Spatial Inhomogeneity of Kinetic and Magnetic Dissipations in Thermal Convection
Energy Technology Data Exchange (ETDEWEB)
Hotta, H. [Department of Physics, Graduate School of Science, Chiba university, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522 (Japan)
2017-08-20
We investigate the inhomogeneity of kinetic and magnetic dissipations in thermal convection using high-resolution calculations. In statistically steady turbulence, the injected and dissipated energies are balanced. This means that a large amount of energy is continuously converted into internal energy via dissipation. As in thermal convection, downflows are colder than upflows and the inhomogeneity of the dissipation potentially changes the convection structure. Our investigation of the inhomogeneity of the dissipation shows the following. (1) More dissipation is seen around the bottom of the calculation domain, and this tendency is promoted with the magnetic field. (2) The dissipation in the downflow is much larger than that in the upflow. The dissipation in the downflow is more than 80% of the total at maximum. This tendency is also promoted with the magnetic field. (3) Although 2D probability density functions of the kinetic and magnetic dissipations versus the vertical velocity are similar, the kinetic and magnetic dissipations are not well correlated. Our result suggests that the spatial inhomogeneity of the dissipation is significant and should be considered when modeling a small-scale strong magnetic field generated with an efficient small-scale dynamo for low-resolution calculations.
Stability of thermal HFB and dissipative thermal RPA
Tanabe, K
1999-01-01
It is shown that, as for a Nilsson + pairing model, the extended stability condition of the thermal Hartree-Fock-Bogoliubov (THFB) solution coincides with the one of the thermal RPA (TRPA) solution unless the pairing constant G is too large. As possible extensions of the TRPA equation in alternative ways describing thermal fluctuation effect, the extended TRPA (ETRPA) and the dissipative TRPA (DTRPA) are discussed. Furthermore, the general microscopic framework of the TRPA predicts the saturation and decrease of giant resonance width in high temperature limit, i.e. the fragmentation width GAMMA sub f propor to(kT) sup ( sup - sup 3 sup ( sup 2 sup ) sup ) and the spreading width GAMMA suparrow down propor to(kT) sup ( sup - sup 1 sup ( sup 2 sup ) sup ).
Investigation of transient thermal dissipation in thinned LSI for advanced packaging
Araga, Yuuki; Shimamoto, Haruo; Melamed, Samson; Kikuchi, Katsuya; Aoyagi, Masahiro
2018-04-01
Thinning of LSI is necessary for superior form factor and performance in dense cutting-edge packaging technologies. At the same time, degradation of thermal characteristics caused by the steep thermal gradient on LSIs with thinned base silicon is a concern. To manage a thermal environment in advanced packages, thermal characteristics of the thinned LSIs must be clarified. In this study, static and dynamic thermal dissipations were analyzed before and after thinning silicon to determine variations of thermal characteristics in thinned LSI. Measurement results revealed that silicon thinning affects dynamic thermal characteristics as well as static one. The transient variations of thermal characteristics of thinned LSI are precisely verified by analysis using an equivalent model based on the thermal network method. The results of analysis suggest that transient thermal characteristics can be easily estimated by employing the equivalent model.
Traits of estuarine marsh plants affect wave dissipation
Schulte Ostermann, Tilla; Heuner, Maike; Bouma, Tjeerd
2017-04-01
Estuarine vegetation can attenuate hydrodynamic forces such as waves or flow velocities and therefore has an important role in natural tidal bank protection. This function depends on the degree of hydrodynamic forces, bank morphology and on plant traits of the dominant species. The traits vary between the species but also between different marsh sites. Biomass, stem density and biomechanical properties are crucial factors that influence the rate of wave dissipation. These properties illustrate the trade-offs a species is facing in such a dynamic habitat and highlight the ability of dominant species such as Bolboschoenus maritimus and Schoenoplectus tabernaemontani to protect the tidal bank. Along the Elbe estuary, traits of dominant marsh plant species were measured on different sites. The sites vary e.g. in their elevation, salt levels and inundation periods. To analyse the role that plant traits can play in wave dissipation, the structure of the vegetation as well as the composition was recorded. Biomechanical tests helped to understand the species traits regarding stem flexibility and to determine the effects of plant traits on wave dynamics and vice versa. On the conference, we will present how plant traits affect the wave dissipation on tidal marshes and why they vary.
Kinetic analysis of thermally relativistic flow with dissipation
International Nuclear Information System (INIS)
Yano, Ryosuke; Suzuki, Kojiro
2011-01-01
Nonequilibrium flow of thermally relativistic matter with dissipation is considered in the framework of the relativistic kinetic theory. As an object of the analysis, the supersonic rarefied flow of thermally relativistic matter around the triangle prism is analyzed using the Anderson-Witting model. Obtained numerical results indicate that the flow field changes in accordance with the flow velocity and temperature of the uniform flow owing to both effects derived from the Lorentz contraction and thermally relativistic effects, even when the Mach number of the uniform flow is fixed. The profiles of the heat flux along the stagnation streamline can be approximated on the basis of the relativistic Navier-Stokes-Fourier (NSF) law except for a strong nonequilibrium regime such as the middle of the shock wave and the vicinity of the wall, whereas the profile of the heat flux behind the triangle prism cannot be approximated on the basis of the relativistic NSF law owing to rarefied effects via the expansion behind the triangle prism. Additionally, the heat flux via the gradient of the static pressure is non-negligible owing to thermally relativistic effects. The profile of the dynamic pressure is different from that approximated on the basis of the NSF law, which is obtained by the Eckart decomposition. Finally, variations of convections of the mass and momentum owing to the effects derived from the Lorentz contraction and thermally relativistic effects are numerically confirmed.
International Nuclear Information System (INIS)
Chee, Yi Shen; Ting, Tiew Wei; Hung, Yew Mun
2015-01-01
The effect of thermal asymmetrical boundaries on entropy generation of viscous dissipative flow of forced convection in thermal non-equilibrium porous media is analytically studied. The two-dimensional temperature, Nusselt number and entropy generation contours are analysed comprehensively to provide insights into the underlying physical significance of the effect on entropy generation. By incorporating the effects of viscous dissipation and thermal non-equilibrium, the first-law and second-law characteristics of porous-medium flow are investigated via various pertinent parameters, i.e. heat flux ratio, effective thermal conductivity ratio, Darcy number, Biot number and averaged fluid velocity. For the case of symmetrical wall heat flux, an optimum condition with a high Nusselt number and a low entropy generation is identified at a Darcy number of 10 −4 , providing an ideal operating condition from the second-law aspect. This type of heat and fluid transport in porous media covers a wide range of engineering applications, involving porous insulation, packed-bed catalytic process in nuclear reactors, filtration transpiration cooling, and modelling of transport phenomena of microchannel heat sinks. - Highlights: • Effects of thermal asymmetries on convection in porous-medium are studied. • Exergetic effectiveness of porous media with thermal asymmetries is investigated. • 2-D temperature, Nusselt number and entropy generation contours are analyzed. • Significance of viscous dissipation in entropy generation is scrutinized. • Significance of thermal non-equilibrium in entropy generation is studied
Thermal Dissipation Efficiency in a Micro-Processor Using Carbon Nanotubes Based Composite
Thang, Bui Hung; Van Quang, Cao; Nghia, Van Trong; Hong, Phan Ngoc; Van Chuc, Nguyen; Tam, Ngo Thi Thanh; Quang, Le Dinh; Khang, Dao Duc; Khoi, Phan Hong; Minh, Phan Ngoc
2009-09-01
Modern electronic and optoelectronic devices such as μ-processor, light emitting diode, semiconductor laser issued a challenge in the thermal dissipation problem. Finding an effective way for thermal dissipation therefore becomes a very important issue. It is known that carbon nanotubes (CNTs) is one of the most valuable materials with high thermal conductivity (2000 W/m.K compared to thermal conductivity of Ag 419 W/m.K). This suggested an approach in applying the CNTs as an essential component for thermal dissipation media to improve the performance of computer processor and other high power electronic devices. In this work multi walled carbon nanotubes (MWCNTs) based composites were utilized as the thermal dissipation media in a micro processor of a personal computer. The MWCNTs of different concentrations were added into polyaniline, commercial silicon thermal paste and commercial silver thermal paste by mechanical methods. A personal computer with configuration: Intel Pentium IV 3.066 GHz, 512 MB of RAM and Windows XP Service Pack 2 Operating System was employed. The thermal dissipation efficiency of the system was evaluated by directly measure the temperature of the μ-processor during the operation of the computer in different CPU speeds. The measured results showed that the CNTs based composite could reduce the temperature of the u-processor more than 5° C, and the time for increasing the temperature of the μ-processor was three times longer than that when using commercial thermal paste.
Application of multiwall carbon nanotubes for thermal dissipation in a micro-processor
Energy Technology Data Exchange (ETDEWEB)
Bui Hung Thang; Phan Ngoc Hong; Phan Hong Khoi; Phan Ngoc Minh [Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi (Viet Nam)], E-mail: minhpn@ims.vast.ac.vn
2009-09-01
One of the most valuable properties of the carbon nanotubes materials is its high thermal conductivity with 2000 W/m.K (compared to thermal conductivity of Ag 419 W/m.K). It suggested an approach in applying the CNTs in thermal dissipation media to improve the performance of computer processors and other high power electronic devices. In this research, the multiwall carbon nanotubes (MWCNTs) made by thermal chemical vapour deposition (CVD) at our laboratory was employed as the heat dissipation media in a microprocessor a Personal Computer with configuration: Intel Pentium IV 3.066 GHz, 512Mb of RAM and Windows XP Service Pack 2 Operating System. We directly measured the temperature of the microprocessor during the operation of the computer in two modes: 100% usage CPU mode and over-clocking mode. The measured results showed that when using our thermal dissipation media (a mixture of the mentioned commercial thermal compound and 2 wt.%. MWCNTs), the temperature of the microprocessor decreased 5 deg. C, and the time for increasing the temperature of the microprocessor was three times longer than that when using commercial thermal compound. In over-clocking mode, the processor speed reached 3.8 GHz with 165 MHz of system bus clock speed; it was 1.24 times higher than that in non over-clocking mode. The results confirmed a promising way of using MWCNTs as the thermal dissipation media for microprocessor and high power electronic devices.
Application of multiwall carbon nanotubes for thermal dissipation in a micro-processor
Thang, Bui Hung; Hong, Phan Ngoc; Khoi, Phan Hong; Minh, Phan Ngoc
2009-09-01
One of the most valuable properties of the carbon nanotubes materials is its high thermal conductivity with 2000 W/m.K (compared to thermal conductivity of Ag 419 W/m.K). It suggested an approach in applying the CNTs in thermal dissipation media to improve the performance of computer processors and other high power electronic devices. In this research, the multiwall carbon nanotubes (MWCNTs) made by thermal chemical vapour deposition (CVD) at our laboratory was employed as the heat dissipation media in a microprocessor a Personal Computer with configuration: Intel Pentium IV 3.066 GHz, 512Mb of RAM and Windows XP Service Pack 2 Operating System. We directly measured the temperature of the microprocessor during the operation of the computer in two modes: 100% usage CPU mode and over-clocking mode. The measured results showed that when using our thermal dissipation media (a mixture of the mentioned commercial thermal compound and 2 wt.%. MWCNTs), the temperature of the microprocessor decreased 5°C, and the time for increasing the temperature of the microprocessor was three times longer than that when using commercial thermal compound. In over-clocking mode, the processor speed reached 3.8 GHz with 165 MHz of system bus clock speed; it was 1.24 times higher than that in non over-clocking mode. The results confirmed a promising way of using MWCNTs as the thermal dissipation media for microprocessor and high power electronic devices.
Application of multiwall carbon nanotubes for thermal dissipation in a micro-processor
International Nuclear Information System (INIS)
Bui Hung Thang; Phan Ngoc Hong; Phan Hong Khoi; Phan Ngoc Minh
2009-01-01
One of the most valuable properties of the carbon nanotubes materials is its high thermal conductivity with 2000 W/m.K (compared to thermal conductivity of Ag 419 W/m.K). It suggested an approach in applying the CNTs in thermal dissipation media to improve the performance of computer processors and other high power electronic devices. In this research, the multiwall carbon nanotubes (MWCNTs) made by thermal chemical vapour deposition (CVD) at our laboratory was employed as the heat dissipation media in a microprocessor a Personal Computer with configuration: Intel Pentium IV 3.066 GHz, 512Mb of RAM and Windows XP Service Pack 2 Operating System. We directly measured the temperature of the microprocessor during the operation of the computer in two modes: 100% usage CPU mode and over-clocking mode. The measured results showed that when using our thermal dissipation media (a mixture of the mentioned commercial thermal compound and 2 wt.%. MWCNTs), the temperature of the microprocessor decreased 5 deg. C, and the time for increasing the temperature of the microprocessor was three times longer than that when using commercial thermal compound. In over-clocking mode, the processor speed reached 3.8 GHz with 165 MHz of system bus clock speed; it was 1.24 times higher than that in non over-clocking mode. The results confirmed a promising way of using MWCNTs as the thermal dissipation media for microprocessor and high power electronic devices.
Nanoscale thermal imaging of dissipation in quantum systems and in encapsulated graphene
Halbertal, Dorri
Energy dissipation is a fundamental process governing the dynamics of physical systems. In condensed matter physics, in particular, scattering mechanisms, loss of quantum information, or breakdown of topological protection are deeply rooted in the intricate details of how and where the dissipation occurs. Despite its vital importance the microscopic behavior of a system is usually not formulated in terms of dissipation because the latter is not a readily measureable quantity on the microscale. While the motivation is clear, existing thermal imaging methods lack the necessary sensitivity and are unsuitable for low temperature operation required for the study of quantum systems. We developed a superconducting quantum interference nano thermometer device with sub 50 nm diameter that resides at the apex of a sharp pipette and provides scanning cryogenic thermal sensing with four orders of magnitude improved thermal sensitivity of below 1 uK/sqrtHz. The noncontact noninvasive thermometry allows thermal imaging of very low nanoscale energy dissipation down to the fundamental Landauer limitý of 40 fW for continuous readout of a single qubit at 1 GHz at 4.2 K. These advances enable observation of dissipation due to single electron charging of individual quantum dots in carbon nanotubes, opening the door to direct imaging of nanoscale dissipation processes in quantum matter. In this talk I will describe the technique and present a study of hBN encapsulated graphene which reveals a novel dissipation mechanism due to atomic-scale resonant localized states at the edges of graphene. These results provide a direct valuable glimpse into the electron thermalization process in systems with weak electron-phonon interactions. Funded by European Research Council (ERC) under the European Union's Horizon 2020 programme (Grant No. 655416), Minerva Foundation with funding from the Federal German Ministry of Education and Research, Rosa and Emilio Segré Research Award, and the MISTI.
Thermal sine-Gordon system in the presence of different types of dissipation
DEFF Research Database (Denmark)
Salerno, M.; Samuelsen, Mogens Rugholm; Svensmark, Henrik
1988-01-01
The effects of thermal fluctuations on solitons and phonons of the sine-Gordon system are investigated in the presence of a αφt-βφxxt dissipation. The analysis requires the assumption of a more general autocorrelation function for the noise than the one used in previous works. We verify that this......The effects of thermal fluctuations on solitons and phonons of the sine-Gordon system are investigated in the presence of a αφt-βφxxt dissipation. The analysis requires the assumption of a more general autocorrelation function for the noise than the one used in previous works. We verify...
Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation.
Demmig-Adams, Barbara; Adams, William W
2006-01-01
This review places photoprotection into the context of ecology and species diversity. The focus is on photoprotection via the safe removal - as thermal energy - of excess solar energy absorbed by the light collecting system, which counteracts the formation of reactive oxygen species. An update on the surprisingly complex, multiple variations of thermal energy dissipation is presented, placing these different forms into ecological and genetic contexts. Zeaxanthin-facilitated, flexible thermal dissipation associated with the PsbS protein and controlled by the trans-thylakoid pH gradient apparently occurs ubiquitously in plants, and can become sustained (and thus less flexible) at low temperatures. Long-lived, slow-growing plants with low intrinsic capacities for photosynthesis have greater capacities for this flexible dissipation than short-lived, fast-growing species. Furthermore, potent, but inflexible (zeaxanthin-facilitated) thermal dissipation, prominent in evergreen species under prolonged environmental stress, is characterized with respect to the involvement of photosystem II core rearrangement and/or degradation as well as the absence of control by trans-thylakoid pH and, possibly, PsbS. A role of PsbS-related proteins in photoprotection is discussed.
Andrew C. Oishi; David Hawthorne; Ram Oren
2016-01-01
Estimating transpiration from woody plants using thermal dissipation sap flux sensors requires careful data processing. Currently, researchers accomplish this using spreadsheets, or by personally writing scripts for statistical software programs (e.g.,Â R, SAS). We developed the Baseliner software to help establish a standardized protocol for processing sap...
An interactive tool for processing sap flux data from thermal dissipation probes
Andrew C. Oishi; Chelcy F. Miniat
2016-01-01
Sap flux sensors are an important tool for estimating tree-level transpiration in forested and urbanÂ ecosystems around the world. Thermal dissipation (TD) or Granier-type sap flux probes are amongÂ the most commonly used due to their reliability, simplicity, and low cost.
Sap flow is Underestimated by Thermal Dissipation Sensors due to Alterations of Wood Anatomy
Marañón-Jiménez, S.; Wiedemann, A.; van den Bulcke, J.; Cuntz, M.; Rebmann, C.; Steppe, K.
2014-12-01
The thermal dissipation technique (TD) is one of the most commonly adopted methods for sap flow measurements. However, underestimations of up to 60% of the tree transpiration have been reported with this technique, although the causes are not certainly known. The insertion of TD sensors within the stems causes damage of the wood tissue and subsequent healing reactions, changing wood anatomy and likely the sap flow path. However, the anatomical changes in response to the insertion of sap flow sensors and the effects on the measured flow have not been assessed yet. In this study, we investigate the alteration of vessel anatomy on wounds formed around TD sensors. Our main objectives were to elucidate the anatomical causes of sap flow underestimation for ring-porous and diffuse-porous species, and relate these changes to sap flow underestimations. Successive sets of TD probes were installed in early, mid and end of the growing season in Fagus sylvatica (diffuse-porous) and Quercus petraea (ring-porous) trees. They were logged after the growing season and additional sets of sensors were installed in the logged stems with presumably no healing reaction. The wood tissue surrounding each sensor was then excised and analysed by X-ray computed microtomography (X-ray micro CT). This technique allowed the quantification of vessel anatomical characteristics and the reconstruction of the 3-D internal microstructure of the xylem vessels so that extension and shape of the altered area could be determined. Gels and tyloses clogged the conductive vessels around the sensors in both beech and oak. The extension of the affected area was larger for beech although these anatomical changes led to similar sap flow underestimations in both species. The higher vessel size in oak may explain this result and, therefore, larger sap flow underestimation per area of affected conductive tissue. The wound healing reaction likely occurred within the first weeks after sensor installation, which
Thermal dissipation of DIMM in Tower-BTX configuration
Directory of Open Access Journals (Sweden)
Giuseppe Petrone
2007-03-01
Full Text Available Natural convection for Dual In-Line Memory Module (DIMM systems, disposed as predicted by the recent Balanced Technology Extended (BTX form factor in tower configuration, is numerically studied in this article. The considered physical system is modelled by horizontal air-filled layers bounded by parallel walls in which multiple heat sources are arranged. Three-dimensional simulations are carried-out by using a multi-physical FEM software. The results, obtained for imposed ambient temperature and operative conditions (power supplied to memories, show as thermoconvective instabilities may be produced and consequently complex fluid motion field could be detected. Simulated temperature fields show good agreement with thermal design data proposed by DIMM leading constructors. In order to improve computational performance of the numerical model, a simplified geometry is also proposed and tested for solving the physical problem. The present study contributes in investigation on critical cooling conditions for BTX form factor and in innovative projects of fan-less computer architecture.
Quantum fluctuations and thermal dissipation in higher derivative gravity
Directory of Open Access Journals (Sweden)
Dibakar Roychowdhury
2015-08-01
Full Text Available In this paper, based on the AdS2/CFT1 prescription, we explore the low frequency behavior of quantum two point functions for a special class of strongly coupled CFTs in one dimension whose dual gravitational counterpart consists of extremal black hole solutions in higher derivative theories of gravity defined over an asymptotically AdS spacetime. The quantum critical points thus described are supposed to correspond to a very large value of the dynamic exponent (z→∞. In our analysis, we find that quantum fluctuations are enhanced due to the higher derivative corrections in the bulk which in turn increases the possibility of quantum phase transition near the critical point. On the field theory side, such higher derivative effects would stand for the corrections appearing due to the finite coupling in the gauge theory. Finally, we compute the coefficient of thermal diffusion at finite coupling corresponding to Gauss Bonnet corrected charged Lifshitz black holes in the bulk. We observe an important crossover corresponding to z=5 fixed point.
Numerical simulations of thermal conductivity in dissipative two-dimensional Yukawa systems.
Khrustalyov, Yu V; Vaulina, O S
2012-04-01
Numerical data on the heat transfer constants in two-dimensional Yukawa systems were obtained. Numerical study of the thermal conductivity and diffusivity was carried out for the equilibrium systems with parameters close to conditions of laboratory experiments with dusty plasma. For calculations of heat transfer constants the Green-Kubo formulas were used. The influence of dissipation (friction) on the heat transfer processes in nonideal systems was investigated. The approximation of the coefficient of thermal conductivity is proposed. Comparison of the obtained results to the existing experimental and numerical data is discussed.
Determining Accuracy of Thermal Dissipation Methods-based Sap Flux in Japanese Cedar Trees
Su, Man-Ping; Shinohara, Yoshinori; Laplace, Sophie; Lin, Song-Jin; Kume, Tomonori
2017-04-01
Thermal dissipation method, one kind of sap flux measurement method that can estimate individual tree transpiration, have been widely used because of its low cost and uncomplicated operation. Although thermal dissipation method is widespread, the accuracy of this method is doubted recently because some tree species materials in previous studies were not suitable for its empirical formula from Granier due to difference of wood characteristics. In Taiwan, Cryptomeria japonica (Japanese cedar) is one of the dominant species in mountainous area, quantifying the transpiration of Japanese cedar trees is indispensable to understand water cycling there. However, no one have tested the accuracy of thermal dissipation methods-based sap flux for Japanese cedar trees in Taiwan. Thus, in this study we conducted calibration experiment using twelve Japanese cedar stem segments from six trees to investigate the accuracy of thermal dissipation methods-based sap flux in Japanese cedar trees in Taiwan. By pumping water from segment bottom to top and inserting probes into segments to collect data simultaneously, we compared sap flux densities calculated from real water uptakes (Fd_actual) and empirical formula (Fd_Granier). Exact sapwood area and sapwood depth of each sample were obtained from dying segment with safranin stain solution. Our results showed that Fd_Granier underestimated 39 % of Fd_actual across sap flux densities ranging from 10 to 150 (cm3m-2s-1); while applying sapwood depth corrected formula from Clearwater, Fd_Granier became accurately that only underestimated 0.01 % of Fd_actual. However, when sap flux densities ranging from 10 to 50 (cm3m-2s-1)which is similar with the field data of Japanese cedar trees in a mountainous area of Taiwan, Fd_Granier underestimated 51 % of Fd_actual, and underestimated 26 % with applying Clearwater sapwood depth corrected formula. These results suggested sapwood depth significantly impacted on the accuracy of thermal dissipation
Directory of Open Access Journals (Sweden)
Junxiong Hu
2017-05-01
Full Text Available We demonstrate a facile approach to significantly enhance the heat dissipation potential of conventional aluminum (Al heat sinks by mechanically coating graphene nanosheets. For Al and graphene-coated Al heat sinks, the change in temperature with change in coating coverage, coating thickness and heat flux are studied. It is found that with the increase in coating coverage from 0 to 100%, the steady-state temperature is decreased by 5 °C at a heat flux of 1.8 W cm-1. By increasing the average thickness of graphene coating from 480 nm to 1900 nm, a remarkable temperature reduction up to 7 °C can be observed. Moreover, with the increase in heat flux from 1.2 W cm-1 to 2.4 W cm-1, the temperature difference between uncoated and graphene-coated samples increases from 1 °C to 6 °C. The thermal analysis and finite element simulation reveal that the thermal radiation plays a key role in enhancing the heat dissipation performance. The effect of heat convection remains weak owing to the low air velocity at surface-air boundary. This work provides a technological innovation in improving metal heat dissipation using graphene nanosheets.
On the viscous dissipation modeling of thermal fluid flow in a porous medium
Salama, Amgad
2011-02-24
The problem of viscous dissipation and thermal dispersion in saturated porous medium is numerically investigated for the case of non-Darcy flow regime. The fluid is induced to flow upward by natural convection as a result of a semi-infinite vertical wall that is immersed in the porous medium and is kept at constant higher temperature. The boundary layer approximations were used to simplify the set of the governing, nonlinear partial differential equations, which were then non-dimensionalized and solved using the finite elements method. The results for the details of the governing parameters are presented and investigated. It is found that the irreversible process of transforming the kinetic energy of the moving fluid to heat energy via the viscosity of the moving fluid (i.e.; viscous dissipation) resulted in insignificant generation of heat for the range of parameters considered in this study. On the other hand, thermal dispersion has shown to disperse heat energy normal to the wall more effectively compared with the normal diffusion mechanism. © 2011 Springer-Verlag.
Directory of Open Access Journals (Sweden)
Kailin Pan
2014-10-01
Full Text Available Thermal resistance is a key technical index which indicates the thermal management of multi-chip module high power LED (MCM-LED packaging heat dissipation system. In this paper, the prototype structure of MCM-LED packaging heat dissipation system is proposed to study the reliable thermal resistance calculation method. In order to analyze the total thermal resistance of the MCM-LED packaging heat dissipation system, three kinds of thermal resistance calculation method including theoretical calculation, experimental testing and finite element simulation are developed respectively. Firstly, based on the thermal resistance network model and the principle of steady state heat transfer, the theoretical value of total thermal resistance is 6.111 K/W through sum of the thermal resistance of every material layer in the major direction of heat flow. Secondly, the thermal resistance experiment is carried out by T3Ster to obtain the experimental result of total thermal resistance, and the value is 6.729 K/W. Thirdly, a three-dimensional finite element model of MCM-LED packaging heat dissipation system is established, and the junction temperature experiment is also performed to calculated the finite element simulated result of total thermal resistance, the value is 6.99 K/W. Finally, by comparing the error of all the three kinds of result, the error of total thermal resistance between the theoretical value and experimental result is 9.2 %, and the error of total thermal resistance between the experimental result and finite element simulation is only about -3.9 %, meanwhile, the main reason of each error is discussed respectively.
On the sound attenuation in fluid due to the thermal diffusion and viscous dissipation
Energy Technology Data Exchange (ETDEWEB)
Hu, Hanping, E-mail: hphu@ustc.edu.cn; Wang, Yandong; Wang, Dongdong
2015-09-11
We review the sound attenuation in fluid due to the thermal diffusion and viscous dissipation and derive the formula of the sound attenuation coefficient in fluid by solving a fully thermally–mechanically coupled equation set. Problem occurring in Stokes–Kirchhoff relation, the well-known and widely used classical formula for sound attenuation coefficient, is therefore found and pointed out. The reason for its generation is analyzed and verified. An improved formula to replace Stokes–Kirchhoff relation is suggested and the typical case for the error in calculating sound pressure level (SPL) of attenuated sound wave in fluid between the two formulas is also given. - Highlights: • Problem with Stokes–Kirchhoff relation. • Generation reason of defect in Stokes–Kirchhoff relation. • An improved formula for sound attenuation coefficient in fluid. • Typical cases of the calculation error by Stokes–Kirchhoff relation.
Tsai, Wei-Yu; Huang, Guan-Rong; Wang, Kuang-Kuo; Chen, Chin-Fu; Huang, J C
2017-04-26
Aluminum alloys, which serve as heat sink in light-emitting diode (LED) lighting, are often inherent with a high thermal conductivity, but poor thermal total emissivity. Thus, high emissive coatings on the Al substrate can enhance the thermal dissipation efficiency of radiation. In this study, the ultrasonic mechanical coating and armoring (UMCA) technique was used to insert various ceramic combinations, such as Al₂O₃, SiO₂, or graphite, to enhance thermal dissipation. Analytic models have been established to couple the thermal radiation and convection on the sample surface through heat flow equations. A promising match has been reached between the theoretical predictions and experimental measurements. With the adequate insertion of ceramic powders, the temperature of the Al heat sinks can be lowered by 5-11 °C, which is highly favorable for applications requiring cooling components.
Factors Affecting the Thickness of Thermal Aureoles
Directory of Open Access Journals (Sweden)
Catherine Annen
2017-10-01
Full Text Available Intrusions of magma induce thermal aureoles in the country rock. Analytical solutions predict that the thickness of an aureole is proportional to the thickness of the intrusion. However, in the field, thermal aureoles are often significantly thinner or wider than predicted by simple thermal models. Numerical models show that thermal aureoles are wider if the heat transfer in the magma is faster than in the country rock due to contrasts in thermal diffusivities or the effect of magma convection. Large thermal aureoles can also be caused by repeated injection close to the contact. Aureoles are thin when heat transfer in the country rock is faster than heat transfer within the magma or in case of incrementally, slowly emplaced magma. Absorption of latent heat due to metamorphic reactions or water volatilization also affects thermal aureoles but to a lesser extent. The way these parameters affect the thickness of a thermal aureole depends on the isotherm under consideration, hence on which metamorphic phase is used to draw the limit of the aureole. Thermal aureoles provide insight on the dynamics of intrusions emplacement. Although available examples are limited, asymmetric aureoles point to magma emplacement by over-accretion for mafic cases and by under-accretion for felsic cases, consistent with geochronological data.
Gatsonis, Nikolaos; Yang, Jun
2013-11-01
The SDPD-DV is implemented in our work for arbitrary 3D wall bounded geometries. The particle position and momentum equations are integrated with a velocity-Verlet algorithm and the entropy equation is integrated with a Runge-Kutta algorithm. Simulations of nitrogen gas are performed to evaluate the effects of timestep and particle scale on temperature, self-diffusion coefficient and shear viscosity. The hydrodynamic fluctuations in temperature, density, pressure and velocity from the SDPD-DV simulations are evaluated and compared with theoretical predictions. Steady planar thermal Couette flows are simulated and compared with analytical solutions. Simulations cover the hydrodynamic and mesocopic regime and show thermal fluctuations and their dependence on particle size.
International Nuclear Information System (INIS)
Senve, Vinay; Narasimham, G.S.V.L.
2011-01-01
Highlights: → Transport processes in isothermal hexagonal sheath with 19 heat generating rods is studied. → Correlation is given to predict the maximum temperature considering all transport processes. → Effective thermal conductivity of rod bundle can be obtained using max temperature. → Data on the critical Rayleigh numbers for p/d ratios of 1.1-2.0 is presented. → Radiative heat transfer contributes to heat dissipation of 38-65% of total heat. - Abstract: A numerical study of conjugate natural convection and surface radiation in a horizontal hexagonal sheath housing 19 solid heat generating rods with cladding and argon as the fill gas, is performed. The natural convection in the sheath is driven by the volumetric heat generation in the solid rods. The problem is solved using the FLUENT CFD code. A correlation is obtained to predict the maximum temperature in the rod bundle for different pitch-to-diameter ratios and heat generating rates. The effective thermal conductivity is related to the heat generation rate, maximum temperature and the sheath temperature. Results are presented for the dimensionless maximum temperature, Rayleigh number and the contribution of radiation with changing emissivity, total wattage and the pitch-to-diameter ratio. In the simulation of a larger system that contains a rod bundle, the effective thermal conductivity facilitates simplified modelling of the rod bundle by treating it as a solid of effective thermal conductivity. The parametric studies revealed that the contribution of radiation can be 38-65% of the total heat generation, for the parameter ranges chosen. Data for critical Rayleigh number above which natural convection comes into effect is also presented.
Thermal-dissipation sap flow sensors may not yield consistent sap-flux estimates over multiple years
Georgianne W. Moore; Barbara J. Bond; Julia A. Jones; Frederick C. Meinzer
2010-01-01
Sap flow techniques, such as thermal dissipation, involve an empirically derived relationship between sap flux and the temperature differential between a heated thermocouple and a nearby reference thermocouple inserted into the sapwood. This relationship has been widely tested but mostly with newly installed sensors. Increasingly, sensors are used for extended periods...
Dissipation of sulfamethoxazole in pasture soils as affected by soil and environmental factors.
Srinivasan, Prakash; Sarmah, Ajit K
2014-05-01
The dissipation of sulfamethoxazole (SMO) antibiotic in three different soils was investigated through laboratory incubation studies. The experiments were conducted under different incubation conditions such as initial chemical concentration, soil depth, temperature, and with sterilisation. The results indicate that SMO dissipated rapidly in New Zealand pasture soils, and the 50% dissipation times (DT50) in Hamilton, Te Kowhai and Horotiu soils under non-sterile conditions were 9.24, 4.3 and 13.33 days respectively. During the incubation period for each sampling event the soil dehydrogenase activity (DHA) and the variation in microbial community were monitored thorough phospholipid fatty acid extraction analysis (PLFA). The DHA data correlated well with the dissipation rate constants of SMO antibiotic, an increase in the DHA activity resulted in faster antibiotic dissipation. The PLFA analysis was indicative of higher bacterial presence as compared to fungal community, highlighting the type of microbial community responsible for dissipation. The results indicate that with increasing soil depth, SMO dissipation in soil was slower (except for Horotiu) while with increase in temperature the antibiotic loss was faster, and was noticeable in all the soils. Both the degree of biological activity and the temperature of the soil influenced overall SMO dissipation. SMO is not likely to persist more than 5-6 months in all three soils suggesting that natural biodegradation may be sufficient for the removal of these contaminants from the soil. Its dissipation in sterile soils indicated abiotic factors such as strong sorption onto soil components to play a role in the dissipation of SMO. Copyright © 2014 Elsevier B.V. All rights reserved.
Directory of Open Access Journals (Sweden)
A. Christopher Oishi
2016-01-01
Full Text Available Estimating transpiration from woody plants using thermal dissipation sap flux sensors requires careful data processing. Currently, researchers accomplish this using spreadsheets, or by personally writing scripts for statistical software programs (e.g., R, SAS. We developed the Baseliner software to help establish a standardized protocol for processing sap flux data. Baseliner enables users to QA/QC data and process data using a combination of automated steps, visualization, and manual editing. Data processing requires establishing a zero-flow reference value, or “baseline”, which varies among sensors and with time. Since no set of algorithms currently exists to reliably QA/QC and estimate the zero-flow baseline, Baseliner provides a graphical user interface to allow visual inspection and manipulation of data. Data are first automatically processed using a set of user defined parameters. The user can then view the data for additional, manual QA/QC and baseline identification using mouse and keyboard commands. The open-source software allows for user customization of data processing algorithms as improved methods are developed.
The thickness of DLC thin film affects the thermal conduction of HPLED lights
Hsu, Ming Seng; Huang, Jen Wei; Shyu, Feng Lin
2016-09-01
Thermal dissipation had an important influence in the quantum effect and life of light emitting diodes (LED) because it enabled heat transfer away from electric devices to the aluminum plate for heat removal. In the industrial processing, the quality of the thermal dissipation was decided by the gumming technique between the PCB and aluminum plate. In this study, we made the ceramic thin films of diamond like carbon (DLC) by vacuum sputtering between the substrate and high power light emitting diodes (HPLED) light to check the influence of heat transfer by DLC thin films. The ceramic dielectric coatings were characterized by several subsequent analyses, especially the measurement of real work temperature of HPLEDs. The X-Ray photoelectron spectroscopy (XPS) patterns revealed that ceramic phases were successfully grown onto the substrate. At the same time, the real work temperatures showed the thickness of DLC thin film coating effectively affected the thermal conduction of HPLEDs.
Energy Technology Data Exchange (ETDEWEB)
Boualit, A.; Boualit, S. [Unite de recherche appliquee en energies renouvelables, Ghardaia (Algeria); Zeraibi, N. [Universite de Boumerdes, Faculte des hydrocarbures dept. Transport et equipement, Boumerdes (Algeria); Amoura, M. [Universite des Sciences et de la Technologie Houari Boumedienne, Faculte de Physique, Dept. Energetique, Alger (Algeria)
2011-01-15
The thermal development of the hydrodynamically developing laminar flow of a viscoplastic fluid (fluid of Bingham) between two plane plates maintained at a constant temperature has been studied numerically. This analysis has shown the effect caused by inertia and the rheological behaviour of the fluid on the velocity, pressure and temperature fields. The effects of Bingham and Peclet numbers on the Nusselt values with the inclusion of viscous dissipation are also discussed. (authors)
Two-phase modelling of thermal dissipation in a natural basin
International Nuclear Information System (INIS)
Baltrenas, P.; Vaitiekunas, P.; Katinas, V.; Markevicius, A.
2004-01-01
The state of two-phase flow 'liquid-gas' has been modeled numerically by the three-dimensional method of complex research of heat and mass transfer. This allows examining the interaction of some transfer processes in a natural cooling basin (the Druksiai lake): the wind power and direction, variable water density, the coefficient of heat conduction and heat transfer of the water-air interface. Combined effect of these natural actions determines the heat amount that the basin is able to dissipate to the surrounding atmospheric media in thermal equilibrium (without changes in the mean water temperature). This paper presents a number of the most widely used expressions for the coefficients of vertical and horizontal heat transfer. On the basis of stream velocity and mean temperature profiles measured in the cooling pond as well as on that of their time variations suggestions are made that the mixing rate at the water surface is caused by natural space - time variation of the wind, and can be described by the value of eddy viscosity coefficient - 1 m2/s (numerical modeling with 0,9-1,3 m2/s). The wind influences the surface of the lake according to the experimental data, i e 1-3 % of the mean wind velocity. The model applies to the weakly wind, approximately 1-5 m/s of the mean wind velocity. Comparison of experimental and numerical results showed a qualitative agreement. For a better quantitative approximation, it is necessary to have more boundary conditions variable with time and to solve unsteady set equations for transfer processes. (author)
Toledano, Manuel; Osorio, Raquel; Osorio, Estrella; Medina-Castillo, Antonio Luis; Toledano-Osorio, Manuel; Aguilera, Fátima S
2017-04-01
The aim of this study was to evaluate changes in the mechanical and chemical behavior, and bonding ability at dentin interfaces infiltrated with polymeric nanoparticlesstandard deviations and modes of failure are (NPs) prior to resin application. Dentin surfaces were treated with 37% phosphoric acid followed by application of an ethanol suspension of NPs, Zn-NPs or Ca-NPs followed by the application of an adhesive, Single Bond (SB). Bonded interfaces were stored for 24h, submitted to microtensile bond strength test, and evaluated by scanning electron microscopy. After 24h and 21 d of storage, the whole resin-dentin interface adhesive was evaluated using a Nano-DMA. Complex modulus, storage modulus and tan delta (δ) were assessed. AFM imaging and Raman analysis were performed. Bond strength was not affected by NPs infiltration. After 21 d of storage, tan δ generally decreased at Zn-NPs/resin-dentin interface, and augmented when Ca-NPs or non-doped NPs were used. When both Zn-NPs and Ca-NPs were employed, the storage modulus and complex modulus decreased, though both moduli increased at the adhesive and at peritubular dentin after Zn-NPs infiltration. The phosphate and the carbonate peaks, and carbonate substitution, augmented more at interfaces promoted with Ca-NPs than with Zn-NPs after 21 d of storage, but crystallinity did not differ at created interfaces with both ions-doped NPs. Crosslinking of collagen and the secondary structure of collagen improved with Zn-NPs resin-dentin infiltration. Ca-NPs-resin dentin infiltration produced a favorable dissipation of energy with minimal stress concentration trough the crystalline remineralized resin-dentin interface, causing minor damage at this structure. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wan, Jiangbo; Zhang, Guoan; Qiu, Yuxuan; Wen, Chunquan; Fu, Tairan
2016-05-01
This study aimed to further explore heat dissipation by blood circulation and airway tissue heat absorption in an inhalational thermal injury model. Twelve adult male Beagle dogs were divided into four groups to inhale heated air for 10min: the control group, group I (100.5°C), group II (161.5°C), and group III (218°C). The relative humidity and temperature of the inhaled heated air were measured in the heating tube and trachea, as were blood temperatures and flow velocities in both common jugular veins. Formulas were used to calculate the total heat quantity reduction of the heated air, heat dissipation by the blood, and airway tissue heat absorption. The blood temperatures of both the common jugular veins increased by 0.29°C±0.07°C to 2.96°C±0.24°C and the mean blood flow volume after injury induction was about 1.30-1.74 times greater than before injury induction. The proportions of heat dissipated by the blood and airway tissue heat absorption were 68.92%±14.88% and 31.13%±14.87%, respectively. The heat dissipating ability of the blood circulation was demonstrated and improved upon along with tissue heat absorption owing to increased regional blood flow. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.
Jean, Ming-Der; Lei, Peng-Da; Kong, Ling-Hua; Liu, Cheng-Wu
2018-05-01
This study optimizes the thermal dissipation ability of aluminum nitride (AlN) ceramics to increase the thermal performance of light-emitting diode (LED) modulus. AlN powders are deposited on heat sink as a heat interface material, using an electrostatic spraying process. The junction temperature of the heat sink is developed by response surface methodology based on Taguchi methods. In addition, the structure and properties of the AlN coating are examined using X-ray photoelectron spectroscopy (XPS). In the XPS analysis, the AlN sub-peaks are observed at 72.79 eV for Al2p and 398.88 eV for N1s, and an N1s sub-peak is assigned to N-O at 398.60eV and Al-N bonding at 395.95eV, which allows good thermal properties. The results have shown that the use of AlN ceramic material on a heat sink can enhance the thermal performance of LED modules. In addition, the percentage error between the predicted and experimental results compared the quadric model with between the linear and he interaction models was found to be within 7.89%, indicating that it was a good predictor. Accordingly, RSM can effectively enhance the thermal performance of an LED, and the beneficial heat dissipation effects for AlN are improved by electrostatic spraying.
Directory of Open Access Journals (Sweden)
Prasad K.V.
2017-02-01
Full Text Available The effect of thermal radiation and viscous dissipation on a combined free and forced convective flow in a vertical channel is investigated for a fully developed flow regime. Boussinesq and Roseseland approximations are considered in the modeling of the conduction radiation heat transfer with thermal boundary conditions (isothermal-thermal, isoflux-thermal, and isothermal-flux. The coupled nonlinear governing equations are also solved analytically using the Differential Transform Method (DTM and regular perturbation method (PM. The results are analyzed graphically for various governing parameters such as the mixed convection parameter, radiation parameter, Brinkman number and perturbation parameter for equal and different wall temperatures. It is found that the viscous dissipation enhances the flow reversal in the case of a downward flow while it counters the flow in the case of an upward flow. A comparison of the Differential Transform Method (DTM and regular perturbation method (PM methods shows the versatility of the Differential Transform Method (DTM. The skin friction and the wall temperature gradient are presented for different values of the physical parameters and the salient features are analyzed.
STRONG TIDAL DISSIPATION IN SATURN AND CONSTRAINTS ON ENCELADUS' THERMAL STATE FROM ASTROMETRY
International Nuclear Information System (INIS)
Lainey, Valéry; Desmars, Josselin; Arlot, Jean-Eudes; Emelyanov, Nicolai; Remus, Françoise; Karatekin, Özgür; Charnoz, Sébastien; Mathis, Stéphane; Le Poncin-Lafitte, Christophe; Tobie, Gabriel; Zahn, Jean-Paul
2012-01-01
Tidal interactions between Saturn and its satellites play a crucial role in both the orbital migration of the satellites and the heating of their interiors. Therefore, constraining the tidal dissipation of Saturn (here the ratio k 2 /Q) opens the door to the past evolution of the whole system. If Saturn's tidal ratio can be determined at different frequencies, it may also be possible to constrain the giant planet's interior structure, which is still uncertain. Here, we try to determine Saturn's tidal ratio through its current effect on the orbits of the main moons, using astrometric data spanning more than a century. We find an intense tidal dissipation (k 2 /Q = (2.3 ± 0.7) × 10 –4 ), which is about 10 times higher than the usual value estimated from theoretical arguments. As a consequence, eccentricity equilibrium for Enceladus can now account for the huge heat emitted from Enceladus' south pole. Moreover, the measured k 2 /Q is found to be poorly sensitive to the tidal frequency, on the short frequency interval considered. This suggests that Saturn's dissipation may not be controlled by turbulent friction in the fluid envelope as commonly believed. If correct, the large tidal expansion of the moon orbits due to this strong Saturnian dissipation would be inconsistent with the moon formations 4.5 Byr ago above the synchronous orbit in the Saturnian subnebulae. But it would be compatible with a new model of satellite formation in which the Saturnian satellites formed possibly over a longer timescale at the outer edge of the main rings. In an attempt to take into account possible significant torques exerted by the rings on Mimas, we fitted a constant rate da/dt on Mimas' semi-major axis as well. We obtained an unexpected large acceleration related to a negative value of da/dt = –(15.7 ± 4.4) × 10 –15 AU day –1 . Such acceleration is about an order of magnitude larger than the tidal deceleration rates observed for the other moons. If not coming from an
Miao, Bo; Meng, Ping; Zhang, Jin Song; He, Fang Jie; Sun, Shou Jia
2017-07-18
The water sources and transpiration of poplar trees in Zhangbei County were measured using stable hydrogen isotope and thermal dissipation method. The differences in water relationships between dieback and non-dieback poplar trees were analyzed. The results showed that the dieback trees mainly used shallow water from 0-30 cm soil layer during growing season while the non-dieback trees mainly used water from 30-80 cm soil layer. There was a significant difference in water source between them. The non-dieback trees used more water from middle and deep soil layers than that of the dieback trees during the dry season. The percentage of poplar trees using water from 0-30 cm soil layer increased in wet season, and the increase of dieback trees was higher than that of non-dieback trees. The contributions of water from 30-180 cm soil layer of dieback and non-dieback trees both decreased in wet season. The sap flow rate of non-dieback trees was higher than that of dieback trees. There was a similar variation tend of sap flow rate between dieback and non-dieback trees in different weather conditions, but the start time of sap flow of non-dieback trees was earlier than that of dieback trees. Correlation analysis showed that the sap flow rate of either dieback or non-dieback poplar trees strongly related to soil temperature, wind speed, photosynthetically active radiation, relative humidity and air temperature. The sap flow rate of die-back poplar trees strongly negatively related to soil temperature and relative humidity, and strongly positively related to the other factors. The sap flow rate of non-dieback poplar trees only strongly negatively related to relative humidity but positively related to the other factors. The results revealed transpiration of both poplar trees was easily affected by environmental factors. The water consumption of dieback trees was less than non-dieback trees because the cumulative sap flow amount of dieback trees was lower. Reduced transpiration
International Nuclear Information System (INIS)
Chen Liang; Zhang Wan-Rong; Jin Dong-Yue; Shen Pei; Xie Hong-Yun; Ding Chun-Bao; Xiao Ying; Sun Bo-Tao; Wang Ren-Qing
2011-01-01
A method of non-uniform finger spacing is proposed to enhance thermal stability of a multiple finger power SiGe heterojunction bipolar transistor under different power dissipations. Temperature distribution on the emitter fingers of a multi-finger SiGe heterojunction bipolar transistor is studied using a numerical electro-thermal model. The results show that the SiGe heterojunction bipolar transistor with non-uniform finger spacing has a small temperature difference between fingers compared with a traditional uniform finger spacing heterojunction bipolar transistor at the same power dissipation. What is most important is that the ability to improve temperature non-uniformity is not weakened as power dissipation increases. So the method of non-uniform finger spacing is very effective in enhancing the thermal stability and the power handing capability of power device. Experimental results verify our conclusions. (interdisciplinary physics and related areas of science and technology)
A New Regime of Nanoscale Thermal Transport: Collective Diffusion Increases Dissipation Efficiency
2015-04-21
different regimes of thermal transport. The laser-induced thermal expansion and subsequent cooling of the nanogratings is probed using coherent extreme UV ...technique compared with previously reported MFP spectros - copy techniques. First, our approach that combines nanoheaters with the phase sensitivity of
DEFF Research Database (Denmark)
Antonov, A. A.; Pankratov, A. L.; Yulin, A. V.
2000-01-01
The nonlinear dynamics of fluxons in Josephson systems with dispersion and thermal fluctuations is analyzed using the "quasiparticle" approach to investigate the influence of noise on the Cherenkov radiation effect. Analytical expressions for the stationary amplitude of the emitted radiation...
Road-surface properties affecting rates of energy dissipation from vehicles
Energy Technology Data Exchange (ETDEWEB)
Igwe, E.A. [Department of Civil Engineering, Rivers State University of Science and Technology, Port Harcourt, P.M.B 5080, Rivers State (Nigeria); Ayotamuno, M.J.; Okparanma, R.N. [Department of Agricultural and Environmental Engineering, Rivers State University of Science and Technology, Port Harcourt, P.M.B 5080, Rivers State (Nigeria); Ogaji, S.O.T.; Probert, S.D. [School of Engineering, Cranfield University, Bedfordshire Mk43 OAL (United Kingdom)
2009-09-15
The rates of energy that moving vehicles dissipate to road surfaces as well as noise emissions and their propensities for pitting (and hence their repair costs per year) all depend upon the structural properties of these surfaces. Thus, to increase the strength of bituminous concrete (i.e. a typical flexible road-surface) has been one of the major recent aims in highway engineering. The present study explored techniques that will increase these strength properties by modifying the material, using rubber latex, through rubberization and hence, improve the strength of the flexible trafficked surface when in contact with vehicles. At the optimal design asphalt (i.e. bitumen) content of 4.68%, the successive addition of various percentages of the rubber latex produced a design value of 1.65% rubber content, which increased the stability of the roadway from 1595 to 2639 N (i.e. an 65.5% increase) and the density from 2447 to 2520.8 kg/m{sup 3} (i.e. a 3.02% increase). This shows that the addition of rubber latex to bituminous concrete (a flexible road-surface) increased sustainability and the strength (in terms of stability and density). Similarly, the air voids and voids in the mineral aggregate (VMA) were reduced by introducing latex from 4.22% to 3.45% (i.e. a 17.06% reduction) and 16.25% to 13.43% (i.e. an 17.4% reduction), respectively. Whereas, the reduction in voidage volume added strength to the bituminous concrete by increasing its stability and density, the reduction in VMA had no positive impact on the strength properties of the flexible road-surface. (author)
On the thermal stability for a model reactive flow with viscous dissipation
International Nuclear Information System (INIS)
Okoya, S.S.
2006-12-01
We study the thermal stability of a reactive flow of a third-grade fluid with viscous heating and chemical reaction between two horizontal flat plates, where the top is moving with a uniform speed and the bottom plate is fixed in the presence of an imposed pressure gradient. This study is a natural continuation of earlier work on rectilinear shear flows. The governing equations are non-dimensionalized and the resulting system of equations are not coupled. An approximate explicit solution is found for the flow velocity using homotopy - perturbation technique and the range of validity is determined. After the velocity is known, the heat transport may be analyzed. It is found that the temperature solution depends on the non-Newtonian material parameter of the fluid, Λ, viscous heating parameter, Γ, and an exponent, m. Attention is focused upon the disappearance of criticality of the solution set {β, δ, θ max } for various values of Λ, Γ and m, and the numerical computations are presented graphically to show salient features of the solution set. (author)
International Nuclear Information System (INIS)
Dehkordi, Asghar Molaei; Mohammadi, Ali Asghar
2009-01-01
A numerical investigation was conducted on the transient behavior of a hydrodynamically, fully developed, laminar flow of power-law fluids in the thermally developing entrance region of circular ducts taking into account the effect of viscous dissipation but neglecting the effect of axial conduction. In this regard, the unsteady state thermal energy equation was solved by using a finite difference method, whereas the steady state thermal energy equation without wall heat flux was solved analytically as the initial condition of the former. The effects of the power-law index and wall heat flux on the local Nusselt number and thermal entrance length were investigated. Moreover, the local Nusselt number of steady state conditions was correlated in terms of the power-law index and wall heat flux and compared with literature data, which were obtained by an analytic solution for Newtonian fluids. Furthermore, a relationship was proposed for the thermal entrance length
Busch, F.; Huner, N.; Ensminger, I.
2007-01-01
Temperature and daylength act as environmental signals that determine the length of the growing season in boreal evergreen conifers. Climate change might affect the seasonal development of these trees, as they will experience naturally decreasing daylength during autumn, while at the same time warmer air temperature will maintain photosynthesis and respiration. We characterized the down-regulation of photosynthetic gas exchange and the mechanisms involved in the dissipation of energy in Jack ...
Marañón-Jiménez, S; Van den Bulcke, J; Piayda, A; Van Acker, J; Cuntz, M; Rebmann, C; Steppe, K
2018-02-01
Insertion of thermal dissipation (TD) sap flow sensors in living tree stems causes damage of the wood tissue, as is the case with other invasive methods. The subsequent wound formation is one of the main causes of underestimation of tree water-use measured by TD sensors. However, the specific alterations in wood anatomy in response to inserted sensors have not yet been characterized, and the linked dysfunctions in xylem conductance and sensor accuracy are still unknown. In this study, we investigate the anatomical mechanisms prompting sap flow underestimation and the dynamic process of wound formation. Successive sets of TD sensors were installed in the early, mid and end stage of the growing season in diffuse- and ring-porous trees, Fagus sylvatica (Linnaeus) and Quercus petraea ((Mattuschka) Lieblein), respectively. The trees were cut in autumn and additional sensors were installed in the cut stem segments as controls without wound formation. The wounded area and volume surrounding each sensor was then visually determined by X-ray computed microtomography (X-ray microCT). This technique allowed the characterization of vessel anatomical transformations such as tyloses formation, their spatial distribution and quantification of reduction in conductive area. MicroCT scans showed considerable formation of tyloses that reduced the conductive area of vessels surrounding the inserted TD probes, thus causing an underestimation in sap flux density (SFD) in both beech and oak. Discolored wood tissue was ellipsoidal, larger in the radial plane, more extensive in beech than in oak, and also for sensors installed for longer times. However, the severity of anatomical transformations did not always follow this pattern. Increased wound size with time, for example, did not result in larger SFD underestimation. This information helps us to better understand the mechanisms involved in wound effects with TD sensors and allows the provision of practical recommendations to reduce
factors affecting particle retention in thermal field-flow fractionation
African Journals Online (AJOL)
In this paper, we report a range of factors which affect the retention of colloidal particles in thermal field-flow fractionation (ThFFF). These results are observed among different sizes of polystyrene (PS) latex particles suspended in both aqueous and nonaqueous liquid carriers and very low density lipoproteins in a phosphate ...
Do, F; Rocheteau, A
2002-06-01
The thermal dissipation method is simple and widely used for measuring sap flow in large stems. As with several other thermal methods, natural temperature gradients are assumed to be negligible in the sapwood being measured. We studied the magnitude and variability of natural temperature gradients in sapwood of Acacia trees growing in the Sahelian zone of Senegal, analyzed their effects on sap flow measurements, and investigated possible solutions. A new measurement approach employing cyclic heating (45 minutes of heating and 15 minutes of cooling; 45/15) was also tested. Three-day measurement sequences that included 1 day without heating, a second day with continuous heating and a third day with cyclic heating were recorded during a 6.5-month period using probes installed at three azimuths in a tree trunk. Natural temperature gradients between the two probes of the sensor unit, spaced 8 to 10 cm vertically, were rarely negligible (i.e., solar radiation and low sap flow rate. However, for all applications of the thermal dissipation method, it is wise to check regularly for natural temperature gradients by switching off the heater.
Mahanthesh, B.; Gireesha, B. J.
2018-03-01
The impact of Marangoni convection on dusty Casson fluid boundary layer flow with Joule heating and viscous dissipation aspects is addressed. The surface tension is assumed to vary linearly with temperature. Physical aspects of magnetohydrodynamics and thermal radiation are also accounted. The governing problem is modelled under boundary layer approximations for fluid phase and dust particle phase and then Runge-Kutta-Fehlberg method based numeric solutions are established. The momentum and heat transport mechanisms are focused on the result of distinct governing parameters. The Nusselt number is also calculated. It is established that the rate of heat transfer can be enhanced by suspending dust particles in the base fluid. The temperature field of fluid phase and temperature of dust phase are quite reverse for thermal dust parameter. The radiative heat, viscous dissipation and Joule heating aspects are constructive for thermal fields of fluid and dust phases. The velocity of dusty Casson fluid dominates the velocity of dusty fluid while this trend is opposite in the case of temperature. Moreover qualitative behaviour of fluid phase and dust phase temperature/velocity are similar.
