WorldWideScience

Sample records for affecting enhanced oil

  1. Skin Penetration Enhancement by Natural Oils for Dihydroquercetin Delivery.

    Science.gov (United States)

    Čižinauskas, Vytis; Elie, Nicolas; Brunelle, Alain; Briedis, Vitalis

    2017-09-12

    Natural oils are commonly used in topical pharmaceutical formulations as emulsifiers, stabilizers or solubility enhancers. They are presented as safe and inert components, mainly used for formulation purposes. It is confirmed that natural oils can affect the skin penetration of various substances. Fatty acids are mainly responsible for this effect. Current understanding lacks reliable scientific data on penetration of natural oils into the skin and their skin penetration enhancement potential. In the current study, fatty acid content analysis was used to determine the principal fatty acids in soybean, olive, avocado, sea-buckthorn pulp, raspberry seed and coconut oils. Time of flight secondary ion mass spectrometry bioimaging was used to determine the distribution of these fatty acids in human skin ex vivo after application of the oils. Skin penetration enhancement ratios were determined for a perspective antioxidant compound dihydroquercetin. The results demonstrated skin penetration of fatty acids from all oils tested. Only soybean and olive oils significantly increased the skin distribution of dihydroquercetin and can be used as skin penetration enhancers. However, no correlation can be determined between the fatty acids' composition and skin penetration enhancement using currently available methodological approaches. This indicates that potential chemical penetration enhancement should be evaluated during formulation of topically applied products containing natural oils.

  2. Biochemically enhanced oil recovery and oil treatment

    Science.gov (United States)

    Premuzic, Eugene T.; Lin, Mow

    1994-01-01

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil.

  3. Enzymes for Enhanced Oil Recovery (EOR)

    Energy Technology Data Exchange (ETDEWEB)

    Nasiri, Hamidreza

    2011-04-15

    Primary oil recovery by reservoir pressure depletion and secondary oil recovery by waterflooding usually result in poor displacement efficiency. As a consequence there is always some trapped oil remaining in oil reservoirs. Oil entrapment is a result of complex interactions between viscous, gravity and capillary forces. Improving recovery from hydrocarbon fields typically involves altering the relative importance of the viscous and capillary forces. The potential of many EOR methods depends on their influence on fluid/rock interactions related to wettability and fluid/fluid interactions reflected in IFT. If the method has the potential to change the interactions favorably, it may be considered for further investigation, i.e. core flooding experiment, pilot and reservoir implementation. Enzyme-proteins can be introduced as an enhanced oil recovery method to improve waterflood performance by affecting interactions at the oil-water-rock interfaces. An important part of this thesis was to investigate how selected enzymes may influence wettability and capillary forces in a crude oil-brine-rock system, and thus possibly contribute to enhanced oil recovery. To investigate further by which mechanisms selected enzyme-proteins may contribute to enhance oil recovery, groups of enzymes with different properties and catalytic functions, known to be interfacially active, were chosen to cover a wide range of possible effects. These groups include (1) Greenzyme (GZ) which is a commercial EOR enzyme and consists of enzymes and stabilizers (surfactants), (2) The Zonase group consists of two types of pure enzyme, Zonase1 and Zonase2 which are protease enzymes and whose catalytic functions are to hydrolyze (breakdown) peptide bonds, (3) The Novozyme (NZ) group consists of three types of pure enzyme, NZ2, NZ3 and NZ6 which are esterase enzymes and whose catalytic functions are to hydrolyze ester bonds, and (4) Alpha-Lactalbumin ( -La) which is an important whey protein. The effect of

  4. Method for enhanced oil recovery

    Science.gov (United States)

    Comberiati, Joseph R.; Locke, Charles D.; Kamath, Krishna I.

    1980-01-01

    The present invention is directed to an improved method for enhanced recovery of oil from relatively "cold" reservoirs by carbon dioxide flooding. In oil reservoirs at a temperature less than the critical temperature of 87.7.degree. F. and at a pore pressure greater than the saturation pressure of carbon dioxide at the temperature of the reservoir, the carbon dioxide remains in the liquid state which does not satisfactorily mix with the oil. However, applicants have found that carbon dioxide can be vaporized in situ in the reservoir by selectively reducing the pore pressure in the reservoir to a value less than the particular saturated vapor pressure so as to greatly enhance the mixing of the carbon dioxide with the oil.

  5. Recovery rates, enhanced oil recovery and technological limits.

    Science.gov (United States)

    Muggeridge, Ann; Cockin, Andrew; Webb, Kevin; Frampton, Harry; Collins, Ian; Moulds, Tim; Salino, Peter

    2014-01-13

    Enhanced oil recovery (EOR) techniques can significantly extend global oil reserves once oil prices are high enough to make these techniques economic. Given a broad consensus that we have entered a period of supply constraints, operators can at last plan on the assumption that the oil price is likely to remain relatively high. This, coupled with the realization that new giant fields are becoming increasingly difficult to find, is creating the conditions for extensive deployment of EOR. This paper provides a comprehensive overview of the nature, status and prospects for EOR technologies. It explains why the average oil recovery factor worldwide is only between 20% and 40%, describes the factors that contribute to these low recoveries and indicates which of those factors EOR techniques can affect. The paper then summarizes the breadth of EOR processes, the history of their application and their current status. It introduces two new EOR technologies that are beginning to be deployed and which look set to enter mainstream application. Examples of existing EOR projects in the mature oil province of the North Sea are discussed. It concludes by summarizing the future opportunities for the development and deployment of EOR.

  6. Novel approaches to microbial enhancement of oil recovery.

    Science.gov (United States)

    Kryachko, Yuriy

    2018-01-20

    Microbially enhanced oil recovery (MEOR) was shown to be feasible in a number of laboratory experiments and field trials. However, it has not been widely used in the oil industry because necessary conditions cannot always be easily established in an oil reservoir. Novel approaches to MEOR, which are based on newly discovered biosurfactant-mediated MEOR-mechanisms, are discussed in this review. Particularly, the possibility of combining MEOR with chemical enhancement of oil recovery in heterogeneous oil reservoirs, which involves rock surface wettability shifts and emulsion inversions, is discussed. In wider (centimeter/millimeter-scale) rock pores, the activity of (bio)surfactants and microbial cells attached to oil may allow releasing trapped oil blobs through oil-in-water emulsification. After no more oil can be emulsified, the addition of alkali or surfactants, which turn rock surface oil-wet, may help release oil droplets trapped in narrow (micrometer-scale) pores through coalescence of the droplets and water-in-oil emulsification. Experiments demonstrating the possibility of (bio)surfactant-mediated enhancement of immiscible gas-driven oil recovery are also reviewed. Interestingly, very low (bio)surfactant concentrations were shown to be needed for enhancement of immiscible gas-driven oil recovery. Some possible side effects of MEOR, such as unintended bioplugging and microbially influenced corrosion (MIC), are discussed as well. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  7. Emulsion oil droplet size significantly affects satiety: A pre-ingestive approach.

    Science.gov (United States)

    Lett, Aaron M; Norton, Jennifer E; Yeomans, Martin R

    2016-01-01

    Previous research has demonstrated that the manipulation of oil droplet size within oil-in-water emulsions significantly affects sensory characteristics, hedonics and expectations of food intake, independently of energy content. Smaller oil droplets enhanced perceived creaminess, increased Liking and generated greater expectations of satiation and satiety, indicating that creaminess is a satiety-relevant sensory cue within these systems. This paper extends these findings by investigating the effect of oil droplet size (d4,3: 2 and 50 μm) on food intake and appetite. Male participants (n = 34 aged 18-37; BMI of 22.7 ± 1.6 kg/m(2); DEBQ restricted eating score of 1.8 ± 0.1.) completed two test days, where they visited the laboratory to consume a fixed-portion breakfast, returning 3 h later for a "drink", which was the emulsion preload containing either 2 or 50 μm oil droplets. This was followed 20 min later with an ad libitum pasta lunch. Participants consumed significantly less at the ad libitum lunch after the preload containing 2 μm oil droplets than after the 50 μm preload, with an average reduction of 12% (62.4 kcal). Despite the significant differences in intake, no significant differences in sensory characteristics were noted. The findings show that the impact that an emulsion has on satiety can be enhanced without producing significantly perceivable differences in sensory properties. Therefore, by introducing a processing step which results in a smaller droplets, emulsion based liquid food products can be produced that enhance satiety, allowing covert functional redesign. Future work should consider the mechanism responsible for this effect. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Practical Considerations and Challenges Involved in Surfactant Enhanced Bioremediation of Oil

    Directory of Open Access Journals (Sweden)

    Sagarika Mohanty

    2013-01-01

    Full Text Available Surfactant enhanced bioremediation (SEB of oil is an approach adopted to overcome the bioavailability constraints encountered in biotransformation of nonaqueous phase liquid (NAPL pollutants. Fuel oils contain n-alkanes and other aliphatic hydrocarbons, monoaromatics, and polynuclear aromatic hydrocarbons (PAHs. Although hydrocarbon degrading cultures are abundant in nature, complete biodegradation of oil is rarely achieved even under favorable environmental conditions due to the structural complexity of oil and culture specificities. Moreover, the interaction among cultures in a consortium, substrate interaction effects during the degradation and ability of specific cultures to alter the bioavailability of oil invariably affect the process. Although SEB has the potential to increase the degradation rate of oil and its constituents, there are numerous challenges in the successful application of this technology. Success is dependent on the choice of appropriate surfactant type and dose since the surfactant-hydrocarbon-microorganism interaction may be unique to each scenario. Surfactants not only enhance the uptake of constituents through micellar solubilization and emulsification but can also alter microbial cell surface characteristics. Moreover, hydrocarbons partitioned in micelles may not be readily bioavailable depending on the microorganism-surfactant interactions. Surfactant toxicity and inherent biodegradability of surfactants may pose additional challenges as discussed in this review.

  9. Practical Considerations and Challenges Involved in Surfactant Enhanced Bioremediation of Oil

    Science.gov (United States)

    Mohanty, Sagarika; Jasmine, Jublee

    2013-01-01

    Surfactant enhanced bioremediation (SEB) of oil is an approach adopted to overcome the bioavailability constraints encountered in biotransformation of nonaqueous phase liquid (NAPL) pollutants. Fuel oils contain n-alkanes and other aliphatic hydrocarbons, monoaromatics, and polynuclear aromatic hydrocarbons (PAHs). Although hydrocarbon degrading cultures are abundant in nature, complete biodegradation of oil is rarely achieved even under favorable environmental conditions due to the structural complexity of oil and culture specificities. Moreover, the interaction among cultures in a consortium, substrate interaction effects during the degradation and ability of specific cultures to alter the bioavailability of oil invariably affect the process. Although SEB has the potential to increase the degradation rate of oil and its constituents, there are numerous challenges in the successful application of this technology. Success is dependent on the choice of appropriate surfactant type and dose since the surfactant-hydrocarbon-microorganism interaction may be unique to each scenario. Surfactants not only enhance the uptake of constituents through micellar solubilization and emulsification but can also alter microbial cell surface characteristics. Moreover, hydrocarbons partitioned in micelles may not be readily bioavailable depending on the microorganism-surfactant interactions. Surfactant toxicity and inherent biodegradability of surfactants may pose additional challenges as discussed in this review. PMID:24350261

  10. Enhanced Oil Recovery with Application of Enzymes

    DEFF Research Database (Denmark)

    Khusainova, Alsu

    Enzymes have recently been reported as effective enhanced oil recovery (EOR) agents. Both laboratory and field tests demonstrated significant increase in the ultimate oil production. Up to16% of additional oil was produced in the laboratory conditions and up to 269 barrels of additional oil per day...... were recovered in the field applications. The following mechanisms were claimed to be responsible for the enhancement of the oil production due to enzymes: wettability improvement of the rock surface; formation of the emulsions; reduction of oil viscosity; and removal of high molecular weight paraffins....... However, the positive effect of enzymes on oil recovery is not that obvious. In most of the studies commercial enzyme products composed of enzymes, surfactants and stabilisers were used. Application of such samples makes it difficult to assign a positive EOR effect to a certain compound, as several...

  11. Enhanced oil recovery program review

    International Nuclear Information System (INIS)

    1994-05-01

    Canada accounts for 40% of the global resources in heavy oils and oil sands bitumen, however, more than 90% of these resources need new and innovative technologies if they are to be made available at a competitive price. CANMET's Enhanced Oil Recovery (EOR) program was created in the late 1970s in response to the drive for energy self-sufficiency. Funding of the project is highly leveraged; industry funding towards projects supported under the CANMET Energy Conversion Program averaged over 300% annually since the previous review in 1990. Multi-client EOR technology projects include horizontal well technology, development of the vapour extraction process, and field testing of oil sands extraction technology. Direction and priorities of the program are established in consultation with the Minister's Advisory Council to CANMET (MNACC), industry and other performers and sponsors of enhanced oil recovery R and D. This review, including client feedback from interviews with several industry spokespersons, concluded that the program was well managed, and of high priority. Various options capable of meeting future needs were examined. Continuation of the current program, incorporating a number of significant changes, was recommended

  12. Environmental regulations handbook for enhanced oil recovery. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, T.D.

    1980-08-01

    A guide to environmental laws and regulations which have special significance for enhanced oil recovery (EOR) is presented. The Clean Air Act, the Clean Water Act, the Safe Drinking Water Act, Resource Conservation and Recovery Act, federal regulations, and state regulations are discussed. This handbook has been designed as a planning tool and a convenient reference source. The 16 states included comprise the major oil-producing states in various regions of the state. The major topics covered are: general guidelines for complying with environmental laws and regulations; air pollution control; water pollution control; protecting drinking water: underground injection control; hazardous waste management; and federal laws affecting siting or operation of EOR facilities. (DMC)

  13. Engineering the biosynthesis of novel rhamnolipids in Escherichia coli for enhanced oil recovery.

    Science.gov (United States)

    Han, L; Liu, P; Peng, Y; Lin, J; Wang, Q; Ma, Y

    2014-07-01

    The interfacial tension of rhamnolipids and their applications in enhanced oil recovery are dependent on their chemical structures and compositions. To improve their performances of interfacial tension and enhanced oil recovery, the engineered strategies were applied to produce novel rhamnolipids with different chemical structures and compositions. By introducing different key genes for rhamnolipid biosynthesis, Escherichia coli was firstly constructed to produce rhamnolipids that showed different performances in interfacial tension from those from Pseudomonas aeruginosa due to the different fatty acyl compositions. Then, the mutant RhlBs were created by directed evolution and subsequent site-directed mutagenesis and resulted in the production of the novel rhamnolipids with the different performances in interfacial tension as well as enhanced oil recovery. Lastly, computational modelling elucidates that the single amino acid mutation at the position 168 in RhlB would change the volume of binding pocket for substrate and thus affect the selectivity of rhamnolipid formation in E. coli. The novel rhamnolipids that showed the improved performances of interfacial tension and the potential different applications in enhanced oil recovery were successfully produced by engineered E. coli. This study proved that the combination of metabolic engineering and protein engineering is an important engineered strategy to produce many novel metabolites in micro-organisms. © 2014 The Society for Applied Microbiology.

  14. Environmental regulations handbook for enhanced oil recovery

    International Nuclear Information System (INIS)

    Madden, M.P.; Blatchford, R.P.; Spears, R.B.

    1991-12-01

    This handbook is intended to assist owners and operators of enhanced oil recovery (EOR) operations in acquiring some introductory knowledge of the various state agencies, the US Environmental Protection Agency, and the many environmental laws, rules and regulations which can have jurisdiction over their permitting and compliance activities. It is a compendium of summarizations of environmental rules. It is not intended to give readers specific working details of what is required from them, nor can it be used in that manner. Readers of this handbook are encouraged to contact environmental control offices nearest to locations of interest for current regulations affecting them

  15. Environmental regulations handbook for enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Madden, M.P. [National Inst. for Petroleum and Energy Research, Bartlesville, OK (United States); Blatchford, R.P.; Spears, R.B. [Spears and Associates, Inc., Tulsa, OK (United States)

    1991-12-01

    This handbook is intended to assist owners and operators of enhanced oil recovery (EOR) operations in acquiring some introductory knowledge of the various state agencies, the US Environmental Protection Agency, and the many environmental laws, rules and regulations which can have jurisdiction over their permitting and compliance activities. It is a compendium of summarizations of environmental rules. It is not intended to give readers specific working details of what is required from them, nor can it be used in that manner. Readers of this handbook are encouraged to contact environmental control offices nearest to locations of interest for current regulations affecting them.

  16. Microbial enhanced oil recovery: Entering the log phase

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, R.S.

    1995-12-31

    Microbial enhanced oil recovery (MEOR) technology has advanced internationally since 1980 from a laboratory-based evaluation of microbial processes to field applications. In order to adequately support the decline in oil production in certain areas, research on cost-effective technologies such as microbial enhanced oil recovery processes must focus on both near-term and long-term applications. Many marginal wells are desperately in need of an inexpensive improved oil recovery technology today that can assist producers in order to prevent their abandonment. Microbial enhanced waterflooding technology has also been shown to be an economically feasible technology in the United States. Complementary environmental research and development will also be required to address any potential environmental impacts of microbial processes. In 1995 at this conference, the goal is to further document and promote microbial processes for improved oil recovery and related technology for solving environmental problems.

  17. Enhanced crude oil biodegradation in soil via biostimulation.

    Science.gov (United States)

    Al-Saleh, Esmaeil; Hassan, Ali

    2016-08-02

    Research on feasible methods for the enhancement of bioremediation in soil contaminated by crude oil is vital in oil-exporting countries such as Kuwait, where crude oil is a major pollutant and the environment is hostile to biodegradation. This study investigated the possibility of enhancing crude oil bioremediation by supplementing soil with cost-effective organic materials derived from two widespread locally grown trees, Conocarpus and Tamarix. Amendments in soils increased the counts of soil microbiota by up to 98% and enhanced their activity by up to 95.5%. The increase in the biodegradation of crude oil (75%) and high levels of alkB expression substantiated the efficiency of the proposed amendment technology for the bioremediation of hydrocarbon-contaminated sites. The identification of crude-oil-degrading bacteria revealed the dominance of the genus Microbacterium (39.6%), Sphingopyxis soli (19.3%), and Bordetella petrii (19.6%) in unamended, Conocarpus-amended, and Tamarix-amended contaminated soils, respectively. Although soil amendments favored the growth of Gram-negative bacteria and reduced bacterial diversity, the structures of bacterial communities were not significantly altered.

  18. Enhanced oil recovery by CO{sub 2} injection

    Energy Technology Data Exchange (ETDEWEB)

    Moctezuma Berthier, Andres E. [Instituto Mexicano del Petroleo, Mexico, D.F. (Mexico)

    2008-07-15

    Firstly are presented some basic concepts on the enhanced oil recovery; then a description is made of where the oil deposits in Mexico are located; comments are made over what has been done in Mexico in terms of enhanced oil recovery, the projects of the Instituto Mexicano del Petroleo that have dealt with the subject of enhanced oil recovery, and finally an approach is presented towards the problem of oil recovery using CO{sub 2}. [Spanish] Primeramente se presentan unos conceptos basicos sobre la recuperacion mejorada de petroleo; luego se hace una descripcion de donde se encuentran los yacimientos de petroleo en Mexico; se comenta sobre que se ha hecho en Mexico en terminos de recuperacion mejorada de petroleo; se mencionan los proyectos del Instituto Mexicano del Petroleo que han abordado el tema de la recuperacion mejorada del petroleo y por ultimo se presenta un enfoque hacia el problema de la recuperacion del petroleo usando CO{sub 2}.

  19. 26 CFR 1.43-4 - Qualified enhanced oil recovery costs.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 1 2010-04-01 2010-04-01 true Qualified enhanced oil recovery costs. 1.43-4... TAXES Credits Against Tax § 1.43-4 Qualified enhanced oil recovery costs. (a) Qualifying costs—(1) In... “qualified enhanced oil recovery costs” if the amounts are paid or incurred with respect to an asset which is...

  20. Chemically evolving systems for oil recovery enhancement in heavy oil deposits

    Science.gov (United States)

    Altunina, L. K.; Kuvshinov, I. V.; Kuvshinov, V. A.; Stasyeva, L. A.

    2017-12-01

    This work presents the results of laboratory studies and field tests of new physicochemical technologies for enhanced oil recovery of heavy oil fields under natural development conditions and with thermal-steam stimulation using oil-displacing "smart" systems. The systems are based on surfactants and buffer systems. Their rheological and acid-base properties can be regulated by their chemical evolution directly in the formation. Field tests of the technologies carried out on high-viscosity oil deposit in the Usinskoye oilfield have shown that the EOR technologies are environmentally friendly and technologically effective.

  1. Polymeric surfactants for enhanced oil recovery : A review

    NARCIS (Netherlands)

    Raffa, Patrizio; Broekhuis, Antonius A.; Picchioni, Francesco

    Chemical enhanced oil recovery (EOR) is surely a topic of interest, as conventional oil resources become more scarce and the necessity of exploiting heavy and unconventional oils increases. EOR methods based on polymer flooding, surfactant-polymer flooding and alkali-surfactant-polymer flooding are

  2. SolarOil Project, Phase I preliminary design report. [Solar Thermal Enhanced Oil Recovery project

    Energy Technology Data Exchange (ETDEWEB)

    Baccaglini, G.; Bass, J.; Neill, J.; Nicolayeff, V.; Openshaw, F.

    1980-03-01

    The preliminary design of the Solar Thermal Enhanced Oil Recovery (SolarOil) Plant is described in this document. This plant is designed to demonstrate that using solar thermal energy is technically feasible and economically viable in enhanced oil recovery (EOR). The SolarOil Plant uses the fixed mirror solar concentrator (FMSC) to heat high thermal capacity oil (MCS-2046) to 322/sup 0/C (611/sup 0/F). The hot fluid is pumped from a hot oil storage tank (20 min capacity) through a once-through steam generator which produces 4.8 MPa (700 psi) steam at 80% quality. The plant net output, averaged over 24 hr/day for 365 days/yr, is equivalent to that of a 2.4 MW (8.33 x 10/sup 6/ Btu/hr) oil-fired steam generator having an 86% availability. The net plant efficiency is 57.3% at equinox noon, a 30%/yr average. The plant will be demonstrated at an oilfield site near Oildale, California.

  3. Microbial enhanced oil recovery and compositions therefor

    Science.gov (United States)

    Bryant, Rebecca S.

    1990-01-01

    A method is provided for microbial enhanced oil recovery, wherein a combination of microorganisms is empirically formulated based on survivability under reservoir conditions and oil recovery efficiency, such that injection of the microbial combination may be made, in the presence of essentially only nutrient solution, directly into an injection well of an oil bearing reservoir having oil present at waterflood residual oil saturation concentration. The microbial combination is capable of displacing residual oil from reservoir rock, which oil may be recovered by waterflooding without causing plugging of the reservoir rock. Further, the microorganisms are capable of being transported through the pores of the reservoir rock between said injection well and associated production wells, during waterflooding, which results in a larger area of the reservoir being covered by the oil-mobilizing microorganisms.

  4. The PTRC : a world leader in enhanced heavy oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Kristoff, B.; Knudsen, R.; Asghari, K. [Petroleum Technology Research Centre, Regina, SK (Canada); Pappas, E.S. [Saskatchewan Research Council, Saskatoon, SK (Canada)

    2006-07-01

    The Petroleum Technology Research Centre (PTRC) fosters knowledge and progressive technologies to enhance the recovery of petroleum. This paper discussed the PTRC's leadership in enhanced heavy oil recovery, with particular reference to core research program such as heavy oil (post) cold flow; enhanced waterflooding; miscible/immiscible solvent injection; and near-wellbore conformance control. Other projects that were presented included a joint implementation of vapour extraction project (JIVE); and the IEA greenhouse gas (GHG) Weyburn-Midale carbon dioxide monitoring and storage project. The JIVE project will develop, demonstrate and evaluate solvent vapour extraction processes for enhanced oil recovery in heavy oil reservoirs. The GHG Weyburn-Midale project, launched in 2000, studies carbon dioxide injection and storage in partially depleted oil reservoirs. It was concluded that the PTRC continues to develop technologies to meet the world's energy requirements while mitigating both immediate and long-term environmental impacts. 4 figs.

  5. Elucidation of penetration enhancement mechanism of Emu oil using FTIR microspectroscopy at EMIRA laboratory of SESAME synchrotron

    Science.gov (United States)

    Mansour, Randa S. H.; Sallam, Alsayed A.; Hamdan, Imad I.; Khalil, Enam A.; Yousef, Ibraheem

    2017-10-01

    It has been proposed that Emu oil possesses skin permeation-enhancing effect. This study aimed to address its possible penetration enhancement mechanism(s) using IR microscopy, in accordance with LPP theory. The penetration of Emu oil through the layers of human skin was accomplished by monitoring oil-IR characteristic feature at 3006 cm- 1. The unsaturated components of Emu oil accumulated at about 270 μm depth of skin surface. The interaction of Emu oil with lipid and protein constituents of SC was investigated in comparison with a commonly used enhancer, IPM. Inter-sample spectral differences were identified using PCA and linked with possible enhancement mechanisms. Emu oil treatment caused a change in the slope of the right contour of amide I band of the protein spectral range. This was also clear in the second derivative spectra where the emergence of a new shoulder at higher frequency was evident, suggesting disorganization of keratin α-helix structure. This effect could be a result of disruption of some hydrogen bonds in which amide Cdbnd O and Nsbnd H groups of keratin are involved. The low intensity of the emerged shoulder is also in agreement with formation of weaker hydrogen bonds. IPM did not affect the protein component. No conclusions regarding the effect of penetration enhancers on the SC lipids were obtained. This was due to the overlap of the endogenous (skin) and exogenous (oil) CH stretching and scissoring frequencies. The SC carbonyl stretching peak disappeared as a result of IPM treatment which may reflect some degree of lipid extraction.

  6. Shale Oil Value Enhancement Research

    Energy Technology Data Exchange (ETDEWEB)

    James W. Bunger

    2006-11-30

    Raw kerogen oil is rich in heteroatom-containing compounds. Heteroatoms, N, S & O, are undesirable as components of a refinery feedstock, but are the basis for product value in agrochemicals, pharmaceuticals, surfactants, solvents, polymers, and a host of industrial materials. An economically viable, technologically feasible process scheme was developed in this research that promises to enhance the economics of oil shale development, both in the US and elsewhere in the world, in particular Estonia. Products will compete in existing markets for products now manufactured by costly synthesis routes. A premium petroleum refinery feedstock is also produced. The technology is now ready for pilot plant engineering studies and is likely to play an important role in developing a US oil shale industry.

  7. Enhancing blood donor skin disinfection using natural oils.

    Science.gov (United States)

    Alabdullatif, Meshari; Boujezza, Imen; Mekni, Mohamed; Taha, Mariam; Kumaran, Dilini; Yi, Qi-Long; Landoulsi, Ahmed; Ramirez-Arcos, Sandra

    2017-12-01

    Effective donor skin disinfection is essential in preventing bacterial contamination of blood components with skin flora bacteria like Staphylococcus epidermidis. Cell aggregates of S. epidermidis (biofilms) are found on the skin and are resistant to the commonly used donor skin disinfectants chlorhexidine-gluconate and isopropyl alcohol. It has been demonstrated that essential oils synergistically enhance the antibacterial activity of chlorhexidine-gluconate. The objective of this study was to test plant-extracted essential oils in combination with chlorhexidine-gluconate or chlorhexidine-gluconate plus isopropyl alcohol for their ability to eliminate S. epidermidis biofilms. The composition of oils extracted from Artemisia herba-alba, Lavandula multifida, Origanum marjoram, Rosmarinus officinalis, and Thymus capitatus was analyzed using gas chromatography-mass spectrometry. A rabbit model was used to assess skin irritation caused by the oils. In addition, the anti-biofilm activity of the oils used alone or in combination with chlorhexidine-gluconate or chlorhexidine-gluconate plus isopropyl alcohol was tested against S. epidermidis biofilms. Essential oil concentrations 10%, 20%, and 30% were chosen for anti-biofilm assays, because skin irritation was observed at concentrations greater than 30%. All oils except for O. marjoram had anti-biofilm activity at these three concentrations. L. multifida synergistically enhanced the anti-biofilm activity of chlorhexidine-gluconate and resulted in the highest anti-biofilm activity observed when combined with chlorhexidine-gluconate plus isopropyl alcohol. Gas chromatography-mass spectrometry revealed that the main component contributing to the activity of L. multifida oil was a natural terpene alcohol called linalool. The anti-biofilm activity of chlorhexidine-gluconate plus isopropyl alcohol can be greatly enhanced by L. multifida oil or linalool. Therefore, these components could potentially be used to improve blood

  8. Combustion for Enhanced Recovery of Light Oil at Medium Pressures

    NARCIS (Netherlands)

    Khoshnevis Gargar, N.

    2014-01-01

    Using conventional production methods, recovery percentages from oil reservoirs range from 5% for difficult oil to 50% for light oil in highly permeable homogeneous reservoirs. To increase the oil recovery factor, enhanced oil recovery (EOR) methods are used. We distinguish EOR that uses chemical

  9. Synthesis of ZnO nanoparticles for oil-water interfacial tension reduction in enhanced oil recovery

    Science.gov (United States)

    Soleimani, Hassan; Baig, Mirza Khurram; Yahya, Noorhana; Khodapanah, Leila; Sabet, Maziyar; Demiral, Birol M. R.; Burda, Marek

    2018-02-01

    Nanoparticles show potential use in applications associated with upstream oil and gas engineering to increase the performance of numerous methods such as wettability alteration, interfacial tension reduction, thermal conductivity and enhanced oil recovery operations. Surface tension optimization is an important parameter in enhanced oil recovery. Current work focuses on the new economical method of surface tension optimization of ZnO nanofluids for oil-water interfacial tension reduction in enhanced oil recovery. In this paper, zinc oxide (ZnO) nanocrystallites were prepared using the chemical route and explored for enhanced oil recovery (EOR). Adsorption of ZnO nanoparticles (NPs) on calcite (111) surface was investigated using the adsorption locator module of Materials Studio software. It was found that ZnO nanoparticles show maximum adsorption energy of - 253 kcal/mol. The adsorption of ZnO on the rock surface changes the wettability which results in capillary force reduction and consequently increasing EOR. The nanofluids have been prepared by varying the concentration of ZnO nanoparticles to find the optimum value for surface tension. The surface tension (ST) was calculated with different concentration of ZnO nanoparticles using the pendant drop method. The results show a maximum value of ST 35.57 mN/m at 0.3 wt% of ZnO NPs. It was found that the nanofluid with highest surface tension (0.3 wt%) resulted in higher recovery efficiency. The highest recovery factor of 11.82% at 0.3 wt% is due to the oil/water interfacial tension reduction and wettability alteration.

  10. Factors Affecting Oil Palm Production in Ondo State of Nigeria ...

    African Journals Online (AJOL)

    The discovery of crude oil and the civil war adversely affected oil palm production in Nigeria. This has resulted in scarcity and high cost of palm products and palm oil. The study therefore investigated the factors influencing oil palm production in Ondo State, Nigeria. One hundred and fifty respondents were selected from ...

  11. Mechanism governing nanoparticle flow behaviour in porous media: insight for enhanced oil recovery applications

    Science.gov (United States)

    Agi, Augustine; Junin, Radzuan; Gbadamosi, Afeez

    2018-06-01

    Nanotechnology has found its way to petroleum engineering, it is well-accepted path in the oil and gas industry to recover more oil trapped in the reservoir. But the addition of nanoparticles to a liquid can result in the simplest flow becoming complex. To understand the working mechanism, there is a need to study the flow behaviour of these particles. This review highlights the mechanism affecting the flow of nanoparticles in porous media as it relates to enhanced oil recovery. The discussion focuses on chemical-enhanced oil recovery, a review on laboratory experiment on wettability alteration, effect of interfacial tension and the stability of emulsion and foam is discussed. The flow behaviour of nanoparticles in porous media was discussed laying emphasis on the physical aspect of the flow, the microscopic rheological behaviour and the adsorption of the nanoparticles. It was observed that nanofluids exhibit Newtonian behaviour at low shear rate and non-Newtonian behaviour at high shear rate. Gravitational and capillary forces are responsible for the shift in wettability from oil-wet to water-wet. The dominant mechanisms of foam flow process were lamellae division and bubble to multiple bubble lamellae division. In a water-wet system, the dominant mechanism of flow process and residual oil mobilization are lamellae division and emulsification, respectively. Whereas in an oil-wet system, the generation of pre-spinning continuous gas foam was the dominant mechanism. The literature review on oil displacement test and field trials indicates that nanoparticles can recover additional oil. The challenges encountered have opened new frontier for research and are highlighted herein.

  12. Tax incentives and enhanced oil recovery techniques

    International Nuclear Information System (INIS)

    Stathis, J.S.

    1991-05-01

    Tax expenditures-reductions in income tax liability resulting from a special tax provision-are often used to achieve economic and social objectives. The arguments for petroleum production tax incentives usually encompass some combination of enhancing energy security, rewarding risk, or generating additional investment in new technologies. Generally, however, some portion of any tax expenditure is spend on activities that would have occurred anyway. This paper is a review of tax incentives for petroleum production found two to be of questionable merit. Others, including tax preferences for enhanced oil recovery methods, which offered the potential for better returns on the tax dollar. Increased use of enhanced oil recovery techniques could lead to additional environmental costs, however, and these need to be factored into any cost-benefit calculation

  13. 26 CFR 1.43-1 - The enhanced oil recovery credit-general rules.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 1 2010-04-01 2010-04-01 true The enhanced oil recovery credit-general rules. 1... INCOME TAXES Credits Against Tax § 1.43-1 The enhanced oil recovery credit—general rules. (a) Claiming the credit—(1) In general. The enhanced oil recovery credit (the “credit”) is a component of the...

  14. Essential oil from Zanthoxylum bungeanum Maxim. and its main components used as transdermal penetration enhancers: a comparative study.

    Science.gov (United States)

    Lan, Yi; Li, Hui; Chen, Yan-yan; Zhang, Ye-wen; Liu, Na; Zhang, Qing; Wu, Qing

    2014-11-01

    Our previous studies had confirmed that the essential oil from Zanthoxylum bungeanum Maxim. (Z. bungeanum oil) could effectively enhance the percutaneous permeation of drug molecules as a natural transdermal penetration enhancer. The aim of the present study is to investigate and compare the skin penetration enhancement effect of Z. bungeanum oil and its main components on traditional Chinese medicine (TCM) active components. Toxicities of Z. bungeanum oil and three selected terpene compounds (terpinen-4-ol, 1,8-cineole, and limonene) in epidermal keratinocytes (HaCaT) and dermal fibroblast (CCC-ESF-1) cell lines were measured using an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Five model drugs in TCM external preparations, namely osthole (OT), tetramethylpyrazine (TMP), ferulic acid (FA), puerarin (PR), and geniposide (GP), which were selected based on their lipophilicity denoted by logKo/w, were tested using in vitro permeation studies in which vertical Franz diffusion cells and rat abdominal skin were employed. The secondary structure changes of skin stratum corneum (SC) and drug thermodynamic activities were investigated to understand their mechanisms of action using Fourier transform infrared (FTIR) spectroscopy and saturation solubility studies, respectively. It was found that Z. bungeanum oil showed lower toxicities in both HaCaT cells and CCC-ESF-1 cells compared with three terpene compounds used alone. The enhancement permeation capacities by all tested agents were in the following increasing order: terpinen-4-ol≈1,8-cineoleoil. The mechanisms of permeation enhancement suggested that these enhancers promoted the skin permeation of drugs mainly by affecting SC lipids. These results indicated that Z. bungeanum oil exhibited better performance in enhancing the skin permeation of active components in TCM preparations.

  15. Foam-oil interaction in porous media: implications for foam assisted enhanced oil recovery.

    Science.gov (United States)

    Farajzadeh, R; Andrianov, A; Krastev, R; Hirasaki, G J; Rossen, W R

    2012-11-15

    The efficiency of a foam displacement process in enhanced oil recovery (EOR) depends largely on the stability of foam films in the presence of oil. Experimental studies have demonstrated the detrimental impact of oil on foam stability. This paper reviews the mechanisms and theories (disjoining pressure, coalescence and drainage, entering and spreading of oil, oil emulsification, pinch-off, etc.) suggested in the literature to explain the impact of oil on foam stability in the bulk and porous media. Moreover, we describe the existing approaches to foam modeling in porous media and the ways these models describe the oil effect on foam propagation in porous media. Further, we present various ideas on an improvement of foam stability and longevity in the presence of oil. The outstanding questions regarding foam-oil interactions and modeling of these interactions are pointed out. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Do structural oil-market shocks affect stock prices?

    International Nuclear Information System (INIS)

    Apergis, Nicholas; Miller, Stephen M.

    2009-01-01

    This paper investigates how explicit structural shocks that characterize the endogenous character of oil price changes affect stock-market returns in a sample of eight countries - Australia, Canada, France, Germany, Italy, Japan, the United Kingdom, and the United States. For each country, the analysis proceeds in two steps. First, modifying the procedure of Kilian [Not All Oil Price Shocks are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market. American Economic Review.], we employ a vector error-correction or vector autoregressive model to decompose oil-price changes into three components: oil-supply shocks, global aggregate-demand shocks, and global oil-demand shocks. The last component relates to specific idiosyncratic features of the oil market, such as changes in the precautionary demand concerning the uncertainty about the availability of future oil supplies. Second, recovering the oil-supply shocks, global aggregate-demand shocks, and global oil-demand shocks from the first analysis, we then employ a vector autoregressive model to determine the effects of these structural shocks on the stock market returns in our sample of eight countries. We find that international stock market returns do not respond in a large way to oil market shocks. That is, the significant effects that exist prove small in magnitude. (author)

  17. Starting up microbial enhanced oil recovery.

    Science.gov (United States)

    Siegert, Michael; Sitte, Jana; Galushko, Alexander; Krüger, Martin

    2014-01-01

    This chapter gives the reader a practical introduction into microbial enhanced oil recovery (MEOR) including the microbial production of natural gas from oil. Decision makers who consider the use of one of these technologies are provided with the required scientific background as well as with practical advice for upgrading an existing laboratory in order to conduct microbiological experiments. We believe that the conversion of residual oil into natural gas (methane) and the in situ production of biosurfactants are the most promising approaches for MEOR and therefore focus on these topics. Moreover, we give an introduction to the microbiology of oilfields and demonstrate that in situ microorganisms as well as injected cultures can help displace unrecoverable oil in place (OIP). After an initial research phase, the enhanced oil recovery (EOR) manager must decide whether MEOR would be economical. MEOR generally improves oil production but the increment may not justify the investment. Therefore, we provide a brief economical assessment at the end of this chapter. We describe the necessary state-of-the-art scientific equipment to guide EOR managers towards an appropriate MEOR strategy. Because it is inevitable to characterize the microbial community of an oilfield that should be treated using MEOR techniques, we describe three complementary start-up approaches. These are: (i) culturing methods, (ii) the characterization of microbial communities and possible bio-geochemical pathways by using molecular biology methods, and (iii) interfacial tension measurements. In conclusion, we hope that this chapter will facilitate a decision on whether to launch MEOR activities. We also provide an update on relevant literature for experienced MEOR researchers and oilfield operators. Microbiologists will learn about basic principles of interface physics needed to study the impact of microorganisms living on oil droplets. Last but not least, students and technicians trying to understand

  18. Biosurfactant and enhanced oil recovery

    Science.gov (United States)

    McInerney, Michael J.; Jenneman, Gary E.; Knapp, Roy M.; Menzie, Donald E.

    1985-06-11

    A pure culture of Bacillus licheniformis strain JF-2 (ATCC No. 39307) and a process for using said culture and the surfactant lichenysin produced thereby for the enhancement of oil recovery from subterranean formations. Lichenysin is an effective surfactant over a wide range of temperatures, pH's, salt and calcium concentrations.

  19. Tracing enhanced oil recovery signatures in casing gases from the Lost Hills oil field using noble gases

    Science.gov (United States)

    Barry, Peter H.; Kulongoski, Justin; Landon, Matthew K.; Tyne, R.L.; Gillespie, Janice; Stephens, Michael; Hillegonds, D.J.; Byrne, D.J.; Ballentine, C.J.

    2018-01-01

    Enhanced oil recovery (EOR) and hydraulic fracturing practices are commonly used methods to improve hydrocarbon extraction efficiency; however the environmental impacts of such practices remain poorly understood. EOR is particularly prevalent in oil fields throughout California where water resources are in high demand and disposal of high volumes of produced water may affect groundwater quality. Consequently, it is essential to better understand the fate of injected (EOR) fluids in California and other subsurface petroleum systems, as well as any potential effect on nearby aquifer systems. Noble gases can be used as tracers to understand hydrocarbon generation, migration, and storage conditions, as well as the relative proportions of oil and water present in the subsurface. In addition, a noble gas signature diagnostic of injected (EOR) fluids can be readily identified. We report noble gas isotope and concentration data in casing gases from oil production wells in the Lost Hills oil field, northwest of Bakersfield, California, and injectate gas data from the Fruitvale oil field, located within the city of Bakersfield. Casing and injectate gas data are used to: 1) establish pristine hydrocarbon noble-gas signatures and the processes controlling noble gas distributions, 2) characterize the noble gas signature of injectate fluids, 3) trace injectate fluids in the subsurface, and 4) construct a model to estimate EOR efficiency. Noble gas results range from pristine to significantly modified by EOR, and can be best explained using a solubility exchange model between oil and connate/formation fluids, followed by gas exsolution upon production. This model is sensitive to oil-water interaction during hydrocarbon expulsion, migration, and storage at reservoir conditions, as well as any subsequent modification by EOR.

  20. Bacterial community diversity in a low-permeability oil reservoir and its potential for enhancing oil recovery.

    Science.gov (United States)

    Xiao, Meng; Zhang, Zhong-Zhi; Wang, Jing-Xiu; Zhang, Guang-Qing; Luo, Yi-Jing; Song, Zhao-Zheng; Zhang, Ji-Yuan

    2013-11-01

    The diversity of indigenous bacterial community and the functional species in the water samples from three production wells of a low permeability oil reservoir was investigated by high-throughput sequencing technology. The potential of application of indigenous bacteria for enhancing oil recovery was evaluated by examination of the effect of bacterial stimulation on the formation water-oil-rock surface interactions and micromodel test. The results showed that production well 88-122 had the most diverse bacterial community and functional species. The broth of indigenous bacteria stimulated by an organic nutrient activator at aerobic condition changed the wettability of the rock surface from oil-wet to water-wet. Micromodel test results showed that flooding using stimulated indigenous bacteria following water flooding improved oil recovery by 6.9% and 7.7% in fractured and unfractured micromodels, respectively. Therefore, the zone of low permeability reservoir has a great potential for indigenous microbial enhanced oil recovery. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Light affects Varronia curassavica essential oil yield by increasing trichomes frequency

    Directory of Open Access Journals (Sweden)

    Emily V.R. da S. Feijó

    Full Text Available Light can act on essential oil yield directly on synthesis of secondary metabolites, or indirectly on plant growth. Varronia curassavica Jacq., Boraginaceae, is a native medicinal species from Brazil known as “erva-baleeira”, with anti-inflammatory activity related to its essential oil. Despite pharmacological evidences of this species and its economic importance for herbal medicine production, little is known about the effect of light on growth and essential oil production. This study aimed to analyze the influence of different irradiances on growth, frequency of trichomes, essential oil yield and composition of V. curassavica. The irradiance affected plant growth, but no significant alteration on leaf biomass was detected. The increase in essential oil content under higher irradiance reflected on essential oil yield, and is associated with higher frequency of glandular, globular trichomes. The essential oil composition, rich in caryophyllene derivatives was affected by irradiance, but α-humulene, the constituent of pharmaceutical interest, remained unchanged.

  2. Factors affecting oil palm production in Ondo state of Nigeria

    African Journals Online (AJOL)

    sola

    ... affecting oil palm production in predominantly oil palm producing areas of Ondo state of Nigeria. ... This was because the mangrove swamp zone does not .... Research stations e.g. NIFOR. Radio .... palm production management practices.

  3. The combined effects of phytoremediation and biostimulation in enhancing habitat restoration and oil degradation of petroleum contaminated wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Qianxin; Mendelssohn, Irving A [Wetland Biogeochemistry Institute, Center for Coastal, Energy, and Environmental Resources, Louisiana State University, Baton Rouge, LA 70803 (United States)

    1998-06-30

    The combined effects of biostimulation and phytoremediation as a means of post-oil spill habitat restoration and enhancement of oil degradation in the soil were evaluated. Marsh sods of Spartina alterniflora and Spartina patens were dosed with 0, 4, 8, 16 and 24 l m{sup -2} of south Louisiana crude oil in the greenhouse. Plants were killed at oil dosages of 8 l m{sup -2} in the growing season following oil application. Two years after application of the oil, S. alterniflora and S. patens individuals were transplanted into the oiled and unoiled sods. Fertilizer was applied 1 and 7 months after transplantation. Application of the fertilizer significantly increased biomass of the transplants within 6 months and regrowth biomass of the transplants 1 year after transplantation for both plant species. The residual oil in the soil did not significantly affect the biomass of the S. patens transplants compared with that in the no oil treatment, except at the highest oil level. However, regrowth biomass of the S. alterniflora transplants treated with fertilizer was significantly higher at all oil levels up to 250 mg g{sup -1} than in the unoiled treatment, with or without fertilizer. The oil degradation rate in the soil was significantly enhanced by the application of fertilizer in conjunction with the presence of transplants. These results suggest that vegetative transplantation, when implemented with fertilization, can simultaneously restore oil contaminated wetlands and accelerate oil degradation in the soil

  4. Enhanced oil recovery: an update review

    International Nuclear Information System (INIS)

    Alvarado, V.; Manrique, E.

    2010-01-01

    With the decline in oil discoveries during the last decades it is believed that Enhanced Oil Recovery (EOR) technologies will play a key role to meet the energy demand in years to come. This paper presents a comprehensive review of EOR status and opportunities to increase final recovery factors in reservoirs ranging from extra heavy oil to gas condensate. Specifically, the paper discusses EOR status and opportunities organized by reservoir lithology (sandstone and carbonates formations and turbiditic reservoirs to a lesser extent) and offshore and onshore fields. Risk and rewards of EOR methods including growing trends in recent years such as CO 2 injection, high pressure air injection (HPAI) and chemical flooding are addressed including a brief overview of CO 2 -EOR project economics. (authors)

  5. Enhanced oil recovery projects data base

    Energy Technology Data Exchange (ETDEWEB)

    Pautz, J.F.; Sellers, C.A.; Nautiyal, C.; Allison, E.

    1992-04-01

    A comprehensive enhanced oil recovery (EOR) project data base is maintained and updated at the Bartlesville Project Office of the Department of Energy. This data base provides an information resource that is used to analyze the advancement and application of EOR technology. The data base has extensive information on 1,388 EOR projects in 569 different oil fields from 1949 until the present, and over 90% of that information is contained in tables and graphs of this report. The projects are presented by EOR process, and an index by location is provided.

  6. Solar Thermal Enhanced Oil Recovery, (STEOR) Volume 1: Executive summary

    Science.gov (United States)

    Elzinga, E.; Arnold, C.; Allen, D.; Garman, R.; Joy, P.; Mitchell, P.; Shaw, H.

    1980-11-01

    Thermal enhanced oil recovery is widely used in California to aid in the production of heavy oils. Steam injection either to stimulate individual wells or to drive oil to the producing wells, is by far the major thermal process today and has been in use for over 20 years. Since steam generation at the necessary pressures (generally below 4000 kPa (580 psia)) is within the capabilities of present day solar technology, it is logical to consider the possibilities of solar thermal enhanced oil recovery (STEOR). The present project consisted of an evaluation of STEOR. Program objectives, system selection, trade-off studies, preliminary design, cost estimate, development plan, and market and economic analysis are summarized.

  7. Experimental Study of Enhancing Oil Recovery with Weak Base Alkaline/Surfactant/Polymer

    Directory of Open Access Journals (Sweden)

    Dandan Yin

    2017-01-01

    Full Text Available Na2CO3 was used together with surfactant and polymer to form the Alkaline/Surfactant/Polymer (ASP flooding system. Interfacial tension (IFT and emulsification of Dagang oil and chemical solutions were studied in the paper. The experiment results show that the ASP system can form super-low interfacial tension with crude oil and emulsified phase. The stability of the emulsion is enhanced by the Na2CO3, surfactant, and the soap generated at oil/water contact. Six core flooding experiments are conducted in order to investigate the influence of Na2CO3 concentration on oil recovery. The results show the maximum oil recovery can be obtained with 0.3 wt% surfactant, 0.6 wt% Na2CO3, and 2000 mg/L polymer. In a heterogeneous reservoir, the ASP flooding could not enhance the oil recovery by reducing IFT until it reaches the critical viscosity, which indicates expanding the sweep volume is the premise for reducing IFT to enhance oil recovery. Reducing or removing the alkali from ASP system to achieve high viscosity will reduce oil recovery because of the declination of oil displacement efficiency. Weak base ASP alkali can ensure that the whole system with sufficient viscosity can start the medium and low permeability layers and enhance oil recovery even if the IFT only reaches 10−2 mN/m.

  8. Hydrophobically associated polymers for wettability alteration and enhanced oil recovery – Article review

    Directory of Open Access Journals (Sweden)

    A.N. El-hoshoudy

    2017-09-01

    Full Text Available Crude oil and other petroleum products are crucial to the global economy today due to increasing energy demand approximately (∼1.5% per year and significant oil remaining after primary and secondary oil recovery (∼45–55% of original oil in place, OOIP, which accelerates the development of enhanced oil recovery (EOR technologies to maximize the recovered oil amount by non-conventional methods as polymer flooding. This review discusses enhanced oil recovery methods specially polymer flooding techniques and their effects on rock wettability alteration.

  9. Steam injection and enhanced bioremediation of heavy fuel oil contamination

    International Nuclear Information System (INIS)

    Dablow, J.; Hicks, R.; Cacciatore, D.

    1995-01-01

    Steam injection has been shown to be successful in remediating sites impacted by heavy fuel oils. Field demonstrations at both pilot and full scale have removed No. 2 diesel fuel and Navy Special Fuel Oil (No. 5 fuel oil) from impacted soils. Removal mechanisms include enhanced volatilization of vapor- and adsorbed-phase contaminants and enhanced mobility due to decreased viscosity and associated residual saturation of separate- and adsorbed-phase contaminants. Laboratory studies have shown that indigenous biologic populations are significantly reduced, but are not eliminated by steam injection operations. Populations were readily reestablished by augmentation with nutrients. This suggests that biodegradation enhanced by warm, moist, oxygenated environments can be expected to further reduce concentrations of contaminants following cessation of steam injection operations

  10. Climate change affecting oil palm agronomy, and oil palm cultivation increasing climate change, require amelioration.

    Science.gov (United States)

    Paterson, R Russell M; Lima, Nelson

    2018-01-01

    Palm oil is used in various valued commodities and is a large global industry worth over US$ 50 billion annually. Oil palms (OP) are grown commercially in Indonesia and Malaysia and other countries within Latin America and Africa. The large-scale land-use change has high ecological, economic, and social impacts. Tropical countries in particular are affected negatively by climate change (CC) which also has a detrimental impact on OP agronomy, whereas the cultivation of OP increases CC. Amelioration of both is required. The reduced ability to grow OP will reduce CC, which may allow more cultivation tending to increase CC, in a decreasing cycle. OP could be increasingly grown in more suitable regions occurring under CC. Enhancing the soil fauna may compensate for the effect of CC on OP agriculture to some extent. The effect of OP cultivation on CC may be reduced by employing reduced emissions from deforestation and forest degradation plans, for example, by avoiding illegal fire land clearing. Other ameliorating methods are reported herein. More research is required involving good management practices that can offset the increases in CC by OP plantations. Overall, OP-growing countries should support the Paris convention on reducing CC as the most feasible scheme for reducing CC.

  11. Viability of Biopolymers for Enhanced Oil Recovery

    NARCIS (Netherlands)

    Sveistrup, Marte; van Mastrigt, Frank; Norrman, Jens; Picchioni, Francesco; Paso, Kristofer

    2016-01-01

    Xanthan gum and scleroglucan are assessed as environmentally friendly enhanced oil recovery (EOR) agents. Viscometric and interfacial tension measurements show that the polysaccharides exhibit favorable viscosifying performance, robust shear tolerance, electrolyte tolerance, and moderate

  12. Using Polymer Alternating Gas to Enhance Oil Recovery in Heavy Oil

    Science.gov (United States)

    Yang, Yongzhi; Li, Weirong; Zhou, Tiyao; Dong, Zhenzhen

    2018-02-01

    CO2 has been used to recover oil for more than 40 years. Currently, about 43% of EOR production in U.S. is from CO2 flooding. CO2 flooding is a well-established EOR technique, but its density and viscosity nature are challenges for CO2 projects. Low density (0.5 to 0.8 g/cm3) causes gas to rise upward in reservoirs and bypass many lower portions of the reservoir. Low viscosity (0.02 to 0.08 cp) leads to poor volumetric sweep efficiency. So water-alternating-gas (WAG) method was used to control the mobility of CO2 and improve sweep efficiency. However, WAG process has some other problems in heavy oil reservoir, such as poor mobility ratio and gravity overriding. To examine the applicability of carbon dioxide to recover viscous oil from highly heterogeneous reservoirs, this study suggests a new EOR method--polymer-alternating gas (PAG) process. The process involves a combination of polymer flooding and CO2 injection. To confirm the effectiveness of PAG process in heavy oils, a reservoir model from Liaohe Oilfield is used to compare the technical and economic performance among PAG, WAG and polymer flooding. Simulation results show that PAG method would increase oil recovery over 10% compared with other EOR methods and PAG would be economically success based on assumption in this study. This study is the first to apply PAG to enhance oil recovery in heavy oil reservoir with highly heterogeneous. Besides, this paper provides detailed discussions and comparison about PAG with other EOR methods in this heavy oil reservoir.

  13. A business process for enhanced heavy oil recovery research and development

    International Nuclear Information System (INIS)

    Carlson, P.; Campbell, M.; Kantzas, A.

    1995-01-01

    Husky Oil's enhanced oil recovery (EOR) research management processes for reducing process development time and increasing investment efficiency were described. The considerations that went into the development of the plan a decade ago were reviewed and new ideas incorporated into the revised plan were presented. Four case studies were presented to illustrate the need for process to reservoir matching. A need for strategic research planning was emphasized. Proposed technologies for enhancement of heavy oil reservoir productivity were presented in tabular form. 1 tab., 7 figs

  14. Enhanced bioremediation of soil contaminated with viscous oil through microbial consortium construction and ultraviolet mutation.

    Science.gov (United States)

    Chen, Jing; Yang, Qiuyan; Huang, Taipeng; Zhang, Yongkui; Ding, Ranfeng

    2011-06-01

    This study focused on enhancing the bioremediation of soil contaminated with viscous oil by microorganisms and evaluating two strategies. Construction of microbial consortium and ultraviolet mutation were both effective applications in the remediation of soil contaminated with viscous oil. Results demonstrated that an interaction among the microorganisms existed and affected the biodegradation rate. Strains inoculated equally into the test showed the best remediation, and an optimal microbial consortium was achieved with a 7 days' degradation rate of 49.22%. On the other hand, the use of ultraviolet mutation increased one strain's degrading ability from 41.83 to 52.42% in 7 days. Gas chromatography and mass spectrum analysis showed that microbial consortium could treat more organic fractions of viscous oil, while ultraviolet mutation could be more effect on increasing one strain's degrading ability.

  15. Microbial consortia in Oman oil fields: a possible use in enhanced oil recovery.

    Science.gov (United States)

    Al-Bahry, Saif N; Elshafie, Abdulkader E; Al-Wahaibi, Yahya M; Al-Bemani, Ali S; Joshi, Sanket J; Al-Maaini, Ratiba A; Al-Alawi, Wafa J; Sugai, Yuichi; Al-Mandhari, Mussalam

    2013-01-01

    Microbial enhanced oil recovery (MEOR) is one of the most economical and efficient methods for extending the life of production wells in a declining reservoir. Microbial consortia from Wafra oil wells and Suwaihat production water, Al-Wusta region, Oman were screened. Microbial consortia in brine samples were identified using denaturing gradient gel electrophoresis and 16S rRNA gene sequences. The detected microbial consortia of Wafra oil wells were completely different from microbial consortia of Suwaihat formation water. A total of 33 genera and 58 species were identified in Wafra oil wells and Suwaihat production water. All of the identified microbial genera were first reported in Oman, with Caminicella sporogenes for the first time reported from oil fields. Most of the identified microorganisms were found to be anaerobic, thermophilic, and halophilic, and produced biogases, biosolvants, and biosurfactants as by-products, which may be good candidates for MEOR.

  16. Air injection low temperature oxidation process for enhanced oil recovery from light oil reservoirs

    International Nuclear Information System (INIS)

    Tunio, A.H.; Harijan, K.

    2010-01-01

    This paper represents EOR (Enhanced Oil Recovery) methods to recover unswept oil from depleted light oil reservoirs. The essential theme here is the removal of oxygen at LTO (Low Temperature Oxidation) from the injected air for a light oil reservoir by means of some chemical reactions occurring between oil and oxygen. In-situ combustion process, HTO (High Temperature Oxidation) is not suitable for deep light oil reservoirs. In case of light oil reservoirs LTO is more suitable to prevail as comparative to HTO. Few laboratory experimental results were obtained from air injection process, to study the LTO reactions. LTO process is suitable for air injection rate in which reservoir has sufficiently high temperature and spontaneous reaction takes place. Out comes of this study are the effect of LTO reactions in oxygen consumption and the recovery of oil. This air injection method is economic compared to other EOR methods i.e. miscible hydrocarbon gas, nitrogen, and carbon dioxide flooding etc. This LTO air injection process is suitable for secondary recovery methods where water flooding is not feasible due to technical problems. (author)

  17. Field reconnaissance and estimation of petroleum hydrocarbon and heavy metal contents of soils affected by the Ebocha-8 oil spillage in Niger Delta, Nigeria.

    Science.gov (United States)

    Osuji, Leo C; Onojake, Chukunedum M

    2006-04-01

    Field reconnaissance of the Ebocha-8 oil spill-affected site at Obiobi/Obrikom in the Niger Delta region of Nigeria was carried out to assess the extent of damage to the terrestrial ecosystem and delimit the epicenter of oil spillage. Following three successive reconnaissance surveys, the area to be sampled was delimited (200 x 200 m2), and soil samples were collected using the grid method from three replicate quadrats at two depths, surface (0-15 cm) and subsurface (15-30 cm). A geographically similar area located 50 m adjacent to the oil-polluted area was used as a reference (control) site. Total hydrocarbon content (THC) and heavy metal concentrations were later determined in the laboratory by extraction and spetrophotemetric techniques. Generally, the THC of soils at surface and subsurface depths of the oil-polluted plots was 2.06 x 10(4) +/- 4.97 x 10(3) mg/kg and 1.67 x 10(3) +/- 3.61 x 10(2) mg/kg soil, respectively, (no overlap in standard errors at 95% confidence limit) while concentrations of heavy metals(Pb, Cd, V, Cu and Ni) were enhanced, especially at the surface. The high levels of THC and heavy metals may predispose the site, which hitherto served as arable agricultural land, to impaired fertility and possible conflagration. When concentrations of heavy metals reach the levels obtained in this study, they may become toxic to plants or possibly bio-accumulate, thus leading to toxic reactions along the food chain. While the spilled-oil may have contributed to the enhanced levels of the metals in the affected soils, physico-chemical properties of the soils, mobility of metals, and the intense rainfall and flooding that preceded the period of study may have also contributed in part to their enhanced concentrations. The presence of high hydrocarbon content may cause oxygen deprivation, which may result in the death of soil fauna by asphyxiation. There is, therefore, an urgent need to clear the affected site of these excess hydrocarbon deposits so as to

  18. Off-shore enhanced oil recovery in the North Sea: The impact of price uncertainty on the investment decisions

    International Nuclear Information System (INIS)

    Compernolle, T.; Welkenhuysen, K.; Huisman, K.; Piessens, K.; Kort, P.

    2017-01-01

    Although CO_2 Capture and Storage (CCS) is considered a key solution for CO_2 emission mitigation, it is currently not economically feasible. CO_2 enhanced oil recovery can play a significant role in stimulating CCS deployment because CO_2 is used to extract additional quantities of oil. This study analyzes the investment decision of both a carbon emitting source and an oil company separately by adopting a real options approach. It is shown that when uncertainty is integrated in the economic analysis, CO_2 and oil price threshold levels at which investments in CO_2 capture and enhanced oil recovery will take place, are higher than when a net present value approach is adopted. We also demonstrate that a tax on CO_2 instead of an emission trading system results in a lower investment threshold level for the investment in the CO_2 capture unit. Furthermore, we determine a minimum CO_2 selling price between the two firms and show that CO_2-EOR has the potential to pull CCS into the market by providing an additional revenue on the capture plant. However, when CO_2 permit prices are above an identifiable level, the EU ETS does not necessarily result in the adoption of CCS and stimulates oil production. - Highlights: • Real options theory is applied to study how uncertainty affects CO2EOR investments. • Compared to an NPV approach, investment threshold levels are higher. • A tax on CO2 would result in lower investment threshold levels compared to EUETS. • A minimum CO2 selling price is determined • The CO2 needed for enhanced oil recovery is not necessarily a cost.

  19. Nitrate-Mediated Microbially Enhanced Oil Recovery (N-MEOR) from model upflow bioreactors.

    Science.gov (United States)

    Gassara, Fatma; Suri, Navreet; Voordouw, Gerrit

    2017-02-15

    Microbially Enhanced Oil Recovery (MEOR) can enhance oil production with less energy input and less costs than other technologies. The present study used different aqueous electron donors (acetate, glucose, molasses) and an aqueous electron acceptor (nitrate) to stimulate growth of heterotrophic nitrate reducing bacteria (hNRB) to improve production of oil. Initial flooding of columns containing heavy oil (viscosity of 3400cP at 20°C) with CSBK (Coleville synthetic brine medium) produced 0.5 pore volume (PV) of oil. Bioreactors were then inoculated with hNRB with 5.8g/L of molasses and 0, 10, 20, 40, 60 or 80mM nitrate, as well as with 17mM glucose or 57mM acetate and 80mM nitrate. During incubations no oil was produced in the bioreactors that received 5.8g/L of molasses and 0, 10, 20, 40 or 60mM nitrate. However, the bioreactors injected with 5.8g/L of molasses, 17mM glucose or 57mM acetate and 80mM nitrate produced 13.9, 11.3±3.1 and 17.8±6.6% of residual oil, respectively. The significant production of oil from these bioreactors may be caused by N 2 -CO 2 gas production. Following continued injection with CSBK without nitrate, subsequent elution of significant residual oil (5-30%) was observed. These results also indicate possible involvement of fermentation products (organic acids, alcohols) to enhance heavy oil recovery. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Enhanced Oil Recovery: Aqueous Flow Tracer Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Rovani; John Schabron

    2009-02-01

    A low detection limit analytical method was developed to measure a suite of benzoic acid and fluorinated benzoic acid compounds intended for use as tracers for enhanced oil recovery operations. Although the new high performance liquid chromatography separation successfully measured the tracers in an aqueous matrix at low part per billion levels, the low detection limits could not be achieved in oil field water due to interference problems with the hydrocarbon-saturated water using the system's UV detector. Commercial instrument vendors were contacted in an effort to determine if mass spectrometry could be used as an alternate detection technique. The results of their work demonstrate that low part per billion analysis of the tracer compounds in oil field water could be achieved using ultra performance liquid chromatography mass spectrometry.

  1. Microbial Activation of Bacillus subtilis-Immobilized Microgel Particles for Enhanced Oil Recovery.

    Science.gov (United States)

    Son, Han Am; Choi, Sang Koo; Jeong, Eun Sook; Kim, Bohyun; Kim, Hyun Tae; Sung, Won Mo; Kim, Jin Woong

    2016-09-06

    Microbially enhanced oil recovery involves the use of microorganisms to extract oil remaining in reservoirs. Here, we report fabrication of microgel particles with immobilized Bacillus subtilis for application to microbially enhanced oil recovery. Using B. subtilis isolated from oil-contaminated soils in Myanmar, we evaluated the ability of this microbe to reduce the interfacial tension at the oil-water interface via production of biosurfactant molecules, eventually yielding excellent emulsification across a broad range of the medium pH and ionic strength. To safely deliver B. subtilis into a permeable porous medium, in this study, these bacteria were physically immobilized in a hydrogel mesh of microgel particles. In a core flooding experiment, in which the microgel particles were injected into a column packed with silica beads, we found that these particles significantly increased oil recovery in a concentration-dependent manner. This result shows that a mesh of microgel particles encapsulating biosurfactant-producing microorganisms holds promise for recovery of oil from porous media.

  2. Characterization of indigenous oil field microorganisms for microbially enhanced oil recovery (MEOR)

    Energy Technology Data Exchange (ETDEWEB)

    Sitte, J.; Krueger, M. [Bundesanstalt fuer Geowissenschaften und Rohstoffe (BGR), Hannover (Germany); Biegel, E.; Herold, A. [BASF SE, Ludwigshafen (Germany); Alkan, H. [Wintershall Holding GmbH, Kassel (Germany)

    2013-08-01

    Microbial activities and their resulting metabolites became a focus of attention for enhanced oil recovery (MEOR, microbial enhanced oil recovery) in the recent years. In order to develop a strategy for a MEOR application in a German oil field operated by Wintershall experiments were performed to investigate different sampling strategies and the microbial communities found in these samples. The objectives of this study were (1) to characterize the indigenous microbial communities, (2) to investigate the dependency of microbial activity/diversity on the different sampling strategies, and (3) to study the influence of the in situ pressure on bacterial growth and metabolite production. Fluids were sampled at the well head (surface) and in situ in approx. 785 m depth to collect uncontaminated production water directly from the reservoir horizon and under the in situ pressure of 31 bar (subsurface). In the lab the pressure was either released quickly or slowly to assess the sensitivity of microorganisms to rapid pressure changes. Quantitative PCR resulted in higher microbial cell numbers in the subsurface than in the surface sample. Biogenic CO{sub 2} and CH{sub 4} formation rates were determined under atmospheric and high pressure conditions in the original fluids, with highest rates found in the surface fluid. Interestingly, no methane was formed in the native fluid samples. While nitrate reduction was exclusively detected in the surface samples, sulfide formation also occurred in the subsurface fluids. Increased CO{sub 2} formation was measured after addition of a variety of substrates in the surface fluids, while only fructose and glucose showed a stimulating effect on CO{sub 2} production for the subsurface sample. Stable enrichment cultures were obtained in complex medium inoculated with the subsurface fluid, both under atmospheric and in situ pressure. Growth experiments with constant or changing pressure, and subsequent DGGE analysis of bacterial 16S rRNA genes

  3. Characterization of napthenic acids in oil sands process-affected waters using fluorescence technology

    International Nuclear Information System (INIS)

    Brown, L.; Alostaz, M.; Ulrich, A.

    2009-01-01

    Process-affected water from oil sands production plants presents a major environmental challenge to oil sands operators due to its toxicity to different organisms as well as its corrosiveness in refinery units. This abstract investigated the use of fluorescence excitation-emission matrices to detect and characterize changes in naphthenic acid in oil sands process-affected waters. Samples from oil sands production plants and storage ponds were tested. The study showed that oil sands naphthenic acids show characteristic fluorescence signatures when excited by ultraviolet light in the range of 260 to 350 mm. The signal was a unique attribute of the naphthenic acid molecule. Changes in the fluorescence signature can be used to determine chemical changes such as degradation or aging. It was concluded that the technology can be used as a non-invasive continuous water quality monitoring tool to increase process control in oil sands processing plants

  4. Microbial processes in the Athabasca Oil Sands and their potential applications in microbial enhanced oil recovery.

    Science.gov (United States)

    Harner, N K; Richardson, T L; Thompson, K A; Best, R J; Best, A S; Trevors, J T

    2011-11-01

    The Athabasca Oil Sands are located within the Western Canadian Sedimentary Basin, which covers over 140,200 km(2) of land in Alberta, Canada. The oil sands provide a unique environment for bacteria as a result of the stressors of low water availability and high hydrocarbon concentrations. Understanding the mechanisms bacteria use to tolerate these stresses may aid in our understanding of how hydrocarbon degradation has occurred over geological time, and how these processes and related tolerance mechanisms may be used in biotechnology applications such as microbial enhanced oil recovery (MEOR). The majority of research has focused on microbiology processes in oil reservoirs and oilfields; as such there is a paucity of information specific to oil sands. By studying microbial processes in oil sands there is the potential to use microbes in MEOR applications. This article reviews the microbiology of the Athabasca Oil Sands and the mechanisms bacteria use to tolerate low water and high hydrocarbon availability in oil reservoirs and oilfields, and potential applications in MEOR.

  5. Chemometric assessment of enhanced bioremediation of oil contaminated soils

    DEFF Research Database (Denmark)

    Soleimani, Mohsen; Farhoudi, Majid; Christensen, Jan H.

    2013-01-01

    Bioremediation is a promising technique for reclamation of oil polluted soils. In this study, six methods for enhancing bioremediation were tested on oil contaminated soils from three refinery areas in Iran (Isfahan, Arak, and Tehran). The methods included bacterial enrichment, planting...... relative removal of isoprenoids (e.g. norpristane, pristane and phytane). It is concluded that the CHEMSIC method is a valuable tool for assessing bioremediation efficiency....

  6. Studies on interfacial tension and contact angle of synthesized surfactant and polymeric from castor oil for enhanced oil recovery

    Science.gov (United States)

    Babu, Keshak; Pal, Nilanjan; Bera, Achinta; Saxena, V. K.; Mandal, Ajay

    2015-10-01

    New synthesized polymeric surfactants have immensely attracted the researchers for further development of chemical enhanced oil recovery method particularly in surfactant flooding. Contact angle and interfacial tension measurement tests are the effective ways to identify proper chemicals/surfactants for enhanced oil recovery by chemical/surfactant flooding. In the present study a new polymeric surfactant was synthesized from pre-synthesized sodium methyl ester sulfonate (surfactant) and acrylamide for application in chemical enhanced oil recovery. The synthesized surfactant and polymeric surfactant were used to measure interfacial tension between their aqueous phase and crude oil phase to investigate the efficiency of the surfactants in reduction of interfacial tension. The synthesized polymeric surfactant has also ability to control the mobility because of its viscous nature in aqueous solution. Contact angles of solid-crude oil-surfactant interface were also measured to study the effect of the synthesized surfactant and polymeric surfactant on wettability alteration mechanism. Synergistic effect was studied by using NaCl and synthesized surfactants on interfacial tension. Dynamic interfacial tensions of the surfactant and polymeric surfactant solutions with crude oil were measured at different NaCl concentrations. Interfacial tension was found to be lowered up to 10-2 to 10-3 mN/m which is effective for oil recovery. Measurement of contact angle indicates the wettability change of the quartz surface. Comparative studies on efficiencies of synthesized sodium methyl ester sulfonate surfactant and polymeric surfactant were also carried out with respect to interfacial tension reduction and contact angle change.

  7. BIOTIGER, A NATURAL MICROBIAL PRODUCT FOR ENHANCED HYDROCARBON RECOVERY FROM OIL SANDS.

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R; Topher Berry, T; Whitney Jones, W; Charles Milliken, C

    2008-05-27

    BioTiger{trademark} is a unique microbial consortia that resulted from over 8 years of extensive microbiology screening and characterization of samples collected from a century-old Polish waste lagoon. BioTiger{trademark} shows rapid and complete degradation of aliphatic and aromatic hydrocarbons, produces novel surfactants, is tolerant of both chemical and metal toxicity and shows good activity at temperature and pH extremes. Although originally developed and used by the U.S. Department of Energy for bioremediation of oil-contaminated soils, recent efforts have proven that BioTiger{trademark} can also be used to increase hydrocarbon recovery from oil sands. This enhanced ex situ oil recovery process utilizes BioTiger{trademark} to optimize bitumen separation. A floatation test protocol with oil sands from Ft. McMurray, Canada was used for the BioTiger{trademark} evaluation. A comparison of hot water extraction/floatation test of the oil sands performed with BioTiger{trademark} demonstrated a 50% improvement in separation as measured by gravimetric analysis in 4 h and a five-fold increase at 25 hr. Since BioTiger{trademark} performs well at high temperatures and process engineering can enhance and sustain metabolic activity, it can be applied to enhance recovery of hydrocarbons from oil sands or other complex recalcitrant matrices.

  8. Polymer as permeability modifier in porous media for enhanced oil recovery

    Science.gov (United States)

    Parsa, Shima; Weitz, David

    2017-11-01

    We use confocal microscopy to directly visualize the changes in morphology and mobilization of trapped oil ganglia within a 3D micromodel of porous media upon polymer flooding. Enhanced oil recovery is achieved in polymer flooding with large molecular weight at concentrations close or higher than a critical concentration of polymer. We also measure the fluctuations of the velocity of the displacing fluid and show that the velocities change upon polymer flooding in the whole medium. The changes in the fluid velocities are heterogeneous and vary in different pores, hence only providing enough pressure gradient across a few of the trapped oil ganglia and mobilize them. Our measurements show that polymer flooding is an effective method for enhancing oil recovery due to retention of polymer on the solid surfaces and changing the resistances of the available paths to water.

  9. Flow behavior of N2 huff and puff process for enhanced oil recovery in tight oil reservoirs.

    Science.gov (United States)

    Lu, Teng; Li, Zhaomin; Li, Jian; Hou, Dawei; Zhang, Dingyong

    2017-11-16

    In the present work, the potential of N 2 huff and puff process to enhance the recovery of tight oil reservoir was evaluated. N 2 huff and puff experiments were performed in micromodels and cores to investigate the flow behaviors of different cycles. The results showed that, in the first cycle, N 2 was dispersed in the oil, forming the foamy oil flow. In the second cycle, the dispersed gas bubbles gradually coalesced into the continuous gas phase. In the third cycle, N 2 was produced in the form of continuous gas phase. The results from the coreflood tests showed that, the primary recovery was only 5.32%, while the recoveries for the three N 2 huff and puff cycles were 15.1%, 8.53% and 3.22%, respectively.The recovery and the pressure gradient in the first cycle were high. With the increase of huff and puff cycles, and the oil recovery and the pressure gradient rapidly decreased. The oil recovery of N 2 huff and puff has been found to increase as the N 2 injection pressure and the soaking time increased. These results showed that, the properly designed and controlled N 2 huff and puff process can lead to enhanced recovery of tight oil reservoirs.

  10. Enhancement of anti-cholinesterase activity of Zingiber cassumunar essential oil using a microemulsion technique.

    Science.gov (United States)

    Okonogi, S; Chaiyana, W

    2012-10-01

    The aim of the present study was to enhance the cholinesterase inhibitory activity of Zingiber cassumunar (ZC) oil using a microemulsion (ME) technique. Pseudoternary phase diagrams of the oil, water, and surfactant/co-surfactant mixture were constructed using a water titration method. Effects of co-surfactant, surfactant/co-surfactant ratio, ionic strength, and pH were examined by means of the microemulsion region which existed in the phase diagrams. The inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) were tested by Ellman's colorimetric assay. It was found that ZC oil possesses inhibitory activity against not only AChE but also BChE. Formulation of ZC oil as ME revealed that alkyl chain length and number of hydroxyl groups of co-surfactant exhibited a remarkable effect on the pseudoternary phase diagram. Longer alkyl chains and more hydroxyl groups gave smaller regions of MEs. Ionic strength also affected the ME region. However, the phase behavior was hardly influenced by pH. The suitable ZC oil ME was composed of Triton X-114 in combination with propylene glycol. The anti-cholinesterase activity of this ME was much higher than that of native ZC oil. It exhibited twenty times and twenty five times higher inhibitory activity against AChE and BChE, respectively. ZC oil loaded ME is an attractive formulation for further characterization and an in vivo study in an animal model with Alzheimer's disease.

  11. Lithium niobate ultrasonic transducer design for Enhanced Oil Recovery.

    Science.gov (United States)

    Wang, Zhenjun; Xu, Yuanming; Gu, Yuting

    2015-11-01

    Due to the strong piezoelectric effect possessed by lithium niobate, a new idea that uses lithium niobate to design high-power ultrasonic transducer for Enhanced Oil Recovery technology is proposed. The purpose of this paper is to lay the foundation for the further research and development of high-power ultrasonic oil production technique. The main contents of this paper are as follows: firstly, structure design technique and application of a new high-power ultrasonic transducer are introduced; secondly, the experiment for reducing the viscosity of super heavy oil by this transducer is done, the optimum ultrasonic parameters for reducing the viscosity of super heavy oil are given. Experimental results show that heavy large molecules in super heavy oil can be cracked into light hydrocarbon substances under strong cavitation effect caused by high-intensity ultrasonic wave. Experiment proves that it is indeed feasible to design high-power ultrasonic transducer for ultrasonic oil production technology using lithium niobate. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. A study of the effects of enhanced oil recovery agents on the quality of Strategic Petroleum Reserves crude oil. [Physical and chemical interactions of Enhanced Oil Recovery reagents with hydrocarbons present in petroleum

    Energy Technology Data Exchange (ETDEWEB)

    Kabadi, V.N.

