurons. We show here that activation of the Shh signaling pathway stimulates axon elongation in rat hippocampal neurons. This Shh-induced effect depends on the pathway transducer Smoothened (Smo) and the transcription factor Gli1. The axon itself does not respond directly to Shh; instead, the Shh signal transduction originates from the somatodendritic region of the neurons and occurs in neurons with and without detectable primary cilia. Upon Shh stimulation, Smo localization to dendrites increases significantly. Shh pathway activation results in increased levels of profilin1 (Pfn1), an actin-binding protein. Mutations in Pfn1's actin-binding sites or reduction of Pfn1 eliminate the Shh-induced axon elongation. These findings indicate that Shh can regulate axon growth, which may be critical for development of hippocampal neurons. SIGNIFICANCE STATEMENT Although numerous signaling mechanisms have been identified that act directly on axons to regulate their outgrowth, it is not known whether signals transduced in dendrites may also affect axon outgrowth. We describe here a transcellular signaling pathway in embryonic hippocampal neurons in which activation of Sonic Hedgehog (Shh) receptors in dendrites stimulates axon growth. The pathway involves the dendritic-membrane-associated Shh signal transducer Smoothened (Smo) and the transcription factor Gli, which induces the expression of the gene encoding the actin-binding protein profilin 1. Our findings suggest scenarios in which stimulation of Shh in dendrites results in accelerated outgrowth of the axon, which therefore reaches its presumptive postsynaptic target cell more quickly. By this mechanism, Shh may play critical roles in the development of hippocampal neuronal circuits. PMID:26658865

  18. Novel genetic loci associated with hippocampal volume

    Science.gov (United States)

    Hibar, Derrek P.; Adams, Hieab H. H.; Jahanshad, Neda; Chauhan, Ganesh; Stein, Jason L.; Hofer, Edith; Renteria, Miguel E.; Bis, Joshua C.; Arias-Vasquez, Alejandro; Ikram, M. Kamran; Desrivières, Sylvane; Vernooij, Meike W.; Abramovic, Lucija; Alhusaini, Saud; Amin, Najaf; Andersson, Micael; Arfanakis, Konstantinos; Aribisala, Benjamin S.; Armstrong, Nicola J.; Athanasiu, Lavinia; Axelsson, Tomas; Beecham, Ashley H.; Beiser, Alexa; Bernard, Manon; Blanton, Susan H.; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brickman, Adam M.; Carmichael, Owen; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Chouraki, Vincent; Cuellar-Partida, Gabriel; Crivello, Fabrice; Den Braber, Anouk; Doan, Nhat Trung; Ehrlich, Stefan; Giddaluru, Sudheer; Goldman, Aaron L.; Gottesman, Rebecca F.; Grimm, Oliver; Griswold, Michael E.; Guadalupe, Tulio; Gutman, Boris A.; Hass, Johanna; Haukvik, Unn K.; Hoehn, David; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Jørgensen, Kjetil N.; Karbalai, Nazanin; Kasperaviciute, Dalia; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Liewald, David C. M.; Lopez, Lorna M.; Luciano, Michelle; Macare, Christine; Marquand, Andre F.; Matarin, Mar; Mather, Karen A.; Mattheisen, Manuel; McKay, David R.; Milaneschi, Yuri; Muñoz Maniega, Susana; Nho, Kwangsik; Nugent, Allison C.; Nyquist, Paul; Loohuis, Loes M. Olde; Oosterlaan, Jaap; Papmeyer, Martina; Pirpamer, Lukas; Pütz, Benno; Ramasamy, Adaikalavan; Richards, Jennifer S.; Risacher, Shannon L.; Roiz-Santiañez, Roberto; Rommelse, Nanda; Ropele, Stefan; Rose, Emma J.; Royle, Natalie A.; Rundek, Tatjana; Sämann, Philipp G.; Saremi, Arvin; Satizabal, Claudia L.; Schmaal, Lianne; Schork, Andrew J.; Shen, Li; Shin, Jean; Shumskaya, Elena; Smith, Albert V.; Sprooten, Emma; Strike, Lachlan T.; Teumer, Alexander; Tordesillas-Gutierrez, Diana; Toro, Roberto; Trabzuni, Daniah; Trompet, Stella; Vaidya, Dhananjay; Van der Grond, Jeroen; Van der Lee, Sven J.; Van der Meer, Dennis; Van Donkelaar, Marjolein M. J.; Van Eijk, Kristel R.; Van Erp, Theo G. M.; Van Rooij, Daan; Walton, Esther; Westlye, Lars T.; Whelan, Christopher D.; Windham, Beverly G.; Winkler, Anderson M.; Wittfeld, Katharina; Woldehawariat, Girma; Wolf, Christiane; Wolfers, Thomas; Yanek, Lisa R.; Yang, Jingyun; Zijdenbos, Alex; Zwiers, Marcel P.; Agartz, Ingrid; Almasy, Laura; Ames, David; Amouyel, Philippe; Andreassen, Ole A.; Arepalli, Sampath; Assareh, Amelia A.; Barral, Sandra; Bastin, Mark E.; Becker, Diane M.; Becker, James T.; Bennett, David A.; Blangero, John; van Bokhoven, Hans; Boomsma, Dorret I.; Brodaty, Henry; Brouwer, Rachel M.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Bulayeva, Kazima B.; Cahn, Wiepke; Calhoun, Vince D.; Cannon, Dara M.; Cavalleri, Gianpiero L.; Cheng, Ching-Yu; Cichon, Sven; Cookson, Mark R.; Corvin, Aiden; Crespo-Facorro, Benedicto; Curran, Joanne E.; Czisch, Michael; Dale, Anders M.; Davies, Gareth E.; De Craen, Anton J. M.; De Geus, Eco J. C.; De Jager, Philip L.; De Zubicaray, Greig I.; Deary, Ian J.; Debette, Stéphanie; DeCarli, Charles; Delanty, Norman; Depondt, Chantal; DeStefano, Anita; Dillman, Allissa; Djurovic, Srdjan; Donohoe, Gary; Drevets, Wayne C.; Duggirala, Ravi; Dyer, Thomas D.; Enzinger, Christian; Erk, Susanne; Espeseth, Thomas; Fedko, Iryna O.; Fernández, Guillén; Ferrucci, Luigi; Fisher, Simon E.; Fleischman, Debra A.; Ford, Ian; Fornage, Myriam; Foroud, Tatiana M.; Fox, Peter T.; Francks, Clyde; Fukunaga, Masaki; Gibbs, J. Raphael; Glahn, David C.; Gollub, Randy L.; Göring, Harald H. H.; Green, Robert C.; Gruber, Oliver; Gudnason, Vilmundur; Guelfi, Sebastian; Håberg, Asta K.; Hansell, Narelle K.; Hardy, John; Hartman, Catharina A.; Hashimoto, Ryota; Hegenscheid, Katrin; Heinz, Andreas; Le Hellard, Stephanie; Hernandez, Dena G.; Heslenfeld, Dirk J.; Ho, Beng-Choon; Hoekstra, Pieter J.; Hoffmann, Wolfgang; Hofman, Albert; Holsboer, Florian; Homuth, Georg; Hosten, Norbert; Hottenga, Jouke-Jan; Huentelman, Matthew; Pol, Hilleke E. Hulshoff; Ikeda, Masashi; Jack Jr, Clifford R.; Jenkinson, Mark; Johnson, Robert; Jönsson, Erik G.; Jukema, J. Wouter; Kahn, René S.; Kanai, Ryota; Kloszewska, Iwona; Knopman, David S.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Lemaître, Hervé; Liu, Xinmin; Longo, Dan L.; Lopez, Oscar L.; Lovestone, Simon; Martinez, Oliver; Martinot, Jean-Luc; Mattay, Venkata S.; McDonald, Colm; McIntosh, Andrew M.; McMahon, Francis J.; McMahon, Katie L.; Mecocci, Patrizia; Melle, Ingrid; Meyer-Lindenberg, Andreas; Mohnke, Sebastian; Montgomery, Grant W.; Morris, Derek W.; Mosley, Thomas H.; Mühleisen, Thomas W.; Müller-Myhsok, Bertram; Nalls, Michael A.; Nauck, Matthias; Nichols, Thomas E.; Niessen, Wiro J.; Nöthen, Markus M.; Nyberg, Lars; Ohi, Kazutaka; Olvera, Rene L.; Ophoff, Roel A.; Pandolfo, Massimo; Paus, Tomas; Pausova, Zdenka; Penninx, Brenda W. J. H.; Pike, G. Bruce; Potkin, Steven G.; Psaty, Bruce M.; Reppermund, Simone; Rietschel, Marcella; Roffman, Joshua L.; Romanczuk-Seiferth, Nina; Rotter, Jerome I.; Ryten, Mina; Sacco, Ralph L.; Sachdev, Perminder S.; Saykin, Andrew J.; Schmidt, Reinhold; Schmidt, Helena; Schofield, Peter R.; Sigursson, Sigurdur; Simmons, Andrew; Singleton, Andrew; Sisodiya, Sanjay M.; Smith, Colin; Smoller, Jordan W.; Soininen, Hilkka; Steen, Vidar M.; Stott, David J.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Tsolaki, Magda; Tzourio, Christophe; Uitterlinden, Andre G.; Hernández, Maria C. Valdés; Van der Brug, Marcel; van der Lugt, Aad; van der Wee, Nic J. A.; Van Haren, Neeltje E. M.; van 't Ent, Dennis; Van Tol, Marie-Jose; Vardarajan, Badri N.; Vellas, Bruno; Veltman, Dick J.; Völzke, Henry; Walter, Henrik; Wardlaw, Joanna M.; Wassink, Thomas H.; Weale, Michael E.; Weinberger, Daniel R.; Weiner, Michael W.; Wen, Wei; Westman, Eric; White, Tonya; Wong, Tien Y.; Wright, Clinton B.; Zielke, Ronald H.; Zonderman, Alan B.; Martin, Nicholas G.; Van Duijn, Cornelia M.; Wright, Margaret J.; Longstreth, W. T.; Schumann, Gunter; Grabe, Hans J.; Franke, Barbara; Launer, Lenore J.; Medland, Sarah E.; Seshadri, Sudha; Thompson, Paul M.; Ikram, M. Arfan

    2017-01-01

    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg=−0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness. PMID:28098162

  19. Hippocampal volumes are important predictors for memory function in elderly women

    Directory of Open Access Journals (Sweden)

    Adolfsdottir Steinunn

    2009-08-01

    Full Text Available Abstract Background Normal aging involves a decline in cognitive function that has been shown to correlate with volumetric change in the hippocampus, and with genetic variability in the APOE-gene. In the present study we utilize 3D MR imaging, genetic analysis and assessment of verbal memory function to investigate relationships between these factors in a sample of 170 healthy volunteers (age range 46–77 years. Methods Brain morphometric analysis was performed with the automated segmentation work-flow implemented in FreeSurfer. Genetic analysis of the APOE genotype was determined with polymerase chain reaction (PCR on DNA from whole-blood. All individuals were subjected to extensive neuropsychological testing, including the California Verbal Learning Test-II (CVLT. To obtain robust and easily interpretable relationships between explanatory variables and verbal memory function we applied the recent method of conditional inference trees in addition to scatterplot matrices and simple pairwise linear least-squares regression analysis. Results APOE genotype had no significant impact on the CVLT results (scores on long delay free recall, CVLT-LD or the ICV-normalized hippocampal volumes. Hippocampal volumes were found to decrease with age and a right-larger-than-left hippocampal asymmetry was also found. These findings are in accordance with previous studies. CVLT-LD score was shown to correlate with hippocampal volume. Multivariate conditional inference analysis showed that gender and left hippocampal volume largely dominated predictive values for CVLT-LD scores in our sample. Left hippocampal volume dominated predictive values for females but not for males. APOE genotype did not alter the model significantly, and age was only partly influencing the results. Conclusion Gender and left hippocampal volumes are main predictors for verbal memory function in normal aging. APOE genotype did not affect the results in any part of our analysis.

  20. Methotrexate decreases hippocampal cell proliferation and induces memory deficits in rats

    NARCIS (Netherlands)

    Seigers, Riejanne; Schagen, Sanne B.; Coppens, Caroline M.; van der Most, Peter J.; van Dam, Frits S. A. M.; Koolhaas, Jaap M.; Buwalda, Bauke

    2009-01-01

    Methotrexate (MTX) is a cytostatic agent used in adjuvant chemotherapy for treatment of breast cancer and is associated with cognitive impairment in a subgroup of patients. The aim of this paper is to test whether MTX can rapidly affect various brain structures resulting in decreased hippocampal cel

  1. Hippocampal Abnormalities in Prolonged Febrile Seizures

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2006-10-01

    Full Text Available Apparent diffusion coefficient (ADC measurements were used to characterize hippocampal edema within 5 days of a prolonged febrile seizure (PFS in a study at Great Ormond Street Hospital, London, UK.

  2. Algal toxin impairs sea lion memory and hippocampal connectivity, with implications for strandings.

    Science.gov (United States)

    Cook, Peter F; Reichmuth, Colleen; Rouse, Andrew A; Libby, Laura A; Dennison, Sophie E; Carmichael, Owen T; Kruse-Elliott, Kris T; Bloom, Josh; Singh, Baljeet; Fravel, Vanessa A; Barbosa, Lorraine; Stuppino, Jim J; Van Bonn, William G; Gulland, Frances M D; Ranganath, Charan

    2015-12-18

    Domoic acid (DA) is a naturally occurring neurotoxin known to harm marine animals. DA-producing algal blooms are increasing in size and frequency. Although chronic exposure is known to produce brain lesions, the influence of DA toxicosis on behavior in wild animals is unknown. We showed, in a large sample of wild sea lions, that spatial memory deficits are predicted by the extent of right dorsal hippocampal lesions related to natural exposure to DA and that exposure also disrupts hippocampal-thalamic brain networks. Because sea lions are dynamic foragers that rely on flexible navigation, impaired spatial memory may affect survival in the wild.

  3. EFFECTS OF GLUTAMATE ON SODIUM CHANNEL IN ACUTELY DISSOCIATED HIPPOCAMPAL CA1 PYRAMIDAL NEURONS OF RATS

    Institute of Scientific and Technical Information of China (English)

    高宾丽; 伍国锋; 杨艳; 刘智飞; 曾晓荣

    2011-01-01

    Objective To observe the effects of glutamate on sodium channel in acutely dissociated hippocampal CA1 pyramidal neurons of rats.Methods Voltage-dependent sodium currents (INa) in acutely dissociated hippocampal CA1 pyramidal neurons of neonate rats were recorded by whole-cell patchclamp of the brain slice technique when a series of doses of glutamate (100-1000μmol/L) were applied.Results Different concentrations of glutamate could inhibit INa,and higher concentration of glutamate affected greater inhibitio...

  4. Updating the Lamellar Hypothesis of Hippocampal Organization

    OpenAIRE

    Robert S Sloviter; Terje eLømo

    2012-01-01

    In 1971, Andersen and colleagues proposed that excitatory activity in the entorhinal cortex propagates topographically to the dentate gyrus, and on through a trisynaptic circuit lying within transverse hippocampal slices or lamellae [Andersen, Bliss, and Skrede. 1971. Lamellar organization of hippocampal pathways. Exp Brain Res 13, 222-238]. In this way, a relatively simple structure might mediate complex functions in a manner analogous to the way independent piano keys can produce a nearly i...

  5. Loss of hippocampal interneurons and epileptogenesis: a comparison of two animal models of acquired epilepsy.

    Science.gov (United States)

    Huusko, Noora; Römer, Christine; Ndode-Ekane, Xavier Ekolle; Lukasiuk, Katarzyna; Pitkänen, Asla

    2015-01-01

    Reduced hippocampal GABAergic inhibition is acknowledged to be associated with epilepsy. However, there are no studies that had quantitatively compared the loss of various interneuron populations in different models of epilepsy. We tested a hypothesis that the more severe the loss of hippocampal interneurons, the more severe was the epilepsy. Epileptogenesis was triggered in adult rats by status epilepticus (SE) (56 SE, 24 controls) or by traumatic brain injury (TBI) (45 TBI, 23 controls). The total number of hippocampal parvalbumin (PARV), cholecystokinin (CCK), calretinin (CR), somatostatin (SOM), or neuropeptide Y (NPY) positive neurons was estimated using unbiased stereology at 1 or 6 months post-insult. The rats with TBI had no spontaneous seizures but showed increased seizure susceptibility. Eleven of the 28 rats (39 %) in the SE group had spontaneous seizures. The most affected hippocampal area after TBI was the ipsilateral dentate gyrus, where 62 % of PARV-immunoreactive (ir) (p loss was substantially more severe, widespread, progressive, and included more interneuron subclasses after TBI than after SE. Interneurons responsible for perisomatic inhibition were more vulnerable to TBI than those providing dendritic inhibition. Unlike expected, we could not demonstrate any etiology-independent link between the severity of hippocampal interneuron loss and the overall risk of spontaneous seizures.

  6. Role of cyclic nucleotide-gated channels in the modulation of mouse hippocampal neurogenesis.

    Directory of Open Access Journals (Sweden)

    Maria Vittoria Podda

    Full Text Available Neural stem cells generate neurons in the hippocampal dentate gyrus in mammals, including humans, throughout adulthood. Adult hippocampal neurogenesis has been the focus of many studies due to its relevance in processes such as learning and memory and its documented impairment in some neurodegenerative diseases. However, we are still far from having a complete picture of the mechanism regulating this process. Our study focused on the possible role of cyclic nucleotide-gated (CNG channels. These voltage-independent channels activated by cyclic nucleotides, first described in retinal and olfactory receptors, have been receiving increasing attention for their involvement in several brain functions. Here we show that the rod-type, CNGA1, and olfactory-type, CNGA2, subunits are expressed in hippocampal neural stem cells in culture and in situ in the hippocampal neurogenic niche of adult mice. Pharmacological blockade of CNG channels did not affect cultured neural stem cell proliferation but reduced their differentiation towards the neuronal phenotype. The membrane permeant cGMP analogue, 8-Br-cGMP, enhanced neural stem cell differentiation to neurons and this effect was prevented by CNG channel blockade. In addition, patch-clamp recording from neuron-like differentiating neural stem cells revealed cGMP-activated currents attributable to ion flow through CNG channels. The current work provides novel insights into the role of CNG channels in promoting hippocampal neurogenesis, which may prove to be relevant for stem cell-based treatment of cognitive impairment and brain damage.

  7. An association between human hippocampal volume and topographical memory in healthy young adults.

    Directory of Open Access Journals (Sweden)

    Tom eHartley

    2012-12-01

    Full Text Available The association between human hippocampal structure and topographical memory was investigated in healthy adults (N=30. Structural MR images were acquired, and voxel-based morphometry (VBM was used to estimate local gray matter volume throughout the brain. A complementary automated mesh-based segmentation approach was used to independently isolate and measure specified structures including the hippocampus. Topographical memory was assessed using a version of the Four Mountains Task, a short test designed to target hippocampal spatial function. Each item requires subjects to briefly study a landscape scene before recognizing the depicted place from a novel viewpoint and under altered non-spatial conditions when presented amongst similar alternative scenes. Positive correlations between topographical memory performance and hippocampal volume were observed in both VBM and segmentation-based analyses. Score on the topographical memory task was also correlated with the volume of some subcortical structures, extra-hippocampal gray matter and total brain volume, with the most robust and extensive covariation seen in circumscribed neocortical regions in the insula and anterior temporal lobes. Taken together with earlier findings, the results suggest that global variations in brain morphology affect the volume of the hippocampus and its specific contribution to topographical memory. We speculate that behavioral variation might arise directly through the impact of resource constraints on spatial representations in the hippocampal formation and its inputs, and perhaps indirectly through an increased reliance on non-allocentric strategies.

  8. Hippocampal neuroplasticity in major depressive disorder.

    Science.gov (United States)

    Malykhin, N V; Coupland, N J

    2015-11-19

    One of the most replicated findings has been that hippocampus volume is decreased in patients with major depressive disorder (MDD). Recent volumetric magnetic resonance imaging (MRI) studies suggest that localized differences in hippocampal volume may be more prominent than global differences. Preclinical and post-mortem studies in MDD indicated that different subfields of the hippocampus may respond differently to stress and may also have differential levels of plasticity in response to antidepressant treatment. Advances in high-field MRI allowed researchers to visualize and measure hippocampal subfield volumes in MDD patients in vivo. The results of these studies provide the first in vivo evidence that hippocampal volume reductions in MDD are specific to the cornu ammonis and dentate gyrus hippocampal subfields, findings that appear, on the surface, consistent with preclinical evidence for localized mechanisms of hippocampal neuroplasticity. In this review we discuss how recent advances in neuroimaging allow researchers to further understand hippocampal neuroplasticity in MDD and how it is related to antidepressant treatment, memory function, and disease progression.

  9. Affect of Isoflurane on spatial memory function and hippocampal RhoA expression in aged rats%异氟醚对老年大鼠空间学习记忆能力及海马RhoA蛋白表达的影响

    Institute of Scientific and Technical Information of China (English)

    张文超; 王庚; 胡中华; 段开明; 欧阳文

    2015-01-01

    Objective To study affect of Isoflurane with inhalation anesthesia on hippocampal RhoA expression and spatial memory function in aged rats. Methods Thirty 22-month-old Sprague-Dawley rats were randomly assigned to control group (group C, 10 cases), anesthesia group Ⅰ (10 cases) and anesthesia group II (10 cases). The inhalation anesthesia model of aged rat was established by using endotracheal intubation, 2% Isoflurane was applied to maintain anesthesia of 2 hours after anesthesia induction with 3% Isoflurane by inhalation in anesthesia groups. Any drug was not used in rat of group C, which inhaled 100% oxygen for 2 hours, oxygen flow rate was 2 L/min. Open-field experi-ment and Y-maze experiment were implemented, performance was calculated after anesthesia of 24, 72 hours in groupⅠ and groupII. Learning and memory ability in rats of three groups were compared. Hippocampal RhoA expression in rats of three groups were detected by using the immune histochemical method. Results ①Y-maze experiment: Y-maze learning time of group Ⅰ [(70.50±16.25) times] was significantly more than that of group II [(61.80±23.49) times] and group C [(49.20±8.56) times] respectively (P0.05). Open-field experiment: there were no statistical difference on the middle of residence time, number of upright, number of across grid, number of total activity among three groups (P>0.05).②Immune histochemi-cal method:RhoA positive cell count of hippocampal CA3 area in groupⅠ(112.66±11.56) was more than that in groupII(97.77±7.47) and group C (99.33±12.10) respectively (P0.05). Conclusion Spatial learning and memory ability of 22-month Sprague-Dawley rats received Isoflurane anesthesia of 24 hours decline, basic recovery after anes-thesia of 72 hours. The hippocampus of rat after Isoflurane anesthesia Rho protein signal transduction molecular change mediated synaptic morphology change may be the cellular basis of short-term spatial learning and memory damage.%目的:探讨异氟醚

  10. [The effects of SO2 on electric activity learning and memory of rat hippocampal neurons].

    Science.gov (United States)

    Liu, Xiaoli; Yang, Dongsheng; Meng, Ziqiang

    2008-11-01

    To study the toxicological mechanism of SO2 on central neural system by electrophysiological method. Male SD rats were housed in exposure chambers and treated at the concentration of 28 mg/m3 SO2 for 7 days (6h/d), while control rats were treated with filtered air in the same condition. Using glass micro-electrodes recording in vivo, the frequencies and numbers of spontaneous discharge in hippocampal CAI neurons were measured. Influences of the learning and memory functions were measured by setting up passive avoidance behavior reflex. SO2 decreased significantly the neurons spontaneous discharge frequency and prolonged the neurons spontaneous period in hippocampal CAl. SO2 significantly decreased the learning and memory function of rats. The results indicated that SO2 could be a neurotoxin. It could inhibit the hippocampal neurons excitability and affect the learning and memory function of rats.

  11. Hippocampal atrophy and developmental regression as first sign of linear scleroderma "en coup de sabre".

    Science.gov (United States)

    Verhelst, Helene E; Beele, Hilde; Joos, Rik; Vanneuville, Benedicte; Van Coster, Rudy N

    2008-11-01

    An 8-year-old girl with linear scleroderma "en coup de sabre" is reported who, at preschool age, presented with intractable simple partial seizures more than 1 year before skin lesions were first noticed. MRI revealed hippocampal atrophy, controlaterally to the seizures and ipsilaterally to the skin lesions. In the following months, a mental and motor regression was noticed. Cerebral CT scan showed multiple foci of calcifications in the affected hemisphere. In previously reported patients the skin lesions preceded the neurological signs. To the best of our knowledge, hippocampal atrophy was not earlier reported as presenting symptom of linear scleroderma. Linear scleroderma should be included in the differential diagnosis in patients with unilateral hippocampal atrophy even when the typical skin lesions are not present.

  12. Differential response of hippocampal subregions to stress and learning.

    Directory of Open Access Journals (Sweden)

    Darby F Hawley

    Full Text Available The hippocampus has two functionally distinct subregions-the dorsal portion, primarily associated with spatial navigation, and the ventral portion, primarily associated with anxiety. In a prior study of chronic unpredictable stress (CUS in rodents, we found that it selectively enhanced cellular plasticity in the dorsal hippocampal subregion while negatively impacting it in the ventral. In the present study, we determined whether this adaptive plasticity in the dorsal subregion would confer CUS rats an advantage in a spatial task-the radial arm water maze (RAWM. RAWM exposure is both stressful and requires spatial navigation, and therefore places demands simultaneously upon both hippocampal subregions. Therefore, we used Western blotting to investigate differential expression of plasticity-associated proteins (brain derived neurotrophic factor [BDNF], proBDNF and postsynaptic density-95 [PSD-95] in the dorsal and ventral subregions following RAWM exposure. Lastly, we used unbiased stereology to compare the effects of CUS on proliferation, survival and neuronal differentiation of cells in the dorsal and ventral hippocampal subregions. We found that CUS and exposure to the RAWM both increased corticosterone, indicating that both are stressful; nevertheless, CUS animals had significantly better long-term spatial memory. We also observed a subregion-specific pattern of protein expression following RAWM, with proBDNF increased in the dorsal and decreased in the ventral subregion, while PSD-95 was selectively upregulated in the ventral. Finally, consistent with our previous study, we found that CUS most negatively affected neurogenesis in the ventral (compared to the dorsal subregion. Taken together, our data support a dual role for the hippocampus in stressful experiences, with the more resilient dorsal portion undergoing adaptive plasticity (perhaps to facilitate escape from or neutralization of the stressor, and the ventral portion involved in

  13. AP2γ controls adult hippocampal neurogenesis and modulates cognitive, but not anxiety or depressive-like behavior.

    Science.gov (United States)

    Mateus-Pinheiro, A; Alves, N D; Patrício, P; Machado-Santos, A R; Loureiro-Campos, E; Silva, J M; Sardinha, V M; Reis, J; Schorle, H; Oliveira, J F; Ninkovic, J; Sousa, N; Pinto, L

    2016-10-25

    Hippocampal neurogenesis has been proposed to participate in a myriad of behavioral responses, both in basal states and in the context of neuropsychiatric disorders. Here, we identify activating protein 2γ (AP2γ, also known as Tcfap2c), originally described to regulate the generation of neurons in the developing cortex, as a modulator of adult hippocampal glutamatergic neurogenesis in mice. Specifically, AP2γ is present in a sub-population of hippocampal transient amplifying progenitors. There, it is found to act as a positive regulator of the cell fate determinants Tbr2 and NeuroD, promoting proliferation and differentiation of new glutamatergic granular neurons. Conditional ablation of AP2γ in the adult brain significantly reduced hippocampal neurogenesis and disrupted neural coherence between the ventral hippocampus and the medial prefrontal cortex. Furthermore, it resulted in the precipitation of multimodal cognitive deficits. This indicates that the sub-population of AP2γ-positive hippocampal progenitors may constitute an important cellular substrate for hippocampal-dependent cognitive functions. Concurrently, AP2γ deletion produced significant impairments in contextual memory and reversal learning. More so, in a water maze reference memory task a delay in the transition to cognitive strategies relying on hippocampal function integrity was observed. Interestingly, anxiety- and depressive-like behaviors were not significantly affected. Altogether, findings open new perspectives in understanding the role of specific sub-populations of newborn neurons in the (patho)physiology of neuropsychiatric disorders affecting hippocampal neuroplasticity and cognitive function in the adult brain.Molecular Psychiatry advance online publication, 25 October 2016; doi:10.1038/mp.2016.169.

  14. Effect of brain-derived neurotrophic factor haploinsufficiency on stress-induced remodeling of hippocampal neurons.

    Science.gov (United States)

    Magariños, A M; Li, C J; Gal Toth, J; Bath, K G; Jing, D; Lee, F S; McEwen, B S

    2011-03-01

    Chronic restraint stress (CRS) induces the remodeling (i.e., retraction and simplification) of the apical dendrites of hippocampal CA3 pyramidal neurons in rats, suggesting that intrahippocampal connectivity can be affected by a prolonged stressful challenge. Since the structural maintenance of neuronal dendritic arborizations and synaptic connectivity requires neurotrophic support, we investigated the potential role of brain derived neurotrophic factor (BDNF), a neurotrophin enriched in the hippocampus and released from neurons in an activity-dependent manner, as a mediator of the stress-induced dendritic remodeling. The analysis of Golgi-impregnated hippocampal sections revealed that wild type (WT) C57BL/6 male mice showed a similar CA3 apical dendritic remodeling in response to three weeks of CRS to that previously described for rats. Haploinsufficient BDNF mice (BDNF(±) ) did not show such remodeling, but, even without CRS, they presented shorter and simplified CA3 apical dendritic arbors, like those observed in stressed WT mice. Furthermore, unstressed BDNF(±) mice showed a significant decrease in total hippocampal volume. The dendritic arborization of CA1 pyramidal neurons was not affected by CRS or genotype. However, only in WT mice, CRS induced changes in the density of dendritic spine shape subtypes in both CA1 and CA3 apical dendrites. These results suggest a complex role of BDNF in maintaining the dendritic and spine morphology of hippocampal neurons and the associated volume of the hippocampal formation. The inability of CRS to modify the dendritic structure of CA3 pyramidal neurons in BDNF(±) mice suggests an indirect, perhaps permissive, role of BDNF in mediating hippocampal dendritic remodeling.

  15. α2-containing GABAA receptors expressed in hippocampal region CA3 control fast network oscillations.

    Science.gov (United States)

    Heistek, Tim S; Ruiperez-Alonso, Marta; Timmerman, A Jaap; Brussaard, Arjen B; Mansvelder, Huibert D

    2013-02-15

    GABA(A) receptors are critically involved in hippocampal oscillations. GABA(A) receptor α1 and α2 subunits are differentially expressed throughout the hippocampal circuitry and thereby may have distinct contributions to oscillations. It is unknown which GABA(A) receptor α subunit controls hippocampal oscillations and where these receptors are expressed. To address these questions we used transgenic mice expressing GABA(A) receptor α1 and/or α2 subunits with point mutations (H101R) that render these receptors insensitive to allosteric modulation at the benzodiazepine binding site, and tested how increased or decreased function of α subunits affects hippocampal oscillations. Positive allosteric modulation by zolpidem prolonged decay kinetics of hippocampal GABAergic synaptic transmission and reduced the frequency of cholinergically induced oscillations. Allosteric modulation of GABAergic receptors in CA3 altered oscillation frequency in CA1, while modulation of GABA receptors in CA1 did not affect oscillations. In mice having a point mutation (H101R) at the GABA(A) receptor α2 subunit, zolpidem effects on cholinergically induced oscillations were strongly reduced compared to wild-type animals, while zolpidem modulation was still present in mice with the H101R mutation at the α1 subunit. Furthermore, genetic knockout of α2 subunits strongly reduced oscillations, whereas knockout of α1 subunits had no effect. Allosteric modulation of GABAergic receptors was strongly reduced in unitary connections between fast spiking interneurons and pyramidal neurons in CA3 of α2H101R mice, but not of α1H101R mice, suggesting that fast spiking interneuron to pyramidal neuron synapses in CA3 contain α2 subunits. These findings suggest that α2-containing GABA(A) receptors expressed in the CA3 region provide the inhibition that controls hippocampal rhythm during cholinergically induced oscillations.

  16. Hippocampal EEG and behaviour in dog. II. Hippocampal EEG correlates with elementary motor acts

    NARCIS (Netherlands)

    Arnolds, D.E.A.T.; Lopes da Silva, F.H.; Aitink, J.W.; Kamp, A.

    1979-01-01

    A positive correlation has been shown between the speed of forced stepping on a conveyor belt and the amplitude and frequency of the concomitant hippocampal EEG. Significant modulation in the spectral properties of the dog's hippocampal EEG has been found in relation to 3 elementary motor acts: ste

  17. Hippocampal atrophy rates in Alzheimer disease

    Science.gov (United States)

    Henneman, W J.P.; Sluimer, J D.; Barnes, J; van der Flier, W M.; Sluimer, I C.; Fox, N C.; Scheltens, P; Vrenken, H; Barkhof, F

    2009-01-01

    Objective: To investigate the added value of hippocampal atrophy rates over whole brain volume measurements on MRI in patients with Alzheimer disease (AD), patients with mild cognitive impairment (MCI), and controls. Methods: We included 64 patients with AD (67 ± 9 years; F/M 38/26), 44 patients with MCI (71 ± 6 years; 21/23), and 34 controls (67 ± 9 years; 16/18). Two MR scans were performed (scan interval: 1.8 ± 0.7 years; 1.0 T), using a coronal three-dimensional T1-weighted gradient echo sequence. At follow-up, 3 controls and 23 patients with MCI had progressed to AD. Hippocampi were manually delineated at baseline. Hippocampal atrophy rates were calculated using regional, nonlinear fluid registration. Whole brain baseline volumes and atrophy rates were determined using automated segmentation and registration tools. Results: All MRI measures differed between groups (p < 0.005). For the distinction of MCI from controls, larger effect sizes of hippocampal measures were found compared to whole brain measures. Between MCI and AD, only whole brain atrophy rate differed significantly. Cox proportional hazards models (variables dichotomized by median) showed that within all patients without dementia, hippocampal baseline volume (hazard ratio [HR]: 5.7 [95% confidence interval: 1.5–22.2]), hippocampal atrophy rate (5.2 [1.9–14.3]), and whole brain atrophy rate (2.8 [1.1–7.2]) independently predicted progression to AD; the combination of low hippocampal volume and high atrophy rate yielded a HR of 61.1 (6.1–606.8). Within patients with MCI, only hippocampal baseline volume and atrophy rate predicted progression. Conclusion: Hippocampal measures, especially hippocampal atrophy rate, best discriminate mild cognitive impairment (MCI) from controls. Whole brain atrophy rate discriminates Alzheimer disease (AD) from MCI. Regional measures of hippocampal atrophy are the strongest predictors of progression to AD. GLOSSARY AD = Alzheimer disease; BET = brain

  18. Hippocampal hyperactivation in presymptomatic familial Alzheimer's disease.

    Science.gov (United States)

    Quiroz, Yakeel T; Budson, Andrew E; Celone, Kim; Ruiz, Adriana; Newmark, Randall; Castrillón, Gabriel; Lopera, Francisco; Stern, Chantal E

    2010-12-01

    The examination of individuals who carry fully penetrant genetic alterations that result in familial Alzheimer's disease (FAD) provides a unique model for studying the early presymptomatic disease stages. In AD, deficits in episodic and associative memory have been linked to structural and functional changes within the hippocampal system. This study used functional MRI (fMRI) to examine hippocampal function in a group of healthy, young, cognitively-intact presymptomatic individuals (average age 33.7 years) who carry the E280A presenilin-1 (PS1) genetic mutation for FAD. These PS1 subjects will go on to develop the first symptoms of the disease around the age of 45 years. Our objective was to examine hippocampal function years before the onset of clinical symptoms. Twenty carriers of the Alzheimer's-associated E280A PS1 mutation and 19 PS1-negative control subjects participated. Both groups were matched for age, sex, education level, and neuropsychological test performance. All participants performed a face-name associative encoding task while in a Phillips 1.5T fMRI scanner. Analysis focused on the hippocampal system. Despite identical behavioral performance, presymptomatic PS1 mutation carriers exhibited increased activation of the right anterior hippocampus during encoding of novel face-name associations compared to matched controls. Our results demonstrate that functional changes within the hippocampal memory system occur years before cognitive decline in FAD. These presymptomatic changes in hippocampal physiology in FAD suggest that hippocampal fMRI patterns during associative encoding may also provide a preclinical biomarker in sporadic AD.

  19. Hippocampal place cells, context, and episodic memory.

    Science.gov (United States)

    Smith, David M; Mizumori, Sheri J Y

    2006-01-01

    Although most observers agree that the hippocampus has a critical role in learning and memory, there remains considerable debate about the precise functional contribution of the hippocampus to these processes. Two of the most influential accounts hold that the primary function of the hippocampus is to generate cognitive maps and to mediate episodic memory processes. The well-documented spatial firing patterns (place fields) of hippocampal neurons in rodents, along with the spatial learning impairments observed with hippocampal damage support the cognitive mapping hypothesis. The amnesia for personally experienced events seen in humans with hippocampal damage and the data of animal models, which show severe memory deficits associated with hippocampal lesions, support the episodic memory account. Although an extensive literature supports each of these hypotheses, a specific contribution of place cells to episodic memory has not been clearly demonstrated. Recent data from our laboratory, together with previous findings, indicate that hippocampal place fields and neuronal responses to task-relevant stimuli are highly sensitive to the context, even when the contexts are defined by abstract task demands rather than the spatial geometry of the environment. On the basis of these findings, it is proposed that place fields reflect a more general context processing function of the hippocampus. Hippocampal context representations could serve to differentiate contexts and prime the relevant memories and behaviors. Since episodic memories, by definition, include information about the time and place where the episode occurred, contextual information is a necessary prerequisite for any episodic memory. Thus, place fields contribute importantly to episodic memory as part of the needed context representations. Additionally, recent findings indicate that hippocampal neurons differentiate contexts at progressively finer levels of detail, suggesting a hierarchical coding scheme which

  20. Vasopressin inhibits LTP in the CA2 mouse hippocampal area.

    Directory of Open Access Journals (Sweden)

    Magda Chafai

    Full Text Available Growing evidence points to vasopressin (AVP as a social behavior regulator modulating various memory processes and involved in pathologies such as mood disorders, anxiety and depression. Accordingly, AVP antagonists are actually envisaged as putative treatments. However, the underlying mechanisms are poorly characterized, in particular the influence of AVP on cellular or synaptic activities in limbic brain areas involved in social behavior. In the present study, we investigated AVP action on the synapse between the entorhinal cortex and CA2 hippocampal pyramidal neurons, by using both field potential and whole-cell recordings in mice brain acute slices. Short application (1 min of AVP transiently reduced the synaptic response, only following induction of long-term potentiation (LTP by high frequency stimulation (HFS of afferent fibers. The basal synaptic response, measured in the absence of HFS, was not affected. The Schaffer collateral-CA1 synapse was not affected by AVP, even after LTP, while the Schaffer collateral-CA2 synapse was inhibited. Although investigated only recently, this CA2 hippocampal area appears to have a distinctive circuitry and a peculiar role in controlling episodic memory. Accordingly, AVP action on LTP-increased synaptic responses in this limbic structure may contribute to the role of this neuropeptide in controlling memory and social behavior.

  1. Moxibustion upregulates hippocampal progranulin expression

    Directory of Open Access Journals (Sweden)

    Tao Yi

    2016-01-01

    Full Text Available In China, moxibustion is reported to be useful and has few side effects for chronic fatigue syndrome, but its mechanisms are largely unknown. More recently, the focus has been on the wealth of information supporting stress as a factor in chronic fatigue syndrome, and largely concerns dysregulation in the stress-related hypothalamic-pituitary-adrenal axis. In the present study, we aimed to determine the effect of moxibustion on behavioral symptoms in chronic fatigue syndrome rats and examine possible mechanisms. Rats were subjected to a combination of chronic restraint stress and forced swimming to induce chronic fatigue syndrome. The acupoints Guanyuan (CV4 and Zusanli (ST36, bilateral were simultaneously administered moxibustion. Untreated chronic fatigue syndrome rats and normal rats were used as controls. Results from the forced swimming test, open field test, tail suspension test, real-time PCR, enzyme-linked immunosorbent assay, and western blot assay showed that moxibustion treatment decreased mRNA expression of corticotropin-releasing hormone in the hypothalamus, and adrenocorticotropic hormone and corticosterone levels in plasma, and markedly increased progranulin mRNA and protein expression in the hippocampus. These findings suggest that moxibustion may relieve the behavioral symptoms of chronic fatigue syndrome, at least in part, by modulating the hypothalamic-pituitary-adrenal axis and upregulating hippocampal progranulin.

  2. Moxibustion upregulates hippocampal progranulin expression

    Institute of Scientific and Technical Information of China (English)

    Tao Yi; Li Qi; Ji Li; Jing-jing Le; Lei Shao; Xin Du; Jing-cheng Dong

    2016-01-01

    In China, moxibustion is reported to be useful and has few side effects for chronic fatigue syndrome, but its mechanisms are largely un-known. More recently, the focus has been on the wealth of information supporting stress as a factor in chronic fatigue syndrome, and largely concerns dysregulation in the stress-related hypothalamic-pituitary-adrenal axis. In the present study, we aimed to determine the effect of moxibustion on behavioral symptoms in chronic fatigue syndrome rats and examine possible mechanisms. Rats were subjected to a combination of chronic restraint stress and forced swimming to induce chronic fatigue syndrome. The acupointsGuanyuan (CV4) and Zusanli (ST36, bilateral) were simultaneously administered moxibustion. Untreated chronic fatigue syndrome rats and normal rats were used as controls. Results from the forced swimming test, open ifeld test, tail suspension test, real-time PCR, enzyme-linked immunosor-bent assay, and western blot assay showed that moxibustion treatment decreased mRNA expression of corticotropin-releasing hormone in the hypothalamus, and adrenocorticotropic hormone and corticosterone levels in plasma, and markedly increased progranulin mRNA and protein expression in the hippocampus. These ifndings suggest that moxibustion may relieve the behavioral symptoms of chronic fatigue syndrome, at least in part, by modulating the hypothalamic-pituitary-adrenal axis and upregulating hippocampal progranulin.

  3. Melatonin synergizes with citalopram to induce antidepressant-like behavior and to promote hippocampal neurogenesis in adult mice.

    Science.gov (United States)

    Ramírez-Rodríguez, Gerardo; Vega-Rivera, Nelly Maritza; Oikawa-Sala, Julián; Gómez-Sánchez, Ariadna; Ortiz-López, Leonardo; Estrada-Camarena, Erika

    2014-05-01

    Adult hippocampal neurogenesis is affected in some neuropsychiatric disorders such as depression. Numerous evidence indicates that plasma levels of melatonin are decreased in depressed patients. Also, melatonin exerts positive effects on the hippocampal neurogenic process and on depressive-like behavior. In addition, antidepressants revert alterations of hippocampal neurogenesis present in models of depression following a similar time course to the improvement of behavior. In this study, we analyzed the effects of both, citalopram, a widely used antidepressant, and melatonin in the Porsolt forced swim test. In addition, we investigated the potential antidepressant role of the combination of melatonin and citalopram (MLTCITAL), its type of pharmacological interaction on depressive behavior, and its effect on hippocampal neurogenesis. Here, we found decreased immobility behavior in mice treated with melatonin (29%), survival (>39%), and the absolute number of -associated new neurons (>53%) in the dentate gyrus of the hippocampus. These results indicate that the MLTCITAL combination exerts synergism to induce an antidepressant-like action that could be related to the modulation of adult hippocampal neurogenesis. This outcome opens the opportunity of using melatonin to promote behavioral benefits and hippocampal neurogenesis in depression and also supports the use of the MLTCITAL combination as an alternative to treat depression.

  4. Developmental changes in hippocampal associative coding.

    Science.gov (United States)

    Goldsberry, Mary E; Kim, Jangjin; Freeman, John H

    2015-03-11

    Behavioral analyses of the ontogeny of memory have shown that hippocampus-dependent learning emerges relatively late in postnatal development compared with simple associative learning. Maturation of hippocampal mnemonic mechanisms has been hypothesized to underlie the development of the later emerging learning processes. However, the role of hippocampal maturation in learning has not been examined directly. The goal of the present study was to examine developmental changes in hippocampal neuronal coding during acquisition of a hippocampus-dependent learning task. We recorded activity from CA1 pyramidal cells in rat pups while they were trained on trace eyeblink conditioning. Trace eyeblink conditioning is a Pavlovian conditioning task that involves the association of a conditioned stimulus (CS) with an unconditioned stimulus over a stimulus-free trace interval. The inclusion of the trace interval is what makes the task hippocampus dependent. In the present study, rats were trained at 21-23, 24-26, and 31-33 d of age. Previous research from our laboratory and others shows that trace conditioning begins to emerge during the third postnatal week. The results indicate that hippocampal neurons show a substantial increase in responsiveness to task-relevant events during development. Moreover, there is an age-related increase in the proportion of neurons that respond to a combination of trial events (e.g., CS and trace). Our findings indicate that the developmental emergence of hippocampally mediated learning is related to increases in the strength and complexity of CA1 associative coding.

  5. Hippocampal remapping is constrained by sparseness rather than capacity.

    Directory of Open Access Journals (Sweden)

    Axel Kammerer

    2014-12-01

    Full Text Available Grid cells in the medial entorhinal cortex encode space with firing fields that are arranged on the nodes of spatial hexagonal lattices. Potential candidates to read out the space information of this grid code and to combine it with other sensory cues are hippocampal place cells. In this paper, we investigate a population of grid cells providing feed-forward input to place cells. The capacity of the underlying synaptic transformation is determined by both spatial acuity and the number of different spatial environments that can be represented. The codes for different environments arise from phase shifts of the periodical entorhinal cortex patterns that induce a global remapping of hippocampal place fields, i.e., a new random assignment of place fields for each environment. If only a single environment is encoded, the grid code can be read out at high acuity with only few place cells. A surplus in place cells can be used to store a space code for more environments via remapping. The number of stored environments can be increased even more efficiently by stronger recurrent inhibition and by partitioning the place cell population such that learning affects only a small fraction of them in each environment. We find that the spatial decoding acuity is much more resilient to multiple remappings than the sparseness of the place code. Since the hippocampal place code is sparse, we thus conclude that the projection from grid cells to the place cells is not using its full capacity to transfer space information. Both populations may encode different aspects of space.

  6. A Hopfield-like hippocampal CA3 neural network model for studying associative memory in Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    Wangxiong Zhao; Qingli Qiao; Dan Wang

    2010-01-01

    Associative memory, one of the major cognitive functions in the hippocampal CA3 region, includes auto-associative memory and hetero-associative memory. Many previous studies have shown that Alzheimer's disease (AD) can lead to loss of functional synapses in the central nervous system, and associative memory functions in patients with AD are often impaired, but few studies have addressed the effect of AD on hetero-associative memory in the hippocampal CA3 region. In this study, based on a simplified anatomical structure and synaptic connections in the hippocampal CA3 region, a three-layered Hopfield-like neural network model of hippocampal CA3 was proposed and then used to simulate associative memory functions in three circumstances: normal, synaptic deletion and synaptic compensation, according to Ruppin's synaptic deletion and compensation theory. The influences of AD on hetero-associative memory were further analyzed. The simulated results showed that the established three-layered Hopfield-like neural network model of hippocampal CA3 has both auto-associative and hetero-associative memory functions. With increasing synaptic deletion level, both associative memory functions were gradually impaired and the mean firing rates of the neurons within the network model were decreased. With gradual increasing synaptic compensation, the associative memory functions of the network were improved and the mean firing rates were increased. The simulated results suggest that the Hopfield-like neural network model can effectively simulate both associative memory functions of the hippocampal CA3 region. Synaptic deletion affects both auto-associative and hetero-associative memory functions in the hippocampal CA3 region, and can also result in memory dysfunction. To some extent, synaptic compensation measures can offset two kinds of associative memory dysfunction caused by synaptic deletion in the hippocampal CA3 area.

  7. Growth hormone rescues hippocampal synaptic function after sleep deprivation

    OpenAIRE

    Kim, EunYoung; Grover, Lawrence M; Bertolotti, Don; Green, Todd L.

    2010-01-01

    Sleep is required for, and sleep loss impairs, normal hippocampal synaptic N-methyl-d-aspartate (NMDA) glutamate receptor function and expression, hippocampal NMDA receptor-dependent synaptic plasticity, and hippocampal-dependent memory function. Although sleep is essential, the signals linking sleep to hippocampal function are not known. One potential signal is growth hormone. Growth hormone is released during sleep, and its release is suppressed during sleep deprivation. If growth hormone l...

  8. Exposure to prenatal stress has deleterious effects on hippocampal function in a febrile seizure rat model.

    Science.gov (United States)

    Qulu, Lihle; Daniels, W M U; Mabandla, Musa V

    2015-10-22

    Prenatal stress has been shown to result in the development of a number of neurological disorders in the offspring. Most of these disorders are a result of an altered HPA axis resulting in higher than normal glucocorticoid levels in the affected neonate. This leaves the offspring prone to immune challenges. Therefore the aim of the present study was to investigate the effects of prenatal stress and febrile seizures on behavior and hippocampal function. Pregnant dams were exposed to restraint stress during the third trimester. Following birth, febrile seizures were induced in two week old pups using lipopolysaccharide and kainic acid. A week later, anxiety-like behavior and navigational ability was assessed. Trunk blood was used to measure basal corticosterone concentration and hippocampal tissue was collected and analyzed. Our results show that exposure to prenatal stress increased basal corticosterone concentration. Exposure to prenatal stress exacerbated anxiety-like behavior and impaired the rat's navigational ability. Exposure to prenatal stress resulted in reduced hippocampal mass that was exacerbated by febrile seizures. However, exposure to febrile seizures did not affect hippocampal mass in the absence of prenatal stress. This suggests that febrile seizures are exacerbated by exposure to early life stressors and this may lead to the development of neurological symptoms associated with a malfunctioning hippocampus. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. APP Is a Context-Sensitive Regulator of the Hippocampal Presynaptic Active Zone.

    Science.gov (United States)

    Laßek, Melanie; Weingarten, Jens; Wegner, Martin; Mueller, Benjamin F; Rohmer, Marion; Baeumlisberger, Dominic; Arrey, Tabiwang N; Hick, Meike; Ackermann, Jörg; Acker-Palmer, Amparo; Koch, Ina; Müller, Ulrike; Karas, Michael; Volknandt, Walter

    2016-04-01

    The hallmarks of Alzheimer's disease (AD) are characterized by cognitive decline and behavioral changes. The most prominent brain region affected by the progression of AD is the hippocampal formation. The pathogenesis involves a successive loss of hippocampal neurons accompanied by a decline in learning and memory consolidation mainly attributed to an accumulation of senile plaques. The amyloid precursor protein (APP) has been identified as precursor of Aβ-peptides, the main constituents of senile plaques. Until now, little is known about the physiological function of APP within the central nervous system. The allocation of APP to the proteome of the highly dynamic presynaptic active zone (PAZ) highlights APP as a yet unknown player in neuronal communication and signaling. In this study, we analyze the impact of APP deletion on the hippocampal PAZ proteome. The native hippocampal PAZ derived from APP mouse mutants (APP-KOs and NexCreAPP/APLP2-cDKOs) was isolated by subcellular fractionation and immunopurification. Subsequently, an isobaric labeling was performed using TMT6 for protein identification and quantification by high-resolution mass spectrometry. We combine bioinformatics tools and biochemical approaches to address the proteomics dataset and to understand the role of individual proteins. The impact of APP deletion on the hippocampal PAZ proteome was visualized by creating protein-protein interaction (PPI) networks that incorporated APP into the synaptic vesicle cycle, cytoskeletal organization, and calcium-homeostasis. The combination of subcellular fractionation, immunopurification, proteomic analysis, and bioinformatics allowed us to identify APP as structural and functional regulator in a context-sensitive manner within the hippocampal active zone network.

  10. APP Is a Context-Sensitive Regulator of the Hippocampal Presynaptic Active Zone.

    Directory of Open Access Journals (Sweden)

    Melanie Laßek

    2016-04-01

    Full Text Available The hallmarks of Alzheimer's disease (AD are characterized by cognitive decline and behavioral changes. The most prominent brain region affected by the progression of AD is the hippocampal formation. The pathogenesis involves a successive loss of hippocampal neurons accompanied by a decline in learning and memory consolidation mainly attributed to an accumulation of senile plaques. The amyloid precursor protein (APP has been identified as precursor of Aβ-peptides, the main constituents of senile plaques. Until now, little is known about the physiological function of APP within the central nervous system. The allocation of APP to the proteome of the highly dynamic presynaptic active zone (PAZ highlights APP as a yet unknown player in neuronal communication and signaling. In this study, we analyze the impact of APP deletion on the hippocampal PAZ proteome. The native hippocampal PAZ derived from APP mouse mutants (APP-KOs and NexCreAPP/APLP2-cDKOs was isolated by subcellular fractionation and immunopurification. Subsequently, an isobaric labeling was performed using TMT6 for protein identification and quantification by high-resolution mass spectrometry. We combine bioinformatics tools and biochemical approaches to address the proteomics dataset and to understand the role of individual proteins. The impact of APP deletion on the hippocampal PAZ proteome was visualized by creating protein-protein interaction (PPI networks that incorporated APP into the synaptic vesicle cycle, cytoskeletal organization, and calcium-homeostasis. The combination of subcellular fractionation, immunopurification, proteomic analysis, and bioinformatics allowed us to identify APP as structural and functional regulator in a context-sensitive manner within the hippocampal active zone network.

  11. Cortisol's effects on hippocampal activation in depressed patients are related to alterations in memory formation.

    Science.gov (United States)

    Abercrombie, Heather C; Jahn, Allison L; Davidson, Richard J; Kern, Simone; Kirschbaum, Clemens; Halverson, Jerry

    2011-01-01

    Many investigators have hypothesized that brain response to cortisol is altered in depression. However, neural activation in response to exogenously manipulated cortisol elevations has not yet been directly examined in depressed humans. Animal research shows that glucocorticoids have robust effects on hippocampal function, and can either enhance or suppress neuroplastic events in the hippocampus depending on a number of factors. We hypothesized that depressed individuals would show 1) altered hippocampal response to exogenous administration of cortisol, and 2) altered effects of cortisol on learning. In a repeated-measures design, 19 unmedicated depressed and 41 healthy individuals completed two fMRI scans. Fifteen mg oral hydrocortisone (i.e., cortisol) or placebo (order randomized and double-blind) was administered 1 h prior to encoding of emotional and neutral words during fMRI scans. Data analysis examined the effects of cortisol administration on 1) brain activation during encoding, and 2) subsequent free recall for words. Cortisol affected subsequent recall performance in depressed but not healthy individuals. We found alterations in hippocampal response to cortisol in depressed women, but not in depressed men (who showed altered response to cortisol in other regions, including subgenual prefrontal cortex). In both depressed men and women, cortisol's effects on hippocampal function were positively correlated with its effects on recall performance assessed days later. Our data provide evidence that in depressed compared to healthy women, cortisol's effects on hippocampal function are altered. Our data also show that in both depressed men and women, cortisol's effects on emotional memory formation and hippocampal function are related.

  12. Mossy Fiber Plasticity and Enhanced Hippocampal Excitability, Without Hippocampal Cell Loss or Altered Neurogenesis, in an Animal Model of Prolonged Febrile Seizures

    OpenAIRE

    2003-01-01

    Seizures induced by fever (febrile seizures) are the most frequent seizures affecting infants and children; however, their impact on the developing hippocampal formation is not completely understood. Such understanding is highly important because of the potential relationship of prolonged febrile seizures to temporal lobe epilepsy. Using an immature rat model, we have previously demonstrated that prolonged experimental febrile seizures render the hippocampus hyperexcitable throughout life. He...

  13. Childhood maltreatment modifies the relationship of depression with hippocampal volume

    NARCIS (Netherlands)

    Gerritsen, L.; van Velzen, L.; Schmaal, L.; van der Graaf, Y.; van der Wee, N.; van Tol, M. -J.; Penninx, B.; Geerlings, M.

    2015-01-01

    Background. Childhood maltreatment (CM) may modify the relationship between major depressive disorder (MDD) and hippocampal volume reduction. To disentangle the impact of MDD and CM on hippocampal volume we investigated the association between MDD and hippocampal volume in persons with and without a

  14. Neuromorphic VLSI realization of the hippocampal formation.

    Science.gov (United States)

    Aggarwal, Anu

    2016-05-01

    The medial entorhinal cortex grid cells, aided by the subicular head direction cells, are thought to provide a matrix which is utilized by the hippocampal place cells for calculation of position of an animal during spatial navigation. The place cells are thought to function as an internal GPS for the brain and provide a spatiotemporal stamp on episodic memories. Several computational neuroscience models have been proposed to explain the place specific firing patterns of the cells of the hippocampal formation - including the GRIDSmap model for grid cells and Bayesian integration for place cells. In this work, we present design and measurement results from a first ever system of silicon circuits which successfully realize the function of the hippocampal formation of brain based on these models.

  15. Taurine increases hippocampal neurogenesis in aging mice

    Directory of Open Access Journals (Sweden)

    Elias Gebara

    2015-05-01

    Full Text Available Aging is associated with increased inflammation and reduced hippocampal neurogenesis, which may in turn contribute to cognitive impairment. Taurine is a free amino acid found in numerous diets, with anti-inflammatory properties. Although abundant in the young brain, the decrease in taurine concentration with age may underlie reduced neurogenesis. Here, we assessed the effect of taurine on hippocampal neurogenesis in middle-aged mice. We found that taurine increased cell proliferation in the dentate gyrus through the activation of quiescent stem cells, resulting in increased number of stem cells and intermediate neural progenitors. Taurine had a direct effect on stem/progenitor cells proliferation, as observed in vitro, and also reduced activated microglia. Furthermore, taurine increased the survival of newborn neurons, resulting in a net increase in adult neurogenesis. Together, these results show that taurine increases several steps of adult neurogenesis and support a beneficial role of taurine on hippocampal neurogenesis in the context of brain aging.