Directory of Open Access Journals (Sweden)
S. Srinivas
2016-01-01
Full Text Available The present work investigates the effects of thermal-diffusion and diffusion-thermo on MHD flow of viscous fluid between expanding or contracting rotating porous disks with viscous dissipation. The partial differential equations governing the flow problem under consideration have been transformed by a similarity transformation into a system of coupled nonlinear ordinary differential equations. An analytical approach, namely the homotopy analysis method is employed in order to obtain the solutions of the ordinary differential equations. The effects of various emerging parameters on flow variables have been discussed numerically and explained graphically. Comparison of the HAM solutions with the numerical solutions is performed.
National Research Council Canada - National Science Library
Vischer, D. L; Hager, Willi H; Hager, W. H
1995-01-01
.... the book comprises chapters in farious fields such as hydraulic jump, stilling basins, ski jumps and plunge pools but introduces also a general account on various methods of dissipation, as well...
Physical factors affecting the electrically assisted thermal bitumen recovery
Energy Technology Data Exchange (ETDEWEB)
Bogdanov, I.I.; Torres, J.-A.; Kamp, A.M. [CHLOE, University of Pau (France); Corre, B. [CSTJF, Total (France)
2011-07-01
In the heavy oil industry, thermal processes are used to enhance oil recovery by increasing the reservoir temperature which results in better oil mobility. Low frequency heating (LFH) is a technology using electrical conductivity of connate water to propagate current between electrodes, thus generating heat in the reservoir through the Joule effect. During the preheating and production periods, many physical factors may affect the LFH process and the aim of this study was to determine which factors affect the process and how, using a particular pattern of electrodes. Simulations were conducted using the CMG Stars reservoir simulator under different configurations, conditions and parameters. Important physical properties and operational conditions affecting the LFH process were determined and results showed that convection heat, bulk electrical conductivity and power distribution can be improved by salt water circulation. This paper highlighted the physical factors affecting LFH efficiency and these findings will be useful for future process design.
Busch, Florian; Hüner, Norman P A; Ensminger, Ingo
2007-03-01
Temperature and daylength act as environmental signals that determine the length of the growing season in boreal evergreen conifers. Climate change might affect the seasonal development of these trees, as they will experience naturally decreasing daylength during autumn, while at the same time warmer air temperature will maintain photosynthesis and respiration. We characterized the down-regulation of photosynthetic gas exchange and the mechanisms involved in the dissipation of energy in Jack pine (Pinus banksiana) in controlled environments during a simulated summer-autumn transition under natural conditions and conditions with altered air temperature and photoperiod. Using a factorial design, we dissected the effects of daylength and temperature. Control plants were grown at either warm summer conditions with 16-h photoperiod and 22 degrees C or conditions representing a cool autumn with 8 h/7 degrees C. To assess the impact of photoperiod and temperature on photosynthesis and energy dissipation, plants were also grown under either cold summer (16-h photoperiod/7 degrees C) or warm autumn conditions (8-h photoperiod/22 degrees C). Photosynthetic gas exchange was affected by both daylength and temperature. Assimilation and respiration rates under warm autumn conditions were only about one-half of the summer values but were similar to values obtained for cold summer and natural autumn treatments. In contrast, photosynthetic efficiency was largely determined by temperature but not by daylength. Plants of different treatments followed different strategies for dissipating excess energy. Whereas in the warm summer treatment safe dissipation of excess energy was facilitated via zeaxanthin, in all other treatments dissipation of excess energy was facilitated predominantly via increased aggregation of the light-harvesting complex of photosystem II. These differences were accompanied by a lower deepoxidation state and larger amounts of beta-carotene in the warm autumn
Ganesh Kumar, K.; Rudraswamy, N. G.; Gireesha, B. J.; Krishnamurthy, M. R.
2017-09-01
Present exploration discusses the combined effect of viscous dissipation and Joule heating on three dimensional flow and heat transfer of a Jeffrey nanofluid in the presence of nonlinear thermal radiation. Here the flow is generated over bidirectional stretching sheet in the presence of applied magnetic field by accounting thermophoresis and Brownian motion of nanoparticles. Suitable similarity transformations are employed to reduce the governing partial differential equations into coupled nonlinear ordinary differential equations. These nonlinear ordinary differential equations are solved numerically by using the Runge-Kutta-Fehlberg fourth-fifth order method with shooting technique. Graphically results are presented and discussed for various parameters. Validation of the current method is proved by comparing our results with the existing results under limiting situations. It can be concluded that combined effect of Joule and viscous heating increases the temperature profile and thermal boundary layer thickness.
Directory of Open Access Journals (Sweden)
T. M. Ajayi
2017-01-01
Full Text Available The problem of a non-Newtonian fluid flow past an upper surface of an object that is neither a perfect horizontal/vertical nor inclined/cone in which dissipation of energy is associated with temperature-dependent plastic dynamic viscosity is considered. An attempt has been made to focus on the case of two-dimensional Casson fluid flow over a horizontal melting surface embedded in a thermally stratified medium. Since the viscosity of the non-Newtonian fluid tends to take energy from the motion (kinetic energy and transform it into internal energy, the viscous dissipation term is accommodated in the energy equation. Due to the existence of internal space-dependent heat source; plastic dynamic viscosity and thermal conductivity of the non-Newtonian fluid are assumed to vary linearly with temperature. Based on the boundary layer assumptions, suitable similarity variables are applied to nondimensionalized, parameterized and reduce the governing partial differential equations into a coupled ordinary differential equations. These equations along with the boundary conditions are solved numerically using the shooting method together with the Runge-Kutta technique. The effects of pertinent parameters are established. A significant increases in Rex1/2Cfx is guaranteed with St when magnitude of β is large. Rex1/2Cfx decreases with Ec and m.
Graphene heat dissipating structure
Washburn, Cody M.; Lambert, Timothy N.; Wheeler, David R.; Rodenbeck, Christopher T.; Railkar, Tarak A.
2017-08-01
Various technologies presented herein relate to forming one or more heat dissipating structures (e.g., heat spreaders and/or heat sinks) on a substrate, wherein the substrate forms part of an electronic component. The heat dissipating structures are formed from graphene, with advantage being taken of the high thermal conductivity of graphene. The graphene (e.g., in flake form) is attached to a diazonium molecule, and further, the diazonium molecule is utilized to attach the graphene to material forming the substrate. A surface of the substrate is treated to comprise oxide-containing regions and also oxide-free regions having underlying silicon exposed. The diazonium molecule attaches to the oxide-free regions, wherein the diazonium molecule bonds (e.g., covalently) to the exposed silicon. Attachment of the diazonium plus graphene molecule is optionally repeated to enable formation of a heat dissipating structure of a required height.
Keeling, Trevor P; Roesch, Etienne B; Clements-Croome, Derek
2016-01-01
The physical environment leads to a thermal sensation that is perceived and appraised by occupants. The present study focuses on the relationship between sensation and evaluation. We asked 166 people to recall a thermal event from their recent past. They were then asked how they evaluated this experience in terms of 10 different emotions (frustrated, resigned, dislike, indifferent, angry, anxious, liking, joyful, regretful, proud). We tested whether four psychological factors (appraisal dimensions) could be used to predict the ensuing emotions, as well as comfort, acceptability, and sensation. The four dimensions were: the Conduciveness of the event, who/what caused the event (Causality), who had control (Agency), and whether the event was expected (Expectations). These dimensions, except for Expectations, were good predictors of the reported emotions. Expectations, however, predicted the reported thermal sensation, its acceptability, and ensuing comfort. The more expected an event was, the more uncomfortable a person felt, and the less likely they reported a neutral thermal sensation. Together, these results support an embodied view of how subjective appraisals affect thermal experience. Overall, we show that appraisal dimensions mediate occupants' evaluation of their thermal sensation, which suggests an additional method for understanding psychological adaption.
Directory of Open Access Journals (Sweden)
Khilap Singh
2016-01-01
Full Text Available A numerical model is developed to examine the effects of thermal radiation on unsteady mixed convection flow of a viscous dissipating incompressible micropolar fluid adjacent to a heated vertical stretching surface in the presence of the buoyancy force and heat generation/absorption. The Rosseland approximation is used to describe the radiative heat flux in the energy equation. The model contains nonlinear coupled partial differential equations which have been converted into ordinary differential equation by using the similarity transformations. The dimensionless governing equations for this investigation are solved by Runge-Kutta-Fehlberg fourth fifth-order method with shooting technique. Numerical solutions are then obtained and investigated in detail for different interesting parameters such as the local skin-friction coefficient, wall couple stress, and Nusselt number as well as other parametric values such as the velocity, angular velocity, and temperature.
Directory of Open Access Journals (Sweden)
Dulal Pal
2017-03-01
Full Text Available The study of magnetohydrodynamic (MHD convective heat and mass transfer near a stagnation-point flow over stretching/shrinking sheet of nanofluids is presented in this paper by considering thermal radiation, Ohmic heating, viscous dissipation and heat source/sink parameter effects. Non-similarity method is adopted for the governing basic equations before they are solved numerically using Runge-Kutta-Fehlberg method using shooting technique. The numerical results are validated by comparing the present results with previously published results. The focus of this paper is to study the effects of some selected governing parameters such as Richardson number, radiation parameter, Schimdt number, Eckert number and magnetic parameter on velocity, temperature and concentration profiles as well as on skin-friction coefficient, local Nusselt number and Sherwood number.
Directory of Open Access Journals (Sweden)
Aftab Ahmed
2018-01-01
Full Text Available The aim of the present study is to investigate the combined effects of the thermal radiation, viscous dissipation, suction/injection and internal heat generation/absorption on the boundary layer flow of a non-Newtonian power law fluid over a semi infinite permeable flat plate moving in parallel or reversely to a free stream. The resulting system of partial differential equations (PDEs is first transformed into a system of coupled nonlinear ordinary differential equations (ODEs which are then solved numerically by using the shooting technique. It is found that the dual solutions exist when the flat plate and the free stream move in the opposite directions. Dimensionless boundary layer velocity and temperature distributions are plotted and discussed for various values of the emerging physical parameters. Finally, the tables of the relevant boundary derivatives are presented for some values of the governing physical parameters.
Wei, Ran; Ni, Jinzhi; Chen, Weifeng; Yang, Yusheng
2017-10-01
Soil organic matter (SOM) is the main adsorbent for polycyclic aromatic hydrocarbons (PAHs) and the principal aggregating agent for soil aggregation that can affect PAH bioavailability and bioaccessibility in soils. The objective of this study was to analyze the relationship between PAH dissipation and variation in soil aggregate-size distribution in two field-contaminated soils with different soil organic C (SOC) content (Anthrosols, 1.41% SOC; Phaeozems, 8.51% SOC) in phytoremediation with alfalfa. The results showed that there were significant reductions of 10.2 and 15.4% of the total PAHs in unplanted and planted treatments, respectively, for Anthrosols. However, there was no significant reduction of total PAHs in either unplanted or planted treatment for Phaeozems. For Anthrosols, mass percentages of coarse sand and fine sand were significantly reduced while coarse silt and fine silt were significantly increased for the planted soil compared to the initial soil (p soil was slightly reduced. The main reason for the dissipation of PAHs in Anthrosols could be that macroaggregates were broken into microaggregates, which made some trapped PAHs become bioaccessible to soil microorganisms.
Dissipative structures in magnetorotational turbulence
Ross, Johnathan; Latter, Henrik N.
2018-03-01
Via the process of accretion, magnetorotational turbulence removes energy from a disk's orbital motion and transforms it into heat. Turbulent heating is far from uniform and is usually concentrated in small regions of intense dissipation, characterised by abrupt magnetic reconnection and higher temperatures. These regions are of interest because they might generate non-thermal emission, in the form of flares and energetic particles, or thermally process solids in protoplanetary disks. Moreover, the nature of the dissipation bears on the fundamental dynamics of the magnetorotational instability (MRI) itself: local simulations indicate that the large-scale properties of the turbulence (e.g. saturation levels, the stress-pressure relationship) depend on the short dissipative scales. In this paper we undertake a numerical study of how the MRI dissipates and the small-scale dissipative structures it employs to do so. We use the Godunov code RAMSES and unstratified compressible shearing boxes. Our simulations reveal that dissipation is concentrated in ribbons of strong magnetic reconnection that are significantly elongated in azimuth, up to a scale height. Dissipative structures are hence meso-scale objects, and potentially provide a route by which large scales and small scales interact. We go on to show how these ribbons evolve over time — forming, merging, breaking apart, and disappearing. Finally, we reveal important couplings between the large-scale density waves generated by the MRI and the small-scale structures, which may illuminate the stress-pressure relationship in MRI turbulence.
Directory of Open Access Journals (Sweden)
Mehmet Camurdan
1998-01-01
are coupled by appropriate trace operators. This overall model differs from those previously studied in the literature in that the elastic chamber floor is here more realistically modeled by a hyperbolic Kirchoff equation, rather than by a parabolic Euler-Bernoulli equation with Kelvin-Voight structural damping, as in past literature. Thus, the hyperbolic/parabolic coupled system of past literature is replaced here by a hyperbolic/hyperbolic coupled model. The main result of this paper is a uniform stabilization of the coupled PDE system by a (physically appealing boundary dissipation.
Factors affecting thermal infrared images at selected field sites
International Nuclear Information System (INIS)
Sisson, J.B.; Ferguson, J.S.
1993-07-01
A thermal infrared (TIR) survey was conducted to locate surface ordnance in and around the Naval Ordnance Disposal Area, and a thermal anomaly was found. This report documents studies conducted to identify the position of cause of the thermal anomaly. Also included are results of a long path Fourier transform infrared survey, soil sampling activities, soil gas surveys, and buried heater studies. The results of these studies indicated that the thermal anomaly was caused by a gravel pad, which had thermal properties different than those of the surrounding soil. Results from this investigation suggest that TIR is useful for locating surface objects having a high thermal inertia compared to the surrounding terrain, but TIR is of very limited use for characterizing buried waste or other similar buried objects at the INEL
Sithole, Hloniphile; Mondal, Hiranmoy; Sibanda, Precious
2018-06-01
This study addresses entropy generation in magnetohydrodynamic flow of a second grade nanofluid over a convectively heated stretching sheet with nonlinear thermal radiation and viscous dissipation. The second grade fluid is assumed to be electrically conducting and is permeated by an applied non-uniform magnetic field. We further consider the impact on the fluid properties and the Nusselt number of homogeneous-heterogeneous reactions and a convective boundary condition. The mathematical equations are solved using the spectral local linearization method. Computations for skin-friction coefficient and local Nusselt number are carried out and displayed in a table. It is observed that the effects of the thermophoresis parameter is to increase the temperature distributions throughout the boundary layer. The entropy generation is enhanced by larger magnetic parameters and increasing Reynolds number. The aim of this manuscript is to pay more attention of entropy generation analysis with heat and fluid flow on second grade nanofluids to improve the system performance. Also the fluid velocity and temperature in the boundary layer region rise significantly for increasing the values of the second grade nanofluid parameter.
International Nuclear Information System (INIS)
Moon, Yu-Ran; Lee, Min-Hee; Chung, Byung-Yeoup; Kim, Jin-Hong; Tovuu, Altanzaya; Lee, Choon-Hwan; Park, Youn-Il
2011-01-01
The purpose of this study was to characterize a change in Non-photochemical quenching (NPQ) upon exposure to ultraviolet-B (UV-B), the xanthophyll cycle-dependent and -independent NPQs were compared in Cucumis sativus, Lycopersicum esculentum, and Arabidopsis thaliana leaves. The xanthophyll cycle-dependent NPQ was dramatically but reversibly suppressed by UV-B radiation. This suppression was correlated more strongly with a marked decrease in photosynthetic electron transport rather than changes in xanthophyll cycle enzymes such as violaxanthin de-epoxidase and zeaxanthin epoxidase. Accordingly, the UV-B-induced suppression of NPQ cannot be attributed to changes in expressions of violaxanthin de-epoxidase (VDE) and zeaxanthin epoxidase (ZEP). However, suppression of the xanthophyll cycle-dependent NPQ could only account for the 77 K fluorescence emission spectra of thylakoid membranes and the increased level of 1 O 2 production, but not for the decreased levels of hydroxyl radical O 2 - production and H 2 O 2 scavenging. These results suggest that a gradual reduction of H 2 O 2 scavenging activity as well as a transient and reversible suppression of thermal energy dissipation may contribute differentially to increased photooxidative damages in cucumber, tomato, and Arabidopsis plants after acute exposure to UV-B radiation. (author)
Experimental modeling of weld thermal cycle of the heat affected zone (HAZ
Directory of Open Access Journals (Sweden)
J. Kulhánek
2016-10-01
Full Text Available Contribution deals with experimental modeling of quick thermal cycles of metal specimens. In the introduction of contribution will be presented measured graphs of thermal cycle of heat affected zone (HAZ of weld. Next will be presented experimental simulation of measured thermal cycle on the standard specimens, useable for material testing. This approach makes possible to create material structures of heat affected zone of weld, big enough for standard material testing.
Factors affecting particle retention in thermal field-flow fractionation
African Journals Online (AJOL)
colloidal material is illustrated through the evaluation of thermal diffusion coefficient of PS ... Field-flow fractionation (FFF) is a separation method introduced by Giddings in 1966 [1]. It is a ... no stationary phase is used in FFF. .... that the inversion diameter (diameter at which order of retention changes) can be shifted up or.
Hydraulic modeling of thermal discharges into shallow, tidal affected streams
International Nuclear Information System (INIS)
Copp, H.W.; Shashidhara, N.S.
1981-01-01
A two-unit nuclear fired power plant is being constructed in western Washington state. Blowdown water from cooling towers will be discharged into the Chehalis River nearby. The location of a diffuser is some 21 miles upriver from Grays Harbor on the Pacific Ocean. Because the Chehalis River is classified as an excellent stream from the standpoint of water quality, State regulatory agencies required demonstration that thermal discharges would maintain water quality standards within fairly strict limits. A hydraulic model investigation used a 1:12 scale, undistorted model of a 1300-foot river reach in the vicinity of the diffuser. The model scale was selected to insure fully turbulent flows both in the stream and from the diffuser (Reynolds similitude). Model operation followed the densimetric Froude similitude. Thermistors were employed to measure temperatures in the model; measurements were taken by computer command and such measurements at some 250 positions were effected in about 2.5 seconds
Study of thermal stress in heat affected zones during welding
International Nuclear Information System (INIS)
Devaux, J.C.
1979-01-01
The importance of applications of welding in the nuclear industry leads to the study of the main problem concerning metal welding: sensibility to cracking. The development of computation methods allows the numerical simulation of welding effects. Due to the complexity of this problem, it is divided in three steps: thermal, metallurgical and mechanical calculus. Interactions between the 3 steps are examined. Mathematical models necessary to get residual stress (i.e. stress remaining when welding is completed and structure at ambient temperature) are described. Then parameters for metallurgical structure determination are given and compared to experiments. A508 and A533 type steels of primary coolant circuit of PWR reactors are taken as examples and the numerical simulation of a test is presented [fr
Tributaries affect the thermal response of lakes to climate change
Råman Vinnå, Love; Wüest, Alfred; Zappa, Massimiliano; Fink, Gabriel; Bouffard, Damien
2018-01-01
Thermal responses of inland waters to climate change varies on global and regional scales. The extent of warming is determined by system-specific characteristics such as fluvial input. Here we examine the impact of ongoing climate change on two alpine tributaries, the Aare River and the Rhône River, and their respective downstream peri-alpine lakes: Lake Biel and Lake Geneva. We propagate regional atmospheric temperature effects into river discharge projections. These, together with anthropogenic heat sources, are in turn incorporated into simple and efficient deterministic models that predict future water temperatures, river-borne suspended sediment concentration (SSC), lake stratification and river intrusion depth/volume in the lakes. Climate-induced shifts in river discharge regimes, including seasonal flow variations, act as positive and negative feedbacks in influencing river water temperature and SSC. Differences in temperature and heating regimes between rivers and lakes in turn result in large seasonal shifts in warming of downstream lakes. The extent of this repressive effect on warming is controlled by the lakes hydraulic residence time. Previous studies suggest that climate change will diminish deep-water oxygen renewal in lakes. We find that climate-related seasonal variations in river temperatures and SSC shift deep penetrating river intrusions from summer towards winter. Thus potentially counteracting the otherwise negative effects associated with climate change on deep-water oxygen content. Our findings provide a template for evaluating the response of similar hydrologic systems to on-going climate change.
Tributaries affect the thermal response of lakes to climate change
Directory of Open Access Journals (Sweden)
L. Råman Vinnå
2018-01-01
Full Text Available Thermal responses of inland waters to climate change varies on global and regional scales. The extent of warming is determined by system-specific characteristics such as fluvial input. Here we examine the impact of ongoing climate change on two alpine tributaries, the Aare River and the Rhône River, and their respective downstream peri-alpine lakes: Lake Biel and Lake Geneva. We propagate regional atmospheric temperature effects into river discharge projections. These, together with anthropogenic heat sources, are in turn incorporated into simple and efficient deterministic models that predict future water temperatures, river-borne suspended sediment concentration (SSC, lake stratification and river intrusion depth/volume in the lakes. Climate-induced shifts in river discharge regimes, including seasonal flow variations, act as positive and negative feedbacks in influencing river water temperature and SSC. Differences in temperature and heating regimes between rivers and lakes in turn result in large seasonal shifts in warming of downstream lakes. The extent of this repressive effect on warming is controlled by the lakes hydraulic residence time. Previous studies suggest that climate change will diminish deep-water oxygen renewal in lakes. We find that climate-related seasonal variations in river temperatures and SSC shift deep penetrating river intrusions from summer towards winter. Thus potentially counteracting the otherwise negative effects associated with climate change on deep-water oxygen content. Our findings provide a template for evaluating the response of similar hydrologic systems to on-going climate change.
Critical thermal limits affected differently by developmental and adult thermal fluctuations
DEFF Research Database (Denmark)
Salachan, Paul Vinu; Sørensen, Jesper Givskov
2017-01-01
the developmental and adult life stages. For developmental acclimation, we found mildly detrimental effects of high amplitude fluctuations for critical thermal minima, while the critical thermal maxima showed a beneficial response to higher amplitude fluctuations. For adult acclimation involving shifts between...... fluctuating and constant regimes, cold tolerance was shown to be dictated by developmental temperature conditions irrespective of the adult treatments, while the acquired heat tolerance was readily lost when flies developed at fluctuating temperature were shifted to a constant regime as adults. Interestingly......, we also found that effect of fluctuations at any life stage was gradually lost with prolonged adult maintenance suggesting a more prominent effect of fluctuations during developmental compared to adult acclimation in Drosophila melanogaster....
Busch, Florian; Hüner, Norman P.A.; Ensminger, Ingo
2007-01-01
Temperature and daylength act as environmental signals that determine the length of the growing season in boreal evergreen conifers. Climate change might affect the seasonal development of these trees, as they will experience naturally decreasing daylength during autumn, while at the same time warmer air temperature will maintain photosynthesis and respiration. We characterized the down-regulation of photosynthetic gas exchange and the mechanisms involved in the dissipation of energy in Jack pine (Pinus banksiana) in controlled environments during a simulated summer-autumn transition under natural conditions and conditions with altered air temperature and photoperiod. Using a factorial design, we dissected the effects of daylength and temperature. Control plants were grown at either warm summer conditions with 16-h photoperiod and 22°C or conditions representing a cool autumn with 8 h/7°C. To assess the impact of photoperiod and temperature on photosynthesis and energy dissipation, plants were also grown under either cold summer (16-h photoperiod/7°C) or warm autumn conditions (8-h photoperiod/22°C). Photosynthetic gas exchange was affected by both daylength and temperature. Assimilation and respiration rates under warm autumn conditions were only about one-half of the summer values but were similar to values obtained for cold summer and natural autumn treatments. In contrast, photosynthetic efficiency was largely determined by temperature but not by daylength. Plants of different treatments followed different strategies for dissipating excess energy. Whereas in the warm summer treatment safe dissipation of excess energy was facilitated via zeaxanthin, in all other treatments dissipation of excess energy was facilitated predominantly via increased aggregation of the light-harvesting complex of photosystem II. These differences were accompanied by a lower deepoxidation state and larger amounts of β-carotene in the warm autumn treatment as well as by changes in
Observed eddy dissipation in the Agulhas Current
CSIR Research Space (South Africa)
Braby, L
2016-08-01
Full Text Available (negative) velocity anomalies propagate downstream in the Agulhas Current at 44 km/d (23 km/d). Many models are unable to represent these eddy dissipation processes, affecting our understanding of the Agulhas Current....
Directory of Open Access Journals (Sweden)
Tamaraukuro Tammy Amasuomo
2016-04-01
Full Text Available The study investigated the relationship between students’ perceived thermal discomfort and stress behaviours affecting their learning in lecture theatres in the humid tropics. Two lecture theatres, LTH-2 and 3, at the Niger Delta University, Nigeria, were used for the study. Two groups of students from the Faculties of Agriculture and Engineering and the Department of Technology Education constituted the population. The sample size selected through random sampling for Groups A and B was 210 and 370 students, respectively. Objective and self-report instruments were used for data collection. The objective instrument involved physical measurement of the two lecture theatres and of the indoor temperature, relative humidity and air movement. The self-report instrument was a questionnaire that asked for the students perceived indoor thermal discomfort levels and the effect of indoor thermal comfort level on perceived stress behaviours affecting their learning. The objective indoor environmental data indicated thermal discomfort with an average temperature of 29–32 °C and relative humidity of 78% exceeding the ASHARE [1] and Olgyay [2].The students’ experienced a considerable level of thermal discomfort and also perceived that stress behaviours due to thermal discomfort affected their learning. Further, there were no significant differences in the perceived thermal discomfort levels of the two groups of students in LTH-2 and 3. Furthermore, stress behaviours affecting learning as perceived by the two groups of students did not differ significantly. In addition, no correlation existed between the perceived indoor thermal discomfort levels and stress behaviour levels affecting learning for students in LTH-2, because the arousal level of the students in the thermal environment was likely higher than the arousal level for optimal performance [3,4]. However, a correlation existed in the case of students in LTH-3, which was expected because it only
Collisionless dissipation of Langmuir turbulence
International Nuclear Information System (INIS)
Erofeev, V.I.
2002-01-01
An analysis of two experimental observations of Langmuir wave collapse is performed. The corresponding experimental data are shown to give evidence against the collapse. The physical reason for preventing the collapses is found to be the nonresonant electron diffusion in momentums. In this process, plasma thermal electrons are efficiently heated at the expense of wave energy, and intense collisionless wave dissipation takes place. The basic reason of underestimation of this phenomenon in traditional theory is shown to be the substitution of real plasma by a plasma probabilistic ensemble. A theory of nonresonant electron diffusion in a single collisionless plasma is developed. It is shown that corresponding collisionless wave dissipation may arrest spectral energy transfer towards small wave numbers
Directory of Open Access Journals (Sweden)
Juan S. Delgado-Rojas
2006-12-01
. However, the effect of the natural radiation, that generates a natural thermal gradient in stem, may lead to precision loss. Moreover, the performance of the method needs to be evaluated if the conditions are different from those for which it was developed. Thus, the present work aimed to analyze the performance of the HDM in rubber trees, considering that this specie produces latex that could affect the performance of the sensor, as well as to evaluate the effect of the natural thermal gradient of the stem on the estimated transpiration. The results had showed that HDM can be used with rubber trees and, in the conditions that tests were conducted, the natural thermal gradient does not effect the estimations. To improve the precision of the method, further studies, characterizing the tissue sap conductive area and the stem diameter should be made.
Dissipation of post-disruption runaway electron plateaus by shattered pellet injection in DIII-D
Shiraki, D.; Commaux, N.; Baylor, L. R.; Cooper, C. M.; Eidietis, N. W.; Hollmann, E. M.; Paz-Soldan, C.; Combs, S. K.; Meitner, S. J.
2018-05-01
We report on the first demonstration of dissipation of fully avalanched post-disruption runaway electron (RE) beams by shattered pellet injection in the DIII-D tokamak. Variation of the injected species shows that dissipation depends strongly on the species mixture, while comparisons with massive gas injection do not show a significant difference between dissipation by pellets or by gas, suggesting that the shattered pellet is rapidly ablated by the relativistic electrons before significant radial penetration into the runaway beam can occur. Pure or dominantly neon injection increases the RE current dissipation through pitch-angle scattering due to collisions with impurity ions. Deuterium injection is observed to have the opposite effect from neon, reducing the high-Z impurity content and thus decreasing the dissipation, and causing the background thermal plasma to completely recombine. When injecting mixtures of the two species, deuterium levels as low as ∼10% of the total injected atoms are observed to adversely affect the resulting dissipation, suggesting that complete elimination of deuterium from the injection may be important for optimizing RE mitigation schemes.
Thermal Aging Effects on Heat Affected Zone of Alloy 600 in Dissimilar Metal Weld
Energy Technology Data Exchange (ETDEWEB)
Ham, Jun Hyuk; Choi, Kyoung Joon; Yoo, Seung Chang; Kim, Ji Hyun [UNIST, Ulsan (Korea, Republic of)
2016-05-15
Dissimilar metal weld (DMW), consists of Alloy 600, Alloy 182, and A508 Gr.3, is now being widely used as the reactor pressure vessel penetration nozzle and the steam generator tubing material for pressurized water reactors (PWR) because of its mechanical property, thermal expansion coefficient, and corrosion resistance. The heat affected zone (HAZ) on Alloy 600 which is formed by welding process is critical to crack. According to G.A. Young et al. crack growth rates (CGR) in the Alloy 600 HAZ were about 30 times faster than those in the Alloy 600 base metal tested under the same conditions [3]. And according to Z.P. Lu et al. CGR in the Alloy 600 HAZ can be more than 20 times higher than that in its base metal. To predict the life time of components, there is a model which can calculate the effective degradation years (EDYs) of the material as a function of operating temperature. This study was conducted to investigate how thermal aging affects the hardness of dissimilar metal weld from the fusion boundary to Alloy 600 base metal and the residual strain at Alloy 600 heat affected zone. Following conclusions can be drawn from this study. The hardness, measured by Vickers hardness tester, peaked near the fusion boundary between Alloy 182 and Alloy 600, and it decreases as the picked point goes to Alloy 600 base metal. Even though the formation of precipitate such as Cr carbide, thermal aging doesn't affect the value and the tendency of hardness because of reduced residual stress. According to kernel average misorientation mapping, residual strain decreases when the material thermally aged. And finally, in 30 years simulated specimen, the high residual strain almost disappears. Therefore, the influence of residual strain on primary water stress corrosion cracking can be diminished when the material undergoes thermal aging.
Dissipative relativistic hydrodynamics
International Nuclear Information System (INIS)
Imshennik, V.S.; Morozov, Yu.I.
1989-01-01
Using the comoving reference frame in the general non-inertial case, the relativistic hydrodynamics equations are derived with an account for dissipative effects in the matter. From the entropy production equation, the exact from for the dissipative tensor components is obtained. As a result, the closed system of equations of dissipative relativistic hydrodynamics is obtained in the comoving reference frame as a relativistic generalization of the known Navier-Stokes equations for Lagrange coordinates. Equations of relativistic hydrodynamics with account for dissipative effects in the matter are derived using the assocoated reference system in general non-inertial case. True form of the dissipative tensor components is obtained from entropy production equation. Closed system of equations for dissipative relativistic hydrodynamics is obtained as a result in the assocoated reference system (ARS) - relativistic generalization of well-known Navier-Stokes equations for Lagrange coordinates. Equation system, obtained in this paper for ARS, may be effectively used in numerical models of explosive processes with 10 51 erg energy releases which are characteristic for flashes of supernovae, if white dwarf type compact target suggested as presupernova
Thermal creep and stress-affected precipitation of 20% cold-worked 316 stainless steel
International Nuclear Information System (INIS)
Puigh, R.J.; Lovell, A.J.; Garner, F.A.
1984-01-01
Measurements of the thermal creep of 20% cold-worked 316 stainless steel have been performed for temperatures from 593 to 760 0 C, stress levels as high as 138 MPa and exposure times as long as 15,000 hours. The creep strains exhibit a complex behavior arising from the combined action of true creep and stress-affected precipitation of intermetallic phases. The latter process is suspected to be altered by neutron irradiation. (orig.)
Thermal and microstructural modelling in weld heat-affected zones: microstructural development
International Nuclear Information System (INIS)
Ribera, J.M.; Prado, J.M.
1996-01-01
After having analysed in Part 2 of this work the thermal effects caused by a welding process, a metallurgical model which uses those results is proposed to predict the hardness and the microstructure resulting in weld heat affected zones. This model simulates the decomposition of austenite to its various products: martensite, bainite, pearlite and ferrite. Thus, it allows one to optimize welding process parameters to achieve the best microstructure possible. (Author) 5 refs
Lyutyy, T. V.; Reva, V. V.
2018-05-01
Ferrofluid heating by an external alternating field is studied based on the rigid dipole model, where the magnetization of each particle in a fluid is supposed to be firmly fixed in the crystal lattice. Equations of motion, employing Newton's second law for rotational motion, the condition of rigid body rotation, and the assumption that the friction torque is proportional to angular velocity are used. This oversimplification permits us to expand the model easily: to take into account the thermal noise and interparticle interaction that allows us to estimate from unified positions the role of thermal activation and dipole interaction in the heating process. Our studies are conducted in three stages. The exact expressions for the average power loss of a single particle are obtained within the dynamical approximation. Then, in the stochastic case, the power loss of a single particle is estimated analytically using the Fokker-Planck equation and numerically using the effective Langevin equation. Finally, the power loss for the particle ensemble is obtained using the molecular dynamics method. Here, the local dipole fields are calculated approximately based on the Barnes-Hut algorithm. The revealed trends in the behavior of both a single particle and the particle ensemble suggest the way of choosing the conditions for obtaining the maximum heating efficiency. The competitiveness character of the interparticle interaction and thermal noise is investigated in detail. Two situations, when the thermal noise rectifies the power loss reduction caused by the interaction, are described. The first of them is related to the complete destruction of dense clusters at high noise intensity. The second one originates from the rare switching of the particles in clusters due to thermal activation, when the noise intensity is relatively weak. In this way, the constructive role of noise appears in the system.
Decker, Jeremy D.; Swain, Eric D.; Stith, Bradley M.; Langtimm, Catherine A.
2013-01-01
Everglades restoration activities may cause changes to temperature and salinity stratification at the Port of the Islands (POI) marina, which could affect its suitability as a cold weather refuge for manatees. To better understand how the Picayune Strand Restoration Project (PSRP) may alter this important resource in Collier County in southwestern Florida, the USGS has developed a three-dimensional hydrodynamic model for the marina and canal system at POI. Empirical data suggest that manatees aggregate at the site during winter because of thermal inversions that provide warmer water near the bottom that appears to only occur in the presence of salinity stratification. To study these phenomena, the environmental fluid dynamics code simulator was used to represent temperature and salinity transport within POI. Boundary inputs were generated using a larger two-dimensional model constructed with the flow and transport in a linked overland-aquifer density-dependent system simulator. Model results for a representative winter period match observed trends in salinity and temperature fluctuations and produce temperature inversions similar to observed values. Modified boundary conditions, representing proposed PSRP alterations, were also tested to examine the possible effect on the salinity stratification and temperature inversion within POI. Results show that during some periods, salinity stratification is reduced resulting in a subsequent reduction in temperature inversion compared with the existing conditions simulation. This may have an effect on POI’s suitability as a passive thermal refuge for manatees and other temperature-sensitive species. Additional testing was completed to determine the important physical relationships affecting POI’s suitability as a refuge.
Quantum dynamics in nanoscale magnets in dissipative environments
Miyashita, S; Saito, K; Kobayashi, H.; de Raedt, H.A.
2000-01-01
In discrete energy structure of nanoscale magnets, nonadiabatic transitions at avoided level crossings lead to fundamental processes of dynamics of magnetizations. The thermal environment causes dissipative effects on these processes. In this paper we review the features of the nonadiabatic
Spatial environmental heterogeneity affects plant growth and thermal performance on a green roof
Energy Technology Data Exchange (ETDEWEB)
Buckland-Nicks, Michael; Heim, Amy; Lundholm, Jeremy, E-mail: jlundholm@smu.ca
2016-05-15
Green roofs provide ecosystem services, including stormwater retention and reductions in heat transfer through the roof. Microclimates, as well as designed features of green roofs, such as substrate and vegetation, affect the magnitude of these services. Many green roofs are partially shaded by surrounding buildings, but the effects of this within-roof spatial environmental heterogeneity on thermal performance and other ecosystem services have not been examined. We quantified the effects of spatial heterogeneity in solar radiation, substrate depth and other variables affected by these drivers on vegetation and ecosystem services in an extensive green roof. Spatial heterogeneity in substrate depth and insolation were correlated with differential growth, survival and flowering in two focal plant species. These effects were likely driven by the resulting spatial heterogeneity in substrate temperature and moisture content. Thermal performance (indicated by heat flux and substrate temperature) was influenced by spatial heterogeneity in vegetation cover and substrate depth. Areas with less insolation were cooler in summer and had greater substrate moisture, leading to more favorable conditions for plant growth and survival. Spatial variation in substrate moisture (7%–26% volumetric moisture content) and temperature (21 °C–36 °C) during hot sunny conditions in summer could cause large differences in stormwater retention and heat flux within a single green roof. Shaded areas promote smaller heat fluxes through the roof, leading to energy savings, but lower evapotranspiration in these areas should reduce stormwater retention capacity. Spatial heterogeneity can thus result in trade-offs between different ecosystem services. The effects of these spatial heterogeneities are likely widespread in green roofs. Structures that provide shelter from sun and wind may be productively utilized to design higher functioning green roofs and increase biodiversity by providing habitat
Spatial environmental heterogeneity affects plant growth and thermal performance on a green roof
International Nuclear Information System (INIS)
Buckland-Nicks, Michael; Heim, Amy; Lundholm, Jeremy
2016-01-01
Green roofs provide ecosystem services, including stormwater retention and reductions in heat transfer through the roof. Microclimates, as well as designed features of green roofs, such as substrate and vegetation, affect the magnitude of these services. Many green roofs are partially shaded by surrounding buildings, but the effects of this within-roof spatial environmental heterogeneity on thermal performance and other ecosystem services have not been examined. We quantified the effects of spatial heterogeneity in solar radiation, substrate depth and other variables affected by these drivers on vegetation and ecosystem services in an extensive green roof. Spatial heterogeneity in substrate depth and insolation were correlated with differential growth, survival and flowering in two focal plant species. These effects were likely driven by the resulting spatial heterogeneity in substrate temperature and moisture content. Thermal performance (indicated by heat flux and substrate temperature) was influenced by spatial heterogeneity in vegetation cover and substrate depth. Areas with less insolation were cooler in summer and had greater substrate moisture, leading to more favorable conditions for plant growth and survival. Spatial variation in substrate moisture (7%–26% volumetric moisture content) and temperature (21 °C–36 °C) during hot sunny conditions in summer could cause large differences in stormwater retention and heat flux within a single green roof. Shaded areas promote smaller heat fluxes through the roof, leading to energy savings, but lower evapotranspiration in these areas should reduce stormwater retention capacity. Spatial heterogeneity can thus result in trade-offs between different ecosystem services. The effects of these spatial heterogeneities are likely widespread in green roofs. Structures that provide shelter from sun and wind may be productively utilized to design higher functioning green roofs and increase biodiversity by providing habitat
Sudden viscous dissipation in compressing plasma turbulence
Davidovits, Seth; Fisch, Nathaniel
2015-11-01
Compression of a turbulent plasma or fluid can cause amplification of the turbulent kinetic energy, if the compression is fast compared to the turnover and viscous dissipation times of the turbulent eddies. The consideration of compressing turbulent flows in inviscid fluids has been motivated by the suggestion that amplification of turbulent kinetic energy occurred on experiments at the Weizmann Institute of Science Z-Pinch. We demonstrate a sudden viscous dissipation mechanism whereby this amplified turbulent kinetic energy is rapidly converted into thermal energy, which further increases the temperature, feeding back to further enhance the dissipation. Application of this mechanism in compression experiments may be advantageous, if the plasma can be kept comparatively cold during much of the compression, reducing radiation and conduction losses, until the plasma suddenly becomes hot. This work was supported by DOE through contract 67350-9960 (Prime # DOE DE-NA0001836) and by the DTRA.
Microscopic theory of one-body dissipation
International Nuclear Information System (INIS)
Koonin, S.E.; Randrup, J.; Hatch, R.; Kolomietz, V.
1977-01-01
A microscopic theory is developed for nuclear collective motion in the limit of a long nuclear mean-free path. Linear response techniques are applied to an independent particle model and expressions for the collective kinetic energy and rate of energy dissipation are obtained. For leptodermous systems, these quantities are characterized by mass and dissipation kernels coupling the velocities at different points on the nuclear surface. In a classical treatment, the kernels are given in terms of nucleon trajectories within the nuclear shape. In a quantal treatment, the dissipation kernel is related to the nuclear Green function. The spatial and thermal properties of the kernels are investigated. Corrections for the diffuseness of the potential and shell effects are also discussed. (Auth.)
Experimental Study Abour How the Thermal Plume Affects the Air Quality a Person Breathes
DEFF Research Database (Denmark)
Olmedo, Inés; Nielsen, Peter V.; Ruiz de Adana, Manuel
2011-01-01
of this research is to increase the knowledge of how the thermal plume generated by a person affects the PME and therefore the concentration of contaminants in the inhalation area. An experimental study in a displacement ventilation room was carried out. Experiments were developed in a full scale test chamber 4.......10 m (length), 3.2 m (width), 2.7 m (height). The incoming air is distributed through a wall-mounted displacement diffuser. A breathing thermal manikin exhaling through the mouth and inhaling through the nose was used. A tracer gas, N2O, was used to simulate the gaseous substances, which might...... be considered as biological contaminants, exhaled by the manikin. The manikin was operated in three different heat fluxes with a value of: 0W, 94 W and 120 W. During the experiments six concentration probes were situated in the room. Three concentration tubes were fixed on the surface of the manikin at three...
Weiss, Ulrich
2008-01-01
Major advances in the quantum theory of macroscopic systems, in combination with stunning experimental achievements, have brightened the field and brought it to the attention of the general community in natural sciences. Today, working knowledge of dissipative quantum mechanics is an essential tool for many physicists. This book - originally published in 1990 and republished in 1999 as an enlarged second edition - delves much deeper than ever before into the fundamental concepts, methods, and applications of quantum dissipative systems, including the most recent developments. In this third edi
International Nuclear Information System (INIS)
Chernousenko, V.M.; Kuklin, V.M.; Panachenko, I.P.; Vorob'yov, V.M.
1990-01-01
This paper reports on a wide spectrum of oscillations that is excited due to the evolution instabilities, being in a weak above-threshold state, in the inequilibrium media with decaying spectrum. In this case the pumping, whose part is played by an intensive wave or occupation inversion in the active medium, synchronized the phases of excited modes and, thus, forms the space dissipative structure of the field. In dissipative nonlinear media with nondecaying spectrum the space structures, formed due to the development of instability, experience small-scale hexagonal modulation
Collective variables and dissipation
International Nuclear Information System (INIS)
Balian, R.
1984-09-01
This is an introduction to some basic concepts of non-equilibrium statistical mechanics. We emphasize in particular the relevant entropy relative to a given set of collective variables, the meaning of the projection method in the Liouville space, its use to establish the generalized transport equations for these variables, and the interpretation of dissipation in the framework of information theory
International Nuclear Information System (INIS)
Wang, Y.H.; Cui, C.G.; Zhang, Y.Z.; Li, S.L.; Li, J.; Li, L.
1991-01-01
A set of resistivity-temperature (R-T) curves measured under various applied fields in a high-T c Bi-Pb-Sr-Ca-Cu-O thin film which has a zero-resistance temperature T c0 of 110 K is reported. The remarkable broadening of the transition width is discussed under the flux-creep model, considering the very short coherence length of this oxide superconductor. The resistivity is thermally activated, which is consistent with the Arrhenius law with a magnetic field and orientation-dependent activation energy U 0 (H,Θ). The U 0 (H,Θ) has a very high value of 381.6 meV under a field of 0.1 T parallel to the c axis. The upper critical field H c2 determined from these R-T curves shows high values and the effect of flux creep to the H c2 (0) is examined by the irreversible behavior with the ''giant'' flux-creep model
Directory of Open Access Journals (Sweden)
Floris M van Beest
Full Text Available BACKGROUND: Empirical tests that link temperature-mediated changes in behaviour (activity and resource selection to individual fitness or condition are currently lacking for endotherms yet may be critical to understanding the effect of climate change on population dynamics. Moose (Alces alces are thought to suffer from heat stress in all seasons so provide a good biological model to test whether exposure to non-optimal ambient temperatures influence seasonal changes in body mass. Seasonal mass change is an important fitness correlate of large herbivores and affects reproductive success of female moose. METHODOLOGY/PRINCIPAL FINDINGS: Using GPS-collared adult female moose from two populations in southern Norway we quantified individual differences in seasonal activity budget and resource selection patterns as a function of seasonal temperatures thought to induce heat stress in moose. Individual body mass was recorded in early and late winter, and autumn to calculate seasonal mass changes (n = 52 over winter, n = 47 over summer. We found large individual differences in temperature-dependent resource selection patterns as well as within and between season variability in thermoregulatory strategies. As expected, individuals using an optimal strategy, selecting young successional forest (foraging habitat at low ambient temperatures and mature coniferous forest (thermal shelter during thermally stressful conditions, lost less mass in winter and gained more mass in summer. CONCLUSIONS/SIGNIFICANCE: This study provides evidence that behavioural responses to temperature have important consequences for seasonal mass change in moose living in the south of their distribution in Norway, and may be a contributing factor to recently observed declines in moose demographic performance. Although the mechanisms that underlie the observed temperature mediated habitat-fitness relationship remain to be tested, physiological state and individual variation in
van Beest, Floris M; Milner, Jos M
2013-01-01
Empirical tests that link temperature-mediated changes in behaviour (activity and resource selection) to individual fitness or condition are currently lacking for endotherms yet may be critical to understanding the effect of climate change on population dynamics. Moose (Alces alces) are thought to suffer from heat stress in all seasons so provide a good biological model to test whether exposure to non-optimal ambient temperatures influence seasonal changes in body mass. Seasonal mass change is an important fitness correlate of large herbivores and affects reproductive success of female moose. Using GPS-collared adult female moose from two populations in southern Norway we quantified individual differences in seasonal activity budget and resource selection patterns as a function of seasonal temperatures thought to induce heat stress in moose. Individual body mass was recorded in early and late winter, and autumn to calculate seasonal mass changes (n = 52 over winter, n = 47 over summer). We found large individual differences in temperature-dependent resource selection patterns as well as within and between season variability in thermoregulatory strategies. As expected, individuals using an optimal strategy, selecting young successional forest (foraging habitat) at low ambient temperatures and mature coniferous forest (thermal shelter) during thermally stressful conditions, lost less mass in winter and gained more mass in summer. This study provides evidence that behavioural responses to temperature have important consequences for seasonal mass change in moose living in the south of their distribution in Norway, and may be a contributing factor to recently observed declines in moose demographic performance. Although the mechanisms that underlie the observed temperature mediated habitat-fitness relationship remain to be tested, physiological state and individual variation in thermal tolerance are likely contributory factors. Climate-related effects on animal
Theoretical Consolidation of Acoustic Dissipation
Casiano, M. J.; Zoladz, T. F.
2012-01-01
In many engineering problems, the effects of dissipation can be extremely important. Dissipation can be represented by several parameters depending on the context and the models that are used. Some examples of dissipation-related parameters are damping ratio, viscosity, resistance, absorption coefficients, pressure drop, or damping rate. This Technical Memorandum (TM) describes the theoretical consolidation of the classic absorption coefficients with several other dissipation parameters including linearized resistance. The primary goal of this TM is to theoretically consolidate the linearized resistance with the absorption coefficient. As a secondary goal, other dissipation relationships are presented.
Spatial environmental heterogeneity affects plant growth and thermal performance on a green roof.
Buckland-Nicks, Michael; Heim, Amy; Lundholm, Jeremy
2016-05-15
Green roofs provide ecosystem services, including stormwater retention and reductions in heat transfer through the roof. Microclimates, as well as designed features of green roofs, such as substrate and vegetation, affect the magnitude of these services. Many green roofs are partially shaded by surrounding buildings, but the effects of this within-roof spatial environmental heterogeneity on thermal performance and other ecosystem services have not been examined. We quantified the effects of spatial heterogeneity in solar radiation, substrate depth and other variables affected by these drivers on vegetation and ecosystem services in an extensive green roof. Spatial heterogeneity in substrate depth and insolation were correlated with differential growth, survival and flowering in two focal plant species. These effects were likely driven by the resulting spatial heterogeneity in substrate temperature and moisture content. Thermal performance (indicated by heat flux and substrate temperature) was influenced by spatial heterogeneity in vegetation cover and substrate depth. Areas with less insolation were cooler in summer and had greater substrate moisture, leading to more favorable conditions for plant growth and survival. Spatial variation in substrate moisture (7%-26% volumetric moisture content) and temperature (21°C-36°C) during hot sunny conditions in summer could cause large differences in stormwater retention and heat flux within a single green roof. Shaded areas promote smaller heat fluxes through the roof, leading to energy savings, but lower evapotranspiration in these areas should reduce stormwater retention capacity. Spatial heterogeneity can thus result in trade-offs between different ecosystem services. The effects of these spatial heterogeneities are likely widespread in green roofs. Structures that provide shelter from sun and wind may be productively utilized to design higher functioning green roofs and increase biodiversity by providing habitat
Stabilizing effect of driving and dissipation on quantum metastable states
Valenti, Davide; Carollo, Angelo; Spagnolo, Bernardo
2018-04-01
We investigate how the combined effects of strong Ohmic dissipation and monochromatic driving affect the stability of a quantum system with a metastable state. We find that, by increasing the coupling with the environment, the escape time makes a transition from a regime in which it is substantially controlled by the driving, displaying resonant peaks and dips, to a regime of frequency-independent escape time with a peak followed by a steep falloff. The escape time from the metastable state has a nonmonotonic behavior as a function of the thermal-bath coupling, the temperature, and the frequency of the driving. The quantum noise-enhanced stability phenomenon is observed in the investigated system.
Relative Entropy, Interaction Energy and the Nature of Dissipation
Directory of Open Access Journals (Sweden)
Bernard Gaveau
2014-06-01
Full Text Available Many thermodynamic relations involve inequalities, with equality if a process does not involve dissipation. In this article we provide equalities in which the dissipative contribution is shown to involve the relative entropy (a.k.a. Kullback-Leibler divergence. The processes considered are general time evolutions both in classical and quantum mechanics, and the initial state is sometimes thermal, sometimes partially so. By calculating a transport coefficient we show that indeed—at least in this case—the source of dissipation in that coefficient is the relative entropy.
Direct and indirect detection of dissipative dark matter
Energy Technology Data Exchange (ETDEWEB)
Fan, JiJi; Katz, Andrey; Shelton, Jessie, E-mail: jijifan1982@gmail.com, E-mail: katz.andrey@gmail.com, E-mail: jshelton137@gmail.com [Department of Physics, Harvard University, Cambridge, MA 02138 (United States)
2014-06-01
We study the constraints from direct detection and solar capture on dark matter scenarios with a subdominant dissipative component. This dissipative dark matter component in general has both a symmetric and asymmetric relic abundance. Dissipative dynamics allow this subdominant dark matter component to cool, resulting in its partial or total collapse into a smaller volume inside the halo (e.g., a dark disk) as well as a reduced thermal velocity dispersion compared to that of normal cold dark matter. We first show that these features considerably relax the limits from direct detection experiments on the couplings between standard model (SM) particles and dissipative dark matter. On the other hand, indirect detection of the annihilation of the symmetric dissipative dark matter component inside the Sun sets stringent and robust constraints on the properties of the dissipative dark matter. In particular, IceCube observations force dissipative dark matter particles with mass above 50 GeV to either have a small coupling to the SM or a low local density in the solar system, or to have a nearly asymmetric relic abundance. Possible helioseismology signals associated with purely asymmetric dissipative dark matter are discussed, with no present constraints.
Direct and indirect detection of dissipative dark matter
International Nuclear Information System (INIS)
Fan, JiJi; Katz, Andrey; Shelton, Jessie
2014-01-01
We study the constraints from direct detection and solar capture on dark matter scenarios with a subdominant dissipative component. This dissipative dark matter component in general has both a symmetric and asymmetric relic abundance. Dissipative dynamics allow this subdominant dark matter component to cool, resulting in its partial or total collapse into a smaller volume inside the halo (e.g., a dark disk) as well as a reduced thermal velocity dispersion compared to that of normal cold dark matter. We first show that these features considerably relax the limits from direct detection experiments on the couplings between standard model (SM) particles and dissipative dark matter. On the other hand, indirect detection of the annihilation of the symmetric dissipative dark matter component inside the Sun sets stringent and robust constraints on the properties of the dissipative dark matter. In particular, IceCube observations force dissipative dark matter particles with mass above 50 GeV to either have a small coupling to the SM or a low local density in the solar system, or to have a nearly asymmetric relic abundance. Possible helioseismology signals associated with purely asymmetric dissipative dark matter are discussed, with no present constraints
Attractors of dissipative structure in three dissipative fluids
International Nuclear Information System (INIS)
Kondoh, Yoshiomi
1993-10-01
A general theory with use of auto-correlations for distributions is presented to derive that realization of coherent structures in general dissipative dynamic systems is equivalent to that of self-organized states with the minimum dissipation rate for instantaneously contained energy. Attractors of dissipative structure are shown to be given by eigenfunctions for dissipative dynamic operators of the dynamic system and to constitute the self-organized and self-similar decay phase. Three typical examples applied to incompressible viscous fluids, to incompressible viscous and resistive magnetohydrodynamic (MHD) fluids and to compressible resistive MHD plasmas are presented to lead to attractors in the three dissipative fluids and to describe a common physical picture of self-organization and bifurcation of the dissipative structure. (author)
DEFF Research Database (Denmark)
Liu, Wei; Nannarelli, Alberto
2008-01-01
A few classes of algorithms to implement division in hardware have been used over the years: division by digit-recurrence, by reciprocal approximation by iterative methods and by polynomial approximation. Due to the differences in the algorithms, a comparison among their implementation in terms o...... of performance and precision is sometimes hard to make. In this work, we use power dissipation and energy consumption as metrics to compare among those different classes of algorithms. There are no previous works in the literature presenting such a comparison....
International Nuclear Information System (INIS)
Zhang, Yanwen; Wang, Lumin; Caro, Alfredo; Weber, William J.; Univ. of Tennessee, Knoxville, TN
2015-01-01
A long-standing objective in materials research is to understand how energy is dissipated in both the electronic and atomic subsystems in irradiated materials, and how related non-equilibrium processes may affect defect dynamics and microstructure evolution. Here we show that alloy complexity in concentrated solid solution alloys having both an increasing number of principal elements and altered concentrations of specific elements can lead to substantial reduction in the electron mean free path and thermal conductivity, which has a significant impact on energy dissipation and consequentially on defect evolution during ion irradiation. Enhanced radiation resistance with increasing complexity from pure nickel to binary and to more complex quaternary solid solutions is observed under ion irradiation up to an average damage level of 1 displacement per atom. Understanding how materials properties can be tailored by alloy complexity and their influence on defect dynamics may pave the way for new principles for the design of radiation tolerant structural alloys
Use of the heat dissipation method for sap flow measurement in citrus nursery trees1
Directory of Open Access Journals (Sweden)
Eduardo Augusto Girardi
2010-12-01
Full Text Available Sap flow could be used as physiological parameter to assist irrigation of screen house citrus nursery trees by continuous water consumption estimation. Herein we report a first set of results indicating the potential use of the heat dissipation method for sap flow measurement in containerized citrus nursery trees. 'Valencia' sweet orange [Citrus sinensis (L. Osbeck] budded on 'Rangpur' lime (Citrus limonia Osbeck was evaluated for 30 days during summer. Heat dissipation probes and thermocouple sensors were constructed with low-cost and easily available materials in order to improve accessibility of the method. Sap flow showed high correlation to air temperature inside the screen house. However, errors due to natural thermal gradient and plant tissue injuries affected measurement precision. Transpiration estimated by sap flow measurement was four times higher than gravimetric measurement. Improved micro-probes, adequate method calibration, and non-toxic insulating materials should be further investigated.