    1992-10-01

    The project was initiated on September 1, 1990. The objective of the project was to carry out a literature search to estimate the types and extents of long time interactions of enhanced oil recovery (EOR) agents, such as surfactants, caustics and polymers, with crude oil. This information is necessary to make recommendations about mixing EOR crude oil with crude oils from primary and secondary recovery processes in the Strategic Petroleum Reserve (SPR). Data were sought on both adverse and beneficial effects of EOR agents that would impact handling, transportation and refining of crude oil. An extensive literature search has been completed, and the following informations has been compiled: (1) a listing of existing EOR test and field projects; (2) a listing of currently used EOR agents; and (3) evidence of short and long term physical and chemical interactions of these EOR-agents with hydrocarbons, and their effects on the quality of crude oil at long times. This information is presented in this report. Finally some conclusions are derived and recommendations are made. Although the conclusions are based mostly on extrapolations because of lack of specific data, it is recommended that the enhancement of the rates of biodegradation of oil catalyzed by the EOR agents needs to be further studied. There is no evidence of substantial long term effects on crude oil because of other interactions. Some recommendations are also made regarding the types of studies that would be necessary to determine the effect of certain EOR agents on the rates of biodegradation of crude oil.

  13. Foam rheology in porous media and enhanced oil recovery potential

    International Nuclear Information System (INIS)

    Burley, R.

    1985-01-01

    Previous studies using foam as a mobility control agent in partially depleted oil wells have shown that foam has a potential for enhancing oil recovery after primary water flooding. The characteristics of foam as indicated by the results of several studies point to three potential applications of foam in oil recovery processes. These are: Improving the displacement efficiency of gas-drive processes (mobility control). Improving the sweep efficiency of other fluid injection processes (mobility control and flow impediment). Restricting the flow of undesired fluids and plugging of high permeable oil 'thief' zones (partial or total pore blockage). (author)

  14. An Exogenous Surfactant-Producing Bacillus subtilis Facilitates Indigenous Microbial Enhanced Oil Recovery.

    Science.gov (United States)

    Gao, Peike; Li, Guoqiang; Li, Yanshu; Li, Yan; Tian, Huimei; Wang, Yansen; Zhou, Jiefang; Ma, Ting

    2016-01-01

    This study used an exogenous lipopeptide-producing Bacillus subtilis to strengthen the indigenous microbial enhanced oil recovery (IMEOR) process in a water-flooded reservoir in the laboratory. The microbial processes and driving mechanisms were investigated in terms of the changes in oil properties and the interplay between the exogenous B. subtilis and indigenous microbial populations. The exogenous B. subtilis is a lipopeptide producer, with a short growth cycle and no oil-degrading ability. The B. subtilis facilitates the IMEOR process through improving oil emulsification and accelerating microbial growth with oil as the carbon source. Microbial community studies using quantitative PCR and high-throughput sequencing revealed that the exogenous B. subtilis could live together with reservoir microbial populations, and did not exert an observable inhibitory effect on the indigenous microbial populations during nutrient stimulation. Core-flooding tests showed that the combined exogenous and indigenous microbial flooding increased oil displacement efficiency by 16.71%, compared with 7.59% in the control where only nutrients were added, demonstrating the application potential in enhanced oil recovery in water-flooded reservoirs, in particular, for reservoirs where IMEOR treatment cannot effectively improve oil recovery.

  15. Study on Dynamic Characteristics of Microbial Enhanced Oil Recovery

    Science.gov (United States)

    Zhao, Yang; Shi, Fang; Qin, Wuying; Yan, Jing

    2018-01-01

    With the rapid development of economy, the demand for oil is increasing day by day. MEOR has the advantages of low cost and no pollution to the environment, attracted widespread attention. In this paper, the dynamic characteristics of microbial enhanced oil recovery were studied by laboratory experiments. The result showed that all the microbial flooding recovery rate could reach more than 5%, and the total recovery could reach more than 35% and if the injection period of microbial composite system was advanced, the whole oil displacement process could be shortened and the workload would be reduced.

  16. Performance experimental investigation of novel multifunctional nanohybrids on enhanced oil recovery

    Science.gov (United States)

    Gharibshahi, Reza; Jafari, Arezou; Omidkhah, Mohammadreza; Nezhad, Javad Razavi

    2018-01-01

    The unique characteristics of materials at the nanoscale make them a good candidate to use in the enhanced oil recovery (EOR) processes. Therefore, in this study, the effect of functionalized multi-walled carbon nanotube/silica nanohybrids on the oil recovery factor is investigated experimentally and nanofluids were injected into a glass micromodel for the first time. The nanohybrids synthesized by using sol-gel method. Micromodels as microscale apparatuses considered as 2D porous medium. Because they enable visual observation of phase displacement behavior at the pore scale. Distillated water used as the dispersion medium of nanoparticles for nanofluids preparation. A series of runs designed for flooding operations included water injection, carbon nanotube/water injection and two nanohybrids with different weight of MWCNT to the overall weight of the nanohybrid structure (10% and 70%) into the distilled water. Also, the oil recovery factor was considered as the goal parameter to compare the results. It has been found that functionalized multi-walled carbon nanotube/silica nanohybrids have a great potential in enhanced oil recovery processes. Results showed that addition of nanohybrids into distillate water causes enhancement of sweep efficiency. In other words, the fingering effect decreases and higher surface of porous medium is in contact with the injected fluid. So the higher amount of oil can produce from the porous medium consequently. By injecting nanofluid with 0.1 wt. % of carbon nanotube, the oil recovery factor increases about 11 % in comparison with water injection alone. Also by increasing the weight of MWCNT to the overall weight of the nanohybrid structure from 10% to 70%, the oil recovery factor increases from 35% to 39%.

  17. Enhanced Oil Recovery from Oil-wet Carbonate Rock by Spontaneous Imbibition of Aqueous Surfactant Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Standnes, Dag Chun

    2001-09-01

    The main theme of this thesis is an experimental investigation of spontaneous imbibition (SI) of aqueous cationic surfactant solution into oil-wet carbonate (chalk- and dolomite cores). The static imbibition process is believed to represent the matrix flow of oil and water in a fractured reservoir. It was known that aqueous solution of C{sub 12}-N(CH{sub 3}){sub 3}Br (C12TAB) was able to imbibe spontaneously into nearly oil-wet chalk material, but the underlying mechanism was not understood. The present work was therefore initiated, with the following objectives: (1) Put forward a hypothesis for the chemical mechanism underlying the SI of C12TAB solutions into oil-wet chalk material based on experimental data and (2) Perform screening tests of low-cost commercially available surfactants for their ability to displace oil by SI of water into oil-wet carbonate rock material. It is essential for optimal use of the surfactant in field application to have detailed knowledge about the mechanism underlying the SI process. The thesis also discusses some preliminary experimental results and suggests mechanisms for enhanced oil recovery from oil-wet carbonate rock induced by supply of thermal energy.

  18. Oil exploitation and the environmental Kuznets curve

    International Nuclear Information System (INIS)

    Esmaeili, Abdoulkarim; Abdollahzadeh, Negar

    2009-01-01

    This study refers to a panel estimation of an environmental Kuznets curve (EKC) for oil to determine the factors most affecting oil exploitation in 38 oil-producing countries during 1990-2000. Control variables such as oil reserves, oil price, population, political rights, and the Gini index were used to determine its contribution to the main EKC model. The empirical results fully support the existence of an EKC for oil exploitation. Furthermore, the result indicates that the proved oil reserves has a significant and positive role in oil production, but oil price and population do not significantly affect crude oil production. Also, increased freedoms and a better income distribution will reduce the rate of oil exploitation. Thus, policies aiming at enhancing democratic society and better income distribution would be more compatible with sustainability. (author)

  19. Oil exploitation and the environmental Kuznets curve

    Energy Technology Data Exchange (ETDEWEB)

    Esmaeili, Abdoulkarim; Abdollahzadeh, Negar [Department of Agricultural Economics, College of Agriculture, Shiraz University, Shiraz, Fars (Iran)

    2009-01-15

    This study refers to a panel estimation of an environmental Kuznets curve (EKC) for oil to determine the factors most affecting oil exploitation in 38 oil-producing countries during 1990-2000. Control variables such as oil reserves, oil price, population, political rights, and the Gini index were used to determine its contribution to the main EKC model. The empirical results fully support the existence of an EKC for oil exploitation. Furthermore, the result indicates that the proved oil reserves has a significant and positive role in oil production, but oil price and population do not significantly affect crude oil production. Also, increased freedoms and a better income distribution will reduce the rate of oil exploitation. Thus, policies aiming at enhancing democratic society and better income distribution would be more compatible with sustainability. (author)

  20. Surfactant-enhanced alkaline flooding for light oil recovery. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wasan, D.T.

    1996-05-01

    In this report, we present the results of our experimental and theoretical studies in surfactant-enhanced alkaline flooding for light oil recovery. The overall objective of this work is to develop a very cost-effective method for formulating a successful surfactant-enhanced alkaline flood by appropriately choosing mixed alkalis which form inexpensive buffers to obtain the desired pH (between 8.5 and 12. 0) for ultimate spontaneous emulsification and ultralow interfacial tension. In addition, we have (1) developed a theoretical interfacial activity model for determining equilibrium interfacial tension, (2) investigated the mechanisms for spontaneous emulsification, (3) developed a technique to monitor low water content in oil and (4) developed a technique to study water-in-oil emulsion film properties, (5) investigated the effect of surfactant on the equilibrium and transient interfacial tension, (6) investigated the kinetics of oil removal from a silica surface, and (7) developed a theoretical interfacial activity model for determining equilibrium interfacial tension, accounting for added surfactant. The results of the studies conducted during the course of this project are discussed.

  1. Prospects of Microbial Enhanced Oil Recovery  in Danish chalk rocks

    DEFF Research Database (Denmark)

    Rudyk, Svetlana Nikolayevna; Jørgensen, Leif Wagner; Bah Awasi, Ismail

      Microbial Enhanced Oil Recovery (MEOR) uses bacteria, producing gas (CO2), polymers or surfactants to help recover residual oil after the water injection depletes its possibilities. Two strains of Clostridia tyrobutiricum were investigated as possible candidates for MEOR  implementation in Danish...

  2. Application of Sodium Ligno Sulphonate as Surfactant in Enhanced Oil Recovery and Its Feasibility Test for TPN 008 Oil

    Science.gov (United States)

    Prakoso, N. I.; Rochmadi; Purwono, S.

    2018-04-01

    One of enhanced oil recovery (EOR) methods is using surfactants to reduce the interfacial tension between the injected fluid and the oil in old reservoir. The most important principle in enhanced oil recovery process is the dynamic interaction of surfactants with crude oil. Sodium ligno sulphonate (SLS) is a commercial surfactant and already synthesized from palm solid waste by another researcher. This work aimed to apply SLS as a surfactant for EOR especially in TPN 008 oil from Pertamina Indonesia. In its application as an EOR’s surfactant, SLS shall be passed feasibility test like IFT, thermal stability, compatibility, filtration, molecular weight, density, viscosity and pH tests. The feasibility test is very important for a preliminary test prior to another advanced test. The results demonstrated that 1% SLS solution in formation water (TPN 008) had 0.254 mN/M IFT value and was also great in thermal stability, compatibility, filtration, molecular weight, viscosity and pH test.

  3. Astaxanthin degradation and lipid oxidation of Pacific white shrimp oil: kinetics study and stability as affected by storage conditions

    Directory of Open Access Journals (Sweden)

    Sirima Takeungwongtrakul

    2016-02-01

    Full Text Available Abstract The kinetics of astaxanthin degradation and lipid oxidation in shrimp oil from hepatopancreas of Pacific white shrimp (Litopenaeus vannamei as affected by storage temperature were studied. When shrimp oil was incubated at different temperatures (4, 30, 45 and 60 °C for 16 h, the rate constants (k of astaxanthin degradation and lipid oxidation in shrimp oil increased with increasing temperatures (p < 0.05. Thus, astaxanthin degradation and lipid oxidation in shrimp oil were augmented at high temperature. When shrimp oils with different storage conditions (illumination, oxygen availability and temperature were stored for up to 40 days, astaxanthin contents in all samples decreased throughout storage (p < 0.05. All factors were able to enhance astaxanthin degradation during 40 days of storage. With increasing storage time, the progressive formation of primary and secondary oxidation products were found in all samples as evidenced by the increases in both peroxide values (PV and thiobarbituric acid reactive substances (TBARS (p < 0.05. Light, air and temperatures therefore had the marked effect on astaxanthin degradation and lipid oxidation in shrimp oils during the extended storage.

  4. Potential of Essential Oils as Penetration Enhancers for Transdermal Administration of Ibuprofen to Treat Dysmenorrhoea

    Directory of Open Access Journals (Sweden)

    Jun Chen

    2015-10-01

    Full Text Available The present study was conducted to evaluate and compare five essential oils (EOs as penetration enhancers (PEs to improve the transdermal drug delivery (TDD of ibuprofen to treat dysmenorrhoea. The EOs were prepared using the steam distillation method and their chemical compositions were identified by GC-MS. The corresponding cytotoxicities were evaluated in epidermal keartinocyte HaCaT cell lines by an MTT assay. Furthermore, the percutaneous permeation studies were carried out to compare the permeation enhancement effect of EOs. Then the therapeutic efficacy of ibuprofen with EOs was evaluated using dysmenorrheal model mice. The data supports a decreasing trend of skin cell viability in which Clove oil >Angelica oil > Chuanxiong oil > Cyperus oil > Cinnamon oil >> Azone. Chuanxiong oil and Angelica oil had been proved to possess a significant permeation enhancement for TDD of ibuprofen. More importantly, the pain inhibitory intensity of ibuprofen hydrogel was demonstrated to be greater with Chuanxiong oil when compared to ibuprofen without EOs (p < 0.05. The contents of calcium ion and nitric oxide (NO were also significantly changed after the addition of Chuanxiong oil (p < 0.05. In summary, we suggest that Chuanxiong oil should be viewed as the best PE for TDD of ibuprofen to treat dysmenorrhea.

  5. Thermal enhanced oil recovery in Indonesia. Prospect of HTGR application

    International Nuclear Information System (INIS)

    Rahman, M.; Sumardiono; Lasman, A.N.; Sudarto; Prihardany, D.

    1997-01-01

    In the next future, Indonesia will face oil scarcity. The present reserves are estimated to be depleted in 20 years. However, after primary and secondary recovery processes, there are still more than 50% of original oil in place remaining in the reservoir, and this could be recovered by using tertiary recovery method or which is known as enhanced oil recovery (EOR) processes. Among the three major methods of EOR, steam flooding is a thermal recovery method into which High Temperature Reactor (HTR) module can be integrated for producing steam. However, the feasibility of application of HTR as an alternative to conventional oil-fired steam generator will depend strongly on the price of oil. This paper discusses EOR screening for Indonesian oil fields to identify the appropriate oil reservoirs for steam flooding application as well as the possibility of steam supply by HTR module. Also reviewed is the previous study on HTR application for Duri Steam Flood Project. (author). 8 refs, 6 figs, 5 tabs

  6. Potential of Russian Regions to Implement CO2-Enhanced Oil Recovery

    Directory of Open Access Journals (Sweden)

    Alexey Cherepovitsyn

    2018-06-01

    Full Text Available The paper assesses the techno-economic potential of Russia to implement carbon capture and storage technologies that imply the capture of anthropogenic CO2 and its injection into geologic reservoirs for long-term storage. The focus is on CO2 enhanced oil recovery projects that seem to be the most economically promising option of carbon capture and storage. The novelty of the work lies in the formulation of a potential assessment method of CO2 enhanced oil recovery, which allows for establishing a connection between energy production and oil extraction from the viewpoint of CO2 supply and demand. Using linear optimization, the most promising combinations of CO2 sources and sinks are identified and an economic evaluation of these projects is carried out. Based on this information, regions of Russia are ranked according to their prospects in regards to CO2 capture and enhanced oil recovery storage. The results indicate that Russia has a significant potential to utilize its power plants as CO2 sources for enhanced oil recovery projects. It has been estimated that 71 coal-fired power plants, and 185 of the gas-fired power plants of Russia annually produce 297.1 and 309.6 Mt of CO2 that can cover 553.4 Mt of the demand of 322 Russian oil fields. At the same time, the total CO2 storage capacity of the Russian fields is estimated at 7382.6 Mt, however, due to geological and technical factors, only 22.6% can be used for CO2-EOR projects. Of the 183 potential projects identified in the regional analysis phase, 99 were found to be cost-effective, with an average unit cost of € 19.07 per ton of CO2 and a payback period of 8.71 years. The most promising of the estimated regions is characterized by a well-developed energy industry, relatively low transportation costs, numerous large and medium-sized oil fields at the final stages of development, and favorable geological conditions that minimize the cost of injection. Geographically, they are located in the

  7. Essays on carbon policy and enhanced oil recovery

    Science.gov (United States)

    Cook, Benjamin R.

    The growing concerns about climate change have led policy makers to consider various regulatory schemes designed to reduce the stock and growth of atmospheric CO2 concentrations while at the same time improving energy security. The most prominent proposals are the so called "cap-and-trade" frameworks which set aggregate emission levels for a jurisdiction and then issue or sell a corresponding number of allowances to emitters. Typically, these policy measures will also encourage the deployment of carbon capture and storage (CCS) in geological formations and mature oil fields through subsidies or other incentives. The ability to store CO 2 in mature oil fields through the deployment of CO2 enhanced oil recovery (CO2--EOR) is particularly attractive as it can simultaneously improve oil recovery at those fields, and serve as a possible financial bridge to the development of CO2 transportation infrastructure. The purpose of this research is to explore the impact that a tandem subsidy-tax policy regime may have on bargaining between emitters and sequestration providers, and also to identify oil units in Wyoming that can profitably undertake CO 2--EOR as a starting point for the build-out of CO2 pipelines. In the first essay an economics lab experiment is designed to simulate private bargaining between carbon emitters (such as power plants) and carbon sequestration sites when the emitter faces carbon taxes, sequestration subsidies or both. In a tax-subsidy policy regime the carbon tax (or purchased allowances) can be avoided by sequestering the carbon, and in some cases the emitter can also earn a subsidy to help pay for the sequestration. The main policy implications of the experiment results are that the sequestration market might be inefficient, and sequestration providers seem to have bargaining power sufficient to command high prices. This may lead to the integration of CO2 sources and sequestration sites, and reduced prices for the injectable CO2 purchased by oil

  8. Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remediation: a review

    International Nuclear Information System (INIS)

    Banat, I.M.

    1995-01-01

    Surfactants are widely used for various purposes in industry, but for many years were mainly chemically synthesized. It has only been in the past few decades that biological surface-active compounds (biosurfactants) have been described. Biosurfactants are gaining prominence and have already taken over for a number of important industrial uses, due to their advantages of biodegradability, production on renewable resources and functionality under extreme conditions; particularly those pertaining during tertiary crude-oil recovery. Conflicting reports exist concerning their efficacy and the economics of both their production and application. The limited successes and applications for biosurfactants production, recovery, use in oil pollution control, oil storage tank clean-up and enhanced oil-recovery are reviewed from the technical point of view. (author)

  9. Engineering Behavior and Characteristics of Water-Soluble Polymers: Implication on Soil Remediation and Enhanced Oil Recovery

    Directory of Open Access Journals (Sweden)

    Shuang Cindy Cao

    2016-02-01

    Full Text Available Biopolymers have shown a great effect in enhanced oil recovery because of the improvement of water-flood performance by mobility control, as well as having been considered for oil contaminated-soil remediation thanks to their mobility control and water-flood performance. This study focused on the wettability analysis of biopolymers such as chitosan (85% deacetylated power, PEO (polyethylene oxide, Xanthan (xanthan gum, SA (Alginic Acid Sodium Salt, and PAA (polyacrylic acid, including the measurements of contact angles, interfacial tension, and viscosity. Furthermore, a micromodel study was conducted to explore pore-scale displacement phenomena during biopolymer injection into the pores. The contact angles of biopolymer solutions are higher on silica surfaces submerged in decane than at atmospheric conditions. While interfacial tensions of the biopolymer solutions have a relatively small range of 25 to 39 mN/m, the viscosities of biopolymer solutions have a wide range, 0.002 to 0.4 Pa·s, that dramatically affect both the capillary number and viscosity number. Both contact angles and interfacial tension have effects on the capillary entry pressure that increases along with an applied effective stress by overburden pressure in sediments. Additionally, a high injection rate of biopolymer solutions into the pores illustrates a high level of displacement ratio. Thus, oil-contaminated soil remediation and enhanced oil recovery should be operated in cost-efficient ways considering the injection rates and capillary entry pressure.

  10. Acoustic wave emission for enhanced oil recovery (WAVE.O.R.)

    International Nuclear Information System (INIS)

    Reichmann, S.; Amro, M.; Giese, R.; Jaksch, K.; Krauss, F.; Krueger, K.; Jurczyk, A.

    2016-09-01

    In the project WAVE.O.R the potential of acoustic waves to enhance oil recovery was reviewed. The project focused on laboratory experiments of the oil displacement in sandstone cores under acoustic stimulation. Additionally, the Seismic Prediction While Drilling (SPWD) borehole device prototype was set up for a feasibility field test. The laboratory experiments showed that, depending on the stimulation frequency, acoustic stimulation allows for an enhanced oil recovery. For single frequency stimulation a mean increase of 3 % pore volumes was observed at distinguished frequencies. A cyclic stimulation, where two of these frequencies were combined, an increase of 5% pore volume was observed. The SPWD borehole device was tested and adjusted during feasibility tests in the GFZ underground laboratory in the research and education mine ''Reiche Zeche'' of the TU Bergakademie Freiberg and in the GFZ KTB-Deep Laboratory in Windischeschenbach. The first successful test of the device under realistic conditions was performed at the test site ''Piana di Toppo'' of the OGS Trieste, Italy.

  11. High-order simulation of foam enhanced oil recovery

    NARCIS (Netherlands)

    Van der Meer, J.M.; Van Odyck, D.E.A.; Wirnsberger, P.; Jansen, J.D.

    2014-01-01

    If secondary hydrocarbon recovery methods fail because of the occurrence of gravity override or viscous fingering one can turn to an enhanced oil recovery method like the injection of foam. The generation of foam can be described by a set of partial differential equations with strongly nonlinear

  12. A Network Model for the Kinetics of Bioclogged Flow Diversion for Enhanced Oil Recovery

    NARCIS (Netherlands)

    Lopez Pena, L.A.; Meulenbroek, B.J.; Vermolen, F.J.

    2016-01-01

    After the primary extraction in oil reservoirs up to 60 % of the oil remains trapped in the reservoir (Sen, 2008). Therefore, different mechanisms have been developed to get the oil out to the reservoir. One of these techniques is Microbial Enhanced Oil Recovery (MEOR) which is a technique used

  13. Tracer monitoring of enhanced oil recovery projects

    Directory of Open Access Journals (Sweden)

    Kleven R.

    2013-05-01

    Full Text Available In enhanced oil recovery (EOR, chemicals are injected into the oil reservoir, either to increase macroscopic sweep efficiency, or to reduce remaining oil saturation in swept zones. Tracers can be used to identify reservoirs that are specifically suited for EOR operations. Injection of a selection of partitioning tracers, combined with frequent sample analysis of produced fluids, provides information suited for estimation of residual oil saturation. Tracers can also be used to evaluate and optimize the application of EOR chemicals in the reservoir. Suitable tracers will follow the EOR chemicals and assist in evaluation of retention, degradation or trapping. In addition to field applications, tracers also have a large potential as a tool to perform mechanistic studies of EOR chemicals in laboratory experiments. By labelling EOR chemicals with radioactive isotopes of elements such as H, C and S, detailed studies of transport mechanisms can be carried out. Co-injection of labelled compounds in dynamic flooding experiments in porous media will give information about retention or separation of the unique compounds constituting the chemical formulation. Separation of such compounds may be detrimental to obtaining the EOR effect expected. The paper gives new information of specific methods, and discusses current status for use of tracers in EOR operations.

  14. Sonochemical approaches to enhanced oil recovery.

    Science.gov (United States)

    Abramov, Vladimir O; Abramova, Anna V; Bayazitov, Vadim M; Altunina, Lyubov K; Gerasin, Artyom S; Pashin, Dmitriy M; Mason, Timothy J

    2015-07-01

    Oil production from wells reduces with time and the well becomes uneconomic unless enhanced oil recovery (EOR) methods are applied. There are a number of methods currently available and each has specific advantages and disadvantages depending on conditions. Currently there is a big demand for new or improved technologies in this field, the hope is that these might also be applicable to wells which have already been the subject of EOR. The sonochemical method of EOR is one of the most promising methods and is important in that it can also be applied for the treatment of horizontal wells. The present article reports the theoretical background of the developed sonochemical technology for EOR in horizontal wells; describes the requirements to the equipment needed to embody the technology. The results of the first field tests of the technology are reported. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Fine Formation During Brine-Crude Oil-Calcite Interaction in Smart Water Enhanced Oil Recovery for Caspian Carbonates

    DEFF Research Database (Denmark)

    Chakravarty, Krishna Hara; Fosbøl, Philip Loldrup; Thomsen, Kaj

    2015-01-01

    Modified sea water has been shown to affect the oil recovery fraction considerably during secondary and tertiary waterfloods. Available soluble potential ions (i.e. Ca2+, Mg2+ & SO42-) in the interacting waterflood (ITW) are suggested to play a key role in increasing the displacement efficiency...... of oil. In previous studies, compositions of injected waterfloods (IJW) have been correlated to the observed oil recovery. This study highlights differences between IJW and ITW for different studies reported in literature....

  16. Coconut oil enhances tomato carotenoid tissue accumulation compared to safflower oil in the Mongolian gerbil ( Meriones unguiculatus ).

    Science.gov (United States)

    Conlon, Lauren E; King, Ryan D; Moran, Nancy E; Erdman, John W

    2012-08-29

    Evidence suggests that monounsaturated and polyunsaturated fats facilitate greater absorption of carotenoids than saturated fats. However, the comparison of consuming a polyunsaturated fat source versus a saturated fat source on tomato carotenoid bioaccumulation has not been examined. The goal of this study was to determine the influence of coconut oil and safflower oil on tomato carotenoid tissue accumulation in Mongolian gerbils ( Meriones unguiculatus ) fed a 20% fat diet. Coconut oil feeding increased carotenoid concentrations among many compartments including total carotenoids in the serum (p = 0.0003), adrenal glandular phytoene (p = 0.04), hepatic phytofluene (p = 0.0001), testicular all-trans-lycopene (p = 0.01), and cis-lycopene (p = 0.006) in the prostate-seminal vesicle complex compared to safflower oil. Safflower oil-fed gerbils had greater splenic lycopene concentrations (p = 0.006) compared to coconut oil-fed gerbils. Coconut oil feeding increased serum cholesterol (p = 0.0001) and decreased hepatic cholesterol (p = 0.0003) compared to safflower oil. In summary, coconut oil enhanced tissue uptake of tomato carotenoids to a greater degree than safflower oil. These results may have been due to the large proportion of medium-chain fatty acids in coconut oil, which might have caused a shift in cholesterol flux to favor extrahepatic carotenoid tissue deposition.

  17. Screening Criteria and Considerations of Offshore Enhanced Oil Recovery

    Directory of Open Access Journals (Sweden)

    Pan-Sang Kang

    2016-01-01

    Full Text Available The application of enhanced oil recovery (EOR in offshore oil fields has received significant attention due to the potentially enormous amount of recoverable oil. However, EOR application offshore is in its very early stage due to conditions that are more complex than onshore oil fields, owing to the unique parameters present offshore. Therefore, successful EOR applications in offshore oil fields require different screening criteria than those for conventional onshore applications. A comprehensive database for onshore applications of EOR processes together with a limited offshore EOR application database are analyzed in this paper, and the important parameters for successful offshore application are incorporated into the new EOR screening criteria. In this paper, screening criteria to determine acceptable EOR processes for offshore fields, including hydrocarbon gas miscible, CO2 miscible, and polymer processes, are presented. Suggested screening criteria for these EOR processes comprise quantitative boundaries and qualitative considerations. Quantitative screening criteria are predominantly based on quantifiable data, such as oil and reservoir properties. Qualitative screening considerations mainly focus on the operational issues present offshore, including platform space constraints, limited disposal options, injectant availability, and flow assurance matters (including hydrate formation and difficulties in emulsion separation.

  18. Optimized mixed oils remarkably reduce the amount of surfactants in microemulsions without affecting oral bioavailability of ibuprofen by simultaneously enlarging microemulsion areas and enhancing drug solubility.

    Science.gov (United States)

    Chen, Yizhen; Tuo, Jue; Huang, Huizhi; Liu, Dan; You, Xiuhua; Mai, Jialuo; Song, Jiaqi; Xie, Yanqi; Wu, Chuanbin; Hu, Haiyan

    2015-06-20

    The toxicity and irritation associated with high amounts of surfactants restrict the extensive utilization of microemulsions. To address these shortcomings, employing mixed oils to enlarge microemulsion areas therefore reducing surfactant contents is a promising strategy. However, what kinds of mixed oils are more efficient in enlarging microemulsion areas still remains unclear. In this research, we found that the chain length and degree of unsaturation of oils play a key role in enlarging microemulsion areas. The combination of moderate chain saturated oil caprylic/capric triglyceride (GTCC) with long chain unsaturated oil glycerol trioleate significantly increased the microemulsion areas. Solubility of ibuprofen in the mixed oils was unexpectedly and remarkably increased (almost 300mg/mL) compared with that (around 100mg/mL) of the single oil (GTCC), which also resulted in greatly increased solubility of ibuprofen in mixed oils-containing microemulsions. By optimizing the mixed oil formulation, the absolute amount of surfactant in drug-loaded microemulsions was reduced but increased drug oral bioavailability in rats was maintained. It could be concluded that the combined use of moderate chain oils and long chain unsaturated oils could not only acquire enlarged microemulsion areas but also enhanced drug solubility, therefore doubly reducing surfactant amount, which is extremely beneficial for developing safe microemulsions. Copyright © 2015. Published by Elsevier B.V.

  19. Microwave thermal remediation of crude oil contaminated soil enhanced by carbon fiber.

    Science.gov (United States)

    Li, Dawei; Zhang, Yaobin; Quan, Xie; Zhao, Yazhi

    2009-01-01

    Thermal remediation of the soil contaminated with crude oil using microwave heating enhanced by carbon fiber (CF) was explored. The contaminated soil was treated with 2.45 GHz microwave, and CF was added to improve the conversion of microwave energy into thermal energy to heat the soil. During microwave heating, the oil contaminant was removed from the soil matrix and recovered by a condensation system of ice-salt bath. The experimental results indicated that CF could efficiently enhance the microwave heating of soil even with relatively low-dose. With 0.1 wt.% CF, the soil could be heated to approximately 700 degrees C within 4 min using 800 W of microwave irradiation. Correspondingly, the contaminated soil could be highly cleaned up in a short time. Investigation of oil recovery showed that, during the remediation process, oil contaminant in the soil could be efficiently recovered without causing significant secondary pollution.

  20. Research Progress in Carbon Dioxide Storage and Enhanced Oil Recovery

    Science.gov (United States)

    Wang, Keliang; Wang, Gang; Lu, Chunjing

    2018-02-01

    With the rapid development of global economy, human beings have become highly dependent upon fossil fuel such as coal and petroleum. Much fossil fuel is consumed in industrial production and human life. As a result, carbon dioxide emissions have been increasing, and the greenhouse effects thereby generated are posing serious threats to environment of the earth. These years, increasing average global temperature, frequent extreme weather events and climatic changes cause material disasters to the world. After scientists’ long-term research, ample evidences have proven that emissions of greenhouse gas like carbon dioxide have brought about tremendous changes to global climate. To really reduce carbon dioxide emissions, governments of different countries and international organizations have invested much money and human resources in performing research related to carbon dioxide emissions. Manual underground carbon dioxide storage and carbon dioxide-enhanced oil recovery are schemes with great potential and prospect for reducing carbon dioxide emissions. Compared with other schemes for reducing carbon dioxide emissions, aforementioned two schemes exhibit high storage capacity and yield considerable economic benefits, so they have become research focuses for reducing carbon dioxide emissions. This paper introduces the research progress in underground carbon dioxide storage and enhanced oil recovery, pointing out the significance and necessity of carbon dioxide-driven enhanced oil recovery.

  1. Surfactant-enhanced alkaline flooding for light oil recovery. Annual report, 1992--1993

    Energy Technology Data Exchange (ETDEWEB)

    Wasan, D.T.

    1994-08-01

    In this report, the authors present the results of experimental and theoretical studies in surfactant-enhanced alkaline flooding for light oil recovery. The overall objective of this work is to develop a very cost-effective method for formulating a successful surfactant-enhanced alkaline flood by appropriately choosing mixed alkalis which form inexpensive buffers to obtain the desired pH (between 8.5 and 12.0) for ultimate spontaneous emulsification and ultralow interfacial tension. In addition, the authors have (1) developed a theoretical interfacial activity model for determining equilibrium interfacial tension, (2) investigated the mechanisms for spontaneous emulsification, (3) developed a technique to monitor low water content in oil, and (4) developed a technique to study water-in-oil emulsion film properties.

  2. Carbon dioxide for enhanced oil recovery in Canada

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, S.; Manbybura, F.; Sparks, N.

    1985-01-01

    This paper examines the potential for carbon dioxide as a major miscible solvent in Canada and describes Shell Canada's carbon dioxide exploration efforts over the last few years. Enhanced oil recovery, specifically miscible flooding, has been recognized as a technically and economically feasible method for adding reserves and productive capacity to Canada's light and medium oil. The fiscal regime has been altered by both the federal and provincial governments to encourage miscible flooding development. As a result many projects have been initiated with others being evaluated and designed. This paper analyzes the history and the direction of miscible flooding in the United States, where carbon dioxide is becoming the predominant miscible solvent. The potential for future use of carbon dioxide in Canada is specifically addressed: potential oil recovery solvent supply, and economics. Shell's carbon dioxide exploration play currently underway is also discussed.

  3. Enhancement of oleic acid in butter oil by high oleic fraction of moringa oleifera oil

    International Nuclear Information System (INIS)

    Nadeem, M.; Ullah, R.

    2016-01-01

    Oleic acid in butter oil (BO) was enhanced by a high oleic acid fraction (HOF) of Moringa oleifera oil (MOO). HOF was blended with BO at four different concentrations i.e. 5%, 10 percent, 15% and 20% (HOF-5, HOF-10, HOF-15 and HOF-20, respectively), compared with a control (BO). The oleic acid in HOF increased from 71.55 percent to 80.25%. DPPH free radical scavenging activity and total flavonoid content of HOF was 76.88% and 34.52 mg/100 g. Supplementation of butter oil with 20% HOF, decreased the cholesterol from 224 to 177 mg/100 g. Peroxide value of three months stored HOF-20 was 1.18 (meqO/sub 2/ kg) as compared to control, 3.15 (meqO/sub 2/kg). Induction period of HOF-20 was 4.07 h greater than control. These results evidenced that oleic acid in butter oil can be substantially increased by HOF of MOO. (author)

  4. Natural oils affect the human skin integrity and the percutaneous penetration of benzoic acid dose-dependently

    DEFF Research Database (Denmark)

    Nielsen, Jesper Bo

    2006-01-01

    three natural oils (eucalyptus oil, tea tree oil, peppermint oil) would affect the skin integrity and the percutaneous penetration of benzoic acid when applied topically in relevant concentrations. An experimental in vitro model using static diffusion cells mounted with human breast or abdominal skin...

  5. Development of an In Situ Biosurfactant Production Technology for Enhanced Oil Recovery

    Energy Technology Data Exchange (ETDEWEB)

    M.J. McInerney; R.M. Knapp; Kathleen Duncan; D.R. Simpson; N. Youssef; N. Ravi; M.J. Folmsbee; T.Fincher; S. Maudgalya; Jim Davis; Sandra Weiland

    2007-09-30

    The long-term economic potential for enhanced oil recovery (EOR) is large with more than 300 billion barrels of oil remaining in domestic reservoirs after conventional technologies reach their economic limit. Actual EOR production in the United States has never been very large, less than 10% of the total U. S. production even though a number of economic incentives have been used to stimulate the development and application of EOR processes. The U.S. DOE Reservoir Data Base contains more than 600 reservoirs with over 12 billion barrels of unrecoverable oil that are potential targets for microbially enhanced oil recovery (MEOR). If MEOR could be successfully applied to reduce the residual oil saturation by 10% in a quarter of these reservoirs, more than 300 million barrels of oil could be added to the U.S. oil reserve. This would stimulate oil production from domestic reservoirs and reduce our nation's dependence on foreign imports. Laboratory studies have shown that detergent-like molecules called biosurfactants, which are produced by microorganisms, are very effective in mobilizing entrapped oil from model test systems. The biosurfactants are effective at very low concentrations. Given the promising laboratory results, it is important to determine the efficacy of using biosurfactants in actual field applications. The goal of this project is to move biosurfactant-mediated oil recovery from laboratory investigations to actual field applications. In order to meet this goal, several important questions must be answered. First, it is critical to know whether biosurfactant-producing microbes are present in oil formations. If they are present, then it will be important to know whether a nutrient regime can be devised to stimulate their growth and activity in the reservoir. If biosurfactant producers are not present, then a suitable strain must be obtained that can be injected into oil reservoirs. We were successful in answering all three questions. The specific

  6. Acoustic wave emission for enhanced oil recovery (WAVE.O.R.)

    Energy Technology Data Exchange (ETDEWEB)

    Reichmann, S.; Amro, M. [TU Bergakademie, Freiberg (Germany); Giese, R.; Jaksch, K.; Krauss, F.; Krueger, K.; Jurczyk, A. [Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ, Potsdam (Germany)

    2016-09-15

    In the project WAVE.O.R the potential of acoustic waves to enhance oil recovery was reviewed. The project focused on laboratory experiments of the oil displacement in sandstone cores under acoustic stimulation. Additionally, the Seismic Prediction While Drilling (SPWD) borehole device prototype was set up for a feasibility field test. The laboratory experiments showed that, depending on the stimulation frequency, acoustic stimulation allows for an enhanced oil recovery. For single frequency stimulation a mean increase of 3 % pore volumes was observed at distinguished frequencies. A cyclic stimulation, where two of these frequencies were combined, an increase of 5% pore volume was observed. The SPWD borehole device was tested and adjusted during feasibility tests in the GFZ underground laboratory in the research and education mine ''Reiche Zeche'' of the TU Bergakademie Freiberg and in the GFZ KTB-Deep Laboratory in Windischeschenbach. The first successful test of the device under realistic conditions was performed at the test site ''Piana di Toppo'' of the OGS Trieste, Italy.

  7. Corexit 9500 Enhances Oil Biodegradation and Changes ...

    Science.gov (United States)

    While COREXIT 9500 is widely applied after oil spills for its reported dispersing activity, there is still a debate on the effectiveness on enhancing oil biodegradation and its potential toxic effect on microbial communities. To better understand the impact of COREXIT 9500 on the structure and activity levels of hydrocarbon degrading microbial communities, we analyzed next-generation 16S rRNA gene sequencing libraries of hydrocarbon enrichments grown at cryophilic and mesophilic conditions and using both DNA and RNA extracts as sequencing templates. Oil biodegradation patterns in both cryophilic and mesophilic enrichments were consistent with those reported in the literature (i.e., aliphatics were degraded faster than aromatics). A slight increase in biodegradation was observed in the presence of COREXIT at both 25°C and 5°C experiments. Differences in community structure were observed between treatment conditions in the DNA-based libraries. The 25°C consortia was dominated by unclassified members of the Vibrio, Pseudoidiomarina, Marinobacter, Alcanivorax, and Thallassospira species, while the 5°C consortia were dominated by several genera of Flavobacteria, Alcanivorax and Oleispira. With the exception of Vibrio-like species, members of these genera have been linked to hydrocarbon degradation and have been observed after oil spills. Colwellia and Cycloclasticus, known aromatic degraders, was also found in these enrichments. RNA-based sequencing of 25°C

  8. A Review of CO2-Enhanced Oil Recovery with a Simulated Sensitivity Analysis

    Directory of Open Access Journals (Sweden)

    Mandadige Samintha Anne Perera

    2016-06-01

    Full Text Available This paper reports on a comprehensive study of the CO2-EOR (Enhanced oil recovery process, a detailed literature review and a numerical modelling study. According to past studies, CO2 injection can recover additional oil from reservoirs by reservoir pressure increment, oil swelling, the reduction of oil viscosity and density and the vaporization of oil hydrocarbons. Therefore, CO2-EOR can be used to enhance the two major oil recovery mechanisms in the field: miscible and immiscible oil recovery, which can be further increased by increasing the amount of CO2 injected, applying innovative flood design and well placement, improving the mobility ratio, extending miscibility, and controlling reservoir depth and temperature. A 3-D numerical model was developed using the CO2-Prophet simulator to examine the effective factors in the CO2-EOR process. According to that, in pure CO2 injection, oil production generally exhibits increasing trends with increasing CO2 injection rate and volume (in HCPV (Hydrocarbon pore volume and reservoir temperature. In the WAG (Water alternating gas process, oil production generally increases with increasing CO2 and water injection rates, the total amount of flood injected in HCPV and the distance between the injection wells, and reduces with WAG flood ratio and initial reservoir pressure. Compared to other factors, the water injection rate creates the minimum influence on oil production, and the CO2 injection rate, flood volume and distance between the flood wells have almost equally important influence on oil production.

  9. Natural oils as skin permeation enhancers for transdermal delivery of olanzapine: in vitro and in vivo evaluation.

    Science.gov (United States)

    Aggarwal, Geeta; Dhawan, Sanju; HariKumar, S L

    2012-03-01

    The feasibility of development of transdermal delivery system of olanzapine utilizing natural oils as permeation enhancers was investigated. Penetration enhancing potential of corn (maize) oil, groundnut oil and jojoba oil on in vitro permeation of olanzapine across rat skin was studied. The magnitude of flux enhancement factor with corn oil, groundnut oil and jojoba oil was 7.06, 5.31 and 1.9 respectively at 5mg/ml concentration in solvent system. On the basis of in vitro permeation studies, eudragit based matrix type transdermal patches of olanzapine were fabricated using optimized concentrations of natural oils as permeation enhancers. All transdermal patches were found to be uniform with respect to physical characteristics. The interaction studies carried out by comparing the results of ultraviolet, HPLC and FTIR analyses for the pure drug, polymers and mixture of drug and polymers indicated no chemical interaction between the drug and excipients. Corn oil containing unsaturated fatty acids was found to be promising natural permeation enhancer for transdermal delivery of olanzapine with greatest cumulative amount of drug permeated (1010.68 μg/cm²/h) up to 24 h and caused no skin irritation. The fabricated transdermal patches were found to be stable. The pharmacokinetic characteristics of the final optimized matrix patch (T2) were determined after transdermal application to rabbits. The calculated relative bioavailability of TDDS was 113.6 % as compared to oral administration of olanzapine. The therapeutic effectiveness of optimized transdermal system was confirmed by tranquillizing activity in rotarod and grip mice model.

  10. Factors affecting world and Russian domestic oil prices: the domestic implications - a Russian perspective

    International Nuclear Information System (INIS)

    Khartukov, E.M.

    2001-01-01

    This paper modestly aims at answering two formally related but unnecessarily interconnected questions about international and Russian domestic pricing of crude oil. The first of them is what, in our opinion, chiefly determines price dynamics of the contemporary world oil market. And the second one is in which way (if at all) world oil price dynamics affect Russia's internal market. (author)

  11. Cooperative Agreements to Support Communities Affected by the BP Oil Spill

    Science.gov (United States)

    The environmental justice cooperative agreements are designed to support communities in Alabama, Florida, Louisiana, Mississippi, and Texas that are directly affected by the Deepwater Horizon oil spill in the Gulf of Mexico.

  12. Microbial enhanced oil recovery research. Final report, Annex 5

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, M.M.; Gerogiou, G.

    1993-07-01

    The objective of this project was to develop an engineering framework for the exploitation of microorganisms to enhance oil recovery. An order of magnitude analysis indicated that selective plugging and the production of biosurfactants are the two most likely mechanisms for the mobilization of oil in microbial enhanced oil recovery (MEOR). The latter, biosurfactant production, is easier to control within a reservoir environment and was investigated in some detail. An extensive literature survey indicated that the bacterium Bacillus licheniformis JF-2 produces a very effective surface active agent capable of increasing the capillary number to values sufficiently low for oil mobilization. In addition, earlier studies had shown that growth of this bacterium and biosurfactant production occur under conditions that are typically encountered in MEOR, namely temperatures up to 55{degrees}C, lack of oxygen and salinities of up to 10% w/v. The chemical structure of the surfactant, its interfacial properties and its production by fermentation were characterized in some detail. In parallel, a set of experiments as conducted to measure the transport of Bacillus licheniformis JF-2 in sandpacks. It was shown that the determining parameters for cell transport in porous media are: cell size and degree of coagulation, presence of dispersants, injection velocity and cell concentration. The mechanisms of bacteria retention within the pores of the reservoir were analyzed based on heuristic arguments. A mathematical simulator of MEOR was developed using conservation equations in which the mechanisms of bacteria retention and the growth kinetics of the cells were incorporated. The predictions of the model agreed reasonably well with experimental results.

  13. Market potential of solar thermal enhanced oil recovery-a techno-economic model for Issaran oil field in Egypt

    Science.gov (United States)

    Gupta, Sunay; Guédez, Rafael; Laumert, Björn

    2017-06-01

    Solar thermal enhanced oil recovery (S-EOR) is an advanced technique of using concentrated solar power (CSP) technology to generate steam and recover oil from maturing oil reservoirs. The generated steam is injected at high pressure and temperature into the reservoir wells to facilitate oil production. There are three common methods of steam injection in enhanced oil recovery - continuous steam injection, cyclic steam stimulation (CSS) and steam assisted gravity drainage (SAGD). Conventionally, this steam is generated through natural gas (NG) fired boilers with associated greenhouse gas emissions. However, pilot projects in the USA (Coalinga, California) and Oman (Miraah, Amal) demonstrated the use of S-EOR to meet their steam requirements despite the intermittent nature of solar irradiation. Hence, conventional steam based EOR projects under the Sunbelt region can benefit from S-EOR with reduced operational expenditure (OPEX) and increased profitability in the long term, even with the initial investment required for solar equipment. S-EOR can be realized as an opportunity for countries not owning any natural gas resources to make them less energy dependent and less sensible to gas price fluctuations, and for countries owning natural gas resources to reduce their gas consumption and export it for a higher margin. In this study, firstly, the market potential of S-EOR was investigated worldwide by covering some of the major ongoing steam based EOR projects as well as future projects in pipeline. A multi-criteria analysis was performed to compare local conditions and requirements of all the oil fields based on a defined set of parameters. Secondly, a modelling approach for S-EOR was designed to identify cost reduction opportunities and optimum solar integration techniques, and the Issaran oil field in Egypt was selected for a case study to substantiate the approach. This modelling approach can be consulted to develop S-EOR projects for any steam flooding based oil

  14. Enhanced oil recovery by nanoparticles injection: Modeling and simulation

    KAUST Repository

    El-Amin, Mohamed; Sun, Shuyu; Salama, Amgad

    2013-01-01

    In the present paper, a mathematical model and numerical simulation to describe the nanoparticles-water suspension imbibes into a water-oil two-phase flow in a porous medium is introduced. We extend the model to include the negative capillary pressure and mixed relative permeabilities correlations to fit with the mixed-wet system. Also, buoyancy and capillary forces as well as Brownian diffusion are considered. Throughout this investigation, we monitor the changing of the fluids and solid properties due to addition of the nanoparticles and check for possible enhancement of the oil recovery process using numerical experiments.

  15. Effects of particle shape and size on nanofluid properties for potential Enhanced Oil Recovery (EOR

    Directory of Open Access Journals (Sweden)

    Tengku Mohd Tengku Amran

    2016-01-01

    Full Text Available Application of Enhanced Oil Recovery (EOR in oil and gas industry is very important to increase oil recovery and prolong the lifetime of a reservoir but it has been very costly and losing properties of EOR agent due to harsh condition. Nanoparticles have been used in EOR application since they are not degradable in reservoir condition and used in smaller amount compared to polymer usage. Commonly, EOR techniques are focusing on increasing the sweep efficiency by controlling the mobility ratio between reservoir fluid and injected fluid. Thus, this research aimed to analyze the nanofluid viscosity at different particle size and shape, volumetric concentration and types of dispersing fluid, as well as to determine the oil recovery performance at different nanofluid concentration. The nanofluid viscosity was investigated at nanoparticle sizes of 15nm and 60nm and shapes of 15nm spherical-solid and porous. Five nanofluid samples with concentration ranging from 0.1wt.% to 7wt.% were used to investigate the effect of volumetric concentration. Distilled water, ethanol, ethylene glycol (EG and brine were used for the effect of dispersing fluids. Oil recovery was investigated at five different concentrations of nanofluid samples through flooding test. It was found that viscosity of nanofluid increased with decreasing particle size and increasing volumetric concentration. Solid shape particle and increasing dispersing fluid viscosity resulted in higher nanofluid viscosity. The higher the nanofluid concentration, the higher the oil recovery obtained. It can be concluded that nanofluid properties have been significantly affected by the environment and the particle used for potential EOR application.

  16. Enhanced Oil Recovery (EOR by Miscible CO2 and Water Flooding of Asphaltenic and Non-Asphaltenic Oils

    Directory of Open Access Journals (Sweden)

    Edwin A. Chukwudeme

    2009-09-01

    Full Text Available An EOR study has been performed applying miscible CO2 flooding and compared with that for water flooding. Three different oils are used, reference oil (n-decane, model oil (n-C10, SA, toluene and 0.35 wt % asphaltene and crude oil (10 wt % asphaltene obtained from the Middle East. Stearic acid (SA is added representing a natural surfactant in oil. For the non-asphaltenic oil, miscible CO2 flooding is shown to be more favourable than that by water. However, it is interesting to see that for first years after the start of the injection (< 3 years it is shown that there is almost no difference between the recovered oils by water and CO2, after which (> 3 years oil recovery by gas injection showed a significant increase. This may be due to the enhanced performance at the increased reservoir pressure during the first period. Maximum oil recovery is shown by miscible CO2 flooding of asphaltenic oil at combined temperatures and pressures of 50 °C/90 bar and 70 °C/120 bar (no significant difference between the two cases, about 1% compared to 80 °C/140 bar. This may support the positive influence of the high combined temperatures and pressures for the miscible CO2 flooding; however beyond a certain limit the oil recovery declined due to increased asphaltene deposition. Another interesting finding in this work is that for single phase oil, an almost linear relationship is observed between the pressure drop and the asphaltene deposition regardless of the flowing fluid pressure.

  17. Surfactant-enhanced alkaline flooding for light oil recovery. Final report 1994--1995

    Energy Technology Data Exchange (ETDEWEB)

    Wasan, D.T.

    1995-12-01

    In this report, the authors present the results of their experimental and theoretical studies in surfactant-enhanced alkaline flooding for light oil recovery. The overall objective of this work is to develop a very cost-effective method for formulating a successful surfactant-enhanced alkaline flood by appropriately choosing mixed alkalis which form inexpensive buffers to obtain the desired pH (between 8.5 and 12.0) for ultimate spontaneous emulsification and ultralow interfacial tension. In addition, the authors have (1) developed a theoretical interfacial activity model for determining equilibrium interfacial tension, (2) investigated the mechanisms for spontaneous emulsification, (3) developed a technique to monitor low water content in oil, and (4) developed a technique to study water-in-oil emulsion film properties, (5) investigated the effect of surfactant on the equilibrium and transient interfacial tension, (6) investigated the kinetics of oil removal from a silica surface, and (7) developed a theoretical interfacial activity model for determining equilibrium interfacial tension, accounting for added surfactant. The results of the studies conducted during the course of this project are summarized.

  18. Environmentally responsive surface-modified silica nanoparticles for enhanced oil recovery

    International Nuclear Information System (INIS)

    Behzadi, Abed; Mohammadi, Aliasghar

    2016-01-01

    Environmentally responsive surface-modified nanoparticles are colloidal nanoparticles coated with, at least, two physicochemically distinct surface groups. Recent advances in the synthesis and production of nanoparticles have enabled the production of environmentally responsive surface-modified nanoparticles with both hydrophilic and hydrophobic surface groups. These nanoparticles act like colloidal surfactants. In this paper, environmentally responsive surface-modified silica nanoparticles are synthesized and used for enhancement of oil recovery. For this purpose, silica nanoparticles are coated with polyethylene glycol chains as hydrophilic agent and propyl chains as hydrophobic agent at various quantities, and their ability to modulate oil–water interface properties and oil recovery is examined. Oil–water interfacial tension and water surface tension are decreased by 50 % in the presence of silica nanoparticles coated with both agents. Measuring oil-drop contact angle on oil-wetted glass slides and carbonate rock sections, after aging in various surface-modified silica nanofluids, indicates that the wettability of various oil-wetted surfaces is modified from strongly oil-wet to water-wet. Flooding nanofluids to glass micro-models and pore-level investigations demonstrate that surface modification of silica nanoparticles, specially, with both hydrophilic and hydrophobic agents improves considerably their performance in increasing oil recovery and wettability alteration.

  19. Environmentally responsive surface-modified silica nanoparticles for enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Behzadi, Abed; Mohammadi, Aliasghar, E-mail: amohammadi@sharif.edu [Sharif University of Technology, Department of Chemical and Petroleum Engineering (Iran, Islamic Republic of)

    2016-09-15

    Environmentally responsive surface-modified nanoparticles are colloidal nanoparticles coated with, at least, two physicochemically distinct surface groups. Recent advances in the synthesis and production of nanoparticles have enabled the production of environmentally responsive surface-modified nanoparticles with both hydrophilic and hydrophobic surface groups. These nanoparticles act like colloidal surfactants. In this paper, environmentally responsive surface-modified silica nanoparticles are synthesized and used for enhancement of oil recovery. For this purpose, silica nanoparticles are coated with polyethylene glycol chains as hydrophilic agent and propyl chains as hydrophobic agent at various quantities, and their ability to modulate oil–water interface properties and oil recovery is examined. Oil–water interfacial tension and water surface tension are decreased by 50 % in the presence of silica nanoparticles coated with both agents. Measuring oil-drop contact angle on oil-wetted glass slides and carbonate rock sections, after aging in various surface-modified silica nanofluids, indicates that the wettability of various oil-wetted surfaces is modified from strongly oil-wet to water-wet. Flooding nanofluids to glass micro-models and pore-level investigations demonstrate that surface modification of silica nanoparticles, specially, with both hydrophilic and hydrophobic agents improves considerably their performance in increasing oil recovery and wettability alteration.

  20. Muscle enhancement using intramuscular injections of oil in bodybuilding

    DEFF Research Database (Denmark)

    Schäfer, Ch. N.; Hvolris, Jørgen Jesper; Karlsmark, Tonny

    2012-01-01

    BACKGROUND: Self-administered intramuscular injection of site enhancement oil (SEO) is a cosmetic and performance-enhancing procedure used to reshape muscles in the bodybuilder subculture, but its consequences and complications are only sporadically described. Methods: A systematic search...... in MEDLINE and EMBASE databases during the spring of 2009 and 2010. Internet searches were performed, and bodybuilder pharmacopoeias were consulted to describe SEO use and the clinical complications known. Results: One review and seven case reports were identified. Eight case reports describe oleomas caused...

  1. Integrated Mid-Continent Carbon Capture, Sequestration & Enhanced Oil Recovery Project

    Energy Technology Data Exchange (ETDEWEB)

    Brian McPherson

    2010-08-31

    A consortium of research partners led by the Southwest Regional Partnership on Carbon Sequestration and industry partners, including CAP CO2 LLC, Blue Source LLC, Coffeyville Resources, Nitrogen Fertilizers LLC, Ash Grove Cement Company, Kansas Ethanol LLC, Headwaters Clean Carbon Services, Black & Veatch, and Schlumberger Carbon Services, conducted a feasibility study of a large-scale CCS commercialization project that included large-scale CO{sub 2} sources. The overall objective of this project, entitled the 'Integrated Mid-Continent Carbon Capture, Sequestration and Enhanced Oil Recovery Project' was to design an integrated system of US mid-continent industrial CO{sub 2} sources with CO{sub 2} capture, and geologic sequestration in deep saline formations and in oil field reservoirs with concomitant EOR. Findings of this project suggest that deep saline sequestration in the mid-continent region is not feasible without major financial incentives, such as tax credits or otherwise, that do not exist at this time. However, results of the analysis suggest that enhanced oil recovery with carbon sequestration is indeed feasible and practical for specific types of geologic settings in the Midwestern U.S.

  2. Foam for Enhanced Oil Recovery : Modeling and Analytical Solutions

    NARCIS (Netherlands)

    Ashoori, E.

    2012-01-01

    Foam increases sweep in miscible- and immiscible-gas enhanced oil recovery by decreasing the mobility of gas enormously. This thesis is concerned with the simulations and analytical solutions for foam flow for the purpose of modeling foam EOR in a reservoir. For the ultimate goal of upscaling our

  3. Heterologous production of Pseudomonas aeruginosa rhamnolipid under anaerobic conditions for microbial enhanced oil recovery.

    Science.gov (United States)

    Zhao, F; Shi, R; Zhao, J; Li, G; Bai, X; Han, S; Zhang, Y

    2015-02-01

    The ex situ application of rhamnolipid to enhance oil recovery is costly and complex in terms of rhamnolipid production and transportation, while in situ production of rhamnolipid is restricted by the oxygen-deficient environments of oil reservoirs. To overcome the oxygen-limiting conditions and to circumvent the complex regulation of rhamnolipid biosynthesis in Pseudomonas aeruginosa, an engineered strain Pseudomonas stutzeri Rhl was constructed for heterologous production of rhamnolipid under anaerobic conditions. The rhlABRI genes for rhamnolipid biosynthesis were cloned into a facultative anaerobic strain Ps. stutzeri DQ1 to construct the engineered strain Rhl. Anaerobic production of rhamnolipid was confirmed by thin layer chromatography and Fourier transform infrared analysis. Rhamnolipid product reduced the air-water surface tension to 30.3 mN m(-1) and the oil-water interfacial tension to 0.169 mN m(-1). Rhl produced rhamnolipid of 1.61 g l(-1) using glycerol as the carbon source. Rhl anaerobic culture emulsified crude oil up to EI24 ≈ 74. An extra 9.8% of original crude oil was displaced by Rhl in the core flooding test. Strain Rhl achieved anaerobic production of rhamnolipid and worked well for enhanced oil recovery in the core flooding model. The rhamnolipid produced by Rhl was similar to that of the donor strain SQ6. This is the first study to achieve anaerobic and heterologous production of rhamnolipid. Results demonstrated the potential feasibility of Rhl as a promising strain to enhance oil recovery through anaerobic production of rhamnolipid. © 2014 The Society for Applied Microbiology.

  4. Nanoparticle enhanced evaporation of liquids: A case study of silicone oil and water

    OpenAIRE

    Zhang, Wenbin; Shen, Rong; Lu, Kunquan; Ji, Ailing; Cao, Zexian

    2012-01-01

    Evaporation is a fundamental physical phenomenon, of which many challenging questions remain unanswered. Enhanced evaporation of liquids in some occasions is of enormous practical significance. Here we report the enhanced evaporation of the nearly permanently stable silicone oil by dispersing with nanopariticles including CaTiO3, anatase and rutile TiO2. An evaporation rate as high as 1.33 mg/h·cm2 was measured in silicone oil when dispersed with 100 nm-sized CaTiO3 particles. Dependence of e...

  5. Application of nanotechnology for enhancing oil recovery – A review

    Directory of Open Access Journals (Sweden)

    Chegenizadeh Negin

    2016-12-01

    Full Text Available Nanotechnology has attracted a great attention in enhancing oil recovery (EOR due to the cost-effective and environmental friendly manner. The size of nanoparticles for EOR usually is in a range of 1–100 nm, which may slightly differ from various international organisations. Nanoparticles exhibit significantly different properties compared to the same fine or bulk molecules because of much higher concentration of atoms at their surface as a result of ultra-small size. In particular, one of the most useful and fascinating properties of these particles is to creating a massive diffusion driving force due to the large surface area, especially at high temperatures. Previous studies have shown that nanoparticles can enhance oil recovery by shifting reservoir wettability towards more water-wet and reducing interfacial tension, yet this area is still open for discussion. It is worth noting that the potential of nanoparticles to reduce the oil viscosity, increase the mobility ratio, and to alter the reservoir permeability has not been investigated to date. Depending on the operational conditions of the EOR process, some nanoparticles perform more effectively than others, thus leading to different levels of enhanced recovery. In this study, we aim to provide a summary on each of the popular and available nanoparticles in the market and list their optimum operational conditions. We classified nanoparticles into the three categories of metal oxide, organic and inorganic particles in this article.

  6. Anomalous dispersion of magnetic spiky particles for enhanced oil emulsions/water separation.

    Science.gov (United States)

    Chen, Hui-Jiuan; Hang, Tian; Yang, Chengduan; Liu, Guishi; Lin, Di-An; Wu, Jiangming; Pan, Shuolin; Yang, Bo-Ru; Tao, Jun; Xie, Xi

    2018-01-25

    In situ effective separation of oil pollutants including oil spills and oil emulsions from water is an emerging technology yet remains challenging. Hydrophobic micro- or nano-materials with ferromagnetism have been explored for oil removal, yet the separation efficiency of an oil emulsion was compromised due to the limited dispersion of hydrophobic materials in water. A surfactant coating on microparticles prevented particle aggregation, but reduced oil absorption and emulsion cleaning ability. Recently, polystyrene microbeads covered with nanospikes have been reported to display anomalous dispersion in phobic media without surfactants. Inspired by this phenomenon, here magnetic microparticles attached with nanospikes were fabricated for enhanced separation of oil emulsions from water. In this design, the particle surfaces were functionalized to be superhydrophobic/superoleophilic for oil absorption, while the surface of the nanospikes prevented particle aggregation in water without compromising surface hydrophobicity. The magnetic spiky particles effectively absorbed oil spills on the water surface, and readily dispersed in water and offered facile cleaning of the oil emulsion. In contrast, hydrophobic microparticles without nanospikes aggregated in water limiting the particle-oil contact, while surfactant coating severely reduced particle hydrophobicity and oil absorption ability. Our work provides a unique application scope for the anomalous dispersity of microparticles and their potential opportunities in effective oil-water separation.

  7. Stability Proxies for Water-in-Oil Emulsions and Implications in Aqueous-based Enhanced Oil Recovery

    Directory of Open Access Journals (Sweden)

    Mehrnoosh Moradi

    2011-07-01

    Full Text Available Several researchers have proposed that mobility control mechanisms can positively contribute to oil recovery in the case of emulsions generated in Enhanced-Oil Recovery (EOR operations. Chemical EOR techniques that use alkaline components or/and surfactants are known to produce undesirable emulsions that create operational problems and are difficult to break. Other water-based methods have been less studied in this sense. EOR processes such as polymer flooding and LoSalTM injection require adjustments of water chemistry, mainly by lowering the ionic strength of the solution or by decreasing hardness. The decreased ionic strength of EOR solutions can give rise to more stable water-in-oil emulsions, which are speculated to improve mobility ratio between the injectant and the displaced oil. The first step toward understanding the connection between the emulsions and EOR mechanisms is to show that EOR conditions, such as salinity and hardness requirements, among others, are conducive to stabilizing emulsions. In order to do this, adequate stability proxies are required. This paper reviews commonly used emulsion stability proxies and explains the advantages and disadvantage of methods reviewed. This paper also reviews aqueous-based EOR processes with focus on heavy oil to contextualize in-situ emulsion stabilization conditions. This context sets the basis for comparison of emulsion stability proxies.

  8. The growth and photosynthesis of Typha in oil sands process affected material and water

    Energy Technology Data Exchange (ETDEWEB)

    Foote, L. [Alberta Univ., Edmonton, AB (Canada); Hornung, J. [Petro-Canada, Calgary, AB (Canada)

    2007-07-01

    Aquatic plants such as cattail contribute substantially to the energy flow in wetlands. Since Typha (cattail) plants acquire and cycle carbon and nutrients through wetlands, their growth and recycling of captured nutrients are an important part of natural, healthy wetland ecosystems. Cattail are pervasive and satisfy many of the criteria to be used as indicators of wetland integrity. This study investigated if cattail growth and carbon accrual were influenced by oil sands process materials (OSPM) such as consolidated tailings (CT). The purpose was to facilitate land reclamation initiatives by evaluating the impact that constituents of oil sands process material have on aquatic plant growth. The study was conducted at Suncor's experimental trenches. Six lined basins were used, of which 3 were filled with natural water and 3 were filled with trench water. Cattail were planted in different growth medium combinations, including CT over CT; soil over soil; soil over CT; and soil over sterilized sand. All leaf lengths and widths were measured along with the photosynthesis of the leaves and root and plant biomass at planting and after 2-years growth. A larger leaf area was observed under oil sands process influence, which may indicate increased carbon accrual above ground. Leaf area data suggested that CT affected plants are quite productive. The study also indicated that oil sands affected water may reduce plant fitness, and therefore could influence the overall oil sands reclamation timelines. Conversely, cattail grown in soil capped process affected material had a much larger leaf area compared to those grown in soil capped sand, most likely due to the higher levels of ammonia in process affected material.

  9. Numerical approach for enhanced oil recovery with surfactant flooding

    Directory of Open Access Journals (Sweden)

    Sadegh Keshtkar

    2016-03-01

    concentration and performance variable (cumulative oil recovery are studied. Finally, the comparison of oil recovery between water-flooding and surfactant-flooding was done. The results showed higher oil recovery with changes in capillary number when the partition coefficient is greater than unity. Increasing oil viscosity resulted in decreasing the oil recovery by changing in fractional flow. Moreover, it was concluded that the oil recovery was enhanced by increasing surfactant injection concentration. The oil recovery was increased when surfactant was injected to the system and this result was obtained by comparing water-flooding and surfactant-flooding.

  10. Neuro-Simulation Tool for Enhanced Oil Recovery Screening and Reservoir Performance Prediction

    Directory of Open Access Journals (Sweden)

    Soheil Bahrekazemi

    2017-09-01

    Full Text Available Assessment of the suitable enhanced oil recovery method in an oilfield is one of the decisions which are made prior to the natural drive production mechanism. In some cases, having in-depth knowledge about reservoir’s rock, fluid properties, and equipment is needed as well as economic evaluation. Both putting such data into simulation and its related consequent processes are generally very time consuming and costly.  In order to reduce study cases, an appropriate tool is required for primary screening prior to any operations being performed, to which leads reduction of time in design of ether pilot section or production under field condition. In this research, two different and useful screening tools are presented through a graphical user interface. The output of just over 900 simulations and verified screening criteria tables were employed to design the mentioned tools. Moreover, by means of gathered data and development of artificial neural networks, two dissimilar screening tools for proper assessment of suitable enhanced oil recovery method were finally introduced. The first tool is about the screening of enhanced oil recovery process based on published tables/charts and the second one which is Neuro-Simulation tool, concerns economical evaluation of miscible and immiscible injection of carbon dioxide, nitrogen and natural gas into the reservoir. Both of designed tools are provided in the form of a graphical user interface by which the user, can perceive suitable method through plot of oil recovery graph during 20 years of production, costs of gas injection per produced barrel, cumulative oil production, and finally, design the most efficient scenario.

  11. Enhanced oil recovery system

    Science.gov (United States)

    Goldsberry, Fred L.

    1989-01-01

    All energy resources available from a geopressured geothermal reservoir are used for the production of pipeline quality gas using a high pressure separator/heat exchanger and a membrane separator, and recovering waste gas from both the membrane separator and a low pressure separator in tandem with the high pressure separator for use in enhanced oil recovery, or in powering a gas engine and turbine set. Liquid hydrocarbons are skimmed off the top of geothermal brine in the low pressure separator. High pressure brine from the geothermal well is used to drive a turbine/generator set before recovering waste gas in the first separator. Another turbine/generator set is provided in a supercritical binary power plant that uses propane as a working fluid in a closed cycle, and uses exhaust heat from the combustion engine and geothermal energy of the brine in the separator/heat exchanger to heat the propane.

  12. 1D Simulations for Microbial Enhanced Oil Recovery with Metabolite Partitioning

    DEFF Research Database (Denmark)

    Nielsen, Sidsel Marie; Shapiro, Alexander; Michelsen, Michael Locht

    2010-01-01

    We have developed a mathematical model describing the process of microbial enhanced oil recovery (MEOR). The one-dimensional isothermal model comprises displacement of oil bywater containing bacteria and substrate for their feeding. The bacterial products are both bacteria andmetabolites....... The characteristics for the water phase saturation profiles and the oil recovery curves are elucidated. However, the effect from the surfactant is not necessarily restricted to influence only interfacial tension, but it can also be an approach for changing, e.g., wettability. The distribution coefficient determines...... the time lag, until residual oil mobilization is initialized. It has also been found that the final recovery depends on the distance from the inlet before the surfactant effect takes place. The surfactant effect position is sensitive to changes in maximum growth rate, and injection concentrations...

  13. Effects of enhanced UV-B radiation on Mentha spicata essential oils

    International Nuclear Information System (INIS)

    Karousou, R.; Grammatikopoulos, G.; Lanaras, T.; Manetas, Y.; Kokkini, S.

    1998-01-01

    In vitro propagated plantlets representing two distinct chemotypes of Mentha spicata, viz. plants producing essential oils rich in piperitone oxide and piperitenone oxide (chemotype I) and rich in carvone and dihydrocarvone (chemotype II), were grown in the field under ambient or ambient plus supplemental UV-B radiation, biologically equivalent to a 15% ozone depletion over Patras (38.3°N, 29.1°E), Greece. Enhanced UV-B radiation stimulated essential oil production in chemotype II substantially, while a similar, non-significant trend was observed in chemotype I. No effect was found on the qualitative composition of the essential oils, whereas the quantitative composition was slightly modified in chemotype I. This is the first investigation reporting an improved essential oil content under UV-B supplementation in aromatic plants under field conditions

  14. Aerobic microbial enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Torsvik, T. [Univ. of Bergen (Norway); Gilje, E.; Sunde, E.

    1995-12-31

    In aerobic MEOR, the ability of oil-degrading bacteria to mobilize oil is used to increase oil recovery. In this process, oxygen and mineral nutrients are injected into the oil reservoir in order to stimulate growth of aerobic oil-degrading bacteria in the reservoir. Experiments carried out in a model sandstone with stock tank oil and bacteria isolated from offshore wells showed that residual oil saturation was lowered from 27% to 3%. The process was time dependent, not pore volume dependent. During MEOR flooding, the relative permeability of water was lowered. Oxygen and active bacteria were needed for the process to take place. Maximum efficiency was reached at low oxygen concentrations, approximately 1 mg O{sub 2}/liter.

  15. The experimental research of a field-enhanced multichannel oil switch

    International Nuclear Information System (INIS)

    Zhao, R.; Zeng, N.; Yang, D.; Jiang, X.; Wang, X.

    1993-01-01

    This paper describes the performance of a field enhanced multichannel oil switch which is used as the main switch of HEAVEN-LIGHT II intense pulsed electron beam accelerator at CIAE. The switch experiments have been carried out with different inductance of the solenoid inductor in series with a self-closing axial gap and position and diameter of the trigger disc. The experiments using water as a breakdown medium of the switch have been done to compare with oil switch. These experimental results and conclusions are presented in the paper

  16. Assessment and rehabilitation of wildlife affected by an oil spill in Puerto Rico

    International Nuclear Information System (INIS)

    Mignucci-Giannoni, A.A.

    1999-01-01

    On 7 January 1994, the barge Morris J. Berman spilled approximately 3.6 million liters of oil off Punta Escambron in San Juan, Puerto Rico. This resulted in the contamination of extensive areas, impacting on natural resources along more than 48 km of Puerto Rico's north shore. Thousands of dead and alive oiled organisms washed ashore. Dead wildlife were collected opportunistically, and examined for the presence of oil and identified. Live wildlife was cleaned and treated at a temporary triage facility. A total of 5687 organisms of over 152 species were collected, including cnidarians, annelids, crustaceans, molluscs, echinoderms, fishes, birds and sea turtles. Molluscs and echinoderms were noticeably more affected than other species. Four species classified as endangered or threatened were also affected. A significant impact was observed on the live specimens presented for medical treatment, including shore crabs, birds and sea turtles. Only 63% of these were successfully rehabilitated. (author)

  17. Enhancement of Palm Oil Extraction Using Cell Wall Degrading Enzyme Formulation

    International Nuclear Information System (INIS)

    Silvamany, H.; Jamaliah Md Jahim

    2015-01-01

    In this recent work, application of aqueous enzymatic process to enhance recovery of palm oil was studied. Experiments were carried out to investigate the structural carbohydrate composition of oil palm mesocarp (Elaeis guineensis) and to analyze the effect of different combination of enzymes on the palm oil recovery and degree of digestibility and the respective correlation. The optimum combination of enzymes comprising of Cellic CTec2 (X 1 ), Cellic HTec2 (X 2 ) and Pectinex Ultra SP-L (X 3 ) for Aqueous Enzymatic Oil Extraction Process (AEOEP), were determined using Simplex Lattice mixture design under fixed parameters. Maximum oil recovery of 88 % was achieved with ratio of enzymes at 0.46: 0.34: 0.2 (X 1 :X 2 :X 3 ), at enzyme loading of 30 mg protein/ 10 g substrate, substrate loading of 50 % w/v, pH 4.8, and 2 hours of incubation at 50 degree Celsius. The conversion of reducing sugar at corresponding condition was measured to evaluate the effectiveness of enzymes in degrading fruit cell wall releasing trapped oil. Moreover, transmission electron microscopy (TEM) was utilized to indicate the increase in cell wall disintegration leading to higher release of oil with enzymatic treatment. (author)

  18. Enhanced inhibition of Aspergillus niger on sedge (Lepironia articulata) treated with heat-cured lime oil.

    Science.gov (United States)

    Matan, N; Matan, N; Ketsa, S

    2013-08-01

    This study aimed to examine heat curing effect (30-100°C) on antifungal activities of lime oil and its components (limonene, p-cymene, β-pinene and α-pinene) at concentrations ranging from 100 to 300 μl ml(-1) against Aspergillus niger in microbiological medium and to optimize heat curing of lime oil for efficient mould control on sedge (Lepironia articulata). Broth dilution method was employed to determine lime oil minimum inhibitory concentration, which was at 90 μl ml(-1) with heat curing at 70°C. Limonene, a main component of lime oil, was an agent responsible for temperature dependencies of lime oil activities observed. Response surface methodology was used to construct the mathematical model describing a time period of zero mould growth on sedge as functions of heat curing temperature and lime oil concentration. Heat curing of 90 μl ml(-1) lime oil at 70°C extended a period of zero mould growth on sedge to 18 weeks under moist conditions. Heat curing at 70°C best enhanced antifungal activity of lime oil against A. niger both in medium and on sedge. Heat curing of lime oil has potential to be used to enhance the antifungal safety of sedge products. © 2013 The Society for Applied Microbiology.

  19. Enhanced Biodegradability, Lubricity and Corrosiveness of Lubricating Oil by Oleic Acid Diethanolamide Phosphate

    Directory of Open Access Journals (Sweden)

    Fang Jianhua

    2012-09-01

    Full Text Available Impacts of oleic acid diethanolamide phosphate (abbreviated as ODAP as an additive on biodegradability, anti-wear capacity, friction-reducing ability and corrosiveness of an unreadily biodegradable HVI 350 mineral lubricating oil was studied. The biodegradabilities of neat lubricating oil and its formulations with ODAP were evaluated on a biodegradation tester. Furthermore, the anti-wear and friction-reducing abilities and the corrosiveness of neat oil and the formulated oils were determined on a four-ball tribotester and a copper strip corrosion tester, respectively. The results indicated that ODAP markedly enhanced biodegradability as well as anti-wear and friction-reducing abilities of the lubricating oil. On the other hand, excellent color ratings of copper strips for both neat oil and the ODAP-doped oil were obtained in the corrosion tests, demonstrating that the corrosiveness of neat oil and the doped oil was negligible, although the latter seemed to provide slightly better anti-corrosion ability.