  16. Localized gene transfer into organotypic hippocampal slice cultures and acute hippocampal slices

    DEFF Research Database (Denmark)

    Casaccia-Bonnefil, P; Benedikz, Eirikur; Shen, H;

    1993-01-01

    Viral vectors derived from herpes simplex virus, type-1 (HSV), can transfer and express genes into fully differentiated, post-mitotic neurons. These vectors also transduce cells effectively in organotypic hippocampal slice cultures. Nanoliter quantities of a virus stock of HSVlac, an HSV vector...... or hippocampal slices. The rapid expression of beta-gal by HSVlac allowed efficient transduction of acute hippocampal slices. Many genes have been transduced and expressed using HSV vectors; therefore, this microapplication method can be applied to many neurobiological questions....

  17. Adult hippocampal neurogenesis and cognitive aging

    Directory of Open Access Journals (Sweden)

    Román Darío Moreno Fernández

    2013-12-01

    Full Text Available Aging is a normal developmental process associated with neurobiological changes leading to cognitive alterations with preserved, impaired, and enhanced functions. Evidence from animal and human studies is reviewed to explore the potential role of hippocampal plasticity on age-related cognitive changes with special attention to adult hippocampal neurogenesis. Results from lesion and stimulation strategies, as well as correlation data, support either a direct or modulatory role for adult newborn neurons in cognition at advanced ages. Further research on this topic may help to develop new treatments and to improve the quality of life of older people.

  18. Hippocampal Dendritic Spines Modifications Induced by Perinatal Asphyxia

    Directory of Open Access Journals (Sweden)

    G. E. Saraceno

    2012-01-01

    Full Text Available Perinatal asphyxia (PA affects the synaptic function and morphological organization. In previous works, we have shown neuronal and synaptic changes in rat neostriatum subjected to hypoxia leading to long-term ubi-protein accumulation. Since F-actin is highly concentrated in dendritic spines, modifications in its organization could be related with alterations induced by hypoxia in the central nervous system (CNS. In the present study, we investigate the effects of PA on the actin cytoskeleton of hippocampal postsynaptic densities (PSD in 4-month-old rats. PSD showed an increment in their thickness and in the level of ubiquitination. Correlative fluorescence-electron microscopy photooxidation showed a decrease in the number of F-actin-stained spines in hippocampal excitatory synapses subjected to PA. Although Western Blot analysis also showed a slight decrease in β-actin in PSD in PA animals, the difference was not significant. Taken together, this data suggests that long-term actin cytoskeleton might have role in PSD alterations which would be a spread phenomenon induced by PA.

  19. Relationships between hippocampal activity and breathing patterns

    DEFF Research Database (Denmark)

    Harper, R M; Poe, G R; Rector, D M;

    1998-01-01

    Single cell discharge, EEG activity, and optical changes accompanying alterations in breathing patterns, as well as the knowledge that respiratory musculature is heavily involved in movement and other behavioral acts, implicate hippocampal regions in some aspects of breathing control. The control...

  20. Nocturnal Mnemonics: Sleep and Hippocampal Memory Processing

    Directory of Open Access Journals (Sweden)

    Jared M. Saletin

    2012-05-01

    Full Text Available As critical as waking brain function is to learning and memory, an established literature now describes an equally important yet complementary role for sleep in information processing. This overview examines the specific contribution of sleep to human hippocampal memory processing; both the detriments caused by a lack of sleep, and conversely, the proactive benefits that develop following the presence of sleep. First, a role for sleep before learning is discussed, preparing the hippocampus for initial memory encoding. Second, a role for sleep after learning is considered, modulating the post-encoding consolidation of hippocampal-dependent memory. Third, a model is outlined in which these encoding and consolidation operations are symbiotically accomplished, associated with specific NREM sleep physiological oscillations. As a result, the optimal network outcome is achieved, increasing hippocampal independence and hence overnight consolidation, while restoring next-day sparse hippocampal encoding capacity for renewed learning ability upon awakening. Finally, emerging evidence is considered suggesting that, unlike previous conceptions, sleep does not universally consolidate all information equally. Instead, and based on explicit as well as motivational cues during initial encoding, sleep executes the discriminatory offline consolidation only of select information. Consequently, sleep promotes the targeted strengthening of some memories while actively forgetting others; a proposal with significant theoretical and clinical ramifications.

  1. Hippocampal kindling: corticosterone modulation of induced seizures

    NARCIS (Netherlands)

    Kloet, E.R. de; Cottrell, G.A.; Nyakas, C.; Bohus, B.

    1984-01-01

    The effect of adrenalectomy (ADX) and corticosterone replacement was studied on seizures induced by hippocampal kindling. A complex series of changes occurred in after-discharge (AD) and behavioural depression (BD) during the immediate hours after ADX, culminating at day 1 in markedly decreased AD a

  2. Stimulus Configuration, Classical Conditioning, and Hippocampal Function.

    Science.gov (United States)

    Schmajuk, Nestor A.; DiCarlo, James J.

    1991-01-01

    The participation of the hippocampus in classical conditioning is described in terms of a multilayer network portraying stimulus configuration. A model of hippocampal function is presented, and computer simulations are used to study neural activity in the various brain areas mapped according to the model. (SLD)

  3. Hippocampal gamma oscillations increase with memory load

    NARCIS (Netherlands)

    Van Vugt, Marieke K.; Schulze-Bonhage, Andreas; Litt, Brian; Brandt, Armin; Kahana, Michael J.

    2010-01-01

    Although the hippocampus plays a crucial role in encoding and retrieval of contextually mediated episodic memories, considerable controversy surrounds the role of the hippocampus in short-term or working memory. To examine both hippocampal and neocortical contributions to working memory function, we

  4. Glucocorticoid receptor knockdown and adult hippocampal neurogenesis

    NARCIS (Netherlands)

    Hooijdonk, Leonarda Wilhelmina Antonia van

    2010-01-01

    The research in this thesis is aimed at the elucidation of the role of the glucocorticoid receptor (GR) in hippocampal neuroplasticity and functioning. To achieve this, we have developed a novel method to specifically knockdown GR in a discrete cell population of the mouse brain. In this thesis I r

  5. Hippocampal theta frequency shifts and operant behaviour

    NARCIS (Netherlands)

    Lopes da Silva, F.H.; Kamp, A.

    1. 1. A shift of hippocampal dominant theta frequency to 6 c/sec has been demonstrated in the post-reward period in two dogs, which occurs consistently related in time to a well defined behavioural pattern in the course of an operant conditioning paradigm. 2. 2. The frequency shift was detected and

  6. Baicalin promotes hippocampal neurogenesis via SGK1- and FKBP5-mediated glucocorticoid receptor phosphorylation in a neuroendocrine mouse model of anxiety/depression

    Science.gov (United States)

    Zhang, Kuo; Pan, Xing; Wang, Fang; Ma, Jie; Su, Guangyue; Dong, Yingxu; Yang, Jingyu; Wu, Chunfu

    2016-01-01

    Antidepressants increase hippocampal neurogenesis by activating the glucocorticoid receptor (GR), but excessive GR activation impairs hippocampal neurogenesis, suggesting that normal GR function is crucial for hippocampal neurogenesis. Baicalin was reported to regulate the expression of GR and facilitate hippocampal neurogenesis, but the underlying molecular mechanisms are still unknown. In this study, we used the chronic corticosterone (CORT)-induced mouse model of anxiety/depression to assess antidepressant-like effects of baicalin and illuminate possible molecular mechanisms by which baicalin affects GR-mediated hippocampal neurogenesis. We found that oral administration of baicalin (40, 80 or 160 mg/kg) for 4 weeks alleviated several chronic CORT-induced anxiety/depression-like behaviors. Baicalin also increased Ki-67- and DCX-positive cells to restore chronic CORT-induced suppression of hippocampal neurogenesis. Moreover, baicalin normalized the chronic CORT-induced decrease in GR protein levels, the increase in GR nuclear translocation and the increase in GR phosphorylation at Ser203 and Ser211. Finally, chronic CORT exposure increased the level of FK506-binding protein 51 (FKBP5) and of phosphorylated serum- and glucocorticoid-inducible kinase 1 (SGK1) at Ser422 and Thr256, whereas baicalin normalized these changes. Together, our findings suggest that baicalin improves anxiety/depression-like behaviors and promotes hippocampal neurogenesis. We propose that baicalin may normalize GR function through SGK1- and FKBP5-mediated GR phosphorylation. PMID:27502757

  7. Reduced hippocampal dendritic spine density and BDNF expression following acute postnatal exposure to di(2-ethylhexyl phthalate in male Long Evans rats.

    Directory of Open Access Journals (Sweden)

    Catherine A Smith

    Full Text Available Early developmental exposure to di(2-ethylhexyl phthalate (DEHP has been linked to a variety of neurodevelopmental changes, particularly in rodents. The primary goal of this work was to establish whether acute postnatal exposure to a low dose of DEHP would alter hippocampal dendritic morphology and BDNF and caspase-3 mRNA expression in male and female Long Evans rats. Treatment with DEHP in male rats led to a reduction in spine density on basal and apical dendrites of neurons in the CA3 dorsal hippocampal region compared to vehicle-treated male controls. Dorsal hippocampal BDNF mRNA expression was also down-regulated in male rats exposed to DEHP. No differences in hippocampal spine density or BDNF mRNA expression were observed in female rats treated with DEHP compared to controls. DEHP treatment did not affect hippocampal caspase-3 mRNA expression in male or female rats. These results suggest a gender-specific vulnerability to early developmental DEHP exposure in male rats whereby postnatal DEHP exposure may interfere with normal synaptogenesis and connectivity in the hippocampus. Decreased expression of BDNF mRNA may represent a molecular mechanism underlying the reduction in dendritic spine density observed in hippocampal CA3 neurons. These findings provide initial evidence for a link between developmental exposure to DEHP, reduced levels of BDNF and hippocampal atrophy in male rats.

  8. Reduced hippocampal dendritic spine density and BDNF expression following acute postnatal exposure to di(2-ethylhexyl) phthalate in male Long Evans rats.

    Science.gov (United States)

    Smith, Catherine A; Holahan, Matthew R

    2014-01-01

    Early developmental exposure to di(2-ethylhexyl) phthalate (DEHP) has been linked to a variety of neurodevelopmental changes, particularly in rodents. The primary goal of this work was to establish whether acute postnatal exposure to a low dose of DEHP would alter hippocampal dendritic morphology and BDNF and caspase-3 mRNA expression in male and female Long Evans rats. Treatment with DEHP in male rats led to a reduction in spine density on basal and apical dendrites of neurons in the CA3 dorsal hippocampal region compared to vehicle-treated male controls. Dorsal hippocampal BDNF mRNA expression was also down-regulated in male rats exposed to DEHP. No differences in hippocampal spine density or BDNF mRNA expression were observed in female rats treated with DEHP compared to controls. DEHP treatment did not affect hippocampal caspase-3 mRNA expression in male or female rats. These results suggest a gender-specific vulnerability to early developmental DEHP exposure in male rats whereby postnatal DEHP exposure may interfere with normal synaptogenesis and connectivity in the hippocampus. Decreased expression of BDNF mRNA may represent a molecular mechanism underlying the reduction in dendritic spine density observed in hippocampal CA3 neurons. These findings provide initial evidence for a link between developmental exposure to DEHP, reduced levels of BDNF and hippocampal atrophy in male rats.

  9. Developmental hypothyroidism abolishes bilateral differences in sonic hedgehog gene control in the rat hippocampal dentate gyrus.

    Science.gov (United States)

    Tanaka, Takeshi; Wang, Liyun; Kimura, Masayuki; Abe, Hajime; Mizukami, Sayaka; Yoshida, Toshinori; Shibutani, Makoto

    2015-03-01

    Both developmental and adult-stage hypothyroidism disrupt rat hippocampal neurogenesis. We previously showed that exposing mouse offspring to manganese permanently disrupts hippocampal neurogenesis and abolishes the asymmetric distribution of cells expressing Mid1, a molecule regulated by sonic hedgehog (Shh) signaling. The present study examined the involvement of Shh signaling on the disruption of hippocampal neurogenesis in rats with hypothyroidism. Pregnant rats were treated with methimazole (MMI) at 0 or 200 ppm in the drinking water from gestation day 10-21 days after delivery (developmental hypothyroidism). Adult male rats were treated with MMI in the same manner from postnatal day (PND) 46 to PND 77 (adult-stage hypothyroidism). Developmental hypothyroidism reduced the number of Mid1(+) cells within the subgranular zone of the dentate gyrus of offspring on PND 21, and consequently abolished the normal asymmetric predominance of Mid1(+) cells on the right side through the adult stage. In control animals, Shh was expressed in a subpopulation of hilar neurons, showing asymmetric distribution with left side predominance on PND 21; however, this asymmetry did not continue through the adult stage. Developmental hypothyroidism increased Shh(+) neurons bilaterally and abolished the asymmetric distribution pattern on PND 21. Adult hypothyroidism also disrupted the asymmetric distribution of Mid1(+) cells but did not affect the distribution of Shh(+) hilar neurons. The results suggest that the hippocampal neurogenesis disruption seen in hypothyroidism involves changes in asymmetric Shh(+) neuron distribution in developmental hypothyroidism and altered Mid1 expression in both developmental and adult-stage hypothyroidism.

  10. Electrophysiological actions of cyclosporin A and tacrolimus on rat hip-pocampal CA1 pyramidal neurons

    Institute of Scientific and Technical Information of China (English)

    Yong YU; Xue-qin CHEN; Yao-yuan CUI; Guo-yuan HU

    2007-01-01

    Aim: The aim of the present study was to investigate the electrophysiological actions of cyclosporin A (CsA) and tacrolimus (FK506) on neurons in the brain, and to elucidate the relevant mechanisms. Methods: Whole-cell current-clamp recording was made in CA1 pyramidal neurons in rat hippocampal slices; whole- cell voltage-clamp recording was made in dissociated hippocampal CA1 pyrami- dal neurons of rats. Results: CsA (100 μmol/L) and FKS06 (50 μmol/L) did not significantly alter the passive electrical properties of hippocampal CA1 pyramidal neurons, but slowed down the repolarizing phase of the action potential. CsA (10-100 μmol/L) selectively inhibited the delayed rectifier K~ current (IK,) in a concentration-dependent manner. CsA did not affect the kinetic properties of IK. Intracellular dialysis of CsA (100 μmol/L) had no effect on IK. The inhibition of IK by CsA (100/μmol/L) persisted under the low Ca2+ conditions that blocked the basal activity of calcineurin. Conclusion: CsA exerted calcineurin-independent inhibition on the IK in rat hippocampal pyramidal neurons. Taken together with our previous finding with FK506, it is conceivable that the spike broadening caused by the immunosuppressant drugs is due to direct inhibition on the IK.

  11. Methylglyoxal Causes Cell Death in Neural Progenitor Cells and Impairs Adult Hippocampal Neurogenesis.

    Science.gov (United States)

    Chun, Hye Jeong; Lee, Yujeong; Kim, Ah Hyun; Lee, Jaewon

    2016-04-01

    Methylglyoxal (MG) is formed during normal metabolism by processes like glycolysis, lipid peroxidation, and threonine catabolism, and its accumulation is associated with various degenerative diseases, such as diabetes and arterial atherogenesis. Furthermore, MG has also been reported to have toxic effects on hippocampal neurons. However, these effects have not been studied in the context of neurogenesis. Here, we report that MG adversely affects hippocampal neurogenesis and induces neural progenitor cell (NPC) death. MG significantly reduced C17.2 NPC proliferation, and high concentration of MG (500 μM) induced cell death and elevated oxidative stress. Further, MG was found to activate the ERK signaling pathway, indicating elevated stress response. To determine the effects of MG in vivo, mice were administrated with vehicle or MG (0.5 or 1 % in drinking water) for 4 weeks. The numbers of BrdU-positive cells in hippocampi were significantly lower in MG-treated mice, indicating impaired neurogenesis, but MG did not induce neuronal damage or glial activations. Interestingly, MG reduced memory retention when administered to mice at 1 % but not at 0.5 %. In addition, the levels of hippocampal BDNF and synaptophysin were significantly lower in the hippocampi of mice treated with MG at 1 %. Collectively, our findings suggest MG could be harmful to NPCs and to hippocampal neurogenesis.

  12. Neuron volumes in hippocampal subfields in delayed poststroke and aging-related dementias.

    Science.gov (United States)

    Gemmell, Elizabeth; Tam, Edward; Allan, Louise; Hall, Roslyn; Khundakar, Ahmad; Oakley, Arthur E; Thomas, Alan; Deramecourt, Vincent; Kalaria, Raj N

    2014-04-01

    Hippocampal atrophy is widely recognized in Alzheimer disease (AD). Whether neurons within hippocampal subfields are similarly affected in other aging-related dementias, particularly after stroke, remains an open question. We investigated hippocampal CA3 and CA4 pyramidal neuron volumes and densities using 3-dimensional stereologic techniques in postmortem samples from a total of 67 subjects: poststoke demented (PSD; n = 11), nondemented stroke survivors (PSND) and PSD patients from the CogFAST (Cognitive Function After Stroke) cohort (n = 13), elderly controls (n = 12), and subjects diagnosed as having vascular dementia (n = 11), AD (n = 10), and mixed AD and vascular dementia (n = 10). We found that CA3 and CA4 neuron volumes were reduced in PSD samples compared with those in PSND samples. The CA3 and CA4 neuron volumes were positively correlated with poststroke global cognitive function but were not associated with the burden of AD pathology. There were no differences in total neuron densities in either subfield in any of the groups studied. Our results indicate that selective reductions in CA4 and to a lesser extent CA3 neuron volumes may be related to post stroke cognitive impairment and aging-related dementias. These data suggest that CA4 neurons are vulnerable to disease processes and support our previous finding that a reduction in hippocampal neuron volume predominantly reflects vascular mechanisms as contributing to dementia after stroke.

  13. Effects of GSM 1800 MHz on dendritic development of cultured hippo-campal neurons

    Institute of Scientific and Technical Information of China (English)

    Wei NING; Shu-jun XU; Huai CHIANG; Zheng-ping XU; Su-ya ZHOU; Wei YANG; Jian-hong LUO

    2007-01-01

    Aim: To evaluate the effects of global system for mobile communications (GSM)1800 MHz microwaves on dendritic filopodia, dendritic arborization, and spine maturation during development in cultured hippocampal neurons in rats. Methods: The cultured hippocampal neurons were exposed to GSM 1800 MHz microwaves with 2.4 and 0.8 W/kg, respectively, for 15 min each day from 6 days in vitro (DIV6) to DIV14. The subtle structures of dendrites were displayed by transfection with farnesylated enhanced green fluorescent protein (F-GFP) and GFP-actin on DIV5 into the hippocampal neurons. Results: There was a significant decrease in the density and mobility of dendritic filopodia at DIV8 and in the density of mature spines at DIV14 in the neurons exposed to GSM 1800 MHz microwaves with 2.4 W/kg. In addition, the average length of dendrites per neuron at DIV10 and DIV14 was decreased, while the dendritic arborization was unaltered in these neurons. However, there were no significant changes found in the neurons ex- posed to the GSM 1800 MHz microwaves with 0.8 W/kg. Conclusion: These data indicate that the chronic exposure to 2.4 W/kg GSM 1800 MHz micro- waves during the early developmental stage may affect dendritic development and the formation of excitatory synapses of hippocampal neurons in culture.

  14. Retinoic acid restores adult hippocampal neurogenesis and reverses spatial memory deficit in vitamin A deprived rats.

    Directory of Open Access Journals (Sweden)

    Emilie Bonnet

    Full Text Available A dysfunction of retinoid hippocampal signaling pathway has been involved in the appearance of affective and cognitive disorders. However, the underlying neurobiological mechanisms remain unknown. Hippocampal granule neurons are generated throughout life and are involved in emotion and memory. Here, we investigated the effects of vitamin A deficiency (VAD on neurogenesis and memory and the ability of retinoic acid (RA treatment to prevent VAD-induced impairments. Adult retinoid-deficient rats were generated by a vitamin A-free diet from weaning in order to allow a normal development. The effects of VAD and/or RA administration were examined on hippocampal neurogenesis, retinoid target genes such as neurotrophin receptors and spatial reference memory measured in the water maze. Long-term VAD decreased neurogenesis and led to memory deficits. More importantly, these effects were reversed by 4 weeks of RA treatment. These beneficial effects may be in part related to an up-regulation of retinoid-mediated molecular events, such as the expression of the neurotrophin receptor TrkA. We have demonstrated for the first time that the effect of vitamin A deficient diet on the level of hippoccampal neurogenesis is reversible and that RA treatment is important for the maintenance of the hippocampal plasticity and function.

  15. Physiological impact of CB1 receptor expression by hippocampal GABAergic interneurons.

    Science.gov (United States)

    Albayram, Önder; Passlick, Stefan; Bilkei-Gorzo, Andras; Zimmer, Andreas; Steinhäuser, Christian

    2016-04-01

    A subset of hippocampal GABAergic neurons, which are cholecystokinin-positive, highly express cannabinoid type 1 (CB1) receptors. Activation of these receptors inhibits GABA release and thereby limits inhibitory control. While genetic deletion of CB1 receptors from GABAergic neurons led to behavioural alterations and neuroinflammatory reactions, it remained unclear whether these changes in the knockout animals were a direct consequence of the enhanced transmitter release or reflected developmental deficits. The hippocampus is vital for the generation of spatial, declarative and working memory. Here, we addressed the question how CB1 receptors in GABAergic neurons influence hippocampal function. Patch clamp and field potential recordings in mice devoid of CB1 receptors in GABAergic neurons revealed an enhanced frequency and faster kinetics of spontaneous inhibitory postsynaptic currents in CA1 pyramidal neurons while tonic inhibition, paired-pulse facilitation and long-term potentiation in the hippocampus were not affected. Evaluation of cognitive functions demonstrated impaired acquisition of spatial memory and deficits in novel object recognition and partner recognition in the knockout mice, while working memory and spatial memory remained intact. The density of GABAergic neurons was also similar in knockout mice and their littermates, which argues against global deficits in hippocampal development. Together, these results suggest that CB1 receptors in GABAergic neurons influence specific aspects of neuronal excitability and hippocampal learning.

  16. Multiple anatomical systems embedded within the primate medial temporal lobe: implications for hippocampal function.

    Science.gov (United States)

    Aggleton, John P

    2012-08-01

    A review of medial temporal lobe connections reveals three distinct groupings of hippocampal efferents. These efferent systems and their putative memory functions are: (1) The 'extended-hippocampal system' for episodic memory, which involves the anterior thalamic nuclei, mammillary bodies and retrosplenial cortex, originates in the subicular cortices, and has a largely laminar organisation; (2) The 'rostral hippocampal system' for affective and social learning, which involves prefrontal cortex, amygdala and nucleus accumbens, has a columnar organisation, and originates from rostral CA1 and subiculum; (3) The 'reciprocal hippocampal-parahippocampal system' for sensory processing and integration, which originates from the length of CA1 and the subiculum, and is characterised by columnar, connections with reciprocal topographies. A fourth system, the 'parahippocampal-prefrontal system' that supports familiarity signalling and retrieval processing, has more widespread prefrontal connections than those of the hippocampus, along with different thalamic inputs. Despite many interactions between these four systems, they may retain different roles in memory which when combined explain the importance of the medial temporal lobe for the formation of declarative memories.

  17. Updating the lamellar hypothesis of hippocampal organization

    Directory of Open Access Journals (Sweden)

    Robert S Sloviter

    2012-12-01

    Full Text Available In 1971, Andersen and colleagues proposed that excitatory activity in the entorhinal cortex propagates topographically to the dentate gyrus, and on through a trisynaptic circuit lying within transverse hippocampal slices or lamellae [Andersen, Bliss, and Skrede. 1971. Lamellar organization of hippocampal pathways. Exp Brain Res 13, 222-238]. In this way, a relatively simple structure might mediate complex functions in a manner analogous to the way independent piano keys can produce a nearly infinite variety of unique outputs. The lamellar hypothesis derives primary support from the lamellar distribution of dentate granule cell axons (the mossy fibers, which innervate dentate hilar neurons and area CA3 pyramidal cells and interneurons within the confines of a thin transverse hippocampal segment. Following the initial formulation of the lamellar hypothesis, anatomical studies revealed that unlike granule cells, hilar mossy cells, CA3 pyramidal cells, and Layer II entorhinal cells all form axonal projections that are more divergent along the longitudinal axis than the clearly lamellar mossy fiber pathway. The existence of pathways with translamellar distribution patterns has been interpreted, incorrectly in our view, as justifying outright rejection of the lamellar hypothesis [Amaral and Witter. 1989. The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience 31, 571-591]. We suggest that the functional implications of longitudinally-projecting axons depend not on whether they exist, but on what they do. The observation that focal granule cell layer discharges normally inhibit, rather than excite, distant granule cells suggests that longitudinal axons in the dentate gyrus may mediate "lateral" inhibition and define lamellar function, rather than undermine it. In this review, we attempt a reconsideration of the evidence that most directly impacts the physiological concept of hippocampal lamellar

  18. More vulnerability of left than right hippocampal damage in right-handed patients with post-traumatic stress disorder.

    Science.gov (United States)

    Shu, Xi-Ji; Xue, Li; Liu, Wei; Chen, Fu-Yin; Zhu, Cheng; Sun, Xiao-Hai; Wang, Xiao-Ping; Liu, Zhong-Cun; Zhao, Hu

    2013-06-30

    Previous studies have shown hippocampal abnormalities in people with post-traumatic stress disorder (PTSD), but findings of diminished volume in shortages in the hippocampus have been inconsistent. In this study, we investigated changes in hippocampal volume and neuronal metabolites in right-handed PTSD patients to determine their possible relationship(s) with PTSD severity. We performed a case-control study of 11 right-handed PTSD patients and 11 healthy controls using magnetic resonance imaging (MRI) and proton magnetic resonance spectroscopy ((1)H MRS). Hippocampal volume and metabolite ratios of N-acetylaspartate (NAA) to creatine (Cr) (NAA/Cr) and choline compounds (Cho) to Cr (Cho/Cr) were calculated. The severity of PTSD was evaluated by the Clinician-Administered PTSD Scale (CAPS). Significantly decreased left and total normalized hippocampal volumes were found in PTSD patients compared with controls (6.6% for the left hippocampus, 5.5% for total hippocampus). Also, the bilateral hippocampal NAA/Cr ratio of PTSD patients was significantly reduced compared with controls. The volume of the left hippocampus was negatively correlated to the CAPS total and CPAS-C scores. The left hippocampal NAA/Cr ratio was negatively correlated to the CAPS-total, CAPS-B, CAPS-C, and CAPS-D scores. The CAPS total and the CAPS-B scores were positively correlated to the Cho/Cr ratio of the right hippocampus. Our results indicate that hippocampal dysfunction is asymmetric in right-handed PTSD patients, with the left side affected more than the right.

  19. Exercise Enhances Learning and Hippocampal Neurogenesis in Aged Mice

    Science.gov (United States)

    Praag, Henriette van; Shubert, Tiffany; Zhao, Chunmei; Gage, Fred H.

    2005-01-01

    Aging causes changes in the hippocampus that may lead to cognitive decline in older adults. In young animals, exercise increases hippocampal neurogenesis and improves learning. We investigated whether voluntary wheel running would benefit mice that were sedentary until 19 months of age. Specifically, young and aged mice were housed with or without a running wheel and injected with bromodeoxyuridine or retrovirus to label newborn cells. After 1 month, learning was tested in the Morris water maze. Aged runners showed faster acquisition and better retention of the maze than age-matched controls. The decline in neurogenesis in aged mice was reversed to 50% of young control levels by running. Moreover, fine morphology of new neurons did not differ between young and aged runners, indicating that the initial maturation of newborn neurons was not affected by aging. Thus, voluntary exercise ameliorates some of the deleterious morphological and behavioral consequences of aging. PMID:16177036

  20. Adenosine gates synaptic plasticity at hippocampal mossy fiber synapses

    Science.gov (United States)

    Moore, Kimberly A.; Nicoll, Roger A.; Schmitz, Dietmar

    2003-11-01

    The release properties of synapses in the central nervous system vary greatly, not only across anatomically distinct types of synapses but also among the same class of synapse. This variation manifests itself in large part by differences in the probability of transmitter release, which affects such activity-dependent presynaptic forms of plasticity as paired-pulse facilitation and frequency facilitation. This heterogeneity in presynaptic function reflects differences in the intrinsic properties of the synaptic terminal and the activation of presynaptic neurotransmitter receptors. Here we show that the unique presynaptic properties of the hippocampal mossy fiber synapse are largely imparted onto the synapse by the continuous local action of extracellular adenosine at presynaptic A1 adenosine receptors, which maintains a low basal probability of transmitter release.

  1. Effect of Brain-Derived Neurotrophic Factor Haploinsufficiency on Stress-Induced Remodeling of Hippocampal Neurons

    OpenAIRE

    Magariños, A.M.; Li, C. J.; Toth, J. Gal; Bath, K.G.; Jing, D; Lee, F S; MCEWEN, B. S.

    2011-01-01

    Chronic restraint stress (CRS) induces the remodeling (i.e., retraction and simplification) of the apical dendrites of hippocampal CA3 pyramidal neurons in rats, suggesting that intrahippocampal connectivity can be affected by a prolonged stressful challenge. Since the structural maintenance of neuronal dendritic arborizations and synaptic connectivity requires neurotrophic support, we investigated the potential role of brain derived neurotrophic factor (BDNF), a neurotrophin enriched in the ...

  2. Maternal vitamin C deficiency does not reduce hippocampal volume and beta-tubulin III intensity in prenatal Guinea pigs

    DEFF Research Database (Denmark)

    Hansen, Stine Normann; Schjoldager, Janne Gram; Paidi, Maya Devi

    2016-01-01

    pattern of the hippocampus with a clear effect of gestational age, whereas vitC status did not affect either investigated parameters. Within hippocampal subdivisions, the overall expansion of the hippocampus from gestational day 45 to 56 was found to reside in the dentate gyrus. In conclusion, the present...

  3. Sex Steroid Hormones Matter for Learning and Memory: Estrogenic Regulation of Hippocampal Function Inmale and Female Rodents

    Science.gov (United States)

    Frick, Karyn M.; Kim, Jaekyoon; Tuscher, Jennifer J.; Fortress, Ashley M.

    2015-01-01

    Ample evidence has demonstrated that sex steroid hormones, such as the potent estrogen 17ß-estradiol (E[subscript 2]), affect hippocampal morphology, plasticity, and memory in male and female rodents. Yet relatively few investigators who work with male subjects consider the effects of these hormones on learning and memory. This review describes…

  4. Persistent Gliosis Interferes with Neurogenesis in Organotypic Hippocampal Slice Cultures.

    Science.gov (United States)

    Gerlach, Johannes; Donkels, Catharina; Münzner, Gert; Haas, Carola A

    2016-01-01

    Neurogenesis in the adult hippocampus has become an intensively investigated research topic, as it is essential for proper hippocampal function and considered to bear therapeutic potential for the replacement of pathologically lost neurons. On the other hand, neurogenesis itself is frequently affected by CNS insults. To identify processes leading to the disturbance of neurogenesis, we made use of organotypic hippocampal slice cultures (OHSC), which, for unknown reasons, lose their neurogenic potential during cultivation. In the present study, we show by BrdU/Prox1 double-immunostaining that the generation of new granule cells drops by 90% during the first week of cultivation. Monitoring neurogenesis dynamically in OHSC from POMC-eGFP mice, in which immature granule cells are endogenously labeled, revealed a gradual decay of the eGFP signal, reaching 10% of initial values within 7 days of cultivation. Accordingly, reverse transcription quantitative polymerase chain reaction analysis showed the downregulation of the neurogenesis-related genes doublecortin and Hes5, a crucial target of the stem cell-maintaining Notch signaling pathway. In parallel, we demonstrate a strong and long-lasting activation of astrocytes and microglial cells, both, morphologically and on the level of gene expression. Enhancement of astroglial activation by treating OHSC with ciliary neurotrophic factor accelerated the loss of neurogenesis, whereas treatment with indomethacin or an antagonist of the purinergic P2Y12 receptor exhibited potent protective effects on the neurogenic outcome. Therefore, we conclude that OHSC rapidly lose their neurogenic capacity due to persistent inflammatory processes taking place after the slice preparation. As inflammation is also considered to affect neurogenesis in many CNS pathologies, OHSC appear as a useful tool to study this interplay and its molecular basis. Furthermore, we propose that modification of glial activation might bear the therapeutic potential

  5. Persistent gliosis interferes with neurogenesis in organotypic hippocampal slice cultures

    Directory of Open Access Journals (Sweden)

    Johannes eGerlach

    2016-05-01

    Full Text Available Neurogenesis in the adult hippocampus has become an intensively investigated research topic, as it is essential for proper hippocampal function and considered to bear therapeutic potential for the replacement of pathologically lost neurons. On the other hand, neurogenesis itself is frequently affected by CNS insults. To identify processes leading to the disturbance of neurogenesis, we made use of organotypic hippocampal slice cultures (OHSC, which, for unknown reasons, lose their neurogenic potential during cultivation. In the present study, we show by BrdU/Prox1 double-immunostaining that the generation of new granule cells drops by 90% during the first week of cultivation. Monitoring neurogenesis dynamically in OHSC from POMC-eGFP mice, in which immature granule cells are endogenously labeled, revealed a gradual decay of the eGFP signal, reaching 10% of initial values within seven days of cultivation. Accordingly, RT-qPCR analysis showed the downregulation of the neurogenesis-related genes doublecortin and Hes5, a crucial target of the stem cell-maintaining Notch signaling pathway. In parallel, we demonstrate a strong and long-lasting activation of astrocytes and microglial cells, both, morphologically and on the level of gene expression. Enhancement of astroglial activation by treating OHSC with ciliary neurotrophic factor (CNTF accelerated the loss of neurogenesis, whereas treatment with indomethacin or an antagonist of the purinergic P2Y12 receptor exhibited potent protective effects on the neurogenic outcome. Therefore, we conclude that OHSC rapidly lose their neurogenic capacity due to persistent inflammatory processes taking place after the slice preparation. As inflammation is also considered to affect neurogenesis in many CNS pathologies, OHSC appear as a useful tool to study this interplay and its molecular basis. Furthermore, we propose that modification of glial activation might bear the therapeutic potential of enabling

  6. Increasing Adult Hippocampal Neurogenesis is Sufficient to Reduce Anxiety and Depression-Like Behaviors.

    Science.gov (United States)

    Hill, Alexis S; Sahay, Amar; Hen, René

    2015-09-01

    Adult hippocampal neurogenesis is increased by antidepressants, and is required for some of their behavioral effects. However, it remains unclear whether expanding the population of adult-born neurons is sufficient to affect anxiety and depression-related behavior. Here, we use an inducible transgenic mouse model in which the pro-apoptotic gene Bax is deleted from neural stem cells and their progeny in the adult brain, and thereby increases adult neurogenesis. We find no effects on baseline anxiety and depression-related behavior; however, we find that increasing adult neurogenesis is sufficient to reduce anxiety and depression-related behaviors in mice treated chronically with corticosterone (CORT), a mouse model of stress. Thus, neurogenesis differentially affects behavior under baseline conditions and in a model of chronic stress. Moreover, we find no effect of increased adult hippocampal neurogenesis on hypothalamic-pituitary-adrenal (HPA) axis regulation, either at baseline or following chronic CORT administration, suggesting that increasing adult hippocampal neurogenesis can affect anxiety and depression-related behavior through a mechanism independent of the HPA axis. The use of future techniques to specifically inhibit BAX in the hippocampus could be used to augment adult neurogenesis, and may therefore represent a novel strategy to promote antidepressant-like behavioral effects.

  7. Maternal vitamin C deficiency during pregnancy persistently impairs hippocampal neurogenesis in offspring of guinea pigs.

    Directory of Open Access Journals (Sweden)

    Pernille Tveden-Nyborg

    Full Text Available While having the highest vitamin C (VitC concentrations in the body, specific functions of VitC in the brain have only recently been acknowledged. We have shown that postnatal VitC deficiency in guinea pigs causes impairment of hippocampal memory function and leads to 30% less neurons. This study investigates how prenatal VitC deficiency affects postnatal hippocampal development and if any such effect can be reversed by postnatal VitC repletion. Eighty pregnant Dunkin Hartley guinea pig dams were randomized into weight stratified groups receiving High (900 mg or Low (100 mg VitC per kg diet. Newborn pups (n = 157 were randomized into a total of four postnatal feeding regimens: High/High (Control; High/Low (Depleted, Low/Low (Deficient; and Low/High (Repleted. Proliferation and migration of newborn cells in the dentate gyrus was assessed by BrdU labeling and hippocampal volumes were determined by stereology. Prenatal VitC deficiency resulted in a significant reduction in postnatal hippocampal volume (P<0.001 which was not reversed by postnatal repletion. There was no difference in postnatal cellular proliferation and survival rates in the hippocampus between dietary groups, however, migration of newborn cells into the granular layer of the hippocampus dentate gyrus was significantly reduced in prenatally deficient animals (P<0.01. We conclude that a prenatal VitC deficiency in guinea pigs leads to persistent impairment of postnatal hippocampal development which is not alleviated by postnatal repletion. Our findings place attention on a yet unrecognized consequence of marginal VitC deficiency during pregnancy.

  8. Sex-specific associations of testosterone with prefrontal-hippocampal development and executive function.

    Science.gov (United States)

    Nguyen, Tuong-Vi; Lew, Jimin; Albaugh, Matthew D; Botteron, Kelly N; Hudziak, James J; Fonov, Vladimir S; Collins, D Louis; Ducharme, Simon; McCracken, James T

    2017-02-01

    Testosterone is thought to play a crucial role in mediating sexual differentiation of brain structures. Examinations of the cognitive effects of testosterone have also shown beneficial and potentially sex-specific effects on executive function and mnemonic processes. Yet these findings remain limited by an incomplete understanding of the critical timing and brain regions most affected by testosterone, the lack of documented links between testosterone-related structural brain changes and cognition, and the difficulty in distinguishing the effects of testosterone from those of related sex steroids such as of estradiol and dehydroepiandrosterone (DHEA). Here we examined associations between testosterone, cortico-hippocampal structural covariance, executive function (Behavior Rating Inventory of Executive Function) and verbal memory (California Verbal Learning Test-Children's Version), in a longitudinal sample of typically developing children and adolescents 6-22 yo, controlling for the effects of estradiol, DHEA, pubertal stage, collection time, age, handedness, and total brain volume. We found prefrontal-hippocampal covariance to vary as a function of testosterone levels, but only in boys. Boys also showed a specific association between positive prefrontal-hippocampal covariance (as seen at higher testosterone levels) and lower performance on specific components of executive function (monitoring the action process and flexibly shifting between actions). We also found the association between testosterone and a specific aspect of executive function (monitoring) to be significantly mediated by prefrontal-hippocampal structural covariance. There were no significant associations between testosterone-related cortico-hippocampal covariance and verbal memory. Taken together, these findings highlight the developmental importance of testosterone in supporting sexual differentiation of the brain and sex-specific executive function. Copyright © 2016 Elsevier Ltd. All rights

  9. Hippocampal Malrotation (HIMAL) is Associated with Prolonged Febrile Seizures: Results of the FEBSTAT Study

    Science.gov (United States)

    Chan, Stephen; Bello, Jacqueline A.; Shinnar, Shlomo; Hesdorffer, Dale C.; Lewis, Darrell V.; MacFall, James; Shinnar, Ruth C.; Gomes, William; Litherland, Claire; Xu, Yuan; Nordli, Douglas R.; Pellock, John M.; Frank, Matthew L.; Moshé, Solomon L.; Sun, Shumei

    2015-01-01

    Objective HIMAL (hippocampal malrotation) is characterized by incomplete hippocampal inversion with rounded shape and blurred internal architecture. There is still debate whether or not HIMAL has pathological significance. We present findings from the FEBSTAT study on the frequency and risk factors for HIMAL. Materials and Methods FEBSTAT is a prospective multicenter study investigating consequences of febrile status epilepticus (FSE) in childhood. MR imaging studies of 226 FSE subjects were analyzed visually by two board-certified neuroradiologists blinded to clinical details and compared to MR imaging studies of 96 subjects with first simple febrile seizure (FS). Quantitative analysis of hippocampal volume was performed by two independent observers. Results HIMAL was present in 20 (8.8%), of FSE cases compared with 2 (2.1%) of controls (odds ratio 4.56; 95% CI=1.05, 19.9). HIMAL was exclusively left-sided in 18 (81.8%), and bilateral in the remaining 4 (18.2%). There was no case of exclusively right-sided HIMAL. HIMAL was more common in boys than in girls (OR 6.1, 95%CI = (1.7, 21.5) On quantitative volumetric MR imaging analysis, the left hippocampal volume in HIMAL cases was smaller than in simple FS controls (p=0.004), and the R/L hippocampal volume ratio was higher in the HIMAL group compared to the simple FS group (p<0.001). Conclusion HIMAL is a developmental malformation that predominantly affects the left hippocampus in males, and is more frequently found in children with prolonged FSE than in controls. These data provide further evidence that HIMAL represents a pathological error in brain development rather than a normal variant. PMID:26496555

  10. Effects of diazepam on glutamatergic synaptic transmission in the hippocampal CA1 area of rats with traumatic brain injury.

    Science.gov (United States)

    Cao, Lei; Bie, Xiaohua; Huo, Su; Du, Jubao; Liu, Lin; Song, Weiqun

    2014-11-01

    The activity of the Schaffer collaterals of hippocampal CA3 neurons and hippocampal CA1 neurons has been shown to increase after fluid percussion injury. Diazepam can inhibit the hyperexcitability of rat hippocampal neurons after injury, but the mechanism by which it affects excitatory synaptic transmission remains poorly understood. Our results showed that diazepam treatment significantly increased the slope of input-output curves in rat neurons after fluid percussion injury. Diazepam significantly decreased the numbers of spikes evoked by super stimuli in the presence of 15 μmol/L bicuculline, indicating the existence of inhibitory pathways in the injured rat hippocampus. Diazepam effectively increased the paired-pulse facilitation ratio in the hippocampal CA1 region following fluid percussion injury, reduced miniature excitatory postsynaptic potentials, decreased action-potential-dependent glutamine release, and reversed spontaneous glutamine release. These data suggest that diazepam could decrease the fluid percussion injury-induced enhancement of excitatory synaptic transmission in the rat hippocampal CA1 area.

  11. Effects of diazepam on glutamatergic synaptic transmission in the hippocampal CA1 area of rats with traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Lei Cao; Xiaohua Bie; Su Huo; Jubao Du; Lin Liu; Weiqun Song

    2014-01-01

    The activity of the Schaffer collaterals of hippocampal CA3 neurons and hippocampal CA1 neurons has been shown to increase after lfuid percussion injury. Diazepam can inhibit the hy-perexcitability of rat hippocampal neurons after injury, but the mechanism by which it affects excitatory synaptic transmission remains poorly understood. Our results showed that diazepam treatment signiifcantly increased the slope of input-output curves in rat neurons after lfuid per-cussion injury. Diazepam signiifcantly decreased the numbers of spikes evoked by super stimuli in the presence of 15 μmol/L bicuculline, indicating the existence of inhibitory pathways in the injured rat hippocampus. Diazepam effectively increased the paired-pulse facilitation ratio in the hippocampal CA1 region following fluid percussion injury, reduced miniature excitatory postsynaptic potentials, decreased action-potential-dependent glutamine release, and reversed spontaneous glutamine release. These data suggest that diazepam could decrease the lfuid per-cussion injury-induced enhancement of excitatory synaptic transmission in the rat hippocampal CA1 area.

  12. Correlated memory defects and hippocampal dendritic spine loss after acute stress involve corticotropin-releasing hormone signaling.

    Science.gov (United States)

    Chen, Yuncai; Rex, Christopher S; Rice, Courtney J; Dubé, Céline M; Gall, Christine M; Lynch, Gary; Baram, Tallie Z

    2010-07-20

    Stress affects the hippocampus, a brain region crucial for memory. In rodents, acute stress may reduce density of dendritic spines, the location of postsynaptic elements of excitatory synapses, and impair long-term potentiation and memory. Steroid stress hormones and neurotransmitters have been implicated in the underlying mechanisms, but the role of corticotropin-releasing hormone (CRH), a hypothalamic hormone also released during stress within hippocampus, has not been elucidated. In addition, the causal relationship of spine loss and memory defects after acute stress is unclear. We used transgenic mice that expressed YFP in hippocampal neurons and found that a 5-h stress resulted in profound loss of learning and memory. This deficit was associated with selective disruption of long-term potentiation and of dendritic spine integrity in commissural/associational pathways of hippocampal area CA3. The degree of memory deficit in individual mice correlated significantly with the reduced density of area CA3 apical dendritic spines in the same mice. Moreover, administration of the CRH receptor type 1 (CRFR(1)) blocker NBI 30775 directly into the brain prevented the stress-induced spine loss and restored the stress-impaired cognitive functions. We conclude that acute, hours-long stress impairs learning and memory via mechanisms that disrupt the integrity of hippocampal dendritic spines. In addition, establishing the contribution of hippocampal CRH-CRFR(1) signaling to these processes highlights the complexity of the orchestrated mechanisms by which stress impacts hippocampal structure and function.

  13. Hippocampal internal architecture and postoperative seizure outcome in temporal lobe epilepsy due to hippocampal sclerosis.

    Science.gov (United States)

    Elkommos, Samia; Weber, Bernd; Niehusmann, Pitt; Volmering, Elisa; Richardson, Mark P; Goh, Yen Y; Marson, Anthony G; Elger, Christian; Keller, Simon S

    2016-02-01

    Semi-quantitative analysis of hippocampal internal architecture (HIA) on MRI has been shown to be a reliable predictor of the side of seizure onset in patients with temporal lobe epilepsy (TLE). In the present study, we investigated the relationship between postoperative seizure outcome and preoperative semi-quantitative measures of HIA. We determined HIA on high in-plane resolution preoperative T2 short tau inversion recovery MR images in 79 patients with presumed unilateral mesial TLE (mTLE) due to hippocampal sclerosis (HS) who underwent amygdalohippocampectomy and postoperative follow up. HIA was investigated with respect to postoperative seizure freedom, neuronal density determined from resected hippocampal specimens, and conventionally acquired hippocampal volume. HIA ratings were significantly related to some neuropathological features of the resected hippocampus (e.g. neuronal density of selective CA regions, Wyler grades), and bilaterally with preoperative hippocampal volume. However, there were no significant differences in HIA ratings of the to-be-resected or contralateral hippocampus between patients rendered seizure free (ILAE 1) compared to those continuing to experience seizures (ILAE 2-5). This work indicates that semi-quantitative assessment of HIA on high-resolution MRI provides a surrogate marker of underlying histopathology, but cannot prospectively distinguish between patients who will continue to experience postoperative seizures and those who will be rendered seizure free. The predictive power of HIA for postoperative seizure outcome in non-lesional patients with TLE should be explored. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Inhibitory microcircuit modules in hippocampal learning.

    Science.gov (United States)

    Caroni, Pico

    2015-12-01

    It has recently become possible to investigate connectivities and roles of identified hippocampal GABAergic interneurons (INs) in behaving rodents. INs targeting distinct pyramidal neuron subcompartments are recruited dynamically at defined phases of behavior and learning. They include Parvalbumin Axo-axonic and perisomatic Basket cells, and Somatostatin radiatum-oriens and oriens-lacunosum moleculare cells. Each IN is in turn either activated or inhibited upon specific behavioral and network state requirements through specific inputs and neuromodulators. Subpopulations of these principal neurons and INs interconnect selectively, suggesting selective processing and routing of alternate information streams. First canonical functional modules have emerged, which will have to be further defined and linked to identified afferents and efferents towards a circuit understanding of how hippocampal networks support behavior.

  15. A Compressed Sensing Perspective of Hippocampal Function

    Directory of Open Access Journals (Sweden)

    Panagiotis ePetrantonakis

    2014-08-01

    Full Text Available Hippocampus is one of the most important information processing units in the brain. Input from the cortex passes through convergent axon pathways to the downstream hippocampal subregions and, after being appropriately processed, is fanned out back to the cortex. Here, we review evidence of the hypothesis that information flow and processing in the hippocampus complies with the principles of Compressed Sensing (CS. The CS theory comprises a mathematical framework that describes how and under which conditions, restricted sampling of information (data set can lead to condensed, yet concise, forms of the initial, subsampled information entity (i.e. of the original data set. In this work, hippocampus related regions and their respective circuitry are presented as a CS-based system whose different components collaborate to realize efficient memory encoding and decoding processes. This proposition introduces a unifying mathematical framework for hippocampal function and opens new avenues for exploring coding and decoding strategies in the brain.

  16. Prediction of dementia by hippocampal shape analysis

    DEFF Research Database (Denmark)

    Achterberg, Hakim C.; van der Lijn, Fedde; den Heijer, Tom;

    2010-01-01

    This work investigates the possibility of predicting future onset of dementia in subjects who are cognitively normal, using hippocampal shape and volume information extracted from MRI scans. A group of 47 subjects who were non-demented normal at the time of the MRI acquisition, but were diagnosed...... and, if necessary, manually corrected by a trained observer. From this data a statistical model of hippocampal shape was constructed, using an entropy-based particle system. This shape model provided the input for a Support Vector Machine classifier to predict dementia. Cross validation experiments...... showed that shape information can predict future onset of dementia in this dataset with an accuracy of 70%. By incorporating both shape and volume information into the classifier, the accuracy increased to 74%....

  17. Risk assessment for the combinational effects of food color additives: neural progenitor cells and hippocampal neurogenesis.

    Science.gov (United States)

    Park, Mikyung; Park, Hee Ra; Kim, So Jung; Kim, Min-Sun; Kong, Kyoung Hye; Kim, Hyun Soo; Gong, Ein Ji; Kim, Mi Eun; Kim, Hyung Sik; Lee, Byung Mu; Lee, Jaewon

    2009-01-01

    In 2006, the Korea Food and Drug Administration reported that combinations of dietary colors such as allura red AC (R40), tartrazine (Y4), sunset yellow FCF (Y5), amaranth (R2), and brilliant blue FCF (B1) are widely used in food manufacturing. Although individual tar food colors are controlled based on acceptable daily intake (ADI), there is no apparent information available for how combinations of these additives affect food safety. In the current study, the potencies of single and combination use of R40, Y4, Y5, R2, and B1 were examined on neural progenitor cell (NPC) toxicity, a biomarker for developmental stage, and neurogenesis, indicative of adult central nervous system (CNS) functions. R40 and R2 reduced NPC proliferation and viability in mouse multipotent NPC, in the developing CNS model. Among several combinations tested in mouse model, combination of Y4 and B1 at 1000-fold higher than average daily intake in Korea significantly decreased numbers of newly generated cells in adult mouse hippocampus, indicating potent adverse actions on hippocampal neurogenesis. However, other combinations including R40 and R2 did not affect adult hippocampal neurogenesis in the dentate gyrus. Evidence indicates that single and combination use of most tar food colors may be safe with respect to risk using developmental NPC and adult hippocampal neurogenesis. However, the response to excessively high dose combination of Y4 and B1 is suggestive of synergistic effects to suppress proliferation of NPC in adult hippocampus. Data indicated that combinations of tar colors may adversely affect both developmental and adult hippocampal neurogenesis; thus, further extensive studies are required to assess the safety of these additive combinations.

  18. Effect of Opioid on Adult Hippocampal Neurogenesis

    OpenAIRE

    Yue Zhang; Loh, Horace H.; Ping-Yee Law

    2016-01-01

    During the past decade, the study of the mechanisms and functional implications of adult neurogenesis has significantly progressed. Many studies focus on the factors that regulate proliferation and fate determination of adult neural stem/progenitor cells, including addictive drugs such as opioid. Here, we review the most recent works on opiate drugs' effect on different developmental stages of adult hippocampal neurogenesis, as well as the possible underlying mechanisms. We conclude that opia...

  19. Active sulforhodamine 101 uptake into hippocampal astrocytes.

    Directory of Open Access Journals (Sweden)

    Christian Schnell

    Full Text Available Sulforhodamine 101 (SR101 is widely used as a marker of astrocytes. In this study we investigated labeling of astrocytes by SR101 in acute slices from the ventrolateral medulla and the hippocampus of transgenic mice expressing EGFP under the control of the astrocyte-specific human GFAP promoter. While SR101 efficiently and specifically labeled EGFP-expressing astrocytes in hippocampus, we found that the same staining procedure failed to label astrocytes efficiently in the ventrolateral medulla. Although carbenoxolone is able to decrease the SR101-labeling of astrocytes in the hippocampus, it is unlikely that SR101 is taken up via gap-junction hemichannels because mefloquine, a blocker for pannexin and connexin hemichannels, was unable to prevent SR101-labeling of hippocampal astrocytes. However, SR101-labeling of the hippocampal astrocytes was significantly reduced by substrates of organic anion transport polypeptides, including estron-3-sulfate and dehydroepiandrosterone sulfate, suggesting that SR101 is actively transported into hippocampal astrocytes.

  20. Updating the lamellar hypothesis of hippocampal organization.

    Science.gov (United States)

    Sloviter, Robert S; Lømo, Terje

    2012-01-01

    Andersen et al. (1971) proposed that excitatory activity in the entorhinal cortex propagates topographically to the dentate gyrus, and on through a "trisynaptic circuit" lying within transverse hippocampal "slices" or "lamellae." In this way, a relatively simple structure might mediate complex functions in a manner analogous to the way independent piano keys can produce a nearly infinite variety of unique outputs. The lamellar hypothesis derives primary support from the "lamellar" distribution of dentate granule cell axons (the mossy fibers), which innervate dentate hilar neurons and area CA3 pyramidal cells and interneurons within the confines of a thin transverse hippocampal segment. Following the initial formulation of the lamellar hypothesis, anatomical studies revealed that unlike granule cells, hilar mossy cells, CA3 pyramidal cells, and Layer II entorhinal cells all form axonal projections that are more divergent along the longitudinal axis than the clearly "lamellar" mossy fiber pathway. The existence of pathways with "translamellar" distribution patterns has been interpreted, incorrectly in our view, as justifying outright rejection of the lamellar hypothesis (Amaral and Witter, 1989). We suggest that the functional implications of longitudinally projecting axons depend not on whether they exist, but on what they do. The observation that focal granule cell layer discharges normally inhibit, rather than excite, distant granule cells suggests that longitudinal axons in the dentate gyrus may mediate "lateral" inhibition and define lamellar function, rather than undermine it. In this review, we attempt a reconsideration of the evidence that most directly impacts the physiological concept of hippocampal lamellar organization.

  1. Tuberous sclerosis complex coexistent with hippocampal sclerosis.

    Science.gov (United States)

    Lang, Min; Prayson, Richard A

    2016-02-01

    Tuberous sclerosis and hippocampal sclerosis are both well-defined entities associated with medically intractable epilepsy. To our knowledge, there has been only one prior case of these two pathologies being co-existent. We report a 7-month-old boy who presented with intractable seizures at 2 months of age. MRI studies showed diffuse volume loss in the brain with bilateral, multiple cortical tubers and subcortical migration abnormalities. Subependymal nodules were noted without subependymal giant cell astrocytoma. Genetic testing revealed TSC2 and PRD gene deletions. Histopathology of the hippocampus showed CA1 sclerosis marked by loss of neurons in the CA1 region. Sections from the temporal, parietal and occipital lobes showed multiple cortical tubers characterized by cortical architectural disorganization, gliosis, calcifications and increased number of large balloon cells. Focal white matter balloon cells and spongiform changes were also present. The patient underwent resection of the right fronto-parietal lobe and a subsequent resection of the right temporal, parietal and occipital lobes. The patient is free of seizures on anti-epileptic medication 69 months after surgery. Although hippocampal sclerosis is well documented to be associated with coexistent focal cortical dysplasia, the specific co-existence of cortical tubers and hippocampal sclerosis appears to be rare.

  2. Early detection of Alzheimer's disease using MRI hippocampal texture

    DEFF Research Database (Denmark)

    Sørensen, Lauge; Igel, Christian; Hansen, Naja Liv

    2016-01-01

    Cognitive impairment in patients with Alzheimer's disease (AD) is associated with reduction in hippocampal volume in magnetic resonance imaging (MRI). However, it is unknown whether hippocampal texture changes in persons with mild cognitive impairment (MCI) that does not have a change...... in hippocampal volume. We tested the hypothesis that hippocampal texture has association to early cognitive loss beyond that of volumetric changes. The texture marker was trained and evaluated using T1-weighted MRI scans from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, and subsequently...