Explicit dissipative structures
International Nuclear Information System (INIS)
Roessler, O.E.
1987-01-01
Dissipative structures consisting of a few macrovariables arise out of a sea of reversible microvariables. Unexpected residual effects of the massive underlying reversibility, on the macrolevel, cannot therefore be excluded. In the age of molecular-dynamics simulations, explicit dissipative structures like excitable systems (explicit observers) can be generated in a computer from first reversible principles. A class of classical, 1-D Hamiltonian systems of chaotic type is considered which has the asset that the trajectorial behavior in phase space can be understood geometrically. If, as nuatural, the number of particle types is much smaller than that of particles, the Gibbs symmetry must be taken into account. The permutation invariance drastically changes the behavior in phase space (quasi-periodization). The explicity observer becomes effectively reversible on a short time scale. In consequence, his ability to measure microscopic motions is suspended in a characteristic fashion. Unlike quantum mechanics whose holistic nature cannot be transcended, the present holistic (internal-interface) effects - mimicking the former to some extent - can be understood fully in principle
2002-01-01
The moon's gravity imparts tremendous energy to the Earth, raising tides throughout the global oceans. What happens to all this energy? This question has been pondered by scientists for over 200 years, and has consequences ranging from the history of the moon to the mixing of the oceans. Richard Ray at NASA's Goddard Space Flight Center, Greenbelt, Md. and Gary Egbert of the College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Ore. studied six years of altimeter data from the TOPEX/Poseidon satellite to address this question. According to their report in the June 15 issue of Nature, about 1 terawatt, or 25 to 30 percent of the total tidal energy dissipation, occurs in the deep ocean. The remainder occurs in shallow seas, such as on the Patagonian Shelf. 'By measuring sea level with the TOPEX/Poseidon satellite altimeter, our knowledge of the tides in the global ocean has been remarkably improved,' said Richard Ray, a geophysicist at Goddard. The accuracies are now so high that this data can be used to map empirically the tidal energy dissipation. (Red areas, above) The deep-water tidal dissipation occurs generally near rugged bottom topography (seamounts and mid-ocean ridges). 'The observed pattern of deep-ocean dissipation is consistent with topographic scattering of tidal energy into internal motions within the water column, resulting in localized turbulence and mixing', said Gary Egbert an associate professor at OSU. One important implication of this finding concerns the possible energy sources needed to maintain the ocean's large-scale 'conveyor-belt' circulation and to mix upper ocean heat into the abyssal depths. It is thought that 2 terawatts are required for this process. The winds supply about 1 terawatt, and there has been speculation that the tides, by pumping energy into vertical water motions, supply the remainder. However, all current general circulation models of the oceans ignore the tides. 'It is possible that properly
Heat flux and quantum correlations in dissipative cascaded systems
Lorenzo, Salvatore; Farace, Alessandro; Ciccarello, Francesco; Palma, G. Massimo; Giovannetti, Vittorio
2015-02-01
We study the dynamics of heat flux in the thermalization process of a pair of identical quantum systems that interact dissipatively with a reservoir in a cascaded fashion. Despite that the open dynamics of the bipartite system S is globally Lindbladian, one of the subsystems "sees" the reservoir in a state modified by the interaction with the other subsystem and hence it undergoes a non-Markovian dynamics. As a consequence, the heat flow exhibits a nonexponential time behavior which can greatly deviate from the case where each party is independently coupled to the reservoir. We investigate both thermal and correlated initial states of S and show that the presence of correlations at the beginning can considerably affect the heat-flux rate. We carry out our study in two paradigmatic cases—a pair of harmonic oscillators with a reservoir of bosonic modes and two qubits with a reservoir of fermionic modes—and compare the corresponding behaviors. In the case of qubits and for initial thermal states, we find that the trace distance discord is at any time interpretable as the correlated contribution to the total heat flux.
Lagrangian descriptors in dissipative systems.
Junginger, Andrej; Hernandez, Rigoberto
2016-11-09
The reaction dynamics of time-dependent systems can be resolved through a recrossing-free dividing surface associated with the transition state trajectory-that is, the unique trajectory which is bound to the barrier region for all time in response to a given time-dependent potential. A general procedure based on the minimization of Lagrangian descriptors has recently been developed by Craven and Hernandez [Phys. Rev. Lett., 2015, 115, 148301] to construct this particular trajectory without requiring perturbative expansions relative to the naive transition state point at the top of the barrier. The extension of the method to account for dissipation in the equations of motion requires additional considerations established in this paper because the calculation of the Lagrangian descriptor involves the integration of trajectories in forward and backward time. The two contributions are in general very different because the friction term can act as a source (in backward time) or sink (in forward time) of energy, leading to the possibility that information about the phase space structure may be lost due to the dominance of only one of the terms. To compensate for this effect, we introduce a weighting scheme within the Lagrangian descriptor and demonstrate that for thermal Langevin dynamics it preserves the essential phase space structures, while they are lost in the nonweighted case.
Conservation laws shape dissipation
Rao, Riccardo; Esposito, Massimiliano
2018-02-01
Starting from the most general formulation of stochastic thermodynamics—i.e. a thermodynamically consistent nonautonomous stochastic dynamics describing systems in contact with several reservoirs—we define a procedure to identify the conservative and the minimal set of nonconservative contributions in the entropy production. The former is expressed as the difference between changes caused by time-dependent drivings and a generalized potential difference. The latter is a sum over the minimal set of flux-force contributions controlling the dissipative flows across the system. When the system is initially prepared at equilibrium (e.g. by turning off drivings and forces), a finite-time detailed fluctuation theorem holds for the different contributions. Our approach relies on identifying the complete set of conserved quantities and can be viewed as the extension of the theory of generalized Gibbs ensembles to nonequilibrium situations.
International Nuclear Information System (INIS)
Yamanoi, Kazuto; Yokotani, Yuki; Kimura, Takashi
2015-01-01
The heat dissipation due to the resonant precessional motion of the magnetization in a ferromagnetic metal has been investigated. We demonstrated that the temperature during the ferromagnetic resonance can be simply detected by the electrical resistance measurement of the Cu strip line in contact with the ferromagnetic metal. The temperature change of the Cu strip due to the ferromagnetic resonance was found to exceed 10 K, which significantly affects the spin-current transport. The influence of the thermal conductivity of the substrate on the heating was also investigated
Viscosity measurement techniques in Dissipative Particle Dynamics
Boromand, Arman; Jamali, Safa; Maia, Joao M.
2015-11-01
In this study two main groups of viscosity measurement techniques are used to measure the viscosity of a simple fluid using Dissipative Particle Dynamics, DPD. In the first method, a microscopic definition of the pressure tensor is used in equilibrium and out of equilibrium to measure the zero-shear viscosity and shear viscosity, respectively. In the second method, a periodic Poiseuille flow and start-up transient shear flow is used and the shear viscosity is obtained from the velocity profiles by a numerical fitting procedure. Using the standard Lees-Edward boundary condition for DPD will result in incorrect velocity profiles at high values of the dissipative parameter. Although this issue was partially addressed in Chatterjee (2007), in this work we present further modifications (Lagrangian approach) to the original LE boundary condition (Eulerian approach) that will fix the deviation from the desired shear rate at high values of the dissipative parameter and decrease the noise to signal ratios in stress measurement while increases the accessible low shear rate window. Also, the thermostat effect of the dissipative and random forces is coupled to the dynamic response of the system and affects the transport properties like the viscosity and diffusion coefficient. We investigated thoroughly the dependency of viscosity measured by both Eulerian and Lagrangian methodologies, as well as numerical fitting procedures and found that all the methods are in quantitative agreement.
International Nuclear Information System (INIS)
Aboufirassi, M; Angelique, J.C.; Bizard, G.; Bougault, R.; Brou, R.; Buta, A.; Colin, J.; Cussol, D.; Durand, D.; Genoux-Lubain, A.; Horn, D.; Kerambrun, A.; Laville, J.L.; Le Brun, C.; Lecolley, J.F.; Lefebvres, F.; Lopez, O.; Louvel, M.; Meslin, C.; Metivier, V.; Nakagawa, T.; Peter, J.; Popescu, R.; Regimbart, R.; Steckmeyer, J.C.; Tamain, B.; Vient, E.; Wieloch, A.; Yuasa-Nakagawa, K.
1998-01-01
The binary character of the heavy ion collisions at intermediate energies in the exit channel has been observed under 30 MeV/n in medium and heavy systems. Measurements in light systems at energies approaching ∼ 100 MeV/nucleon as well as in very heavy systems have allowed to extend considerably the investigations of this binary process. Thus, the study of the Pb + Au system showed that the complete charge events indicated two distinct sources: the quasi-projectile and the quasi-target. The characteristics of these two sources are rather well reproduced by a trajectory computation which takes into account the Coulomb and nuclear forces and the friction appearing from the projectile-target interaction. The Wilczynski diagram is used to probe the correlation between the kinetic energy quenching and the deflecting angle. In case of the system Pb + Au at 29 MeV/nucleon the diagram indicate dissipative binary collisions typical for low energies. This binary aspect was also detected in the systems Xe + Ag at 44 MeV/nucleon, 36 Ar + 27 Al and 64 Zn + nat Ti. Thus, it was possible to reconstruct the quasi-projectile and to study its mass and excitation energy evolution as a function of the impact parameter. The dissipative binary collisions represent for the systems and energies under considerations the main contribution to the cross section. This does not implies that there are not other processes; particularly, the more or less complete fusion is also observed but with a low cross section which decreases with the increase of bombardment energy. More exclusive measurements with the INDRA detector on quasi-symmetric systems as Ar + KCl and Xe + Sn seem to confirm the importance of the binary collisions. The two source reconstruction of the Xe + Sn data at 50 MeV/nucleon reproduces the same behaviour as that observed in the system Pb + Au at 29 MeV/nucleon
Heterogeneous dissipative composite structures
Ryabov, Victor; Yartsev, Boris; Parshina, Ludmila
2018-05-01
The paper suggests mathematical models of decaying vibrations in layered anisotropic plates and orthotropic rods based on Hamilton variation principle, first-order shear deformation laminated plate theory (FSDT), as well as on the viscous-elastic correspondence principle of the linear viscoelasticity theory. In the description of the physical relationships between the materials of the layers forming stiff polymeric composites, the effect of vibration frequency and ambient temperature is assumed as negligible, whereas for the viscous-elastic polymer layer, temperature-frequency relationship of elastic dissipation and stiffness properties is considered by means of the experimentally determined generalized curves. Mitigation of Hamilton functional makes it possible to describe decaying vibration of anisotropic structures by an algebraic problem of complex eigenvalues. The system of algebraic equation is generated through Ritz method using Legendre polynomials as coordinate functions. First, real solutions are found. To find complex natural frequencies of the system, the obtained real natural frequencies are taken as input values, and then, by means of the 3rd order iteration method, complex natural frequencies are calculated. The paper provides convergence estimates for the numerical procedures. Reliability of the obtained results is confirmed by a good correlation between analytical and experimental values of natural frequencies and loss factors in the lower vibration tones for the two series of unsupported orthotropic rods formed by stiff GRP and CRP layers and a viscoelastic polymer layer. Analysis of the numerical test data has shown the dissipation & stiffness properties of heterogeneous composite plates and rods to considerably depend on relative thickness of the viscoelastic polymer layer, orientation of stiff composite layers, vibration frequency and ambient temperature.
Quantum fields and dissipation
International Nuclear Information System (INIS)
Henning, P.
1996-06-01
The description of thermal or non-equilibrium systems necessitates a quantum field theory which differs from the usual approach in two aspects: 1. The Hilbert space is doubled; 2. Stable quasi-particles do not exist in interacting systems. A mini-review of these two aspects is given from a practical viewpoint including two applications. For thermal states it is shown how infrared divergences occuring in perturbative quasi-particle theories are avoided, whereas for non-equilibrium states a memory effect is shown to arise in the thermalization. (orig.)
Effect of viscous dissipation and radiation in an annular cone
International Nuclear Information System (INIS)
Ahmed, N. J. Salman; Kamangar, Sarfaraz; Khan, T. M. Yunus; Azeem
2016-01-01
The viscous dissipation is an effect due to which heat is generated inside the medium. The presence of radiation further complicates the heat transfer behavior inside porous medium. The present paper discusses the combined effect of viscous dissipation and radiation inside a porous medium confined in an annular cone with inner radius r_i. The viscous dissipation and radiation terms are included in the energy equation thereby solving the coupled momentum and energy equations with the help of finite element method. The results are presented in terms of isothermal and streamline indicating the thermal and fluid flow behavior of porous medium. It is found that the combination of viscous dissipation and radiation parameter and the cone angle has significant effect on the heat transfer and fluid flow behavior inside the porous medium. The fluid velocity is found to increase with the increase in Raleigh number
Effect of viscous dissipation and radiation in an annular cone
Energy Technology Data Exchange (ETDEWEB)
Ahmed, N. J. Salman; Kamangar, Sarfaraz [Centre for Energy Sciences, Dept. of Mechanical Engineering, University of Malaya, Kuala Lumpur, 50603 Malaysia (Malaysia); Khan, T. M. Yunus, E-mail: yunus.tatagar@gmail.com [Centre for Energy Sciences, Dept. of Mechanical Engineering, University of Malaya, Kuala Lumpur, 50603 Malaysia (Malaysia); Dept. of Mechanical Engineering, BVB College of Engineering & Technology, Hubli (India); Azeem [Dept. of Computer System & Technology, University of Malaya, Kuala Lumpur (Malaysia)
2016-06-21
The viscous dissipation is an effect due to which heat is generated inside the medium. The presence of radiation further complicates the heat transfer behavior inside porous medium. The present paper discusses the combined effect of viscous dissipation and radiation inside a porous medium confined in an annular cone with inner radius r{sub i}. The viscous dissipation and radiation terms are included in the energy equation thereby solving the coupled momentum and energy equations with the help of finite element method. The results are presented in terms of isothermal and streamline indicating the thermal and fluid flow behavior of porous medium. It is found that the combination of viscous dissipation and radiation parameter and the cone angle has significant effect on the heat transfer and fluid flow behavior inside the porous medium. The fluid velocity is found to increase with the increase in Raleigh number.
FFTF thermal-hydraulic testing results affecting piping and vessel component design in LMFBR's
International Nuclear Information System (INIS)
Stover, R.L.; Beaver, T.R.; Chang, S.C.
1983-01-01
The Fast Flux Test Facility completed four years of pre-operational testing in April 1982. This paper describes thermal-hydraulic testing results from this period which impact piping and vessel component design in LMFBRs. Data discussed are piping flow oscillations, piping thermal stratification and vessel upper plenum stratification. Results from testing verified that plant design limits were met
Influence of queue propagation and dissipation on route travel times
DEFF Research Database (Denmark)
Raovic, Nevena
into account (Bliemer, 2008). Yperman (2007) indicates that there is a significant difference in queue-propagation and queue-dissipation between the LTM and DQM. This results in different route travel times, and can further affect route choice. In this paper, different approaches to represent queue propagation...... and dissipation through the CTM, LTM and DQM are studied. A simple network allows to show how these approaches influence route travel time. Furthermore, the possibility of changing the existing DQM is considered in order to more realistically represent queue propagation and dissipation, which would lead to more...... accurate route travel times....
Tidal dissipation in the subsurface ocean of Enceladus
Matsuyama, I.; Hay, H.; Nimmo, F.; Kamata, S.
2017-12-01
Icy satellites of the outer solar system have emerged as potential habitable worlds due to the presence of subsurface oceans. As a long-term energy source, tidal heating in these oceans can influence the survivability of subsurface oceans, and the thermal, rotational, and orbital evolution of these satellites. Additionally, the spatial and temporal variation of tidal heating has implications for the interior structure and spacecraft observations. Previous models for dissipation in thin oceans are not generally applicable to icy satellites because either they ignore the presence of an overlying solid shell or use a thin shell membrane approximation. We present a new theoretical treatment for tidal dissipation in thin oceans with overlying shells of arbitrary thickness and apply it to Enceladus. The shell's resistance to ocean tides increases with shell thickness, reducing tidal dissipation as expected. Both the magnitude of energy dissipation and the resonant ocean thicknesses decrease as the overlying shell thickness increases, as previously shown using a membrane approximation. In contrast to previous work based on the traditional definition of the tidal quality factor, Q, our new definition is consistent with higher energy dissipation for smaller Q, and introduces a lower limit on Q. The dissipated power and tides are not in phase with the forcing tidal potential due to the delayed ocean response. The phase lag depends on the Rayleigh friction coefficient and ocean and shell thicknesses, which implies that phase lag observations can be used to constrain these parameters. Eccentricity heating produces higher dissipation near the poles, while obliquity heating produces higher dissipation near the equator, in contrast to the dissipation patterns in the shell. The time-averaged surface distribution of tidal heating can generate lateral shell thickness variations, providing an additional constraint on the Rayleigh friction coefficient. Explaining the endogenic power
Notari, Alessio
2016-12-22
We analyze in detail the background cosmological evolution of a scalar field coupled to a massless abelian gauge field through an axial term $\\frac{\\phi}{f_\\gamma} F \\tilde{F}$, such as in the case of an axion. Gauge fields in this case are known to experience tachyonic growth and therefore can backreact on the background as an effective dissipation into radiation energy density $\\rho_R$, which which can lead to inflation without the need of a flat potential. We analyze the system, for momenta $k$ smaller than the cutoff $f_\\gamma$, including numerically the backreaction. We consider the evolution from a given static initial condition and explicitly show that, if $f_\\gamma$ is smaller than the field excursion $\\phi_0$ by about a factor of at least ${\\cal O} (20)$, there is a friction effect which turns on before that the field can fall down and which can then lead to a very long stage of inflation with a generic potential. In addition we find superimposed oscillations, which would get imprinted on any kind of...
Offshore heat dissipation for nuclear energy centers
International Nuclear Information System (INIS)
Bauman, H.F.
1978-09-01
The technical, environmental, and economic aspects of utilizing the ocean or other large water bodies for the dissipation of reject heat from Nuclear Energy Centers (NECs) were investigated. An NEC in concept is an aggregate of nuclear power plants of 10 GW(e) capacity or greater on a common site. The use of once-through cooling for large power installations offers advantages including higher thermal efficiencies, especially under summer peak-load conditions, compared to closed-cycle cooling systems. A disadvantage of once-through cooling is the potential for greater adverse impacts on the aquatic environment. A concept is presented for minimizing the impacts of such systems by placing water intake and discharge locations relatively distant from shore in deeper water than has heretofore been the practice. This technique would avoid impacts on relatively biologically productive and ecologically sensitive shallow inshore areas. The NEC itself would be set back from the shoreline so that recreational use of the shore area would not be impaired. The characteristics of a heat-dissipation system of the size required for a NEC were predicted from the known characteristics of a smaller system by applying hydraulic scaling laws. The results showed that adequate heat dissipation can be obtained from NEC-sized systems located in water of appropriate depth. Offshore intake and discharge structures would be connected to the NEC pump house on shore via tunnels or buried pipelines. Tunnels have the advantage that shoreline and beach areas would not be disturbed. The cost of an offshore heat-dissipation system depends on the characteristics of the site, particularly the distance to suitably deep water and the type of soil or rock in which water conduits would be constructed. For a favorable site, the cost of an offshore system is estimated to be less than the cost of a closed-cycle system
Quench dynamics of a disordered array of dissipative coupled cavities.
Creatore, C; Fazio, R; Keeling, J; Türeci, H E
2014-09-08
We investigate the mean-field dynamics of a system of interacting photons in an array of coupled cavities in the presence of dissipation and disorder. We follow the evolution of an initially prepared Fock state, and show how the interplay between dissipation and disorder affects the coherence properties of the cavity emission, and show that these properties can be used as signatures of the many-body phase of the whole array.
Heat Dissipation for Microprocessor Using Multiwalled Carbon Nanotubes Based Liquid
Trinh, Pham Van; Chuc, Nguyen Van; Khoi, Phan Hong; Minh, Phan Ngoc
2013-01-01
Carbon nanotubes (CNTs) are one of the most valuable materials with high thermal conductivity (2000 W/m · K compared with thermal conductivity of Ag 419 W/m · K). This suggested an approach in applying the CNTs in thermal dissipation system for high power electronic devices, such as computer processor and high brightness light emitting diode (HB-LED). In this work, multiwalled carbon nanotubes (MWCNTs) based liquid was made by COOH functionalized MWCNTs dispersed in distilled water with concentration in the range between 0.2 and 1.2 gram/liter. MWCNT based liquid was used in liquid cooling system to enhance thermal dissipation for computer processor. By using distilled water in liquid cooling system, CPU's temperature decreases by about 10°C compared with using fan cooling system. By using MWCNT liquid with concentration of 1 gram/liter MWCNTs, the CPU's temperature decreases by 7°C compared with using distilled water in cooling system. Theoretically, we also showed that the presence of MWCNTs reduced thermal resistance and increased the thermal conductivity of liquid cooling system. The results have confirmed the advantages of the MWCNTs for thermal dissipation systems for the μ-processor and other high power electronic devices. PMID:24453829
Parameters affecting mechanical and thermal responses in bone drilling: A review.
Lee, JuEun; Chavez, Craig L; Park, Joorok
2018-04-11
Surgical bone drilling is performed variously to correct bone fractures, install prosthetics, or for therapeutic treatment. The primary concern in bone drilling is to extract donor bone sections and create receiving holes without damaging the bone tissue either mechanically or thermally. We review current results from experimental and theoretical studies to investigate the parameters related to such effects. This leads to a comprehensive understanding of the mechanical and thermal aspects of bone drilling to reduce their unwanted complications. This review examines the important bone-drilling parameters of bone structure, drill-bit geometry, operating conditions, and material evacuation, and considers the current techniques used in bone drilling. We then analyze the associated mechanical and thermal effects and their contributions to bone-drilling performance. In this review, we identify a favorable range for each parameter to reduce unwanted complications due to mechanical or thermal effects. Copyright © 2018 Elsevier Ltd. All rights reserved.
Radial thermal diffusivity of toroidal plasma affected by resonant magnetic perturbations
International Nuclear Information System (INIS)
Kanno, Ryutaro; Nunami, Masanori; Satake, Shinsuke; Takamaru, Hisanori; Okamoto, Masao
2012-04-01
We investigate how the radial thermal diffusivity of an axisymmetric toroidal plasma is modified by effect of resonant magnetic perturbations (RMPs), using a drift kinetic simulation code for calculating the thermal diffusivity in the perturbed region. The perturbed region is assumed to be generated on and around the resonance surfaces, and is wedged in between the regular closed magnetic surfaces. It has been found that the radial thermal diffusivity χ r in the perturbed region is represented as χ r = χ r (0) {1 + c r parallel 2 >}. Here r parallel 2 > 1/2 is the strength of the RMPs in the radial directions, means the flux surface average defined by the unperturbed (i.e., original) magnetic field, χ r (0) is the neoclassical thermal diffusivity, and c is a positive coefficient. In this paper, dependence of the coefficient c on parameters of the toroidal plasma is studied in results given by the δ f simulation code solving the drift kinetic equation under an assumption of zero electric field. We find that the dependence of c is given as c ∝ ω b /ν eff m in the low collisionality regime ν eff b , where ν eff is the effective collision frequency, ω b is the bounce frequency and m is the particle mass. In case of ν eff > ω b , the thermal diffusivity χ r evaluated by the simulations becomes close to the neoclassical thermal diffusivity χ r (0) . (author)
Cetinic, M.; Diamanti, J.; Szeman, I.; Blacker, S.; Sully, J.
2017-01-01
This chapter historicizes four divergent but historically contemporaneous genres of affect theory – romantic, realist, speculative, and materialist. While critics credited with the turn to affect in the 1990s wrote largely in the wake of poststructuralism from the perspective of gender and queer
Directory of Open Access Journals (Sweden)
Lu Wang
2018-03-01
Full Text Available Nutrient pollution can increase the prevalence and severity of coral disease and bleaching in ambient temperature conditions or during experimental thermal challenge. However, there have been few opportunities to study the effects of nutrient pollution during natural thermal anomalies. Here we present results from an experiment conducted during the 2014 bleaching event in the Florida Keys, USA, that exposed Agaricia sp. (Undaria and Siderastrea siderea corals to 3 types of elevated nutrients: nitrogen alone, phosphorous alone, and the combination of nitrogen and phosphorus. Overall, bleaching prevalence and severity was high regardless of treatment, but nitrogen enrichment alone both prolonged bleaching and increased coral mortality in Agaricia corals. At the same time, the elevated temperatures increased the prevalence of Dark Spot Syndrome (DSS, a disease typically associated with cold temperatures in Siderastrea siderea corals. However, nutrient exposure alone did not increase the prevalence or severity of disease, suggesting that thermal stress overwhelms the effects of nutrient pollution on this disease during such an extreme thermal event. Analysis of 78 Siderastrea siderea microbial metagenomes also showed that the thermal event was correlated with significant shifts in the composition and function of the associated microbiomes, and corals with DSS had microbiomes distinct from apparently healthy corals. In particular, we identified shifts in viral, archaeal, and fungal families. These shifts were likely driven by the extreme temperatures or other environmental co-variates occurring during the 2014 bleaching event. However, no microbial taxa were correlated with signs of DSS. Furthermore, although nutrient exposure did not affect microbial alpha diversity, it did significantly affect microbiome beta-diversity, an effect that was independent of time. These results suggest that strong thermal anomalies and local nutrient pollution both
Dissipative systems and Bateman's Hamiltonian
International Nuclear Information System (INIS)
Pedrosa, I.A.; Baseia, B.
1983-01-01
It is shown, by using canonical transformations, that one can construct Bateman's Hamiltonian from a Hamiltonian for a conservative system and obtain a clear physical interpretation which explains the ambiguities emerging from its application to describe dissipative systems. (Author) [pt
Dissipative Effect and Tunneling Time
Directory of Open Access Journals (Sweden)
Samyadeb Bhattacharya
2011-01-01
Full Text Available The quantum Langevin equation has been studied for dissipative system using the approach of Ford et al. Here, we have considered the inverted harmonic oscillator potential and calculated the effect of dissipation on tunneling time, group delay, and the self-interference term. A critical value of the friction coefficient has been determined for which the self-interference term vanishes. This approach sheds new light on understanding the ion transport at nanoscale.
Energy Technology Data Exchange (ETDEWEB)
Notari, Alessio [Departament de Física Fondamental i Institut de Ciències del Cosmos, Universitat de Barcelona, Martí i Franquès 1, Barcelona, 08028 Spain (Spain); Tywoniuk, Konrad, E-mail: notari@ffn.ub.es, E-mail: konrad.tywoniuk@cern.ch [Theoretical Physics Department, CERN, Geneva (Switzerland)
2016-12-01
We analyze in detail the background cosmological evolution of a scalar field coupled to a massless abelian gauge field through an axial term φ/ f {sub γ} F ∼ F , such as in the case of an axion. Gauge fields in this case are known to experience tachyonic growth and therefore can backreact on the background as an effective dissipation into radiation energy density ρ{sub R}, which can lead to inflation without the need of a flat potential. We analyze the system, for momenta k smaller than the cutoff f {sub γ}, including the backreaction numerically. We consider the evolution from a given static initial condition and explicitly show that, if f {sub γ} is smaller than the field excursion φ{sub 0} by about a factor of at least O (20), there is a friction effect which turns on before the field can fall down and which can then lead to a very long stage of inflation with a generic potential. In addition we find superimposed oscillations, which would get imprinted on any kind of perturbations, scalars and tensors. Such oscillations have a period of 4–5 efolds and an amplitude which is typically less than a few percent and decreases linearly with f {sub γ}. We also stress that the curvature perturbation on uniform density slices should be sensitive to slow-roll parameters related to ρ{sub R} rather than φ-dot {sup 2}/2 and we discuss the existence of friction terms acting on the perturbations, although we postpone a calculation of the power spectrum and of non-gaussianity to future work and we simply define and compute suitable slow roll parameters. Finally we stress that this scenario may be realized in the axion case, if the coupling 1/ f {sub γ} to U(1) (photons) is much larger than the coupling 1/ f {sub G} to non-abelian gauge fields (gluons), since the latter sets the range of the potential and therefore the maximal allowed φ{sub 0∼} f {sub G}.
Yersinia spp. is a psychrotrophic bacterium that can grow at temperatures as low as minus two degrees Celsius, and is known to contaminate shell eggs in the United States and shell eggs and liquid egg in South America. A study was performed to determine the thermal sensitivity of avirulent Yersinia...
Viscous dissipation effects on heat transfer in flow past a continuous moving plate
Digital Repository Service at National Institute of Oceanography (India)
Soundalgekar, V.M.; Murty, T.V.R.
The study of thermal boundary layer on taking into account the viscous dissipative heat, on a continuously moving semi-infinite flat plate is presented here.Similarity solutions are derived and the resulting equations are integrated numerically...
Quattrochi, Dale A.; Luvall, Jeffrey C.; Estes, Maurice G., Jr.
2000-01-01
The physical geography of the city affects numerous aspects of its interlinked biophysical, social, and land-atmosphere characteristics - those attributes that come together to form the total urban environment. One approach to studying the multitude of interactions that occur as a result of urbanization is to view the city from a systems ecology perspective, where energy and material cycle into and out of the urban milieu. Thus, the urban ecosystem is synergistic in linking land, air, water, and living organisms in a vast network of interrelated physical, human, and biological process. Given the number and the shear complexity of the exchanges and, ultimately, their effects, that occur within the urban environment, we are focusing our research on looking at how the morphology or urban fabric of the city, drives thermal energy exchanges across the urban landscape. The study of thermal energy attributes for different cities provides insight into how thermal fluxes and characteristics are partitioned across the city landscape in response to each city's morphology. We are using thermal infrared remote sensing data obtained at a high spatial resolution from aircraft, along with satellite data, to identify and quantify thermal energy characteristics for 4 U.S. cities: Atlanta, GA, Baton Rouge, LA, Salt Lake City, UT, and Sacramento, CA. Analysis of how thermal energy is spatially distributed across the urban landscapes for these cities provides a unique perspective for understanding how the differing morphology of cities forces land-atmosphere exchanges, such as the urban heat island effect, as well as related meteorological and air quality interactions. Keyword: urban ecosystems, remote sensing, urban heat island
Hypohydration and Acute Thermal Stress Affect Mood State but not Cognition or Dynamic Postural
2012-10-12
of the feet and ankles . The LCD screen presented a cursor interfaced with the movement of the platform. Balance scores were given based on three...Vol- unteers were asked to rate their thermal sensation (TS) using an 8-point Likert scale with verbal anchors from 0 (unbearably cold) to 8...unbearably hot). Thirst was asses- sed using a similar 8-point Likert scale with verbal anchors from 1 (not thirst at all) to 9 (very, very thirsty) (Gagge
Low temperature mechanical dissipation of an ion-beam sputtered silica film
International Nuclear Information System (INIS)
Martin, I W; Craig, K; Bassiri, R; Hough, J; Robie, R; Rowan, S; Nawrodt, R; Schwarz, C; Harry, G; Penn, S; Reid, S
2014-01-01
Thermal noise arising from mechanical dissipation in oxide mirror coatings is an important limit to the sensitivity of future gravitational wave detectors, optical atomic clocks and other precision measurement systems. Here, we present measurements of the temperature dependence of the mechanical dissipation of an ion-beam sputtered silica film between 10 and 300 K. A dissipation peak was observed at 20 K and the low temperature dissipation was found to have significantly different characteristics than observed for bulk silica and silica films deposited by alternative techniques. These results are important for better understanding the underlying mechanisms of mechanical dissipation, and thus thermal noise, in the most commonly-used reflective coatings for precision measurements. (paper)
Dissipative structures and related methods
Langhorst, Benjamin R; Chu, Henry S
2013-11-05
Dissipative structures include at least one panel and a cell structure disposed adjacent to the at least one panel having interconnected cells. A deformable material, which may comprise at least one hydrogel, is disposed within at least one interconnected cell proximate to the at least one panel. Dissipative structures may also include a cell structure having interconnected cells formed by wall elements. The wall elements may include a mesh formed by overlapping fibers having apertures formed therebetween. The apertures may form passageways between the interconnected cells. Methods of dissipating a force include disposing at least one hydrogel in a cell structure proximate to at least one panel, applying a force to the at least one panel, and forcing at least a portion of the at least one hydrogel through apertures formed in the cell structure.
Modeling compaction-induced energy dissipation of granular HMX
Energy Technology Data Exchange (ETDEWEB)
Gonthier, K.A. [Lamar Univ., Beaumont, TX (US). Dept. of Mechanical Engineering; Menikoff, R.; Son, S.F.; Asay, B.W. [Los Alamos National Lab., NM (US)
1998-12-31
A thermodynamically consistent model is developed for the compaction of granular solids. The model is an extension of the single phase limit of two-phase continuum models used to describe Deflagration-to-Detonation Transition (DDT) experiments. The focus is on the energetics and dissipation of the compaction process. Changes in volume fraction are partitioned into reversible and irreversible components. Unlike conventional DDT models, the model is applicable from the quasi-static to dynamic compaction regimes for elastic, plastic, or brittle materials. When applied to the compaction of granular HMX (a brittle material), the model predicts results commensurate with experiments including stress relaxation, hysteresis, and energy dissipation. The model provides a suitable starting point for the development of thermal energy localization sub-scale models based on compaction-induced dissipation.
Microscopic nuclear dissipation. Pt. 2
International Nuclear Information System (INIS)
Yannouleas, C.; Dworzecka, M.; Griffin, J.J.
1983-01-01
We have formulated a microscopic, nonperturbative, time reversible model which exhibits a dissipative decay of collective motion for times short compared to the system's Poincare time. The model assumes an RPA approximate description of the initial collective state within a restricted subspace, then traces its time evolution when an additional subspace is coupled to the restricted subspace by certain simplified matrix elements. It invokes no statistical assumptions. The damping of the collective motion occurs via real transitions from the collective state to other more complicated nuclear states of the same energy. It corresponds therefore to the so called 'one-body' long mean free path limit of nuclear dissipation when the collective state describes a surface vibration. When the simplest RPA approximation is used, this process associates the dissipation with the escape width for direct particle emission to the continuum. When the more detailed second RPA is used, it associates the dissipation with the spreading width for transitions to the 2p-2h components of the nuclear compound states as well. The energy loss rate for sharp n-phonon initial states is proportional to the total collective energy, unlike the dissipation of a classical damped oscillator, where it is proportional to the kinetic energy only. However, for coherent, multi-phonon wave packets, which explicitly describe the time-dependent oscillations of the mean field, dissipation proportional only to the kinetic energy is obtained. Canonical coordinates for the collective degree of freedom are explicitly introduced and a nonlinear frictional hamiltonian to describe such systems is specified by the requirement that it yield the same time dependence for the collective motion as the microscopic model. Thus, for the first time a descriptive nonlinear hamiltonian is derived explicitly from the underlying microscopic model of a nuclear system. (orig.)
Zero temperature dissipation and holography
Energy Technology Data Exchange (ETDEWEB)
Banerjee, Pinaki; Sathiapalan, B. [Institute of Mathematical Sciences,CIT Campus, Taramani, Chennai 600 113 (India)
2016-04-14
We use holographic techniques to study the zero-temperature limit of dissipation for a Brownian particle moving in a strongly coupled CFT at finite temperature in various space-time dimensions. The dissipative term in the boundary theory for ω→0, T→0 with ω/T held small and fixed, does not match the same at T=0, ω→0. Thus the T→0 limit is not smooth for ω
Dissipative heavy-ion collisions
International Nuclear Information System (INIS)
Feldmeier, H.T.
1985-01-01
This report is a compilation of lecture notes of a series of lectures held at Argonne National Laboratory in October and November 1984. The lectures are a discussion of dissipative phenomena as observed in collisions of atomic nuclei. The model is based on a system which has initially zero temperature and the initial energy is kinetic and binding energy. Collisions excite the nuclei, and outgoing fragments or the compound system deexcite before they are detected. Brownian motion is used to introduce the concept of dissipation. The master equation and the Fokker-Planck equation are derived. 73 refs., 59 figs
Hydrodynamic relaxations in dissipative particle dynamics
Hansen, J. S.; Greenfield, Michael L.; Dyre, Jeppe C.
2018-01-01
This paper studies the dynamics of relaxation phenomena in the standard dissipative particle dynamics (DPD) model [R. D. Groot and P. B. Warren, J. Chem. Phys. 107, 4423 (1997)]. Using fluctuating hydrodynamics as the framework of the investigation, we focus on the collective transverse and longitudinal dynamics. It is shown that classical hydrodynamic theory predicts the transverse dynamics at relatively low temperatures very well when compared to simulation data; however, the theory predictions are, on the same length scale, less accurate for higher temperatures. The agreement with hydrodynamics depends on the definition of the viscosity, and here we find that the transverse dynamics are independent of the dissipative and random shear force contributions to the stress. For high temperatures, the spectrum for the longitudinal dynamics is dominated by the Brillouin peak for large length scales and the relaxation is therefore governed by sound wave propagation and is athermal. This contrasts the results at lower temperatures and small length scale, where the thermal process is clearly present in the spectra. The DPD model, at least qualitatively, re-captures the underlying hydrodynamical mechanisms, and quantitative agreement is excellent at intermediate temperatures for the transverse dynamics.
Heat Dissipation for Microprocessor Using Multiwalled Carbon Nanotubes Based Liquid
Hung Thang, Bui; Trinh, Pham Van; Chuc, Nguyen Van; Khoi, Phan Hong; Minh, Phan Ngoc
2013-01-01
Carbon nanotubes (CNTs) are one of the most valuable materials with high thermal conductivity (2000 W/m · K compared with thermal conductivity of Ag 419 W/m · K). This suggested an approach in applying the CNTs in thermal dissipation system for high power electronic devices, such as computer processor and high brightness light emitting diode (HB-LED). In this work, multiwalled carbon nanotubes (MWCNTs) based liquid was made by COOH functionalized MWCNTs dispersed in distilled water with conce...
Does the thermal spike affect low energy ion-induced interfacial mixing?
International Nuclear Information System (INIS)
Suele, P.; Menyhard, M.; Nordlund, K.
2003-01-01
Molecular dynamics simulations have been used to obtain the three-dimensional distribution of interfacial mixing and cascade defects in Ti/Pt multilayer system due to single 1 keV Ar + impact at grazing angle of incidence. The Ti/Pt system was chosen because of its relatively high heat of mixing in the binary alloy and therefore a suitable candidate for testing the effect of heat of mixing on ion-beam mixing. However, the calculated mixing profile is not sensitive to the heat of mixing. Therefore the thermal spike model of mixing is not fully supported under these irradiation conditions. Instead we found that the majority of mixing occurs after the thermal spike during the relaxation process. These conclusions are supported by liquid, vacancy as well as adatom analysis. The interfacial mixing is in various aspects anomalous in this system: the time evolution of mixing is leading to a phase delay for Ti mixing, and Pt exhibits an unexpected double peaked mixing evolution. The reasons to these effects are discussed
Li, Weichen; Tsou, Chingfu
2015-10-01
This paper presents a thermal-bubble-actuated microfluidic chip with cross-shaped microchannels for evaluating the effect of different microchannel designs on microparticle manipulation. Four cross-shaped microchannel designs, with orthogonal, misaligned, skewed, and antiskewed types, were proposed in this study. The thermal bubble micropump, which is based on a resistive bulk microheater, was used to drive fluid transportation, and it can be realized using a simple microfabrication process with a silicon-on-isolator wafer. Using commercial COMSOL software, the flow profiles of microfluidics in various cross-shaped microchannels were simulated qualitatively under different pumping pressures. Microbeads, with a diameter of 20 μm, manipulated in four cross-shaped microchannels, were also implemented in this experiment. The results showed that a skewed microchannel design has a higher sorting rate compared with orthogonal, misaligned, and antiskewed microchannels because its flow velocity in the main microchannel is significantly reduced by pumping pressure. Typically, the successful sorting rate for this type of skewed microchannel can reach 30% at a pumping frequency of 100 Hz.
ENERGY DISSIPATION PROCESSES IN SOLAR WIND TURBULENCE
Energy Technology Data Exchange (ETDEWEB)
Wang, Y.; Wei, F. S.; Feng, X. S.; Sun, T. R.; Zuo, P. B. [SIGMA Weather Group, State Key Laboratory for Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China); Xu, X. J. [Space Science Institute, Macau University of Science and Technology, Macao (China); Zhang, J., E-mail: yw@spaceweather.ac.cn [School of Physics, Astronomy and Computational Sciences, George Mason University, 4400 University Drive, MSN 3F3, Fairfax, Virginia 22030 (United States)
2015-12-15
Turbulence is a chaotic flow regime filled by irregular flows. The dissipation of turbulence is a fundamental problem in the realm of physics. Theoretically, dissipation ultimately cannot be achieved without collisions, and so how turbulent kinetic energy is dissipated in the nearly collisionless solar wind is a challenging problem. Wave particle interactions and magnetic reconnection (MR) are two possible dissipation mechanisms, but which mechanism dominates is still a controversial topic. Here we analyze the dissipation region scaling around a solar wind MR region. We find that the MR region shows unique multifractal scaling in the dissipation range, while the ambient solar wind turbulence reveals a monofractal dissipation process for most of the time. These results provide the first observational evidences for intermittent multifractal dissipation region scaling around a MR site, and they also have significant implications for the fundamental energy dissipation process.
Strong tidal dissipation in Io and Jupiter from astrometric observations.
Lainey, Valéry; Arlot, Jean-Eudes; Karatekin, Ozgür; Van Hoolst, Tim
2009-06-18
Io is the volcanically most active body in the Solar System and has a large surface heat flux. The geological activity is thought to be the result of tides raised by Jupiter, but it is not known whether the current tidal heat production is sufficiently high to generate the observed surface heat flow. Io's tidal heat comes from the orbital energy of the Io-Jupiter system (resulting in orbital acceleration), whereas dissipation of energy in Jupiter causes Io's orbital motion to decelerate. Here we report a determination of the tidal dissipation in Io and Jupiter through its effect on the orbital motions of the Galilean moons. Our results show that the rate of internal energy dissipation in Io (k(2)/Q = 0.015 +/- 0.003, where k(2) is the Love number and Q is the quality factor) is in good agreement with the observed surface heat flow, and suggest that Io is close to thermal equilibrium. Dissipation in Jupiter (k(2)/Q = (1.102 +/- 0.203) x 10(-5)) is close to the upper bound of its average value expected from the long-term evolution of the system, and dissipation in extrasolar planets may be higher than presently assumed. The measured secular accelerations indicate that Io is evolving inwards, towards Jupiter, and that the three innermost Galilean moons (Io, Europa and Ganymede) are evolving out of the exact Laplace resonance.
Constructal entransy dissipation minimization for 'volume-point' heat conduction
International Nuclear Information System (INIS)
Chen Lingen; Wei Shuhuan; Sun Fengrui
2008-01-01
The 'volume to point' heat conduction problem, which can be described as to how to determine the optimal distribution of high conductivity material through the given volume such that the heat generated at every point is transferred most effectively to its boundary, has became the focus of attention in the current constructal theory literature. In general, the minimization of the maximum temperature difference in the volume is taken as the optimization objective. A new physical quantity, entransy, has been identified as a basis for optimizing heat transfer processes in terms of the analogy between heat and electrical conduction recently. Heat transfer analyses show that the entransy of an object describes its heat transfer ability, just as the electrical energy in a capacitor describes its charge transfer ability. Entransy dissipation occurs during heat transfer processes, as a measure of the heat transfer irreversibility with the dissipation related thermal resistance. By taking equivalent thermal resistance (it corresponds to the mean temperature difference), which reflects the average heat conduction effect and is defined based on entransy dissipation, as an optimization objective, the 'volume to point' constructal problem is re-analysed and re-optimized in this paper. The constructal shape of the control volume with the best average heat conduction effect is deduced. For the elemental area and the first order construct assembly, when the thermal current density in the high conductive link is linear with the length, the optimized shapes of assembly based on the minimization of entransy dissipation are the same as those based on minimization of the maximum temperature difference, and the mean temperature difference is 2/3 of the maximum temperature difference. For the second and higher order construct assemblies, the thermal current densities in the high conductive link are not linear with the length, and the optimized shapes of the assembly based on the
Dissipative effects in Multilevel Systems
Energy Technology Data Exchange (ETDEWEB)
Solomon, A I [Department of Physics and Astronomy, Open University, Milton Keynes MK7 6AA (United Kingdom); Schirmer, S G [Department of Applied Maths and Theoretical Physics, University of Cambridge, Cambridge, CB3 0WA (United Kingdom)
2007-11-15
Dissipation is sometimes regarded as an inevitable and regrettable presence in the real evolution of a quantum system. However, the effects may not always be malign, although often non-intuitive and may even be beneficial. In this note we we display some of these effects for N-level systems, where N = 2,3,4. We start with an elementary introduction to dissipative effects on the Bloch Sphere, and its interior, the Bloch Ball, for a two-level system. We describe explicitly the hamiltonian evolution as well as the purely dissipative dynamics, in the latter case giving the t {yields} {infinity} limits of the motion. This discussion enables us to provide an intuitive feeling for the measures of control-reachable states. For the three-level case we discuss the impossibility of isolating a two-level (qubit) subsystem; this is a Bohm-Aharonov type consequence of dissipation. We finally exemplify the four-level case by giving constraints on the decay of two-qubit entanglement.
The infrared spectroscopy in the study of the bone crystallinity thermally affected
International Nuclear Information System (INIS)
Medina, C.; Tiesler, V.; Azamar, J.A.; Alvarado G, J.J.; Quintana, P.
2006-01-01
Bone is made up by both organic and inorganic components. Among the latter stands out hydroxyapatite (HAP), composed by hexagonal crystallites arranged in a laminar form. The size of the hydroxyapatite crystals may be altered by different conditions, among those figures thermal exhibition, since during burning the bone eliminates organic matrix and thus promotes the crystallization process of the material. An experimental series was designed to measure crystallinity, in which pig bone remains were burnt at different temperatures and analyzed by infrared spectroscopy (FTIR). By means of analogy a comparison was made between the infrared spectra in order to compare with the ones obtained from the archaeological samples, coming from the Classic period Maya sites of Calakmul and Becan, Campeche. (Author)
Lo Russo, Stefano; Taddia, Glenda; Verda, Vittorio
2014-05-01
The common use of well doublets for groundwater-sourced heating or cooling results in a thermal plume of colder or warmer re-injected groundwater known as the Thermal Affected Zone(TAZ). The plumes may be regarded either as a potential anthropogenic geothermal resource or as pollution, depending on downstream aquifer usage. A fundamental aspect in groundwater heat pump (GWHP) plant design is the correct evaluation of the thermally affected zone that develops around the injection well. Temperature anomalies are detected through numerical methods. Crucial elements in the process of thermal impact assessment are the sizes of installations, their position, the heating/cooling load of the building, and the temperature drop/increase imposed on the re-injected water flow. For multiple-well schemes, heterogeneous aquifers, or variable heating and cooling loads, numerical models that simulate groundwater and heat transport are needed. These tools should consider numerous scenarios obtained considering different heating/cooling loads, positions, and operating modes. Computational fluid dynamic (CFD) models are widely used in this field because they offer the opportunity to calculate the time evolution of the thermal plume produced by a heat pump, depending on the characteristics of the subsurface and the heat pump. Nevertheless, these models require large computational efforts, and therefore their use may be limited to a reasonable number of scenarios. Neural networks could represent an alternative to CFD for assessing the TAZ under different scenarios referring to a specific site. The use of neural networks is proposed to determine the time evolution of the groundwater temperature downstream of an installation as a function of the possible utilization profiles of the heat pump. The main advantage of neural network modeling is the possibility of evaluating a large number of scenarios in a very short time, which is very useful for the preliminary analysis of future multiple
Takahashi, Edwin A; Kinsman, Kristin A; Schmit, Grant D; Atwell, Thomas D; Schmitz, John J; Welch, Brian T; Callstrom, Matthew R; Geske, Jennifer R; Kurup, A Nicholas
2018-06-04
To evaluate the safety and oncologic efficacy of percutaneous thermal ablation of intrahepatic cholangiocarcinoma (ICC) and identify risk factors for local tumor progression (LTP). Retrospective review of an institutional tumor ablation registry demonstrated that 20 patients (9 males, 11 females; mean age 62.5 ± 15.8 years) with 50 ICCs (mean size 1.8 ± 1.3 cm) were treated with percutaneous radiofrequency ablation (RFA) or microwave ablation (MWA) between 2006 and 2015. Thirty-eight of the treated ICCs (76%) were metastases that developed after surgical resection of the primary tumor. Patient demographics, procedure technical parameters, and clinical outcomes were reviewed. A Cox proportional hazards model was used to examine the risk of LTP by ablation modality. Survival analyses were performed using the Kaplan-Meier method. Mean imaging follow-up time was 41.5 ± 42.7 months. Forty-four (88%) ICCs were treated with RFA, and 6 (12%) with MWA. Eleven (22%) cases of LTP developed in 5 (25%) patients. The median time to LTP among these 11 tumors was 7.1 months (range, 2.3-22.9 months). Risk of LTP was not significantly different for ICCs treated with MWA compared to RFA (HR 2.72; 95% CI 0.58-12.84; p = 03.21). Median disease-free survival was 8.2 months (1.1-70.4 months), and median overall survival was 23.6 months (7.4-122.5 months). No major complication occurred. Percutaneous thermal ablation is a safe and effective treatment for patients with ICCs and may be particularly valuable in unresectable patients, or those who have already undergone hepatic surgery. Tumor size and ablation modality were not associated with LTP, whereas primary tumors and superficially located tumors were more likely to subsequently recur.
Scalar dissipation rate and dissipative anomaly in isotropic turbulence
International Nuclear Information System (INIS)
Donzis, D.A.; Sreenivasan, K.R.; Yeung, P.K.
2006-12-01
We examine available data from experiment and recent numerical simulations to explore the supposition that the scalar dissipation rate in turbulence becomes independent of the fluid viscosity when the viscosity is small and of scalar diffusivity when the diffusivity is small. The data are interpreted in the context of semi-empirical spectral theory of Obukhov and Corrsin when the Schmidt number, Sc, is below unity, and of Batchelor's theory when Sc is above unity. Practical limits in terms of the Taylor-microscale Reynolds number, R λ , as well as Sc, are deduced for scalar dissipation to become sensibly independent of molecular properties. In particular, we show that such an asymptotic state is reached if R λ Sc 1/2 >> 1 for Sc λ 1. (author)
Mößeler, Anne; Vagt, Sandra; Beyerbach, Martin; Kamphues, Josef
2015-01-01
Although steatorrhea is the most obvious symptom of pancreatic exocrine insufficiency (PEI), enzymatic digestion of protein and starch is also impaired. Low praecaecal digestibility of starch causes a forced microbial fermentation accounting for energy losses and meteorism. To optimise dietetic measures, knowledge of praecaecal digestibility of starch is needed but such information from PEI patients is rare. Minipigs fitted with an ileocaecal fistula with (n = 3) or without (n = 3) pancreatic duct ligation (PL) were used to estimate the rate of praecaecal disappearance (pcD) of starch. Different botanical sources of starch (rice, amaranth, potato, and pea) were fed either raw or cooked. In the controls (C), there was an almost complete pcD (>92%) except for potato starch (61.5%) which was significantly lower. In PL pcD of raw starch was significantly lower for all sources of starch except for amaranth (87.9%). Thermal processing increased pcD in PL, reaching values of C for starch from rice, potato, and pea. This study clearly underlines the need for precise specification of starch used for patients with specific dietetic needs like PEI. Data should be generated in suitable animal models or patients as tests in healthy individuals would not have given similar conclusions.
Directory of Open Access Journals (Sweden)
Anne Mößeler
2015-01-01
Full Text Available Although steatorrhea is the most obvious symptom of pancreatic exocrine insufficiency (PEI, enzymatic digestion of protein and starch is also impaired. Low praecaecal digestibility of starch causes a forced microbial fermentation accounting for energy losses and meteorism. To optimise dietetic measures, knowledge of praecaecal digestibility of starch is needed but such information from PEI patients is rare. Minipigs fitted with an ileocaecal fistula with (n=3 or without (n=3 pancreatic duct ligation (PL were used to estimate the rate of praecaecal disappearance (pcD of starch. Different botanical sources of starch (rice, amaranth, potato, and pea were fed either raw or cooked. In the controls (C, there was an almost complete pcD (>92% except for potato starch (61.5% which was significantly lower. In PL pcD of raw starch was significantly lower for all sources of starch except for amaranth (87.9%. Thermal processing increased pcD in PL, reaching values of C for starch from rice, potato, and pea. This study clearly underlines the need for precise specification of starch used for patients with specific dietetic needs like PEI. Data should be generated in suitable animal models or patients as tests in healthy individuals would not have given similar conclusions.
Dissipation of Wave Energy by Cohesive Sediments
National Research Council Canada - National Science Library
Kaihatu, James M; Sheremet, Alexandru
2004-01-01
Wave energy dissipation by bottom muds is studied. A dissipation mechanism which contains explicit expressions of wavenumber modification due to a viscous bottom fluid is incorporated into a nonlinear wave shoaling model...
Dissipation and nuclear collective motion
International Nuclear Information System (INIS)
Hofmann, Helmut; Jensen, A.S.; Ngo, Christian; Siemens, P.J.; California Univ., Berkeley
1979-01-01
This contribution is intended to give a brief summary of a forthcoming paper which shall review extensively the linear response theory for dissipation and statistical fluctuations as well as its application to heavy-ion collisions. It shall contain new results on the following subjects: numerical computations of response functions and transport coefficients; dissipation in a self-consistent treatment of harmonic vibrations; introduction of collective variables within a quantum theory. The method used consists of an extended version of the Bohm and Pines treatment of the electron gas. It allows to deduce a quantum Hamiltonian for the collective and intrinsic motion including coupling terms; discussion and solution of a quantal Master equation for non-linear collective motion. Additionally, a somewhat elaborate discussion of the problems of irreversibility is given, especially in connection to a treatment within the moving basis
Kinetic approach to relativistic dissipation
Gabbana, A.; Mendoza, M.; Succi, S.; Tripiccione, R.
2017-08-01
Despite a long record of intense effort, the basic mechanisms by which dissipation emerges from the microscopic dynamics of a relativistic fluid still elude complete understanding. In particular, several details must still be finalized in the pathway from kinetic theory to hydrodynamics mainly in the derivation of the values of the transport coefficients. In this paper, we approach the problem by matching data from lattice-kinetic simulations with analytical predictions. Our numerical results provide neat evidence in favor of the Chapman-Enskog [The Mathematical Theory of Non-Uniform Gases, 3rd ed. (Cambridge University Press, Cambridge, U.K., 1970)] procedure as suggested by recent theoretical analyses along with qualitative hints at the basic reasons why the Chapman-Enskog expansion might be better suited than Grad's method [Commun. Pure Appl. Math. 2, 331 (1949), 10.1002/cpa.3160020403] to capture the emergence of dissipative effects in relativistic fluids.
Nuclear Dissipation from Fission Time
International Nuclear Information System (INIS)
Gontchar, I.; Morjean, M.; Basnary, S.
2000-01-01
Fission times, pre-scission neutron multiplicities and GDR pre-scission γ-ray multiplicities measured for uranium or thorium nuclei formed with temperatures T ∼ 1.8 MeV have been compared with calculations performed with CDSM2, a two-dimensional dynamical model combined with a statistical one. Among the three experimental approaches considered, fission times give access to the most precise pieces of information on nuclear dissipation at high excitation energy. For the temperature range under consideration, an agreement between the model and data is achieved if one-body dissipation is used with a strength factor k red ∼ 0.45 ± 0.10 applied to the wall term for the mononuclear configuration. (authors)
Anisotropy dissipation in quantum cosmology
International Nuclear Information System (INIS)
Calzetta, E.; Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires, Argentina)
1991-01-01
We study the issue of decoherence and dissipation in the wave function of the Universe for a Bianchi type-I universe with classical and quantum matter. We obtain a coarse-grained description by tracing over the matter degrees of freedom. Provided that for small universes the wave function of the universe is concentrated on a neighborhood of the isotropic configuration, then the coarse-grained density matrix of the universe will show an even more marked peak around isotropy for large universes. In this sense we can say that, while decoherence makes the reduced density matrix of the universe diagonal, dissipation causes the universe to be isotropic with a high probability for large radii
Dissipative fluid mechanics of nuclei
International Nuclear Information System (INIS)
Morgenstern, B.