  20. Investigation of biosurfactant-producing indigenous microorganisms that enhance residue oil recovery in an oil reservoir after polymer flooding.

    Science.gov (United States)

    She, Yue-Hui; Zhang, Fan; Xia, Jing-Jing; Kong, Shu-Qiong; Wang, Zheng-Liang; Shu, Fu-Chang; Hu, Ji-Ming

    2011-01-01

    Three biosurfactant-producing indigenous microorganisms (XDS1, XDS2, XDS3) were isolated from a petroleum reservoir in the Daqing Oilfield (China) after polymer flooding. Their metabolic, biochemical, and oil-degradation characteristics, as well as their oil displacement in the core were studied. These indigenous microorganisms were identified as short rod bacillus bacteria with white color, round shape, a protruding structure, and a rough surface. Strains have peritrichous flagella, are able to produce endospores, are sporangia, and are clearly swollen and terminal. Bacterial cultures show that the oil-spreading values of the fermentation fluid containing all three strains are more than 4.5 cm (diameter) with an approximate 25 mN/m surface tension. The hydrocarbon degradation rates of each of the three strains exceeded 50%, with the highest achieving 84%. Several oil recovery agents were produced following degradation. At the same time, the heavy components of crude oil were degraded into light components, and their flow characteristics were also improved. The surface tension and viscosity of the crude oil decreased after being treated by the three strains of microorganisms. The core-flooding tests showed that the incremental oil recoveries were 4.89-6.96%. Thus, XDS123 treatment may represent a viable method for microbial-enhanced oil recovery.

  1. Enhancement of antioxidative activity and cardiovascular protection in hamsters by camellia oil and soybean-camellia blended oil.

    Science.gov (United States)

    Chou, Ting-Yi; Lu, Yi-Fa; Inbaraj, Baskaran Stephen; Chen, Bing-Huei

    2018-02-07

    The aim of this study was to examine the effects of several vegetable oils and blended oil composed of soybean and camellia oils on blood lipid reduction and antioxidative activity. Forty male hamsters were fed an AIN-93 G diet for 1 wk, followed by dividing into five groups: control group-1 was fed a low-fat diet containing 5% oil for 6 wk, and the other four groups were fed high-fat diets with group-2 containing 14% palm oil, group-3 containing 14% camellia oil, group-4 containing 14% soybean oil, and group-5 containing 14% blended oil (8.4% soybean oil and 5.6% camellia oil) along with 0.2% cholesterol and 0.1% bile acid. High-fat diets raised serum triacylglycerol, total cholesterol, and aspartate aminotransferase in hamsters without affecting alanine aminotransferase. Compared with palm oil-containing diet, the other three high-fat diets reduced serum total cholesterol, low-density lipoprotein cholesterol, and the ratio of low-density lipoprotein to high-density lipoprotein cholesterol with an opposite trend for liver total cholesterol. However, compared with the control group, the serum high-density lipoprotein cholesterol level was raised for all four high-fat diets. The higher the degree of oil unsaturation, the higher the serum thiobarbituric acid reactive substances and the lower the liver triacylglycerol level and activities of fatty acid synthase, glucose 6-phosphate dehydrogenase, and malic enzymes. Both soybean and blended oils lowered the antioxidative activity of liver. Camellia and blended oils were more efficient than soybean oil in elevating serum high-density lipoprotein cholesterol and decreasing the ratio of low-density lipoprotein to high-density lipoprotein cholesterol in hamsters. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Addition of Fish Oil to Cream Cheese Affects Lipid Oxidation, Sensory Stability and Microstructure

    Directory of Open Access Journals (Sweden)

    Andy Horsewell

    2012-11-01

    Full Text Available The objective of this study was to investigate the differences in the oxidative stability during storage of fish oil enriched cream cheeses when fish oil was added either as neat oil or pre-emulsified oil with sodium caseinate, whey protein isolate, or a combination of milk proteins and phospholipids as emulsifier. Results showed that the addition of fish oil decreased the oxidative stability of cream cheeses regardless of the addition method, especially when the cheese was stored longer than five weeks. The oxidative stability of fish oil enriched cream cheeses was highest when fish oil was added as neat oil or in a delivery emulsion prepared with a combination of milk proteins and phospholipids. Adding the fish oil in a delivery emulsion prepared with whey protein or caseinate resulted in a less oxidative stable product. It was furthermore shown that the microstructure of the cream cheeses was affected by fish oil addition, and it was suggested that the change in microstructure was partly responsible for the oxidative stability of the cream cheeses.

  3. Microbial enhancement of oil recovery: Recent advances

    Energy Technology Data Exchange (ETDEWEB)

    Premuzic, E.T.; Woodhead, A.D.; Vivirito, K.J. (eds.)

    1992-01-01

    During recent years, systematic, scientific, and engineering effort by researchers in the United States and abroad, has established the scientific basis for Microbial Enhanced Oil Recovery (MEOR) technology. The successful application of MEOR technology as an oil recovery process is a goal of the Department of Energy (DOE). Research efforts involving aspects of MEOR in the microbiological, biochemical, and engineering fields led DOE to sponsor an International Conference at Brookhaven National Laboratory in 1992, to facilitate the exchange of information and a discussion of ideas for the future research emphasis. At this, the Fourth International MEOR Conference, where international attendees from 12 countries presented a total of 35 papers, participants saw an equal distribution between research'' and field applications.'' In addition, several modeling and state-of-the-art'' presentations summed up the present status of MEOR science and engineering. Individual papers in this proceedings have been process separately for inclusion in the Energy Science and Technology Database.

  4. Biosurfactant production by Bacillus subtilis B30 and its application in enhancing oil recovery.

    Science.gov (United States)

    Al-Wahaibi, Yahya; Joshi, Sanket; Al-Bahry, Saif; Elshafie, Abdulkadir; Al-Bemani, Ali; Shibulal, Biji

    2014-02-01

    The fermentative production of biosurfactants by Bacillus subtilis strain B30 and the evaluation of biosurfactant based enhanced oil recovery using core-flood were investigated. Different carbon sources (glucose, sucrose, starch, date molasses, cane molasses) were tested to determine the optimal biosurfactant production. The isolate B30 produced a biosurfactant that could reduce the surface tension and interfacial tension to 26.63±0.45 mN/m and 3.79±0.27 mN/m, respectively in less than 12h in both glucose or date molasses based media. A crude biosurfactant concentration of 0.3-0.5 g/l and critical micelle dilution (CMD) values of 1:8 were observed. The biosurfactants gave stable emulsions with wide range of hydrocarbons including light and heavy crude oil. The biosurfactants were partially purified and identified as a mixture of lipopeptides similar to surfactin, using high performance thin layer chromatography and Fourier transform infrared spectroscopy. The biosurfactants were stable over wide range of pH, salinity and temperatures. The crude biosurfactant preparation enhanced light oil recovery by 17-26% and heavy oil recovery by 31% in core-flood studies. The results are indicative of the potential of the strain for the development of ex situ microbial enhanced oil recovery processes using glucose or date molasses based minimal media. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. A study of the effects of enhanced oil recovery agents on the quality of Strategic Petroleum Reserves crude oil. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Kabadi, V.N.

    1992-10-01

    The project was initiated on September 1, 1990. The objective of the project was to carry out a literature search to estimate the types and extents of long time interactions of enhanced oil recovery (EOR) agents, such as surfactants, caustics and polymers, with crude oil. This information is necessary to make recommendations about mixing EOR crude oil with crude oils from primary and secondary recovery processes in the Strategic Petroleum Reserve (SPR). Data were sought on both adverse and beneficial effects of EOR agents that would impact handling, transportation and refining of crude oil. An extensive literature search has been completed, and the following informations has been compiled: (1) a listing of existing EOR test and field projects; (2) a listing of currently used EOR agents; and (3) evidence of short and long term physical and chemical interactions of these EOR-agents with hydrocarbons, and their effects on the quality of crude oil at long times. This information is presented in this report. Finally some conclusions are derived and recommendations are made. Although the conclusions are based mostly on extrapolations because of lack of specific data, it is recommended that the enhancement of the rates of biodegradation of oil catalyzed by the EOR agents needs to be further studied. There is no evidence of substantial long term effects on crude oil because of other interactions. Some recommendations are also made regarding the types of studies that would be necessary to determine the effect of certain EOR agents on the rates of biodegradation of crude oil.

  6. Investigation on Mechanisms of Polymer Enhanced Oil Recovery by Nuclear Magnetic Resonance and Microscopic Theoretical Analysis

    International Nuclear Information System (INIS)

    Ji-Cheng, Zhang; Kao-Ping, Song; Er-Long, Yang; Li, Liu

    2008-01-01

    Polymer flooding is an efficient technique to enhance oil recovery over water flooding. There are lots of discussions regarding the mechanisms for polymer flooding enhancing oil recovery. The main focus is whether polymer flooding can increase sweep efficiency alone, or can increase both of sweep efficiency and displacement efficiency. We present a study on this problem. Oil displacement experiments on 4 natural cores show that polymer flooding can increase oil recovery efficiency by more than 12% over water. Moreover, photos are taken by the nuclear magnetic resonance (NMR) method both after water flooding and after polymer flooding, which show remaining oil saturation distribution at the middle cross section and the central longitudinal section. Analyses of these photos demonstrate that polymer flooding can increase both sweep efficiency and displacement efficiency. (fundamental areas of phenomenology (including applications))

  7. Conference on microbiological processes useful in enhanced oil recovery. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-01

    Six formal presentations were made at the meeting, followed by four workshops dealing with specific topics: bioengineering, reservoir ecology and environment, transformations, and bioproducts. All were related to microbial enhancement of oil recovery. (DLC)

  8. Assessment and rehabilitation of wildlife affected by an oil spill in Puerto Rico

    Energy Technology Data Exchange (ETDEWEB)

    Mignucci-Giannoni, A.A. [University of Puerto Rico, San Juan (Puerto Rico). Caribbean Stranding Network

    1999-10-01

    On 7 January 1994, the barge Morris J. Berman spilled approximately 3.6 million liters of oil off Punta Escambron in San Juan, Puerto Rico. This resulted in the contamination of extensive areas, impacting on natural resources along more than 48 km of Puerto Rico`s north shore. Thousands of dead and alive oiled organisms washed ashore. Dead wildlife were collected opportunistically, and examined for the presence of oil and identified. Live wildlife was cleaned and treated at a temporary triage facility. A total of 5687 organisms of over 152 species were collected, including cnidarians, annelids, crustaceans, molluscs, echinoderms, fishes, birds and sea turtles. Molluscs and echinoderms were noticeably more affected than other species. Four species classified as endangered or threatened were also affected. A significant impact was observed on the live specimens presented for medical treatment, including shore crabs, birds and sea turtles. Only 63% of these were successfully rehabilitated. (author)

  9. Assessment and rehabilitation of wildlife affected by an oil spill in Puerto Rico

    Energy Technology Data Exchange (ETDEWEB)

    Mignucci-Giannoni, A.A. [University of Puerto Rico, San Juan (Puerto Rico). Caribbean Stranding Network

    1999-07-01

    On 7 January 1994, the barge Morris J. Berman spilled approximately 3.6 million liters of oil off Punta Escambron in San Juan, Puerto Rico. This resulted in the contamination of extensive areas, impacting on natural resources along more than 48 km of Puerto Rico's north shore. Thousands of dead and alive oiled organisms washed ashore. Dead wildlife were collected opportunistically, and examined for the presence of oil and identified. Live wildlife was cleaned and treated at a temporary triage facility. A total of 5687 organisms of over 152 species were collected, including cnidarians, annelids, crustaceans, molluscs, echinoderms, fishes, birds and sea turtles. Molluscs and echinoderms were noticeably more affected than other species. Four species classified as endangered or threatened were also affected. A significant impact was observed on the live specimens presented for medical treatment, including shore crabs, birds and sea turtles. Only 63% of these were successfully rehabilitated. (author)

  10. Pesticide interactions with soils affected by olive oil mill wastewater

    Science.gov (United States)

    Keren, Yonatan; Bukhanovsky, Nadezhda; Borisover, Mikhail

    2013-04-01

    Soil pesticide sorption is well known to affect the fate of pesticides, their bioavailability and the potential to contaminate air and water. Soil - pesticide interactions may be strongly influenced by soil organic matter (SOM) and organic matter (OM)-rich soil amendments. One special OM source in soils is related to olive oil production residues that may include both solid and liquid wastes. In the Mediterranean area, the olive oil production is considered as an important field in the agricultural sector. Due to the significant rise in olive oil production, the amount of wastes is growing respectively. Olive oil mill waste water (OMWW) is the liquid byproduct in the so-called "three phase" technological process. Features of OMWW include the high content of fatty aliphatic components and polyphenols and their often-considered toxicity. One way of OMWW disposal is the land spreading, e.g., in olive orchards. The land application of OMWW (either controlled or not) is supposed to affect the multiple soil properties, including hydrophobicity and the potential of soils to interact with pesticides. Therefore, there is both basic and applied interest in elucidating the interactions between organic compounds and soils affected by OMWW. However, little is known about the impact of OMWW - soil interactions on sorption of organic compounds, and specifically, on sorption of agrochemicals. This paper reports an experimental study of sorption interactions of a series of organic compounds including widely used herbicides such as diuron and simazine, in a range of soils that were affected by OMWW (i) historically or (ii) in the controlled land disposal experiments. It is demonstrated that there is a distinct increase in apparent sorption of organic chemicals in soils affected by OMWW. In selected systems, this increase may be explained by increase in SOM content. However, the SOM quality places a role: the rise in organic compound - soil interactions may both exceed the SOM

  11. Enhanced oil recovery (EOR) by miscible CO{sub 2} and water flooding of asphaltenic and non-asphaltenic oils

    Energy Technology Data Exchange (ETDEWEB)

    Chukwudeme, E. A.; Hamouda, A. A. [Department of Petroleum Engineering, University of Stavanger, 4036 Stavanger (Norway)

    2009-07-01

    An EOR study has been performed applying miscible CO{sub 2} flooding and compared with that for water flooding. Three different oils are used, reference oil (n-decane), model oil (n-C10, SA, toluene and 0.35 wt % asphaltene) and crude oil (10 wt % asphaltene) obtained from the Middle East. Stearic acid (SA) is added representing a natural surfactant in oil. For the non-asphaltenic oil, miscible CO{sub 2} flooding is shown to be more favourable than that by water. However, it is interesting to see that for first years after the start of the injection (< 3 years) it is shown that there is almost no difference between the recovered oils by water and CO{sub 2}, after which (> 3 years) oil recovery by gas injection showed a significant increase. This may be due to the enhanced performance at the increased reservoir pressure during the first period. Maximum oil recovery is shown by miscible CO{sub 2} flooding of asphaltenic oil at combined temperatures and pressures of 50 {sup o}C/90 bar and 70 {sup o}C/120 bar (no significant difference between the two cases, about 1%) compared to 80 {sup o}C/140 bar. This may support the positive influence of the high combined temperatures and pressures for the miscible CO{sub 2} flooding; however beyond a certain limit the oil recovery declined due to increased asphaltene deposition. Another interesting finding in this work is that for single phase oil, an almost linear relationship is observed between the pressure drop and the asphaltene deposition regardless of the flowing fluid pressure. (author)

  12. Effectiveness of commercial microbial products in enhancing oil degradation in Prince William Sound field plots

    International Nuclear Information System (INIS)

    Venosa, A.D.; Haines, J.R.; Allen, D.M.

    1991-01-01

    In the spring of 1990, previously reported laboratory experiments were conducted on 10 commercial microbial products to test for enhanced biodegradation of weathered crude oil from the Exxon Valdez oil spill. The laboratory tests measured the rate and extent of oil degradation in closed flasks. Weathered oil from the beaches in Alaska and seawater from Prince William Sound were used in the tests. Two of the 10 products were found to provide significantly greater alkane degradation than flasks supplemented with mineral nutrients alone. These two products were selected for further testing on a beach in Prince William Sound. A randomized complete block experiment was designed to compare the effectiveness of these two products in enhancing oil degradation compared to simple fertilizer alone. Four small plots consisting of a no nutrient control, a mineral nutrient plot, and two plots receiving mineral nutrients plus the two products, were laid out on a contaminated beach. These four plots comprised a 'block' of treatments, and this block was replicated four times on the same beach. Triplicate samples of beach sediment were collected at four equally spaced time intervals and analyzed for oil residue weight and alkane hydrocarbon profile changes with time. The objective was to determine if either of the two commercial microbiological products was able to enhance bioremediation of an oil-contaminated beach in Prince William Sound to an extent greater than that achievable by simple fertilizer application. Results indicated no significant differences among the four treatments in the 27-day period of the experiment

  13. Pore-scale simulation of wettability and interfacial tension effects on flooding process for enhanced oil recovery.

    Science.gov (United States)

    Zhao, Jin; Wen, Dongsheng

    2017-08-27

    For enhanced oil recovery (EOR) applications, the oil/water flow characteristics during the flooding process was numerically investigated with the volume-of-fluid method at the pore scale. A two-dimensional pore throat-body connecting structure was established, and four scenarios were simulated in this paper. For oil-saturated pores, the wettability effect on the flooding process was studied; for oil-unsaturated pores, three effects were modelled to investigate the oil/water phase flow behaviors, namely the wettability effect, the interfacial tension (IFT) effect, and the combined wettability/IFT effect. The results show that oil saturated pores with the water-wet state can lead to 25-40% more oil recovery than with the oil-wet state, and the remaining oil mainly stays in the near wall region of the pore bodies for oil-wet saturated pores. For oil-unsaturated pores, the wettability effects on the flooding process can help oil to detach from the pore walls. By decreasing the oil/water interfacial tension and altering the wettability from oil-wet to water-wet state, the remaining oil recovery rate can be enhanced successfully. The wettability-IFT combined effect shows better EOR potential compared with decreasing the interfacial tension alone under the oil-wet condition. The simulation results in this work are consistent with previous experimental and molecular dynamics simulation conclusions. The combination effect of the IFT reducation and wettability alteration can become an important recovery mechanism in future studies for nanoparticles, surfactant, and nanoparticle-surfactant hybrid flooding process.

  14. CO2 Storage and Enhanced Oil Recovery: Bald Unit Test Site, Mumford Hills Oil Field, Posey County, Indiana

    Energy Technology Data Exchange (ETDEWEB)

    Frailey, Scott M. [Illinois State Geological Survey, Champaign, IL (United States); Krapac, Ivan G. [Illinois State Geological Survey, Champaign, IL (United States); Damico, James R. [Illinois State Geological Survey, Champaign, IL (United States); Okwen, Roland T. [Illinois State Geological Survey, Champaign, IL (United States); McKaskle, Ray W. [Illinois State Geological Survey, Champaign, IL (United States)

    2012-03-30

    The Midwest Geological Sequestration Consortium (MGSC) carried out a small-scale carbon dioxide (CO2) injection test in a sandstone within the Clore Formation (Mississippian System, Chesterian Series) in order to gauge the large-scale CO2 storage that might be realized from enhanced oil recovery (EOR) of mature Illinois Basin oil fields via miscible liquid CO2 flooding.

  15. Microbial enhanced oil recovery—a modeling study of the potential of spore-forming bacteria

    DEFF Research Database (Denmark)

    Nielsen, Sidsel Marie; Nesterov, Igor; Shapiro, Alexander

    2016-01-01

    resulted in the following conclusions. In order to obtain sufficient local concentrations of surfactant, substantial amounts of substrate should be supplied; however, massive growth of bacteria increases the risk for clogging at the well inlet areas, causing injectivity loss. In such areas, starvation may......Microbial enhanced oil recovery (MEOR) utilizes microbes for enhancing the recovery by several mechanisms, among which the most studied are the following: (1) reduction of oil-water interfacial tension (IFT) by the produced biosurfactant and (2) selective plugging by microbes and metabolic products...

  16. Thermally-enhanced oil recovery method and apparatus

    Science.gov (United States)

    Stahl, Charles R.; Gibson, Michael A.; Knudsen, Christian W.

    1987-01-01

    A thermally-enhanced oil recovery method and apparatus for exploiting deep well reservoirs utilizes electric downhole steam generators to provide supplemental heat to generate high quality steam from hot pressurized water which is heated at the surface. A downhole electric heater placed within a well bore for local heating of the pressurized liquid water into steam is powered by electricity from the above-ground gas turbine-driven electric generators fueled by any clean fuel such as natural gas, distillate or some crude oils, or may come from the field being stimulated. Heat recovered from the turbine exhaust is used to provide the hot pressurized water. Electrical power may be cogenerated and sold to an electric utility to provide immediate cash flow and improved economics. During the cogeneration period (no electrical power to some or all of the downhole units), the oil field can continue to be stimulated by injecting hot pressurized water, which will flash into lower quality steam at reservoir conditions. The heater includes electrical heating elements supplied with three-phase alternating current or direct current. The injection fluid flows through the heater elements to generate high quality steam to exit at the bottom of the heater assembly into the reservoir. The injection tube is closed at the bottom and has radial orifices for expanding the injection fluid to reservoir pressure.

  17. Spectral Induced Polarization (SIP) monitoring during Microbial Enhanced Oil Recovery (MEOR)

    Science.gov (United States)

    Heenan, J. W.; Ntarlagiannis, D.; Slater, L. D.

    2010-12-01

    Jeffrey Heenan, Dimitrios Ntarlagiannis, Lee Slater Department of Earth and Environmental Sciences, Rutgers University, Newark NJ Microbial Enhanced Oil Recovery (MEOR) is an established, cost effective, method for enhancing tertiary oil recovery. Although not commonly used for shallow heavy oils, it could be a viable alternative since it can offer sustainable economic recovery and minimal environmental impact. A critical component of successful MEOR treatments is accurate, real time monitoring of the biodegradation processes resulting from the injection of microbial communities into the formation; results of recent biogeophysical research suggest that minimally-invasive geophysical methods could significantly contribute to such monitoring efforts. Here we present results of laboratory experiments, to assess the sensitivity of the spectral induced polarization method (SIP) to MEOR treatments. We used heavy oil, obtained from a shallow oilfield in SW Missouri, to saturate three sand columns. We then followed common industry procedures,and used a commercially available microbial consortia, to treat the oil columns. The active MEOR experiments were performed in duplicate while a control column maintained similar conditions, without promoting microbial activity and oil degradation. We monitored the SIP signatures, between 0.001 Hz and 1000 Hz, for a period of six months. To support the geophysical measurements we also monitored common geochemical parameters, including pH, Eh and fluid conductivity, and collected weekly fluid samples from the outflow and inflow for further analysis; fluid samples were analyzed to confirm that microbes actively degraded the heavy oils in the column while destructive analysis of the solid materials was performed upon termination of the experiment. Preliminary analysis of the results suggests that SIP is sensitive to MEOR processes. In both inoculated columns we recorded an increase in the low frequency polarization with time; measureable

  18. Bioaccessibility and Antioxidant Activity of Calendula officinalis Supercritical Extract as Affected by in Vitro Codigestion with Olive Oil.

    Science.gov (United States)

    Martin, Diana; Navarro Del Hierro, Joaquín; Villanueva Bermejo, David; Fernández-Ruiz, Ramón; Fornari, Tiziana; Reglero, Guillermo

    2016-11-23

    Supercritical extracts of marigold (ME) were produced and characterized. The bioaccessibility of terpenes, especially that of pentacyclic triterpenes (PT), the particle-size distribution, and antioxidant activity after the in vitro codigestion of ME with olive oil (OO) were determined. ME produced without cosolvent was richer in taraxasterol, lupeol, α-amyrin, and β-amyrin than extracts with cosolvent. All terpenes showed high bioaccessibility without OO (>75%). Significant correlations were found between the molecular properties of compounds (logP and number of rotatable bonds) and their bioaccessibility. Codigestion with OO enhanced the bioaccessibility (around 100% for PT), which could be related to a higher abundance of low-size particles of the digestion medium. The antioxidant activity of the digested ME increased around 50%, regardless of OO. PT-rich extracts from marigold display high bioaccessibility and improved antioxidant activity after in vitro digestion, although complete bioaccessibility of PT can be reached by codigestion with oil, without affecting antioxidant activity.

  19. A review on applications of nanotechnology in the enhanced oil recovery part B: effects of nanoparticles on flooding

    Science.gov (United States)

    Cheraghian, Goshtasp; Hendraningrat, Luky

    2016-11-01

    Chemical flooding is of increasing interest and importance due to high oil prices and the need to increase oil production. Research in nanotechnology in the petroleum industry is advancing rapidly, and an enormous progress in the application of nanotechnology in this area is to be expected. The nanotechnology has been widely used in several other industries, and the interest in the oil industry is increasing. Nanotechnology has the potential to profoundly change enhanced oil recovery and to improve mechanism of recovery, and it is chosen as an alternative method to unlock the remaining oil resources and applied as a new enhanced oil recovery method in last decade. This paper therefore focuses on the reviews of the application of nanotechnology in chemical flooding process in oil recovery and reviews the applications of nanomaterials for improving oil recovery that have been proposed to explain oil displacement by polymer flooding within oil reservoirs, and also this paper highlights the research advances of polymer in oil recovery. Nanochemical flooding is an immature method from an application point of view.

  20. Production, Characterization and Application of Bacillus licheniformis W16 Biosurfactant in Enhancing Oil Recovery

    Directory of Open Access Journals (Sweden)

    Sanket J. Joshi

    2016-11-01

    Full Text Available The biosurfactant production by Bacillus licheniformis W16 and evaluation of biosurfactant based enhanced oil recovery using core-flood under reservoir conditions were investigated. Previously reported nine different production media were screened for biosurfactant production, and two were further optimized with different carbon sources (glucose, sucrose, starch, cane molasses or date molasses, as well as the strain was screened for biosurfactant production during the growth in different media. The biosurfactant reduced the surface tension and interfacial tension to 24.33+0.57mN m-1 and 2.47+0.32mN m-1 respectively within 72h, at 40 C, and also altered the wettability of a hydrophobic surface by changing the contact angle from 55.67°+1.6° to 19.54°+0.96°. The critical micelle dilution values of 4X were observed. The biosurfactants were characterized by different analytical techniques and identified as lipopeptide, similar to lichenysin-A. The biosurfactant was stable over wide range of extreme environmental conditions. The core flood experiments showed that the biosurfactant was able to enhance the oil recovery by 24-26% over residual oil saturation (Sor. The results highlight the potential application of lipopeptide biosurfactant in wettability alteration and microbial enhanced oil recovery processes.

  1. Reactive Transport Modeling of Microbe-mediated Fe (II) Oxidation for Enhanced Oil Recovery

    Science.gov (United States)

    Surasani, V.; Li, L.

    2011-12-01

    Microbially Enhanced Oil Recovery (MEOR) aims to improve the recovery of entrapped heavy oil in depleted reservoirs using microbe-based technology. Reservoir ecosystems often contain diverse microbial communities those can interact with subsurface fluids and minerals through a network of nutrients and energy fluxes. Microbe-mediated reactions products include gases, biosurfactants, biopolymers those can alter the properties of oil and interfacial interactions between oil, brine, and rocks. In addition, the produced biomass and mineral precipitates can change the reservoir permeability profile and increase sweeping efficiency. Under subsurface conditions, the injection of nitrate and Fe (II) as the electron acceptor and donor allows bacteria to grow. The reaction products include minerals such as Fe(OH)3 and nitrogen containing gases. These reaction products can have large impact on oil and reservoir properties and can enhance the recovery of trapped oil. This work aims to understand the Fe(II) oxidation by nitrate under conditions relevant to MEOR. Reactive transport modeling is used to simulate the fluid flow, transport, and reactions involved in this process. Here we developed a complex reactive network for microbial mediated nitrate-dependent Fe (II) oxidation that involves both thermodynamic controlled aqueous reactions and kinetic controlled Fe (II) mineral reaction. Reactive transport modeling is used to understand and quantify the coupling between flow, transport, and reaction processes. Our results identify key parameter controls those are important for the alteration of permeability profile under field conditions.

  2. The potential of Bacillus licheniformis strains for in situ enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Yakimov, Michail M.; Timmis, Kenneth N. [Microbial Ecology Group, Division of Microbiology, GBF-National Research Centre for Biotechnology, Braunschweig (Germany); Amro, Mohammed M.; Kessel, Dagobert G. [German Petroleum Institute, Clausthal-Zellerfeld (Germany); Bock, Michael; Boseker, Klaus [BGR, Federal Institute for Geoscience and Natural Resources, Hannover (Germany); Fredrickson, Herbert L. [Environmental Laboratory, Waterways Experimental Station, USAGE, Vicksburg, MS (United States)

    1997-07-15

    The ability of microorganisms isolated from oil reservoirs to increase oil recovery by in situ growth and metabolism following the injection of laboratory grown microbial cells and nutrients were studied. Four strains isolated from Northern German oil reservoirs at depths of 866 to 1520 m, and identified as Bacillus licheniformis, were characterized taxonomically and physiologically. All strains grew on a variety of substrates at temperatures of up to 55C and at salinities of up to 12% NaCl. Extracellular polymer production occurred both aerobically and anaerobically over a wide range of temperatures, pressures and salinities, though it was optimal at temperatures around 50C and at salinities between 5 and 10% NaCl. Strain BNP29 was able to produce significant amounts of biomass, polymer, fermentation alcohols and acids in batch culture experiments under simulated reservoir conditions. Oil recovery (core flooding) experiments with strain BNP29 and a sucrose-based nutrient were performed with lime-free and lime-containing, oil-bearing sandstone cores. Oil recovery efficiencies varied from 9.3 to 22.1% of the water flood residual oil saturation. Biogenic acid production that accompanied oil production, along with selective plugging, are important mechanisms leading to increased oil recovery, presumably through resulting changes in rock porosity and alteration of wettability. These data show that strain BNP29 exhibits potential for the development of enhanced oil recovery processes

  3. Sophorolipids Production by Candida bombicola ATCC 22214 and its Potential Application in Microbial Enhanced Oil Recovery.

    Science.gov (United States)

    Elshafie, Abdulkadir E; Joshi, Sanket J; Al-Wahaibi, Yahya M; Al-Bemani, Ali S; Al-Bahry, Saif N; Al-Maqbali, Dua'a; Banat, Ibrahim M

    2015-01-01

    Biosurfactant production using Candida bombicola ATCC 22214, its characterization and potential applications in enhancing oil recovery were studied at laboratory scale. The seed media and the production media were standardized for optimal growth and biosurfactant production. The production media were tested with different carbon sources: glucose (2%w/v) and corn oil (10%v/v) added separately or concurrently. The samples were collected at 24 h interval up to 120 h and checked for growth (OD660), and biosurfactant production [surface tension (ST) and interfacial tension (IFT)]. The medium with both glucose and corn oil gave better biosurfactant production and reduced both ST and IFT to 28.56 + 0.42mN/m and 2.13 + 0.09mN/m, respectively within 72 h. The produced biosurfactant was quite stable at 13-15% salinity, pH range of 2-12, and at temperature up to 100°C. It also produced stable emulsions (%E24) with different hydrocarbons (pentane, hexane, heptane, tridecane, tetradecane, hexadecane, 1-methylnaphthalene, 2,2,4,4,6,8-heptamethylnonane, light and heavy crude oil). The produced biosurfactant was extracted using ethyl acetate and characterized as a mixture of sophorolipids (SPLs). The potential of SPLs in enhancing oil recovery was tested using core-flooding experiments under reservoir conditions, where additional 27.27% of residual oil (Sor) was recovered. This confirmed the potential of SPLs for applications in microbial enhanced oil recovery.

  4. Utilizing natural gas huff and puff to enhance production in heavy oil reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Wenlong, G.; Shuhong, W.; Jian, Z.; Xialin, Z. [Society of Petroleum Engineers, Kuala Lumpur (Malaysia)]|[PetroChina Co. Ltd., Beijing (China); Jinzhong, L.; Xiao, M. [China Univ. of Petroleum, Beijing (China)

    2008-10-15

    The L Block in the north structural belt of China's Tuha Basin is a super deep heavy oil reservoir. The gas to oil ratio (GOR) is 12 m{sup 3}/m{sup 3} and the initial bubble point pressure is only 4 MPa. The low production can be attributed to high oil viscosity and low flowability. Although steam injection is the most widely method for heavy oil production in China, it is not suitable for the L Block because of its depth. This paper reviewed pilot tests in which the natural gas huff and puff process was used to enhance production in the L Block. Laboratory experiments that included both conventional and unconventional PVT were conducted to determine the physical property of heavy oil saturated by natural gas. The experiments revealed that the heavy oil can entrap the gas for more than several hours because of its high viscosity. A pseudo bubble point pressure exists much lower than the bubble point pressure in manmade foamy oils, which is relative to the depressurization rate. Elastic energy could be maintained in a wider pressure scope than natural depletion without gas injection. A special experimental apparatus that can stimulate the process of gas huff and puff in the reservoir was also introduced. The foamy oil could be seen during the huff and puff experiment. Most of the oil flowed to the producer in a pseudo single phase, which is among the most important mechanisms for enhancing production. A pilot test of a single well demonstrated that the oil production increased from 1 to 2 cubic metres per day to 5 to 6 cubic metres per day via the natural gas huff and puff process. The stable production period which was 5 to 10 days prior to huff and puff, was prolonged to 91 days in the first cycle and 245 days in the second cycle. 10 refs., 1 tab., 12 figs.

  5. Comparing sediment quality in Spanish littoral areas affected by acute (Prestige, 2002) and chronic (Bay of Algeciras) oil spills

    International Nuclear Information System (INIS)

    Morales-Caselles, C.; Kalman, J.; Riba, I.; DelValls, T.A.

    2007-01-01

    The quality of sediments collected from two areas of the Spanish coast affected by different sources of contaminants has been compared in this study. The areas studied are the coast of Galicia affected by the oil spill from the tanker Prestige (November 2002) and the Gulf of Cadiz which suffers continuous inputs of contaminants from industries located in the area and from oil spills. Contamination by several chemicals (metals, PCBs and PAHs) that bind to sediments was analyzed, and two toxicity tests (Microtox[reg]) and amphipod 10-day bioassay) were conducted. PAHs were identified as the compounds responsible for the toxic effects. Results show differences between an acute impact related to the sinking of the tanker Prestige and the chronic impact associated with continuous oil spills associated with the maritime and industrial activities in the Bay of Algeciras, this being the most polluted part of the two coastal areas studied in this work. - Littoral sediments affected by low or moderated but continuous oil spills are more polluted than those affected by accidental oil spills such as the Prestige

  6. Microbial mineral illization of montmorillonite in low-permeability oil reservoirs for microbial enhanced oil recovery.

    Science.gov (United States)

    Cui, Kai; Sun, Shanshan; Xiao, Meng; Liu, Tongjing; Xu, Quanshu; Dong, Honghong; Wang, Di; Gong, Yejing; Sha, Te; Hou, Jirui; Zhang, Zhongzhi; Fu, Pengcheng

    2018-05-11

    Microbial mineral illization has been investigated for its role in the extraction and recovery of metals from ores. Here we report our application of mineral bioillization for the microbial enhanced oil recovery in low-permeability oil reservoirs. It aimed to reveal the etching mechanism of the four Fe (III)-reducing microbial strains under anaerobic growth conditions on the Ca-montmorillonite. The mineralogical characterization of the Ca-montmorillonite was performed by Fourier transform infrared spectroscopy, X-ray powder diffraction, scanning electron microscopy and energy dispersive spectrometer. Results showed that the microbial strains could efficiently reduce Fe (III) at an optimal rate of 71 %, and alter the crystal lattice structure of the lamella to promote the interlayer cation exchange, and to efficiently inhibit the Ca-montmorillonite swelling at an inhibitory rate of 48.9 %. Importance Microbial mineral illization is ubiquitous in the natural environment. Microbes in low-permeability reservoirs are able to enable the alteration of the structure and phase of the Fe-poor minerals by reducing Fe (III) and inhibiting clay swelling which is still poorly studied. This study aimed to reveal the interaction mechanism between Fe (III)-reducing bacterial strains and Ca-montmorillonite under anaerobic atmosphere, and to investigate the extent and rates of Fe (III) reduction and phase changes with their activities. Application of Fe (III)-reducing bacteria will provide a new way to inhibit clay swelling, to elevate reservoir permeability, and to reduce pore throat resistance after water flooding for enhanced oil recovery in low-permeability reservoirs. Copyright © 2018 American Society for Microbiology.

  7. BioTiger{sup TM} : a natural microbial product for enhanced hydrocarbon recovery from oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R.L.; Berry, C.J.; Milliken, C.E.; Jones, W. [Savannah River National Laboratory, Aiken, SC (United States)

    2008-07-01

    This presentation discussed the feasibility of using BioTiger{sup TM} technology to increase hydrocarbon recovery from oil sands. This enhanced ex situ oil recovery processes was initially developed and used by the United States Department of Energy for bioremediation of soils contaminated with oil, but it may also be used to optimize bitumen separation. BioTiger was described as being a unique microbial consortia that has resulted from nearly a decade of extensive microbiology screening and characterization of samples collected from an old waste lagoon. The technology offers rapid and complete degradation of aliphatic and aromatic hydrocarbons and produces new surfactants. It is tolerant of both chemical and metal toxicity and has good activity at high temperatures at extreme pH levels. A flotation test protocol with oil sands from Fort McMurray, Alberta was used for the BioTiger evaluation. A comparison of hot water extraction/flotation test of the oil sands performed with BioTiger showed a 50 per cent improvement in separation as measured by gravimetric analysis. BioTiger is well suited for enhanced hydrocarbon recovery from oil sands because it performs well at high temperatures. 8 figs.

  8. SOLVENT-BASED ENHANCED OIL RECOVERY PROCESSES TO DEVELOP WEST SAK ALASKA NORTH SLOPE HEAVY OIL RESOURCES

    Energy Technology Data Exchange (ETDEWEB)

    David O. Ogbe; Tao Zhu

    2004-01-01

    A one-year research program is conducted to evaluate the feasibility of applying solvent-based enhanced oil recovery processes to develop West Sak and Ugnu heavy oil resources found on the Alaska North Slope (ANS). The project objective is to conduct research to develop technology to produce and market the 300-3000 cp oil in the West Sak and Ugnu sands. During the first phase of the research, background information was collected, and experimental and numerical studies of vapor extraction process (VAPEX) in West Sak and Ugnu are conducted. The experimental study is designed to foster understanding of the processes governing vapor chamber formation and growth, and to optimize oil recovery. A specially designed core-holder and a computed tomography (CT) scanner was used to measure the in-situ distribution of phases. Numerical simulation study of VAPEX was initiated during the first year. The numerical work completed during this period includes setting up a numerical model and using the analog data to simulate lab experiments of the VAPEX process. The goal was to understand the mechanisms governing the VAPEX process. Additional work is recommended to expand the VAPEX numerical study using actual field data obtained from Alaska North Slope.

  9. Oil recovery enhancement from fractured, low permeability reservoirs. Annual report 1990--1991, Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Poston, S.W.

    1991-12-31

    Joint funding by the Department of Energy and the State of Texas has Permitted a three year, multi-disciplinary investigation to enhance oil recovery from a dual porosity, fractured, low matrix permeability oil reservoir to be initiated. The Austin Chalk producing horizon trending thru the median of Texas has been identified as the candidate for analysis. Ultimate primary recovery of oil from the Austin Chalk is very low because of two major technological problems. The commercial oil producing rate is based on the wellbore encountering a significant number of natural fractures. The prediction of the location and frequency of natural fractures at any particular region in the subsurface is problematical at this time, unless extensive and expensive seismic work is conducted. A major portion of the oil remains in the low permeability matrix blocks after depletion because there are no methods currently available to the industry to mobilize this bypassed oil. The following multi-faceted study is aimed to develop new methods to increase oil and gas recovery from the Austin Chalk producing trend. These methods may involve new geological and geophysical interpretation methods, improved ways to study production decline curves or the application of a new enhanced oil recovery technique. The efforts for the second year may be summarized as one of coalescing the initial concepts developed during the initial phase to more in depth analyses. Accomplishments are predicting natural fractures; relating recovery to well-log signatures; development of the EOR imbibition process; mathematical modeling; and field test.

  10. On the use of sodium lignosulphonate for enhanced oil recovery

    Science.gov (United States)

    Azis, M. M.; Rachmadi, H.; Wintoko, J.; Yuliansyah, A. T.; Hasokowati, W.; Purwono, S.; Rochmadi, W.; Murachman, B.

    2017-05-01

    There has been large interest to utilize oil reservoirs in Indonesia by using Enhanced Oil Recovery (EOR) processes. Injection of surfactant as a part of chemical injection technique in EOR is known to aid the mobility and reduction in surface tension. One potential surfactant for EOR application is Sodium Lignosulphonate (SLS) which can be made from various sources particularly empty fruit bunch of oil palm and black liquor from kraft pulp production. Here, we will discuss a number of methods for SLS production which includes lignin isolation techniques and sulphonation reaction. The use of SLS alone as EOR surfactant, however, is often not feasible as the Interfacial Tension (IFT) value of SLS is typically above the order of 10-3 dyne/cm which is mandated for EOR application. Hence, brief discussion on SLS formulation screening is provided which illustrates an extensive labwork experience during the SLS development in our lab.

  11. Potential of wheat bran to promote indigenous microbial enhanced oil recovery.

    Science.gov (United States)

    Zhan, Yali; Wang, Qinghong; Chen, Chunmao; Kim, Jung Bong; Zhang, Hongdan; Yoza, Brandon A; Li, Qing X

    2017-06-01

    Microbial enhanced oil recovery (MEOR) is an emerging oil extraction technology that utilizes microorganisms to facilitate recovery of crude oil in depleted petroleum reservoirs. In the present study, effects of wheat bran utilization were investigated on stimulation of indigenous MEOR. Biostimulation conditions were optimized with the response surface methodology. The co-application of wheat bran with KNO 3 and NH 4 H 2 PO 4 significantly promoted indigenous MEOR (IMEOR) and exhibited sequential aerobic (O-), facultative (A n -) and anaerobic (A 0 -) metabolic stages. The surface tension of fermented broth decreased by approximately 35%, and the crude oil was highly emulsified. Microbial community structure varied largely among and in different IMEOR metabolic stages. Pseudomonas sp., Citrobacter sp., and uncultured Burkholderia sp. dominated the O-, A n - and early A 0 -stages. Bacillus sp., Achromobacter sp., Rhizobiales sp., Alcaligenes sp. and Clostridium sp. dominated the later A 0 -stage. This study illustrated occurrences of microbial community succession driven by wheat bran stimulation and its industrial potential.

  12. Screening of microorganisms for microbial enhanced oil recovery processes

    Energy Technology Data Exchange (ETDEWEB)

    Yonebayashi, H. [Japan National Oil Corp., Tokyo (Japan); Yoshida, S. [Japan Food Research Laboratiories, Tokyo (Japan). Div. of Microbiology; Ono, K. [Japan National Oil Corp., Chiba (Japan). Tech. Research Center; Enomoto, H. [Tohoku University, Sendai (Japan). Dept. of Geoscience and Tech.

    2000-01-01

    The objective of this study is to screen effective microorganisms for the Microbial Enhanced Oil Recovery process (or simply as MEOR). Samples of drilling cuttings, formation water, and soil were collected from domestic drilling sites and oil fields. Moreover, samples of activated-sludge and compost were collected from domestic sewage treatment facility and food treatment facility. At first, microorganisms in samples were investigated by incubation with different media; then they were isolated. By two stage-screening based on metabolizing ability, 4 strains (Bacillus licheniformis TRC-18-2-a, Enterobacter cloacae TRC-322, Bacillus subtilis TRC-4118, and Bacillus subtilis TRC-4126) were isolated as effective microorganisms for oil recovery. B. licheniformis TRC-18-2-a is a multifunctional microorganism possessing excellent surfactant productivity, and in addition it has gas, acid and polymer productivities. E. cloacae TRC-332 has gas and acid producing abilities. B. subtilis TRC-4118 and TRC-4126 are effective biosurfactant producers, and they reduce the interfacial tension to 0.04 and 0.12 dyne/cm, respectively. (author)

  13. Activities of the Oil Implementation Task Force, reporting period March--August 1991; Contracts for field projects and supporting research on enhanced oil recovery, reporting period October--December 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    Activities of DOE's Oil Implementation Task Force for the period March--August 1991 are reviewed. Contracts for fields projects and supporting research on enhanced oil recovery are discussed, with a list of related publications given. Enhanced recovery processes covered include chemical flooding, gas displacement, thermal recovery, and microbial recovery.

  14. Microfluidics: an enabling screening technology for enhanced oil recovery (EOR).

    Science.gov (United States)

    Lifton, Victor A

    2016-05-21

    Oil production is a critical industrial process that affects the entire world population and any improvements in its efficiency while reducing its environmental impact are of utmost societal importance. The paper reviews recent applications of microfluidics and microtechnology to study processes of oil extraction and recovery. It shows that microfluidic devices can be useful tools in investigation and visualization of such processes used in the oil & gas industry as fluid propagation, flooding, fracturing, emulsification and many others. Critical macro-scale processes that define oil extraction and recovery are controlled by the micro-scale processes based on wetting, adhesion, surface tension, colloids and other concepts of microfluidics. A growing number of research efforts demonstrates that microfluidics is becoming, albeit slowly, an accepted methodology in this area. We propose several areas of development where implementation of microfluidics may bring about deeper understanding and hence better control over the processes of oil recovery based on fluid propagation, droplet generation, wettability control. Studies of processes such as hydraulic fracturing, sand particle propagation in porous networks, high throughput screening of chemicals (for example, emulsifiers and surfactants) in microfluidic devices that simulate oil reservoirs are proposed to improve our understanding of these complicated physico-chemical systems. We also discuss why methods of additive manufacturing (3D printing) should be evaluated for quick prototyping and modification of the three-dimensional structures replicating natural oil-bearing rock formations for studies accessible to a wider audience of researchers.

  15. To consume or not. How oil prices affect the comovement of consumption and aggregate wealth

    International Nuclear Information System (INIS)

    Odusami, Babatunde Olatunji

    2010-01-01

    This paper provides insight into how oil price movements affect the consumption choices of U.S. households through the wealth channel. Lettau and Ludvigson (2001) show that while consumption, asset wealth, and labor income share a common long-term trend; they substantially deviate from one another in the short run. In this paper, I show that these transitory deviations can be explained by fluctuations in the price of crude oil. Linear and threshold multivariate autoregressive models are used to measure the oil price effect. Oil price effect on the consumption to aggregate wealth ratio is robust to monetary policy effect, sub-period effect, and econometric specifications of oil price effect. Generally speaking, higher (lower) oil price will lead to a decrease (increase) in the proportion of aggregate wealth consumed. In addition, the magnitude of the oil price effect is asymmetric and sub-period dependent. Oil price effect was higher before the 1980's than in succeeding periods. (author)

  16. Oil Spills

    Science.gov (United States)

    ... up. How Oil Harms Animals and Plants in Marine Environments In general, oil spills can affect animals and plants in two ways: from the oil ... up. How Oil Harms Animals and Plants in Marine Environments In general, oil spills can affect animals and plants in two ways: from the oil ...

  17. Does Climate Change Mitigation Activity Affect Crude Oil Prices? Evidence from Dynamic Panel Model

    Directory of Open Access Journals (Sweden)

    Jude C. Dike

    2014-01-01

    Full Text Available This paper empirically investigates how climate change mitigation affects crude oil prices while using carbon intensity as the indicator for climate change mitigation. The relationship between crude oil prices and carbon intensity is estimated using an Arellano and Bond GMM dynamic panel model. This study undertakes a regional-level analysis because of the geographical similarities among the countries in a region. Regions considered for the study are Africa, Asia and Oceania, Central and South America, the EU, the Middle East, and North America. Results show that there is a positive relationship between crude oil prices and carbon intensity, and a 1% change in carbon intensity is expected to cause about 1.6% change in crude oil prices in the short run and 8.4% change in crude oil prices in the long run while the speed of adjustment is 19%.

  18. Activities of the Oil Implementation Task Force, December 1990--February 1991; Contracts for field projects and supporting research on enhanced oil recovery, April--June 1990

    Energy Technology Data Exchange (ETDEWEB)

    Tiedemann, H.A. (ed.) (USDOE Bartlesville Project Office, OK (USA))

    1991-03-01

    The Oil Implementation Task Force was appointed to implement the US DOE's new oil research program directed toward increasing domestic oil production by expanded research on near- or mid-term enhanced oil recovery methods. An added priority is to preserve access to reservoirs that have the largest potential for oil recovery, but that are threatened by the large number of wells abandoned each year. This report describes the progress of research activities in the following areas: chemical flooding; gas displacement; thermal recovery; resource assessment; microbial technology; geoscience technology; and environmental technology. (CK)

  19. Exploring opportunities for enhancing innovation in agriculture: The case of oil palm production in Ghana

    NARCIS (Netherlands)

    Adjei-Nsiah, S.; Sakyi-Dawson, O.; Kuyper, T.W.

    2012-01-01

    We carried out a study using key informant interviews, focus group discussions and individual interviews to explore opportunities to enhance innovation in the oil palm sector in Ghana. Current technical innovations at the farm level are insufficient to promote sustainable oil palm production and to

  20. Microbial Enhanced Oil Recovery: 3D Simulation with Gravity Effects

    DEFF Research Database (Denmark)

    Nielsen, Sidsel Marie; Jessen, K.; Shapiro, Alexander

    2010-01-01

    Microbial enhanced oil recovery (MEOR) utilizes the activity of microorganisms, where microorganisms simultaneously grow in a reservoir and convert substrate into recovery enhancing products (usually, surfactants). In order to predict the performance of a MEOR process, a simulation tool is required...... using an operator splitting technique. To the best of our knowledge, this has resulted in the first full 3D MEOR streamline simulator. For verification purposes, we compare results from our streamline MEOR simulator to those of a conventional finite difference approach for 1D and 2D displacement...

  1. Biodegradation of Alaska North Slope crude oil enhanced by commercial bioremediation agents

    International Nuclear Information System (INIS)

    Aldrett, S.; Bonner, J.S.; Mills, M.A.; McDonald, T.J.; Autenrieth, R.L.

    1996-01-01

    The biodegradation of crude oil was studied. Tests were conducted in which natural unpolluted seawater was collected and then contaminated with Alaska North Slope crude oil. The oil was weathered by heating it to 521 degrees F to remove the light-end hydrocarbons. A total of 13 different bioremediation agents were tested, each one separately. Three samples per treatment were destructively analysed for petroleum chemistry. The thirteen treatments were analyzed for oil and grease. It was found that microbial degradation of petroleum hydrocarbons was enhanced by the addition of bioremediation agents, but it was not possible to identify the intermediate products responsible for the increase of resolved petroleum hydrocarbons through time. It was suggested that caution be used when interpreting results since the protocols used to test the products were prone to uncontrollable variations. 11 refs., 5 tabs., 6 figs

  2. DIETARY BLACK CUMIN (NIGELLA SATIVA SEED OIL AFFECTS SERUM LIPIDS IN CHICKEN BROILERS

    Directory of Open Access Journals (Sweden)

    Aida Hodžić

    2012-07-01

    Full Text Available The research was performed on 40 chicken broilers of Cobb provenience to investigate the effect of dietary black cumin seed oil on some blood biochemical parameters in chicken broilers. 40 chicken broilers who were included in the 42 days lasting experiment were divided into two groups, each one of 20 individuals. Group K was the control – with no added oil in feed mixture and the second group P was the experimental one – chickens were fed with 0,025 g of p.o. administered black cumin seed oil. Feed and water supplies were ad libitum. Microclimate conditions (light, temperature and airflow were maintained according to the technological procedure. Blood samples were taken from the wing vein of all animals from both groups at age of 25, 32 and 39 days. The following blood serum biochemical parameters were determined: total lipids, triglycerides, total cholesterol, albumen and calcium. Dietary black cumin seed oil significantly (P<0.05 affected serum lipid components, particularly total lipids, but not albumen and calcium in chicken broilers. Possible reason for these findings could be dietary fat component as well as fatty-acid composition of added black cumin seed oil. Key words: black cumin seed oil, chicken broilers, blood serum biochemical parameters, fatty acid composition of oil

  3. Bioaugmentation of oil reservoir indigenous Pseudomonas aeruginosa to enhance oil recovery through in-situ biosurfactant production without air injection.

    Science.gov (United States)

    Zhao, Feng; Li, Ping; Guo, Chao; Shi, Rong-Jiu; Zhang, Ying

    2018-03-01

    Considering the anoxic conditions within oil reservoirs, a new microbial enhanced oil recovery (MEOR) technology through in-situ biosurfactant production without air injection was proposed. High-throughput sequencing data revealed that Pseudomonas was one of dominant genera in Daqing oil reservoirs. Pseudomonas aeruginosa DQ3 which can anaerobically produce biosurfactant at 42 °C was isolated. Strain DQ3 was bioaugmented in an anaerobic bioreactor to approximately simulate MEOR process. During bioaugmentation process, although a new bacterial community was gradually formed, Pseudomonas was still one of dominant genera. Culture-based data showed that hydrocarbon-degrading bacteria and biosurfactant-producing bacteria were activated, while sulfate reducing bacteria were controlled. Biosurfactant was produced at simulated reservoir conditions, decreasing surface tension to 33.8 mN/m and emulsifying crude oil with EI 24  = 58%. Core flooding tests revealed that extra 5.22% of oil was displaced by in-situ biosurfactant production. Bioaugmenting indigenous biosurfactant producer P. aeruginosa without air injection is promising for in-situ MEOR applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Polymers for enhanced oil recovery : A paradigm for structure-property relationship in aqueous solution

    NARCIS (Netherlands)

    Wever, D. A. Z.; Picchioni, F.; Broekhuis, A. A.

    Recent developments in the field of water-soluble polymers aimed at enhancing the aqueous solution viscosity are reviewed. Classic and novel associating water-soluble polymers for enhanced oil recovery (EOR) applications are discussed along with their limitations. Particular emphasis is placed on

  5. Emulsion stability and properties of fish gelatin-based films as affected by palm oil and surfactants.

    Science.gov (United States)

    Nilsuwan, Krisana; Benjakul, Soottawat; Prodpran, Thummanoon

    2016-05-01

    Gelatin films exhibit the poor water vapour barrier properties. The use of palm oil, which is abundant and available in Thailand, can be a means to lower water vapour migration. To disperse oil in film-forming dispersion (FFD), a surfactant along with appropriate homogenization is required. The study aimed to investigate the influence of palm oil level and surfactants in the absence or presence of glycerol on characteristics of FFD and resulting gelatin films. Similar oil droplet sizes, both d32 and d43 values, of FFD containing soy lecithin were observed, regardless of palm oil level used (P > 0.05). FFD with Tween-20 had larger droplet size as the levels of oil increased (P palm oil level increased (P 0.05). FFD containing 500 or 750 g kg(-1) palm oil using soy lecithin as a surfactant in the presence of 300 g kg(-1) glycerol had the enhanced homogeneity and stability of oil droplets. The resulting gelatin film had the improved water vapour barrier properties. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  6. Microbial enhancement of oil recovery: Recent advances. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Premuzic, E.T.; Woodhead, A.D.; Vivirito, K.J. [eds.

    1992-12-31

    During recent years, systematic, scientific, and engineering effort by researchers in the United States and abroad, has established the scientific basis for Microbial Enhanced Oil Recovery (MEOR) technology. The successful application of MEOR technology as an oil recovery process is a goal of the Department of Energy (DOE). Research efforts involving aspects of MEOR in the microbiological, biochemical, and engineering fields led DOE to sponsor an International Conference at Brookhaven National Laboratory in 1992, to facilitate the exchange of information and a discussion of ideas for the future research emphasis. At this, the Fourth International MEOR Conference, where international attendees from 12 countries presented a total of 35 papers, participants saw an equal distribution between ``research`` and ``field applications.`` In addition, several modeling and ``state-of-the-art`` presentations summed up the present status of MEOR science and engineering. Individual papers in this proceedings have been process separately for inclusion in the Energy Science and Technology Database.

  7. Acetylcholinesterase activity in seabirds affected by the Prestige oil spill on the Galician coast (Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Oropesa, Ana-Lourdes; Perez-Lopez, Marcos; Hernandez, David; Soler, Francisco [Toxicology Area, Faculty of Veterinary Science (UEX), Avda. de la Universidad s/n. 10071 Caceres (Spain); Garcia, Jesus-Pablo [Toxicology Area, National Centre of Environmental Health, Instituto de Salud Carlos III, Majadahonda, Madrid (Spain); Fidalgo, Luis-Eusebio; Lopez-Beceiro, Ana [Rof Codina Clinical Hospital, Faculty of Veterinary Science (USC), Estrada de Granxa s/n. 27003 Lugo (Spain)

    2007-01-01

    In November 2002, the tanker Prestige broke in two and sank at the bottom of the ocean spilling about 70,000 t of fuel oil, which reached the coast of Galicia. It was considered the largest spill in maritime history, greatly affecting marine and related avian species. The spilled fuel oil contained high concentrations of polycyclic aromatic hydrocarbons (PAHs). Many species were affected and were found dead, although ongoing research is still being carried out on the sublethal effects. In this sense, little is known about the action of PAHs on Cholinesterase activity in seabirds. Consequently, the purpose of this study was to provide more information on the neurotoxicity of fuel oil on the seabirds most affected by the Prestige accident: common guillemot, Atlantic puffin and razorbill. On the other hand, data on normal values of acetylcholinesterase (AChE) activity were obtained to supply non-exposed values in seabirds. The oil spill produced a clear inhibitory effect on brain AChE activity in common guillemot (16%, p {<=} 0.01) and razorbill (22%, p {<=} 0.01), but not in Atlantic puffin (4%). Physiological levels of brain AChE, expressed in nmol acetylcholine hydrolysed min{sup -} {sup 1} mg{sup -} {sup 1} protein were similar in non-exposed common guillemot (388.6 {+-} 95.0) and Atlantic puffin (474.0 {+-} 60.7), however, razorbill values were higher (644.6 {+-} 66.9). (author)

  8. Noble Gas signatures of Enhanced Oil Recovery

    Science.gov (United States)

    Barry, P. H.; Kulongoski, J. T.; Tyne, R. L.; Hillegonds, D.; Byrne, D. J.; Landon, M. K.; Ballentine, C. J.

    2017-12-01

    Noble gases are powerful tracers of fluids from various oil and gas production activities in hydrocarbon reservoirs and nearby groundwater. Non-radiogenic noble gases are introduced into undisturbed oil and natural gas reservoirs through exchange with formation waters [1-3]. Reservoirs with extensive hydraulic fracturing, injection for enhanced oil recovery (EOR), and/or waste disposal also show evidence for a component of noble gases introduced from air [4]. Isotopic and elemental ratios of noble gases can be used to 1) assess the migration history of the injected and formation fluids, and 2) determine the extent of exchange between multiphase fluids in different reservoirs. We present noble gas isotope and abundance data from casing, separator and injectate gases of the Lost Hills and Fruitvale oil fields in the San Joaquin basin, California. Samples were collected as part of the California State Water Resource Control Board's Oil and Gas Regional Groundwater Monitoring Program. Lost Hills (n=7) and Fruitvale (n=2) gases are geochemically distinct and duplicate samples are highly reproducible. Lost Hills casing gas samples were collected from areas where EOR and hydraulic fracturing has occurred in the past several years, and from areas where EOR is absent. The Fruitvale samples were collected from a re-injection port. All samples are radiogenic in their He isotopes, typical of a crustal environment, and show enrichments in heavy noble gases, resulting from preferential adsorption on sediments. Fruitvale samples reflect air-like surface conditions, with higher air-derived noble gas concentrations. Lost Hills gases show a gradation from pristine crustal signatures - indicative of closed-system exchange with formation fluids - to strongly air-contaminated signatures in the EOR region. Pristine samples can be used to determine the extent of hydrocarbon exchange with fluids, whereas samples with excess air can be used to quantify the extent of EOR. Determining noble

  9. Potential evaluation of CO2 storage and enhanced oil recovery of tight oil reservoir in the Ordos Basin, China.

    Science.gov (United States)

    Tian, Xiaofeng; Cheng, Linsong; Cao, Renyi; Zhang, Miaoyi; Guo, Qiang; Wang, Yimin; Zhang, Jian; Cui, Yu

    2015-07-01

    Carbon -di-oxide (CO2) is regarded as the most important greenhouse gas to accelerate climate change and ocean acidification. The Chinese government is seeking methods to reduce anthropogenic CO2 gas emission. CO2 capture and geological storage is one of the main methods. In addition, injecting CO2 is also an effective method to replenish formation energy in developing tight oil reservoirs. However, exiting methods to estimate CO2 storage capacity are all based on the material balance theory. This was absolutely correct for normal reservoirs. However, as natural fractures widely exist in tight oil reservoirs and majority of them are vertical ones, tight oil reservoirs are not close. Therefore, material balance theory is not adaptive. In the present study, a new method to calculate CO2 storage capacity is presented. The CO2 effective storage capacity, in this new method, consisted of free CO2, CO2 dissolved in oil and CO2 dissolved in water. Case studies of tight oil reservoir from Ordos Basin was conducted and it was found that due to far lower viscosity of CO2 and larger solubility in oil, CO2 could flow in tight oil reservoirs more easily. As a result, injecting CO2 in tight oil reservoirs could obviously enhance sweep efficiency by 24.5% and oil recovery efficiency by 7.5%. CO2 effective storage capacity of Chang 7 tight oil reservoir in Longdong area was 1.88 x 10(7) t. The Chang 7 tight oil reservoir in Ordos Basin was estimated to be 6.38 x 10(11) t. As tight oil reservoirs were widely distributed in Songliao Basin, Sichuan Basin and so on, geological storage capacity of CO2 in China is potential.

  10. Research and Application of Radiation Processed Polymers to Enhance Oil Recovery in Petroleum Industry - Current Status and Prospects

    International Nuclear Information System (INIS)

    Le Hai; Nguyen Trong Hoanh Phong; Le Van Toan; Nguyen Ly Lan; Nguyen Tan Man; Le Dinh Lang; Nguyen Van Toan; Pham Anh Tuan

    2011-01-01

    The preparation of polymers for enhanced oil recovery has been carried out by radiation copolymerization method involving two monomers of acrylamide and N-vinyl-2- pyrrolidone, and N-methylpyrrolidone used as an anti-gel agent. The properties and oil recovery efficiency of polymer solution was discussed. The studied polymer dissolved in water and in saline water. They have non-precipitating behavior in hard brines at high temperature (>120 o C) and their viscosity decreased 20% after heating 30 days at 120 o C. Evaluation of oil recovery efficiency has been carried out at Laboratory model of reservoir of oil wells were submerged, the obtained results shown that the recovery yield of oil enhanced higher than 10% in the reservoir temperature and pressure conditions. The experimental results also shown that studied polymer products are applying in effect for submerged oil wells. These studied polymers have been being planned for application in pilot scale on the White Tiger oil field one of the big oil fields in this country. (author)

  11. Impact of innovations on future energy supply - chemical enhanced oil recovery (CEOR).

    Science.gov (United States)

    Bittner, Christian

    2013-01-01

    The International Energy Agency (IEA) expects an increase of global energy demand by one-third during next 20 years together with a change in the global energy mix. A key-influencing factor is a strong expected increase in oil and gas production in the United States driven by 'new' technologies such as hydraulic fracturing. Chemical enhanced oil recovery (CEOR) is another strong growing technology with the potential of a step change innovation, which will help to secure future oil supply by turning resources into reserves. While conventional production methods give access to on average only one-third of original oil in place, the use of surfactants and polymers allows for recovery of up to another third of this oil. In the case of polymer flooding with poly acrylamide, the number of full field implementations has increased in recent years. In the meantime new polymers have been developed to cover previously unmet needs - such polymers can be applied in fields of high salinity and high temperature. Use of surfactants is in an earlier stage, but pilot tests show promising results.

  12. Preparation of function-enhanced vegetable oils

    Directory of Open Access Journals (Sweden)

    Hiroshi Maeda

    2016-01-01

    Full Text Available Background: Previously, we (HM found that most commercially available edible oils, which were processed by hexane extraction followed by a number of purification steps, were extremely low in anti-peroxy radical (ROO., or radical scavenging activity. This is a great contrast to the respective virgin oils as exemplified by extra-virgin olive oil or crude rape seed oil [1-4] (Figure 1. Therefore, such highly purified oils will became prooxidant and less desirable food components in terms of health oriented diet. Oxidized oils may eventually cause DNA cleavages, modification of proteins, RNA, and lipids, as well as cellular damage, or promote inflammation and carcinogenesis at later time [5-9]. These commercial oils of low antioxidant activity may be improved by adding functionally effective antioxidative components, by using dried vegetable-waste such as tomato-juice-waste-residues and wine-ferment-waste-residues. Their antioxiative components will be transferred into the functionally poor grade edible oils, and consequently, one can improve the quality of such functionally poor oils and thereby contributing human health [2,8,9]. The purpose of this paper is to report a practical procedure to fortify functionally low grade conventional edible oils to functionally enriched edible oils using dried vegetable-waste residues such as tomato juice waste, and wine-ferment-residues, or other vegetable-waste residues. Methods: (1 Preparation and measurements of lycopene and carotenoid enriched oils. To 5.0g or 1.0g of the dried residue of tomato juice waste, 100ml of commercial rape seed (canola oil was added respectively. Each mixture was incubated at room temperature in dark for several weeks. Amount of lycopene and carotenoids extracted into the oil was monitored by increase of absorption (400-550nm and fluorescence at 470nm of carotenoid. Grape-juice ferment (wine waste was similarly prepared after hot air drying, and immersed in canola oil. (2

  13. Chromosomal Bands Affected by Acute Oil Exposure and DNA Repair Errors

    Science.gov (United States)

    Zock, Jan-Paul; Giraldo, Jesús; Pozo-Rodríguez, Francisco; Espinosa, Ana; Rodríguez-Trigo, Gema; Verea, Hector; Castaño-Vinyals, Gemma; Gómez, Federico P.; Antó, Josep M.; Coll, Maria Dolors; Barberà, Joan Albert; Fuster, Carme

    2013-01-01

    Background In a previous study, we showed that individuals who had participated in oil clean-up tasks after the wreckage of the Prestige presented an increase of structural chromosomal alterations two years after the acute exposure had occurred. Other studies have also reported the presence of DNA damage during acute oil exposure, but little is known about the long term persistence of chromosomal alterations, which can be considered as a marker of cancer risk. Objectives We analyzed whether the breakpoints involved in chromosomal damage can help to assess the risk of cancer as well as to investigate their possible association with DNA repair efficiency. Methods Cytogenetic analyses were carried out on the same individuals of our previous study and DNA repair errors were assessed in cultures with aphidicolin. Results Three chromosomal bands, 2q21, 3q27 and 5q31, were most affected by acute oil exposure. The dysfunction in DNA repair mechanisms, expressed as chromosomal damage, was significantly higher in exposed-oil participants than in those not exposed (p= 0.016). Conclusion The present study shows that breaks in 2q21, 3q27 and 5q31 chromosomal bands, which are commonly involved in hematological cancer, could be considered useful genotoxic oil biomarkers. Moreover, breakages in these bands could induce chromosomal instability, which can explain the increased risk of cancer (leukemia and lymphomas) reported in chronically benzene-exposed individuals. In addition, it has been determined that the individuals who participated in clean-up of the oil spill presented an alteration of their DNA repair mechanisms two years after exposure. PMID:24303039

  14. Simulations of Microbial-Enhanced Oil Recovery: Adsorption and Filtration

    DEFF Research Database (Denmark)

    Nielsen, Sidsel Marie; Nesterov, Igor; Shapiro, Alexander

    2014-01-01

    In the context of microbial-enhanced oil recovery (MEOR) with injection of surfactant-producing bacteria into the reservoir, different types of bacteria attachment and growth scenarios are studied using a 1D simulator. The irreversible bacteria attachment due to filtration similar to the deep bed...... applied to filtration model provides formation of two oil banks during recovery. This feature is not reproduced by application of REA model or DBF with growth in attached phase. This makes it possible to select a right model based on the qualitative analysis of the experimental data. A criterion...... is introduced to study the process efficiency: the dimensionless time at which average recovery between pure water injection and maximum surfactant effect is reached. This characteristic recovery period (CRP) was studied as a function of the different MEOR parameters such as bacterial activity, filtration...

  15. Does Climate Change Mitigation Activity Affect Crude Oil Prices? Evidence from Dynamic Panel Model

    OpenAIRE

    Dike, Jude C.

    2014-01-01

    This paper empirically investigates how climate change mitigation affects crude oil prices while using carbon intensity as the indicator for climate change mitigation. The relationship between crude oil prices and carbon intensity is estimated using an Arellano and Bond GMM dynamic panel model. This study undertakes a regional-level analysis because of the geographical similarities among the countries in a region. Regions considered for the study are Africa, Asia and Oceania, Central and Sout...

  16. 4-D tomographic monitoring of enhanced oil recovery

    International Nuclear Information System (INIS)

    Brzostowski, M.A.; McMechan, G.A.

    1991-01-01

    One application of tomography that has recently received considerable attention is reservoir monitoring for Enhanced Oil Recovery (EOR). Tomographic monitoring of a moving steam front uses the significant decrease in compressional wave velocity that occurs as hydrocarbon temperature increases. The purposes of this paper are to present a working algorithm for 3-D tomography, to demonstrate the feasibility of 3-D imaging of a simulated reservoir in which the position of a steam front changes with time, and to illustrate the relations between survey geometry and the resolution of the target

  17. A review on applications of nanotechnology in the enhanced oil recovery part A: effects of nanoparticles on interfacial tension

    Science.gov (United States)

    Cheraghian, Goshtasp; Hendraningrat, Luky

    2016-01-01

    Chemical enhanced oil recovery is another strong growing technology with the potential of a step change innovation, which will help to secure future oil supply by turning resources into reserves. While Substantial amount of crude oil remains in the reservoir after primary and secondary production, conventional production methods give access to on average only one-third of original oil in place, the use of surfactants and polymers allows for recovery of up to another third of this oil. Chemical flooding is of increasing interest and importance due to high oil prices and the need to increase oil production. Research in nanotechnology in the petroleum industry is advancing rapidly and an enormous progress in the application of nanotechnology in this area is to be expected. Nanotechnology has the potential to profoundly change enhanced oil recovery and to improve mechanism of recovery. This paper, therefore, focuses on the reviews of the application of nano technology in chemical flooding process in oil recovery and reviews the application nano in the polymer and surfactant flooding on the interfacial tension process.

  18. Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.

    Science.gov (United States)

    Zhang, Junhui; Xue, Quanhong; Gao, Hui; Lai, Hangxian; Wang, Ping

    2016-10-03

    Lipopeptides are known as promising microbial surfactants and have been successfully used in enhancing oil recovery in extreme environmental conditions. A biosurfactant-producing strain, Bacillus atrophaeus 5-2a, was recently isolated from an oil-contaminated soil in the Ansai oilfield, Northwest China. In this study, we evaluated the crude oil removal efficiency of lipopeptide biosurfactants produced by B. atrophaeus 5-2a and their feasibility for use in microbial enhanced oil recovery. The production of biosurfactants by B. atrophaeus 5-2a was tested in culture media containing eight carbon sources and nitrogen sources. The production of a crude biosurfactant was 0.77 g L -1 and its surface tension was 26.52 ± 0.057 mN m -1 in a basal medium containing brown sugar (carbon source) and urea (nitrogen source). The biosurfactants produced by the strain 5-2a demonstrated excellent oil spreading activity and created a stable emulsion with paraffin oil. The stability of the biosurfactants was assessed under a wide range of environmental conditions, including temperature (up to 120 °C), pH (2-13), and salinity (0-50 %, w/v). The biosurfactants were found to retain surface-active properties under the extreme conditions. Additionally, the biosurfactants were successful in a test to simulate microbial enhanced oil recovery, removing 90.0 and 93.9 % of crude oil adsorbed on sand and filter paper, respectively. Fourier transform infrared spectroscopy showed that the biosurfactants were a mixture of lipopeptides, which are powerful biosurfactants commonly produced by Bacillus species. The study highlights the usefulness of optimization of carbon and nitrogen sources and their effects on the biosurfactants production and further emphasizes on the potential of lipopeptide biosurfactants produced by B. atrophaeus 5-2a for crude oil removal. The favorable properties of the lipopeptide biosurfactants make them good candidates for application in the bioremediation of oil

  19. CO2 Enhanced Oil Recovery from the Residual Zone - A Sustainable Vision for North Sea Oil Production

    Science.gov (United States)

    Stewart, Jamie; Haszeldine, Stuart; Wilkinson, Mark; Johnson, Gareth

    2014-05-01

    This paper presents a 'new vision for North Sea oil production' where previously unattainable residual oil can be produced with the injection of CO2 that has been captured at power stations or other large industrial emitters. Not only could this process produce incremental oil from a maturing basin, reducing imports, it also has the capability to store large volumes of CO2 which can offset the emissions of additional carbon produced. Around the world oil production from mature basins is in decline and production from UK oil fields peaked in 1998. Other basins around the world have a similar story. Although in the UK a number of tax regimes, such as 'brown field allowances' and 'new field allowances' have been put in place to re-encourage investment, it is recognised that the majority of large discoveries have already been made. However, as a nation our demand for oil remains high and in the last decade imports of crude oil have been steadily increasing. The UK is dependent on crude oil for transport and feedstock for chemical and plastics production. Combined with the necessity to provide energy security, there is a demand to re-assess the potential for CO2 Enhanced Oil Recovery (CO2-EOR) in the UK offshore. Residual oil zones (ROZ) exist where one of a number of natural conditions beyond normal capillary forces have caused the geometry of a field's oil column to be altered after filling [1]. When this re-structuring happens the primary interest to the hydrocarbon industry has in the past been in where the mobile oil has migrated to. However it is now considered that significant oil resource may exist in the residual zone play where the main oil column has been displaced. Saturations within this play are predominantly close to residual saturation (Sr) and would be similar to that of a water-flooded field [2]. Evidence from a number of hydrocarbon fairways shows that, under certain circumstances, these residual zones in US fields are comparable in thickness to the

  20. Experimental study on electromagnetic-assisted ZnO nanofluid flooding for enhanced oil recovery (EOR).

    Science.gov (United States)

    Adil, Muhammad; Lee, Keanchuan; Mohd Zaid, Hasnah; Ahmad Latiff, Noor Rasyada; Alnarabiji, Mohamad Sahban

    2018-01-01

    Recently, nano-EOR has emerged as a new frontier for improved and enhanced oil recovery (IOR & EOR). Despite their benefits, the nanoparticles tend to agglomerate at reservoir conditions which cause their detachment from the oil/water interface, and are consequently retained rather than transported through a porous medium. Dielectric nanoparticles including ZnO have been proposed to be a good replacement for EOR due to their high melting point and thermal properties. But more importantly, these particles can be polarized under electromagnetic (EM) irradiation, which provides an innovative smart Nano-EOR process denoted as EM-Assisted Nano-EOR. In this study, parameters involved in the oil recovery mechanism under EM waves, such as reducing mobility ratio, lowering interfacial tensions (IFT) and altering wettability were investigated. Two-phase displacement experiments were performed in sandpacks under the water-wet condition at 95°C, with permeability in the range of 265-300 mD. A crude oil from Tapis oil field was employed; while ZnO nanofluids of two different particle sizes (55.7 and 117.1 nm) were prepared using 0.1 wt. % nanoparticles that dispersed into brine (3 wt. % NaCl) along with SDBS as a dispersant. In each flooding scheme, three injection sequential scenarios have been conducted: (i) brine flooding as a secondary process, (ii) surfactant/nano/EM-assisted nano flooding, and (iii) second brine flooding to flush nanoparticles. Compare with surfactant flooding (2% original oil in place/OOIP) as tertiary recovery, nano flooding almost reaches 8.5-10.2% of OOIP. On the other hand, EM-assisted nano flooding provides an incremental oil recovery of approximately 9-10.4% of OOIP. By evaluating the contact angle and interfacial tension, it was established that the degree of IFT reduction plays a governing role in the oil displacement mechanism via nano-EOR, compare to mobility ratio. These results reveal a promising way to employ water-based ZnO nanofluid for

  1. Experimental study on electromagnetic-assisted ZnO nanofluid flooding for enhanced oil recovery (EOR)

    Science.gov (United States)

    Ahmad Latiff, Noor Rasyada; Alnarabiji, Mohamad Sahban

    2018-01-01

    Recently, nano-EOR has emerged as a new frontier for improved and enhanced oil recovery (IOR & EOR). Despite their benefits, the nanoparticles tend to agglomerate at reservoir conditions which cause their detachment from the oil/water interface, and are consequently retained rather than transported through a porous medium. Dielectric nanoparticles including ZnO have been proposed to be a good replacement for EOR due to their high melting point and thermal properties. But more importantly, these particles can be polarized under electromagnetic (EM) irradiation, which provides an innovative smart Nano-EOR process denoted as EM-Assisted Nano-EOR. In this study, parameters involved in the oil recovery mechanism under EM waves, such as reducing mobility ratio, lowering interfacial tensions (IFT) and altering wettability were investigated. Two-phase displacement experiments were performed in sandpacks under the water-wet condition at 95°C, with permeability in the range of 265–300 mD. A crude oil from Tapis oil field was employed; while ZnO nanofluids of two different particle sizes (55.7 and 117.1 nm) were prepared using 0.1 wt. % nanoparticles that dispersed into brine (3 wt. % NaCl) along with SDBS as a dispersant. In each flooding scheme, three injection sequential scenarios have been conducted: (i) brine flooding as a secondary process, (ii) surfactant/nano/EM-assisted nano flooding, and (iii) second brine flooding to flush nanoparticles. Compare with surfactant flooding (2% original oil in place/OOIP) as tertiary recovery, nano flooding almost reaches 8.5–10.2% of OOIP. On the other hand, EM-assisted nano flooding provides an incremental oil recovery of approximately 9–10.4% of OOIP. By evaluating the contact angle and interfacial tension, it was established that the degree of IFT reduction plays a governing role in the oil displacement mechanism via nano-EOR, compare to mobility ratio. These results reveal a promising way to employ water-based ZnO nanofluid

  2. Factors affecting emulsion stability and quality of oil recovered from enzyme-assisted aqueous extraction of soybeans.