  3. Agmatine increases proliferation of cultured hippocampal progenitor cells and hippocampal neurogenesis in chronically stressed mice

    Institute of Scientific and Technical Information of China (English)

    Yun-feng LI; Hong-xia CHEN; Ying LIU; You-zhi ZHANG; Yan-qin LIU; Jin LI

    2006-01-01

    Aim:To explore the mechanism of agmatine's antidepressant action.Methods: Male mice were subjected to a variety of unpredictable stressors on a daily basis over a 24-d period.The open-field behaviors of the mice were displayed and recorded using a Videomex-V image analytic system automatically.For bromodeoxyuridine (BrdU;thymidine analog as a marker for dividing cells) labeling,the mice were injected with BrdU (100 mg/kg,ip,twice per d for 2 d),and the hippocampal neurogenesis in stressed mice was measured by immunohistochemistry.The proliferation of cultured hippocampal progenitor cells from neonatal rats was determined by colorimetric assay (cell counting kit-8) and 3H-thymidine incorporation assay.Results:After the onset of chronic stress,the locomotor activity of the mice in the open field significantly decreased,while coadministration of agmatine 10 mg/kg (po) blocked it.Furthermore,the number of BrdU-labeled cells in the hippocampal dentate gyrus significantly decreased in chronically stressed mice, which was also blocked by chronic coadministration with agmatine 10 mg/kg (po). Four weeks after the BrdU injection, some of the new born cells matured and became neurons, as determined by double labeling for BrdU and neuron specific enolase (NSE), a marker for mature neurons.In vitro treatment with agmatine 0.1-10 μmo1/L for 3 d significantly increased the proliferation of the cultured hippocampal progenitor cells in a dose-dependent manner.Conclusion:We have found that agmatine increases proliferation of hippocampal progenitor cells in vitro and the hippocampal neurogenesis in vivo in chronically stressed mice.This may be one of the important mechanisms involved in agmatine's antidepressant action.

  4. Amyloid Beta-peptide (25-35) changes (Ca2+) in hippocampal neurons

    DEFF Research Database (Denmark)

    Mogensen, Helle Smidt; Beatty, Diane; Morris, Stephen

    1998-01-01

    neuroscience, Alzheimer, calcium ion, hippocampal neurons, amyloid-beta-peptide, hydrogen ion, rat......neuroscience, Alzheimer, calcium ion, hippocampal neurons, amyloid-beta-peptide, hydrogen ion, rat...

  5. Revisiting the Lamotrigine-Mediated Effect on Hippocampal GABAergic Transmission

    Directory of Open Access Journals (Sweden)

    Yu-Yin Huang

    2016-07-01

    Full Text Available Lamotrigine (LTG is generally considered as a voltage-gated sodium (Nav channel blocker. However, recent studies suggest that LTG can also serve as a hyperpolarization-activated cyclic nucleotide-gated (HCN channel enhancer and can increase the excitability of GABAergic interneurons (INs. Perisomatic inhibitory INs, predominantly fast-spiking basket cells (BCs, powerfully inhibit granule cells (GCs in the hippocampal dentate gyrus. Notably, BCs express abundant Nav channels and HCN channels, both of which are able to support sustained action potential generation. Using whole-cell recording in rat hippocampal slices, we investigated the net LTG effect on BC output. We showed that bath application of LTG significantly decreased the amplitude of evoked compound inhibitory postsynaptic currents (IPSCs in GCs. In contrast, simultaneous paired recordings from BCs to GCs showed that LTG had no effect on both the amplitude and the paired-pulse ratio of the unitary IPSCs, suggesting that LTG did not affect GABA release, though it suppressed cell excitability. In line with this, LTG decreased spontaneous IPSC (sIPSC frequency, but not miniature IPSC frequency. When re-examining the LTG effect on GABAergic transmission in the cornus ammonis region 1 (CA1 area, we found that LTG markedly inhibits both the excitability of dendrite-targeting INs in the stratum oriens and the concurrent sIPSCs recorded on their targeting pyramidal cells (PCs without significant hyperpolarization-activated current (Ih enhancement. In summary, LTG has no effect on augmenting Ih in GABAergic INs and does not promote GABAergic inhibitory output. The antiepileptic effect of LTG is likely through Nav channel inhibition and the suppression of global neuronal network activity.

  6. Specific regulatory motifs predict glucocorticoid responsiveness of hippocampal gene expression.

    Science.gov (United States)

    Datson, N A; Polman, J A E; de Jonge, R T; van Boheemen, P T M; van Maanen, E M T; Welten, J; McEwen, B S; Meiland, H C; Meijer, O C

    2011-10-01

    The glucocorticoid receptor (GR) is an ubiquitously expressed ligand-activated transcription factor that mediates effects of cortisol in relation to adaptation to stress. In the brain, GR affects the hippocampus to modulate memory processes through direct binding to glucocorticoid response elements (GREs) in the DNA. However, its effects are to a high degree cell specific, and its target genes in different cell types as well as the mechanisms conferring this specificity are largely unknown. To gain insight in hippocampal GR signaling, we characterized to which GRE GR binds in the rat hippocampus. Using a position-specific scoring matrix, we identified evolutionary-conserved putative GREs from a microarray based set of hippocampal target genes. Using chromatin immunoprecipitation, we were able to confirm GR binding to 15 out of a selection of 32 predicted sites (47%). The majority of these 15 GREs are previously undescribed and thus represent novel GREs that bind GR and therefore may be functional in the rat hippocampus. GRE nucleotide composition was not predictive for binding of GR to a GRE. A search for conserved flanking sequences that may predict GR-GRE interaction resulted in the identification of GC-box associated motifs, such as Myc-associated zinc finger protein 1, within 2 kb of GREs with GR binding in the hippocampus. This enrichment was not present around nonbinding GRE sequences nor around proven GR-binding sites from a mesenchymal stem-like cell dataset that we analyzed. GC-binding transcription factors therefore may be unique partners for DNA-bound GR and may in part explain cell-specific transcriptional regulation by glucocorticoids in the context of the hippocampus.

  7. Intracellular messengers in the generation and degeneration of hippocampal neuroarchitecture.

    Science.gov (United States)

    Mattson, M P; Guthrie, P B; Kater, S B

    1988-01-01

    The actions and interactions of the neurotransmitter glutamate and the intracellular messengers calcium, cyclic AMP, and protein kinase C (PKC) in the regulation of neurite outgrowth and cell survival were examined in hippocampal pyramidal-like neurons in isolated cell culture. Low, subtoxic levels of glutamate (10-100 microM) caused the regression of dendrites but not axons; millimolar levels caused cell death. Calcium ionophore A23187 (50-100 nM) and the PKC activator phorbol-12-myristate-13-acetate (PMA; 10-50 nM) caused the regression of both axons and dendrites, whereas the adenylate cyclase activator forskolin enhanced outgrowth rates in both axons and dendrites. The effects of glutamate, A23187, PMA, and forskolin on outgrowth were mediated locally at the growth cones; dendrites were more sensitive than axons to each of these agents. High levels of A23187 (1 microM) or PMA (100 nM) significantly reduced cell survival. Co2+ and trifluoperazine each significantly reduced glutamate-induced dendritic regression and neurotoxicity suggesting that calcium influx and/or PKC activation mediated glutamate's actions. Fura-2 measurements showed that glutamate caused a rapid rise in intracellular calcium levels; this rise was prevented by Co2+. PMA and forskolin did not alter intracellular calcium levels, nor did these agents affect glutamate-induced calcium rises. Taken together, the results indicate that parallel intracellular messenger pathways that influence neurite outgrowth and cell survival are operative in hippocampal neurons; these messengers may play roles in the formation and modification of neuronal circuitry.

  8. Dynamic Characteristics of the Hippocampal Neuron under Conductance’s Changing

    Directory of Open Access Journals (Sweden)

    Yueping Peng

    2011-02-01

    Full Text Available The hippocampal CA1 pyramid neuron has plenty of discharge actions. In the thesis, the dynamic characteristics of the hippocampal neuron model are analyzed and discussed by the neurodynamic theory and methods. Under a certain amplitude current’s stimulation, the change of gNa(the maximum conductance of the transient sodium channel and gKdr (the maximum conductance of the delay rectification potassium channel can cause different dynamic characteristics of the neuron model. The transient Na+ current(INa caused by gNa is indispensable in the discharge’s formation process of the model. The model can generate the discharge process only when gNa reaches a certain threshold. In the discharge process of the neuron model, gNa’s changing affects little and the ISIs approximate to a straight line. The delay rectification K+ current(Ikdr caused by gKdr isn’t indispensable in the discharge’s formation process of the model. But gKdr’s changing affects much in the discharge process of the neuron model. With gKdr’s changing, the neuron model undergoes different dynamic bifurcation process, and has plenty of discharge patterns such as the chaos, period, and so on. This investigation is helpful to know and investigate the dynamic characteristics and the bifurcation mechanism of the hippocampal neuron; and it provides a certain theory assist to investigate the neural diseases such as the Alzheimer disease by neurodynamics.

  9. Constitutive and Acquired Serotonin Deficiency Alters Memory and Hippocampal Synaptic Plasticity.

    Science.gov (United States)

    Fernandez, Sebastian P; Muzerelle, Aude; Scotto-Lomassese, Sophie; Barik, Jacques; Gruart, Agnès; Delgado-García, José M; Gaspar, Patricia

    2017-01-01

    Serotonin (5-HT) deficiency occurs in a number of brain disorders that affect cognitive function. However, a direct causal relationship between 5-HT hypo-transmission and memory and underlying mechanisms has not been established. We used mice with a constitutive depletion of 5-HT brain levels (Pet1KO mice) to analyze the contribution of 5-HT to different forms of learning and memory. Pet1KO mice exhibited a striking deficit in novel object recognition memory, a hippocampal-dependent task. No alterations were found in tasks for social recognition, procedural learning, or fear memory. Viral delivery of designer receptors exclusively activated by designer drugs was used to selectively silence the activity of 5-HT neurons in the raphe. Inhibition of 5-HT neurons in the median raphe, but not the dorsal raphe, was sufficient to impair object recognition in adult mice. In vivo electrophysiology in behaving mice showed that long-term potentiation in the hippocampus of 5-HT-deficient mice was altered, and administration of the 5-HT1A agonist 8-OHDPAT rescued the memory deficits. Our data suggest that hyposerotonergia selectively affects declarative hippocampal-dependent memory. Serotonergic projections from the median raphe are necessary to regulate object memory and hippocampal synaptic plasticity processes, through an inhibitory control mediated by 5-HT1A receptors.

  10. Astroglial Plasticity Is Implicated in Hippocampal Remodelling in Adult Rats Exposed to Antenatal Dexamethasone.

    Science.gov (United States)

    Shende, Vishvesh H; McArthur, Simon; Gillies, Glenda E; Opacka-Juffry, Jolanta

    2015-01-01

    The long-term effects of antenatal dexamethasone treatment on brain remodelling in 3-month-old male Sprague Dawley rats whose mothers had been treated with dexamethasone were investigated in the present study. Dorsal hippocampus, basolateral amygdala and nucleus accumbens volume, cell numbers, and GFAP-immunoreactive astroglial cell morphology were analysed using stereology. Total brain volume as assessed by micro-CT was not affected by the treatment. The relative volume of the dorsal hippocampus (% of total brain volume) showed a moderate, by 8%, but significant reduction in dexamethasone-treated versus control animals. Dexamethasone had no effect on the total and GFAP-positive cell numbers in the hippocampal subregions, basolateral amygdala, and nucleus accumbens. Morphological analysis indicated that numbers of astroglial primary processes were not affected in any of the hippocampal subregions analysed but significant reductions in the total primary process length were observed in CA1 by 32%, CA3 by 50%, and DG by 25%. Mean primary process length values were also significantly decreased in CA1 by 25%, CA3 by 45%, and DG by 25%. No significant astroglial morphological changes were found in basolateral amygdala and nucleus accumbens. We propose that the dexamethasone-dependent impoverishment of hippocampal astroglial morphology is the case of maladaptive glial plasticity induced prenatally.

  11. Astroglial Plasticity Is Implicated in Hippocampal Remodelling in Adult Rats Exposed to Antenatal Dexamethasone

    Directory of Open Access Journals (Sweden)

    Vishvesh H. Shende

    2015-01-01

    Full Text Available The long-term effects of antenatal dexamethasone treatment on brain remodelling in 3-month-old male Sprague Dawley rats whose mothers had been treated with dexamethasone were investigated in the present study. Dorsal hippocampus, basolateral amygdala and nucleus accumbens volume, cell numbers, and GFAP-immunoreactive astroglial cell morphology were analysed using stereology. Total brain volume as assessed by micro-CT was not affected by the treatment. The relative volume of the dorsal hippocampus (% of total brain volume showed a moderate, by 8%, but significant reduction in dexamethasone-treated versus control animals. Dexamethasone had no effect on the total and GFAP-positive cell numbers in the hippocampal subregions, basolateral amygdala, and nucleus accumbens. Morphological analysis indicated that numbers of astroglial primary processes were not affected in any of the hippocampal subregions analysed but significant reductions in the total primary process length were observed in CA1 by 32%, CA3 by 50%, and DG by 25%. Mean primary process length values were also significantly decreased in CA1 by 25%, CA3 by 45%, and DG by 25%. No significant astroglial morphological changes were found in basolateral amygdala and nucleus accumbens. We propose that the dexamethasone-dependent impoverishment of hippocampal astroglial morphology is the case of maladaptive glial plasticity induced prenatally.

  12. Dorsal hippocampal lesions impair blocking but not latent inhibition of taste aversion learning in rats.

    Science.gov (United States)

    Gallo, M; Cándido, A

    1995-06-01

    The aim of the present experiments was to study the effect of nonselective electrolytic lesions of the rat dorsal hippocampus on 2 learning phenomena: the L.J. Kamin (1969) blocking effect and latent inhibition of taste aversion learning. Bilateral dorsal hippocampal lesions selectively impaired blocking induced by 1 saccharin-lithium chloride pairing previous to 1 serial compound (saccharin-cider vinegar)-lithium pairing, but lesions had no effect on latent inhibition of a saline aversion, induced by 6 saline preexposures, in the same group of animals. Moreover, dorsal hippocampal lesions did not affect latent inhibition of saccharin-conditioned aversion induced by 1 or 6 preexposures. It is argued that blocking and latent inhibition of taste aversion learning do not share a common neural mechanism.

  13. Amyloid β Peptide-Induced Changes in Prefrontal Cortex Activity and Its Response to Hippocampal Input

    Directory of Open Access Journals (Sweden)

    Ernesto Flores-Martínez

    2017-01-01

    Full Text Available Alterations in prefrontal cortex (PFC function and abnormalities in its interactions with other brain areas (i.e., the hippocampus have been related to Alzheimer Disease (AD. Considering that these malfunctions correlate with the increase in the brain’s amyloid beta (Aβ peptide production, here we looked for a causal relationship between these pathognomonic signs of AD. Thus, we tested whether or not Aβ affects the activity of the PFC network and the activation of this cortex by hippocampal input stimulation in vitro. We found that Aβ application to brain slices inhibits PFC spontaneous network activity as well as PFC activation, both at the population and at the single-cell level, when the hippocampal input is stimulated. Our data suggest that Aβ can contribute to AD by disrupting PFC activity and its long-range interactions throughout the brain.

  14. Specific Downregulation of Hippocampal ATF4 Reveals a Necessary Role in Synaptic Plasticity and Memory

    Directory of Open Access Journals (Sweden)

    Silvia Pasini

    2015-04-01

    Full Text Available Prior studies suggested that the transcription factor ATF4 negatively regulates synaptic plastic and memory. By contrast, we provide evidence from direct in vitro and in vivo knockdown of ATF4 in rodent hippocampal neurons and from ATF4-null mice that implicate ATF4 as essential for normal synaptic plasticity and memory. In particular, hippocampal ATF4 downregulation produces deficits in long-term spatial memory and behavioral flexibility without affecting associative memory or anxiety-like behavior. ATF4 knockdown or loss also causes profound impairment of both long-term potentiation (LTP and long-term depression (LTD as well as decreased glutamatergic function. We conclude that ATF4 is a key regulator of the physiological state necessary for neuronal plasticity and memory.

  15. Amyloid β Peptide-Induced Changes in Prefrontal Cortex Activity and Its Response to Hippocampal Input

    Science.gov (United States)

    Flores-Martínez, Ernesto

    2017-01-01

    Alterations in prefrontal cortex (PFC) function and abnormalities in its interactions with other brain areas (i.e., the hippocampus) have been related to Alzheimer Disease (AD). Considering that these malfunctions correlate with the increase in the brain's amyloid beta (Aβ) peptide production, here we looked for a causal relationship between these pathognomonic signs of AD. Thus, we tested whether or not Aβ affects the activity of the PFC network and the activation of this cortex by hippocampal input stimulation in vitro. We found that Aβ application to brain slices inhibits PFC spontaneous network activity as well as PFC activation, both at the population and at the single-cell level, when the hippocampal input is stimulated. Our data suggest that Aβ can contribute to AD by disrupting PFC activity and its long-range interactions throughout the brain. PMID:28127312

  16. Diazinon and diazoxon impair the ability of astrocytes to foster neurite outgrowth in primary hippocampal neurons

    Energy Technology Data Exchange (ETDEWEB)

    Pizzurro, Daniella M.; Dao, Khoi [Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA (United States); Costa, Lucio G. [Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA (United States); Department of Neuroscience, University of Parma, Parma (Italy)

    2014-02-01

    Evidence from in vivo and epidemiological studies suggests that organophosphorus insecticides (OPs) are developmental neurotoxicants, but possible underlying mechanisms are still unclear. Astrocytes are increasingly recognized for their active role in normal neuronal development. This study sought to investigate whether the widely-used OP diazinon (DZ), and its oxygen metabolite diazoxon (DZO), would affect glial–neuronal interactions as a potential mechanism of developmental neurotoxicity. Specifically, we investigated the effects of DZ and DZO on the ability of astrocytes to foster neurite outgrowth in primary hippocampal neurons. The results show that both DZ and DZO adversely affect astrocyte function, resulting in inhibited neurite outgrowth in hippocampal neurons. This effect appears to be mediated by oxidative stress, as indicated by OP-induced increased reactive oxygen species production in astrocytes and prevention of neurite outgrowth inhibition by antioxidants. The concentrations of OPs were devoid of cytotoxicity, and cause limited acetylcholinesterase inhibition in astrocytes (18 and 25% for DZ and DZO, respectively). Among astrocytic neuritogenic factors, the most important one is the extracellular matrix protein fibronectin. DZ and DZO decreased levels of fibronectin in astrocytes, and this effect was also attenuated by antioxidants. Underscoring the importance of fibronectin in this context, adding exogenous fibronectin to the co-culture system successfully prevented inhibition of neurite outgrowth caused by DZ and DZO. These results indicate that DZ and DZO increase oxidative stress in astrocytes, and this in turn modulates astrocytic fibronectin, leading to impaired neurite outgrowth in hippocampal neurons. - Highlights: • DZ and DZO inhibit astrocyte-mediated neurite outgrowth in rat hippocampal neurons. • Oxidative stress is involved in inhibition of neuritogenesis by DZ and DZO. • DZ and DZO decrease expression of the neuritogenic

  17. Forniceal deep brain stimulation rescues hippocampal memory in Rett syndrome mice.

    Science.gov (United States)

    Hao, Shuang; Tang, Bin; Wu, Zhenyu; Ure, Kerstin; Sun, Yaling; Tao, Huifang; Gao, Yan; Patel, Akash J; Curry, Daniel J; Samaco, Rodney C; Zoghbi, Huda Y; Tang, Jianrong

    2015-10-15

    Deep brain stimulation (DBS) has improved the prospects for many individuals with diseases affecting motor control, and recently it has shown promise for improving cognitive function as well. Several studies in individuals with Alzheimer disease and in amnesic rats have demonstrated that DBS targeted to the fimbria-fornix, the region that appears to regulate hippocampal activity, can mitigate defects in hippocampus-dependent memory. Despite these promising results, DBS has not been tested for its ability to improve cognition in any childhood intellectual disability disorder. Such disorders are a pressing concern: they affect as much as 3% of the population and involve hundreds of different genes. We proposed that stimulating the neural circuits that underlie learning and memory might provide a more promising route to treating these otherwise intractable disorders than seeking to adjust levels of one molecule at a time. We therefore studied the effects of forniceal DBS in a well-characterized mouse model of Rett syndrome (RTT), which is a leading cause of intellectual disability in females. Caused by mutations that impair the function of MeCP2 (ref. 6), RTT appears by the second year of life in humans, causing profound impairment in cognitive, motor and social skills, along with an array of neurological features. RTT mice, which reproduce the broad phenotype of this disorder, also show clear deficits in hippocampus-dependent learning and memory and hippocampal synaptic plasticity. Here we show that forniceal DBS in RTT mice rescues contextual fear memory as well as spatial learning and memory. In parallel, forniceal DBS restores in vivo hippocampal long-term potentiation and hippocampal neurogenesis. These results indicate that forniceal DBS might mitigate cognitive dysfunction in RTT.

  18. Effects of hippocampal state-contingent trial presentation on hippocampus-dependent nonspatial classical conditioning and extinction.

    Science.gov (United States)

    Nokia, Miriam S; Wikgren, Jan

    2014-04-23

    Hippocampal local field potentials are characterized by two mutually exclusive states: one characterized by regular θ oscillations (∼4-8 Hz) and the other by irregular sharp-wave ripples. Presenting stimuli during dominant θ oscillations leads to expedited learning, suggesting that θ indexes a state in which encoding is most effective. However, ripple-contingent training also expedites learning, suggesting that any discrete brain state, much like the external context, can affect learning. We trained adult rabbits in trace eyeblink conditioning, a hippocampus-dependent nonspatial task, followed by extinction. Trials were delivered either in the presence or absence of θ or regardless of hippocampal state. Conditioning in the absence of θ led to more animals learning, although learning was slower compared with a yoked control group. Contrary to expectations, conditioning in the presence of θ did not affect learning. However, extinction was expedited both when it was conducted contingent on θ and when it was conducted in a state contrary to that used to trigger trials during conditioning. Strong phase-locking of hippocampal θ-band responses to the conditioned stimulus early on during conditioning predicted good learning. No such connection was observed during extinction. Our results suggest that any consistent hippocampal oscillatory state can potentially be used to regulate learning. However, the effects depend on the specific state and task at hand. Finally, much like the external environment, the ongoing neural state appears to act as a context for learning and memory retrieval.

  19. The aspirin metabolite salicylate enhances neuronal excitation in rat hippocampal CA1 area through reducing GABAergic inhibition.

    Science.gov (United States)

    Gong, Neng; Zhang, Min; Zhang, Xiao-Bing; Chen, Lin; Sun, Guang-Chun; Xu, Tian-Le

    2008-02-01

    Salicylate is the major metabolite and active component of aspirin (acetylsalicylic acid), which is widely used in clinical medicine for treating inflammation, pain syndromes and cardiovascular disorders. The well-known mechanism underlying salicylate's action mainly involves the inhibition of cyclooxygenase and subsequent decrease in prostaglandin production. Recent evidence suggests that salicylate also affects neuronal function through interaction with specific membrane channels/receptors. However, the effect of salicylate on synaptic and neural network function remains largely unknown. In this study, we investigated the effect of sodium salicylate on the synaptic transmission and neuronal excitation in the hippocampal CA1 area of rats, a key structure for many complex brain functions. With electrophysiological recordings in hippocampal slices, we found that sodium salicylate significantly enhanced neuronal excitation through reducing inhibitory GABAergic transmission without affecting the basal excitatory synaptic transmission. Salicylate significantly inhibited the amplitudes of both evoked and miniature inhibitory postsynaptic currents, and directly reduced gamma-aminobutyric acid type A (GABA(A)) receptor-mediated responses in cultured rat hippocampal neurons. Together, our results suggest that the widely used aspirin might impair hippocampal synaptic and neural network functions through its actions on GABAergic neurotransmission. Given the capability of aspirin to penetrate the blood-brain barrier, the present data imply that aspirin intake may cause network hyperactivity and be potentially harmful in susceptible subpopulations.

  20. Hippocampal EEG and behaviour in dog. I. Hippocampal EEG correlates of gross motor behaviour

    NARCIS (Netherlands)

    Arnolds, D.E.A.T.; Lopes da Silva, F.H.; Aitink, J.W.; Kamp, A.

    It was shown that rewarding spectral shifts (i.e. increase in amplitude or peak frequency of the hippocampal EEG) causes a solitary dog to show increased motor behaviour. Rewarded spectral shifts concurred with a variety of behavioural transitions. It was found that statistically significant

  1. Anterior Thalamic Lesions Alter Both Hippocampal-Dependent Behavior and Hippocampal Acetylcholine Release in the Rat

    Science.gov (United States)

    Savage, Lisa M.; Hall, Joseph M.; Vetreno, Ryan P.

    2011-01-01

    The anterior thalamic nuclei (ATN) are important for learning and memory as damage to this region produces a persistent amnestic syndrome. Dense connections between the ATN and the hippocampus exist, and importantly, damage to the ATN can impair hippocampal functioning. Acetylcholine (ACh) is a key neurotransmitter in the hippocampus, and in vivo…

  2. Aberrant hippocampal neurogenesis after limbic kindling: Relationship to BDNF and hippocampal-dependent memory.

    Science.gov (United States)

    Botterill, J J; Brymer, K J; Caruncho, H J; Kalynchuk, L E

    2015-06-01

    Seizures dramatically increase the number of adult generated neurons in the hippocampus. However, it is not known whether this effect depends on seizures that originate in specific brain regions or whether it is nonspecific to seizure activity regardless of origin. We used kindling of different brain sites to address this question. Rats received 99 kindling stimulations of the basolateral amygdala, dorsal hippocampus, or caudate nucleus over a 6-week period. After kindling, we counted the number of adult generated hippocampal neurons that were birth-dated with the proliferative marker bromodeoxyuridine (BrdU) to evaluate cell proliferation and survival under conditions of repeated seizures. Next, we counted the number of doublecortin immunoreactive (DCX-ir) cells and evaluated their dendritic complexity to determine if limbic and nonlimbic seizures have differential effects on neuronal maturation. We also quantified hippocampal brain-derived neurotrophin factor (BDNF) protein levels using an ELISA kit and assessed memory performance using a hippocampal-dependent fear conditioning paradigm. We found that limbic, but not nonlimbic, seizures dramatically increased hippocampal cell proliferation and the number of hilar-CA3 ectopic granule cells. Further, limbic kindling promoted dendritic outgrowth of DCX-ir cells and the number of DCX-ir cells containing basal dendrites. Limbic kindling also enhanced BDNF protein levels throughout the entire hippocampus and impaired the retrieval of fear memories. Collectively, our results suggest a relationship between limbic seizures, neurogenesis, BDNF protein, and cognition.

  3. In vitro dose-dependent inhibition of the intracellular spontaneous calcium oscillations in developing hippocampal neurons by ketamine.

    Directory of Open Access Journals (Sweden)

    Lining Huang

    Full Text Available Spatial and temporal abnormalities in the frequency and amplitude of the cytosolic calcium oscillations can impact the normal physiological functions of neuronal cells. Recent studies have shown that ketamine can affect the growth and development and even induce the apoptotic death of neurons. This study used isolated developing hippocampal neurons as its study subjects to observe the effect of ketamine on the intracellular calcium oscillations in developing hippocampal neurons and to further explore its underlying mechanism using Fluo-4-loaded laser scanning confocal microscopy. Using a semi-quantitative method to analyze the spontaneous calcium oscillatory activities, a typical type of calcium oscillation was observed in developing hippocampal neurons. In addition, the administration of NMDA (N-Methyl-D-aspartate at a concentration of 100 µM increased the calcium oscillation amplitude. The administration of MK801 at a concentration of 40 µM inhibited the amplitude and frequency of the calcium oscillations. Our results demonstrated that an increase in the ketamine concentration, starting from 30 µM, gradually decreased the neuronal calcium oscillation amplitude. The inhibition of the calcium oscillation frequency by 300 µM ketamine was statistically significant, and the neuronal calcium oscillations were completely eliminated with the administration of 3,000 µM Ketamine. The administration of 100, 300, and 1,000 µM NMDA to the 1 mM ketamine-pretreated hippocampal neurons restored the frequency and amplitude of the calcium oscillations in a dose-dependent manner. In fact, a concentration of 1,000 µM NMDA completely reversed the decrease in the calcium oscillation frequency and amplitude that was induced by 1 mM ketamine. This study revealed that ketamine can inhibit the frequency and amplitude of the calcium oscillations in developing hippocampal neurons though the NMDAR (NMDA receptor in a dose-dependent manner, which might highlight a

  4. Atorvastatin enhances kainate-induced gamma oscillations in rat hippocampal slices.

    Science.gov (United States)

    Li, Chengzhang; Wang, Jiangang; Zhao, Jianhua; Wang, Yali; Liu, Zhihua; Guo, Fang Li; Wang, Xiao Fang; Vreugdenhil, Martin; Lu, Cheng Biao

    2016-09-01

    Atorvastatin has been shown to affect cognitive functions in rodents and humans. However, the underlying mechanism is not fully understood. Because hippocampal gamma oscillations (γ, 20-80 Hz) are associated with cognitive functions, we studied the effect of atorvastatin on persistent kainate-induced γ oscillation in the CA3 area of rat hippocampal slices. The involvement of NMDA receptors and multiple kinases was tested before and after administration of atorvastatin. Whole-cell current-clamp and voltage-clamp recordings were made from CA3 pyramidal neurons and interneurons before and after atorvastatin application. Atorvastatin increased γ power by ~ 50% in a concentration-dependent manner, without affecting dominant frequency. Whereas atorvastatin did not affect intrinsic properties of both pyramidal neurons and interneurons, it increased the firing frequency of interneurons but not that of pyramidal neurons. Furthermore, whereas atorvastatin did not affect synaptic current amplitude, it increased the frequency of spontaneous inhibitory post-synaptic currents, but did not affect the frequency of spontaneous excitatory post-synaptic currents. The atorvastatin-induced enhancement of γ oscillations was prevented by pretreatment with the PKA inhibitor H89, the ERK inhibitor U0126, or the PI3K inhibitor wortmanin, but not by the NMDA receptor antagonist D-AP5. Taken together, these results demonstrate that atorvastatin enhanced the kainate-induced γ oscillation by increasing interneuron excitability, with an involvement of multiple intracellular kinase pathways. Our study suggests that the classical cholesterol-lowering agent atorvastatin may improve cognitive functions compromised in disease, via the enhancement of hippocampal γ oscillations.

  5. Hippocampal somatostatin receptors and modulation of adenylyl cyclase activity in histamine-treated rats.

    Science.gov (United States)

    Puebla, L; Rodríguez-Martín, E; Arilla, E

    1996-01-01

    In the present study, the effects of an intracerebroventricular (i.c.v.) dose of histamine (0.1, 1.0 or 10.0 micrograms) on the hippocampal somatostatin (SS) receptor/effector system in Wistar rats were investigated. In view of the rapid onset of histamine action, the effects of histamine on the somatostatinergic system were studied 2 h after its administration. Hippocampal SS-like immunoreactivity (SSLI) levels were not modified by any of the histamine doses studied. SS-mediated inhibition of basal and forskolin (FK)-stimulated adenylyl cyclase (AC) activity was markedly increased in hippocampal membranes from rats treated with 10 micrograms of histamine (23% +/- 1% vs. 17% +/- 1% and 37% +/- 2% vs. 23% +/- 1%, respectively). In contrast, neither the basal nor the FK-stimulated enzyme activities were affected by histamine administration. The functional activity of the hippocampal guanine-nucleotide binding inhibitory protein (Gi protein), as assessed by the capacity of the stable GTP analogue 5'-guanylylimidodiphosphate (Gpp[NH]p) to inhibit FK-stimulated AC activity, was not modified by histamine administration. These data suggest that the increased response of the enzyme to SS was not related to an increased functional activity of Gi proteins. In fact, the increased AC response to SS in hippocampal membranes from histamine (10 micrograms)-treated rats was associated with quantitative changes in the SS receptors. Equilibrium binding data obtained with [125I]Tyr11-SS indicate an increase in the number with specific SS receptors (541 +/- 24 vs. 365 +/- 16 fmol/mg protein, P histamine (10 micrograms)-treated rats as compared to control animals. With the aim of determining if these changes were related to histamine binding to its specific receptor sites, the histaminergic H1 and H2 receptor antagonists mepyramine and cimetidine, respectively, were administered 1 h before histamine injection. The pretreatment with mepyramine or cimetidine induced an increase in the

  6. Modeling Impaired Hippocampal Neurogenesis after Radiation Exposure.

    Science.gov (United States)

    Cacao, Eliedonna; Cucinotta, Francis A

    2016-03-01

    Radiation impairment of neurogenesis in the hippocampal dentate gyrus is one of several factors associated with cognitive detriments after treatment of brain cancers in children and adults with radiation therapy. Mouse models have been used to study radiation-induced changes in neurogenesis, however the models are limited in the number of doses, dose fractions, age and time after exposure conditions that have been studied. The purpose of this study is to develop a novel predictive mathematical model of radiation-induced changes to neurogenesis using a system of nonlinear ordinary differential equations (ODEs) to represent the time, age and dose-dependent changes to several cell populations participating in neurogenesis as reported in mouse experiments exposed to low-LET radiation. We considered four compartments to model hippocampal neurogenesis and, consequently, the effects of radiation treatment in altering neurogenesis: (1) neural stem cells (NSCs), (2) neuronal progenitor cells or neuroblasts (NB), (3) immature neurons (ImN) and (4) glioblasts (GB). Because neurogenesis is decreasing with increasing mouse age, a description of the age-related dynamics of hippocampal neurogenesis is considered in the model, which is shown to be an important factor in comparisons to experimental data. A key feature of the model is the description of negative feedback regulation on early and late neuronal proliferation after radiation exposure. The model is augmented with parametric descriptions of the dose and time after irradiation dependences of activation of microglial cells and a possible shift of NSC proliferation from neurogenesis to gliogenesis reported at higher doses (∼10 Gy). Predictions for dose-fractionation regimes and for different mouse ages, and prospects for future work are then discussed.

  7. Chemotherapy, cognitive impairment and hippocampal toxicity.

    Science.gov (United States)

    Dietrich, J; Prust, M; Kaiser, J

    2015-11-19

    Cancer therapies can be associated with significant central nervous system (CNS) toxicity. While radiation-induced brain damage has been long recognized both in pediatric and adult cancer patients, CNS toxicity from chemotherapy has only recently been acknowledged. Clinical studies suggest that the most frequent neurotoxic adverse effects associated with chemotherapy include memory and learning deficits, alterations of attention, concentration, processing speed and executive function. Preclinical studies have started to shed light on how chemotherapy targets the CNS both on cellular and molecular levels to disrupt neural function and brain plasticity. Potential mechanisms include direct cellular toxicity, alterations in cellular metabolism, oxidative stress, and induction of pro-inflammatory processes with subsequent disruption of normal cellular and neurological function. Damage to neural progenitor cell populations within germinal zones of the adult CNS has been identified as one of the key mechanisms by which chemotherapy might exert long-lasting and progressive neurotoxic effects. Based on the important role of the hippocampus for maintenance of brain plasticity throughout life, several experimental studies have focused on the study of chemotherapy effects on hippocampal neurogenesis and associated learning and memory. An increasing body of literature from both animal studies and neuroimaging studies in cancer patients suggests a possible relationship between chemotherapy induced hippocampal damage and the spectrum of neurocognitive deficits and mood alterations observed in cancer patients. This review aims to briefly summarize current preclinical and neuroimaging studies that are providing a potential link between the neurotoxic effects of chemotherapy and hippocampal dysfunction, highlighting challenges and future directions in this field of investigation.

  8. Control of noradrenaline release from hippocampal synaptosomes

    Energy Technology Data Exchange (ETDEWEB)

    West, D.P.; Fillenz, M.

    1981-10-01

    Potassium-evoked tritiated noradrenaline (NA) release from hippocampal synaptosomes was measured with a superfusion method. A single 2-min high-K+ pulse released 39% of the vesicular NA by a Ca2+-dependent mechanism: the Ca2+-independent release was negligible. After changing the vesicular NA store size by pretreating rats with either alpha-methyl-para-tyrosine, 500 mg/kg, or tranylcypromine, 10 mg/kg, a single K+ pulse released a constant percentage of the vesicular NA. With two K+ pulses, however, there was a reduction in the percentage of vesicular NA released in response to the second pulse.

  9. Incomplete hippocampal inversion - is there a relation to epilepsy?

    Energy Technology Data Exchange (ETDEWEB)

    Bajic, Dragan [Uppsala University Hospital, Department of Radiology, Uppsala (Sweden); Kumlien, Eva; Mattsson, Peter [Uppsala University Hospital, Department of Neuroscience, Neurology, Uppsala (Sweden); Lundberg, Staffan [Uppsala University Hospital, Department of Women' s and Children' s Health, Uppsala (Sweden); Wang, Chen [Karolinska University Hospital, Department of Neuroradiology, Stockholm (Sweden); Raininko, Raili [Uppsala University, Department of Radiology, Uppsala (Sweden)

    2009-10-15

    Incomplete hippocampal inversion (IHI) has been described in patients with epilepsy or severe midline malformations but also in nonepileptic subjects without obvious developmental anomalies. We studied the frequency of IHI in different epilepsy syndromes to evaluate their relationship. Three hundred patients were drawn from the regional epilepsy register. Of these, 99 were excluded because of a disease or condition affecting the temporal lobes or incomplete data. Controls were 150 subjects without epilepsy or obvious intracranial developmental anomalies. The coronal MR images were analysed without knowledge of the clinical data. Among epilepsy patients, 30% had IHI (40 left-sided, 4 right-sided, 16 bilateral). Of controls, 18% had IHI (20 left-sided, 8 bilateral). The difference was statistically significant (P<0.05). Of temporal lobe epilepsy (TLE) patients, 25% had IHI, which was not a significantly higher frequency than in controls (P=0.34). There was no correlation between EEG and IHI laterality. A total of 44% of Rolandic epilepsy patients and 57% of cryptogenic generalised epilepsy patients had IHI. The IHI frequency was very high in some epileptic syndromes, but not significantly higher in TLE compared to controls. No causality between TLE and IHI could be found. IHI can be a sign of disturbed cerebral development affecting other parts of the brain, maybe leading to epilepsy. (orig.)

  10. Short communication: hippocampal neuronal activity and imprinting in the behaving domestic chick.

    Science.gov (United States)

    Nicol, A U; Brown, M W; Horn, G

    1998-08-01

    The hippocampus of the chick projects to the intermediate and medial part of the hyperstriatum ventrale (IMHV) which stores information acquired through the learning process of imprinting. We have investigated whether the response properties of hippocampal neurons are similar to those of IMHV neurons. Chicks were imprinted by exposure, one group (n = 7) to a rotating red box (RB), the other (n = 5) to a rotating blue cylinder (BC). Four chicks were untrained. The following day, when the chicks were approximately 48 h old, neuronal activity was recorded in the left hippocampus. The proportion of neurons responding to the RB and that to the BC in untrained chicks were compared with the proportions in trained birds. (i) In RB-trained chicks both the proportion responding to the RB and that to the BC were significantly increased. (ii) In BC-trained chicks no significant effect on these proportions was found. Of the responsive neurons some were colour (red or blue) sensitive and others were shape (box or cylinder) sensitive; the proportions so responsive were not influenced by training condition. Certain neurons responded significantly differently when a stimulus was 0.5 m or 2 m from the chick (35%; d-sensitive); very few neurons were equivalently responsive to a stimulus at both distances (3%; d-invariant). These proportions were not significantly affected by training condition. Hippocampal responses are compared with those in the left IMHV. It is concluded that IMHV responses do not passively reflect those of hippocampal neurons.

  11. Proteome Alterations of Hippocampal Cells Caused by Clostridium botulinum C3 Exoenzyme.

    Science.gov (United States)

    Schröder, Anke; Rohrbeck, Astrid; Just, Ingo; Pich, Andreas

    2015-11-06

    C3bot from Clostridium botulinum is a bacterial mono-ADP-ribosylating enzyme, which transfers an ADP-ribose moiety onto the small GTPases Rho A/B/C. C3bot and the catalytic inactive mutant (C3E174Q) cause axonal and dendritic growth as well as branching in primary hippocampal neurons. In cultured murine hippocampal HT22 cells, protein abundances were analyzed in response to C3bot or C3E174Q treatment using a shotgun proteomics approach. Proteome analyses were performed at four time points over 6 days. More than 4000 protein groups were identified at each time point and quantified in triplicate analyses. On day one, 46 proteins showed an altered abundance, and after 6 days, more than 700 proteins responded to C3bot with an up- or down-regulation. In contrast, C3E174Q had no provable impact on protein abundance. Protein quantification was verified for several proteins by multiple reaction monitoring. Data analysis of altered proteins revealed different cellular processes that were affected by C3bot. They are particularly involved in mitochondrial and lysosomal processes, adhesion, carbohydrate and glucose metabolism, signal transduction, and nuclear proteins of translation and ribosome biogenesis. The results of this study gain novel insights into the function of C3bot in hippocampal cells.

  12. PACAP enhances axon outgrowth in cultured hippocampal neurons to a comparable extent as BDNF.

    Directory of Open Access Journals (Sweden)

    Katsuya Ogata

    Full Text Available Pituitary adenylate cyclase-activating polypeptide (PACAP exerts neurotrophic activities including modulation of synaptic plasticity and memory, hippocampal neurogenesis, and neuroprotection, most of which are shared with brain-derived neurotrophic factor (BDNF. Therefore, the aim of this study was to compare morphological effects of PACAP and BDNF on primary cultured hippocampal neurons. At days in vitro (DIV 3, PACAP increased neurite length and number to similar levels by BDNF, but vasoactive intestinal polypeptide showed much lower effects. In addition, PACAP increased axon, but not dendrite, length, and soma size at DIV 3 similarly to BDNF. The PACAP antagonist PACAP6-38 completely blocked the PACAP-induced increase in axon, but not dendrite, length. Interestingly, the BDNF-induced increase in axon length was also inhibited by PACAP6-38, suggesting a mechanism involving PACAP signaling. K252a, a TrkB receptor inhibitor, inhibited axon outgrowth induced by PACAP and BDNF without affecting dendrite length. These results indicate that in primary cultured hippocampal neurons, PACAP shows morphological actions via its cognate receptor PAC1, stimulating neurite length and number, and soma size to a comparable extent as BDNF, and that the increase in total neurite length is ascribed to axon outgrowth.

  13. Effect of voluntary running on adult hippocampal neurogenesis in cholinergic lesioned mice

    Directory of Open Access Journals (Sweden)

    Dawe Gavin S

    2009-06-01

    Full Text Available Abstract Background Cholinergic neuronal dysfunction of the basal forebrain is observed in patients with Alzheimer's disease and dementia, and has been linked to decreased neurogenesis in the hippocampus, a region involved in learning and memory. Running is a robust inducer of adult hippocampal neurogenesis. This study aims to address the effect of running on hippocampal neurogenesis in lesioned mice, where septohippocampal cholinergic neurones have been selectively eliminated in the medial septum and diagonal band of Broca of the basal forebrain by infusion of mu-p75-saporin immunotoxin. Results Running increased the number of newborn cells in the dentate gyrus of the hippocampus in cholinergic denervated mice compared to non-lesioned mice 24 hours after injection of bromodeoxyuridine (BrdU. Although similar levels of surviving cells were present in cholinergic depleted animals and their respective controls four weeks after injection of BrdU, the majority of progenitors that proliferate in response to the initial period of running were not able to survive beyond one month without cholinergic input. Despite this, the running-induced increase in the number of surviving neurones was not affected by cholinergic depletion. Conclusion The lesion paradigm used here models aspects of the cholinergic deficits associated with Alzheimer's Disease and aging. We showed that running still increased the number of newborn cells in the adult hippocampal dentate gyrus in this model of neurodegenerative disease.

  14. Quantitative measurement of neuronal degeneration in organotypic hippocampal cultures after combined oxygen/glucose deprivation.

    Science.gov (United States)

    Strasser, U; Fischer, G

    1995-04-01

    Organotypic hippocampal cultures were used to study cell degeneration during the recovery period after defined periods (30 and 60 min) of combined oxygen/glucose deprivation mimicking transient ischemic conditions. Staining with the fluorescent dye propidium iodide allowed detection of damaged cells. Fluorescence intensity was measured by an image analysis system and used to quantify cell damage at different time points during the recovery period (up to 22 h). At 30 min of oxygen/glucose deprivation cells in the CA1 area were relatively more sensitive compared to CA3 and dentate gyrus cells, with respect to the time course of degeneration and the percentage of affected cells. Expanding the oxygen/glucose deprivation period from 30 to 60 min drastically increased the percentage of cells dying in all hippocampal areas. Still, however, cells in CA1 degenerated faster compared to those in the CA3 area and dentate gyrus. A histological analysis of toluidine blue as well as MAP2-immunostained sections revealed that almost all neurons degenerated in all hippocampal areas following the 60-min deprivation period, whereas GFAP-stained astrocytes appeared to be unaffected. Therefore, neuronal degeneration could be quantified by taking the fluorescence intensity values 22 h after 60 min of oxygen/glucose deprivation as 100% neuronal damage. The possibility to quantify neuronal damage in organotypic cultures offers a useful tool for detailed studies on mechanisms of neuronal cell death in a cell culture system which is closer to in situ conditions than monolayer cell cultures.

  15. Dysfunctional hippocampal inhibition in the Ts65Dn mouse model of Down syndrome.

    Science.gov (United States)

    Best, Tyler K; Cramer, Nathan P; Chakrabarti, Lina; Haydar, Tarik F; Galdzicki, Zygmunt

    2012-02-01

    GABAergic dysfunction is implicated in hippocampal deficits of the Ts65Dn mouse model of Down syndrome (DS). Since Ts65Dn mice overexpress G-protein coupled inward-rectifying potassium (GIRK2) containing channels, we sought to evaluate whether increased GABAergic function disrupts the functioning of hippocampal circuitry. After confirming that GABA(B)/GIRK current density is significantly elevated in Ts65Dn CA1 pyramidal neurons, we compared monosynaptic inhibitory inputs in CA1 pyramidal neurons in response to proximal (stratum radiatum; SR) and distal (stratum lacunosum moleculare; SLM) stimulation of diploid and Ts65Dn acute hippocampal slices. Synaptic GABA(B) and GABA(A) mediated currents evoked by SR stimulation were generally unaffected in Ts65Dn CA1 neurons. However, the GABA(B)/GABA(A) ratios evoked by stimulation within the SLM of Ts65Dn hippocampus were significantly larger in magnitude, consistent with increased GABA(B)/GIRK currents after SLM stimulation. These results indicate that GIRK overexpression in Ts65Dn has functional consequences which affect the balance between GABA(B) and GABA(A) inhibition of CA1 pyramidal neurons, most likely in a pathway specific manner, and may contribute to cognitive deficits reported in these mice.

  16. Centella asiatica Attenuates Diabetes Induced Hippocampal Changes in Experimental Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Nelli Giribabu

    2014-01-01

    Full Text Available Diabetes mellitus has been reported to affect functions of the hippocampus. We hypothesized that Centella asiatica, a herb traditionally being used to improve memory, prevents diabetes-related hippocampal dysfunction. Therefore, the aim of this study was to investigate the protective role of C. asiatica on the hippocampus in diabetes. Methods. Streptozotocin- (STZ- induced adult male diabetic rats received 100 and 200 mg/kg/day body weight (b.w C. asiatica leaf aqueous extract for four consecutive weeks. Following sacrifice, hippocampus was removed and hippocampal tissue homogenates were analyzed for Na+/K+-, Ca2+- and Mg2+-ATPases activity levels. Levels of the markers of inflammation (tumor necrosis factor, TNF-α; interleukin, IL-6; and interleukin, IL-1β and oxidative stress (lipid peroxidation product: LPO, superoxide dismutase: SOD, catalase: CAT, and glutathione peroxidase: GPx were determined. The hippocampal sections were visualized for histopathological changes. Results. Administration of C. asiatica leaf aqueous extract to diabetic rats maintained near normal ATPases activity levels and prevents the increase in the levels of inflammatory and oxidative stress markers in the hippocampus. Lesser signs of histopathological changes were observed in the hippocampus of C. asiatica leaf aqueous extract treated diabetic rats. Conclusions. C. asiatica leaf protects the hippocampus against diabetes-induced dysfunction which could help to preserve memory in this condition.

  17. Basolateral amygdala regulation of adult hippocampal neurogenesis and fear-related activation of newborn neurons

    Science.gov (United States)

    Kirby, Elizabeth D.; Friedman, Aaron R.; Covarrubias, David; Ying, Carl; Sun, Wayne G.; Goosens, Ki A.; Sapolsky, Robert M.; Kaufer, Daniela

    2014-01-01

    Impaired regulation of emotional memory is a feature of several affective disorders, including depression, anxiety and post-traumatic stress disorder. Such regulation occurs, in part, by interactions between the hippocampus and the basolateral amygdala (BLA). Recent studies have indicated that within the adult hippocampus, newborn neurons may contribute to support of emotional memory, and that regulation of hippocampal neurogenesis is implicated in depressive disorders. How emotional information impacts newborn neurons in adults is not clear. Given the role of the BLA in hippocampus-dependent emotional memory, we investigated whether hippocampal neurogenesis was sensitive to emotional stimuli from the BLA. We show that BLA lesions suppress adult neurogenesis, while lesions of the central nucleus of the amygdala do not. Similarly, we show that reducing BLA activity through viral vector-mediated overexpression of an outwardly rectifying potassium channel suppresses neurogenesis. We also show that BLA lesions prevent selective activation of immature newborn neurons in response to a fear conditioning task. These results demonstrate that BLA activity regulates adult hippocampal neurogenesis and the fear context-specific activation of newborn neurons. Together, these findings denote functional implications for proliferation and recruitment of new neurons into emotional memory circuits. PMID:21670733

  18. Fractalkine and CX3CR1 regulate hippocampal neurogenesis in adult and aged rats

    Science.gov (United States)

    Bachstetter, Adam D.; Morganti, Josh M.; Jernberg, Jennifer; Schlunk, Andrea; Mitchell, Staten H.; Brewster, Kaelin W.; Hudson, Charles E.; Cole, Michael J; Harrison, Jeffrey K.; Bickford, Paula C.; Gemma, Carmelina

    2010-01-01

    Microglia have neuroprotective capacities, yet chronic activation can promote neurotoxic inflammation. Neuronal fractalkine (FKN), acting on CX3CR1, has been shown to suppress excessive microglia activation. We found that disruption in FKN/ CX3CR1 signaling in young adult rodents decreased survival and proliferation of neural progenitor cells through IL-1β. Aged rats were found to have decreased levels of hippocampal FKN protein; moreover, interruption of CX3CR1 function in these animals did not affect neurogenesis. The age-related loss of FKN could be restored by exogenous FKN reversing the age-related decrease in hippocampal neurogenesis. There were no measureable changes in young animals by the addition of exogenous FKN. The results suggest that FKN/ CX3CR1 signaling has a regulatory role in modulating hippocampal neurogenesis via mechanisms that involve indirect modification of the niche environment. As elevated neuroinflammation is associated with many age-related neurodegenerative diseases, enhancing FKN/ CX3CR1 interactions could provide an alternative therapeutic approach to slow age-related neurodegeneration. PMID:20018408

  19. Ouabain Modulates the Lipid Composition of Hippocampal Plasma Membranes from Rats with LPS-induced Neuroinflammation.

    Science.gov (United States)

    Garcia, Israel José Pereira; Kinoshita, Paula Fernanda; Scavone, Cristoforo; Mignaco, Julio Alberto; Barbosa, Leandro Augusto de Oliveira; Santos, Hérica de Lima

    2015-12-01

    The effects of ouabain (OUA) and lipopolysaccharide (LPS) in vivo on hippocampal membranes (RHM) of Wistar male rats aged 3 months were analyzed. After intraperitoneal (i.p.) injection of OUA only, LPS only, OUA plus LPS, or saline, the content of proteins, phospholipids, cholesterol and gangliosides from RHM was analyzed. The total protein and cholesterol contents of RHM were not significantly affected by OUA or LPS for the experimentally paired groups. In contrast, total phospholipids and gangliosides were strongly modulated by either OUA or LPS treatments. LPS reduced the total phospholipids (roughly 23 %) and increased the total gangliosides (approximately 40 %). OUA alone increased the total phospholipids (around 23 %) and also the total gangliosides (nearly 34 %). OUA pretreatment compensated the LPS-induced changes, preserving the total phospholipids and gangliosides around the same levels of the control. Thus, an acute treatment with OUA not only modulated the composition of hippocampal membranes from 3-month-old rats, but also was apparently able to counteract membrane alterations resulting from LPS-induced neuroinflammation. This study demonstrates for the first time that the OUA capacity modulates the lipid composition of hippocampal plasma membranes from rats with LPS-induced neuroinflammation.

  20. Restraint stress increases hemichannel activity in hippocampal glial cells and neurons

    Directory of Open Access Journals (Sweden)

    Juan Andrés Orellana

    2015-04-01

    Full Text Available Stress affects brain areas involved in learning and emotional responses, which may contribute in the development of cognitive deficits associated with major depression. These effects have been linked to glial cell activation, glutamate release and changes in neuronal plasticity and survival including atrophy of hippocampal apical dendrites, loss of synapses and neuronal death. Under neuro-inflammatory conditions we recently unveiled a sequential activation of glial cells that release ATP and glutamate via hemichannels inducing neuronal death due to activation of neuronal NMDA/P2X7 receptors and pannexin1 hemichannels. In the present work, we studied if stress-induced glia activation is associated to changes in hemichannel activity. To this end, we compared hemichannel activity of brain cells after acute or chronic restraint stress in mice. Dye uptake experiments in hippocampal slices revealed that acute stress induces opening of both Cx43 and Panx1 hemichannels in astrocytes, which were further increased by chronic stress; whereas enhanced Panx1 hemichannel activity was detected in microglia and neurons after acute/chronic and chronic stress, respectively. Moreover, inhibition of NMDA/P2X7 receptors reduced the chronic stress-induced hemichannel opening, whereas blockade of Cx43 and Panx1 hemichannels fully reduced ATP and glutamate release in hippocampal slices from stressed mice. Thus, we propose that gliotransmitter release through hemichannels may participate in the pathogenesis of stress-associated psychiatric disorders and possibly depression.

  1. Microstructural white matter changes, not hippocampal atrophy, detect early amnestic mild cognitive impairment.

    Directory of Open Access Journals (Sweden)

    Lin Zhuang

    Full Text Available BACKGROUND: Alzheimer's disease (AD is generally considered to be characterized by pathology in gray matter of the brain, but convergent evidence suggests that white matter degradation also plays a vital role in its pathogenesis. The evolution of white matter deterioration and its relationship with gray matter atrophy remains elusive in amnestic mild cognitive impairment (aMCI, a prodromal stage of AD. METHODS: We studied 155 cognitively normal (CN and 27 'late' aMCI individuals with stable diagnosis over 2 years, and 39 'early' aMCI individuals who had converted from CN to aMCI at 2-year follow up. Diffusion tensor imaging (DTI tractography was used to reconstruct six white matter tracts three limbic tracts critical for episodic memory function - the fornix, the parahippocampal cingulum, and the uncinate fasciculus; two cortico-cortical association fiber tracts - superior longitudinal fasciculus and inferior longitudinal fasciculus; and one projection fiber tract - corticospinal tract. Microstructural integrity as measured by fractional anisotropy (FA, mean diffusivity (MD, radial diffusivity (RD and axial diffusivity (AxD was assessed for these tracts. RESULTS: Compared with CN, late aMCI had lower white matter integrity in the fornix, the parahippocampal cingulum, and the uncinate fasciculus, while early aMCI showed white matter damage in the fornix. In addition, fornical measures were correlated with hippocampal atrophy in late aMCI, whereas abnormality of the fornix in early aMCI occurred in the absence of hippocampal atrophy and did not correlate with hippocampal volumes. CONCLUSIONS: Limbic white matter tracts are preferentially affected in the early stages of cognitive dysfunction. Microstructural degradation of the fornix preceding hippocampal atrophy may serve as a novel imaging marker for aMCI at an early stage.

  2. Short-term sleep deprivation stimulates hippocampal neurogenesis in rats following global cerebral ischemia/reperfusion.

    Directory of Open Access Journals (Sweden)

    Oumei Cheng

    Full Text Available Sleep deprivation (SD plays a complex role in central nervous system (CNS diseases. Recent studies indicate that short-term SD can affect the extent of ischemic damage. The aim of this study was to investigate whether short-term SD could stimulate hippocampal neurogenesis in a rat model of global cerebral ischemia/reperfusion (GCIR.One hundred Sprague-Dawley rats were randomly divided into Sham, GCIR and short-term SD groups based on different durations of SD; the short-term SD group was randomly divided into three subgroups: the GCIR+6hSD*3d-treated, GCIR+12hSD-treated and GCIR+12hSD*3d-treated groups. The GCIR rat model was induced via the bilateral occlusion of the common carotid arteries and hemorrhagic hypotension. The rats were sleep-deprived starting at 48 h following GCIR. A Morris water maze test was used to assess learning and memory ability; cell proliferation and differentiation were analyzed via 5-bromodeoxyuridine (BrdU and neuron-specific enolase (NSE, respectively, at 14 and 28 d; the expression of hippocampal BDNF was measured after 7 d.The different durations of short-term SD designed in our experiment exhibited improvement in cognitive function as well as increased hippocampal BDNF expression. Additionally, the short-term SD groups also showed an increased number of BrdU- and BrdU/NSE-positive cells compared with the GCIR group. Of the three short-term SD groups, the GCIR+12hSD*3d-treated group experienced the most substantial beneficial effects.Short-term SD, especially the GCIR+12hSD*3d-treated method, stimulates neurogenesis in the hippocampal dentate gyrus (DG of rats that undergo GCIR, and BDNF may be an underlying mechanism in this process.