1987-11-01
With the aim to describe nucleus-nucleus collisions at low energies in the present thesis for the first time dissipative fluid dynamics for large-amplitude nuclear motion have been formulated. Thereby the collective dynamics are described in a scaling approximation in which the wave function of the system is distorted by a vortex-free velocity field. For infintely extended nuclear matter this scaling of the wave functions leads to a deformation of the Fermi sphere. Two-body collisions destroy the collective deformation of the Fermi sphere and yield so the dissipative contribution of the motion. Equations of motion for a finite set of collective variables and a field equation for the collective velocity potential in the limit of infinitely many degrees of freedom were developed. In the elastic limit oscillations around the equilibrium position are described. For small collective amplitudes and vortex-free velocity fields the integrodifferential equation for the velocity potential in the elastic limit could be transformed to the divergence of the field equation of fluid dynamics. In the dissipative limit an equation results which is similar to the Navier-Stokes equation and transforms to the divergence of the Navier-Stokes equation for vortex-free fields. It was shown that generally the dynamics of the many-body system is described by non-Markovian equations. (orig./HSI) [de
Compaction shock dissipation in low density granular explosive
Energy Technology Data Exchange (ETDEWEB)
Rao, Pratap T.; Gonthier, Keith A., E-mail: gonthier@me.lsu.edu; Chakravarthy, Sunada [Mechanical and Industrial Engineering Department, Louisiana State University, Baton Rouge, Louisiana 70803 (United States)
2016-06-14
The microstructure of granular explosives can affect dissipative heating within compaction shocks that can trigger combustion and initiate detonation. Because initiation occurs over distances that are much larger than the mean particle size, homogenized (macroscale) theories are often used to describe local thermodynamic states within and behind shocks that are regarded as the average manifestation of thermodynamic fields at the particle scale. In this paper, mesoscale modeling and simulation are used to examine how the initial packing density of granular HMX (C{sub 4}H{sub 8}N{sub 8}O{sub 8}) C{sub 4}H{sub 8}N{sub 8}O{sub 8} having a narrow particle size distribution influences dissipation within resolved, planar compaction shocks. The model tracks the evolution of thermomechanical fields within large ensembles of particles due to pore collapse. Effective shock profiles, obtained by averaging mesoscale fields over space and time, are compared with those given by an independent macroscale compaction theory that predicts the variation in effective thermomechanical fields within shocks due to an imbalance between the solid pressure and a configurational stress. Reducing packing density is shown to reduce the dissipation rate within shocks but increase the integrated dissipated work over shock rise times, which is indicative of enhanced sensitivity. In all cases, dissipated work is related to shock pressure by a density-dependent power law, and shock rise time is related to pressure by a power law having an exponent of negative one.
Liu, Hong; Zheng, Jie; Liu, Pengzhan; Zeng, Fankui
2018-06-01
In this study, the effects of different pulverizing methods on the chemical attributes and thermal properties of black, white and green pepper were evaluated. Cryogenic grinding minimally damaged the lipid, moisture, crude protein, starch, non-volatile ether extract, piperine, essential oil and the typical pepper essential oil compounds of the spices. The pulverizing methods and storage significantly affected the compositions of the fatty acid in the peppers, except for palmitic acid and lignoceric acid. The amino acid contents and the thermo-gravimetric analysis curve were hardly influenced by the grinding techniques. The use of cryogenic grinding to prepare pepper ensured the highest quality of pepper products. Regardless of grinding technique, the values of moisture, piperine, unsaturated fatty acids, essential oil, monoterpenes, and the absolute concentrations of typical pepper essential oil constituents (except caryophyllene oxide) decreased, whereas the amino acid, lipid, protein, starch, and non-volatile ether extract content as well as the thermal properties were insignificantly changed after storage at 4 °C for 6 months.
DEFF Research Database (Denmark)
Alfarog, Azzarn Orner; Qu, Xiaohui; Wang, Huai
2017-01-01
and accelerate the failure. In this paper, a new thermal model concerning the thermal coupling is proposed with Finite Element Method (FEM) simulation for parameter acquirement. The proposed model has a better estimation of the thermal stresses of key components in the LED lamps and therefore an improved...... separately, and then the thermal design is also optimized independently. In practice, the LED source and driver are usually compacted in a single fixture. The heat dissipated from LED source and driver will be coupled together and affect the heat transfer performance, which may degrade the whole system...
Dissipative hidden sector dark matter
Foot, R.; Vagnozzi, S.
2015-01-01
A simple way of explaining dark matter without modifying known Standard Model physics is to require the existence of a hidden (dark) sector, which interacts with the visible one predominantly via gravity. We consider a hidden sector containing two stable particles charged under an unbroken U (1 )' gauge symmetry, hence featuring dissipative interactions. The massless gauge field associated with this symmetry, the dark photon, can interact via kinetic mixing with the ordinary photon. In fact, such an interaction of strength ε ˜10-9 appears to be necessary in order to explain galactic structure. We calculate the effect of this new physics on big bang nucleosynthesis and its contribution to the relativistic energy density at hydrogen recombination. We then examine the process of dark recombination, during which neutral dark states are formed, which is important for large-scale structure formation. Galactic structure is considered next, focusing on spiral and irregular galaxies. For these galaxies we modeled the dark matter halo (at the current epoch) as a dissipative plasma of dark matter particles, where the energy lost due to dissipation is compensated by the energy produced from ordinary supernovae (the core-collapse energy is transferred to the hidden sector via kinetic mixing induced processes in the supernova core). We find that such a dynamical halo model can reproduce several observed features of disk galaxies, including the cored density profile and the Tully-Fisher relation. We also discuss how elliptical and dwarf spheroidal galaxies could fit into this picture. Finally, these analyses are combined to set bounds on the parameter space of our model, which can serve as a guideline for future experimental searches.
Designing Biomimetic, Dissipative Material Systems
Energy Technology Data Exchange (ETDEWEB)
Balazs, Anna C. [Univ. of Pittsburgh, PA (United States). Chemical Engineering Dept.; Whitesides, George M. [Harvard Univ., Cambridge, MA (United States). Dept. of Chemistry and Chemical Biology; Brinker, C. Jeffrey [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering. Dept. of Chemistry. Dept. of Molecular Genetics and Microbiology. Center for Micro-Engineered Materials; Aranson, Igor S. [UChicago, LLC., Argonne, IL (United States); Chaikin, Paul [New York Univ. (NYU), NY (United States). Dept. of Physics; Dogic, Zvonimir [Brandeis Univ., Waltham, MA (United States). Dept. of Physics; Glotzer, Sharon [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Chemical Engineering. Dept. of Materials Science and Engineering. Dept. of Macromolecular Science and Engineering Physics; Hammer, Daniel [Univ. of Pennsylvania, Philadelphia, PA (United States). School of Engineering and Applied Science; Irvine, Darrell [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Materials Science and Engineering and Biological Engineering; Little, Steven R. [Univ. of Pittsburgh, PA (United States). Chemical Engineering Dept.; Olvera de la Cruz, Monica [Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science and Engineering; Parikh, Atul N. [Univ. of California, Davis, CA (United States). Dept. of Biomedical Engineering. Dept. of Chemical Engineering and Materials Science; Stupp, Samuel [Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science and Engineering. Dept. of Chemistry. Dept. of Medicine. Dept. of Biomedical Engineering; Szostak, Jack [Harvard Univ., Cambridge, MA (United States). Dept. of Chemistry and Chemical Biology
2016-01-21
Throughout human history, new materials have been the foundation of transformative technologies: from bronze, paper, and ceramics to steel, silicon, and polymers, each material has enabled far-reaching advances. Today, another new class of materials is emerging—one with both the potential to provide radically new functions and to challenge our notion of what constitutes a “material”. These materials would harvest, transduce, or dissipate energy to perform autonomous, dynamic functions that mimic the behaviors of living organisms. Herein, we discuss the challenges and benefits of creating “dissipative” materials that can potentially blur the boundaries between living and non-living matter.
Wohlfert, Timothy M; Miller, Kevin C
2018-02-21
Clinical Scenario: Exertional heat stroke (EHS) is a potentially deadly heat illness and poses a significant health risk to athletes; EHS survival rates are near 100% if properly recognized and treated. 1 Whole body cold water immersion (CWI) is the most effective method of lowering body core temperature. 2 Precooling (PC) with CWI before exercise may prevent severe hyperthermia and/or EHS by increasing the body's overall heat-storage capacity. 3 However, PC may also alter athletes' perception of how hot they feel or how hard they are exercising. Consequently, they may be unable to accurately perceive their body core temperature or how hard they are working which may predispose them to severe hyperthermia or EHS. Does PC with whole-body CWI affect thermal sensation (TS) or rating of perceived exertion (RPE) during exercise in the heat? In four studies, 4-7 RPE during exercise ranged from 12 ± 2 to 20 ± 3 with no clinically meaningful differences between PC and control trials. Thermal sensation scores ranged from 2 ± 1 to 8 ± 0.5 in control trials and from 2 ± 1 to 7.5 ± 0.5 during PC trials. Clinical Bottom Line: Precooling did not cause clinically-meaningful differences in RPE or TS during exercise. It is unlikely PC would predispose athletes to EHS by altering perceptions of exercise intensity or body core temperature. Strength of Recommendation: None of the reviewed studies 4-7 (all level 2 studies with PEDro scores ≥5) suggest PC with CWI influences RPE or TS in exercising males.
Natural approach to quantum dissipation
Taj, David; Öttinger, Hans Christian
2015-12-01
The dissipative dynamics of a quantum system weakly coupled to one or several reservoirs is usually described in terms of a Lindblad generator. The popularity of this approach is certainly due to the linear character of the latter. However, while such linearity finds justification from an underlying Hamiltonian evolution in some scaling limit, it does not rely on solid physical motivations at small but finite values of the coupling constants, where the generator is typically used for applications. The Markovian quantum master equations we propose are instead supported by very natural thermodynamic arguments. They themselves arise from Markovian master equations for the system and the environment which preserve factorized states and mean energy and generate entropy at a non-negative rate. The dissipative structure is driven by an entropic map, called modular, which introduces nonlinearity. The generated modular dynamical semigroup (MDS) guarantees for the positivity of the time evolved state the correct steady state properties, the positivity of the entropy production, and a positive Onsager matrix with symmetry relations arising from Green-Kubo formulas. We show that the celebrated Davies Lindblad generator, obtained through the Born and the secular approximations, generates a MDS. In doing so we also provide a nonlinear MDS which is supported by a weak coupling argument and is free from the limitations of the Davies generator.
Numerical Simulation of the Thermal Performance of a Dry Storage Cask for Spent Nuclear Fuel
Directory of Open Access Journals (Sweden)
Heui-Yung Chang
2018-01-01
Full Text Available In this study, the heat flow characteristics and thermal performance of a dry storage cask were investigated via thermal flow experiments and a computational fluid dynamics (CFD simulation. The results indicate that there are many inner circulations in the flow channel of the cask (the channel width is 10 cm. These circulations affect the channel airflow efficiency, which in turn affects the heat dissipation of the dry storage cask. The daily operating temperatures at the top concrete lid and the upper locations of the concrete cask are higher than those permitted by the design specification. The installation of the salt particle collection device has a limited negative effect on the thermal dissipation performance of the dry storage cask.
Advanced thermal management materials
Jiang, Guosheng; Kuang, Ken
2012-01-01
""Advanced Thermal Management Materials"" provides a comprehensive and hands-on treatise on the importance of thermal packaging in high performance systems. These systems, ranging from active electronically-scanned radar arrays to web servers, require components that can dissipate heat efficiently. This requires materials capable of dissipating heat and maintaining compatibility with the packaging and dye. Its coverage includes all aspects of thermal management materials, both traditional and non-traditional, with an emphasis on metal based materials. An in-depth discussion of properties and m
Solvable Family of Driven-Dissipative Many-Body Systems
Foss-Feig, Michael; Young, Jeremy T.; Albert, Victor V.; Gorshkov, Alexey V.; Maghrebi, Mohammad F.
2017-11-01
Exactly solvable models have played an important role in establishing the sophisticated modern understanding of equilibrium many-body physics. Conversely, the relative scarcity of solutions for nonequilibrium models greatly limits our understanding of systems away from thermal equilibrium. We study a family of nonequilibrium models, some of which can be viewed as dissipative analogues of the transverse-field Ising model, in that an effectively classical Hamiltonian is frustrated by dissipative processes that drive the system toward states that do not commute with the Hamiltonian. Surprisingly, a broad and experimentally relevant subset of these models can be solved efficiently. We leverage these solutions to compute the effects of decoherence on a canonical trapped-ion-based quantum computation architecture, and to prove a no-go theorem on steady-state phase transitions in a many-body model that can be realized naturally with Rydberg atoms or trapped ions.
Electrostatic shock structures in dissipative multi-ion dusty plasmas
Elkamash, I. S.; Kourakis, I.
2018-06-01
A comprehensive analytical model is introduced for shock excitations in dusty bi-ion plasma mixtures, taking into account collisionality and kinematic (fluid) viscosity. A multicomponent plasma configuration is considered, consisting of positive ions, negative ions, electrons, and a massive charged component in the background (dust). The ionic dynamical scale is focused upon; thus, electrons are assumed to be thermalized, while the dust is stationary. A dissipative hybrid Korteweg-de Vries/Burgers equation is derived. An analytical solution is obtained, in the form of a shock structure (a step-shaped function for the electrostatic potential, or an electric field pulse) whose maximum amplitude in the far downstream region decays in time. The effect of relevant plasma configuration parameters, in addition to dissipation, is investigated. Our work extends earlier studies of ion-acoustic type shock waves in pure (two-component) bi-ion plasma mixtures.
Irreversibility and dissipation in finite-state automata
International Nuclear Information System (INIS)
Ganesh, Natesh; Anderson, Neal G.
2013-01-01
Irreversibility and dissipation in finite-state automata (FSA) are considered from a physical-information-theoretic perspective. A quantitative measure for the computational irreversibility of finite automata is introduced, and a fundamental lower bound on the average energy dissipated per state transition is obtained and expressed in terms of FSA irreversibility. The irreversibility measure and energy bound are germane to any realization of a deterministic automaton that faithfully registers abstract FSA states in distinguishable states of a physical system coupled to a thermal environment, and that evolves via a sequence of interactions with an external system holding a physical instantiation of a random input string. The central result, which is shown to follow from quantum dynamics and entropic inequalities alone, can be regarded as a generalization of Landauer's Principle applicable to FSAs and tailorable to specified automata. Application to a simple FSA is illustrated.
Stable schemes for dissipative particle dynamics with conserved energy
Energy Technology Data Exchange (ETDEWEB)
Stoltz, Gabriel, E-mail: stoltz@cermics.enpc.fr
2017-07-01
This article presents a new numerical scheme for the discretization of dissipative particle dynamics with conserved energy. The key idea is to reduce elementary pairwise stochastic dynamics (either fluctuation/dissipation or thermal conduction) to effective single-variable dynamics, and to approximate the solution of these dynamics with one step of a Metropolis–Hastings algorithm. This ensures by construction that no negative internal energies are encountered during the simulation, and hence allows to increase the admissible timesteps to integrate the dynamics, even for systems with small heat capacities. Stability is only limited by the Hamiltonian part of the dynamics, which suggests resorting to multiple timestep strategies where the stochastic part is integrated less frequently than the Hamiltonian one.
Numerical simulation of energy equation with viscous dissipation for compressible flow over cones
International Nuclear Information System (INIS)
Asif, M.; Chughtai, I.R.
1998-01-01
A finite volume discretization technique has been used to solve the energy equation with viscous dissipation. The effects of viscous heat dissipation for Mach numbers 1.5 and 2.0, at an angle of attack of 0 degree, over sharp and blunt cones have been studied. Algebraic equations have been solved using line-by-line Tda method. Supersonic flow over cones has been analyzed and discussed with and without considering the viscous dissipation effects. It has been found that the effects of viscous dissipation increase with the increase in Mach number. Viscous dissipation affects the temperature distribution of the body. However, the temperature difference in these cases was insignificant. This may be due to the fact that these analysis have been done at 0 km altitude. (author)
Variational principles for dissipative waves
Dodin, I. Y.; Ruiz, D. E.
2016-10-01
Variational methods are a powerful tool in plasma theory. However, their applications are typically restricted to conservative systems or require doubling of variables, which often contradicts the purpose of the variational approach altogether. We show that these restrictions can be relaxed for some classes of dynamical systems that are of practical interest in plasma physics, particularly including dissipative plasma waves. Applications will be discussed to calculating dispersion relations and modulational dynamics of individual plasma waves and wave ensembles. The work was supported by the NNSA SSAA Program through DOE Research Grant No. DE-NA0002948, by the U.S. DOE through Contract No. DE-AC02-09CH11466, and by the U.S. DOD NDSEG Fellowship through Contract No. 32-CFR-168a.
Transport phenomena in dissipative heavy-ion collisions: the one-body dissipation approach
International Nuclear Information System (INIS)
Feldmeier, H.
1987-01-01
The paper reviews dissipative collisions between two atomic nuclei, with the help of the classical description of Brownian movement and the Langevin equation. The 'one-body dissipation model' for dissipative heavy-ion collisions is discussed, and its predictions are compared with measured data. Special attention is paid to the non-equilibrium relation between friction and diffusion. (U.K.)
Dissipative Solitons that Cannot be Trapped
International Nuclear Information System (INIS)
Pardo, Rosa; Perez-Garcia, Victor M.
2006-01-01
We show that dissipative solitons in systems with high-order nonlinear dissipation cannot survive in the presence of trapping potentials of the rigid wall or asymptotically increasing type. Solitons in such systems can survive in the presence of a weak potential but only with energies out of the interval of existence of linear quantum mechanical stationary states
Quantum dissipation of a simple conservative system
International Nuclear Information System (INIS)
Ibeh, G. J.; Mshelia, E. D.
2014-01-01
A model of quantum dissipative system is presented. Here dissipation of energy is demonstrated as based on the coupling of a free translational motion of a centre of mass to a harmonic oscillator. The two-dimensional arrangement of two coupled particles of different masses is considered.
Dissipative electromagnetism from a nonequilibrium thermodynamics perspective
Jelic, A.; Hütter, M.; Öttinger, H.C.
2006-01-01
Dissipative effects in electromagnetism on macroscopic scales are examined by coarse-graining the microscopic Maxwell equations with respect to time. We illustrate a procedure to derive the dissipative effects on the macroscopic scale by using a Green-Kubo type expression in terms of the microscopic
Dissipation in nucleus-nucleus collisions
International Nuclear Information System (INIS)
Santanu Pal
1984-01-01
This paper deals with the mechanism of one- and two-body dissipations in nucleus-nucleus collisions. The average energy transferred to nuclear excitations is calculated using a time-dependent density matrix approach with lowest-order approximations. Considering the nuclei as Fermi gases, and using a gaussian-type NN interaction as the basic perturbation, simplified expressions are obtained for energy dissipations. These expressions are quite instructive to follow a number of interesting aspects of one- and two-body dissipations. It is theoretically observed that the memory time for the two-body dissipation is significantly smaller than that of one-body dissipation. A threshold-type dependence of the transferred energy on the relative velocity between the two nuclei is also observed. This threshold velocity is found to be related with the intrinsic nucleon kinetic energy for two-body dissipation and with the nuclear size for the one-body case. This observation further suggests that the total dissipated energy is shared between the two nuclei approximately in the ratio of their masses. The physical origin of these observations is also explained. Numerical calculations further illustrate some characteristic features of one- and two-body dissipations. (orig.)
On the stability of dissipative MHD equilibria
International Nuclear Information System (INIS)
Teichmann, J.
1979-04-01
The global stability of stationary equilibria of dissipative MHD is studied uisng the direct Liapunov method. Sufficient and necessary conditions for stability of the linearized Euler-Lagrangian system with the full dissipative operators are given. The case of the two-fluid isentropic flow is discussed. (orig.)
Analytical study of dissipative solitary waves
Energy Technology Data Exchange (ETDEWEB)
Dini, Fatemeh [Department of Physics, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Emamzadeh, Mehdi Molaie [Department of Physics, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Khorasani, Sina [School of Electrical Engineering, Sharif University of Technology, PO Box 11365-363, Tehran (Iran, Islamic Republic of); Bobin, Jean Louis [Universite Pierre et Marie Curie, Paris (France); Amrollahi, Reza [Department of Physics, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Sodagar, Majid [School of Electrical Engineering, Sharif University of Technology, PO Box 11365-363, Tehran (Iran, Islamic Republic of); Khoshnegar, Milad [School of Electrical Engineering, Sharif University of Technology, PO Box 11365-363, Tehran (Iran, Islamic Republic of)
2008-02-15
In this paper, the analytical solution to a new class of nonlinear solitons is presented with cubic nonlinearity, subject to a dissipation term arising as a result of a first-order derivative with respect to time, in the weakly nonlinear regime. Exact solutions are found using the combination of the perturbation and Green's function methods up to the third order. We present an example and discuss the asymptotic behavior of the Green's function. The dissipative solitary equation is also studied in the phase space in the non-dissipative and dissipative forms. Bounded and unbounded solutions of this equation are characterized, yielding an energy conversation law for non-dissipative waves. Applications of the model include weakly nonlinear solutions of terahertz Josephson plasma waves in layered superconductors and ablative Rayleigh-Taylor instability.
García-Gil, Alejandro; Vázquez-Suñe, Enric; Schneider, Eduardo Garrido; Sánchez-Navarro, José Ángel; Mateo-Lázaro, Jesús
2014-07-01
The extensive implementation of ground source heat pumps in urban aquifers is an important issue related to groundwater quality and the future economic feasibility of existent geothermal installations. Although many cities are in the immediate vicinity of large rivers, little is known about the thermal river-groundwater interaction at a kilometric-scale. The aim of this work is to evaluate the thermal impact of river water recharges induced by flood events into an urban alluvial aquifer anthropogenically influenced by geothermal exploitations. The present thermal state of an urban aquifer at a regional scale, including 27 groundwater heat pump installations, has been evaluated. The thermal impacts of these installations in the aquifer together with the thermal impacts from "cold" winter floods have also been spatially and temporally evaluated to ensure better geothermal management of the aquifer. The results showed a variable direct thermal impact from 0 to 6 °C depending on the groundwater-surface water interaction along the river trajectory. The thermal plumes far away from the riverbed also present minor indirect thermal impacts due to hydraulic gradient variations. Copyright © 2014 Elsevier B.V. All rights reserved.
Time evolution of distribution functions in dissipative environments
International Nuclear Information System (INIS)
Hu Li-Yun; Chen Fei; Wang Zi-Sheng; Fan Hong-Yi
2011-01-01
By introducing the thermal entangled state representation, we investigate the time evolution of distribution functions in the dissipative channels by bridging the relation between the initial distribution function and the any time distribution function. We find that most of them are expressed as such integrations over the Laguerre—Gaussian function. Furthermore, as applications, we derive the time evolution of photon-counting distribution by bridging the relation between the initial distribution function and the any time photon-counting distribution, and the time evolution of R-function characteristic of nonclassicality depth. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
Random-walk simulation of selected aspects of dissipative collisions
International Nuclear Information System (INIS)
Toeke, J.; Gobbi, A.; Matulewicz, T.
1984-11-01
Internuclear thermal equilibrium effects and shell structure effects in dissipative collisions are studied numerically within the framework of the model of stochastic exchanges by applying the random-walk technique. Effective blocking of the drift through the mass flux induced by the temperature difference, while leaving the variances of the mass distributions unaltered is found possible, provided an internuclear potential barrier is present. Presence of the shell structure is found to lead to characteristic correlations between the consecutive exchanges. Experimental evidence for the predicted effects is discussed. (orig.)
Adaptive Responses to Thermal Stress in Mammals
Directory of Open Access Journals (Sweden)
Yasser Lenis Sanin
2015-12-01
Full Text Available The environment animals have to cope with is a combination of natural factors such as temperature. Extreme changes in these factors can alter homeostasis, which can lead to thermal stress. This stress can be due to either high temperatures or low temperatures. Energy transference for thermoregulation in homoeothermic animals occurs through several mechanisms: conduction, convection, radiation and evaporation. When animals are subjected to thermal stress, physiological mechanisms are activated which may include endocrine, neuroendocrine and behavioral responses. Activation of the neuroendocrine system affects the secretion of hormones and neurotransmitters which act collectively as response mechanisms that allow them to adapt to stress. Mechanisms which have developed through evolution to allow animals to adapt to high environmental temperatures and to achieve thermo tolerance include physiological and physical changes in order to reduce food intake and metabolic heat production, to increase surface area of skin to dissipate heat, to increase blood flow to take heat from the body core to the skin and extremities to dissipate the heat, to increase numbers and activity of sweat glands, panting, water intake and color adaptation of integument system to reflect heat. Chronic exposure to thermal stress can cause disease, reduce growth, decrease productive and reproductive performance and, in extreme cases, lead to death. This paper aims to briefly explain the physical and physiological responses of mammals to thermal stress, like a tool for biological environment adaptation, emphasizing knowledge gaps and offering some recommendations to stress control for the animal production system.
Lo Russo, Stefano; Taddia, Glenda; Cerino Abdin, Elena
2018-01-01
Thermal perturbation in the subsurface produced in an open-loop groundwater heat pump (GWHP) plant is a complex transport phenomenon affected by several factors, including the exploited aquifer's hydrogeological and thermal characteristics, well construction features, and the temporal dynamics of the plant's groundwater abstraction and reinjection system. Hydraulic conductivity has a major influence on heat transport because plume propagation, which occurs primarily through advection, tends to degrade following conductive heat transport and convection within moving water. Hydraulic conductivity is, in turn, influenced by water reinjection because the dynamic viscosity of groundwater varies with temperature. This paper reports on a computational analysis conducted using FEFLOW software to quantify how the thermal-affected zone (TAZ) is influenced by the variation in dynamic viscosity due to reinjected groundwater in a well-doublet scheme. The modeling results demonstrate non-negligible groundwater dynamic-viscosity variation that affects thermal plume propagation in the aquifer. This influence on TAZ calculation was enhanced for aquifers with high intrinsic permeability and/or substantial temperature differences between abstracted and post-heat-pump-reinjected groundwater.
Energy Technology Data Exchange (ETDEWEB)
Ribera, J.M.; Prado, J.M. [Departamento de Ciencia de los Materiales e Ingenieria Metalurgica Universidad Politecnica de Cataluna, Barcelona (Spain)
1995-12-31
After a review about theoretical concepts involved in heat transfer, the ``double ellipsoid`` model is proposed which will be useful to simulate the welding heat input accurately. The different steps to perform an analysis using the Finite Elements Method (FEM) are described in order to compute the transient temperature field for any point of interest, and the transfer equations are solved numerically for several welding situations. The thermal cycles are obtained and so it will be possible to understand the metallurgical behavior that takes place in weld heat affected zones. In addition the effects of different welding parameters on the shape of the computed thermal cycles are shown. (Author) 5 refs.
Heat dissipation during hovering and forward flight in hummingbirds.
Powers, Donald R; Tobalske, Bret W; Wilson, J Keaton; Woods, H Arthur; Corder, Keely R
2015-12-01
Flying animals generate large amounts of heat, which must be dissipated to avoid overheating. In birds, heat dissipation is complicated by feathers, which cover most body surfaces and retard heat loss. To understand how birds manage heat budgets during flight, it is critical to know how heat moves from the skin to the external environment. Hummingbirds are instructive because they fly at speeds from 0 to more than 12 m s(-1), during which they transit from radiative to convective heat loss. We used infrared thermography and particle image velocimetry to test the effects of flight speed on heat loss from specific body regions in flying calliope hummingbirds (Selasphorus calliope). We measured heat flux in a carcass with and without plumage to test the effectiveness of the insulation layer. In flying hummingbirds, the highest thermal gradients occurred in key heat dissipation areas (HDAs) around the eyes, axial region and feet. Eye and axial surface temperatures were 8°C or more above air temperature, and remained relatively constant across speeds suggesting physiological regulation of skin surface temperature. During hovering, birds dangled their feet, which enhanced radiative heat loss. In addition, during hovering, near-body induced airflows from the wings were low except around the feet (approx. 2.5 m s(-1)), which probably enhanced convective heat loss. Axial HDA and maximum surface temperature exhibited a shallow U-shaped pattern across speeds, revealing a localized relationship with power production in flight in the HDA closest to the primary flight muscles. We conclude that hummingbirds actively alter routes of heat dissipation as a function of flight speed.
A Novel Methodology for Measurements of an LED's Heat Dissipation Factor
Jou, R.-Y.; Haung, J.-H.
2015-12-01
Heat generation is an inevitable byproduct with high-power light-emitting diode (LED) lighting. The increase in junction temperature that accompanies the heat generation sharply degrades the optical output of the LED and has a significant negative influence on the reliability and durability of the LED. For these reasons, the heat dissipation factor, Kh, is an important factor in modeling and thermal design of LED installations. In this study, a methodology is proposed and experiments are conducted to determine LED heat dissipation factors. Experiments are conducted for two different brands of LED. The average heat dissipation factor of the Edixeon LED is 0.69, and is 0.60 for the OSRAM LED. By using the developed test method and comparing the results to the calculated luminous fluxes using theoretical equations, the interdependence of optical, electrical, and thermal powers can be predicted with a reasonable accuracy. The difference between the theoretical and experimental values is less than 9 %.
Light energy dissipation under water stress conditions
International Nuclear Information System (INIS)
Stuhlfauth, T.; Scheuermann, R.; Fock, H.P.
1990-01-01
Using 14 CO 2 gas exchange and metabolite analyses, stomatal as well as total internal CO 2 uptake and evolution were estimated. Pulse modulated fluorescence was measured during induction and steady state of photosynthesis. Leaf water potential of Digitalis lanata EHRH. plants decreased to -2.5 megapascals after withholding irrigation. By osmotic adjustment, leaves remained turgid and fully exposed to irradiance even at severe water stress. Due to the stress-induced reduction of stomatal conductance, the stomatal CO 2 exchange was drastically reduced, whereas the total CO 2 uptake and evolution were less affected. Stomatal closure induced an increase in the reassimilation of internally evolved CO 2 . This CO 2 -recycling consumes a significant amount of light energy in the form of ATP and reducing equivalents. As a consequence, the metabolic demand for light energy is only reduced by about 40%, whereas net photosynthesis is diminished by about 70% under severe stress conditions. By CO 2 recycling, carbon flux, enzymatic substrate turnover and consumption of light energy were maintained at high levels, which enabled the plant to recover rapidly after rewatering. In stressed D. lanata plants a variable fluorescence quenching mechanism, termed coefficient of actinic light quenching, was observed. Besides water conservation, light energy dissipation is essential and involves regulated metabolic variations
Light energy dissipation under water stress conditions
Energy Technology Data Exchange (ETDEWEB)
Stuhlfauth, T.; Scheuermann, R.; Fock, H.P. (Universitaet Kaiserslautern (West Germany))
1990-04-01
Using {sup 14}CO{sub 2} gas exchange and metabolite analyses, stomatal as well as total internal CO{sub 2} uptake and evolution were estimated. Pulse modulated fluorescence was measured during induction and steady state of photosynthesis. Leaf water potential of Digitalis lanata EHRH. plants decreased to {minus}2.5 megapascals after withholding irrigation. By osmotic adjustment, leaves remained turgid and fully exposed to irradiance even at severe water stress. Due to the stress-induced reduction of stomatal conductance, the stomatal CO{sub 2} exchange was drastically reduced, whereas the total CO{sub 2} uptake and evolution were less affected. Stomatal closure induced an increase in the reassimilation of internally evolved CO{sub 2}. This CO{sub 2}-recycling consumes a significant amount of light energy in the form of ATP and reducing equivalents. As a consequence, the metabolic demand for light energy is only reduced by about 40%, whereas net photosynthesis is diminished by about 70% under severe stress conditions. By CO{sub 2} recycling, carbon flux, enzymatic substrate turnover and consumption of light energy were maintained at high levels, which enabled the plant to recover rapidly after rewatering. In stressed D. lanata plants a variable fluorescence quenching mechanism, termed coefficient of actinic light quenching, was observed. Besides water conservation, light energy dissipation is essential and involves regulated metabolic variations.
Directory of Open Access Journals (Sweden)
Sabine eVögeli
2015-05-01
Full Text Available Many stimuli evoke short-term emotional reactions. These reactions may play an important role in assessing how a subject perceives a stimulus. Additionally, long-term mood may modulate the emotional reactions but it is still unclear in what way. The question seems to be important in terms of animal welfare, as a negative mood may taint emotional reactions. In the present study with sheep, we investigated the effects of thermal stimuli on emotional reactions and the potential modulating effect of mood induced by manipulations of the housing conditions. We assume that unpredictable, stimulus-poor conditions lead to a negative and predictable, stimulus-rich conditions to a positive mood state. The thermal stimuli were applied to the upper breast during warm ambient temperatures: hot (as presumably negative, intermediate, and cold (as presumably positive. We recorded cortical activity by functional near-infrared spectroscopy, restlessness behavior (e.g. locomotor activity, aversive behaviors and ear postures as indicators of emotional reactions. The strongest hemodynamic reaction was found during a stimulus of intermediate valence independent of the animal’s housing conditions, whereas locomotor activity, ear movements and aversive behaviors were seen most in sheep from the unpredictable, stimulus-poor housing conditions, independent of stimulus valence. We conclude that, sheep perceived the thermal stimuli and differentiated between some of them. An adequate interpretation of the neuronal activity pattern remains difficult, though. The effects of housing conditions were small indicating that the induction of mood was only modestly efficacious. Therefore, a modulating effect of mood on the emotional reaction was not found.
Enhanced lateral heat dissipation packaging structure for GaN HEMTs on Si substrate
International Nuclear Information System (INIS)
Cheng, Stone; Chou, Po-Chien; Chieng, Wei-Hua; Chang, E.Y.
2013-01-01
This work presents a technology for packaging AlGaN/GaN high electron mobility transistors (HEMTs) on a Si substrate. The GaN HEMTs are attached to a V-groove copper base and mounted on a TO-3P leadframe. The various thermal paths from the GaN gate junction to the case are carried out for heat dissipation by spreading to protective coating; transferring through the bond wires; spreading in the lateral device structure through the adhesive layer, and vertical heat spreading of silicon chip bottom. Thermal characterization showed a thermal resistance of 13.72 °C/W from the device to the TO-3P package. Experimental tests of a 30 mm gate-periphery single chip packaged in a 5 × 3 mm V-groove Cu base with a 100 V drain bias showed power dissipation of 22 W. -- Highlights: ► An enhanced packaging structure designed for AlGaN/GaN HEMTs on an Si substrate. ► The V-groove copper base is designed on the device periphery surface heat conduction for enhancing Si substrate thermal dissipation. ► The proposed device shows a lower thermal resistance and upgrade in thermal conductivity capability. ► This work provides useful thermal IR imagery information to aid in designing high efficiency package for GaN HEMTs on Si
Dissipative structures and biological rhythms
Goldbeter, Albert
2017-10-01
Sustained oscillations abound in biological systems. They occur at all levels of biological organization over a wide range of periods, from a fraction of a second to years, and with a variety of underlying mechanisms. They control major physiological functions, and their dysfunction is associated with a variety of physiological disorders. The goal of this review is (i) to give an overview of the main rhythms observed at the cellular and supracellular levels, (ii) to briefly describe how the study of biological rhythms unfolded in the course of time, in parallel with studies on chemical oscillations, (iii) to present the major roles of biological rhythms in the control of physiological functions, and (iv) the pathologies associated with the alteration, disappearance, or spurious occurrence of biological rhythms. Two tables present the main examples of cellular and supracellular rhythms ordered according to their period, and their role in physiology and pathophysiology. Among the rhythms discussed are neural and cardiac rhythms, metabolic oscillations such as those occurring in glycolysis in yeast, intracellular Ca++ oscillations, cyclic AMP oscillations in Dictyostelium amoebae, the segmentation clock that controls somitogenesis, pulsatile hormone secretion, circadian rhythms which occur in all eukaryotes and some bacteria with a period close to 24 h, the oscillatory dynamics of the enzymatic network driving the cell cycle, and oscillations in transcription factors such as NF-ΚB and tumor suppressors such as p53. Ilya Prigogine's concept of dissipative structures applies to temporal oscillations and allows us to unify within a common framework the various rhythms observed at different levels of biological organization, regardless of their period and underlying mechanism.
Observations of the turbulent kinetic energy dissipation rate in the upper central South China Sea
Liang, Chang-Rong; Chen, Gui-Ying; Shang, Xiao-Dong
2017-05-01
Measurements of the turbulent kinetic energy dissipation rate ( ɛ), velocity, temperature, and salinity were obtained for the upper ocean of the central South China Sea (14.5° N, 117.0° E) during an experimental campaign from May 11 to 13, 2010. Dissipation in the diurnal mixed layer showed a diurnal variability that was strongly affected by the surface buoyancy flux. Dissipation was enhanced ( ɛ ˜ 10-7 W kg-1) at night due to the convective mixing and was weakened ( ɛ ˜ 10-9 W kg-1) in daytime due to the stratification. Dissipation in the thermocline varied with time under the influence of internal waves. Shear from high-frequency internal waves (period ˜8 h) played an important role in enhancing the turbulent mixing in the thermocline. In the period of strong high-frequency internal waves, the shear from high-frequency internal waves became strong and the depth-averaged ɛ in the thermocline was elevated by almost one order of magnitude. Compared with the dissipation in the thermocline, dissipation below was weaker (the time-averaged ɛ ˜ 10-10 W kg-1). The observation indicates that the dissipation rates during the measurements can be parameterized by the MacKinnon-Gregg model that is widely used in the continental shelf but are not in agreement with the Gregg-Henyey model used for the open ocean.
International Nuclear Information System (INIS)
Bi, Gong-Bing; Song, Wen; Zhou, P.; Liang, Liang
2014-01-01
Data envelopment analysis (DEA) has gained much popularity in performance measurement of power industry. This paper presents a slack-based measure approach to investigating the relationship between fossil fuel consumption and the environmental regulation of China's thermal power generation. We first calculate the total-factor energy efficiency without considering environmental constraints. An environmental performance indicator is proposed through decomposing the total-factor energy efficiency. The proposed approach is then employed to examine whether environmental regulation affects the energy efficiency of China's thermal power generation. We find that the environmental efficiency plays a significant role in affecting energy performance of China's thermal generation sector. Decreasing the discharge of major pollutants can improve both energy performance and environmental efficiency. Besides, we also have three main findings: (1) The energy efficiency and environmental efficiency were relatively low. (2) The energy and environmental efficiency scores show great variations among provinces. (3) Both energy efficiency and environmental efficiency are of obvious geographical characteristics. According to our findings, we suggest some policy implications. - Highlights: • We assess the energy efficiency and the environmental efficiency of China's thermal power generation simultaneously. • The energy efficiency and the environmental efficiency were relatively low during 2007–2009. • The energy efficiency and environmental efficiency show obvious geographic characters. • The environmental performance of a DMU plays a decisive role in the energy performance
Dissipative tunneling through a potential barrier in the Lindblad theory of open quantum systems
International Nuclear Information System (INIS)
Isar, A.
2000-01-01
In the Lindblad theory for open quantum systems, and analytical expression of the tunneling probability through an inverted parabola is obtained. This probability depends on the environment coefficient and increase with the dissipation and the temperature of the thermal bath. (author)
Non-dissipative currents in the theory of thermomagnetic properties of inversion layers
International Nuclear Information System (INIS)
Streda, P.; Oji, H.
1983-07-01
Starting from the Kubo formula, the non-dissipative electric and thermal currents are expressed as functions of thermodynamical quantities only. These currents originate from the surface currents which are responsible for the quantized Hall effect. The results are in full agreement with that, obtained from thermodynamical arguments. One-electron approximation is used. (author)
Real-time dynamics of dissipative quantum systems
International Nuclear Information System (INIS)
Chow, K.S.
1988-01-01
The first part of this thesis motivates a real time approach to the dynamics of dissipative quantum systems. We review previous imaginary time methods for calculating escape rates and discuss their applications to the analysis of data in macroscopic quantum tunneling experiments. In tunneling experiments on heavily damped Superconducting Quantum Interference Devices, the instanton method gave results that compare reasonably well with data. In tunneling experiments on weakly damped Current Biased Josephson Junctions, two problems arise. First, the classical limit of the instanton result disagrees with the classical rate of thermal activation. Second, the instanton method cannot predict the microwave enhancement of escape rates. In the third chapter, we discuss our real time approach to the dynamics of dissipative systems in terms of a kinetic equation for the reduced density matrix. We demonstrate some known equilibrium properties of dissipative systems through the kinetic equation and derived the bath induced widths and energy shifts. In the low damping limit, the kinetic equation reduces to a much simpler master equation. The classical limit of the master equation is completely equivalent to the Fokker-Planck equation that describes thermal activation. In the fourth chapter, we apply the master equation to the problem of tunneling and resonance enhancement of tunneling in weakly damped current biased Josephson junctions. In the classical regime, microwaves of the appropriate frequency induce resonances between many neighboring levels and an asymmetrical resonance peak is measured. We can calibrate the junction parameters by fitting the stationary solution of the master equation to the classical resonance data. In the quantum regime, the stationary solution of the master equation, predicts well-resolved resonance peaks which agree very well with the observed data
Low moduli elastomers with low viscous dissipation
DEFF Research Database (Denmark)
Bejenariu, Anca Gabriela; Yu, Liyun; Skov, Anne Ladegaard
2012-01-01
A controlled reaction schema for addition curing silicones leads to both significantly lower elastic modulus and lower viscous dissipation than for the chemically identical network prepared by the traditional reaction schema....
Dissipation effects in mechanics and thermodynamics
Güémez, J.; Fiolhais, M.
2016-07-01
With the discussion of three examples, we aim at clarifying the concept of energy transfer associated with dissipation in mechanics and in thermodynamics. The dissipation effects due to dissipative forces, such as the friction force between solids or the drag force in motions in fluids, lead to an internal energy increase of the system and/or to heat transfer to the surroundings. This heat flow is consistent with the second law, which states that the entropy of the universe should increase when those forces are present because of the irreversibility always associated with their actions. As far as mechanics is concerned, the effects of the dissipative forces are included in Newton’s equations as impulses and pseudo-works.
Phenomenological approaches of dissipative heavy ion collisions
International Nuclear Information System (INIS)
Ngo, C.
1983-09-01
These lectures describe the properties of dissipative heavy ion collisions observed in low bombarding energy heavy ion reactions. These dissipative collisions are of two different types: fusion and deep inelastic reactions. Their main experimental properties are described on selected examples. It is shown how it is possible to give a simple interpretation to the data. A large number of phenomenological models have been developped to understand dissipative heavy ion collisions. The most important are those describing the collision by classical mechanics and friction forces, the diffusion models, and transport theories which merge both preceding approaches. A special emphasis has been done on two phenomena observed in dissipative heavy ion collisions: charge equilibratium for which we can show the existence of quantum fluctuations, and fast fission which appears as an intermediate mechanism between deep inelastic reactions and compound nucleus formation [fr
Minimum dissipative relaxed states in toroidal plasmas
Indian Academy of Sciences (India)
organised equi- librium in RFP and tokamak by a deterministic approach to incompressible dissipative magnetohydrodynamics. In an earlier work Kondoh [8] formulated an energy principle including the edge plasma effects for a slightly resistive MHD ...
Radiation entropy influx as a measure of planetary dissipative processes
International Nuclear Information System (INIS)
Izakov, M.N.
1989-01-01
Dissipative processes including high flows of matter and energy occur at the planets. Radiation negentropy influx, resulting from difference of entropy fluxes of incoming solar and outgoing thermal radiation of the planet, is a measure of all these processes. Large share of radiation negentropy influx is spent in the vertical thermal fluxes which keep the planet temperature conditions. Next share of radiation negentropy consumption at the Earth is water evaporation. It's rest part is used for the dynamics, which is explained by the efficiency insignificant amount of heat engine, which generates movements in the atmosphere and ocean. Essentially higher share of radiation negentropy influx, than at the Earth, is spent at the Venus, where there are practically no water
Multiwalled Carbon Nanotube Nanofluids Used for Heat Dissipation in Hybrid Green Energy Systems
Directory of Open Access Journals (Sweden)
Yi-Hsuan Hung
2014-01-01
Full Text Available This study was conducted to characterize carbon nanotube (CNT/water nanofluids (CNWNFs and to apply the nanofluids in a heat-dissipation system of dual green energy sources. CNTs were mixed with water in weight fractions of 0.125%, 0.25%, and 0.5% to produce nanofluids. The thermal conductivity, density, viscosity, and specific heat of the nanofluids were measured. An experimental platform consisting of a simulated dual energy source and a microchip controller was established to evaluate the heat-dissipation performance. Two indices, the heat dissipation enhancement ratio and specific heat dissipation enhancement ratio (SHDER, were defined and calculated. The CNWNFs with a CNT concentration of 0.125 wt.% were used because they exhibited the highest SHDER. The steady-state performance was evaluated at 2 flow rates, 11 hybrid flow ratios, and 3 heating ratios for a total power of 1000 W. The transient behavior of the energy sources at preset optimal temperatures was examined, and the CNWNFs exhibited average increases in stability and heat dissipation efficiency of 36.2% and 5%, respectively, compared with water. This nanofluid heat-dissipation system is expected to be integrated with real dual energy sources in the near future.
Energy dissipation in multifrequency atomic force microscopy
Directory of Open Access Journals (Sweden)
Valentina Pukhova
2014-04-01
Full Text Available The instantaneous displacement, velocity and acceleration of a cantilever tip impacting onto a graphite surface are reconstructed. The total dissipated energy and the dissipated energy per cycle of each excited flexural mode during the tip interaction is retrieved. The tip dynamics evolution is studied by wavelet analysis techniques that have general relevance for multi-mode atomic force microscopy, in a regime where few cantilever oscillation cycles characterize the tip–sample interaction.
Hamiltonian description and quantization of dissipative systems
Enz, Charles P.
1994-09-01
Dissipative systems are described by a Hamiltonian, combined with a “dynamical matrix” which generalizes the simplectic form of the equations of motion. Criteria for dissipation are given and the examples of a particle with friction and of the Lotka-Volterra model are presented. Quantization is first introduced by translating generalized Poisson brackets into commutators and anticommutators. Then a generalized Schrödinger equation expressed by a dynamical matrix is constructed and discussed.
Drift bifurcation detection for dissipative solitons
International Nuclear Information System (INIS)
Liehr, A W; Boedeker, H U; Roettger, M C; Frank, T D; Friedrich, R; Purwins, H-G
2003-01-01
We report on the experimental detection of a drift bifurcation for dissipative solitons, which we observe in the form of current filaments in a planar semiconductor-gas-discharge system. By introducing a new stochastic data analysis technique we find that due to a change of system parameters the dissipative solitons undergo a transition from purely noise-driven objects with Brownian motion to particles with a dynamically stabilized finite velocity
International Nuclear Information System (INIS)
Ruehm, Werner; Huber, Thomas; Nolte, Eckehart; Kato, Kazuo; Imanaka, Tetsuji; Egbert, Stephen D.
2005-01-01
Trace elements such as Li, B, Sm, and Gd can, despite their low elemental concentration in mineral materials, influence thermal neutron activation in Hiroshima and Nagasaki samples, due to their high thermal neutron absorption cross sections. This was demonstrated for a granite core, where the addition of those trace elements to the elemental composition of granite reduces the production of 152 Eu by some 25% at a depth of 25 cm from the surface. If typical concentrations of those trace elements are added to DS02 reference soil, however, the production of 152 Eu one meter above ground is not changed significantly, because of the high water content of the soil. This indicates that DS02 soil represents a reasonable reference material for the air-over-ground transport calculations. It must be kept in mind, however, that the local environment of any sample investigated for thermal neutron activation might be characterized by other elemental compositions. In particular, trace element and hydrogen concentrations could be considerably different from those used for DS02 reference soil. As an example it was demonstrated that in a granite gravestone thermal neutron activation of 36 Cl close to the surface might be, in the worst case, reduced by some 30%, due to increased local granite concentration in this type of environment. Beside other parameters such as, for example, individual sample geometry, the variability of trace elements in soil might be one reason for the variability that is observed in the individual thermal neutron activation measurements (Gold 1995). It is necessary, therefore, to carefully model the exposure geometry of the exposed material, its chemical composition, and the surrounding interface materials in order to obtain the best possible agreement in comparisons between calculated and measured data for thermal neutrons. (author)
International Nuclear Information System (INIS)
Patrinos, A.A.N.; Hoffman, H.W.
1980-04-01
The METER (Meteorological Effects of Thermal Energy Releases) Program was organized to develop and verify methods for predicting the maximum amount of energy that can be dissipated to the atmosphere (through cooling towers or cooling ponds) from proposed nuclear energy centers without affecting...the local and regional environment. The initial program scope (mathematical modeling, laboratory and field experimentation, and societal impact assessment) has now narrowed to emphasis on the acquisition of field data of substantial quality and extent
Thermal Analysis of Filler Reinforced Polymeric Composites
Ghadge, Mahesh Devidas
Improving heat dissipating property of composite materials is becoming increasingly important in domains ranging from the automotive industry, electronic devices to aeronautical industry. Effective heat dissipation is required especially in aircraft and racing tires to guarantee high performance and good service life [1]. The present study is focused on improving the thermal conductivity of Emulsion-styrene butadiene rubber (ESBR) which is a cheap alternative to other rubber composites. The disadvantages of ESBR are low thermal conductivity and high heat generation. Adding fillers with high thermal conductivity to ESBR is proposed as a technique for improving the thermal conductivity of ESBR. The purpose of the research is to predict the thermal conductivity of ESBR when filled with fillers of much higher thermal conductivity and also to find out to what extent the filler properties affect the heat transfer capabilities of the composite matrix. The influence of different filler shapes i.e. spherical, cylindrical and platelets on the overall thermal capability of composite matrix is studied, the finite element modelings are conducted using Abaqus. Three-dimensional and two-dimensional models are created in Abaqus to simulate the microstructure of the composite matrix filled with fillers. Results indicate that the overall thermal conductivity increases with increasing filler loading i.e. for a filler volume fraction of 0.27, the conductivity increased by around 50%. Filler shapes, orientation angle, and aspect ratio of the fillers significantly influences the thermal conductivity. Conductivity increases with increasing aspect ratio (length/diameter) of the cylindrical fillers since longer conductive chains are able to form at the same volume percentage as compared to spherical fillers. The composite matrix reaches maximum thermal conductivity when the cylindrical fillers are oriented in the direction of heat flow. The heat conductivity predicted by FEM for ESBR is
Energy spectrum, dissipation, and spatial structures in reduced Hall magnetohydrodynamic
Energy Technology Data Exchange (ETDEWEB)
Martin, L. N.; Dmitruk, P. [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Gomez, D. O. [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Instituto de Astronomia y Fisica del Espacio, CONICET, Buenos Aires (Argentina)
2012-05-15
We analyze the effect of the Hall term in the magnetohydrodynamic turbulence under a strong externally supported magnetic field, seeing how this changes the energy cascade, the characteristic scales of the flow, and the dynamics of global magnitudes, with particular interest in the dissipation. Numerical simulations of freely evolving three-dimensional reduced magnetohydrodynamics are performed, for different values of the Hall parameter (the ratio of the ion skin depth to the macroscopic scale of the turbulence) controlling the impact of the Hall term. The Hall effect modifies the transfer of energy across scales, slowing down the transfer of energy from the large scales up to the Hall scale (ion skin depth) and carrying faster the energy from the Hall scale to smaller scales. The final outcome is an effective shift of the dissipation scale to larger scales but also a development of smaller scales. Current sheets (fundamental structures for energy dissipation) are affected in two ways by increasing the Hall effect, with a widening but at the same time generating an internal structure within them. In the case where the Hall term is sufficiently intense, the current sheet is fully delocalized. The effect appears to reduce impulsive effects in the flow, making it less intermittent.
Dissipation of fragrance materials in sludge-amended soils.
DiFrancesco, Angela M; Chiu, Pei C; Standley, Laurel J; Allen, Herbert E; Salvito, Daniel T
2004-01-01
A possible removal mechanism for fragrance materials (FMs) in wastewater is adsorption to sludge, and sludge application to land may be a route through which FMs are released to the soil environment. However, little is known about the concentrations and fate of FMs in soil receiving sludge application. This study was conducted to better understand the dissipation of FMs in sludge-amended soils. We first determined the spiking and extraction efficiencies for 22 FMs in soil and leachate samples. Nine FMs were detected in digested sludges from two wastewater treatment plants in Delaware using these methods. We conducted a 1-year die-away experiment which involved four different soils amended with sludge, with and without spiking of the 22 FMs. The initial dissipation of FMs in all spiked trays was rapid, and only seven FMs remained at concentrations above the quantification limits after 3 months: AHTN, HHCB, musk ketone, musk xylene, acetyl cedrene, OTNE, and DPMI. After 1 year, the only FMs remaining in all spiked trays were musk ketone and AHTN. DPMI was the only FM that leached significantly from the spiked trays, and no FMs were detected in leachate from any unspiked tray. While soil organic matter content affected the dissipation rate in general, different mechanisms (volatilization, transformation, leaching) appeared to be important for different FMs.
Quantum chaos, thermalization and dissipation in nuclear systems
Indian Academy of Sciences (India)
Nuclei have complex energy-level sequence with statistical properties in agreement with canonical random matrix theory. This agreement appears when the one-particle one-hole states are mixed completely with two-particle two-hole states. In the transition, there is a new universality which we present here, bringing about ...
Dissipation and thermal fluctuations in heavy-ion collisions
International Nuclear Information System (INIS)
Froebrich, P.
1992-01-01
The concept of friction has turned out to be a useful one not only in solid state physics but also in the description of heavy-ion collisions and fisson. In the following I concentrate on applications to low energy (E << 10 MeV/nucleon) heavy-ion collisions. I put emphasis on the phenomenological side in showing that by using frictional forces (and the associated fluctuating forces) in a semi-phenomenological model one is able to put some order into a large variety of experimental data. These concern above- and below-barrier fusion, spin distributions, deep-inelastic scattering and the emission of δ electrons in deep-ineleastic collisions. (orig.)
Quantum chaos, thermalization and dissipation in nuclear systems
Indian Academy of Sciences (India)
as a partition function for equilibrium positions of charged particles on a line with a neutralizing background ... With the advance- ment of our .... Quantum mechanically, the difficulty is in showing that the energy distribution,η´Eµ, defined below.
Energy dissipation mapping of cancer cells.
Dutta, Diganta; Palmer, Xavier-Lewis; Kim, Jinhyun; Qian, Shizhi; Stacey, Michael
2018-02-01
The purpose of this study is to map the energy dissipation of Jurkat cells using a single 60 nanosecond pulse electric field (NsPEF), primarily through atomic force microscopy (AFM). The phase shift is generated by the sample elements that do not have a heterogeneous surface. Monitoring and manipulating the phase shift is a powerful way for determining the dissipated energy and plotting the topography. The dissipated energy is a relative value, so the silica wafer and cover slip are given a set reference while the transmission of energy between the tip of the cantilever and cell surfaces is measured. The most important finding is that the magnitude and the number of variations in the dissipated energy change with the strength of NsPEF applied. Utilizing a single low field strength NsPEF (15kV/cm), minor changes in dissipated energy were found. The application of a single high field strength NsPEF (60kV/cm) to Jurkat cells resulted in a higher dissipated energy change versus that of in the low field strength condition. Thus, the dissipated energy from the Jurkat cells changes with the strength of NsPEF. By analyzing the forces via investigation in the tapping mode of the AFM, the stabilization of the cytoskeleton and membrane of the cell are related to the strength of NsPEF applied. Furthermore, the strength of NsPEF indicates a meaningful relationship to the survival of the Jurkat cells. Copyright © 2017 Elsevier Ltd. All rights reserved.