    Science.gov (United States)

    Jung, S; Maurer, D; Johnson, L A

    2009-11-01

    The objectives of the present study were to assess how the stability of the emulsion recovered from aqueous extraction processing of soybeans was affected by characteristics of the starting material and extraction and demulsification conditions. Adding endopeptidase Protex 6L during enzyme-assisted aqueous extraction processing (EAEP) of extruded soybean flakes was vital to obtaining emulsions that were easily demulsified with enzymes. Adding salt (up to 1.5 mM NaCl or MgCl(2)) during extraction and storing extruded flakes before extraction at 4 and 30 degrees C for up to 3 months did not affect the stabilities of emulsions recovered from EAEP of soy flour, flakes and extruded flakes. After demulsification, highest free oil yield was obtained with EAEP of extruded flakes, followed by flour and then flakes. The same protease used for the extraction step was used to demulsify the EAEP cream emulsion from extruded full-fat soy flakes at concentrations ranging from 0.03% to 2.50% w/w, incubation times ranging from 2 to 90 min, and temperatures of 25, 50 or 65 degrees C. Highest free oil recoveries were achieved at high enzyme concentrations, mild temperatures, and short incubation times. Both the nature of enzyme (i.e., protease and phospholipase), added alone or as a cocktail, concentration of enzymes (0.5% vs. 2.5%) and incubation time (1 vs. 3 h), use during the extraction step, and nature of enzyme added for demulsifying affected free oil yield. The free oil recovered from EAEP of extruded flakes contained less phosphorus compared with conventional hexane-extracted oil. The present study identified conditions rendering the emulsion less stable, which is critical to increasing free oil yield recovered during EAEP of soybeans, an environmentally friendly alternative processing method to hexane extraction.

  3. Systematic Phase Behaviour Study and Foam Stability Analysis for Optimal Alkaline/Surfactant/Foam Enhanced Oil Recovery

    NARCIS (Netherlands)

    Hosseini Nasab, S.M.; Zitha, P.L.J.

    2015-01-01

    Alkaline-Surfactant-Foam (ASF) flooding is a recently introduced enhanced oil recovery (EOR) method. This paper presents laboratory study of this ASF to better understand its mechanisms. The focus is on the interaction of ASF chemical agents with oil and in the presence and absence of naphthenic

  4. Optimization of factors affecting the production of biodiesel from crude palm kernel oil and ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Kuwornoo, David. K. [Faculty of Chemical and Materials Engineering, Kwame Nkrumah University of Science and Technology (KNUST), Private Mail Bag, Kumasi (Ghana); Ahiekpor, Julius C. [Chemical Engineering Department, Kumasi Polytechnic, P.O. Box 854, Kumasi (Ghana)

    2010-07-01

    Biodiesel, an alternative diesel fuel made from renewable sources such as vegetable oils and animal fats, has been identified by government to play a key role in the socio-economic development of Ghana. The utilization of biodiesel is expected to be about 10% of the total liquid fuel mix of the country by the year 2020. Despite this great potential and the numerous sources from which biodiesel could be developed in Ghana, studies on the sources of biodiesel and their properties as a substitute for fossil diesel have tended to be limited to Jatropha oil. This paper, however, reports the parameters that influences the production of biodiesel from palm kernel oil, one of the vegetable oils obtained from oil palm which is the highest vegetable oil source in Ghana. The parameters studied are; mass ratio of ethanol to oil, reaction temperature, catalyst concentration, and reaction time using completely randomized 24 factorial design. Results indicated that ethanol to oil mass ratio, catalyst concentration and reaction time were the most important factors affecting the ethyl ester yield. There was also an interaction effect between catalyst and time and ethanol- oil ratio and time on the yield. Accordingly, the optimal conditions for the production of ethyl esters from crude palm kernel oil were determined as; 1:5 mass ratio of ethanol to oil, 1% catalyst concentration by weight of oil, 90 minutes reaction time at a temperature of 30 deg C.

  5. Molecular design of high performance zwitterionic liquids for enhanced heavy-oil recovery processes.

    Science.gov (United States)

    Martínez-Magadán, J M; Cartas-Rosado, A R; Oviedo-Roa, R; Cisneros-Dévora, R; Pons-Jiménez, M; Hernández-Altamirano, R; Zamudio-Rivera, L S

    2018-03-01

    Branched gemini zwitterionic liquids, which contain two zwitterionic moieties of linked quaternary-ammonium and carboxylate groups, are proposed as chemicals to be applied in the Enhanced Oil Recovery (EOR) from fractured carbonate reservoirs. The zwitterionic moieties are bridged between them through an alkyl chain containing 12 ether groups, and each zwitterionic moiety has attached a long alkyl tail including a CC double bond. A theoretical molecular mechanism over which EOR could rest, consisting on both the disaggregation of heavy oil and the reservoir-rock wettability alteration, was suggested. Results show that chemicals can both reduce the viscosity and remove heavy-oil molecules from the rock surface. Copyright © 2018. Published by Elsevier Inc.

  6. Energy fluxes in oil palm plantations as affected by water storage in the trunk

    Science.gov (United States)

    Meijide, Ana; Röll, Alexander; Fan, Yuanchao; Herbst, Mathias; Niu, Furong; Tiedemann, Frank; June, Tania; Rauf, Abdul; Hölscher, Dirk; Knohl, Alexander

    2017-04-01

    Oil palm is increasingly expanding, particularly in Indonesia, but information on water and energy fluxes in oil palm plantations is still very limited and on how those are affected by environmental conditions or oil palm age. Using the eddy covariance technique, we studied turbulent fluxes of sensible (H) and latent (LE) heat and gross primary production (GPP) for 8 months each in a young oil palm plantation (1-year old) and subsequently in a mature plantation (12-year old) in Jambi Province, Sumatra, Indonesia. We measured transpiration (T) simultaneously using a sap flux technique. The energy budget was dominated by LE in both plantations, particularly in the mature one, where it represented up to 70% of the available energy. In the young oil palm plantation, evapotranspiration (ET) was significantly reduced and H fluxes were higher. This affected the Bowen ratio, defined as the ratio of H and LE, which was higher in the 1-year old plantation (0.67±0.33), where it remained constant during the day, than in the mature plantation (0.14±0.09), where it varied considerably over the day, suggesting that water accumulated inside the canopy. Using the Community Land Model (CLM), a process based land surface model that has been adapted to oil palm functional traits (i.e. CLM-Palm), we investigated the contribution of different water sources to the measured fluxes. CLM-Palm differentiates leaf and stem surfaces in modelling water interception and is therefore able to diagnose the fraction of dry leaves that contribute to T and the wet fraction of all vegetation surfaces (leaf and stem) that contributes to evaporation. Results from our simulations strengthen our hypothesis of significant contribution of canopy evaporation to ET. As observed in the field, water accumulates inside the canopy in the mature plantation in oil palm trunk surfaces including epiphytes, creating water reservoirs in the trunk, which potentially contribute to ET when they evaporate. The decoupling

  7. Compatibility between weak gel and microorganisms in weak gel-assisted microbial enhanced oil recovery.

    Science.gov (United States)

    Qi, Yi-Bin; Zheng, Cheng-Gang; Lv, Cheng-Yuan; Lun, Zeng-Min; Ma, Tao

    2018-03-20

    To investigate weak gel-assisted microbial flooding in Block Wang Long Zhuang in the Jiangsu Oilfield, the compatibility of weak gel and microbe was evaluated using laboratory experiments. Bacillus sp. W5 was isolated from the formation water in Block Wang Long Zhuang. The rate of oil degradation reached 178 mg/day, and the rate of viscosity reduction reached 75.3%. Strain W5 could produce lipopeptide with a yield of 1254 mg/L. Emulsified crude oil was dispersed in the microbial degradation system, and the average diameter of the emulsified oil particles was 18.54 μm. Bacillus sp. W5 did not affect the rheological properties of the weak gel, and the presence of the weak gel did not significantly affect bacterial reproduction (as indicated by an unchanged microbial biomass), emulsification (surface tension is 35.56 mN/m and average oil particles size is 21.38 μm), oil degradation (162 mg/day) and oil viscosity reduction (72.7%). Core-flooding experiments indicated oil recovery of 23.6% when both weak gel and Bacillus sp. W5 were injected into the system, 14.76% when only the weak gel was injected, and 9.78% with strain W5 was injected without the weak gel. The results demonstrate good compatibility between strains W5 and the weak gel and highlight the application potential of weak gel-assisted microbial flooding. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  8. Enhanced heavy oil recovery for carbonate reservoirs integrating cross-well seismic–a synthetic Wafra case study

    KAUST Repository

    Katterbauer, Klemens

    2015-07-14

    Heavy oil recovery has been a major focus in the oil and gas industry to counter the rapid depletion of conventional reservoirs. Various techniques for enhancing the recovery of heavy oil were developed and pilot-tested, with steam drive techniques proven in most circumstances to be successful and economically viable. The Wafra field in Saudi Arabia is at the forefront of utilizing steam recovery for carbonate heavy oil reservoirs in the Middle East. With growing injection volumes, tracking the steam evolution within the reservoir and characterizing the formation, especially in terms of its porosity and permeability heterogeneity, are key objectives for sound economic decisions and enhanced production forecasts. We have developed an integrated reservoir history matching framework using ensemble based techniques incorporating seismic data for enhancing reservoir characterization and improving history matches. Examining the performance on a synthetic field study of the Wafra field, we could demonstrate the improved characterization of the reservoir formation, determining more accurately the position of the steam chambers and obtaining more reliable forecasts of the reservoir’s recovery potential. History matching results are fairly robust even for noise levels up to 30%. The results demonstrate the potential of the integration of full-waveform seismic data for steam drive reservoir characterization and increased recovery efficiency.

  9. Green bio-oil extraction for oil crops

    Science.gov (United States)

    Zainab, H.; Nurfatirah, N.; Norfaezah, A.; Othman, H.

    2016-06-01

    The move towards a green bio-oil extraction technique is highlighted in this paper. The commonly practised organic solvent oil extraction technique could be replaced with a modified microwave extraction. Jatropha seeds (Jatropha curcas) were used to extract bio-oil. Clean samples were heated in an oven at 110 ° C for 24 hours to remove moisture content and ground to obtain particle size smaller than 500μm. Extraction was carried out at different extraction times 15 min, 30 min, 45 min, 60 min and 120 min to determine oil yield. The biooil yield obtained from microwave assisted extraction system at 90 minutes was 36% while that from soxhlet extraction for 6 hours was 42%. Bio-oil extracted using the microwave assisted extraction (MAE) system could enhance yield of bio-oil compared to soxhlet extraction. The MAE extraction system is rapid using only water as solvent which is a nonhazardous, environment-friendly technique compared to soxhlet extraction (SE) method using hexane as solvent. Thus, this is a green technique of bio-oil extraction using only water as extractant. Bio-oil extraction from the pyrolysis of empty fruit bunch (EFB), a biomass waste from oil palm crop, was enhanced using a biocatalyst derived from seashell waste. Oil yield for non-catalytic extraction was 43.8% while addition of seashell based biocatalyst was 44.6%. Oil yield for non-catalytic extraction was 43.8% while with addition of seashell-based biocatalyst was 44.6%. The pH of bio-oil increased from 3.5 to 4.3. The viscosity of bio-oil obtained by catalytic means increased from 20.5 to 37.8 cP. A rapid and environment friendly extraction technique is preferable to enhance bio-oil yield. The microwave assisted approach is a green, rapid and environmental friendly extraction technique for the production of bio-oil bearing crops.

  10. Chemometric assessment of enhanced bioremediation of oil contaminated soils.

    Science.gov (United States)

    Soleimani, Mohsen; Farhoudi, Majid; Christensen, Jan H

    2013-06-15

    Bioremediation is a promising technique for reclamation of oil polluted soils. In this study, six methods for enhancing bioremediation were tested on oil contaminated soils from three refinery areas in Iran (Isfahan, Arak, and Tehran). The methods included bacterial enrichment, planting, and addition of nitrogen and phosphorous, molasses, hydrogen peroxide, and a surfactant (Tween 80). Total petroleum hydrocarbon (TPH) concentrations and CHEMometric analysis of Selected Ion Chromatograms (SIC) termed CHEMSIC method of petroleum biomarkers including terpanes, regular, diaromatic and triaromatic steranes were used for determining the level and type of hydrocarbon contamination. The same methods were used to study oil weathering of 2 to 6 ring polycyclic aromatic compounds (PACs). Results demonstrated that bacterial enrichment and addition of nutrients were most efficient with 50% to 62% removal of TPH. Furthermore, the CHEMSIC results demonstrated that the bacterial enrichment was more efficient in degradation of n-alkanes and low molecular weight PACs as well as alkylated PACs (e.g. C₃-C₄ naphthalenes, C₂ phenanthrenes and C₂-C₃ dibenzothiophenes), while nutrient addition led to a larger relative removal of isoprenoids (e.g. norpristane, pristane and phytane). It is concluded that the CHEMSIC method is a valuable tool for assessing bioremediation efficiency. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Visual display of reservoir parameters affecting enhanced oil recovery. Final report, September 29, 1993--September 28, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Wood, J.R.

    1997-05-01

    The Pioneer Anticline, 25 miles southwest of Bakersfield, California, which has yielded oil since 1926, was the subject of a three-year study aimed at recovering more oil. A team from Michigan Technological University of Houghton, Michigan (MTU), and Digital Petrophysics, Inc. of Bakersfield, California (DPI), undertook the study as part of the Department of Energy`s Advanced Extraction and Process Technology Program. The program provides support for projects which cross-cut geoscience and engineering research in order to develop innovative technologies for increasing the recovery of some of the estimated 340 billion barrels of in-place oil remaining in U.S. reservoirs. In recent years, low prices and declining production have increased the likelihood that oil fields will be prematurely abandoned, locking away large volumes of unrecovered oil. The major companies have sold many of their fields to smaller operators in an attempt to concentrate their efforts on fewer {open_quotes}core{close_quotes} properties and on overseas exploration. As a result, small companies with fewer resources at their disposal are becoming responsible for an ever-increasing share of U.S. production. The goal of the MTU-DPI project was to make small independent producers who are inheriting old fields from the majors aware that high technology computer software is now available at relatively low cost. In this project, a suite of relatively inexpensive, PC-based software packages, including a commercial database, a multimedia presentation manager, several well-log analysis program, a mapping and cross-section program, and 2-D and 3-D visualization programs, were tested and evaluated on Pioneer Anticline in the southern San Joaquin Valley of California. These relatively inexpensive, commercially available PC-based programs can be assembled into a compatible package for a fraction of the cost of a workstation program with similar capabilities.

  12. Cultures differ in the ability to enhance affective neural responses.

    Science.gov (United States)

    Varnum, Michael E W; Hampton, Ryan S

    2017-10-01

    The present study (N = 55) used an event-related potential paradigm to investigate whether cultures differ in the ability to upregulate affective responses. Using stimuli selected from the International Affective Picture System, we found that European-Americans (N = 29) enhanced central-parietal late positive potential (LPP) (400-800 ms post-stimulus) responses to affective stimuli when instructed to do so, whereas East Asians (N = 26) did not. We observed cultural differences in the ability to enhance central-parietal LPP responses for both positively and negativelyvalenced stimuli, and the ability to enhance these two types of responses was positively correlated for Americans but negatively for East Asians. These results are consistent with the notion that cultural variations in norms and values regarding affective expression and experiences shape how the brain regulates emotions.

  13. Enhanced oil recovery using flash-driven steamflooding

    Science.gov (United States)

    Roark, Steven D.

    1990-01-01

    The present invention is directed to a novel steamflooding process which utilizes three specific stages of steam injection for enhanced oil recovery. The three stages are as follows: As steam is being injected into an oil-bearing reservoir through an injection well, the production rate of a production well located at a distance from the injection well is gradually restricted to a point that the pressure in the reservoir increases at a predetermined rate to a predetermined maximum value. After the maximum pressure has been reached, the production rate is increased to a value such that the predetermined maximum pressure value is maintained. Production at maximum pressure is continued for a length of time that will be unique for each individual reservoir. In some cases, this step of the steamflooding process of the invention may be omitted entirely. In the third stage of the steamflooding process of the invention, production rates at the producing well are increased gradually to allow the pressure to decrease down from the maximum pressure value to the original pressure value at the producing well. The rate of pressure reduction will be unique for each reservoir. After completing stage three, the three stages can be repeated or the steamflood may be terminated as considered desirable.

  14. Enhancing the biodegradation of oil in sandy sediments with choline: A naturally methylated nitrogen compound

    International Nuclear Information System (INIS)

    Mortazavi, Behzad; Horel, Agota; Anders, Jennifer S.; Mirjafari, Arsalan; Beazley, Melanie J.; Sobecky, Patricia A.

    2013-01-01

    We investigated how additions of choline, a naturally occurring methylated nitrogen-containing compound, accelerated hydrocarbon degradation in sandy sediments contaminated with moderately weathered crude oil (4000 mg kg −1 sediment). Addition of lauroylcholine chloride (LCC) and tricholine citrate (TCC) to oil contaminated sediments resulted in 1.6 times higher hydrocarbon degradation rates compared to treatments without added choline derivatives. However, the degradation rate constant for the oil contaminated sediments amended with LCC was similar to that in contaminated sediments amended with inorganic nitrogen, phosphorus, and glucose. Additions of LLC and TCC to sediments containing extensively weathered oil also resulted in enhanced mineralization rates. Cultivation-free 16S rRNA analysis revealed the presence of an extant microbial community with clones closely related to known hydrocarbon degraders from the Gammaproteobacteria, Alphaproteobacteria, and Firmicutes phyla. The results demonstrate that the addition of minimal amounts of organic compounds to oil contaminated sediments enhances the degradation of hydrocarbons. -- Highlights: •Aerobic degradation of weathered crude oil in sandy sediments was determined. •The effect of input of choline on degradation rates was determined. •16S rRNA clone library analyses were used to examine the microbial phylogeny. •The bacterial community was consisted of clones related to hydrocarbon degraders. •Hydrocarbon degradation in sandy sediments was accelerated by addition of choline. -- Choline, a naturally occurring methylated nitrogen-containing compound, accelerated hydrocarbon degradation in sandy sediments by an extant microbial community

  15. Constructive Activation of Reservoir-Resident Microbes for Enhanced Oil Recovery

    Science.gov (United States)

    DeBruyn, R. P.

    2017-12-01

    Microbial communities living in subsurface oil reservoirs biodegrade oil, producing methane. If this process could create methane within the waterflooded pore spaces of an oilfield, the methane would be expected to remain and occupy pore space, decreasing water relative permeability, diverting water flow, and increasing oil recovery by expanding the swept zone of the waterflood. This approach was tested in an oilfield in northern Montana. Preliminary assessments were made of geochemical conditions and microbiological habitations. Then, a formulation of microbial activators, with composition tailored for the reservoir's conditions, was metered at low rates into the existing injection water system for one year. In the field, the responses observed included improved oil production performance; a slight increase in injection pressure; and increased time needed for tracers to move between injection and producing wells. We interpret these results to confirm that successful stimulation of the microbial community caused more methane to be created within the swept zone of the waterflooded reservoir. When the methane exsolved as water flowed between high-pressure injection and low-pressure production wells, the bubbles occupied pore space, reducing water saturation and relative permeability, and re-directing some water flow to "slower" unswept rock with lower permeability and higher oil saturation. In total, the waterflood's swept zone had been expanded to include previously-unflooded rock. This technology was applied in this field after screening based on careful anaerobic sampling, advanced microbiological analysis, and the ongoing success of its waterflood. No reservoir or geological or geophysical simulation models were employed, and physical modifications to field facilities were minor. This technology of utilizing existing microbial populations for enhanced oil recovery can therefore be considered for deployment into waterfloods where small scale, advanced maturity, or

  16. Bio-Oil Hydrotreatment for Enhancing Solubility in Biodiesel and the Oxydation Stability of Resulting Blends.

    Science.gov (United States)

    Botella, Lucía; Stankovikj, Filip; Sánchez, José L; Gonzalo, Alberto; Arauzo, Jesús; Garcia-Pérez, Manuel

    2018-01-01

    The major challenge for the pyrolytic conversion of lignocellulosic materials into crude bio-oil is the poor quality of the final product. Several strategies (addition of solvents, production of emulsions, and extraction with biodiesel) have been studied to improve its fuel properties. The extraction with biodiesel is an interesting solution because it allows direct utilization of some bio-oil fractions as fuels. However, fraction extracted with biodiesel is typically between 10 and 18 wt. %. In this paper we studied mild hydrotreatment of pyrolysis oil to enhance its solubility in biodiesel. The study was conducted with BTG and Amaron oils hydrotreated at temperatures between 200 and 325°C in the presence of Ru/C catalyst. Hydrotreated oils generated three phases: top oil (light hydrocarbons), middle aqueous phase and bottom heavy oil phase. Each of the phases was characterized and the content of acetic acid, phenols, aromatic compounds, and linear alkane hydrocarbons quantified. The upgraded bio-oils were more soluble in biodiesel than the crude bio-oils, obtaining blends with up to 48 and 38 wt. % for the BTG and Amaron bio-oil, respectively. Some of the fuel properties of the resulting blends are also reported here.

  17. Bio-oil Hydrotreatment for Enhancing Solubility in Biodiesel and the Oxydation Stability of Resulting Blends

    Science.gov (United States)

    Botella, Lucía; Stankovikj, Filip; Sánchez, José L.; Gonzalo, Alberto; Arauzo, Jesús; Garcia-Pérez, Manuel

    2018-04-01

    The major challenge for the pyrolytic conversion of lignocellulosic materials into crude bio-oil is the poor quality of the final product. Several strategies (addition of solvents, production of emulsions, and extraction with biodiesel) have been studied to improve its fuel properties. The extraction with biodiesel is an interesting solution because it allows direct utilization of some bio-oil fractions as fuels. However, fraction extracted with biodiesel is typically between 10 and 18 wt. %. In this paper we studied mild hydrotreatment of pyrolysis oil to enhance its solubility in biodiesel. The study was conducted with BTG and Amaron oils hydrotreated at temperatures between 200 and 325 °C in the presence of Ru/C catalyst. Hydrotreated oils generated three phases: top oil (light hydrocarbons), middle aqueous phase and bottom heavy oil phase. Each of the phases was characterized and the content of acetic acid, phenols, aromatic compounds and linear alkane hydrocarbons quantified. The upgraded bio-oils were more soluble in biodiesel than the crude bio-oils, obtaining blends with up to 48 and 38 wt. % for the BTG and Amaron bio-oil, respectively. Some of the fuel properties of the resulting blends are also reported here.

  18. Bio-Oil Hydrotreatment for Enhancing Solubility in Biodiesel and the Oxydation Stability of Resulting Blends

    Directory of Open Access Journals (Sweden)

    Lucía Botella

    2018-04-01

    Full Text Available The major challenge for the pyrolytic conversion of lignocellulosic materials into crude bio-oil is the poor quality of the final product. Several strategies (addition of solvents, production of emulsions, and extraction with biodiesel have been studied to improve its fuel properties. The extraction with biodiesel is an interesting solution because it allows direct utilization of some bio-oil fractions as fuels. However, fraction extracted with biodiesel is typically between 10 and 18 wt. %. In this paper we studied mild hydrotreatment of pyrolysis oil to enhance its solubility in biodiesel. The study was conducted with BTG and Amaron oils hydrotreated at temperatures between 200 and 325°C in the presence of Ru/C catalyst. Hydrotreated oils generated three phases: top oil (light hydrocarbons, middle aqueous phase and bottom heavy oil phase. Each of the phases was characterized and the content of acetic acid, phenols, aromatic compounds, and linear alkane hydrocarbons quantified. The upgraded bio-oils were more soluble in biodiesel than the crude bio-oils, obtaining blends with up to 48 and 38 wt. % for the BTG and Amaron bio-oil, respectively. Some of the fuel properties of the resulting blends are also reported here.

  19. Bio-Oil Hydrotreatment for Enhancing Solubility in Biodiesel and the Oxydation Stability of Resulting Blends

    Science.gov (United States)

    Botella, Lucía; Stankovikj, Filip; Sánchez, José L.; Gonzalo, Alberto; Arauzo, Jesús; Garcia-Pérez, Manuel

    2018-01-01

    The major challenge for the pyrolytic conversion of lignocellulosic materials into crude bio-oil is the poor quality of the final product. Several strategies (addition of solvents, production of emulsions, and extraction with biodiesel) have been studied to improve its fuel properties. The extraction with biodiesel is an interesting solution because it allows direct utilization of some bio-oil fractions as fuels. However, fraction extracted with biodiesel is typically between 10 and 18 wt. %. In this paper we studied mild hydrotreatment of pyrolysis oil to enhance its solubility in biodiesel. The study was conducted with BTG and Amaron oils hydrotreated at temperatures between 200 and 325°C in the presence of Ru/C catalyst. Hydrotreated oils generated three phases: top oil (light hydrocarbons), middle aqueous phase and bottom heavy oil phase. Each of the phases was characterized and the content of acetic acid, phenols, aromatic compounds, and linear alkane hydrocarbons quantified. The upgraded bio-oils were more soluble in biodiesel than the crude bio-oils, obtaining blends with up to 48 and 38 wt. % for the BTG and Amaron bio-oil, respectively. Some of the fuel properties of the resulting blends are also reported here. PMID:29675406

  20. Enhanced antibacterial effects of clove essential oil by nanoemulsion.

    Science.gov (United States)

    Anwer, Md Khalid; Jamil, Shahid; Ibnouf, Elmutasim Osman; Shakeel, Faiyaz

    2014-01-01

    The aim of present study was to develop and evaluate nanoemulsion formulations of clove essential oil (CEO) for its antibacterial effects in comparison with pure CEO and standard amikacin antibiotic (positive control). Different nanoemulsions of CEO were developed by aqueous phase titration method via construction of pseudo-ternary phase diagrams and investigated for thermodynamic stability and self-nanoemulsification tests. Selected formulations (F1-F5) were characterized for droplet size distribution, viscosity, zeta potential, transmittance and surface morphology. Based on lowest droplet size (29.1 nm), lowest PI (0.026), lowest viscosity (34.6 cp), optimal zeta potential (-31.4 mV), highest transmittance (99.4 %) and lowest concentration of Triacetin (8 % w/w), CEO nanoemulsion F1 (containing 1 % w/w of CEO, 8 % w/w of Triacetin, 15 % w/w of Tween-80, 15 % w/w of Labrasol and 61 % w/w of water) was subjected to antibacterial studies in comparison with pure oil and standard amikacin. The antibacterial effects of F1 were found to be superior over pure oil against all bacterial strains investigated. However, the antibacterial effects of F1 were highly comparable with standard amikacin against all bacterial strains. The minimum inhibitory concentrations (MICs) of F1 were observed in the range of 0.075-0.300 % w/w as compared to pure oil (MICs 0.130-0.500 % w/w) and standard amikacin (MICs 2-16 μg/ml). These results indicated the potential of nanoemulsions for enhancing the therapeutic efficacy of natural bioactive ingredients such as CEO.

  1. Physical factors affecting the electrically assisted thermal bitumen recovery

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanov, I.I.; Torres, J.-A.; Kamp, A.M. [CHLOE, University of Pau (France); Corre, B. [CSTJF, Total (France)

    2011-07-01

    In the heavy oil industry, thermal processes are used to enhance oil recovery by increasing the reservoir temperature which results in better oil mobility. Low frequency heating (LFH) is a technology using electrical conductivity of connate water to propagate current between electrodes, thus generating heat in the reservoir through the Joule effect. During the preheating and production periods, many physical factors may affect the LFH process and the aim of this study was to determine which factors affect the process and how, using a particular pattern of electrodes. Simulations were conducted using the CMG Stars reservoir simulator under different configurations, conditions and parameters. Important physical properties and operational conditions affecting the LFH process were determined and results showed that convection heat, bulk electrical conductivity and power distribution can be improved by salt water circulation. This paper highlighted the physical factors affecting LFH efficiency and these findings will be useful for future process design.

  2. Activities of the Oil Implementation Task Force; Contracts for field projects and supporting research on enhanced oil recovery, July--September 1990

    Energy Technology Data Exchange (ETDEWEB)

    Tiedemann, H.A. (ed.) (USDOE Bartlesville Project Office, OK (USA))

    1991-05-01

    The report contains a general introduction and background to DOE's revised National Energy Strategy Advanced Oil Recovery Program and activities of the Oil Implementation Task Force; a detailed synopsis of the symposium, including technical presentations, comments and suggestions; a section of technical information on deltaic reservoirs; and appendices containing a comprehensive listing of references keyed to general deltaic and geological aspects of reservoirs and those relevant to six selected deltaic plays. Enhanced recovery processes include chemical floodings, gas displacement, thermal recovery, geoscience, and microbial recovery.

  3. Influence of Oil Viscosity on Alkaline Flooding for Enhanced Heavy Oil Recovery

    Directory of Open Access Journals (Sweden)

    Yong Du

    2013-01-01

    Full Text Available Oil viscosity was studied as an important factor for alkaline flooding based on the mechanism of “water drops” flow. Alkaline flooding for two oil samples with different viscosities but similar acid numbers was compared. Besides, series flooding tests for the same oil sample were conducted at different temperatures and permeabilities. The results of flooding tests indicated that a high tertiary oil recovery could be achieved only in the low-permeability (approximately 500 mD sandpacks for the low-viscosity heavy oil (Zhuangxi, 390 mPa·s; however, the high-viscosity heavy oil (Chenzhuang, 3450 mPa·s performed well in both the low- and medium-permeability (approximately 1000 mD sandpacks. In addition, the results of flooding tests for the same oil at different temperatures also indicated that the oil viscosity put a similar effect on alkaline flooding. Therefore, oil with a high-viscosity is favorable for alkaline flooding. The microscopic flooding test indicated that the water drops produced during alkaline flooding for oils with different viscosities differed significantly in their sizes, which might influence the flow behaviors and therefore the sweep efficiencies of alkaline fluids. This study provides an evidence for the feasibility of the development of high-viscosity heavy oil using alkaline flooding.

  4. Classification and analysis of factors that affect stability of oil and gas enterprise staff

    Directory of Open Access Journals (Sweden)

    Zelinska Haluna Olexiivna

    2016-12-01

    Full Text Available The relevance of human resources as a strategic goal of sustainable development of oil and gas companies is determined. It is shown that the stability of staff, as the main component of the social components of sustainable enterprise development, research and evaluation needs in terms of an integrated system of factors influence the behavior of staff. Addressing issues related to the management personnel can be based classification study the factors affecting its stability in the formation of high quality human resources strategy. In particular noted that the needs of each employee should become an integral part of the concept of work and life balance. Analysis of the results of the study showed that in areas of oil and gas industry has a number of factors that negatively affect its operation and development, which are caused not only technical, technological and natural factors, but also due to neglect behavioral characteristics personnel. It is found that without understanding of the behavioral characteristics of staff and its values can`t implement a quality model of human resource management and provide optimal scenarios of oil companies in general.

  5. Evaluation of solution and rheological properties for hydrophobically associated polyacrylamide copolymer as a promised enhanced oil recovery candidate

    Directory of Open Access Journals (Sweden)

    A.N. El-hoshoudy

    2017-09-01

    Full Text Available Crude oil is the most critical energy source in the world, especially for transportation, provision of heat and light as there has not been a sufficient energy source to replace crude oil has broadly integrated, so there is an urgent need to maximize the extraction of the original oil in-place for every reservoir, and accelerating the development of enhanced oil recovery (EOR technologies. Polymer flooding by hydrophobically associated polyacrylamides (HAPAM is a widely used technique through EOR technology. For successful application of these polymers, one should evaluate rheological and solution properties at simulated reservoir conditions as a function of polymer concentration, salinity, temperature and shear rate. The results showed that these copolymers exhibit favorable salt tolerance, temperature resistance, and recoverable viscosity after shearing, reasonable thickening behavior and improved viscosity enhancement properties due to presence of hydrophobic association in the copolymer main chains. Moreover, its capacity for oil production improvement was evaluated during flooding experiments through one dimensional sandstone model at simulated reservoir conditions.

  6. Play-level distributions of estimates of recovery factors for a miscible carbon dioxide enhanced oil recovery method used in oil reservoirs in the conterminous United States

    Science.gov (United States)

    Attanasi, E.D.; Freeman, P.A.

    2016-03-02

    In a U.S. Geological Survey (USGS) study, recovery-factor estimates were calculated by using a publicly available reservoir simulator (CO2 Prophet) to estimate how much oil might be recovered with the application of a miscible carbon dioxide (CO2) enhanced oil recovery (EOR) method to technically screened oil reservoirs located in onshore and State offshore areas in the conterminous United States. A recovery factor represents the percentage of an oil reservoir’s original oil in place estimated to be recoverable by the application of a miscible CO2-EOR method. The USGS estimates were calculated for 2,018 clastic and 1,681 carbonate candidate reservoirs in the “Significant Oil and Gas Fields of the United States Database” prepared by Nehring Associates, Inc. (2012).

  7. Brine crude oil interactions at the oil-water interface

    DEFF Research Database (Denmark)

    Chakravarty, Krishna Hara; Fosbøl, Philip Loldrup; Thomsen, Kaj

    2015-01-01

    The impact of brine salinity and its ionic composition on oil displacement efficiency has been investigated extensively in recent years due to the potential of enhanced oil recovery (EOR). Wettability alterations through relative interactions at the mineral surface have been the basis of proposed...... in enhancing oil emulsion formation by increasing interactions between polar acids and brine solutions. The results propose the potential use of HPO42- ions in reservoirs having inactive mineral surfaces. The relative oil affinity of different ions including K+, Na+, Mg2+, and Ca2+ (cations), and Cl-, SO42...... and thus reduces the interfacial viscoelasticity of the trapped oil. These results show significant correlation between oil emulsion formation and increased oil recovery. Copyright 2015; Society of Petroleum Engineers...

  8. Gas Production Generated from Crude Oil Biodegradation: Preliminary Study on its Aplication in Microbial Enhanced Oil Recovery (MEOR

    Directory of Open Access Journals (Sweden)

    Astri Nugroho

    2009-11-01

    Full Text Available Gas Production Generated from Crude Oil Biodegradation: Preliminary Study on its Aplication in MicrobialEnhanced Oil Recovery (MEOR. The objective of this study is to observe the capacity of gas production generatedfrom crude oil degradation by the isolated bacteria. The gas in the MEOR could increase pressure in the reservoir,decrease oil viscosity, increase oil permeability-due to the increase of the porosity and viscosity, and also increase oilvolume due to the amount of dissolved gas. A research on gas analysis of oil degradation by 6 isolated bacteria has beenconducted. The bacteria isolates including Bacillus badius (A, Bacillus circulans (B, Bacillus coagulans (C, Bacillusfirmus (D, Pasteurella avium (E and Streptobacillus moniliformis (F. The trial on gas production, gas analysis and oildegradation analysis, was carried out by using SMSS medium. The test of gas production was done by usingmicrorespirometer at 40°C. The result shows that B, C, D, E produce more gas than A and F. Gas of CO2, O2, CO, N2,CH4, and H2 were analyzed by using GC. The results show that only three gases were detected by GC i.e. CO2, N2, andO2. The concentration of CO2 and N2 gas increased while the concentration of O2 decreased over an 8th day ofobservation. CO2 gas producted by mix culture was higher than by the pure culture. On the 8th day of incubation, theproduction of CO2 gas by mix culture was 4,0452% while pure culture C and D only produced 2,4543% and 2,8729%.The mix culture increase simple hydrocarbon by 12.03% and the formation of a complex hydrocarbon by 3.07%. Themix culture (C-D generated the highest concentration of CO2 gas as well as a synergistic concortium that has ability todegrade crude oil.

  9. Enhanced biodegradation of diesel oil by a newly identified Rhodococcus baikonurensis EN3 in the presence of mycolic acid.

    Science.gov (United States)

    Lee, M; Kim, M K; Singleton, I; Goodfellow, M; Lee, S-T

    2006-02-01

    The aim of the present study was to isolate and characterize a bacterium, strain EN3, capable of using diesel oil as a major carbon and energy source, and to analyse the enhancement of diesel oil degradation by this organism using synthetic mycolic acid (2-hexyl-3-hydroxyldecanoic acid). An actinomycete with the ability to degrade diesel oil was isolated from oil contaminated soil and characterized. The strain had phenotypic properties consistent with its classification in the genus Rhodococcus showing a 16S rRNA gene similarity of 99.7% with Rhodococcus baikonurensis DSM 44587(T). The ability of the characterized strain to degrade diesel oil at various concentrations (1000, 5000, 10 000 and 20 000 mg l(-1)) was determined. The effect of synthetic mycolic acid on the biodegradation of diesel oil was investigated at the 20 000 mg l(-1) concentration; the surfactant was added to the flask cultures at three different concentrations (10, 50 and 100 mg l(-1)) and degradation followed over 7 days. Enhanced degradation was found at all three concentrations of the surfactant. In addition, the enhancement of diesel oil degradation by other surfactants was observed. The synthetic mycolic acid has potential for the remediation of petroleum-contaminated sites from both an economic and applied perspective as it can stimulate biodegradation at low concentrations. This study showed that the synthesized mycolic acid can be used for potential applications in the bioremediation industries, for example, in oil spill clean-up, diesel fuel remediation and biostimulation.

  10. Profiling of Indigenous Microbial Community Dynamics and Metabolic Activity During Enrichment in Molasses-Supplemented Crude Oil-Brine Mixtures for Improved Understanding of Microbial Enhanced Oil Recovery.

    Science.gov (United States)

    Halim, Amalia Yunita; Pedersen, Dorthe Skou; Nielsen, Sidsel Marie; Lantz, Anna Eliasson

    2015-06-01

    Anaerobic incubations using crude oil and brine from a North Sea reservoir were conducted to gain increased understanding of indigenous microbial community development, metabolite production, and the effects on the oil-brine system after addition of a complex carbon source, molasses, with or without nitrate to boost microbial growth. Growth of the indigenous microbes was stimulated by addition of molasses. Pyrosequencing showed that specifically Anaerobaculum, Petrotoga, and Methanothermococcus were enriched. Addition of nitrate favored the growth of Petrotoga over Anaerobaculum. The microbial growth caused changes in the crude oil-brine system: formation of oil emulsions, and reduction of interfacial tension (IFT). Reduction in IFT was associated with microbes being present at the oil-brine interphase. These findings suggest that stimulation of indigenous microbial growth by addition of molasses has potential as microbial enhanced oil recovery (MEOR) strategy in North Sea oil reservoirs.

  11. Production of microbial rhamnolipid by Pseudomonas aeruginosa MM1011 for ex situ enhanced oil recovery.

    Science.gov (United States)

    Amani, Hossein; Müller, Markus Michael; Syldatk, Christoph; Hausmann, Rudolf

    2013-07-01

    Recently, several investigations have been carried out on the in situ bacteria flooding, but the ex situ biosurfactant production and addition to the sand pack as agents for microbial enhanced oil recovery (MEOR) has little been studied. In order to develop suitable technology for ex situ MEOR processes, it is essential to carry out tests about it. Therefore, this work tries to fill the gap. The intention of this study was to investigate whether the rhamnolipid mix could be produced in high enough quantities for enhanced oil recovery in the laboratory scale and prove its potential use as an effective material for field application. In this work, the ability of Pseudomonas aeruginosa MM1011 to grow and produce rhamnolipid on sunflower as sole carbon source under nitrogen limitation was shown. The production of Rha-C10-C10 and Rha2-C10-C10 was confirmed by thin-layer chromatography and high-performance liquid chromatography analysis. The rhamnolipid mixture obtained was able to reduce the surface and interfacial tension of water to 26 and 2 mN/m, respectively. The critical micelle concentration was 120 mg/L. Maximum rhamnolipid production reached to about 0.7 g/L in a shake flask. The yield of rhamnolipid per biomass (Y RL/x ), rhamnolipid per sunflower oil (Y RL/s ), and the biomass per sunflower oil (Y x/s ) for shake flask were obtained about 0.01, 0.0035, and 0.035 g g(-1), respectively. The stability of the rhamnolipid at different salinities, pH and temperature, and also, its emulsifying activity has been investigated. It is an effective surfactant at very low concentrations over a wide range of temperatures, pHs, and salt concentrations, and it also has the ability to emulsify oil, which is essential for enhanced oil recovery. With 120 mg/L rhamnolipid, 27 % of original oil in place was recovered after water flooding from a sand pack. This result not only suggests rhamnolipids as appropriate model biosurfactants for MEOR, but it even shows the potential as a

  12. Enhanced Oil Recovery with Surfactant Flooding

    DEFF Research Database (Denmark)

    Sandersen, Sara Bülow

    , thus reducing the interfacial tension (IFT) to ultra low (0.001 mN/m), which consequently will mobilize the residual oil and result in improved oil recovery. This EOR technology is, however, made challenging by a number of factors, such as the adsorption of surfactant and co-surfactant to the rock...... be resistant to and remain active at reservoir conditions such as high temperatures, pressures and salinities. Understanding the underlying mechanisms of systems that exhibit liquid-liquid equilibrium (e.g. oil-brine systems) at reservoir conditions is an area of increasing interest within EOR. This is true...... studied. The effect of increased pressure became more significant when combined with increasing temperature. The experiments performed on the oil/ seawater systems were similar to the high pressure experiments for the surfactant system discussed above. Oil was contacted with different brine solutions...

  13. Corexit 9500 Enhances Oil Biodegradation and Changes Active Bacterial Community Structure of Oil-Enriched Microcosms.

    Science.gov (United States)

    Techtmann, Stephen M; Zhuang, Mobing; Campo, Pablo; Holder, Edith; Elk, Michael; Hazen, Terry C; Conmy, Robyn; Santo Domingo, Jorge W

    2017-05-15

    To better understand the impacts of Corexit 9500 on the structure and activity levels of hydrocarbon-degrading microbial communities, we analyzed next-generation 16S rRNA gene sequencing libraries of hydrocarbon enrichments grown at 5 and 25°C using both DNA and RNA extracts as the sequencing templates. Oil biodegradation patterns in both 5 and 25°C enrichments were consistent with those reported in the literature (i.e., aliphatics were degraded faster than aromatics). Slight increases in biodegradation were observed in the presence of Corexit at both temperatures. Differences in community structure were observed between treatment conditions in the DNA-based libraries. The 25°C consortia were dominated by Vibrio , Idiomarina , Marinobacter , Alcanivorax , and Thalassospira species, while the 5°C consortia were dominated by several species of the genera Flavobacterium , Alcanivorax , and Oleispira Most of these genera have been linked to hydrocarbon degradation and have been observed after oil spills. Colwellia and Cycloclasticus , known aromatic degraders, were also found in these enrichments. The addition of Corexit did not have an effect on the active bacterial community structure of the 5°C consortia, while at 25°C, a decrease in the relative abundance of Marinobacter was observed. At 25°C, Thalassospira , Marinobacter , and Idiomarina were present at higher relative abundances in the RNA than DNA libraries, suggesting that they were active in degradation. Similarly, Oleispira was greatly stimulated by the addition of oil at 5°C. IMPORTANCE While dispersants such as Corexit 9500 can be used to treat oil spills, there is still debate on the effectiveness on enhancing oil biodegradation and its potential toxic effect on oil-degrading microbial communities. The results of this study provide some insights on the microbial dynamics of hydrocarbon-degrading bacterial populations in the presence of Corexit 9500. Operational taxonomic unit (OTU) analyses

  14. Enhanced oil recovery with surfactant flooding

    Energy Technology Data Exchange (ETDEWEB)

    Buelow Sandersen, S.

    2012-05-15

    Understanding the underlying mechanisms of systems that exhibit liquid-liquid equilibrium (e.g. oil-brine systems) at reservoir conditions is an area of increasing interest within EOR. This is true both for complex surfactant systems as well as for oil and brine systems. It is widely accepted that an increase in oil recovery can be obtained through flooding, whether it is simple waterflooding, waterflooding where the salinity has been modified by the addition or removal of specific ions (socalled ''smart'' waterflooding) or surfactant flooding. High pressure experiments have been carried out in this work on a surfactant system (surfactant/ oil/ brine) and on oil/ seawater systems (oil/ brine). The high pressure experiments were carried out on a DBR JEFRI PVT cell, where a glass window allows observation of the phase behavior of the different systems at various temperatures and pressures inside the high pressure cell. Phase volumes can also be measured visually through the glass window using precision equipment. The surfactant system for which an experimental study was carried out consisted of the mixture heptane, sodium dodecyl sulfate (SDS)/ 1-butanol/ NaCl/ water. This system has previously been examined at ambient pressures and temperatures but this has been extended here to pressures up to 400 bar and to slightly higher temperatures (40 deg. C, 45 deg. C and 50 deg. C). Experiments were performed at constant salinity (6.56 %), constant surfactant-alcohol ratio (SAR) but with varying water-oil ratios (WOR). At all temperatures it was very clear that the effect of pressure was significant. The system changed from the two phase region, Winsor II, to the three phase region, Winsor III, as pressure increased. Increasing pressures also caused a shift from the three phase region (Winsor III), to a different two phase region, (Winsor I). These changes in equilibrium phase behavior were also dependent on the composition of the system. A number of

  15. Relevance of Linear Stability Results to Enhanced Oil Recovery

    Science.gov (United States)

    Ding, Xueru; Daripa, Prabir

    2012-11-01

    How relevant can the results based on linear stability theory for any problem for that matter be to full scale simulation results? Put it differently, is the optimal design of a system based on linear stability results is optimal or even near optimal for the complex nonlinear system with certain objectives of interest in mind? We will address these issues in the context of enhanced oil recovery by chemical flooding. This will be based on an ongoing work. Supported by Qatar National Research Fund (a member of the Qatar Foundation).

  16. An extended model for ultrasonic-based enhanced oil recovery with experimental validation.

    Science.gov (United States)

    Mohsin, Mohammed; Meribout, Mahmoud

    2015-03-01

    This paper suggests a new ultrasonic-based enhanced oil recovery (EOR) model for application in oil field reservoirs. The model is modular and consists of an acoustic module and a heat transfer module, where the heat distribution is updated when the temperature rise exceeds 1 °C. The model also considers the main EOR parameters which includes both the geophysical (i.e., porosity, permeability, temperature rise, and fluid viscosity) and acoustical (e.g., acoustic penetration and pressure distribution in various fluids and mediums) properties of the wells. Extended experiments were performed using powerful ultrasonic waves which were applied for different kind of oils & oil saturated core samples. The corresponding results showed a good matching with those obtained from simulations, validating the suggested model to some extent. Hence, a good recovery rate of around 88.2% of original oil in place (OOIP) was obtained after 30 min of continuous generation of ultrasonic waves. This leads to consider the ultrasonic-based EOR as another tangible solution for EOR. This claim is supported further by considering several injection wells where the simulation results indicate that with four (4) injection wells; the recovery rate may increase up-to 96.7% of OOIP. This leads to claim the high potential of ultrasonic-based EOR as compared to the conventional methods. Following this study, the paper also proposes a large scale ultrasonic-based EOR hardware system for installation in oil fields. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Enhancing oil rate in solvent vapour extraction processes through tee-well pattern

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, F.; Knorr, K.D.; Wilton, R.R. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Saskatchewan Research Council, Saskatoon, SK (Canada)

    2008-10-15

    In order for the vapour extraction (VAPEX) process to be considered commercially viable, the production flow rate in classical VAPEX must be increased. The low flow rate can be attributed to the fact that the classical VAPEX process uses forces of buoyancy to distribute the solvent and gravity to drain the diluted oil to the producer. This paper presented a new well pattern, referred to as the tee-SVX process, that may enhance the oil flow rate two to ten times over the classical approach. Additional horizontal injectors, perpendicular to the injector and the producer in classical VAPEX were placed in the top-most region of the reservoir in the new well pattern. The paper described the model development which involved conducting a series of simulation runs in order to evaluate the performance of the new well pattern. The paper also presented a comparison of the performance of the tee-SVX and the classical VAPEX and lateral-SVX. A sensitivity analysis was also performed to further evaluate the performance of tee-SVX and provide the boundaries of the application of the process. Two types of factors affecting the performance of tee-SVX were outlined, notably design factors; and formation and fluid uncertainties. The performance of tee-SVX in thinner reservoirs and in reservoirs with a gas cap were also examined. It was concluded that compared with the lateral-SVX process, the tee-SVX process could significantly reduce the time to solvent breakthrough. 12 refs., 2 tabs., 30 figs.

  18. A coconut oil-rich meal does not enhance thermogenesis compared to corn oil in a randomized trial in obese adolescents.

    Science.gov (United States)

    LaBarrie, Janna; St-Onge, Marie-Pierre

    2017-01-01

    Consumption of medium chain triglycerides (MCT) in overweight adults increases thermogenesis and improves weight management. Coconut oil is a rich natural source of MCT, but its thermogenic effect is unknown. Our study evaluated the effects of a test oil enriched in coconut oil, on energy expenditure, satiety, and metabolic markers in a randomized, double blind, cross-over study. Fifteen children, age 13-18 years, body mass index >85th percentile for age and sex, were enrolled. Two test meals, containing 20 g of fat from either corn oil or a coconut oil-enriched baking fat (1.1 g of fatty acids with chain lengths ≤ 10C), were administered. A fasting blood sample was taken before breakfast and at 30, 45, 60, 120, and 180 min post-meal for measurement of metabolites. Thermic effect of food (TEF) was assessed over 6 h using indirect calorimetry. Satiety was measured using visual analog scales (VAS). There was no significant effect of fat type, time, or fat type × time interaction on TEF, appetite/satiety, glucose, and insulin area under the curve. There was a significant effect of fat type on leptin (P=0.027), triglycerides (P=0.020) and peptide YY (P=0.0085); leptin and triglyceride concentrations were lower and peptide YY concentrations were higher with corn oil consumption. A coconut oil-enriched baking fat does not enhance thermogenesis and satiety in children. Given that this is the only current study of its kind, more research is needed into the use of coconut oil as a tool in weight management in overweight and obese children.

  19. Feasibility of oil recovery by chemical flooding through horizontal wells

    Energy Technology Data Exchange (ETDEWEB)

    El-Abbas, A.M.; El-Sallaly, M. E.; Sayyouh, M. H.; El-Batanony, M. H.; Darwich, T. M.; Desouky, S. M. [Cairo Univ (Egypt)

    1998-12-31

    Crude oil production in the Gulf of Suez by polymer, surfactant, and surfactant/polymer flooding from a horizontal well in a scaled five-spot sandpacked model was studied. The suitability of the enhanced oil recovery predictive models, developed by the U.S. Department of Energy, was investigated for their ability to predict the experimental data and to assess the feasibility of oil recovery by chemical flooding. Good agreement was found between the predicted and experimental values. Experimental results showed that oil recovery was significantly affected by the physical properties of the crude oil and chemical solutions; that oil recovery was higher for a polymer flooding than for a surfactant flooding operation; and that oil recovery was improved by increasing the perforated length ratio up to a value of 0.81. A tendency for oil recovery to decrease was observed when the horizontal well was positioned below or above the central axis path of the formation at the advanced injection stages; and oil recovery by surfactant or polymer flooding was significantly affected by the onset timing of the surfactant or polymer slug injection. The oil-water bank stability in surfactant and polymer flooding processes was found to be dependent on slug size and slug injection time. 23 refs., 1 tab., 17 figs.

  20. Enhancement of Engine Oil Wear and Friction Control Performance Through Titanium Additive Chemistry

    International Nuclear Information System (INIS)

    Guevremont, J.; Guinther, G.; Szemenyei, D.; Devlin, M.; Jao, T.; Jaye, C.; Woicik, J.; Fischer, D.

    2008-01-01

    Traditionally, wear protection and friction modification by engine oil is provided by zinc dithiophosphate (ZDDP) or other phosphorus compounds. These additives provide effective wear protection and friction control on engine parts through formation of a glassy polyphosphate antiwear film. However, the deposition of phosphorus species on automotive catalytic converters from lubricants has been known for some time to have a detrimental effect of poisoning the catalysts. To mitigate the situation, the industry has been making every effort to find ZDDP-replacement additives that are friendly to catalysts. Toward this goal we have investigated a titanium additive chemistry as a ZDDP replacement. Fully formulated engine oils incorporating this additive component have been found to be effective in reducing wear and controlling friction in a high-frequency reciprocating rig (HFRR), 4-ball bench wear, Sequence IIIG, and Sequence IVA engine tests. Surface analysis of the tested parts by Auger electron spectroscopy, secondary ion mass spectrometry (SIMS), and X-ray photoelectron spectroscopy (XPS) have shown that Ti species have been incorporated into the wear tracks and can only be found on the wear tracks. We used synchrotron based near edge X-ray absorption fine structure (NEXAFS) to investigate the chemical bonding mechanism of the Ti additive with the metal surface that affects the wear improvement mechanism. We postulate that Ti provides antiwear enhancement through inclusion in the metal/metal oxide structure of the ferrous surface by forming FeTiO3.

  1. Towards the understanding of microbial metabolism in relation to microbial enhanced oil recovery

    DEFF Research Database (Denmark)

    Halim, Amalia Yunita; Nielsen, Sidsel Marie; Nielsen, Kristian Fog

    2017-01-01

    In this study, Bacillus licheniformis 421 was used as a model organism to understand the effects of microbial cell growth and metabolite production under anaerobic conditions in relation to microbial enhanced oil recovery. The bacterium was able to grow anaerobically on different carbon compounds...

  2. Fruit quality and olive leaf and stone addition affect Picual virgin olive oil triterpenic content.

    Science.gov (United States)

    Allouche, Yosra; Uceda, Marino; Jiménez, Antonio; Aguilera, M Paz; Gaforio, José Juan; Beltrán, Gabriel

    2009-10-14

    The present research aimed to evaluate whether Picual virgin olive oil triterpenic compounds are affected by the addition of variable quantities of stones and leaves before processing or by fruit resting on the ground during 3 months. Results showed that stone addition did not influence triterpenic dialcohol content (uvaol and erythrodiol), whereas triterpenic acids (oleanolic and maslinic) increased significantly when 20 and 30% stones were added. Leaves added at 2% increased significantly oleanolic acid, maslinic acid, and erythrodiol content by 83, 41, and 36%, respectively. During fruit resting on the ground, olive oils showed no differences in uvaol content, a slight increase in erythrodiol, and a gradual increase in both oleanolic and maslinic acids, obtaining at the end of the experiment contents nearly 10- and 3-fold higher than control oils. These results confirm that olive oil triterpenic composition is modified by the factors analyzed.

  3. A vegetable oil feeding history affects digestibility and intestinal fatty acid uptake in juvenile rainbow trout Oncorhynchus mykiss.

    Science.gov (United States)

    Geurden, Inge; Jutfelt, Fredrik; Olsen, Rolf-Erik; Sundell, Kristina S

    2009-04-01

    Future expansion of aquaculture relies on the use of alternatives to fish oil in fish feed. This study examined to what extent the nature of the feed oil affects intestinal lipid uptake properties in rainbow trout. The fish were fed a diet containing fish (FO), rapeseed (RO) or linseed (LO) oil for 8 weeks after which absorptive properties were assessed. Differences in digestibility due to feed oil history were measured using diet FO with an indigestible marker. Intestinal integrity, paracellular permeability, in vitro transepithelial fatty acid transport (3H-18:3n-3 and 14C-16:0) and their incorporation into intestinal epithelia were compared using Ussing chambers. Feed oil history did not affect the triacylglycerol/phosphatidylcholine ratio (TAG/PC) of the newly synthesized lipids in the segments. The lower TAG/PC ratio with 16:0 (2:1) than with 18:3 (10:1) showed the preferential incorporation of 16:0 into polar lipids. The FO-feeding history decreased permeability and increased transepithelial resistance of the intestinal segments. Transepithelial passage rates of 18:3n-3 were higher when pre-fed LO compared to RO or FO. Similarly, pre-feeding LO increased apparent lipid and fatty acid digestibilities compared to RO or FO. These results demonstrate that the absorptive intestinal functions in fish can be altered by the feed oil history and that the effect remains after a return to a standard fish oil diet.

  4. Low-temperature glycerolysis of avocado oil

    Science.gov (United States)

    Satriana, Arpi, Normalina; Supardan, Muhammad Dani; Gustina, Rizka Try; Mustapha, Wan Aida Wan

    2018-04-01

    Glycerolysis can be a useful technique for production of mono- and diacylglycerols from triacylglycerols present in avocado oil. In the present work, the effect of catalyst and co-solvent concentration on low-temperature glycerolysis of avocado oil was investigated at 40oC of reaction temperature. A hydrodynamic cavitation system was used to enhance the miscibility of the oil and glycerol phases. NaOH and acetone were used as catalyst and co-solvent, respectively. The experimental results showed that the catalyst and co-solvent concentration affected the glycerolysis reaction rate. The catalyst concentration of 1.5% and co-solvent concentration of 300% were the optimised conditions. A suitable amount of NaOH and acetone must be added to achieve an optimum of triacylglycerol conversion.

  5. Three approaches for estimating recovery factors in carbon dioxide enhanced oil recovery

    Science.gov (United States)

    Verma, Mahendra K.

    2017-07-17

    PrefaceThe Energy Independence and Security Act of 2007 authorized the U.S. Geological Survey (USGS) to conduct a national assessment of geologic storage resources for carbon dioxide (CO2) and requested the USGS to estimate the “potential volumes of oil and gas recoverable by injection and sequestration of industrial carbon dioxide in potential sequestration formations” (42 U.S.C. 17271(b)(4)). Geologic CO2 sequestration associated with enhanced oil recovery (EOR) using CO2 in existing hydrocarbon reservoirs has the potential to increase the U.S. hydrocarbon recoverable resource. The objective of this report is to provide detailed information on three approaches that can be used to calculate the incremental recovery factors for CO2-EOR. Therefore, the contents of this report could form an integral part of an assessment methodology that can be used to assess the sedimentary basins of the United States for the hydrocarbon recovery potential using CO2-EOR methods in conventional oil reservoirs.

  6. Microbial enhanced heavy oil recovery by the aid of inhabitant spore-forming bacteria: an insight review.

    Science.gov (United States)

    Shibulal, Biji; Al-Bahry, Saif N; Al-Wahaibi, Yahya M; Elshafie, Abdulkader E; Al-Bemani, Ali S; Joshi, Sanket J

    2014-01-01

    Crude oil is the major source of energy worldwide being exploited as a source of economy, including Oman. As the price of crude oil increases and crude oil reserves collapse, exploitation of oil resources in mature reservoirs is essential for meeting future energy demands. As conventional recovery methods currently used have become less efficient for the needs, there is a continuous demand of developing a new technology which helps in the upgradation of heavy crude oil. Microbial enhanced oil recovery (MEOR) is an important tertiary oil recovery method which is cost-effective and eco-friendly technology to drive the residual oil trapped in the reservoirs. The potential of microorganisms to degrade heavy crude oil to reduce viscosity is considered to be very effective in MEOR. Earlier studies of MEOR (1950s) were based on three broad areas: injection, dispersion, and propagation of microorganisms in petroleum reservoirs; selective degradation of oil components to improve flow characteristics; and production of metabolites by microorganisms and their effects. Since thermophilic spore-forming bacteria can thrive in very extreme conditions in oil reservoirs, they are the most suitable organisms for the purpose. This paper contains the review of work done with thermophilic spore-forming bacteria by different researchers.

  7. Microbial Enhanced Heavy Oil Recovery by the Aid of Inhabitant Spore-Forming Bacteria: An Insight Review

    Directory of Open Access Journals (Sweden)

    Biji Shibulal

    2014-01-01

    Full Text Available Crude oil is the major source of energy worldwide being exploited as a source of economy, including Oman. As the price of crude oil increases and crude oil reserves collapse, exploitation of oil resources in mature reservoirs is essential for meeting future energy demands. As conventional recovery methods currently used have become less efficient for the needs, there is a continuous demand of developing a new technology which helps in the upgradation of heavy crude oil. Microbial enhanced oil recovery (MEOR is an important tertiary oil recovery method which is cost-effective and eco-friendly technology to drive the residual oil trapped in the reservoirs. The potential of microorganisms to degrade heavy crude oil to reduce viscosity is considered to be very effective in MEOR. Earlier studies of MEOR (1950s were based on three broad areas: injection, dispersion, and propagation of microorganisms in petroleum reservoirs; selective degradation of oil components to improve flow characteristics; and production of metabolites by microorganisms and their effects. Since thermophilic spore-forming bacteria can thrive in very extreme conditions in oil reservoirs, they are the most suitable organisms for the purpose. This paper contains the review of work done with thermophilic spore-forming bacteria by different researchers.

  8. In situ microbial systems for the enhancement of oil recovery

    International Nuclear Information System (INIS)

    Moses, V.

    1991-01-01

    Microbial Enhancement of Oil Recovery (MEOR) offers important new opportunities in the quest for increased oil production. It refers not to a single technique but rather to a collection of methodologies, analogous to parallel non-microbiological methods. MEOR has relevance for many type of production and reservoir problems detailed protocols: may be tailored specifically to a range of individual reservoir conditions. Microorganisms downhole can generate a wide variety of chemical products from inexpensive feed stocks: where these are more cost-effective than oil field chemicals injected from the surface, microbial methods may win widespread acceptance. MEOR methods must be defined precisely; in any particular reservoir procedure their proposed mechanism of action must be clearly understood and criteria established for evaluating their success. The most important applications for MEOR are 1) the production f insoluble or highly viscous polymer to control coning or to plug selectively high permeability thief zones and fractures, 2) the continuous generation of the active agents for polymer-and/or surfactant floods, 3) matrix acidisation and acid fracturing in carbonate rocks stimulate flows into production wells. All these approaches are currently actively been explored; several programmes for field-testing microbial EOR methods already exist, or are being readied, and rapid progress is likely within the next few years. (author)

  9. How dietary arachidonic- and docosahexaenoic- acid rich oils differentially affect the murine hepatic transcriptome

    Directory of Open Access Journals (Sweden)

    Roberts Matthew A

    2006-04-01

    Full Text Available Introduction Herein, we expand our previous work on the effects of long chain polyunsaturated fatty acids (LC-PUFA on the murine hepatic transcriptome using novel statistical and bioinformatic approaches for evaluating microarray data. The analyses focuses on key differences in the transcriptomic response that will influence metabolism following consumption of FUNG (rich in 20:4n6, FISH (rich in 20:5n3, 22:5n3, and 22:6n3 and COMB, the combination of the two. Results Using a variance-stabilized F-statistic, 371 probe sets (out of 13 K probe sets in the Affymetrix Mu11K chip set were changed by dietary treatment (P Conclusion Distinct transcriptomic, signaling cascades, and predicted affects on murine liver metabolism have been elucidated for 20:4n6-rich dietary oils, 22:6n3-rich oils, and a surprisingly distinct set of genes were affected by the combination of the two. Our results emphasize that the balance of dietary n6 and n3 LC-PUFA provided for infants and in nutritional and neutraceutical applications could have profoundly different affects on metabolism and cell signaling, beyond that previously recognized.

  10. Optimization of parameters for enhanced oil recovery from enzyme treated wild apricot kernels.

    Science.gov (United States)

    Rajaram, Mahatre R; Kumbhar, Baburao K; Singh, Anupama; Lohani, Umesh Chandra; Shahi, Navin C

    2012-08-01

    Present investigation was undertaken with the overall objective of optimizing the enzymatic parameters i.e. moisture content during hydrolysis, enzyme concentration, enzyme ratio and incubation period on wild apricot kernel processing for better oil extractability and increased oil recovery. Response surface methodology was adopted in the experimental design. A central composite rotatable design of four variables at five levels was chosen. The parameters and their range for the experiments were moisture content during hydrolysis (20-32%, w.b.), enzyme concentration (12-16% v/w of sample), combination of pectolytic and cellulolytic enzyme i.e. enzyme ratio (30:70-70:30) and incubation period (12-16 h). Aspergillus foetidus and Trichoderma viride was used for production of crude enzyme i.e. pectolytic and cellulolytic enzyme respectively. A complete second order model for increased oil recovery as the function of enzymatic parameters fitted the data well. The best fit model for oil recovery was also developed. The effect of various parameters on increased oil recovery was determined at linear, quadric and interaction level. The increased oil recovery ranged from 0.14 to 2.53%. The corresponding conditions for maximum oil recovery were 23% (w.b.), 15 v/w of the sample, 60:40 (pectolytic:cellulolytic), 13 h. Results of the study indicated that incubation period during enzymatic hydrolysis is the most important factor affecting oil yield followed by enzyme ratio, moisture content and enzyme concentration in the decreasing order. Enzyme ratio, incubation period and moisture content had insignificant effect on oil recovery. Second order model for increased oil recovery as a function of enzymatic hydrolysis parameters predicted the data adequately.

  11. Basic properties of crude rubber seed oil and crude palm oil blend as a potential feedstock for biodiesel production with enhanced cold flow characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Yusup, Suzana; Khan, Modhar [Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2010-10-15

    Research and development in the field of biodiesel showed that fatty acid methyl esters synthesized from agriculture or animal oils and fats, which exhibit qualifying properties, can replace diesel fuel used in internal combustion engine. However, the industry had some downfall recently with the fluctuating prices of edible oils and increasing demand for nutritional needs. Crude rubber seed oil (CRSO) and crude palm oil (CPO) were used in this study since both can be extracted and produced locally in Malaysia from their abundant plantations. The benefits of introducing such blend are that CRSO is considered a non-edible feedstock with no major industrial utilizations that has the potential to reduce the usage of CPO in biodiesel industry and was found to enhance the cold flow characteristics when blended with CPO by reducing the saturated fatty acids in the feedstock. The oils and blends were characterized for density, kinematic viscosity, heating value, acid value, free fatty acid content, refractive index, mono-, di- and triglycerides and sulphur content. Fatty acids composition and iodine value were established for an equivolume blend of the oils. (author)

  12. Basic properties of crude rubber seed oil and crude palm oil blend as a potential feedstock for biodiesel production with enhanced cold flow characteristics

    International Nuclear Information System (INIS)

    Yusup, Suzana; Khan, Modhar

    2010-01-01

    Research and development in the field of biodiesel showed that fatty acid methyl esters synthesized from agriculture or animal oils and fats, which exhibit qualifying properties, can replace diesel fuel used in internal combustion engine. However, the industry had some downfall recently with the fluctuating prices of edible oils and increasing demand for nutritional needs. Crude rubber seed oil (CRSO) and crude palm oil (CPO) were used in this study since both can be extracted and produced locally in Malaysia from their abundant plantations. The benefits of introducing such blend are that CRSO is considered a non-edible feedstock with no major industrial utilizations that has the potential to reduce the usage of CPO in biodiesel industry and was found to enhance the cold flow characteristics when blended with CPO by reducing the saturated fatty acids in the feedstock. The oils and blends were characterized for density, kinematic viscosity, heating value, acid value, free fatty acid content, refractive index, mono-, di- and triglycerides and sulphur content. Fatty acids composition and iodine value were established for an equivolume blend of the oils.

  13. Children's Mental Health in the Area Affected by the Hebei Spirit Oil Spill Accident

    OpenAIRE

    Ha, Mina; Jeong, Woo-Chul; Lim, Myungho; Kwon, Hojang; Choi, Yeyong; Yoo, Seung-Jin; Noh, Su Ryun; Cheong, Hae-Kwan

    2013-01-01

    Objectives Children are one of the most vulnerable populations to the impact of disasters. We aimed to examine children's mental health in the area affected by the Hebei Spirit oil spill accident on December 7, 2007. Methods A cross-sectional questionnaire survey was conducted using the Korean versions of the Children's Depression Inventory and State Anxiety Inventory for Children on 1,362 children attending elementary schools in the affected area. The information on distances between the nea...

  14. Improved Characterization and Modeling of Tight Oil Formations for CO2 Enhanced Oil Recovery Potential and Storage Capacity Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Sorensen, James [Univ. of North Dakota, Grand Forks, ND (United States). Energy & Environmental Research Center (EERC); Smith, Steven [Univ. of North Dakota, Grand Forks, ND (United States). Energy & Environmental Research Center (EERC); Kurz, Bethany [Univ. of North Dakota, Grand Forks, ND (United States). Energy & Environmental Research Center (EERC); Hawthorne, Steven [Univ. of North Dakota, Grand Forks, ND (United States). Energy & Environmental Research Center (EERC); Jin, Lu [Univ. of North Dakota, Grand Forks, ND (United States). Energy & Environmental Research Center (EERC); Bosshart, Nicholas [Univ. of North Dakota, Grand Forks, ND (United States). Energy & Environmental Research Center (EERC); Torres, Jose [Univ. of North Dakota, Grand Forks, ND (United States). Energy & Environmental Research Center (EERC); Nyberg, Carolyn [Univ. of North Dakota, Grand Forks, ND (United States). Energy & Environmental Research Center (EERC); Heebink, Loreal [Univ. of North Dakota, Grand Forks, ND (United States). Energy & Environmental Research Center (EERC); Hurley, John [Univ. of North Dakota, Grand Forks, ND (United States). Energy & Environmental Research Center (EERC)

    2018-03-09

    Tight oil formations such as those in the Bakken petroleum system are known to hold hundreds of billions of barrels of oil in place; however, the primary recovery factor for these plays is typically less than 10%. Tight oil formations, including the Bakken Formation, therefore, may be attractive candidates for enhanced oil recovery (EOR) using CO2. Multiphase fluid behavior and flow in fluid-rich shales can vary substantially depending on the size of pore throats, and properties such as fluid viscosity and density are much different in nanoscale pores than in macroscale pores. Thus it is critical to understand the nature and distribution of nano-, micro-, and macroscale pores and fracture networks. To address these issues, the Energy & Environmental Research Center (EERC) has been conducting a research program entitled “Improved Characterization and Modeling of Tight Oil Formations for CO2 Enhanced Oil Recovery Potential and Storage Capacity Estimation.” The objectives of the project are 1) the use of advanced characterization methods to better understand and quantify the petrophysical and geomechanical factors that control CO2 and oil mobility within tight oil formation samples, 2) the determination of CO2 permeation and oil extraction rates in tight reservoir rocks and organic-rich shales of the Bakken, and 3) the integration of the laboratory-based CO2 permeation and oil extraction data and the characterization data into geologic models and dynamic simulations to develop predictions of CO2 storage resource and EOR in the Bakken tight oil formation. A combination of standard and advanced petrophysical characterization techniques were applied to characterize samples of Bakken Formation tight reservoir rock and shales from multiple wells. Techniques included advanced computer tomography (CT) imaging, scanning electron microscopy (SEM) techniques, whole-core and micro x-ray CT imaging, field

  15. Off-shore enhanced oil recovery in the north sea: matching CO_2 demand and supply given uncertain market conditions

    Science.gov (United States)

    Compernolle, Tine; Welkenhuysen, Kris; Huisman, Kuno; Piessens, Kris; Kort, Peter

    2015-04-01

    Introduction CO2 enhanced oil recovery (CO2-EOR) entails the injection of CO2 in mature oil fields in order to mobilize the oil. In particular, the injected CO2 reduces the oil's viscosity and acts as a propellant, resulting in an increased oil extraction rate (Leach et al., 2011). Given uncertainty in both oil price and CO2 price under the EU ETS system, aim of this study is to analyze under which economic conditions a CO2 exchange can be established between a CO2 supplier (an electricity producer for whom CO2 is a by-product) and a CO2 user (an offshore oil company that exploits oil fields in the North Sea and needs CO2 for enhanced oil recovery). Methodology A techno-economic simulation tool, PSS IV, was developed to provide investment decision support on integrated CO2-EOR projects (Welkenhuysen et al., 2014). Until now, a fixed onshore supply of CO2 was presumed. An economic optimization model is now developed for both the CO2 producer and the CO2 user. Because net present value and discounted cash flow methods are inadequate to deal with issues like uncertainty and the irreversibility of an investment decision, the real options theory is applied (Dixit and Pindyck, 1994). The way in which cooperation between the companies can take place, will be studied using game theoretical concepts (Lukas and Welling, 2014). Economic and technical data on CO2 capture are available from the PSS database (Piessens et al., 2012). Data on EOR performance, CO2 requirements and various costs are taken from literature (BERR, 2007; Klokk et al., 2010; Pershad et al., 2012). Results/Findings It will be shown what the impact of price uncertainty is on the investment decision of the electricity producer to capture and sell CO2, and on the decision of the oil producer to make the necessary investments to inject CO2 for enhanced oil recovery. Based on these results, it will be determined under which economic conditions a CO2 exchange and transport can take place. Furthermore, also the

  16. Viscous fingering and channeling in chemical enhanced oil recovery

    Science.gov (United States)

    Daripa, Prabir; Dutta, Sourav

    2017-11-01

    We have developed a hybrid numerical method based on discontinuous finite element method and modified method of characteristics to compute the multiphase multicomponent fluid flow in porous media in the context of chemical enhanced oil recovery. We use this method to study the effect of various chemical components on the viscous fingering and channeling in rectilinear and radial flow configurations. We will also discuss about the efficiency of various flooding schemes based on these understandings. Time permitting, we will discuss about the effect of variable injection rates in these practical setting. U.S. National Science Foundation Grant DMS-1522782.

  17. Diversification of oil import sources and energy security. A key strategy or an elusive objective?

    International Nuclear Information System (INIS)

    Vivoda, Vlado

    2009-01-01

    This paper explores the relationship between the diversification of sources of imported oil and energy security of oil-importing countries. It examines the importance of diversification policy for oil importers, explains why oil importers implement oil diversification policy, and contextualizes the oil import diversification strategy in the overall energy security policy of oil importers. The paper analyzes the factors and the contexts that affect the level of importance assigned to oil import diversification policy in oil-importing countries, and the limitations that may affect the successful implication of oil import diversification policy. The examples are drawn from the world's top three oil importers, the United States, Japan, and China. The policymakers in these and other oil-importing countries place much importance on energy security. The diversification of oil import sources is used as one of the strategies to enhance energy security in oil-importing countries. This paper is important for policymakers in oil-importing countries as it provides them with a qualitative conceptual framework with which to evaluate the need to diversify their countries' sources of imported oil, and with which to identify the likely limitations to the successful implementation of oil import diversification policy. (author)

  18. Microfluidic diffusivity meter: a tool to optimize CO2 driven enhanced oil recovery

    Science.gov (United States)

    Puneeth, S. B.; Kim, Young Ho; Goel, Sanket

    2017-02-01

    As the energy demands continue to swell with growing population and there persists a lack of unexploited oilfields, the prime focus of any nation would be to maximize the oil recovery factor from existing oil fields. CO2-Enhanced oil recovery is a process to improve the recovery of crude oil from an oil field and works at high pressure and in very deep conditions. CO2 and oil are miscible at high pressure, resulting in low viscosity and oil swells. This swelling can be measured based on mathematical calculations in real time and correlated with the CO2 concentration. This process has myriad advantages over its counterparts which include being able to harness oil trapped in reservoirs besides being cheaper and more efficient. A Diffusivity meter is inevitable in the measurement of the diffusion co-efficient of two samples. Diffusivity meters currently available in the market are weighed down by disadvantages like the requirement of large samples for testing, high cost and complexity. This elicits the need for a Microfluidic based diffusivity meter capable of analyzing Nano-liter sample volumes besides being more precise and affordable. The scope of this work involves the design and development of a Microfluidic robust and inexpensive prototype diffusivity meter using a capillary tube and endorsing its performance by comparison of results with known diffusivity range and supervision of the results with an electronic microscope coupled to PC and Data Acquisition System. The prototype produced at the end of the work is expected to outweigh disadvantages in existing products in terms of sample size, efficiency and time saving.