  3. Bidirectional regulation of emotional memory by 5-HT1B receptors involves hippocampal p11.

    Science.gov (United States)

    Eriksson, T M; Alvarsson, A; Stan, T L; Zhang, X; Hascup, K N; Hascup, E R; Kehr, J; Gerhardt, G A; Warner-Schmidt, J; Arango-Lievano, M; Kaplitt, M G; Ogren, S O; Greengard, P; Svenningsson, P

    2013-10-01

    Cognitive impairments are common in depression and involve dysfunctional serotonin neurotransmission. The 5-HT1B receptor (5-HT(1B)R) regulates serotonin transmission, via presynaptic receptors, but can also affect transmitter release at heterosynaptic sites. This study aimed at investigating the roles of the 5-HT(1B)R, and its adapter protein p11, in emotional memory and object recognition memory processes by the use of p11 knockout (p11KO) mice, a genetic model for aspects of depression-related states. 5-HT(1B)R agonist treatment induced an impairing effect on emotional memory in wild type (WT) mice. In comparison, p11KO mice displayed reduced long-term emotional memory performance. Unexpectedly, 5-HT(1B)R agonist stimulation enhanced memory in p11KO mice, and this atypical switch was reversed after hippocampal adeno-associated virus mediated gene transfer of p11. Notably, 5-HT(1B)R stimulation increased glutamatergic neurotransmission in the hippocampus in p11KO mice, but not in WT mice, as measured by both pre- and postsynaptic criteria. Magnetic resonance spectroscopy demonstrated global hippocampal reductions of inhibitory GABA, which may contribute to the memory enhancement and potentiation of pre- and post-synaptic measures of glutamate transmission by a 5-HT(1B)R agonist in p11KO mice. It is concluded that the level of hippocampal p11 determines the directionality of 5-HT(1B)R action on emotional memory processing and modulates hippocampal functionality. These results emphasize the importance of using relevant disease models when evaluating the role of serotonin neurotransmission in cognitive deficits related to psychiatric disorders.

  4. Isoflurane induced cognitive impairment in aged rats through hippocampal calcineurin/NFAT signaling

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Cheng; Li, Zhengqian; Qian, Min; Zhou, Yang; Wang, Jun; Guo, Xiangyang, E-mail: puthmzk@163.com

    2015-05-15

    Calcineurin (CaN) over-activation constrains synaptic plasticity and memory formation. Upon CaN activation, NFAT imports into the nucleus and guides its downstream genes, which also affect neuronal and synaptic function. Aberrant CaN/NFAT signaling involves in neurotoxicity and cognitive impairment in neurological disorders such as Alzheimer's disease, but its role in postoperative cognitive dysfunction (POCD) remains uninvestigated. Inhaled anesthetic isoflurane facilitates the development of POCD, and the present study investigated the role of CaN/NFAT signaling in isoflurane induced cognitive impairment of aged rats, and the therapeutic effects of CaN inhibitor cyclosporine A (CsA). The results indicated that hippocampal CaN activity increased and peaked at 6 h after isoflurane exposure, and NFAT, especially NFATc4, imported into the nucleus following CaN activation. Furthermore, phamacological inhibition of CaN by CsA markedly attenuated isoflurane induced aberrant CaN/NFATc4 signaling in the hippocampus, and rescued relevant spatial learning and memory impairment of aged rats. Overall, the study suggests hippocampal CaN/NFAT signaling as the upstream mechanism of isoflurane induced cognitive impairment, and provides potential therapeutic target and possible treatment methods for POCD. - Highlights: • Isoflurane induces hippocampal calcineurin activation. • Isoflurane induces hippocampal NFAT, especially NFATc4, nuclear import. • Cyclosporine A attenuates isoflurane induced aberrant calcineurin/NFAT signaling. • Cyclosporine A rescues isoflurane induced cognitive impairment. • Calcineurin/NFAT signaling is the upstream mechanism of isoflurane induced synaptic dysfunction and cognitive impairment.

  5. Effects of inorganic lead on the differentiation and growth of cultured hippocampal and neuroblastoma cells.

    Science.gov (United States)

    Audesirk, T; Audesirk, G; Ferguson, C; Shugarts, D

    1991-01-01

    Lead exposure has devastating effects on the developing nervous system, and has been implicated in variety of behavioral and cognitive deficits as well as neural morphological abnormalities. Since lead impacts many calcium-dependent processes, one likely mechanism of lead toxicity is its disruption of calcium dependent processes, among which is neuronal differentiation. We investigated the effects of inorganic lead on survival and several parameters of differentiation of cultured neurons. Three different cell types were used: Rat hippocampal neurons (a primary CNS cell type), B50 rat neuroblastoma cells (a transformed CNS-derived cell line), and N1E-115 mouse neuroblastoma cells (a transformed peripherally-derived cell line). Lead concentrations ranged from low nM to 1 mM. Lead effects differed considerably among the three cell types, with B50 cells least affected. Lead effects were generally multimodal, with fewest effects observed at intermediate concentrations. Lead inhibited neurite initiation in hippocampal neurons, but stimulated initiation in N1E-115 cells. In those cells that differentiated, lead increased dendrite numbers in hippocampal neurons and neurite numbers in N1E-115 cells. Lead exposure increased both the length and the degree of branching of axons in hippocampal neurons and the length of neurites in N1E-115 cells. We hypothesize that lead impacts multiple regulatory processes that influence neuron survival and differentiation, and that its effects show differing dose-dependencies. The differing responses of the different cell types to lead suggests that differentiation may be regulated in different ways by the three types of cells. Alternatively, or additionally, the cell types may differ in their ability to compensate for, sequester, or expel lead.

  6. Multimodal assessments of the hippocampal formation in schizophrenia and bipolar disorder: Evidences from neurobehavioral measures and functional and structural MRI

    Directory of Open Access Journals (Sweden)

    Christian Knöchel

    2014-01-01

    Full Text Available A potential clinical and etiological overlap between schizophrenia (SZ and bipolar disorder (BD has long been a subject of discussion. Imaging studies imply functional and structural alterations of the hippocampus in both diseases. Thus, imaging this core memory region could provide insight into the pathophysiology of these disorders and the associated cognitive deficits. To examine possible shared alterations in the hippocampus, we conducted a multi-modal assessment, including functional and structural imaging as well as neurobehavioral measures of memory performance in BD and SZ patients compared with healthy controls. We assessed episodic memory performance, using tests of verbal and visual learning (HVLT, BVMT in three groups of participants: BD patients (n = 21, SZ patients (n = 21 and matched (age, gender, education healthy control subjects (n = 21. In addition, we examined hippocampal resting state functional connectivity, hippocampal volume using voxel-based morphometry (VBM and fibre integrity of hippocampal connections using diffusion tensor imaging (DTI. We found memory deficits, changes in functional connectivity within the hippocampal network as well as volumetric reductions and altered white matter fibre integrity across patient groups in comparison with controls. However, SZ patients when directly compared with BD patients were more severely affected in several of the assessed parameters (verbal learning, left hippocampal volumes, mean diffusivity of bilateral cingulum and right uncinated fasciculus. The results of our study suggest a graded expression of verbal learning deficits accompanied by structural alterations within the hippocampus in BD patients and SZ patients, with SZ patients being more strongly affected. Our findings imply that these two disorders may share some common pathophysiological mechanisms. The results could thus help to further advance and integrate current pathophysiological models of SZ and BD.

  7. White matter hyperintensities are associated with disproportionate progressive hippocampal atrophy

    Science.gov (United States)

    Manning, Emily N.; Bartlett, Jonathan W.; Cash, David M.; Malone, Ian B.; Ridgway, Gerard R.; Lehmann, Manja; Leung, Kelvin K.; Sudre, Carole H.; Ourselin, Sebastien; Biessels, Geert Jan; Carmichael, Owen T.; Fox, Nick C.; Cardoso, M. Jorge; Barnes, Josephine

    2017-01-01

    ABSTRACT This study investigates relationships between white matter hyperintensity (WMH) volume, cerebrospinal fluid (CSF) Alzheimer's disease (AD) pathology markers, and brain and hippocampal volume loss. Subjects included 198 controls, 345 mild cognitive impairment (MCI), and 154 AD subjects with serial volumetric 1.5‐T MRI. CSF Aβ42 and total tau were measured (n = 353). Brain and hippocampal loss were quantified from serial MRI using the boundary shift integral (BSI). Multiple linear regression models assessed the relationships between WMHs and hippocampal and brain atrophy rates. Models were refitted adjusting for (a) concurrent brain/hippocampal atrophy rates and (b) CSF Aβ42 and tau in subjects with CSF data. WMH burden was positively associated with hippocampal atrophy rate in controls (P = 0.002) and MCI subjects (P = 0.03), and with brain atrophy rate in controls (P = 0.03). The associations with hippocampal atrophy rate remained following adjustment for concurrent brain atrophy rate in controls and MCIs, and for CSF biomarkers in controls (P = 0.007). These novel results suggest that vascular damage alongside AD pathology is associated with disproportionately greater hippocampal atrophy in nondemented older adults. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc. PMID:27933676

  8. White matter hyperintensities are associated with disproportionate progressive hippocampal atrophy.

    Science.gov (United States)

    Fiford, Cassidy M; Manning, Emily N; Bartlett, Jonathan W; Cash, David M; Malone, Ian B; Ridgway, Gerard R; Lehmann, Manja; Leung, Kelvin K; Sudre, Carole H; Ourselin, Sebastien; Biessels, Geert Jan; Carmichael, Owen T; Fox, Nick C; Cardoso, M Jorge; Barnes, Josephine

    2017-03-01

    This study investigates relationships between white matter hyperintensity (WMH) volume, cerebrospinal fluid (CSF) Alzheimer's disease (AD) pathology markers, and brain and hippocampal volume loss. Subjects included 198 controls, 345 mild cognitive impairment (MCI), and 154 AD subjects with serial volumetric 1.5-T MRI. CSF Aβ42 and total tau were measured (n = 353). Brain and hippocampal loss were quantified from serial MRI using the boundary shift integral (BSI). Multiple linear regression models assessed the relationships between WMHs and hippocampal and brain atrophy rates. Models were refitted adjusting for (a) concurrent brain/hippocampal atrophy rates and (b) CSF Aβ42 and tau in subjects with CSF data. WMH burden was positively associated with hippocampal atrophy rate in controls (P = 0.002) and MCI subjects (P = 0.03), and with brain atrophy rate in controls (P = 0.03). The associations with hippocampal atrophy rate remained following adjustment for concurrent brain atrophy rate in controls and MCIs, and for CSF biomarkers in controls (P = 0.007). These novel results suggest that vascular damage alongside AD pathology is associated with disproportionately greater hippocampal atrophy in nondemented older adults. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc.

  9. Hippocampal Sclerosis After Febrile Status Epilepticus: The FEBSTAT Study

    Science.gov (United States)

    Lewis, Darrell V.; Shinnar, Shlomo; Hesdorffer, Dale C.; Bagiella, Emilia; Bello, Jacqueline A.; Chan, Stephen; Xu, Yuan; MacFall, James; Gomes, William A.; Moshé, Solomon L.; Mathern, Gary W.; Pellock, John M.; Nordli, Douglas R.; Frank, L. Matthew; Provenzale, James; Shinnar, Ruth C.; Epstein, Leon G.; Masur, David; Litherland, Claire; Sun, Shumei

    2014-01-01

    Objective Whether febrile status epilepticus (FSE) produces hippocampal sclerosis (HS) and temporal lobe epilepsy (TLE) has long been debated. Our objective is to determine if FSE produces acute hippocampal injury that evolves to HS. Methods FEBSTAT and two affiliated studies prospectively recruited 226 children aged 1 month to 6 years with FSE and controls with simple febrile seizures. All had acute MRIs and follow-up MRIs were obtained at approximately 1 year later in the majority. Visual interpretation by two neuroradiologists informed only of subject age was augmented by hippocampal volumetrics, analysis of the intra-hippocampal distribution of T2 signal, and apparent diffusion coefficients. Results Hippocampal T2 hyperintensity, maximum in Sommer's sector, occurred acutely after FSE in 22 of 226 children in association with increased volume. Follow-up MRIs obtained on 14 of the 22 with acute T2 hyperintensity showed HS in 10 and reduced hippocampal volume in 12. In contrast, follow-up of 116 children without acute hyperintensity showed abnormal T2 signal in only 1 (following another episode of FSE). Furthermore, compared to controls with simple febrile seizures, FSE subjects with normal acute MRIs had abnormally low right to left hippocampal volume ratios, smaller hippocampi initially and reduced hippocampal growth. Interpretation Hippocampal T2 hyperintensity after FSE represents acute injury often evolving to a radiological appearance of HS after one year. Furthermore, impaired growth of normal appearing hippocampi after FSE suggests subtle injury even in the absence of T2 hyperintensity. Longer follow-up is needed to determine the relationship of these findings to TLE. PMID:24318290

  10. Low-dose sevoflurane promotes hippocampal neurogenesis and facilitates the development of dentate gyrus-dependent learning in neonatal rats.

    Science.gov (United States)

    Chen, Chong; Shen, Feng-Yan; Zhao, Xuan; Zhou, Tao; Xu, Dao-Jie; Wang, Zhi-Ru; Wang, Ying-Wei

    2015-01-01

    Huge body of evidences demonstrated that volatile anesthetics affect the hippocampal neurogenesis and neurocognitive functions, and most of them showed impairment at anesthetic dose. Here, we investigated the effect of low dose (1.8%) sevoflurane on hippocampal neurogenesis and dentate gyrus-dependent learning. Neonatal rats at postnatal day 4 to 6 (P4-6) were treated with 1.8% sevoflurane for 6 hours. Neurogenesis was quantified by bromodeoxyuridine labeling and electrophysiology recording. Four and seven weeks after treatment, the Morris water maze and contextual-fear discrimination learning tests were performed to determine the influence on spatial learning and pattern separation. A 6-hour treatment with 1.8% sevoflurane promoted hippocampal neurogenesis and increased the survival of newborn cells and the proportion of immature granular cells in the dentate gyrus of neonatal rats. Sevoflurane-treated rats performed better during the training days of the Morris water maze test and in contextual-fear discrimination learning test. These results suggest that a subanesthetic dose of sevoflurane promotes hippocampal neurogenesis in neonatal rats and facilitates their performance in dentate gyrus-dependent learning tasks.

  11. BDNF pro-peptide actions facilitate hippocampal LTD and are altered by the common BDNF polymorphism Val66Met.

    Science.gov (United States)

    Mizui, Toshiyuki; Ishikawa, Yasuyuki; Kumanogoh, Haruko; Lume, Maria; Matsumoto, Tomoya; Hara, Tomoko; Yamawaki, Shigeto; Takahashi, Masami; Shiosaka, Sadao; Itami, Chiaki; Uegaki, Koichi; Saarma, Mart; Kojima, Masami

    2015-06-09

    Most growth factors are initially synthesized as precursor proteins and subsequently processed into their mature form by proteolytic cleavage, resulting in simultaneous removal of a pro-peptide. However, compared with that of mature form, the biological role of the pro-peptide is poorly understood. Here, we investigated the biological role of the pro-peptide of brain-derived neurotrophic factor (BDNF) and first showed that the pro-peptide is expressed and secreted in hippocampal tissues and cultures, respectively. Interestingly, we found that the BDNF pro-peptide directly facilitates hippocampal long-term depression (LTD), requiring the activation of GluN2B-containing NMDA receptors and the pan-neurotrophin receptor p75(NTR). The BDNF pro-peptide also enhances NMDA-induced α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor endocytosis, a mechanism crucial for LTD expression. Thus, the BDNF pro-peptide is involved in synaptic plasticity that regulates a mechanism responsible for promoting LTD. The well-known BDNF polymorphism valine for methionine at amino acid position 66 (Val66Met) affects human memory function. Here, the BDNF pro-peptide with Met mutation completely inhibits hippocampal LTD. These findings demonstrate functional roles for the BDNF pro-peptide and a naturally occurring human BDNF polymorphism in hippocampal synaptic depression.

  12. Modulators of cytoskeletal reorganization in CA1 hippocampal neurons show increased expression in patients at mid-stage Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Patricia F Kao

    Full Text Available During the progression of Alzheimer's disease (AD, hippocampal neurons undergo cytoskeletal reorganization, resulting in degenerative as well as regenerative changes. As neurofibrillary tangles form and dystrophic neurites appear, sprouting neuronal processes with growth cones emerge. Actin and tubulin are indispensable for normal neurite development and regenerative responses to injury and neurodegenerative stimuli. We have previously shown that actin capping protein beta2 subunit, Capzb2, binds tubulin and, in the presence of tau, affects microtubule polymerization necessary for neurite outgrowth and normal growth cone morphology. Accordingly, Capzb2 silencing in hippocampal neurons resulted in short, dystrophic neurites, seen in neurodegenerative diseases including AD. Here we demonstrate the statistically significant increase in the Capzb2 expression in the postmortem hippocampi in persons at mid-stage, Braak and Braak stage (BB III-IV, non-familial AD in comparison to controls. The dynamics of Capzb2 expression in progressive AD stages cannot be attributed to reactive astrocytosis. Moreover, the increased expression of Capzb2 mRNA in CA1 pyramidal neurons in AD BB III-IV is accompanied by an increased mRNA expression of brain derived neurotrophic factor (BDNF receptor tyrosine kinase B (TrkB, mediator of synaptic plasticity in hippocampal neurons. Thus, the up-regulation of Capzb2 and TrkB may reflect cytoskeletal reorganization and/or regenerative response occurring in hippocampal CA1 neurons at a specific stage of AD progression.

  13. Hippocampal structure, metabolism, and inflammatory response after a 6-week intense aerobic exercise in healthy young adults: a controlled trial.

    Science.gov (United States)

    Wagner, Gerd; Herbsleb, Marco; de la Cruz, Feliberto; Schumann, Andy; Brünner, Franziska; Schachtzabel, Claudia; Gussew, Alexander; Puta, Christian; Smesny, Stefan; Gabriel, Holger W; Reichenbach, Jürgen R; Bär, Karl-Jürgen

    2015-10-01

    Interventional studies suggest that changes in physical fitness affect brain function and structure. We studied the influence of high intensity physical exercise on hippocampal volume and metabolism in 17 young healthy male adults during a 6-week exercise program compared with matched controls. We further aimed to relate these changes to hypothesized changes in exercised-induced brain-derived neurotrophic factor (BDNF), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-α). We show profound improvement of physical fitness in most subjects and a positive correlation between the degree of fitness improvement and increased BDNF levels. We unexpectedly observed an average volume decrease of about 2%, which was restricted to right hippocampal subfields CA2/3, subiculum, and dentate gyrus and which correlated with fitness improvement and increased BDNF levels negatively. This result indicates that mainly those subjects who did not benefit from the exercise program show decreased hippocampal volume, reduced BDNF levels, and increased TNF-α concentrations. While spectroscopy results do not indicate any neuronal loss (unchanged N-acetylaspartate levels) decreased glutamate-glutamine levels were observed in the right anterior hippocampus in the exercise group only. Responder characteristics need to be studied in more detail. Our results point to an important role of the inflammatory response after exercise on changes in hippocampal structure.

  14. Estradiol treatment in preadolescent females enhances adolescent spatial memory and differentially modulates hippocampal region-specific phosphorylated ERK labeling.

    Science.gov (United States)

    Wartman, Brianne C; Keeley, Robin J; Holahan, Matthew R

    2012-10-24

    Estrogen levels in rats are positively correlated with enhanced memory function and hippocampal dendritic spine density. There is much less work on the long-term effects of estradiol manipulation in preadolescent rats. The present work examined how injections of estradiol during postnatal days 19-22 (p19-22; preadolescence) affected water maze performance and hippocampal phosphorylated ERK labeling. To investigate this, half of the estradiol- and vehicle-treated female rats were trained on a water maze task 24h after the end of estradiol treatment (p23-27) while the other half was not trained. All female rats were tested on the water maze from p40 to p44 (adolescence) and hippocampal pERK1/2 labeling was assessed as a putative marker of neuronal plasticity. During adolescence, preadolescent-trained groups showed lower latencies than groups without preadolescent training. Retention data revealed lower latencies in both estradiol groups, whether preadolescent trained or not. Immunohistochemical detection of hippocampal pERK1/2 revealed elevations in granule cell labeling associated with the preadolescent trained groups and reductions in CA1 labeling associated with estradiol treatment. These results show a latent beneficial effect of preadolescent estradiol treatment on adolescent spatial performance and suggest an organizational effect of prepubescent exogenously applied estradiol.

  15. Hippocampal neurogenesis enhancers promote forgetting of remote fear memory after hippocampal reactivation by retrieval

    Science.gov (United States)

    Ishikawa, Rie; Fukushima, Hotaka; Frankland, Paul W; Kida, Satoshi

    2016-01-01

    Forgetting of recent fear memory is promoted by treatment with memantine (MEM), which increases hippocampal neurogenesis. The approaches for treatment of post-traumatic stress disorder (PTSD) using rodent models have focused on the extinction and reconsolidation of recent, but not remote, memories. Here we show that, following prolonged re-exposure to the conditioning context, enhancers of hippocampal neurogenesis, including MEM, promote forgetting of remote contextual fear memory. However, these interventions are ineffective following shorter re-exposures. Importantly, we find that long, but not short re-exposures activate gene expression in the hippocampus and induce hippocampus-dependent reconsolidation of remote contextual fear memory. Furthermore, remote memory retrieval becomes hippocampus-dependent after the long-time recall, suggesting that remote fear memory returns to a hippocampus dependent state after the long-time recall, thereby allowing enhanced forgetting by increased hippocampal neurogenesis. Forgetting of traumatic memory may contribute to the development of PTSD treatment. DOI: http://dx.doi.org/10.7554/eLife.17464.001 PMID:27669409

  16. Persistent reduction of hippocampal glutamine synthetase expression after status epilepticus in immature rats.

    Science.gov (United States)

    van der Hel, W Saskia; Hessel, Ellen V S; Bos, Ineke W M; Mulder, Sandra D; Verlinde, Suzanne A M W; van Eijsden, Pieter; de Graan, Pierre N E

    2014-12-01

    Mesiotemporal sclerosis (MTS), the most frequent form of drug-resistant temporal lobe epilepsy, often develops after an initial precipitating injury affecting the immature brain. To analyse early processes in epileptogenesis we used the juvenile pilocarpine model to study status epilepticus (SE)-induced changes in expression of key components in the glutamate-glutamine cycle, known to be affected in MTS patients. SE was induced by Li(+) /pilocarpine injection in 21-day-old rats. At 2-19 weeks after SE hippocampal protein expression was analysed by immunohistochemistry and neuron damage by FluoroJade staining. Spontaneous seizures occurred in at least 44% of animals 15-18 weeks after SE. As expected in this model, we did not observe loss of principal hippocampal neurons. Neuron damage was most pronounced in the hilus, where we also detected progressive loss of parvalbumin-positive GABAergic interneurons. Hilar neuron loss (or end-folium sclerosis), a common feature in patients with MTS, was accompanied by a progressively decreased glutamine synthetase (GS)-immunoreactivity from 2 (-15%) to 19 weeks (-33.5%) after SE. Immunoreactivity for excitatory amino-acid transporters, vesicular glutamate transporter 1 and glial fibrillary acidic protein was unaffected. Our data show that SE elicited in 21-day-old rats induces a progressive reduction in hilar GS expression without affecting other key components of the glutamate-glutamine cycle. Reduced expression of glial enzyme GS was first detected 2 weeks after SE, and thus clearly before spontaneous recurrent seizures occurred. These results support the hypothesis that reduced GS expression is an early event in the development of hippocampal sclerosis in MTS patients and emphasize the importance of astrocytes in early epileptogenesis.

  17. Hippocampal atrophy on MRI is predictive of histopathological patterns and surgical prognosis in mesial temporal lobe epilepsy with hippocampal sclerosis.

    Science.gov (United States)

    Jardim, Anaclara Prada; Corso, Jeana Torres; Garcia, Maria Teresa Fernandes Castilho; Gaça, Larissa Botelho; Comper, Sandra Mara; Lancellotti, Carmen Lúcia Penteado; Centeno, Ricardo Silva; Carrete, Henrique; Cavalheiro, Esper Abrão; Scorza, Carla Alessandra; Yacubian, Elza Márcia Targas

    2016-12-01

    To correlate hippocampal volumes obtained from brain structural imaging with histopathological patterns of hippocampal sclerosis (HS), in order to predict surgical outcome. Patients with mesial temporal lobe epilepsy (MTLE) with HS were selected. Clinical data were assessed pre-operatively and surgical outcome in the first year post surgery. One block of mid hippocampal body was selected for HS classification according to ILAE criteria. NeuN-immunoreactive cell bodies were counted within hippocampal subfields, in four randomly visual fields, and cell densities were transformed into z-score values. FreeSurfer processing of 1.5T brain structural images was used for subcortical and cortical volumetric estimation of the ipsilateral hippocampus. Univariate analysis of variance and Pearson's correlation test were applied for statistical analyses. Sixty-two cases (31 female, 32 right HS) were included. ILAE type 1 HS was identified in 48 patients, type 2 in eight, type 3 in two, and four had no-HS. Better results regarding seizure control, i.e. ILAE 1, were achieved by patients with type 1 HS (58.3%). Patients with types 1 and 2 had smaller hippocampal volumes compared to those with no-HS (p<0.001 and p=0.004, respectively). Positive correlation was encountered between hippocampal volumes and CA1, CA3, CA4, and total estimated neuronal densities. CA2 was the only sector which did not correlate its neuronal density with hippocampal volume (p=0.390). This is the first study correlating hippocampal volume on MRI submitted to FreeSurfer processing with ILAE patterns of HS and neuronal loss within each hippocampal subfield, a fundamental finding to anticipate surgical prognosis for patients with drug-resistant MTLE and HS. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Intense Exercise Promotes Adult Hippocampal Neurogenesis But Not Spatial Discrimination.

    Science.gov (United States)

    So, Ji H; Huang, Chao; Ge, Minyan; Cai, Guangyao; Zhang, Lanqiu; Lu, Yisheng; Mu, Yangling

    2017-01-01

    Hippocampal neurogenesis persists throughout adult life and plays an important role in learning and memory. Although the influence of physical exercise on neurogenesis has been intensively studied, there is controversy in regard to how the impact of exercise may vary with its regime. Less is known about how distinct exercise paradigms may differentially affect the learning behavior. Here we found that, chronic moderate treadmill running led to an increase of cell proliferation, survival, neuronal differentiation, and migration. In contrast, intense running only promoted neuronal differentiation and migration, which was accompanied with lower expressions of vascular endothelial growth factor, brain-derived neurotrophic factor, insulin-like growth factor 1, and erythropoietin. In addition, the intensely but not mildly exercised animals exhibited a lower mitochondrial activity in the dentate gyrus. Correspondingly, neurogenesis induced by moderate but not intense exercise was sufficient to improve the animal's ability in spatial pattern separation. Our data indicate that the effect of exercise on spatial learning is intensity-dependent and may involve mechanisms other than a simple increase in the number of new neurons.

  19. Isoflurane-induced neuronal apoptosis in developing hippocampal neurons

    Institute of Scientific and Technical Information of China (English)

    Hongliang Liu; Tijun Dai; Weitao Guo

    2013-01-01

    We hypothesized that the P2X7 receptor may be the target of isoflurane, so we investigated the roles of the P2X7 receptor and inositol triphosphate receptor in calcium overload and neuronal apoptosis induced by isoflurane in cultured embryonic rat hippocampal neurons. Results showed that isoflurane induced widespread neuronal apoptosis and significantly increased cytoplasmic Ca2+. Blockade of P2X7 receptors or removal of extracellular Ca2+ combined with blockade of inositol triphosphate receptors completely inhibited apoptosis or increase in cytoplasmic Ca2+. Removal of extracellular Ca2+ or blockade of inositol triphosphate receptor alone could partly inhibit these effects of isoflurane. Isoflurane could directly activate P2X7-gated channels and induce inward currents, but did not affect the expression of P2X7 receptor protein in neurons. These findings indicate that the mechanism by which isoflurane induced neuronal apoptosis in rat developing brain was mediated by intracellular calcium overload, which was caused by P2X7 receptor mediated calcium influx and inositol triphosphate receptor mediated calcium release.

  20. Perampanel inhibition of AMPA receptor currents in cultured hippocampal neurons.

    Directory of Open Access Journals (Sweden)

    Chao-Yin Chen

    Full Text Available Perampanel is an aryl substituted 2-pyridone AMPA receptor antagonist that was recently approved as a treatment for epilepsy. The drug potently inhibits AMPA receptor responses but the mode of block has not been characterized. Here the action of perampanel on AMPA receptors was investigated by whole-cell voltage-clamp recording in cultured rat hippocampal neurons. Perampanel caused a slow (τ∼1 s at 3 µM, concentration-dependent inhibition of AMPA receptor currents evoked by AMPA and kainate. The rates of block and unblock of AMPA receptor currents were 1.5×105 M-1 s-1 and 0.58 s-1, respectively. Perampanel did not affect NMDA receptor currents. The extent of block of non-desensitizing kainate-evoked currents (IC50, 0.56 µM was similar at all kainate concentrations (3-100 µM, demonstrating a noncompetitive blocking action. Parampanel did not alter the trajectory of AMPA evoked currents indicating that it does not influence AMPA receptor desensitization. Perampanel is a selective negative allosteric AMPA receptor antagonist of high-affinity and slow blocking kinetics.

  1. Spatial relational memory requires hippocampal adult neurogenesis.

    Directory of Open Access Journals (Sweden)

    David Dupret

    Full Text Available The dentate gyrus of the hippocampus is one of the few regions of the mammalian brain where new neurons are generated throughout adulthood. This adult neurogenesis has been proposed as a novel mechanism that mediates spatial memory. However, data showing a causal relationship between neurogenesis and spatial memory are controversial. Here, we developed an inducible transgenic strategy allowing specific ablation of adult-born hippocampal neurons. This resulted in an impairment of spatial relational memory, which supports a capacity for flexible, inferential memory expression. In contrast, less complex forms of spatial knowledge were unaltered. These findings demonstrate that adult-born neurons are necessary for complex forms of hippocampus-mediated learning.

  2. Staining protocol for organotypic hippocampal slice cultures.

    Science.gov (United States)

    Gogolla, Nadine; Galimberti, Ivan; DePaola, Vincenzo; Caroni, Pico

    2006-01-01

    This protocol details a method to immunostain organotypic slice cultures from mouse hippocampus. The cultures are based on the interface method, which does not require special equipment, is easy to execute and yields slice cultures that can be imaged repeatedly, from the time of isolation at postnatal day 6-9 up to 6 months in vitro. The preserved tissue architecture facilitates the analysis of defined hippocampal synapses, cells and entire projections. Time-lapse imaging is based on transgenes expressed in the mice or on constructs introduced through transfection or viral vectors; it can reveal processes that develop over periods ranging from seconds to months. Subsequent to imaging, the slices can be processed for immunocytochemistry to collect further information about the imaged structures. This protocol can be completed in 3 d.

  3. Cocaine depresses GABAA current of hippocampal neurons.

    Science.gov (United States)

    Ye, J H; Liu, P L; Wu, W H; McArdle, J J

    1997-10-01

    Although blockade of dopamine re-uptake and the resulting elevation of excitatory agonists is commonly thought the primary mechanism of cocaine-induced seizures, it is possible that other neurotransmitters such as gamma-aminobutyric acid (GABA) are involved. To examine this possibility, the effects of cocaine on the whole cell GABA current (IGABA) of freshly isolated rat hippocampal neurons were investigated with the patch-clamp technique. Preincubation or acute application of cocaine reversibly suppressed IGABA. The IC50 was 127 microM when cocaine was applied before the application of GABA. The concentration-response relations of cocaine in various GABA concentrations revealed that cocaine inhibited IGABA non-competitively. This effect of cocaine appeared to be independent of voltage. The present study suggests that the GABA receptor/channel complex is also a target for cocaine's action. The suppression of IGABA may contribute to cocaine-induced seizures.

  4. Presynaptic inhibition by neuropeptide Y in rat hippocampal slice in vitro is mediated by a Y2 receptor.

    OpenAIRE

    Colmers, W. F.; Klapstein, G. J.; A. Fournier; St-Pierre, S.; Treherne, K. A.

    1991-01-01

    1. The action of analogues and C-terminal fragments of neuropeptide Y (NPY) was examined on excitatory synaptic transmission in area CA1 of the rat hippocampal slice in vitro, by use of intracellular and extracellular recordings, to determine by agonist profile the NPY receptor subtype mediating presynaptic inhibition. 2. Neither NPY, analogues nor fragments of NPY affected the passive or active properties of the post-synaptic CA1 pyramidal neurones, indicating their action is at a presynapti...

  5. Glucocorticoid effects on hippocampal protein synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Schlatter, L.K.

    1988-01-01

    Following subcutaneous injection of rats with 5 mg corticosterone, hippocampal slices in vitro show increased ({sup 35}S)-methionine labeling of a cytosolic protein with an apparent molecular weight (M{sub r}) of 35,000 and an isoelectric point (IEP) of 6.6. This labeling is temporally consistent with a transcriptional event, and is steroid- and tissue-specific. The pear serum concentration of steroid occurs one hour or less following the injection. Maximal labeling of this protein is reached whenever serum corticosterone values are approximately 100 ng/ml. When endogenous corticosterone levels are elevated to 100 ng/ml through stressors or exogenous ACTH injections the same maximal increase in synthesis of the 35,000 M{sub r} protein is observed. Adrenalectomy prevents the observed response from occurring following stressor application or ACTH injections. Comparison of the increases observed after administration of the type 2 receptor agonist RU 28362 and aldosterone, which has a higher affinity for the type 1 receptor, shows a 50-fold greater sensitivity of the response to the type 2 receptor agonist. Synthesis of this protein following serum increases of steroid possibly correlates to the theorized function of the type 2 receptor feedback regulation. The similar protein in the liver has an IEP of 6.8 and a slightly higher M{sub r}. A second hippocampal protein with an M{sub r} of 46,000 and an IEP of 6.2 is also increased in labeling. Two additional liver proteins, one of Mr 53,000 (IEP of 6.2) and the other with an M{sub r} of 45,000 (IEP of 8.7-7.8) are increased in the liver following glucocorticoid administration.

  6. Hippocampal sharp waves: their origin and significance.

    Science.gov (United States)

    Buzsáki, G

    1986-11-29

    This study investigated the spatial distribution and cellular-synaptic generation of hippocampal sharp waves (SPW) in the dorsal hippocampus of the awake rat. Depth analyses of SPWs were performed by stepping the recording electrode in 82.5 microns increments. SPWs were present during slow wave sleep, awake immobility, drinking, grooming and eating (0.01-2/s). The largest negative SPWs were recorded from the middle part of the stratum radiatum of CA1, the stratum lucidum of CA3, the inner molecular layer of the dentate gyrus and from layer I of the subiculum, in that order. The polarity of the SPWs was positive in layers II-IV of the subiculum, in stratum oriens and stratum pyramidale of CA1 and CA3, and in the hilus of the dentate gyrus. The electrical gradients across the null zones of the field SPWs were as large as 8-14 mV/mm. SPWs were associated with population bursts of pyramidal cells and increased discharges of interneurons and granule cells. During the SPW the excitability of granule cells and pyramidal cells to afferent volleys increased considerably. Picrotoxin and atropine and aspiration lesion of the fimbria-fornix increased either the amplitude or the frequency of SPWs. Diazepam and Nembutal could completely abolish SPWs. It is suggested that: hippocampal SPWs are triggered by a population burst of CA3 pyramidal cells as a result of temporary disinhibition from afferent control; and field SPWs represent summed extracellular PSPs of CA1 and subicular pyramidal cells, and dentate granular cells induced by the Schaffer collaterals and the associational fibers of hilar cells, respectively. The relevance of the physiological SPWs to epileptic interictal spikes and long-term potentiation is discussed.

  7. DEVELOPMENTAL LEAD (PB) CHANGES AND IN HIPPOCAMPAL FUNCTION.

    Science.gov (United States)

    Childhood lead (Pb) exposure has long been associated with reduced IQ, impaired cognitive function, and more recently increases in violence and aggression. We have studied the disruptive effects of developmental Pb exposure on an electrophysiological model of memory, hippocampal...

  8. Segmentation of the mouse hippocampal formation in magnetic resonance images.

    Science.gov (United States)

    Richards, Kay; Watson, Charles; Buckley, Rachel F; Kurniawan, Nyoman D; Yang, Zhengyi; Keller, Marianne D; Beare, Richard; Bartlett, Perry F; Egan, Gary F; Galloway, Graham J; Paxinos, George; Petrou, Steven; Reutens, David C

    2011-10-01

    The hippocampal formation plays an important role in cognition, spatial navigation, learning, and memory. High resolution magnetic resonance (MR) imaging makes it possible to study in vivo changes in the hippocampus over time and is useful for comparing hippocampal volume and structure in wild type and mutant mice. Such comparisons demand a reliable way to segment the hippocampal formation. We have developed a method for the systematic segmentation of the hippocampal formation using the perfusion-fixed C57BL/6 mouse brain for application in longitudinal and comparative studies. Our aim was to develop a guide for segmenting over 40 structures in an adult mouse brain using 30 μm isotropic resolution images acquired with a 16.4 T MR imaging system and combined using super-resolution reconstruction.

  9. White matter hyperintensities are associated with disproportionate progressive hippocampal atrophy

    NARCIS (Netherlands)

    Fiford, Cassidy M.; Manning, Emily N.; Bartlett, Jonathan W.; Cash, David M.; Malone, Ian B.; Ridgway, Gerard R.; Lehmann, Manja; Leung, Kelvin K.; Sudre, Carole H.; Ourselin, Sebastien; Biessels, Geert Jan; Carmichael, Owen T.; Fox, Nick C.; Cardoso, M. Jorge; Barnes, Josephine

    This study investigates relationships between white matter hyperintensity (WMH) volume, cerebrospinal fluid (CSF) Alzheimer's disease (AD) pathology markers, and brain and hippocampal volume loss. Subjects included 198 controls, 345 mild cognitive impairment (MCI), and 154 AD subjects with serial

  10. Rhinal-hippocampal EEG coherence is reduced during human sleep.

    NARCIS (Netherlands)

    Fell, J.; Staedtgen, M.; Burr, W.; Kockelmann, E.; Helmstaedter, C.; Schaller, C.; Elger, C.E.; Fernandez, G.S.E.

    2003-01-01

    The deficiency of declarative memory compared with waking state is an often overlooked characteristic of sleep. Here, we investigated whether rhinal-hippocampal coherence, an electrophysiological correlate of declarative memory formation, is significantly altered during sleep as compared with waking

  11. Low Concentrations of Alcohol Inhibit BDNF-Dependent GABAergic Plasticity via L-type Ca2+ channel Inhibition in Developing CA3 Hippocampal Pyramidal Neurons

    OpenAIRE

    Zucca, Stefano; Valenzuela, C. Fernando

    2010-01-01

    Fetal Alcohol Spectrum Disorder (FASD) is associated with learning and memory alterations that could be, in part, a consequence of hippocampal damage. The CA3 hippocampal subfield is one of the regions affected by ethanol (EtOH), including exposure during the 3rd trimester-equivalent (i.e. neonatal period in rats). However, the mechanism of action of EtOH is poorly understood. In CA3 pyramidal neurons from neonatal rats, dendritic BDNF release causes long-term potentiation of the frequency of...

  12. Perforated patch-clamp analysis of the passive membrane properties of three classes of hippocampal neurons.

    Science.gov (United States)

    Spruston, N; Johnston, D

    1992-03-01

    1. Perforated patch-clamp recordings were made from the three major classes of hippocampal neurons in conventional in vitro slices prepared from adult guinea pigs. This technique provided experimental estimates of passive membrane properties (input resistance, RN, and membrane time constant, tau m) determined in the absence of the leak conductance associated with microelectrode impalement or the washout of cytoplasmic constituents associated with conventional whole-cell recordings. 2. To facilitate comparison of our data with previous results and to determine the passive membrane properties under conditions as physiological as possible, recordings were made at the resting potential, in physiological saline, and without any added blockers of voltage-dependent conductances. 3. Membrane-potential responses to current steps were analyzed, and four criteria were used to identify voltage responses that were the least affected by activation of voltage-dependent conductances. tau m was estimated from the slowest component (tau 0) of multiexponential fits of responses deemed passive by these criteria. RN was estimated from the slope of the linear region in the hyperpolarizing direction of the voltage-current relation. 4. It was not possible to measure purely passive membrane properties that were completely independent of membrane potential in any of the three classes of hippocampal neurons. Changing the membrane potential by constant current injection resulted in changes in RN and tau 0; subthreshold depolarization produced an increase, and hyperpolarization a decrease, in both RN and tau 0 for all three classes of hippocampal neurons. 5. Each of the three classes of hippocampal neurons also displayed a depolarizing "sag" during larger hyperpolarizing voltage transients. To evaluate the effect of the conductances underlying this sag on passive membrane properties, 2-5 mM Cs+ was added to the physiological saline. Extracellular Cs+ effectively blocked the sag in all three

  13. Experience-Dependent Induction of Hippocampal ΔFosB Controls Learning.

    Science.gov (United States)

    Eagle, Andrew L; Gajewski, Paula A; Yang, Miyoung; Kechner, Megan E; Al Masraf, Basma S; Kennedy, Pamela J; Wang, Hongbing; Mazei-Robison, Michelle S; Robison, Alfred J

    2015-10-07

    The hippocampus (HPC) is known to play an important role in learning, a process dependent on synaptic plasticity; however, the molecular mechanisms underlying this are poorly understood. ΔFosB is a transcription factor that is induced throughout the brain by chronic exposure to drugs, stress, and variety of other stimuli and regulates synaptic plasticity and behavior in other brain regions, including the nucleus accumbens. We show here that ΔFosB is also induced in HPC CA1 and DG subfields by spatial learning and novel environmental exposure. The goal of the current study was to examine the role of ΔFosB in hippocampal-dependent learning and memory and the structural plasticity of HPC synapses. Using viral-mediated gene transfer to silence ΔFosB transcriptional activity by expressing ΔJunD (a negative modulator of ΔFosB transcriptional function) or to overexpress ΔFosB, we demonstrate that HPC ΔFosB regulates learning and memory. Specifically, ΔJunD expression in HPC impaired learning and memory on a battery of hippocampal-dependent tasks in mice. Similarly, general ΔFosB overexpression also impaired learning. ΔJunD expression in HPC did not affect anxiety or natural reward, but ΔFosB overexpression induced anxiogenic behaviors, suggesting that ΔFosB may mediate attentional gating in addition to learning. Finally, we found that overexpression of ΔFosB increases immature dendritic spines on CA1 pyramidal cells, whereas ΔJunD reduced the number of immature and mature spine types, indicating that ΔFosB may exert its behavioral effects through modulation of HPC synaptic function. Together, these results suggest collectively that ΔFosB plays a significant role in HPC cellular morphology and HPC-dependent learning and memory. Consolidation of our explicit memories occurs within the hippocampus, and it is in this brain region that the molecular and cellular processes of learning have been most closely studied. We know that connections between hippocampal

  14. Hippocampal Theta Dysfunction after Lateral Fluid Percussion Injury

    OpenAIRE

    2010-01-01

    Chronic memory deficits are a major cause of morbidity following traumatic brain injury (TBI). In the rat, the hippocampal theta rhythm is a well-studied correlate of memory function. This study sought to investigate disturbances in hippocampal theta rhythm following lateral fluid percussion injury in the rat. A total of 13 control rats and 12 TBI rats were used. Electrodes were implanted in bilateral hippocampi and an electroencephalogram (EEG) was recorded while the rats explored a new envi...

  15. Adult hippocampal neurogenesis of mammals: evolution and life history

    OpenAIRE

    Amrein, I.; Lipp, H. P.

    2009-01-01

    Substantial production of new neurons in the adult mammalian brain is restricted to the olfactory system and the hippocampal formation. Its physiological and behavioural role is still debated. By comparing adult hippocampal neurogenesis (AHN) across many mammalian species, one might recognize a common function. AHN is most prominent in rodents, but shows considerable variability across species, being lowest or missing in primates and bats. The latter finding argues against a critical role of ...

  16. Why looking at the whole hippocampus is not enough – a critical role for anteroposterior axis, subfield and activation analyses to enhance predictive value of hippocampal changes for Alzheimer’s disease diagnosis.

    Directory of Open Access Journals (Sweden)

    Aleksandra eMaruszak

    2014-03-01

    Full Text Available The hippocampus is one of the earliest affected brain regions in Alzheimer´s disease (AD and its dysfunction is believed to underlie the core feature of the disease- memory impairment. Given that hippocampal volume is one of the best AD biomarkers, our review focuses on distinct subfields within the hippocampus, pinpointing regions that might enhance the predictive value of current diagnostic methods. Our review presents how changes in hippocampal volume, shape, symmetry and activation are reflected by cognitive impairment and how they are linked with neurogenesis alterations. Moreover, we revisit the functional differentiation along the anteroposterior longitudinal axis of the hippocampus and discuss its relevance for AD diagnosis. Finally, we indicate that apart from hippocampal subfield volumetry, the characteristic pattern of hippocampal hyperactivation associated with seizures and neurogenesis changes is another promising candidate for an early AD biomarker that could become also a target for early interventions.

  17. Short-term memory deficits correlate with hippocampal-thalamic functional connectivity alterations following acute sleep restriction.

    Science.gov (United States)

    Chengyang, Li; Daqing, Huang; Jianlin, Qi; Haisheng, Chang; Qingqing, Meng; Jin, Wang; Jiajia, Liu; Enmao, Ye; Yongcong, Shao; Xi, Zhang

    2016-07-21

    Acute sleep restriction heavily influences cognitive function, affecting executive processes such as attention, response inhibition, and memory. Previous neuroimaging studies have suggested a link between hippocampal activity and short-term memory function. However, the specific contribution of the hippocampus to the decline of short-term memory following sleep restriction has yet to be established. In the current study, we utilized resting-state functional magnetic resonance imaging (fMRI) to examine the association between hippocampal functional connectivity (FC) and the decline of short-term memory following total sleep deprivation (TSD). Twenty healthy adult males aged 20.9 ± 2.3 years (age range, 18-24 years) were enrolled in a within-subject crossover study. Short-term memory and FC were assessed using a Delay-matching short-term memory test and a resting-state fMRI scan before and after TSD. Seed-based correlation analysis was performed using fMRI data for the left and right hippocampus to identify differences in hippocampal FC following TSD. Subjects demonstrated reduced alertness and a decline in short-term memory performance following TSD. Moreover, fMRI analysis identified reduced hippocampal FC with the superior frontal gyrus (SFG), temporal regions, and supplementary motor area. In addition, an increase in FC between the hippocampus and bilateral thalamus was observed, the extent of which correlated with short-term memory performance following TSD. Our findings indicate that the disruption of hippocampal-cortical connectivity is linked to the decline in short-term memory observed after acute sleep restriction. Such results provide further evidence that support the cognitive impairment model of sleep deprivation.

  18. Norbin ablation results in defective adult hippocampal neurogenesis and depressive-like behavior in mice.

    Science.gov (United States)

    Wang, Hong; Warner-Schmidt, Jennifer; Varela, Santiago; Enikolopov, Grigori; Greengard, Paul; Flajolet, Marc

    2015-08-04

    Adult neurogenesis in the hippocampus subgranular zone is associated with the etiology and treatment efficiency of depression. Factors that affect adult hippocampal neurogenesis have been shown to contribute to the neuropathology of depression. Glutamate, the major excitatory neurotransmitter, plays a critical role in different aspects of neurogenesis. Of the eight metabotropic glutamate receptors (mGluRs), mGluR5 is the most highly expressed in neural stem cells. We previously identified Norbin as a positive regulator of mGluR5 and showed that its expression promotes neurite outgrowth. In this study, we investigated the role of Norbin in adult neurogenesis and depressive-like behaviors using Norbin-deficient mice. We found that Norbin deletion significantly reduced hippocampal neurogenesis; specifically, the loss of Norbin impaired the proliferation and maturation of newborn neurons without affecting cell-fate specification of neural stem cells/neural progenitor cells (NSCs/NPCs). Norbin is highly expressed in the granular neurons in the dentate gyrus of the hippocampus, but it is undetectable in NSCs/NPCs or immature neurons, suggesting that the effect of Norbin on neurogenesis is likely caused by a nonautonomous niche effect. In support of this hypothesis, we found that the expression of a cell-cell contact gene, Desmoplakin, is greatly reduced in Norbin-deletion mice. Moreover, Norbin-KO mice show an increased immobility in the forced-swim test and the tail-suspension test and reduced sucrose preference compared with wild-type controls. Taken together, these results show that Norbin is a regulator of adult hippocampal neurogenesis and that its deletion causes depressive-like behaviors.

  19. Hippocampal theta phase-contingent memory retrieval in delay and trace eyeblink conditioning.

    Science.gov (United States)

    Waselius, Tomi; Pöllänen, Eveliina; Wikgren, Jan; Penttonen, Markku; Nokia, Miriam S

    2017-09-04

    Hippocampal theta oscillations (3-12Hz) play a prominent role in learning. It has been suggested that encoding and retrieval of memories are supported by different phases of the theta cycle. Our previous study on trace eyeblink conditioning in rabbits suggests that the timing of the conditioned stimulus (CS) in relation to theta phase affects encoding but not retrieval of the memory trace. Here, we directly tested the effects of hippocampal theta phase on memory retrieval in two experiments conducted on adult female New Zealand White rabbits. In Experiment 1, animals were trained in trace eyeblink conditioning followed by extinction, and memory retrieval was tested by presenting the CS at troughs and peaks of the theta cycle during different stages of learning. In Experiment 2, animals were trained in delay conditioning either contingent on a high level of theta or at a random neural state. Conditioning was then followed by extinction conducted either at a random state, contingent on theta trough or contingent on theta peak. Our current results indicate that the phase of theta at CS onset has no effect on the performance of the behavioral learned response at any stage of classical eyeblink conditioning or extinction. In addition, theta-contingent trial presentation does not improve learning during delay eyeblink conditioning. The results are consistent with our earlier findings and suggest that the theta phase alone is not sufficient to affect learning at the behavioral level. It seems that the retrieval of recently acquired memories and consequently performing a learned response is moderated by neural mechanisms other than hippocampal theta. Copyright © 2017. Published by Elsevier B.V.

  20. Serotonin dependent masking of hippocampal sharp wave ripples.

    Science.gov (United States)

    ul Haq, Rizwan; Anderson, Marlene L; Hollnagel, Jan-Oliver; Worschech, Franziska; Sherkheli, Muhammad Azahr; Behrens, Christoph J; Heinemann, Uwe

    2016-02-01

    Sharp wave ripples (SPW-Rs) are thought to play an important role in memory consolidation. By rapid replay of previously stored information during slow wave sleep and consummatory behavior, they result from the formation of neural ensembles during a learning period. Serotonin (5-HT), suggested to be able to modify SPW-Rs, can affect many neurons simultaneously by volume transmission and alter network functions in an orchestrated fashion. In acute slices from dorsal hippocampus, SPW-Rs can be induced by repeated high frequency stimulation that induces long-lasting LTP. We used this model to study SPW-R appearance and modulation by 5-HT. Although stimulation in presence of 5-HT permitted LTP induction, SPW-Rs were "masked"--but appeared after 5-HT wash-out. This SPW-R masking was dose dependent with 100 nM 5-HT being sufficient--if the 5-HT re-uptake inhibitor citalopram was present. Fenfluramine, a serotonin releaser, could also mask SPW-Rs. Masking was due to 5-HT1A and 5-HT2A/C receptor activation. Neither membrane potential nor membrane conductance changes in pyramidal cells caused SPW-R blockade since both remained unaffected by combining 5-HT and citalopram. Moreover, 10 and 30 μM 5-HT mediated SPW-R masking preceded neuronal hyperpolarization and involved reduced presynaptic transmitter release. 5-HT, as well as a 5-HT1A agonist, augmented paired pulse facilitation and affected the coefficient of variance. Spontaneous SPW-Rs in mice hippocampal slices were also masked by 5-HT and fenfluramine. While neuronal ensembles can acquire long lasting LTP during higher 5-HT levels, lower 5-HT levels enable neural ensembles to replay previously stored information and thereby permit memory consolidation memory.

  1. Apolipoprotein E4 impairs in vivo hippocampal long-term synaptic plasticity by reducing the phosphorylation of CaMKIIα and CREB.

    Science.gov (United States)

    Qiao, Feng; Gao, Xiu-Ping; Yuan, Li; Cai, Hong-Yan; Qi, Jin-Shun

    2014-01-01

    Inheritance of the apolipoprotein E genotype ε4 (APOE4) is a powerful risk factor for most cases of late-onset Alzheimer's disease (AD). However, the effects of ApoE4 on the long-term synaptic plasticity and its underlying mechanism have not clearly investigated. In the present study, we examined the effects of ApoE4 on the hippocampal late-phase long-term potentiation (L-LTP) and investigated its probable molecular mechanisms by using in vivo field potential recording, immunohistochemistry, and western blotting. The results showed that: (1) intra-hippocampal injection of 0.2 μg ApoE4, but not ApoE2, before high frequency stimulations (HFSs) attenuated the induction of hippocampal L-LTP in the CA1 region, while injection of the same concentration of ApoE4 after HFSs, even at a higher concentration (2 μg), did not affect the long term synaptic plasticity; (2) ApoE4 injection did not affect the paired pulse facilitation in the hippocampal CA1 region; (3) ApoE4 injection before, not after, HFSs significantly decreased the levels of phosphorylated Ca2+/calmodulin-dependent protein kinase IIα (p-CaMKIIα) and phosphorylated cAMP response element-binding protein (p-CREB) in the hippocampus. These results demonstrated for the first time that ApoE4 could impair hippocampal L-LTP by reducing p-CaMKIIα and p-CREB, suggesting that the ApoE4-induced suppression of hippocampal long-term synaptic plasticity may contribute to the cognitive impairments in genetic AD; and both CaMKIIα and CREB are important intracellular targets of the neurotoxic ApoE4.

  2. Hippocampal Hyperactivation in Presymptomatic Familial Alzheimer’s Disease

    Science.gov (United States)

    Quiroz, Yakeel T.; Budson, Andrew E.; Celone, Kim; Ruiz, Adriana; Newmark, Randall; Castrillón, Gabriel; Lopera, Francisco; Stern, Chantal E.

    2011-01-01

    Objective The examination of individuals who carry fully penetrant genetic alterations that result in familial Alzheimer’s disease (FAD) provides a unique model for studying the early presymptomatic disease stages. In AD, deficits in episodic and associative memory have been linked to structural and functional changes within the hippocampal system. This study used functional MRI (fMRI) to examine hippocampal function in a group of healthy, young, cognitively-intact presymptomatic individuals (average age 33.7 years) who carry the E280A presenilin-1 (PS1) genetic mutation for FAD. These PS1 subjects will go on to develop the first symptoms of the disease around the age of 45 years. Our objective was to examine hippocampal function years before the onset of clinical symptoms. Methods Twenty carriers of the Alzheimer’s-associated E280A PS1 mutation and 19 PS1-negative control subjects participated. Both groups were matched for age, sex, education level, and neuropsychological test performance. All participants performed a face-name associative encoding task while in a Philips 1.5T fMRI scanner. Analysis focused on the hippocampal system. Results Despite identical behavioral performance, presymptomatic PS1 mutation carriers exhibited increased activation of the right anterior hippocampus during encoding of novel face-name associations compared to matched controls. Interpretation Our results demonstrate that functional changes within the hippocampal memory system occur years before cognitive decline in FAD. These presymptomatic changes in hippocampal physiology in FAD suggest that hippocampal fMRI patterns during associative encoding may also provide a preclinical biomarker in sporadic AD. PMID:21194156

  3. Nonlinear dynamical analysis of carbachol induced hippocampal oscillations in mice

    Institute of Scientific and Technical Information of China (English)

    Metin AKAY; Kui WANG; Yasemin M AKAY; Andrei DRAGOMIR; Jie WU

    2009-01-01

    Aim: Hippocampal neuronal network and synaptic impairment underlie learning and memory deficit in Alzheimer's disease (AD) patients and animal models. In this paper, we analyzed the dynamics and complexity of hippocampal neuronal network synchronization induced by acute exposure to carbachol, a nicotinic and muscarinic receptor co-agonist, using the nonlinear dynamical model based on the Lempel-Ziv estimator. We compared the dynamics of hippocampal oscillations between wild-type (WT) and triple-transgenic (3xTg) mice, as an AD animal model. We also compared these dynamic alterations between different age groups (5 and 10 months). We hypothesize that there is an impairment of complexity of CCh-induced hippocampal oscillations in 3xTg AD mice compared to WT mice, and that this impairment is age-dependent. Methods: To test this hypothesis, we used electrophysiological recordings (field potential) in hippocampal slices. Results: Acute exposure to 100 nmol/L CCh induced field potential oscillations in hippocampal CA1 region, which exhibited three distinct patterns: (1) continuous neural firing, (2) repeated burst neural firing and (3) the mixed (continuous and burst) pattern in both WT and 3xTg AD mice. Based on Lempel-Ziv estimator, pattern (2) was significantly lower than patterns (1) and (3) in 3xTg AD mice compared to WT mice (P<0.001), and also in 10-month old WT mice compared to those in 5-month old WT mice (P<0.01).Conclusion: These results suggest that the burst pattern (theta oscillation) of hippocampal network is selectively impaired in 3xTg AD mouse model, which may reflect a learning and memory deficit in the AD patients.

  4. Associative reinstatement memory measures hippocampal function in Parkinson's Disease.

    Science.gov (United States)

    Cohn, Melanie; Giannoylis, Irene; De Belder, Maya; Saint-Cyr, Jean A; McAndrews, Mary Pat

    2016-09-01

    In Parkinson's Disease (PD), hippocampal atrophy is associated with rapid cognitive decline. Hippocampal function is typically assessed using memory tests but current clinical tools (e.g., free recall) also rely on executive functions or use material that is not optimally engaging hippocampal memory networks. Because of the ubiquity of executive dysfunction in PD, our ability to detect true memory deficits is suboptimal. Our previous behavioural and neuroimaging work in other populations suggests that an experimental memory task - Associative Reinstatement Memory (ARM) - may prove useful in investigating hippocampal function in PD. In this study, we investigated whether ARM is compromised in PD and we assessed its convergent and divergent validity by comparing it to standardized measures of memory and of attention and executive functioning in PD, respectively. Using fMRI, we also investigated whether performance in PD relates to degree of hippocampal engagement. Fifteen participants with PD and 13 age-matched healthy controls completed neuropsychological testing as well as an ARM fMRI recognition paradigm in which they were instructed to identify word pairs comprised of two studied words (intact or rearranged pairs) and those containing at least one new word (new or half new pairs). ARM is measured by the differences in hit rates between intact and rearranged pairs. Behaviourally, ARM was poorer in PD relative to controls and was correlated with verbal memory measures, but not with attention or executive functioning in the PD group. Hippocampal activation associated with ARM was reduced in PD relative to controls and covaried with ARM scores in both groups. To conclude, ARM is a sensitive measure of hippocampal memory function that is unaffected by attention or executive dysfunction in PD. Our study highlights the benefit of integrating cognitive neuroscience frameworks and novel experimental tasks to improve the practice of clinical neuropsychology in PD.