Decay of Kadomtsev-Petviashvili lumps in dissipative media
Clarke, S.; Gorshkov, K.; Grimshaw, R.; Stepanyants, Y.
2018-03-01
The decay of Kadomtsev-Petviashvili lumps is considered for a few typical dissipations-Rayleigh dissipation, Reynolds dissipation, Landau damping, Chezy bottom friction, viscous dissipation in the laminar boundary layer, and radiative losses caused by large-scale dispersion. It is shown that the straight-line motion of lumps is unstable under the influence of dissipation. The lump trajectories are calculated for two most typical models of dissipation-the Rayleigh and Reynolds dissipations. A comparison of analytical results obtained within the framework of asymptotic theory with the direct numerical calculations of the Kadomtsev-Petviashvili equation is presented. Good agreement between the theoretical and numerical results is obtained.
Transient chaotic transport in dissipative drift motion
Energy Technology Data Exchange (ETDEWEB)
Oyarzabal, R.S. [Pós-Graduação em Ciências/Física, Universidade Estadual de Ponta Grossa, 84030-900, Ponta Grossa, PR (Brazil); Szezech, J.D. [Departamento de Matemática e Estatística, Universidade Estadual de Ponta Grossa, 84030-900, Ponta Grossa, PR (Brazil); Batista, A.M., E-mail: antoniomarcosbatista@gmail.com [Departamento de Matemática e Estatística, Universidade Estadual de Ponta Grossa, 84030-900, Ponta Grossa, PR (Brazil); Souza, S.L.T. de [Departamento de Física e Matemática, Universidade Federal de São João del Rei, 36420-000, Ouro Branco, MG (Brazil); Caldas, I.L. [Instituto de Física, Universidade de São Paulo, 05315-970, São Paulo, SP (Brazil); Viana, R.L. [Departamento de Física, Universidade Federal do Paraná, 81531-990, Curitiba, PR (Brazil); Sanjuán, M.A.F. [Departamento de Física, Universidad Rey Juan Carlos, Tulipán s/n, 28933 Móstoles, Madrid (Spain)
2016-04-22
Highlights: • We consider a situation for which a chaotic transient is present in the dynamics of the two-wave model with damping. • The damping in plasma models can be a way for study a realistic behavior of confinement due the collisional effect. • The escape time as a function of the damping obey a power-law scaling. • We have made a qualitative transport analysis with a simple model that can be useful for more complete models. • We have shown that the pattern of the basin of attraction depends on the damping parameter. - Abstract: We investigate chaotic particle transport in magnetised plasmas with two electrostatic drift waves. Considering dissipation in the drift motion, we verify that the removed KAM surfaces originate periodic attractors with their corresponding basins of attraction. We show that the properties of the basins depend on the dissipation and the space-averaged escape time decays exponentially when the dissipation increases. We find positive finite time Lyapunov exponents in dissipative drift motion, consequently the trajectories exhibit transient chaotic transport. These features indicate how the transient plasma transport depends on the dissipation.
On the thermal analysis of a plate-fin heat sink considering the thermal-entry length effect
International Nuclear Information System (INIS)
Bassiouny, Ramadan; Maher, Hisham; Hegazy, Adel A.
2016-01-01
Highlights: • Dissipated convective heat strongly depends on convection coefficient. Two correlations were developed for so and validated. • A clear error in air temperature distribution along the heat sink was seen if coefficient were not properly selected. • The error decreases when thermal-entry length effect is considered, as for thermal flow through short conduits as Pr <1. - Abstract: Cooling electric and electronic components is very imperative to keep these components functioning properly. The heat sink is a device used to dissipate generated heat and accordingly cool these components. Airflow through heat sinks experiences velocity and thermal boundary layer variation that significantly affects the heat transfer process and heat sink performance as a result. The present study aims at developing an analytical model that compares the effect of adopting fully-developed or thermally-developing flow on convective heat transfer coefficient and accordingly longitudinal predicted air temperature distribution. Experiments on plate-fin heat sinks were carried out to validate the developed model. The results quantitatively showed a noticeable overprediction in the air temperature distribution when the heat transfer coefficient was estimated based on a fully-developed assumption. On the other hand, a close agreement between predicted and measured values was noticed when the thermal-entry length effect was considered.
Smoothed dissipative particle dynamics with angular momentum conservation
Energy Technology Data Exchange (ETDEWEB)
Müller, Kathrin, E-mail: k.mueller@fz-juelich.de; Fedosov, Dmitry A., E-mail: d.fedosov@fz-juelich.de; Gompper, Gerhard, E-mail: g.gompper@fz-juelich.de
2015-01-15
Smoothed dissipative particle dynamics (SDPD) combines two popular mesoscopic techniques, the smoothed particle hydrodynamics and dissipative particle dynamics (DPD) methods, and can be considered as an improved dissipative particle dynamics approach. Despite several advantages of the SDPD method over the conventional DPD model, the original formulation of SDPD by Español and Revenga (2003) [9], lacks angular momentum conservation, leading to unphysical results for problems where the conservation of angular momentum is essential. To overcome this limitation, we extend the SDPD method by introducing a particle spin variable such that local and global angular momentum conservation is restored. The new SDPD formulation (SDPD+a) is directly derived from the Navier–Stokes equation for fluids with spin, while thermal fluctuations are incorporated similarly to the DPD method. We test the new SDPD method and demonstrate that it properly reproduces fluid transport coefficients. Also, SDPD with angular momentum conservation is validated using two problems: (i) the Taylor–Couette flow with two immiscible fluids and (ii) a tank-treading vesicle in shear flow with a viscosity contrast between inner and outer fluids. For both problems, the new SDPD method leads to simulation predictions in agreement with the corresponding analytical theories, while the original SDPD method fails to capture properly physical characteristics of the systems due to violation of angular momentum conservation. In conclusion, the extended SDPD method with angular momentum conservation provides a new approach to tackle fluid problems such as multiphase flows and vesicle/cell suspensions, where the conservation of angular momentum is essential.
Functional methods and mappings of dissipative quantum systems
International Nuclear Information System (INIS)
Baur, H.
2006-01-01
In the first part of this work we extract the algebraic structure behind the method of the influence functional in the context of dissipative quantum mechanics. Special emphasis was put on the transition from a quantum mechanical description to a classical one, since it allows a deeper understanding of the measurement-process. This is tightly connected with the transition from a microscopic to a macroscopic world where the former one is described by the rules of quantum mechanics whereas the latter follows the rules of classical mechanics. In addition we show how the results of the influence functional method can be interpreted as a stochastical process, which in turn allows an easy comparison with the well known time development of a quantum mechanical system by use of the Schroedinger equation. In the following we examine the tight-binding approximation of models of which their hamiltionian shows discrete eigenstates in position space and where transitions between those states are suppressed so that propagation either is described by tunneling or by thermal activation. In the framework of dissipative quantum mechanics this leads to a tremendous simplification of the effective description of the system since instead of looking at the full history of all paths in the path integral description, we only have to look at all possible jump times and the possible corresponding set of weights for the jump direction, which is much easier to handle both analytically and numerically. In addition we deal with the mapping and the connection of dissipative quantum mechanical models with ones in quantum field theory and in particular models in statistical field theory. As an example we mention conformal invariance in two dimensions which always becomes relevant if a statistical system only has local interaction and is invariant under scaling. (orig.)
Dynamics of quasi-stable dissipative systems
Chueshov, Igor
2015-01-01
This book is devoted to background material and recently developed mathematical methods in the study of infinite-dimensional dissipative systems. The theory of such systems is motivated by the long-term goal to establish rigorous mathematical models for turbulent and chaotic phenomena. The aim here is to offer general methods and abstract results pertaining to fundamental dynamical systems properties related to dissipative long-time behavior. The book systematically presents, develops and uses the quasi-stability method while substantially extending it by including for consideration new classes of models and PDE systems arising in Continuum Mechanics. The book can be used as a textbook in dissipative dynamics at the graduate level. Igor Chueshov is a Professor of Mathematics at Karazin Kharkov National University in Kharkov, Ukraine.
Topological protection of multiparticle dissipative transport
Loehr, Johannes; Loenne, Michael; Ernst, Adrian; de Las Heras, Daniel; Fischer, Thomas M.
2016-06-01
Topological protection allows robust transport of localized phenomena such as quantum information, solitons and dislocations. The transport can be either dissipative or non-dissipative. Here, we experimentally demonstrate and theoretically explain the topologically protected dissipative motion of colloidal particles above a periodic hexagonal magnetic pattern. By driving the system with periodic modulation loops of an external and spatially homogeneous magnetic field, we achieve total control over the motion of diamagnetic and paramagnetic colloids. We can transport simultaneously and independently each type of colloid along any of the six crystallographic directions of the pattern via adiabatic or deterministic ratchet motion. Both types of motion are topologically protected. As an application, we implement an automatic topologically protected quality control of a chemical reaction between functionalized colloids. Our results are relevant to other systems with the same symmetry.
Effect of dissipation on dynamical fusion thresholds
International Nuclear Information System (INIS)
Sierk, A.J.
1986-01-01
The existence of dynamical thresholds to fusion in heavy nuclei (A greater than or equal to 200) due to the nature of the potential-energy surface is shown. These thresholds exist even in the absence of dissipative forces, due to the coupling between the various collective deformation degrees of freedom. Using a macroscopic model of nuclear shape dynamics, It is shown how three different suggested dissipation mechanisms increase by varying amounts the excitation energy over the one-dimensional barrier required to cause compound-nucleus formation. The recently introduced surface-plus-window dissipation may give a reasonable representation of experimental data on fusion thresholds, in addition to properly describing fission-fragment kinetic energies and isoscalar giant multipole widths. Scaling of threshold results to asymmetric systems is discussed. 48 refs., 10 figs
Optimizing the microstructure of dissipative materials
DEFF Research Database (Denmark)
Andreassen, Erik; Lazarov, Boyan Stefanov; Jensen, Jakob Søndergaard
the material’s loss factor, however, only for large wave lengths (small wave numbers) and constant material parameters (Andreasen et al., 2012). An alternative way to determine the material’s loss factor is to consider the material’s band diagram (Sigalas and Economou, 1992), from which the loss factor can......The aim of this work is to present a method to design material microstructures with high dissipation using topology optimization. In order to compute the macroscopic energy dissipation in periodic structures, we focus both on capturing the physical dissipation mechanism and to find the effective...... from experimental results in (Schaedler, 2011), where a highly energy absorbing material, constructed from structural elements with a small cross sectional area but large area moment of inertia, is presented. Furthermore, the applicability of multiscale finite element methods (Efendiev, 2009...
Induced waveform transitions of dissipative solitons
Kochetov, Bogdan A.; Tuz, Vladimir R.
2018-01-01
The effect of an externally applied force upon the dynamics of dissipative solitons is analyzed in the framework of the one-dimensional cubic-quintic complex Ginzburg-Landau equation supplemented by a potential term with an explicit coordinate dependence. The potential accounts for the external force manipulations and consists of three symmetrically arranged potential wells whose depth varies along the longitudinal coordinate. It is found out that under an influence of such potential a transition between different soliton waveforms coexisting under the same physical conditions can be achieved. A low-dimensional phase-space analysis is applied in order to demonstrate that by only changing the potential profile, transitions between different soliton waveforms can be performed in a controllable way. In particular, it is shown that by means of a selected potential, stationary dissipative soliton can be transformed into another stationary soliton as well as into periodic, quasi-periodic, and chaotic spatiotemporal dissipative structures.
Dissipative Continuous Spontaneous Localization (CSL) model.
Smirne, Andrea; Bassi, Angelo
2015-08-05
Collapse models explain the absence of quantum superpositions at the macroscopic scale, while giving practically the same predictions as quantum mechanics for microscopic systems. The Continuous Spontaneous Localization (CSL) model is the most refined and studied among collapse models. A well-known problem of this model, and of similar ones, is the steady and unlimited increase of the energy induced by the collapse noise. Here we present the dissipative version of the CSL model, which guarantees a finite energy during the entire system's evolution, thus making a crucial step toward a realistic energy-conserving collapse model. This is achieved by introducing a non-linear stochastic modification of the Schrödinger equation, which represents the action of a dissipative finite-temperature collapse noise. The possibility to introduce dissipation within collapse models in a consistent way will have relevant impact on the experimental investigations of the CSL model, and therefore also on the testability of the quantum superposition principle.
Kierat, Justyna; Szentgyörgyi, Hajnalka; Czarnoleski, Marcin; Woyciechowski, Michał
2017-08-01
Many ectotherms grow larger at lower temperatures than at higher temperatures. This pattern, known as the temperature-size rule, is often accompanied by plastic changes in cell size, which can mechanistically explain the thermal dependence of body size. However, the theory predicts that thermal plasticity in cell size has adaptive value for ectotherms because there are different optimal cell-membrane-to-cell-volume ratios at different temperatures. At high temperatures, the demand for oxygen is high; therefore, a large membrane surface of small cells is beneficial because it allows high rates of oxygen transport into the cell. The metabolic costs of maintaining membranes become more important at low temperatures than at high temperatures, which favours large cells. In a field experiment, we manipulated the thermal conditions inside nests of the red mason bee, a solitary bee that does not regulate the temperature in its nests and whose larvae develop under ambient conditions. We assessed the effect of temperature on body mass and ommatidia size (our proxy of cell size). The body and cell sizes decreased in response to a higher mean temperature and greater temperature fluctuations. This finding is in accordance with predictions of the temperature-size rule and optimal cell size theory and suggests that both the mean temperature and the magnitude of temperature fluctuations are important for determining body and cell sizes. Additionally, we observed that males of the red mason bee tend to have larger ommatidia in relation to their body mass than females, which might play an important role during mating flight. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dissipation and fluctuation of the relative momentum in nucleus-nucleus collisions
International Nuclear Information System (INIS)
Feldmeier, H.; Spangenberger, H.
1984-07-01
The dissipation of the relative momentum in nucleus-nucleus collisions is treated in terms of a Langevin equation with a fluctuating force. Equations of motion for first and second moments of the macroscopic variables are derived directly from the Langevin equation. The properties of the fluctuating force which results from random particle exchange are investigated in detail. Drift and diffusion coefficients are calculated microscopically and analytical expressions are given which can be used in any trajectory calculation. An important feature of the model is that the Einstein relation between dissipation and fluctuation turns out to be only a limiting case of a more general expression which included nonthermal fluctuations. By treating the two nuclei as intrinsically equilibrated but not in thermal equilibrium with respect to each other several important aspects of the dissipative behaviour, seen in heavy ion collisions with final energies above the Coloumb barrier, can be understood. (orig.)
A Tractable Estimate for the Dissipation Range Onset Wavenumber Throughout the Heliosphere
Engelbrecht, N. Eugene; Strauss, R. Du Toit
2018-04-01
The modulation of low-energy electrons in the heliosphere is extremely sensitive to the behavior of the dissipation range slab turbulence. The present study derives approximate expressions for the wavenumber at which the dissipation range on the slab turbulence power spectrum commences, by assuming that this onset occurs when dispersive waves propagating parallel to the background magnetic field gyroresonate with thermal plasma particles. This assumption yields results in reasonable agreement with existing spacecraft observations. These expressions are functions of the solar wind proton and electron temperatures, which are here modeled throughout the region where the solar wind is supersonic using a two-component turbulence transport model. The results so acquired are compared with extrapolations of existing models for the dissipation range onset wavenumber, and conclusions are drawn therefrom.
Analysis of phononic bandgap structures with dissipation
DEFF Research Database (Denmark)
Andreassen, Erik; Jensen, Jakob Søndergaard
2013-01-01
and longer wavelengths, we show that the two formulations produce nearly identical results in terms of propagation constant and wave decay. We use the k(ω)-formulation to compute loss factors with dissipative bandgap materials for steady-state wave propagation and create simplified diagrams that unify...... the spatial loss factor from dissipative and bandgap effects. Additionally, we demonstrate the applicability of the k(ω)-formulation for the computation of the band diagram for viscoelastic composites and compare the computed loss factors for low frequency wave propagation to existing results based on quasi...
New derivation of relativistic dissipative fluid dynamics
International Nuclear Information System (INIS)
Jaiswal, Amaresh; Bhalerao, Rajeev S.; Pal, Subrata
2012-01-01
Relativistic dissipative hydrodynamics has been quite successful in explaining the spectra and azimuthal anisotropy of particles produced in heavy-ion collisions at the RHIC and recently at the LHC. The first-order dissipative fluid dynamics or the relativistic Navier-Stokes (NS) theory involves parabolic differential equations and suffers from a causality and instability. The second-order or Israel-Stewart (IS) theory with its hyperbolic equations restores causality but may not guarantee stability. The correct formulation of relativistic viscous fluid dynamics is far from settled and is under intense investigation
Quantum dissipation from power-law memory
International Nuclear Information System (INIS)
Tarasov, Vasily E.
2012-01-01
A new quantum dissipation model based on memory mechanism is suggested. Dynamics of open and closed quantum systems with power-law memory is considered. The processes with power-law memory are described by using integration and differentiation of non-integer orders, by methods of fractional calculus. An example of quantum oscillator with linear friction and power-law memory is considered. - Highlights: ► A new quantum dissipation model based on memory mechanism is suggested. ► The generalization of Lindblad equation is considered. ► An exact solution of generalized Lindblad equation for quantum oscillator with linear friction and power-law memory is derived.
DISSIPATION PATTERN OF BIFENTHRIN IN TOMATO
Ravi Kumar Katroju; Sreenivasa Rao Cherukuri; Shashi Bushan Vemuri; Narasimha Reddy K
2014-01-01
Field experiment carried out during kharif, 2012 to evaluate the dissipation pattern of most commonly used insecticide bifenthrin 10 EC @ 100 g a.i. ha-1 with two sprays of insecticide first given after fruit initiation and the second spray 10 days later and collecting the fruits at 0, 1, 3, 5, 7, 10, 15, 20 days after last spray, and analysed for residues using the validated QuEChERS method. The initial deposits of bifenthrin were 0.85 mg kg-1 which dissipated to 0.39, 0.15 mg kg-1 by 1st an...
Mechanical energy dissipation in natural ceramic composites.
Mayer, George
2017-12-01
Ceramics and glasses, in their monolithic forms, typically exhibit low fracture toughness values, but rigid natural marine ceramic and glass composites have shown remarkable resistance to mechanical failure. This has been observed in load-extension behavior by recognizing that the total area under the curve, notably the part beyond the yield point, often conveys substantial capacity to carry mechanical load. The mechanisms underlying the latter observations are proposed as defining factors for toughness that provide resistance to failure, or capability to dissipate energy, rather than fracture toughness. Such behavior is exhibited in the spicules of glass sponges and in mollusk shells. There are a number of similarities in the manner in which energy dissipation takes place in both sponges and mollusks. It was observed that crack diversion, a new form of crack bridging, creation of new surface area, and other important energy-dissipating mechanisms occur and aid in "toughening". Crack tolerance, key to energy dissipation in these natural composite materials, is assisted by promoting energy distribution over large volumes of loaded specimens by minor components of organic constituents that also serve important roles as adhesives. Viscoelastic deformation was a notable characteristic of the organic component. Some of these energy-dissipating modes and characteristics were found to be quite different from the toughening mechanisms that are utilized for more conventional structural composites. Complementary to those mechanisms found in rigid natural ceramic/organic composites, layered architectures and very thin organic layers played major roles in energy dissipation in these structures. It has been demonstrated in rigid natural marine composites that not only architecture, but also the mechanical behavior of the individual constituents, the nature of the interfaces, and interfacial bonding play important roles in energy dissipation. Additionally, the controlling
Morphing of the Dissipative Reaction Mechanism
International Nuclear Information System (INIS)
Schroeder, W.U.; Toke, J.; Gawlikowicz, W.; Houck, M.A.; Lu, J.; Pienkowski, L.
2003-01-01
Important trends in the evolution of heavy-ion reaction mechanisms with bombarding energy and impact parameter are reviewed. Essential features of dissipative reactions appear preserved at E/A = 50-62 MeV, such as dissipative orbiting and multi-nucleon exchange. The relaxation of the A/Z asymmetry with impact parameter is slow. Non-equilibrium emission of light particles and clusters is an important process accompanying the evolution of the mechanism. Evidence is presented for a new mechanism of statistical cluster emission from hot, metastable primary reaction products, driven by surface entropy. These results suggest a plausible reinterpretation of multi-fragmentation. (authors)
Complex Fluids in Energy Dissipating Systems
Directory of Open Access Journals (Sweden)
Francisco J. Galindo-Rosales
2016-07-01
Full Text Available The development of engineered systems for energy dissipation (or absorption during impacts or vibrations is an increasing need in our society, mainly for human protection applications, but also for ensuring the right performance of different sort of devices, facilities or installations. In the last decade, new energy dissipating composites based on the use of certain complex fluids have flourished, due to their non-linear relationship between stress and strain rate depending on the flow/field configuration. This manuscript intends to review the different approaches reported in the literature, analyses the fundamental physics behind them and assess their pros and cons from the perspective of their practical applications.
Dissipation in the superfluid helium film
International Nuclear Information System (INIS)
Turkington, R.R.; Harris-Lowe, R.F.
1977-01-01
We have measured the rate of energy dissipation in superfluid helium film flow in an attempt to test a recent theory due to Harris-Lowe, which predicts that for superfluid stream velocities v/sub s/ that just exceed the critical velocity v/sub c0/, the rate of dissipation is given by an equation of the form Q=C(v/sub s/-v/sub c0/)/sup 3/2/. Our experiments at 1.33 K show that the exponent, predicted to be 3/2, is 1.491 +- 0.021
Dissipation and decoherence in quantum systems
International Nuclear Information System (INIS)
Menskii, Mikhail B
2003-01-01
The theory of dissipative quantum systems and its relation to the quantum theory of continuous measurements are reviewed. Constructing a correct theory of a dissipative quantum system requires that the system's interaction with its environment (reservoir) be taken into account. Since information about the system is 'recorded' in the state of the reservoir, the quantum theory of continuous measurements can be used to account for the influence of the reservoir. If based on the use of restricted path integrals, this theory does not require an explicit reservoir model and is therefore much simpler technically. (reviews of topical problems)
Dissipative phenomena in condensed matter some applications
Dattagupta, Sushanta
2004-01-01
From the field of nonequilibrium statistical physics, this graduate- and research-level volume treats the modeling and characterization of dissipative phenomena. A variety of examples from diverse disciplines like condensed matter physics, materials science, metallurgy, chemical physics etc. are discussed. Dattagupta employs the broad framework of stochastic processes and master equation techniques to obtain models for a wide range of experimentally relevant phenomena such as classical and quantum Brownian motion, spin dynamics, kinetics of phase ordering, relaxation in glasses, dissipative tunneling. It provides a pedagogical exposition of current research material and will be useful to experimentalists, computational physicists and theorists.
Morphing of the Dissipative Reaction Mechanism
Energy Technology Data Exchange (ETDEWEB)
Schroeder, W.U.; Toke, J.; Gawlikowicz, W.; Houck, M.A.; Lu, J.; Pienkowski, L. [Rochester Univ., Dept. of Chemistry, Rochester, NY (United States)
2003-07-01
Important trends in the evolution of heavy-ion reaction mechanisms with bombarding energy and impact parameter are reviewed. Essential features of dissipative reactions appear preserved at E/A = 50-62 MeV, such as dissipative orbiting and multi-nucleon exchange. The relaxation of the A/Z asymmetry with impact parameter is slow. Non-equilibrium emission of light particles and clusters is an important process accompanying the evolution of the mechanism. Evidence is presented for a new mechanism of statistical cluster emission from hot, metastable primary reaction products, driven by surface entropy. These results suggest a plausible reinterpretation of multi-fragmentation. (authors)
Effects of dissipation and fluctuation in preheating
International Nuclear Information System (INIS)
Vartuli, Rodrigo; Ramos, Rudnei de O.
2006-01-01
In this paper, we study the effects of dissipation and fluctuation in preheating after inflation. The effective equation of motion for a scalar field χ interacting with lighter fields is derived using the field theoretical method of closed time path due to Schwinger, winch is suitable to study nonequilibrium and time dependent process. In this derivation the emergent equation is intrinsically dissipative and stochastic in nature. The resulting dynamics is then studied both analytically and numerically. The results obtained are then discussed for then relevance for the reheating epoch right after an inflationary phase(preheating) for the case of the evolution of the scalar field χ and its decay into fermion. (author)
Periodic solutions of dissipative systems revisited
Directory of Open Access Journals (Sweden)
Górniewicz Lech
2006-01-01
Full Text Available We reprove in an extremely simple way the classical theorem that time periodic dissipative systems imply the existence of harmonic periodic solutions, in the case of uniqueness. We will also show that, in the lack of uniqueness, the existence of harmonics is implied by uniform dissipativity. The localization of starting points and multiplicity of periodic solutions will be established, under suitable additional assumptions, as well. The arguments are based on the application of various asymptotic fixed point theorems of the Lefschetz and Nielsen type.
Periodic solutions of dissipative systems revisited
Directory of Open Access Journals (Sweden)
Lech Górniewicz
2006-05-01
Full Text Available We reprove in an extremely simple way the classical theorem that time periodic dissipative systems imply the existence of harmonic periodic solutions, in the case of uniqueness. We will also show that, in the lack of uniqueness, the existence of harmonics is implied by uniform dissipativity. The localization of starting points and multiplicity of periodic solutions will be established, under suitable additional assumptions, as well. The arguments are based on the application of various asymptotic fixed point theorems of the Lefschetz and Nielsen type.
Appendix to Power Dissipation in Division
DEFF Research Database (Denmark)
Liu, Wei; Nannarelli, Alberto
This document is an appendix to the paper: Wei Liu and Alberto Nannarelli, ”Power Dissipation in Division”, Proc. of 42nd Asilomar Conference on Signals, Systems, and Computers, October 2008. The purpose of the document is to provide the necessary information for the implementation of the archite......This document is an appendix to the paper: Wei Liu and Alberto Nannarelli, ”Power Dissipation in Division”, Proc. of 42nd Asilomar Conference on Signals, Systems, and Computers, October 2008. The purpose of the document is to provide the necessary information for the implementation...
Yoneda, Juliana Sakamoto; Rigos, Carolina Fortes; de Lourenço, Thaís Fernanda Aranda; Sebinelli, Heitor Gobbi; Ciancaglini, Pietro
2014-12-15
Differential scanning calorimetry (DSC) was applied to investigate the effect of cholesterol on the thermotropic properties of the lipid membrane (DPPC and DPPE). The thermostability and unfolding of solubilized and reconstituted Na,K-ATPase in DPPC:DPPE:cholesterol-liposomes was also studied to gain insight into the role of cholesterol in the Na,K-ATPase modulation of enzyme function and activity. The tertiary system (DPPC:DPPE:cholesterol) (molar ratio DPPC:DPPE equal 1:1) when cholesterol content was increased from 0% up to 40% results in a slight decrease in the temperature of transition and enthalpy, and an increase in width. We observed that, without heating treatment, at 37°C, the activity was higher for 20mol% cholesterol. However, thermal inactivation experiments showed that the enzyme activity loss time depends on the cholesterol membrane content. The unfolding of the enzyme incorporated to liposomes of DPPC:DPPE (1:1mol) with different cholesterol contents, ranging from 0% to 40% mol was also studied by DSC. Some differences between the thermograms indicate that the presence of lipids promotes a conformational change in protein structure and this change is enough to change the way Na,K-ATPase thermally unfolds. Copyright © 2014 Elsevier Inc. All rights reserved.
International Nuclear Information System (INIS)
Hou, Z.K.; Ji, Q.Z.; Yang, L.; Gao, Z.Q.; Wang, B.C.
2017-01-01
In conducting this study, the extraction of Trichosanthes kirilowii maxim seed oils (TSO) was carried out with the help of cold pressing (CP), hot pressing (HP) and soxhlet extraction (SE). Investigation, together with comparison, was carried out with respect to the physicochemical properties, thermal stability and antioxidant action of TSO. The key ingredients in the seeds consisted of fat, fiber and protein. The physicochemical characteristics of the oils brought to light the fact that CPTSO possessed top oil quality. The findings also suggested that linoleic acid, punicic acid and oleic acid were the leading unsaturated fatty acids in TSO. It was also discovered that TSO had an almost identical chemical composition regardless of the extraction method was used. It was demonstrated by TG/DTG curves that both HPTSO and CPTSO had more thermal stability in comparison with SETSO. Furthermore, the antioxidant activity assessments emphasized that CPTSO had better radical scavenging potential. CP had the ability to deliver an extract with higher quality as well as antioxidant activity in comparison with HP and SE methods and can be taken into consideration as a more suitable method in order to attain high quality oil. [es
International Nuclear Information System (INIS)
Kim, Donghyun; Lee, Junghoon; Kim, Junho; Choi, Chang-Hwan; Chung, Wonsub
2015-01-01
Highlights: • We fabricate the CuO/resin composite coating layer on aluminum alloy heat sink. • CuO/resin coating considerably improved the surface emissivity. • The LED junction temperature was reduced by CuO/resin coated heat sink. • The thermal resistance of heat sink was decreased by CuO/resin composite coating at 200 μm thickness. - Abstract: A composite coating composed of cupric oxide (CuO) and silicon-based resin was applied to an aluminum-alloy heat sink for a light emitting diode (LED) module. The purpose of the composite coating is to improve the heat dissipation performance of heat sink by enhancing thermal radiation emission. The heat dissipation performance was investigated in terms of LED junction temperature and thermal resistance using a thermal transient method. The CuO and silicon-based resin composite coating showed higher emissivity, and the lower junction temperature and thermal resistance of the heat sink was achieved. In addition, a continuous operation test of the LED chip with the heat sink revealed that the surface treated with the CuO composite coating stably dissipated heat without degradation. In conclusion, the composite coating proposed here showed a significant improvement of the heat dissipation performance of the aluminum-alloy heat sink due to the enhanced thermal radiation property.
International Nuclear Information System (INIS)
Santos, J T; Chu, V; Conde, J P; Holz, T; Fernandes, A J S; Costa, F M
2015-01-01
Diamond-based microelectromechanical resonators have the potential of enhanced performance due to the chemical inertness of the diamond structural layer and its high Young’s modulus, high wear resistance, low thermal expansion coefficient, and very high thermal conductivity. In this work, the resonance frequency and quality factor of MEMS resonators based on nanocrystalline diamond films are characterized under different air pressures. The dynamic behavior of 50–300 μm long linear bridges and double ended tuning forks, with resonance frequencies between 0.5 and 15 MHz and quality factors as high as 50 000 are described as a function of measurement pressure from high vacuum(∼10 mTorr) up to atmospheric conditions. The resonance frequencies and quality factors in vacuum show good agreement with the theoretical models including anchor and thermoelastic dissipation (TED). The Young’s moduli for nanocrystalline diamond films extrapolated from experimental data are between 840–920 GPa. The critical pressure values, at which the quality factor starts decreasing due to dissipation in air, are dependent on the resonator length. Longer structures, with quality factors limited by TED and lower resonance frequencies, have low critical pressures, of the order of 1–10 Torr and go from an intrinsic dissipation, to a molecular dissipation regime and finally to a region of viscous dissipation. Shorter resonators, with higher resonance frequencies and quality factors limited by anchor losses, have higher critical pressures, some higher than atmospheric pressure, and enter directly into the viscous dissipation regime from the intrinsic region. (paper)
Deterministic constant-temperature dynamics for dissipative quantum systems
International Nuclear Information System (INIS)
Sergi, Alessandro
2007-01-01
A novel method is introduced in order to treat the dissipative dynamics of quantum systems interacting with a bath of classical degrees of freedom. The method is based upon an extension of the Nose-Hoover chain (constant temperature) dynamics to quantum-classical systems. Both adiabatic and nonadiabatic numerical calculations on the relaxation dynamics of the spin-boson model show that the quantum-classical Nose-Hoover chain dynamics represents the thermal noise of the bath in an accurate and simple way. Numerical comparisons, both with the constant-energy calculation and with the quantum-classical Brownian motion treatment of the bath, show that the quantum-classical Nose-Hoover chain dynamics can be used to introduce dissipation in the evolution of a quantum subsystem even with just one degree of freedom for the bath. The algorithm can be computationally advantageous in modelling, within computer simulation, the dynamics of a quantum subsystem interacting with complex molecular environments. (fast track communication)
Alfvén wave dissipation in the solar chromosphere
Grant, Samuel D. T.; Jess, David B.; Zaqarashvili, Teimuraz V.; Beck, Christian; Socas-Navarro, Hector; Aschwanden, Markus J.; Keys, Peter H.; Christian, Damian J.; Houston, Scott J.; Hewitt, Rebecca L.
2018-05-01
Magnetohydrodynamic Alfvén waves1 have been a focus of laboratory plasma physics2 and astrophysics3 for over half a century. Their unique nature makes them ideal energy transporters, and while the solar atmosphere provides preferential conditions for their existence4, direct detection has proved difficult as a result of their evolving and dynamic observational signatures. The viability of Alfvén waves as a heating mechanism relies upon the efficient dissipation and thermalization of the wave energy, with direct evidence remaining elusive until now. Here we provide the first observational evidence of Alfvén waves heating chromospheric plasma in a sunspot umbra through the formation of shock fronts. The magnetic field configuration of the shock environment, alongside the tangential velocity signatures, distinguish them from conventional umbral flashes5. Observed local temperature enhancements of 5% are consistent with the dissipation of mode-converted Alfvén waves driven by upwardly propagating magneto-acoustic oscillations, providing an unprecedented insight into the behaviour of Alfvén waves in the solar atmosphere and beyond.
Directory of Open Access Journals (Sweden)
Węglowski M. St.
2016-03-01
Full Text Available In the present study, the investigation of weldability of ultra-high strength steel has been presented. The thermal simulated samples were used to investigate the effect of welding cooling time t8/5 on microstructure and mechanical properties of heat affected zone (HAZ for a Weldox 1300 ultra-high strength steel. In the frame of these investigation the microstructure was studied by light and transmission electron microscopies. Mechanical properties of parent material were analysed by tensile, impact and hardness tests. In details the influence of cooling time in the range of 2,5 ÷ 300 sec. on hardness, impact toughness and microstructure of simulated HAZ was studied by using welding thermal simulation test. The microstructure of ultra-high strength steel is mainly composed of tempered martensite. The results show that the impact toughness and hardness decrease with increase of t8/5 under condition of a single thermal cycle in simulated HAZ. The increase of cooling time to 300 s causes that the microstructure consists of ferrite and bainite mixture. Lower hardness, for t8/5 ≥ 60 s indicated that low risk of cold cracking in HAZ for longer cooling time, exists.
Die attach dimension and material on thermal conductivity study for high power COB LED
Sarukunaselan, K.; Ong, N. R.; Sauli, Z.; Mahmed, N.; Kirtsaeng, S.; Sakuntasathien, S.; Suppiah, S.; Alcain, J. B.; Retnasamy, V.
2017-09-01
High power LED began to gain popularity in the semiconductor market due to its efficiency and luminance. Nonetheless, along with the increased in efficiency, there was an increased in the junction temperature too. The alleviating junction temperature is undesirable since the performances and lifetime will be degraded over time. Therefore, it is crucial to solve this thermal problem by maximizing the heat dissipation to the ambience. Improvising the die attach (DA) layer would be the best option because this layer is sandwiched between the chip (heat source) and the substrate (channel to the ambient). In this paper, the impact of thickness and thermal conductivity onto the junction temperature and Von Mises stress is analyzed. Results obtained showed that the junction temperature is directly proportional to the thickness but the stress was inversely proportional to the thickness of the DA. The thermal conductivity of the materials did affect the junction temperature as there was not much changes once the thermal conductivity reached 20W/mK. However, no significant changes were observed on the Von Mises stress caused by the thermal conductivity. Material with the second highest thermal conductivity had the lowest stress, whereas the highest conductivity material had the highest stress value at 20 µm. Overall, silver sinter provided the best thermal dissipation compared to the other materials.
Friction and dissipative phenomena in quantum mechanics
International Nuclear Information System (INIS)
Kostin, M.D.
1975-01-01
Frictional and dissipative terms of the Schroedinger equation are studied. A proof is given showing that the frictional term of the Schroedinger--Langevin equation causes the quantum system to lose energy. General expressions are derived for the frictional term of the Schroedinger equation. (U.S.)
Entanglement from dissipation and holographic interpretation
Energy Technology Data Exchange (ETDEWEB)
Cantcheff, M.B. [IFLP-CONICET CC 67, La Plata, Buenos Aires (Argentina); Gadelha, Alexandre L. [Universidade Federal da Bahia, Instituto de Fisica, Salvador, BA (Brazil); Marchioro, Dafni F.Z.; Nedel, Daniel Luiz [Universidade Federal da Integracao Latino-Americana, Instituto Latino-Americano de Ciencias da Vida e da Natureza, Foz do Iguacu, PR (Brazil)
2018-02-15
In this work we study a dissipative field theory where the dissipation process is manifestly related to dynamical entanglement and put it in the holographic context. Such endeavour is realized by further development of a canonical approach to study quantum dissipation, which consists of doubling the degrees of freedom of the original system by defining an auxiliary one. A time dependent entanglement entropy for the vacuum state is calculated and a geometrical interpretation of the auxiliary system and the entropy is given in the context of the AdS/CFT correspondence using the Ryu-Takayanagi formula. We show that the dissipative dynamics is controlled by the entanglement entropy and there are two distinct stages: in the early times the holographic interpretation requires some deviation from classical General Relativity; in the later times the quantum system is described as a wormhole, a solution of the Einstein's equations near to a maximally extended black hole with two asymptotically AdS boundaries. We focus our holographic analysis in this regime, and suggest a mechanism similar to teleportation protocol to exchange (quantum) information between the two CFTs on the boundaries (see Maldacena et al. in Fortschr Phys 65(5):1700034, arXiv:1704.05333 [hep-th], 2017). (orig.)
Entanglement from dissipation and holographic interpretation
Cantcheff, M. Botta; Gadelha, Alexandre L.; Marchioro, Dáfni F. Z.; Nedel, Daniel Luiz
2018-02-01
In this work we study a dissipative field theory where the dissipation process is manifestly related to dynamical entanglement and put it in the holographic context. Such endeavour is realized by further development of a canonical approach to study quantum dissipation, which consists of doubling the degrees of freedom of the original system by defining an auxiliary one. A time dependent entanglement entropy for the vacumm state is calculated and a geometrical interpretation of the auxiliary system and the entropy is given in the context of the AdS/CFT correspondence using the Ryu-Takayanagi formula. We show that the dissipative dynamics is controlled by the entanglement entropy and there are two distinct stages: in the early times the holographic interpretation requires some deviation from classical General Relativity; in the later times the quantum system is described as a wormhole, a solution of the Einstein's equations near to a maximally extended black hole with two asymptotically AdS boundaries. We focus our holographic analysis in this regime, and suggest a mechanism similar to teleportation protocol to exchange (quantum) information between the two CFTs on the boundaries (see Maldacena et al. in Fortschr Phys 65(5):1700034, arXiv:1704.05333 [hep-th], 2017).
On multi-dissipative dynamic systems
DEFF Research Database (Denmark)
Thygesen, Uffe Høgsbro
1999-01-01
We consider deterministic dynamic systems with state space representations which are dissipative in the sense of Willems (1972) with respect to several supply rates. This property is of interest in robustness analysis and in multi-objective control. We give conditions under which the convex cone...
Quantum phase transition with dissipative frustration
Maile, D.; Andergassen, S.; Belzig, W.; Rastelli, G.
2018-04-01
We study the quantum phase transition of the one-dimensional phase model in the presence of dissipative frustration, provided by an interaction of the system with the environment through two noncommuting operators. Such a model can be realized in Josephson junction chains with shunt resistances and resistances between the chain and the ground. Using a self-consistent harmonic approximation, we determine the phase diagram at zero temperature which exhibits a quantum phase transition between an ordered phase, corresponding to the superconducting state, and a disordered phase, corresponding to the insulating state with localized superconducting charge. Interestingly, we find that the critical line separating the two phases has a nonmonotonic behavior as a function of the dissipative coupling strength. This result is a consequence of the frustration between (i) one dissipative coupling that quenches the quantum phase fluctuations favoring the ordered phase and (ii) one that quenches the quantum momentum (charge) fluctuations leading to a vanishing phase coherence. Moreover, within the self-consistent harmonic approximation, we analyze the dissipation induced crossover between a first and second order phase transition, showing that quantum frustration increases the range in which the phase transition is second order. The nonmonotonic behavior is reflected also in the purity of the system that quantifies the degree of correlation between the system and the environment, and in the logarithmic negativity as an entanglement measure that encodes the internal quantum correlations in the chain.
Dissipative preparation of entanglement in optical cavities
DEFF Research Database (Denmark)
Kastoryano, Michael James; Reiter, Florentin; Sørensen, Anders Søndberg
2011-01-01
We propose a novel scheme for the preparation of a maximally entangled state of two atoms in an optical cavity. Starting from an arbitrary initial state, a singlet state is prepared as the unique fixed point of a dissipative quantum dynamical process. In our scheme, cavity decay is no longer...
Characterizing pesticide dissipation in food crops
DEFF Research Database (Denmark)
Fantke, Peter; Juraske, R.; Jolliet, O.
2013-01-01
Ingestion of residues via consumption of food crops is the predominant exposure route of the general population toward pesticides. However, pesticide dissipation in crops constitutes a main source of uncertainty in estimating residues in harvested crop parts and subsequent human exposure. Neverth......Ingestion of residues via consumption of food crops is the predominant exposure route of the general population toward pesticides. However, pesticide dissipation in crops constitutes a main source of uncertainty in estimating residues in harvested crop parts and subsequent human exposure....... Nevertheless, dissipation is a key mechanism in models assessing pesticide distribution in the cropenvironment and the magnitude of residues in harvest. We provide a consistent framework for characterizing pesticide dissipation in food crops for use in modeling approaches applied in health risk and impact...... degradation is dominating. We are currently testing the regression to predict degradation half-lives in crops. By providing mean degradation half-lives at 20°C for more than 300 pesticides, we reduce uncertainty and improve assumptions in current practice of health risk and impact assessments....
Magnetization dissipation in ferromagnets from scattering theory
Brataas, A.; Tserkovnyak, Y.; Bauer, G.E.W.
2011-01-01
The magnetization dynamics of ferromagnets is often formulated in terms of the Landau-Lifshitz-Gilbert (LLG) equation. The reactive part of this equation describes the response of the magnetization in terms of effective fields, whereas the dissipative part is parametrized by the Gilbert damping
Energy and dissipated work in snow avalanches
Bartelt, P.; Buser, O.
2004-12-01
Using the results of large scale avalanche experiments at the Swiss Vallée de la Sionne test site, the energy balance of several snow avalanches is determined. Avalanches convert approximately one-seventh of their potential energy into kinetic energy. The total potential energy depends strongly on the entrained snowcover, indicating that entrainment processes cannot be ignored when predicting terminal velocities and runout distances. We find energy dissipation rates on the order of 1 GW. Fluidization of the fracture slab can be identified in the experiments as an increase in dissipation rate, thereby explaining the initial and rapid acceleration of avalanches after release. Interestingly, the dissipation rates appear to be constant along the track, although large fluctuations in internal velocity exist. Thus, we can demonstrate within the context of non-equilibrium thermodynamics that -- in space -- granular snow avalanches are irreversible, dissipative systems that minimize entropy production because they appear to reach a steady-state non-equilibrium. A thermodynamic analysis reveals that fluctuations in velocity depend on the roughness of the flow surface and viscosity of the granular system. We speculate that this property explains the transition from flowing avalanches to powder avalanches.
Mars’ Low Dissipation Factor at 11-h - Interpretation from Anelasticity-Based Dissipation Model
Castillo-Rogez, Julie; Choukroun, M.
2010-10-01
We explore the information contained in the ratio of the tidal Love number k2 to the dissipation factor Q characterizing the response of Mars to the tides exerted by its satellite Phobos (11-h period). Assuming that Mars can be approximated as a Maxwell body, Bills et al. [1] have inferred an average viscosity of the Martian mantle 8.7x1014 Pa s. Such a low viscosity appears inconsistent with Mars’ thermal evolution and current heat budget models. Alternative explanations include the presence of partial melt in the mantle [2], or the presence of an aquifer in the crust [3]. We revisit the interpretation of Mars’ k2/Q using a laboratory-based attenuation model that accounts for material viscoelasticity and anelasticity. As a first step, we have computed Mars’ k2/Q for an interior model that includes a solid inner core, a liquid core layer, a mantle, and crust (consistent with the observed moment of inertia, and k2 measured at the orbital period), and searched for the range of mantle viscosities that can explain the observed k2/Q. Successful models are characterized by an average mantle viscosity between 1018 and 1022 Pa s, which rules out the presence of partial melt in the mantle. We can narrow down that range by performing a more detailed calculation of the mineralogy and temperature profiles. Preliminary results will be presented at the meeting. References: [1] Bills et al. (2005) JGR 110, E00704; [2] Ruedas et al. (2009 White paper to the NRC Planetary Science decadal survey; [3] Bills et al. (2009) LPS 40, 1712. MC is supported by a NASA Postdoctoral Program Fellowship, administered by Oak Ridge Associated Universities. This work has been conducted at the Jet Propulsion Laboratory, California Institute of Technology, under a contract to NASA. Government sponsorship acknowledged.
Fully-developed heat transfer in annuli with viscous dissipation
Energy Technology Data Exchange (ETDEWEB)
Coelho, P.M. [Universidade do Porto, Porto (Portugal). Centro de Estudos de Fenomenos de Transporte, DEMEGI, Faculdade de Engenharia; Pinho, F.T. [Universidade do Porto, Porto (Portugal). Centro de Estudos de Fenomenos de Transporte, Faculdade de Engenharia
2006-09-15
For Newtonian concentric annular flows analytical solutions are obtained under imposed asymmetric constant wall heat fluxes as well as under imposed asymmetric constant wall temperatures, taking into account viscous dissipation and for fluid dynamic and thermally fully-developed conditions. Results for the special case of the heat flux ratio for identical wall temperatures and the critical Brinkman numbers marking changes of sign in wall heat fluxes are also derived. Equations are presented for the Nusselt numbers at the inner and outer walls, bulk temperature and normalised temperature distribution as a function of all relevant non-dimensional numbers. Given the complexity of the derived equations, simpler exact expressions are presented for the Nusselt numbers for ease of use, with their coefficients given in tables as a function of the radius ratio. (author)
Out-of-time-order fluctuation-dissipation theorem
Tsuji, Naoto; Shitara, Tomohiro; Ueda, Masahito
2018-01-01
We prove a generalized fluctuation-dissipation theorem for a certain class of out-of-time-ordered correlators (OTOCs) with a modified statistical average, which we call bipartite OTOCs, for general quantum systems in thermal equilibrium. The difference between the bipartite and physical OTOCs defined by the usual statistical average is quantified by a measure of quantum fluctuations known as the Wigner-Yanase skew information. Within this difference, the theorem describes a universal relation between chaotic behavior in quantum systems and a nonlinear-response function that involves a time-reversed process. We show that the theorem can be generalized to higher-order n -partite OTOCs as well as in the form of generalized covariance.
Entanglement dynamics of a pure bipartite system in dissipative environments
Energy Technology Data Exchange (ETDEWEB)
Tahira, Rabia; Ikram, Manzoor; Azim, Tasnim; Suhail Zubairy, M [Centre for Quantum Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan)
2008-10-28
We investigate the phenomenon of sudden death of entanglement in a bipartite system subjected to dissipative environments with arbitrary initial pure entangled state between two atoms. We find that in a vacuum reservoir the presence of the state where both atoms are in excited states is a necessary condition for the sudden death of entanglement. Otherwise entanglement remains for an infinite time and decays asymptotically with the decay of individual qubits. For pure 2-qubit entangled states in a thermal environment, we observe that the sudden death of entanglement always happens. The sudden death time of the entangled states is related to the temperature of the reservoir and the initial preparation of the entangled states.
Entanglement dynamics of a pure bipartite system in dissipative environments
International Nuclear Information System (INIS)
Tahira, Rabia; Ikram, Manzoor; Azim, Tasnim; Suhail Zubairy, M
2008-01-01
We investigate the phenomenon of sudden death of entanglement in a bipartite system subjected to dissipative environments with arbitrary initial pure entangled state between two atoms. We find that in a vacuum reservoir the presence of the state where both atoms are in excited states is a necessary condition for the sudden death of entanglement. Otherwise entanglement remains for an infinite time and decays asymptotically with the decay of individual qubits. For pure 2-qubit entangled states in a thermal environment, we observe that the sudden death of entanglement always happens. The sudden death time of the entangled states is related to the temperature of the reservoir and the initial preparation of the entangled states.
Coherent suppression of quasiparticle dissipation in a superconducting artificial atom
Energy Technology Data Exchange (ETDEWEB)
Pop, Ioan [Physikalisches Institut, Karlsruhe Institute of Technology, 76131 Karlsruhe (Germany); Department of Applied Physics, Yale University, New Haven, CT 06520 (United States)
2016-07-01
We demonstrate immunity to quasiparticle dissipation in a Josephson junction. At the foundation of this protection rests a prediction by Brian Josephson from fifty years ago: the particle-hole interference of superconducting quasiparticles when tunneling across a Josephson junction. The junction under study is the central element of a fluxonium artificial atom, which we place in an extremely low loss environment and measure using radio-frequency dispersive techniques. Furthermore, by using a quantum limited amplifier (a Josephson Parametric Converter) we can observe quantum jumps between the 0 and 1 states of the qubit in thermal equilibrium with the environment. The distribution of the times in-between the quantum jumps reveals quantitative information about the population and dynamics of quasiparticles. The data is entirely consistent with the hypothesis that our system is sensitive to single quasiparticle excitations, which opens new perspectives for quasiparticle monitoring in low temperature devices.
Cold collisions in dissipative optical lattices
International Nuclear Information System (INIS)
Piilo, J; Suominen, K-A
2005-01-01
The invention of laser cooling methods for neutral atoms allows optical and magnetic trapping of cold atomic clouds in the temperature regime below 1 mK. In the past, light-assisted cold collisions between laser cooled atoms have been widely studied in magneto-optical atom traps (MOTs). We describe here theoretical studies of dynamical interactions, specifically cold collisions, between atoms trapped in near-resonant, dissipative optical lattices. The extension of collision studies to the regime of optical lattices introduces several complicating factors. For the lattice studies, one has to account for the internal substates of atoms, position-dependent matter-light coupling, and position-dependent couplings between the atoms, in addition to the spontaneous decay of electronically excited atomic states. The developed one-dimensional quantum-mechanical model combines atomic cooling and collision dynamics in a single framework. The model is based on Monte Carlo wavefunction simulations and is applied when the lattice-creating lasers have frequencies both below (red-detuned lattice) and above (blue-detuned lattice) the atomic resonance frequency. It turns out that the radiative heating mechanism affects the dynamics of atomic cloud in a red-detuned lattice in a way that is not directly expected from the MOT studies. The optical lattice and position-dependent light-matter coupling introduces selectivity of collision partners. The atoms which are most mobile and energetic are strongly favoured to participate in collisions, and are more often ejected from the lattice, than the slow ones in the laser parameter region selected for study. Consequently, the atoms remaining in the lattice have a smaller average kinetic energy per atom than in the case of non-interacting atoms. For blue-detuned lattices, we study how optical shielding emerges as a natural part of the lattice and look for ways to optimize the effect. We find that the cooling and shielding dynamics do not mix
Universality in driven-dissipative quantum many-body systems
International Nuclear Information System (INIS)
Sieberer, L.M.
2015-01-01
Recent experimental investigations of condensation phenomena in driven-dissipative quantum many-body systems raise the question of what kind of novel universal behavior can emerge under non-equilibrium conditions. We explore various aspects of universality in this context. Our results are of relevance for a variety of open quantum systems on the interface of quantum optics and condensed matter physics, ranging from exciton-polariton condensates to cold atomic gases. In Part I we characterize the dynamical critical behavior at the Bose-Einstein condensation phase transition in driven open quantum systems in three spatial dimensions. Although thermodynamic equilibrium conditions are emergent at low frequencies, the approach to this thermalized low-frequency regime is described by a critical exponent which is specific to the non-equilibrium transition, and places the latter beyond the standard classification of equilibrium dynamical critical behavior. Our theoretical approach is based on the functional renormalization group within the framework of Keldysh non-equilibrium field theory, which is equivalent to a microscopic description of the open system dynamics in terms of a many-body quantum master equation. Universal behavior in the coherence properties of driven-dissipative condensates in reduced dimensions is investigated in Part II. We show that driven two-dimensional Bose systems cannot exhibit algebraic order as in thermodynamic equilibrium, unless they are sufficiently anisotropic. However, we find evidence that even isotropic systems may have a finite superfluidity fraction. In one-dimensional systems, non-equilibrium conditions are traceable in the behavior of the autocorrelation function. We obtain these results by mapping the long-wavelength condensate dynamics onto the Kardar-Parisi-Zhang equation. In Part III we show that systems in thermodynamic equilibrium have a specific symmetry, which makes them distinct from generic driven open systems. The novel
Peng, Bo; Li, Youqian; Ding, Shiyong; Yang, Jun
2017-10-15
The study aims to elucidate the effects of trehalose on the mechanical, thermal, and rheological properties of wheat flour dough and water distribution in bread. Texture profile analysis, DSC, farinograph, extensograph, and frequency sweep were applied in dough. The results from SEM revealed that the gluten film became less notable with the presence of trehalose. The kinetics of staling process, low-field 1 H NMR, and water-binding capacity were employed to characterize physicochemical properties of bread. Trehalose decreased the staling rate constant k, indicating an inhibitory effect on firming process in bread. Trehalose had the ability to retain water by hindering the interaction among water molecules, gluten and starch, thus relatively increasing the immobility of the part of water represented by T 22 in low-field 1 H NMR tests. Trehalose restricted water mobilization during storage, resulting in a better water-holding capacity. Our findings reveal that trehalose could be an improver in dough and bread-making performance, as well as an antistaling agent in bread. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lee, Hyunjung; Mayer, Helmut
2018-03-01
Numerical simulations based on the ENVI-met model were carried out for an E-W street canyon in the city of Stuttgart (Southwest Germany) to analyse the effect of increased albedo of building walls on outdoor human thermal comfort. It was quantified by air temperature (T a ), mean radiant temperature (T mrt ) and physiologically equivalent temperature (PET). The simulations were conducted on 4 August 2003 as a heat wave day that represents a typical scenario for future summer weather in Central Europe. The simulation results presented for 13 CET and averaged over the period 10-16 CET are focused on pedestrians on both sidewalks. For the initial situation, i.e. albedo of 0.2, human heat stress indicated by mean PET is by 26% lower on the N-facing than on the S-facing sidewalk, while this reduction amounts to 42% for mean T mrt . Mean T a does not show any spatial differentiation. The systematic albedo increment by 0.2 from 0.2 to 0.8 leads to a linear increase of outdoor human heat stress in terms of T mrt and PET. For both variables, this increase is more pronounced on the N-facing than on the S-facing sidewalk. Mean relative T a shows the tendency of a minimal increase with rising albedo. The results were achieved for the usual standardised human-biometeorological reference person. Its substitution by two other types of male and female pedestrians, respectively, which are statistically characteristic of human conditions in Germany, does not reveal any significant change in the results.
Storage functions for dissipative linear systems are quadratic state functions
Trentelman, Harry L.; Willems, Jan C.
1997-01-01
This paper deals with dissipative dynamical systems. Dissipative dynamical systems can be used as models for physical phenomena in which energy exchange with their environment plays a role. In a dissipative dynamical system, the book-keeping of energy is done via the supply rate and a storage
Dissipation and the relaxation to equilibrium
International Nuclear Information System (INIS)
Evans, Denis J; Williams, Stephen R; Searles, Debra J
2009-01-01
Using the recently derived dissipation theorem and a corollary of the transient fluctuation theorem (TFT), namely the second-law inequality, we derive the unique time independent, equilibrium phase space distribution function for an ergodic Hamiltonian system in contact with a remote heat bath. We prove under very general conditions that any deviation from this equilibrium distribution breaks the time independence of the distribution. Provided temporal correlations decay, we show that any nonequilibrium distribution that is an even function of the momenta eventually relaxes (not necessarily monotonically) to the equilibrium distribution. Finally we prove that the negative logarithm of the microscopic partition function is equal to the thermodynamic Helmholtz free energy divided by the thermodynamic temperature and Boltzmann's constant. Our results complement and extend the findings of modern ergodic theory and show the importance of dissipation in the process of relaxation towards equilibrium
Dynamical properties of dissipative XYZ Heisenberg lattices
Rota, R.; Minganti, F.; Biella, A.; Ciuti, C.