  19. Impact of recent Federal tax and R and D initiatives on enhanced oil recovery

    International Nuclear Information System (INIS)

    Brashear, J.P.; Biglarbigi, K.; Ray, M.R.

    1991-01-01

    The National Energy Strategy contains two major elements designed to increase oil production from known reservoirs in the contiguous United States: (1) a tax credit for specific investment and injectant costs for qualified enhanced oil recovery (EOR) projects; and (2) a highly focused, public-private cooperative R ampersand D program. Both are currently being implemented by the Department of the Treasury and the Department of Energy, respectively. The present paper estimates the potential reserve additions and impacts on public treasuries at oil prices between $22 and $34/Bbl. The new Federal tax credit, alone, could doubler current proved EOR reserves at oil prices in the $22/Bbl range and increase them by about one-third at prices in the $30/Bbl range. The effect of technology advances alone could also about double EOR reserves at these prices. The combination of technology advances and the tax incentive synergistically amplifies the effects on potential EOR reserves

  20. SOVENT BASED ENHANCED OIL RECOVERY FOR IN-SITU UPGRADING OF HEAVY OIL SANDS

    Energy Technology Data Exchange (ETDEWEB)

    Munroe, Norman

    2009-01-30

    With the depletion of conventional crude oil reserves in the world, heavy oil and bitumen resources have great potential to meet the future demand for petroleum products. However, oil recovery from heavy oil and bitumen reservoirs is much more difficult than that from conventional oil reservoirs. This is mainly because heavy oil or bitumen is partially or completely immobile under reservoir conditions due to its extremely high viscosity, which creates special production challenges. In order to overcome these challenges significant efforts were devoted by Applied Research Center (ARC) at Florida International University and The Center for Energy Economics (CEE) at the University of Texas. A simplified model was developed to assess the density of the upgraded crude depending on the ratio of solvent mass to crude oil mass, temperature, pressure and the properties of the crude oil. The simplified model incorporated the interaction dynamics into a homogeneous, porous heavy oil reservoir to simulate the dispersion and concentration of injected CO2. The model also incorporated the characteristic of a highly varying CO2 density near the critical point. Since the major challenge in heavy oil recovery is its high viscosity, most researchers have focused their investigations on this parameter in the laboratory as well as in the field resulting in disparaging results. This was attributed to oil being a complex poly-disperse blend of light and heavy paraffins, aromatics, resins and asphaltenes, which have diverse behaviors at reservoir temperature and pressures. The situation is exacerbated by a dearth of experimental data on gas diffusion coefficients in heavy oils due to the tedious nature of diffusivity measurements. Ultimately, the viscosity and thus oil recovery is regulated by pressure and its effect on the diffusion coefficient and oil swelling factors. The generation of a new phase within the crude and the differences in mobility between the new crude matrix and the

  1. Reactivity of dolomite in water-saturated supercritical carbon dioxide: Significance for carbon capture and storage and for enhanced oil and gas recovery

    International Nuclear Information System (INIS)

    Wang Xiuyu; Alvarado, Vladimir; Swoboda-Colberg, Norbert; Kaszuba, John P.

    2013-01-01

    Highlights: ► Dolomite reactivity with wet and dry supercritical CO 2 were evaluated. ► Dolomite does not react with dry CO 2 . ► H 2 O-saturated supercritical CO 2 dissolves dolomite and precipitates carbonate mineral. ► Temperature/reaction time control morphology and extent of carbonate mineralization. ► Reaction with wet CO 2 may impact trapping, caprock integrity, and CCS/EOR injectivity. - Abstract: Carbon dioxide injection in porous reservoirs is the basis for carbon capture and storage, enhanced oil and gas recovery. Injected carbon dioxide is stored at multiple scales in porous media, from the pore-level as a residual phase to large scales as macroscopic accumulations by the injection site, under the caprock and at reservoir internal capillary pressure barriers. These carbon dioxide saturation zones create regions across which the full spectrum of mutual CO 2 –H 2 O solubility may occur. Most studies assume that geochemical reaction is restricted to rocks and carbon dioxide-saturated formation waters, but this paradigm ignores injection of anhydrous carbon dioxide against brine and water-alternating-gas flooding for enhanced oil recovery. A series of laboratory experiments was performed to evaluate the reactivity of the common reservoir mineral dolomite with water-saturated supercritical carbon dioxide. Experiments were conducted at reservoir conditions (55 and 110 °C, 25 MPa) and elevated temperature (220 °C, 25 MPa) for approximately 96 and 164 h (4 and 7 days). Dolomite dissolves and new carbonate mineral precipitates by reaction with water-saturated supercritical carbon dioxide. Dolomite does not react with anhydrous supercritical carbon dioxide. Temperature and reaction time control the composition, morphology, and extent of formation of new carbonate minerals. Mineral dissolution and re-precipitation due to reaction with water-saturated carbon dioxide may affect the contact line between phases, the carbon dioxide contact angle, and the

  2. Dynamic investigation of nutrient consumption and injection strategy in microbial enhanced oil recovery (MEOR) by means of large-scale experiments.

    Science.gov (United States)

    Song, Zhiyong; Zhu, Weiyao; Sun, Gangzheng; Blanckaert, Koen

    2015-08-01

    Microbial enhanced oil recovery (MEOR) depends on the in situ microbial activity to release trapped oil in reservoirs. In practice, undesired consumption is a universal phenomenon but cannot be observed effectively in small-scale physical simulations due to the scale effect. The present paper investigates the dynamics of oil recovery, biomass and nutrient consumption in a series of flooding experiments in a dedicated large-scale sand-pack column. First, control experiments of nutrient transportation with and without microbial consumption were conducted, which characterized the nutrient loss during transportation. Then, a standard microbial flooding experiment was performed recovering additional oil (4.9 % Original Oil in Place, OOIP), during which microbial activity mostly occurred upstream, where oil saturation declined earlier and steeper than downstream in the column. Subsequently, more oil remained downstream due to nutrient shortage. Finally, further research was conducted to enhance the ultimate recovery by optimizing the injection strategy. An extra 3.5 % OOIP was recovered when the nutrients were injected in the middle of the column, and another additional 11.9 % OOIP were recovered by altering the timing of nutrient injection.

  3. Off-shore enhanced oil recovery in the North Sea : The impact of price uncertainty on the investment decisions

    NARCIS (Netherlands)

    Compernolle, T.; K, Welkenhuysen,; Huisman, Kuno; K, Piessens,; Kort, Peter

    2017-01-01

    Although CO2 Capture and Storage (CCS) is considered a key solution for CO2 emission mitigation, it is currently not economically feasible. CO2 enhanced oil recovery can play a significant role in stimulating CCS deployment because CO2 is used to extract additional quantities of oil. This study

  4. Chemical properties of surimi seafood nutrified with ω-3 rich oils.

    Science.gov (United States)

    Pietrowski, Brittney N; Tahergorabi, Reza; Matak, Kristen E; Tou, Janet C; Jaczynski, Jacek

    2011-12-01

    Surimi-based seafood products are widely accepted and enjoyed worldwide. The US consumption increased in 1980s; however, it leveled thereafter. Food products nutrified with ω-3 polyunsaturated fatty acids (PUFAs) are in increasing demand due to demonstrated health benefits. Currently, surimi seafood is not nutrified with ω-3 PUFAs. In the present study, surimi seafood was nutritionally-enhanced with ω-3 PUFAs-rich oils (flaxseed, algae, menhaden, krill, and blend). The objectives were (1) chemical characterization of FA composition and oxidation, and (2) determination of physicochemical properties (colour and texture) of the nutritionally-enhanced surimi seafood. Oil addition resulted in increased (P<0.05) concentration of total ω-3 FAs in surimi seafood; however, the concentration of α-linolenic (ALA, 18:3ω-3), eicosapentaenoic (EPA, 20:5ω-3) and docosahexaenoic (DHA, 22:6ω-3) acids depended on which oil was added. Although the ω-3 PUFAs nutrification resulted in increased (P<0.05) susceptibility of surimi seafood to lipid oxidation, it was within ranges acceptable to consumers. Texture analysis (texture profile analysis, Kramer shear and torsion test) showed that ω-3 PUFAs nutrification did not affect texture. Colour properties of ω-3 PUFAs nutrified surimi seafood were generally improved except when krill oil or blend was added. This study demonstrates that nutritional value of surimi seafood can be enhanced with concurrent improvement of colour and without affecting texture. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Granular activated carbon for simultaneous adsorption and biodegradation of toxic oil sands process-affected water organic compounds.

    Science.gov (United States)

    Islam, Md Shahinoor; Zhang, Yanyan; McPhedran, Kerry N; Liu, Yang; Gamal El-Din, Mohamed

    2015-04-01

    Naphthenic acids (NAs) released into oil sands process-affected water (OSPW) during bitumen processing in Northern Alberta are problematic for oil sands industries due to their toxicity in the environment and resistance to degradation during conventional wastewater treatment processes. Granular activated carbon (GAC) has shown to be an effective media in removing biopersistent organics from wastewater using a combination of adsorption and biodegradation removal mechanisms. A simultaneous GAC (0.4 g GAC/L) adsorption and biodegradation (combined treatment) study was used for the treatment of raw and ozonated OSPW. After 28 days of batch treatment, classical and oxidized NAs removals for raw OSPW were 93.3% and 73.7%, and for ozonated OSPW were 96.2% and 77.1%, respectively. Synergetic effects of the combined treatment process were observed in removals of COD, the acid extractable fraction, and oxidized NAs, which indicated enhanced biodegradation and bioregeneration in GAC biofilms. A bacteria copy number >10(8) copies/g GAC on GAC surfaces was found using quantitative real time polymerase chain reaction after treatment for both raw and ozonated OSPW. A Microtox(®) acute toxicity test (Vibrio fischeri) showed effective toxicity removal (>95.3%) for the combined treatments. Therefore, the simultaneous GAC adsorption and biodegradation treatment process is a promising technology for the elimination of toxic OSPW NAs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Effects of bioremediation agents on oil degradation in mineral and sandy salt marsh sediments

    International Nuclear Information System (INIS)

    Lin, Q.; Mendelssohn, I.A.; Henry, C.B. Jr.; Roberts, P.O.; Walsh, M.M.; Overton, E.B.; Portier, R.J.

    1999-01-01

    Although bioremediation for oil spill cleanup has received considerable attention in recent years, its satisfactory use in the cleanup of oil spills in the wetland environment is still generally untested. A study of the often most used bioremediation agents, fertiliser, microbial product and soil oxidation, as a means of enhancing oil biodegradation in coastal mineral and sandy marsh substrates was conducted in controlled greenhouse conditions. Artificially weathered south Louisiana crude oil was applied to sods of marsh (soil and intact vegetation) at the rate of 2 l m -2 . Fertiliser application enhanced marsh plant growth, soil microbial populations, and oil biodegradation rate. The live aboveground biomass of Spartina alterniflora with fertiliser application was higher than that without fertiliser. The application of fertiliser significantly increased soil microbial respiration rates, indicating the potential for enhancing oil biodegradation. Bioremediation with fertiliser application significantly reduced the total targeted normal hydrocarbons (TTNH) and total targeted aromatic hydrocarbons (TTAH) remaining in the soil, by 81% and 17%, respectively, compared to those of the oil controls. TTNH/hopane and TTAAH/hopane ratios showed a more consistent reduction, further suggesting an enhancement of oil biodegradation by fertilisation. Furthermore, soil type affected oil bioremediation; the extent of fertiliser-enhanced oil biodegradation was greater for sandy (13% TTNH remaining in the treatments with fertiliser compared to the control) than for mineral soils (26% of the control), suggesting that fertiliser application was more effective in enhancing TTNH degradation in the former. Application of microbial product and soil oxidant had no positive effects on the variables mentioned above under the present experimental conditions, suggesting that microbial degraders are not limiting biodegradation in this soil. Thus, the high cost of microbial amendments during

  7. Application of forward osmosis membrane technology for oil sands process-affected water desalination.

    Science.gov (United States)

    Jiang, Yaxin; Liang, Jiaming; Liu, Yang

    2016-01-01

    The extraction process used to obtain bitumen from the oil sands produces large volumes of oil sands process-affected water (OSPW). As a newly emerging desalination technology, forward osmosis (FO) has shown great promise in saving electrical power requirements, increasing water recovery, and minimizing brine discharge. With the support of this funding, a FO system was constructed using a cellulose triacetate FO membrane to test the feasibility of OSPW desalination and contaminant removal. The FO systems were optimized using different types and concentrations of draw solution. The FO system using 4 M NH4HCO3 as a draw solution achieved 85% water recovery from OSPW, and 80 to 100% contaminant rejection for most metals and ions. A water backwash cleaning method was applied to clean the fouled membrane, and the cleaned membrane achieved 77% water recovery, a performance comparable to that of new FO membranes. This suggests that the membrane fouling was reversible. The FO system developed in this project provides a novel and energy efficient strategy to remediate the tailings waters generated by oil sands bitumen extraction and processing.

  8. Carbon dioxide enhanced oil recovery performance according to the literature

    Science.gov (United States)

    Olea, Ricardo A.

    2017-07-17

    IntroductionThe need to increase the efficiency of oil recovery and environmental concerns are bringing to prominence the use of carbon dioxide (CO2) as a tertiary recovery agent. Assessment of the impact of flooding with CO2 all eligible reservoirs in the United States not yet undergoing enhanced oil recovery (EOR) requires making the best possible use of the experience gained in 40 years of applications. Review of the publicly available literature has located relevant CO2-EOR information for 53 units (fields, reservoirs, pilot areas) in the United States and 17 abroad.As the world simultaneously faces an increasing concentration of CO2 in the atmosphere and a higher demand for fossil fuels, the CO2-EOR process continues to gain popularity for its efficiency as a tertiary recovery agent and for the potential for having some CO2 trapped in the subsurface as an unintended consequence of the enhanced production (Advanced Resources International and Melzer Consulting, 2009). More extensive application of CO2-EOR worldwide, however, is not making it significantly easier to predict the exact outcome of the CO2 flooding in new reservoirs. The standard approach to examine and manage risks is to analyze the intended target by conducting laboratory work, running simulation models, and, finally, gaining field experience with a pilot test. This approach, though, is not always possible. For example, assessment of the potential of CO2-EOR at the national level in a vast country such as the United States requires making forecasts based on information already available.Although many studies are proprietary, the published literature has provided reviews of CO2-EOR projects. Yet, there is always interest in updating reports and analyzing the information under new perspectives. Brock and Bryan (1989) described results obtained during the earlier days of CO2-EOR from 1972 to 1987. Most of the recovery predictions, however, were based on intended injections of 30 percent the size of

  9. Production, Characterization, and Application of Bacillus licheniformis W16 Biosurfactant in Enhancing Oil Recovery.

    Science.gov (United States)

    Joshi, Sanket J; Al-Wahaibi, Yahya M; Al-Bahry, Saif N; Elshafie, Abdulkadir E; Al-Bemani, Ali S; Al-Bahri, Asma; Al-Mandhari, Musallam S

    2016-01-01

    The biosurfactant production by Bacillus licheniformis W16 and evaluation of biosurfactant based enhanced oil recovery (EOR) using core-flood under reservoir conditions were investigated. Previously reported nine different production media were screened for biosurfactant production, and two were further optimized with different carbon sources (glucose, sucrose, starch, cane molasses, or date molasses), as well as the strain was screened for biosurfactant production during the growth in different media. The biosurfactant reduced the surface tension and interfacial tension to 24.33 ± 0.57 mN m -1 and 2.47 ± 0.32 mN m -1 respectively within 72 h, at 40°C, and also altered the wettability of a hydrophobic surface by changing the contact angle from 55.67 ± 1.6 to 19.54°± 0.96°. The critical micelle dilution values of 4X were observed. The biosurfactants were characterized by different analytical techniques and identified as lipopeptide, similar to lichenysin-A. The biosurfactant was stable over wide range of extreme environmental conditions. The core flood experiments showed that the biosurfactant was able to enhance the oil recovery by 24-26% over residual oil saturation (S or ). The results highlight the potential application of lipopeptide biosurfactant in wettability alteration and microbial EOR processes.

  10. Dataset on experimental investigation of gum arabic coated alumina nanoparticles for enhanced recovery of nigerian medium crude oil.

    Science.gov (United States)

    Orodu, Oyinkepreye D; Orodu, Kale B; Afolabi, Richard O; Dafe, Eboh A

    2018-08-01

    The dataset in this article are related to an experimental Enhanced Oil Recovery (EOR) scheme involving the use of dispersions containing Gum Arabic coated Alumina Nanoparticles (GCNPs) for Nigerian medium crude oil. The result contained in the dataset showed a 7.18% (5 wt% GCNPs), 7.81% (5 wt% GCNPs), and 5.61% (3 wt% GCNPs) improvement in the recovery oil beyond the water flooding stage for core samples A, B, and C respectively. Also, the improvement in recovery of the medium crude oil by the GCNPs dispersions when compared to Gum Arabic polymer flooding was evident in the dataset.

  11. Magnetic enhancement caused by hydrocarbon migration in the Mawangmiao Oil Field, Jianghan Basin, China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qingsheng; Yang, Tao [Department of Geophysics, China University of Geosciences, Wuhan 430074 (China); Liu, Qingsong [National Oceanography Centre Southampton, University of Southampton, European Way, Southampton SO14 3ZH (United Kingdom); Chan, Lungsang [Department of Earth Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Xia, Xianghua; Cheng, Tongjin [Wuxi Institute of Petroleum Geology, SNOPEC, Jiangsu Wuxi 214151 (China)

    2006-08-15

    Magnetic parameters (volume-specific susceptibility k, and hysteresis parameters and ratios) of 47 samples, collected from an oil-producing well (M{sub 36}) and a dry well (M{sub 46}) from the oil-bearing II-You Formation of Paleogene Xingouzui Group in the Mawangmiao Oil Field in China, were measured to address the secondary alteration of iron-bearing minerals associated with hydrocarbon migration. Our results indicated that both k and magnetization (saturation magnetization J{sub s} and saturation isothermal remanent magnetization J{sub rs}) of oil-bearing formation have been dramatically enhanced. Further grain size estimation reveals that the background samples (samples both in M{sub 46} and outside the oil-bearing formation in M{sub 36}) contain coarser-grained magnetic particles (circa 30{mu}m) of detrital origin. In contrast, the alteration of hydrocarbon produces finer-grained (circa 25nm) magnetic particles. The new constraints on grain sizes and its origin of the hydrocarbon-related magnetic particles improve our understanding of the mechanism of formation of these secondary finer-grained particles, even though the precise nature of this process is still unknown. (author)

  12. Investigation of spore forming bacterial flooding for enhanced oil recovery in a North Sea chalk Reservoir

    DEFF Research Database (Denmark)

    Halim, Amalia Yunita; Nielsen, Sidsel Marie; Eliasson Lantz, Anna

    2015-01-01

    Little has been done to study microbial enhanced oil recovery (MEOR) in chalk reservoirs. The present study focuses on core flooding experiments designed to see microbial plugging and its effect on oil recovery. A pressure tapped core holder was used for this purpose. A spore forming bacteria...... Bacillus licheniformis 421 was used as it was shown to be a good candidate in a previous study. Bacterial spore can penetrate deeper into the chalk rock, squeezing through the pore throats. Our results showed that injection of B. licheniformis 421 as a tertiary oil recovery method, in the residual oil...... saturation state, was able to produce additionally 1.0-2.3% original oil in place (OOIP) in homogeneous cores and 6.9-8.8% OOIP in heterogeneous cores. In addition, the pressure gradient was much higher in the heterogeneous cores, which confirms that bacterial selective plugging plays an important role...

  13. Experimental studies on the enhanced performance of lightweight oil recovery using a combined electrocoagulation and magnetic field processes.

    Science.gov (United States)

    Liu, Yang; Yang, Jie; Jiang, Wenming; Chen, Yimei; Yang, Chaojiang; Wang, Tianyu; Li, Yuxing

    2018-08-01

    On marine oil spill, inflammable lightweight oil has characteristics of explosion risk and contamination of marine enviroment, therefore treatment of stable emulsion with micron oil droplets is urgent. This study aimed to propose a combined electrocoagulation and magnetic field processes to enhance performance of lightweight oil recovery with lower energy consumption. The effects of current density, electrolysis time, strength and direction of magnetic field on the overall treatment efficiency of the reactor were explored. Furthermore, the comparison between coupling device and only electrocoagulation through tracking oil removal in nine regions between the electrodes. The results were shown that the permanent magnets applied was found to enhance demulsification process within electrocoagulation reactor. For a given current density of 60 A m -2 at 16 min, Lorentz force downward was proved to promote the sedimentation of coagulants. As the magnetic field strength increases from 20 to 60 mT, oil removal efficiency was observed to increase and then decrease, and simultaneously energy consumption reduced and then present constantly. The results were found that the magnetic field strength of 40 mT was optimal within electrocoagulation reactor, which can not only diminishe difference of mass transfer rate along the height of vertical plate but also consume lowest energy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Measurement of Streaming Potential in Downhole Application: An Insight for Enhanced Oil Recovery Monitoring

    Directory of Open Access Journals (Sweden)

    Tengku Mohd Tengku Amran

    2017-01-01

    Full Text Available Downhole monitoring using streaming potential measurement has been developing in order to respond to actual reservoir condition. Most studies have emphasized on monitoring water flooding at various reservoir condition and improving the approaches of measurement. Enhanced Oil Recovery (EOR could significantly improve oil recovery and the efficiency of the process should be well-monitored. Alkaline-surfactant-polymer (ASP flooding is the most promising chemical EOR method due to its synergy of alkaline, surfactant and polymer, which could enhance the extraction of residual oil. However, limited studies have been focused on the application of streaming potential in EOR processes, particularly ASP. Thus, this paper aims to review the streaming potential measurement in downhole monitoring with an insight for EOR application and propose the potential measurement in monitoring ASP flooding. It is important for a preliminary study to investigate the synergy in ASP and the effects on oil recovery. The behaviour of streaming potential should be investigated when the environment of porous media changes with respect to ASP flooding. Numerical model can be generated from the experimental data to forecast the measured streaming potential signal during production associated with ASP flooding. Based on the streaming potential behaviour on foam assisted water alternate gas (FAWAG and water alternate gas (WAG processes, it is expected that the streaming potential could change significantly when ASP flooding alters the environment and surface properties of porous media. The findings could provide new prospect and knowledge in the relationship between streaming potential and ASP mechanisms, which could be a potential approach in monitoring the efficiency of the process.

  15. Microflow Mechanism of Oil Displacement by Viscoelastic Hydrophobically Associating Water-Soluble Polymers in Enhanced Oil Recovery

    Directory of Open Access Journals (Sweden)

    Huiying Zhong

    2018-06-01

    Full Text Available Polymer flooding plays an important role in enhanced oil recovery (EOR, particularly in China, where partially hydrolyzed polyacrylamide (HPAM and hydrophobically associating water-soluble polymers (HAWP are used in onshore and offshore reservoirs, respectively. Many researchers have highlighted the elasticity of HPAM, which can be used to improve the sweep efficiency, i.e., the ratio of the area swept by an injected fluid to the oil area. On the other hand, fewer studies exist on the elasticity of HAWP. In this study, we investigate the flow of HAWP and Xanthan solutions with identical viscosities in core experiments in terms of elasticity; results reveal that the HAWP can produce shear thickening in the core. The constitutive equation for the HAWP can be obtained using the simulation results matched with the experimental data. On the basis of these experiments, we established a two-phase flow model of a polymer and oil, including the continuity, momentum, constitutive, and phase equations. The volume-of-fluid (VOF method was used to track the interface between the two phases. A complex pore model was established based on the glass-etched model used in the experiment. We used the OpenFOAM platform to solve the mathematical model. The saturation, pressure, and stress tensor distributions were obtained. The results show that the displacement efficiency increased as the elasticity of the polymer increased; accordingly, the elasticity can enlarge the sweep area and decrease the residual oil saturation. As the elasticity increases, the stresses (the first normal stress, second normal stress, and shear stress increase. Finally, the results obtained in this study can be used as a guideline in polymer design, screening, and optimization in the polymer flooding oilfields.

  16. Impact of an indigenous microbial enhanced oil recovery field trial on microbial community structure in a high pour-point oil reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fan; Zhang, Xiao-Tao; Hou, Du-Jie [China Univ. of Geosciences, Beijing (China). The Key Lab. of Marine Reservoir Evolution and Hydrocarbon Accumulation Mechanism; She, Yue-Hui [Yangtze Univ., Jingzhou, Hubei (China). College of Chemistry and Environmental Engineering; Huazhong Univ. of Science and Technology, Wuhan (China). College of Life Science and Technology; Li, Hua-Min [Beijing Bioscience Research Center (China); Shu, Fu-Chang; Wang, Zheng-Liang [Yangtze Univ., Jingzhou, Hubei (China). College of Chemistry and Environmental Engineering; Yu, Long-Jiang [Huazhong Univ. of Science and Technology, Wuhan (China). College of Life Science and Technology

    2012-08-15

    Based on preliminary investigation of microbial populations in a high pour-point oil reservoir, an indigenous microbial enhanced oil recovery (MEOR) field trial was carried out. The purpose of the study is to reveal the impact of the indigenous MEOR process on microbial community structure in the oil reservoir using 16Sr DNA clone library technique. The detailed monitoring results showed significant response of microbial communities during the field trial and large discrepancies of stimulated microorganisms in the laboratory and in the natural oil reservoir. More specifically, after nutrients injection, the original dominant populations of Petrobacter and Alishewanella in the production wells almost disappeared. The expected desirable population of Pseudomonas aeruginosa, determined by enrichment experiments in laboratory, was stimulated successfully in two wells of the five monitored wells. Unexpectedly, another potential population of Pseudomonas pseudoalcaligenes which were not detected in the enrichment culture in laboratory was stimulated in the other three monitored production wells. In this study, monitoring of microbial community displayed a comprehensive alteration of microbial populations during the field trial to remedy the deficiency of culture-dependent monitoring methods. The results would help to develop and apply more MEOR processes. (orig.)

  17. Impact of an indigenous microbial enhanced oil recovery field trial on microbial community structure in a high pour-point oil reservoir.

    Science.gov (United States)

    Zhang, Fan; She, Yue-Hui; Li, Hua-Min; Zhang, Xiao-Tao; Shu, Fu-Chang; Wang, Zheng-Liang; Yu, Long-Jiang; Hou, Du-Jie

    2012-08-01

    Based on preliminary investigation of microbial populations in a high pour-point oil reservoir, an indigenous microbial enhanced oil recovery (MEOR) field trial was carried out. The purpose of the study is to reveal the impact of the indigenous MEOR process on microbial community structure in the oil reservoir using 16Sr DNA clone library technique. The detailed monitoring results showed significant response of microbial communities during the field trial and large discrepancies of stimulated microorganisms in the laboratory and in the natural oil reservoir. More specifically, after nutrients injection, the original dominant populations of Petrobacter and Alishewanella in the production wells almost disappeared. The expected desirable population of Pseudomonas aeruginosa, determined by enrichment experiments in laboratory, was stimulated successfully in two wells of the five monitored wells. Unexpectedly, another potential population of Pseudomonas pseudoalcaligenes which were not detected in the enrichment culture in laboratory was stimulated in the other three monitored production wells. In this study, monitoring of microbial community displayed a comprehensive alteration of microbial populations during the field trial to remedy the deficiency of culture-dependent monitoring methods. The results would help to develop and apply more MEOR processes.

  18. Enhancement of biodegradation of crude petroleum-oil in contaminated water by the addition of nitrogen sources.

    Science.gov (United States)

    Mukred, A M; Hamid, A A; Hamzah, A; Yusoff, W M Wan

    2008-09-01

    Addition of nitrogen sources as supplementary nutrient into MSM medium to enhance biodegradation by stimulating the growth four isolates, Acinetobacter faecalis, Staphylococcus sp., Pseudomonas putida and Neisseria elongata isolated from petroleum contaminated groundwater, wastewater aeration pond and biopond at the oil refinery Terengganu Malaysia was investigated. The organic nitrogen sources tested not only supported growth but also enhances biodegradation of 1% Tapis crude oil. All four isolates showed good growth especially when peptone was employed as the organic nitrogen compared to growth in the basal medium. Gas chromatography showed that more then 91, 93, 94 and 95% degradation of total hydrocarbon was observed after 5 days of incubation by isolates Pseudomonas putida, Neisseria elongate, Acinetobacter faecalis and Staphylococcus sp., respectively.

  19. Enhancement of Hydrodynamic Processes in Oil Pipelines Considering Rheologically Complex High-Viscosity Oils

    Science.gov (United States)

    Konakhina, I. A.; Khusnutdinova, E. M.; Khamidullina, G. R.; Khamidullina, A. F.

    2016-06-01

    This paper describes a mathematical model of flow-related hydrodynamic processes for rheologically complex high-viscosity bitumen oil and oil-water suspensions and presents methods to improve the design and performance of oil pipelines.

  20. Microbial Enhanced Oil Recovery - Advanced Reservoir Simulation

    DEFF Research Database (Denmark)

    Nielsen, Sidsel Marie

    the water phase. The biofilm formation implies that the concentration of bacteria near the inlet increases. In combination with surfactant production, the biofilm results in a higher surfactant concentration in the initial part of the reservoir. The oil that is initially bypassed in connection...... simulator. In the streamline simulator, the effect of gravity is introduced using an operator splitting technique. The gravity effect stabilizes oil displacement causing markedly improvement of the oil recovery, when the oil density becomes relatively low. The general characteristics found for MEOR in one......-dimensional simulations are also demonstrated both in two and three dimensions. Overall, this MEOR process conducted in a heterogeneous reservoir also produces more oil compared to waterflooding, when the simulations are run in multiple dimensions. The work presented in this thesis has resulted in two publications so far....

  1. Proficiency feasibility of multi-walled carbon nanotubes in the presence of polymeric surfactant on enhanced oil recovery

    Science.gov (United States)

    Nezhad, Javad Razavi; Jafari, Arezou; Abdollahi, Mahdi

    2018-01-01

    Enhanced heavy oil recovery methods are widely utilized to increase oil recovery. For this purpose, polymer and surfactant flooding have been used extensively. Recently, polymeric surfactant flooding has become an attractive alternative to sole polymer flooding due to their capability of providing an increase in solution viscosity and a decrease in interfacial tension, which are both beneficial for efficiency of the process. Applying nanoparticles as an additive to polymer solutions is a method to improve viscosity and alter rock wettability. Therefore, in this research, multi-walled carbon nanotube (MWCNT) was mixed with a polymeric surfactant of polyacrylamide-graft-lignin copolymer (PAM-g-L) synthesized via radical grafting reaction. Moreover, several solutions with different concentrations of nanoparticles with PAM-g-L were prepared. The solutions were injected into a micromodel to evaluate the PAM-g-L flooding efficiency in presence of the multi-walled carbon nanotubes. The results of micromodel flooding showed that increasing MWCNT concentration results in lower sweep efficiencies; and consequently, oil production will decrease. Therefore, MWCNT along with PAM-g-L has an unacceptable performance in enhanced heavy oil recovery. But data of wettability tests revealed that MWCNT can change the wettability from oil-wet to water-wet. In addition, the combination of the PAM-g-L and MWCNT in a solution will cause more water-wet condition.

  2. A study of energy consumption in turning process using lubrication of nanoparticles enhanced coconut oil (NECO)

    Science.gov (United States)

    Mansor, A. F.; Zakaria, M. S.; Azmi, A. I.; Khalil, A. N. M.; Musa, N. A.

    2017-10-01

    Cutting fluids play very important role in machining application in order to increase tool life, surface finish and reduce energy consumption. Instead of using petrochemical and synthetic based cutting fluids, vegetable oil based lubricants is safety for operators, environmental friendly and become more popular in the industrial applications. This research paper aims to find the advantage of using vegetable oils (coconut oil) with additional of nano particles (CuO) as lubricant to the energy consumption during machining process. The energy was measured for each run from 2 level factorial experimental layout. Obtained results illustrate that lubricant with enhancement of nanoparticles has capability to improve the energy consumption during the machining process.

  3. RNA interference of GhPEPC2 enhanced seed oil accumulation and salt tolerance in Upland cotton.

    Science.gov (United States)

    Zhao, Yanpeng; Huang, Yi; Wang, Yumei; Cui, Yupeng; Liu, Zhengjie; Hua, Jinping

    2018-06-01

    Phosphoenolpyruvate carboxylase (PEPCase) mainly produces oxaloacetic acid for tricarboxylic acid (TCA) cycle. Here we reported that GhPEPC2 silencing with PEPC2-RNAi vector could regulate oil and protein accumulation in cottonseeds. In GhPEPC2 transgenic plants, PEPCase activities in immature embryos were significantly reduced, and the oil content in seed kernel was increased 7.3 percentages, whereas total proteins decreased 5.65 percentages. Compared to wild type, agronomical traits of transgenic plant were obviously unaffected. Furthermore, gene expression profile of GhPEPC2 transgenic seeds were investigated using RNA-seq, most lipid synthesis related genes were up-regulated, but amino acid metabolic related genes were down-regulated. In addition, the GhPEPC2 transgenic cotton seedlings were stressed using sodium salts at seedling stage, and the salt tolerance was significantly enhanced. Our observations of GhPEPC2 in cotton would shade light on understanding the regulation of oil content, protein accumulation and salt tolerance enhancement in other plants. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Mining and oil. Oil shale's contribution to future oil supply; Bergbau und Oel. Der Beitrag des Oelschiefers zur Oelversorgung

    Energy Technology Data Exchange (ETDEWEB)

    Linden, Eike von der [Linden Advisory, Dreieich (Germany)

    2012-05-15

    Crude oil contributes in Germany and globally approximately one third to the consumption of primary energies and actually is and in the foreseeable future will be the most important energy source. Recently shale oil as an unconventional oil has gained attention in public discussions. Depending on temperatures oil shale contains either already matured fluid shale oil or immature waxy kerogen. For determination of kerogen containing oil shale and shale oil common definitions for fluid hydrocarbons will be presented. Fluid hydrocarbons (molecular chains > C{sub 5}H{sub 12}) originate from animal substance which had been settled millions of years in sediments on sea- or lakebeds under anaerobic conditions. High pressure and high temperatures effect conversion to hydrocarbons. With sufficient permeability the liquid hydrocarbons migrate from the sediment as the source rock and get assembled in porous rocks under the cover of an impermeable rock strata, in so called entrapment structures. In case there is no impermeable rock strate the hydrocarbons will diffuse into the atmosphere. The hydrocarbons in entrapment structures are called conventional oil and are extracted by drilling wells. The extractable oil as part of the oil in place depends on the viscosity of the oil, the permeability of the host rock and applied exploitation methods which can affect pressure, viscosity and permeability. The exploitation achieves 30 to 50% of the oil in place. When the source rock consisting of strata hundreds of meters thick is not sufficiently permeable the matured hydrocarbons remain at its place of origination. These hydrocarbons are called shale oil and belong to the unconventional oil resources. For exploitation of shale oil by wells the source rock must be treated by intensive energy input, amongst others, by fracking which creates artificial permeability and by pressure which affects migration of the hydrocarbons to the well. The exploitation methods for shale oil do not

  5. Profiling of Indigenous Microbial Community Dynamics and Metabolic Activity During Enrichment in Molasses-Supplemented Crude Oil-Brine Mixtures for Improved Understanding of Microbial Enhanced Oil Recovery

    DEFF Research Database (Denmark)

    Halim, Amalia Yunita; Pedersen, Dorthe Skou; Nielsen, Sidsel Marie

    2015-01-01

    Anaerobic incubations using crude oil and brine from a North Sea reservoir were conducted to gain increased understanding of indigenous microbial community development, metabolite production, and the effects on the oil–brine system after addition of a complex carbon source, molasses, with or with...... of molasses has potential as microbial enhanced oil recovery (MEOR) strategy in North Sea oil reservoirs.......Anaerobic incubations using crude oil and brine from a North Sea reservoir were conducted to gain increased understanding of indigenous microbial community development, metabolite production, and the effects on the oil–brine system after addition of a complex carbon source, molasses....... The microbial growth caused changes in the crude oil–brine system: formation of oil emulsions, and reduction of interfacial tension (IFT). Reduction in IFT was associated with microbes being present at the oil–brine interphase. These findings suggest that stimulation of indigenous microbial growth by addition...

  6. Percutaneous penetration enhancement effect of essential oil of mint (Mentha haplocalyx Briq. on Chinese herbal components with different lipophilicity

    Directory of Open Access Journals (Sweden)

    Jingyan Wang

    2014-10-01

    Conclusions: Mint oil at proper concentration could effectively facilitate percutaneous penetration of both lipophilic and hydrophilic drugs, and exhibit higher efficiency for moderate hydrophilic drugs. Mechanisms of penetration enhancement by mint oil could be explained with saturation solubility, SC/vehicle partition coefficient and the secondary structure change of SC.

  7. Balance of alkaline and acidic pollution loads in the area affected by oil shale combustion

    International Nuclear Information System (INIS)

    Kaasik, M.

    2000-01-01

    Field measurements of concentrations of SO 2 and NO 2 in the air and deposition of Ca 2+ , Mg 2+ , K + , Na + , SO 4 2- , NO 3 - and Cl - in northeastern Estonia were carried out in the end of winter 1998/99. Concentrations in the air were measured by passive sampling method (Palmes tubes); snow samples were used to quantify the deposition loads. The measurement domain covered entire Ida-Viru County, eastern part of Laeaene-Viru County and a few sites in Jogeva County. These measurements and comparison with earlier investigations show that in wintertime most of sulfate over the area affected by oil shale industrial complex appears to be deposited with fly ash particles. The regression formulae for wintertime sulfate and calcium deposition loads for oil-shale region are derived. The inhomogeneous chemical composition of fly ash and influence of other (domestic, traffic) emissions are suggested as possible factors affecting the ratio of sulfate and calcium deposition loads. (author)

  8. Biotransformation of natural gas and oil compounds associated with marine oil discharges.

    Science.gov (United States)

    Brakstad, Odd Gunnar; Almås, Inger K; Krause, Daniel Franklin

    2017-09-01

    Field data from the Deepwater Horizon (DWH) oil spill in the Gulf of Mexico (GoM) suggested that oxidation of gas compounds stimulated biodegradation of oil compounds in the deep sea plume. We performed experiments with local seawater from a Norwegian fjord to examine if the presence of dissolved gas compounds (methane, ethane and propane) affected biodegradation of volatile oil compounds, and if oil compounds likewise affected gas compound oxidation. The results from the experiment showed comparable oil compound biotransformation rates in seawater at 5 °C between seawater with and without soluble gases. Gas oxidation was not affected by the presence of volatile oil compounds. Contrary to DWH deep sea plume data, propane oxidation was not faster than methane oxidation. These data may reflect variations between biodegradation of oil and gas in seawater environments with different history of oil and gas exposure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Biodegradation of isopropanol and acetone under denitrifying conditions by Thauera sp. TK001 for nitrate-mediated microbially enhanced oil recovery.

    Science.gov (United States)

    Fida, Tekle Tafese; Gassara, Fatma; Voordouw, Gerrit

    2017-07-15

    Amendment of reservoir fluid with injected substrates can enhance the growth and activity of microbes. The present study used isopropyl alcohol (IPA) or acetone to enhance the indigenous anaerobic nitrate-reducing bacterium Thauera sp. TK001. The strain was able to grow on IPA or acetone and nitrate. To monitor effects of strain TK001 on oil recovery, sand-packed columns containing heavy oil were flooded with minimal medium at atmospheric or high (400psi) pressure. Bioreactors were then inoculated with 0.5 pore volume (PV) of minimal medium containing Thauera sp. TK001 with 25mM of acetone or 22.2mM of IPA with or without 80mM nitrate. Incubation without flow for two weeks and subsequent injection with minimal medium gave an additional 17.0±6.7% of residual oil in place (ROIP) from low-pressure bioreactors and an additional 18.3% of ROIP from the high-pressure bioreactors. These results indicate that acetone or IPA, which are commonly used organic solvents, are good substrates for nitrate-mediated microbial enhanced oil recovery (MEOR), comparable to glucose, acetate or molasses, tested previously. This technology may be used for coupling biodegradation of IPA and/or acetone in waste streams to MEOR where these waste streams are generated in close proximity to an oil field. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Lipase applications in oil hydrolysis with a case study on castor oil: a review.

    Science.gov (United States)

    Goswami, Debajyoti; Basu, Jayanta Kumar; De, Sirshendu

    2013-03-01

    Lipase (triacylglycerol acylhydrolase) is a unique enzyme which can catalyze various types of reactions such as hydrolysis, esterification, alcoholysis etc. In particular, hydrolysis of vegetable oil with lipase as a catalyst is widely studied. Free lipase, lipase immobilized on suitable support, lipase encapsulated in a reverse micelle and lipase immobilized on a suitable membrane to be used in membrane reactor are the most common ways of employing lipase in oil hydrolysis. Castor oil is a unique vegetable oil as it contains high amounts (90%) of a hydroxy monounsaturated fatty acid named ricinoleic acid. This industrially important acid can be obtained by hydrolysis of castor oil. Different conventional hydrolysis processes have certain disadvantages which can be avoided by a lipase-catalyzed process. The degree of hydrolysis varies widely for different lipases depending on the operating range of process variables such as temperature, pH and enzyme loading. Immobilization of lipase on a suitable support can enhance hydrolysis by suppressing thermal inactivation and estolide formation. The presence of metal ions also affects lipase-catalyzed hydrolysis of castor oil. Even a particular ion has different effects on the activity of different lipases. Hydrophobic organic solvents perform better than hydrophilic solvents during the reaction. Sonication considerably increases hydrolysis in case of lipolase. The effects of additives on the same lipase vary with their types. Nonionic surfactants enhance hydrolysis whereas cationic and anionic surfactants decrease it. A single variable optimization method is used to obtain optimum conditions. In order to eliminate its disadvantages, a statistical optimization method is used in recent studies. Statistical optimization shows that interactions between any two of the following pH, enzyme concentration and buffer concentration become significant in presence of a nonionic surfactant named Span 80.

  11. Microbial Enhanced Oil Recovery and Wettability Research Program. Annual report, FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    Bala, G.A.; Barrett, K.B.; Eastman, S.L.; Herd, M.D.; Jackson, J.D.; Robertson, E.P.; Thomas, C.P.

    1993-09-01

    This report covers research results for fiscal year 1991 for the Microbial Enhanced Oil Recovery (MEOR) and Wettability Research Program conducted by EG&G Idaho, Inc. at the Idaho National Engineering Laboratory ONEL) for the US Department of Energy Idaho Field Office (DOE-ID). The program is funded by the Assistant Secretary of Fossil Energy, and managed by DOE-ID and the Bartlesville Project Office (BPO). The objectives of this multi-year program are to develop MEOR systems for application to reservoirs containing medium to heavy crude oils and to design and implement an industry cost-shared field demonstration project of the developed technology. An understanding of the controlling mechanisms will first be developed through the use of laboratory scale testing to determine the ability of microbially mediated processes to recover oil under reservoir conditions and to develop the design criteria for scale-up to the field. Concurrently with this work, the isolation and characterization of microbial species collected from various locations including target oil field environments is underway to develop more effective oil recovery systems for specific applications. Research focus includes the study of biogenic product and formation souring processes including mitigation and prevention. Souring research performed in FY 1991 also included the development of microsensor probe technology for the detection of total sulfide in collaboration with the Montana State University Center for Interfacial Microbial Process Engineering (CIMPE). Wettability research is a multi-year collaborative effort with the New Mexico Petroleum Recovery Research Center (NMPRRC) at the New Mexico institute of Mining and Technology, Socorro, NM to evaluate reservoir wettability and its effects on oil recovery. Results from the wettability research will be applied to determine if alteration of wettability is a significant contributing mechanism for MEOR systems.

  12. DEVELOPMENT OF MICROORGANISMS WITH IMPROVED TRANSPORT AND BIOSURFACTANT ACTIVITY FOR ENHANCED OIL RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    M.J. McInerney; R.M. Knapp; D.P. Nagle, Jr.; Kathleen Duncan; N. Youssef; M.J. Folmsbee; S. Maudgakya

    2003-06-26

    Biosurfactants enhance hydrocarbon biodegradation by increasing apparent aqueous solubility or affecting the association of the cell with poorly soluble hydrocarbon. Here, we show that a lipopeptide biosurfactant produced by Bacillus mojavensis strain JF-2 mobilized substantial amounts of residual hydrocarbon from sand-packed columns when a viscosifying agent and a low molecular weight alcohol were present. The amount of residual hydrocarbon mobilized depended on the biosurfactant concentration. One pore volume of cell-free culture fluid with 900 mg/l of the biosurfactant, 10 mM 2,3-butanediol and 1000 mg/l of partially hydrolyzed polyacrylamide polymer mobilized 82% of the residual hydrocarbon. Consistent with the high residual oil recoveries, we found that the bio-surfactant lowered the interfacial tension (IFT) between oil and water by nearly 2 orders of magnitude compared to typical IFT values of 28-29 mN/m. Increasing the salinity increased the IFT with or without 2,3-butanediol present. The lowest interfacial tension observed was 0.1 mN/m. The lipopeptide biosurfactant system may be effective in removing hydrocarbon contamination sources in soils and aquifers and for the recovery of entrapped oil from low production oil reservoirs. Previously, we reported that Proteose peptone was necessary for anaerobic growth and biosurfactant production by B. mojavensis JF-2. The data gathered from crude purification of the growth-enhancing factor in Proteose peptone suggested that it consisted of nucleic acids; however, nucleic acid bases, nucleotides or nucleosides did not replace the requirement for Proteose Peptone. Further studies revealed that salmon sperm DNA, herring sperm DNA, Echerichia coli DNA and synthetic DNA replaced the requirement for Proteose peptone. In addition to DNA, amino acids and nitrate were required for anaerobic growth and vitamins further improved growth. We now have a defined medium that can be used to manipulate growth and biosurfactant

  13. DEVELOPMENT OF MICROORGANISMS WITH IMPROVED TRANSPORT AND BIOSURFACTANT ACTIVITY FOR ENHANCED OIL RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    M.J. McInerney; N. Youssef; T. Fincher; S.K. Maudgalya; M.J. Folmsbee; R. Knapp; D. Nagle

    2004-05-31

    Diverse microorganisms were screened for biosurfactant production and anaerobic growth at elevated salt concentrations to obtain candidates most suitable for microbial oil recovery. Seventy percent of the 205 strains tested, mostly strains of Bacillus mojavensis, Bacillus subtilis, Bacillus licheniformis, and Bacillus sonorensis, produced biosurfactants aerobically and 41% of the strains had biosurfactant activity greater than Bacillus mojavensis JF-2, the current candidate for oil recovery. Biosurfactant activity varied with the percentage of the 3-hydroxy-tetradecanoate isomers in the fatty acid portion of the biosurfactant. Changing the medium composition by incorporation of different precursors of 3-hydroxy tetradecanoate increased the activity of biosurfactant. The surface tension and critical micelle concentration of 15 different, biosurfactant-producing Bacillus strains was determined individually and in combination with other biosurfactants. Some biosurfactant mixtures were found to have synergistic effect on surface tension (e.g. surface tension was lowered from 41 to 31 mN/m in some cases) while others had a synergistic effect on CMD-1 values. We compared the transport abilities of spores from three Bacillus strains using a model porous system to study spore recovery and transport. Sand-packed columns were used to select for spores or cells with the best transport abilities through brine-saturated sand. Spores of Bacillus mojavensis strains JF-2 and ROB-2 and a natural recombinant, strain C-9, transported through sand at very high efficiencies. The earliest cells/spores that emerged from the column were re-grown, allowed to sporulate, and applied to a second column. This procedure greatly enhanced the transport of strain C-9. Spores with enhanced transport abilities can be easily obtained and that the preparation of inocula for use in MEOR is feasible. Tertiary oil recovery experiments showed that 10 to 40 mg/l of JF-2 biosurfactant in the presence of 0

  14. Support of enhanced oil recovery to independent producers in Texas. Quarterly technical progress report, July 1, 1995--September 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Fotouh, K.H.

    1995-09-30

    The main objective of this project is to support independent oil producers in Texas and to improve the productivity of marginal wells utilizing enhanced oil recovery techniques. The main task carried out this quarter was the generation of an electronic data base.

  15. Enhanced Oil Recovery Using Micron-Size Polyacrylamide Elastic Microspheres (MPEMs): Underlying Mechanisms and Displacement Experiments

    KAUST Repository

    Yao, Chuanjin; Lei, Guanglun; Hou, Jian; Xu, Xiaohong; Wang, Dan; Steenhuis, Tammo S.

    2015-01-01

    Micron-size polyacrylamide elastic microsphere (MPEM) is a newly developed profile control and oil displacement agent for enhanced oil recovery in heterogeneous reservoirs. In this study, laboratory experiments were performed to characterize the viscoelastic properties of MPEMs in brine water. A transparent sandpack micromodel was used to observe the microscopic flow and displacement mechanisms, and parallel-sandpack models were used to investigate the profile control and oil displacement performance using MPEMs in heterogeneous reservoirs. The results indicate that MPEMs almost do not increase the viscosity of injection water and can be conveniently injected using the original water injection pipelines. The microscopic profile control and oil displacement mechanisms of MPEMs in porous media mainly behave as selective-plugging in large pores, fluid diversion after MPEMs plugging, oil drainage caused by MPEMs breakthrough, and the mechanism of oil droplets converging into oil flow. MPEMs have a high plugging strength, which can tolerate a long-term water flushing. MPEMs can selectively enter and plug the large pores and pore-throats in high permeability sandpack, but almost do not damage the low permeability sandpack. MPEMs can effectively divert the water flow from the high permeability sandpack to the low permeability sandpack and improve the sweep efficiency of low permeability sandpack and low permeability area in the high permeability sandpack. The results also confirm the dynamic process of profile control and oil displacement using MPEMs in heterogeneous reservoirs.

  16. Enhanced Oil Recovery Using Micron-Size Polyacrylamide Elastic Microspheres (MPEMs): Underlying Mechanisms and Displacement Experiments

    KAUST Repository

    Yao, Chuanjin

    2015-10-12

    Micron-size polyacrylamide elastic microsphere (MPEM) is a newly developed profile control and oil displacement agent for enhanced oil recovery in heterogeneous reservoirs. In this study, laboratory experiments were performed to characterize the viscoelastic properties of MPEMs in brine water. A transparent sandpack micromodel was used to observe the microscopic flow and displacement mechanisms, and parallel-sandpack models were used to investigate the profile control and oil displacement performance using MPEMs in heterogeneous reservoirs. The results indicate that MPEMs almost do not increase the viscosity of injection water and can be conveniently injected using the original water injection pipelines. The microscopic profile control and oil displacement mechanisms of MPEMs in porous media mainly behave as selective-plugging in large pores, fluid diversion after MPEMs plugging, oil drainage caused by MPEMs breakthrough, and the mechanism of oil droplets converging into oil flow. MPEMs have a high plugging strength, which can tolerate a long-term water flushing. MPEMs can selectively enter and plug the large pores and pore-throats in high permeability sandpack, but almost do not damage the low permeability sandpack. MPEMs can effectively divert the water flow from the high permeability sandpack to the low permeability sandpack and improve the sweep efficiency of low permeability sandpack and low permeability area in the high permeability sandpack. The results also confirm the dynamic process of profile control and oil displacement using MPEMs in heterogeneous reservoirs.

  17. Nutrient-enhanced bioremediation of oil-contaminated shoreline

    International Nuclear Information System (INIS)

    Glaser, J.A.

    1991-01-01

    On March 24, 1989, the collision of the supertanker Exxon Valdez with a submerged reef in Prince William Sound AK, released 41.6 million L (11 million gal) of Prudhoe Bay crude oil. The oil spread with time to contaminate an estimated 565 km (350 miles) of shoreline. The degradation of oil components by biological mechanisms has been intensively studied during the last 20 years. The general outline of biodegradation pathways for aliphatic and aromatic hydrocarbons has been formulated and continues to be developed in greater detail. Consequently, the microbial decomposition of oil in aquatic environments is well understood to include descriptions of biodegradation kinetics; temperature effects for biodegradation can be described by an Arrhenius relationship. Even cold-water environments have been shown to support the biodegradation of oil components. This paper reports that a panel of experts was assembled to assist the U.S. Environmental Protection Agency (EPA) in determining the best treatment strategy to accelerate the natural biodegradation process in Prince William Sound

  18. Preparation of organogel with tea polyphenols complex for enhancing the antioxidation properties of edible oil.

    Science.gov (United States)

    Shi, Rong; Zhang, Qiuyue; Vriesekoop, Frank; Yuan, Qipeng; Liang, Hao

    2014-08-20

    Food-grade organogels are semisolid systems with immobilized liquid edible oil in a three-dimensional network of self-assembled gelators, and they are supposed to have a broad range of potential applications in food industries. In this work, an edible organogel with tea polyphenols was developed, which possesses a highly effective antioxidative function. To enhance the dispersibility of the tea polyphenols in the oil phase, a solid lipid-surfactant-tea polyphenols complex (organogel complex) was first prepared according to a novel method. Then, a food-grade organogel was prepared by mixing this organogel complex with fresh peanut oil. Compared with adding free tea polyphenols, the organogel complex could be more homogeneously distributed in the prepared organogel system, especially under heating condition. Furthermore, the organogel loading of tea polyphenols performed a 2.5-fold higher antioxidation compared with other chemically synthesized antioxidants (butylated hydroxytoluene and propyl gallate) by evaluating the peroxide value of the fresh peanut oil based organogel in accelerated oxidation conditions.

  19. Wettability Improvement with Enzymes: Application to Enhanced Oil Recovery under Conditions of the North Sea Reservoirs

    DEFF Research Database (Denmark)

    Khusainova, Alsu; Shapiro, Alexander; Stenby, Erling Halfdan

    2012-01-01

    (Nasiri et al., 2009), working mechanisms are poorly known and understood. The main goal of the present work is to establish possible mechanisms in which enzymes may enhance oil recovery. Improvement of the brine wettability of the rock and decrease of oil adhesion to it by addition of an enzyme is one...... of the possible mechanisms of enzymatic action. This mechanism has been investigated experimentally, by measurements of the contact angles between oil drops and enzyme solutions in brine on the mineral surfaces. Fifteen enzyme samples belonging to different enzyme classes, such as esterases/lipases, carbohydrases......, proteases and oxidoreductases, provided by Novozymes, have been investigated. Two commercial mixtures containing enzymes: Apollo-GreenZyme™ and EOR-ZYMAX™ have also been applied. The North Sea dead oil and the synthetic sea water were used as test fluids. Internal surface of a carbonate rock has been...

  20. Production and characterisation of glycolipid biosurfactant by Halomonas sp. MB-30 for potential application in enhanced oil recovery.

    Science.gov (United States)

    Dhasayan, Asha; Kiran, G Seghal; Selvin, Joseph

    2014-12-01

    Biosurfactant-producing Halomonas sp. MB-30 was isolated from a marine sponge Callyspongia diffusa, and its potency in crude oil recovery from sand pack column was investigated. The biosurfactant produced by the strain MB-30 reduced the surface tension to 30 mN m(-1) in both glucose and hydrocarbon-supplemented minimal media. The critical micelle concentration of biosurfactant obtained from glucose-based medium was at 0.25 mg ml(-1) at critical micelle dilution 1:10. The chemical structure of glycolipid biosurfactant was characterised by infrared spectroscopy and proton magnetic resonance spectroscopy. The emulsification activity of MB-30 biosurfactant was tested with different hydrocarbons, and 93.1 % emulsification activity was exhibited with crude oil followed by kerosene (86.6 %). The formed emulsion was stable for up to 1 month. To identify the effectiveness of biosurfactant for enhanced oil recovery in extreme environments, the interactive effect of pH, temperature and salinity on emulsion stability with crude oil and kerosene was evaluated. The stable emulsion was formed at and above pH 7, temperature >80 °C and NaCl concentration up to 10 % in response surface central composite orthogonal design model. The partially purified biosurfactant recovered 62 % of residual crude oil from sand pack column. Thus, the stable emulsifying biosurfactant produced by Halomonas sp. MB-30 could be used for in situ biosurfactant-mediated enhanced oil recovery process and hydrocarbon bioremediation in extreme environments.

  1. Applicability of anaerobic nitrate-dependent Fe(II) oxidation to microbial enhanced oil recovery (MEOR).

    Science.gov (United States)

    Zhu, Hongbo; Carlson, Han K; Coates, John D

    2013-08-06

    Microbial processes that produce solid-phase minerals could be judiciously applied to modify rock porosity with subsequent alteration and improvement of floodwater sweep in petroleum reservoirs. However, there has been little investigation of the application of this to enhanced oil recovery (EOR). Here, we investigate a unique approach of altering reservoir petrology through the biogenesis of authigenic rock minerals. This process is mediated by anaerobic chemolithotrophic nitrate-dependent Fe(II)-oxidizing microorganisms that precipitate iron minerals from the metabolism of soluble ferrous iron (Fe(2+)) coupled to the reduction of nitrate. This mineral biogenesis can result in pore restriction and reduced pore throat diameter. Advantageously and unlike biomass plugs, these biominerals are not susceptible to pressure or thermal degradation. Furthermore, they do not require continual substrate addition for maintenance. Our studies demonstrate that the biogenesis of insoluble iron minerals in packed-bed columns results in effective hydrology alteration and homogenization of heterogeneous flowpaths upon stimulated microbial Fe(2+) biooxidation. We also demonstrate almost 100% improvement in oil recovery from hydrocarbon-saturated packed-bed columns as a result of this metabolism. These studies represent a novel departure from traditional microbial EOR approaches and indicate the potential for nitrate-dependent Fe(2+) biooxidation to improve volumetric sweep efficiency and enhance both the quality and quantity of oil recovered.

  2. Retaining biodiversity in intensive farmland: epiphyte removal in oil palm plantations does not affect yield.

    Science.gov (United States)

    Prescott, Graham W; Edwards, David P; Foster, William A

    2015-05-01

    The expansion of agriculture into tropical forest frontiers is one of the primary drivers of the global extinction crisis, resulting in calls to intensify tropical agriculture to reduce demand for more forest land and thus spare land for nature. Intensification is likely to reduce habitat complexity, with profound consequences for biodiversity within agricultural landscapes. Understanding which features of habitat complexity are essential for maintaining biodiversity and associated ecosystem services within agricultural landscapes without compromising productivity is therefore key to limiting the environmental damage associated with producing food intensively. Here, we focus on oil palm, a rapidly expanding crop in the tropics and subject to frequent calls for increased intensification. One promoted strategy is to remove epiphytes that cover the trunks of oil palms, and we ask whether this treatment affects either biodiversity or yield. We experimentally tested this by removing epiphytes from four-hectare plots and seeing if the biodiversity and production of fruit bunches 2 months and 16 months later differed from equivalent control plots where epiphytes were left uncut. We found a species-rich and taxonomically diverse epiphyte community of 58 species from 31 families. Epiphyte removal did not affect the production of fresh fruit bunches, or the species richness and community composition of birds and ants, although the impact on other components of biodiversity remains unknown. We conclude that as they do not adversely affect palm oil production, the diverse epiphyte flora should be left uncut. Our results underscore the importance of experimentally determining the effects of habitat complexity on yield before introducing intensive methods with no discernible benefits.

  3. Subinhibitory concentrations of perilla oil affect the expression of secreted virulence factor genes in Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Jiazhang Qiu

    Full Text Available BACKGROUND: The pathogenicity of staphylococcus aureus is dependent largely upon its ability to secrete a number of virulence factors, therefore, anti-virulence strategy to combat S. aureus-mediated infections is now gaining great interest. It is widely recognized that some plant essential oils could affect the production of staphylococcal exotoxins when used at subinhibitory concentrations. Perilla [Perilla frutescens (L. Britton], a natural medicine found in eastern Asia, is primarily used as both a medicinal and culinary herb. Its essential oil (perilla oil has been previously demonstrated to be active against S. aureus. However, there are no data on the influence of perilla oil on the production of S. aureus exotoxins. METHODOLOGY/PRINCIPAL FINDINGS: A broth microdilution method was used to determine the minimum inhibitory concentrations (MICs of perilla oil against S. aureus strains. Hemolysis, tumour necrosis factor (TNF release, Western blot, and real-time RT-PCR assays were performed to evaluate the effects of subinhibitory concentrations of perilla oil on exotoxins production in S. aureus. The data presented here show that perilla oil dose-dependently decreased the production of α-toxin, enterotoxins A and B (the major staphylococcal enterotoxins, and toxic shock syndrome toxin 1 (TSST-1 in both methicillin-sensitive S. aureus (MSSA and methicillin-resistant S. aureus (MRSA. CONCLUSIONS/SIGNIFICANCE: The production of α-toxin, SEA, SEB, and TSST-1 in S. aureus was decreased by perilla oil. These data suggest that perilla oil may be useful for the treatment of S. aureus infections when used in combination with β-lactam antibiotics, which can increase exotoxins production by S. aureus at subinhibitory concentrations. Furthermore, perilla oil could be rationally applied in food systems as a novel food preservative both to inhibit the growth of S. aureus and to repress the production of exotoxins, particularly staphylococcal enterotoxins.

  4. Various oils and detergents enhance the microbial production of farnesol and related prenyl alcohols.

    Science.gov (United States)

    Muramatsu, Masayoshi; Ohto, Chikara; Obata, Shusei; Sakuradani, Eiji; Shimizu, Sakayu

    2008-09-01

    The object of this research was improvement of prenyl alcohol production with squalene synthase-deficient mutant Saccharomyces cerevisiae ATCC 64031. On screening of many kinds of additives, we found that oils and detergents significantly enhanced the extracellular production of prenyl alcohols. Soybean oil showed the most prominent effect among the additives tested. Its effect was accelerated by a high concentration of glucose in the medium. The combination of these cultivation conditions led to the production of more than 28 mg/l of farnesol in the soluble fraction of the broth. The addition of these compounds to the medium was an effective method for large-scale production of prenyl alcohols with microorganisms.

  5. Microbial enhancement of non-Darcy flow: Theoretical consideration

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Jianxin; Schneider, D.R.

    1995-12-31

    In the near well-bore region and perforations, petroleum fluids usually flow at high velocities and may exhibit non-Darcy-flow behavior. Microorganisms can increase permeability and porosity by removing paraffin or asphaltene accumulations. They can also reduce interfacial tension by producing biosurfactants. These changes can significantly affect non-Darcy flow behavior. Theoretical analysis shows that microbial activities can enhance production by decreasing the turbulence pressure drop and in some cases increasing the drag force exerted to the oil phase. This implies that the effects of microbial activities on non-Darcy flow are important and should be considered in the evaluation of microbial well stimulation and enhanced oil recovery.

  6. Analysis of biosurfactants from industrially viable Pseudomonas strain isolated from crude oil suggests how rhamnolipids congeners affect emulsification property and antimicrobial activity.

    Science.gov (United States)

    Das, Palashpriya; Yang, Xin-Ping; Ma, Luyan Z

    2014-01-01

    Rhamnolipid biosurfactants produced mainly by Pseudomonas sp. had been reported to possess a wide range of potential industrial application. These biosurfactants are produced as monorhamnolipid (MRL) and di-rhamnolipid (DRL) congeners. The present study deals with rhamnolipid biosurfactants produced by three bacterial isolates from crude oil. Biosurfactants produced by one of the strains (named as IMP67) was found to be very efficacious based on its critical micelle concentration value and hydrocarbon emulsification property. Strikingly, antimicrobial, and anti-biofilm potential of this biosurfactant were higher than biosurfactants produced by other two strains. Thin layer chromatography analysis and rhamnose quantification showed that the rhamnolipids of IMP67 had more MRL congeners than biosurfactants of the other two strains. Emulsification and antimicrobial actions were affected by manual change of MRL and DRL congener proportions. Increase of MRL proportion enhanced emulsification index and antimicrobial property to Gram negative bacteria. This result indicated that the ratio of MRL and DRL affected the emulsification potentials of rhamnolipids, and suggested that high emulsification potentials might enhance rhamnolipids to penetrate the cell wall of Gram negative bacteria. In line with this finding, rhamnolipids of IMP67 also reduced the MIC of some antibiotics against bacteria, suggesting their synergistic role with the antibiotics.

  7. Water control for enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Cole, R.C.; Mody, B.; Pace, J.

    1981-11-01

    Gains in recovery efficiency in W. Texas oil and gas fields have been realized as a result of applying 4 different chemical processes, either singly or in combination. Each of the 4 chemical processes has been tailored to meet specific reservoir requirements. Complete plugging of high flow capacity channels can be accomplished, and the high water production portion of a producing zone can be sealed by injection of gel-forming chemicals into the matrix. Both floodwater diversion and water-oil mobility ratio improvement can be attained by in situ polymerization of a one-stage polymer bank in the reservoir. In producing wells, the water-oil production ratio can be favorably changed by treating certain formulations with a nonplugging polymer which tends to restrict water flow but not oil. One feature which each of the 4 processes has in common is the ability to invade deeply into matrix which may produce long lasting results. A description of each process is presented with various placement techniques used to obtain optimum results. Data from fields which have benefited from these treatments are presented. The work describes what may be expected with each of these proven processes based on field results.

  8. Financial development and oil resource abundance-growth relations: evidence from panel data.

    Science.gov (United States)

    Law, Siong Hook; Moradbeigi, Maryam

    2017-10-01

    This study investigates whether financial development dampens the negative impact of oil resource abundance on economic growth. Because of substantial cross-sectional dependence in our data, which contain a core sample of 63 oil-producing countries from 1980 through 2010, we use the common correlated effect mean group (CCEMG) estimator to account for the high degree of heterogeneity and drop the outlier countries. The empirical results reveal that oil resource abundance affects the growth rate in output contingent on the degree of development in financial markets. More developed financial markets can channel the revenues from oil into more productive activities and thus offset the negative effects of oil resource abundance on economic growth. Thus, better financial development can reverse resource curse or enhance resource blessing in oil-rich economies.

  9. Rhamnolipids Produced by Indigenous Acinetobacter junii from Petroleum Reservoir and its Potential in Enhanced Oil Recovery

    Science.gov (United States)

    Dong, Hao; Xia, Wenjie; Dong, Honghong; She, Yuehui; Zhu, Panfeng; Liang, Kang; Zhang, Zhongzhi; Liang, Chuanfu; Song, Zhaozheng; Sun, Shanshan; Zhang, Guangqing

    2016-01-01

    Biosurfactant producers are crucial for incremental oil production in microbial enhanced oil recovery (MEOR) processes. The isolation of biosurfactant-producing bacteria from oil reservoirs is important because they are considered suitable for the extreme conditions of the reservoir. In this work, a novel biosurfactant-producing strain Acinetobacter junii BD was isolated from a reservoir to reduce surface tension and emulsify crude oil. The biosurfactants produced by the strain were purified and then identified via electrospray ionization-Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR-MS). The biosurfactants generated by the strain were concluded to be rhamnolipids, the dominant rhamnolipids were C26H48O9, C28H52O9, and C32H58O13. The optimal carbon source and nitrogen source for biomass and biosurfactant production were NaNO3 and soybean oil. The results showed that the content of acid components increased with the progress of crude oil biodegradation. A glass micromodel test demonstrated that the strain significantly increased oil recovery through interfacial tension reduction, wettability alteration and the mobility of microorganisms. In summary, the findings of this study indicate that the newly developed BD strain and its metabolites have great potential in MEOR. PMID:27872613

  10. Rhamnolipids produced by indigenous Acinetobacter junii from petroleum reservoir and its potential in enhanced oil recovery

    Directory of Open Access Journals (Sweden)

    Hao Dong

    2016-11-01

    Full Text Available Biosurfactant producers are crucial for incremental oil production in microbial enhanced oil recovery (MEOR processes. The isolation of biosurfactant-producing bacteria from oil reservoirs is important because they are considered suitable for the extreme conditions of the reservoir. In this work, a novel biosurfactant-producing strain Acinetobacter junii BD was isolated from a reservoir to reduce surface tension and emulsify crude oil. The biosurfactants produced by the strain were purified and then identified via electrospray ionization-Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR-MS. The biosurfactants generated by the strain were concluded to be rhamnolipids, the dominant rhamnolipids were C26H48O9, C28H52O9 and C32H58O13. The optimal carbon source and nitrogen source for biomass and biosurfactant production were NaNO3 and soybean oil. The results showed that the content of acid components increased with the progress of crude oil biodegradation. A glass micromodel test demonstrated that the strain significantly increased oil recovery through interfacial tension reduction, wettability alteration and the mobility of microorganisms. In summary, the findings of this study indicate that the newly developed BD strain and its metabolites have great potential in MEOR.

  11. Rhamnolipids Produced by Indigenous Acinetobacter junii from Petroleum Reservoir and its Potential in Enhanced Oil Recovery.

    Science.gov (United States)

    Dong, Hao; Xia, Wenjie; Dong, Honghong; She, Yuehui; Zhu, Panfeng; Liang, Kang; Zhang, Zhongzhi; Liang, Chuanfu; Song, Zhaozheng; Sun, Shanshan; Zhang, Guangqing

    2016-01-01

    Biosurfactant producers are crucial for incremental oil production in microbial enhanced oil recovery (MEOR) processes. The isolation of biosurfactant-producing bacteria from oil reservoirs is important because they are considered suitable for the extreme conditions of the reservoir. In this work, a novel biosurfactant-producing strain Acinetobacter junii BD was isolated from a reservoir to reduce surface tension and emulsify crude oil. The biosurfactants produced by the strain were purified and then identified via electrospray ionization-Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR-MS). The biosurfactants generated by the strain were concluded to be rhamnolipids, the dominant rhamnolipids were C 26 H 48 O 9 , C 28 H 52 O 9 , and C 32 H 58 O 13 . The optimal carbon source and nitrogen source for biomass and biosurfactant production were NaNO 3 and soybean oil. The results showed that the content of acid components increased with the progress of crude oil biodegradation. A glass micromodel test demonstrated that the strain significantly increased oil recovery through interfacial tension reduction, wettability alteration and the mobility of microorganisms. In summary, the findings of this study indicate that the newly developed BD strain and its metabolites have great potential in MEOR.

  12. On the stabilizing role of species diffusion in chemical enhanced oil recovery

    Science.gov (United States)

    Daripa, Prabir; Gin, Craig

    2015-11-01

    In this talk, the speaker will discuss a problem on the stability analysis related to the effect of species diffusion on stabilization of fingering in a Hele-Shaw model of chemical enhanced oil recovery. The formulation of the problem is motivated by a specific design principle of the immiscible interfaces in the hope that this will lead to significant stabilization of interfacial instabilities, there by improving oil recovery in the context of porous media flow. Testing the merits of this hypothesis poses some challenges which will be discussed along with some numerical results based on current formulation of this problem. Several open problems in this context will be discussed. This work is currently under progress. Supported by the grant NPRP 08-777-1-141 from the Qatar National Research Fund (a member of The Qatar Foundation).

  13. Self-microemulsifying drug delivery system and nanoemulsion for enhancing aqueous miscibility of Alpinia galanga oil

    DEFF Research Database (Denmark)

    Khumpirapang, Nattakanwadee; Pikulkaew, Surachai; Müllertz, Anette

    2017-01-01

    Alpinia galanga oil (AGO) possesses various activities but low aqueous solubility limits its application particularly in aquatic animals. AGO has powerful activity on fish anesthesia. Ethanol used for enhancing water miscible of AGO always shows severe side effects on fish. The present study expl...

  14. Up-regulation of an N-terminal truncated 3-hydroxy-3-methylglutaryl CoA reductase enhances production of essential oils and sterols in transgenic Lavandula latifolia.

    Science.gov (United States)

    Muñoz-Bertomeu, Jesús; Sales, Ester; Ros, Roc; Arrillaga, Isabel; Segura, Juan

    2007-11-01

    Spike lavender (Lavandula latifolia) essential oil is widely used in the perfume, cosmetic, flavouring and pharmaceutical industries. Thus, modifications of yield and composition of this essential oil by genetic engineering should have important scientific and commercial applications. We generated transgenic spike lavender plants expressing the Arabidopsis thaliana HMG1 cDNA, encoding the catalytic domain of 3-hydroxy-3-methylglutaryl CoA reductase (HMGR1S), a key enzyme of the mevalonic acid (MVA) pathway. Transgenic T0 plants accumulated significantly more essential oil constituents as compared to controls (up to 2.1- and 1.8-fold in leaves and flowers, respectively). Enhanced expression of HMGR1S also increased the amount of the end-product sterols, beta-sitosterol and stigmasterol (average differences of 1.8- and 1.9-fold, respectively), but did not affect the accumulation of carotenoids or chlorophylls. We also analysed T1 plants derived from self-pollinated seeds of T0 lines that flowered after growing for 2 years in the greenhouse. The increased levels of essential oil and sterols observed in the transgenic T0 plants were maintained in the progeny that inherited the HMG1 transgene. Our results demonstrate that genetic manipulation of the MVA pathway increases essential oil yield in spike lavender, suggesting a contribution for this cytosolic pathway to monoterpene and sesquiterpene biosynthesis in leaves and flowers of the species.