  5. Social isolation disrupts hippocampal neurogenesis in young non-human primates

    Directory of Open Access Journals (Sweden)

    Simone M Cinini

    2014-03-01

    Full Text Available Social relationships are crucial for the development and maintenance of normal behavior in non-human primates. Animals that are raised in isolation develop abnormal patterns of behavior that persist even when they are later reunited with their parents. In rodents, social isolation is a stressful event and is associated with a decrease in hippocampal neurogenesis but considerably less is known about the effects of social isolation in non-human primates during the transition from adolescence to adulthood. To investigate how social isolation affects young marmosets, these were isolated from other members of the colony for one or three weeks and evaluated for alterations in their behavior and hippocampal cell proliferation. We found that anxiety-related behaviors like scent-marking and locomotor activity increased after social isolation when compared to baseline levels. In agreement, grooming - an indicative of attenuation of tension - was reduced among isolated marmosets. These results were consistent with increased cortisol levels after one and three weeks of isolation. After social isolation (one or three weeks, reduced proliferation of neural cells in the subgranular zone of dentate granule cell layer was identified and a smaller proportion of BrdU-positive cells underwent neuronal fate (doublecortin labeling. Our data is consistent with the notion that social deprivation during the transition from adolescence to adulthood leads to stress and produces anxiety-like behaviors that in turn might affect neurogenesis and contribute to the deleterious consequences of prolonged stressful conditions.

  6. Amyloid β Is Not the Major Factor Accounting for Impaired Adult Hippocampal Neurogenesis in Mice Overexpressing Amyloid Precursor Protein

    Directory of Open Access Journals (Sweden)

    Hongyu Pan

    2016-10-01

    Full Text Available Adult hippocampal neurogenesis was impaired in several Alzheimer's disease models overexpressing mutant human amyloid precursor protein (hAPP. However, the effects of wild-type hAPP on adult neurogenesis and whether the impaired adult hippocampal neurogenesis was caused by amyloid β (Aβ or APP remained unclear. Here, we found that neurogenesis was impaired in the dentate gyrus (DG of adult mice overexpressing wild-type hAPP (hAPP-I5 compared with controls. However, the adult hippocampal neurogenesis was more severely impaired in hAPP-I5 than that in hAPP-J20 mice, which express similar levels of hAPP mRNA but much higher levels of Aβ. Furthermore, reducing Aβ levels did not affect the number of doublecortin-positive cells in the DG of hAPP-J20 mice. Our results suggested that hAPP was more likely an important factor inhibiting adult neurogenesis, and Aβ was not the major factor affecting neurogenesis in the adult hippocampus of hAPP mice.

  7. Correlation between Peripheral Levels of Brain-Derived Neurotrophic Factor and Hippocampal Volume in Children and Adolescents with Bipolar Disorder

    Directory of Open Access Journals (Sweden)

    Tatiana Lauxen Peruzzolo

    2015-01-01

    Full Text Available Pediatric bipolar disorder (PBD is a serious mental disorder that affects the development and emotional growth of affected patients. The brain derived neurotrophic factor (BDNF is recognized as one of the possible markers of the framework and its evolution. Abnormalities in BDNF signaling in the hippocampus could explain the cognitive decline seen in patients with TB. Our aim with this study was to evaluate possible changes in hippocampal volume in children and adolescents with BD and associate them to serum BDNF. Subjects included 30 patients aged seven to seventeen years from the ProCAB (Program for Children and Adolescents with Bipolar Disorder. We observed mean right and left hippocampal volumes of 41910.55 and 41747.96 mm3, respectively. No statistically significant correlations between peripheral BDNF levels and hippocampal volumes were found. We believe that the lack of correlation observed in this study is due to the short time of evolution of BD in children and adolescents. Besides studies with larger sample sizes to confirm the present findings and longitudinal assessments, addressing brain development versus a control group and including drug-naive patients in different mood states may help clarify the role of BDNF in the brain changes consequent upon BD.

  8. Correlation between Peripheral Levels of Brain-Derived Neurotrophic Factor and Hippocampal Volume in Children and Adolescents with Bipolar Disorder.

    Science.gov (United States)

    Lauxen Peruzzolo, Tatiana; Anes, Mauricio; Kohmann, Andre de Moura; Souza, Ana Claudia Mércio Loredo; Rodrigues, Ramiro Borges; Brun, Juliana Basso; Peters, Roberta; de Aguiar, Bianca Wollenhaupt; Kapczinski, Flavio; Tramontina, Silzá; Rohde, Luis Augusto Paim; Zeni, Cristian Patrick

    2015-01-01

    Pediatric bipolar disorder (PBD) is a serious mental disorder that affects the development and emotional growth of affected patients. The brain derived neurotrophic factor (BDNF) is recognized as one of the possible markers of the framework and its evolution. Abnormalities in BDNF signaling in the hippocampus could explain the cognitive decline seen in patients with TB. Our aim with this study was to evaluate possible changes in hippocampal volume in children and adolescents with BD and associate them to serum BDNF. Subjects included 30 patients aged seven to seventeen years from the ProCAB (Program for Children and Adolescents with Bipolar Disorder). We observed mean right and left hippocampal volumes of 41910.55 and 41747.96 mm(3), respectively. No statistically significant correlations between peripheral BDNF levels and hippocampal volumes were found. We believe that the lack of correlation observed in this study is due to the short time of evolution of BD in children and adolescents. Besides studies with larger sample sizes to confirm the present findings and longitudinal assessments, addressing brain development versus a control group and including drug-naive patients in different mood states may help clarify the role of BDNF in the brain changes consequent upon BD.

  9. Impaired hippocampal-dependent memory and reduced parvalbumin-positive interneurons in a ketamine mouse model of schizophrenia.

    Science.gov (United States)

    Koh, Ming Teng; Shao, Yi; Sherwood, Andrew; Smith, Dani R

    2016-03-01

    The hippocampus of patients with schizophrenia displays aberrant excess neuronal activity which affects cognitive function. Animal models of the illness have recapitulated the overactivity in the hippocampus, with a corresponding regionally localized reduction of inhibitory interneurons, consistent with that observed in patients. To better understand whether cognitive function is similarly affected in these models of hippocampal overactivity, we tested a ketamine mouse model of schizophrenia for cognitive performance in hippocampal- and medial prefrontal cortex (mPFC)-dependent tasks. We found that adult mice exposed to ketamine during adolescence were impaired on a trace fear conditioning protocol that relies on the integrity of the hippocampus. Conversely, the performance of the mice was normal on a delayed response task that is sensitive to mPFC damage. We confirmed that ketamine-exposed mice had reduced parvalbumin-positive interneurons in the hippocampus, specifically in the CA1, but not in the mPFC in keeping with the behavioral findings. These results strengthened the utility of the ketamine model for preclinical investigations of hippocampal overactivity in schizophrenia.

  10. Fluoxetine during development reverses the effects of prenatal stress on depressive-like behavior and hippocampal neurogenesis in adolescence.

    Directory of Open Access Journals (Sweden)

    Ine Rayen

    Full Text Available Depression during pregnancy and the postpartum period is a growing health problem, which affects up to 20% of women. Currently, selective serotonin reuptake inhibitor (SSRIs medications are commonly used for treatment of maternal depression. Unfortunately, there is very little research on the long-term effect of maternal depression and perinatal SSRI exposure on offspring development. Therefore, the aim of this study was to determine the role of exposure to fluoxetine during development on affective-like behaviors and hippocampal neurogenesis in adolescent offspring in a rodent model of maternal depression. To do this, gestationally stressed and non-stressed Sprague-Dawley rat dams were treated with either fluoxetine (5 mg/kg/day or vehicle beginning on postnatal day 1 (P1. Adolescent male and female offspring were divided into 4 groups: 1 prenatal stress+fluoxetine exposure, 2 prenatal stress+vehicle, 3 fluoxetine exposure alone, and 4 vehicle alone. Adolescent offspring were assessed for anxiety-like behavior using the Open Field Test and depressive-like behavior using the Forced Swim Test. Brains were analyzed for endogenous markers of hippocampal neurogenesis via immunohistochemistry. Results demonstrate that maternal fluoxetine exposure reverses the reduction in immobility evident in prenatally stressed adolescent offspring. In addition, maternal fluoxetine exposure reverses the decrease in hippocampal cell proliferation and neurogenesis in maternally stressed adolescent offspring. This research provides important evidence on the long-term effect of fluoxetine exposure during development in a model of maternal adversity.

  11. Effect of clausenamide on hippocampal neuron apoptosis induced by sodium nitroprusside

    Institute of Scientific and Technical Information of China (English)

    Yongjun Liu; Qifeng Zhu

    2007-01-01

    chromatometry; levels of mRNA of hippocampal neuron bcl-2 and bax gene were detected with reverse transcription polymerase chain reaction (RT-PCR); expression of hippocampal neuron Bcl-2 and Bax protein was measured with Western blot technique.MAIN OUTCOME MEASURES: ① Effect of (-) clausenamide on survival rate of SNP-induced hippocampal neuron apoptosis; ② bcl-2 and bax mRNA and protein expression of hippocampal neurons.RESULTS: ① Survival rate ofhippocampal neurons: Survival rate of hippocampal neurons affected by 0.4 - 1.6 μ mol/L ( - ) clausenamide was higher in the experimental group than the model group (P < 0.01),and the survival rate was increased with the larger volume of (-) clausenamide. Survival rate was the highest when hippocampal neurons were induced by 1.6 μ mol/L, and it had obvious dosage dependence (P <0.01). ② Expression of bcl-2 and bar mRNA: Hippocampal neurons were pretreated with 0.2 - 1.6 μ mol/L( - ) clausenamide for 6 hours in the experimental group and strap of PCR product of bcl-2 gene was brightened gradually. This suggested that, with the increase of concentration, expression of bcl-2 mRNA was increased simultaneously. However, when strap of PCR product of bax gene was darkened, expression of bax was decreased with the increase of concentration. ③ Expression of Bcl-2 and Bax protein: Hippocampal neurons were pretreated with 0.2 - 1.6 μ mol/L ( - ) clausenamide for 6 hours in the experimental group and strap of PCR product of Bcl-2 protein was thickened gradually. This suggested that, with the increase of concentration, expression of Bcl-2 protein was increased simultaneously. However, when strap of PCR product of Bax protein was thinned, expression of Bax protein was decreased with the increase of concentration.CONCLUSION: ( - ) clausenamide can resist neurotoxic effect of SNP through dosage dependence, and the mechanism may be related to promoting expression of anti-apoptotic bcl-2 gene and inhibiting expression of pro

  12. EEA1 restores homeostatic synaptic plasticity in hippocampal neurons from Rett syndrome mice.

    Science.gov (United States)

    Xu, Xin; Pozzo-Miller, Lucas

    2017-08-15

    Rett syndrome is a neurodevelopmental disorder caused by loss-of-function mutations in MECP2, the gene encoding the transcriptional regulator methyl-CpG-binding protein 2 (MeCP2). Mecp2 deletion in mice results in an imbalance of excitation and inhibition in hippocampal neurons, which affects 'Hebbian' synaptic plasticity. We show that Mecp2-deficient neurons also lack homeostatic synaptic plasticity, likely due to reduced levels of EEA1, a protein involved in AMPA receptor endocytosis. Expression of EEA1 restored homeostatic synaptic plasticity in Mecp2-deficient neurons, providing novel targets of intervention in Rett syndrome. Rett syndrome is a neurodevelopmental disorder caused by loss-of-function mutations in MECP2, the gene encoding the transcriptional regulator methyl-CpG-binding protein 2 (MeCP2). Deletion of Mecp2 in mice results in an imbalance of synaptic excitation and inhibition in hippocampal pyramidal neurons, which affects 'Hebbian' long-term synaptic plasticity. Since the excitatory-inhibitory balance is maintained by homeostatic mechanisms, we examined the role of MeCP2 in homeostatic synaptic plasticity (HSP) at excitatory synapses. Negative feedback HSP, also known as synaptic scaling, maintains the global synaptic strength of individual neurons in response to sustained alterations in neuronal activity. Hippocampal neurons from Mecp2 knockout (KO) mice do not show the characteristic homeostatic scaling up of the amplitude of miniature excitatory postsynaptic currents (mEPSCs) and of synaptic levels of the GluA1 subunit of AMPA-type glutamate receptors after 48 h silencing with the Na(+) channel blocker tetrodotoxin. This deficit in HSP is bidirectional because Mecp2 KO neurons also failed to scale down mEPSC amplitudes and GluA1 synaptic levels after 48 h blockade of type A GABA receptor (GABAA R)-mediated inhibition with bicuculline. Consistent with the role of synaptic trafficking of AMPA-type of glutamate receptors in HSP, Mecp2 KO neurons

  13. Effect of Opioid on Adult Hippocampal Neurogenesis

    Directory of Open Access Journals (Sweden)

    Yue Zhang

    2016-01-01

    Full Text Available During the past decade, the study of the mechanisms and functional implications of adult neurogenesis has significantly progressed. Many studies focus on the factors that regulate proliferation and fate determination of adult neural stem/progenitor cells, including addictive drugs such as opioid. Here, we review the most recent works on opiate drugs’ effect on different developmental stages of adult hippocampal neurogenesis, as well as the possible underlying mechanisms. We conclude that opiate drugs in general cause a loss of newly born neural progenitors in the subgranular zone of dentate gyrus, by either modulating proliferation or interfering with differentiation and maturation. We also discuss the consequent impact of regulation of adult neurogenesis in animal’s opioid addiction behavior. We further look into the future directions in studying the convergence between the adult neurogenesis field and opioid addiction field, since the adult-born granular cells were shown to play a role in neuroplasticity and may help to reduce the vulnerability to drug craving and relapse.

  14. Dendritic potassium channels in hippocampal pyramidal neurons.

    Science.gov (United States)

    Johnston, D; Hoffman, D A; Magee, J C; Poolos, N P; Watanabe, S; Colbert, C M; Migliore, M

    2000-05-15

    Potassium channels located in the dendrites of hippocampal CA1 pyramidal neurons control the shape and amplitude of back-propagating action potentials, the amplitude of excitatory postsynaptic potentials and dendritic excitability. Non-uniform gradients in the distribution of potassium channels in the dendrites make the dendritic electrical properties markedly different from those found in the soma. For example, the influence of a fast, calcium-dependent potassium current on action potential repolarization is progressively reduced in the first 150 micrometer of the apical dendrites, so that action potentials recorded farther than 200 micrometer from the soma have no fast after-hyperpolarization and are wider than those in the soma. The peak amplitude of back-propagating action potentials is also progressively reduced in the dendrites because of the increasing density of a transient potassium channel with distance from the soma. The activation of this channel can be reduced by the activity of a number of protein kinases as well as by prior depolarization. The depolarization from excitatory postsynaptic potentials (EPSPs) can inactivate these A-type K+ channels and thus lead to an increase in the amplitude of dendritic action potentials, provided the EPSP and the action potentials occur within the appropriate time window. This time window could be in the order of 15 ms and may play a role in long-term potentiation induced by pairing EPSPs and back-propagating action potentials.

  15. Effect of Opioid on Adult Hippocampal Neurogenesis.

    Science.gov (United States)

    Zhang, Yue; Loh, Horace H; Law, Ping-Yee

    2016-01-01

    During the past decade, the study of the mechanisms and functional implications of adult neurogenesis has significantly progressed. Many studies focus on the factors that regulate proliferation and fate determination of adult neural stem/progenitor cells, including addictive drugs such as opioid. Here, we review the most recent works on opiate drugs' effect on different developmental stages of adult hippocampal neurogenesis, as well as the possible underlying mechanisms. We conclude that opiate drugs in general cause a loss of newly born neural progenitors in the subgranular zone of dentate gyrus, by either modulating proliferation or interfering with differentiation and maturation. We also discuss the consequent impact of regulation of adult neurogenesis in animal's opioid addiction behavior. We further look into the future directions in studying the convergence between the adult neurogenesis field and opioid addiction field, since the adult-born granular cells were shown to play a role in neuroplasticity and may help to reduce the vulnerability to drug craving and relapse.

  16. Hippocampal CA1 Ripples as Inhibitory Transients.

    Directory of Open Access Journals (Sweden)

    Paola Malerba

    2016-04-01

    Full Text Available Memories are stored and consolidated as a result of a dialogue between the hippocampus and cortex during sleep. Neurons active during behavior reactivate in both structures during sleep, in conjunction with characteristic brain oscillations that may form the neural substrate of memory consolidation. In the hippocampus, replay occurs within sharp wave-ripples: short bouts of high-frequency activity in area CA1 caused by excitatory activation from area CA3. In this work, we develop a computational model of ripple generation, motivated by in vivo rat data showing that ripples have a broad frequency distribution, exponential inter-arrival times and yet highly non-variable durations. Our study predicts that ripples are not persistent oscillations but result from a transient network behavior, induced by input from CA3, in which the high frequency synchronous firing of perisomatic interneurons does not depend on the time scale of synaptic inhibition. We found that noise-induced loss of synchrony among CA1 interneurons dynamically constrains individual ripple duration. Our study proposes a novel mechanism of hippocampal ripple generation consistent with a broad range of experimental data, and highlights the role of noise in regulating the duration of input-driven oscillatory spiking in an inhibitory network.

  17. Hippocampal CA1 Ripples as Inhibitory Transients.

    Science.gov (United States)

    Malerba, Paola; Krishnan, Giri P; Fellous, Jean-Marc; Bazhenov, Maxim

    2016-04-01

    Memories are stored and consolidated as a result of a dialogue between the hippocampus and cortex during sleep. Neurons active during behavior reactivate in both structures during sleep, in conjunction with characteristic brain oscillations that may form the neural substrate of memory consolidation. In the hippocampus, replay occurs within sharp wave-ripples: short bouts of high-frequency activity in area CA1 caused by excitatory activation from area CA3. In this work, we develop a computational model of ripple generation, motivated by in vivo rat data showing that ripples have a broad frequency distribution, exponential inter-arrival times and yet highly non-variable durations. Our study predicts that ripples are not persistent oscillations but result from a transient network behavior, induced by input from CA3, in which the high frequency synchronous firing of perisomatic interneurons does not depend on the time scale of synaptic inhibition. We found that noise-induced loss of synchrony among CA1 interneurons dynamically constrains individual ripple duration. Our study proposes a novel mechanism of hippocampal ripple generation consistent with a broad range of experimental data, and highlights the role of noise in regulating the duration of input-driven oscillatory spiking in an inhibitory network.

  18. Ultrafast endocytosis at mouse hippocampal synapses

    Science.gov (United States)

    Watanabe, Shigeki; Rost, Benjamin R.; Camacho-Pérez, Marcial; Davis, M. Wayne; Söhl-Kielczynski, Berit; Rosenmund, Christian; Jorgensen, Erik M.

    2013-12-01

    To sustain neurotransmission, synaptic vesicles and their associated proteins must be recycled locally at synapses. Synaptic vesicles are thought to be regenerated approximately 20s after fusion by the assembly of clathrin scaffolds or in approximately 1s by the reversal of fusion pores via `kiss-and-run' endocytosis. Here we use optogenetics to stimulate cultured hippocampal neurons with a single stimulus, rapidly freeze them after fixed intervals and examine the ultrastructure using electron microscopy--`flash-and-freeze' electron microscopy. Docked vesicles fuse and collapse into the membrane within 30ms of the stimulus. Compensatory endocytosis occurs within 50 to 100ms at sites flanking the active zone. Invagination is blocked by inhibition of actin polymerization, and scission is blocked by inhibiting dynamin. Because intact synaptic vesicles are not recovered, this form of recycling is not compatible with kiss-and-run endocytosis; moreover, it is 200-fold faster than clathrin-mediated endocytosis. It is likely that `ultrafast endocytosis' is specialized to restore the surface area of the membrane rapidly.

  19. Neuroprotection against diisopropylfluorophosphate in acute hippocampal slices

    Science.gov (United States)

    Ferchmin, P. A.; Pérez, Dinely; Cuadrado, Brenda L.; Carrasco, Marimée; Martins, Antonio H.; Eterović, Vesna A.

    2015-01-01

    Diisopropylfluorophosphate (DFP) is an irreversible inhibitor of acetylcholine esterase (AChE) and a surrogate of the organophosphorus (OP) nerve agent sarin. The neurotoxicity of DFP was assessed as a reduction of population spike (PS) area elicited by synaptic stimulation in acute hippocampal slices. Two classical antidotes, atropine, and pralidoxime, and two novel antidotes, 4R-cembranotriene-diol (4R) and a caspase 9 inhibitor, were tested. Atropine, pralidoxime, and 4R significantly protected when applied 30 min after DFP. The caspase inhibitor was neuroprotective when applied 5–10 min before or after DFP, suggesting that early synaptic apoptosis is responsible for the loss of PSs. It is likely that apoptosis starts at the synapses and, if antidotes are not applied, descends to the cell bodies, causing death. The acute slice is a reliable tool for mechanistic studies, and the assessment of neurotoxicity and neuroprotection with PS areas is, in general, pharmacologically congruent with in vivo results and predicts the effect of drugs in vivo. 4R was first found to be neuroprotective in slices and later we demonstrated that 4R is neuroprotective in vivo. The mechanism of neurotoxicity of OPs is not well understood, and there is a need for novel antidotes that could be discovered using acute slices. PMID:26438150

  20. Hippocampal-neocortical functional reorganization underlies children's cognitive development.

    Science.gov (United States)

    Qin, Shaozheng; Cho, Soohyun; Chen, Tianwen; Rosenberg-Lee, Miriam; Geary, David C; Menon, Vinod

    2014-09-01

    The importance of the hippocampal system for rapid learning and memory is well recognized, but its contributions to a cardinal feature of children's cognitive development-the transition from procedure-based to memory-based problem-solving strategies-are unknown. Here we show that the hippocampal system is pivotal to this strategic transition. Longitudinal functional magnetic resonance imaging (fMRI) in 7-9-year-old children revealed that the transition from use of counting to memory-based retrieval parallels increased hippocampal and decreased prefrontal-parietal engagement during arithmetic problem solving. Longitudinal improvements in retrieval-strategy use were predicted by increased hippocampal-neocortical functional connectivity. Beyond childhood, retrieval-strategy use continued to improve through adolescence into adulthood and was associated with decreased activation but more stable interproblem representations in the hippocampus. Our findings provide insights into the dynamic role of the hippocampus in the maturation of memory-based problem solving and establish a critical link between hippocampal-neocortical reorganization and children's cognitive development.

  1. Hippocampal functional connectivity and episodic memory in early childhood

    Directory of Open Access Journals (Sweden)

    Tracy Riggins

    2016-06-01

    Full Text Available Episodic memory relies on a distributed network of brain regions, with the hippocampus playing a critical and irreplaceable role. Few studies have examined how changes in this network contribute to episodic memory development early in life. The present addressed this gap by examining relations between hippocampal functional connectivity and episodic memory in 4- and 6-year-old children (n = 40. Results revealed similar hippocampal functional connectivity between age groups, which included lateral temporal regions, precuneus, and multiple parietal and prefrontal regions, and functional specialization along the longitudinal axis. Despite these similarities, developmental differences were also observed. Specifically, 3 (of 4 regions within the hippocampal memory network were positively associated with episodic memory in 6-year-old children, but negatively associated with episodic memory in 4-year-old children. In contrast, all 3 regions outside the hippocampal memory network were negatively associated with episodic memory in older children, but positively associated with episodic memory in younger children. These interactions are interpreted within an interactive specialization framework and suggest the hippocampus becomes functionally integrated with cortical regions that are part of the hippocampal memory network in adults and functionally segregated from regions unrelated to memory in adults, both of which are associated with age-related improvements in episodic memory ability.

  2. The Form and Function of Hippocampal Context Representations

    Science.gov (United States)

    Smith, David M.; Bulkin, David A.

    2014-01-01

    Context is an essential component of learning and memory processes, and the hippocampus is critical for encoding contextual information. However, connecting hippocampal physiology with its role in context and memory has only recently become possible. It is now clear that contexts are represented by coherent ensembles of hippocampal neurons and new optogenetic stimulation studies indicate that activity in these ensembles can trigger the retrieval of context appropriate memories. We interpret these findings in light of recent evidence that the hippocampus is critically involved in using contextual information to prevent interference, and propose a theoretical framework for understanding contextual influence of memory retrieval. When a new context is encountered, a unique hippocampal ensemble is recruited to represent it. Memories for events that occur in the context become associated with the hippocampal representation. Revisiting the context causes the hippocampal context code to be re-expressed and the relevant memories are primed. As a result, retrieval of appropriate memories is enhanced and interference from memories belonging to other contexts is minimized. PMID:24462752

  3. Altered hippocampal morphology in unmedicated patients with major depressive illness

    Directory of Open Access Journals (Sweden)

    Carrie E Bearden

    2009-11-01

    Full Text Available Despite converging evidence that major depressive illness is associated with both memory impairment and hippocampal pathology, findings vary widely across studies and it is not known whether these changes are regionally specific. In the present study we acquired brain MRIs (magnetic resonance images from 31 unmedicated patients with MDD (major depressive disorder; mean age 39.2±11.9 years; 77% female and 31 demographically comparable controls. Three-dimensional parametric mesh models were created to examine localized alterations of hippocampal morphology. Although global volumes did not differ between groups, statistical mapping results revealed that in MDD patients, more severe depressive symptoms were associated with greater left hippocampal atrophy, particularly in CA1 (cornu ammonis 1 subfields and the subiculum. However, previous treatment with atypical antipsychotics was associated with a trend towards larger left hippocampal volume. Our findings suggest effects of illness severity on hippocampal size, as well as a possible effect of past history of atypical antipsychotic treatment, which may reflect prolonged neuroprotective effects. This possibility awaits confirmation in longitudinal studies.

  4. Reducing central serotonin in adulthood promotes hippocampal neurogenesis.

    Science.gov (United States)

    Song, Ning-Ning; Jia, Yun-Fang; Zhang, Lei; Zhang, Qiong; Huang, Ying; Liu, Xiao-Zhen; Hu, Ling; Lan, Wei; Chen, Ling; Lesch, Klaus-Peter; Chen, Xiaoyan; Xu, Lin; Ding, Yu-Qiang

    2016-02-03

    Chronic administration of selective serotonin reuptake inhibitors (SSRIs), which up-regulates central serotonin (5-HT) system function, enhances adult hippocampal neurogenesis. However, the relationship between central 5-HT system and adult neurogenesis has not fully been understood. Here, we report that lowering 5-HT level in adulthood is also able to enhance adult hippocampal neurogenesis. We used tamoxifen (TM)-induced Cre in Pet1-CreER(T2) mice to either deplete central serotonergic (5-HTergic) neurons or inactivate 5-HT synthesis in adulthood and explore the role of central 5-HT in adult hippocampal neurogenesis. A dramatic increase in hippocampal neurogenesis is present in these two central 5-HT-deficient mice and it is largely prevented by administration of agonist for 5-HTR2c receptor. In addition, the survival of new-born neurons in the hippocampus is enhanced. Furthermore, the adult 5-HT-deficient mice showed reduced depression-like behaviors but enhanced contextual fear memory. These findings demonstrate that lowering central 5-HT function in adulthood can also enhance adult hippocampal neurogenesis, thus revealing a new aspect of central 5-HT in regulating adult neurogenesis.

  5. Impaired cognitive performance and hippocampal atrophy in Parkinson disease.

    Science.gov (United States)

    Yildiz, Demet; Erer, Sevda; Zarifoğlu, Mehmet; Hakyemez, Bahattin; Bakar, Mustafa; Karli, Necdet; Varlibaş, Zeynep Nigar; Tufan, Fatih

    2015-01-01

    Dementia is common in Parkinson disease (PD). Since magnetic resonance imaging has been used, hippocampal atrophy has been shown in PD patients with or without dementia. In this study we sought the correlation of cognitive decline with bilateral hippocampal volume in PD patients. Thirty-three patients with diagnosis of idiopathic PD and 16 healthy subjects were included in this study. PD patients were divided into two groups as normal cognitive function and mild cognitive impairment (MCI). The Mini-Mental State Examination and detailed cognitive assessment tests were performed for all patients for cognitive analyses. Depression was excluded by the Geriatric Depression Scale. The mean onset age of disease was 55 years for PD patients without dementia and 59 for PD patients with MCI. According to the Hoehn-Yahr scales, 24% of patients had grade 1, 58% had grade 2, and 18% had grade 3 disease. Right and left hippocampal volumes decreased along with cognitive test scores in PD patients. Increased right hippocampal volume was correlated with forward number test in the MCI-PD group. These findings suggest that memory deficit is associated with hippocampal atrophy in PD patients.

  6. Maternal anxiety and infants' hippocampal development: timing matters.

    Science.gov (United States)

    Qiu, A; Rifkin-Graboi, A; Chen, H; Chong, Y-S; Kwek, K; Gluckman, P D; Fortier, M V; Meaney, M J

    2013-09-24

    Exposure to maternal anxiety predicts offspring brain development. However, because children's brains are commonly assessed years after birth, the timing of such maternal influences in humans is unclear. This study aimed to examine the consequences of antenatal and postnatal exposure to maternal anxiety upon early infant development of the hippocampus, a key structure for stress regulation. A total of 175 neonates underwent magnetic resonance imaging (MRI) at birth and among them 35 had repeated scans at 6 months of age. Maternal anxiety was assessed using the State-Trait Anxiety Inventory (STAI) at week 26 of pregnancy and 3 months after delivery. Regression analyses showed that antenatal maternal anxiety did not influence bilateral hippocampal volume at birth. However, children of mothers reporting increased anxiety during pregnancy showed slower growth of both the left and right hippocampus over the first 6 months of life. This effect of antenatal maternal anxiety upon right hippocampal growth became statistically stronger when controlling for postnatal maternal anxiety. Furthermore, a strong positive association between postnatal maternal anxiety and right hippocampal growth was detected, whereas a strong negative association between postnatal maternal anxiety and the left hippocampal volume at 6 months of life was found. Hence, the postnatal growth of bilateral hippocampi shows distinct responses to postnatal maternal anxiety. The size of the left hippocampus during early development is likely to reflect the influence of the exposure to perinatal maternal anxiety, whereas right hippocampal growth is constrained by antenatal maternal anxiety, but enhanced in response to increased postnatal maternal anxiety.

  7. Qualitative and Quantitative Hippocampal MRI Assessments in Intractable Epilepsy

    Directory of Open Access Journals (Sweden)

    Paramdeep Singh

    2013-01-01

    Full Text Available Aims. To acquire normative data of hippocampal volumes and T2 relaxation times, to evaluate and compare qualitative and quantitative assessments in evaluating hippocampi in patients with different durations of intractable epilepsy, and to propose an imaging protocol based on performance of these techniques. Methods. MRI analysis was done in 50 nonepileptic controls and 30 patients with intractable epilepsy on 1.5T scanner. Visual assessment and hippocampal volumetry were done on oblique coronal IR/T2W and T1W MP-RAGE images, respectively. T2 relaxation times were measured using 16-echo Carr-Purcell-Meiboom-Gill sequence. Volumetric data was normalized for variation in head size between individuals. Patients were divided into temporal ( and extratemporal ( groups based on clinical and EEG localization. Results. In controls, right hippocampal volume was slightly more than the left with no effect of age or gender. In TLE patients, hippocampal volumetry provided maximum concordance with EEG. Visual assessment of unilateral pathology concurred well with measured quantitative values but poorly in cases with bilateral pathologies. There were no significant differences of mean values between extratemporal group and controls group. Quantitative techniques detected mild abnormalities, undetected on visual assessment. Conclusions. Quantitative techniques are more sensitive to diagnose bilateral and mild unilateral hippocampal abnormalities.

  8. Protein tyrosine phosphatase PTP1B is involved in hippocampal synapse formation and learning.

    Directory of Open Access Journals (Sweden)

    Federico Fuentes

    Full Text Available ER-bound PTP1B is expressed in hippocampal neurons, and accumulates among neurite contacts. PTP1B dephosphorylates ß-catenin in N-cadherin complexes ensuring cell-cell adhesion. Here we show that endogenous PTP1B, as well as expressed GFP-PTP1B, are present in dendritic spines of hippocampal neurons in culture. GFP-PTP1B overexpression does not affect filopodial density or length. In contrast, impairment of PTP1B function or genetic PTP1B-deficiency leads to increased filopodia-like dendritic spines and a reduction in mushroom-like spines, while spine density is unaffected. These morphological alterations are accompanied by a disorganization of pre- and post-synapses, as judged by decreased clustering of synapsin-1 and PSD-95, and suggest a dynamic synaptic phenotype. Notably, levels of ß-catenin-Tyr-654 phosphorylation increased ∼5-fold in the hippocampus of adult PTP1B(-/- (KO mice compared to wild type (WT mice and this was accompanied by a reduction in the amount of ß-catenin associated with N-cadherin. To determine whether PTP1B-deficiency alters learning and memory, we generated mice lacking PTP1B in the hippocampus and cortex (PTP1B(fl/fl-Emx1-Cre. PTP1B(fl/fl-Emx1-Cre mice displayed improved performance in the Barnes maze (decreased time to find and enter target hole, utilized a more efficient strategy (cued, and had better recall compared to WT controls. Our results implicate PTP1B in structural plasticity within the hippocampus, likely through modulation of N-cadherin function by ensuring dephosphorylation of ß-catenin on Tyr-654. Disruption of hippocampal PTP1B function or expression leads to elongation of dendritic filopodia and improved learning and memory, demonstrating an exciting novel role for this phosphatase.

  9. Neonatal isoflurane exposure induces neurocognitive impairment and abnormal hippocampal histone acetylation in mice.

    Directory of Open Access Journals (Sweden)

    Tao Zhong

    Full Text Available Neonatal exposure to isoflurane may induce long-term memory impairment in mice. Histone acetylation is an important form of chromatin modification that regulates the transcription of genes required for memory formation. This study investigated whether neonatal isoflurane exposure-induced neurocognitive impairment is related to dysregulated histone acetylation in the hippocampus and whether it can be attenuated by the histone deacetylase (HDAC inhibitor trichostatin A (TSA.C57BL/6 mice were exposed to 0.75% isoflurane three times (each for 4 h at postnatal days 7, 8, and 9. Contextual fear conditioning (CFC was tested at 3 months after anesthesia administration. TSA was intraperitoneally injected 2 h before CFC training. Hippocampal histone acetylation levels were analyzed following CFC training. Levels of the neuronal activation and synaptic plasticity marker c-Fos were investigated at the same time point.Mice that were neonatally exposed to isoflurane showed significant memory impairment on CFC testing. These mice also exhibited dysregulated hippocampal H4K12 acetylation and decreased c-Fos expression following CFC training. TSA attenuated isoflurane-induced memory impairment and simultaneously increased histone acetylation and c-Fos levels in the hippocampal cornu ammonis (CA1 area 1 h after CFC training.Memory impairment induced by repeated neonatal exposure to isoflurane is associated with dysregulated histone H4K12 acetylation in the hippocampus, which probably affects downstream c-Fos gene expression following CFC training. The HDAC inhibitor TSA successfully rescued impaired contextual fear memory, presumably by promoting histone acetylation and histone acetylation-mediated gene expression.

  10. Inositol hexakisphosphate suppresses excitatory neurotransmission via synaptotagmin-1 C2B domain in the hippocampal neuron

    Science.gov (United States)

    Yang, Shao-Nian; Shi, Yue; Yang, Guang; Li, Yuxin; Yu, Lina; Shin, Ok-Ho; Bacaj, Taulant; Südhof, Thomas C.; Yu, Jia; Berggren, Per-Olof

    2012-01-01

    Inositol hexakisphosphate (InsP6) levels rise and fall with neuronal excitation and silence, respectively, in the hippocampus, suggesting potential signaling functions of this inositol polyphosphate in hippocampal neurons. We now demonstrate that intracellular application of InsP6 caused a concentration-dependent inhibition of autaptic excitatory postsynaptic currents (EPSCs) in cultured hippocampal neurons. The treatment did not alter the size and replenishment rate of the readily releasable pool in autaptic neurons. Intracellular exposure to InsP6 did not affect spontaneous EPSCs or excitatory amino acid-activated currents in neurons lacking autapses. The InsP6-induced inhibition of autaptic EPSCs was effectively abolished by coapplication of an antibody to synaptotagmin-1 C2B domain. Importantly, preabsorption of the antibody with a GST-WT synaptotagmin-1 C2B domain fragment but not with a GST-mutant synaptotagmin-1 C2B domain fragment that poorly reacted with the antibody impaired the activity of the antibody on the InsP6-induced inhibition of autaptic EPSCs. Furthermore, K+ depolarization significantly elevated endogenous levels of InsP6 and occluded the inhibition of autaptic EPSCs by exogenous InsP6. These data reveal that InsP6 suppresses excitatory neurotransmission via inhibition of the presynaptic synaptotagmin-1 C2B domain-mediated fusion via an interaction with the synaptotagmin Ca2+-binding sites rather than via interference with presynaptic Ca2+ levels, synaptic vesicle trafficking, or inactivation of postsynaptic ionotropic glutamate receptors. Therefore, elevated InsP6 in activated neurons serves as a unique negative feedback signal to control hippocampal excitatory neurotransmission. PMID:22778403

  11. Maternal obesity impairs hippocampal BDNF production and spatial learning performance in young mouse offspring.

    Science.gov (United States)

    Tozuka, Yusuke; Kumon, Mami; Wada, Etsuko; Onodera, Masafumi; Mochizuki, Hideki; Wada, Keiji

    2010-10-01

    Maternal obesity may affect the child's long-term development and health, increasing the risk of diabetes and metabolic syndrome. In addition to the metabolic and endocrine systems, recent reports have indicated that maternal obesity also modulates neural circuit formation in the offspring. However, this not yet been fully investigated. Here, we examined the effect of diet-induced maternal obesity on hippocampal development and function in the mouse offspring. Adult female mice were fed either a normal diet (ND, 4% fat) or a high-fat diet (HFD, 32% fat) before mating and throughout pregnancy and lactation. After weaning, all offspring were fed with a normal diet. We found that HFD offspring showed increased lipid peroxidation in the hippocampus during early postnatal development. HFD offspring had less brain-derived neurotrophic factor (BDNF) in the hippocampus than ND offspring. BDNF has been shown to play crucial roles in neuronal differentiation, plasticity and hippocampus-dependent cognitive functions such as spatial learning and memory. Using retroviral labeling, we demonstrated that dendritic arborization of new hippocampal neurons was impaired in the young HFD offspring. Finally, we evaluated cognitive function in these offspring using hippocampus-dependent behavioral tasks. The Barnes maze test demonstrated that HFD offspring showed impaired acquisition of spatial learning in the young but not adult period. This study, using a mouse model, indicates that diet-induced maternal obesity impairs hippocampal BDNF production and spatial cognitive function in young offspring, possibly due to their metabolic and oxidative changes. (c) 2010 Elsevier Ltd. All rights reserved.

  12. Effect of forced exercise and exercise withdrawal on memory, serum and hippocampal corticosterone levels in rats.

    Science.gov (United States)

    Radahmadi, Maryam; Alaei, Hojjatallah; Sharifi, Mohammad Reza; Hosseini, Nasrin

    2015-10-01

    Evidence suggests that there are positive effects of exercise on learning and memory. Moreover, some studies have demonstrated that forced exercise plays the role of a stressor. This study was aimed at investigating the effects of different timing of exercise and exercise withdrawal on memory, and serum and hippocampal corticosterone (CORT) levels. Wistar rats were randomly divided into five groups: control, sham, exercise-rest (exercise withdrawal), rest-exercise (exercised group), and exercise-exercise (continuous exercise). Rats were forced to run on a treadmill for 1 h/day at a speed 20-21-m/min. Memory function was evaluated by the passive avoidance test in different intervals (1, 7 and 21 days) after foot shock. Findings showed that after the exercise withdrawal, short-term and mid-term memories, had significant enhancement compared to the control group, while the long-term memory did not present this result. In addition, the serum and hippocampal CORT levels were at the basal levels after the rest period in the exercise-rest group. In the rest-exercise group, exercise improved mid- and long-term memories, whereas continuous exercise improved all types short-, mid- and long-term memories, particularly the mid-term memory. Twenty-one and forty-two days of exercise significantly decreased the serum and hippocampal CORT levels. It seems that exercise for at least 21 days with no rest could affect biochemical factors in the brain. Also, regular continuous exercise plays an important role in memory function. Hence, the duration and withdraw of exercise are important factors for the neurobiological aspects of the memory responses.

  13. The influence of electric fields on hippocampal neural progenitor cells.

    Science.gov (United States)

    Ariza, Carlos Atico; Fleury, Asha T; Tormos, Christian J; Petruk, Vadim; Chawla, Sagar; Oh, Jisun; Sakaguchi, Donald S; Mallapragada, Surya K

    2010-12-01

    The differentiation and proliferation of neural stem/progenitor cells (NPCs) depend on various in vivo environmental factors or cues, which may include an endogenous electrical field (EF), as observed during nervous system development and repair. In this study, we investigate the morphologic, phenotypic, and mitotic alterations of adult hippocampal NPCs that occur when exposed to two EFs of estimated endogenous strengths. NPCs treated with a 437 mV/mm direct current (DC) EF aligned perpendicularly to the EF vector and had a greater tendency to differentiate into neurons, but not into oligodendrocytes or astrocytes, compared to controls. Furthermore, NPC process growth was promoted perpendicularly and inhibited anodally in the 437 mV/mm DC EF. Yet fewer cells were observed in the DC EF, which in part was due to a decrease in cell viability. The other EF applied was a 46 mV/mm alternating current (AC) EF. However, the 46 mV/mm AC EF showed no major differences in alignment or differentiation, compared to control conditions. For both EF treatments, the percent of mitotic cells during the last 14 h of the experiment were statistically similar to controls. Reported here, to our knowledge, is the first evidence of adult NPC differentiation affected in an EF in vitro. Further investigation and application of EFs on stem cells is warranted to elucidate the utility of EFs to control phenotypic behavior. With progress, the use of EFs may be engineered to control differentiation and target the growth of transplanted cells in a stem cell-based therapy to treat nervous system disorders.

  14. In vivo hippocampal measurement and memory: a comparison of manual tracing and automated segmentation in a large community-based sample.

    Directory of Open Access Journals (Sweden)

    Nicolas Cherbuin

    Full Text Available While manual tracing is the method of choice in measuring hippocampal volume, its time intensive nature and proneness to human error make automated methods attractive, especially when applied to large samples. Few studies have systematically compared the performance of the two techniques. In this study, we measured hippocampal volumes in a large (N = 403 population-based sample of individuals aged 44-48 years using manual tracing by a trained researcher and automated procedure using Freesurfer (http://surfer.nmr.mgh.harvard.edu imaging suite. Results showed that absolute hippocampal volumes assessed with these methods were significantly different, with automated measures using the Freesurfer software suite being significantly larger, by 23% for the left and 29% for the right hippocampus. The correlation between the two methods varied from 0.61 to 0.80, with lower correlations for hippocampi with visible abnormalities. Inspection of 2D and 3D models suggested that this difference was largely due to greater inclusion of boundary voxels by the automated method and variations in subiculum/entorhinal segmentation. The correlation between left and right hippocampal volumes was very similar by the two methods. The relationship of hippocampal volumes to selected sociodemographic and cognitive variables was not affected by the measurement method, with each measure showing an association with memory performance and suggesting that both were equally valid for this purpose. This study supports the use of automated measures, based on Freesurfer in this instance, as being sufficiently reliable and valid particularly in the context of larger sample sizes when the research question does not rely on 'true' hippocampal volumes.

  15. In vivo hippocampal measurement and memory: a comparison of manual tracing and automated segmentation in a large community-based sample.

    Science.gov (United States)

    Cherbuin, Nicolas; Anstey, Kaarin J; Réglade-Meslin, Chantal; Sachdev, Perminder S

    2009-01-01

    While manual tracing is the method of choice in measuring hippocampal volume, its time intensive nature and proneness to human error make automated methods attractive, especially when applied to large samples. Few studies have systematically compared the performance of the two techniques. In this study, we measured hippocampal volumes in a large (N = 403) population-based sample of individuals aged 44-48 years using manual tracing by a trained researcher and automated procedure using Freesurfer (http://surfer.nmr.mgh.harvard.edu) imaging suite. Results showed that absolute hippocampal volumes assessed with these methods were significantly different, with automated measures using the Freesurfer software suite being significantly larger, by 23% for the left and 29% for the right hippocampus. The correlation between the two methods varied from 0.61 to 0.80, with lower correlations for hippocampi with visible abnormalities. Inspection of 2D and 3D models suggested that this difference was largely due to greater inclusion of boundary voxels by the automated method and variations in subiculum/entorhinal segmentation. The correlation between left and right hippocampal volumes was very similar by the two methods. The relationship of hippocampal volumes to selected sociodemographic and cognitive variables was not affected by the measurement method, with each measure showing an association with memory performance and suggesting that both were equally valid for this purpose. This study supports the use of automated measures, based on Freesurfer in this instance, as being sufficiently reliable and valid particularly in the context of larger sample sizes when the research question does not rely on 'true' hippocampal volumes.

  16. Reduced expression of glucocorticoid-inducible genes GILZ and SGK-1: high IL-6 levels are associated with reduced hippocampal volumes in major depressive disorder.

    LENUS (Irish Health Repository)

    Frodl, T

    2012-01-01

    Neuroplasticity may have a core role in the pathophysiology of major depressive disorder (MDD), a concept supported by experimental studies that found that excessive cortisol secretion and\\/or excessive production of inflammatory cytokines impairs neuronal plasticity and neurogenesis in the hippocampus. The objective of this study was to examine how changes in the glucocorticoid and inflammatory systems may affect hippocampal volumes in MDD. A multimodal approach with structural neuroimaging of hippocampus and amygdala, measurement of peripheral inflammatory proteins interleukin (IL)-6 and C-reactive protein (CRP), glucocorticoid receptor (GR) mRNA expression, and expression of glucocorticoid-inducible genes (glucocorticoid-inducible genes Leucin Zipper (GILZ) and glucocorticoid-inducible kinase-1 (SGK-1)) was used in 40 patients with MDD and 43 healthy controls (HC). Patients with MDD showed smaller hippocampal volumes and increased inflammatory proteins IL-6 and CRP compared with HC. Childhood maltreatment was associated with increased CRP. Patients with MDD, who had less expression of the glucocorticoid-inducible genes GILZ or SGK-1 had smaller hippocampal volumes. Regression analysis showed a strong positive effect of GILZ and SGK-1 mRNA expression, and further inverse effects of IL-6 concentration, on hippocampal volumes. These findings suggest that childhood maltreatment, peripheral inflammatory and glucocorticoid markers and hippocampal volume are interrelated factors in the pathophysiology of MDD. Glucocorticoid-inducible genes GILZ and SGK-1 might be promising candidate markers for hippocampal volume changes relevant for diseases like MDD. Further studies need to explore the possible clinical usefulness of such a blood biomarker, for example, for diagnosis or prediction of therapy response.

  17. Hippocampal neuron populations are reduced in vervet monkeys with fetal alcohol exposure

    DEFF Research Database (Denmark)

    Burke, Mark W; Ptito, Maurice; Ervin, Frank R

    2015-01-01

    of pregnancy. Here, we report significant numerical reductions in the principal hippocampal neurons of fetal alcohol-exposed (FAE) offspring, as compared to age-matched, similarly housed conspecifics with isocaloric sucrose exposure. These deficits, particularly marked in CA1 and CA3, are present neonatally...... late pregnancy results in a stable loss of hippocampal neurons and a progressive reduction of hippocampal volume....

  18. MR-determined hippocampal asymmetry in full-term and preterm neonates.

    Science.gov (United States)

    Thompson, Deanne K; Wood, Stephen J; Doyle, Lex W; Warfield, Simon K; Egan, Gary F; Inder, Terrie E

    2009-02-01

    Hippocampi are asymmetrical in children and adults, where the right hippocampus is larger. To date, no literature has confirmed that hippocampal asymmetry is evident at birth. Furthermore, gender differences have been observed in normal hippocampal asymmetry, but this has not been examined in neonates. Stress, injury, and lower IQ have been associated with alterations to hippocampal asymmetry. These same factors often accompany preterm birth. Therefore, prematurity is possibly associated with altered hippocampal asymmetry. There were three aims of this study: First, we assessed whether hippocampi were asymmetrical at birth, second whether there was a gender effect on hippocampal asymmetry, and third whether the stress of preterm birth altered hippocampal asymmetry. This study utilized volumetric magnetic resonance imaging to compare left and right hippocampal volumes in 32 full-term and 184 preterm infants at term. Full-term infants demonstrated rightward hippocampal asymmetry, as did preterm infants. In the case of preterm infants, hippocampal asymmetry was proportional to total hemispheric asymmetry. This study is the first to demonstrate that the normal pattern of hippocampal asymmetry is present this early in development. We did not find gender differences in hippocampal asymmetry at term. Preterm infants tended to have less asymmetrical hippocampi than full-term infants, a difference which became significant after correcting for hemispheric brain tissue volumes. This study may suggest that hippocampal asymmetry develops in utero and is maintained into adulthood in infants with a normal neurological course.

  19. Effects of calcium channel on 3-morpholinosydnonimine-induced rat hippocampal neuronal apoptosis

    Institute of Scientific and Technical Information of China (English)

    Quanzhong Chang; Shuling Zhang; Yuanyin Zheng; Lijuan Xu; Jinbao Yin; Shining Cai

    2011-01-01

    Previous studies have demonstrated that increased chloride channel activity plays a role in nitric oxide-induced neuronal apoptosis in the rat hippocampus.The present study investigated the effects of the broad-spectrum calcium channel blocker CdC12 on survival rate, percentage of apoptosis, and morphological changes in hippocampal neurons cultured in vitro, as well as the effects of calcium channels on neuronal apoptosis.The chloride channel blockers 4-acetamido-4'-isothiocyanatostilbene-2, 2'-disulfonic acid (SITS) or 4, 4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) increased the survival rate of 3-morpholinosydnonimine (SIN-1)-treated neurons and suppressed SIN-1-induced neuronal apoptosis.The calcium channel blocker CdC12 did not increase the survival rate of neurons and did not affect SIN-1-induced apoptosis or SITS- or DIDS-suppressed neuronal apoptosis.Results demonstrated that calcium channels did not significantly affect neuronal apoptosis.

  20. Hippocampal unit activity during classical aversive and appetitive conditioning.

    Science.gov (United States)

    Segal, M; Disterhoft, J F; Olds, J

    1972-02-18

    Rats were trained with a tone being followed by either food or electric shock, on alternate days. Unit activity during application of the conditioned stimulus was recorded from the dorsal hippocampus. The results indicate differentiation of the hippocampal system. Dentate units respond by augmentation to a conditioned stimulus which leads to food and by inhibition to the same stimulus when it precedes electric shock. The hippocampus proper responds by augmentation in both situations. The intensity of the hippocampal response to the conditioned stimulus on the first day of training is higher if the unconditioned stimulus is food than if it is electric shock. These data cast light on the functions of the dorsal dentate-hippocampal connections and the hippocampus proper during aversive and appetitive conditioning.

  1. Unstable periodic orbits in human epileptic hippocampal slices.

    Science.gov (United States)

    Pen-Ning Yu; Min-Chi Hsiao; Dong Song; Liu, Charles Y; Heck, Christi N; Millett, David; Berger, Theodore W

    2014-01-01

    Inter-ictal activity is studied in hippocampal slices resected from patients with epilepsy using local field potential recording. Inter-ictal activity in the dentate gyrus (DG) is induced by high-potassium (8 mM), low-magnesium (0.25 mM) aCSF with additional 100 μM 4-aminopyridine(4-AP). The dynamics of the inter-ictal activity is investigated by developing the first return map with inter-pulse intervals. Unstable periodic orbits (UPOs) are detected in the hippocampal slice at the DG area according to both the topological recurrence method and the periodic orbit transform method. Surrogate analysis suggests the presence of UPOs in hippocampal slices from patients with epilepsy. This finding also suggests that inter-ictal activity is a chaotic system and will allow us to apply chaos control techniques to manipulate inter-ictal activity.

  2. Mixed neurotransmission in the hippocampal mossy fibers

    Directory of Open Access Journals (Sweden)

    Agnieszka eMuenster-Wandowski

    2013-11-01

    Full Text Available The hippocampal mossy fibers (MFs, the axons of the granule cells of the dentate gyrus, innervate mossy cells and interneurons in the hilus on its way to CA3 where they innervate interneurons and pyramidal cells. Synapses on each target cell have distinct anatomical and functional characteristics. In recent years, the paradigmatic view of the MF synapses being only glutamatergic and, thus, excitatory has been questioned. Several laboratories have provided data supporting the hypothesis that the MFs can transiently release GABA during development and, in the adult, after periods of enhanced excitability. This transient glutamate-GABA co-transmission coincides with the transient expression of the machinery for the synthesis and release of GABA in the glutamatergic granule cells. Although some investigators have deemed this evidence controversial, new data has appeared with direct evidence of co-release of glutamate and GABA from single, identified MF boutons. However, this must still be confirmed by other groups and with other methodologies. A second, intriguing observation is that MF activation produced fast spikelets followed by excitatory postsynaptic potentials in a number of pyramidal cells, which, unlike the spikelets, underwent frequency potentiation and were strongly depressed by activation of metabotropic glutamate receptors. The spikelets persisted during blockade of chemical transmission and were suppressed by the gap junction blocker carbenoxolone. These data is consistent with the hypothesis of mixed electrical-chemical synapses between MFs and some pyramidal cells. Dye coupling between these types of principal cells and ultrastructural studies showing the co-existence of AMPA receptors and connexin 36 in this synapse corroborate their presence. A deeper consideration of mixed neurotransmission taking place in this synapse may expand our search and understanding of communication channels between different regions of the mammalian CNS.

  3. Hippocampal granule cells opt for early retirement.

    Science.gov (United States)

    Alme, C B; Buzzetti, R A; Marrone, D F; Leutgeb, J K; Chawla, M K; Schaner, M J; Bohanick, J D; Khoboko, T; Leutgeb, S; Moser, E I; Moser, M-B; McNaughton, B L; Barnes, C A

    2010-10-01

    Increased excitability and plasticity of adult-generated hippocampal granule cells during a critical period suggests that they may "orthogonalize" memories according to time. One version of this "temporal tag" hypothesis suggests that young granule cells are particularly responsive during a specific time period after their genesis, allowing them to play a significant role in sculpting CA3 representations, after which they become much less responsive to any input. An alternative possibility is that the granule cells active during their window of increased plasticity, and excitability become selectively tuned to events that occurred during that time and participate in later reinstatement of those experiences, to the exclusion of other cells. To discriminate between these possibilities, rats were exposed to different environments at different times over many weeks, and cell activation was subsequently assessed during a single session in which all environments were revisited. Dispersing the initial experiences in time did not lead to the increase in total recruitment at reinstatement time predicted by the selective tuning hypothesis. The data indicate that, during a given time frame, only a very small number of granule cells participate in many experiences, with most not participating significantly in any. Based on these and previous data, the small excitable population of granule cells probably correspond to the most recently generated cells. It appears that, rather than contributing to the recollection of long past events, most granule cells, possibly 90-95%, are effectively "retired." If granule cells indeed sculpt CA3 representations (which remains to be shown), then a possible consequence of having a new set of granule cells participate when old memories are reinstated is that new representations of these experiences might be generated in CA3. Whatever the case, the present data may be interpreted to undermine the standard "orthogonalizer" theory of the role of

  4. Environmental Geometry Aligns the Hippocampal Map during Spatial Reorientation.

    Science.gov (United States)

    Keinath, Alex T; Julian, Joshua B; Epstein, Russell A; Muzzio, Isabel A

    2017-02-06

    When a navigator's internal sense of direction is disrupted, she must rely on external cues to regain her bearings, a process termed spatial reorientation. Extensive research has demonstrated that the geometric shape of the environment exerts powerful control over reorientation behavior, but the neural and cognitive mechanisms underlying this phenomenon are not well understood. Whereas some theories claim that geometry controls behavior through an allocentric mechanism potentially tied to the hippocampus, others postulate that disoriented navigators reach their goals by using an egocentric view-matching strategy. To resolve this debate, we characterized hippocampal representations during reorientation. We first recorded from CA1 cells as disoriented mice foraged in chambers of various shapes. We found that the alignment of the recovered hippocampal map was determined by the geometry of the chamber, but not by nongeometric cues, even when these cues could be used to disambiguate geometric ambiguities. We then recorded hippocampal activity as disoriented mice performed a classical goal-directed spatial memory task in a rectangular chamber. Again, we found that the recovered hippocampal map aligned solely to the chamber geometry. Critically, we also found a strong correspondence between the hippocampal map alignment and the animal's behavior, making it possible to predict the search location of the animal from neural responses on a trial-by-trial basis. Together, these results demonstrate that spatial reorientation involves the alignment of the hippocampal map to local geometry. We hypothesize that geometry may be an especially salient cue for reorientation because it is an inherently stable aspect of the environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Active Dentate Granule Cells Encode Experience to Promote the Addition of Adult-Born Hippocampal Neurons.