2018-04-01
We study dynamical properties of dissipative XYZ Heisenberg lattices where anisotropic spin-spin coupling competes with local incoherent spin flip processes. In particular, we explore a region of the parameter space where dissipative magnetic phase transitions for the steady state have been recently predicted by mean-field theories and exact numerical methods. We investigate the asymptotic decay rate towards the steady state both in 1D (up to the thermodynamical limit) and in finite-size 2D lattices, showing that critical dynamics does not occur in 1D, but it can emerge in 2D. We also analyze the behavior of individual homodyne quantum trajectories, which reveal the nature of the transition.
Patterns and Interfaces in Dissipative Dynamics
Pismen, L.M
2006-01-01
Spontaneous pattern formation in nonlinear dissipative systems far from equilibrium is a paradigmatic case of emergent behaviour associated with complex systems. It is encountered in a great variety of settings, both in nature and technology, and has numerous applications ranging from nonlinear optics through solid and fluid mechanics, physical chemistry and chemical engineering to biology. Nature creates its variety of forms through spontaneous pattern formation and self-assembly, and this strategy is likely to be imitated by future biomorphic technologies. This book is a first-hand account by one of the leading players in this field, which gives in-depth descriptions of analytical methods elucidating the complex evolution of nonlinear dissipative systems, and brings the reader to the forefront of current research. The introductory chapter on the theory of dynamical systems is written with a view to applications of its powerful methods to spatial and spatio-temporal patterns. It is followed by two chapters t...
Energy balance for a dissipative quantum system
International Nuclear Information System (INIS)
Kumar, Jishad
2014-01-01
The role of random force in maintaining equilibrium in a dissipative quantum system is studied here. We compute the instantaneous power supplied by the fluctuating (random) force, which provides information about the work done by the random force on the quantum subsystem of interest. The quantum Langevin equation formalism is used here to verify that, at equilibrium, the work done by the fluctuating force balances the energy lost by the quantum subsystem to the heat bath. The quantum subsystem we choose to couple to the heat bath is the charged oscillator in a magnetic field. We perform the calculations using the Drude regularized spectral density of bath oscillators instead of using a strict ohmic spectral density that gives memoryless damping. We also discuss the energy balance for our dissipative quantum system and in this regard it is to be understood that the physical system is the charged magneto-oscillator coupled to the heat bath, not the uncoupled charged magneto-oscillator. (paper)
Non-dissipative effects in nonequilibrium systems
Maes, Christian
2018-01-01
This book introduces and discusses both the fundamental aspects and the measurability of applications of time-symmetric kinetic quantities, outlining the features that constitute the non-dissipative branch of non-equilibrium physics. These specific features of non-equilibrium dynamics have largely been ignored in standard statistical mechanics texts. This introductory-level book offers novel material that does not take the traditional line of extending standard thermodynamics to the irreversible domain. It shows that although stationary dissipation is essentially equivalent with steady non-equilibrium and ubiquitous in complex phenomena, non-equilibrium is not determined solely by the time-antisymmetric sector of energy-entropy considerations. While this should not be very surprising, this book provides timely, simple reminders of the role of time-symmetric and kinetic aspects in the construction of non-equilibrium statistical mechanics.
On the Lagrangian description of dissipative systems
Martínez-Pérez, N. E.; Ramírez, C.
2018-03-01
We consider the Lagrangian formulation with duplicated variables of dissipative mechanical systems. The application of Noether theorem leads to physical observable quantities which are not conserved, like energy and angular momentum, and conserved quantities, like the Hamiltonian, that generate symmetry transformations and do not correspond to observables. We show that there are simple relations among the equations satisfied by these two types of quantities. In the case of the damped harmonic oscillator, from the quantities obtained by the Noether theorem follows the algebra of Feshbach and Tikochinsky. Furthermore, if we consider the whole dynamics, the degrees of freedom separate into a physical and an unphysical sector. We analyze several cases, with linear and nonlinear dissipative forces; the physical consistency of the solutions is ensured, observing that the unphysical sector has always the trivial solution.
Dissipative Boltzmann-Robertson-Walker cosmologies
International Nuclear Information System (INIS)
Hiscock, W.A.; Salmonson, J.
1991-01-01
The equations governing a flat Robertson-Walker cosmological model containing a dissipative Boltzmann gas are integrated numerically. The bulk viscous stress is modeled using the Eckart and Israel-Stewart theories of dissipative relativistic fluids; the resulting cosmologies are compared and contrasted. The Eckart models are shown to always differ in a significant quantitative way from the Israel-Stewart models. It thus appears inappropriate to use the pathological (nonhyperbolic) Eckart theory for cosmological applications. For large bulk viscosities, both cosmological models approach asymptotic nonequilibrium states; in the Eckart model the total pressure is negative, while in the Israel-Stewart model the total pressure is asymptotically zero. The Eckart model also expands more rapidly than the Israel-Stewart models. These results suggest that ''bulk-viscous'' inflation may be an artifact of using a pathological fluid theory such as the Eckart theory
Mode-locking via dissipative Faraday instability.
Tarasov, Nikita; Perego, Auro M; Churkin, Dmitry V; Staliunas, Kestutis; Turitsyn, Sergei K
2016-08-09
Emergence of coherent structures and patterns at the nonlinear stage of modulation instability of a uniform state is an inherent feature of many biological, physical and engineering systems. There are several well-studied classical modulation instabilities, such as Benjamin-Feir, Turing and Faraday instability, which play a critical role in the self-organization of energy and matter in non-equilibrium physical, chemical and biological systems. Here we experimentally demonstrate the dissipative Faraday instability induced by spatially periodic zig-zag modulation of a dissipative parameter of the system-spectrally dependent losses-achieving generation of temporal patterns and high-harmonic mode-locking in a fibre laser. We demonstrate features of this instability that distinguish it from both the Benjamin-Feir and the purely dispersive Faraday instability. Our results open the possibilities for new designs of mode-locked lasers and can be extended to other fields of physics and engineering.
Astrophysical constraints on Planck scale dissipative phenomena.
Liberati, Stefano; Maccione, Luca
2014-04-18
The emergence of a classical spacetime from any quantum gravity model is still a subtle and only partially understood issue. If indeed spacetime is arising as some sort of large scale condensate of more fundamental objects, then it is natural to expect that matter, being a collective excitation of the spacetime constituents, will present modified kinematics at sufficiently high energies. We consider here the phenomenology of the dissipative effects necessarily arising in such a picture. Adopting dissipative hydrodynamics as a general framework for the description of the energy exchange between collective excitations and the spacetime fundamental degrees of freedom, we discuss how rates of energy loss for elementary particles can be derived from dispersion relations and used to provide strong constraints on the base of current astrophysical observations of high-energy particles.
Dissipation in graphene and nanotube resonators
Seoánez, C.; Guinea, F.; Castro Neto, A. H.
2007-09-01
Different damping mechanisms in graphene nanoresonators are studied: charges in the substrate, ohmic losses in the substrate and the graphene sheet, breaking and healing of surface bonds (Velcro effect), two level systems, attachment losses, and thermoelastic losses. We find that, for realistic structures and contrary to semiconductor resonators, dissipation is dominated by ohmic losses in the graphene layer and metallic gate. An extension of this study to carbon nanotube-based resonators is presented.
Dissipation in graphene and nanotube resonators
Seoanez, C.; Guinea, F.; Neto, A. H. Castro
2007-01-01
Different damping mechanisms in graphene nanoresonators are studied: charges in the substrate, ohmic losses in the substrate and the graphene sheet, breaking and healing of surface bonds (Velcro effect), two level systems, attachment losses, and thermoelastic losses. We find that, for realistic structures and contrary to semiconductor resonators, dissipation is dominated by ohmic losses in the graphene layer and metallic gate. An extension of this study to carbon nanotube-based resonators is ...
''Reduced'' magnetohydrodynamics and minimum dissipation rates
International Nuclear Information System (INIS)
Montgomery, D.
1992-01-01
It is demonstrated that all solutions of the equations of ''reduced'' magnetohydrodynamics approach a uniform-current, zero-flow state for long times, given a constant wall electric field, uniform scalar viscosity and resistivity, and uniform mass density. This state is the state of minimum energy dissipation rate for these boundary conditions. No steady-state turbulence is possible. The result contrasts sharply with results for full three-dimensional magnetohydrodynamics before the reduction occurs
On local Hamiltonians and dissipative systems
Energy Technology Data Exchange (ETDEWEB)
Castagnino, M. [CONICET-Institutos de Fisica Rosario y de Astronomia y Fisica del Espacio Casilla de Correos 67, Sucursal 28, 1428, Buenos Aires (Argentina); Gadella, M. [Facultad de Ciencias Exactas, Ingenieria y Agrimensura UNR, Rosario (Argentina) and Departamento de Fisica Teorica, Facultad de Ciencias c. Real de Burgos, s.n., 47011 Valladolid (Spain)]. E-mail: manuelgadella@yahoo.com.ar; Lara, L.P. [Facultad de Ciencias Exactas, Ingenieria y Agrimensura UNR, Rosario (Argentina)
2006-11-15
We study a type of one-dimensional dynamical systems on the corresponding two-dimensional phase space. By using arguments related to the existence of integrating factors for Pfaff equations, we show that some one-dimensional non-Hamiltonian systems like dissipative systems, admit a Hamiltonian description by sectors on the phase plane. This picture is not uniquely defined and is coordinate dependent. A simple example is exhaustively discussed. The method, is not always applicable to systems with higher dimensions.
Dissipation and decoherence in Brownian motion
Energy Technology Data Exchange (ETDEWEB)
Bellomo, Bruno [Dipartimento di Scienze Fisiche ed Astronomiche dell' Universita di Palermo, Via Archirafi, 36, 90123 Palermo (Italy); Barnett, Stephen M [Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Jeffers, John [Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom)
2007-05-15
We consider the evolution of a Brownian particle described by a measurement-based master equation. We derive the solution to this equation for general initial conditions and apply it to a Gaussian initial state. We analyse the effects of the diffusive terms, present in the master equation, and describe how these modify uncertainties and coherence length. This allows us to model dissipation and decoherence in quantum Brownian motion.
Dissipation element analysis of turbulent scalar fields
International Nuclear Information System (INIS)
Wang Lipo; Peters, Norbert
2008-01-01
Dissipation element analysis is a new approach for studying turbulent scalar fields. Gradient trajectories starting from each material point in a scalar field Φ'(x-vector,t) in ascending directions will inevitably reach a maximal and a minimal point. The ensemble of material points sharing the same pair ending points is named a dissipation element. Dissipation elements can be parameterized by the length scale l and the scalar difference Δφ ', which are defined as the straight line connecting the two extremal points and the scalar difference at these points, respectively. The decomposition of a turbulent field into dissipation elements is space-filling. This allows us to reconstruct certain statistical quantities of fine scale turbulence which cannot be obtained otherwise. The marginal probability density function (PDF) of the length scale distribution based on a Poisson random cutting-reconnection process shows satisfactory agreement with the direct numerical simulation (DNS) results. In order to obtain the further information that is needed for the modeling of scalar mixing in turbulence, such as the marginal PDF of the length of elements and all conditional moments as well as their scaling exponents, there is a need to model the joint PDF of l and Δφ ' as well. A compensation-defect model is put forward in this work to show the dependence of Δφ ' on l. The agreement between the model prediction and DNS results is satisfactory, which may provide another explanation of the Kolmogorov scaling and help to improve turbulent mixing models. Furthermore, intermittency and cliff structure can also be related to and explained from the joint PDF.
Dissipation of glyphosate from grapevine soils in Sonora, Mexico
Directory of Open Access Journals (Sweden)
Norma J. Salazar López
2016-10-01
Full Text Available Grapevine is one of the important crops in Sonora, due to revenue generation from its export to foreign countries. Among the most widely used herbicides for this crop is glyphosate, which is considered moderately toxic and persistent. The present research evaluates the dissipation of glyphosate in grapevine planted soil at three depths (5, 30 and 60 cm. Sampling was carried out before glyphosate application, and 5, 10, 18, 27, and 65 days after. Glyphosate was extracted from soil samples using ammonium hydroxide. The derivate extracts were partitioned with dichloromethane and analyzed using gas chromatography with pulsed flame photometric detector (PFPD. The results showed that average glyphosate residues are significantly greater at 5 cm (0.09 mg kg-1 than the other depths (30 and 60 cm, having a difference of 0.078 mg kg-1 between them (P < 0.03. Glyphosate concentration time profiles were similar; it reached maximum soil concentration in a range of 10 to 18 days after application. The half-life of glyphosate in soil has an average of 39 days at all depths. Our data suggests that the release in soil of glyphosate applied to weeds delays its transference to soil by 14 days, and extends residue half life to 55 days after application. These results could be the basis for further research, including more environmental parameters that could affect the dissipation or degradation process in soil.
Crises in a dissipative bouncing ball model
Energy Technology Data Exchange (ETDEWEB)
Livorati, André L.P., E-mail: livorati@usp.br [Departamento de Física, UNESP, Universidade Estadual Paulista, Av. 24A, 1515, Bela Vista, 13506-900, Rio Claro, SP (Brazil); School of Mathematics, University of Bristol, Bristol, BS8 1TW (United Kingdom); Instituto de Física, IFUSP, Universidade de São Paulo, USP, Rua do Matão, Tr.R 187, Cidade Universitária, 05314-970, São Paulo, SP (Brazil); Caldas, Iberê L. [Instituto de Física, IFUSP, Universidade de São Paulo, USP, Rua do Matão, Tr.R 187, Cidade Universitária, 05314-970, São Paulo, SP (Brazil); Dettmann, Carl P. [School of Mathematics, University of Bristol, Bristol, BS8 1TW (United Kingdom); Leonel, Edson D. [Departamento de Física, UNESP, Universidade Estadual Paulista, Av. 24A, 1515, Bela Vista, 13506-900, Rio Claro, SP (Brazil)
2015-11-06
Highlights: • We studied a dissipative bouncing ball dynamics. • A two-dimensional nonlinear mapping describes the dynamics. • Crises between attractors and its manifolds were characterized. • A new physical crisis between vibrating platform and an attractor was characterized. • The existence of a ‘robust’ chaotic attractor was set. - Abstract: The dynamics of a bouncing ball model under the influence of dissipation is investigated by using a two-dimensional nonlinear mapping. When high dissipation is considered, the dynamics evolves to different attractors. The evolution of the basins of the attracting fixed points is characterized, as we vary the control parameters. Crises between the attractors and their boundaries are observed. We found that the multiple attractors are intertwined, and when the boundary crisis between their stable and unstable manifolds occurs, it creates a successive mechanism of destruction for all attractors originated by the sinks. Also, a physical impact crisis is described, an important mechanism in the reduction of the number of attractors.
Dissipation range turbulent cascades in plasmas
International Nuclear Information System (INIS)
Terry, P. W.; Almagri, A. F.; Forest, C. B.; Nornberg, M. D.; Rahbarnia, K.; Sarff, J. S.; Fiksel, G.; Hatch, D. R.; Jenko, F.; Prager, S. C.; Ren, Y.
2012-01-01
Dissipation range cascades in plasma turbulence are described and spectra are formulated from the scaled attenuation in wavenumber space of the spectral energy transfer rate. This yields spectra characterized by the product of a power law and exponential fall-off, applicable to all scales. Spectral indices of the power law and exponential fall-off depend on the scaling of the dissipation, the strength of the nonlinearity, and nonlocal effects when dissipation rates of multiple fluctuation fields are different. The theory is used to derive spectra for MHD turbulence with magnetic Prandtl number greater than unity, extending previous work. The theory is also applied to generic plasma turbulence by considering the spectrum from damping with arbitrary wavenumber scaling. The latter is relevant to ion temperature gradient turbulence modeled by gyrokinetics. The spectrum in this case has an exponential component that becomes weaker at small scale, giving a power law asymptotically. Results from the theory are compared to three very different types of turbulence. These include the magnetic plasma turbulence of the Madison Symmetric Torus, the MHD turbulence of liquid metal in the Madison Dynamo Experiment, and gyrokinetic simulation of ion temperature gradient turbulence.
Critical behavior in earthquake energy dissipation
Wanliss, James; Muñoz, Víctor; Pastén, Denisse; Toledo, Benjamín; Valdivia, Juan Alejandro
2017-09-01
We explore bursty multiscale energy dissipation from earthquakes flanked by latitudes 29° S and 35.5° S, and longitudes 69.501° W and 73.944° W (in the Chilean central zone). Our work compares the predictions of a theory of nonequilibrium phase transitions with nonstandard statistical signatures of earthquake complex scaling behaviors. For temporal scales less than 84 hours, time development of earthquake radiated energy activity follows an algebraic arrangement consistent with estimates from the theory of nonequilibrium phase transitions. There are no characteristic scales for probability distributions of sizes and lifetimes of the activity bursts in the scaling region. The power-law exponents describing the probability distributions suggest that the main energy dissipation takes place due to largest bursts of activity, such as major earthquakes, as opposed to smaller activations which contribute less significantly though they have greater relative occurrence. The results obtained provide statistical evidence that earthquake energy dissipation mechanisms are essentially "scale-free", displaying statistical and dynamical self-similarity. Our results provide some evidence that earthquake radiated energy and directed percolation belong to a similar universality class.
Relativistic electrodynamics of dissipative elastic media
International Nuclear Information System (INIS)
Kranys, M.
1980-01-01
A phenomenological general relativistic electrodynamics is proposed for a dissipative elastic solid which is polarizable and magnetizable and whose governing equations form a hyperbolic system. Non-stationary transport equations are proposed for dissipative fluxes (and constitutive equations of electrodynamics) containing new cross-effect terms, as required for compatibility with an entropy principle expressed by a new balance equation (including a new Gibbs equation). The dynamic equations are deduced from the unified Minkowski-Abraham-Eckart energy-momentum tensor. The theory, formed by a set of 29 (reducible to 23) partial differential equations (in special relativity) governing the material behaviour of the system characterized by generalizing the constitutive equations of quasineutral media, together with Maxwell's equations, may be referred to as the electrodynamics of dissipative elastic media (or fluid). The proposed transport laws for polarization and magnetization generalize the well-known Debye law for relaxation and show the influence of shear and bulk viscosity on polarization and magentization. Besides the form of the entropy function, the free energy function in the non-stationary regime is also formulated. (auth)
Correlated Photon Dynamics in Dissipative Rydberg Media
Zeuthen, Emil; Gullans, Michael J.; Maghrebi, Mohammad F.; Gorshkov, Alexey V.
2017-07-01
Rydberg blockade physics in optically dense atomic media under the conditions of electromagnetically induced transparency (EIT) leads to strong dissipative interactions between single photons. We introduce a new approach to analyzing this challenging many-body problem in the limit of a large optical depth per blockade radius. In our approach, we separate the single-polariton EIT physics from Rydberg-Rydberg interactions in a serialized manner while using a hard-sphere model for the latter, thus capturing the dualistic particle-wave nature of light as it manifests itself in dissipative Rydberg-EIT media. Using this approach, we analyze the saturation behavior of the transmission through one-dimensional Rydberg-EIT media in the regime of nonperturbative dissipative interactions relevant to current experiments. Our model is able to capture the many-body dynamics of bright, coherent pulses through these strongly interacting media. We compare our model with available experimental data in this regime and find good agreement. We also analyze a scheme for generating regular trains of single photons from continuous-wave input and derive its scaling behavior in the presence of imperfect single-photon EIT.
Low Energy Dissipation Nano Device Research
Yu, Jenny
2015-03-01
The development of research on energy dissipation has been rapid in energy efficient area. Nano-material power FET is operated as an RF power amplifier, the transport is ballistic, noise is limited and power dissipation is minimized. The goal is Green-save energy by developing the Graphene and carbon nantube microwave and high performance devices. Higher performing RF amplifiers can have multiple impacts on broadly field, for example communication equipment, (such as mobile phone and RADAR); higher power density and lower power dissipation will improve spectral efficiency which translates into higher system level bandwidth and capacity for communications equipment. Thus, fundamental studies of power handling capabilities of new RF (nano)technologies can have broad, sweeping impact. Because it is critical to maximizing the power handling ability of grephene and carbon nanotube FET, the initial task focuses on measuring and understanding the mechanism of electrical breakdown. We aim specifically to determine how the breakdown voltage in graphene and nanotubes is related to the source-drain spacing, electrode material and thickness, and substrate, and thus develop reliable statistics on the breakdown mechanism and probability.
Dissipative effects in the beam-beam interaction of intersecting storage rings
International Nuclear Information System (INIS)
Ford, J.; Vivaldi, F.
1982-01-01
This proposal seeks continuing support for an ongoing research investigation of various dynamical instabilities which arise in high energy intersecting storage rings due to the beam-beam interaction. Although the dissipative effect of radiation in beam-beam machines is anticipated to be a dominant feature affecting stability in the dynamics of colliding beams of heavy particles, almost nothing is known regarding the stability problem in many-dimensional dissipative systems. The work proposed here will extend the earlier computations on weak instabilities in many-dimensional beam-beam models to include the effect of dissipation. The object of this research is to obtain conditions for global beam stability over long time scales as a function of the machine parameters
Dissipative effects in fission investigated with proton-on-lead reactions
Directory of Open Access Journals (Sweden)
Rodríguez-Sánchez J. L.
2016-01-01
Full Text Available The complete kinematic measurement of the two fission fragments permitted us to investigate dissipative effects at large deformations, between the saddle-point and the corresponding scission configurations. Up to now, this kind of study has only been performed with fusionfission reactions using a limited number of observables, such as the mass distribution of the fission fragments or the neutron multiplicities. However, the large angular momenta gained by the compound nucleus could affect the conclusions drawn from such experiments. In this work, the use of spallation reactions, where the fissioning systems are produced with low angular momentum, small deformations and high excitation energies, favors the study of dissipation, and allowed us to define new observables, such as postscission neutron multiplicities and the neutron excess of the final fission fragments as a function of the atomic number of the fissioning system. These new observables are used to investigate the dissipation at large deformations.
Imbe, H; Kimura, A; Donishi, T; Kaneoke, Y
2014-02-14
Stress affects brain activity and promotes long-term changes in multiple neural systems. Exposure to stressors causes substantial effects on the perception and response to pain. In several animal models, chronic stress produces lasting hyperalgesia. The insular (IC) and anterior cingulate cortices (ACC) are the regions exhibiting most reliable pain-related activity. And the IC and ACC play an important role in pain modulation via the descending pain modulatory system. In the present study we examined the expression of phospho-cAMP response element-binding protein (pCREB) and c-Fos in the IC and ACC after forced swim stress (FS) and complete Freund's adjuvant (CFA) injection to clarify changes in the cerebral cortices that affect the activity of the descending pain modulatory system in the rats with stress-induced hyperalgesia. FS (day 1, 10min; days 2-3, 20min) induced an increase in the expression of pCREB and c-Fos in the anterior IC (AIC). CFA injection into the hindpaw after the FS shows significantly enhanced thermal hyperalgesia and induced a decrease in the expression of c-Fos in the AIC and the posterior IC (PIC). Quantitative image analysis showed that the numbers of c-Fos-immunoreactive neurons in the left AIC and PIC were significantly lower in the FS+CFA group (L AIC, 95.9±6.8; L PIC, 181.9±23.1) than those in the naive group (L AIC, 151.1±19.3, pCFA-induced thermal hyperalgesia through dysfunction of the descending pain modulatory system. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.
Dissipative quantum dynamics and nonlinear sigma-model
International Nuclear Information System (INIS)
Tarasov, V.E.
1992-01-01
Sedov variational principle which is the generalization of the least action principle for the dissipative and irreversible processes and the classical dissipative mechanics in the phase space is considered. Quantum dynamics for the dissipative and irreversible processes is constructed. As an example of the dissipative quantum theory the nonlinear two-dimensional sigma-model is considered. The conformal anomaly of the energy momentum tensor trace for closed bosonic string on the affine-metric manifold is investigated. The two-loop metric beta-function for nonlinear dissipative sigma-model was calculated. The results are compared with the ultraviolet two-loop conterterms for affine-metric sigma model. 71 refs
Energy Technology Data Exchange (ETDEWEB)
Ham, Junhyuk; Choi, Kyoung Joon; Kim, Ji Hyun [UNIST, Ulsan (Korea, Republic of)
2016-10-15
Dissimilar metal weld (DMW), consisting of Alloy 600, Alloy 182, and A508 Gr.3, has been widely used as a joining material of the reactor pressure vessel penetration nozzle and the steam generator tubing for pressurized water reactors (PWR) because of its good mechanical strength, thermal conductivity, and corrosion resistance. Residual tensile stress is mainly nominated as a cause of SCC in light water reactors by IAEA report. So, to relax the residual stress, post-weld heat treatment is required after manufacturing process such as welding. However, thermal treatment has a great effect on the microstructure and the chromium depletion profile on Alloy 600, so called sensitization. By this reason, HAZ on Alloy 600 is critical to crack. According to G.A. Young et al., Crack growth rates (CGR) in the Alloy 600 HAZ were about 30 times faster than those in the Alloy 600 base metal tested under the same conditions. And according to Z.P. Lu et al., CGR in the Alloy 600 HAZ can be more than 20 times higher than that in its base metal. There are some methods to measure the exact value of residual stress on the material surface. The most common way is X-ray diffraction method (XRD). The principle of XRD is based on lattice strains and depends on the changes in the spacing of the atomic planes in material. And there is a computer simulation method to estimate residual stress distribution which is called ANSYS. This study was conducted to investigate how thermal aging affects residual stress and residual strain distribution of Alloy 600 HAZ. Following conclusions can be drawn from this study. According to preceding researches and this study, both the relaxation of residual stress and the change of residual strain follow as similar way, spreading out from concentrated region. The result of Vickers micro-hardness tester shows that tensile residual stresses are distributed broadly on the material aged by 15 years. Therefore, HT400{sub Y}15 material is weakest state for PWSCC. The
Thermal diffusivity effect in opto-thermal skin measurements
International Nuclear Information System (INIS)
Xiao, P; Imhof, R E; Cui, Y; Ciortea, L I; Berg, E P
2010-01-01
We present our latest study on the thermal diffusivity effect in opto-thermal skin measurements. We discuss how thermal diffusivity affects the shape of opto-thermal signal, and how to measure thermal diffusivity in opto-thermal measurements of arbitrary sample surfaces. We also present a mathematical model for a thermally gradient material, and its corresponding opto-thermal signal. Finally, we show some of our latest experimental results of this thermal diffusivity effect study.
Inferring energy dissipation from violation of the fluctuation-dissipation theorem
Wang, Shou-Wen
2018-05-01
The Harada-Sasa equality elegantly connects the energy dissipation rate of a moving object with its measurable violation of the Fluctuation-Dissipation Theorem (FDT). Although proven for Langevin processes, its validity remains unclear for discrete Markov systems whose forward and backward transition rates respond asymmetrically to external perturbation. A typical example is a motor protein called kinesin. Here we show generally that the FDT violation persists surprisingly in the high-frequency limit due to the asymmetry, resulting in a divergent FDT violation integral and thus a complete breakdown of the Harada-Sasa equality. A renormalized FDT violation integral still well predicts the dissipation rate when each discrete transition produces a small entropy in the environment. Our study also suggests a way to infer this perturbation asymmetry based on the measurable high-frequency-limit FDT violation.
Cancer is an adaptation that selects in animals against energy dissipation.
Muller, Anthonie W J
2017-07-01
As cancer usually follows reproduction, it is generally assumed that cancer does not select. Graham has however argued that juvenile cancer, which precedes reproduction, could during evolution have implemented a "cancer selection" that resulted in novel traits that suppress this juvenile cancer; an example is protection against UV sunlight-induced cancer, required for the emergence of terrestrial animals from the sea. We modify the cancer selection mechanism to the posited "cancer adaptation" mechanism, in which juvenile mortality is enhanced through the diminished care received by juveniles from their (grand) parents when these suffer from cancer in old age. Moreover, it is posited that the cancer adaptation selects against germline "dissipative genes", genes that result in enhanced free energy dissipation. Cancer's progression is interpreted as a cascade at increasing scale of repeated amplification of energy dissipation, a cascade involving heat shock, the Warburg effect, the cytokine IL-6, tumours, and hypermetabolism. Disturbance of any physiological process must enhance energy dissipation if the animal remains functioning normally, what explains multicausality, why "everything gives you cancer". The hypothesis thus comprises two newly invoked partial processes-diminished (grand) parental care and dissipation amplification-and results in a "selection against enhanced energy dissipation" which gives during evolution the benefit of energy conservation. Due to this benefit, cancer would essentially be an adaptation, and not a genetic disease, as assumed in the "somatic mutation theory". Cancer by somatic mutations is only a side process. The cancer adaptation hypothesis is substantiated by (1) cancer's extancy, (2) the failure of the somatic mutation theory, (3) cancer's initiation by a high temperature, (4) the interpretation of cancer's progression as a thermal process, and (5) the interpretation of tumours as organs that implement thermogenesis. The hypothesis
Dynamics of dissipative systems and computational physics
International Nuclear Information System (INIS)
Adam, Gh.; Scutaru, H.; Ixaru, L.; Adam, S.; Rizea, M.; Stefanescu, E.; Mihalache, D.; Mazilu, D.; Crasovan, L.
2002-01-01
During the first year of research activity in the frame of this project there have been investigated two main topics: I. Dynamics of systems of fermions in complex dissipative media; II. Solitons with topologic charge in dissipative systems. An essential problem of the quantum information systems is the controllability and observability of the quantum states, generally described by Lindblad's master equation with phenomenological coefficients. In its usual form, this equation describes a decay of the mean-values, but not necessarily the expected decaying transitions. The basic and very difficult problem of a dissipative quantum theory is to project the evolution of the total system (the system of interest + the environment) on the space of the system of interest. In this case, one obtains a quantum master equation where the system evolution is described by two terms: 1) a Hamiltonian term for the processes with energy conservation, and 2) a non-Hamiltonian term with coefficients depending on the dissipative coupling. That means that a master equation is based on some approximations enabling the replacement of the operators of the dissipative environment with average value coefficients. It is often assumed that the evolution operators of the dissipative system define a semigroup, not a group as in the case of an isolated system. In this framework, Lindblad obtained a quantum master equation in agreement with all the quantum-mechanical principles. However, the Lindblad master equation was unable to secure a correct description of the decaying states. To do that, one has to take into account the transition operators between the system eigenstates with appropriate coefficients. Within this investigation, we have obtained an equation obeying to this requirement, giving the ρ(t) time derivative in terms of creation-annihilation operators of the single-particle states |i>, and λ ij , representing the dissipative coefficients, the microscopic expressions of which are
Viscous Dissipation and Heat Conduction in Binary Neutron-Star Mergers
Alford, Mark G.; Bovard, Luke; Hanauske, Matthias; Rezzolla, Luciano; Schwenzer, Kai
2018-01-01
Inferring the properties of dense matter is one of the most exciting prospects from the measurement of gravitational waves from neutron star mergers. However, it requires reliable numerical simulations that incorporate viscous dissipation and energy transport as these can play a significant role in the survival time of the post-merger object. We calculate time scales for typical forms of dissipation and find that thermal transport and shear viscosity will not be important unless neutrino trapping occurs, which requires temperatures above 10 MeV and gradients over length scales of 0.1 km or less. On the other hand, if direct-Urca processes remain suppressed, leaving modified-Urca processes to establish flavor equilibrium, then bulk viscous dissipation could provide significant damping to density oscillations right after merger. When comparing with data from state-of-the-art merger simulations, we find that the bulk viscosity takes values close to its resonant maximum in a typical merger, motivating a more careful assessment of the role of bulk viscous dissipation in the gravitational-wave signal from merging neutron stars.
Energy conversion and dissipation at dipolarization fronts: Theory, modeling and MMS observations
Sitnov, M. I.; Motoba, T.; Merkin, V. G.; Ohtani, S.; Cohen, I. J.; Mauk, B.; Vines, S. K.; Anderson, B. J.; Moore, T. E.; Torbert, R. B.; Giles, B. L.; Burch, J. L.
2017-12-01
Magnetic reconnection is one of the most important energy conversion mechanisms in space plasmas. In the classical picture it converts the energy of antiparallel magnetic fields into the kinetic and thermal energy of accelerated plasma particles in reconnection exhausts. It also involves energy dissipation near the X-line. This classical picture may be substantially modified in real space plasma configurations, such as the dayside magnetopause and the magnetotail. In particular, in the magnetotail the flows of accelerated particles may be strongly asymmetric along the tail with the domination of earthward flows. At the same time, strong energy conversion and even dissipation may occur away from the X-line, in particular, at dipolarization fronts. Here we present a theoretical picture of spontaneous magnetotail reconnection based on 3-D PIC simulations with the focus on plasma bulk flows, energy conversion and dissipation. This picture is compared with some observations from the MMS tail season. An important finding from these observations is that dipolarizations fronts may not only be regions of the total energy conversion with jE>0, but they may also be the sites of energy dissipation, both positive (jE'>0, E' is the electric field E in the system moving with one of the plasma species) and negative (jE'braking).
Viscous Dissipation and Heat Conduction in Binary Neutron-Star Mergers.
Alford, Mark G; Bovard, Luke; Hanauske, Matthias; Rezzolla, Luciano; Schwenzer, Kai
2018-01-26
Inferring the properties of dense matter is one of the most exciting prospects from the measurement of gravitational waves from neutron star mergers. However, it requires reliable numerical simulations that incorporate viscous dissipation and energy transport as these can play a significant role in the survival time of the post-merger object. We calculate time scales for typical forms of dissipation and find that thermal transport and shear viscosity will not be important unless neutrino trapping occurs, which requires temperatures above 10 MeV and gradients over length scales of 0.1 km or less. On the other hand, if direct-Urca processes remain suppressed, leaving modified-Urca processes to establish flavor equilibrium, then bulk viscous dissipation could provide significant damping to density oscillations right after merger. When comparing with data from state-of-the-art merger simulations, we find that the bulk viscosity takes values close to its resonant maximum in a typical merger, motivating a more careful assessment of the role of bulk viscous dissipation in the gravitational-wave signal from merging neutron stars.
Calorimetry Minisensor for the Localised Measurement of Surface Heat Dissipated from the Human Body.
Socorro, Fabiola; Rodríguez de Rivera, Pedro Jesús; Rodríguez de Rivera, Manuel
2016-11-06
We have developed a calorimetry sensor that can perform a local measurement of the surface heat dissipated from the human body. The operating principle is based on the law of conductive heat transfer: heat dissipated by the human body passes across a thermopile located between the individual and a thermostat. Body heat power is calculated from the signals measured by the thermopile and the amount of power dissipated across the thermostat in order to maintain a constant temperature. The first prototype we built had a detection area measuring 6 × 6 cm², while the second prototype, which is described herein, had a 2 × 2 cm² detection area. This new design offers three advantages over the initial one: (1) greater resolution and three times greater thermal sensitivity; (2) a twice as fast response; and (3) it can take measurements from smaller areas of the body. The sensor has a 5 mW resolution, but the uncertainty is greater, up to 15 mW, due to the measurement and calculation procedure. The order of magnitude of measurements made in healthy subjects ranged from 60 to 300 mW at a thermostat temperature of 28 °C and an ambient room temperature of 21 °C. The values measured by the sensor depend on the ambient temperature and the thermostat's temperature, while the power dissipated depends on the individual's metabolism and any physical and/or emotional activity.
Energy Technology Data Exchange (ETDEWEB)
Jawad, Abdul; Rani, Shamaila [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan); Hussain, Shahzad [Aspire College, Department of Mathematics, Hafizabad (Pakistan); Videla, Nelson [Pontificia Universidad Catolica de Valparaiso, Instituto de Fisica, Valparaiso (Chile)
2017-10-15
The warm inflation scenario in view of the modified Chaplygin gas is studied. We consider the inflationary expansion to be driven by a standard scalar field whose decay ratio Γ has a generic power-law dependence with the scalar field φ and the temperature of the thermal bath T. By assuming an exponential power-law dependence in the cosmic time for the scale factor a(t), corresponding to the intermediate inflation model, we solve the background and perturbative dynamics considering our model to evolve according to (1) weak dissipative regime and (2) strong dissipative regime. Specifically, we find explicit expressions for the dissipative coefficient, scalar potential, and the relevant inflationary observables like the scalar power spectrum, scalar spectral index, and tensor-to-scalar ratio. The free parameters characterizing our model are constrained by considering the essential condition for warm inflation, the conditions for the model evolves according to weak or strong dissipative regime, and the 2015 Planck results through the n{sub s}-r plane. (orig.)
Zhao, Jieliang; Huang, He; Yan, Shaoze
2017-03-01
Whether for insects or for aircrafts, landing is one of the indispensable links in the verification of airworthiness safety. The mechanisms by which insects achieve a fast and stable landing remain unclear. An intriguing example is provided by honeybees (Apis mellifera ligustica), which use the swinging motion of their abdomen to dissipate residual flying energy and to achieve a smooth, stable, and quick landing. By using a high-speed camera, we observed that touchdown is initiated by honeybees extending their front legs or antennae and then landing softly on a wall. After touchdown, they swing the rest of their bodies until all flying energy is dissipated. We suggested a simplified model with mass-spring dampers for the body of the honeybee and revealed the mechanism of flying energy transfer and dissipation in detail. Results demonstrate that body translation and abdomen swinging help honeybees dissipate residual flying energy and orchestrate smooth landings. The initial kinetic energy of flying is transformed into the kinetic energy of the abdomen's rotary movement. Then, the kinetic energy of rotary movement is converted into thermal energy during the swinging cycle. This strategy provides more insight into the mechanism of insect flying, which further inspires better design on aerial vehicle with better landing performance.
International Nuclear Information System (INIS)
Gritsenko, I.A.; Klokol, K.A.; Sokolov, S.S.; Sheshin, G.A.
2016-01-01
An experimental study is made of the drag coefficient, which is the characteristics of energy dissipation during oscillations of the tuning forks, immersed in liquid helium. The experiments were performed in the temperature range from 0.1 to 3.5 K covering both the range of a hydrodynamic flow, and the ballistic regime of transfer of thermal excitations of superfluid helium below 0.6 K. It is found that there is the frequency dependence of the drag coefficient in the hydrodynamic limit, when the main dissipation mechanism is the viscous friction of the fluid against the walls of the oscillating body at temperatures above 0.7 K. In this case, the drag coefficient is proportional to the square root of the frequency of oscillation, and its temperature dependence in He II is determined by the respective dependence of the normal component density of the normal component and the viscosity of the fluid. At lower temperatures, the dependence of drag coefficient on the frequency is not available, and the magnitude of the dissipative losses is determined only by the temperature dependence of the density of the normal component. At the same time in the entire range of temperatures value of dissipative losses depends on the geometry of the oscillating body.
Energy dissipation characteristics of sharp-edged orifice plate
Directory of Open Access Journals (Sweden)
Ai Wanzheng
2015-08-01
Full Text Available The energy loss coefficient, relating directly to the energy dissipation ratio, is an important index of this energy dissipater. In this article, this coefficient and its affecting parameters were analyzed by theoretical considerations, and their relationships were obtained by numerical simulations. It could be concluded that the energy loss coefficient of sharp-edged orifice plate and its backflow region length were mainly dominated by the contraction ratio of the orifice plate. Sharp-edged orifice plate’s energy loss coefficient and its backflow region length all increase slightly with the increase in its thickness. When Reynolds number is in the range of 9.00×104–10.3×106, Reynolds number has little impacts on energy loss coefficient and backflow region length. Two empirical expressions, relating to backflow region length and energy loss coefficient, respectively, were presented.
International Nuclear Information System (INIS)
Thang, Bui Hung; Trinh, Pham Van; Quang, Le Dinh; Khoi, Phan Hong; Minh, Phan Ngoc; Huong, Nguyen Thi
2014-01-01
Carbon nanotubes (CNTs) are some of the most valuable materials with high thermal conductivity. The thermal conductivity of individual multiwalled carbon nanotubes (MWCNTs) grown by using chemical vapor deposition is 600 ± 100 Wm -1 K -1 compared with the thermal conductivity 419 Wm -1 K -1 of Ag. Carbon-nanotube-based liquids - a new class of nanomaterials, have shown many interesting properties and distinctive features offering potential in heat dissipation applications for electronic devices, such as computer microprocessor, high power LED, etc. In this work, a multiwalled carbon-nanotube-based liquid was made of well-dispersed hydroxyl-functional multiwalled carbon nanotubes (MWCNT-OH) in ethylene glycol (EG)/distilled water (DW) solutions by using Tween-80 surfactant and an ultrasonication method. The concentration of MWCNT-OH in EG/DW solutions ranged from 0.1 to 1.2 gram/liter. The dispersion of the MWCNT-OH-based EG/DW solutions was evaluated by using a Zeta-Sizer analyzer. The MWCNT-OH-based EG/DW solutions were used as coolants in the liquid cooling system for the Intel Core i5 processor. The thermal dissipation efficiency and the thermal response of the system were evaluated by directly measuring the temperature of the micro-processor using the Core Temp software and the temperature sensors built inside the micro-processor. The results confirmed the advantages of CNTs in thermal dissipation systems for computer processors and other high-power electronic devices.
Dissipative motion perturbation theory and exact solutions
International Nuclear Information System (INIS)
Lodder, J.J.
1976-06-01
Dissipative motion of classical and quantum systems is described. In particular, attention is paid to systems coupled to the radiation field. A dissipative equation of motion for a particle in an arbitrary potential coupled to the radiation field is derived by means of perturbation theory. The usual divrgencies associated with the radiation field are eliminated by the application of a theory of generalized functions. This theory is developed as a subject in its own right and is presented independently. The introduction of classical zero-point energy makes the classical equa tion of motion for the phase density formally the same as its quantum counterpart. In particular, it is shown that the classical zero-point energy prevents the collapse of a classical H-atom and gives rise to a classical ground state. For systems with a quadratic Hamiltoian, the equation of motion can be solved exactly, even in the continuum limit for the radiation field, by means of the new generalized functions. Classically, the Fokker-Planck equation is found without any approximations, and quantum mechanically, the only approximation is the neglect of the change in the ground state caused by the interaction. The derivation is valid even for strong damping and arbitrarily short times. There is no transient time. For harmonic oscillators complete equivalence is shown to exist between quantum mechanics and classical mechanics with zero-point energy. A discussion of the derivation of the Pauli equation is given and perturbation theory is compared with the exact derivation. The exactly solvable models are used to calculate the Langevin force of the radiation field. The result is that the classical Langevin force is exactly delta-correlated, while the quantum Langevin force is not delta-correlated at all. The fluctuation-dissipation theorem is shown to be an exact consequence of the solution to the equations of motion
Non-Markovian dissipative quantum mechanics with stochastic trajectories
International Nuclear Information System (INIS)
Koch, Werner
2010-01-01
All fields of physics - be it nuclear, atomic and molecular, solid state, or optical - offer examples of systems which are strongly influenced by the environment of the actual system under investigation. The scope of what is called ''the environment'' may vary, i.e., how far from the system of interest an interaction between the two does persist. Typically, however, it is much larger than the open system itself. Hence, a fully quantum mechanical treatment of the combined system without approximations and without limitations of the type of system is currently out of reach. With the single assumption of the environment to consist of an internally thermalized set of infinitely many harmonic oscillators, the seminal work of Stockburger and Grabert [Chem. Phys., 268:249-256, 2001] introduced an open system description that captures the environmental influence by means of a stochastic driving of the reduced system. The resulting stochastic Liouville-von Neumann equation describes the full non-Markovian dynamics without explicit memory but instead accounts for it implicitly through the correlations of the complex-valued noise forces. The present thesis provides a first application of the Stockburger-Grabert stochastic Liouville-von Neumann equation to the computation of the dynamics of anharmonic, continuous open systems. In particular, it is demonstrated that trajectory based propagators allow for the construction of a numerically stable propagation scheme. With this approach it becomes possible to achieve the tremendous increase of the noise sample count necessary to stochastically converge the results when investigating such systems with continuous variables. After a test against available analytic results for the dissipative harmonic oscillator, the approach is subsequently applied to the analysis of two different realistic, physical systems. As a first example, the dynamics of a dissipative molecular oscillator is investigated. Long time propagation - until
Non-Markovian dissipative quantum mechanics with stochastic trajectories
Energy Technology Data Exchange (ETDEWEB)
Koch, Werner
2010-09-09
All fields of physics - be it nuclear, atomic and molecular, solid state, or optical - offer examples of systems which are strongly influenced by the environment of the actual system under investigation. The scope of what is called ''the environment'' may vary, i.e., how far from the system of interest an interaction between the two does persist. Typically, however, it is much larger than the open system itself. Hence, a fully quantum mechanical treatment of the combined system without approximations and without limitations of the type of system is currently out of reach. With the single assumption of the environment to consist of an internally thermalized set of infinitely many harmonic oscillators, the seminal work of Stockburger and Grabert [Chem. Phys., 268:249-256, 2001] introduced an open system description that captures the environmental influence by means of a stochastic driving of the reduced system. The resulting stochastic Liouville-von Neumann equation describes the full non-Markovian dynamics without explicit memory but instead accounts for it implicitly through the correlations of the complex-valued noise forces. The present thesis provides a first application of the Stockburger-Grabert stochastic Liouville-von Neumann equation to the computation of the dynamics of anharmonic, continuous open systems. In particular, it is demonstrated that trajectory based propagators allow for the construction of a numerically stable propagation scheme. With this approach it becomes possible to achieve the tremendous increase of the noise sample count necessary to stochastically converge the results when investigating such systems with continuous variables. After a test against available analytic results for the dissipative harmonic oscillator, the approach is subsequently applied to the analysis of two different realistic, physical systems. As a first example, the dynamics of a dissipative molecular oscillator is investigated. Long time
Alfven wave absorption in dissipative plasma
International Nuclear Information System (INIS)
Gavrikov, M B; Taiurskii, A A
2017-01-01
We consider nonlinear absorption of Alfven waves due to dissipative effects in plasma and relaxation of temperatures of electrons and ions. This study is based on an exact solution of the equations of two-fluid electromagnetic hydrodynamics (EMHD) of plasma. It is shown that in order to study the decay of Alfven waves, it suffices to examine the behavior of their amplitudes whose evolution is described by a system of ordinary differential equations (ODEs) obtained in this paper. On finite time intervals, the system of equations on the amplitudes is studied numerically, while asymptotic integration (the Hartman-Grobman theorem) is used to examine its large-time behavior. (paper)
Tunneling with dissipation in open quantum systems
International Nuclear Information System (INIS)
Adamyan, G.G.; Antonenko, N.V.; Scheid, W.
1997-01-01
Based on the general form of the master equation for open quantum systems the tunneling is considered. Using the path integral technique a simple closed form expression for the tunneling rate through a parabolic barrier is obtained. The tunneling in the open quantum systems strongly depends on the coupling with environment. We found the cases when the dissipation prohibits tunneling through the barrier but decreases the crossing of the barrier for the energies above the barrier. As a particular application, the case of decay from the metastable state is considered
Dissipative neutrino oscillations in randomly fluctuating matter
International Nuclear Information System (INIS)
Benatti, F.; Floreanini, R.
2005-01-01
The generalized dynamics describing the propagation of neutrinos in randomly fluctuating media is analyzed: It takes into account matter-induced, decoherence phenomena that go beyond the standard Mikheyev-Smirnov-Wolfenstein (MSW) effect. A widely adopted density fluctuation pattern is found to be physically untenable: A more general model needs to be instead considered, leading to flavor changing effective neutrino-matter interactions. They induce new, dissipative effects that modify the neutrino oscillation pattern in a way amenable to a direct experimental analysis
Dissipative neutrino oscillations in randomly fluctuating matter
Benatti, F.; Floreanini, R.
2005-01-01
The generalized dynamics describing the propagation of neutrinos in randomly fluctuating media is analyzed: It takes into account matter-induced, decoherence phenomena that go beyond the standard Mikheyev-Smirnov-Wolfenstein (MSW) effect. A widely adopted density fluctuation pattern is found to be physically untenable: A more general model needs to be instead considered, leading to flavor changing effective neutrino-matter interactions. They induce new, dissipative effects that modify the neutrino oscillation pattern in a way amenable to a direct experimental analysis.
Dissipative Structures At Laser-Solid Interactions
Nanai, Laszlo
1989-05-01
The questions which are discussed in this lecture refer to one of sections of laser-solid interactions, namely: to formation of different dissipative structures on the surface of metals and semiconductors when they are irradiated by intensive laser light in chemically active media (f.e.air). Some particular examples of the development at different spatial and time instabilities, periodic and stochastic structures, auto-wave processes are present-ed using testing materials vanadium metal and semiconducting V205 single crystals and light sources: cw and pulsed CO2 and YAG lasers.
Dissipative charged fluid in a magnetic field
Energy Technology Data Exchange (ETDEWEB)
Abbasi, Navid; Davody, Ali, E-mail: davody.phy@gmail.com
2016-05-10
We study the collective excitations in a dissipative charged fluid at zero chemical potential when an external magnetic field is present. While in the absence of magnetic field, four collective excitations appear in the fluid, we find five hydrodynamic modes here. This implies that the magnetic field splits the degeneracy between the transverse shear modes. Using linear response theory, we then compute the retarded response functions. In particular, it turns out that the correlation between charge and the energy fluctuations will no longer vanish, even at zero chemical potential. By use of the response functions, we also derive the relevant Kubo formulas for the transport coefficients.
Using AlN-Coated Heat Sink to Improve the Heat Dissipation of LED Packages
Directory of Open Access Journals (Sweden)
Jean Ming-Der
2016-01-01
Full Text Available This study optimizes aluminum nitride (AlN ceramics, in order to enhance the thermal performance of light-emitting diode (LED packages. AlN coatings are grown on copper/ aluminum substrates as a heat interface material, using an electrostatic spraying process. The effect of the deposition parameters on the coatings is determined. The thermal performance of AlN coated Cu/Al substrates is evaluated in terms of the heat dissipated and compared by measuring the LED case temperature. The structure and properties of the coating are also examined a scanning electron microscopy (SEM. In sum, the thermal performance of the LED is increased and good heat resistance characteristics are obtained. The results show that using AlN ceramic coating on a copper/aluminum substrate increases the thermal performance.
Investigation of Numerical Dissipation in Classical and Implicit Large Eddy Simulations
Directory of Open Access Journals (Sweden)
Moutassem El Rafei
2017-12-01
Full Text Available The quantitative measure of dissipative properties of different numerical schemes is crucial to computational methods in the field of aerospace applications. Therefore, the objective of the present study is to examine the resolving power of Monotonic Upwind Scheme for Conservation Laws (MUSCL scheme with three different slope limiters: one second-order and two third-order used within the framework of Implicit Large Eddy Simulations (ILES. The performance of the dynamic Smagorinsky subgrid-scale model used in the classical Large Eddy Simulation (LES approach is examined. The assessment of these schemes is of significant importance to understand the numerical dissipation that could affect the accuracy of the numerical solution. A modified equation analysis has been employed to the convective term of the fully-compressible Navier–Stokes equations to formulate an analytical expression of truncation error for the second-order upwind scheme. The contribution of second-order partial derivatives in the expression of truncation error showed that the effect of this numerical error could not be neglected compared to the total kinetic energy dissipation rate. Transitions from laminar to turbulent flow are visualized considering the inviscid Taylor–Green Vortex (TGV test-case. The evolution in time of volumetrically-averaged kinetic energy and kinetic energy dissipation rate have been monitored for all numerical schemes and all grid levels. The dissipation mechanism has been compared to Direct Numerical Simulation (DNS data found in the literature at different Reynolds numbers. We found that the resolving power and the symmetry breaking property are enhanced with finer grid resolutions. The production of vorticity has been observed in terms of enstrophy and effective viscosity. The instantaneous kinetic energy spectrum has been computed using a three-dimensional Fast Fourier Transform (FFT. All combinations of numerical methods produce a k − 4 spectrum
Low-Dissipation Thermosets Derived from Oligo(2,6-Dimethyl Phenylene Oxide-Containing Benzoxazines
Directory of Open Access Journals (Sweden)
Chien-Han Chen
2018-04-01
Full Text Available Poly(2,6-dimethyl phenyl oxide (PPO is known for its low dissipation factor. To achieve insulating materials with low dissipation factors for high-frequency communication applications, a telechelic oligomer-type benzoxazine (P-APPO and a main-chain type benzoxazine polymer (BPA-APPO were prepared from an amine end-capped oligo (2,6-dimethyl phenylene oxide (APPO. The APPO was prepared from a nucleophilic substitution of a phenol-end capped oligo (2,6-dimethyl phenylene oxide (a commercial product, SA 90 with fluoronitrobenzene, and followed by catalytic hydrogenation. After self-curing or curing with a dicyclopentadiene-phenol epoxy (HP 7200, thermosets with high-Tg and low-dissipation factor can be achieved. Furthermore, the resulting epoxy thermosets show better thermal and dielectric properties than those of epoxy thermoset cured from its precursor SA90, demonstrating it is a successful modification in simultaneously enhancing the thermal and dielectric properties.
Passarelli, G.; De Filippis, G.; Cataudella, V.; Lucignano, P.
2018-02-01
We investigate the quantum annealing of the ferromagnetic p -spin model in a dissipative environment (p =5 and p =7 ). This model, in the large-p limit, codifies Grover's algorithm for searching in an unsorted database [L. K. Grover, Proceedings of the 28th Annual ACM Symposium on Theory of Computing (ACM, New York, 1996), pp. 212-219]. The dissipative environment is described by a phonon bath in thermal equilibrium at finite temperature. The dynamics is studied in the framework of a Lindblad master equation for the reduced density matrix describing only the spins. Exploiting the symmetries of our model Hamiltonian, we can describe many spins and extrapolate expected trends for large N and p . While at weak system-bath coupling the dissipative environment has detrimental effects on the annealing results, we show that in the intermediate-coupling regime, the phonon bath seems to speed up the annealing at low temperatures. This improvement in the performance is likely not due to thermal fluctuation but rather arises from a correlated spin-bath state and persists even at zero temperature. This result may pave the way to a new scenario in which, by appropriately engineering the system-bath coupling, one may optimize quantum annealing performances below either the purely quantum or the classical limit.
Semiclassical evolution of dissipative Markovian systems
International Nuclear Information System (INIS)
Ozorio de Almeida, A M; Rios, P de M; Brodier, O
2009-01-01
A semiclassical approximation for an evolving density operator, driven by a 'closed' Hamiltonian operator and 'open' Markovian Lindblad operators, is obtained. The theory is based on the chord function, i.e. the Fourier transform of the Wigner function. It reduces to an exact solution of the Lindblad master equation if the Hamiltonian operator is a quadratic function and the Lindblad operators are linear functions of positions and momenta. Initially, the semiclassical formulae for the case of Hermitian Lindblad operators are reinterpreted in terms of a (real) double phase space, generated by an appropriate classical double Hamiltonian. An extra 'open' term is added to the double Hamiltonian by the non-Hermitian part of the Lindblad operators in the general case of dissipative Markovian evolution. The particular case of generic Hamiltonian operators, but linear dissipative Lindblad operators, is studied in more detail. A Liouville-type equivariance still holds for the corresponding classical evolution in double phase space, but the centre subspace, which supports the Wigner function, is compressed, along with expansion of its conjugate subspace, which supports the chord function. Decoherence narrows the relevant region of double phase space to the neighbourhood of a caustic for both the Wigner function and the chord function. This difficulty is avoided by a propagator in a mixed representation, so that a further 'small-chord' approximation leads to a simple generalization of the quadratic theory for evolving Wigner functions
Dissipative time-dependent quantum transport theory.