  15. Mechanisms of microemulsion enhancing the oral bioavailability of puerarin: comparison between oil-in-water and water-in-oil microemulsions using the single-pass intestinal perfusion method and a chylomicron flow blocking approach

    Directory of Open Access Journals (Sweden)

    Tang TT

    2013-11-01

    Full Text Available Tian-Tian Tang,1,2,3 Xiong-Bin Hu,1,2,3 De-Hua Liao,1,2,3 Xin-Yi Liu,1,2,3 Da-Xiong Xiang1,2,31Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China; 2Institute of Clinical Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China; 3Key Laboratory for New Technology of Chinese Medicine Preparations of Hunan Province, Changsha, People's Republic of ChinaAbstract: The purpose of the present work was to determine the mechanisms by which microemulsions (MEs enhance the oral bioavailability of puerarin. The in situ perfusion method was used in rats to study the absorption mechanisms of an oil-in-water (O/W microemulsion (O/W-ME and a water-in-oil (W/O microemulsion (W/O-ME. The possibility of lymphatic transport of the MEs was investigated using a chylomicron flow blocking approach. The results for the absorption mechanisms in the stomach and intestines indicated that the absorption characteristics of the O/W-ME and W/O-ME depend on the segment. The W/O-ME had higher internal membrane permeability than the O/W-ME. The results of the lymphatic transport analyses showed that both the O/W-ME and W/O-ME underwent lymphatic transport and that this pathway was a major contributor to the oral bioavailability of MEs. Furthermore, the type of ME can significantly affect the absorption of puerarin through the lymphatic system due to the oil content and the form of the microemulsion after oral administration. In conclusion, these data indicate that microemulsions are an effective and promising delivery system to enhance the oral bioavailability of poorly water-soluble drugs.Keywords: microemulsion, lymphatic transport, oral bioavailability, chylomicron

  16. How does market concern derived from the Internet affect oil prices?

    International Nuclear Information System (INIS)

    Guo, Jian-Feng; Ji, Qiang

    2013-01-01

    Highlights: • The impact of market concern derived from the Web on oil volatility is analysed. • It has an equilibrium relationship between oil prices and long-run market concern. • The short-run market concerns have an asymmetric influence on oil price volatility. • The Internet can exaggerate the impact of information shocks on oil price. - Abstract: With the acceleration of oil marketisation and the rapid development of electronic information carriers, external information shocks can be easily and quickly transmitted to the oil market through the Internet. This paper analyses the impact of short- and long-run market concerns, derived from search query volumes in Google for different domains around the oil market on oil volatility using co-integration and the modified EGARCH model. Empirical results suggest there is a long-term equilibrium relationship between oil prices and long-run market concern for oil prices and oil demand. The short-run market concerns for the 2008 financial crisis and the Libyan war convulsion have a significant and asymmetric influence on oil price volatility. This indicates that market concern transmitted through the Internet can strengthen the linkage between oil price changes and external events by influencing the expectation of market traders, and to some extent it can exaggerate the impact of nonfundamental information shocks

  17. Chemical and Microbial Characterization of North Slope Viscous Oils to Assess Viscosity Reduction and Enhanced Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Shirish Patil; Abhijit Dandekar; Mary Beth Leigh

    2008-12-31

    A large proportion of Alaska North Slope (ANS) oil exists in the form of viscous deposits, which cannot be produced entirely using conventional methods. Microbially enhanced oil recovery (MEOR) is a promising approach for improving oil recovery for viscous deposits. MEOR can be achieved using either ex situ approaches such as flooding with microbial biosurfactants or injection of exogenous surfactant-producing microbes into the reservoir, or by in situ approaches such as biostimulation of indigenous surfactant-producing microbes in the oil. Experimental work was performed to analyze the potential application of MEOR to the ANS oil fields through both ex situ and in situ approaches. A microbial formulation containing a known biosurfactant-producing strain of Bacillus licheniformis was developed in order to simulate MEOR. Coreflooding experiments were performed to simulate MEOR and quantify the incremental oil recovery. Properties like viscosity, density, and chemical composition of oil were monitored to propose a mechanism for oil recovery. The microbial formulation significantly increased incremental oil recovery, and molecular biological analyses indicated that the strain survived during the shut-in period. The indigenous microflora of ANS heavy oils was investigated to characterize the microbial communities and test for surfactant producers that are potentially useful for biostimulation. Bacteria that reduce the surface tension of aqueous media were isolated from one of the five ANS oils (Milne Point) and from rock oiled by the Exxon Valdez oil spill (EVOS), and may prove valuable for ex situ MEOR strategies. The total bacterial community composition of the six different oils was evaluated using molecular genetic tools, which revealed that each oil tested possessed a unique fingerprint indicating a diverse bacterial community and varied assemblages. Collectively we have demonstrated that there is potential for in situ and ex situ MEOR of ANS oils. Future work

  18. Soybean oil and linseed oil supplementation affect profiles of ruminal microorganisms in dairy cows.

    Science.gov (United States)

    Yang, S L; Bu, D P; Wang, J Q; Hu, Z Y; Li, D; Wei, H Y; Zhou, L Y; Loor, J J

    2009-11-01

    The objective of this study was to evaluate changes in ruminal microorganisms and fermentation parameters due to dietary supplementation of soybean and linseed oil alone or in combination. Four dietary treatments were tested in a Latin square designed experiment using four primiparous rumen-cannulated dairy cows. Treatments were control (C, 60 : 40 forage to concentrate) or C with 4% soybean oil (S), 4% linseed oil (L) or 2% soybean oil plus 2% linseed oil (SL) in a 4 × 4 Latin square with four periods of 21 days. Forage and concentrate mixtures were fed at 0800 and 2000 h daily. Ruminal fluid was collected every 2 h over a 12-h period on day 19 of each experimental period and pH was measured immediately. Samples were prepared for analyses of concentrations of volatile fatty acids (VFA) by GLC and ammonia. Counts of total and individual bacterial groups (cellulolytic, proteolytic, amylolytic bacteria and total viable bacteria) were performed using the roll-tube technique, and protozoa counts were measured via microscopy in ruminal fluid collected at 0, 4 and 8 h after the morning feeding. Content of ruminal digesta was obtained via the rumen cannula before the morning feeding and used immediately for DNA extraction and quantity of specific bacterial species was obtained using real- time PCR. Ruminal pH did not differ but total VFA (110 v. 105 mmol/l) were lower (P ruminal NH3-N (4.4 v. 5.6 mmol/l) was greater (P ruminal fluid was substantially lower (P ruminal microorganisms, except proteolytic bacteria, are highly susceptible to dietary unsaturated fatty acids supplementation, particularly when linolenic acid rich oils were fed. Dietary oil effects on ruminal fermentation parameters seemed associated with the profile of ruminal microorganisms.

  19. Microbial activities and dissolved organic matter dynamics in oil-contaminated surface seawater from the Deepwater Horizon oil spill site.

    Science.gov (United States)

    Ziervogel, Kai; McKay, Luke; Rhodes, Benjamin; Osburn, Christopher L; Dickson-Brown, Jennifer; Arnosti, Carol; Teske, Andreas

    2012-01-01

    The Deepwater Horizon oil spill triggered a complex cascade of microbial responses that reshaped the dynamics of heterotrophic carbon degradation and the turnover of dissolved organic carbon (DOC) in oil contaminated waters. Our results from 21-day laboratory incubations in rotating glass bottles (roller bottles) demonstrate that microbial dynamics and carbon flux in oil-contaminated surface water sampled near the spill site two weeks after the onset of the blowout were greatly affected by activities of microbes associated with macroscopic oil aggregates. Roller bottles with oil-amended water showed rapid formation of oil aggregates that were similar in size and appearance compared to oil aggregates observed in surface waters near the spill site. Oil aggregates that formed in roller bottles were densely colonized by heterotrophic bacteria, exhibiting high rates of enzymatic activity (lipase hydrolysis) indicative of oil degradation. Ambient waters surrounding aggregates also showed enhanced microbial activities not directly associated with primary oil-degradation (β-glucosidase; peptidase), as well as a twofold increase in DOC. Concurrent changes in fluorescence properties of colored dissolved organic matter (CDOM) suggest an increase in oil-derived, aromatic hydrocarbons in the DOC pool. Thus our data indicate that oil aggregates mediate, by two distinct mechanisms, the transfer of hydrocarbons to the deep sea: a microbially-derived flux of oil-derived DOC from sinking oil aggregates into the ambient water column, and rapid sedimentation of the oil aggregates themselves, serving as vehicles for oily particulate matter as well as oil aggregate-associated microbial communities.

  20. Microbial activities and dissolved organic matter dynamics in oil-contaminated surface seawater from the Deepwater Horizon oil spill site.

    Directory of Open Access Journals (Sweden)

    Kai Ziervogel

    Full Text Available The Deepwater Horizon oil spill triggered a complex cascade of microbial responses that reshaped the dynamics of heterotrophic carbon degradation and the turnover of dissolved organic carbon (DOC in oil contaminated waters. Our results from 21-day laboratory incubations in rotating glass bottles (roller bottles demonstrate that microbial dynamics and carbon flux in oil-contaminated surface water sampled near the spill site two weeks after the onset of the blowout were greatly affected by activities of microbes associated with macroscopic oil aggregates. Roller bottles with oil-amended water showed rapid formation of oil aggregates that were similar in size and appearance compared to oil aggregates observed in surface waters near the spill site. Oil aggregates that formed in roller bottles were densely colonized by heterotrophic bacteria, exhibiting high rates of enzymatic activity (lipase hydrolysis indicative of oil degradation. Ambient waters surrounding aggregates also showed enhanced microbial activities not directly associated with primary oil-degradation (β-glucosidase; peptidase, as well as a twofold increase in DOC. Concurrent changes in fluorescence properties of colored dissolved organic matter (CDOM suggest an increase in oil-derived, aromatic hydrocarbons in the DOC pool. Thus our data indicate that oil aggregates mediate, by two distinct mechanisms, the transfer of hydrocarbons to the deep sea: a microbially-derived flux of oil-derived DOC from sinking oil aggregates into the ambient water column, and rapid sedimentation of the oil aggregates themselves, serving as vehicles for oily particulate matter as well as oil aggregate-associated microbial communities.

  1. Supplemental safflower oil affects the fatty acid profile, including conjugated linoleic acid, of lamb.

    Science.gov (United States)

    Boles, J A; Kott, R W; Hatfield, P G; Bergman, J W; Flynn, C R

    2005-09-01

    The objective of this study was to determine whether increasing levels of dietary safflower oil would alter unsaturated fat (especially CLA) and tocopherol content of lamb, animal performance, carcass characteristics, or color stability of lamb muscle tissue. Targhee x Rambouillet wethers (n = 60) were assigned to one of three diets (four pens per treatment with five lambs per pen) in a completely random design. Diets were formulated with supplemental safflower oil at 0 (control), 3, or 6% (as-fed basis) of the diet. Diets containing approximately 80% concentrate and 20% roughage were formulated, on a DM basis, to be isocaloric and isonitrogenous and to meet or exceed NRC requirements for Ca, P, and other nutrients. A subsample of 12 wethers per treatment was selected based on average BW (54 kg) and slaughtered. Carcass data (LM area, fat thickness, and internal fat content) and wholesale cut weight (leg, loin, rack, shoulder, breast, and foreshank), along with fatty acid, tocopherol, and color analysis, were determined on each carcass. The LM and infraspinatus were sampled for fatty acid profile. Increasing safflower oil supplementation from 0 to 3 or 6% increased the proportion of linoleic acid in the diet from 49.93 to 55.32 to 62.38%, respectively, whereas the percentage of oleic acid decreased from 27.94 to 23.80 to 20.73%, respectively. The percentage of oil in the diet did not (P > or = 0.11) alter the growth and carcass characteristics of lambs, nor did it alter the tocopherol content or color stability of meat. Increasing levels of safflower oil in lamb diets decreased (P safflower oil, up to 6% of the diet, resulted in increasing levels of unsaturated fatty acids and CLA in the lean tissue, without adversely affecting growth performance, carcass characteristics, or color stability of lamb.

  2. Relation between growth stages and synthesis of flavonoids and essential oils affected by irradiation in Ruta graveolens seeds

    International Nuclear Information System (INIS)

    Eissa, A.I.; El-Kholei, S.A.; Ragab, M.A.; Abou El-Seoud, M.A.

    1984-01-01

    Ruta graveolens plants are radio-adaptive up to 8 Krad gamma radiation. Flavonoids and essential oils were remarkably increased as function of irradiation doses from 2 up to 8 Krad. Doses of 4 and 8 Krad were the most effective ones. Concerning flavonoids, 4 and 8 Krad treatments exerted the following percent increase over control plants: 76, 77% (leaves), 137, 100% (stems), 153, 80% (flowers) and 77, 61% (fruits). The distribution pattern of flavonoids was in the following order: Leaves > flowers > fruits > stems. Treated plants with 4 or 8 Krad resulted in an increase in essential oil yield by 65-67% over control plants. Chemical constitution of oil: ketones and esters did not seem to be affected by seed irradiation (0-8 Krad). Similarly, physical properties ''refractive index, solubility and specific gravity'' did not materially affect. However, chemical properties ''acid value, ester value and saponification value'' were increased by 24% over control treatment as a function of 4 Krad. Yet higher doses had the capacity of increasing the acid value but not of both ester or saponification value

  3. Optimization of culture medium for anaerobic production of rhamnolipid by recombinant Pseudomonas stutzeri Rhl for microbial enhanced oil recovery.

    Science.gov (United States)

    Zhao, F; Mandlaa, M; Hao, J; Liang, X; Shi, R; Han, S; Zhang, Y

    2014-08-01

    Response surface methodology was employed to enhance the anaerobic production of rhamnolipid by recombinant Pseudomonas stutzeri Rhl. Glycerol is a promising carbon source used to anaerobically produce rhamnolipid. In a Plackett-Burman design, glycerol, KH2 PO4 and yeast extract were significant factors. The proposed optimized medium contained the following: 46·55 g l(-1) glycerol; 3 g l(-1) NaNO3 ; 5·25 g l(-1) K2 HPO4 ·3H2 O; 5·71 g l(-1) KH2 PO4 ; 0·40 g l(-1) MgSO4 ·7H2 O; 0·13 g l(-1) CaCl2 ; 1·0 g l(-1) KCl; 1·0 g l(-1) NaCl; and 2·69 g l(-1) yeast extract. Using this optimized medium, we obtained an anaerobic yield of rhamnolipid of 3·12 ± 0·11 g l(-1) with a 0·85-fold increase. Core flooding test results also revealed that Ps. stutzeri Rhl grown in an optimized medium enhanced the oil recovery efficiency by 15·7%, which was 6·6% higher than in the initial medium. Results suggested that the optimized medium is a promising nutrient source that could effectively mobilize oil by enhancing the in situ production of rhamnolipid. The ex situ application of rhamnolipid for microbial enhanced oil recovery (MEOR) is costly and complex in terms of rhamnolipid production, purification and transportation. Compared with ex situ applications, the in situ production of rhamnolipid in anaerobic oil reservoir is more advantageous for MEOR. This study is the first to report the anaerobic production optimization of rhamnolipid. Results showed that the optimized medium enhanced not only the anaerobic production of rhamnolipid but also crude oil recovery. © 2014 The Society for Applied Microbiology.

  4. New technologies of enhanced oil recovery

    Directory of Open Access Journals (Sweden)

    Paweł Wojnarowski

    2006-10-01

    Full Text Available It is known from the literature that up to 27 % of oil in oilfields can be produced using primary and hydration methods. The efficiency of production can be increased by employing more advanced methods, i.e. EOR. The Polish Oil and Gas Company iwork with Polish oilfields, where currently primary methods are applied, but the Polish experiences with EOR date back to the years 1932-1987. In view of high oil prices, reconsidering EOR as a production method is economically justifiable. Therefore, it is purposeful to implement new pilot technologies, aimed at implementing new technologies, understanding accompanying phenomena, and calibrating of simulation models, including economical models for an optimal control of the oilfield exploitation. World’s new exploitation methods worked out in the last few years and suggestions for their implementation in Polish conditions are presented in the paper

  5. Model study of enhanced oil recovery by flooding with aqueous surfactant solution and comparison with theory.

    Science.gov (United States)

    Fletcher, Paul D I; Savory, Luke D; Woods, Freya; Clarke, Andrew; Howe, Andrew M

    2015-03-17

    With the aim of elucidating the details of enhanced oil recovery by surfactant solution flooding, we have determined the detailed behavior of model systems consisting of a packed column of calcium carbonate particles as the porous rock, n-decane as the trapped oil, and aqueous solutions of the anionic surfactant sodium bis(2-ethylhexyl) sulfosuccinate (AOT). The AOT concentration was varied from zero to above the critical aggregation concentration (cac). The salt content of the aqueous solutions was varied to give systems of widely different, post-cac oil-water interfacial tensions. The systems were characterized in detail by measuring the permeability behavior of the packed columns, the adsorption isotherms of AOT from the water to the oil-water interface and to the water-calcium carbonate interface, and oil-water-calcium carbonate contact angles. Measurements of the percent oil recovery by pumping surfactant solutions into calcium carbonate-packed columns initially filled with oil were analyzed in terms of the characterization results. We show that the measured contact angles as a function of AOT concentration are in reasonable agreement with those calculated from values of the surface energy of the calcium carbonate-air surface plus the measured adsorption isotherms. Surfactant adsorption onto the calcium carbonate-water interface causes depletion of its aqueous-phase concentration, and we derive equations which enable the concentration of nonadsorbed surfactant within the packed column to be estimated from measured parameters. The percent oil recovery as a function of the surfactant concentration is determined solely by the oil-water-calcium carbonate contact angle for nonadsorbed surfactant concentrations less than the cac. For surfactant concentrations greater than the cac, additional oil removal occurs by a combination of solubilization and emulsification plus oil mobilization due to the low oil-water interfacial tension and a pumping pressure increase.

  6. Oil-in-oil-emulsions with enhanced substantivity for the treatment of chronic skin diseases.

    Science.gov (United States)

    Lunter, Dominique Jasmin; Rottke, Michael; Daniels, Rolf

    2014-05-01

    The therapy of chronic skin diseases often requires several applications of creams or ointments per day. This is inconvenient to the patients and frequently leads to poor acceptance and compliance. We therefore developed oil-in-oil-emulsions that deliver the active pharmaceutical ingredient (API) to the skin over a prolonged period of time. In this study, we compare the permeation of the API from a conventional formulation to its permeation from an oil-in-oil-emulsion under infinite and finite dosing. Furthermore, we evaluate the substantivity of the formulations. Our results show that the permeation from oil-in-oil-emulsions is constant over a prolonged time and that the emulsions show significantly higher substantivity than conventional formulations. Because of that, the treatment intervals can be extended substantially and compliance can be increased. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  7. Isotopic and geochemical tracers for fingerprinting process-affected waters in the oil sands industry: a pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, J.J.; Birks, S.J.; Moncur, M.; Yi, Y.; Tattrie, K.; Jasechko, S.; Richardson, K.; Eby, P. [Alberta Innovates - Technology Futures (Canada)

    2011-04-15

    During 2009 and 2010, Alberta Innovates - Technology Futures carried out a pilot study for Alberta Environment to examine the possibility of labeling process affected water from oil sands operations with isotropic and geochemical tracers. For the study, 3 oil sands operators furnished logistical support and personnel, 39 samples were gathered and several isotope tracers were measured. In addition, geotechnical analyses were performed and the presence of organic compounds in the samples was scanned using Fourier transform ion cyclotron resonance mass spectrometry. Results showed that the selected tracers were able to label water sources in some locations, however they cannot be used as a universal method and a case by case approach needs to be adopted. This study pointed out that Fourier transform ion cyclotron resonance mass spectrometry is the best way to construct a dataset for use in identification of process affected waters.

  8. Production acceleration and injectivity enhancement using steam-propane injection for Hamaca extra-heavy oil

    Energy Technology Data Exchange (ETDEWEB)

    Rivero, J. A.; Mamora, D. D. [Texas A and M University, El Paso, TX (United States)

    2005-02-01

    The possibility of enhanced recovery in the Orinoco Belt in Venezuela, the world's largest known hydrocarbon deposit, by using propane as a steam additive, is discussed. In a laboratory study the steam-propane injection accelerated the start of oil production by 21 per cent, compared to production with steam alone. The experiments illustrated that the inclusion of even small amounts of propane has considerable beneficial effect on the rate of bitumen production. Even though total bitumen recovery and ultimate residual oil saturation did not change, the acceleration of bitumen recovery is considered to have a significant impact on the net present value of the recovery process. 17 refs., 1 tab., 13 figs.

  9. Influence of oil and mineral characteristics on oil-mineral interaction

    International Nuclear Information System (INIS)

    Wood, P.A.; Lunel, T.; Daniel, F.; Swannell, R.; Lee, K.; Stoffyn-Egli, P.

    1998-01-01

    A laboratory study was conducted to simulate the process of oil-mineral interaction in seawater. Thirteen different crudes, emulsions and oil products were used in the study. The objective was to improve the fundamental understanding of the characteristics of oils and minerals that influence the process. The findings of an initial phase of studies based on the swirling flask and marine simulation procedures were also described. Oil content associated with flocs to oil and mineral characteristics were discussed. Emulsions were prepared at 10 degrees C by vigorously mixing the oil with excess artificial seawater in a Kilner jar using a high shear homogenizer. Topped oils were prepared by distillation to 250 degrees C. The biodegraded oil was prepared from the topped crude oil. Biodegradation was achieved over a 28 day period using natural seawater and naturally occurring hydrocarbon degraders. The relationships between oil concentration, oil density and mineral exchange capacity were determined. The study showed that greater oil concentrations in the water column could be expected with (1) the presence of mineral fines, (2) minerals with greater cation exchange rates, (3) minerals with finer sizes, and (4) oils of lower viscosity and density. It was determined that in coastal waters the viscosity of the oil/emulsion will likely be the main factor affecting oil-mineral interactions. The viscosity limit for allowing oil fines interaction is likely to be dependent on the energy in the coastal zone affected by the oil pollution. 18 refs., 5 tabs., 13 figs

  10. Affective Touch Enhances Self-Face Recognition During Multisensory Integration

    OpenAIRE

    Panagiotopoulou, Elena; Filippetti, Maria Laura; Tsakiris, Manos; Fotopoulou, Aikaterini

    2017-01-01

    Multisensory integration is a powerful mechanism for constructing body awareness and key for the sense of selfhood. Recent evidence has shown that the specialised C tactile modality that gives rise to feelings of pleasant, affective touch, can enhance the experience of body ownership during multisensory integration. Nevertheless, no study has examined whether affective touch can also modulate psychological identification with our face, the hallmark of our identity. The current study used the ...

  11. Proceedings of ITOHOS 2008 : The 2008 SPE/PS/CHOA International Thermal Operations and Heavy Oil Symposium : Heavy Oil : Integrating the Pieces

    International Nuclear Information System (INIS)

    2008-10-01

    This multi-disciplinary conference and exhibition combined the Society of Petroleum Engineers (SPE) and the Petroleum Society's (PS) international thermal operations and heavy oil symposium, and the Canadian Heavy Oil Association's (CHOA) annual business meeting. The conference provided a forum to examine emerging technologies and other critical issues affecting the global heavy oil and bitumen industry. The most current technologies from around the world that enhance the recovery of heavy oil and bitumen from oil sand deposits were also showcased. The technical program encompassed the economic, technical, and environmental challenges that the petroleum industry is currently facing. The sessions of the conference were entitled: artificial lift; mining, extraction and cold production; simulation; solvent processes; reservoir characterization; steam generation and water treatment; and, in-situ combustion in Canada. The conference also featured a series of short courses and tutorials on heavy oil wellbore completions and design; drilling horizontal heavy oil wells and steam assisted gravity drainage (SAGD) wells; geomechanical based reservoir monitoring; thermal well design; fiber optic thermal monitoring; heavy oil thermal recovery and economics; wellbore slotting; advanced geomechanics; and, an overview of cold heavy oil production with sand (CHOPS). All 91 presentations from the conference have been catalogued separately for inclusion in this database. refs., tabs., figs

  12. Proceedings of ITOHOS 2008 : The 2008 SPE/PS/CHOA International Thermal Operations and Heavy Oil Symposium : Heavy Oil : Integrating the Pieces

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-10-15

    This multi-disciplinary conference and exhibition combined the Society of Petroleum Engineers (SPE) and the Petroleum Society's (PS) international thermal operations and heavy oil symposium, and the Canadian Heavy Oil Association's (CHOA) annual business meeting. The conference provided a forum to examine emerging technologies and other critical issues affecting the global heavy oil and bitumen industry. The most current technologies from around the world that enhance the recovery of heavy oil and bitumen from oil sand deposits were also showcased. The technical program encompassed the economic, technical, and environmental challenges that the petroleum industry is currently facing. The sessions of the conference were entitled: artificial lift; mining, extraction and cold production; simulation; solvent processes; reservoir characterization; steam generation and water treatment; and, in-situ combustion in Canada. The conference also featured a series of short courses and tutorials on heavy oil wellbore completions and design; drilling horizontal heavy oil wells and steam assisted gravity drainage (SAGD) wells; geomechanical based reservoir monitoring; thermal well design; fiber optic thermal monitoring; heavy oil thermal recovery and economics; wellbore slotting; advanced geomechanics; and, an overview of cold heavy oil production with sand (CHOPS). All 91 presentations from the conference have been catalogued separately for inclusion in this database. refs., tabs., figs.

  13. A new turbine model for enhancing convective heat transfer in the presence of low volume concentration of Ag-Oil Nanofluids

    Science.gov (United States)

    Jafarimoghaddam, Amin; Aberoumand, Sadegh; Jafarimoghaddam, Reza

    2018-05-01

    This study aims to experimentally investigate and introduce a new model for enhancing convective heat transfer in the presence of Ag/ oil nanofluid. An annular tube was designed with a turbine element attached to the inner tube. The inner tube was a bearing shaft which could rotate with the rotation of turbine element. As the previous works by authors, the setup was conducted with a fully developed laminar flow regime with the Reynolds numbers less than 160. The outer surface of the annular tube was heated by an element with constant heat flux of 204 W. Ag/ oil nanofluid was used in different volume concentrations of 0.011%, 0.044% and 0.171%. The new model could enhance the convective heat transfer coefficient up to 54% (compared to the simple annular tube in the case of base fluid) for the best studied case (nanofluid with the volume concentration of 0.171%) while the friction factor remained low. The new model can be applied for related applications regarding Ag/ oil nanofluid as a new step in enhancing the convective heat transfer coefficient.

  14. Improvement of stability and carotenoids fraction of virgin olive oils by addition of microalgae Scenedesmus almeriensis extracts.

    Science.gov (United States)

    Limón, Piedad; Malheiro, Ricardo; Casal, Susana; Acién-Fernández, F Gabriel; Fernández-Sevilla, José M; Rodrigues, Nuno; Cruz, Rebeca; Bermejo, Ruperto; Pereira, José Alberto

    2015-05-15

    Humans are not capable of synthesizing carotenoids de novo and thus, their presence in human tissues is entirely of dietary origin. Consumption of essential carotenoids is reduced due to the lower intake of fruits and vegetables. Microalgae are a good source of carotenoids that can be exploited. In the present work, carotenoids rich extracts from Scenedesmus almeriensis were added to extra-virgin olive oils at different concentrations (0.1 and 0.21 mg/mL) in order to enhance the consumption of these bioactives. Extracts brought changes in olive oils color, turning them orange-reddish. Quality of olive oils was improved, since peroxidation was inhibited. Olive oils fatty acids and tocopherols were not affected. β-carotene and lutein contents increase considerably, as well as oxidative stability, improving olive oils shelf-life and nutritional value. Inclusion of S. almeriensis extracts is a good strategy to improve and enhance the consumption of carotenoids, since olive oil consumption is increasing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Physiological activities of the combination of fish oil and α-lipoic acid affecting hepatic lipogenesis and parameters related to oxidative stress in rats.

    Science.gov (United States)

    Ide, Takashi

    2018-06-01

    We studied the combined effect of fish oil and α-lipoic acid on hepatic lipogenesis and fatty acid oxidation and parameters of oxidative stress in rats fed lipogenic diets high in sucrose. A control diet contained a saturated fat (palm oil) that gives high rate of hepatic lipogenesis. Male Sprague-Dawley rats were fed diets supplemented with 0 or 2.5 g/kg α-lipoic acid and containing 0, 20, or 100 g/kg fish oil, for 21 days. α-Lipoic acid significantly reduced food intake during 0-8 days but not the later period of the experiment. Fish oil and α-lipoic acid decreased serum lipid concentrations and their combination further decreased the parameters in an additive fashion. The combination of fish oil and α-lipoic acid decreased the activity and mRNA levels of hepatic lipogenic enzymes in an additive fashion. Fish oil increased the parameters of hepatic fatty acid oxidation enzymes. α-Lipoic acid appeared to antagonize the stimulating effects of fish oil of fatty acid oxidation through reductions in the activity of some fatty acid oxidation enzymes. α-Lipoic acid attenuated fish oil-dependent increases in serum and liver malondialdehyde levels, and this compound also reduced the serum 8-hydroxy-2'-deoxyguanosine level. α-Lipoic acid affected various parameters related to the antioxidant system; fish oil also affected some of the parameters. The combination of fish oil and α-lipoic acid effectively reduced serum lipid levels through the additive down-regulation of hepatic lipogenesis. α-Lipoic acid was effective in attenuating fish oil-mediated oxidative stress.

  16. Analysis of biosurfactants from industrially-viable Pseudomonas strain isolated from crude oil suggests how rhamnolipids congeners affect on emulsification property and antimicrobial activity

    Directory of Open Access Journals (Sweden)

    Palashpriya eDas

    2014-12-01

    Full Text Available Rhamnolipid biosurfactants produced mainly by Pseudomonas sp. had been reported to possess a wide range of potential industrial application. These biosurfactants are produced as monorhamnolipid (MRL and di-rhamnolipid (DRL congeners. The present study deals with rhamnolipid biosurfactants produced by three bacterial isolates from crude oil. Biosurfactants produced by one of the strains (named as IMP67 was found to be very efficacious based on its critical micelle concentration (CMC value and hydrocarbon emulsification property. Strikingly, antimicrobial and anti-biofilm potential of this biosurfactant were higher than biosurfactants produced by other two strains. Thin layer chromatography (TLC analysis and rhamnose quantification showed that the rhamnolipids of IMP67 had more MRL congeners than biosurfactants of the other two strains. Emulsification and antimicrobial actions were affected by manual change of MRL and DRL congener proportions. Increase of MRL proportion enhanced emulsification index and antimicrobial property to Gram negative bacteria. This result indicated that the ratio of MRL and DRL affect the emulsification potentials of rhamnolipids, and suggested that high emulsification potentials might enhance rhamnolipids to penetrate the cell wall of Gram negative bacteria. In consistent, rhamnolipids of IMP67 reduced the MIC of some antibiotics against bacteria, suggesting the potential of biosurfactant as antibiotics synergist.

  17. Evaluation of biodiesel as bioremediation agent for the treatment of the shore affected by the heavy oil spill of the Prestige

    International Nuclear Information System (INIS)

    Fernandez-Alvarez, P.; Vila, J.; Garrido, J.M.; Grifoll, M.; Feijoo, G.; Lema, J.M.

    2007-01-01

    The efficiency of different bioremediation products (nutrients, microorganisms and biodiesel) was tested using tiles located in both the supra-littoral and intertidal zones of a beach that was affected by the heavy oil spill of the Prestige. Neither nutrients nor microorganisms meant an improvement with respect to the natural processes. The addition of biodiesel improved the appearance of the treated tiles and apparently accelerated the degradation of the aliphatic and aromatic fractions of the residual fuel oil. Nevertheless, PAHs degradation was similar and very high in all the treatments (80-85% after 60 days). On the other hand, the evolution with time of the amount of vanadium was similar to that of 17α(H),21β(H)-hopane, so it was concluded that vanadium could also be used to estimate the extent of oil degradation in the field. These results also suggested that the residual fuel oil mineralization was very low throughout 1 year in all the treatments. Moreover, the increase of the oxygen content of the residual oil from around 1% till 4-8% indicated that the partial oxidation of hydrocarbons took place, and that the hydrocarbon oxidation products accumulated in the polar fractions. In general, the results pointed out that bioremediation techniques were not suitable for the recovery of shores affected by heavy oil spills

  18. The oil and gas industry and the Canadian economy: a backgrounder

    International Nuclear Information System (INIS)

    1999-06-01

    The technological and economic significance of the Canadian petroleum industry to the national economy and to Canada's standing in the world are reviewed. The six key ways in which the oil and gas industry affects Canada, namely employment, balance of trade, products, government revenues, international technology trade and community support are stressed within the context of describing present and future oil and gas resources, Canada's petroleum and natural gas trade balance, and capital spending and product sales. Attention is also drawn to the role of the Canadian petroleum and natural gas industry as a producer and exporter of world class technology, especially in the areas of high tech exploration methods, cold-climate and offshore operations, enhanced recovery techniques, heavy oil production and and processing, mining and upgrading of oil sands bitumen, oil well firefighting, and environmental protection technology. maps, figs

  19. Nanofluid of graphene-based amphiphilic Janus nanosheets for tertiary or enhanced oil recovery: High performance at low concentration.

    Science.gov (United States)

    Luo, Dan; Wang, Feng; Zhu, Jingyi; Cao, Feng; Liu, Yuan; Li, Xiaogang; Willson, Richard C; Yang, Zhaozhong; Chu, Ching-Wu; Ren, Zhifeng

    2016-07-12

    The current simple nanofluid flooding method for tertiary or enhanced oil recovery is inefficient, especially when used with low nanoparticle concentration. We have designed and produced a nanofluid of graphene-based amphiphilic nanosheets that is very effective at low concentration. Our nanosheets spontaneously approached the oil-water interface and reduced the interfacial tension in a saline environment (4 wt % NaCl and 1 wt % CaCl2), regardless of the solid surface wettability. A climbing film appeared and grew at moderate hydrodynamic condition to encapsulate the oil phase. With strong hydrodynamic power input, a solid-like interfacial film formed and was able to return to its original form even after being seriously disturbed. The film rapidly separated oil and water phases for slug-like oil displacement. The unique behavior of our nanosheet nanofluid tripled the best performance of conventional nanofluid flooding methods under similar conditions.

  20. Experimental investigation of wettability alteration on residual oil saturation using nonionic surfactants: Capillary pressure measurement

    Directory of Open Access Journals (Sweden)

    Masoud Amirpour

    2015-12-01

    Full Text Available Introducing the novel technique for enhancing oil recovery from available petroleum reservoirs is one of the important issues in future energy demands. Among of all operative factors, wettability may be the foremost parameter affecting residual oil saturation in all stage of oil recovery. Although wettability alteration is one of the methods which enhance oil recovery from the petroleum reservoir. Recently, the studies which focused on this subject were more than the past and many contributions have been made on this area. The main objective of the current study is experimentally investigation of the two nonionic surfactants effects on altering wettability of reservoir rocks. Purpose of this work is to change the wettability to preferentially the water-wet condition. Also reducing the residual oil saturation (Sor is the other purpose of this work. The wettability alteration of reservoir rock is measured by two main quantitative methods namely contact angle and the USBM methods. Results of this study showed that surfactant flooding is more effective in oil-wet rocks to change their wettability and consequently reducing Sor to a low value. Cedar (Zizyphus Spina Christi is low priced, absolutely natural, and abundantly accessible in the Middle East and Central Asia. Based on the results, this material can be used as a chemical surfactant in field for enhancing oil recovery.

  1. A facile way to prepare CuS-oil nanofluids with enhanced thermal conductivity and appropriate viscosity

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Ji-Hua; Liu, Zhao-Qing; Li, Nan, E-mail: nanli@gzhu.edu.cn; Chen, Yi-Bo; Wang, Dong-Yao [Guangzhou University, School of Chemistry and Chemical Engineering/Guangzhou Key Laboratory for Environmentally Functional Materials and Technology (China)

    2017-02-15

    The nanofluid as a pivotal role in heat transfer system has attracted more and more attention. Herein, the stearic acid-modified CuS (SA-CuS) nanoparticles with a uniform diameter of 60 nm were synthesized successfully by a facile two-phase approach. Accordingly, the CuS-oil nanofluids, with SA-CuS concentrations ranging from 0.01 to 0.04 vol%, were prepared by a one-step method in the heat transfer oil. These CuS-oil nanofluids exhibit good stability and considerable enhanced thermal conductivity. The improvement is even up to 20.5% with a volume fraction of 0.04 vol% at 30 °C. Furthermore, the effect of volume fraction and temperature on the viscosity of the nanofluids was also systematically investigated.

  2. Optimization of Spore Forming Bacteria Flooding for Enhanced Oil Recovery in North Sea Chalk Reservoir

    DEFF Research Database (Denmark)

    Halim, Amalia Yunita; Nielsen, Sidsel Marie; Eliasson Lantz, Anna

    2015-01-01

    .2-3.8 cm) during bacteria injection. Further seawater flooding after three days shut in period showed that permeability gradually increased in the first two sections of the core and started to decrease in the third section of the core (3.8-6.3 cm). Complete plugging was never observed in our experiments.......Little has been done to study microbial enhanced oil recovery (MEOR) in chalk reservoirs. The present study focused on core flooding experiments to see microbial plugging and its effect on oil recovery. A pressure tapped core holder with pressure ports at 1.2 cm, 3.8 cm, and 6.3 cm from the inlet...

  3. Diversification of Oil and Gas Companies’ Activities in the Condition of Oil Prices Reduction and Economic Sanctions

    Directory of Open Access Journals (Sweden)

    Anastasia V. Sheveleva

    2016-01-01

    Full Text Available This article analyzes the influence of the economic sanctions imposed from the USA and the EU and oil prices reduction on the oil and gas companies and the directions of diversification of their activity as a method of management of price risks are considered. In the modern dynamic and quickly developing world, in the conditions of globalization and market economy, the oil and gas companies are affected by various risks which can exert negative impact on production and financial results. Risks can arise in absolutely various spheres, beginning from natural and technological hazards, and finishing with price risks. Sharp reduction of oil prices and decrease in demand for energy resources in the world markets, first of all in the European countries, input of financial or technological sanctions from the USA and Europe against Russia in 2014 has caused necessity of search a new more effective methods of price risks management of the oil and gas company. The methods of price risk management include the creation of commodity reserves, the establishment of a reserve fund, long-term contracts, subsidies from the state and the diversification of activities. The most effective it is possible to offer diversification of oil and gas companies' activity. It is expedient to carry out diversification of oil and gas companies' activity in such directions as geographical diversification of the oil, oil products and gas realization directions, geographical diversification of oil and gas companies' purchasing activity, diversification of oil, oil products and gas transportation ways, diversification of oil and gas companies' business. This approach allows to expand the activities of the oil and gas companies and create additional ways to generate revenue and enhance efficiency of oil and gas companies.

  4. Compositional modification of crude oil during oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yangming; Weng, Huanxin [Department of Earth Sciences, Zhejiang University, Hangzhou 310027 (China); Chen, Zulin; Chen, Qi [Petroleum Geochemistry Research Center, Jianghan Petroleum University, Jingzhou, Hubei (China)

    2003-05-01

    Ten crude oils from two recovery stages spanning 5-10-year interval of five productive wells in the Tarim Basin, northwest China were analyzed for their compositional modification during production process. Significant compositional changes in polar and nonpolar fractions between the previous oil samples and the latter ones were noted at both bulk and molecular level. The latter oil samples appear to contain more aromatic fraction and less asphaltenes and resin, and their gas chromatography (GC) data for whole oil show reduced alkanes with low molecular weight and enhanced high homologue relative to the previous oil samples. Compared with the oils collected from the previous recovery stage, the concentration of basic type of nitrogen-containing compounds and organic acids in oils from the latter recovery stage have a reducing trend, suggesting the occurrence of interaction between crude oil and reservoir rock.

  5. Cholecystokinin enhances visceral pain-related affective memory via vagal afferent pathway in rats

    Directory of Open Access Journals (Sweden)

    Cao Bing

    2012-06-01

    Full Text Available Abstract Background Pain contains both sensory and affective dimensions. Using a rodent visceral pain assay that combines the colorectal distension (CRD model with the conditioned place avoidance (CPA paradigms, we measured a learned behavior that directly reflects the affective component of visceral pain, and showed that perigenual anterior cingulate cortex (pACC activation is critical for memory processing involved in long-term visceral affective state and prediction of aversive stimuli by contextual cue. Progress has been made and suggested that activation of vagal afferents plays a role in the behavioral control nociception and memory storage processes. In human patients, electrical vagus nerve stimulation enhanced retention of verbal learning performance. Cholecystokinin-octapeptide (CCK, which is a gastrointestinal hormone released during feeding, has been shown to enhance memory retention. Mice access to food immediately after training session enhanced memory retention. It has been well demonstrated that CCK acting on vagal afferent fibers mediates various physiological functions. We hypothesize that CCK activation of vagal afferent enhances visceral pain-related affective memory. Results In the presented study, infusion of CCK-8 at physiological concentration combining with conditional training significantly increased the CRD-induced CPA scores, and enhanced the pain affective memory retention. In contrast, CCK had no effect on CPA induced by non-nociceptive aversive stimulus (U69,593. The physiological implications were further strengthened by the similar effects observed in the rats with duodenal infusion of 5% peptone, which has been shown to induce increases in plasma CCK levels. CCK-8 receptor antagonist CR-1409 or perivagal application of capsaicin abolished the effect of CCK on aversive visceral pain memory, which was consistent with the notion that vagal afferent modulates affective aspects of visceral pain. CCK does not change

  6. Cholecystokinin enhances visceral pain-related affective memory via vagal afferent pathway in rats.

    Science.gov (United States)

    Cao, Bing; Zhang, Xu; Yan, Ni; Chen, Shengliang; Li, Ying

    2012-06-09

    Pain contains both sensory and affective dimensions. Using a rodent visceral pain assay that combines the colorectal distension (CRD) model with the conditioned place avoidance (CPA) paradigms, we measured a learned behavior that directly reflects the affective component of visceral pain, and showed that perigenual anterior cingulate cortex (pACC) activation is critical for memory processing involved in long-term visceral affective state and prediction of aversive stimuli by contextual cue. Progress has been made and suggested that activation of vagal afferents plays a role in the behavioral control nociception and memory storage processes.In human patients, electrical vagus nerve stimulation enhanced retention of verbal learning performance. Cholecystokinin-octapeptide (CCK), which is a gastrointestinal hormone released during feeding, has been shown to enhance memory retention. Mice access to food immediately after training session enhanced memory retention. It has been well demonstrated that CCK acting on vagal afferent fibers mediates various physiological functions. We hypothesize that CCK activation of vagal afferent enhances visceral pain-related affective memory. In the presented study, infusion of CCK-8 at physiological concentration combining with conditional training significantly increased the CRD-induced CPA scores, and enhanced the pain affective memory retention. In contrast, CCK had no effect on CPA induced by non-nociceptive aversive stimulus (U69,593). The physiological implications were further strengthened by the similar effects observed in the rats with duodenal infusion of 5% peptone, which has been shown to induce increases in plasma CCK levels. CCK-8 receptor antagonist CR-1409 or perivagal application of capsaicin abolished the effect of CCK on aversive visceral pain memory, which was consistent with the notion that vagal afferent modulates affective aspects of visceral pain. CCK does not change the nociceptive response (visceral pain

  7. Physicochemical properties of peanut oil-based diacylglycerol and their derived oil-in-water emulsions stabilized by sodium caseinate.

    Science.gov (United States)

    Long, Zhao; Zhao, Mouming; Liu, Ning; Liu, Daolin; Sun-Waterhouse, Dongxiao; Zhao, Qiangzhong

    2015-10-01

    High purity peanut oil-based diacylglycerol (PO-DAG) (94.95 wt%) was prepared via enzymatic glycerolysis from peanut oil (PO). The resulting dominance of DAGs was proven to greatly influence the properties of corresponding fresh or frozen-thawed emulsions. Stable fresh oil-in-water emulsions were produced using either PO-DAG or PO, with stability enhanced by increased concentrations of Na-CN. The lower equilibrium interfacial tension along with greater negative ζ-potential of PO revealed that Na-CN was preferentially adsorbed to the PO interface. Adding 0.05 mol/L NaCl to the PO emulsions minimized depletion flocculation caused by the unadsorbed Na-CN, but further NaCl addition increased oil droplet size and concomitant coalescence. For the PO-DAG emulsions, adding 0.2 mol/L NaCl did not significantly (p>0.05) affect their ζ-potential but adding 0.05 or 0.1 mol/L NaCl lowered ζ-potential, although NaCl at these concentrations increased oil droplet size and coalescence. Freezing-thawing process considerably weakened the stability of PO-DAG emulsions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Combination of Superheated Steam with Laccase Pretreatment Together with Size Reduction to Enhance Enzymatic Hydrolysis of Oil Palm Biomass

    Directory of Open Access Journals (Sweden)

    Nur Fatin Athirah Ahmad Rizal

    2018-04-01

    Full Text Available The combination of superheated steam (SHS with ligninolytic enzyme laccase pretreatment together with size reduction was conducted in order to enhance the enzymatic hydrolysis of oil palm biomass into glucose. The oil palm empty fruit bunch (OPEFB and oil palm mesocarp fiber (OPMF were pretreated with SHS and ground using a hammer mill to sizes of 2, 1, 0.5 and 0.25 mm before pretreatment using laccase to remove lignin. This study showed that reduction of size from raw to 0.25 mm plays important role in lignin degradation by laccase that removed 38.7% and 39.6% of the lignin from OPEFB and OPMF, respectively. The subsequent saccharification process of these pretreated OPEFB and OPMF generates glucose yields of 71.5% and 63.0%, which represent a 4.6 and 4.8-fold increase, respectively, as compared to untreated samples. This study showed that the combination of SHS with laccase pretreatment together with size reduction could enhance the glucose yield.

  9. Discussion of the feasibility of air injection for enhanced oil recovery in shale oil reservoirs

    Directory of Open Access Journals (Sweden)

    Hu Jia

    2017-06-01

    Full Text Available Air injection in light oil reservoirs has received considerable attention as an effective, improved oil recovery process, based primarily on the success of several projects within the Williston Basin in the United States. The main mechanism of air injection is the oxidation behavior between oxygen and crude oil in the reservoir. Air injection is a good option because of its wide availability and low cost. Whether air injection can be applied to shale is an interesting topic from both economic and technical perspectives. This paper initiates a comprehensive discussion on the feasibility and potential of air injection in shale oil reservoirs based on state-of-the-art literature review. Favorable and unfavorable effects of using air injection are discussed in an analogy analysis on geology, reservoir features, temperature, pressure, and petrophysical, mineral and crude oil properties of shale oil reservoirs. The available data comparison of the historically successful air injection projects with typical shale oil reservoirs in the U.S. is summarized in this paper. Some operation methods to improve air injection performance are recommended. This paper provides an avenue for us to make use of many of the favorable conditions of shale oil reservoirs for implementing air injection, or air huff ‘n’ puff injection, and the low cost of air has the potential to improve oil recovery in shale oil reservoirs. This analysis may stimulate further investigation.

  10. Induction of reactive oxygen species in marine phytoplankton under crude oil exposure.

    Science.gov (United States)

    Ozhan, Koray; Zahraeifard, Sara; Smith, Aaron P; Bargu, Sibel

    2015-12-01

    Exposure of phytoplankton to the water-accommodated fraction of crude oil can elicit a number of stress responses, but the mechanisms that drive these responses are unclear. South Louisiana crude oil was selected to investigate its effects on population growth, chlorophyll a (Chl a) content, antioxidative defense, and lipid peroxidation, for the marine diatom, Ditylum brightwellii, and the dinoflagellate, Heterocapsa triquetra, in laboratory-based microcosm experiments. The transcript levels of several possible stress-responsive genes in D. brightwellii were also measured. The microalgae were exposed to crude oil for up to 96 h, and Chl a content, superoxide dismutase (SOD), the glutathione pool (GSH and GSSG), and lipid peroxidation content were analyzed. The cell growth of both phytoplankton species was inhibited with increasing crude oil concentrations. Crude oil exposure did not affect Chl a content significantly in cells. SOD activities showed similar responses in both species, being enhanced at 4- and 8-mg/L crude oil exposure. Only H. triquetra demonstrated enhanced activity in GSSG pool and lipid peroxidation at 8-mg/L crude oil exposure, suggesting that phytoplankton species have distinct physiological responses and tolerance levels to crude oil exposure. This study indicated the activation of reactive oxygen species (ROS) in phytoplankton under crude oil exposure; however, the progressive damage in cells is still unknown. Thus, ROS-related damage in nucleic acid, lipids, proteins, and DNA, due to crude oil exposure could be a worthwhile subject of study to better understand crude oil toxicity at the base of the food web.

  11. Children's Mental Health in the Area Affected by the Hebei Spirit Oil Spill Accident

    Science.gov (United States)

    Jeong, Woo-Chul; Lim, Myungho; Kwon, Hojang; Choi, Yeyong; Yoo, Seung-Jin; Noh, Su Ryun; Cheong, Hae-Kwan

    2013-01-01

    Objectives Children are one of the most vulnerable populations to the impact of disasters. We aimed to examine children's mental health in the area affected by the Hebei Spirit oil spill accident on December 7, 2007. Methods A cross-sectional questionnaire survey was conducted using the Korean versions of the Children's Depression Inventory and State Anxiety Inventory for Children on 1,362 children attending elementary schools in the affected area. The information on distances between the nearest contaminated coastline to the child's residential house or attending school were obtained using a web-based map by inputting two address points. The symptom risks of depression and state anxiety were estimated by multiple logistic regression analyses adjusted for age, gender, and other covariates. Results Children with the closest distance (in the fourth quartile) to the school from the contaminated coastline showed a significantly higher symptom risk of depression compared to those with the farthest distance (first quartile)(odds ratio, 2.73; 95% confidence interval, 1.40-5.33), while there was no significant association between anxiety symptoms and distance. Conclusions Children, a vulnerable population for mental health impact by the oil spill accident, should be included in mental health programs in the community along with their family as victims of the disaster. PMID:24010065

  12. Fish oil enhances recovery of intestinal microbiota and epithelial integrity in chronic rejection of intestinal transplant.

    Directory of Open Access Journals (Sweden)

    Qiurong Li

    Full Text Available BACKGROUND: The intestinal chronic rejection (CR is the major limitation to long-term survival of transplanted organs. This study aimed to investigate the interaction between intestinal microbiota and epithelial integrity in chronic rejection of intestinal transplantation, and to find out whether fish oil enhances recovery of intestinal microbiota and epithelial integrity. METHODS/PRINCIPAL FINDINGS: The luminal and mucosal microbiota composition of CR rats were characterized by DGGE analysis at 190 days after intestinal transplant. The specific bacterial species were determined by sequence analysis. Furthermore, changes in the localization of intestinal TJ proteins were examined by immunofluorescent staining. PCR-DGGE analysis revealed that gut microbiota in CR rats had a shift towards Escherichia coli, Bacteroides spp and Clostridium spp and a decrease in the abundance of Lactobacillales bacteria in the intestines. Fish oil supplementation could enhance the recovery of gut microbiota, showing a significant decrease of gut bacterial proportions of E. coli and Bacteroides spp and an increase of Lactobacillales spp. In addition, CR rats showed pronounced alteration of tight junction, depicted by marked changes in epithelial cell ultrastructure and redistribution of occuldin and claudins as well as disruption in TJ barrier function. Fish oil administration ameliorated disruption of epithelial integrity in CR, which was associated with an improvement of the mucosal structure leading to improved tight junctions. CONCLUSIONS/SIGNIFICANCE: Our study have presented novel evidence that fish oil is involved in the maintenance of epithelial TJ integrity and recovery of gut microbiota, which may have therapeutic potential against CR in intestinal transplantation.

  13. A Novel CO2-Responsive Viscoelastic Amphiphilic Surfactant Fluid for Fracking in Enhanced Oil/Gas Recovery

    Science.gov (United States)

    Zhong, L.; Wu, X.; Dai, C.

    2017-12-01

    Over the past decade, the rapid rise of unconventional shale gas and tight sandstone oil development through horizontal drilling and high volume hydraulic fracturing has expanded the extraction of hydrocarbon resources. Hydraulic fracturing fluids play very important roles in enhanced oil/gas recovery. However, damage to the reservoir rock and environmental contamination caused by hydraulic fracturing flowback fluids has raised serious concerns. The development of reservoir rock friendly and environmental benign fracturing fluids is in immediate demand. Studies to improve properties of hydraulic fracturing fluids have found that viscoelastic surfactant (VES) fracturing fluid can increase the productivity of gas/oil and be efficiently extracted after fracturing. Compared to conventional polymer fracturing fluid, VES fracturing fluid has many advantages, such as few components, easy preparation, good proppant transport capacity, low damage to cracks and formations, and environment friendly. In this work, we are developing a novel CO2-responsive VES fracking fluid that can readily be reused. This fluid has a gelling-breaking process that can be easily controlled by the presence of CO2 and its pressure. We synthesized erucamidopropyl dimethylamine (EA) as a thickening agent for hydraulic fracturing fluid. The influence of temperature, presence of CO2 and pressure on the viscoelastic behavior of this fluid was then investigated through rheological measurements. The fracturing fluid performance and recycle property were lastly studied using core flooding tests. We expect this fluid finds applications not only in enhanced oil/gas recovery, but also in areas such as controlling groundwater pollution and microfluidics.

  14. Experimental study of solvent-based emulsion injection to enhance heavy oil recovery in Alaska North Slope area

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, F.; Mamora, D. [Texas A and M Univ., College Station, TX (United States)

    2010-07-01

    This study examined the feasibility of using a chemical enhanced oil recovery method to overcome some of the technical challenges associated with thermal recovery in the Alaska North Slope (ANS). This paper described the second stage research of an experimental study on nano-particle and surfactant-stabilized solvent-based emulsions for the ANS area. Four successful core flood experiments were performed using heavy ANS oil. The runs included water flooding followed by emulsion flooding; and pure emulsion injection core flooding. The injection rate and core flooding temperature remained constant and only 1 PV micro-emulsion was injected after breakthrough under water flooding or emulsion flooding. Oil recovery increased by 26.4 percent from 56.2 percent original oil in place (OOIP) with waterflooding to 82.6 percent OOIP with injection of emulsion following water flooding. Oil recovery was slightly higher with pure emulsion flooding, at 85.8 percent OOIP. The study showed that low permeability generally resulted in a higher shear rate, which is favourable for in-situ emulsification and higher displacement efficiency. 11 refs., 4 tabs., 20 figs.

  15. How Fiscal Policy Affects Non-Oil Economic Performance in Azerbaijan?

    Directory of Open Access Journals (Sweden)

    Khatai Aliyev

    2016-09-01

    Full Text Available The role of fiscal policy in promoting economic growth has been subject to many studies since its suggestion by Keynes who stated expansionary/contractionary impact of public expenditures/taxes. In this context, effectiveness of fiscal policy use to develop non-oil sector in resource rich economies should be studied. This paper investigates short- and long-run effects of budget expenditures and tax related budget revenues (direct transfers from oil fund excluded over non-oil GDP while controlling for oil price volatility and oil production in case of Azerbaijan. Autoregressive Distributed Lag Bounds Testing (ARDLBT Approach to cointegration is employed for data covering 2000Q1-2015Q2. Estimation results theoretically consistent and statistically significant long-run effects of both budget expenditures and tax-related budget revenues. However, in the short-run, the effects are contrary to the theoretical expectations. Findings are useful for Azerbaijan fiscal policy makers especially in the current complicated nature of economic processes in the economy due to oil related challenges.

  16. EFFICACY OF COMMERCIAL INOCULA IN ENHANCING BIODEGRADATION OF WEATHERED CRUDE OIL CONTAMINATING A PRINCE WILLIAM SOUND BEACH

    Science.gov (United States)

    In a laboratory study evaluating the effectiveness of 10 commercial products in stimulating enhanced biodegradation of Alaska North Slope crude oil, two of the products provided significantly greater alkane degradation in closed flasks than indigenous Alaskan bacterial population...

  17. Sacrificial adsorbate for surfactants utilized in chemical floods of enhanced oil recovery operations

    Science.gov (United States)

    Johnson, Jr., James S.; Westmoreland, Clyde G.

    1982-01-01

    The present invention is directed to a sacrificial or competitive adsorbate for surfactants contained in chemical flooding emulsions for enhanced oil recovery operations. The adsorbate to be utilized in the method of the present invention is a caustic effluent from the bleach stage or the weak black liquor from the digesters and pulp washers of the kraft pulping process. This effluent or weak black liquor is injected into an oil-bearing subterranean earth formation prior to or concurrent with the chemical flood emulsion and is adsorbed on the active mineral surfaces of the formation matrix so as to effectively reduce adsorption of surfactant in the chemical flood. Alternatively, the effluent or liquor can be injected into the subterranean earth formation subsequent to a chemical flood to displace the surfactant from the mineral surfaces for the recovery thereof.

  18. 17 alpha-hydroxyprogesterone caproate vehicle, castor oil, enhances the contractile effect of oxytocin in human myometrium in pregnancy.

    Science.gov (United States)

    O'Sullivan, Michael D; Hehir, Mark P; O'Brien, Yvonne M; Morrison, John J

    2010-05-01

    The possibility exists that the vehicle for 17-alpha-hydroxyprogesterone caproate, castor oil, exerts an effect on human uterine contractility. The aim of this study was to evaluate its effects on contractility of myometrial preparations that were obtained during pregnancy. Myometrial strips were suspended under isometric conditions. Contractility was induced with oxytocin. Strips were incubated in castor oil or physiologic salt solution and suspended for a further oxytocin challenge. Contractile integrals were compared between both groups. Strips that were exposed to castor oil demonstrated increased contractile activity that was elicited by oxytocin (mean contractility value, 165.53%+/-17.03%; n=8; P=.004), compared with control strips (mean contractility value, 72.57%+/-7.48%; n=8; P=.003). There was a significant increase in contractile activity of the castor oil-exposed strips, compared with those that were exposed to physiologic salt solution (n=8; Pcastor oil results in enhanced oxytocin-induced contractility. Copyright (c) 2010 Mosby, Inc. All rights reserved.

  19. Development of alkaline/surfactant/polymer (ASP flooding technology for recovery of Karazhanbas oil

    Directory of Open Access Journals (Sweden)

    Birzhan Zhappasbaev

    2016-03-01

    Full Text Available The tertiary oil recovery methods like alkaline, surfactant and polymer (ASP flooding are very perspective in order to achieve the synergetic effect out of the different impacts which are caused by these chemicals, which affect oil and water filtration in the reservoir and increase oil recovery. In this communication, we consider the applicability of hydrophobically modified polyampholyte – poly(hexadecylaminocrotonatebetaine (PHDACB as ASP flooding agent for recovery of oil from Karazhanbas oilfield. As “polysoap”, the aqueous solution of PHDACB dissolved in aqueous KOH was used. This system combines the advantages of alkaline, surfactant and polymer and exhibits the synergistic effect. The laboratory results showed that the ASP flooding considerably increases the oil recovery in addition to water flooding. In perspective, the ASP flooding may substitute the steam injection and other thermal enhanced oil recovery (EOR technologies.

  20. Seaweeds and the Exxon Valdez oil spill

    International Nuclear Information System (INIS)

    Stekoll, M.S.; Deysher, L.; Dean, T.A.

    1993-01-01

    A three-year study, initiated in 1989, has evaluated the response of subtidal and intertidal seaweed communities to the Exxon Valdez oil spill and subsequent cleanup activities. The project was part of the coastal habitat injury assessment research sanctioned under the natural resource damage assessment program. A stratified random design was used to select oiled sites for the study. Paired control (unoiled) sites were then matched to the oiled sites. The most consistent effect found in subtidal populations in Prince William Sound was the higher relative abundance of small-size classes of kelps at the oiled sites, indicating the prior disappearance of larger plants. This disappearance was possibly caused by activities associated with the cleanup operations. Intertidal populations of algae were affected by the spill and cleanup in all three major areas studied: Prince William Sound, Cook Inlet-Kenai, and Kodiak-Alaskan Peninsula. The most obvious effect was a significant removal of the dominant intertidal plant Fucus gardneri from the mid and upper intertidal zones. The limited dispersal of this plant combined with the relatively harsh conditions of the upper intertidal will cause a slow recovery of the upper intertidal zone in the affected areas. Effects of the spill extended to other algal species. Species such as Cladophora, Myelophycus, Odonthalia, Palmaria, and Polysiphonia showed decreases in their percent cover at oiled sites. Only Gloiopeltis populations appeared to increase in percent cover in oiled areas. In both the Cook Inlet-Kenai and the Kodiak-Alaskan Peninsula areas Fucus populations appeared to be enhanced in the lower intertidal zone - between 2 and 3 meters below the high-tide mark - in 1991

  1. Microbially Enhanced Oil Recovery by Sequential Injection of Light Hydrocarbon and Nitrate in Low- And High-Pressure Bioreactors.

    Science.gov (United States)

    Gassara, Fatma; Suri, Navreet; Stanislav, Paul; Voordouw, Gerrit

    2015-10-20

    Microbially enhanced oil recovery (MEOR) often involves injection of aqueous molasses and nitrate to stimulate resident or introduced bacteria. Use of light oil components like toluene, as electron donor for nitrate-reducing bacteria (NRB), offers advantages but at 1-2 mM toluene is limiting in many heavy oils. Because addition of toluene to the oil increased reduction of nitrate by NRB, we propose an MEOR technology, in which water amended with light hydrocarbon below the solubility limit (5.6 mM for toluene) is injected to improve the nitrate reduction capacity of the oil along the water flow path, followed by injection of nitrate, other nutrients (e.g., phosphate) and a consortium of NRB, if necessary. Hydrocarbon- and nitrate-mediated MEOR was tested in low- and high-pressure, water-wet sandpack bioreactors with 0.5 pore volumes of residual oil in place (ROIP). Compared to control bioreactors, those with 11-12 mM of toluene in the oil (gained by direct addition or by aqueous injection) and 80 mM of nitrate in the aqueous phase produced 16.5 ± 4.4% of additional ROIP (N = 10). Because toluene is a cheap commodity chemical, HN-MEOR has the potential to be a cost-effective method for additional oil production even in the current low oil price environment.

  2. A Comparison of the Volatile Components of Cold Pressed Hamlin and Valencia (Citrus sinensis (L. Osbeck Orange Oils Affected by Huanglongbing

    Directory of Open Access Journals (Sweden)

    Brittany M. Xu

    2017-01-01

    Full Text Available Volatiles from huanglongbing (HLB symptomatic and asymptomatic cold pressed orange oils from Florida Hamlin and Valencia fruit were assessed. Qualitative gas-liquid chromatography studies showed the presence of several compounds (β-longifolene, perillene, and 4-decenal which are not commonly identified in Citrus sinensis (L. Osbeck oils. Oils derived from huanglongbing symptomatic fruit had lower concentrations of linalool, decanal, citronellol, neral, geranial, carvone, dodecanal, and 2-decenal and higher concentrations of citronellal compared to asymptomatic fruit. A comparison to historic literature of orange oil investigations before HLB was of issue in Florida orange crops showed lower levels of linalool, decanal, neral, and geranial in Hamlin peel oil samples, as well as higher levels of dodecanal. Valencia peel oil samples showed lower concentrations of linalool and increased concentration of citronellol and dodecanal. As a result of huanglongbing (HLB phenomena, the concentrations of several important volatiles found in Hamlin and Valencia peel oil profiles have changed compared to historic values. Differences in volatile concentrations of symptomatic and asymptomatic HLB affected peel oil compounds in orange fruit are identified.

  3. Recent technological advances in the application of nano-catalytic technology to the enhanced recovery and upgrading of bitumen and heavy oils

    Energy Technology Data Exchange (ETDEWEB)

    Pereira Almao, P. [Calgary Univ., AB (Canada). Schulich School of Engineering

    2013-11-01

    Advances in Nanotechnology, such as manufacturing of nano-catalysts allow the online (during processing) and on site production of nano-catalysts for heavy oils upgrading. These inventions have also facilitated the development of two lines of heavy oils upgrading processes that make use of nano-catalysts for producing upgraded oil: In Situ Upgrading and Field Upgrading. Producing chemical upgrading of heavy oils is achievable and economically viable at lower temperatures and lower pressures than used in most upgraders if the use of nano-catalysts were implemented. The spontaneity of thermal, steam and hydro processing reactions for converting the different chemical families of hydrocarbons present in the heaviest fractions of heavy oils and bitumen (HO-B) into lighter products was shown recently. Spontaneity was measured by the value of the change of free energy at low pressure. These undesirable paths are spontaneous and uncontrollable under thermal cracking conditions, and require providing years of residence time for intermolecular hydrogen redistribution to minimize olefins polymerization, if at all possible. Instead, hydroprocessing in the presence of hydrogen activating catalysts would create an abundance of hydrogen radicals impeding large molecules condensation and olefins proliferation. In Situ Upgrading: performs coupled Enhanced Oil Recovery with In Reservoir Upgrading via Hot Fluid Injection (HFI). The heat handling of this HFI process and the production of transportable oil with no need of diluent from the start of operation completes the originality of it. This technology uses heavy fractions separated from produced oil to reintroduce heat into the reservoir along with suspended nano-catalysts and hydrogen. These components react in the well bore and inside the reservoir to release more heat (hydroprocessing reactions are exothermic) producing light gases and volatile hydrocarbons that contribute to increase oil detachment from the rock resulting in

  4. The fifth international conference on microbial enhanced oil recovery and related biotechnology for solving environmental problems: 1995 Conference proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, R. [ed.

    1995-12-31

    This volume contains 41 papers covering the following topics: field trials of microbial enhanced recovery of oil; control and treatment of sour crudes and natural gas with microorganisms; bioremediation of hydrocarbon contamination in soils; microbial plugging processes; microbial waste water treatment; the use of microorganisms as biological indicators of oils; and characterization and behavior of microbial systems. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  5. Surface-enhanced Raman spectroscopy studies of yellow organic dyestuffs and lake pigments in oil paint.

    Science.gov (United States)

    Mayhew, Hannah E; Fabian, David M; Svoboda, Shelley A; Wustholz, Kristin L

    2013-08-21

    Identifying natural, organic dyes and pigments is important for the conservation, preservation, and historical interpretation of works of art. Although previous SERS studies have demonstrated high sensitivity and selectivity for red lake pigments using various pretreatment conditions, corresponding investigations of yellow lake pigments and paints are relatively sparse. Here, surface-enhanced Raman scattering (SERS) spectroscopy is used to identify a variety of yellow organic dyestuffs and lake pigments in oil paint. High-quality SERS spectra of yellow dyestuffs (i.e., turmeric, old fustic, Buckthorn berries) and corresponding paints could be obtained with or without sample pretreatment using microliter quantities of HCl and methanol at room temperature. However, the SERS spectra of yellow lake pigments (i.e., Stil de Grain, Reseda lake) and their corresponding oil paints were only observed upon sample pretreatment. Ultimately, we demonstrate a reliable sample treatment protocol for SERS-based identification of turmeric, old fustic, Buckthorn berries, Stil de Grain, and Reseda lake as well as for microscopic samples of the corresponding oil paints.

  6. Lesions of the amygdala central nucleus abolish lipoprivic-enhanced responding during oil-predicting conditioned stimuli.

    Science.gov (United States)

    Benoit, S C; Morell, J R; Davidson, T L

    1999-12-01

    T. L. Davidson, A. M. Altizer, S. C. Benoit, E. K. Walls, and T. L. Powley (1997) reported that rats show facilitated responding to conditioned stimuli (CSs) that predict oil, after administration of the lipoprivic agent, Na-2-mercaptoacetate (MA). This facilitation was blocked by vagal deafferentation. The present article extends that investigation to another structure, the amygdala central nucleus (CN). The CN receives inputs from dorsal vagal nuclei, and neurotoxic lesions of this nucleus are reported to abolish feeding in response to lipoprivic challenges. In Experiment 1, rats with ibotenic acid (IBO) lesions of the CN failed to show enhanced appetitive responding during oil-predicting CSs after administration of MA. Experiment 2 used a conditioned taste-aversion procedure to establish that rats with IBO lesions of the CN were able to discriminate the tastes of sucrose and peanut oil and had intact CS-US representations. It is concluded that the amygdala CN is a necessary structure for the detection of lipoprivic challenges.

  7. CO2 Accounting and Risk Analysis for CO2 Sequestration at Enhanced Oil Recovery Sites.

    Science.gov (United States)

    Dai, Zhenxue; Viswanathan, Hari; Middleton, Richard; Pan, Feng; Ampomah, William; Yang, Changbing; Jia, Wei; Xiao, Ting; Lee, Si-Yong; McPherson, Brian; Balch, Robert; Grigg, Reid; White, Mark

    2016-07-19

    Using CO2 in enhanced oil recovery (CO2-EOR) is a promising technology for emissions management because CO2-EOR can dramatically reduce sequestration costs in the absence of emissions policies that include incentives for carbon capture and storage. This study develops a multiscale statistical framework to perform CO2 accounting and risk analysis in an EOR environment at the Farnsworth Unit (FWU), Texas. A set of geostatistical-based Monte Carlo simulations of CO2-oil/gas-water flow and transport in the Morrow formation are conducted for global sensitivity and statistical analysis of the major risk metrics: CO2/water injection/production rates, cumulative net CO2 storage, cumulative oil/gas productions, and CO2 breakthrough time. The median and confidence intervals are estimated for quantifying uncertainty ranges of the risk metrics. A response-surface-based economic model has been derived to calculate the CO2-EOR profitability for the FWU site with a current oil price, which suggests that approximately 31% of the 1000 realizations can be profitable. If government carbon-tax credits are available, or the oil price goes up or CO2 capture and operating expenses reduce, more realizations would be profitable. The results from this study provide valuable insights for understanding CO2 storage potential and the corresponding environmental and economic risks of commercial-scale CO2-sequestration in depleted reservoirs.

  8. Experimental study on kinetics oil oil-suspended particulate matter aggregation

    International Nuclear Information System (INIS)

    Sun, J.; Environment Canada, Ottawa, ON; Khelifa, A.; Wang, Z.; Brown, C.; Fieldhouse, B.; Yang, C.; Zheng, X.; Wong, S.; So, L.C.

    2009-01-01

    Past studies of oil spills have shown that oil suspended particulate matter aggregates (OSAs) play a role in enhancing the natural cleansing of oiled shorelines. OSAs result from aggregation between suspended oil droplets and suspended particulate matter (SPM) in aquatic environments. During this process, oil dispersion into the water column is significantly increased since the surface of the oil droplet is surrounded by sediment particles. In addition, the accelerated biodegradation of the oil can be attributed to the greater oil-water contact area. This study focused on the kinetic aspects of OSA formation, with particular reference to the time scale of this process and its significance to oil dispersion following oil spills in water. A laboratory study was conducted to measure the time scale of OSA formation and its variations with mixing conditions. A reciprocating shaker and various oil/sediment mixtures were used to prepare the OSAs. Standard reference material 1941b was used as the natural sediment mixed with Arabian medium crude and artificial seawater under various mixing energies. The sediment-to-oil ratio remained constant for all experiments. Gas chromatography-flame ionization detection (GC-FID) analysis was used to measure the total petroleum hydrocarbons (TPH) trapped in negatively buoyant OSAs. Results showed that the TPH in OSAs increased exponentially with shaking time and reached an equilibrium value within 3 hours. The equilibrium decreased from 3 hours to 1.3 hours when the shaking rate increased from 2.0 to 2.3 Hz. It was concluded that high mixing energy enhances OSA formation and shortens the time for OSA formation. 42 refs., 6 tabs., 5 figs

  9. Experimental study on kinetics oil oil-suspended particulate matter aggregation

    Energy Technology Data Exchange (ETDEWEB)

    Sun, J. [Ocean Univ. of China, Qingdoa (China). Environmental Science and Engineering Inst.; Environment Canada, Ottawa, ON (Canada). Emergencies Science and Technology Section, Emergencies, Operational Analytical Laboratories and Research Support Division; Khelifa, A.; Wang, Z.; Brown, C.; Fieldhouse, B.; Yang, C. [Environment Canada, Ottawa, ON (Canada). Emergencies Science and Technology Section, Emergencies, Operational Analytical Laboratories and Research Support Division; Zheng, X. [Ocean Univ. of China, Qingdoa (China). Environmental Science and Engineering Inst.; Wong, S. [Ottawa Univ., ON (Canada). Dept. of Chemistry; So, L.C. [Waterloo Univ., ON (Canada). Faculty of Engineering

    2009-07-01

    Past studies of oil spills have shown that oil suspended particulate matter aggregates (OSAs) play a role in enhancing the natural cleansing of oiled shorelines. OSAs result from aggregation between suspended oil droplets and suspended particulate matter (SPM) in aquatic environments. During this process, oil dispersion into the water column is significantly increased since the surface of the oil droplet is surrounded by sediment particles. In addition, the accelerated biodegradation of the oil can be attributed to the greater oil-water contact area. This study focused on the kinetic aspects of OSA formation, with particular reference to the time scale of this process and its significance to oil dispersion following oil spills in water. A laboratory study was conducted to measure the time scale of OSA formation and its variations with mixing conditions. A reciprocating shaker and various oil/sediment mixtures were used to prepare the OSAs. Standard reference material 1941b was used as the natural sediment mixed with Arabian medium crude and artificial seawater under various mixing energies. The sediment-to-oil ratio remained constant for all experiments. Gas chromatography-flame ionization detection (GC-FID) analysis was used to measure the total petroleum hydrocarbons (TPH) trapped in negatively buoyant OSAs. Results showed that the TPH in OSAs increased exponentially with shaking time and reached an equilibrium value within 3 hours. The equilibrium decreased from 3 hours to 1.3 hours when the shaking rate increased from 2.0 to 2.3 Hz. It was concluded that high mixing energy enhances OSA formation and shortens the time for OSA formation. 42 refs., 6 tabs., 5 figs.

  10. Sulfate reducing bacteria and their activities in oil sands process-affected water biofilm

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hong; Yu, Tong, E-mail: tong.yu@ualberta.ca; Liu, Yang, E-mail: yang.liu@ualberta.ca

    2015-12-01

    Biofilm reactors were constructed to grow stratified multispecies biofilm in oil sands process-affected water (OSPW) supplemented with growth medium. The development of sulfate reducing bacteria (SRB) within the biofilm and the biofilm treatment of OSPW were evaluated. The community structure and potential activity of SRB in the biofilm were investigated with H{sub 2}S microsensor measurements, dsrB gene-based denaturing gradient gel electrophoresis (DGGE), and the real time quantitative polymerase chain reaction (qPCR). Multispecies biofilm with a thickness of 1000 μm was successfully developed on engineered biocarriers. H{sub 2}S production was observed in the deeper anoxic zone of the biofilm from around 750 μm to 1000 μm below the bulk water-biofilm interface, revealing sulfate reduction in the deeper zone of the stratified biofilm. The biofilm removed chemical oxygen demand (COD), sulfate, and nitrogen. The study expands current knowledge of biofilm treatment of OSPW and the function of anaerobic SRB in OSPW biofilm, and thus provides information for future bioreactor development in the reclamation of OSPW. - Graphical abstract: The development of sulfate reducing bacteria (SRB) within Oil Sands Process-affected Water (OSPW) biofilm and the biofilm treatment of OSPW were evaluated by Liu and coworkers. Combined microsensor and molecular biology techniques were utilized in this study. Their results demonstrated that multispecies biofilm with a thickness of 1000 μm was successfully developed on engineered biocarriers. H{sub 2}S production was observed in the deeper anoxic zone of the biofilm from around 750 μm to 1000 μm below the bulk water-biofilm interface, revealing sulfate reduction in the deeper zone of the biofilm. The biofilm removed chemical oxygen demand (COD), sulfate, and nitrogen. - Highlights: • Biofilm in oil sands wastewater was developed on engineered biocarriers. • Bacterial community and in situ activity of SRB were studied in the

  11. Sulfate reducing bacteria and their activities in oil sands process-affected water biofilm

    International Nuclear Information System (INIS)

    Liu, Hong; Yu, Tong; Liu, Yang

    2015-01-01

    Biofilm reactors were constructed to grow stratified multispecies biofilm in oil sands process-affected water (OSPW) supplemented with growth medium. The development of sulfate reducing bacteria (SRB) within the biofilm and the biofilm treatment of OSPW were evaluated. The community structure and potential activity of SRB in the biofilm were investigated with H 2 S microsensor measurements, dsrB gene-based denaturing gradient gel electrophoresis (DGGE), and the real time quantitative polymerase chain reaction (qPCR). Multispecies biofilm with a thickness of 1000 μm was successfully developed on engineered biocarriers. H 2 S production was observed in the deeper anoxic zone of the biofilm from around 750 μm to 1000 μm below the bulk water-biofilm interface, revealing sulfate reduction in the deeper zone of the stratified biofilm. The biofilm removed chemical oxygen demand (COD), sulfate, and nitrogen. The study expands current knowledge of biofilm treatment of OSPW and the function of anaerobic SRB in OSPW biofilm, and thus provides information for future bioreactor development in the reclamation of OSPW. - Graphical abstract: The development of sulfate reducing bacteria (SRB) within Oil Sands Process-affected Water (OSPW) biofilm and the biofilm treatment of OSPW were evaluated by Liu and coworkers. Combined microsensor and molecular biology techniques were utilized in this study. Their results demonstrated that multispecies biofilm with a thickness of 1000 μm was successfully developed on engineered biocarriers. H 2 S production was observed in the deeper anoxic zone of the biofilm from around 750 μm to 1000 μm below the bulk water-biofilm interface, revealing sulfate reduction in the deeper zone of the biofilm. The biofilm removed chemical oxygen demand (COD), sulfate, and nitrogen. - Highlights: • Biofilm in oil sands wastewater was developed on engineered biocarriers. • Bacterial community and in situ activity of SRB were studied in the biofilm.

  12. Effect of animal manure on quantitative and qualitative yield and chemical composition of essential oil in cumin (Cuminum cyminum

    Directory of Open Access Journals (Sweden)

    ahmad ahmadiyan

    2009-06-01

    Full Text Available Animal manure on soil prepares essential elements and increase water holding capacity and quality of plants. To study the effects of animal manure on yield and its components, nutrients absorption, chemical composition and its percentages on Cuminum cyminum this experiment was conducted at the agricultural researcher station of Zahak-Zabol, during 2003 – 2004 in a randomized complete block design with four replications. Animal manure significantly enhanced number of umbers per plant, number of seed per plant, biological and seed yield. Use of animal manure had not significant affect on Ca, Mg, Fe, P, K, Mn, Zn, and Cu and protein percentage in cumin seed but decreased Na concentration. Animal manure significantly enhanced cumin aldehyde and ρ-cymene and decrease β-pinene, γ-terpinene and α-pinene in cumin oil. A relationship or correlation exists between the main components of cumin oil. This study showed that animal manure enhances seed yield, oil percentage and qualitative chemical composition in cumin oil.

  13. Contracts for field projects and supporting research on enhanced oil recovery. Progress review number 87

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    Approximately 30 research projects are summarized in this report. Title of the project, contract number, company or university, award amount, principal investigators, objectives, and summary of technical progress are given for each project. Enhanced oil recovery projects include chemical flooding, gas displacement, and thermal recovery. Most of the research projects though are related to geoscience technology and reservoir characterization.