    Science.gov (United States)

    Kirschen, Gregory W; Shen, Jia; Tian, Mu; Schroeder, Bryce; Wang, Jia; Man, Guoming; Wu, Song; Ge, Shaoyu

    2017-05-03

    The continuous addition of new dentate granule cells (DGCs), which is regulated exquisitely by brain activity, renders the hippocampus plastic. However, how neural circuits encode experiences to affect the addition of adult-born neurons remains unknown. Here, we used endoscopic Ca(2+) imaging to track the real-time activity of individual DGCs in freely behaving mice. For the first time, we found that active DGCs responded to a novel experience by increasing their Ca(2+) event frequency preferentially. This elevated activity, which we found to be associated with object exploration, returned to baseline by 1 h in the same environment, but could be dishabituated via introduction to a novel environment. To transition seamlessly between environments, we next established a freely controllable virtual reality system for unrestrained mice. We again observed increased firing of active neurons in a virtual enriched environment. Interestingly, multiple novel virtual experiences increased the number of newborn neurons accumulatively compared with a single experience. Finally, optogenetic silencing of existing DGCs during novel environmental exploration perturbed experience-induced neuronal addition. Our study shows that the adult brain conveys novel, enriched experiences to increase the addition of adult-born hippocampal neurons by increasing the firing of active DGCs.SIGNIFICANCE STATEMENT Adult brains are constantly reshaping themselves from synapses to circuits as we encounter novel experiences from moment to moment. Importantly, this reshaping includes the addition of newborn hippocampal neurons. However, it remains largely unknown how our circuits encode experience-induced brain activity to govern the addition of new hippocampal neurons. By coupling in vivo Ca(2+) imaging of dentate granule neurons with a novel, unrestrained virtual reality system for rodents, we discovered that a new experience increased firing of active dentate granule neurons rapidly and robustly

  6. Delayed hippocampal damage in humans following cardiorespiratory arrest.

    Science.gov (United States)

    Petito, C K; Feldmann, E; Pulsinelli, W A; Plum, F

    1987-08-01

    Transient ischemia in animals produces delayed cell death in vulnerable hippocampal neurons. To see if this occurs in humans, we reexamined brain slides from all patients with anoxic-ischemic encephalopathy and a well-documented cardiorespiratory arrest. Eight patients dying 18 hours or less after cardiac arrest had minimal damage in hippocampus and moderate damage in cerebral cortex and putamen. Six patients living 24 hours or more had severe damage in all four regions. The increase in damage with time postarrest was significant only in the hippocampus. Delayed hippocampal injury now documented in humans provides a target for possible therapy that can be initiated after cardiopulmonary resuscitation.

  7. Differential Conditioning of Associative Synaptic Enhancement in Hippocampal Brain Slices

    Science.gov (United States)

    Kelso, Stephen R.; Brown, Thomas H.

    1986-04-01

    An electrophysiological stimulation paradigm similar to one that produces Pavlovian conditioning was applied to synaptic inputs to pyramidal neurons of hippocampal brain slices. Persistent synaptic enhancement was induced in one of two weak synaptic inputs by pairing high-frequency electrical stimulation of the weak input with stimulation of a third, stronger input to the same region. Forward (temporally overlapping) but not backward (temporally separate) pairings caused this enhancement. Thus hippocampal synapses in vitro can undergo the conditional and selective type of associative modification that could provide the substrate for some of the mnemonic functions in which the hippocampus is thought to participate.

  8. In Vitro Manganese Exposure Disrupts MAPK Signaling Pathways in Striatal and Hippocampal Slices from Immature Rats

    Directory of Open Access Journals (Sweden)

    Tanara Vieira Peres

    2013-01-01

    Full Text Available The molecular mechanisms mediating manganese (Mn-induced neurotoxicity, particularly in the immature central nervous system, have yet to be completely understood. In this study, we investigated whether mitogen-activated protein kinases (MAPKs and tyrosine hydroxylase (TH could represent potential targets of Mn in striatal and hippocampal slices obtained from immature rats (14 days old. The aim of this study was to evaluate if the MAPK pathways are modulated after subtoxic Mn exposure, which do not significantly affect cell viability. The concentrations of manganese chloride (MnCl2; 10–1,000 μM caused no change in cell viability in slices exposed for 3 or 6 hours. However, Mn exposure significantly increased extracellular signal-regulated kinase (ERK 1/2, as well as c-Jun N-terminal kinase (JNK 1/2/3 phosphorylation at both 3 and 6 hours incubations, in both brain structures. Furthermore, Mn exposure did not change the total content or phosphorylation of TH at the serine 40 site in striatal slices. Thus, Mn at concentrations that do not disrupt cell viability causes activation of MAPKs (ERK1/2 and JNK1/2/3 in immature hippocampal and striatal slices. These findings suggest that altered intracellular MAPKs signaling pathways may represent an early event concerning the effects of Mn in the immature brain.

  9. Reduced hippocampal neurogenesis in the GR(+/-) genetic mouse model of depression.

    Science.gov (United States)

    Kronenberg, Golo; Kirste, Imke; Inta, Dragos; Chourbaji, Sabine; Heuser, Isabella; Endres, Matthias; Gass, Peter

    2009-12-01

    Glucocorticoid receptor (GR) heterozygous mice (GR(+/- )) represent a valuable animal model for major depression. GR(+/- ) mice show a depression-related phenotype characterized by increased learned helplessness on the behavioral level and neuroendocrine alterations with hypothalamo-pituitary-adrenal (HPA) axis overdrive characteristic of depression. Hippocampal brain-derived neurotrophic factor (BDNF) levels have also been shown to be reduced in GR(+/- ) animals. Because adult hippocampal neurogenesis has been implicated in the pathophysiology of affective disorders, we studied here the effects of the GR(+/- ) genotype on neurogenesis in vivo. In a 2 x 2 design, GR(+/- ) mice and GR(+/+) littermate controls were either subjected to 1 h of restraint stress or left undisturbed in their home cages after intraperitoneal injection of BrdU. Stress exposure and BrdU injections were performed once daily for 7 days and neurogenesis analyzed 4 weeks later. BrdU cell counts were significantly reduced as an effect of GR(+/- ) genotype and as an effect of stress. Majority of the BrdU+ cells showed co-labeling with mature neuronal marker NeuN or astrocytic marker S100beta with no further significant effect of either experimental condition or of genotype. In sum, this results in reduced neurogenesis in GR(+/- ) mice which is further repressed by restraint stress. Our results, thus, reinforce the link between reduced neurogenesis, stress, neurotrophins, and behavioral symptoms of and susceptibility to depression.

  10. miR-17-92 Cluster Regulates Adult Hippocampal Neurogenesis, Anxiety, and Depression

    Directory of Open Access Journals (Sweden)

    Junghee Jin

    2016-08-01

    Full Text Available Emerging evidence has shown that noncoding RNAs, particularly microRNAs (miRNAs, contribute to the pathogenesis of mood and anxiety disorders, although the molecular mechanisms are poorly understood. Here, we show that altered levels of miR-17-92 in adult hippocampal neural progenitors have a significant impact on neurogenesis and anxiety- and depression-related behaviors in mice. miR-17-92 deletion in adult neural progenitors decreases neurogenesis in the dentate gyrus, while its overexpression increases neurogenesis. miR-17-92 affects neurogenesis by regulating genes in the glucocorticoid pathway, especially serum- and glucocorticoid-inducible protein kinase-1 (Sgk1. miR-17-92 knockout mice show anxiety- and depression-like behaviors, whereas miR-17-92 overexpressing mice exhibit anxiolytic and antidepression-like behaviors. Furthermore, we show that miR-17-92 expression in the adult mouse hippocampus responds to chronic stress, and miR-17-92 rescues proliferation defects induced by corticosterone in hippocampal neural progenitors. Our study uncovers a crucial role for miR-17-92 in adult neural progenitors through regulation of neurogenesis and anxiety- and depression-like behaviors.

  11. Myocardial ischemia/reperfusion impairs neurogenesis and hippocampal-dependent learning and memory.

    Science.gov (United States)

    Evonuk, Kirsten S; Prabhu, Sumanth D; Young, Martin E; DeSilva, Tara M

    2017-03-01

    The incidence of cognitive impairment in cardiovascular disease (CVD) patients has increased, adversely impacting quality of life and imposing a significant economic burden. Brain imaging of CVD patients has detected changes in the hippocampus, a brain region critical for normal learning and memory. However, it is not clear whether adverse cardiac events or other associated co-morbidities impair cognition. Here, using a murine model of acute myocardial ischemia/reperfusion (I/R), where the coronary artery was occluded for 30min followed by reperfusion, we tested the hypothesis that acute myocardial infarction triggers impairment in cognitive function. Two months following cardiac I/R, behavioral assessments specific for hippocampal cognitive function were performed. Mice subjected to cardiac I/R performed worse in the fear-conditioning paradigm as well as the object location memory behavioral test compared to sham-operated mice. Reactive gliosis was apparent in the hippocampal subregions CA1, CA3, and dentate gyrus 72h post-cardiac I/R as compared with sham, which was sustained two months post-cardiac I/R. Consistent with the inflammatory response, the abundance of doublecortin positive newborn neurons was decreased in the dentate gyrus 72h and 2months post-cardiac I/R as compared with sham. Therefore, we conclude that following acute myocardial infarction, rapid inflammatory responses negatively affect neurogenesis, which may underlie long-term changes in learning and memory.

  12. Circadian rhythm modulates long-term potentiation induced at CA1 in rat hippocampal slices.

    Science.gov (United States)

    Nakatsuka, Hiroki; Natsume, Kiyohisa

    2014-03-01

    Circadian rhythm affects neuronal plasticity. Consistent with this, some forms of synaptic long-term potentiation (LTP) are modulated by the light/dark cycle (LD cycle). For example, this type of modulation is observed in hippocampal slices. In rodents, which are nocturnal, LTP is usually facilitated in the dark phase, but the rat hippocampal CA1 is an exception. The reason why LTP in the dark phase is suppressed in CA1 remains unknown. Previously, LTP was induced with high-frequency stimulation. In this study, we found that in the dark phase, theta-burst stimulation-induced LTP is indeed facilitated in CA1, similar to other regions in the rodent brain. Population excitatory postsynaptic potentials (pEPSP)-LTP and population spikes (PS)-LTP were recorded at CA1. The magnitude of PS-LTP in dark-phase slices was significantly larger than in light-phase slices, while that of pEPSP-LTP was unchanged. Using antidromic-orthodromic stimulation, we found that recurrent inhibition is suppressed in the dark phase. Local gabazine-application to stratum pyramidale in light-phase slices mimicked this disinhibition and facilitated LTP in dark-phase slices. These results suggest that the disinhibition of a GABAA recurrent inhibitory network can be induced in the dark phase, thereby facilitating LTP.

  13. Valproate administration to mice increases hippocampal p21 expression by altering genomic DNA methylation.

    Science.gov (United States)

    Aizawa, Shu; Yamamuro, Yutaka

    2015-10-21

    Although valproate (VPA) is used widely in the treatment of bipolar mood disorder and epilepsy, the precise mechanism of action in the brain remains elusive. In this study, we investigated the effects of subchronic VPA administrations on the expression of the cyclin-dependent kinase inhibitor (Cdkn) family in the hippocampus of adult mice. The administration of VPA specifically increased hippocampal p21 expression involving both mRNA and protein levels, but other members of the Cdkn family were not affected. We identified two CpG islands in the p21 gene regulatory region, located distal and proximal to the transcription start site. VPA altered genomic DNA methylation patterns in the distal region, but not in the proximal promoter region. However, no change was found in DNA methyltransferase (Dnmt) 1 or Dnmt3a protein levels, suggesting an involvement in active demethylation mechanisms. These findings suggest that VPA alters the gene expression of cell cycle regulators by modulating promoter DNA methylation, and this resulted in altered hippocampal cell proliferation. These findings promote understanding of the actions of VPA in the brain.

  14. In Vitro Manganese Exposure Disrupts MAPK Signaling Pathways in Striatal and Hippocampal Slices from Immature Rats

    Science.gov (United States)

    Peres, Tanara Vieira; Pedro, Daniela Zótico; de Cordova, Fabiano Mendes; Lopes, Mark William; Gonçalves, Filipe Marques; Mendes-de-Aguiar, Cláudia Beatriz Nedel; Walz, Roger; Farina, Marcelo; Aschner, Michael; Leal, Rodrigo Bainy

    2013-01-01

    The molecular mechanisms mediating manganese (Mn)-induced neurotoxicity, particularly in the immature central nervous system, have yet to be completely understood. In this study, we investigated whether mitogen-activated protein kinases (MAPKs) and tyrosine hydroxylase (TH) could represent potential targets of Mn in striatal and hippocampal slices obtained from immature rats (14 days old). The aim of this study was to evaluate if the MAPK pathways are modulated after subtoxic Mn exposure, which do not significantly affect cell viability. The concentrations of manganese chloride (MnCl2; 10–1,000 μM) caused no change in cell viability in slices exposed for 3 or 6 hours. However, Mn exposure significantly increased extracellular signal-regulated kinase (ERK) 1/2, as well as c-Jun N-terminal kinase (JNK) 1/2/3 phosphorylation at both 3 and 6 hours incubations, in both brain structures. Furthermore, Mn exposure did not change the total content or phosphorylation of TH at the serine 40 site in striatal slices. Thus, Mn at concentrations that do not disrupt cell viability causes activation of MAPKs (ERK1/2 and JNK1/2/3) in immature hippocampal and striatal slices. These findings suggest that altered intracellular MAPKs signaling pathways may represent an early event concerning the effects of Mn in the immature brain. PMID:24324973

  15. Effects of the alkaloids 6-benzoylheteratisine and heteratisine on neuronal activity in rat hippocampal slices.

    Science.gov (United States)

    Ameri, A

    1997-08-01

    Alkaloids of different Aconitum species are employed as analgesics in traditional Chinese folk medicine. The present study was designed in order to investigate the effects of the structurally related alkaloids 6-benzoylheteratisine and heteratisine on neuronal activity in rat hippocampus. Experiments were performed as extracellular recordings of stimulus evoked population spikes in rat hippocampal slices. 6-Benzoylheteratisine (0.01-10 microM) inhibited the ortho- and antidromic population spike as well as the field EPSP in a concentration- and frequency-dependent manner. Heteratisine (1-100 microM) was a less potent inhibitor. It exerted a depression of the orthodromic spike, but failed to affect the antidromic population spike. 6-Benzoylheteratisine (10 microM) diminished epileptiform activity induced by bicuculline. In hippocampal neurons, this compound reduced the peak amplitude of the sodium current. There was no effect of heteratisine on the sodium current in concentrations up to 100 microM. It is concluded that the frequency-dependent action of 6-benzoylheteratisine suggests an inhibition of neuronal activity which underlies epileptiform burst discharges. The predominant effect is a suppression of neuronal activity due to a blockade of sodium channels.

  16. Diverse impact of neuronal activity at θ frequency on hippocampal long-term plasticity.

    Science.gov (United States)

    Wójtowicz, Tomasz; Mozrzymas, Jerzy W

    2015-09-01

    Brain oscillatory activity is considered an essential aspect of brain function, and its frequency can vary from 200 Hz, depending on the brain states and projection. Episodes of rhythmic activity accompany hippocampus-dependent learning and memory in vivo. Therefore, long-term synaptic potentiation (LTP) and long-term depression, which are considered viable substrates of learning and memory, are often experimentally studied in paradigms of patterned high-frequency (>50 Hz) and low-frequency (neuronal plasticity remains less well understood. In particular, hippocampal neurons are specifically tuned for activity at θ frequency (4-8 Hz); this band contributes significantly to electroencephalographic signals, and it is likely to be involved in shaping synaptic strength in hippocampal circuits. Here, we review in vitro and in vivo studies showing that variation of θ-activity duration may affect long-term modification of synaptic strength and neuronal excitability in the hippocampus. Such θ-pulse-induced neuronal plasticity 1) is long-lasting, 2) may be built on previously stabilized potentiation in the synapse, 3) may produce opposite changes in synaptic strength, and 4) requires complex molecular machinery. Apparently innocuous episodes of low-frequency synaptic activity may have a profound impact on network signaling, thereby contributing to information processing in the hippocampus and beyond. In addition, θ-pulse-induced LTP might be an advantageous protocol in studies of specific molecular mechanisms of synaptic plasticity. © 2015 Wiley Periodicals, Inc.

  17. Acute inactivation of PSD-95 destabilizes AMPA receptors at hippocampal synapses.

    Science.gov (United States)

    Yudowski, Guillermo A; Olsen, Olav; Adesnik, Hillel; Marek, Kurt W; Bredt, David S

    2013-01-01

    Postsynatptic density protein (PSD-95) is a 95 kDa scaffolding protein that assembles signaling complexes at synapses. Over-expression of PSD-95 in primary hippocampal neurons selectively increases synaptic localization of AMPA receptors; however, mice lacking PSD-95 display grossly normal glutamatergic transmission in hippocampus. To further study the scaffolding role of PSD-95 at excitatory synapses, we generated a recombinant PSD-95-4c containing a tetracysteine motif, which specifically binds a fluorescein derivative and allows for acute and permanent inactivation of PSD-95. Interestingly, acute inactivation of PSD-95 in rat hippocampal cultures rapidly reduced surface AMPA receptor immunostaining, but did not affected NMDA or transferrin receptor localization. Acute photoinactivation of PSD-95 in dissociated neurons causes ∼80% decrease in GluR2 surface staining observed by live-cell microscopy within 15 minutes of PSD-95-4c ablation. These results confirm that PSD-95 stabilizes AMPA receptors at postsynaptic sites and provides insight into the dynamic interplay between PSD-95 and AMPA receptors in live neurons.

  18. The effects of hippocampal lesions on MRI measures of structural and functional connectivity.

    Science.gov (United States)

    Henson, Richard N; Greve, Andrea; Cooper, Elisa; Gregori, Mariella; Simons, Jon S; Geerligs, Linda; Erzinçlioğlu, Sharon; Kapur, Narinder; Browne, Georgina

    2016-11-01

    Focal lesions can affect connectivity between distal brain regions (connectional diaschisis) and impact the graph-theoretic properties of major brain networks (connectomic diaschisis). Given its unique anatomy and diverse range of functions, the hippocampus has been claimed to be a critical "hub" in brain networks. We investigated the effects of hippocampal lesions on structural and functional connectivity in six patients with amnesia, using a range of magnetic resonance imaging (MRI) analyses. Neuropsychological assessment revealed marked episodic memory impairment and generally intact performance across other cognitive domains. The hippocampus was the only brain structure exhibiting reduced grey-matter volume that was consistent across patients, and the fornix was the only major white-matter tract to show altered structural connectivity according to both diffusion metrics. Nonetheless, functional MRI revealed both increases and decreases in functional connectivity. Analysis at the level of regions within the default-mode network revealed reduced functional connectivity, including between nonhippocampal regions (connectional diaschisis). Analysis at the level of functional networks revealed reduced connectivity between thalamic and precuneus networks, but increased connectivity between the default-mode network and frontal executive network. The overall functional connectome showed evidence of increased functional segregation in patients (connectomic diaschisis). Together, these results point to dynamic reorganization following hippocampal lesions, with both decreased and increased functional connectivity involving limbic-diencephalic structures and larger-scale networks. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc.

  19. Acute Exercise Improves Prefrontal Cortex but not Hippocampal Function in Healthy Adults.

    Science.gov (United States)

    Basso, Julia C; Shang, Andrea; Elman, Meredith; Karmouta, Ryan; Suzuki, Wendy A

    2015-11-01

    The effects of acute aerobic exercise on cognitive functions in humans have been the subject of much investigation; however, these studies are limited by several factors, including a lack of randomized controlled designs, focus on only a single cognitive function, and testing during or shortly after exercise. Using a randomized controlled design, the present study asked how a single bout of aerobic exercise affects a range of frontal- and medial temporal lobe-dependent cognitive functions and how long these effects last. We randomly assigned 85 subjects to either a vigorous intensity acute aerobic exercise group or a video watching control group. All subjects completed a battery of cognitive tasks both before and 30, 60, 90, or 120 min after the intervention. This battery included the Hopkins Verbal Learning Test-Revised, the Modified Benton Visual Retention Test, the Stroop Color and Word Test, the Symbol Digit Modalities Test, the Digit Span Test, the Trail Making Test, and the Controlled Oral Word Association Test. Based on these measures, composite scores were formed to independently assess prefrontal cortex- and hippocampal-dependent cognition. A three-way mixed Analysis of Variance was used to determine whether differences existed between groups in the change in cognitive function from pre- to post-intervention testing. Acute exercise improved prefrontal cortex- but not hippocampal-dependent functioning, with no differences found between delay groups. Vigorous acute aerobic exercise has beneficial effects on prefrontal cortex-dependent cognition and these effects can last for up to 2 hr after exercise.

  20. Sleep fragmentation alters brain energy metabolism without modifying hippocampal electrophysiological response to novelty exposure

    KAUST Repository

    Baud, Maxime O.

    2016-05-03

    © 2016 European Sleep Research Society. Sleep is viewed as a fundamental restorative function of the brain, but its specific role in neural energy budget remains poorly understood. Sleep deprivation dampens brain energy metabolism and impairs cognitive functions. Intriguingly, sleep fragmentation, despite normal total sleep duration, has a similar cognitive impact, and in this paper we ask the question of whether it may also impair brain energy metabolism. To this end, we used a recently developed mouse model of 2 weeks of sleep fragmentation and measured 2-deoxy-glucose uptake and glycogen, glucose and lactate concentration in different brain regions. In order to homogenize mice behaviour during metabolic measurements, we exposed them to a novel environment for 1 h. Using an intra-hippocampal electrode, we first showed that hippocampal electroencephalograph (EEG) response to exploration was unaltered by 1 or 14 days of sleep fragmentation. However, after 14 days, sleep fragmented mice exhibited a lower uptake of 2-deoxy-glucose in cortex and hippocampus and lower cortical lactate levels than control mice. Our results suggest that long-term sleep fragmentation impaired brain metabolism to a similar extent as total sleep deprivation without affecting the neuronal responsiveness of hippocampus to a novel environment.

  1. Memory and hippocampal architecture following short-term midazolam in western diet-treated rats.

    Science.gov (United States)

    Rosenberger, Dorothea S; Falangola, Maria F; Ledreux, Aurélie; Nie, Xingju; Suhre, Wendy M; Boger, Heather A; Granholm, Ann-Charlotte

    2016-05-16

    The impact of short-term benzodiazepine exposure on cognition in middle-aged or older patients is a highly debated topic among anesthesiologists, critical care physicians and public media. "Western diet" (WD) consumption is linked to impaired cognition as well. The combination of benzodiazepines with substantial exposure to WD might set the stage for increased hippocampal vulnerability for benzodiazepines leading to exaggerated cognitive impairment in the postoperative period. In this study, Fischer 344 rats were fed either WD or standard rodent diet from 5 to 10.5 months of age. Rats were exposed to midazolam or placebo two days prior to an MRI scan using Diffusional Kurtosis Imaging (DKI) to assess brain microstructural integrity, followed by behavioral testing using a water radial arm maze. Hippocampal tissue was collected to assess alterations in protein biochemistry in brain regions associated with learning and memory. Our results showed that rats exposed to the combination of midazolam and WD had significantly delayed time of learning and exhibited spatial memory impairment. Further, we observed an overall increase of kurtosis metrics in the hippocampus and increased expression of the mitochondrial protein VDAC2 in midazolam-treated rats. Our data suggest that both the short-acting benzodiazepine midazolam and WD contribute to negatively affect the brain in middle-aged rats. This study is the first application of DKI on the effects of midazolam and WD exposure, and the findings demonstrate that diffusion metrics are sensitive indicators of changes in the complexity of neurite architecture.

  2. The ever-changing morphology of hippocampal granule neurons in physiology and pathology.

    Directory of Open Access Journals (Sweden)

    María eLlorens-Martín

    2016-01-01

    Full Text Available Newborn neurons are continuously added to the hippocampal dentate gyrus throughout adulthood. In this review, we analyze the maturational stages that newborn granule neurons go through, with a focus on their unique morphological features during each stage under both physiological and pathological circumstances. In addition, the influence of deleterious (such as schizophrenia, stress, Alzheimer’s disease, seizures, stroke, inflammation, dietary deficiencies, or the consumption of drugs of abuse or toxic substances and neuroprotective (physical exercise and environmental enrichment stimuli on the maturation of these cells will be examined. Finally, the regulation of this process by proteins involved in neurodegenerative and neurological disorders (such as Glycogen synthase kinase 3β, Disrupted in Schizophrenia 1 (DISC-1, Glucocorticoid receptor, pro-inflammatory mediators, Presenilin-1, Amyloid precursor protein, Cyclin-dependent kinase 5 (CDK5, among others, will be evaluated. Given the recently acquired relevance of the dendritic branch as a functional synaptic unit required for memory storage, a full understanding of the morphological alterations observed in newborn neurons may have important consequences for the prevention and treatment of the cognitive and affective alterations that evolve in conjunction with impaired adult hippocampal neurogenesis.

  3. Medial prefrontal-hippocampal connectivity during emotional memory encoding predicts individual differences in the loss of associative memory specificity.

    Science.gov (United States)

    Berkers, Ruud M W J; Klumpers, Floris; Fernández, Guillén

    2016-10-01

    Emotionally charged items are often remembered better, whereas a paradoxical loss of specificity is found for associative emotional information (specific memory). The balance between specific and generalized emotional memories appears to show large individual differences, potentially related to differences in (the risk for) affective disorders that are characterized by 'overgeneralized' emotional memories. Here, we investigate the neural underpinnings of individual differences in emotional associative memory. A large group of healthy male participants were scanned while encoding associations of face-photographs and written occupational identities that were of either neutral ('driver') or negative ('murderer') valence. Subsequently, memory was tested by prompting participants to retrieve the occupational identities corresponding to each face. Whereas in both valence categories a similar amount of faces was labeled correctly with 'neutral' and 'negative' identities, (gist memory), specific associations were found to be less accurately remembered when the occupational identity was negative compared to neutral (specific memory). This pattern of results suggests reduced memory specificity for associations containing a negatively valenced component. The encoding of these negative associations was paired with a selective increase in medial prefrontal cortex activity and medial prefrontal-hippocampal connectivity. Individual differences in valence-specific neural connectivity were predictive of valence-specific reduction of memory specificity. The relationship between loss of emotional memory specificity and medial prefrontal-hippocampal connectivity is in line with the hypothesized role of a medial prefrontal-hippocampal circuit in regulating memory specificity, and warrants further investigations in individuals displaying 'overgeneralized' emotional memories.

  4. Role of hippocampal dentate gyrus neurons in the protective effects of heat shock factor 1 on working memory

    Institute of Scientific and Technical Information of China (English)

    Min Peng; Xiongzhao Zhu; Ming Cheng; Xiangyi Chen; Shuqiao Yao

    2011-01-01

    Increasing evidence suggests that heat shock factor 1 exerts endogenous protective effects on working memory under conditions of chronic psychological stress. However, the precise underlying mechanisms remain poorly understood. This study examined the protective factors affecting working memory in heat shock transcription factor 1 gene knockout mice. The results indicated that the number of correct T maze alternations decreased following mild chronic psychological stress in knockout mice. This change was accompanied by a decrease in neurogenesis and an increase in neuronal apoptosis in the hippocampal dentate gyrus. The number of correct T maze alternations was positively correlated with neurogenesis in hippocampal dentate gyrus, and negatively correlated with neuronal apoptosis. In wild type mice, no significant difference was detected in the number of correct T maze alternations or neuronal apoptosis in hippocampal dentate gyrus. These results indicate that the heat shock factor 1 gene has an endogenous protective role in working memory during mild chronic psychological stress associated with dentate gyrus neuronal apoptosis.Moreover, dentate gyrus neurogenesis appears to participate in the protective mechanism.

  5. Linking the serotonin transporter gene, family environments, hippocampal volume and depression onset: A prospective imaging gene × environment analysis.

    Science.gov (United States)

    Little, Keriann; Olsson, Craig A; Youssef, George J; Whittle, Sarah; Simmons, Julian G; Yücel, Murat; Sheeber, Lisa B; Foley, Debra L; Allen, Nicholas B

    2015-11-01

    A single imaging gene-environment (IGxE) framework that is able to simultaneously model genetic, neurobiological, and environmental influences on psychopathology outcomes is needed to improve understanding of how complex interrelationships between allelic variation, differences in neuroanatomy or neuroactivity, and environmental experience affect risk for psychiatric disorder. In a longitudinal study of adolescent development we demonstrate the utility of such an IGxE framework by testing whether variation in parental behavior at age 12 altered the strength of an imaging genetics pathway, involving an indirect association between allelic variation in the serotonin transporter gene to variation in hippocampal volume and consequent onset of major depressive disorder by age 18. Results were consistent with the presence of an indirect effect of the serotonin transporter S-allele on depression onset via smaller left and right hippocampal volumes that was significant only in family environments involving either higher levels of parental aggression or lower levels of positive parenting. The previously reported finding of S-allele carriers' increased risk of depression in adverse environments may, therefore, be partly because of the effects of these environments on a neurobiological pathway from the serotonin transporter gene to depression onset that proceeds through variation in hippocampal volume.

  6. Prenatal Stress Produces Persistence of Remote Memory and Disrupts Functional Connectivity in the Hippocampal-Prefrontal Cortex Axis.

    Science.gov (United States)

    Negrón-Oyarzo, Ignacio; Neira, David; Espinosa, Nelson; Fuentealba, Pablo; Aboitiz, Francisco

    2015-09-01

    Prenatal stress is a risk factor for the development of neuropsychiatric disorders, many of which are commonly characterized by an increased persistence of aversive remote memory. Here, we addressed the effect of prenatal stress on both memory consolidation and functional connectivity in the hippocampal-prefrontal cortex axis, a dynamical interplay that is critical for mnemonic processing. Pregnant mice of the C57BL6 strain were subjected to restraint stressed during the last week of pregnancy, and male offspring were behaviorally tested at adulthood for recent and remote spatial memory performance in the Barnes Maze test under an aversive context. Prenatal stress did not affect the acquisition or recall of recent memory. In contrast, it produced the persistence of remote spatial memory. Memory persistence was not associated with alterations in major network rhythms, such as hippocampal sharp-wave ripples (SWRs) or neocortical spindles. Instead, it was associated with a large decrease in the basal discharge activity of identified principal neurons in the medial prefrontal cortex (mPFC) as measured in urethane anesthetized mice. Furthermore, functional connectivity was disrupted, as the temporal coupling between neuronal discharge in the mPFC and hippocampal SWRs was decreased by prenatal stress. These results could be relevant to understand the biological basis of the persistence of aversive remote memories in stress-related disorders.

  7. What relates newspaper, definite, and clothing? An article describing deficits in convergent problem solving and creativity following hippocampal damage.

    Science.gov (United States)

    Warren, David E; Kurczek, Jake; Duff, Melissa C

    2016-07-01

    Creativity relies on a diverse set of cognitive processes associated with distinct neural correlates, and one important aspect of creativity, divergent thinking, has been associated with the hippocampus. However, hippocampal contributions to another important aspect of creativity, convergent problem solving, have not been investigated. We tested the necessity of hippocampus for convergent problem solving using a neuropsychological method. Participants with amnesia due to hippocampal damage (N = 5) and healthy normal comparison participants (N = 5) were tested using a task that promoted solutions based on existing knowledge (Bowden and Jung-Beeman, 2003). During each trial, participants were given a list of three words (e.g., fly, man, place) and asked to respond with a word that could be combined with each of the three words (e.g., fire). The amnesic group produced significantly fewer correct responses than the healthy comparison group. These findings indicate that the hippocampus is necessary for normal convergent problem solving and that changes in the status of the hippocampus should affect convergent problem solving in the context of creative problem-solving across short intervals. This proposed contribution of the hippocampus to convergent problem solving is consistent with an expanded perspective on hippocampal function that acknowledges its role in cognitive processes beyond declarative memory. © 2016 Wiley Periodicals, Inc.

  8. Tumour necrosis factor-alpha impairs neuronal differentiation but not proliferation of hippocampal neural precursor cells: Role of Hes1.

    Science.gov (United States)

    Keohane, Aoife; Ryan, Sinead; Maloney, Eimer; Sullivan, Aideen M; Nolan, Yvonne M

    2010-01-01

    Tumour necrosis factor-alpha (TNFalpha) is a pro-inflammatory cytokine, which influences neuronal survival and function yet there is limited information available on its effects on hippocampal neural precursor cells (NPCs). We show that TNFalpha treatment during proliferation had no effect on the percentage of proliferating cells prepared from embryonic rat hippocampal neurosphere cultures, nor did it affect cell fate towards either an astrocytic or neuronal lineage when cells were then allowed to differentiate. However, when cells were differentiated in the presence of TNFalpha, significantly reduced percentages of newly born and post-mitotic neurons, significantly increased percentages of astrocytes and increased expression of TNFalpha receptors, TNF-R1 and TNF-R2, as well as expression of the anti-neurogenic Hes1 gene, were observed. These data indicate that exposure of hippocampal NPCs to TNFalpha when they are undergoing differentiation but not proliferation has a detrimental effect on their neuronal lineage fate, which may be mediated through increased expression of Hes1.

  9. Sleep deprivation during a specific 3-hour time window post-training impairs hippocampal synaptic plasticity and memory.

    Science.gov (United States)

    Prince, Toni-Moi; Wimmer, Mathieu; Choi, Jennifer; Havekes, Robbert; Aton, Sara; Abel, Ted

    2014-03-01

    Sleep deprivation disrupts hippocampal function and plasticity. In particular, long-term memory consolidation is impaired by sleep deprivation, suggesting that a specific critical period exists following learning during which sleep is necessary. To elucidate the impact of sleep deprivation on long-term memory consolidation and synaptic plasticity, long-term memory was assessed when mice were sleep deprived following training in the hippocampus-dependent object place recognition task. We found that 3h of sleep deprivation significantly impaired memory when deprivation began 1h after training. In contrast, 3 h of deprivation beginning immediately post-training did not impair spatial memory. Furthermore, a 3-h sleep deprivation beginning 1h after training impaired hippocampal long-term potentiation (LTP), whereas sleep deprivation immediately after training did not affect LTP. Together, our findings define a specific 3-h critical period, extending from 1 to 4h after training, during which sleep deprivation impairs hippocampal function. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Sex-Specific and Estrous Cycle-Dependent Antidepressant-Like Effects and Hippocampal Akt Signaling of Leptin.

    Science.gov (United States)

    Carrier, Nicole; Wang, Xuezhen; Sun, Linshan; Lu, Xin-Yun

    2015-10-01

    Sex differences in the incidence of depression and antidepressant treatment responses are well documented. Depression is twice as common in women as in men. Recent studies indicate that low levels of leptin, an adipocyte-derived hormone, are associated with increased symptoms of depression in women. Leptin has been shown to produce antidepressant-like effects in male rodents. In the present study, we examined sex differences and estrous cycle variations in antidepressant-like responses to leptin. Leptin administration significantly reduced immobility, a putative measure of behavioral despair, in the forced swim test in intact female mice in the proestrus phase but not in the diestrus phase of the estrous cycle. Moreover, leptin administration stimulated Akt phosphorylation in the hippocampus of female mice in proestrus but not in diestrus, in correlation with its differential behavioral effects in these two phases of the cycle. Leptin-induced behavioral responses and stimulation of hippocampal Akt phosphorylation in female mice were abolished by ovariectomy. By contrast, the antidepressant-like effect of leptin in male mice was not affected by gonadectomy (castration). Pretreatment with 17β-estradiol restored sensitivity to the effects of leptin on behavior and hippocampal Akt phosphorylation in ovariectomized female mice. These results suggest leptin regulates depression-like behavior and hippocampal Akt signaling in a sex-specific and estrous cycle-dependent manner.

  11. Effect of acute and repeated restraint stress on glucose oxidation to CO2 in hippocampal and cerebral cortex slices

    Directory of Open Access Journals (Sweden)

    Torres I.L.S.

    2001-01-01

    Full Text Available It has been suggested that glucocorticoids released during stress might impair neuronal function by decreasing glucose uptake by hippocampal neurons. Previous work has demonstrated that glucose uptake is reduced in hippocampal and cerebral cortex slices 24 h after exposure to acute stress, while no effect was observed after repeated stress. Here, we report the effect of acute and repeated restraint stress on glucose oxidation to CO2 in hippocampal and cerebral cortex slices and on plasma glucose and corticosterone levels. Male adult Wistar rats were exposed to restraint 1 h/day for 50 days in the chronic model. In the acute model there was a single exposure. Immediately or 24 h after stress, the animals were sacrificed and the hippocampus and cerebral cortex were dissected, sliced, and incubated with Krebs buffer, pH 7.4, containing 5 mM glucose and 0.2 µCi D-[U-14C] glucose. CO2 production from glucose was estimated. Trunk blood was also collected, and both corticosterone and glucose were measured. The results showed that corticosterone levels after exposure to acute restraint were increased, but the increase was smaller when the animals were submitted to repeated stress. Blood glucose levels increased after both acute and repeated stress. However, glucose utilization, measured as CO2 production in hippocampal and cerebral cortex slices, was the same in stressed and control groups under conditions of both acute and chronic stress. We conclude that, although stress may induce a decrease in glucose uptake, this effect is not sufficient to affect the energy metabolism of these cells.

  12. Pharmacological reduction of adult hippocampal neurogenesis modifies functional brain circuits in mice exposed to a cocaine conditioned place preference paradigm.

    Science.gov (United States)

    Castilla-Ortega, Estela; Blanco, Eduardo; Serrano, Antonia; Ladrón de Guevara-Miranda, David; Pedraz, María; Estivill-Torrús, Guillermo; Pavón, Francisco Javier; Rodríguez de Fonseca, Fernando; Santín, Luis J

    2016-05-01

    We investigated the role of adult hippocampal neurogenesis in cocaine-induced conditioned place preference (CPP) behaviour and the functional brain circuitry involved. Adult hippocampal neurogenesis was pharmacologically reduced with temozolomide (TMZ), and mice were tested for cocaine-induced CPP to study c-Fos expression in the hippocampus and in extrahippocampal addiction-related areas. Correlational and multivariate analysis revealed that, under normal conditions, the hippocampus showed widespread functional connectivity with other brain areas and strongly contributed to the functional brain module associated with CPP expression. However, the neurogenesis-reduced mice showed normal CPP acquisition but engaged an alternate brain circuit where the functional connectivity of the dentate gyrus was notably reduced and other areas (the medial prefrontal cortex, accumbens and paraventricular hypothalamic nucleus) were recruited instead of the hippocampus. A second experiment unveiled that mice acquiring the cocaine-induced CPP under neurogenesis-reduced conditions were delayed in extinguishing their drug-seeking behaviour. But if the inhibited neurons were generated after CPP acquisition, extinction was not affected but an enhanced long-term CPP retention was found, suggesting that some roles of the adult-born neurons may differ depending on whether they are generated before or after drug-contextual associations are established. Importantly, cocaine-induced reinstatement of CPP behaviour was increased in the TMZ mice, regardless of the time of neurogenesis inhibition. The results show that adult hippocampal neurogenesis sculpts the addiction-related functional brain circuits, and reduction of the adult-born hippocampal neurons increases cocaine seeking in the CPP model.

  13. BDNF and NT-4 differentiate two pathways in the modulation of neuropeptide protein levels in postnatal hippocampal interneurons.

    Science.gov (United States)

    Marty, S; Onténiente, B

    1999-05-01

    Neuropeptide protein levels in hippocampal interneurons exhibit a considerable maturation in postnatal animals. This study characterizes the role of neuronal activity in determining neuropeptide protein levels in postnatal hippocampal interneurons, and the involvement of neurotrophins. In hippocampal slices from 7-day-old rats cultured for 2 weeks, treatment with the gamma-aminobutyric acidA (GABAA) receptor antagonist bicuculline increased the staining intensity and the number of neurons immunoreactive for neuropeptide Y (NPY). An opposite effect was observed when non-N-methyl-d-aspartate (non-NMDA) excitatory transmission was blocked. The effects of either treatment were reversed after return to control medium. These findings were similar to those previously obtained on the effects of activity on somatostatin immunostaining. Blockade of endogenous tyrosine kinase neurotrophin receptors using K252a prevented the effects of bicuculline on NPY- and somatostatin-immunoreactive neurons. Application of exogenous neurotrophin-3 (NT-3) increased NPY and somatostatin protein levels in long-term but not short-term cultures, while nerve growth factor (NGF) had no effect. In contrast, brain-derived neurotrophic factor (BDNF) or neurotrophin-4 (NT-4) did not affect equally NPY and somatostatin immunoreactivity: they mimicked the effects of bicuculline treatment on NPY-immunoreactive neurons, but exerted no conspicuous effect on somatostatin immunostaining. These results indicate that although neuronal activity plays a major role in determining neuropeptide protein levels in postnatal hippocampal interneurons, its effects on different neuropeptides might be exerted through different mechanisms, with or without the mediation of BDNF or NT-4.

  14. Assessment of PET & ASL metabolism in the hippocampal subfields of MCI and AD using simultaneous PET-MR

    Energy Technology Data Exchange (ETDEWEB)

    Goubran, Maged; Douglas, David; Chao, Steven; Quon, Andrew; Tripathi, Pragya; Holley, Dawn; Vasanawala, Minal; Zaharchuk, Greg; Zeineh, Michael [Stanford University (United States)

    2015-05-18

    Alzheimer’s disease (AD) has been reported to show decreased metabolic activity in the hippocampus using FDG PET-MR. Histological data suggests that the hippocampal subfields are selectively affected in AD. Given the simultaneous imaging nature of integrated PET-MR scanners and the multimodal capabilities of PET-MR, our purpose here is to assess FDG activity, as well as ASL perfusion in the subfields of MCI and AD patients. 10 consecutive subjects were recruited for this study 3 MCI, 3 AD patients and 4 age-matched controls. The scanning was performed on a simultaneous 3T PET/MR scanner. To delineate the hippocampal subfields, automatic segmentation of hippocampal subfields (ASHS) was employed. Static FDG-PET series were reconstructed for analysis at 45-75 min for all subjects. All imaging sequences were automatically registered to the oblique coronal T2-weighted images (segmentation space). PET standardized uptake values (SUV) in the hippocampal subfields were normalized by the pons. FDG PET metabolism was reduced significantly in AD, as well as MCI patients as compared to controls, with the highest effect demonstrated in the CA3/DG and CA1/2 (p = 0.047, subfields. Patients (MCI and AD combined) had decreased metabolism as compared to controls in CA1/2 and significantly smaller volumes the Subiculum. When assessing CBF across groups, a significant decrease in CBF was found in the Subiculum. Our preliminary results demonstrate that PET-MRI may potentially be a sensitive biomarker and tool for early diagnosis of AD. They also confirm the importance of assessing metabolic and structural changes of neurodegenerative diseases at the subfield level.

  15. HIPPOCAMPAL SCLEROSIS IN EPILEPSY AND CHILDHOOD FEBRILE SEIZURES

    NARCIS (Netherlands)

    KUKS, JBM; COOK, MJ; FISH, DR; STEVENS, JM; SHORVON, SD

    1993-01-01

    The connection between hippocampal sclerosis and childhood febrile seizures (CFS) is a contentious issue in the study of epilepsy. We investigated 107 patients with drug-resistant epilepsy by high-resolution volumetric magnetic resonance imaging (MRI). 20 had a history of CFS, 45 had focal (26) or

  16. Modeling Hippocampal Neurogenesis Using Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Diana Xuan Yu

    2014-03-01

    Full Text Available The availability of human pluripotent stem cells (hPSCs offers the opportunity to generate lineage-specific cells to investigate mechanisms of human diseases specific to brain regions. Here, we report a differentiation paradigm for hPSCs that enriches for hippocampal dentate gyrus (DG granule neurons. This differentiation paradigm recapitulates the expression patterns of key developmental genes during hippocampal neurogenesis, exhibits characteristics of neuronal network maturation, and produces PROX1+ neurons that functionally integrate into the DG. Because hippocampal neurogenesis has been implicated in schizophrenia (SCZD, we applied our protocol to SCZD patient-derived human induced pluripotent stem cells (hiPSCs. We found deficits in the generation of DG granule neurons from SCZD hiPSC-derived hippocampal NPCs with lowered levels of NEUROD1, PROX1, and TBR1, reduced neuronal activity, and reduced levels of spontaneous neurotransmitter release. Our approach offers important insights into the neurodevelopmental aspects of SCZD and may be a promising tool for drug screening and personalized medicine.

  17. Hippocampal neurogenesis, neurotrophic factors and depression: possible therapeutic targets?

    Science.gov (United States)

    Serafini, Gianluca; Hayley, Shawn; Pompili, Maurizio; Dwivedi, Yogesh; Brahmachari, Goutam; Girardi, Paolo; Amore, Mario

    2014-01-01

    Major depression is one of the leading causes of disability and psychosocial impairment worldwide. Although many advances have been made in the neurobiology of this complex disorder, the pathophysiological mechanisms are still unclear. Among the proposed theories, impaired neuroplasticity and hippocampal neurogenesis have received considerable attention. The possible association between hippocampal neurogenesis, neurotrophic factors, major depression, and antidepressant responses was critically analyzed using a comprehensive search of articles/book chapters in English language between 1980 and 2014. One common emerging theme was that chronic stress and major depression are associated with structural brain changes such as a loss of dendritic spines and synapses, as well as reduced dendritic arborisation, together with diminished glial cells in the hippocampus. Both central monoamines and neurotrophic factors were associated with a modulation of hippocampal progenitor proliferation and cell survival. Accordingly, antidepressants are generally suggested to reverse stress-induced structural changes augmenting dendritic arborisation and synaptogenesis. Such antidepressant consequences are supposed to stem from their stimulatory effects on neurotrophic factors, and possibly modulation of glial cells. Of course, accumulating evidence also suggested that glutamatergic systems are implicated in not only basic neuroplastic processes, but also in the core features of depression. Hence, it is critical that antidepressant strategies focus on links between the various neurotransmitter systems, neurotrophic processes of hippocampal neurogenesis, and neurotrophic factors with regards to depressive symptomology. The identification of novel alternative antidepressant medications that target these systems is discussed in this review.

  18. Necroptosis Mediates TNF-Induced Toxicity of Hippocampal Neurons

    Directory of Open Access Journals (Sweden)

    Shan Liu

    2014-01-01

    Full Text Available Tumor necrosis factor-α (TNF-α is a critical proinflammatory cytokine regulating neuroinflammation. Elevated levels of TNF-α have been associated with various neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. However, the signaling events that lead to TNF-α-initiated neurotoxicity are still unclear. Here, we report that RIP3-mediated necroptosis, a form of regulated necrosis, is activated in the mouse hippocampus after intracerebroventricular injection of TNF-α. RIP3 deficiency attenuates TNF-α-initiated loss of hippocampal neurons. Furthermore, we characterized the molecular mechanism of TNF-α-induced neurotoxicity in HT-22 hippocampal neuronal cells. HT-22 cells are sensitive to TNF-α only upon caspase blockage and subsequently undergo necrosis. The cell death is suppressed by knockdown of CYLD or RIP1 or RIP3 or MLKL, suggesting that this necrosis is necroptosis and mediated by CYLD-RIP1-RIP3-MLKL signaling pathway. TNF-α-induced necroptosis of HT-22 cells is largely independent of both ROS accumulation and calcium influx although these events have been shown to be critical for necroptosis in certain cell lines. Taken together, these data not only provide the first in vivo evidence for a role of RIP3 in TNF-α-induced toxicity of hippocampal neurons, but also demonstrate that TNF-α promotes CYLD-RIP1-RIP3-MLKL-mediated necroptosis of hippocampal neurons largely bypassing ROS accumulation and calcium influx.

  19. Classical Conditioning of Hippocampal Theta Patterns in the Rat.

    Science.gov (United States)

    1976-08-01

    associated with changes in performance of learned tasks , 1,4,5, 8,9 there have been very few studies of neurona l plasticity of the hippocampus It self...rapid development of a conditioned hippocampal theta response to a visual sti mulus demonstrates tha t there is considerable neurona l plasticity in the

  20. IFNgamma enhances microglial reactions to hippocampal axonal degeneration

    DEFF Research Database (Denmark)

    Jensen, M B; Hegelund, I V; Lomholt, N D

    2000-01-01

    Glial reactivity is implicated in CNS repair and regenerative responses. Microglia, the cells responding earliest to axonal injury, produce tumor necrosis factor-alpha (TNFalpha), a cytokine with both cytopathic and neuroprotective effects. We have studied activation of hippocampal microglia to p...

  1. Predictable chronic mild stress improves mood, hippocampal neurogenesis and memory.

    Science.gov (United States)

    Parihar, V K; Hattiangady, B; Kuruba, R; Shuai, B; Shetty, A K

    2011-02-01

    Maintenance of neurogenesis in adult hippocampus is important for functions such as mood and memory. As exposure to unpredictable chronic stress (UCS) results in decreased hippocampal neurogenesis, enhanced depressive- and anxiety-like behaviors, and memory dysfunction, it is believed that declined hippocampal neurogenesis mainly underlies the behavioral and cognitive abnormalities after UCS. However, the effects of predictable chronic mild stress (PCMS) such as the routine stress experienced in day-to-day life on functions such as mood, memory and hippocampal neurogenesis are unknown. Using FST and EPM tests on a prototype of adult rats, we demonstrate that PCMS (comprising 5 min of daily restraint stress for 28 days) decreases depressive- and anxiety-like behaviors for prolonged periods. Moreover, we illustrate that decreased depression and anxiety scores after PCMS are associated with ~1.8-fold increase in the production and growth of new neurons in the hippocampus. Additionally, we found that PCMS leads to enhanced memory function in WMT as well as NORT. Collectively, these findings reveal that PCMS is beneficial to adult brain function, which is exemplified by increased hippocampal neurogenesis and improved mood and cognitive function.

  2. Endurance Factors Improve Hippocampal Neurogenesis and Spatial Memory in Mice

    Science.gov (United States)

    Kobilo, Tali; Yuan, Chunyan; van Praag, Henriette

    2011-01-01

    Physical activity improves learning and hippocampal neurogenesis. It is unknown whether compounds that increase endurance in muscle also enhance cognition. We investigated the effects of endurance factors, peroxisome proliferator-activated receptor [delta] agonist GW501516 and AICAR, activator of AMP-activated protein kinase on memory and…

  3. Adult hippocampal neurogenesis in natural populations of mammals.

    Science.gov (United States)

    Amrein, Irmgard

    2015-05-01

    This review will discuss adult hippocampal neurogenesis in wild mammals of different taxa and outline similarities with and differences from laboratory animals. It begins with a review of evidence for hippocampal neurogenesis in various mammals, and shows the similar patterns of age-dependent decline in cell proliferation in wild and domesticated mammals. In contrast, the pool of immature neurons that originate from proliferative activity varies between species, implying a selective advantage for mammals that can make use of a large number of these functionally special neurons. Furthermore, rapid adaptation of hippocampal neurogenesis to experimental challenges appears to be a characteristic of laboratory rodents. Wild mammals show species-specific, rather stable hippocampal neurogenesis, which appears related to demands that characterize the niche exploited by a species rather than to acute events in the life of its members. Studies that investigate adult neurogenesis in wild mammals are not numerous, but the findings of neurogenesis under natural conditions can provide new insights, and thereby also address the question to which cognitive demands neurogenesis may respond during selection.

  4. Cranial Radiation Therapy and Damage to Hippocampal Neurogenesis

    Science.gov (United States)

    Monje, Michelle

    2008-01-01

    Cranial radiation therapy is associated with a progressive decline in cognitive function, prominently memory function. Impairment of hippocampal neurogenesis is thought to be an important mechanism underlying this cognitive decline. Recent work has elucidated the mechanisms of radiation-induced failure of neurogenesis. Potential therapeutic…

  5. Necroptosis mediates TNF-induced toxicity of hippocampal neurons.

    Science.gov (United States)

    Liu, Shan; Wang, Xing; Li, Yun; Xu, Lei; Yu, Xiaoliang; Ge, Lin; Li, Jun; Zhu, Yongjin; He, Sudan

    2014-01-01

    Tumor necrosis factor-α (TNF-α) is a critical proinflammatory cytokine regulating neuroinflammation. Elevated levels of TNF-α have been associated with various neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. However, the signaling events that lead to TNF-α-initiated neurotoxicity are still unclear. Here, we report that RIP3-mediated necroptosis, a form of regulated necrosis, is activated in the mouse hippocampus after intracerebroventricular injection of TNF-α. RIP3 deficiency attenuates TNF-α-initiated loss of hippocampal neurons. Furthermore, we characterized the molecular mechanism of TNF-α-induced neurotoxicity in HT-22 hippocampal neuronal cells. HT-22 cells are sensitive to TNF-α only upon caspase blockage and subsequently undergo necrosis. The cell death is suppressed by knockdown of CYLD or RIP1 or RIP3 or MLKL, suggesting that this necrosis is necroptosis and mediated by CYLD-RIP1-RIP3-MLKL signaling pathway. TNF-α-induced necroptosis of HT-22 cells is largely independent of both ROS accumulation and calcium influx although these events have been shown to be critical for necroptosis in certain cell lines. Taken together, these data not only provide the first in vivo evidence for a role of RIP3 in TNF-α-induced toxicity of hippocampal neurons, but also demonstrate that TNF-α promotes CYLD-RIP1-RIP3-MLKL-mediated necroptosis of hippocampal neurons largely bypassing ROS accumulation and calcium influx.

  6. The effect of estrogen synthesis inhibition on hippocampal memory.

    Science.gov (United States)

    Bayer, Janine; Rune, Gabriele; Schultz, Heidrun; Tobia, Michael J; Mebes, Imke; Katzler, Olaf; Sommer, Tobias

    2015-06-01

    17-Beta-estradiol (E2) facilitates long term-potentiation (LTP) and increases spine synapse density in hippocampal neurons of ovariectomized rodents. Consistent with these beneficial effects on the cellular level, E2 improves hippocampus-dependent memory. A prominent approach to study E2 effects in rodents is the inhibition of its synthesis by letrozole, which reduces LTPs and spine synapse density. In the current longitudinal functional magnetic resonance imaging (fMRI) study, we translated this approach to humans and compared the impact of E2 synthesis inhibition on memory performance and hippocampal activity in post-menopausal women taking letrozole (n = 21) to controls (n = 24). In particular, we employed various behavioral memory paradigms that allow the disentanglement of hippocampus-dependent and -independent memory. Consistent with the literature on rodents, E2 synthesis inhibition specifically impaired hippocampus-dependent memory, however, this did not apply to the same degree to all of the employed paradigms. On the neuronal level, E2 depletion tended to decrease hippocampal activity during encoding, whereas it increased activity in the anterior cingulate and the dorsolateral prefrontal cortex. We thus infer that the inhibition of E2 synthesis specifically impairs hippocampal functioning in humans, whereas the increased prefrontal activity presumably reflects a compensatory mechanism, which is already known from studies on cognitive aging and Alzheimer's disease.

  7. Modeling hippocampal neurogenesis using human pluripotent stem cells.

    Science.gov (United States)

    Yu, Diana Xuan; Di Giorgio, Francesco Paolo; Yao, Jun; Marchetto, Maria Carolina; Brennand, Kristen; Wright, Rebecca; Mei, Arianna; McHenry, Lauren; Lisuk, David; Grasmick, Jaeson Michael; Silberman, Pedro; Silberman, Giovanna; Jappelli, Roberto; Gage, Fred H

    2014-03-11

    The availability of human pluripotent stem cells (hPSCs) offers the opportunity to generate lineage-specific cells to investigate mechanisms of human diseases specific to brain regions. Here, we report a differentiation paradigm for hPSCs that enriches for hippocampal dentate gyrus (DG) granule neurons. This differentiation paradigm recapitulates the expression patterns of key developmental genes during hippocampal neurogenesis, exhibits characteristics of neuronal network maturation, and produces PROX1+ neurons that functionally integrate into the DG. Because hippocampal neurogenesis has been implicated in schizophrenia (SCZD), we applied our protocol to SCZD patient-derived human induced pluripotent stem cells (hiPSCs). We found deficits in the generation of DG granule neurons from SCZD hiPSC-derived hippocampal NPCs with lowered levels of NEUROD1, PROX1, and TBR1, reduced neuronal activity, and reduced levels of spontaneous neurotransmitter release. Our approach offers important insights into the neurodevelopmental aspects of SCZD and may be a promising tool for drug screening and personalized medicine.

  8. Acceleration of hippocampal atrophy rates in asymptomatic amyloidosis.

    Science.gov (United States)

    Andrews, K Abigail; Frost, Chris; Modat, Marc; Cardoso, M Jorge; Rowe, Chris C; Villemagne, Victor; Fox, Nick C; Ourselin, Sebastien; Schott, Jonathan M

    2016-03-01

    Increased rates of brain atrophy measured from serial magnetic resonance imaging precede symptom onset in Alzheimer's disease and may be useful outcome measures for prodromal clinical trials. Appropriate trial design requires a detailed understanding of the relationships between β-amyloid load and accumulation, and rate of brain change at this stage of the disease. Fifty-two healthy individuals (72.3 ± 6.9 years) from Australian Imaging, Biomarkers and Lifestyle Study of Aging had serial (0, 18 m, 36 m) magnetic resonance imaging, (0, 18 m) Pittsburgh compound B positron emission tomography, and clinical assessments. We calculated rates of whole brain and hippocampal atrophy, ventricular enlargement, amyloid accumulation, and cognitive decline. Over 3 years, rates of whole brain atrophy (p atrophy (p = 0.001, p = 0.023), and ventricular expansion (p atrophy rates were also independently associated with β-amyloid accumulation over the first 18 months (p = 0.003). Acceleration of left hippocampal atrophy rate was associated with baseline β-amyloid load across the cohort (p atrophy are associated with both baseline β-amyloid load and accumulation, and that there is presymptomatic, amyloid-mediated acceleration of hippocampal atrophy. Clinical trials using rate of hippocampal atrophy as an outcome measure should not assume linear decline in the presymptomatic phase.