Zhang, Yu; Yam, Chi Yung; Chen, GuanHua
2013-04-28
A dissipative time-dependent quantum transport theory is developed to treat the transient current through molecular or nanoscopic devices in presence of electron-phonon interaction. The dissipation via phonon is taken into account by introducing a self-energy for the electron-phonon coupling in addition to the self-energy caused by the electrodes. Based on this, a numerical method is proposed. For practical implementation, the lowest order expansion is employed for the weak electron-phonon coupling case and the wide-band limit approximation is adopted for device and electrodes coupling. The corresponding hierarchical equation of motion is derived, which leads to an efficient and accurate time-dependent treatment of inelastic effect on transport for the weak electron-phonon interaction. The resulting method is applied to a one-level model system and a gold wire described by tight-binding model to demonstrate its validity and the importance of electron-phonon interaction for the quantum transport. As it is based on the effective single-electron model, the method can be readily extended to time-dependent density functional theory.
Hyperbolic theory of relativistic conformal dissipative fluids
Lehner, Luis; Reula, Oscar A.; Rubio, Marcelo E.
2018-01-01
We develop a complete description of the class of conformal relativistic dissipative fluids of divergence form, following the formalism described in [R. Geroch and L. Lindblom, Phys. Rev. D 41, 1855 (1990), 10.1103/PhysRevD.41.1855, S. Pennisi, Some considerations on a non linear approach to extended thermodynamics and in Proceedings of Symposium of Kinetic Theory and Extended Thermodynamics, Bologna, 1987.]. This type of theory is fully described in terms of evolution variables whose dynamics are governed by total divergence-type conservation laws. Specifically, we give a characterization of the whole family of conformal fluids in terms of a single master scalar function defined up to second-order corrections in dissipative effects, which we explicitly find in general form. This allows us to identify the equilibrium states of the theory and derive constitutive relations and a Fourier-like law for the corresponding first-order theory heat flux. Finally, we show that among this class of theories—and near equilibrium configurations—there exist symmetric hyperbolic ones, implying that for them one can define well-posed initial value problems.
Engineering dissipation with phononic spectral hole burning
Behunin, R. O.; Kharel, P.; Renninger, W. H.; Rakich, P. T.
2017-03-01
Optomechanics, nano-electromechanics, and integrated photonics have brought about a renaissance in phononic device physics and technology. Central to this advance are devices and materials supporting ultra-long-lived photonic and phononic excitations that enable novel regimes of classical and quantum dynamics based on tailorable photon-phonon coupling. Silica-based devices have been at the forefront of such innovations for their ability to support optical excitations persisting for nearly 1 billion cycles, and for their low optical nonlinearity. While acoustic phonon modes can persist for a similar number of cycles in crystalline solids at cryogenic temperatures, it has not been possible to achieve such performance in silica, as silica becomes acoustically opaque at low temperatures. We demonstrate that these intrinsic forms of phonon dissipation are greatly reduced (by >90%) by nonlinear saturation using continuous drive fields of disparate frequencies. The result is a form of steady-state phononic spectral hole burning that produces a wideband transparency window with optically generated phonon fields of modest (nW) powers. We developed a simple model that explains both dissipative and dispersive changes produced by phononic saturation. Our studies, conducted in a microscale device, represent an important step towards engineerable phonon dynamics on demand and the use of glasses as low-loss phononic media.
Quantum computation and simulation with trapped ions using dissipation
International Nuclear Information System (INIS)
Schindler, P.
2013-01-01
current quantum systems do not allow for the required level of control. Nevertheless it seems promising to adapt the techniques developed for quantum information processing to build a quantum simulator. Such a device is able to efficiently reproduce the dynamics of any quantum system - a task that is only possible for small systems on existing classical computers. However, the quantum system of interest may be coupled to a classical environment where many examples for such systems can be found in quantum biology and quantum chemistry. These systems are often embedded in a thermal environment and, analogous to classical physics, show non-reversible, or dissipative, dynamics. Thus, also the quantum simulator should be able to reproduce dissipative dynamics which requires an extension of the usual quantum computing toolbox. In the context of quantum computing, such a coupling is usually treated as a noise process that defeats the possible gain from using such a device. Interestingly it has been shown that an environment can be engineered that drives the system towards a state that features entanglement and can serve as a resource for quantum information processing. In this thesis, an extended toolbox that goes beyond coherent operations is introduced in our small-scale ion-trap quantum information processor. This is then used to create an entangled state through dissipative dynamics. In the next step a quantum simulation of a dissipative many-body system is performed, demonstrating the hallmark feature of a novel type of quantum phase transitions. (author) [de
Analysing half-lives for pesticide dissipation in plants
DEFF Research Database (Denmark)
Jacobsen, R.E.; Fantke, Peter; Trapp, Stefan
2015-01-01
Overall dissipation of pesticides from plants is frequently measured, but the contribution of individual loss processes is largely unknown. We use a pesticide fate model for the quantification of dissipation by processes other than degradation. The model was parameterised using field studies....... Scenarios were established for Copenhagen/Denmark and Shanghai/PR China, and calibrated with measured results. The simulated dissipation rates of 42 pesticides were then compared with measured overall dissipation from field studies using tomato and wheat. The difference between measured overall dissipation...... and scenario. Accordingly, degradation is the most relevant dissipation process for these 42 pesticides, followed by growth dilution. Volatilisation was less relevant, which can be explained by the design of plant protection agents. Uptake of active compound from soil into plants leads to a negative...
Dissipation of oxytetracycline in soils under different redox conditions
International Nuclear Information System (INIS)
Yang Jigeng; Ying Guangguo; Zhou Lijun; Liu Shan; Zhao Jianliang
2009-01-01
This study investigated the dissipation kinetics of oxytetracycline in soils under aerobic and anoxic conditions. Laboratory experiments showed that the dissipation of oxytetracycline in soil followed first-order reaction kinetics and its dissipation rates decreased with increasing concentration. Oxytetracycline dissipated faster in soil under aerobic conditions than under anoxic conditions. The half-lives for oxytetracycline in soil under aerobic conditions ranged between 29 and 56 days for non-sterile treatments and 99-120 days for sterile treatments, while under anoxic conditions the half-lives of oxytetracycline ranged between 43 and 62 days in the non-sterile soil and between 69 and 104 days in the sterile soil. This suggests microbes can degrade oxytetracycline in agricultural soil. Abiotic factors such as strong sorption onto soil components also played a role in the dissipation of oxytetracycline in soil. - Oxytetracycline dissipation in soils is influenced by redox conditions and soil properties.
Dissipation of oxytetracycline in soils under different redox conditions
Energy Technology Data Exchange (ETDEWEB)
Jigeng, Yang [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, Tianhe District, Guangzhou 510640 (China); Department of Chemistry and Chemical Engineering, Hunan University of Arts and Sciences, Changde 415000 (China); Ying Guangguo, E-mail: guangguo.ying@gmail.co [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, Tianhe District, Guangzhou 510640 (China); Lijun, Zhou; Shan, Liu; Jianliang, Zhao [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, Tianhe District, Guangzhou 510640 (China)
2009-10-15
This study investigated the dissipation kinetics of oxytetracycline in soils under aerobic and anoxic conditions. Laboratory experiments showed that the dissipation of oxytetracycline in soil followed first-order reaction kinetics and its dissipation rates decreased with increasing concentration. Oxytetracycline dissipated faster in soil under aerobic conditions than under anoxic conditions. The half-lives for oxytetracycline in soil under aerobic conditions ranged between 29 and 56 days for non-sterile treatments and 99-120 days for sterile treatments, while under anoxic conditions the half-lives of oxytetracycline ranged between 43 and 62 days in the non-sterile soil and between 69 and 104 days in the sterile soil. This suggests microbes can degrade oxytetracycline in agricultural soil. Abiotic factors such as strong sorption onto soil components also played a role in the dissipation of oxytetracycline in soil. - Oxytetracycline dissipation in soils is influenced by redox conditions and soil properties.
If there is dissipation the particle can gain energy
International Nuclear Information System (INIS)
De Carvalho, R Egydio
2015-01-01
In this work, we summarize two different mechanisms to gain energy from the presence of dissipation in a time-dependent non-linear system. The particles can gain energy, in the average, from two different scenarios: i) for very week dissipation with the creation of an attractor with high velocity, and ii) in the opposite limit, for very strong dissipation, the particles can also gain energy from a boundary crisis. From the thermodynamic viewpoint both results are totally acceptable. (paper)
Effective mass approximation for tunneling states with dissipation
International Nuclear Information System (INIS)
Chen Hong; Wu Xiang.
1987-08-01
The dissipative tunneling in an asymmetric double-well potential is studied at low temperature. With effective mass approximation, the dissipation can be replaced by a temperature-dependent effective mass. The effective mass increases with decreasing temperature and becomes infinite at T=0. The partition function of the system is derived, which has the same form as that of a non-dissipative tunneling system. Some possible applications in glasses and heavy fermion system are also discussed. (author). 21 refs, 1 fig
On Maximally Dissipative Shock Waves in Nonlinear Elasticity
Knowles, James K.
2010-01-01
Shock waves in nonlinearly elastic solids are, in general, dissipative. We study the following question: among all plane shock waves that can propagate with a given speed in a given one-dimensional nonlinearly elastic bar, which one—if any—maximizes the rate of dissipation? We find that the answer to this question depends strongly on the qualitative nature of the stress-strain relation characteristic of the given material. When maximally dissipative shocks do occur, they propagate according t...
The Fluctuation Theorem and Dissipation Theorem for Poiseuille Flow
International Nuclear Information System (INIS)
Brookes, Sarah J; Reid, James C; Evans, Denis J; Searles, Debra J
2011-01-01
The fluctuation theorem and the dissipation theorem provide relationships to describe nonequilibrium systems arbitrarily far from, or close to equilibrium. They both rely on definition of a central property, the dissipation function. In this manuscript we apply these theorems to examine a boundary thermostatted system undergoing Poiseuille flow. The relationships are verified computationally and show that the dissipation theorem is potentially useful for study of boundary thermostatted systems consisting of complex molecules undergoing flow in the nonlinear regime.
A study of dissipative phenomena using Orion, a 4 π sectorized neutron detector
International Nuclear Information System (INIS)
Galin, J.; Guerreau, D.; Morjean, M.; Pouthas, J.; Saint-Laurent, F.; Sokolov, A.; Wang, X.M.; Piasecki, E.; Charvet, J.L.; CEA Centre d'Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette
1990-01-01
When studying the behavior of hot nuclei, the challenge is twofold: how are they formed in nucleus-nucleus collisions and how do they decay. For heavy and, thus neutron rich systems a large fraction of the thermalized energy is evacuated by neutron evaporation. Therefore the numbering, event-wise, of neutrons, over 4 π, gives a strong handle on energy dissipation for the different reaction channels. The first neutron measurements of this kind were performed using spherical detectors made of two hemispheres. Since then, a new and larger 4 π detector, ORION, has been designed in order to get information on the spatial distribution of the neutrons. The main characteristics of ORION are described and a few examples are given in order to illustrate the capabilities of such a detector in the study of dissipative collisions
Viscous Flow over Nonlinearly Stretching Sheet with Effects of Viscous Dissipation
Directory of Open Access Journals (Sweden)
Javad Alinejad
2012-01-01
Full Text Available The flow and heat transfer characteristics of incompressible viscous flow over a nonlinearly stretching sheet with the presence of viscous dissipation is investigated numerically. The similarity transformation reduces the time-independent boundary layer equations for momentum and thermal energy into a set of coupled ordinary differential equations. The obtained equations, including nonlinear equation for the velocity field and differential equation by variable coefficient for the temperature field , are solved numerically by using the fourth order of Runge-Kutta integration scheme accompanied by shooting technique with Newton-Raphson iteration method. The effect of various values of Prandtl number, Eckert number and nonlinear stretching parameter are studied. The results presented graphically show some behaviors such as decrease in dimensionless temperature due to increase in Pr number, and curve relocations are observed when heat dissipation is considered.
Directory of Open Access Journals (Sweden)
George Bobin Saji
2018-01-01
Full Text Available Intensifying electronic component power dissipation levels, shortening product design cycle times, and greater than before requirement for more compact and reliable electronic systems with greater functionality, has heightened the need for thermal design tools that enable accurate solutions to be generated and quickly assessed. The present numerical study aims at developing a computational tool in OpenFOAM that can predict the heat dissipation rate and temperature profile of any electronic component in operation. A suitable computational domain with defined aspect ratio is chosen. For analyzing, “buoyant Boussinesq Simple Foam“ solver available with OpenFOAM is used. It was modified for adapting to the investigation with specified initial and boundary conditions. The experimental setup was made with the dimensions taken up for numerical study. Thermocouples were calibrated and placed in specified locations. For different heat input, the temperatures are noted down at steady state and compared with results from the numerical study.
Pseudothermalization in driven-dissipative non-Markovian open quantum systems
Lebreuilly, José; Chiocchetta, Alessio; Carusotto, Iacopo
2018-03-01
We investigate a pseudothermalization effect, where an open quantum system coupled to a nonequilibrated environment consisting of several non-Markovian reservoirs presents an emergent thermal behavior. This thermal behavior is visible at both static and dynamical levels and the system satisfies the fluctuation-dissipation theorem. Our analysis is focused on the exactly solvable model of a weakly interacting driven-dissipative Bose gas in presence of frequency-dependent particle pumping and losses, and is based on a quantum Langevin theory, which we derive starting from a microscopical quantum optics model. For generic non-Markovian reservoirs, we demonstrate that the emergence of thermal properties occurs in the range of frequencies corresponding to low-energy excitations. For the specific case of non-Markovian baths verifying the Kennard-Stepanov relation, we show that pseudothermalization can instead occur at all energy scales. The possible implications regarding the interpretation of thermal laws in low-temperature exciton-polariton experiments are discussed. We finally show that the presence of either a saturable pumping or a dispersive environment leads to a breakdown of the pseudothermalization effect.
Genova, Giuseppe; Tosetti, Roberta; Tonutti, Pietro
2016-01-30
Grape juice is an important dietary source of health-promoting antioxidant molecules. Different factors may affect juice composition and nutraceutical properties. The effects of some of these factors (harvest time, pre-processing ethylene treatment of grapes and juice thermal pasteurization) were here evaluated, considering in particular the phenolic composition and antioxidant capacity. Grapes (Vitis vinifera L., red-skinned variety Sangiovese) were collected twice in relation to the technological harvest (TH) and 12 days before TH (early harvest, EH) and treated with gaseous ethylene (1000 ppm) or air for 48 h. Fresh and pasteurized (78 °C for 30 min) juices were produced using a water bath. Three-way analysis of variance showed that the harvest date had the strongest impact on total polyphenols, hydroxycinnamates, flavonols, and especially on total flavonoids. Pre-processing ethylene treatment significantly increased the proanthocyanidin, anthocyanin and flavan-3-ol content in the juices. Pasteurization induced a significant increase in anthocyanin concentration. Antioxidant capacity was enhanced by ethylene treatment and pasteurization in juices from both TH and EH grapes. These results suggest that an appropriate management of grape harvesting date, postharvest and processing may lead to an improvement in nutraceutical quality of juices. Further research is needed to study the effect of the investigated factors on juice organoleptic properties. © 2015 Society of Chemical Industry.
Dissipation Assisted Quantum Memory with Coupled Spin Systems
Jiang, Liang; Verstraete, Frank; Cirac, Ignacio; Lukin, Mikhail
2009-05-01
Dissipative dynamics often destroys quantum coherences. However, one can use dissipation to suppress decoherence. A well-known example is the so-called quantum Zeno effect, in which one can freeze the evolution using dissipative processes (e.g., frequently projecting the system to its initial state). Similarly, the undesired decoherence of quantum bits can also be suppressed using controlled dissipation. We propose and analyze the use of this generalization of quantum Zeno effect for protecting the quantum information encoded in the coupled spin systems. This new approach may potentially enhance the performance of quantum memories, in systems such as nitrogen-vacancy color-centers in diamond.
Entropy model of dissipative structure on corporate social responsibility
Li, Zuozhi; Jiang, Jie
2017-06-01
Enterprise is prompted to fulfill the social responsibility requirement by the internal and external environment. In this complex system, some studies suggest that firms have an orderly or chaotic entropy exchange behavior. Based on the theory of dissipative structure, this paper constructs the entropy index system of corporate social responsibility(CSR) and explores the dissipative structure of CSR through Brusselator model criterion. Picking up listed companies of the equipment manufacturing, the research shows that CSR has positive incentive to negative entropy and promotes the stability of dissipative structure. In short, the dissipative structure of CSR has a positive impact on the interests of stakeholders and corporate social images.
International Nuclear Information System (INIS)
Pavlov, A.K.
1981-01-01
The problem of abundance of inert gases in atmospheres of the Earth group planets is discussed. It is shown that introduction of He, Ne and 36 Ar into the Mars and Mercury atmospheres with interplanetary dust and from other external sources require the presence of special mechanisms of losses for these gases. For the Mars atmosphere dissipation on atmosphere interaction with solar wind during the periods of anomalously low temperatures is a probable mechanisms of Ne and 36 Ar losses. For the Mercury thermal dissipation for He and polar wind for other inert gases are possible. For all the planets of the Earth group dissipation on interaction with solar wind and introduction with interplanetary dust could play an important role at the early stages of evolution of planets [ru
NanoSatellite Thermal Overload Protection System (nSTOPS)
National Aeronautics and Space Administration — We propose to develop and demonstrate a laboratory version of a means to electrically dissipate excess thermal energy from 3-cube (and larger) nanosatellites:...
Static and dynamic properties of smoothed dissipative particle dynamics
Alizadehrad, Davod; Fedosov, Dmitry A.
2018-03-01
In this paper, static and dynamic properties of the smoothed dissipative particle dynamics (SDPD) method are investigated. We study the effect of method parameters on SDPD fluid properties, such as structure, speed of sound, and transport coefficients, and show that a proper choice of parameters leads to a well-behaved and accurate fluid model. In particular, the speed of sound, the radial distribution function (RDF), shear-thinning of viscosity, the mean-squared displacement (〈R2 〉 ∝ t), and the Schmidt number (Sc ∼ O (103) - O (104)) can be controlled, such that the model exhibits a fluid-like behavior for a wide range of temperatures in simulations. Furthermore, in addition to the consideration of fluid density variations for fluid compressibility, a more challenging test of incompressibility is performed by considering the Poisson ratio and divergence of velocity field in an elongational flow. Finally, as an example of complex-fluid flow, we present the applicability and validity of the SDPD method with an appropriate choice of parameters for the simulation of cellular blood flow in irregular geometries. In conclusion, the results demonstrate that the SDPD method is able to approximate well a nearly incompressible fluid behavior, which includes hydrodynamic interactions and consistent thermal fluctuations, thereby providing, a powerful approach for simulations of complex mesoscopic systems.
Characterization of a New Heat Dissipation Matric Potential Sensor
Directory of Open Access Journals (Sweden)
Rolf Krebs
2013-01-01
Full Text Available Soil moisture sensors can help to reduce the amount of water needed for irrigation. In this paper we describe the PlantCare soil moisture sensor as a new type of heat dissipation sensor, its calibration and the correction for temperature changes. With the PlantCare sensor it is possible to measure the matric potential indirectly to monitor or control irrigation. This sensor is based on thermal properties of a synthetic felt. After a defined heating phase the cooling time to a threshold temperature is a function of the water content in the synthetic felt. The water content in this porous matrix is controlled by the matric potential in the surrounding soil. Calibration measurements have shown that the sensor is most sensitive to −400 hPa and allows lower sensitivity measurements to −800 hPa. The disturbing effect of the temperature change during the measurement on the cooling time can be corrected by a linear function and the differences among sensors are minimized by a two point calibration.
Quantum thermodynamics for driven dissipative bosonic systems
Ochoa, Maicol A.; Zimbovskaya, Natalya; Nitzan, Abraham
2018-02-01
We investigate two prototypical dissipative bosonic systems under slow driving and arbitrary system-bath coupling strength, recovering their dynamic evolution as well as the heat and work rates, and we verify that thermodynamic laws are respected. Specifically, we look at the damped harmonic oscillator and the damped two-level system. For the former, we study independently the slow time-dependent perturbation in the oscillator frequency and in the coupling strength. For the latter, we concentrate on the slow modulation of the energy gap between the two levels. Importantly, we are able to find the entropy production rates for each case without explicitly defining nonequilibrium extensions for the entropy functional. This analysis also permits the definition of phenomenological friction coefficients in terms of structural properties of the system-bath composite.
An extended dissipative particle dynamics model
Cotter, C J
2003-01-01
The method of dissipative particle dynamics (DPD) was introduced by Hoogerbrugge & Koelman to study meso-scale material processes. The theoretical investigation of the DPD method was initiated by Espanol who used a Fokker-Planck formulation of the DPD method and applied the Mori-Zwanzig projection operator calculus to obtain the equations of hydrodynamics for DPD. A current limitation of DPD is that it requires a clear separation of scales between the resolved and unresolved processes. In this note, we suggest a simple extension of DPD that allows for inclusion of unresolved processes with exponentially decaying variance for any value of the decay rate. The main point of the extension is that it is as easy to implement as DPD in a numerical algorithm.
Dissipative dynamics of superconducting hybrid qubit systems
International Nuclear Information System (INIS)
Montes, Enrique; Calero, Jesus M; Reina, John H
2009-01-01
We perform a theoretical study of composed superconducting qubit systems for the case of a coupled qubit configuration based on a hybrid qubit circuit made of both charge and phase qubits, which are coupled via a σ x x σ z interaction. We compute the system's eigen-energies in terms of the qubit transition frequencies and the strength of the inter-qubit coupling, and describe the sensitivity of the energy crossing/anti-crossing features to such coupling. We compute the hybrid system's dissipative dynamics for the cases of i) collective and ii) independent decoherence, whereby the system interacts with one common and two different baths of harmonic oscillators, respectively. The calculations have been performed within the Bloch-Redfield formalism and we report the solutions for the populations and the coherences of the system's reduced density matrix. The dephasing and relaxation rates are explicitly calculated as a function of the heat bath temperature.
Thermodynamique des moteurs thermiques aux structures dissipatives
Prigogine, Ilya
1999-01-01
Ce livre constitue à la fois une présentation complète de la thermodynamique et une introduction scientifique à l'œuvre de Prigogine. Les auteurs innovent en montrant comment la thermodynamique du non-équilibre est un prolongement naturel de la thermodynamique de l'équilibre. Elle constitue ainsi la science des processus irréversibles - " la flèche du temps " - dont les structures dissipatives sont les témoignages les plus éclatants. Les développements historiques en font, non seulement un texte de référence, mais aussi un livre de culture. Les nombreux exemples et exercices, comme les programmes informatiques et les références aux sites Internet en font un outil de travail irremplaçable.
Quantum Markov Chain Mixing and Dissipative Engineering
DEFF Research Database (Denmark)
Kastoryano, Michael James
2012-01-01
This thesis is the fruit of investigations on the extension of ideas of Markov chain mixing to the quantum setting, and its application to problems of dissipative engineering. A Markov chain describes a statistical process where the probability of future events depends only on the state...... of the system at the present point in time, but not on the history of events. Very many important processes in nature are of this type, therefore a good understanding of their behaviour has turned out to be very fruitful for science. Markov chains always have a non-empty set of limiting distributions...... (stationary states). The aim of Markov chain mixing is to obtain (upper and/or lower) bounds on the number of steps it takes for the Markov chain to reach a stationary state. The natural quantum extensions of these notions are density matrices and quantum channels. We set out to develop a general mathematical...
Advanced materials for thermal management of electronic packaging
Tong, Xingcun Colin
2011-01-01
The need for advanced thermal management materials in electronic packaging has been widely recognized as thermal challenges become barriers to the electronic industry's ability to provide continued improvements in device and system performance. With increased performance requirements for smaller, more capable, and more efficient electronic power devices, systems ranging from active electronically scanned radar arrays to web servers all require components that can dissipate heat efficiently. This requires that the materials have high capability of dissipating heat and maintaining compatibility
Thermal Isolation and Differential Cooling of Heterogeneously Integrated Devices
2016-07-01
negligible and only the interaction of the via, substrate, and film material play a role in keff,z. Figure 12: Evolution of keff,z of a TXV...integrated system considered in this work the CMOS power dissipation is negligible when compared to the dissipation of the power amplifier chiplets. As...Conf., pp. 111-121, 1994. [35] A. Bar-Cohen, Ed., Encyclopedia of Thermal Packaging. Set 1: Thermal Packaging Techniques. Singapore : World
Afegbua, Seniyat Larai; Batty, Lesley Claire
2018-04-27
Polycyclic aromatic hydrocarbon (PAH)-contaminated sites have a mixture of PAH of varying concentration which may affect PAH dissipation differently to contamination with a single PAH. In this study, pot experiments investigated the impact of PAH contamination on Medicago sativa, Lolium perenne, and Festuca arundinacea biomass and PAH dissipation from soils spiked with phenanthrene (Phe), fluoranthene (Flu), and benzo[a]pyrene (B[a]P) in single and mixed treatments. Stimulatory or inhibitory effects of PAH contamination on plant biomass yields were not different for the single and mixed PAH treatments. Results showed significant effect of PAH treatments on plant growth with an increased root biomass yield for F. arundinacea in the Phe (175%) and Flu (86%) treatments and a root biomass decrease in the mixed treatment (4%). The mean residual PAHs in the planted treatments and unplanted control for the single treatments were not significantly different. B[a]P dissipation was enhanced for single and mixed treatments (71-72%) with F. arundinacea compared to the unplanted control (24-50%). On the other hand, B[a]P dissipation was inhibited with L. perenne (6%) in the single treatment and M. sativa (11%) and L. perenne (29%) in the mixed treatment. Abiotic processes had greater contribution to PAH dissipation compared to rhizodegradation in both treatments. In most cases, a stimulatory effect of PAH contamination on plant biomass yield without an enhancement of PAH dissipation was observed. Plant species among other factors affect the relative contribution of PAH dissipation mechanisms during phytoremediation. These factors determine the effectiveness and suitability of phytoremediation as a remedial strategy for PAH-contaminated sites. Further studies on impact of PAH contamination, plant selection, and rhizosphere activities on soil microbial community structure and remediation outcome are required.
Foucault Dissipation in a Rolling Cylinder: A Webcam Quantitative Study
Bonanno, A.; Bozzo, G.; Camarca, M.; Sapia, P.
2011-01-01
In this paper we present an experimental strategy to measure the micro power dissipation due to Foucault "eddy" currents in a copper cylinder rolling on two parallel conductive rails in the presence of a magnetic field. Foucault power dissipation is obtained from kinematical measurements carried out by using a common PC webcam and video analysis…
Dissipative differential systems and the state space H∞ control problem
Trentelman, H.L.; Willems, J.C.
2000-01-01
The purpose of this paper is to apply our very recent results on the synthesis of dissipative linear differential systems to the 'classical' state space H∞ control problem. We first review our general problem set-up, where the problem of rendering a given plant dissipative by general
Balance laws and centro velocity in dissipative systems
van Groesen, Embrecht W.C.; Mainardi, F.
1990-01-01
Starting with a density that is conserved for a dynamical system when dissipation is ignored, a local conservation law is derived for which the total flux (integrated over the spatial domain) is unique. When dissipation is incorporated, the conservation law becomes a balance law. The contribution
Observation of flow dissipation in 3He-B
International Nuclear Information System (INIS)
Eisenstein, J.P.; Packard, R.E.
1982-01-01
Anomalous dissipation is observed in 3 He-B flowing in a U-tube device. The dissipation is of unknown origin and persists to the lowest measured velocity. The position of this result in the framework of other 3 He-B flow experiments is discussed
Dissipation and leaching of pyroxasulfone and s-metolachlor
Pyroxasulfone dissipation and mobility in the soil was evaluated and compared to S-metolachlor in 2009 and 2010 at two field sites in northern Colorado, on a Nunn fine clay loam, and Olney fine sandy loam soil. Pyroxasulfone dissipation half-life (DT50) values varied from 47 to 134 d, and those of S...
Braun-Le Chatelier principle in dissipative thermodynamics
Pavelka, Michal; Grmela, Miroslav
2016-01-01
Braun-Le Chatelier principle is a fundamental result of equilibrium thermodynamics, showing how stable equilibrium states shift when external conditions are varied. The principle follows from convexity of thermodynamic potential. Analogously, from convexity of dissipation potential it follows how steady non-equilibrium states shift when thermodynamic forces are varied, which is the extension of the principle to dissipative thermodynamics.
The thermodynamic basis of entransy and entransy dissipation
International Nuclear Information System (INIS)
Xu, Mingtian
2011-01-01
In the present work, the entransy and entransy dissipation are defined from the thermodynamic point of view. It is shown that the entransy is a state variable and can be employed to describe the second law of thermodynamics. For heat conduction, a principle of minimum entransy dissipation is established based on the second law of thermodynamics in terms of entransy dissipation, which leads to the governing equation of the steady Fourier heat conduction without heat source. Furthermore, we derive the expressions of the entransy dissipation in duct flows and heat exchangers from the second law of thermodynamics, which paves the way for applications of the entransy dissipation theory in heat exchanger design. -- Highlights: → The concepts of entransy and entransy dissipation are defined from the thermodynamic point of view. → We find that the entransy is a new thermodynamic property. → The second law of thermodynamics can be described by the entransy and entransy dissipation. → The expressions of entransy dissipation in duct flows and heat exchangers are derived from the second law of thermodynamics.
Dissipative quantum trajectories in complex space: Damped harmonic oscillator
International Nuclear Information System (INIS)
Chou, Chia-Chun
2016-01-01
Dissipative quantum trajectories in complex space are investigated in the framework of the logarithmic nonlinear Schrödinger equation. The logarithmic nonlinear Schrödinger equation provides a phenomenological description for dissipative quantum systems. Substituting the wave function expressed in terms of the complex action into the complex-extended logarithmic nonlinear Schrödinger equation, we derive the complex quantum Hamilton–Jacobi equation including the dissipative potential. It is shown that dissipative quantum trajectories satisfy a quantum Newtonian equation of motion in complex space with a friction force. Exact dissipative complex quantum trajectories are analyzed for the wave and solitonlike solutions to the logarithmic nonlinear Schrödinger equation for the damped harmonic oscillator. These trajectories converge to the equilibrium position as time evolves. It is indicated that dissipative complex quantum trajectories for the wave and solitonlike solutions are identical to dissipative complex classical trajectories for the damped harmonic oscillator. This study develops a theoretical framework for dissipative quantum trajectories in complex space.
Dissipative nucleus-nucleus collisions: study of memory effects
International Nuclear Information System (INIS)
Agarwal, K.C.; Yadav, H.L.
2002-01-01
Dissipative collisions between two heavy nuclei are described in terms of a macroscopic dynamical model within the framework of a multi-dimensional Fokker-Planck equation. The reaction 86 Kr(8.18 MeV/u) + 166 Er has been used as a prototype to study and demonstrate the memory effects for dissipation and diffusion processes
Dissipative quantum trajectories in complex space: Damped harmonic oscillator
Energy Technology Data Exchange (ETDEWEB)
Chou, Chia-Chun, E-mail: ccchou@mx.nthu.edu.tw
2016-10-15
Dissipative quantum trajectories in complex space are investigated in the framework of the logarithmic nonlinear Schrödinger equation. The logarithmic nonlinear Schrödinger equation provides a phenomenological description for dissipative quantum systems. Substituting the wave function expressed in terms of the complex action into the complex-extended logarithmic nonlinear Schrödinger equation, we derive the complex quantum Hamilton–Jacobi equation including the dissipative potential. It is shown that dissipative quantum trajectories satisfy a quantum Newtonian equation of motion in complex space with a friction force. Exact dissipative complex quantum trajectories are analyzed for the wave and solitonlike solutions to the logarithmic nonlinear Schrödinger equation for the damped harmonic oscillator. These trajectories converge to the equilibrium position as time evolves. It is indicated that dissipative complex quantum trajectories for the wave and solitonlike solutions are identical to dissipative complex classical trajectories for the damped harmonic oscillator. This study develops a theoretical framework for dissipative quantum trajectories in complex space.
Two-dimensional dissipation in third sound resonance
International Nuclear Information System (INIS)
Buck, A.L.; Mochel, J.M.; Illinois Univ., Urbana
1981-01-01
The first determination of non-linear superflow dissipation in a truly two-dimensional helium film is reported. Superfluid velocities were measured using third sound resonance on a closed superfluid film. The predicted power law dissipation function, with exponent of approximately eight, is observed at three temperatures in a film of 0.58 mobile superfluid layers. (orig.)
estimation of ionospheric energy dissipation for the year 2012 using
African Journals Online (AJOL)
userpc
energy dissipation is the dominant channel of energy transfer in that year from the solar wind. This is consistent with many results found by other researchers. Keywords: Østgaard's Empirical Relation, Ionospheric Energy Dissipation, Electron. Precipitation, Joule Heating. INTRODUCTION. In the Earth's magnetosphere, the ...
Influence of viscous dissipation and radiation on MHD Couette flow ...
African Journals Online (AJOL)
The overall analysis of the study of these parameters in various degrees show an increase in the velocity profile of the fluid, while radiation parameter decreases the temperature profile; viscous dissipation and Reynolds number increase the temperature profile of the fluid. Key word: Couette flow, viscous dissipation, ...
Effect of magnetic shear on dissipative drift instabilities
International Nuclear Information System (INIS)
Guzdar, P.N.; Chen, L.; Kaw, P.K.; Oberman, C.
1978-03-01
In this letter we report the results of a linear radial eigenmode analysis of dissipative drift waves in a plasma with magnetic shear and spatially varying density gradient. The results of the analysis are shown to be consistent with a recent experiment on the study of dissipative drift instabilities in a toroidal stellarator
Energy dissipation of slot-type flip buckets
Wu, Jian-hua; Li, Shu-fang; Ma, Fei
2018-03-01
The energy dissipation is a key index in the evaluation of energy dissipation elements. In the present work, a flip bucket with a slot, called the slot-type flip bucket, is theoretically and experimentally investigated by the method of estimating the energy dissipation. The theoretical analysis shows that, in order to have the energy dissipation, it is necessary to determine the sequent flow depth h 1 and the flow speed V 1 at the corresponding position through the flow depth h 2 after the hydraulic jump. The relative flow depth h 2 / h 。 is a function of the approach flow Froude number Fr 。, the relative slot width b/B 。, and the relative slot angle θ/β. The expression for estimating the energy dissipation is developed, and the maximum error is not larger than 9.21%.
Dissipation of Alfven waves in compressible inhomogeneous media
International Nuclear Information System (INIS)
Malara, F.; Primavera, L.; Veltri, P.
1997-01-01
In weakly dissipative media governed by the magnetohydrodynamics (MHD) equations, any efficient mechanism of energy dissipation requires the formation of small scales. Using numerical simulations, we study the properties of Alfven waves propagating in a compressible inhomogeneous medium, with an inhomogeneity transverse to the direction of wave propagation. Two dynamical effects, energy pinching and phase mixing, are responsible for the small-scales formation, similarly to the incompressible case. Moreover, compressive perturbations, slow waves and a static entropy wave are generated; the former are subject to steepening and form shock waves, which efficiently dissipate their energy, regardless of the Reynolds number. Rough estimates show that the dissipation times are consistent with those required to dissipate Alfven waves of photospheric origin inside the solar corona
Quantified Energy Dissipation Rates in the Terrestrial Bow Shock. 2; Waves and Dissipation
Wilson, L. B., III; Sibeck, D. G.; Breneman, A. W.; Le Contel, O.; Cully, C.; Turner, D. L.; Angelopoulos, V.; Malaspina, D. M.
2014-01-01
We present the first quantified measure of the energy dissipation rates, due to wave-particle interactions, in the transition region of the Earth's collision-less bow shock using data from the Time History of Events and Macro-Scale Interactions during Sub-Storms spacecraft. Our results show that wave-particle interactions can regulate the global structure and dominate the energy dissipation of collision-less shocks. In every bow shock crossing examined, we observed both low-frequency (less than 10 hertz) and high-frequency (approximately or greater than10 hertz) electromagnetic waves throughout the entire transition region and into the magnetosheath. The low-frequency waves were consistent with magnetosonic-whistler waves. The high-frequency waves were combinations of ion-acoustic waves, electron cyclotron drift instability driven waves, electrostatic solitary waves, and whistler mode waves. The high-frequency waves had the following: (1) peak amplitudes exceeding delta B approximately equal to 10 nanoteslas and delta E approximately equal to 300 millivolts per meter, though more typical values were delta B approximately equal to 0.1-1.0 nanoteslas and delta E approximately equal to 10-50 millivolts per meter (2) Poynting fluxes in excess of 2000 microWm(sup -2) (micro-waves per square meter) (typical values were approximately 1-10 microWm(sup -2) (micro-waves per square meter); (3) resistivities greater than 9000 omega meters; and (4) associated energy dissipation rates greater than 10 microWm(sup -3) (micro-waves per cubic meter). The dissipation rates due to wave-particle interactions exceeded rates necessary to explain the increase in entropy across the shock ramps for approximately 90 percent of the wave burst durations. For approximately 22 percent of these times, the wave-particle interactions needed to only be less than or equal to 0.1 percent efficient to balance the nonlinear wave steepening that produced the shock waves. These results show that wave
International Nuclear Information System (INIS)
Tison, D.L.
1980-01-01
Thermal habitats in effluent cooling waters from production nuclear reactors at the Savannah River Plant are unlike natural thermal habitats in that reactor operations are periodically halted, exposing the organisms growing in these thermal habitats to ambient temperatures for unpredictable lengths of time. Rates of primary production, glucose heterotrophy, and the composition of algal-bacterial mat communities growing along a thermal gradient from about 50 to 35 0 C during periods of reactor operation were studied. Cyanobacteria were the only photoautotrophs in mat communities above 40 0 C while cyanobacteria and eucaryotic algae comprised the photoautotrophic component of mat communities below 40 0 C. The heterotrophic component of these communities above 40 0 C was made up of stenothermic and eurythermic thermophilic bacteria while both eurythermic thermophiles and mesophilic bacteria were found in communities below 40 0 C. Net CO 2 -fixation rates during thermal conditions dropped after initial exposure to ambient temperatures. After prolonged exposure of the thermal communities to ambient temperatures, adaptation and colonization by mesophilic algae occurred. Rates of glucose utilization under varying degrees of thermal influence suggested that the heterotrophic component may not have been optimally adapted to thermal conditions. During periods of changing thermal conditions, an increase in the percentage extracellular release of photosynthetically fixed 14 CO 2 by cyanobacteria and algae and an increase in the percentage of glucose mineralized (respired) by the heterotrophic component of the mat communities was observed. Results of temperature shift experiments indicated that the short-term response of the photoautotrophic component of these communities to thermal stress was an increase in the percentage of photosynthate released extracellularly
Vasculature of the hive: heat dissipation in the honey bee ( Apis mellifera) hive
Bonoan, Rachael E.; Goldman, Rhyan R.; Wong, Peter Y.; Starks, Philip T.
2014-06-01
Eusocial insects are distinguished by their elaborate cooperative behavior and are sometimes defined as superorganisms. As a nest-bound superorganism, individuals work together to maintain favorable nest conditions. Residing in temperate environments, honey bees ( Apis mellifera) work especially hard to maintain brood comb temperature between 32 and 36 °C. Heat shielding is a social homeostatic mechanism employed to combat local heat stress. Workers press the ventral side of their bodies against heated surfaces, absorb heat, and thus protect developing brood. While the absorption of heat has been characterized, the dissipation of absorbed heat has not. Our study characterized both how effectively worker bees absorb heat during heat shielding, and where worker bees dissipate absorbed heat. Hives were experimentally heated for 15 min during which internal temperatures and heat shielder counts were taken. Once the heat source was removed, hives were photographed with a thermal imaging camera for 15 min. Thermal images allowed for spatial tracking of heat flow as cooling occurred. Data indicate that honey bee workers collectively minimize heat gain during heating and accelerate heat loss during cooling. Thermal images show that heated areas temporarily increase in size in all directions and then rapidly decrease to safe levels (<37 °C). As such, heat shielding is reminiscent of bioheat removal via the cardiovascular system of mammals.
Study on the Preparation of a High-Efficiency Carbon Fiber Dissipating Coating
Directory of Open Access Journals (Sweden)
Jing Li
2017-07-01
Full Text Available The working temperature of electronic components directly determines their service life and stability. In order to ensure normal operation of electronic components, cooling the coating is one of the best ways to solve the problem. Based on an acrylic amino-resin system, a dissipating coating was prepared with carbon fiber (CF as the main thermal conductive filler. The influence of the CF content on the thermal conductivity was determined by the single factor method. The surface structure was observed by scanning electron microscopy (SEM. The results show: With the increase of the CF mass fraction, both the heat dispersion and heat conduction coefficient of the coating tend to increase at first and then decrease, and the heat dissipation effect is optimum when the CF mass fraction is 12.3 wt %. At this point, the coating shows an excellent comprehensive performance, such as 1st level adhesion, H grade hardness, and thermal conductivity of 1.61 W/m·K. Furthermore, this paper explored the radiating mechanism of coating in which CF produces a coating which forms a heat “channel” for rapid heat conduction. When the optimal value is exceeded, the cooling effect is reduced because of the accumulation and the anisotropy of CF.
International Nuclear Information System (INIS)
Yun, Y.
2015-01-01
Thermal expansion of fuel pellet is an important property which limits the lifetime of the fuels in reactors, because it affects both the pellet and cladding mechanical interaction and the gap conductivity. By fitting a number of available measured data, recommended equations have been presented and successfully used to estimate thermal expansion coefficient of the nuclear fuel pellet. However, due to large scatter of the measured data, non-consensus data have been omitted in formulating the equations. Also, the equation is strongly governed by the lack of appropriate experimental data. For those reasons, it is important to develop theoretical methodologies to better describe thermal expansion behaviour of nuclear fuel. In particular, first-principles and molecular dynamics simulations have been certainly contributed to predict reliable thermal expansion without fitting the measured data. Furthermore, the two theoretical techniques have improved on understanding the change of fuel dimension by describing the atomic-scale processes associated with lattice expansion in the fuels. (author)
Energy Technology Data Exchange (ETDEWEB)
Mukherjee, Santanu, E-mail: s.mukherjee@fz-juelich.de [Institute of Bio- and Geosciences (IBG-3), Agrosphere Institute, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Tappe, Wolfgang; Weihermueller, Lutz; Hofmann, Diana; Köppchen, Stephan [Institute of Bio- and Geosciences (IBG-3), Agrosphere Institute, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Laabs, Volker; Schroeder, Tom [BASF SE, Crop Protection, 67117, Limburgerhof (Germany); Vereecken, Harry [Institute of Bio- and Geosciences (IBG-3), Agrosphere Institute, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Burauel, Peter [Sustainable Campus, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany)
2016-02-15
Biopurification systems, such as biofilters, are biotechnological tools to prevent point sources of pesticide pollution stemming from on-farm operations. For the purification processes pesticide sorption and mineralization and/or dissipation are essential and both largely depend on the type of filling materials and the pesticide in use. In this paper the mineralization and dissipation of three contrasting {sup 14}C-labeled pesticides (bentazone, boscalid, and pyrimethanil) were investigated in laboratory incubation experiments using sandy soil, biochar produced from Pine woodchips, and/or digestate obtained from anaerobic digestion process using maize silage, chicken manure, beef and pig urine as feedstock. The results indicate that the addition of digestate increased pesticide mineralization, whereby the mineralization was not proportional to the digestate loads in the mixture, indicating a saturation effect in the turnover rate of pesticides. This effect was in correlation with the amount of water extractable DOC, obtained from the digestate based mixtures. Mixing biochar into the soil generally reduced total mineralization and led to larger sorption/sequestration of the pesticides, resulting in faster decrease of the extractable fraction. Also the addition of biochar to the soil/digestate mixtures reduced mineralization compared to the digestate alone mixture but mineralization rates were still higher as for the biochar/soil alone. In consequence, the addition of biochar to the soil generally decreased pesticide dissipation times and larger amounts of biochar led to high amounts of non-extractable residues of pesticide in the substrates. Among the mixtures tested, a mixture of digestate (5%) and biochar (5%) gave optimal results with respect to mineralization and simultaneous sorption for all three pesticides. - Highlights: • Biochar and digestate significantly affects the dissipation pattern of pesticides. • Addition of digestate enhanced mineralization of
ENERGY DISSIPATION AND LANDAU DAMPING IN TWO- AND THREE-DIMENSIONAL PLASMA TURBULENCE
Energy Technology Data Exchange (ETDEWEB)
Li, Tak Chu; Howes, Gregory G. [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States); Klein, Kristopher G. [Space Science Center, University of New Hampshire, Durham, NH 03824 (United States); TenBarge, Jason M. [IREAP, University of Maryland, College Park, MD 20742 (United States)
2016-12-01
Plasma turbulence is ubiquitous in space and astrophysical plasmas, playing an important role in plasma energization, but the physical mechanisms leading to dissipation of the turbulent energy remain to be definitively identified. Kinetic simulations in two dimensions (2D) have been extensively used to study the dissipation process. How the limitation to 2D affects energy dissipation remains unclear. This work provides a model of comparison between two- and three-dimensional (3D) plasma turbulence using gyrokinetic simulations; it also explores the dynamics of distribution functions during the dissipation process. It is found that both 2D and 3D nonlinear gyrokinetic simulations of a low-beta plasma generate electron velocity-space structures with the same characteristics as that of the linear Landau damping of Alfvén waves in a 3D linear simulation. The continual occurrence of the velocity-space structures throughout the turbulence simulations suggests that the action of Landau damping may be responsible for the turbulent energy transfer to electrons in both 2D and 3D, and makes possible the subsequent irreversible heating of the plasma through collisional smoothing of the velocity-space fluctuations. Although, in the 2D case where variation along the equilibrium magnetic field is absent, it may be expected that Landau damping is not possible, a common trigonometric factor appears in the 2D resonant denominator, leaving the resonance condition unchanged from the 3D case. The evolution of the 2D and 3D cases is qualitatively similar. However, quantitatively, the nonlinear energy cascade and subsequent dissipation is significantly slower in the 2D case.
International Nuclear Information System (INIS)
Mukherjee, Santanu; Tappe, Wolfgang; Weihermueller, Lutz; Hofmann, Diana; Köppchen, Stephan; Laabs, Volker; Schroeder, Tom; Vereecken, Harry; Burauel, Peter
2016-01-01
Biopurification systems, such as biofilters, are biotechnological tools to prevent point sources of pesticide pollution stemming from on-farm operations. For the purification processes pesticide sorption and mineralization and/or dissipation are essential and both largely depend on the type of filling materials and the pesticide in use. In this paper the mineralization and dissipation of three contrasting "1"4C-labeled pesticides (bentazone, boscalid, and pyrimethanil) were investigated in laboratory incubation experiments using sandy soil, biochar produced from Pine woodchips, and/or digestate obtained from anaerobic digestion process using maize silage, chicken manure, beef and pig urine as feedstock. The results indicate that the addition of digestate increased pesticide mineralization, whereby the mineralization was not proportional to the digestate loads in the mixture, indicating a saturation effect in the turnover rate of pesticides. This effect was in correlation with the amount of water extractable DOC, obtained from the digestate based mixtures. Mixing biochar into the soil generally reduced total mineralization and led to larger sorption/sequestration of the pesticides, resulting in faster decrease of the extractable fraction. Also the addition of biochar to the soil/digestate mixtures reduced mineralization compared to the digestate alone mixture but mineralization rates were still higher as for the biochar/soil alone. In consequence, the addition of biochar to the soil generally decreased pesticide dissipation times and larger amounts of biochar led to high amounts of non-extractable residues of pesticide in the substrates. Among the mixtures tested, a mixture of digestate (5%) and biochar (5%) gave optimal results with respect to mineralization and simultaneous sorption for all three pesticides. - Highlights: • Biochar and digestate significantly affects the dissipation pattern of pesticides. • Addition of digestate enhanced mineralization of
Meyer, Jörg; Reuter, Karsten
2014-04-25
We present an embedding technique for metallic systems that makes it possible to model energy dissipation into substrate phonons during surface chemical reactions from first principles. The separation of chemical and elastic contributions to the interaction potential provides a quantitative description of both electronic and phononic band structure. Application to the dissociation of O2 at Pd(100) predicts translationally "hot" oxygen adsorbates as a consequence of the released adsorption energy (ca. 2.6 eV). This finding questions the instant thermalization of reaction enthalpies generally assumed in models of heterogeneous catalysis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
On the influence of dissipative effects on instabilities of differentially-rotating plasmas
International Nuclear Information System (INIS)
Lakhin, V. P.; Ilgisonis, V. I.
2010-01-01
The stability of differentially-rotating cylindrical plasmas in the axial homogeneous magnetic field is studied in the framework of one-fluid dissipative magnetohydrodynamics. The dispersion relation of small-scale axisymmetric perturbations, taking into account the effects of the plasma thermal stratification, its resistivity and its viscosity, is derived. In the limiting cases of negligible resistivity and of negligible viscosity, the criteria of plasma stability are obtained. It is shown that in the case of small viscosity, the azimuthal flow of resistive plasma in the axial magnetic field is unstable due to the buoyancy effect if both the plasma pressure and its entropy either increase or decrease in the radial direction.
A novel high-torque magnetorheological brake with a water cooling method for heat dissipation
International Nuclear Information System (INIS)
Wang, D M; Hou, Y F; Tian, Z Z
2013-01-01
The extremely severe heating of magnetorheological (MR) brakes restricts their application in high-power situations. This study aims to develop a novel MR brake with a high-torque capacity. To achieve this goal, a water cooling method is adopted to assist in heat dissipation. In the study, a structural model design of the high-torque MR brake is first developed according to the transmission properties of the MR fluid between the rotating plates. Then, the operating principle of the MR brake is illustrated, which is followed by a detailed design of the water channel. Moreover, theoretical analysis, including the transmitted torque, magnetic field and thermal analysis, is performed as well. After this, an experimental prototype of the proposed MR brake is fabricated and assembled. Then the torque transmission and heat dissipation of the prototype are experimentally investigated to evaluate the torque transmission properties and water cooling efficiency. Results indicate that the proposed MR brake is capable of producing a highly controllable brake torque, and the water cooling method can effectively assist in heat dissipation from the MR brake. (paper)
Soil warming for utilization and dissipation of waste heat in Pennsylvania
International Nuclear Information System (INIS)
DeWalle, D.R.; Chapura, A.M. Jr.
1978-01-01
The feasibility of using soil warming for utilization and dissipation of reject heat from power plants was demonstrated in a year-long test operation of a field prototype in Pennsylvania. A parallel network of 5-mm-diam polyethylene pipes was buried at a 0.3-m depth and with 0.6-m spacing in the soil covering a 15- x 60-m area to convey hot water simulating condenser cooling water from a power plant. Crop response to the heated soil varied: Snap beans and warm season forage crops such as sudangrass responded with increased yields, while cool season forage crops experienced decreased yields. Winter wheat yields were also increased, but winter barley was winter-killed due to delayed development of cold tolerance in the warm soil. Heat dissipation from the buried pipes was primarily by thermal conduction to the soil surface. Rates of heat loss from the buried pipes were most accurately predicted using an equation that included an explicit term for heat conduction below the pipes. Estimated soil warming land area necessary to dissipate all the reject heat from a 33% efficiency, 1500-MW electrical power plant based on minimum measured summer heat loss rates was 76 km 2 compared to the economic optimum of 18.2 km 2 determined as the least-cost system
Thermal stress, human performance, and physical employment standards.
Cheung, Stephen S; Lee, Jason K W; Oksa, Juha
2016-06-01
Many physically demanding occupations in both developed and developing economies involve exposure to extreme thermal environments that can affect work capacity and ultimately health. Thermal extremes may be present in either an outdoor or an indoor work environment, and can be due to a combination of the natural or artificial ambient environment, the rate of metabolic heat generation from physical work, processes specific to the workplace (e.g., steel manufacturing), or through the requirement for protective clothing impairing heat dissipation. Together, thermal exposure can elicit acute impairment of work capacity and also chronic effects on health, greatly contributing to worker health risk and reduced productivity. Surprisingly, in most occupations even in developed economies, there are rarely any standards regarding enforced heat or cold safety for workers. Furthermore, specific physical employment standards or accommodations for thermal stressors are rare, with workers commonly tested under near-perfect conditions. This review surveys the major occupational impact of thermal extremes and existing employment standards, proposing guidelines for improvement and areas for future research.
Soap film vibration: origin of the dissipation.
Acharige, Sébastien Kosgodagan; Elias, Florence; Derec, Caroline
2014-11-07
We investigate the complex dispersion relationship of a transverse antisymmetric wave on a horizontal soap film. Experimentally, the complex wave number k at a fixed forcing frequency is determined by measuring the vibrating amplitude of the soap film: the wavelength (linked to the real part of k) is determined by the spatial variation of the amplitude; the decay length (linked to the imaginary part of k) is determined by analyzing the resonance curves of the vibrating wave as a function of frequency. Theoretically, we compute the complex dispersion relationship taking into account the physical properties of the bulk liquid and gas phase, and of the gas-liquid interfaces. The comparison between the computation (developed to the leading order under our experimental conditions) and the experimental results confirms that the phase velocity is fixed by the interplay between surface tension, and liquid and air inertia, as reported in previous studies. Moreover, we show that the attenuation of the transverse antisymmetric wave originates from the viscous dissipation in the gas phase surrounding the liquid film. This result is an important step in understanding the propagation of an acoustic wave in liquid foam, using a bottom-up approach.
Energy dissipation of rockfalls by coppice structures
Directory of Open Access Journals (Sweden)
G. Ciabocco
2009-06-01
Full Text Available The objective of this work is to develop elements to improve understanding of the behaviour of a coppice in relation to the phenomenon of falling boulders. The first section proposes an amendment to the equation for calculating the index which describes the probability of impact between a rock and plants in managed coppice forests. A study was carried out, using models to calculate the kinetic energy of a falling boulder along a slope considering the kinetic energy dissipated during the impact with the structure of forest plants managed by coppice. The output of the simulation models were then compared with the real dynamics of falling boulders in field tests using digital video.
It emerged from an analysis of the results of this comparison that a modification to the 1989 Gsteiger equation was required, in order to calculate the "Average Distance between Contacts" (ADC. To this purpose, the concept of "Structure of Interception", proposed in this paper, was developed, valid as a first approach for describing the differences in the spatial distribution of stems between coppice and forest. This study also aims to provide suggestions for forestry management, in order to maintain or increase the protective capacity of a coppice managed with conventional techniques for the area studied, modifying the dendrometric characteristics.
Dissipative dynamics of superconducting hybrid qubit systems
Energy Technology Data Exchange (ETDEWEB)
Montes, Enrique; Calero, Jesus M; Reina, John H, E-mail: enriquem@univalle.edu.c, E-mail: j.reina-estupinan@physics.ox.ac.u [Departamento de Fisica, Universidad del Valle, A.A. 25360, Cali (Colombia)
2009-05-01
We perform a theoretical study of composed superconducting qubit systems for the case of a coupled qubit configuration based on a hybrid qubit circuit made of both charge and phase qubits, which are coupled via a sigma{sub x} x sigma{sub z} interaction. We compute the system's eigen-energies in terms of the qubit transition frequencies and the strength of the inter-qubit coupling, and describe the sensitivity of the energy crossing/anti-crossing features to such coupling. We compute the hybrid system's dissipative dynamics for the cases of i) collective and ii) independent decoherence, whereby the system interacts with one common and two different baths of harmonic oscillators, respectively. The calculations have been performed within the Bloch-Redfield formalism and we report the solutions for the populations and the coherences of the system's reduced density matrix. The dephasing and relaxation rates are explicitly calculated as a function of the heat bath temperature.
Review of heat dissipation in geologic media
International Nuclear Information System (INIS)
Pohl, R.O.; Vandersande, J.W.
1981-01-01
Existing data on the thermal conductivity of various rocks, e.g., rocksalt, granite, basalt, etc., will be critically reviewed, with the objective of determining the likely range of conductivity to be expected in a geologic repository. Research carried out at Cornell on the thermal conductivity of rocksalt from different sources, and from different horizons at the WIPP site in New Mexico will be described, as well as the search for the influence of ionizing radiation and of heat treatment. A few examples chosen from previously published calculations of expected temperature profiles will be presented; the considerable discrepancies demonstrate the need for more reliable calculations and for sensitivity analyses
Classical dissipation and transport in plasmas
International Nuclear Information System (INIS)
Hinton, F.L.