  14. Investigation of Chemical-Foam Design as a Novel Approach toward Immiscible Foam Flooding for Enhanced Oil Recovery.

    Science.gov (United States)

    Hosseini-Nasab, S M; Zitha, P L J

    2017-10-19

    Strong foam can be generated in porous media containing oil, resulting in incremental oil recovery; however, oil recovery factor is restricted. A large fraction of oil recovered by foam flooding forms an oil-in-water emulsion, so that costly methods may need to be used to separate the oil. Moreover, strong foam could create a large pressure gradient, which may cause fractures in the reservoir. This study presents a novel chemical-foam flooding process for enhanced oil recovery (EOR) from water-flooded reservoirs. The presented method involved the use of chemically designed foam to mobilize the remaining oil after water flooding and then to displace the mobilized oil to the production well. A blend of two anionic surfactant formulations was formulated for this method: (a) IOS, for achieving ultralow interfacial tension (IFT), and (b) AOS, for generating a strong foam. Experiments were performed using Bentheimer sandstone cores, where X-ray CT images were taken during foam generation to find the stability of the advancing front of foam propagation and to map the gas saturation for both the transient and the steady-state flow regimes. Then the proposed chemical-foam strategy for incremental oil recovery was tested through the coinjection of immiscible nitrogen gas and surfactant solutions with three different formulation properties in terms of IFT reduction and foaming strength capability. The discovered optimal formulation contains a foaming agent surfactant, a low IFT surfactant, and a cosolvent, which has a high foam stability and a considerably low IFT (1.6 × 10 -2 mN/m). Coinjection resulted in higher oil recovery and much less MRF than the same process with only using a foaming agent. The oil displacement experiment revealed that coinjection of gas with a blend of surfactants, containing a cosolvent, can recover a significant amount of oil (33% OIIP) over water flooding with a larger amount of clean oil and less emulsion.

  15. Phase Behavior, Solid Organic Precipitation, and Mobility Characterization Studies in Support of Enhanced Heavy Oil Recovery on the Alaska North Slope

    Energy Technology Data Exchange (ETDEWEB)

    Shirish Patil; Abhijit Dandekar; Santanu Khataniar

    2008-12-31

    The medium-heavy oil (viscous oil) resources in the Alaska North Slope are estimated at 20 to 25 billion barrels. These oils are viscous, flow sluggishly in the formations, and are difficult to recover. Recovery of this viscous oil requires carefully designed enhanced oil recovery processes. Success of these recovery processes is critically dependent on accurate knowledge of the phase behavior and fluid properties, especially viscosity, of these oils under variety of pressure and temperature conditions. This project focused on predicting phase behavior and viscosity of viscous oils using equations of state and semi-empirical correlations. An experimental study was conducted to quantify the phase behavior and physical properties of viscous oils from the Alaska North Slope oil field. The oil samples were compositionally characterized by the simulated distillation technique. Constant composition expansion and differential liberation tests were conducted on viscous oil samples. Experiment results for phase behavior and reservoir fluid properties were used to tune the Peng-Robinson equation of state and predict the phase behavior accurately. A comprehensive literature search was carried out to compile available compositional viscosity models and their modifications, for application to heavy or viscous oils. With the help of meticulously amassed new medium-heavy oil viscosity data from experiments, a comparative study was conducted to evaluate the potential of various models. The widely used corresponding state viscosity model predictions deteriorate when applied to heavy oil systems. Hence, a semi-empirical approach (the Lindeloff model) was adopted for modeling the viscosity behavior. Based on the analysis, appropriate adjustments have been suggested: the major one is the division of the pressure-viscosity profile into three distinct regions. New modifications have improved the overall fit, including the saturated viscosities at low pressures. However, with the limited

  16. Study of the enhanced oil recovery with surfactant based systems; Estudo de recuperacao avancada de petroleo por sistemas a base de tensoativos

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro Neto, Valdir Cotrim; Paulino, Luisa Cimatti; Acyoly, Alessandra; Santos, Enio Rafael M.; Dantas Neto, Afonso Avelino [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2008-07-01

    The recent changes in the world scenario, the large reserves of heavy oils and also the lack of new discoveries of large petroleum fields are indications that, in the near future, the oil recovery by conventional methods will be limited. In order to increase the efficiency of the extraction process, it must be used enhanced recovery methods. One of these technologies is the injection of surfactant solutions, where exists a chemical interaction between the injected fluid and the reservoir's fluid. With this in mind, this work was developed with two main objectives: to study of parameters that influence the surfactant behavior in solution, namely the critical micelle concentration (CMC), the surface and interface tensions between fluids and the evaluation of oil recovery with these solutions. After the Botucatu sandstone (Brazil) porosity study, the plug samples were submitted to assay steps comprising saturation with seawater and petroleum, conventional recovery with seawater and enhanced recovery with surfactant solutions. The solutions were studied in enhanced recovery step, when the plug samples could already be compared to a mature field. The PJN surfactant, at a concentration 1000% above CMC in water, had a higher recovery factor, causing the original oil in place to be recovered by an extra 20.97%, after conventional recovery with seawater. (author)

  17. Oil market in the 1990s: implications for ESCWA countries

    International Nuclear Information System (INIS)

    Gault, J.; Karbassioun, B.

    1992-01-01

    This paper, prepared for the ESCWA Expert Group Meeting in Amman, Jordan, 20-23 November 1989, concerns the outlook for oil markets in the coming decade and the implications of certain market trends for the ESCWA countries, including both the energy exporting and energy importing members of ESCWA. It is argued that increasing oil consumption may well bring world oil production close to physical capacity before the end of the 1990s, thereby provoking an increase in real oil prices. It is further argued that the uncertainty surrounding this scenario is asymmetric; it is more likely that real oil prices will rise than that they will remain stable or fall. Other major trends, including enhanced worldwide concern for the environment and the bilateralization of world trade, also will affect ESCWA countries. The authors conclude that member countries should expand petroleum exploration activities, improve the operating efficiency of their national oil companies, bring domestic energy prices into line with world markets, expand natural gas development and marketing efforts, participate in multilateral trade negotiations, and expand co-ordination in all energy matters. (Author)

  18. Mechanisms behind injecting the combination of nano-clay particles and polymer solution for enhanced oil recovery

    Science.gov (United States)

    Khalili Nezhad, Seyyed Shahram; Cheraghian, Goshtasp

    2016-08-01

    Laboratory investigations and field applications have proved injection of polymer solution to be an effective means to improve oil recovery for reservoirs of medium oil viscosity. The incremental oil produced in this case is the result of an increase in areal and vertical sweep efficiencies. Biopolymers and synthetic polymers are the major categories used in the petroleum industry for specific reasons. Biopolymers like xanthan are limited in their application as they are more susceptible to biodegradation. Synthetic polymers like Hydrolyzed PolyAcrylaMide (HPAM) have a much wider application as they are less susceptible to biodegradation. Furthermore, development of nanotechnology has successfully provided technical and economical viable alternatives for present materials. The objective of this study is to investigate the effect of combining clay nanoparticles with polymer solution on oil recovery. This paper includes a history match of both one-dimensional and two-dimensional polymer floods using a three-dimensional numerical model for fluid flow and mass transport. Results indicated that the amount of polymer adsorption decreased when clay nanoparticles were added to the PolyAcrylaMide solution; however, mobility ratio improvement is believed to be the main contributor for the proposed method in order to enhance much oil recovery compared to xanthan flood and HPAM flood.

  19. Core Flood study for enhanced oil recovery through ex-situ bioaugmentation with thermo- and halo-tolerant rhamnolipid produced by Pseudomonas aeruginosa NCIM 5514.

    Science.gov (United States)

    Varjani, Sunita J; Upasani, Vivek N

    2016-11-01

    The aim of this work was to study the Microbial Enhanced Oil Recovery (MEOR) employing core field model ex-situ bioaugmenting a thermo- and halo-tolerant rhamnolipid produced by Pseudomonas aeruginosa. Thin Layer Chromatography (TLC) revealed that the biosurfactant produced was rhamnolipid type. Nuclear Magnetic Resonance analysis showed that the purified rhamnolipids comprised two principal rhamnolipid homologues, i.e., Rha-Rha-C10-C14:1 and Rha-C8-C10. The rhamnolipid was stable under wide range of temperature (4°C, 30-100°C), pH (2.0-10.0) and NaCl concentration (0-18%, w/v). Core Flood model was designed for oil recovery operations using rhamnolipid. The oil recovery enhancement over Residual Oil Saturation was 8.82% through ex-situ bioaugmentation with rhamnolipid. The thermal stability of rhamnolipid shows promising scope for its application at conditions where high temperatures prevail in oil recovery processes, whereas its halo-tolerant nature increases its application in marine environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Affect labeling enhances exposure effectiveness for public speaking anxiety.

    Science.gov (United States)

    Niles, Andrea N; Craske, Michelle G; Lieberman, Matthew D; Hur, Christopher

    2015-05-01

    Exposure is an effective treatment for anxiety but many patients do not respond fully. Affect labeling (labeling emotional experience) attenuates emotional responding. The current project examined whether affect labeling enhances exposure effectiveness in participants with public speaking anxiety. Participants were randomized to exposure with or without affect labeling. Physiological arousal and self-reported fear were assessed before and after exposure and compared between groups. Consistent with hypotheses, participants assigned to Affect Labeling, especially those who used more labels during exposure, showed greater reduction in physiological activation than Control participants. No effect was found for self-report measures. Also, greater emotion regulation deficits at baseline predicted more benefit in physiological arousal from exposure combined with affect labeling than exposure alone. The current research provides evidence that behavioral strategies that target prefrontal-amygdala circuitry can improve treatment effectiveness for anxiety and these effects are particularly pronounced for patients with the greatest deficits in emotion regulation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Application of surface enhanced Raman scattering and competitive adaptive reweighted sampling on detecting furfural dissolved in transformer oil

    Directory of Open Access Journals (Sweden)

    Weigen Chen

    2018-03-01

    Full Text Available Detecting the dissolving furfural in mineral oil is an essential technical method to evaluate the ageing condition of oil-paper insulation and the degradation of mechanical properties. Compared with the traditional detection method, Raman spectroscopy is obviously convenient and timesaving in operation. This study explored the method of applying surface enhanced Raman scattering (SERS on quantitative analysis of the furfural dissolved in oil. Oil solution with different concentration of furfural were prepared and calibrated by high-performance liquid chromatography. Confocal laser Raman spectroscopy (CLRS and SERS technology were employed to acquire Raman spectral data. Monte Carlo cross validation (MCCV was used to eliminate the outliers in sample set, then competitive adaptive reweighted sampling (CARS was developed to select an optimal combination of informative variables that most reflect the chemical properties of concern. Based on selected Raman spectral features, support vector machine (SVM combined with particle swarm algorithm (PSO was used to set up a furfural quantitative analysis model. Finally, the generalization ability and prediction precision of the established method were verified by the samples made in lab. In summary, a new spectral method is proposed to quickly detect furfural in oil, which lays a foundation for evaluating the ageing of oil-paper insulation in oil immersed electrical equipment.

  2. Application of surface enhanced Raman scattering and competitive adaptive reweighted sampling on detecting furfural dissolved in transformer oil

    Science.gov (United States)

    Chen, Weigen; Zou, Jingxin; Wan, Fu; Fan, Zhou; Yang, Dingkun

    2018-03-01

    Detecting the dissolving furfural in mineral oil is an essential technical method to evaluate the ageing condition of oil-paper insulation and the degradation of mechanical properties. Compared with the traditional detection method, Raman spectroscopy is obviously convenient and timesaving in operation. This study explored the method of applying surface enhanced Raman scattering (SERS) on quantitative analysis of the furfural dissolved in oil. Oil solution with different concentration of furfural were prepared and calibrated by high-performance liquid chromatography. Confocal laser Raman spectroscopy (CLRS) and SERS technology were employed to acquire Raman spectral data. Monte Carlo cross validation (MCCV) was used to eliminate the outliers in sample set, then competitive adaptive reweighted sampling (CARS) was developed to select an optimal combination of informative variables that most reflect the chemical properties of concern. Based on selected Raman spectral features, support vector machine (SVM) combined with particle swarm algorithm (PSO) was used to set up a furfural quantitative analysis model. Finally, the generalization ability and prediction precision of the established method were verified by the samples made in lab. In summary, a new spectral method is proposed to quickly detect furfural in oil, which lays a foundation for evaluating the ageing of oil-paper insulation in oil immersed electrical equipment.

  3. Petroleum Oils

    Science.gov (United States)

    Different types of crude oil and refined product, of all different chemical compositions, have distinct physical properties. These properties affect the way oil spreads and breaks down, its hazard to marine and human life, and the likelihood of threat.

  4. How does coconut oil affect cognitive performance in alzheimer patients?

    Science.gov (United States)

    De la Rubia Ortí, José Enrique; Sánchez Álvarez, Carmen; Selvi Sabater, Pablo; Bueno Cayo, Alma María; Sancho Castillo, Sandra; Rochina, Mariano Julián; Hu Yang, Iván

    2017-03-30

    Introduction: Alzheimer’s disease is one of the most prevalent neurodegenerative dementia in developed world. This fact, coupled with the lack cure, makes new no pharmacological therapeutic strategies such as nutrient management to investigate. In this regard, it stresses the possible influence of coconut oil as alternative energy source capable of stopping the progressively neuronal death that occurs in this disease. Objectives: To assess the cognitive impact of coconut oil in Alzheimer’s patients, and specifically in orientation, language-building, fixing, calculation-concentration and memory areas. Methods: Prospective, longitudinal, qualitative, analytical and experimental study through a clinical trial where 44 patients with Alzheimer’s in region of Ribera (Valencia), of which half was selected to receive during 21 days, 40 ml coconut oil daily divided between breakfast (20 ml) and food (20 ml). Before and after administration of the oil, they were evaluated through cognitive test Mini-Mental State Examination to determine possible changes. Results: It was observed in patients who received coconut oil, that cognitive improvement after completion of the intervention, statistically significant improved in the orientation and language-construction areas. Conclusions: Coconut oil appears to improve cognitive abilities of Alzheimer’s patients, with different intensity depending on the cognitive area.

  5. Variables affecting lipid oxidation in dried microencapsulated oils

    Directory of Open Access Journals (Sweden)

    Márquez-Ruiz, Gloria

    2003-09-01

    Full Text Available Dried microencapsulated oils are powdery foods or ingredients, prepared by drying natural or formulated emulsions, wherein the oil globules are dispersed in a matrix of saccharides and/or proteins. The study of lipid oxidation in microencapsulated oils is a very difficult task since, in addition to the numerous variables normally involved in lipid oxidation, mainly unsaturation degree, oxygen, light, temperature, prooxidants and antioxidants, other factors exert an important influence in these heterophasic lipid systems. In this paper, the present state of the art on lipid oxidation in dried microencapsulated oils is reviewed, focused on the variables specifically involved in oxidation of these lipid systems. Such variables include those pertaining to the preparation process (type and concentration of the matrix components and drying procedure and those related to the physicochemical properties of microencapsulated oils (particle size, oil globule size, lipid distribution, water activity, pH and interactions between matrix components.Los aceites microencapsulados son alimentos o ingredientes en polvo preparados mediante secado de emulsiones naturales o formuladas, donde los glóbulos de aceite se encuentran dispersos en una matriz de hidratos de carbono y/o proteínas. El estudio de la oxidación lipídica en aceites microencapsulados es muy difícil ya que, además de las numerosas variables implicadas normalmente en la oxidación lipídica, principalmente el grado de insaturación, oxígeno, luz, temperatura, prooxidantes y antioxidantes, en estos sistemas lipídicos heterofásicos existen otros factores que ejercen una importante influencia. En este trabajo, se revisa la situación actual del conocimiento sobre oxidación lipídica en aceites microencapsulados en relación con las variables que intervienen específicamente en la oxidación de estos sistemas lipídicos. Concretamente, dichas variables incluyen las implicadas en el proceso de

  6. Improvement in biodiesel production from soapstock oil by one-stage lipase catalyzed methanolysis

    International Nuclear Information System (INIS)

    Su, Erzheng; Wei, Dongzhi

    2014-01-01

    Highlights: • Soapstock is a less expensive feedstock reservoir for biodiesel production. • Addition of tert-alcohol can enhance the yield of fatty acid methyl ester significantly. • One-stage lipase catalyzed methanolysis of soapstock oil was successfully developed. • FAME yield of 95.2% was obtained with low lipase loading in a shorter reaction time. - Abstract: A major obstacle in the commercialization of biodiesel is its cost of manufacturing, primarily the raw material cost. In order to decrease the cost of biodiesel, soapstock oil was investigated as the feedstock for biodiesel production. Because the soapstock oil containing large amounts of free fatty acids (FFAs) cannot be effectively converted to biodiesel, complicated two-stage process (esterification followed by transesterification) was generally adopted. In this study, simple one-stage lipase catalyzed methanolysis of soapstock oil was developed via one-pot esterification and transesterification. Water produced by lipase catalyzed esterification of FFAs affected the lipase catalyzed transesterification of glycerides in the soapstock oil severely. Addition of tert-alcohol could overcome this problem and enhance the fatty acid methyl ester (FAME) yield from 42.8% to 76.4%. The FAME yield was further elevated to 95.2% by optimizing the methanol/oil molar ratio, lipase amount, and water absorbent. The developed process enables the simple, efficient, and green production of biodiesel from soapstock oil, providing with a potential industrial application

  7. Therapeutic effect of vegetable oils and ubiquinone-9 against radiation affection

    International Nuclear Information System (INIS)

    Kolomijtseva, I.K.; Novoselova, E.G.; Potekhina, N.I.; Obol'nikova, E.A.; Samokhvalov, G.I.; Markevich, L.N.; Kuzin, A.M.

    1985-01-01

    The comparison was made of the protective (the administration 3 h before irradiation with a dose of 7.3 Gy) and therapeutic (the administration immediately and later after exposure) effects of soya oil (150 mg/kg) and oil solution of ubiquinone-9 (100-200 mg/kg) on survival of exposed rats. It was shown that soya oil and ubiquinone-9 increased the survival rate of rats when administered before and, to a lesser extent, immediately after irradiation. Corn oil administered immediately after exposure increased the survival rate as well. DMF for the therapeutic effect of soya oil solution of ubiquinone-9 was 1.08

  8. Regime-switching stochastic volatility. Evidence from the crude oil market

    International Nuclear Information System (INIS)

    Vo, Minh T.

    2009-01-01

    This paper incorporates regime-switching into the stochastic volatility (SV) framework in an attempt to explain the behavior of crude oil prices in order to forecast their volatility. More specifically, it models the volatility of oil return as a stochastic volatility process whose mean is subject to shifts in regime. The shift is governed by a two-state first-order Markov process. The Bayesian Markov Chain Monte Carlo method is used to estimate the models. The main findings are: first, there is clear evidence of regime-switching in the oil market. Ignoring it will lead to a false impression that the volatility is highly persistent and therefore highly predictable. Second, incorporating regime-switching into the SV framework significantly enhances the forecasting power of the SV model. Third, the regime-switching stochastic volatility model does a good job in capturing major events affecting the oil market. (author)

  9. Numerical investigation of complex flooding schemes for surfactant polymer based enhanced oil recovery

    Science.gov (United States)

    Dutta, Sourav; Daripa, Prabir

    2015-11-01

    Surfactant-polymer flooding is a widely used method of chemical enhanced oil recovery (EOR) in which an array of complex fluids containing suitable and varying amounts of surfactant or polymer or both mixed with water is injected into the reservoir. This is an example of multiphase, multicomponent and multiphysics porous media flow which is characterized by the spontaneous formation of complex viscous fingering patterns and is modeled by a system of strongly coupled nonlinear partial differential equations with appropriate initial and boundary conditions. Here we propose and discuss a modern, hybrid method based on a combination of a discontinuous, multiscale finite element formulation and the method of characteristics to accurately solve the system. Several types of flooding schemes and rheological properties of the injected fluids are used to numerically study the effectiveness of various injection policies in minimizing the viscous fingering and maximizing oil recovery. Numerical simulations are also performed to investigate the effect of various other physical and model parameters such as heterogeneity, relative permeability and residual saturation on the quantities of interest like cumulative oil recovery, sweep efficiency, fingering intensity to name a few. Supported by the grant NPRP 08-777-1-141 from the Qatar National Research Fund (a member of The Qatar Foundation).

  10. The asymmetric relationship between oil revenues and economic activities: The case of oil-exporting countries

    International Nuclear Information System (INIS)

    Mehrara, Mohsen

    2008-01-01

    This paper examines the nonlinear or asymmetric relationship between oil revenues and output growth in oil-exporting countries, applying a dynamic panel framework and two different measures of oil shocks. The main results in this paper confirm the stylized facts that in heavily oil-dependent countries lacking the institutional mechanisms de-linking fiscal expenditure from current revenue, oil revenue shocks tend to affect the output in asymmetric and nonlinear ways. The findings suggest that output growth is adversely affected by the negative oil shocks, while oil booms or the positive oil shocks play a limited role in stimulating economic growth. The findings have practical policy implications for decision makers in the area of macroeconomic planning. The use of stabilization and savings funds and diversification of the real sector seems crucial to minimize the harmful effects of oil booms and busts

  11. Options for Environmental Sustainability of the Crude Palm Oil Industry in Thailand through Enhancement of Industrial Ecosystems

    NARCIS (Netherlands)

    Chavalparit, O.; Rulkens, W.H.; Mol, A.P.J.; Khaodhair, S.

    2006-01-01

    The crude palm oil industry plays an important role in the economic development of Thailand and in enhancing the economic welfare of the population. Despite obvious benefits of this industrial development, it also significantly contributes to environmental degradation, both at the input and the

  12. The third oil shock: The effects of lower oil prices

    Energy Technology Data Exchange (ETDEWEB)

    Pearce, J

    1983-01-01

    This book assesses how oil prices have affected other elements of the economy and assesses the costs and benefits that could result from lower oil prices for different groups of countries. The book also analyses the extent of OPEC's influence, the consumers countries' needs for energy security and the altered role of the oil industry.

  13. Injection of multi-azimuth permeable planes in weakly cemented formations for enhanced heavy-oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Hocking, G. [Society of Petroleum Engineers, Richardson, TX (United States)]|[GeoSierra LLC, Norcross, GA (United States); Cavender, T.; Schultz, R.L. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Halliburton Energy Services, Calgary, AB (Canada)

    2008-10-15

    Weakly cemented formations have minimal strength without fracture toughness. As such, the well stimulation process must be different from the fracturing process that occurs in hard rocks. This paper presented field injection experiments of multi-azimuth, injected, vertical planar geometries in several weakly cemented formations. The application of the method to shallow petroleum soft rock reservoirs was described, with particular reference to the thermal and solvent recovery of heavy oil. This study showed that in weakly cemented formations, a well-initiation device can control the azimuth of injected vertical planes, thereby controlling the rate of injection and the viscosity of the injected fluid. The concept of using the multi-azimuth, vertical permeable planes has strong potential in soft-rock formations for enhanced production in both shallow gas and shallow heavy-oil reservoirs. The method can be applied in a single well injector-producer for the continuous injection of steam and the continuous extraction of oil, similar to steam assisted gravity drainage (SAGD) and may be more efficient than a confined horizontal well pair typically used in SAGD. However, the authors noted that the effectiveness of the multi-azimuth process has yet to be proven for oil sand formations. 13 refs., 1 tab., 13 figs.

  14. Enhancement of Thiamine Biosynthesis in Oil Palm Seedlings by Colonization of Endophytic Fungus Hendersonia toruloidea

    Science.gov (United States)

    Kamarudin, Amirah N.; Lai, Kok S.; Lamasudin, Dhilia U.; Idris, Abu S.; Balia Yusof, Zetty N.

    2017-01-01

    Thiamine, or vitamin B1 plays an indispensable role as a cofactor in crucial metabolic reactions including glycolysis, pentose phosphate pathway and the tricarboxylic acid cycle in all living organisms. Thiamine has been shown to play a role in plant adaptation toward biotic and abiotic stresses. The modulation of thiamine biosynthetic genes in oil palm seedlings was evaluated in response to root colonization by endophytic Hendersonia toruloidea. Seven-month-old oil palm seedlings were inoculated with H. toruloidea and microscopic analyses were performed to visualize the localization of endophytic H. toruloidea in oil palm roots. Transmission electron microscopy confirmed that H. toruloidea colonized cortical cells. The expression of thiamine biosynthetic genes and accumulation of total thiamine in oil palm seedlings were also evaluated. Quantitative real-time PCR was performed to measure transcript abundances of four key thiamine biosynthesis genes (THI4, THIC, TH1, and TPK) on days 1, 7, 15, and 30 in response to H. toruloidea colonization. The results showed an increase of up to 12-fold in the expression of all gene transcripts on day 1 post-inoculation. On days 7, 15, and 30 post-inoculation, the relative expression levels of these genes were shown to be downregulated. Thiamine accumulation was observed on day 7 post-colonization and subsequently decreased until day 30. This work provides the first evidence for the enhancement of thiamine biosynthesis by endophytic colonization in oil palm seedlings. PMID:29089959

  15. Coated carbide drill performance under soluble coconut oil lubricant and nanoparticle enhanced MQL in drilling AISI P20

    Science.gov (United States)

    Jamil, N. A. M.; Azmi, A. I.; Fairuz, M. A.

    2016-02-01

    This research experimentally investigates the performance of a TiAlN coated carbide drill bit in drilling AISI P20 through two different kinds of lubricants, namely; soluble coconut oil (SCO) and nanoparticle-enhanced coconut oil (NECO) under minimum quantity lubrication system. The tool life and tool wear mechanism were studied using various cutting speeds of 50, 100 and 150 m/min with a constant feed of 0.01 mm/rev. Since the flank wear land was not regular along the cutting edge, the average flank wear (VB) was measured at several points using image analysis software. The drills were inspected using a scanning electron microscope to further elucidate the wear mechanism. The result indicates that drilling with the nanoparticle- enhanced lubricant was better in resisting the wear and improving the drill life to some extent

  16. Using CO2 Prophet to estimate recovery factors for carbon dioxide enhanced oil recovery

    Science.gov (United States)

    Attanasi, Emil D.

    2017-07-17

    IntroductionThe Oil and Gas Journal’s enhanced oil recovery (EOR) survey for 2014 (Koottungal, 2014) showed that gas injection is the most frequently applied method of EOR in the United States and that carbon dioxide (CO2 ) is the most commonly used injection fluid for miscible operations. The CO2-EOR process typically follows primary and secondary (waterflood) phases of oil reservoir development. The common objective of implementing a CO2-EOR program is to produce oil that remains after the economic limit of waterflood recovery is reached. Under conditions of miscibility or multicontact miscibility, the injected CO2 partitions between the gas and liquid CO2 phases, swells the oil, and reduces the viscosity of the residual oil so that the lighter fractions of the oil vaporize and mix with the CO2 gas phase (Teletzke and others, 2005). Miscibility occurs when the reservoir pressure is at least at the minimum miscibility pressure (MMP). The MMP depends, in turn, on oil composition, impurities of the CO2 injection stream, and reservoir temperature. At pressures below the MMP, component partitioning, oil swelling, and viscosity reduction occur, but the efficiency is increasingly reduced as the pressure falls farther below the MMP. CO2-EOR processes are applied at the reservoir level, where a reservoir is defined as an underground formation containing an individual and separate pool of producible hydrocarbons that is confined by impermeable rock or water barriers and is characterized by a single natural pressure system. A field may consist of a single reservoir or multiple reservoirs that are not in communication but which may be associated with or related to a single structural or stratigraphic feature (U.S. Energy Information Administration [EIA], 2000). The purpose of modeling the CO2-EOR process is discussed along with the potential CO2-EOR predictive models. The data demands of models and the scope of the assessments require tradeoffs between reservoir

  17. The Influence and Compatibility of Vegetable Oils and other ...

    African Journals Online (AJOL)

    ABC_2

    castor oil, sunflower oil, coconut oil and cottonseed oil respectively in different concentrations (10%, 20% and 30% w/w of drug) as permeation enhancers. The films were prepared by incorporating them along with plasticizer [2]. In all cases, 30% w/w concentration of permeation enhancer showed good release and this ...

  18. MEOR (microbial enhanced oil recovery) data base and evaluation of reservoir characteristics for MEOR projects

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, R.S.

    1989-09-01

    One aspect of NIPER's microbial enhanced oil recovery (MEOR) research program has been focused on obtaining all available information regarding the use of microorganisms in enhanced oil recovery field projects. The data have been evaluated in order to construct a data base of MEOR field projects. The data base has been used in this report to present a list of revised reservoir screening criteria for MEOR field processes. This list is by no means complete; however, until more information is available from ongoing field tests, it represents the best available data to date. The data base has been studied in this report in order to determine any significant reports from MEOR field projects where the microbial treatment was unsuccessful. Such information could indicate limitations of MEOR processes. The types of reservoir information sought from these projects that could be limitations of microorganisms include reservoir permeability, salinity, temperature, and high concentrations of minerals in the rock such as selenium, arsenic, or mercury. Unfortunately, most of the MEOR field projects to date have not reported this type of information; thus we still cannot assess field limitations until more projects report these data. 7 refs., 1 fig., 7 tabs.

  19. How the Addition of Spices and Herbs to Virgin Olive Oil to Produce Flavored Oils Affects Consumer Acceptance.

    Science.gov (United States)

    Issaoui, Manel; Flamini, Guido; Souid, Sondess; Bendini, Alessandra; Barbieri, Sara; Gharbi, Ines; Toschi, Tullia Gallina; Cioni, Pier Luigi; Hammami, Mohamed

    2016-06-01

    With the aim to expand the olive oil market to a larger number of consumers who are not familiar with the sensory characteristics of virgin olive oil, the use of novel products known as "flavored olive oils", obtained by adding different kind of spices and aromatic herbs, is spreading in many countries. In order to test consumer acceptability of this type of product, in a country (Tunisia) in which virgin olive oil is regularly consumed, flavored olive oils were prepared by adding aromatic extracts of thyme, oregano, a mix of herbs (used as pizza seasoning), rosemary, and basil to a monovarietal Chemlali virgin olive oil and a consumer test on 206 subjects was performed. Selected quality parameters (free acidity, peroxide number, oxidative stability, specific absorption at K232 nm and K270 nm) were also measured and no significant variations were detected. Slight differences were found concerning the content of minor compounds (chlorophylls, carotenoids and total phenols). On the other hand, notable differences were seen in the profiles of volatile compounds, which appeared to be responsible for the observed variability in consumer acceptance. Although the unflavored oil was more appreciated than the flavored ones, among the latter, thyme flavored olive oil was the most appreciated.

  20. Development of More Effective Biosurfactants for Enhanced Oil Recovery

    Energy Technology Data Exchange (ETDEWEB)

    McInerney, J.J.; Han, S.O.; Maudgalya, S.; Mouttaki, H.; Folmsbee, M.; Knapp, R.; Nagle, D.; Jackson, B.E.; Stuadt, M.; Frey, W.

    2003-01-16

    The objectives of this were two fold. First, core displacement studies were done to determine whether microbial processes could recover residual oil at elevated pressures. Second, the importance of biosurfactant production for the recovery of residual oil was studies. In these studies, a biosurfactant-producing, microorganisms called Bacillus licheniformis strain JF-2 was used. This bacterium produces a cyclic peptide biosurfactant that significantly reduces the interfacial tension between oil and brine (7). The use of a mutant deficient in surfactant production and a mathematical MEOR simulator were used to determine the major mechanisms of oil recovery by these two strains.

  1. Designer-Wet Micromodels for Studying Potential Changes in Wettability during Microbial Enhanced Oil Recovery

    Science.gov (United States)

    Armstrong, R. T.; Wildenschild, D.

    2010-12-01

    Microbial Enhanced Oil Recovery (MEOR) is a process where microorganisms are used for tertiary recovery of oil. Some bacteria can facilitate the mobilization of oil through the production of amphiphilic compounds called biosurfactants that reduce the interfacial tension (IFT) between immiscible phases. Additionally, most bacteria have an inclination to colonize surfaces and form biofilm, which can change a reservoir's wetting properties or clog preferential flow paths. Herein, we aim to understand changes in wettability during MEOR under mixed wettability conditions within silicon etched micromodels and to identify the type of oil field (i.e. based on wettability) in which MEOR is likely to be most profitable. To quantify porous media wettability, macro-scale indexes (obtained with techniques such as the Carter or Amott methods) are used regularly. However, these measurements lack the capability for characterization of changes in wettability during MEOR treatment, and only provide macro-scale information. In an effort to understand micro-scale temporal and spatial changes in wettability we measure interfacial curvature from stereo microscope images using level set methods. Curvature, from the perspective of the oil phase, is positive for a concave interface (i.e. water-wet surface) and negative for a convex interface (i.e. oil-wet surface). Thus, shifts in the radius of curvature distribution (i.e. from positive to negative or conversely) are indicative of wettability changes. Both curvature distributions using level-set methods and the Carter method are used to characterize wettability before and after microbial treatment. In preliminary studies aimed at understanding wettability changes due to microbial surface interactions by Bacillus mojavensis JF-2, oil droplets were placed on glass slides suspended in growth media and the resulting contact angle was measured over time. Results showed that a water-wet surface will become more water wet as JF-2 accumulated in

  2. Influence of the Oil Phase and Topical Formulation on the Wound Healing Ability of a Birch Bark Dry Extract.

    Directory of Open Access Journals (Sweden)

    Isabel Steinbrenner

    Full Text Available Triterpenes from the outer bark of birch are known for various pharmacological effects including enhanced wound healing (WH. A birch bark dry extract (TE obtained by accelerated solvent extraction showed the ability to form oleogels when it is suspended in oils. Consistency of the oleogels and the dissolved amount of triterpenes varies largely with the used oil. Here we wanted to know to what extent different oils and formulations (oleogel versus o/w emulsion influence WH. Looking at the plain oils, medium-chain triglycerides (MCT enhanced WH (ca. 1.4-fold, while e.g. castor oil (ca.0.3-fold or light liquid paraffin (LLP; ca. 0.5-fold significantly decreased WH. Concerning the respective oleogels, TE-MCT showed no improvement although the solubility of the TE was high. In contrast, the oleogel of sunflower oil which alone showed a slight tendency to impair WH, enhanced WH significantly (ca. 1.6-fold. These results can be explained by release experiments where the release rate of betulin, the main component of TE, from MCT oleogels was significantly lower than from sunflower oil oleogels. LLP impaired WH as plain oil and even though it released betulin comparable to sunflower oil it still results in an overall negative effect of the oleogel on WH. As a further formulation option also surfactant free o/w emulsions were prepared using MCT, sunflower oil and LLP as a nonpolar oil phase. Depending on the preparation method (suspension or oleogel method the distribution of the TE varied markedly and affected also release kinetics. However, the released betulin was clearly below the values measured with the respective oleogels. Consequently, none of the emulsions showed a significantly positive effect on WH. In conclusion, our data show that the oil used as a vehicle influences wound healing not only by affecting the release of the extract, but also by having its own vehicle effect on wound healing. This is also of importance for other applications

  3. Effects of dietary supplementation of red pepper (Schinus terebinthifolius Raddi) essential oil on performance, small intestinal morphology and microbial counts of weanling pigs.

    Science.gov (United States)

    Cairo, Pedro Leon Gomes; Gois, Franz Dias; Sbardella, Maicon; Silveira, Hebert; de Oliveira, Roberto Maciel; Allaman, Ivan Bezerra; Cantarelli, Vinicius Souza; Costa, Leandro Batista

    2018-01-01

    Many strategies, such as the antibiotic growth promoters, have been developed to improve intestinal health and performance of newly weaned piglets. Natural products such as essential oils have been scientifically recognized as growth enhancer feed additives for weanling pigs, replacing the antibiotics. Therefore, it has been hypothesized that Brazilian red pepper could replace performance-enhancing antibiotics also in weanling pig diets. However, one experiment was conducted to determine the effects of dietary Brazilian red pepper essential oil or antimicrobial growth promoter on intestinal health and growth performance of weanling pigs. No effects of treatments were observed on performance and organ weights (P > 0.05). Overall, both additives [red pepper essential oil (RPEO) or antibiotic (ANT)] increased gut Lactobacillus counts compared to negative control, as well as reduced villi density (P essential oil from Brazilian red pepper or chlorohydroxyquinoline added in weanling pig diets affect gut microbiota and histology without affecting performance and organ weights. In addition, there was an indication that high doses of essential oil could reduce the incidence of diarrhea. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. A plant oil-containing pH 4 emulsion improves epidermal barrier structure and enhances ceramide levels in aged skin.

    Science.gov (United States)

    Blaak, J; Dähnhardt, D; Dähnhardt-Pfeiffer, S; Bielfeldt, S; Wilhelm, K-P; Wohlfart, R; Staib, P

    2017-06-01

    Xerosis is a serious problem among the very old. It is a dermatological challenge caused by significant alterations in stratum corneum (SC) function and structure. Two negative changes in aged skin are (i) the enhanced skin surface pH and (ii) the altered SC lipid content, composition and ordering. Therefore, we investigated the way in which an acidic skin care product with different plant oils affects SC function, structure and lipid profile in older subjects with dry skin. Before and after a 3-week application period, different biophysical measurements were performed: transepidermal water loss, SC hydration and skin surface pH. In addition, the SC lipid matrix was evaluated by analysis of the intercellular lipid lamellae and the SC lipid profile. After treatment, a significant increase in lipid lamellae in the intercellular space of the SC was observed in the area treated with the test product compared to the untreated area. Furthermore, the ceramide level was found to be increased, although ceramides were not provided by the acidic test formulation. In summary, topical application of a pH 4.0 product containing plant oils improves epidermal barrier formation and SC lipid ordering and ratio in aged dry skin. © 2016 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  5. Oil Depletion and the Energy Efficiency of Oil Production: The Case of California

    Directory of Open Access Journals (Sweden)

    Adam R. Brandt

    2011-10-01

    Full Text Available This study explores the impact of oil depletion on the energetic efficiency of oil extraction and refining in California. These changes are measured using energy return ratios (such as the energy return on investment, or EROI. I construct a time-varying first-order process model of energy inputs and outputs of oil extraction. The model includes factors such as oil quality, reservoir depth, enhanced recovery techniques, and water cut. This model is populated with historical data for 306 California oil fields over a 50 year period. The model focuses on the effects of resource quality decline, while technical efficiencies are modeled simply. Results indicate that the energy intensity of oil extraction in California increased significantly from 1955 to 2005. This resulted in a decline in the life-cycle EROI from 6.5 to 3.5 (measured as megajoules (MJ delivered to final consumers per MJ primary energy invested in energy extraction, transport, and refining. Most of this decline in energy returns is due to increasing need for steam-based thermal enhanced oil recovery, with secondary effects due to conventional resource depletion (e.g., increased water cut.

  6. Study on the reutilization of clear fracturing flowback fluids in surfactant flooding with additives for Enhanced Oil Recovery (EOR).

    Science.gov (United States)

    Dai, Caili; Wang, Kai; Liu, Yifei; Fang, Jichao; Zhao, Mingwei

    2014-01-01

    An investigation was conducted to study the reutilization of clear fracturing flowback fluids composed of viscoelastic surfactants (VES) with additives in surfactant flooding, making the process more efficient and cost-effective. The clear fracturing flowback fluids were used as surfactant flooding system with the addition of α-olefin sulfonate (AOS) for enhanced oil recovery (EOR). The interfacial activity, emulsification activity and oil recovery capability of the recycling system were studied. The interfacial tension (IFT) between recycling system and oil can be reduced by 2 orders of magnitude to 10(-3) mN/m, which satisfies the basic demand of surfactant flooding. The oil can be emulsified and dispersed more easily due to the synergetic effect of VES and AOS. The oil-wet surface of quartz can be easily converted to water-wet through adsorption of surfactants (VES/AOS) on the surface. Thirteen core plug flooding tests were conducted to investigate the effects of AOS concentrations, slug sizes and slug types of the recycling system on the incremental oil recovery. The investigations prove that reclaiming clear fracturing flowback fluids after fracturing operation and reuse it in surfactant flooding might have less impact on environment and be more economical.

  7. Pore network modelling of heavy oil depressurization : a parametric study of factors affecting critical gas saturation and three-phase relative permeabilities

    Energy Technology Data Exchange (ETDEWEB)

    Bondino, I.; McDougall, S.D. [Heriot-Watt Univ., Edinburgh, Scotland (United Kingdom); Hamon, G. [TotalFina Elf Exploration and Production (France)

    2002-07-01

    A review of how the bubble nucleation process affects the efficiency of heavy oil recovery was presented along with a discussion regarding a pore-scale simulator technique to depressurize heavy oil systems. A light oil depressurization simulation is also presented in which a straightforward instantaneous nucleation (IN) model and a more intricate progressive nucleation (PN) model have been used. Simulation results are compared to those derived from the heavy oil systems. The nucleation of bubbles, their growth by solute diffusion and expansion, plus the final stages of coalescence migration and production are the main steps in the depressurization process which were accounted for in a 3-phase simulator. The model can also determine the impact of bubble density and gas-oil diffusion coefficient on critical gas saturation and 3-phase relative permeability. The difference in results for light and heavy oils was also highlighted. In the first scenario, the evolution of gas was characterized by embryonic bubbles that are quickly and randomly nucleated once bubble-point pressure is reached. A stochastic algorithm was developed for PN from experimental observations. IN and PN observations were not necessarily contradictory. It was determined that the high interfacial tension of heavy oils leads to a more compact, capillary-dominated pattern of gas evolution compared to light oils, resulting in improved recoveries for heavy oil systems. 23 refs., 6 tabs., 23 figs.

  8. Enhancement of absorption and bioavailability of echinacoside by verapamil or clove oil

    Directory of Open Access Journals (Sweden)

    Shen JY

    2015-08-01

    Full Text Available Jin-Yang Shen,1,* Xiao-Lin Yang,2,* Zhong-Lin Yang,1 Jun-Ping Kou,1 Fei Li11State Key Laboratory of Natural Medicines, China Pharmaceutical University, 2Key Laboratory of Pharmaceutical and Biological Marine Resources Research and Development of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China*These authors contributed equally to this workPurpose: This present study investigated the absorption kinetics of echinacoside (ECH in situ and in vitro and its oral bioavailability in rats. Additional aim was to find an agent(s to promote ECH absorption and oral bioavailability among two efflux proteins and three absorption promoters.Methods: ECH absorption behaviors were investigated by everted gut sac model in vitro and single-pass intestinal perfusion model in situ. Pharmacokinetics study was performed to investigate the influences of verapamil and clove oil on ECH bioavailability in vivo. All samples were measured at different time intervals by high performance liquid chromatography.Results: The results showed that the effective permeability coefficient (Peff and apparent permeability coefficient of ECH were 0.83×10-6–3.23×10-6 cm/s and 2.99×10-6–9.86×10-6 cm/s, respectively. The Peff among duodenum, jejunum, and ileum were not statistically different, but they were higher than colon (P<0.01, which demonstrated that intestinal ECH absorption was poor and site dependent. Additionally, verapamil and clove oil significantly increased the jejunal Peff of ECH both in situ and in vitro. Moreover, the bioavailability of ECH in combination with verapamil and clove oil were increased by 1.37-fold (P<0.05 and 2.36-fold (P<0.001, respectively, when compared to ECH group. Overall, verapamil and clove oil facilitated ECH absorption and oral bioavailability.Conclusion: The absorption and bioavailability of ECH were enhanced by verapamil and clove oil, respectively, both in vitro and in vivo. Consequently

  9. Enhanced oil recovery using local alkaline | Akpoturi | Nigerian ...

    African Journals Online (AJOL)

    Improvement in productivity is one of the Oil and Gas industry's biggest challenges. About 60% of crude Oil still lay trapped in the reservoir even after primary and secondary recovery process have been completed, hence the need for a method that further improves recovery. In this study, flooding experiment was conducted ...

  10. Enhanced biodegradation of alkane hydrocarbons and crude oil by mixed strains and bacterial community analysis.

    Science.gov (United States)

    Chen, Yu; Li, Chen; Zhou, Zhengxi; Wen, Jianping; You, Xueyi; Mao, Youzhi; Lu, Chunzhe; Huo, Guangxin; Jia, Xiaoqiang

    2014-04-01

    In this study, two strains, Acinetobacter sp. XM-02 and Pseudomonas sp. XM-01, were isolated from soil samples polluted by crude oil at Bohai offshore. The former one could degrade alkane hydrocarbons (crude oil and diesel, 1:4 (v/v)) and crude oil efficiently; the latter one failed to grow on alkane hydrocarbons but could produce rhamnolipid (a biosurfactant) with glycerol as sole carbon source. Compared with pure culture, mixed culture of the two strains showed higher capability in degrading alkane hydrocarbons and crude oil of which degradation rate were increased from 89.35 and 74.32 ± 4.09 to 97.41 and 87.29 ± 2.41 %, respectively. In the mixed culture, Acinetobacter sp. XM-02 grew fast with sufficient carbon source and produced intermediates which were subsequently utilized for the growth of Pseudomonas sp. XM-01 and then, rhamnolipid was produced by Pseudomonas sp. XM-01. Till the end of the process, Acinetobacter sp. XM-02 was inhibited by the rapid growth of Pseudomonas sp. XM-01. In addition, alkane hydrocarbon degradation rate of the mixed culture increased by 8.06 to 97.41 % compared with 87.29 % of the pure culture. The surface tension of medium dropping from 73.2 × 10(-3) to 28.6 × 10(-3) N/m. Based on newly found cooperation between the degrader and the coworking strain, rational investigations and optimal strategies to alkane hydrocarbons biodegradation were utilized for enhancing crude oil biodegradation.

  11. Effects of nitrate injection on microbial enhanced oil recovery and oilfield reservoir souring.

    Science.gov (United States)

    da Silva, Marcio Luis Busi; Soares, Hugo Moreira; Furigo, Agenor; Schmidell, Willibaldo; Corseuil, Henry Xavier

    2014-11-01

    Column experiments were utilized to investigate the effects of nitrate injection on sulfate-reducing bacteria (SRB) inhibition and microbial enhanced oil recovery (MEOR). An indigenous microbial consortium collected from the produced water of a Brazilian offshore field was used as inoculum. The presence of 150 mg/L volatile fatty acids (VFA´s) in the injection water contributed to a high biological electron acceptors demand and the establishment of anaerobic sulfate-reducing conditions. Continuous injection of nitrate (up to 25 mg/L) for 90 days did not inhibit souring. Contrariwise, in nitrogen-limiting conditions, the addition of nitrate stimulated the proliferation of δ-Proteobacteria (including SRB) and the associated sulfide concentration. Denitrification-specific nirK or nirS genes were not detected. A sharp decrease in water interfacial tension (from 20.8 to 14.5 mN/m) observed concomitantly with nitrate consumption and increased oil recovery (4.3 % v/v) demonstrated the benefits of nitrate injection on MEOR. Overall, the results support the notion that the addition of nitrate, at this particular oil reservoir, can benefit MEOR by stimulating the proliferation of fortuitous biosurfactant-producing bacteria. Higher nitrate concentrations exceeding the stoichiometric volatile fatty acid (VFA) biodegradation demands and/or the use of alternative biogenic souring control strategies may be necessary to warrant effective SRB inhibition down gradient from the injection wells.

  12. Effects of different remediation treatments on crude oil contaminated saline soil.

    Science.gov (United States)

    Gao, Yong-Chao; Guo, Shu-Hai; Wang, Jia-Ning; Li, Dan; Wang, Hui; Zeng, De-Hui

    2014-12-01

    Remediation of the petroleum contaminated soil is essential to maintain the sustainable development of soil ecosystem. Bioremediation using microorganisms and plants is a promising method for the degradation of crude oil contaminants. The effects of different remediation treatments, including nitrogen addition, Suaeda salsa planting, and arbuscular mycorrhiza (AM) fungi inoculation individually or combined, on crude oil contaminated saline soil were assessed using a microcosm experiment. The results showed that different remediation treatments significantly affected the physicochemical properties, oil contaminant degradation and bacterial community structure of the oil contaminated saline soil. Nitrogen addition stimulated the degradation of total petroleum hydrocarbon significantly at the initial 30d of remediation. Coupling of different remediation techniques was more effective in degrading crude oil contaminants. Applications of nitrogen, AM fungi and their combination enhanced the phytoremediation efficiency of S. salsa significantly. The main bacterial community composition in the crude oil contaminated saline soil shifted with the remediation processes. γ-Proteobacteria, β-Proteobacteria, and Actinobacteria were the pioneer oil-degraders at the initial stage, and Firmicutes were considered to be able to degrade the recalcitrant components at the later stage. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Separation kinetics of an oil-in-water emulsion under enhanced gravity

    NARCIS (Netherlands)

    Krebs, T.; Schroën, C.G.P.H.; Boom, R.M.

    2012-01-01

    The breakup of crude oil emulsions to produce clean oil and water phases is an important task in crude oil processing. We have investigated the demulsification kinetics of a model oil-in-water emulsion in a centrifugal field to mimic the forces acting on emulsion droplets in oil/water separators

  14. Bioremediation of offshore oil spills

    International Nuclear Information System (INIS)

    Goldman, E.; Tedaldi, D.J.

    1994-01-01

    This research program was directed towards the enhancement of insitu biorestoration of open sea oil spills. Bacteria possessing petroleum degrading enzymes are capable of splitting even thick, viscous oils and tars into lighter fractions. This process will occur at the oil/bacterial interface and depends upon viscosity of the oil, bacterial species, availability of ancillary nutrients, residence times and extent of mixing/oxygenation. Through the enzymatic metabolism of bacteria, a wide range of petroleum oils can be converted almost completely into CO 2 , water, cell mass and harmless biological waste products, usually within 60 to 90 days under favorable conditions. Specifically, this research work focused on the selection and examination of a floating medium which enhances the biodegradation process through improvement of conditions necessary for the process to occur. An additional effort was made to update previous citations of the order of magnitude of oil biodegradation rates and to compare laboratory measurements of biodegradation rates with field or mesocosm measurements

  15. Potentials of enhancing the physicochemical and functional characteristics of Nigella sativa oil by using the screw pressing technique for extraction

    International Nuclear Information System (INIS)

    Hamed, S.F.; Shaaban, H.A.; Ramadan, A.A.; Edris, A.E.

    2017-01-01

    In the current investigation the crude oil of Nigella sativa was extracted from seeds using hydraulic and screw pressing techniques. Different parameters were evaluated in order to find out the appropriate technique to enhance the physicochemical and functional-related characteristics of the extracted crude oil. Results showed that the acid and peroxide values were significantly lower in the screw pressed oil (SPO) than in the hydraulic pressed oil (HPO). The total phenolic content of the SPO was significantly higher than that of HPO. Evaluation of the oxidative stability using the Rancimat test showed that SPO recorded a much higher oxidative stability index (40.07 h) than HPO (0.51 h). The yield of the volatile oil fraction and its contents of thymoquinone isolated from the SPO were higher than that from the HPO. Biological evaluation revealed that the SPO had significantly higher antimicrobial activity than HPO against Listeria monocytogenes and Staphylococcus aureus at 40 μL/well. [es

  16. Integration of Gas Enhanced Oil Recovery in Multiphase Fermentations for the Microbial Production of Fuels and Chemicals.

    Science.gov (United States)

    Pedraza-de la Cuesta, Susana; Keijzers, Lore; van der Wielen, Luuk A M; Cuellar, Maria C

    2018-04-01

    In multiphase fermentations where the product forms a second liquid phase or where solvents are added for product extraction, turbulent conditions disperse the oil phase as droplets. Surface-active components (SACs) present in the fermentation broth can stabilize the product droplets thus forming an emulsion. Breaking this emulsion increases process complexity and consequently the production cost. In previous works, it has been proposed to promote demulsification of oil/supernatant emulsions in an off-line batch bubble column operating at low gas flow rate. The aim of this study is to test the performance of this recovery method integrated to a fermentation, allowing for continuous removal of the oil phase. A 500 mL bubble column is successfully integrated with a 2 L reactor during 24 h without affecting cell growth or cell viability. However, higher levels of surfactants and emulsion stability are measured in the integrated system compared to a base case, reducing its capacity for oil recovery. This is related to release of SACs due to cellular stress when circulating through the recovery column. Therefore, it is concluded that the gas bubble-induced oil recovery method allows for oil separation and cell recycling without compromising fermentation performance; however, tuning of the column parameters considering increased levels of SACs due to cellular stress is required for improving oil recovery. © 2018 The Authors. Biotechnology Journal Published by Wiley-VCHVerlag GmbH & Co. KGaA, Weinheim.

  17. AFFECT: Altered-Fidelity Framework for Enhancing Cognition and Training

    Directory of Open Access Journals (Sweden)

    Ryan Patrick McMahan

    2016-11-01

    Full Text Available In this paper, we present a new framework for analyzing and designing virtual reality (VR techniques. This framework is based on two concepts—system fidelity (i.e., the degree with which real-world experiences are reproduced by a system and memory (i.e., the formation and activation of perceptual, cognitive, and motor networks of neurons. The premise of the framework is to manipulate an aspect of system fidelity in order to assist a stage of memory. We call it the Altered-Fidelity Framework for Enhancing Cognition and Training (AFFECT. AFFECT provides nine categories of approaches to altering system fidelity to positively affect learning or training. These categories are based on the intersections of three aspects of system fidelity (interaction fidelity, scenario fidelity, and display fidelity and three stages of memory (encoding, implicit retrieval, and explicit retrieval. In addition to discussing the details of our new framework, we show how AFFECT can be used as a tool for analyzing and categorizing VR techniques designed to facilitate learning or training. We also demonstrate how AFFECT can be used as a design space for creating new VR techniques intended for educational and training systems.

  18. Shear and Rapeseed Oil Addition Affect the Crystal Polymorphic Behavior of Milk Fat

    DEFF Research Database (Denmark)

    Kaufmann, Niels; Kirkensgaard, Jacob Judas Kain; Andersen, Ulf

    2013-01-01

    The effect of shear on the crystallization kinetics of anhydrous milk fat (AMF) and blends with 20 and 30 % w/w added rapeseed oil (RO) was studied. Pulse 1H NMR was used to follow the a to b0 polymorphic transition. The NMR method was confirmed and supported by SAXS/WAXS experiments. Samples were...... faster in the presence of RO allowing more room for the conformational changes to occur. Final SFC decreased with increasing RO content. Shear applied in 20 and 30 % blends caused the destruction of b0-related 3L structure leaving only 2L packing. In AMF and statically crystallized samples, both 3L and 2......L packing existed. Shear did not affect the amount of b crystals formed. The study shows that both shear and RO affect the polymorphic behavior of milk fat, and that 1H NMR is able to detect polymorphic transition in blends with up to 30 % w/w RO....

  19. Estimation on oil demand and oil saving potential of China's road transport sector

    International Nuclear Information System (INIS)

    Lin, Boqiang; Xie, Chunping

    2013-01-01

    China is currently in the stage of industrialization and urbanization, which is characterized by rigid energy demand and rapid growth of energy consumption. Therefore, energy conservation will become a major strategy for China in a transition to low-carbon economy. China's transport industry is of high energy consumption. In 2010, oil consumption in transport industry takes up 38.2% of the country's total oil demand, of which 23.6% is taken up by road transport sector. As a result, oil saving in China's road transport sector is vital to the whole nation. The co-integration method is developed to find a long-run relationship between oil consumption and affecting factors such as GDP, road condition, labor productivity and oil price, to estimate oil demand and to predict future oil saving potential in China's transport sector under different oil-saving scenarios. Monte Carlo simulation is further used for risk analysis. Results show that under BAU condition, oil demand of China's road transport sector will reach 278.5 million ton of oil equivalents (MTOE) in 2020. Oil saving potential will be 86 MTOE and 131 MTOE under moderate oil-saving scenario and advanced oil-saving scenario, respectively. This paper provides a reference to establishing oil saving policy for China's road transport sector. - Highlights: • We adopt the co-integration model to estimate oil demand and oil saving potential of China's road transport sector. • Monte Carlo simulation is further used for risk analysis. • GDP, ratio of classified highway, labor productivity and oil price are main factors affecting oil consumption. • Scenario analysis approach is applied to calculate oil saving potential under different energy saving scenarios. • Future policy for oil conservation in China's road transport sector is suggested

  20. Biosurfactant-biopolymer driven microbial enhanced oil recovery (MEOR) and its optimization by an ANN-GA hybrid technique.

    Science.gov (United States)

    Dhanarajan, Gunaseelan; Rangarajan, Vivek; Bandi, Chandrakanth; Dixit, Abhivyakti; Das, Susmita; Ale, Kranthikiran; Sen, Ramkrishna

    2017-08-20

    A lipopeptide biosurfactant produced by marine Bacillus megaterium and a biopolymer produced by thermophilic Bacillus licheniformis were tested for their application potential in the enhanced oil recovery. The crude biosurfactant obtained after acid precipitation effectively reduced the surface tension of deionized water from 70.5 to 28.25mN/m and the interfacial tension between lube oil and water from 18.6 to 1.5mN/m at a concentration of 250mgL -1 . The biosurfactant exhibited a maximum emulsification activity (E 24 ) of 81.66% against lube oil. The lipopeptide micelles were stabilized by addition of Ca 2+ ions to the biosurfactant solution. The oil recovery efficiency of Ca 2+ conditioned lipopeptide solution from a sand-packed column was optimized by using artificial neural network (ANN) modelling coupled with genetic algorithm (GA) optimization. Three important parameters namely lipopeptide concentration, Ca 2+ concentration and solution pH were considered for optimization studies. In order to further improve the recovery efficiency, a water soluble biopolymer produced by Bacillus licheniformis was used as a flooding agent after biosurfactant incubation. Upon ANN-GA optimization, 45% tertiary oil recovery was achieved, when biopolymer at a concentration of 3gL -1 was used as a flooding agent. Oil recovery was only 29% at optimal conditions predicted by ANN-GA, when only water was used as flooding solution. The important characteristics of biopolymers such as its viscosity, pore plugging capabilities and bio-cementing ability have also been tested. Thus, as a result of biosurfactant incubation and biopolymer flooding under the optimal process conditions, a maximum oil recovery of 45% was achieved. Therefore, this study is novel, timely and interesting for it showed the combined influence of biosurfactant and biopolymer on solubilisation and mobilization of oil from the soil. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. ECOLOGY SAFETY TECHNOLOGIES OF UNCONVENTIONAL OIL RESERVES RECOVERY FOR SUSTAINABLE OIL AND GAS INDUSTRY DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Viacheslav Zyrin

    2016-09-01

    Full Text Available The problem of effective technology for heavy oil recovery nowadays has a great importance, because of worsening geological conditions of the developed deposits, decreasing recovery factor, increasing the part of heavy oil. For the future sustainable development of oil producing industry the involved technologies must require energy effectiveness and ecological safety. The paper proves the enhanced oil recovery methods necessity for heavy oil deposits, highlighted thermal technologies as the most effective. But traditional thermal treatment technologies is a source of air pollutant emission, such as CO, NO etc. The calculation of emissions for traditional steam generator is provided. Besides, the paper shows the effectiveness of electrical enhanced oil recovery methods. The advantages of associated gas as a fuel for cogeneration plants is shown. The main approaches to implementation of carbon dioxide sequestration technologies in the oil and gas industry of Russia are defined. Conceptual view of СО2-EOR technologies potential within the context of sustainable development of oil and gas industry are presented. On the basis of the conducted research a number of scientific research and practical areas of the CCS technology development are revealed.

  2. ECONOMIC CONSEQUENCES OF PEAK OIL FOR THE MAJOR MULTINATIONAL OIL AND GAS COMPANIES

    Directory of Open Access Journals (Sweden)

    Antonio García-Amate

    2018-03-01

    Full Text Available The main goal of this work is to analyze the financial statements of the five major multinational oil and gas companies, for the 2011-2015 period, in the framework of the peak oil phenomenon. Peak oil can affect key financial indicators (e.g., earnings volatility, leverage that are used by managers, investors, and stockholders and which may potentially lead to changes in the decision making by management. Our results show that the decline in oil production affects the decisions about investment in new oil wells, leverage, dividends paid, shares purchased and net income involving the five major companies. In addition, we study the evolution of oil prices, and its influence in several items of the financial statements. Even though oil prices were at high levels during 2011-2014, however, the net income of the five companies actually declined due to the impact of peak oil. Finally, data for the last year studied (2015 indicate a general deterioration in return ratios and other accounting variables. Although the new investments should have been profitable, they have been influenced by peak oil, compromising the economic position of the companies. The advice to these companies would be to relax their investments, especially during a period of falling oil prices. Company managers need to recognize the prolonged duration of peak oil and price trends to promote profitability recovery decisions.

  3. Oil flow in deep waters: comparative study between light oils and heavy oils

    Energy Technology Data Exchange (ETDEWEB)

    Andreolli, Ivanilto [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2009-12-19

    Ultra deeper waters fields are being exploited due to technological development. Under this scenario, the flow design is accomplished through pipelines subjected to low temperature and high pressure. Moreover, these flow lines are usually long causing a fast fluid cooling, which may affect flow assurance in some cases. Problems during topsides production plant's restart might occur if the oil is viscous and even in steady state a significant different behavior can be noticed, if compared to a less viscous oil. A comparison between light and heavy oil through a case study with the objective to show some heavy oil flow particularities is the purpose of this paper. Permanent and transient analyses for a specific geometry are presented. The results showed that thermal and proper viscosity modeling are required for heavy oil flow, differently from that of light oil flow, due to the exponential viscosity dependence to temperature and because the predominant laminar regime. In addition, on heavier and heavier oil flow systems, it is essential to consider exportation system's restart. (author)

  4. Microbial Enhanced Oil Recovery-Laboratory Experiments with a Strain of Clostridium tyrobutyricum

    DEFF Research Database (Denmark)

    Jimoh, Ismaila Adetunji

    the desired metabolic products needed for enhanced oil recovery. In this study, experiments have been performed with a strain of Clostridium tyrobutyricum. The experiments focused on salinity adaptation, gas production and the ability of microbes to modify rock properties. The result of the experiments showed...... that the strain of Clostridium tyrobutyricum adapted to 10, 30, 50, and 90 g/l before the start of the experiments produce more gas with an increase factor of between 0.39-6.9 for the same salinity condition than the pure culture. The adaptation process also led to the production of a strain 90F which can grow...

  5. Maximization of wave motion within a hydrocarbon reservoir for wave-based enhanced oil recovery

    KAUST Repository

    Jeong, C.

    2015-05-01

    © 2015 Elsevier B.V. We discuss a systematic methodology for investigating the feasibility of mobilizing oil droplets trapped within the pore space of a target reservoir region by optimally directing wave energy to the region of interest. The motivation stems from field and laboratory observations, which have provided sufficient evidence suggesting that wave-based reservoir stimulation could lead to economically viable oil recovery.Using controlled active surface wave sources, we first describe the mathematical framework necessary for identifying optimal wave source signals that can maximize a desired motion metric (kinetic energy, particle acceleration, etc.) at the target region of interest. We use the apparatus of partial-differential-equation (PDE)-constrained optimization to formulate the associated inverse-source problem, and deploy state-of-the-art numerical wave simulation tools to resolve numerically the associated discrete inverse problem.Numerical experiments with a synthetic subsurface model featuring a shallow reservoir show that the optimizer converges to wave source signals capable of maximizing the motion within the reservoir. The spectra of the wave sources are dominated by the amplification frequencies of the formation. We also show that wave energy could be focused within the target reservoir area, while simultaneously minimizing the disturbance to neighboring formations - a concept that can also be exploited in fracking operations.Lastly, we compare the results of our numerical experiments conducted at the reservoir scale, with results obtained from semi-analytical studies at the granular level, to conclude that, in the case of shallow targets, the optimized wave sources are likely to mobilize trapped oil droplets, and thus enhance oil recovery.

  6. HEAVY-OIL PRODUCTION USING EMULSION FLOODING

    African Journals Online (AJOL)

    user

    ... American Petroleum Institute, EOR = Enhanced Oil Recovery, GOR = Gas Oil Ratio ... concentration, 166.003 is the constant (molar mass of ... (molar mass of CaCO3),1M is the constant value. ... volume of prepared oil-in-water emulsion, that.

  7. Production of a Lipopeptide Biosurfactant by a Novel Bacillus sp. and Its Applicability to Enhanced Oil Recovery.

    Science.gov (United States)

    Varadavenkatesan, Thivaharan; Murty, Vytla Ramachandra

    2013-01-01

    Biosurfactants are surface-active compounds derived from varied microbial sources including bacteria and fungi. They are secreted extracellularly and have a wide range of exciting properties for bioremediation purposes. They also have vast applications in the food and medicine industry. With an objective of isolating microorganisms for enhanced oil recovery (EOR) operations, the study involved screening of organisms from an oil-contaminated site. Morphological, biochemical, and 16S rRNA analysis of the most promising candidate revealed it to be Bacillus siamensis, which has been associated with biosurfactant production, for the first time. Initial fermentation studies using mineral salt medium supplemented with crude oil resulted in a maximum biosurfactant yield of 0.64 g/L and reduction of surface tension to 36.1 mN/m at 96 h. Characterization studies were done using thin layer chromatography and Fourier transform infrared spectroscopy. FTIR spectra indicated the presence of carbonyl groups, alkyl bonds, and C-H and N-H stretching vibrations, typical of peptides. The extracted biosurfactant was stable at extreme temperatures, pH, and salinity. Its applicability to EOR was further verified by conducting sand pack column studies that yielded up to 60% oil recovery.

  8. Potential Environmental Factors Affecting Oil-Degrading Bacterial Populations in Deep and Surface Waters of the Northern Gulf of Mexico.

    Science.gov (United States)

    Liu, Jiqing; Bacosa, Hernando P; Liu, Zhanfei

    2016-01-01

    Understanding bacterial community dynamics as a result of an oil spill is important for predicting the fate of oil released to the environment and developing bioremediation strategies in the Gulf of Mexico. In this study, we aimed to elucidate the roles of temperature, water chemistry (nutrients), and initial bacterial community in selecting oil degraders through a series of incubation experiments. Surface (2 m) and bottom (1537 m) waters, collected near the Deepwater Horizon site, were amended with 200 ppm light Louisiana sweet crude oil and bacterial inoculums from surface or bottom water, and incubated at 4 or 24°C for 50 days. Bacterial community and residual oil were analyzed by pyrosequencing and gas chromatography-mass spectrometry (GC-MS), respectively. The results showed that temperature played a key role in selecting oil-degrading bacteria. Incubation at 4°C favored the development of Cycloclasticus, Pseudoalteromonas , Sulfitobacter , and Reinekea , while 24°C incubations enhanced Oleibacter, Thalassobius, Phaeobacter, and Roseobacter. Water chemistry and the initial community also had potential roles in the development of hydrocarbon-degrading bacterial communities. Pseudoalteromonas , Oleibacter , and Winogradskyella developed well in the nutrient-enriched bottom water, while Reinekea and Thalassobius were favored by low-nutrient surface water. We revealed that the combination of 4°C, crude oil and bottom inoculum was a key factor for the growth of Cycloclasticus , while the combination of surface inoculum and bottom water chemistry was important for the growth of Pseudoalteromonas . Moreover, regardless of the source of inoculum, bottom water at 24°C was a favorable condition for Oleibacter. Redundancy analysis further showed that temperature and initial community explained 57 and 19% of the variation observed, while oil and water chemistry contributed 14 and 10%, respectively. Overall, this study revealed the relative roles of temperature, water

  9. Protective effects of dietary glycine and glutamic acid toward the toxic effects of oxidized mustard oil in rabbits.

    Science.gov (United States)

    Zeb, Alam; Rahman, Saleem Ur

    2017-01-25

    The protective role of glycine and glutamic acid against the toxic effects of oxidized oil was studied for the first time. Mustard seed oil was thermally oxidized and characterized for quality characteristics and polyphenolic composition using reversed phase HPLC-DAD. Significant changes in the quality characteristics occurred with thermal oxidation. Fourteen polyphenolic compounds were identified and quantified in oils. Quercetin-3-glucoside, quercetin-3-feruloylsophoroside, catechin, quercetin-3-rutinoside, quercetin-3,7-diglucoside, sinapic acid and vanillic acid hexoside were the major compounds in the fresh and oxidized oil. Oxidized, un-oxidized mustard oils, glycine and glutamic acid were given to rabbits alone or in combination. The biochemical responses were studied in terms of haematological and biochemical parameters and histopathology. It has been observed that biochemical and haematological parameters were adversely affected by the oxidized oil, while supplementation of both amino acids was beneficial in normalizing these parameters. Both amino acids alone have no significant effects, however, oxidized oil affected the liver by enhancing fat accumulation, causing hepatitis, reactive Kupffer cells and necrosis. The co-administration of oxidized oils with glycine or glutamic acid revealed significant recovery of the liver structure and function. In conclusion, glycine or glutamic acid is beneficial and protective against food toxicity and can be considered as an ameliorative food supplement.

  10. Simulation study of huff-n-puff air injection for enhanced oil recovery in shale oil reservoirs

    Directory of Open Access Journals (Sweden)

    Hu Jia

    2018-03-01

    Full Text Available This paper is the first attempt to evaluate huff-n-puff air injection in a shale oil reservoir using a simulation approach. Recovery mechanisms and physical processes of huff-n-puff air injection in a shale oil reservoir are investigated through investigating production performance, thermal behavior, reservoir pressure and fluid saturation features. Air flooding is used as the basic case for a comparative study. The simulation study suggests that thermal drive is the main recovery mechanism for huff-n-puff air injection in the shale oil reservoir, but not for simple air flooding. The synergic recovery mechanism of air flooding in conventional light oil reservoirs can be replicated in shale oil reservoirs by using air huff-n-puff injection strategy. Reducing huff-n-puff time is better for performing the synergic recovery mechanism of air injection. O2 diffusion plays an important role in huff-n-puff air injection in shale oil reservoirs. Pressure transmissibility as well as reservoir pressure maintenance ability in huff-n-puff air injection is more pronounced than the simple air flooding after primary depletion stage. No obvious gas override is exhibited in both air flooding and air huff-n-puff injection scenarios in shale reservoirs. Huff-n-puff air injection has great potential to develop shale oil reservoirs. The results from this work may stimulate further investigations.

  11. Quality characteristics of edible linseed oil

    Directory of Open Access Journals (Sweden)

    M. NYKTER

    2008-12-01

    Full Text Available In this review the quality properties of linseed oil for food uses are discussed as well as factors affecting this quality. Linseed oil has a favourable fatty acid composition with a high linolenic acid content. Linseed oil contains nearly 60% á-linolenic acid, compared with 25% for plant oils generally. The content of linolenic acid and omega-3 fatty acids is reported to be high in linseed grown in northern latitudes. The composition of fatty acids, especially unsaturated fatty acids, reported in different studies varies considerably for linseed oil. This variation depends mainly on differences in the examined varieties and industrial processing treatments. The fatty acid composition leads also to some problems, rancidity probably being the most challenging. Some information has been published concerning oxidation and taste, whereas only a few studies have focused on colour or microbiological quality. Rancidity negatively affects the taste and odour of the oil. There are available a few studies on effects of storage on composition of linseed oil. In general, storage and heat promote auto-oxidation of fats, as well as decrease the amounts of tocopherols and vitamin E in linseed oil. Several methods are available to promote the quality of the oil, including agronomic methods and methods of breeding as well as chemical, biotechnological and microbiological methods. Time of harvesting and weather conditions affect the quality and yield of the oil.;

  12. Study of Synthesis Polyethylene glycol oleate Sulfonated as an Anionic Surfactant for Enhanced Oil Recovery (EOR)

    Science.gov (United States)

    Sampora, Yulianti; Juwono, Ariadne L.; Haryono, Agus; Irawan, Yan

    2017-11-01

    Mechanical Enhanced Oil Recovery (EOR) through chemical injection is using an anionic surfactant to improve the recovery of oil residues, particularly in a reservoir area that has certain characteristics. This case led the authors to conduct research on the synthesis of an anionic surfactant based on oleic acid and polyethylene glycol 400 that could be applied as a chemical injection. In this work, we investigate the sulfonation of Polyethylene glycol oleate (PDO) in a sulfuric acid agent. PDO in this experiment was derived from Indonesian palm oil. Variation of mole reactant and reaction time have been studied. The surfactant has been characterized by measuring the interfacial tension, acid value, ester value, saponification value, iodine value, Fourier Transform Infrared (FTIR), and particle size analyzer. There is a new peak at 1170-1178 cm-1 indicating that S=O bond has formed. PDO sulfonate exhibits good surface activity due to interfacial tension of 0,003 mN/m. Thus, polyethylene glycol oleate sulfonate was successfully synthesized and it could be useful as a novel an anionic surfactant.

  13. Study on the reutilization of clear fracturing flowback fluids in surfactant flooding with additives for Enhanced Oil Recovery (EOR.

    Directory of Open Access Journals (Sweden)

    Caili Dai

    Full Text Available An investigation was conducted to study the reutilization of clear fracturing flowback fluids composed of viscoelastic surfactants (VES with additives in surfactant flooding, making the process more efficient and cost-effective. The clear fracturing flowback fluids were used as surfactant flooding system with the addition of α-olefin sulfonate (AOS for enhanced oil recovery (EOR. The interfacial activity, emulsification activity and oil recovery capability of the recycling system were studied. The interfacial tension (IFT between recycling system and oil can be reduced by 2 orders of magnitude to 10(-3 mN/m, which satisfies the basic demand of surfactant flooding. The oil can be emulsified and dispersed more easily due to the synergetic effect of VES and AOS. The oil-wet surface of quartz can be easily converted to water-wet through adsorption of surfactants (VES/AOS on the surface. Thirteen core plug flooding tests were conducted to investigate the effects of AOS concentrations, slug sizes and slug types of the recycling system on the incremental oil recovery. The investigations prove that reclaiming clear fracturing flowback fluids after fracturing operation and reuse it in surfactant flooding might have less impact on environment and be more economical.

  14. Desorption of hydrocarbon chains by association with ionic and nonionic surfactants under flow as a mechanism for enhanced oil recovery.

    Science.gov (United States)

    Terrón-Mejía, Ketzasmin A; López-Rendón, Roberto; Goicochea, Armando Gama

    2017-08-29

    The need to extract oil from wells where it is embedded on the surfaces of rocks has led to the development of new and improved enhanced oil recovery techniques. One of those is the injection of surfactants with water vapor, which promotes desorption of oil that can then be extracted using pumps, as the surfactants encapsulate the oil in foams. However, the mechanisms that lead to the optimal desorption of oil and the best type of surfactants to carry out desorption are not well known yet, which warrants the need to carry out basic research on this topic. In this work, we report non equilibrium dissipative particle dynamics simulations of model surfactants and oil molecules adsorbed on surfaces, with the purpose of studying the efficiency of the surfactants to desorb hydrocarbon chains, that are found adsorbed over flat surfaces. The model surfactants studied correspond to nonionic and cationic surfactants, and the hydrocarbon desorption is studied as a function of surfactant concentration under increasing Poiseuille flow. We obtain various hydrocarbon desorption isotherms for every model of surfactant proposed, under flow. Nonionic surfactants are found to be the most effective to desorb oil and the mechanisms that lead to this phenomenon are presented and discussed.

  15. Amphiphilic copolymers based on PEG-acrylate as surface active water viscosifiers : Towards new potential systems for enhanced oil recovery

    NARCIS (Netherlands)

    Raffa, Patrizio; Broekhuis, Antonius A.; Picchioni, Francesco

    2016-01-01

    With the purpose of investigating new potential candidates for enhanced oil recovery (EOR), amphiphilic copolymers based on Poly(ethylene glycol) methyl ether acrylate (PEGA) have been prepared by Atom Transfer Radical Polymerization (ATRP). A P(PEGA) homopolymer, a block copolymer with styrene

  16. Economic effects of peak oil

    International Nuclear Information System (INIS)

    Lutz, Christian; Lehr, Ulrike; Wiebe, Kirsten S.

    2012-01-01

    Assuming that global oil production peaked, this paper uses scenario analysis to show the economic effects of a possible supply shortage and corresponding rise in oil prices in the next decade on different sectors in Germany and other major economies such as the US, Japan, China, the OPEC or Russia. Due to the price-inelasticity of oil demand the supply shortage leads to a sharp increase in oil prices in the second scenario, with high effects on GDP comparable to the magnitude of the global financial crises in 2008/09. Oil exporting countries benefit from high oil prices, whereas oil importing countries are negatively affected. Generally, the effects in the third scenario are significantly smaller than in the second, showing that energy efficiency measures and the switch to renewable energy sources decreases the countries' dependence on oil imports and hence reduces their vulnerability to oil price shocks on the world market. - Highlights: ► National and sectoral economic effects of peak oil until 2020 are modelled. ► The price elasticity of oil demand is low resulting in high price fluctuations. ► Oil shortage strongly affects transport and indirectly all other sectors. ► Global macroeconomic effects are comparable to the 2008/2009 crisis. ► Country effects depend on oil imports and productivity, and economic structures.