  9. Reinforcement of Rat Hippocampal LTP by Holeboard Training

    Science.gov (United States)

    Frey, Julietta U.; Korz, Volker; Uzakov, Shukhrat

    2005-01-01

    Hippocampal long-term potentiation (LTP) can be dissociated in early-LTP lasting 4-5 h and late-LTP with a duration of more than 8 h, the latter of which requires protein synthesis and heterosynaptic activity during its induction. Previous studies in vivo have shown that early-LTP in the dentate gyrus can protein synthesis-dependently be…

  10. Architecture of spatial circuits in the hippocampal region

    NARCIS (Netherlands)

    M.P. Witter (Menno); M.I. Canto (Marcia Irene); J.J. Couey (Jonathan J); N. Koganezawa (Noriko); K.C. O'Reilly (Kally)

    2014-01-01

    textabstractThe hippocampal region contains several principal neuron types, some of which show distinct spatial firing patterns. The region is also known for its diversity in neural circuits and many have attempted to causally relate network architecture within and between these unique circuits to f

  11. Hippocampal ER stress and learning deficits following repeated pyrethroid exposure.

    Science.gov (United States)

    Hossain, Muhammad M; DiCicco-Bloom, Emanuel; Richardson, Jason R

    2015-01-01

    Endoplasmic reticulum (ER) stress is implicated as a significant contributor to neurodegeneration and cognitive dysfunction. Previously, we reported that the widely used pyrethroid pesticide deltamethrin causes ER stress-mediated apoptosis in SK-N-AS neuroblastoma cells. Whether or not this occurs in vivo remains unknown. Here, we demonstrate that repeated deltamethrin exposure (3 mg/kg every 3 days for 60 days) causes hippocampal ER stress and learning deficits in adult mice. Repeated exposure to deltamethrin caused ER stress in the hippocampus as indicated by increased levels of C/EBP-homologous protein (131%) and glucose-regulated protein 78 (96%). This was accompanied by increased levels of caspase-12 (110%) and activated caspase-3 (50%). To determine whether these effects resulted in learning deficits, hippocampal-dependent learning was evaluated using the Morris water maze. Deltamethrin-treated animals exhibited profound deficits in the acquisition of learning. We also found that deltamethrin exposure resulted in decreased BrdU-positive cells (37%) in the dentate gyrus of the hippocampus, suggesting potential impairment of hippocampal neurogenesis. Collectively, these results demonstrate that repeated deltamethrin exposure leads to ER stress, apoptotic cell death in the hippocampus, and deficits in hippocampal precursor proliferation, which is associated with learning deficits.

  12. Wnt signaling in the regulation of adult hippocampal neurogenesis

    Directory of Open Access Journals (Sweden)

    Lorena eVarela-Nallar

    2013-06-01

    Full Text Available In the adult brain new neurons are continuously generated mainly in two regions, the subventricular zone of the lateral ventricles and the subgranular zone (SGZ in the hippocampal dentate gyrus. In the SGZ, radial neural stem cells give rise to granule cells that integrate into the hippocampal circuitry and are relevant for the plasticity of the hippocampus. Loss of neurogenesis impairs learning and memory, suggesting that this process is important for adult hippocampal function. Adult neurogenesis is tightly regulated by multiple signaling pathways, including the canonical Wnt/beta-catenin pathway. This pathway plays important roles during the development of neuronal circuits and in the adult brain it modulates synaptic transmission and plasticity. Here, we review current knowledge on the regulation of adult hippocampal neurogenesis by the Wnt/beta-catenin signaling cascade and the potential mechanisms involved in this regulation. Also we discuss the evidence supporting that the canonical Wnt pathway is part of the signaling mechanisms involved in the regulation of neurogenesis in different physiological conditions. Finally, some unsolved questions regarding the Wnt-mediated regulation of neurogenesis are discussed.

  13. Wnt signaling in the regulation of adult hippocampal neurogenesis

    Science.gov (United States)

    Varela-Nallar, Lorena; Inestrosa, Nibaldo C.

    2013-01-01

    In the adult brain new neurons are continuously generated mainly in two regions, the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) in the hippocampal dentate gyrus. In the SGZ, radial neural stem cells (NSCs) give rise to granule cells that integrate into the hippocampal circuitry and are relevant for the plasticity of the hippocampus. Loss of neurogenesis impairs learning and memory, suggesting that this process is important for adult hippocampal function. Adult neurogenesis is tightly regulated by multiple signaling pathways, including the canonical Wnt/β-catenin pathway. This pathway plays important roles during the development of neuronal circuits and in the adult brain it modulates synaptic transmission and plasticity. Here, we review current knowledge on the regulation of adult hippocampal neurogenesis by the Wnt/β-catenin signaling cascade and the potential mechanisms involved in this regulation. Also we discuss the evidence supporting that the canonical Wnt pathway is part of the signaling mechanisms involved in the regulation of neurogenesis in different physiological conditions. Finally, some unsolved questions regarding the Wnt-mediated regulation of neurogenesis are discussed. PMID:23805076

  14. Inhibition of hippocampal synaptic transmission by impairment of Ral function

    DEFF Research Database (Denmark)

    Owe-Larsson, Björn; Chaves-Olarte, Esteban; Chauhan, Ashok;

    2005-01-01

    Large clostridial cytotoxins and protein overexpression were used to probe for involvement of Ras-related GTPases (guanosine triphosphate) in synaptic transmission in cultured rat hippocampal neurons. The toxins TcdA-10463 (inactivates Rho, Rac, Cdc42, Rap) and TcsL-1522 (inactivates Ral, Rac, Ras...

  15. HIPPOCAMPAL MESSY FIBER DISTRIBUTIONS IN MICE SELECTED FOR AGGRESSION

    NARCIS (Netherlands)

    SLUYTER, F; JAMOT, L; VANOORTMERSSEN, GA; CRUSIO, WE

    1994-01-01

    The sizes of the hippocampal intra- and infrapyramidal messy fiber terminal fields (IIPMF) of mice from two lines bidirectionally selected for attack latency were measured. Aggressive males possess smaller IIPMF than do non-aggressive ones. We hypothesize that both differences in aggression and size

  16. Hippocampal GR expression is increased in elderly depressed females.

    Science.gov (United States)

    Wang, Q; Joels, M; Swaab, D F; Lucassen, P J

    2012-01-01

    Hyperactivity of the Hypthalamus-Pituitary-Adrenal (HPA)-axis is common in major depression and evident from e.g., a frequently exaggerated response to combined application of dexamethasone and CRH in this disorder. HPA-axis activity and hence the secretion of glucocorticoids (GC), the endpoint of the HPA-axis, depends to some extent on GC binding to glucocorticoid receptors (GR) that are abundantly expressed in the hippocampus. To assess whether differences in hippocampal GR expression occur in association with depression, we investigated GR-alpha protein immunoreactivity (ir) in postmortem hippocampal tissue of an elderly cohort of 9 well-characterized depressed patients and 9 control subjects that were pair-wise matched for age, sex, CSF-pH and postmortem delay. Abundant nuclear GR-ir was observed in neurons of the hippocampal Ammon's horn (CA) and dentate gyrus (DG) subregions. GR-ir in the DG correlated positively with age in the depressed but not the control group. Although no significant differences were found in GR-ir between the depressed and control groups, a significant increase in GR-ir was present in depressed females compared to depressed males. Whether this sex difference in hippocampal GR-ir in depression relates to the increased incidence of depression in females awaits further study. This article is part of a Special Issue entitled 'Anxiety and Depression'.

  17. Entorhinal-Hippocampal Neuronal Circuits Bridge Temporally Discontiguous Events

    Science.gov (United States)

    Kitamura, Takashi; Macdonald, Christopher J.; Tonegawa, Susumu

    2015-01-01

    The entorhinal cortex (EC)-hippocampal (HPC) network plays an essential role for episodic memory, which preserves spatial and temporal information about the occurrence of past events. Although there has been significant progress toward understanding the neural circuits underlying the spatial dimension of episodic memory, the relevant circuits…

  18. Phlebotomy-induced anemia alters hippocampal neurochemistry in neonatal mice.

    Science.gov (United States)

    Wallin, Diana J; Tkac, Ivan; Stucker, Sara; Ennis, Kathleen M; Sola-Visner, Martha; Rao, Raghavendra; Georgieff, Michael K

    2015-06-01

    Phlebotomy-induced anemia (PIA) is common in preterm infants. The hippocampus undergoes rapid differentiation during late fetal/early neonatal life and relies on adequate oxygen and iron to support oxidative metabolism necessary for development. Anemia shortchanges these two critical substrates, potentially altering hippocampal development and function. PIA (hematocrit neonatal mice pups from postnatal day (P)3 to P14. Neurochemical concentrations in the hippocampus were determined using in vivo (1)H NMR spectroscopy at 9.4T and compared with control animals at P14. Gene expression was assessed using quantitative real-time polymerase chain reaction (qRT-PCR). PIA decreased brain iron concentration, increased hippocampal lactate and creatine concentrations, and decreased phosphoethanolamine (PE) concentration and the phosphocreatine/creatine ratio. Hippocampal transferrin receptor (Tfrc) gene expression was increased, while the expression of calcium/calmodulin-dependent protein kinase type IIα (CamKIIα) was decreased in PIA mice. This clinically relevant model of neonatal anemia alters hippocampal energy and phospholipid metabolism and gene expression during a critical developmental period. Low target hematocrits for preterm neonates in the neonatal intensive care unit (NICU) may have potential adverse neural implications.

  19. Uncovering representations of sleep-associated hippocampal ensemble spike activity

    Science.gov (United States)

    Chen, Zhe; Grosmark, Andres D.; Penagos, Hector; Wilson, Matthew A.

    2016-08-01

    Pyramidal neurons in the rodent hippocampus exhibit spatial tuning during spatial navigation, and they are reactivated in specific temporal order during sharp-wave ripples observed in quiet wakefulness or slow wave sleep. However, analyzing representations of sleep-associated hippocampal ensemble spike activity remains a great challenge. In contrast to wake, during sleep there is a complete absence of animal behavior, and the ensemble spike activity is sparse (low occurrence) and fragmental in time. To examine important issues encountered in sleep data analysis, we constructed synthetic sleep-like hippocampal spike data (short epochs, sparse and sporadic firing, compressed timescale) for detailed investigations. Based upon two Bayesian population-decoding methods (one receptive field-based, and the other not), we systematically investigated their representation power and detection reliability. Notably, the receptive-field-free decoding method was found to be well-tuned for hippocampal ensemble spike data in slow wave sleep (SWS), even in the absence of prior behavioral measure or ground truth. Our results showed that in addition to the sample length, bin size, and firing rate, number of active hippocampal pyramidal neurons are critical for reliable representation of the space as well as for detection of spatiotemporal reactivated patterns in SWS or quiet wakefulness.

  20. Preservation of hippocampal neuron numbers in aged rhesus monkeys

    NARCIS (Netherlands)

    Keuker, J.I.H.; Luiten, P.G.M.; Fuchs, E.

    2003-01-01

    To investigate whether or not aging of nonhuman primates is accompanied by a region-specific neuron loss in the hippocampal formation, we used the optical fractionator technique to obtain stereological estimates of unilateral neuron numbers of the hippocampi of eight young (0-4 years) and five aged

  1. Functional connectivity of the entorhinal - Hippocampal space circuit

    NARCIS (Netherlands)

    S.-J. Zhang (Sheng-Jia); J. Ye (Jian); J.J. Couey (Jonathan J); M.P. Witter (Menno); E.I. Moser (Edvard); M.-B. Moser (May-Britt)

    2014-01-01

    textabstractThe mammalian space circuit is known to contain several functionally specialized cell types, such as place cells in the hippocampus and grid cells, head-direction cells and border cells in the medial entorhinal cortex (MEC). The interaction between the entorhinal and hippocampal spatial

  2. Hippocampal development in youth with a history of childhood maltreatment.

    Science.gov (United States)

    Paquola, Casey; Bennett, Maxwell R; Hatton, Sean N; Hermens, Daniel F; Groote, Inge; Lagopoulos, Jim

    2017-03-27

    Childhood maltreatment (CM) is associated with enhanced risk of psychiatric illness and reduced subcortical grey matter in adulthood. The hippocampus and amygdala, due to their involvement in stress and emotion circuitries, have been subject to extensive investigations regarding the effect of CM. However, the complex relationship between CM, subcortical grey matter and mental illness remains poorly understood partially due to a lack of longitudinal studies. Here we used segmentation and linear mixed effect modelling to examine the impact of CM on hippocampal and amygdala development in young people with emerging mental illness. A total of 215 structural magnetic resonance imaging (MRI) scans were acquired from 123 individuals (age: 14-28 years, 79 female), 52 of whom were scanned twice or more. Hippocampal and amygdala volumes increased linearly with age, and their developmental trajectories were not moderated by symptom severity. However, exposure to CM was associated with significantly stunted right hippocampal growth. This finding bridges the gap between child and adult research in the field and provides novel evidence that CM is associated with disrupted hippocampal development in youth. Although CM was associated with worse symptom severity, we did not find evidence that CM-induced structural abnormalities directly underpin psychopathology. This study has important implications for the psychiatric treatment of individuals with CM since they are clinically and neurobiologically distinct from their peers who were not maltreated.

  3. Fructose consumption reduces hippocampal synaptic plasticity underlying cognitive performance

    Science.gov (United States)

    Cisternas, Pedro; Salazar, Paulina; Serrano, Felipe G.; Montecinos-Oliva, Carla; Arredondo, Sebastián B.; Varela-Nallar, Lorena; Barja, Salesa; Vio, Carlos P.; Gomez-Pinilla, Fernando; Inestrosa, Nibaldo C.

    2017-01-01

    Metabolic syndrome (MetS) is a global epidemic, which involves a spectrum of metabolic disorders comprising diabetes and obesity. The impact of MetS on the brain is becoming to be a concern, however, the poor understanding of mechanisms involved has limited the development of therapeutic strategies. We induced a MetS-like condition by exposing mice to fructose feeding for 7 weeks. There was a dramatic deterioration in the capacity of the hippocampus to sustain synaptic plasticity in the forms of long-term potentiation (LTP) and long-term depression (LTD). Mice exposed to fructose showed a reduction in the number of contact zones and the size of postsynaptic densities (PSDs) in the hippocampus, as well as a decrease in hippocampal neurogenesis. There was an increase in lipid peroxidation likely associated with a deficiency in plasma membrane excitability. Consistent with an overall hippocampal dysfunction, there was a subsequent decrease in hippocampal dependent learning and memory performance, i.e., spatial learning and episodic memory. Most of the pathological sequel of MetS in the brain was reversed three month after discontinue fructose feeding. These results are novel to show that MetS triggers a cascade of molecular events, which disrupt hippocampal functional plasticity, and specific aspects of learning and memory function. The overall information raises concerns about the risk imposed by excessive fructose consumption on the pathology of neurological disorders. PMID:26300486

  4. Sub-toxic Ethanol Exposure Modulates Gene Expression and Enzyme Activity of Antioxidant Systems to Provide Neuroprotection in Hippocampal HT22 Cells

    Science.gov (United States)

    Casañas-Sánchez, Verónica; Pérez, José A.; Quinto-Alemany, David; Díaz, Mario

    2016-01-01

    Ethanol is known to cause severe systemic damage often explained as secondary to oxidative stress. Brain is particularly vulnerable to ethanol-induced reactive oxygen species (ROS) because the high amounts of lipids, and because nerve cell membranes contain high amounts of peroxidable fatty acids. Usually these effects of ethanol are associated to high and/or chronic exposure to ethanol. However, as we show in this manuscript, a low and acute dose of ethanol trigger a completely different response in hippocampal cells. Thus, we have observed that 0.1% ethanol exposure to HT22 cells, a murine hippocampal-derived cell line, increases the transcriptional expression of different genes belonging to the classical, glutathione/glutaredoxin and thioredoxin/peroxiredoxin antioxidant systems, these including Sod1, Sod2, Gpx1, Gclc, and Txnrd1. Paralleling these changes, enzyme activities of total superoxide dismutase (tSOD), catalase, total glutathione peroxidase (tGPx), glutathione-S-reductase (GSR), and total thioredoxin reductase (tTXNRD), were all increased, while the generation of thiobarbituric acid reactive substances (TBARS), as indicators of lipid peroxidation, and glutathione levels remained unaltered. Ethanol exposure did not affect cell viability or cell growing as assessed by real-time cell culture monitoring, indicating that low ethanol doses are not deleterious for hippocampal cells, but rather prevented glutamate-induced excitotoxicity. In summary, we conclude that sub-toxic exposure to ethanol may well be neuroprotective against oxidative insults in hippocampal cells. PMID:27512374

  5. Learning and memory alterations are associated with hippocampal N-acetylaspartate in a rat model of depression as measured by 1H-MRS.

    Directory of Open Access Journals (Sweden)

    Guangjun Xi

    Full Text Available It is generally accepted that cognitive processes, such as learning and memory, are affected in depression. The present study used a rat model of depression, chronic unpredictable mild stress (CUMS, to determine whether hippocampal volume and neurochemical changes were involved in learning and memory alterations. A further aim was to determine whether these effects could be ameliorated by escitalopram treatment, as assessed with the non-invasive techniques of structural magnetic resonance imaging (MRI and magnetic resonance spectroscopy (MRS. Our results demonstrated that CUMS had a dramatic influence on spatial cognitive performance in the Morris water maze task, and CUMS reduced the concentration of neuronal marker N-acetylaspartate (NAA in the hippocampus. These effects could be significantly reversed by repeated administration of escitalopram. However, neither chronic stress nor escitalopram treatment influenced hippocampal volume. Of note, the learning and memory alterations of the rats were associated with right hippocampal NAA concentration. Our results indicate that in depression, NAA may be a more sensitive measure of cognitive function than hippocampal volume.

  6. Single fluoxetine treatment before but not after stress prevents stress-induced hippocampal long-term depression and spatial memory retrieval impairment in rats.

    Science.gov (United States)

    Han, Huili; Dai, Chunfang; Dong, Zhifang

    2015-07-28

    A growing body of evidence has shown that chronic treatment with fluoxetine, a widely prescribed medication for treatment of depression, can affect synaptic plasticity in the adult central nervous system. However, it is not well understood whether acute fluoxetine influences synaptic plasticity, especially on hippocampal CA1 long-term depression (LTD), and if so, whether it subsequently impacts hippocampal-dependent spatial memory. Here, we reported that LTD facilitated by elevated-platform stress in hippocampal slices was completely prevented by fluoxetine administration (10 mg/kg, i.p.) 30 min before stress. The LTD was not, however, significantly inhibited by fluoxetine administration immediately after stress. Similarly, fluoxetine incubation (10 μM) during electrophysiological recordings also displayed no influence on the stress-facilitated LTD. In addition, behavioral results showed that a single fluoxetine treatment 30 min before but not after acute stress fully reversed the impairment of spatial memory retrieval in the Morris water maze paradigm. Taken together, these results suggest that acute fluoxetine treatment only before, but not after stress, can prevent hippocampal CA1 LTD and spatial memory retrieval impairment caused by behavioral stress in adult animals.

  7. Neonatal Treatment with a Pegylated Leptin Antagonist Induces Sexually Dimorphic Effects on Neurones and Glial Cells, and on Markers of Synaptic Plasticity in the Developing Rat Hippocampal Formation.

    Science.gov (United States)

    López-Gallardo, M; Antón-Fernández, A; Llorente, R; Mela, V; Llorente-Berzal, A; Prada, C; Viveros, M P

    2015-08-01

    The present study aimed to better understand the role of the neonatal leptin surge, which peaks on postnatal day (PND)9-10, on the development of the hippocampal formation. Accordingly, male and female rats were administered with a pegylated leptin antagonist on PND9 and the expression of neurones, glial cells and diverse markers of synaptic plasticity was then analysed by immunohistochemistry in the hippocampal formation. Antagonism of the actions of leptin at this specific postnatal stage altered the number of glial fibrillary acidic protein positive cells, and also affected type 1 cannabinoid receptors, synaptophysin and brain-derived neurotrophic factor (BDNF), with the latter effect being sexually dimorphic. The results indicate that the physiological leptin surge occurring around PND 9-10 is critical for hippocampal formation development and that the dynamics of leptin activity might be different in males and females. The data obtained also suggest that some but not all the previously reported effects of maternal deprivation on hippocampal formation development (which markedly reduces leptin levels at PND 9-10) might be mediated by leptin deficiency in these animals.

  8. Phenotypic Alterations in Hippocampal NPY- and PV-Expressing Interneurons in a Presymptomatic Transgenic Mouse Model of Alzheimer’s Disease

    Science.gov (United States)

    Mahar, Ian; Albuquerque, Marilia Silva; Mondragon-Rodriguez, Siddhartha; Cavanagh, Chelsea; Davoli, Maria Antonietta; Chabot, Jean-Guy; Williams, Sylvain; Mechawar, Naguib; Quirion, Rémi; Krantic, Slavica

    2017-01-01

    Interneurons, key regulators of hippocampal neuronal network excitability and synchronization, are lost in advanced stages of Alzheimer’s disease (AD). Given that network changes occur at early (presymptomatic) stages, we explored whether alterations of interneurons also occur before amyloid-beta (Aβ) accumulation. Numbers of neuropeptide Y (NPY) and parvalbumin (PV) immunoreactive (IR) cells were decreased in the hippocampus of 1 month-old TgCRND8 mouse AD model in a sub-regionally specific manner. The most prominent change observed was a decrease in the number of PV-IR cells that selectively affected CA1/2 and subiculum, with the pyramidal layer (PY) of CA1/2 accounting almost entirely for the reduction in number of hippocampal PV-IR cells. As PV neurons were decreased selectively in CA1/2 and subiculum, and given that they are critically involved in the control of hippocampal theta oscillations, we then assessed intrinsic theta oscillations in these regions after a 4-aminopyridine (4AP) challenge. This revealed increased theta power and population bursts in TgCRND8 mice compared to non-transgenic (nTg) controls, suggesting a hyperexcitability network state. Taken together, our results identify for the first time AD-related alterations in hippocampal interneuron function as early as at 1 month of age. These early functional alterations occurring before amyloid deposition may contribute to cognitive dysfunction in AD. PMID:28154533

  9. The phosphodiesterase type 2 inhibitor BAY 60-7550 reverses functional impairments induced by brain ischemia by decreasing hippocampal neurodegeneration and enhancing hippocampal neuronal plasticity.

    Science.gov (United States)

    Soares, Ligia Mendes; Meyer, Erika; Milani, Humberto; Steinbusch, Harry W M; Prickaerts, Jos; de Oliveira, Rúbia M Weffort

    2017-02-01

    Cognitive and affective impairments are the most characterized consequences following cerebral ischemia. BAY 60-7550, a selective phosphodiesterase type 2 inhibitor (PDE2-I), presents memory-enhancing and anxiolytic-like properties. The behavioral effects of BAY 60-7550 have been associated with its ability to prevent hydrolysis of both cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) thereby interfering with neuronal plasticity. Here, we hypothesize that PDE2-I treatment could promote functional recovery after brain ischemia. Mice C57Bl/6 were submitted to bilateral common carotid artery occlusion (BCCAO), an experimental model of transient brain ischemia, for 20 min. During 21 days after reperfusion, the animals were tested in a battery of behavioral tests including the elevated zero maze (EZM), object location task (OLT) and forced swim test (FST). The effects of BAY 60-7550 were evaluated on neuronal nuclei (NeuN), caspase-9, cAMP response element-binding protein (CREB), phosphorylated CREB (pCREB) and brain-derived neurotrophic factor (BDNF) expression in the hippocampus. BCCAO increased anxiety levels, impaired hippocampus-dependent cognitive function and induced despair-like behavior in mice. Hippocampal neurodegeneration was evidenced by a decrease in NeuN and increase incaspase-9 protein levels in BCCAO mice. Ischemic mice also showed low BDNF protein levels in the hippocampus. Repeated treatment with BAY 60-7550 attenuated the behavioral impairments induced by BCCAO in mice. Concomitantly, BAY 60-7550 enhanced expression of pCREB and BDNF protein levels in the hippocampus of ischemic mice. The present findings suggest that chronic inhibition of PDE2 provides functional recovery in BCCAO mice possibly by augmenting hippocampal neuronal plasticity.

  10. Match mismatch processes underlie human hippocampal responses to associative novelty.

    Science.gov (United States)

    Kumaran, Dharshan; Maguire, Eleanor A

    2007-08-08

    The hippocampus has long been proposed to play a critical role in novelty detection through its ability to act as a comparator between past and present experience. A recent study provided evidence for this hypothesis by characterizing hippocampal responses to sequence novelty, a type of associative novelty where familiar items appear in a new temporal order. Here, we ask whether a hippocampal match-mismatch (i.e., comparator) mechanism operates selectively to identify the violation of predictions within the temporal domain or instead also underlies the processing of associative novelty in other domains (e.g., spatial). We used functional magnetic resonance imaging and a repetition paradigm in which subjects viewed sequences of objects presented in distinct locations on the screen and performed an incidental target detection task. The left hippocampus exhibited a pattern of activity consistent with that of an associative match-mismatch detector, with novelty signals generated only in conditions where one contextual component was novel and the other repeated. In contrast, right hippocampal activation signaled the presence of objects in familiar locations. Our results suggest that hippocampal match-mismatch computations constitute a general mechanism underpinning the processing of associative novelty. These findings support a model in which hippocampal mismatch signals rely critically on the recall of previous experience, a process that only occurs when novel sensory inputs overlap significantly with stored representations. More generally, the current study also offers insights into how the hippocampus automatically represents the spatiotemporal context of our experiences, a function that may relate to its role in episodic memory.

  11. Hippocampal sleep features: relations to human memory function.

    Science.gov (United States)

    Ferrara, Michele; Moroni, Fabio; De Gennaro, Luigi; Nobili, Lino

    2012-01-01

    The recent spread of intracranial electroencephalographic (EEG) recording techniques for presurgical evaluation of drug-resistant epileptic patients is providing new information on the activity of different brain structures during both wakefulness and sleep. The interest has been mainly focused on the medial temporal lobe, and in particular the hippocampal formation, whose peculiar local sleep features have been recently described, providing support to the idea that sleep is not a spatially global phenomenon. The study of the hippocampal sleep electrophysiology is particularly interesting because of its central role in the declarative memory formation. Recent data indicate that sleep contributes to memory formation. Therefore, it is relevant to understand whether specific patterns of activity taking place during sleep are related to memory consolidation processes. Fascinating similarities between different states of consciousness (wakefulness, REM sleep, non-REM sleep) in some electrophysiological mechanisms underlying cognitive processes have been reported. For instance, large-scale synchrony in gamma activity is important for waking memory and perception processes, and its changes during sleep may be the neurophysiological substrate of sleep-related deficits of declarative memory. Hippocampal activity seems to specifically support memory consolidation during sleep, through specific coordinated neurophysiological events (slow waves, spindles, ripples) that would facilitate the integration of new information into the pre-existing cortical networks. A few studies indeed provided direct evidence that rhinal ripples as well as slow hippocampal oscillations are correlated with memory consolidation in humans. More detailed electrophysiological investigations assessing the specific relations between different types of memory consolidation and hippocampal EEG features are in order. These studies will add an important piece of knowledge to the elucidation of the ultimate

  12. Hippocampal sleep features: relations to human memory function

    Directory of Open Access Journals (Sweden)

    Michele eFerrara

    2012-04-01

    Full Text Available The recent spread of intracranial EEG recordings techniques for presurgical evaluation of drug-resistant epileptic patients is providing new information on the activity of different brain structures during both wakefulness and sleep. The interest has been mainly focused on the medial temporal lobe, and in particular the hippocampal formation, whose peculiar local sleep features have been recently described, providing support to the idea that sleep is not a spatially global phenomenon. The study of the hippocampal sleep electrophysiology is particularly interesting because of its central role in the declarative memory formation. Recent data indicate that sleep contributes to memory formation. Therefore, it is relevant to understand whether specific pattern of activity taking place during sleep are related to memory consolidation processes. Fascinating similarities between different states of consciousness (wakefulness, REM sleep, NREM sleep in some electrophysiological mechanisms underlying cognitive processes have been reported. For instance, large-scale synchrony in gamma activity is important for waking memory and perception processes, and its changes during sleep may be the neurophysiological substrate of sleep-related deficits of declarative memory. Hippocampal activity seems to specifically support memory consolidation during sleep, through specific coordinated neurophysiological events (slow waves, spindles, ripples that would facilitate the integration of new information into the pre-existing cortical networks. A few studies indeed provided direct evidence that rhinal ripples as well as slow hippocampal oscillations are correlated with memory consolidation in humans. More detailed electrophysiological investigations assessing the specific relations between different types of memory consolidation and hippocampal EEG features are in order. These studies will add an important piece of knowledge to the elucidation of the ultimate sleep

  13. Hippocampal EEG and behaviour in dog. III. Hippocampal EEG correlates of stimulus-response tasks and of sexual behaviour

    NARCIS (Netherlands)

    Arnolds, D.E.A.T.; Lopes da Silva, F.H.; Aitink, J.W.; Kamp, A.

    1979-01-01

    A dog was trained to perform a spatial sound discrimination. The hippocampal EEG correlates and the movement correlates of correct trials were compared with those of incorrect trials and of ‘pressings in between’. Correct and wrong responses on a place learning task were compared both with respect

  14. Hippocampal EEG and behaviour in dog. III. Hippocampal EEG correlates of stimulus-response tasks and of sexual behaviour

    NARCIS (Netherlands)

    Arnolds, D.E.A.T.; Lopes da Silva, F.H.; Aitink, J.W.; Kamp, A.

    1979-01-01

    A dog was trained to perform a spatial sound discrimination. The hippocampal EEG correlates and the movement correlates of correct trials were compared with those of incorrect trials and of ‘pressings in between’. Correct and wrong responses on a place learning task were compared both with respect

  15. Hippocampal EEG and behaviour in dog. III. Hippocampal EEG correlates of stimulus-response tasks and of sexual behaviour

    NARCIS (Netherlands)

    Arnolds, D.E.A.T.; Lopes da Silva, F.H.; Aitink, J.W.; Kamp, A.

    A dog was trained to perform a spatial sound discrimination. The hippocampal EEG correlates and the movement correlates of correct trials were compared with those of incorrect trials and of ‘pressings in between’. Correct and wrong responses on a place learning task were compared both with

  16. Early maternal deprivation immunologically primes hippocampal synapses by redistributing interleukin-1 receptor type I in a sex dependent manner.

    Science.gov (United States)

    Viviani, Barbara; Boraso, Mariaserena; Valero, Manuel; Gardoni, Fabrizio; Marco, Eva Maria; Llorente, Ricardo; Corsini, Emanuela; Galli, Corrado Lodovico; Di Luca, Monica; Marinovich, Marina; López-Gallardo, Meritxell; Viveros, Maria-Paz

    2014-01-01

    Challenges experienced in early life cause an enduring phenotypical shift of immune cells towards a sensitised state that may lead to an exacerbated reaction later in life and contribute to increased vulnerability to neurological diseases. Peripheral and central inflammation may affect neuronal function through cytokines such as IL-1. The extent to which an early life challenge induces long-term alteration of immune receptors organization in neurons has not been shown. We investigated whether a single episode of maternal deprivation (MD) on post-natal day (PND) 9 affects: (i) the synapse distribution of IL-1RI together with subunits of NMDA and AMPA receptors; and (ii) the interactions between IL-1RI and the GluN2B subunit of the NMDAR in the long-term, at PND 45. MD increased IL-1RI levels and IL-1RI interactions with GluN2B at the synapse of male hippocampal neurons, without affecting the total number of IL-1RI or NMDAR subunits. Although GluN2B and GluN2A were slightly but not significantly changed at the synapse, their ratio was significantly decreased in the hippocampus of the male rats who had experienced MD; the levels of the GluA1 and GluA2 subunits of the AMPAR were also decreased. These changes were not observed immediately after the MD episode. None of the observed alterations occurred in the hippocampus of the females or in the prefrontal cortex of either sex. These data reveal a long-term, sex-dependent modification in receptor organisation at the hippocampal post-synapses following MD. We suggest that this effect might contribute to priming hippocampal synapses to the action of IL-1β.

  17. Effect of etomidate on voltage-dependent potassium currents in rat isolated hippocampal pyramidal neurons

    Institute of Scientific and Technical Information of China (English)

    TAN Hong-yu; SUN Li-na; WANG Xiao-liang; YE Tie-hu

    2010-01-01

    Background Previous studies demonstrated general anesthetics affect potassium ion channels, which may be one of the mechanisms of general anesthesia. Because the effect of etomidate on potassium channels in rat hippocampus which is involved in memory function has not been studied, we investigated the effects of etomidate on both delayed rectifier potassium current (I_((K(DR))) and transient outward potassium current (I_((K(A))) in acutely dissociated rat hippocampal pyramidal neurons.Methods Single rat hippocampal pyramidal neurons from male Wistar rats of 7-10 days were acutely dissociated by enzymatic digestion and mechanical dispersion according to the methods of Kay and Wong with slight modification. Voltage-clamp recordings were performed in the whole-cell patch clamp configuration. Currents were recorded with a List EPC-10 amplifier and data were stored in a computer using Pulse 8.5. Student's paired two-tail t test was used for data analysis. Results At the concentration of 100 μmol/L, etomidate significantly inhibited I_(K(DR)) by 49.2% at +40 mV when depolarized from -110 mV (P 0.05). The IC_(50) value of etomidate for blocking I_(K(DR)) was calculated as 5.4 μmol/L, with a Hill slope of 2.45. At the presence of 10 μmol/L etomidate, the V_(1/2) of activation curve was shifted from (17.3±1.5) mV to (10.7±9.9) mV (n=8, P <0.05), the V_(1/2) of inactivation curve was shifted from (-18.3±2.2) mV to (-45.3±9.4) mV (n=8, P <0.05). Etomidate 10 μmol/L shifted both the activation curve and inactivation curve of I_(K(DR)) to negative potential, but mainly affected the inactivation kinetics.Conclusions Etomidate potently inhibited I_(K(DR)) but not I_(K(A)) in rat hippocampal pyramidal neurons. I_(K(DR)) was inhibited by etomidate in a concentration-dependent manner, while I_(K(A)) remained unaffected.

  18. Impaired Hippocampal Neuroligin-2 Function by Chronic Stress or Synthetic Peptide Treatment is Linked to Social Deficits and Increased Aggression

    DEFF Research Database (Denmark)

    van der Kooij, Michael A; Fantin, Martina; Kraev, Igor

    2014-01-01

    and are related to similar abnormalities in animal models. Chronic stress increases the likelihood for affective disorders and has been shown to induce changes in neural structure and function in different brain regions, with the hippocampus being highly vulnerable to stress. Previous studies have shown evidence...... of chronic stress-induced changes in the neural E/I balance in the hippocampus. Therefore, we hypothesized that chronic restraint stress would lead to reduced hippocampal NLGN-2 levels, in association with alterations in social behavior. We found that rats submitted to chronic restraint stress in adulthood...

  19. Affective Urbanism

    DEFF Research Database (Denmark)

    Samson, Kristine

    Urban design and architecture are increasingly used as material and affective strategies for setting the scene, for manipulation and the production of urban life: The orchestration of atmospheres, the framing and staging of urban actions, the programming for contemplation, involvement, play, expe...... affects can be choreographed and designed intentionally or whether it arises from unpredictable circumstances within urbanity itself....

  20. Affective Maps

    DEFF Research Database (Denmark)

    Salovaara-Moring, Inka

    of environmental knowledge production. It uses InfoAmazonia, the databased platform on Amazon rainforests, as an example of affective geo-visualization within information mapping that enhances embodiment in the experience of the information. Amazonia is defined as a digitally created affective (map)space within...

  1. Methamphetamine modulates glutamatergic synaptic transmission in rat primary cultured hippocampal neurons.

    Science.gov (United States)

    Zhang, Shuzhuo; Jin, Yuelei; Liu, Xiaoyan; Yang, Lujia; Ge, Zhi juan; Wang, Hui; Li, Jin; Zheng, Jianquan

    2014-09-25

    Methamphetamine (METH) is a psychostimulant drug. Abuse of METH produces long-term behavioral changes including behavioral, sensitization, tolerance, and dependence. It induces neurotoxic effects in several areas of the brain via enhancing dopamine (DA) level abnormally, which may cause a secondary release of glutamate (GLU). However, repeated administration of METH still increases release of GLU even when dopamine content in tissue is significantly depleted. It implies that some other mechanisms are likely to involve in METH-induced GLU release. The goal of this study was to observe METH affected glutamatergic synaptic transmission in rat primary cultured hippocampal neurons and to explore the mechanism of METH modulated GLU release. Using whole-cell patch-clamp recordings, we found that METH (0.1-50.0μM) increased the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) and miniature excitatory postsynaptic currents (mEPSCs). However, METH decreased the frequency of sEPSCs and mEPSCs at high concentration of 100μM. The postsynaptic NMDA receptor currents and P/Q-type calcium channel were not affected by the use of METH (10,100μM). METH did not present visible effect on N-type Ca(2+) channel current at the concentration lower than 50.0μM, but it was inhibited by use of METH at a 100μM. The effect of METH on glutamatergic synaptic transmission was not revered by pretreated with DA receptor antagonist SCH23390. These results suggest that METH directly modulated presynaptic GLU release at a different concentration, while dopaminergic system was not involved in METH modulated release of GLU in rat primary cultured hippocampal neurons.

  2. Adolescent chronic mild stress alters hippocampal CB1 receptor-mediated excitatory neurotransmission and plasticity.

    Science.gov (United States)

    Reich, C G; Mihalik, G R; Iskander, A N; Seckler, J C; Weiss, M S

    2013-12-03

    Endocannabinoids (eCBs) are involved in the stress response and alterations in eCB signaling may contribute to the etiology of mood disorders. Exposure to chronic mild stress (CMS), a model of depression, produces downregulation of the cannabinoid 1 (CB1) receptor in the hippocampus of male rats. However, it is unknown how this stress-induced change in CB1 levels affects eCB-mediated neurotransmission. In vitro, field potential recordings from CMS-exposed (21-days) rats were performed to assess the effects of stress on eCB-regulated glutamatergic neurotransmission in/on hippocampal area CA1. We observed that application of the CB1 agonist, WIN 55,212-5 (1 μM), in stress animals resulted in a ∼135% increase in excitatory neurotransmission, whereas CB1 activation in non-stress animals leads to a ∼30% decrease. However, during blockade of GABA(A) neurotransmission with picrotoxin, CB1 activation yielded a ∼35% decrease in stress animals. These findings indicate that CMS does not directly affect glutamatergic neurotransmission. Rather, CMS sensitizes CB1 function on GABAergic terminals, leading to less inhibition and an increase in excitatory neurotransmission. This finding is reinforced in that induction of weak long-term-potentiation (LTP) is enhanced in CMS-exposed animals compared to controls and this enhancement is CB1-dependent. Lastly, we observed that the LTP-blocking property of WIN 55,212-5 shifts from being glutamate-dependent in non-stress animals to being GABA-dependent in stress animals. These results effectively demonstrate that CMS significantly alters hippocampal eCB-mediated neurotransmission and synaptic plasticity.

  3. Tramadol state-dependent memory: involvement of dorsal hippocampal muscarinic acetylcholine receptors.

    Science.gov (United States)

    Jafari-Sabet, Majid; Jafari-Sabet, Ali-Reza; Dizaji-Ghadim, Ali

    2016-08-01

    The effects on tramadol state-dependent memory of bilateral intradorsal hippocampal (intra-CA1) injections of physostigmine, an acetylcholinesterase inhibitor, and atropine, a muscarinic acetylcholine receptor antagonist, were examined in adult male NMRI mice. A single-trial step-down passive avoidance task was used for the assessment of memory retention. Post-training intra-CA1 administration of an atypical μ-opioid receptor agonist, tramadol (0.5 and 1 μg/mouse), dose dependently impaired memory retention. Pretest injection of tramadol (0.5 and 1 μg/mouse, intra-CA1) induced state-dependent retrieval of the memory acquired under the influence of post-training tramadol (1 μg/mouse, intra-CA1). A pretest intra-CA1 injection of physostigmine (1 μg/mouse) reversed the memory impairment induced by post-training administration of tramadol (1 μg/mouse, intra-CA1). Moreover, pretest administration of physostigmine (0.5 and 1 μg/mouse, intra-CA1) with an ineffective dose of tramadol (0.25 μg/mouse, intra-CA1) also significantly restored retrieval. Pretest administration of physostigmine (0.25, 0.5, and 1 μg/mouse, intra-CA1) by itself did not affect memory retention. A pretest intra-CA1 injection of the atropine (1 and 2 μg/mouse) 5 min before the administration of tramadol (1 μg/mouse, intra-CA1) dose dependently inhibited tramadol state-dependent memory. Pretest administration of atropine (0.5, 1, and 2 μg/mouse, intra-CA1) by itself did not affect memory retention. It can be concluded that dorsal hippocampal muscarinic acetylcholine receptor mechanisms play an important role in the modulation of tramadol state-dependent memory.

  4. Increased adult hippocampal brain-derived neurotrophic factor and normal levels of neurogenesis in maternal separation rats.

    Science.gov (United States)

    Greisen, Mia H; Altar, C Anthony; Bolwig, Tom G; Whitehead, Richard; Wörtwein, Gitta

    2005-03-15

    Repeated maternal separation of rat pups during the early postnatal period may affect brain-derived neurotrophic factor (BDNF) or neurons in brain areas that are compromised by chronic stress. In the present study, a highly significant increase in hippocampal BDNF protein concentration was found in adult rats that as neonates had been subjected to 180 min of daily separation compared with handled rats separated for 15 min daily. BDNF protein was unchanged in the frontal cortex and hypothalamus/paraventricular nucleus. Expression of BDNF mRNA in the CA1, CA3, or dentate gyrus of the hippocampus or in the paraventricular hypothalamic nucleus was not affected by maternal separation. All animals displayed similar behavioral patterns in a forced-swim paradigm, which did not affect BDNF protein concentration in the hippocampus or hypothalamus. Repeated administration of bromodeoxyuridine revealed equal numbers of surviving, newly generated granule cells in the dentate gyrus of adult rats from the 15 min or 180 min groups. The age-dependent decline in neurogenesis from 3 months to 7 months of age did not differ between the groups. Insofar as BDNF can stimulate neurogenesis and repair, we propose that the elevated hippocampal protein concentration found in maternally deprived rats might be a compensatory reaction to separation during the neonatal period, maintaining adult neurogenesis at levels equal to those of the handled rats.

  5. Hippocampal Damage Increases Deontological Responses during Moral Decision Making.

    Science.gov (United States)

    McCormick, Cornelia; Rosenthal, Clive R; Miller, Thomas D; Maguire, Eleanor A

    2016-11-30

    Complex moral decision making is associated with the ventromedial prefrontal cortex (vmPFC) in humans, and damage to this region significantly increases the frequency of utilitarian judgments. Since the vmPFC has strong anatomical and functional links with the hippocampus, here we asked how patients with selective bilateral hippocampal damage would derive moral decisions on a classic moral dilemmas paradigm. We found that the patients approved of the utilitarian options significantly less often than control participants, favoring instead deontological responses-rejecting actions that harm even one person. Thus, patients with hippocampal damage have a strikingly opposite approach to moral decision making than vmPFC-lesioned patients. Skin-conductance data collected during the task showed increased emotional arousal in the hippocampal-damaged patients and they stated that their moral decisions were based on emotional instinct. By contrast, control participants made moral decisions based on the integration of an adverse emotional response to harming others, visualization of the consequences of one's action, and the rational re-evaluation of future benefits. This integration may be disturbed in patients with either hippocampal or vmPFC damage. Hippocampal lesions decreased the ability to visualize a scenario and its future consequences, which seemed to render the adverse emotional response overwhelmingly dominant. In patients with vmPFC damage, visualization might also be reduced alongside an inability to detect the adverse emotional response, leaving only the utilitarian option open. Overall, these results provide insights into the processes involved in moral decision making and highlight the complementary roles played by two closely connected brain regions. The ventromedial prefrontal cortex (vmPFC) is closely associated with the ability to make complex moral judgements. When this area is damaged, patients become more utilitarian (the ends justify the means) and have

  6. Various ketogenic diets can differently support brain resistance against experimentally evoked seizures and seizure-induced elemental anomalies of hippocampal formation.

    Science.gov (United States)

    Chwiej, J; Patulska, A; Skoczen, A; Matusiak, K; Janeczko, K; Ciarach, M; Simon, R; Setkowicz, Z

    2017-07-01

    In this paper the influence of two different ketogenic diets (KDs) on the seizure-evoked elemental anomalies of hippocampal formation was examined. To achieve this purpose normal and pilocarpine treated rats previously fed with one of the two high fat and carbohydrate restricted diets were compared with animals on standard laboratory diet. The ketogenic ratios of the examined KDs were equal to 5:1 (KD1) and 9:1 (KD2). KD1 and standard diet fed animals presented similar patterns of seizure-evoked elemental changes in hippocampal formation. Also the analysis of behavioral data recorded after pilocarpine injection did not show any significant differences in intensity and duration of seizures between KD1 and standard diet fed animals. Higher ketogenic ratio KD2 introduced in the normal hippocampal formation prolonged changes in the accumulation of P, K, Zn and Ca. Despite this, both the intensity and duration of seizures were significantly reduced in rats fed with KD2 which suggests that its saving action on the nerve tissue may protect brain from seizure propagation. Also seizure-evoked elemental anomalies in KD2 animals were different than those observed for rats both on KD1 and standard diets. The comparison of seizure experiencing and normal rats on KD2, did not show any statistically significant differences in elemental composition of CA1 and H hippocampal areas whilst in CA3 area only Zn level changed as a result of seizures. DG was the area mostly affected by seizures in KD2 fed rats but areal densities of all examined elements increased in this hippocampal region. Copyright © 2017 Elsevier GmbH. All rights reserved.

  7. Acetylcholine release in mouse hippocampal CA1 preferentially activates inhibitory-selective interneurons via alpha4 beta2* nicotinic receptor activation

    Directory of Open Access Journals (Sweden)

    L. Andrew Bell

    2015-04-01

    Full Text Available Acetylcholine (ACh release onto nicotinic receptors directly activates subsets of inhibitory interneurons in hippocampal CA1. However, the specific interneurons activated and their effect on the hippocampal network is not completely understood. Therefore, we investigated subsets of hippocampal CA1 interneurons that respond to ACh release through the activation of nicotinic receptors and the potential downstream effects this may have on hippocampal CA1 network function. ACh was optogenetically released in mouse hippocampal slices by expressing the excitatory optogenetic protein oChIEF-tdTomato in medial septum/diagonal band of Broca cholinergic neurons using Cre recombinase-dependent adeno-associated viral mediated transfection. The actions of optogenetically released ACh were assessed on both pyramidal neurons and different interneuron subtypes via whole cell patch clamp methods. Vasoactive intestinal peptide (VIP-expressing interneurons that selectively innervate other interneurons (VIP/IS were excited by ACh through the activation of nicotinic receptors containing alpah4 and beta2 subunits (alpha4 beta2*. ACh release onto VIP/IS was presynaptically inhibited by M2 muscarinic autoreceptors. ACh release produced spontaneous inhibitory postsynaptic current (sIPSC barrages blocked by dihydro-beta-erythroidine in interneurons but not pyramidal neurons. Optogenetic suppression of VIP interneurons did not inhibit these sIPSC barrages suggesting other interneuron-selective interneurons were also excited by 42* nicotinic receptor activation. In contrast, interneurons that innervate pyramidal neuron perisomatic regions were not activated by ACh release onto nicotinic receptors. Therefore, we propose ACh release in CA1 facilitates disinhibition through activation of 42* nicotinic receptors on interneuron-selective interneurons whereas interneurons that innervate pyramidal neurons are less affected by nicotinic receptor activation.

  8. Characterization of a novel subtype of hippocampal interneurons that express corticotropin-releasing hormone.

    Science.gov (United States)

    Hooper, Andrew; Maguire, Jamie

    2016-01-01

    A subset of corticotropin-releasing hormone (CRH) neurons was previously identified in the hippocampus with unknown function. Here we demonstrate that hippocampal CRH neurons represent a novel subtype of interneurons in the hippocampus, exhibiting unique morphology, electrophysiological properties, molecular markers, and connectivity. This subset of hippocampal CRH neurons in the mouse reside in the CA1 pyramidal cell layer and tract tracing studies using AAV-Flex-ChR2-tdTomato reveal dense back-projections of these neurons onto principal neurons in the CA3 region of the hippocampus. These hippocampal CRH neurons express both GABA and GAD67 and using in vitro optogenetic techniques, we demonstrate that these neurons make functional connections and release GABA onto CA3 principal neurons. The location, morphology, and importantly the functional connectivity of these neurons demonstrate that hippocampal CRH neurons represent a unique subtype of hippocampal interneurons. The connectivity of these neurons has significant implications for hippocampal function.

  9. Proteomics, ultrastructure, and physiology of hippocampal synapses in a fragile X syndrome mouse model reveal presynaptic phenotype.

    Science.gov (United States)

    Klemmer, Patricia; Meredith, Rhiannon M; Holmgren, Carl D; Klychnikov, Oleg I; Stahl-Zeng, Jianru; Loos, Maarten; van der Schors, Roel C; Wortel, Joke; de Wit, Heidi; Spijker, Sabine; Rotaru, Diana C; Mansvelder, Huibert D; Smit, August B; Li, Ka Wan

    2011-07-22

    Fragile X syndrome (FXS), the most common form of hereditary mental retardation, is caused by a loss-of-function mutation of the Fmr1 gene, which encodes fragile X mental retardation protein (FMRP). FMRP affects dendritic protein synthesis, thereby causing synaptic abnormalities. Here, we used a quantitative proteomics approach in an FXS mouse model to reveal changes in levels of hippocampal synapse proteins. Sixteen independent pools of Fmr1 knock-out mice and wild type mice were analyzed using two sets of 8-plex iTRAQ experiments. Of 205 proteins quantified with at least three distinct peptides in both iTRAQ series, the abundance of 23 proteins differed between Fmr1 knock-out and wild type synapses with a false discovery rate (q-value) <5%. Significant differences were confirmed by quantitative immunoblotting. A group of proteins that are known to be involved in cell differentiation and neurite outgrowth was regulated; they included Basp1 and Gap43, known PKC substrates, and Cend1. Basp1 and Gap43 are predominantly expressed in growth cones and presynaptic terminals. In line with this, ultrastructural analysis in developing hippocampal FXS synapses revealed smaller active zones with corresponding postsynaptic densities and smaller pools of clustered vesicles, indicative of immature presynaptic maturation. A second group of proteins involved in synaptic vesicle release was up-regulated in the FXS mouse model. In accordance, paired-pulse and short-term facilitation were significantly affected in these hippocampal synapses. Together, the altered regulation of presynaptically expressed proteins, immature synaptic ultrastructure, and compromised short-term plasticity points to presynaptic changes underlying glutamatergic transmission in FXS at this stage of development.

  10. Biocompatibility of very small superparamagnetic iron oxide nanoparticles in murine organotypic hippocampal slice cultures and the role of microglia.

    Science.gov (United States)

    Pohland, Martin; Glumm, Robert; Wiekhorst, Frank; Kiwit, Jürgen; Glumm, Jana

    2017-01-01

    Superparamagnetic iron oxide nanoparticles (SPIO) are applied as contrast media for magnetic resonance imaging (MRI) and treatment of neurologic diseases despite the fact that important information concerning their local interactions is still lacking. Due to their small size, SPIO have great potential for magnetically labeling different cell populations, facilitating their MRI tracking in vivo. Before SPIO are applied, however, their effect on cell viability and tissue homoeostasis should be studied thoroughly. We have previously published data showing how citrate-coated very small superparamagnetic iron oxide particles (VSOP) affect primary microglia and neuron cell cultures as well as neuron-glia cocultures. To extend our knowledge of VSOP interactions on the three-dimensional multicellular level, we further examined the influence of two types of coated VSOP (R1 and R2) on murine organotypic hippocampal slice cultures. Our data show that 1) VSOP can penetrate deep tissue layers, 2) long-term VSOP-R2 treatment alters cell viability within the dentate gyrus, 3) during short-term incubation VSOP-R1 and VSOP-R2 comparably modify hippocampal cell viability, 4) VSOP treatment does not affect cytokine homeostasis, 5) microglial depletion decreases VSOP uptake, and 6) microglial depletion plus VSOP treatment increases hippocampal cell death during short-term incubation. These results are in line with our previous findings in cell coculture experiments regarding microglial protection of neurite branching. Thus, we have not only clarified the interaction between VSOP, slice culture, and microglia to a degree but also demonstrated that our model is a promising approach for screening nanoparticles to exclude potential cytotoxic effects.

  11. Biocompatibility of very small superparamagnetic iron oxide nanoparticles in murine organotypic hippocampal slice cultures and the role of microglia

    Science.gov (United States)

    Pohland, Martin; Glumm, Robert; Wiekhorst, Frank; Kiwit, Jürgen; Glumm, Jana

    2017-01-01

    Superparamagnetic iron oxide nanoparticles (SPIO) are applied as contrast media for magnetic resonance imaging (MRI) and treatment of neurologic diseases despite the fact that important information concerning their local interactions is still lacking. Due to their small size, SPIO have great potential for magnetically labeling different cell populations, facilitating their MRI tracking in vivo. Before SPIO are applied, however, their effect on cell viability and tissue homoeostasis should be studied thoroughly. We have previously published data showing how citrate-coated very small superparamagnetic iron oxide particles (VSOP) affect primary microglia and neuron cell cultures as well as neuron-glia cocultures. To extend our knowledge of VSOP interactions on the three-dimensional multicellular level, we further examined the influence of two types of coated VSOP (R1 and R2) on murine organotypic hippocampal slice cultures. Our data show that 1) VSOP can penetrate deep tissue layers, 2) long-term VSOP-R2 treatment alters cell viability within the dentate gyrus, 3) during short-term incubation VSOP-R1 and VSOP-R2 comparably modify hippocampal cell viability, 4) VSOP treatment does not affect cytokine homeostasis, 5) microglial depletion decreases VSOP uptake, and 6) microglial depletion plus VSOP treatment increases hippocampal cell death during short-term incubation. These results are in line with our previous findings in cell coculture experiments regarding microglial protection of neurite branching. Thus, we have not only clarified the interaction between VSOP, slice culture, and microglia to a degree but also demonstrated that our model is a promising approach for screening nanoparticles to exclude potential cytotoxic effects.

  12. Ethanol induces MAP2 changes in organotypic hippocampal slice cultures

    DEFF Research Database (Denmark)

    Noraberg, J; Zimmer, J

    1998-01-01

    Microtubule-associated protein 2 (MAP2) and neuron-specific protein (NeuN) immunostains were used to demonstrate neurotoxic effects in mature hippocampal slice cultures exposed to ethanol (50, 100, 200 mM) for 4 weeks. At the low dose the density of MAP2 immunostaining in the dentate molecular...... layer was 118% of the control cultures, with no detectable changes in CA1 and CA3. At 100 mM no changes were detected, while 200 mM ethanol significantly reduced the MAP2 density in both dentate (19%) and hippocampal dendritic fields (CA3, 52%; CA1, 55%). At this dose NeuN staining showed considerable...... loss of CA3 pyramidal cells and moderate loss of dentate granule cells, as seen in vivo. The results indicate that brain slice cultures combined with immunostaining for cytoskeleton and neuronal markers can be used for studies of ethanol and organic solvent neurotoxicity....

  13. Colchicine induces apoptosis in organotypic hippocampal slice cultures

    DEFF Research Database (Denmark)

    Kristensen, Bjarne W; Noer, Helle; Gramsbergen, Jan Bert

    2003-01-01

    The microtubule-disrupting agent colchicine is known to be particular toxic for certain types of neurons, including the granule cells of the dentate gyrus. In this study we investigated whether colchicine could induce such neuron-specific degeneration in developing (1 week in vitro) and mature (3...... weeks in vitro) organotypic hippocampal slice cultures and whether the induced cell death was apoptotic and/or necrotic. When applied to 1-week-old cultures for 48 h, colchicine induced primarily apoptotic, but also a minor degree of necrotic cell death in the dentate granule cells, as investigated...... the formation of active caspase 3 protein and apoptotic nuclei induced by colchicine, but the formation of necrotic nuclei increased correspondingly and the PI uptake was unaffected. We conclude that colchicine induces caspase 3-dependent apoptotic cell death of dentate granule cells in hippocampal brain slice...

  14. From network heterogeneities to familiarity detection and hippocampal memory management

    Science.gov (United States)

    Wang, Jane X.; Poe, Gina; Zochowski, Michal

    2008-10-01

    Hippocampal-neocortical interactions are key to the rapid formation of novel associative memories in the hippocampus and consolidation to long term storage sites in the neocortex. We investigated the role of network correlates during information processing in hippocampal-cortical networks. We found that changes in the intrinsic network dynamics due to the formation of structural network heterogeneities alone act as a dynamical and regulatory mechanism for stimulus novelty and familiarity detection, thereby controlling memory management in the context of memory consolidation. This network dynamic, coupled with an anatomically established feedback between the hippocampus and the neocortex, recovered heretofore unexplained properties of neural activity patterns during memory management tasks which we observed during sleep in multiunit recordings from behaving animals. Our simple dynamical mechanism shows an experimentally matched progressive shift of memory activation from the hippocampus to the neocortex and thus provides the means to achieve an autonomous off-line progression of memory consolidation.