  17. Chemically dispersed oil is cytotoxic and genotoxic to sperm whale skin cells.

    Science.gov (United States)

    Wise, Catherine F; Wise, James T F; Wise, Sandra S; Wise, John Pierce

    2018-06-01

    Two major oil crises in United States history, the 1989 Exxon-Valdez oil spill in Alaska and the 2010 Deepwater Horizon Oil Rig explosion in the Gulf of Mexico, drew attention to the need for toxicological experiments on oil and chemically dispersed oil. We are still learning the effects these spills had on wildlife. However, little data is known about the toxicity of these substances in marine mammals. The objective of this study is to determine the toxicity of Alaskan oil, as well as chemically dispersed oil. Oil experiments were performed using the water accommodated fraction of Alaskan oil (WAF) and the chemically enhanced water accommodated fraction of Alaskan oil (CEWAF). The Alaskan WAF is not cytotoxic to sperm whale skin cells though it did induce chromosome damage; S9-mediated metabolism did not affect the cytotoxicity of WAF but did increase the levels of chromosome damage. Alaskan CEWAF is more cytotoxic and genotoxic than the WAF; S9 mediated metabolism increased both cytotoxicity and genotoxicity of CEWAF. Analysis of the PAH content of Alaskan WAF and CEWAF revealed a forty-fold increase in the total levels of PAHs in CEWAF compared to WAF. These findings show that chemically dispersed oil leads to higher levels of PAH exposure which are more toxic and likely to lead to longer and more persistent health effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Analysing oil-production subsidies

    Science.gov (United States)

    Steenblik, Ronald

    2017-11-01

    Understanding how subsidies affect fossil-fuel investment returns and production is crucial to commencing new reforms. New analysis on the impact of subsidies on US crude-oil producers finds that, at recent oil prices of around US50 per barrel, tax preferences and other subsidies push nearly half of new oil investments into profitability.

  19. Upgrading of heavy crude oil with supported and unsupported transition metals

    Energy Technology Data Exchange (ETDEWEB)

    Nares, H.R.; Schacht-Hernandez, P.; Cabrera-Reyes, M.C.; Ramirez-Garnica, M.; Cazarez-Candia, O. [Instituto Mexicano del Petroleo, Atepehuacan (Mexico)

    2006-07-01

    Heavy crude oil presents many problems such as difficulty in transportation, low processing capacity in refineries, and low mobility through the reservoir due to high viscosity which affects the index of productivity of the wells. Because of these challenges, it is necessary to enhance heavy crude oil, both aboveground and underground. The effects of several metallic oxides used to upgrade heavy crude oil properties were examined in order to increase the mobility of reservoir oil by reducing viscosity and improving the quality of the oil. This can be accomplished by reducing the asphaltene and sulfur contents and increasing the American Petroleum Institute (API) gravity using transition metal supported in alumina and unsupported from transition metals derived from either acetylacetonate or alkylhexanoate in liquid phase homogeneously mixed with heavy crude oil as well as metal transition supported in alumina. KU-H heavy crude oil from the Golf of Mexico was studied. The results were obtained by Simulated Distillation and True Boiling Point (TBP). It was concluded that the use of crude oil thermal hydrocracking allowed the API gravity to increase and considerably reduce the viscosity. As a result, the productivity index in wells was increased. However there is a high formation of coke that could damage the conductivity of the rock and then reduce the potential of oil recovery. 27 refs., 3 tabs., 5 figs.

  20. Assessing fuel spill risks in polar waters: Temporal dynamics and behaviour of hydrocarbons from Antarctic diesel, marine gas oil and residual fuel oil.

    Science.gov (United States)

    Brown, Kathryn E; King, Catherine K; Kotzakoulakis, Konstantinos; George, Simon C; Harrison, Peter L

    2016-09-15

    As part of risk assessment of fuel oil spills in Antarctic and subantarctic waters, this study describes partitioning of hydrocarbons from three fuels (Special Antarctic Blend diesel, SAB; marine gas oil, MGO; and intermediate grade fuel oil, IFO 180) into seawater at 0 and 5°C and subsequent depletion over 7days. Initial total hydrocarbon content (THC) of water accommodated fraction (WAF) in seawater was highest for SAB. Rates of THC loss and proportions in equivalent carbon number fractions differed between fuels and over time. THC was most persistent in IFO 180 WAFs and most rapidly depleted in MGO WAF, with depletion for SAB WAF strongly affected by temperature. Concentration and composition remained proportionate in dilution series over time. This study significantly enhances our understanding of fuel behaviour in Antarctic and subantarctic waters, enabling improved predictions for estimates of sensitivities of marine organisms to toxic contaminants from fuels in the region. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Oil shale technology

    International Nuclear Information System (INIS)

    Lee, S.

    1991-01-01

    Oil shale is undoubtedly an excellent energy source that has great abundance and world-wide distribution. Oil shale industries have seen ups and downs over more than 100 years, depending on the availability and price of conventional petroleum crudes. Market forces as well as environmental factors will greatly affect the interest in development of oil shale. Besides competing with conventional crude oil and natural gas, shale oil will have to compete favorably with coal-derived fuels for similar markets. Crude shale oil is obtained from oil shale by a relatively simple process called retorting. However, the process economics are greatly affected by the thermal efficiencies, the richness of shale, the mass transfer effectiveness, the conversion efficiency, the design of retort, the environmental post-treatment, etc. A great many process ideas and patents related to the oil shale pyrolysis have been developed; however, relatively few field and engineering data have been published. Due to the vast heterogeneity of oil shale and to the complexities of physicochemical process mechanisms, scientific or technological generalization of oil shale retorting is difficult to achieve. Dwindling supplied of worldwide petroleum reserves, as well as the unprecedented appetite of mankind for clean liquid fuel, has made the public concern for future energy market grow rapidly. the clean coal technology and the alternate fuel technology are currently of great significance not only to policy makers, but also to process and chemical researchers. In this book, efforts have been made to make a comprehensive text for the science and technology of oil shale utilization. Therefore, subjects dealing with the terminological definitions, geology and petrology, chemistry, characterization, process engineering, mathematical modeling, chemical reaction engineering, experimental methods, and statistical experimental design, etc. are covered in detail

  2. Fifth DOE symposium on enhanced oil and gas recovery and improved drilling technology. Volume 2. Oil

    Energy Technology Data Exchange (ETDEWEB)

    Linville, B. [ed.

    1979-01-01

    Volume 2 contains papers from the following sessions: residual oil determination; thermal methods; heavy oil-tar sands; technology transfer; and carbon dioxide flooding. Individual papers were processed.

  3. Investigated Miscible CO2 Flooding for Enhancing Oil Recovery in Wettability Altered Chalk and Sandstone Rocks

    Energy Technology Data Exchange (ETDEWEB)

    Tabrizy, Vahid Alipour

    2012-07-01

    The thesis addresses oil recovery by miscible CO2 flooding from modified sandstone and chalk rocks. Calcite mineral surface is modified with stearic acid (SA) and asphaltene, and the silicate mineral surfaces are modified with N,N-dimethyldodecylamine (NN-DMDA) and asphaltene. The stability of adsorbed polar components in presence of SO4 2- and Mg2 + ions is also investigated. Recovery from sandstone cores is consistently lower than that from chalk cores saturated with the same oil and flooded with CO2 at all miscible flooding conditions. This may be due to the larger permeability contrasts in sandstone cores, which promote the fingering phenomenon. Miscible CO2 flooding for chalk and sandstone cores with distilled water, as initial water saturation, shows also lower oil recovery than cores saturated with different ions. At higher miscible flooding conditions, higher oil recovery is obtained. However, presence of light components (such as C1 or C3) in oil reduced the recovery. Oil recovery in presence of methane (C1) is lower than that in presence of methane and propane (C1/C3). A ternary diagram was constructed in order to understand the CO2 flooding mechanism(s) at the different flooding conditions and in presence of light components. The side effect of the flooding with CO2 is the probability for asphaltene deposition. An approach based on solubility parameter in the liquid, is used to assess the risk for asphaltene deposition during CO2 miscible flooding. The light components (C1/C3) and higher flooding conditions enhanced the risk for asphaltene instability. It is also shown higher amount of asphaltene deposition in chalk cores than that in sandstone cores at similar miscibility conditions.(au)

  4. Bioactivity of essential oils in phytopathogenic and post-harvest fungi control.

    Science.gov (United States)

    Santamarina, M P; Ibáñez, M D; Marqués, M; Roselló, J; Giménez, S; Blázquez, M A

    2017-11-01

    Commercial thyme and lavender essential oils were analysed by GC/MS. Sixty-six compounds accounting for 98.6-99.6% of total essential oil were identified. Thymol (52.14 ± 0.21%), followed by p-cymene (32.24 ± 0.16%), carvacrol (3.71 ± 0.01%) and γ-terpinene (3.34 ± 0.02%), were the main compounds in thyme essential oil, while large amounts of oxygenated monoterpenes linalool acetate (37.07 ± 0.24%) and linalool (30.16 ± 0.06%) were found in lavender one. In vitro antifungal activity of the essential oils was evaluated at 200 and 300 μg/mL against 10 phytopathogenic and post-harvest fungi, which significantly affect agriculture. Micelial growth inhibition was calculated for each tested fungus and dose. Thyme essential oil showed satisfactory results with 90-100% growth inhibition in almost all the assayed fungi at 300 μg/mL, while lavender essential oil showed no noteworthy inhibition data at either dose, and its growth was even enhanced. Thyme essential oil represents a natural alternative to control harvest and post-harvest fungi, and to extend the shelf-life of agriculture products.

  5. Assessing the suitability of input-output analysis for enhancing our understanding of potential economic effects of Peak Oil

    International Nuclear Information System (INIS)

    Kerschner, Christian; Hubacek, Klaus

    2009-01-01

    Given recent developments on energy markets and skyrocketing oil prices, we argue for an urgent need to study the potential effects of world oil production reaching a maximum (Peak Oil) in order to facilitate the development of adaptation policies. We consider input-output (IO) modelling as a powerful tool for this purpose. However, the standard Leontief type model implicitly assumes that all necessary inputs to satisfy a given demand can and will be supplied. This is problematic if the availability of certain key inputs becomes restricted and it is therefore only of limited usefulness for the study of the phenomenon of Peak Oil. Hence this paper firstly reviews two alternative modelling tools within the IO framework: supply-driven and mixed models. The former has been severely criticised for its problematic assumption of perfect factor substitution and perfect elasticity of demand as revealed by Oosterhaven [Oosterhaven J. On the plausibility of the supply-driven IO model. J Reg Sci 1988; 28:203-17. ]. The supply-constrained model on the other hand proved well suited to analyse the quantity dimension of Peak Oil and is therefore applied empirically in the second part of the paper, using data for the UK, Japanese and Chilean economy. Results show how differences in net-oil exporting and net-oil importing countries are clearly visible in terms of final demand. Industries, most affected in all countries, include transportation, electricity production and financial and trade services. (author)

  6. A risk-based approach for identifying constituents of concern in oil sands process-affected water from the Athabasca Oil Sands region.

    Science.gov (United States)

    McQueen, Andrew D; Kinley, Ciera M; Hendrikse, Maas; Gaspari, Daniel P; Calomeni, Alyssa J; Iwinski, Kyla J; Castle, James W; Haakensen, Monique C; Peru, Kerry M; Headley, John V; Rodgers, John H

    2017-04-01

    Mining leases in the Athabasca Oil Sands (AOS) region produce large volumes of oil sands process-affected water (OSPW) containing constituents that limit beneficial uses and discharge into receiving systems. The aim of this research is to identify constituents of concern (COCs) in OSPW sourced from an active settling basin with the goal of providing a sound rational for developing mitigation strategies for using constructed treatment wetlands for COCs contained in OSPW. COCs were identified through several lines of evidence: 1) chemical and physical characterization of OSPW and comparisons with numeric water quality guidelines and toxicity endpoints, 2) measuring toxicity of OSPW using a taxonomic range of sentinel organisms (i.e. fish, aquatic invertebrates, and a macrophyte), 3) conducting process-based manipulations (PBMs) of OSPW to alter toxicity and inform treatment processes, and 4) discerning potential treatment pathways to mitigate ecological risks of OSPW based on identification of COCs, toxicological analyses, and PBM results. COCs identified in OSPW included organics (naphthenic acids [NAs], oil and grease [O/G]), metals/metalloids, and suspended solids. In terms of species sensitivities to undiluted OSPW, fish ≥ aquatic invertebrates > macrophytes. Bench-scale manipulations of the organic fractions of OSPW via PBMs (i.e. H 2 O 2 +UV 254 and granular activated charcoal treatments) eliminated toxicity to Ceriodaphnia dubia (7-8 d), in terms of mortality and reproduction. Results from this study provide critical information to inform mitigation strategies using passive or semi-passive treatment processes (e.g., constructed treatment wetlands) to mitigate ecological risks of OSPW to aquatic organisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Prestige oil spill information and assessment Galicia, Spain January 20-22, 2003 : Meeting summaries

    International Nuclear Information System (INIS)

    2003-01-01

    In mid-November 2002, an oil spill occurred off the coast of northwest Spain when the tanker, Prestige, broke apart and sank. The vast majority of the heavy fuel oil it transported was released into the sea along 900 kilometres of Spanish coastline. More than 20,000 people were affected as bans on fish and shellfish harvesting were issued. A delegation from Newfoundland left for Galicia, Spain in December 2002, to learn from the experience in an effort to enhance spill prevention and response for the Newfoundland and Labrador coastline. A brief overview of the Galicia region of Spain was provided, followed by general information concerning the jurisdictional complexity of Galicia. A number of issues and topics were discussed, such as: marine traffic corridors, safe havens; communication with the public; oil recovery operations; compensation; spill prevention; ban on fishing and shellfish harvesting; and, fishing industry's role in response operations. Tours of the areas affected were organized for the delegation. Upon return to Newfoundland, the delegation shared their acquired information and initiated discussions with the federal government concerning intergovernmental issues on oil spill prevention and response

  8. Sequential enrichment of microbial population exhibiting enhanced biodegradation of crude oil

    International Nuclear Information System (INIS)

    Venkateswaran, Kasthuri; Harayama, Shigeaki.

    1995-01-01

    The distribution of oil-degrading bacteria in the coastal waters and sediments of Hokkaido, Japan, was surveyed. It was found that the potential of mixed microbial populations to degrade weathered crude oil was not confined to any ecological components (water or sediment) nor to the sampling stations. One microbial culture that was stable during repeated subculturing degraded 45% of the saturates and 20% of the aromatics present in crude oil in 10 days during the initial screening. The residual hydrocarbons in this culture were extracted by chloroform and dispersed in a fresh seawater-based medium and subsequently inoculated with microorganisms from the first culture. After full growth of the second culture, the residual hydrocarbons were extracted and dispersed in a fresh medium in which microorganisms from the second culture had been inoculated. This sequential process was carried out six times to enrich those microorganisms that grew on the recalcitrant components of crude oil. After repeated exposure of the residual crude oil to the enriched microorganisms, about 80% of the initially added crude oil was degraded. The cultures obtained after each enrichment cycle were kept, and the degradation of fresh crude oil by the enriched microorganisms was monitored. The degrading activity of the enriched cultures increased as the number of enrichment cycles increased. A microbial population that had been selected six times on the residual crude oil could degrade 70% of the saturates and 30% of the aromatics of crude oil, indicating that growth of a microbial population on residual crude oil improved its ability to biodegrade crude oil. 21 refs., 2 tabs., 7 figs

  9. Oil and gas conservation in Saskatchewan

    International Nuclear Information System (INIS)

    Sereda, M.A.

    1997-01-01

    The Saskatchewan's Oil and Gas Conservation Act provides legislative authority for the Oil and Gas Conservation Regulations, 1985. The main purposes of the Act are to maximize oil and gas recovery, to allow each owner the opportunity of obtaining his share of oil or gas and to protect the environment and prevent waste. The document under review described how this legislative intent is fulfilled through the spacing of wells, the setting of allowables, and approval of waterflood and enhanced recovery projects, while considering equitable drainage of oil and gas. Specific topics dealt with include: vertical well spacing, infill drilling, off-target drilling, horizontal well spacing, and allowables. The concepts of voluntary and statutory pooling as well as voluntary and statutory unitization were explained. Examples of waterflood and enhanced oil recovery projects were provided. The regulation relating to oil and gas conservation were first implemented in 1952 and evolved to their present form through a series of changes and amendments. The most significant changes to the regulations were made in 1991 when horizontal drilling needed to be accommodated. 1 tab

  10. Effect of citronella essential oil fractions as oil phase on emulsion stability

    Science.gov (United States)

    Septiyanti, Melati; Meliana, Yenny; Agustian, Egi

    2017-11-01

    The emulsion system consists of water, oil and surfactant. In order to create stable emulsion system, the composition and formulation between water phase, surfactant and oil phase are very important. Essential oil such as citronella oil has been known as active ingredient which has ability as insect repellent. This research studied the effect of citronella oil and its fraction as oil phase on emulsion stability. The cycle stability test was conducted to check the emulsion stability and it was monitored by pH, density, viscosity, particle size, refractive index, zeta potential, physical appearance and FTIR for 4 weeks. Citronellal fraction has better stability compared to citronella oil and rhodinol fraction with slight change of physical and chemical properties before and after the cycle stability test. However, it is need further study to enhance the stability of the emulsion stability for this formulation.

  11. Essential oil-loaded lipid nanoparticles for wound healing.

    Science.gov (United States)

    Saporito, Francesca; Sandri, Giuseppina; Bonferoni, Maria Cristina; Rossi, Silvia; Boselli, Cinzia; Icaro Cornaglia, Antonia; Mannucci, Barbara; Grisoli, Pietro; Vigani, Barbara; Ferrari, Franca

    2018-01-01

    Chronic wounds and severe burns are diseases responsible for severe morbidity and even death. Wound repair is a crucial process and tissue regeneration enhancement and infection prevention are key factors to minimize pain, discomfort, and scar formation. The aim of this work was the development of lipid nanoparticles (solid lipid nanoparticles and nanostructured lipid carriers [NLC]), to be loaded with eucalyptus or rosemary essential oils and to be used, as medical devices, to enhance healing of skin wounds. Lipid nanoparticles were based on natural lipids: cocoa butter, as solid lipid, and olive oil or sesame oil, as liquid lipids. Lecithin was chosen as surfactant to stabilize nanoparticles and to prevent their aggregation. The systems were prepared by high shear homogenization followed by ultrasound application. Nanoparticles were characterized for physical-chemical properties, bioadhesion, cytocompatibility, in vitro proliferation enhancement, and wound healing properties toward normal human dermal fibroblasts. Antimicrobial activity of nanoparticles was evaluated against two reference microbial strains, one of Staphylococcus aureus , the other of Streptococcus pyogenes . Finally, the capability of nanoparticles to promote wound healing in vivo was evaluated on a rat burn model. NLC based on olive oil and loaded with eucalyptus oil showed appropriate physical-chemical properties, good bioadhesion, cytocompatibility, in vitro proliferation enhancement, and wound healing properties toward fibroblasts, associated to antimicrobial properties. Moreover, the in vivo results evidenced the capability of these NLC to enhance the healing process. Olive oil, which is characterized by a high content of oleic acid, proved to exert a synergic effect with eucalyptus oil with respect to antimicrobial activity and wound repair promotion.

  12. Parallel factor analysis PARAFAC of process affected water

    Energy Technology Data Exchange (ETDEWEB)

    Ewanchuk, A.M.; Ulrich, A.C.; Sego, D. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil and Environmental Engineering; Alostaz, M. [Thurber Engineering Ltd., Calgary, AB (Canada)

    2010-07-01

    A parallel factor analysis (PARAFAC) of oil sands process-affected water was presented. Naphthenic acids (NA) are traditionally described as monobasic carboxylic acids. Research has indicated that oil sands NA do not fit classical definitions of NA. Oil sands organic acids have toxic and corrosive properties. When analyzed by fluorescence technology, oil sands process-affected water displays a characteristic peak at 290 nm excitation and approximately 346 nm emission. In this study, a parallel factor analysis (PARAFAC) was used to decompose process-affected water multi-way data into components representing analytes, chemical compounds, and groups of compounds. Water samples from various oil sands operations were analyzed in order to obtain EEMs. The EEMs were then arranged into a large matrix in decreasing process-affected water content for PARAFAC. Data were divided into 5 components. A comparison with commercially prepared NA samples suggested that oil sands NA is fundamentally different. Further research is needed to determine what each of the 5 components represent. tabs., figs.

  13. Mixing in three-phase systems: Implications for enhanced oil recovery and unconventional gas extraction

    Science.gov (United States)

    Jimenez-Martinez, J.; Porter, M. L.; Hyman, J.; Carey, J. W.; Viswanathan, H. S.

    2015-12-01

    Although the mixing of fluids within a porous media is a common process in natural and industrial systems, how the degree of mixing depends on the miscibility of multiple phases is poorly characterized. Often, the direct consequence of miscible mixing is the modification of the resident fluid (brine and hydrocarbons) rheological properties. We investigate supercritical (sc)CO2 displacement and mixing processes in a three-phase system (scCO2, oil, and H2O) using a microfluidics experimental system that accommodates the high pressures and temperatures encountered in fossil fuel extraction operations. The miscibility of scCO2 with the resident fluids, low with aqueous solutions and high with hydrocarbons, impacts the mixing processes that control sweep efficiency in enhanced oil recovery (EOR) and the unlocking of the system in unconventional oil and gas extraction. Using standard volume-averaging techniques we upscale the aqueous phase saturation to the field-scale (i.e., Darcy scale) and interpret the results as a simpler two-phase system. This process allows us to perform a statistical analysis to quantify i) the degree of heterogeneity in the system resulting from the immiscible H2O and ii) how that heterogeneity impacts mixing between scCO2 and oil and their displacement. Our results show that when scCO2 is used for miscible displacement, the presence of an aqueous solution, which is common in secondary and tertiary EOR and unconventional oil and gas extraction, strongly impacts the mixing of scCO2 with the hydrocarbons due to low scCO2-H2O miscibility. H2O, which must be displaced advectively by the injected scCO2, introduces spatio-temporal variability into the system that acts as a barrier between the two miscibile fluids. This coupled with the effect of viscosity contrast, i.e., viscous fingering, has an impact on the mixing of the more miscible pair.

  14. Large scale carbon dioxide production from coal-fired power stations for enhanced oil recovery: a new economic feasibility study

    International Nuclear Information System (INIS)

    Tontiwachwuthikul, P.; Chan, C. W.; Kritpiphat, W.; Demontigny, D.; Skoropad, D.; Gelowitz, D.; Aroonwilas, A.; Mourits, F.; Wilson, M.; Ward, L.

    1998-01-01

    The concept of capturing carbon dioxide from fossil-fuelled electric power generating plants and utilizing it as a flooding agent in enhanced oil recovery (EOR) processes, was explored. In this context, this paper describes how cogeneration concepts, together with process optimization strategies, help to reduce the carbon dioxide production cost by utilizing low-pressure steam and waste heat from various sections of the power generation process. Based on these optimization strategies, the recovery cost of carbon dioxide from coal-fired power stations is estimated to be in the range of $ 0.50 to $ 2.00/mscf. Assuming an average cost of $ 1.25/mscf, the production cost of incremental oil would be about $ 18.00. This means that even with today's modest oil prices, there is room for profit to be made operating a carbon dioxide flood with flue gas extracted carbon dioxide

  15. Increased oil recovery: secondary and tertiary. Application and future prospect

    Energy Technology Data Exchange (ETDEWEB)

    Whiting, R L

    1978-01-01

    Oil is initially produced using the nature reservoir pressure present, in a process called primary oil recovery. Secondary recovery uses artificial means to increase the natural reservoir pressure; tertiary, or enhanced oil recovery, uses a number of methods to enhance the flow characteristics of the oil. The scope for such techniques to increase the yield from oil fields in the US is estimated; the practicality of their application is shown to be particularly dependent upon pricing, taxation, and other existing policies. 16 references.

  16. 18F-FDG PET/CT Findings Following Repeated Intramuscular Injections of "Site Enhancement Oil" in the Upper Extremities

    DEFF Research Database (Denmark)

    Dejanović, Danijela; Loft, Annika

    2017-01-01

    We present the findings on F-FDG PET/CT in a 50-year-old man known to self-administer intramuscular injections with site enhancement oil in the upper extremities. PET images show diffuse pathological high FDG uptake in soft tissue of the upper arms and in scanned portions of the forearms. On the CT...

  17. Estimating upper bounds for occupancy and number of manatees in areas potentially affected by oil from the Deepwater Horizon oil spill.

    Directory of Open Access Journals (Sweden)

    Julien Martin

    Full Text Available The explosion of the Deepwater Horizon drilling platform created the largest marine oil spill in U.S. history. As part of the Natural Resource Damage Assessment process, we applied an innovative modeling approach to obtain upper estimates for occupancy and for number of manatees in areas potentially affected by the oil spill. Our data consisted of aerial survey counts in waters of the Florida Panhandle, Alabama and Mississippi. Our method, which uses a Bayesian approach, allows for the propagation of uncertainty associated with estimates from empirical data and from the published literature. We illustrate that it is possible to derive estimates of occupancy rate and upper estimates of the number of manatees present at the time of sampling, even when no manatees were observed in our sampled plots during surveys. We estimated that fewer than 2.4% of potentially affected manatee habitat in our Florida study area may have been occupied by manatees. The upper estimate for the number of manatees present in potentially impacted areas (within our study area was estimated with our model to be 74 (95%CI 46 to 107. This upper estimate for the number of manatees was conditioned on the upper 95%CI value of the occupancy rate. In other words, based on our estimates, it is highly probable that there were 107 or fewer manatees in our study area during the time of our surveys. Because our analyses apply to habitats considered likely manatee habitats, our inference is restricted to these sites and to the time frame of our surveys. Given that manatees may be hard to see during aerial surveys, it was important to account for imperfect detection. The approach that we described can be useful for determining the best allocation of resources for monitoring and conservation.

  18. Effects of petroleum oil and soybean oil in adjuvants for postemergence herbicides

    International Nuclear Information System (INIS)

    Harrison, S.K.

    1985-01-01

    Soybean oil is an abundant and renewable resource through annual crop production. The replacement of paraffin oil with soybean oil in agricultural adjuvants would create an additional market for surplus soybeans and help alleviate dependence on non-renewable petroleum oil. Field and laboratory experiments were conducted to compare effects of a petroleum oil-emulsifier blend (POC) and a soybean oil-emulsifier blend (SBOC) as adjuvants for postemergence herbicides. In field experiments, little difference was observed between POC and SBOC in the ability to enhance control of velvetleaf (Abutilon theophrasti Medik.) with 0.6 or 1.1 kg/ha bentazon [3-(1-methylethyl)-(1H)-2,1,3-benzothiadiazin-4(3H)-one 2,2-dioxide]. Control of giant foxtail (Setaria faberi Herrm.) with 0.1 kg/ha sethoxydim {2-[1-(ethoxyimino)butyl]-5-[2-(ethylthio)propyl]-3-hydroxy-2-cyclohexen-1-one} was enhanced more by POC than by SBOC. The effects of adjuvants and relative humidity (RH) on absorption, translocation, and metabolism of the methyl ester of 14 C-haloxyfop {2-[4-[[3-chloro-5-(trifluoromethyl)-2-pyridinyl]oxy]phenoxy]propanoic acid} in corn (Zea mays L.) were investigated. Addition of 1.0% (v/v) POC to the treatment solution resulted in greater foliar absorption and translocation of 14 C than addition of 1.0% (v/v) SBOC

  19. Microbial enhanced heavy crude oil recovery through biodegradation using bacterial isolates from an Omani oil field.

    Science.gov (United States)

    Al-Sayegh, Abdullah; Al-Wahaibi, Yahya; Al-Bahry, Saif; Elshafie, Abdulkadir; Al-Bemani, Ali; Joshi, Sanket

    2015-09-16

    Biodegradation is a cheap and environmentally friendly process that could breakdown and utilizes heavy crude oil (HCO) resources. Numerous bacteria are able to grow using hydrocarbons as a carbon source; however, bacteria that are able to grow using HCO hydrocarbons are limited. In this study, HCO degrading bacteria were isolated from an Omani heavy crude oil field. They were then identified and assessed for their biodegradation and biotransformation abilities under aerobic and anaerobic conditions. Bacteria were grown in five different minimum salts media. The isolates were identified by MALDI biotyper and 16S rRNA sequencing. The nucleotide sequences were submitted to GenBank (NCBI) database. The bacteria were identified as Bacillus subtilis and B. licheniformis. To assess microbial growth and biodegradation of HCO by well-assay on agar plates, samples were collected at different intervals. The HCO biodegradation and biotransformation were determined using GC-FID, which showed direct correlation of microbial growth with an increased biotransformation of light hydrocarbons (C12 and C14). Among the isolates, B. licheniformis AS5 was the most efficient isolate in biodegradation and biotransformation of the HCO. Therefore, isolate AS5 was used for heavy crude oil recovery experiments, in core flooding experiments using Berea core plugs, where an additional 16 % of oil initially in place was recovered. This is the first report from Oman for bacteria isolated from an oil field that were able to degrade and transform HCO to lighter components, illustrating the potential use in HCO recovery. The data suggested that biodegradation and biotransformation processes may lead to additional oil recovery from heavy oil fields, if bacteria are grown in suitable medium under optimum growth conditions.

  20. Yield and characteristics of shale oil from the retorting of oil shale and fine oil-shale ash mixtures

    International Nuclear Information System (INIS)

    Niu, Mengting; Wang, Sha; Han, Xiangxin; Jiang, Xiumin

    2013-01-01

    Highlights: • The whole formation process of shale oil might be divided into four stages. • Higher ash/shale mass ratio intensified the cracking and coking of shale oil. • Ash/shale ratio of 1:2 was recommended for oil shale fluidized bed retort with fine oil-shale ash as solid heat carrier. - Abstract: For exploring and optimizing the oil shale fluidized bed retort with fine oil-shale ash as a solid heat carrier, retorting experiments of oil shale and fine oil-shale ash mixtures were conducted in a lab-scale retorting reactor to investigate the effects of fine oil-shale ash on shale oil. Oil shale samples were obtained from Dachengzi Mine, China, and mixed with fine oil-shale ash in the ash/shale mass ratios of 0:1, 1:4, 1:2, 1:1, 2:1 and 4:1. The experimental retorting temperature was enhanced from room temperature to 520 °C and the average heating rate was 12 °C min −1 . It was found that, with the increase of the oil-shale ash fraction, the shale oil yield first increased and then decreased obviously, whereas the gas yield appeared conversely. Shale oil was analyzed for the elemental analysis, presenting its atomic H/C ratio of 1.78–1.87. Further, extraction and simulated distillation of shale oil were also conducted to explore the quality of shale oil. As a result, the ash/shale mixing mass ratio of 1:2 was recommended only for the consideration of increasing the yield and quality of shale oil

  1. Functional Enhancements in Used Oil Analysis Spectrometers

    National Research Council Canada - National Science Library

    Lukas, Malte

    1998-01-01

    Spark emission spectrometers using the rotating disk electrode (RDE) technique have become the workhorses and primary analytical tool of most machine condition monitoring programs based on oil analysis...

  2. Formation of Anhydrite due to Interaction Between Water Soluble CO2 (aq) and Calcite Mineral During Enhanced Oil Recovery

    DEFF Research Database (Denmark)

    Chakravarty, Krishna Hara; Fosbøl, Philip Loldrup; Thomsen, Kaj

    2015-01-01

    In the Low Salinity based EOR method, formation and migration of fines have proved to have profound effect on the displacement efficiency of residual oil. Salinity variations of injected brines have also been shown to affect oil recovery for WAG-CO2 processes. But the effect of fines in EOR during...... simulations were conducted over a temperature range of 50°C to 250°C and a pressure range of 5 bars to 500 bars. The amounts of fines formation taking place for different LSWAG-CO2 processes were correlated to the described oil recovery. It is observed that significant amounts of fines formation can take...... with the available SO42- ions. The salinity and composition of brines present in pore space shows direct correlation with the amount of fines produced during CO2 injection. With increase in temperature and pressure, the amount fines formation increased significantly. The described oil recovery for different LSWAG...

  3. Pore Structure and Diagenetic Controls on Relative Permeability: Implications for Enhanced Oil Recovery and CO2 Storage

    Science.gov (United States)

    Feldman, J.; Dewers, T. A.; Heath, J. E.; Cather, M.; Mozley, P.

    2016-12-01

    Multiphase flow in clay-bearing sandstones of the Morrow Sandstone governs the efficiency of CO2 storage and enhanced oil recovery at the Farnsworth Unit, Texas. This formation is the target for enhanced oil recovery and injection of one million metric ton of anthropogenically-sourced CO2. The sandstone hosts eight major flow units that exhibit distinct microstructural characteristics due to diagenesis, including: "clean" macro-porosity; quartz overgrowths constricting some pores; ghost grains; intergranular porosity filled by microporous authigenic clay; and feldspar dissolution. We examine the microstructural controls on macroscale (core scale) relative permeability and capillary pressure behavior through: X-ray computed tomography, Robomet.3d, and focused ion beam-scanning electron microscopy imaging of the pore structure of the major flow units of the Morrow Sandstone; relative permeability and capillary pressure in the laboratory using CO2, brine, and oil at reservoir pressure and effective stress conditions. The combined data sets inform links between patterns of diagenesis and multiphase flow. These data support multiphase reservoir simulation and performance assessment by the Southwest Regional Partnership on Carbon Sequestration (SWP). Funding for this project is provided by the U.S. Department of Energy's National Energy Technology Laboratory through the SWP under Award No. DE-FC26-05NT42591. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  4. Influence of pH on dynamics of microbial enhanced oil recovery processes using biosurfactant producing Pseudomonas putida: Mathematical modelling and numerical simulation.

    Science.gov (United States)

    Sivasankar, P; Suresh Kumar, G

    2017-01-01

    In present work, the influence of reservoir pH conditions on dynamics of microbial enhanced oil recovery (MEOR) processes using Pseudomonas putida was analysed numerically from the developed mathematical model for MEOR processes. Further, a new strategy to improve the MEOR performance has also been proposed. It is concluded from present study that by reversing the reservoir pH from highly acidic to low alkaline condition (pH 5-8), flow and mobility of displaced oil, displacement efficiency, and original oil in place (OOIP) recovered gets significantly enhanced, resulting from improved interfacial tension (IFT) reduction by biosurfactants. At pH 8, maximum of 26.1% of OOIP was recovered with higher displacement efficiency. The present study introduces a new strategy to increase the recovery efficiency of MEOR technique by characterizing the biosurfactants for IFT min /IFT max values for different pH conditions and subsequently, reversing the reservoir pH conditions at which the IFT min /IFT max value is minimum. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Rainbow trout (Oncorhynchus mykiss) detection, avoidance, and chemosensory effects of oil sands process-affected water.

    Science.gov (United States)

    Lari, Ebrahim; Pyle, Greg G

    2017-06-01

    Oil sands process-affected water (OSPW) - a byproduct of the oil sands industry in Northern Alberta, Canada - is currently stored in on-site tailings ponds. The goal of the present study was to investigate the interaction of OSPW with the olfactory system and olfactory-mediated behaviours of fish upon the first encounter with OSPW. The response of rainbow trout (Oncorhynchus mykiss) to different concentrations (0.1, 1, and 10%) of OSPW was studied using a choice maze and electro-olfactography (EOG), respectively. The results of the present study showed that rainbow trout are capable of detecting and avoiding OSPW at a concentration as low as 0.1%. Exposure to 1% OSPW impaired (i.e. reduced sensitivity) the olfactory response of rainbow trout to alarm and food cues within 5 min or less. The results of the present study demonstrated that fish could detect and avoid minute concentrations of OSPW. However, if fish were exposed to OSPW-contaminated water and unable to escape, their olfaction would be impaired. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Enhanced oil recovery by nitrogen and carbon dioxide injection followed by low salinity water flooding for tight carbonate reservoir: experimental approach

    Science.gov (United States)

    Georges Lwisa, Essa; Abdulkhalek, Ashrakat R.

    2018-03-01

    Enhanced Oil Recovery techniques are one of the top priorities of technology development in petroleum industries nowadays due to the increase in demand for oil and gas which cannot be equalized by the primary production or secondary production methods. The main function of EOR process is to displace oil to the production wells by the injection of different fluids to supplement the natural energy present in the reservoir. Moreover, these injecting fluids can also help in the alterations of the properties of the reservoir like lowering the IFTs, wettability alteration, a change in pH value, emulsion formation, clay migration and oil viscosity reduction. The objective of this experiment is to investigate the residual oil recovery by combining the effects of gas injection followed by low salinity water injection for low permeability reservoirs. This is done by a series of flooding tests on selected tight carbonate core samples taken from Zakuum oil field in Abu Dhabi by using firstly low salinity water as the base case and nitrogen & CO2injection followed by low salinity water flooding at reservoir conditions of pressure and temperature. The experimental results revealed that a significant improvement of the oil recovery is achieved by the nitrogen injection followed by the low salinity water flooding with a recovery factor of approximately 24% of the residual oil.

  7. Development of Microorganisms with Improved Transport and Biosurfactant Activity for Enhanced Oil Recovery

    Energy Technology Data Exchange (ETDEWEB)

    M.J. McInerney; K.E. Duncan; N. Youssef; T. Fincher; S.K. Maudgalya; M.J. Folmsbee; R. Knapp; Randy R. Simpson; N.Ravi; D. Nagle

    2005-08-15

    growth at elevated salt concentrations to obtain candidates most suitable for microbial oil recovery. Seventy percent of the 205 strains tested, mostly strains of Bacillus mojavensis, Bacillus subtilis, Bacillus licheniformis, and Bacillus sonorensis, produced biosurfactants aerobically and 41% of the strains had biosurfactant activity greater than Bacillus mojavensis JF-2, the current candidate for oil recovery. Biosurfactant activity varied with the percentage of the 3-hydroxy-tetradecanoate isomers in the fatty acid portion of the biosurfactant. Changing the medium composition by incorporation of different precursors of 3-hydroxy tetradecanoate increased the activity of biosurfactant. The surface tension and critical micelle concentration of 15 different, biosurfactant-producing Bacillus strains was determined individually and in combination with other biosurfactants. Some biosurfactant mixtures were found to have synergistic effect on surface tension (e.g. surface tension was lowered from 41 to 31 mN/m in some cases) while others had a synergistic effect on CMD-1 values. We compared the transport abilities of spores from three Bacillus strains using a model porous system to study spore recovery and transport. Sand-packed columns were used to select for spores or cells with the best transport abilities through brine-saturated sand. Spores of Bacillus mojavensis strains JF-2 and ROB-2 and a natural recombinant, strain C-9, transported through sand at very high efficiencies. The earliest cells/spores that emerged from the column were regrown, allowed to sporulate, and applied to a second column. This procedure greatly enhanced the transport of strain C-9. Spores with enhanced transport abilities can be easily obtained and that the preparation of inocula for use in MEOR is feasible. We conducted a push-pull test to study in-situ biosurfactant production by exogenous biosurfactant producers to aid in oil recovery from depleted reservoirs. Five wells from the same

  8. Research on a dispersing solution for burnt crude oils: Aegean Sea oil spill

    International Nuclear Information System (INIS)

    Bergueiro, J.R.; Morales, N.; Dominguez, F.

    1993-01-01

    The oil tanker Aegean Sea spilled oil when it grounded during severe storm conditions near La Coruna, Spain. Much of the oil burned after an explosion was caused by the hull breaking apart. Oil which contaminated several beaches was affected by both combustion and weathering. Experiments were conducted on oil sampled from the beaches to investigate dispersion of the oil using Beep Enersperse 1990 at different shaking speeds. Biodegradation experiments were also conducted in the presence of Beep Enersperse 1990 but with seawater absent. Although emulsification of the burnt and weathered oil was very difficult, good dispersion and biodegradation were obtained. After 42 d in a stirred reactor, biodegradation of the oil reached at least 80%. 3 refs., 3 figs., 4 tabs

  9. Oil recovery enhancement from fractured, low permeability reservoirs. Part 2, Annual report, October 1, 1990--September 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Poston, S.W.

    1991-12-31

    The results of the investigative efforts for this jointly funded DOE-State of Texas research project achieved during the 1990--1991 year may be summarized as follows: Geological Characterization -- Detailed maps of the development and hierarchical nature the fracture system exhibited by Austin Chalk outcrops were prepared. These results of these efforts were directly applied to the development of production decline type curves applicable to a dual fracture-matrix flow system. Analysis of production records obtained from Austin Chalk operators illustrated the utility of these type curves to determine relative fracture/matrix contributions and extent. Well-log response in Austin Chalk wells has been shown to be a reliable indicator of organic maturity. (VSP) Vertical-Seismic Profile data was used to use shear-wave splitting concepts to estimate fracture orientations. Several programs were to be written to facilitate analysis of the data. The results of these efforts indicated fractures could be detected with VSP seismic methods. Development of the (EOR) Enhanced Oil Recovery Imbibition Process -- Laboratory displacement as well as MRI and CT imaging studies have shown the carbonated water-imbibition displacement process significantly accelerates and increases recovery of an oil saturated, low permeability core material, when compared to that of a normal brine imbibition displacement process. A study of oil recovery by the application of a cyclic carbonated water imbibition process, followed by reducing the pressure below the bubble point of the CO{sub 2}-water solution, indicated the possibility of alternate and new enhanced recovery method. The installation of an artificial solution gas drive significantly increased oil recovery. The extent and arrangement of micro-fractures in Austin Chalk horizontal cores was mapped with CT scanning techniques. The degree of interconnection of the micro-fractures was easily visualized.

  10. Modeling and simulation of multiphase multicomponent multiphysics porous media flows in the context of chemical enhanced oil recovery

    Science.gov (United States)

    Dutta, Sourav; Daripa, Prabir; Fluids Team

    2015-11-01

    One of the most important methods of chemical enhanced oil recovery (EOR) involves the use of complex flooding schemes comprising of various layers of fluids mixed with suitable amounts of polymer or surfactant or both. The fluid flow is characterized by the spontaneous formation of complex viscous fingering patterns which is considered detrimental to oil recovery. Here we numerically study the physics of such EOR processes using a modern, hybrid method based on a combination of a discontinuous, multiscale finite element formulation and the method of characteristics. We investigate the effect of different types of heterogeneity on the fingering mechanism of these complex multiphase flows and determine the impact on oil recovery. We also study the effect of surfactants on the dynamics of the flow via reduction of capillary forces and increase in relative permeabilities. Supported by the grant NPRP 08-777-1-141 from the Qatar National Research Fund (a member of The Qatar Foundation).

  11. Incubation Temperature, But Not Pequi Oil Supplementation, Affects Methane Production, and the Ruminal Microbiota in a Rumen Simulation Technique (Rusitec System

    Directory of Open Access Journals (Sweden)

    Andrea C. Duarte

    2017-06-01

    Full Text Available Lipid supplementation is a promising strategy for methane mitigation in cattle and has been evaluated using several different lipid sources. However, limited studies have assessed the effect of temperature on methane emissions from cattle and changes in incubation temperature have also not been extensively evaluated. The aim of this study was to evaluate the combined effect of pequi oil (high in unsaturated fatty acids and incubation temperature on fermentation characteristics and microbial communities using the rumen simulation technique. A completely randomized experiment was conducted over a 28-day period using a Rusitec system. The experiment was divided into four periods of 7 days each, the first of which was a 7-day adaptation period followed by three experimental periods. The two treatments consisted of a control diet (no pequi oil inclusion and a diet supplemented with pequi oil (1.5 mL/day which increased the dietary fat content to 6% (dry matter, DM-basis. Three fermenter vessels (i.e., replicates were allocated to each treatment. In the first experimental period, the incubation temperature was maintained at 39°C, decreased to 35°C in the second experimental period and then increased again to 39°C in the third. Pequi oil was continuously supplemented during the experiment. Microbial communities were assessed using high-throughput sequencing of the archaeal and bacterial 16S rRNA gene. Methane production was reduced by 57% following a 4°C decrease in incubation temperature. Supplementation with pequi oil increased the dietary fat content to 6% (DM-basis but did not affect methane production. Analysis of the microbiota revealed that decreasing incubation temperature to 35°C affected the archaeal and bacterial diversity and richness of liquid-associated microbes, but lipid supplementation did not change microbial diversity.

  12. ENHANCED OIL RECOVERY USING LOCAL ALKALINE

    African Journals Online (AJOL)

    user

    the discovery of new oil producing fields and the ever increasing ... followed by water flooding is between 35 to 50% of the ... involved and lack of scale up and is considered among ... carbonate alkaline chemical reacts with certain types of ... reservoirs because of the profusion of calcium and the ... damage the formation.

  13. β-Cyclodextrin associated polymeric systems: Rheology, flow behavior in porous media and enhanced heavy oil recovery performance.

    Science.gov (United States)

    Wei, Bing

    2015-12-10

    This proof of concept research evaluates an approach to improve the enhanced heavy oil recovery performance of conventional polymers. Three associated polymeric systems, based on hydrolyzed polyacrylamide, xanthan gum, and a novel hydrophobic copolymer, were proposed in this work. The results of the theoretically rheology study indicate that these systems offer superior viscoelasticity and pronounced shear-thinning behavior due to the "interlocking effect". As a result of the surfactant collaboration, the dynamic interfacial tension between oil and polymer solution can be reduced by two orders of magnitude. Sandpack flooding tests demonstrated the capacity of the developed systems in mobility control during propagating in porous media, and the adsorption behavior was represented by the thickness of the adsorbed layer. The relationship between microscopic efficiency and capillary number indicated that the associated systems can significantly reduce the residual oil saturation due to the synergistic effect of the mobility reduction and surface activity, and the overall recovery efficiency was raised by 2-20% OOIP compared to the baseline polymers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. South Louisiana Enhanced Oil Recovery/Sequestration R&D Project Small Scale Field Tests of Geologic Reservoir Classes for Geologic Storage

    Energy Technology Data Exchange (ETDEWEB)

    Hite, Roger [Blackhorse Energy LLC, Houston, TX (United States)

    2016-10-01

    The project site is located in Livingston Parish, Louisiana, approximately 26 miles due east of Baton Rouge. This project proposed to evaluate an early Eocene-aged Wilcox oil reservoir for permanent storage of CO2. Blackhorse Energy, LLC planned to conduct a parallel CO2 oil recovery project in the First Wilcox Sand. The primary focus of this project was to examine and prove the suitability of South Louisiana geologic formations for large-scale geologic sequestration of CO2 in association with enhanced oil recovery applications. This was to be accomplished through the focused demonstration of small-scale, permanent storage of CO2 in the First Wilcox Sand. The project was terminated at the request of Blackhorse Energy LLC on October 22, 2014.

  15. Research on removing reservoir core water sensitivity using the method of ultrasound-chemical agent for enhanced oil recovery.

    Science.gov (United States)

    Wang, Zhenjun; Huang, Jiehao

    2018-04-01

    The phenomenon of water sensitivity often occurs in the oil reservoir core during the process of crude oil production, which seriously affects the efficiency of oil extraction. In recent years, near-well ultrasonic processing technology attaches more attention due to its safety and energy efficient. In this paper, the comparison of removing core water sensitivity by ultrasonic wave, chemical injection and ultrasound-chemical combination technique are investigated through experiments. Results show that: lower ultrasonic frequency and higher power can improve the efficiency of core water sensitivity removal; the effects of removing core water sensitivity under ultrasonic treatment get better with increase of core initial permeability; the effect of removing core water sensitivity using ultrasonic treatment won't get better over time. Ultrasonic treatment time should be controlled in a reasonable range; the effect of removing core water sensitivity using chemical agent alone is slightly better than that using ultrasonic treatment, however, chemical injection could be replaced by ultrasonic treatment for removing core water sensitivity from the viewpoint of oil reservoir protection and the sustainable development of oil field; ultrasound-chemical combination technique has the best effect for water sensitivity removal than using ultrasonic treatment or chemical injection alone. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Control of waste well casing vent gas from a thermal enhanced oil recovery operation

    International Nuclear Information System (INIS)

    Peavy, M.A.; Braun, J.E.

    1991-01-01

    This paper presents an overview of a waste gas treatment system designed to control emissions from thermally enhanced oil recovery wells. This case study discusses the need, design, installation and operations of the system. Oryx Energy Company (Oryx) operates approximately 940 wells in the Midway-Sunset (MWSS) field under casing vapor recovery systems. The emissions collected from well casing vent gas cotaining hydrocarbons and hydrogen sulfide that are collected and processed through casing vapor recovery skids. These skids are composed of condensers, compressors, and pumps that separate fluids from the waste gas stream. The non-condensible gas is then disposed of in incinerators that reduce the hydrocarbon and sulfur emissions into the atmosphere. Approximately 91,000 lbs/day of hydrocarbon and 10,116 lbs/day of sulfur dioxide are removed from the atmosphere from wells contained within these systems operated by Oryx. These hydrocarbons yield approximately 550 barrels of oil per day (BOPD). The system helps manage the pressure differential from the reservoir into each wellbore and contributes to improved ambient air quality in Kern County, California

  17. Lipid oxidation in fish oil enriched oil-in-water emulsions and cream cheese with pre-emulsified fish oil is affected differently by the emulsifier used

    DEFF Research Database (Denmark)

    Horn, Anna Frisenfeldt; Nielsen, Nina Skall; Andersen, Ulf

    It is well-documented that a high intake of long chain omega-3 polyunsaturated fatty acids has several health beneficial effects in humans. Consequently, the interest in food products enriched with marine oils has increased during recent years. However, addition of these highly unsaturated fatty...... will include results from studies on lipid oxidation in simple oil-in-water emulsions prepared with milk proteins alone or combinations of milk proteins and phospholipids. In addition, a study on fish oil enriched cream cheese will be presented. In this study, the cream cheese was enriched with either neat...... acids to foods invariably increases the risk of lipid oxidation. A possible strategy to avoid lipid oxidation and the consecutive development of unpleasant off-flavours is to protect the oil in a delivery emulsion in which the oil droplets are shielded from its possible pro-oxidative surroundings...

  18. Methods for enhancing mapping of thermal fronts in oil recovery

    Science.gov (United States)

    Lee, D.O.; Montoya, P.C.; Wayland, J.R. Jr.

    1984-03-30

    A method for enhancing the resistivity contrasts of a thermal front in an oil recovery production field as measured by the controlled source audio frequency magnetotelluric (CSAMT) technique is disclosed. This method includes the steps of: (1) preparing a CSAMT-determined topological resistivity map of the production field; (2) introducing a solution of a dopant material into the production field at a concentration effective to alter the resistivity associated with the thermal front; said dopant material having a high cation exchange capacity which might be selected from the group consisting of montmorillonite, illite, and chlorite clays; said material being soluble in the conate water of the production field; (3) preparing a CSAMT-determined topological resistivity map of the production field while said dopant material is moving therethrough; and (4) mathematically comparing the maps from step (1) and step (3) to determine the location of the thermal front. This method is effective with the steam flood, fire flood and water flood techniques.

  19. Synergy potential for oil and geothermal energy exploitation

    DEFF Research Database (Denmark)

    Ziabakhsh-Ganji, Zaman; Nick, Hamidreza M.; Donselaar, Marinus E.

    2018-01-01

    A new solution for harvesting energy simultaneously from two different sources of energy by combining geothermal energy production and thermal enhanced heavy oil recovery is introduced. Numerical simulations are employed to evaluate the feasibility of generating energy from geothermal resources...... and feasibility analyses of the synergy potential of thermally-enhanced oil recovery and geothermal energy production are performed. A series of simulations are carried out to examine the effects of reservoir properties on energy consumption and oil recovery for different injection rates and injection temperature...... the geothermal energy could make the geothermal business case independent and may be a viable option to reduce the overall project cost. Furthermore, the results display that the enhance oil productions are able to reduce the required subsidy for a single doublet geothermal project up to 50%....

  20. Hydraulic oil control system for transformer stations

    International Nuclear Information System (INIS)

    Truong, P.

    2002-01-01

    'Full text:' Electrical oil control systems are commonly used to contain large volumes of spilled oil in transformer stations. Specially calibrated floats, some of which are designed to float only in oil and others only in water, are used in combination with a pump to contain oil at the catch basin below a transformer station.This electrical control system requires frequent maintenance and inspections to ensure the electrical system is not affected by any electrical surges. Also the floats need to be inspected and cleaned frequently to prevent oil or grit build up that may affect the systems' ability to contain oil.Recognizing the limitations of electrical oil control systems, Hydro One is investigating alternative control systems. A hydraulic oil control system is being investigated as an alternative which can backup oil in a containment area while allowing any water entering the containment area to pass through. Figure 1 shows a schematic of a bench-top model tested at Ryerson University. Oil and water separation occurs within the double-piped column. Oil and water are allowed to enter the external pipe column but only water is allowed to exit the internal pipe column. The internal pipe column is designed to generate enough hydrostatic pressure to ensure the oil is contained in the external pipe column.The hydraulic oil control system provides a reliable control mechanism and requires less maintenance compared to that of the electrical control system. Since the hydraulic oil control system has no moving parts, nor would any parts that require electricity, it is not affected by electrical surges such as lightening.The maintenance requirements of the hydraulic oil control system are: the removal of any oil and grit from the catch basin, and the occasional visual inspection for any crack or clogs in the system. (author)

  1. The effect of preplanting gamma radiation on chemical constitutents of peppermint oil

    International Nuclear Information System (INIS)

    Eissa, A.I.; El-Kholei, S.A.; Ragab, M.A.; Abou El-Seoud, M.A.

    1984-01-01

    Uniformly selected stem cuttings of peppermint (Mentha piperita L) were exposed to 0, 0.5, 1.0, 2.0 and 4.0 Krad of gamma rays from a Co 60 source and subsequently grown in field. Irradiation dose of 1.0 Krad was the best stimulatory dose for enhancing herb fresh weight as it resulted in almost two folds yield as compared with control, whereas dose of 4.0 Krad did not affect plant growth. One Krad treated plants induced higher yield of essential oil as compared with other radiation treatments and control. The major chemical constitutents (menthol, menthone and menthyl acetate) were statistically affected by developmental stages, and by pre-planting irradiation treatments as expressed on the total content basis. Higher contents of menthol, menthone and menthyl acetate were found in plant cut during flowering stage. Pre-planting gamma irradiation did not seem to affect both chemical ''acid value, ester value and saponification value'' and physical properties ''specific gravity, solubility and refractive index'' of extracted mint oil

  2. Incubation of Aquilaria subintegra with Microbial Culture Supernatants Enhances Production of Volatile Compounds and Improves Quality of Agarwood Oil.

    Science.gov (United States)

    Monggoot, Sakon; Kulsing, Chadin; Wong, Yong Foo; Pripdeevech, Patcharee

    2018-06-01

    Incubation with microbial culture supernatants improved essential oil yield from Aquilaria subintegra woodchips. The harvested woodchips were incubated with de man, rogosa and sharpe (MRS) agar, yeast mold (YM) agar medium and six different microbial culture supernatants obtained from Lactobacillus bulgaricus , L. acidophilus , Streptococcus thermophilus , Lactococcus lactis , Saccharomyces carlsbergensis and S. cerevisiae prior to hydrodistillation. Incubation with lactic acid bacteria supernatants provided higher yield of agarwood oil (0.45% w/w) than that obtained from yeast (0.25% w/w), agar media (0.23% w/w) and water (0.22% w/w). The composition of agarwood oil from all media and microbial supernatant incubations was investigated by using gas chromatography-mass spectrometry. Overall, three major volatile profiles were obtained, which corresponded to water soaking (control), as well as, both YM and MRS media, lactic acid bacteria, and yeast supernatant incubations. Sesquiterpenes and their oxygenated derivatives were key components of agarwood oil. Fifty-two volatile components were tentatively identified in all samples. Beta-agarofuran, α-eudesmol, karanone, α-agarofuran and agarospirol were major components present in most of the incubated samples, while S. cerevisiae -incubated A. subintegra provided higher amount of phenyl acetaldehyde. Microbial culture supernatant incubation numerically provided the highest yield of agarwood oil compared to water soaking traditional method, possibly resulting from activity of extracellular enzymes produced by the microbes. Incubation of agarwood with lactic acid bacteria supernatant significantly enhanced oil yields without changing volatile profile/composition of agarwood essential oil, thus this is a promising method for future use.

  3. Study of wettability of calcite surfaces using oil-brine-enzyme systems for enhanced oil recovery applications

    DEFF Research Database (Denmark)

    Khusainova, Alsu; Nielsen, Sidsel Marie; Pedersen, Hanne Høst

    2015-01-01

    and adhesion behaviour tests. Comparative studies with a surfactant, protein, purified enzyme, enzyme stabiliser using n-decane (as a model for the oil) have also been carried out in order to verify experimental results. The enzymes that have the highest effect on the wettability have been identified. Those...... action has been found to be replacement of oil at the solid surface by the enzyme. Other mechanisms (modification of the surface tension or catalytic modification of hydrocarbons resulting in reducing the oil viscosity) have shown to be much less pronounced from the measurements reported here....

  4. Enhanced crude oil biodegradative potential of natural phytoplankton-associated hydrocarbonoclastic bacteria.

    Science.gov (United States)

    Thompson, Haydn; Angelova, Angelina; Bowler, Bernard; Jones, Martin; Gutierrez, Tony

    2017-07-01

    Phytoplankton have been shown to harbour a diversity of hydrocarbonoclastic bacteria (HCB), yet it is not understood how these phytoplankton-associated HCB would respond in the event of an oil spill at sea. Here, we assess the diversity and dynamics of the bacterial community associated with a natural population of marine phytoplankton under oil spill-simulated conditions, and compare it to that of the free-living (non phytoplankton-associated) bacterial community. While the crude oil severely impacted the phytoplankton population and was likely conducive to marine oil snow formation, analysis of the MiSeq-derived 16S rRNA data revealed dramatic and differential shifts in the oil-amended communities that included blooms of recognized HCB (e.g., Thalassospira, Cycloclasticus), including putative novel phyla, as well as other groups with previously unqualified oil-degrading potential (Olleya, Winogradskyella, and members of the inconspicuous BD7-3 phylum). Notably, the oil biodegradation potential of the phytoplankton-associated community exceeded that of the free-living community, and it showed a preference to degrade substituted and non-substituted polycyclic aromatic hydrocarbons. Our study provides evidence of compartmentalization of hydrocarbon-degrading capacity in the marine water column, wherein HCB associated with phytoplankton are better tuned to degrading crude oil hydrocarbons than that by the community of planktonic free-living bacteria. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. The Factors Influencing on Consumption of Palm Cooking Oil in Indonesia

    Directory of Open Access Journals (Sweden)

    Ermy Teti

    2011-09-01

    Full Text Available Cooking oil is one of the most sensitive basic needs in Indonesia. The aims of the researchare to analyze factors influencing consumption of cooking oil, the cooking oil price, and theCrude Palm Oil price in Indonesia. Using simultaneous equation model, the study show thatpalm cooking oil consumption is significantly affected by domestic palm cooking oil priceand number of population. Whilst palm cooking oil price is significantly influenced by thecooking palm oil production and the domestic Crude Palm Oil price. Finally, the domesticCrude Palm Oil is significantly affected by international Crude Palm Oil price.Keywords: consumption, cooking oil price, crude palm oil price and cooking oil

  6. Towards Enhanced Affective Design: Rethinking the Notion of Design

    Science.gov (United States)

    Kim, SuKyoung; Cho, Youngil

    2017-09-01

    Design disciplines have been contributing to shaping the life of human beings, as well as fostering culture and heritage. Design disciplines and research have been rapidly transforming, and not only objects but also services are target of design. This paper reviews design disciplines towards enhanced affective design, which attributes to intuitive knowledge. It aims at rethinking the notion of design to propose a conceptual framework for integrating user experience into objects that strengthen the form and function based design with pleasing.

  7. Oil price shocks and policy implications the emergence of U.S. tight oil production: a case study

    OpenAIRE

    Voth, Jeffrey Michael

    2015-01-01

    How have shocks to supply and demand affected global oil prices; and what are key policy implications following the resurgence of oil production in the United States? Highlights: − The recent collapse in global oil prices was dominated by oversupply. − The future of tight oil in the United States is vulnerable to obstacles beyond oil prices. − Opinions on tight oil from the Top 25 think tank organizations are considered. Global oil prices have fallen more than fifty percent since ...

  8. Effects-Directed Analysis of Dissolved Organic Compounds in Oil Sands Process-Affected Water.

    Science.gov (United States)

    Morandi, Garrett D; Wiseman, Steve B; Pereira, Alberto; Mankidy, Rishikesh; Gault, Ian G M; Martin, Jonathan W; Giesy, John P

    2015-10-20

    Acute toxicity of oil sands process-affected water (OSPW) is caused by its complex mixture of bitumen-derived organics, but the specific chemical classes that are most toxic have not been demonstrated. Here, effects-directed analysis was used to determine the most acutely toxic chemical classes in OSPW collected from the world's first oil sands end-pit lake. Three sequential rounds of fractionation, chemical analysis (ultrahigh resolution mass spectrometry), and acute toxicity testing (96 h fathead minnow embryo lethality and 15 min Microtox bioassay) were conducted. Following primary fractionation, toxicity was primarily attributable to the neutral extractable fraction (F1-NE), containing 27% of original organics mass. In secondary fractionation, F1-NE was subfractionated by alkaline water washing, and toxicity was primarily isolated to the ionizable fraction (F2-NE2), containing 18.5% of the original organic mass. In the final round, chromatographic subfractionation of F2-NE2 resulted in two toxic fractions, with the most potent (F3-NE2a, 11% of original organic mass) containing predominantly naphthenic acids (O2(-)). The less-toxic fraction (F3-NE2b, 8% of original organic mass) contained predominantly nonacid species (O(+), O2(+), SO(+), NO(+)). Evidence supports naphthenic acids as among the most acutely toxic chemical classes in OSPW, but nonacidic species also contribute to acute toxicity of OSPW.

  9. Oil use and oil dependency: Long-term issues

    International Nuclear Information System (INIS)

    Serot, D.E.; Belzer, D.B.; Guthrie, S.A.; Roop, J.M.

    1989-06-01

    The continued dependence of the United States on imported oil is a matter of increasing concern. Under the direction of the Department of Energy's Office of Policy Integration, Pacific Northwest Laboratory conducted a study which was to examine long-term issues related to oil dependence. Major issues addressed are (1) energy efficiency and the role of new technologies, (2) fuel switching, and (3) regional factors affecting fuel use. The study examines all major end-use sectors in the economy, covering the industrial, commercial, residential, transportation, and electric utility sectors. The potential impacts of efficiency improvements in oil- using equipment are assessed through the year 2000. 107 refs., 8 figs., 9 tabs

  10. Detection using visible laser of palm oil quality affected by heating process

    International Nuclear Information System (INIS)

    El-Rahman, A.A.; Badawy, H.A.

    2010-01-01

    Palm oil was heated at 180 degree C for six times (3, 6, 9, 12, 15, and 18 hours) to measure some physical, chemical and optical properties. Palm oil was exposure to laser beam to determine optical properties of oils using (He-Ne) lasers with wavelengths 632.8 and 543.5 nm. The obtained results are as follows: (1) Chemical properties such as oxidized fatty acid, acid value and peroxide value were increased by increasing heating time, but the iodine value was decreased. Meanwhile, physical properties such as viscosity and reflective index were increased at the same of heating times., (2) By increasing heating time of palm oil from 3 to 18 hrs, the absorbed of wavelengths of laser beam with wavelength 543.5 nm was more absorbed than 632.8 nm. Meanwhile, the transmission of laser beam with wavelength 543.5 nm was more high transmission than 632.8 nm., (3) The deterioration of palm oil was started after 16 hours of heating at the light intensity 228 and 368 lux of transmission for wavelengths of 543.5 and 632.8 nm., (4) There are high relation between heating time and chemical, physical, optical properties. The R square was ranged from 0.83 to 0.97, from 0.89 to 0.96 and from 0.95 to 0.98 for chemical, physical, and optical properties with heating, and (5) From optical properties we can determine the quality of oil using the laser transmission or absorbed as a detector of oil quality.

  11. Sub-inhibitory stress with essential oil affects enterotoxins production and essential oil susceptibility in Staphylococcus aureus.

    Science.gov (United States)

    Turchi, Barbara; Mancini, Simone; Pistelli, Luisa; Najar, Basma; Cerri, Domenico; Fratini, Filippo

    2018-03-01

    Fourteen wild strains of Staphylococcus aureus positive for gene sea were tested for enterotoxins production and the minimum inhibitory concentration of Leptospermum scoparium, Origanum majorana, Origanum vulgare, Satureja montana and Thymus vulgaris essential oils (EOs) were determined. After this trial, bacteria stressed with sub-inhibitory concentration of each EO were tested for enterotoxins production by an immunoenzymatic assay and resistance to the same EO. Oregano oil exhibited the highest antibacterial activity followed by manuka and thyme oils. After the exposure to a sub-inhibitory concentration of EOs, strains displayed an increased sensitivity in more than 95% of the cases. After treatment with oregano and marjoram EOs, few strains showed a modified enterotoxins production, while 43% of the strains were no longer able to produce enterotoxins after treatment with manuka EO. The results obtained in this study highlight that exposure to sub-inhibitory concentration of EO modifies strains enterotoxins production and EOs susceptibility profile.

  12. Supporting technology for enhanced oil recovery: EOR thermal processes. Seventh Amendment and Extension to Annex 4, Enhanced oil recovery thermal processes

    Energy Technology Data Exchange (ETDEWEB)

    Reid, T B [USDOE Bartlesville Project Office, OK (United States); Colonomos, P [INTEVEP, Filial de Petroleos de Venezuela, SA, Caracas (Venezuela)

    1993-02-01

    This report contains the results of efforts under the six tasks of the Seventh Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections (for each of the 6 tasks) and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section. The tasks are numbered 50 through 55. The first, second, third, fourth, fifth, sixth and seventh reports on Annex IV, Venezuela MEM/USA-DOE Fossil Energy Report IV-1, IV-2, IV-3, IV-4, IV-5 and IV-6 (DOE/BETC/SP-83/15, DOE/BC-84/6/SP, DOE/BC-86/2/SP, DOE/BC-87/2/SP, DOE/BC-89/l/SP, DOE/BC-90/l/SP, and DOE/BC-92/l/SP) contain the results for the first 49 tasks. Those reports are dated April 1983, August 1984, March 1986, July 1987, November 1988, December 1989, and October 1991, respectively. Each task report has been processed separately for inclusion in the Energy Science and Technology Database.

  13. Enhanced oil recovery from Sandstones and Carbonates with “Smart Water”

    OpenAIRE

    Torrijos, Ivan Dario Pinerez

    2017-01-01

    PhD thesis in Petroleum engineering According to the International Energy Agency crude oil is expected to contribute approximately with 26% of the world’s energy supply by 2040. In a per year basis, new oil discoveries have dropped to a 60-year low in 2015, and capital expenditure is in the longest period of retrenchment in 40 years. Therefore, oil in place from already discovered reservoirs has become an important target for oil companies. “Smart Water” injection is a relatively new E...

  14. Proceedings of the CERI 2006 oil conference : tight as a drum

    International Nuclear Information System (INIS)

    2006-01-01

    Since 2004, the tight world oil market throughout the entire supply chain has been reflected in high and volatile prices for premium crude, wide crude quality differentials, and high refining margins. This oil conference was attended by international energy experts who addressed these, and other important issues affecting market developments. In addition to issues affecting world oil prices in the short-term as well as long-term world oil demand, the presentations addressed oil supply potential and oil price differentials. Geopolitical hotspots affecting the market were also discussed along with markets for Canadian oil and factors that could impede Alberta's oil sands development, including transportation options for oil sands operators. The conference featured 23 presentations, of which 2 have been catalogued separately for inclusion in this database. refs., tabs., figs

  15. Crude oil pricing in Asia and future problems; Asia no gen`yu pricing to kongo no kadai

    Energy Technology Data Exchange (ETDEWEB)

    Kato, T. [The Institute of Energy Economics, Tokyo (Japan)

    1997-01-30

    This paper describes pricing factors of crude oil for Asia and future problems. Price of the Middle East crude oil for Asia is determined by linking the spot price of Dubayy crude oil using as a marker. Factors affecting the pricing of marker crude oil include the information dispatching functions for prices of spot market and paper market of marker crude oil, the presence of competitive crude oil, and the correlation between market of oil products and price of crude oil. The paper market of Dubayy crude oil with a small scale of trading provides poor impact and transparency. In Asia, there is no strong competitive crude oil except the Middle East crude oil. There is only a weak price linking between crude oil and products. These are the background that the price of Middle East crude oil stays at the high level and the price adjusting functions are hard to work. The marker crude oil should be changed to another except Dubayy crude oil, and information should be dispatched from purchasers based on the stable standard crude oil. The real paper market should be created, and the force of speaking to oil producing countries should be enhanced by concentrating forces of major oil consuming countries in Asia. It is necessary to find out competitive crude oils. 5 figs., 6 tabs.

  16. Enhanced bactericidal effect of enterocin A in combination with thyme essential oils against L. monocytogenes and E. coli O157:H7.

    Science.gov (United States)

    Ghrairi, Taoufik; Hani, Khaled

    2015-04-01

    The combined effects of enterocin A with Thymus vulgaris essential oils (EOs) against Listeria monocytogenes and Escherichia coli O157:H7 were investigated in vitro by enumeration of surviving populations of testing pathogens and minimal inhibitory concentration (MIC) determination. Enterocin A was purified to homogeneity by RP-HPLC from the culture fluid of Enterococcus strain and thyme EOs were extracted from local Thymus vulgaris plants. The major constituent of thyme EOs oils determined by GC-MS was thymol (78.4 %). Combination of enterocin A with thyme EOs showed an enhanced bactericidal effect against Listeria monocytogenes. Checkerboard assay and isobologram construction displayed a synergistic interaction between these compounds against Listeria (FIC index enterocin A has fallen fivefold (from 4.57 to 0.9 μg/ml), while the MIC of thyme EOs decreased threefold (from 3.6 to 1.2 μg/ml). Treatments with enterocin A alone did not affect the growth of the enteric pathogen E. coli O157:H7. However, the addition of thyme EOs and enterocin A yielded a synergistic antimicrobial effect against E. coli (MIC thyme EOs decrease from 2.2 to 0.71 μg/ml). This is the first report on the combined effect of enterocin A and thyme EOs against food pathogen bacteria. This combination could be useful in food bio-preservation.

  17. Effects of oil and chemically treated oil on nearshore under-ice meiofauna studied in-situ

    Energy Technology Data Exchange (ETDEWEB)

    Cross, W.E.; Martin, C.M.

    1987-01-01

    Meiofauna were collected during May 1982 in the soft bottom layer of nearshore landfast ice at Cape Hatt, northern Baffin Island. Average abundance of all ice meiofauna was 54,000 individualsm/sup -2/. Densities of all meiofauna groups were spatially variable, but only nematodes and cyclopoid copepods showed evidence of progressive temporal change between 18 May and 2 June. Undisturbed, enclosed areas of the under-ice surface were treated with oil on 23-24 May. Dispersed oil was in contact with the ice for 5 hours, whereas untreated oil and solidified oil remained in the enclosures for the duration of the study (12 days post-treatment). Sampling was carried out in areas where oil contacted the ice and moved away or in areas near oil that remained in contact with the under-ice surface. Five hours after treatment, oil concentrations in the water within the enclosures were similar (0.15-0.28 ppm) in untreated oil, solidified oil and control enclosures. In contrast, dispersed oil concentrations were 5.8-36.5 ppm. Densities of all copepods and polychaetes decreased dramatically in each dispersed oil enclosure by the second post-spill day, and slight density increases were evident by the tenth post-spill day. Harpacticoid copepods apparently were more sensitive to dispersed oil than were cyclopoid copepods. Densities of nematodes and cyclopoid copepod nauplii were not affected by dispersed oil. Densities of nematodes, polychaetes and all copepods were not affected by untreated or solidified oil, but there was some evidence of a stimulatory effect of those treatments on some copepod groups and life stages. 24 refs., 2 figs., 4 tabs.

  18. Effect of safflower oil on the protective properties of the in situ formed salivary pellicle.

    Science.gov (United States)

    Hannig, C; Wagenschwanz, C; Pötschke, S; Kümmerer, K; Kensche, A; Hoth-Hannig, W; Hannig, M

    2012-01-01

    The prevalence of dental erosion is still increasing. A possible preventive approach might be rinsing with edible oils to improve the protective properties of the pellicle layer. This was tested in the present in situ study using safflower oil. Pellicle formation was carried out in situ on bovine enamel slabs fixed buccally to individual upper jaw splints (6 subjects). After 1 min of pellicle formation subjects rinsed with safflower oil for 10 min, subsequently the samples were exposed in the oral cavity for another 19 min. Enamel slabs without oral exposure and slabs exposed to the oral cavity for 30 min without any rinse served as controls. After pellicle formation in situ, slabs were incubated in HCl (pH 2; 2.3; 3) for 120 s, and kinetics of calcium and phosphate release were measured photometrically (arsenazo III, malachite green). Furthermore, the ultrastructure of the pellicles was evaluated by transmission electron microscopy (TEM). Pellicle alone reduced erosive calcium and phosphate release significantly at all pH values. Pellicle modification by safflower oil resulted in an enhanced calcium loss at all pH values and caused an enhanced phosphate loss at pH 2.3. TEM indicated scattered accumulation of lipid micelles and irregular vesicle-like structures attached to the oil-treated pellicle layer. Acid etching affected the ultrastructure of the pellicle irrespective of oil rinsing. The protective properties of the pellicle layer against extensive erosive attacks are limited and mainly determined by pH. The protective effects are modified and reduced by rinses with safflower oil. Copyright © 2012 S. Karger AG, Basel.

  19. Enhanced ex situ bioremediation of crude oil contaminated beach sand by supplementation with nutrients and rhamnolipids.

    Science.gov (United States)

    Nikolopoulou, M; Pasadakis, N; Norf, H; Kalogerakis, N

    2013-12-15

    Mediterranean coastal regions are particularly exposed to oil pollution due to extensive industrialization, urbanization and transport of crude and refined oil to and from refineries. Bioremediation of contaminated beach sand through landfarming is both simple and cost-effective to implement compared to other treatment technologies. The purpose of the present study was to investigate the effect of alternative nutrients on biodegradation of crude oil contaminated beach sand in an effort to reduce the time required for bioremediation employing only indigenous hydrocarbon degraders. A natural sandy soil was collected from Agios Onoufrios beach (Chania, Greece) and was contaminated with weathered crude oil. The indigenous microbial population in the contaminated sand was tested alone (control treatment) or in combination with inorganic nutrients (KNO3 and K2HPO4) to investigate their effects on oil biodegradation rates. In addition, the ability of biosurfactants (rhamnolipids), in the presence of organic nutrients (uric acid and lecithin), to further stimulate biodegradation was investigated in laboratory microcosms over a 45-day period. Biodegradation was tracked by GC/MS analysis of aliphatic and polycyclic aromatic hydrocarbons components and the measured concentrations were corrected for abiotic removal by hopane normalizations. It was found that the saturated fraction of the residual oil is degraded more extensively than the aromatic fraction and the bacterial growth after an incubation period of approximately 3 weeks was much greater from the bacterial growth in the control. The results show that the treatments with inorganic or organic nutrients are equally effective over almost 30 days where C12-C35n-alkanes were degraded more than 97% and polyaromatic hydrocarbons with two or three rings were degraded more than 95% within 45 days. The results clearly show that the addition of nutrients to contaminated beach sand significantly enhanced the activity of

  20. A geoprocessing model for the selection of populations most affected by diffuse industrial contamination: the case of oil refinery plants

    Directory of Open Access Journals (Sweden)

    Roberto Pasetto

    2013-03-01

    Full Text Available INTRODUCTION. A method to select populations living in areas affected by diffuse environmental contamination is presented, with particular regard to oil refineries, in the Italian context. The reasons to use municipality instead of census tract populations for environment and health small-area studies of contaminated sites are discussed. METHODS. Populations most affected by diffuse environmental contamination are identified through a geoprocessing model. Data from the national census 2001 were used to estimate census tract level populations. A geodatabase was developed using the municipality and census tract layers provided by the Italian National Bureau of Statistics (ISTAT. The orthophotos of the Italian territory - year 2006 - available on the geographic information systems (GIS of the National Cartographic Portal, were considered. The area within 2 km from the plant border was used as an operational definition to identify the area at major contamination. RESULTS. The geoprocessing model architecture is presented. The results of its application to the selection of municipality populations in a case study are shown. CONCLUSIONS. The application of the proposed geoprocessing model, the availability of long time series of mortality and morbidity data, and a quali-quantitative estimate of contamination over time, could allow an appraisal of the health status of populations affected by oil refinery emissions.