  15. Heroin inhalation-induced unilateral complete hippocampal stroke.

    Science.gov (United States)

    Benoilid, Aurélien; Collongues, Nicolas; de Seze, Jérôme; Blanc, Fréderic

    2013-08-01

    A 33-year-old man presented to our clinic with amnesia 48 hours after his first heroin inhalation. Examination showed lateral tongue biting and anterograde amnesia demonstrated by impaired performance on verbal and visual Wechsler Memory Scale-Revised tests carried out 10 days after onset, suggesting hippocampal involvement. Magnetic resonance imaging (MRI) of the brain was performed 48 hours after heroin snorting and evoked cortical laminar necrosis (CLN) of the left hippocampus without vascular abnormality. This is the first description of complete hippocampal CLN as a complication subsequent to acute intranasal heroine abuse. While the pathogenic mechanism remains uncertain, our case provides a very specific MRI lesion pattern and highlights the risk of intranasal heroin uptake-induced neurological complication.

  16. Hippocampal place cells construct reward related sequences through unexplored space.

    Science.gov (United States)

    Ólafsdóttir, H Freyja; Barry, Caswell; Saleem, Aman B; Hassabis, Demis; Spiers, Hugo J

    2015-06-26

    Dominant theories of hippocampal function propose that place cell representations are formed during an animal's first encounter with a novel environment and are subsequently replayed during off-line states to support consolidation and future behaviour. Here we report that viewing the delivery of food to an unvisited portion of an environment leads to off-line pre-activation of place cells sequences corresponding to that space. Such 'preplay' was not observed for an unrewarded but otherwise similar portion of the environment. These results suggest that a hippocampal representation of a visible, yet unexplored environment can be formed if the environment is of motivational relevance to the animal. We hypothesise such goal-biased preplay may support preparation for future experiences in novel environments.

  17. Role of adult hippocampal neurogenesis in persistent pain.

    Science.gov (United States)

    Apkarian, A Vania; Mutso, Amelia A; Centeno, Maria V; Kan, Lixin; Wu, Melody; Levinstein, Marjorie; Banisadr, Ghazal; Gobeske, Kevin T; Miller, Richard J; Radulovic, Jelena; Hen, René; Kessler, John A

    2016-02-01

    The full role of adult hippocampal neurogenesis (AHN) remains to be determined, yet it is implicated in learning and emotional functions, and is disrupted in negative mood disorders. Recent evidence indicates that AHN is decreased in persistent pain consistent with the idea that chronic pain is a major stressor, associated with negative moods and abnormal memories. Yet, the role of AHN in development of persistent pain has remained unexplored. In this study, we test the influence of AHN in postinjury inflammatory and neuropathic persistent pain-like behaviors by manipulating neurogenesis: pharmacologically through intracerebroventricular infusion of the antimitotic AraC; ablation of AHN by x-irradiation; and using transgenic mice with increased or decreased AHN. Downregulating neurogenesis reversibly diminished or blocked persistent pain; oppositely, upregulating neurogenesis led to prolonged persistent pain. Moreover, we could dissociate negative mood from persistent pain. These results suggest that AHN-mediated hippocampal learning mechanisms are involved in the emergence of persistent pain.

  18. Aberrant hippocampal neurogenesis contributes to epilepsy and associated cognitive decline.

    Science.gov (United States)

    Cho, Kyung-Ok; Lybrand, Zane R; Ito, Naoki; Brulet, Rebecca; Tafacory, Farrah; Zhang, Ling; Good, Levi; Ure, Kerstin; Kernie, Steven G; Birnbaum, Shari G; Scharfman, Helen E; Eisch, Amelia J; Hsieh, Jenny

    2015-03-26

    Acute seizures after a severe brain insult can often lead to epilepsy and cognitive impairment. Aberrant hippocampal neurogenesis follows the insult but the role of adult-generated neurons in the development of chronic seizures or associated cognitive deficits remains to be determined. Here we show that the ablation of adult neurogenesis before pilocarpine-induced acute seizures in mice leads to a reduction in chronic seizure frequency. We also show that ablation of neurogenesis normalizes epilepsy-associated cognitive deficits. Remarkably, the effect of ablating adult neurogenesis before acute seizures is long lasting as it suppresses chronic seizure frequency for nearly 1 year. These findings establish a key role of neurogenesis in chronic seizure development and associated memory impairment and suggest that targeting aberrant hippocampal neurogenesis may reduce recurrent seizures and restore cognitive function following a pro-epileptic brain insult.

  19. Trimethyltin (TMT) neurotoxicity in organotypic rat hippocampal slice cultures

    DEFF Research Database (Denmark)

    Noraberg, J; Gramsbergen, J B; Fonnum, F

    1998-01-01

    The neurotoxic effects of trimethyltin (TMT) on the hippocampus have been extensively studied in vivo. In this study, we examined whether the toxicity of TMT to hippocampal neurons could be reproduced in organotypic brain slice cultures in order to test the potential of this model for neurotoxico......The neurotoxic effects of trimethyltin (TMT) on the hippocampus have been extensively studied in vivo. In this study, we examined whether the toxicity of TMT to hippocampal neurons could be reproduced in organotypic brain slice cultures in order to test the potential of this model...... for neurotoxicological studies, including further studies of neurotoxic mechanisms of TMT. Four-week-old cultures, derived from 7-day-old donor rats and grown in serum-free medium, were exposed to TMT (0.5-100 microM) for 24 h followed by 24 h in normal medium. TMT-induced neurodegeneration was then monitored by (a...... of TMT neurotoxicity....

  20. Controllability and hippocampal activation during pain expectation in fibromyalgia syndrome.

    Science.gov (United States)

    González-Roldán, Ana María; Bomba, Isabelle C; Diesch, Eugen; Montoya, Pedro; Flor, Herta; Kamping, Sandra

    2016-12-01

    To examine the role of perceived control in pain perception, fibromyalgia patients and healthy controls participated in a reaction time experiment under different conditions of pain controllability. No significant differences between groups were found in pain intensity and unpleasantness ratings. However, during the expectation of uncontrollable pain, patients compared to controls showed higher hippocampal activation. In addition, hippocampal activity during the pain expectation period predicted activation of the posterior cingulate cortex (PCC), precuneus and hippocampus during pain stimulation in fibromyalgia patients. The increased activation of the hippocampus during pain expectation and subsequent activation of the PCC/precuneus during the lack of control phase points towards an influence of pain perception through heightening of alertness and anxiety responses to pain in fibromyalgia patients.

  1. Ethanol induces MAP2 changes in organotypic hippocampal slice cultures

    DEFF Research Database (Denmark)

    Noraberg, J; Zimmer, J

    1998-01-01

    loss of CA3 pyramidal cells and moderate loss of dentate granule cells, as seen in vivo. The results indicate that brain slice cultures combined with immunostaining for cytoskeleton and neuronal markers can be used for studies of ethanol and organic solvent neurotoxicity.......Microtubule-associated protein 2 (MAP2) and neuron-specific protein (NeuN) immunostains were used to demonstrate neurotoxic effects in mature hippocampal slice cultures exposed to ethanol (50, 100, 200 mM) for 4 weeks. At the low dose the density of MAP2 immunostaining in the dentate molecular...... layer was 118% of the control cultures, with no detectable changes in CA1 and CA3. At 100 mM no changes were detected, while 200 mM ethanol significantly reduced the MAP2 density in both dentate (19%) and hippocampal dendritic fields (CA3, 52%; CA1, 55%). At this dose NeuN staining showed considerable...

  2. Neuroprotective effect of piperine on primarily cultured hippocampal neurons.

    Science.gov (United States)

    Fu, Min; Sun, Zhao-Hui; Zuo, Huan-Cong

    2010-01-01

    It was previously reported that piperine (PIP) significantly blocks convulsions induced by intracerebroventricular injection of threshold doses of kainate, but had no or only slight effects on convulsions induced by L-glutamate, N-methyl-D-aspartate and guanidinosuccinate. In traditional Chinese medicine, black pepper has been used for epileptic treatment; however, the exact mechanism is still unclear. We reported here in that appropriate concentration of PIP effectively inhibites the synchronized oscillation of intracellular calcium in rat hippocampal neuronal networks and represses spontaneous synaptic activities in terms of spontaneous synaptic currents (SSC) and spontaneous excitatory postsynaptic currents (sEPSC). Moreover, pretreatment with PIP expects protective effect on glutamate-induced decrease of cell viability and apoptosis of hippocampal neurons. These data suggest that the neuroprotective effects of PIP might be associated with suppression of synchronization of neuronal networks, presynaptic glutamic acid release, and Ca(2+) overloading.

  3. Damage of hippocampal neurons in rats with chronic alcoholism

    Institute of Scientific and Technical Information of China (English)

    Ailin Du; Hongbo Jiang; Lei Xu; Na An; Hui Liu; Yinsheng Li; Ruiling Zhang

    2014-01-01

    Chronic alcoholism can damage the cytoskeleton and aggravate neurological deifcits. However, the effect of chronic alcoholism on hippocampal neurons remains unclear. In this study, a model of chronic alcoholism was established in rats that were fed with 6%alcohol for 42 days. Endog-enous hydrogen sulifde content and cystathionine-beta-synthase activity in the hippocampus of rats with chronic alcoholism were signiifcantly increased, while F-actin expression was decreased. Hippocampal neurons in rats with chronic alcoholism appeared to have a fuzzy nuclear mem-brane, mitochondrial edema, and ruptured mitochondrial crista. These findings suggest that chronic alcoholism can cause learning and memory decline in rats, which may be associated with the hydrogen sulfide/cystathionine-beta-synthase system, mitochondrial damage and reduced expression of F-actin.

  4. Loss of embryonic MET signaling alters profiles of hippocampal interneurons.

    Science.gov (United States)

    Martins, Gabriela J; Plachez, Céline; Powell, Elizabeth M

    2007-01-01

    Hippocampal interneurons arise in the ventral forebrain and migrate dorsally in response to cues, including hepatocyte growth factor/scatter factor which signals via its receptor MET. Examination of the hippocampus in adult mice in which MET had been inactivated in the embryonic proliferative zones showed an increase in parvalbumin-expressing cells in the dentate gyrus, but a loss of these cells in the CA3 region. An overall loss of calretinin-expressing cells was seen throughout the hippocampus. A similar CA3 deficit of parvalbumin and calretinin cells was observed when MET was eliminated only in postmitotic cells. These data suggest that MET is required for the proper hippocampal development, and embryonic perturbations lead to long-term anatomical defects with possible learning and memory dysfunction.

  5. Spatial memory and hippocampal function: Where are we now?

    Directory of Open Access Journals (Sweden)

    Mark Good

    2002-01-01

    Full Text Available The main aim of this paper is to provide an overview of current debates concerning the role of the mammalian hippocampus in learning with a particular emphasis on spatial learning. The review discusses recent debates on (1 the role of the primate hippocampus in recognition memory and object-in-place memory, (2 the role of the hippocampus in spatial navigation in both rats and humans, and (3 the effects of hippocampal damage on processing contextual information. Evidence from these lines of research have led many current theories to posit a function for the hippocampus that has as its organizing principle the association or binding of stimulus representations. Based on this principle, recent theories of hippocampal function have extended their application beyond the spatial domain to capture features of declarative and episodic memory processes.

  6. Habitat-specific shaping of proliferation and neuronal differentiation in adult hippocampal neurogenesis of wild rodents

    OpenAIRE

    Cavegn, Nicole; van Dijk, R. Maarten; Menges, Dominik; Brettschneider, Helene; Phalanndwa, Mashudu; Chimimba, Christian T; Isler, Karin; Lipp, Hans-Peter; Slomianka, Lutz; Amrein, Irmgard

    2013-01-01

    Daily life of wild mammals is characterized by a multitude of attractive and aversive stimuli. The hippocampus processes complex polymodal information associated with such stimuli and mediates adequate behavioral responses. How newly generated hippocampal neurons in wild animals contribute to hippocampal function is still a subject of debate. Here, we test the relationship between adult hippocampal neurogenesis (AHN) and habitat types. To this end, we compare wild Muridae species of southern ...

  7. Habitat-Specific Shaping of Proliferation and Neuronal Differentiation in Adult Hippocampal Neurogenesis of Wild Rodents

    OpenAIRE

    Nicole eCavegn; R. Maarten evan Dijk; Dominik eMenges; Helene eBrettschneider; Mashudu ePhalanndwa; Chimimba, Christian T; Karin eIsler; Hans-Peter eLipp; Lutz eSlomianka; Irmgard eAmrein

    2013-01-01

    Daily life of wild mammals is characterized by a multitude of attractive and aversive stimuli. The hippocampus processes complex polymodal information associated with such stimuli and mediates adequate behavioral responses. How newly generated hippocampal neurons in wild animals contribute to hippocampal function is still a subject of debate. Here, we test the relationship between adult hippocampal neurogenesis and habitat types. To this end, we compare wild Muridae species of southern Africa...

  8. Modulating Hippocampal Plasticity with In Vivo Brain Stimulation

    Science.gov (United States)

    2015-09-16

    anodal transcranial direct current stimulation in healthy adults of younger and older age. Front Aging Neurosci 6:146. CrossRef Medline Hoy KE...on cognition and performance. 15. SUBJECT TERMS brain stimulation; extracellular recording; hippocampus; long term potentiation; rat; tDCS 16...Prescribed by ANSI Std. Z39.18 Development /Plasticity/Repair Modulating Hippocampal Plasticity with In Vivo Brain Stimulation X Joyce G. Rohan,1,3

  9. Appearance and distribution of peptidergic neurotransmitters in hippocampal primary culture

    OpenAIRE

    Thiele, Theodor

    2012-01-01

    The internal structure of the hippocampus, especially the development of neuronal circuits, is the subject of current research. The hippocampal primary culture represents a suitable model to study neuronal development and the impact of isolated stimuli and noxious. Focus of the following considerations are the neurons of the hippocampus, especially the peptidergic neurotransmitters somatostatin (SS), neuropeptide Y (NPY), vasoactive intestinal peptide (VIP) and cholecystokinin (CCK). By us...

  10. Nonlinear modeling of neural population dynamics for hippocampal prostheses

    OpenAIRE

    Song, Dong; Chan, Rosa H.M.; Vasilis Z Marmarelis; Hampson, Robert E.; Deadwyler, Sam A.; Berger, Theodore W.

    2009-01-01

    Developing a neural prosthesis for the damaged hippocampus requires restoring the transformation of population neural activities performed by the hippocampal circuitry. To bypass a damaged region, output spike trains need to be predicted from the input spike trains and then reinstated through stimulation. We formulate a multiple-input, multiple-output (MIMO) nonlinear dynamic model for the input–output transformation of spike trains. In this approach, a MIMO model comprises a series of physio...

  11. Linking adult hippocampal neurogenesis with human physiology and disease.

    Science.gov (United States)

    Bowers, Megan; Jessberger, Sebastian

    2016-07-01

    We here review the existing evidence linking adult hippocampal neurogenesis and human brain function in physiology and disease. Furthermore, we aim to point out where evidence is missing, highlight current promising avenues of investigation, and suggest future tools and approaches to foster the link between life-long neurogenesis and human brain function. Developmental Dynamics 245:702-709, 2016. © 2016 Wiley Periodicals, Inc.

  12. Benzodiazepines do not potentiate GABA responses in neonatal hippocampal neurons.

    Science.gov (United States)

    Rovira, C; Ben-Ari, Y

    1991-09-16

    Benzodiazepines (midazolam; flunitrazepam) and pentobarbital increase the response to exogenous gamma-aminobutyric acid (GABA) in adult hippocampal cells. We report in this paper that in contrast pentobarbital but not benzodiazepine potentiate the effects of exogenous (GABA) in neurons recorded from slices of less than two weeks old. This finding suggests that the functional association of benzodiazepine and GABAA receptors is changed during early postnatal life.

  13. Hippocampal NMDA receptors and the previous experience effect on memory.

    Science.gov (United States)

    Cercato, Magalí C; Colettis, Natalia; Snitcofsky, Marina; Aguirre, Alejandra I; Kornisiuk, Edgar E; Baez, María V; Jerusalinsky, Diana A

    2014-01-01

    N-methyl-D-aspartate receptors (NMDAR) are thought to be responsible for switching synaptic activity specific patterns into long-term changes in synaptic function and structure, which would support learning and memory. Hippocampal NMDAR blockade impairs memory consolidation in rodents, while NMDAR stimulation improves it. Adult rats that explored twice an open field (OF) before a weak though overthreshold training in inhibitory avoidance (IA), expressed IA long-term memory in spite of the hippocampal administration of MK-801, which currently leads to amnesia. Those processes would involve different NMDARs. The selective blockade of hippocampal GluN2B-containing NMDAR with ifenprodil after training promoted memory in an IA task when the training was weak, suggesting that this receptor negatively modulates consolidation. In vivo, after 1h of an OF exposure-with habituation to the environment-, there was an increase in GluN1 and GluN2A subunits in the rat hippocampus, without significant changes in GluN2B. Coincidentally, in vitro, in both rat hippocampal slices and neuron cultures there was an increase in GluN2A-NMDARs surface expression at 30min; an increase in GluN1 and GluN2A levels at about 1h after LTP induction was also shown. We hypothesize that those changes in NMDAR composition could be involved in the "anti-amnesic effect" of the previous OF. Along certain time interval, an increase in GluN1 and GluN2A would lead to an increase in synaptic NMDARs, facilitating synaptic plasticity and memory; while then, an increase in GluN2A/GluN2B ratio could protect the synapse and the already established plasticity, perhaps saving the specific trace.

  14. Hippocampal place cell sequences depict future paths to remembered goals

    OpenAIRE

    Pfeiffer, Brad E; Foster, David J.

    2013-01-01

    Effective navigation requires planning extended routes to remembered goal locations. Hippocampal place cells have been proposed to play a role in navigational planning but direct evidence has been lacking. Here, we show that prior to goal-directed navigation in an open arena, the hippocampus generates brief sequences encoding spatial trajectories strongly biased to progress from the subject’s current location to a known goal location. These sequences predict immediate future behavior, even in...

  15. Calorie Restriction Suppresses Age-Dependent Hippocampal Transcriptional Signatures.

    Directory of Open Access Journals (Sweden)

    Marissa J Schafer

    Full Text Available Calorie restriction (CR enhances longevity and mitigates aging phenotypes in numerous species. Physiological responses to CR are cell-type specific and variable throughout the lifespan. However, the mosaic of molecular changes responsible for CR benefits remains unclear, particularly in brain regions susceptible to deterioration during aging. We examined the influence of long-term CR on the CA1 hippocampal region, a key learning and memory brain area that is vulnerable to age-related pathologies, such as Alzheimer's disease (AD. Through mRNA sequencing and NanoString nCounter analysis, we demonstrate that one year of CR feeding suppresses age-dependent signatures of 882 genes functionally associated with synaptic transmission-related pathways, including calcium signaling, long-term potentiation (LTP, and Creb signaling in wild-type mice. By comparing the influence of CR on hippocampal CA1 region transcriptional profiles at younger-adult (5 months, 2.5 months of feeding and older-adult (15 months, 12.5 months of feeding timepoints, we identify conserved upregulation of proteome quality control and calcium buffering genes, including heat shock 70 kDa protein 1b (Hspa1b and heat shock 70 kDa protein 5 (Hspa5, protein disulfide isomerase family A member 4 (Pdia4 and protein disulfide isomerase family A member 6 (Pdia6, and calreticulin (Calr. Expression levels of putative neuroprotective factors, klotho (Kl and transthyretin (Ttr, are also elevated by CR in adulthood, although the global CR-specific expression profiles at younger and older timepoints are highly divergent. At a previously unachieved resolution, our results demonstrate conserved activation of neuroprotective gene signatures and broad CR-suppression of age-dependent hippocampal CA1 region expression changes, indicating that CR functionally maintains a more youthful transcriptional state within the hippocampal CA1 sector.

  16. Serotonin of mast cell origin contributes to hippocampal function

    OpenAIRE

    Nautiyal, Katherine M.; Dailey, Christopher A.; Jahn, Jaquelyn L.; Rodriquez, Elizabeth; Son, Nguyen Hong; Jonathan V. Sweedler; Silver, Rae

    2012-01-01

    In the CNS, serotonin, an important neurotransmitter and trophic factor, is synthesized by both mast cells and neurons. Mast cells, like other immune cells, are born in the bone marrow and migrate to many tissues. We show that they are resident in the mouse brain throughout development and adulthood. Measurements based on capillary electrophoresis with native fluorescence detection indicate that a significant contribution of serotonin to the hippocampal milieu is associated with mast cell act...

  17. Spectral characteristics of the hippocampal LFP during contextual fear conditioning

    OpenAIRE

    2012-01-01

    OBJECTIVE: The hippocampus has an important role in the acquisition and recall of aversive memories. The objective of this study was to investigate the relationship among hippocampal rhythms. METHODS: Microeletrodes arrays were implanted in the hippocampus of Wistar rats. The animals were trained and tested in a contextual fear conditioning task. The training consisted in applying shocks in the legs. The memory test was performed 1 day (recent memory) or 18 days (remote memory) after training...

  18. Theta Oscillations and Reactivity of Hippocampal Stratum Oriens Neurons

    Directory of Open Access Journals (Sweden)

    Valentina F. Kitchigina

    2010-01-01

    Full Text Available The supposition was advanced that the neuronal theta rhythmicity is the key mode of signal selection at the hippocampal level. To address this hypothesis, the experimental data on the responses of putative hippocampal interneurons of the stratum oriens CA1-CA3 to stimulation during enhanced theta rhythm and after its blockade are reviewed. Both a strong increase and a decrease of the natural theta rhythm disturbed the reactions of hippocampal neurons; during theta augmentation, the responses were masked or disappeared, and after theta blockade, they lost the ability to habituate. In both cases, two important events were broken: the resetting of the background activity and the phase-locking of theta cycles to stimulus. These data allow one to suppose that only important stimuli are normally capable to evoke these events and these stimuli are selected for recording. When the response to a significant stimulus occurs, the following theta prevents the responses to other stimuli. This probably protects the hippocampal activity from interference from irrelevant signals. Presumably, the absence of the theta deprives the hippocampus of this protection. During enhanced and persistent theta oscillations, the reset disappeared and theta bursts were generated without stimulus locking. In this state, the system is probably closed and the information cannot be recorded. During the theta blockade, the reset was too long and did not habituate. In this case, the system is open for any signals and the hippocampus loses the ability to select signal. This analysis suggests that information selection in the hippocampus may be performed with the participation of nonpyramidal neurons.

  19. Effect of Acute and Fractionated Irradiation on Hippocampal Neurogenesis

    Directory of Open Access Journals (Sweden)

    Jin Kyu Kim

    2012-08-01

    Full Text Available Ionizing radiation has become an inevitable health concern emanating from natural sources like space travel and from artificial sources like medical therapies. In general, exposure to ionizing radiation such as γ-rays is one of the methods currently used to stress specific model systems. In this study, we elucidated the long-term effect of acute and fractionated irradiation on DCX-positive cells in hippocampal neurogenesis. Groups of two-month-old C57BL/6 female mice were exposed to whole-body irradiation at acute dose (5 Gy or fractional doses (1 Gy × 5 times and 0.5 Gy × 10 times. Six months after exposure to γ-irradiation, the hippocampus was analyzed. Doublecortin (DCX immunohistochemistry was used to measure changes of neurogenesis in the subgranular zone (SGZ of the hippocampal dentate gyrus (DG. The number of DCX-positive cells was significantly decreased in all acute and fractionally irradiation groups. The long-term changes in DCX-positive cells triggered by radiation exposure showed a very different pattern to the short-term changes which tended to return to the control level in previous studies. Furthermore, the number of DCX-positive cells was relatively lower in the acute irradiation group than the fractional irradiation groups (approximately 3.6-fold, suggesting the biological change on hippocampal neurogenesis was more susceptible to being damaged by acute than fractional irradiation. These results suggest that the exposure to γ-irradiation as a long-term effect can trigger biological responses resulting in the inhibition of hippocampal neurogenesis.

  20. A hippocampal interneuron associated with the mossy fiber system

    OpenAIRE

    Vida, Imre; Frotscher, Michael

    2000-01-01

    Network properties of the hippocampus emerge from the interaction of principal cells and a heterogeneous population of interneurons expressing γ-aminobutyric acid (GABA). To understand these interactions, the synaptic connections of different types of interneurons need to be elucidated. Here we describe a type of inhibitory interneuron of the hippocampal CA3 region that has an axon coaligned with the mossy fibers. Whole-cell patch-clamp recordings, in combination with intracellular biocytin f...

  1. Hippocampal harms, protection and recovery following regular cannabis use.

    Science.gov (United States)

    Yücel, M; Lorenzetti, V; Suo, C; Zalesky, A; Fornito, A; Takagi, M J; Lubman, D I; Solowij, N

    2016-01-12

    Shifting policies towards legalisation of cannabis for therapeutic and recreational use raise significant ethical issues for health-care providers seeking evidence-based recommendations. We investigated whether heavy cannabis use is associated with persistent harms to the hippocampus, if exposure to cannabidiol offers protection, and whether recovery occurs with abstinence. To do this, we assessed 111 participants: 74 long-term regular cannabis users (with an average of 15.4 years of use) and 37 non-user healthy controls. Cannabis users included subgroups of participants who were either exposed to Δ9-tetrahydrocannabinol (THC) but not to cannabidiol (CBD) or exposed to both, and former users with sustained abstinence. Participants underwent magnetic resonance imaging from which three measures of hippocampal integrity were assessed: (i) volume; (ii) fractional anisotropy; and (iii) N-acetylaspartate (NAA). Three curve-fitting models across the entire sample were tested for each measure to examine whether cannabis-related hippocampal harms are persistent, can be minimised (protected) by exposure to CBD or recovered through long-term abstinence. These analyses supported a protection and recovery model for hippocampal volume (P=0.003) and NAA (P=0.001). Further pairwise analyses showed that cannabis users had smaller hippocampal volumes relative to controls. Users not exposed to CBD had 11% reduced volumes and 15% lower NAA concentrations. Users exposed to CBD and former users did not differ from controls on any measure. Ongoing cannabis use is associated with harms to brain health, underpinned by chronic exposure to THC. However, such harms are minimised by CBD, and can be recovered with extended periods of abstinence.

  2. Prefrontal-hippocampal pathways underlying inhibitory control over memory.

    Science.gov (United States)

    Anderson, Michael C; Bunce, Jamie G; Barbas, Helen

    2016-10-01

    A key function of the prefrontal cortex is to support inhibitory control over behavior. It is widely believed that this function extends to stopping cognitive processes as well. Consistent with this, mounting evidence establishes the role of the right lateral prefrontal cortex in a clear case of cognitive control: retrieval suppression. Retrieval suppression refers to the ability to intentionally stop the retrieval process that arises when a reminder to a memory appears. Functional imaging data indicate that retrieval suppression involves top-down modulation of hippocampal activity by the dorsolateral prefrontal cortex, but the anatomical pathways supporting this inhibitory modulation remain unclear. Here we bridge this gap by integrating key findings about retrieval suppression observed through functional imaging with a detailed consideration of relevant anatomical pathways observed in non-human primates. Focusing selectively on the potential role of the anterior cingulate cortex, we develop two hypotheses about the pathways mediating interactions between lateral prefrontal cortex and the medial temporal lobes during suppression, and their cellular targets: the entorhinal gating hypothesis, and thalamo-hippocampal modulation via the nucleus reuniens. We hypothesize that whereas entorhinal gating is well situated to stop retrieval proactively, thalamo-hippocampal modulation may interrupt an ongoing act of retrieval reactively. Isolating the pathways that underlie retrieval suppression holds the potential to advance our understanding of a range of psychiatric disorders characterized by persistent intrusive thoughts. More broadly, an anatomical account of retrieval suppression would provide a key model system for understanding inhibitory control over cognition.

  3. Past, present, and future in hippocampal formation and memory research.

    Science.gov (United States)

    Muñoz-López, Mónica

    2015-06-01

    Over 100 years of research on the hippocampal formation has led us understand the consequences of lesions in humans, the functional networks, anatomical pathways, neuronal types and their local circuitry, receptors, molecules, intracellular cascades, and some of the physiological mechanisms underlying long-term spatial and episodic memory. In addition, complex computational models allow us to formulate sophisticated hypotheses; many of them testable with techniques recently developed unthinkable in the past. Although the neurobiology of the cognitive map is starting to be revealed today, we still face a future with many unresolved questions. The aim of this commentary is twofold. First is to point out some of the critical findings in hippocampal formation research and new challenges. Second, to briefly summarize what the anatomy of memory can tell us about how highly processed sensory information from distant cortical areas communicate with different subareas of the entorhinal cortex, dentate gyrus, and hippocampal subfields to integrate and consolidate unique episodic memory traces. © 2015 Wiley Periodicals, Inc.

  4. The Contradictory Effects of Neuronal Hyperexcitationon Adult Hippocampal Neurogenesis.

    Directory of Open Access Journals (Sweden)

    Juan Manuel Encinas

    2016-03-01

    Full Text Available Adult hippocampal neurogenesis is a highly plastic process that responds swiftly to neuronal activity. Adult hippocampal neurogenesis can be regulated at the level of neural stem cell recruitment and activation, progenitor proliferation, as well as newborn cell survival and differentiation. An excitation-neurogenesis rule was proposed after the demonstration of the capability of cultured neural stem and progenitor cells to intrinsically sense neuronal excitatory activity. In vivo, this property has remained elusive although recently the direct response of neural stem cells to GABA in the hippocampus via GABAA receptors has evidenced a mechanism for a direct talk between neurons and neural stem cells. As it is pro-neurogenic, the effect of excitatory neuronal activity has been generally considered beneficial. But what happens in situations of neuronal hyperactivity in which neurogenesis can be dramatically boosted? In animal models, electroconvulsive shock markedly increases neurogenesis. On the contrary, in epilepsy rodent models, seizures induce the generation of misplaced neurons with abnormal morphological and electrophysiological properties, namely aberrant neurogenesis. We will herein discuss what is known about the mechanisms of influence of neurons on neural stem cells, as well as the severe effects of neuronal hyperexcitation on hippocampal neurogenesis.

  5. Hippocampal adult neurogenesis: Does the immune system matter?

    Science.gov (United States)

    de Miranda, Aline Silva; Zhang, Cun-Jin; Katsumoto, Atsuko; Teixeira, Antônio Lúcio

    2017-01-15

    Adult hippocampal neurogenesis involves proliferation, survival, differentiation and integration of newborn neurons into pre-existing neuronal networks. Although its functional significance in the central nervous system (CNS) has not comprehensively elucidated, adult neurogenesis has been attributed a role in cognition, learning and memory. There is a growing body of evidence that CNS resident as well as peripheral immune cells participate in regulating hippocampal adult neurogenesis. Microglial cells are closely associated with neural stem/progenitor cell (NSPC) in the neurogenic niche engaged in a bidirectional communication with neurons, which may be important for adult neurogenesis. Microglial and neuronal crosstalk is mediated in part by CX3CL1/CX3CR1 signaling and a disruption in this pathway has been associated with impaired neurogenesis. It has been also reported that microglial neuroprotective or neurotoxic effects in adult neurogenesis occur in a context-dependent manner. Apart from microglia other brain resident and peripheral immune cells including pericytes, perivascular macrophages, mast cells and T-cells also modulate this phenomenon. It is worth mentioning that under some physiological circumstances such as normal aging there is a significant decrease in hippocampal neurogenesis. A role for innate and adaptive immune system in adult neurogenesis has been also reported during aging. Here, we review the current evidence regarding neuro-immune interactions in the regulation of neurogenesis under distinct conditions, including aging.

  6. Hippocampal sclerosis dementia: An amnesic variant of frontotemporal degeneration

    Directory of Open Access Journals (Sweden)

    Chiadi U. Onyike

    Full Text Available ABSTRACT Objective: To describe characteristics of hippocampal sclerosis dementia. Methods: Convenience sample of Hippocampal sclerosis dementia (HSD recruited from the Johns Hopkins University Brain Resource Center. Twenty-four cases with post-mortem pathological diagnosis of hippocampal sclerosis dementia were reviewed for clinical characterization. Results: The cases showed atrophy and neuronal loss localized to the hippocampus, amygdala and entorrhinal cortex. The majority (79.2% had amnesia at illness onset, and many (54.2% showed abnormal conduct and psychiatric disorder. Nearly 42% presented with an amnesic state, and 37.5% presented with amnesia plus abnormal conduct and psychiatric disorder. All eventually developed a behavioral or psychiatric disorder. Disorientation, executive dysfunction, aphasia, agnosia and apraxia were uncommon at onset. Alzheimer disease (AD was the initial clinical diagnosis in 89% and the final clinical diagnosis in 75%. Diagnosis of frontotemporal dementia (FTD was uncommon (seen in 8%. Conclusion: HSD shows pathological characteristics of FTD and clinical features that mimic AD and overlap with FTD. The findings, placed in the context of earlier work, support the proposition that HSD belongs to the FTD family, where it may be identified as an amnesic variant.

  7. SIRT1 regulates dendritic development in hippocampal neurons.

    Directory of Open Access Journals (Sweden)

    Juan F Codocedo

    Full Text Available Dendritic arborization is required for proper neuronal connectivity. SIRT1, a NAD+ dependent histone deacetylase, has been associated to ageing and longevity, which in neurons is linked to neuronal differentiation and neuroprotection. In the present study, the role of SIRT1 in dendritic development was evaluated in cultured hippocampal neurons which were transfected at 3 days in vitro with a construct coding for SIRT1 or for the dominant negative SIRT1H363Y, which lacks the catalytic activity. Neurons overexpressing SIRT1 showed an increased dendritic arborization, while neurons overexpressing SIRT1H363Y showed a reduction in dendritic arbor complexity. The effect of SIRT1 was mimicked by treatment with resveratrol, a well known activator of SIRT1, which has no effect in neurons overexpressing SIRT1H363Y indicating that the effect of resveratrol was specifically mediated by SIRT1. Moreover, hippocampal neurons overexpressing SIRT1 were resistant to dendritic dystrophy induced by Aβ aggregates, an effect that was dependent on the deacetylase activity of SIRT1. Our findings indicate that SIRT1 plays a role in the development and maintenance of dendritic branching in hippocampal neurons, and suggest that these effects are mediated by the ROCK signaling pathway.

  8. Porcupine Controls Hippocampal AMPAR Levels, Composition, and Synaptic Transmission

    Directory of Open Access Journals (Sweden)

    Nadine Erlenhardt

    2016-02-01

    Full Text Available AMPA receptor (AMPAR complexes contain auxiliary subunits that modulate receptor trafficking and gating. In addition to the transmembrane AMPAR regulatory proteins (TARPs and cornichons (CNIH-2/3, recent proteomic studies identified a diverse array of additional AMPAR-associated transmembrane and secreted partners. We systematically surveyed these and found that PORCN and ABHD6 increase GluA1 levels in transfected cells. Knockdown of PORCN in rat hippocampal neurons, which express it in high amounts, selectively reduces levels of all tested AMPAR complex components. Regulation of AMPARs is independent of PORCN’s membrane-associated O-acyl transferase activity. PORCN knockdown in hippocampal neurons decreases AMPAR currents and accelerates desensitization and leads to depletion of TARP γ-8 from AMPAR complexes. Conditional PORCN knockout mice also exhibit specific changes in AMPAR expression and gating that reduce basal synaptic transmission but leave long-term potentiation intact. These studies define additional roles for PORCN in controlling synaptic transmission by regulating the level and composition of hippocampal AMPAR complexes.

  9. Serotonin of mast cell origin contributes to hippocampal function.

    Science.gov (United States)

    Nautiyal, Katherine M; Dailey, Christopher A; Jahn, Jaquelyn L; Rodriquez, Elizabeth; Son, Nguyen Hong; Sweedler, Jonathan V; Silver, Rae

    2012-08-01

    In the central nervous system, serotonin, an important neurotransmitter and trophic factor, is synthesized by both mast cells and neurons. Mast cells, like other immune cells, are born in the bone marrow and migrate to many tissues. We show that they are resident in the mouse brain throughout development and adulthood. Measurements based on capillary electrophoresis with native fluorescence detection indicate that a significant contribution of serotonin to the hippocampal milieu is associated with mast cell activation. Compared with their littermates, mast cell-deficient C57BL/6 Kit(W-sh/W-sh) mice have profound deficits in hippocampus-dependent spatial learning and memory and in hippocampal neurogenesis. These deficits are associated with a reduction in cell proliferation and in immature neurons in the dentate gyrus, but not in the subventricular zone - a neurogenic niche lacking mast cells. Chronic treatment with fluoxetine, a selective serotonin reuptake inhibitor, reverses the deficit in hippocampal neurogenesis in mast cell-deficient mice. In summary, the present study demonstrates that mast cells are a source of serotonin, that mast cell-deficient C57BL/6 Kit(W-sh/W-sh) mice have disrupted hippocampus-dependent behavior and neurogenesis, and that elevating serotonin in these mice, by treatment with fluoxetine, reverses these deficits. We conclude that mast cells contribute to behavioral and physiological functions of the hippocampus and note that they play a physiological role in neuroimmune interactions, even in the absence of inflammatory responses.

  10. Contribution of cerebellar sensorimotor adaptation to hippocampal spatial memory.

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste Passot

    Full Text Available Complementing its primary role in motor control, cerebellar learning has also a bottom-up influence on cognitive functions, where high-level representations build up from elementary sensorimotor memories. In this paper we examine the cerebellar contribution to both procedural and declarative components of spatial cognition. To do so, we model a functional interplay between the cerebellum and the hippocampal formation during goal-oriented navigation. We reinterpret and complete existing genetic behavioural observations by means of quantitative accounts that cross-link synaptic plasticity mechanisms, single cell and population coding properties, and behavioural responses. In contrast to earlier hypotheses positing only a purely procedural impact of cerebellar adaptation deficits, our results suggest a cerebellar involvement in high-level aspects of behaviour. In particular, we propose that cerebellar learning mechanisms may influence hippocampal place fields, by contributing to the path integration process. Our simulations predict differences in place-cell discharge properties between normal mice and L7-PKCI mutant mice lacking long-term depression at cerebellar parallel fibre-Purkinje cell synapses. On the behavioural level, these results suggest that, by influencing the accuracy of hippocampal spatial codes, cerebellar deficits may impact the exploration-exploitation balance during spatial navigation.

  11. Mu opioid receptors are in discrete hippocampal interneuron subpopulations.

    Science.gov (United States)

    Drake, Carrie T; Milner, Teresa A

    2002-01-01

    In the rat hippocampal formation, application of mu opioid receptor (MOR) agonists disinhibits principal cells, promoting excitation-dependent processes such as epileptogenesis and long-term potentiation. However, the precise location of MORs in particular inhibitory circuits, has not been determined, and the roles of MORs in endogenous functioning are unclear. To address these issues, the distribution of MOR-like immunoreactivity (-li) was examined in several populations of inhibitory hippocampal neurons in the CA1 region using light and electron microscopy. We found that MOR-li was present in many parvalbumin-containing basket cells, but absent from cholecystokinin-labeled basket cells. MOR-li was also commonly in interneurons containing somatostatin-li or neuropeptide Y-li that resembled the "oriens-lacunosum-moleculare" (O-LM) interneurons innervating pyramidal cell distal dendrites. Finally, MOR-li was in some vasoactive intestinal peptide- or calretinin-containing profiles resembling interneurons that primarily innervate other interneurons. These findings indicate that MOR-containing neurons form a neurochemically and functionally heterogeneous subset of hippocampal GABAergic neurons. MORs are most frequently on interneurons that are specialized to inhibit pyramidal cells, and are on a limited number of interneurons that target other interneurons. Moreover, the distribution of MORs to different neuronal types in several laminae, some relatively far from endogenous opioids, suggests normal functional roles that are different from the actions seen with exogenous agonists such as morphine.

  12. SIRT1 Regulates Dendritic Development in Hippocampal Neurons

    Science.gov (United States)

    Godoy, Juan A.; Varela-Nallar, Lorena; Inestrosa, Nibaldo C.

    2012-01-01

    Dendritic arborization is required for proper neuronal connectivity. SIRT1, a NAD+ dependent histone deacetylase, has been associated to ageing and longevity, which in neurons is linked to neuronal differentiation and neuroprotection. In the present study, the role of SIRT1 in dendritic development was evaluated in cultured hippocampal neurons which were transfected at 3 days in vitro with a construct coding for SIRT1 or for the dominant negative SIRT1H363Y, which lacks the catalytic activity. Neurons overexpressing SIRT1 showed an increased dendritic arborization, while neurons overexpressing SIRT1H363Y showed a reduction in dendritic arbor complexity. The effect of SIRT1 was mimicked by treatment with resveratrol, a well known activator of SIRT1, which has no effect in neurons overexpressing SIRT1H363Y indicating that the effect of resveratrol was specifically mediated by SIRT1. Moreover, hippocampal neurons overexpressing SIRT1 were resistant to dendritic dystrophy induced by Aβ aggregates, an effect that was dependent on the deacetylase activity of SIRT1. Our findings indicate that SIRT1 plays a role in the development and maintenance of dendritic branching in hippocampal neurons, and suggest that these effects are mediated by the ROCK signaling pathway. PMID:23056585

  13. Chronic stress-induced hippocampal vulnerability: the glucocorticoid vulnerability hypothesis.

    Science.gov (United States)

    Conrad, Cheryl D

    2008-01-01

    The hippocampus, a limbic structure important in learning and memory, is particularly sensitive to chronic stress and to glucocorticoids. While glucocorticoids are essential for an effective stress response, their oversecretion was originally hypothesized to contribute to age-related hippocampal degeneration. However, conflicting findings were reported on whether prolonged exposure to elevated glucocorticoids endangered the hippocampus and whether the primate hippocampus even responded to glucocorticoids as the rodent hippocampus did. This review discusses the seemingly inconsistent findings about the effects of elevated and prolonged glucocorticoids on hippocampal health and proposes that a chronic stress history, which includes repeated elevation of glucocorticoids, may make the hippocampus vulnerable to potential injury. Studies are described to show that chronic stress or prolonged exposure to glucocorticoids can compromise the hippocampus by producing dendritic retraction, a reversible form of plasticity that includes dendritic restructuring without irreversible cell death. Conditions that produce dendritic retraction are hypothesized to make the hippocampus vulnerable to neurotoxic or metabolic challenges. Of particular interest is the finding that the hippocampus can recover from dendritic retraction without any noticeable cell loss. When conditions surrounding dendritic retraction are present, the potential for harm is increased because dendritic retraction may persist for weeks, months or even years, thereby broadening the window of time during which the hippocampus is vulnerable to harm, called the 'glucocorticoid vulnerability hypothesis'. The relevance of these findings is discussed with regard to conditions exhibiting parallels in hippocampal plasticity, including Cushing's disease, major depressive disorder (MDD), and post-traumatic stress disorder (PTSD).

  14. Hippocampal-neocortical interaction: a hierarchy of associativity.

    Science.gov (United States)

    Lavenex, P; Amaral, D G

    2000-01-01

    The structures forming the medial temporal lobe appear to be necessary for the establishment of long-term declarative memory. In particular, they may be involved in the "consolidation" of information in higher-order associational cortices, perhaps through feedback projections. This review highlights the fact that the medial temporal lobe is organized as a hierarchy of associational networks. Indeed, associational connections within the perirhinal, parahippocampal, and entorhinal cortices enables a significant amount of integration of unimodal and polymodal inputs, so that only highly integrated information reaches the remainder of the hippocampal formation. The feedback efferent projections from the perirhinal and parahippocampal cortices to the neocortex largely reciprocate the afferent projections from the neocortex to these areas. There are, however, noticeable differences in the degree of reciprocity of connections between the perirhinal and parahippocampal cortices and certain areas of the neocortex, in particular in the frontal and temporal lobes. These observations are particularly important for models of hippocampal-neocortical interaction and long-term storage of information in the neocortex. Furthermore, recent functional studies suggest that the perirhinal and parahippocampal cortices are more than interfaces for communication between the neocortex and the hippocampal formation. These structures participate actively in memory processes, but the precise role they play in the service of memory or other cognitive functions is currently unclear.

  15. Stochastic neural network model for spontaneous bursting in hippocampal slices.

    Science.gov (United States)

    Biswal, B; Dasgupta, C

    2002-11-01

    A biologically plausible, stochastic, neural network model that exhibits spontaneous transitions between a low-activity (normal) state and a high-activity (epileptic) state is studied by computer simulation. Brief excursions of the network to the high-activity state lead to spontaneous population bursting similar to the behavior observed in hippocampal slices bathed in a high-potassium medium. Although the variability of interburst intervals in this model is due to stochasticity, first return maps of successive interburst intervals show trajectories that resemble the behavior expected near unstable periodic orbits (UPOs) of systems exhibiting deterministic chaos. Simulations of the effects of the application of chaos control, periodic pacing, and anticontrol to the network model yield results that are qualitatively similar to those obtained in experiments on hippocampal slices. Estimation of the statistical significance of UPOs through surrogate data analysis also leads to results that resemble those of similar analysis of data obtained from slice experiments and human epileptic activity. These results suggest that spontaneous population bursting in hippocampal slices may be a manifestation of stochastic bistable dynamics, rather than of deterministic chaos. Our results also question the reliability of some of the recently proposed, UPO-based, statistical methods for detecting determinism and chaos in experimental time-series data.

  16. Effects of neuregulin-1 administration on neurogenesis in the adult mouse hippocampus, and characterization of immature neurons along the septotemporal axis

    Science.gov (United States)

    Mahar, Ian; MacIsaac, Angus; Kim, John Junghan; Qiang, Calvin; Davoli, Maria Antonietta; Turecki, Gustavo; Mechawar, Naguib

    2016-01-01

    Adult hippocampal neurogenesis is associated with learning and affective behavioural regulation. Its diverse functionality is segregated along the septotemporal axis from the dorsal to ventral hippocampus. However, features distinguishing immature neurons in these regions have yet to be characterized. Additionally, although we have shown that administration of the neurotrophic factor neuregulin-1 (NRG1) selectively increases proliferation and overall neurogenesis in the mouse ventral dentate gyrus (DG), likely through ErbB3, NRG1’s effects on intermediate neurogenic stages in immature neurons are unknown. We examined whether NRG1 administration increases DG ErbB3 phosphorylation. We labeled adultborn cells using BrdU, then administered NRG1 to examine in vivo neurogenic effects on immature neurons with respect to cell survival, morphology, and synaptogenesis. We also characterized features of immature neurons along the septotemporal axis. We found that neurogenic effects of NRG1 are temporally and subregionally specific to proliferation in the ventral DG. Particular morphological features differentiate immature neurons in the dorsal and ventral DG, and cytogenesis differed between these regions. Finally, we identified synaptic heterogeneity surrounding the granule cell layer. These results indicate neurogenic involvement of NRG1-induced antidepressant-like behaviour is particularly associated with increased ventral DG cell proliferation, and identify novel distinctions between dorsal and ventral hippocampal neurogenic development. PMID:27469430

  17. Chloride-cotransport blockade desynchronizes neuronal discharge in the "epileptic" hippocampal slice.

    Science.gov (United States)

    Hochman, D W; Schwartzkroin, P A

    2000-01-01

    Antagonism of the chloride-cotransport system in hippocampal slices has been shown to block spontaneous epileptiform (i.e., hypersynchronized) discharges without diminishing excitatory synaptic transmission. Here we test the hypotheses that chloride-cotransport blockade, with furosemide or low-chloride (low-[Cl(-)](o)) medium, desynchronizes the firing activity of neuronal populations and that this desynchronization is mediated through nonsynaptic mechanisms. Spontaneous epileptiform discharges were recorded from the CA1 and CA3 cell body layers of hippocampal slices. Treatment with low-[Cl(-)](o) medium led to cessation of spontaneous synchronized bursting in CA1 >/=5-10 min before its disappearance from CA3. During the time that CA3 continued to burst spontaneously but CA1 was silent, electrical stimulation of the Schaffer collaterals showed that hyperexcited CA1 synaptic responses were maintained. Paired intracellular recordings from CA1 pyramidal cells showed that during low-[Cl(-)](o) treatment, the timing of action potential discharges became desynchronized; desynchronization was identified with phase lags in firing times of action potentials between pairs of neurons as well as a with a broadening and diminution of the CA1 field amplitude. Continued exposure to low-[Cl(-)](o) medium increased the degree of the firing-time phase shifts between pairs of CA1 pyramidal cells until the epileptiform CA1 field potential was abolished completely. Intracellular recordings during 4-aminopyridine (4-AP) treatment showed that prolonged low-[Cl(-)](o) exposure did not diminish the frequency or amplitude of spontaneous postsynaptic potentials. CA3 antidromic responses to Schaffer collateral stimulation were not significantly affected by prolonged low-[Cl(-)](o) exposure. In contrast to CA1, paired intracellular recordings from CA3 pyramidal cells showed that chloride-cotransport blockade did not cause a significant desynchronization of action potential firing times in the

  18. BDNF regulates the expression and distribution of vesicular glutamate transporters in cultured hippocampal neurons.

    Directory of Open Access Journals (Sweden)

    Carlos V Melo

    Full Text Available BDNF is a pro-survival protein involved in neuronal development and synaptic plasticity. BDNF strengthens excitatory synapses and contributes to LTP, presynaptically, through enhancement of glutamate release, and postsynaptically, via phosphorylation of neurotransmitter receptors, modulation of receptor traffic and activation of the translation machinery. We examined whether BDNF upregulated vesicular glutamate receptor (VGLUT 1 and 2 expression, which would partly account for the increased glutamate release in LTP. Cultured rat hippocampal neurons were incubated with 100 ng/ml BDNF, for different periods of time, and VGLUT gene and protein expression were assessed by real-time PCR and immunoblotting, respectively. At DIV7, exogenous application of BDNF rapidly increased VGLUT2 mRNA and protein levels, in a dose-dependent manner. VGLUT1 expression also increased but only transiently. However, at DIV14, BDNF stably increased VGLUT1 expression, whilst VGLUT2 levels remained low. Transcription inhibition with actinomycin-D or α-amanitine, and translation inhibition with emetine or anisomycin, fully blocked BDNF-induced VGLUT upregulation. Fluorescence microscopy imaging showed that BDNF stimulation upregulates the number, integrated density and intensity of VGLUT1 and VGLUT2 puncta in neurites of cultured hippocampal neurons (DIV7, indicating that the neurotrophin also affects the subcellular distribution of the transporter in developing neurons. Increased VGLUT1 somatic signals were also found 3 h after stimulation with BDNF, further suggesting an increased de novo transcription and translation. BDNF regulation of VGLUT expression was specifically mediated by BDNF, as no effect was found upon application of IGF-1 or bFGF, which activate other receptor tyrosine kinases. Moreover, inhibition of TrkB receptors with K252a and PLCγ signaling with U-73122 precluded BDNF-induced VGLUT upregulation. Hippocampal neurons express both isoforms during

  19. Motherhood and the hormones of pregnancy modify concentrations of hippocampal neuronal dendritic spines.

    Science.gov (United States)

    Kinsley, Craig H; Trainer, Regina; Stafisso-Sandoz, Graciela; Quadros, Princy; Marcus, Lori Keyser; Hearon, Christa; Meyer, Elizabeth Ann Amory; Hester, Naomi; Morgan, Melissa; Kozub, Frederick J; Lambert, Kelly G

    2006-02-01

    Short-term fluctuations in steroid hormones such as estradiol (E2) and progesterone (P) can affect the concentration of hippocampal dendritic spines in adult, cycling nulliparous female rats. Pregnancy is characterized by a significantly longer duration of substantially elevated E2 and P compared to the estrous cycle. Thus, even greater changes than those reported during estrus may be evident. In two experiments, we examined the extent to which reproductive and hormonal state altered the concentration of apical neuronal dendritic spines of the CA1 region of the hippocampus in the following age-matched groups (N's = 7-10/group) of rats: in Exp. 1., CA1 dendritic spine density was examined in nulliparous diestrus (DES), proestrus (PRO), and estrus (ES) females, and late-pregnant (LP) (day 21) and lactating (day 5-6; LACT) females. In Exp. 2, the effects on spine density of a regimen mimicking pregnancy (and that stimulates maternal behavior) were examined, using ovariectomized, no hormone-exposed (OVX-minus) vs. sequential P&E(2)-treated (OVX + P&E2) groups. For both experiments, brains were removed, Golgi-Cox-stained and the most lateral tertiary branches of the apical dendrite of completely-stained hippocampal CA1 pyramidal neurons were traced with oil-immersion at x 1600 and dendritic spine density (# spines/10 micro dendritic segment) recorded. In Exp. 1, spine density was increased in LP and LACT females (which were not different) compared to the other virgin groups, including PRO females, who had more spines than DES and ES. In Exp. 2, OVX + P&E2 displayed significantly more dendritic spines per 10 micro than OVX-minus females (and had numbers that were similar to those of LP and LACT from Exp. 1). Pregnancy and its attendant hormonal fluctuations, therefore, may alter hippocampal neurons that regulate some non-pup-directed components of maternal behavior (e.g., nest building) or behaviors that support maternal behavior (e.g., foraging, associative memory).

  20. Evaluation of hippocampal volume based on MRI applying manual and automatic segmentation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Doring, Thomas M.; Gasparetto, Emerson L. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil); Kubo, Tadeu T.A.; Domingues, Romeu C. [Clinica de Diagnostico por Imagem (CDPI), Rio de Janeiro, RJ (Brazil)

    2010-03-15

    Various segmentation techniques using MR sequences, including manual and automatic protocols, have been developed to optimize the determination of the hippocampal volume. For clinical application, automated methods with high reproducibility and accuracy potentially may be more efficient than manual volumetry. This study aims to compare the hippocampal volumes obtained from manual and automatic segmentation methods (FreeSurfer and FSL). The automatic segmentation method FreeSurfer showed high correlation. Comparing the absolute hippocampal volumes, there is an overestimation by the automated methods. Applying a correction factor to the automatic method, it may be an alternative for the estimation of the absolute hippocampal volume. (author)

  1. The Eyes Have It: Hippocampal Activity Predicts Expression of Memory in Eye Movements

    National Research Council Canada - National Science Library

    Hannula, Deborah E; Ranganath, Charan

    2009-01-01

    ...) with concurrent indirect, eye-movement-based memory measures, we obtained evidence that hippocampal activity predicted expressions of relational memory in subsequent patterns of viewing, even when...

  2. Structural hippocampal network alterations during healthy aging: A multi-modal MRI study

    Directory of Open Access Journals (Sweden)

    Amandine ePelletier

    2013-12-01

    Full Text Available While hippocampal atrophy has been described during healthy aging, few studies have examined its relationship with the integrity of White Matter (WM connecting tracts of the limbic system. This investigation examined WM structural damage specifically related to hippocampal atrophy in healthy aging subjects (n=129, using morphological MRI to assess hippocampal volume and Diffusion Tensor Imaging (DTI to assess WM integrity. Subjects with Mild Cognitive Impairment (MCI or dementia were excluded from the analysis. In our sample, increasing age was significantly associated with reduced hippocampal volume and reduced Fractional Anisotropy (FA at the level of the fornix and the cingulum bundle. The findings also demonstrate that hippocampal atrophy was specifically associated with reduced FA of the fornix bundle, but it was not related to alteration of the cingulum bundle. Our results indicate that the relationship between hippocampal atrophy and fornix FA values is not due to an independent effect of age on both structures. A recursive regression procedure was applied to evaluate sequential relationships between the alterations of these two brain structures. When both hippocampal atrophy and fornix FA values were included in the same model to predict age, fornix FA values remained significant whereas hippocampal atrophy was no longer significantly associated with age. According to this latter finding, hippocampal atrophy in healthy aging could be mediated by a loss of fornix connections. Structural alterations of this part of the limbic system, which have been associated with neurodegeneration in Alzheimer’s disease, result at least in part from the aging process.

  3. Fimbria-fornix (FF)-transected hippocampal extracts induce the activation of astrocytes in vitro.

    Science.gov (United States)

    Zou, Linqing; Li, Haoming; Jin, Guohua; Tian, Meiling; Qin, Jianbing; Zhao, Heyan

    2014-03-01

    Hippocampus is one of the neurogenesis areas in adult mammals, but the function of astrocytes in this area is still less known. In our previous study, the fimbria-fornix (FF)-transected hippocampal extracts promoted the proliferation and neuronal differentiation of radial glial cells in vitro. To explore the effects of hippocampal extracts on gliogenesis, the hippocampal astrocytes were treated by normal or ff-transected hippocampal extracts in vitro. The cells were immunostained by brain lipid-binding protein (BLBP), nestin, and SOX2 to assess their state of activation. The effects of astrocyte-conditioned medium on the neuronal differentiation of hippocampal neural stem cells (NSCs) were also investigated. After treatment of FF-transected hippocampal extracts, the number of BLBP, nestin, and Sox-positive cells were obviously more than the cells which treated by normal hippocampal extracts, these cells maintained a state of activation and the activated astrocyte-conditioned medium also promoted the differentiation of NSCs into more neurons. These findings suggest that the astrocytes can be activated by FF-transected hippocampal extracts and these activated cells also can promote the neuronal differentiation of hippocampal NSCs in vitro.

  4. Compartmentalized PDE4A5 Signaling Impairs Hippocampal Synaptic Plasticity and Long-Term Memory.

    Science.gov (United States)

    Havekes, Robbert; Park, Alan J; Tolentino, Rosa E; Bruinenberg, Vibeke M; Tudor, Jennifer C; Lee, Yool; Hansen, Rolf T; Guercio, Leonardo A; Linton, Edward; Neves-Zaph, Susana R; Meerlo, Peter; Baillie, George S; Houslay, Miles D; Abel, Ted

    2016-08-24

    Alterations in cAMP signaling are thought to contribute to neurocognitive and neuropsychiatric disorders. Members of the cAMP-specific