1989-01-01
This paper reviews the subject of classical and neoclassical transport. The paper is organized into four main parts, dealing with plasma kinetic theory, classical transport, neoclassical transport, and the present state of the subject. The results of the neoclassical theory of transport are still being used to give the lower limit on the transport rates in tokamaks, which would apply if instabilities and turbulence could be suppressed. So far, only the ion thermal conductivity and the current density have been found experimentally to agree with this theory, and only under special conditions. The electron thermal conductivity has been found experimentally to be much larger than the neoclassical prediction
Plate Tectonics as a Far-From-Equilibrium Self-Organized Dissipative System
Anderson, D. L.
2001-12-01
A fluid above the critical Rayleigh number is far from equilibrium and spontaneously organizes itself into patterns involving the collective motion of large numbers of molecules which are resisted by the viscosity of the fluid. No external template is involved in forming the pattern. In 1928 Pearson showed that Bénard's experiments were driven by variations in surface tension at the top of the fluid and the surface motions drove convection in the fluid. In this case, the surface organized itself AND the underlying fluid. Both internal buoyancy driven flow and flow driven by surface forces can be far-from-equilibrium self-organized open systems that receive energy and matter from the environment. In the Earth, the cold thermal boundary layer at the surface drives plate tectonics and introduces temperature, shear and pressure gradients into the mantle that drive mantle convection. The mantle provides energy and material but may not provide the template. Plate tectonics is therefore a candidate for a far-from-equilibrium dissipative self-organizing system. Alternatively, one could view mantle convection as the self-organized system and the plates as simply the surface manifestation. Lithospheric architecture also imposes lateral temperature gradients onto the mantle which can drive and organize flow. Far-from-equilibrium self-organization requires; an open system, interacting parts, nonlinearities or feedbacks, an outside steady source of energy or matter, multiple possible states and a source of dissipation. In uniform fluids viscosity is the source of dissipation. Sources of dissipation in the plate system include bending, breaking, folding, shearing, tearing, collision and basal drag. These can change rapidly, in contrast to plate driving forces, and introduce the sort of fluctuations that can reorganize far-from-equilibrium systems. Global plate reorganizations can alternatively be thought of as convective overturns of the mantle, or thermal weakening of plates
Architected squirt-flow materials for energy dissipation
Cohen, Tal; Kurzeja, Patrick; Bertoldi, Katia
2017-12-01
In the present study we explore material architectures that lead to enhanced dissipation properties by taking advantage of squirt-flow - a local flow mechanism triggered by heterogeneities at the pore level. While squirt-flow is a known dominant source of dissipation and seismic attenuation in fluid saturated geological materials, we study its untapped potential to be incorporated in highly deformable elastic materials with embedded fluid-filled cavities for future engineering applications. An analytical investigation, that isolates the squirt-flow mechanism from other potential dissipation mechanisms and considers an idealized setting, predicts high theoretical levels of dissipation achievable by squirt-flow and establishes a set of guidelines for optimal dissipation design. Particular architectures are then investigated via numerical simulations showing that a careful design of the internal voids can lead to an increase of dissipation levels by an order of magnitude, compared with equivalent homogeneous void distributions. Therefore, we suggest squirt-flow as a promising mechanism to be incorporated in future architected materials to effectively and reversibly dissipate energy.
Research on the Heat Dissipation Characteristics of Lithium Battery Spatial Layout in an AUV
Directory of Open Access Journals (Sweden)
Zhaoyong Mao
2016-01-01
Full Text Available To meet the power demand requirements of autonomous underwater vehicles (AUVs, the power supply is generally composed of a large number of high-energy lithium battery groups. The lithium battery heat dissipation properties not only affect the underwater vehicle performance but also bring some security risks. Based on the widespread application of lithium batteries, lithium batteries in an AUV are taken as an example to investigate the heat dissipation characteristics of the lithium battery spatial layout in an AUV. With the aim of increasing the safety of lithium batteries, a model is developed for the heat transfer process based on the energy conservation equation, and the battery heat dissipation characteristics of the spatial layout are analyzed. The results indicate that the most suitable distance between the cells and the cross arrangement is better than the sequence arrangement in terms of cooling characteristics. The temperature gradient and the temperature change inside the cabin with time are primarily affected by the navigation speed, but they have little relationship with the environmental temperature.
Skin histology and its role in heat dissipation in three pinniped species
Directory of Open Access Journals (Sweden)
Khamas Wael A
2012-08-01
Full Text Available Abstract Background Pinnipeds have a thick blubber layer and may have difficulty maintaining their body temperature during hot weather when on land. The skin is the main thermoregulatory conduit which emits excessive body heat. Methods Thorough evaluation of the skin histology in three pinniped species; the California sea lion-Zalophus californianus, the Pacific harbor seal-Phoca vitulina richardsi, and the Northern elephant seal-Mirounga angustirostris, was conducted to identify the presence, location and distribution of skin structures which contribute to thermoregulation. These structures included hair, adipose tissue, sweat glands, vasculature, and arteriovenous anastomoses (AVA. Thermal imaging was performed on live animals of the same species to correlate histological findings with thermal emission of the skin. Results The presence and distribution of skin structures directly relates to emissivity of the skin in all three species. Emissivity of skin in phocids (Pacific harbor and Northern elephant seals follows a different pattern than skin in otariids (California sea lions. The flipper skin in phocids tends to be the most emissive region during hot weather and least emissive during cold weather. On the contrary in otariids, skin of the entire body has a tendency to be emissive during both hot and cold weather. Conclusion Heat dissipation of the skin directly relates to the presence and distribution of skin structures in all three species. Different skin thermal dissipation patterns were observed in phocid versus otariid seals. Observed thermal patterns can be used for proper understanding of optimum thermal needs of seals housed in research facilities, rescue centers and zoo exhibits.
International Nuclear Information System (INIS)
Wang, J.A.
1998-05-01
The NRC Regulatory Guide 1.99 Revision 2 was based on 177 surveillance data points and the EPRI data base, where 76% of 177 data points and 60% of EPRI data base were from Westinghouse's data. Therefore, other vendors' radiation environment may not be properly characterized by R.G. 1.99's prediction. To minimize scatter from the influences of the irradiation temperature, neutron energy spectrum, displacement rate, and plant operation procedures on embrittlement models, improved embrittlement models based on group data that have similar radiation environments and reactor design and operation criteria are examined. A total of 653 shift data points from the current FR-EDB, including 397 Westinghouse data, 93 B and W data, 37 CE data, and 106 GE data, are used. A nonlinear least squares fitting FORTRAN program, incorporating a Monte Carlo procedure with 35% and 10% uncertainty assigned to the fluence and shift data, respectively, was written for this study. In order to have the same adjusted fluence value for the weld and plate material in the same capsule, the Monte Carlo least squares fitting procedure has the ability to adjust the fluence values while running the weld and plate formula simultaneously. Six chemical components, namely, copper, nickel, phosphorus, sulfur, manganese, and molybdenum, were considered in the development of the new embrittlement models. The overall percentage of reduction of the 2-sigma margins per delta RTNDT predicted by the new embrittlement models, compared to that of R.G. 1.99, for weld and base materials are 42% and 36%, respectively. Currently, the need for thermal annealing is seriously being considered for several A302B type RPVs. From the macroscopic view point, even if base and weld materials were verified from mechanical tests to be fully recovered, the linking heat affected zone (HAZ) material has not been properly characterized. Thus the final overall recovery will still be unknown. The great data scatter of the HAZ metals may
James, Rob S; Tallis, Jason; Angilletta, Michael J
2015-01-01
In endotherms, such as mammals and birds, internal organs can specialise to function within a narrow thermal range. Consequently, these organs should become more sensitive to changes in body temperature. Yet, organs at the periphery of the body still experience considerable fluctuations in temperature, which could select for lower thermal sensitivity. We hypothesised that the performance of soleus muscle taken from the leg would depend less on temperature than would the performance of diaphragm muscle taken from the body core. Soleus and diaphragm muscles were isolated from mice and subjected to isometric and work-loop studies to analyse mechanical performance at temperatures between 15 and 40 °C. Across this thermal range, soleus muscle took longer to generate isometric force and longer to relax, and tended to produce greater normalised maximal force (stress) than did diaphragm muscle. The time required to produce half of maximal force during isometric tetanus and the time required to relax half of maximal force were both more sensitive to temperature in soleus than they were in diaphragm. However, thermal sensitivities of maximal force during isometric tetani were similar for both muscles. Consistent with our hypothesis, power output (the product of speed and force) was greater in magnitude and more thermally sensitive in diaphragm than it was in soleus. Our findings, when combined with previous observations of muscles from regionally endothermic fish, suggest that endothermy influences the thermal sensitivities of power output in core and peripheral muscles.
Identification of energy dissipation mechanisms in CNT-reinforced nanocomposites
International Nuclear Information System (INIS)
Gardea, Frank; Lagoudas, Dimitris C; Naraghi, Mohammad; Glaz, Bryan; Riddick, Jaret
2016-01-01
In this paper we present our recent findings on the mechanisms of energy dissipation in polymer-based nanocomposites obtained through experimental investigations. The matrix of the nanocomposite was polystyrene (PS) which was reinforced with carbon nanotubes (CNTs). To study the mechanical strain energy dissipation of nanocomposites, we measured the ratio of loss to storage modulus for different CNT concentrations and alignments. CNT alignment was achieved via hot-drawing of PS-CNT. In addition, CNT agglomeration was studied via a combination of SEM imaging and Raman scanning. We found that at sufficiently low strains, energy dissipation in composites with high CNT alignment is not a function of applied strain, as no interfacial slip occurs between the CNTs and PS. However, below the interfacial slip strain threshold, damping scales monotonically with CNT content, which indicates the prevalence of CNT-CNT friction dissipation mechanisms within agglomerates. At higher strains, interfacial slip also contributes to energy dissipation. However, the increase in damping with strain, especially when CNT agglomerates are present, does not scale linearly with the effective interface area between CNTs and PS, suggesting a significant contribution of friction between CNTs within agglomerates to energy dissipation at large strains. In addition, for the first time, a comparison between the energy dissipation in randomly oriented and aligned CNT composites was made. It is inferred that matrix plasticity and tearing caused by misorientation of CNTs with the loading direction is a major cause of energy dissipation. The results of our research can be used to design composites with high energy dissipation capability, especially for applications where dynamic loading may compromise structural stability and functionality, such as rotary wing structures and antennas. (paper)
International Nuclear Information System (INIS)
Lang, Christian; Borghini, Nicolas
2014-01-01
A significant fraction of the changes in momentum distributions induced by dissipative phenomena in the description of the fluid fireball created in ultrarelativistic heavy-ion collisions actually take place when the fluid turns into individual particles. We study these corrections in the limit of a low freeze-out temperature of the flowing medium, and we show that they mostly affect particles with a higher velocity than the fluid. For these, we derive relations between different flow harmonics, from which the functional form of the dissipative corrections could ultimately be reconstructed from experimental data. (orig.)
Global dissipativity of continuous-time recurrent neural networks with time delay
International Nuclear Information System (INIS)
Liao Xiaoxin; Wang Jun
2003-01-01
This paper addresses the global dissipativity of a general class of continuous-time recurrent neural networks. First, the concepts of global dissipation and global exponential dissipation are defined and elaborated. Next, the sets of global dissipativity and global exponentially dissipativity are characterized using the parameters of recurrent neural network models. In particular, it is shown that the Hopfield network and cellular neural networks with or without time delays are dissipative systems
Neri, Elettra; Scazza, Francesco; Roati, Giacomo
2018-04-01
Quantum systems out of equilibrium offer the possibility of understanding intriguing and challenging problems in modern physics. Studying transport properties is not only valuable to unveil fundamental properties of quantum matter but it is also an excellent tool for developing new quantum devices which inherently employ quantum-mechanical effects. In this contribution, we present our experimental studies on quantum transport using ultracold Fermi gases of 6Li atoms. We realize the analogous of a Josephson junction by bisecting fermionic superfluids by a thin optical barrier. We observe coherent dynamics in both the population and in the relative phase between the two reservoirs. For critical parameters, the superfluid dynamics exhibits both coherent and resistive flow due to phase-slippage events manifesting as vortices propagating into the bulk. We uncover also a regime of strong dissipation where the junction operation is irreversibly affected by vortex proliferation. Our studies open new directions for investigating dissipation and superfluid transport in strongly correlated fermionic systems.
Effects of dust on the propagation and dissipation of Alfven waves in interstellar clouds
International Nuclear Information System (INIS)
Pilipp, W.; Morfill, G.E.; Hartquist, T.W.; Havnes, O.; Maryland Univ., College Park; Nordlysobservatoriet, Tromso, Norway)
1987-01-01
The propagation of circularly polarized Alfven waves in dusty, weakly ionized media consisting of three gaseous fluids and of one size of grains that are either neutral or singly ionized is numerically investigated. For a molecular hydrogen number density of 10,000/cu cm, a magnetic field strength of 0.0001 G, and a temperature of 20 K, the waves are well coupled when the wavelengths exceed about 1 pc. The grains can reduce the minimum wavelength for coupled waves to about 0.1 pc and the dissipation rates of well-coupled small-amplitude waves by an order of magnitude. The speeds and dissipation rates of decoupled Alfven waves with frequencies well above 0.01/yr and wavelengths well below 0.01 pc are altered greatly over a wide range of frequencies by the presence of grains. In particular, right-handed circularly polarized waves are affected strongly by gyroresonance and cutoff effects. 18 references
Flux motion and dissipation in high-temperature superconductors
International Nuclear Information System (INIS)
Gray, K.E.; Kim, D.H.
1991-01-01
The effects on flux motion and dissipation of interlayer coupling of the Cu-O planes along the c-axis are considered for the high-temperature superconductors (HTS). It is argued that for the highly-anisotropic HTS, the weak interlayer coupling plays a dominant role that can be described by incoherent Josephson tunneling between superconducting Cu-O bi- or tri-layers. In YBa 2 Cu 3 O 7 , the layers are strongly coupled, presumably because the conducting Cu-O chains short circuit the Josephson tunneling, so that these effects are weak or missing. Recently, the effects of anisotropy and fluctuations on critical current densities, J c (T,H) and the field-induced broadening of resistivity transitions, ρ(T,H), have been studied in high-temperature superconductors (HTS). Although the broadening looks similar for the applied field, H, oriented either parallel to the superconducting Cu-O layers (H parallel ab) or parallel to the c-axis (H parallel c), its width and the detailed shape of ρ(T,H) are different. The explanations given in this paper for the highly anisotropic HTS differ in detail for the two cases, but have a crucial feature in common: they result from fluctuations affecting the Josephson coupling across the interlayer junctions
Magnetic energy dissipation in force-free jets
Choudhuri, Arnab Rai; Konigl, Arieh
1986-01-01
It is shown that a magnetic pressure-dominated, supersonic jet which expands or contracts in response to variations in the confining external pressure can dissipate magnetic energy through field-line reconnection as it relaxes to a minimum-energy configuration. In order for a continuous dissipation to occur, the effective reconnection time must be a fraction of the expansion time. The dissipation rate for the axisymmetric minimum-energy field configuration is analytically derived. The results indicate that the field relaxation process could be a viable mechanism for powering the synchrotron emission in extragalactic jets if the reconnection time is substantially shorter than the nominal resistive tearing time in the jet.
Energy dissipation through wind-generated breaking waves
Institute of Scientific and Technical Information of China (English)
ZHANG Shuwen; CAO Ruixue; XIE Lingling
2012-01-01
Wave breaking is an important process that controls turbulence properties and fluxes of heat and mass in the upper oceanic layer.A model is described for energy dissipation per unit area at the ocean surface attributed to wind-generated breaking waves,in terms of ratio of energy dissipation to energy input,windgenerated wave spectrum,and wave growth rate.Also advanced is a vertical distribution model of turbulent kinetic energy,based on an exponential distribution method.The result shows that energy dissipation rate depends heavily on wind speed and sea state.Our results agree well with predictions of previous works.
Dissipation of magnetic energy during disruptive current termination
International Nuclear Information System (INIS)
Yamazaki, K.; Schmidt, G.L.
1983-09-01
The magnetic coupling during a disruption between the plasma and the various coil systems on the PDX tokamak has been modeled. Using measured coil currents, the model indicates that dissipation of magnetic energy in the plasma equal to 75 % of the energy stored in the poloidal field of the plasma current does occur and that coupling between the plasma and the coil systems can reduce such dissipation. In the case of PDX ohmic discharges, bolometric measurements of radiation and charge exchange, integrated over a disruption, account for 90 % of the calculated energy dissipation. (author)
Skyrmionic spin Seebeck effect via dissipative thermomagnonic torques
Kovalev, Alexey A.
2014-06-01
We derive thermomagnonic torque and its "β-type" dissipative correction from the stochastic Landau-Lifshitz-Gilbert equation. The β-type dissipative correction describes viscous coupling between magnetic dynamics and magnonic current and it stems from spin mistracking of the magnetic order. We show that thermomagnonic torque is important for describing temperature gradient induced motion of skyrmions in helical magnets while dissipative correction plays an essential role in generating transverse Magnus force. We propose to detect such skyrmionic motion by employing the transverse spin Seebeck effect geometry.
Engineering high-order nonlinear dissipation for quantum superconducting circuits
Mundhada, S. O.; Grimm, A.; Touzard, S.; Shankar, S.; Minev, Z. K.; Vool, U.; Mirrahimi, M.; Devoret, M. H.
Engineering nonlinear driven-dissipative processes is essential for quantum control. In the case of a harmonic oscillator, nonlinear dissipation can stabilize a decoherence-free manifold, leading to protected quantum information encoding. One possible approach to implement such nonlinear interactions is to combine the nonlinearities provided by Josephson circuits with parametric pump drives. However, it is usually hard to achieve strong nonlinearities while avoiding undesired couplings. Here we propose a scheme to engineer a four-photon drive and dissipation in a harmonic oscillator by cascading experimentally demonstrated two-photon processes. We also report experimental progress towards realization of such a scheme. Work supported by: ARO, ONR, AFOSR and YINQE.
Engine and radiator: fetal and placental interactions for heat dissipation.
Schröder, H J; Power, G G
1997-03-01
The 'engine' of fetal metabolism generates heat (3-4 W kg-1 in fetal sheep) which has to be dissipated to the maternal organism. Fetal heat may move through the amniotic/allantoic fluids to the uterine wall (conductive pathway; total conductance, 1.1 W degrees C-1 kg-1) and with the umbilical arterial blood flow (convective pathway) to the placenta. Because resistance to heat flow is larger than zero fetal temperature exceeds maternal temperature by about 0.5 degree C (0.3-1 degree C). Probably 85% of fetal heat is lost to the maternal organism through the placenta, which thus serves as the main 'radiator'. Placental heat conductivity appears to be extremely high and this may lead to impaired heat exchange (guinea-pig placenta). A computer simulation demonstrates that fetal temperature is essentially clamped to maternal temperature, and that fetal thermoregulatory efforts to gain thermal independence would be futile. Indeed, when the late gestational fetus in utero is challenged by cold stress, direct and indirect indicators of (non-shivering) thermogenesis (oxygen consumption, increase of plasma glycerol and free fatty acid levels) change only moderately. In prematurely delivered lambs, however, cold stress provokes summit metabolism and maximum heat production. Only when birth is imitated in utero (by cord clamping, external artificial lung ventilation and cooling) do thermogenic efforts approach levels typical of extra-uterine life. This suggests the presence of inhibitors of thermogenesis of placental origin, e.g. prostaglandins and adenosine. When the synthesis of prostaglandins is blocked by pretreatment with indomethacin, sheep fetuses react to intra-uterine cooling with vigorous thermogenic responses, which can be subdued by infusion of prostaglandin E2 (PGE2). Since the sheep placenta is known to produce sufficient amounts of PGE2, it seems that the placenta controls fetal thermogenic responses to some extent. This transforms the fetus into an ectothermic
Chakravarthy, Sunada; Gonthier, Keith A.
2016-07-01
Variations in the microstructure of granular explosives (i.e., particle packing density, size, shape, and composition) can affect their shock sensitivity by altering thermomechanical fields at the particle-scale during pore collapse within shocks. If the deformation rate is fast, hot-spots can form, ignite, and interact, resulting in burn at the macro-scale. In this study, a two-dimensional finite and discrete element technique is used to simulate and examine shock-induced dissipation and hot-spot formation within low density explosives (68%-84% theoretical maximum density (TMD)) consisting of large ensembles of HMX (C4H8N8O8) and aluminum (Al) particles (size ˜ 60 -360 μm). Emphasis is placed on identifying how the inclusion of Al influences effective shock dissipation and hot-spot fields relative to equivalent ensembles of neat/pure HMX for shocks that are sufficiently strong to eliminate porosity. Spatially distributed hot-spot fields are characterized by their number density and area fraction enabling their dynamics to be described in terms of nucleation, growth, and agglomeration-dominated phases with increasing shock strength. For fixed shock particle speed, predictions indicate that decreasing packing density enhances shock dissipation and hot-spot formation, and that the inclusion of Al increases dissipation relative to neat HMX by pressure enhanced compaction resulting in fewer but larger HMX hot-spots. Ensembles having bimodal particle sizes are shown to significantly affect hot-spot dynamics by altering the spatial distribution of hot-spots behind shocks.
Particle Acceleration in Dissipative Pulsar Magnetospheres
Kazanas, Z.; Kalapotharakos, C.; Harding, A.; Contopoulos, I.
2012-01-01
Pulsar magnetospheres represent unipolar inductor-type electrical circuits at which an EM potential across the polar cap (due to the rotation of their magnetic field) drives currents that run in and out of the polar cap and close at infinity. An estimate ofthe magnitude of this current can be obtained by dividing the potential induced across the polar cap V approx = B(sub O) R(sub O)(Omega R(sub O)/c)(exp 2) by the impedance of free space Z approx eq 4 pi/c; the resulting polar cap current density is close to $n {GJ} c$ where $n_{GJ}$ is the Goldreich-Julian (GJ) charge density. This argument suggests that even at current densities close to the GJ one, pulsar magnetospheres have a significant component of electric field $E_{parallel}$, parallel to the magnetic field, a condition necessary for particle acceleration and the production of radiation. We present the magnetic and electric field structures as well as the currents, charge densities, spin down rates and potential drops along the magnetic field lines of pulsar magnetospheres which do not obey the ideal MHD condition $E cdot B = 0$. By relating the current density along the poloidal field lines to the parallel electric field via a kind of Ohm's law $J = sigma E_{parallel}$ we study the structure of these magnetospheres as a function of the conductivity $sigma$. We find that for $sigma gg OmegaS the solution tends to the (ideal) Force-Free one and to the Vacuum one for $sigma 11 OmegaS. Finally, we present dissipative magnetospheric solutions with spatially variable $sigma$ that supports various microphysical properties and are compatible with the observations.
Scattering of traveling spots in dissipative systems
Nishiura, Yasumasa; Teramoto, Takashi; Ueda, Kei-Ichi
2005-12-01
One of the fundamental questions for self-organization in pattern formation is how spatial periodic structure is spontaneously formed starting from a localized fluctuation. It is known in dissipative systems that splitting dynamics is one of the driving forces to create many particle-like patterns from a single seed. On the way to final state there occur many collisions among them and its scattering manner is crucial to predict whether periodic structure is realized or not. We focus on the colliding dynamics of traveling spots arising in a three-component system and study how the transition of scattering dynamics is brought about. It has been clarified that hidden unstable patterns called "scattors" and their stable and unstable manifolds direct the traffic flow of orbits before and after collisions. The collision process in general can be decomposed into several steps and each step is controlled by such a scattor, in other words, a network among scattors forms the backbone for scattering dynamics. A variety of input-output relations comes from the complexity of the network as well as high Morse indices of the scattor. The change of transition manners is caused by the switching of the network from one structure to another, and such a change is caused by the singularities of scattors. We illustrate a typical example of the change of transition caused by the destabilization of the scattor. A new instability of the scattor brings a new destination for the orbit resulting in a new input-output relation, for instance, Hopf instability for the scattor of peanut type brings an annihilation.
A dissipative model of solar system
Vladimir, V. G.
2009-04-01
rotation of planets, and the small tidal deformations arising under influence of gradients of gravitational forces. The method of division of movements receives the equations describing movements of the centers of weights of planets and their own rotations. In the offered model takes place a dissipation of the energy which source are internally viscous forces of each planet. The system supposes the first integral - the law of preservation of the kinetic moment concerning the centre of weights of system. As a result of deformations of planets in the law of the universal gravitation which has been written down for material points, there are small conservative amendments. The equations of movement describe movement of the centers of weights of planets and their rotation around of the centers of weights in view of the tidal phenomena and the dissipative forces. The connected system of the equations consists of 3N the vector equations of the second order representing the theorems of movement of the centers of weights of planets, and N the vector equations of the first order determining changes of the own kinetic moments of each planet. Stationary values of full mechanical energy on the variety set in integral of the kinetic moment, correspond to stationary movements - to rotations of system as firm body with constant angular speed around of the centre of weights of all system. Angular speed of stationary rotation is directed along a constant vector of the kinetic moment, and the axis of rotation is the main central axis of inertia of system. We shall notice, that deformations of planets in stationary movement are constant, as in system of coordinates rotating with constant angular speed centrifugal forces and forces of gravitational interaction of planets are constant. Stationary configurations of system are determined according to Routh`s technique as stationary points of the changed potential energy submitted by the sum potential energies of centrifugal and gravitational
Energy Technology Data Exchange (ETDEWEB)
Thang, Bui Hung; Trinh, Pham Van; Quang, Le Dinh; Khoi, Phan Hong; Minh, Phan Ngoc [Vietnam Academy of Science and Technology, Ho Chi Minh CIty (Viet Nam); Huong, Nguyen Thi [Hanoi University of Science, Hanoi (Viet Nam); Vietnam National University, Hanoi (Viet Nam)
2014-08-15
Carbon nanotubes (CNTs) are some of the most valuable materials with high thermal conductivity. The thermal conductivity of individual multiwalled carbon nanotubes (MWCNTs) grown by using chemical vapor deposition is 600 ± 100 Wm{sup -1}K{sup -1} compared with the thermal conductivity 419 Wm{sup -1}K{sup -1} of Ag. Carbon-nanotube-based liquids - a new class of nanomaterials, have shown many interesting properties and distinctive features offering potential in heat dissipation applications for electronic devices, such as computer microprocessor, high power LED, etc. In this work, a multiwalled carbon-nanotube-based liquid was made of well-dispersed hydroxyl-functional multiwalled carbon nanotubes (MWCNT-OH) in ethylene glycol (EG)/distilled water (DW) solutions by using Tween-80 surfactant and an ultrasonication method. The concentration of MWCNT-OH in EG/DW solutions ranged from 0.1 to 1.2 gram/liter. The dispersion of the MWCNT-OH-based EG/DW solutions was evaluated by using a Zeta-Sizer analyzer. The MWCNT-OH-based EG/DW solutions were used as coolants in the liquid cooling system for the Intel Core i5 processor. The thermal dissipation efficiency and the thermal response of the system were evaluated by directly measuring the temperature of the micro-processor using the Core Temp software and the temperature sensors built inside the micro-processor. The results confirmed the advantages of CNTs in thermal dissipation systems for computer processors and other high-power electronic devices.
The effects of dissipation on topological mechanical systems
Xiong, Ye; Wang, Tianxiang; Tong, Peiqing
2016-09-01
We theoretically study the effects of isotropic dissipation in a topological mechanical system which is an analogue of Chern insulator in mechanical vibrational lattice. The global gauge invariance is still conserved in this system albeit it is destroyed by the dissipation in the quantum counterpart. The chiral edge states in this system are therefore robust against strong dissipation. The dissipation also causes a dispersion of damping for the eigenstates. It will modify the equation of motion of a wave packet by an extra effective force. After taking into account the Berry curvature in the wave vector space, the trace of a free wave packet in the real space should be curved, feinting to break the Newton’s first law.
Energy-dissipation-model for metallurgical multi-phase-systems
Energy Technology Data Exchange (ETDEWEB)
Mavrommatis, K.T. [Rheinisch-Westfaelische Technische Hochschule Aachen, Aachen (Germany)
1996-12-31
Entropy production in real processes is directly associated with the dissipation of energy. Both are potential measures for the proceed of irreversible processes taking place in metallurgical systems. Many of these processes in multi-phase-systems could then be modelled on the basis of the energy-dissipation associated with. As this entity can often be estimated using very simple assumptions from first principles, the evolution of an overall measure of systems behaviour can be studied constructing an energy-dissipation -based model of the system. In this work a formulation of this concept, the Energy-Dissipation-Model (EDM), for metallurgical multi-phase-systems is given. Special examples are studied to illustrate the concept, and benefits as well as the range of validity are shown. This concept might be understood as complement to usual CFD-modelling of complex systems on a more abstract level but reproducing essential attributes of complex metallurgical systems. (author)
Nonoscillatory shock capturing scheme using flux limited dissipation
International Nuclear Information System (INIS)
Jameson, A.
1985-01-01
A method for modifying the third order dissipative terms by the introduction of flux limiters is proposed. The first order dissipative terms can then be eliminated entirely, and in the case of a scalar conservation law the scheme is converted into a total variation diminishing scheme provided that an appropriate value is chosen for the dissipative coefficient. Particular attention is given to: (1) the treatment of the scalar conservation law; (2) the treatment of the Euler equations for inviscid compressible flow; (3) the boundary conditions; and (4) multistage time stepping and multigrid schemes. Numerical results for transonic flows suggest that a central difference scheme augmented by flux limited dissipative terms can lead to an effective nonoscillatory shock capturing method. 20 references
On the quantization of sectorially Hamiltonian dissipative systems
Energy Technology Data Exchange (ETDEWEB)
Castagnino, M. [Instituto de Fisica de Rosario, 2000 Rosario (Argentina); Instituto de Astronomia y Fisica del Espacio, Casilla de Correos 67, Sucursal 28, 1428 Buenos Aires (Argentina); Gadella, M. [Instituto de Fisica de Rosario, 2000 Rosario (Argentina); Departamento de Fisica Teorica, Atomica y Optica, Facultad de Ciencias, Universidad de Valladolid, 47005 Valladolid (Spain)], E-mail: manuelgadella@yahoo.com.ar; Lara, L.P. [Instituto de Fisica de Rosario, 2000 Rosario (Argentina); Facultad Regional Rosario, UTN, 2000 Rosario (Argentina)
2009-10-15
We present a theoretical discussion showing that, although some dissipative systems may have a sectorial Hamiltonian description, this description does not allow for canonical quantization. However, a quantum Liouville counterpart of these systems is possible, although it is not unique.
On the quantization of sectorially Hamiltonian dissipative systems
International Nuclear Information System (INIS)
Castagnino, M.; Gadella, M.; Lara, L.P.
2009-01-01
We present a theoretical discussion showing that, although some dissipative systems may have a sectorial Hamiltonian description, this description does not allow for canonical quantization. However, a quantum Liouville counterpart of these systems is possible, although it is not unique.
Energy-dissipation-model for metallurgical multi-phase-systems
Energy Technology Data Exchange (ETDEWEB)
Mavrommatis, K T [Rheinisch-Westfaelische Technische Hochschule Aachen, Aachen (Germany)
1997-12-31
Entropy production in real processes is directly associated with the dissipation of energy. Both are potential measures for the proceed of irreversible processes taking place in metallurgical systems. Many of these processes in multi-phase-systems could then be modelled on the basis of the energy-dissipation associated with. As this entity can often be estimated using very simple assumptions from first principles, the evolution of an overall measure of systems behaviour can be studied constructing an energy-dissipation -based model of the system. In this work a formulation of this concept, the Energy-Dissipation-Model (EDM), for metallurgical multi-phase-systems is given. Special examples are studied to illustrate the concept, and benefits as well as the range of validity are shown. This concept might be understood as complement to usual CFD-modelling of complex systems on a more abstract level but reproducing essential attributes of complex metallurgical systems. (author)
Dissipation in a Quantum Wire: Fact and Fantasy
International Nuclear Information System (INIS)
Das, Mukunda P.; Green, Frederick
2008-01-01
Where, and how, does energy dissipation of electrical energy take place in a ballistic wire? Fully two decades after the advent of the transmissive phenomenology of electrical conductance, this deceptively simple query remains unanswered. We revisit the quantum kinetic basis of dissipation and show its power to give a definitive answer to our query. Dissipation leaves a clear, quantitative trace in the non-equilibrium current noise of a quantum point contact; this signature has already been observed in the laboratory. We then highlight the current state of accepted understandings in the light of well-known yet seemingly contradictory measurements. The physics of mesoscopic transport rests not in coherent carrier transmission through a perfect and dissipationless metallic channel, but explicitly in their dissipative inelastic scattering at the wire's interfaces and adjacent macroscopic leads.
Dissipative Structures of the Kuramoto–Sivashinsky Equation
Directory of Open Access Journals (Sweden)
N. A. Kudryashov
2015-01-01
Full Text Available In the present work, we study the features of dissipative structures formation described by the periodic boundary value problem for the Kuramoto-Sivashinsky equation. The numerical algorithm which is based on the pseudospectral method is presented. We prove the efficiency and accuracy of the proposed numerical method on the exact solution of the equation considered. Using this approach, we performed the numerical simulation of dissipative structure formations described by the Kuramoto–Sivashinsky equation. The influence of the problem parameters on these processes are studied. The quantitative and qualitative characteristics of dissipative structure formations are described. We have shown that there is a value of the control parameter at which the processes of dissipative structure formation are observed. In particular, using the cyclic convolution we define the average value of this parameter. Also, we find the dependence of the amplitude of the structures on the value of control parameter.
Reversible dissipative processes, conformal motions and Landau damping
International Nuclear Information System (INIS)
Herrera, L.; Di Prisco, A.; Ibáñez, J.
2012-01-01
The existence of a dissipative flux vector is known to be compatible with reversible processes, provided a timelike conformal Killing vector (CKV) χ α =(V α )/T (where V α and T denote the four-velocity and temperature respectively) is admitted by the spacetime. Here we show that if a constitutive transport equation, either within the context of standard irreversible thermodynamics or the causal Israel–Stewart theory, is adopted, then such a compatibility also requires vanishing dissipative fluxes. Therefore, in this later case the vanishing of entropy production generated by the existence of such CKV is not actually associated to an imperfect fluid, but to a non-dissipative one. We discuss also about Landau damping. -- Highlights: ► We review the problem of compatibility of dissipation with reversibility. ► We show that the additional assumption of a transport equation renders such a compatibility trivial. ► We discuss about Landau damping.
Beam-to-Column Connections with Demountable Energy Dissipative Plates
Directory of Open Access Journals (Sweden)
Vasile-Mircea Venghiac
2018-03-01
Full Text Available The behavior of steel structures subjected to seismic actions depends directly on the connections behavior. There are two current tendencies for ensuring the structural ductility: allowing the formation of plastic hinges in the beams by using reduced beam sections or reduced web sections or by ensuring the plastic hinge formation in the connection by using dissipative elements. This paper presents a new perspective regarding the energy dissipation mechanism formation within the beam-to-column connection. The design of connections capable of dissipating large amounts of energy, with an acceptable strength and ductile behavior is a real challenge for engineers. Sustainability is a big advantage for these connections. Another big advantage is the possibility of restoring the functionality of the damaged construction in a short time interval and with reduced costs. The introduction of connections with demountable energy dissipative plates can be a step forward in designing new beam-to-column connections for steel structures.
Dissipation-driven quantum phase transitions in collective spin systems
International Nuclear Information System (INIS)
Morrison, S; Parkins, A S
2008-01-01
We consider two different collective spin systems subjected to strong dissipation-on the same scale as interaction strengths and external fields-and show that either continuous or discontinuous dissipative quantum phase transitions can occur as the dissipation strength is varied. First, we consider a well-known model of cooperative resonance fluorescence that can exhibit a second-order quantum phase transition, and analyse the entanglement properties near the critical point. Next, we examine a dissipative version of the Lipkin-Meshkov-Glick interacting collective spin model, where we find that either first- or second-order quantum phase transitions can occur, depending only on the ratio of the interaction and external field parameters. We give detailed results and interpretation for the steady-state entanglement in the vicinity of the critical point, where it reaches a maximum. For the first-order transition we find that the semiclassical steady states exhibit a region of bistability. (fast track communication)
Dissipative phenomena in deep inelastic heavy ion collisions
International Nuclear Information System (INIS)
Gross, D.H.E.; Krappe, H.J.; Lindenberger, K.H.; Lipperheide, R.; Moehring, K.
1978-01-01
During this meeting the following theoretical concepts for deep-inelastic heavy ion reactions were discussed: the energy transfer and friction, direct or statistical mechanisms, dissipation and fluctuation. (WL) [de
Dissipative light-bullets in the filamentation of femtosecond pulses
International Nuclear Information System (INIS)
Porras, M.A.; Gonzalo, I.
2010-01-01
Complete text of publication follows. With the growing interest in filamentation in solid and liquid media, the regime of filamentation with anomalous dispersion is receiving more attention. In this work we show that basics aspects of the filament dynamics in this regime can be explained in terms of a novel type of light-bullet, which is not of solitary or of conical types, but a wave-packet that maximizes the energy dissipation into the medium while remaining localized and stationary in propagation. We first show that a nonlinear optical medium at a given carrier wave length at which dispersion is anomalous, supports 'dissipative' light-bullets, i.e., waves localized in space and time and that propagate without change as a result of a balance between nonlinear compression and nonlinear absorption. Among them, the particular dissipative light-bullet with the highest possible dissipation is unique in a given medium, in the sense that all its properties are fixed by the properties of the medium at the carrier wave length. In this light-bullet, self-focusing continuously transports energy towards the pulse center by an amount that just compensates for the nonlinear losses. Figure 1(a) shows the radial profiles of the dissipative light-bullets that maximizes energy dissipation for several orders of multi-photon absorption responsible for the nonlinear losses. We have also found that this dissipative light-bullet tends to be spontaneously formed in the filamentary dynamics in media with anomalous dispersion. Figure 1(b) shows the peak intensity, the total energy and losses of a pulse that undergoes self-focusing and filamentation in an ideal medium with only Kerr nonlinearity and multi-photon absorption. This simple model reproduces the particularly long filament 'segments' and the 'burst' observed in experiments and in more accurate simulations. The peak intensity in the filament is identical to that of the dissipative light-bullet with maximum dissipation, and the
Hydromagnetic flow of third grade nanofluid with viscous dissipation and flux conditions
Energy Technology Data Exchange (ETDEWEB)
Hussain, T. [Faculty of Computing, Mohammad Ali Jinnah University, Islamabad 44000 (Pakistan); Shehzad, S. A., E-mail: ali-qau70@yahoo.com [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan); Hayat, T. [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Alsaedi, A. [Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)
2015-08-15
This article investigates the magnetohydrodynamic flow of third grade nanofluid with thermophoresis and Brownian motion effects. Energy equation is considered in the presence of thermal radiation and viscous dissipation. Rosseland’s approximation is employed for thermal radiation. The heat and concentration flux conditions are taken into account. The governing nonlinear mathematical expressions of velocity, temperature and concentration are converted into dimensionless expressions via transformations. Series solutions of the dimensionless velocity, temperature and concentration are developed. Convergence of the constructed solutions is checked out both graphically and numerically. Effects of interesting physical parameters on the temperature and concentration are plotted and discussed in detail. Numerical values of skin-friction coefficient are computed for the hydrodynamic and hydromagnetic flow cases.
Direct approach for the fluctuation-dissipation theorem under nonequilibrium steady-state conditions
Komori, Kentaro; Enomoto, Yutaro; Takeda, Hiroki; Michimura, Yuta; Somiya, Kentaro; Ando, Masaki; Ballmer, Stefan W.
2018-05-01
The test mass suspensions of cryogenic gravitational-wave detectors such as the KAGRA project are tasked with extracting the heat deposited on the optics. These suspensions have a nonuniform temperature, requiring the calculation of thermal noise in nonequilibrium conditions. While it is not possible to describe the whole suspension system with one temperature, the local temperature at every point in the system is still well defined. We therefore generalize the application of the fluctuation-dissipation theorem to mechanical systems, pioneered by Saulson and Levin, to nonequilibrium conditions in which a temperature can only be defined locally. The result is intuitive in the sense that the thermal noise in the observed degree of freedom is given by averaging the temperature field, weighted by the dissipation density associated with that particular degree of freedom. After proving this theorem, we apply the result to examples of increasing complexity: a simple spring, the bending of a pendulum suspension fiber, and a model of the KAGRA cryogenic suspension. We conclude by outlining the application to nonequilibrium thermoelastic noise.
Transitions in the Communication Capacity of Dissipative Qubit Channels
Daems, D.
2009-05-01
The information transmission is studied for quantum channels in which the noise includes dissipative effects, more specifically, nonunitality. Noise is usually a nuisance but can sometimes be helpful. For these channels, the communication capacity is shown to increase with the dissipative component of the noise and may exhibit transitions beyond which it increases faster. The optimal states are constructed analytically as well as the pertaining “phase” diagram.
Transport theory of dissipative heavy-ion collisions
International Nuclear Information System (INIS)
Norenberg, W.
1979-01-01
The lectures present the formulation of a transport theory, the derivation of a practicable transport equation (Fokker-Planck equation) and the evaluation of transport coefficients for dissipative (or deeply inelastic) heavy-ion collisions. The applicability of the theoretical concept is tested with remarkable success in the analyses of various experimental information (mass transfer, angular-momentum dissipation and energy loss). Some critical remarks on the present situation of transport theories are added. Future developments are outlined. (author)
Research on Characteristics of New Energy Dissipation With Symmetrical Structure
Ming, Wen; Huang, Chun-mei; Huang, Hao-wen; Wang, Xin-fang
2018-03-01
Utilizing good energy consumption capacity of arc steel bar, a new energy dissipation with symmetrical structure was proposed in this article. On the base of collection experimental data of damper specimen Under low cyclic reversed loading, finite element models were built by using ANSYS software, and influences of parameter change (Conduction rod diameter, Actuation plate thickness, Diameter of arc steel rod, Curved bars initial bending) on energy dissipation performance were analyzed. Some useful conclusions which can lay foundations for practical application were drawn.
New results from dissipative diabatic dynamics and nuclear elastoplasticity
International Nuclear Information System (INIS)
Noerenberg, W.; Technische Hochschule Darmstadt
1986-10-01
I present new results about dissipative diabatic dynamics and nuclear elastoplasticity, in particular on a self-consistent diabatic formulation, on first numerical calculations of dissipative diabatic dynamics in two collective degrees of freedom, on quasi-elastic recoil in central nucleus-nucleus collisions, on the diabatic hindrance of fusion reactions and on the diabatic emission of nucleons in central nucleus-nucleus collisions. (orig./HSI)
Energy dissipation in a finite volume of magnetic fluid
Energy Technology Data Exchange (ETDEWEB)
Bashtovoi, V.; Motsar, A.; Reks, A., E-mail: alexfx20@yandex.ru
2017-06-01
This study is devoted to investigation of energy dissipation processes which happen in a magnetic fluid drop with compound magnet during its motion in cylindrical non magnetic container. The possibility of energy dissipation control by means of electromagnetic field is examined. It's found that a change of magnetic field of compound magnet can lead to both increase and decrease of oscillation decay time and relative damping factor can be varied in a range of ±35%.
Transport theory of dissipative heavy-ion collisions
International Nuclear Information System (INIS)
Noerenberg, W.
1979-03-01
The lectures present the formulation of a transport theory, the derivation of a practicable transport equation (Fokker-Planck equation) and the evaluation of transport coefficients for dissipative (or deeply inelastic) heavyion collisions. The applicability of the theoretical concept is tested with remarkable success in the analyses of various experimental informations (mass transfer, angular-momentum dissipation and energy loss). Some critical remarks on the present situation of transport theories are added. Future developments are outlined. (orig.) [de
Kinetic energy dissipation in heavy-ion collisions
International Nuclear Information System (INIS)
Fedotov, S.I.; Jolos, R.V.; Kartavenko, V.G.
1979-01-01
Kinetic energy dissipation mechanism is considered in deep inelastic heavy-ion collisions. It is shown that the significant part of the kinetic energy loss can be explained by the excitation of the nuclear matter multipole vibrations. The main contribution of the energy dissipation is given by the time dependent heavy-ion interaction potential renormalized due to the nuclear excitations, rather than by the velocity proportional frictional forces
Dissipation and spontaneous symmetry breaking in brain dynamics
International Nuclear Information System (INIS)
Freeman, Walter J; Vitiello, Giuseppe
2008-01-01
We compare the predictions of the dissipative quantum model of the brain with neurophysiological data collected from electroencephalograms resulting from high-density arrays fixed on the surfaces of primary sensory and limbic areas of trained rabbits and cats. Functional brain imaging in relation to behavior reveals the formation of coherent domains of synchronized neuronal oscillatory activity and phase transitions predicted by the dissipative model
Energy Technology Data Exchange (ETDEWEB)
Singh, Shivkant; Yarali, Milad; Mavrokefalos, Anastassios [Department of Mechanical Engineering, University of Houston, Houston, TX (United States); Shervin, Shahab [Materials Science and Engineering Program, University of Houston, Houston, TX (United States); Venkateswaran, Venkat; Olenick, Kathy; Olenick, John A. [ENrG Inc., Buffalo, NY (United States); Ryou, Jae-Hyun [Department of Mechanical Engineering, University of Houston, Houston, TX (United States); Materials Science and Engineering Program, University of Houston, Houston, TX (United States); Texas Center for Superconductivity, University of Houston (TcSUH), Houston, TX (United States)
2017-10-15
Thermal management in flexible electronic has proven to be challenging thereby limiting the development of flexible devices with high power densities. To truly enable the technological implementation of such devices, it is imperative to develop highly thermally conducting flexible substrates that are fully compatible with large-scale fabrication. Here, we present the thermal conductivity of state-of-the-art flexible yttria-stabilized zirconia (YSZ) substrates measured using the 3ω technique, which is already commercially manufactured via roll-to-roll technique. We observe that increasing the grain size increases the thermal conductivity of the flexible 3 mol.% YSZ, while the flexibility and transparency of the sample are hardly affected by the grain size enlargement. We exhibit thermal conductivity values of up to 4.16 Wm{sup -1}K {sup -1} that is at least 4 times higher than state-of-the-art polymeric flexible substrates. Phonon-hopping model (PHM) for granular material was used to fit the measured thermal conductivity and accurately define the thermal transport mechanism. Our results show that through grain size optimization, YSZ flexible substrates can be realized as flexible substrates, that pave new avenues for future novel application in flexible electronics through the utilization of both their ceramic structural flexibility and high heat dissipating capability. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
The TKE dissipation rate in the northern South China Sea
Lozovatsky, Iossif; Liu, Zhiyu; Fernando, Harindra Joseph S.; Hu, Jianyu; Wei, Hao
2013-12-01
The microstructure measurements taken during the summer seasons of 2009 and 2010 in the northern South China Sea (between 18°N and 22.5°N, and from the Luzon Strait to the eastern shelf of China) were used to estimate the averaged dissipation rate in the upper pycnocline of the deep basin and on the shelf. Linear correlation between and the estimates of available potential energy of internal waves, which was found for this data set, indicates an impact of energetic internal waves on spatial structure and temporal variability of . On the shelf stations, the bottom boundary layer depth-integrated dissipation reaches 17-19 mW/m2, dominating the dissipation in the water column below the surface layer. In the pycnocline, the integrated dissipation was mostly ˜10-30 % of . A weak dependence of bin-averaged dissipation on the Richardson number was noted, according to , where ɛ 0 + ɛ m is the background value of for weak stratification and Ri cr = 0.25, pointing to the combined effects of shear instability of small-scale motions and the influence of larger-scale low frequency internal waves. The latter broadly agrees with the MacKinnon-Gregg scaling for internal-wave-induced turbulence dissipation.
Magnetic intermittency of solar wind turbulence in the dissipation range
Pei, Zhongtian; He, Jiansen; Tu, Chuanyi; Marsch, Eckart; Wang, Linghua
2016-04-01
The feature, nature, and fate of intermittency in the dissipation range are an interesting topic in the solar wind turbulence. We calculate the distribution of flatness for the magnetic field fluctuations as a functionof angle and scale. The flatness distribution shows a "butterfly" pattern, with two wings located at angles parallel/anti-parallel to local mean magnetic field direction and main body located at angles perpendicular to local B0. This "butterfly" pattern illustrates that the flatness profile in (anti-) parallel direction approaches to the maximum value at larger scale and drops faster than that in perpendicular direction. The contours for probability distribution functions at different scales illustrate a "vase" pattern, more clear in parallel direction, which confirms the scale-variation of flatness and indicates the intermittency generation and dissipation. The angular distribution of structure function in the dissipation range shows an anisotropic pattern. The quasi-mono-fractal scaling of structure function in the dissipation range is also illustrated and investigated with the mathematical model for inhomogeneous cascading (extended p-model). Different from the inertial range, the extended p-model for the dissipation range results in approximate uniform fragmentation measure. However, more complete mathematicaland physical model involving both non-uniform cascading and dissipation is needed. The nature of intermittency may be strong structures or large amplitude fluctuations, which may be tested with magnetic helicity. In one case study, we find the heating effect in terms of entropy for large amplitude fluctuations seems to be more obvious than strong structures.
García-Gil, Juan Carlos; Soler-Rovira, Pedro; López-de-Sa, Esther G.; Polo, Alfredo
2014-05-01
In semi-arid agricultural soils, seasonal dynamic of soil CO2 efflux (SCE) is highly variable. Based on soil respiration measurements the effects of different management systems (moldboard plowing, chisel and no-tillage) and the application of composted sludge (CS) and thermally-dried sewage sludge (TSS) was investigated in a long-term field experiment (28 years) conducted on a sandy-loam soil at the experimental station 'La Higueruela' (40o 03'N, 4o 24'W). Both organic amendments were applied at a rate of 30 Mg ha-1 prior to tillage practices. Unamended soils were used as control for each tillage system. SCE was moderate in late spring (2.2-11.8 μmol CO2 m-2 s-1) when amendments were applied and tillage was performed, markedly decreased in summer (0.4-3.2 μmol CO2 m-2 s-1), following a moderate increase in autumn (3.4-14.1 μmol CO2 m-2 s-1), rising sharply in October (5.6-39.8 μmol CO2 m-2 s-1 ). In winter, SCE was low (0.6-6.5 μmol CO2 m-2 s-1). In general, SCE was greater in chisel and moldboard tilled soils, and in CS and particularly TSS-amended soils, due to the addition of labile C with these amendments, meanwhile no-tillage soils exhibited smaller increases in C efflux throughout the seasons. Soil temperature controlled the seasonal variations of SCE. In summer, when drought occurs, a general decrease of SCE was observed due to a deficit in soil water content. After drought period SCE jumped to high values in response to rain events ('Birch effect') that changed soil moisture conditions. Soil drying in summer and rewetting in autumn may promotes some changes on the structure of soil microbial community, affecting associated metabolic processes, and enhancing a rapid mineralization of water-soluble organic C compounds and/or dead microbial biomass that acts as an energy source for soil microorganisms. To assess the effects of tillage and amendments on SCE, Q10 values were calculated. Data were grouped into three groups according to soil moisture (0
Quattrochi, Dale A.; Luvall, Jeffrey C.; Estes, Maurice G., Jr.
1999-01-01
As an entity, the city is a manifestation of human "management" of the land. The act of city-building, however, drastically alters the biophysical environment, which ultimately, impacts local and regional land-atmosphere energy exchange processes. Because of the complexity of both the urban landscape and the attendant energy fluxes that result from urbanization, remote sensing offers the only real way to synoptically quantify these processes. One of the more important land-atmosphere fluxes that occurs over cities relates to the way that thermal energy is partitioned across the heterogeneous urban landscape. The individual land cover and surface material types that comprise the city, such as pavements and buildings, each have their own thermal energy regimes. As the collective urban landscape, the individual thermal energy responses from specific surfaces come together to form the urban heat island phenomena, which prevails as a dome of elevated air temperatures over cities. Although the urban heat island has been known to exist for well over 150 years, it is not understood how differences in thermal energy responses for land covers across the city interact to produce this phenomenon, or how the variability in thermal energy responses from different surface types drive its development. Additionally, it can be hypothesized that as cities grow in size through time, so do their urban heat islands. The interrelationships between urban sprawl and the respective growth of the urban heat island, however, have not been investigated. Moreover, little is known of the consequential effects of urban growth, land cover change, and the urban heat island as they impact local and regional meteorology and air quality.
Reyes-Acosta, J Leonardo; Vandegehuchte, Maurits W; Steppe, Kathy; Lubczynski, Maciek W
2012-07-01
Sap flow measurements conducted with thermal dissipation probes (TDPs) are vulnerable to natural temperature gradient (NTG) bias. Few studies, however, attempted to explain the dynamics underlying the NTG formation and its influence on the sensors' signal. This study focused on understanding how the TDP signals are affected by negative and positive temperature influences from NTG and tested the novel cyclic heat dissipation (CHD) method to filter out the NTG bias. A series of three experiments were performed in which gravity-driven water flow was enforced on freshly cut stem segments of Fagus sylvatica L., while an artificial temperature gradient (ATG) was induced. The first experiment sought to confirm the incidence of the ATG on sensors. The second experiment established the mis-estimations caused by the biasing effect of the ATG on standard TDP measurements. The third experiment tested the accuracy of the CHD method to account for the ATG biasing effect, as compared with other cyclic correction methods. During experiments, sap flow measured by TDP was assessed against gravimetric measurements. The results show that negative and positive ATGs were comparable in pattern but substantially larger than field NTGs. Second, the ATG bias caused an overestimation of the standard TDP sap flux density of ∼17 cm(3) cm(-2) h(-1) by 76%, and the sap flux density of ∼2 cm(3) cm(-2) h(-1) by over 800%. Finally, the proposed CHD method successfully reduced the max. ATG bias to 25% at ∼11 cm(3) cm(-2) h(-1) and to 40% at ∼1 cm(3) cm(-2) h(-1). We concluded that: (i) the TDP method is susceptible to NTG especially at low flows; (ii) the CHD method successfully corrected the TDP signal and resulted in generally more accurate sap flux density estimates (mean absolute percentage error ranging between 11 and 21%) than standard constant power TDP method and other cyclic power methods; and (iii) the ATG enforcing system is a suitable way of re-creating NTG for future tests.
Diez, M C; Elgueta, S; Rubilar, O; Tortella, G R; Schalchli, H; Bornhardt, C; Gallardo, F
2017-12-01
The dissipation of atrazine, chlorpyrifos and iprodione in a biopurification system and changes in the microbial and some biological parameters influenced by the rhizosphere of Lolium perenne were studied in a column system packed with an organic biomixture. Three column depths were analyzed for residual pesticides, peroxidase, fluorescein diacetate activity and microbial communities. Fungal colonization was analyzed by confocal laser scanning microscopy to assess the extent of its proliferation in wheat straw. The L. perenne rhizosphere enhanced pesticide dissipation and negligible pesticide residues were detected at 20-30 cm column depth. Atrazine, chlorpyrifos and iprodione removal was 82, 89 and 74% respectively in the first 10 cm depth for columns with vegetal cover. The presence of L. perenne in contaminated columns stimulated peroxidase activity in all three column depth sections. Fluorescein diacetate activity decreased over time in all column sections with the highest values in biomixtures with vegetal cover. Microbial communities, analyzed by PCR-DGGE, were not affected by the pesticide mixture application, presenting high values of similarity (>65%) with and without vegetal cover. Microbial abundance of Actinobacteria varied according to treatment and no clear link was observed. However, bacterial abundance increased over time and was similar with and without vegetal cover. On the other hand, fungal abundance decreased in all sections of columns after 40 days, but an increase was observed in response to pesticide application. Fungal colonization and straw degradation during pesticide dissipation were verified by monitoring the lignin autofluorescence loss.
Estimates of anelastic dissipation in the Earth's torsional modes
Directory of Open Access Journals (Sweden)
M. CAPUTO
1966-06-01
Full Text Available The decay of the amplitude of the free modes of the
Earth is a potential source of information on the mechanism of dissipation
of the elastic energy of the Earth.
However there are serious difficulties in the interpretation of the decay;
they are caused by several facts. One is the limited length of the significant
part of the record which prohibits to identify the splitting of all the modes
caused by the Earth rotation and also to follow the pattern in its rotation;
another reason is the coupling between modes, caused by the inhomogenities
and the flattening of the Earth, which can transfer energy from one mode
to another. The results available are therefore very few and of poor accuracy.
In order to seek new information on the mechanism of dissipation of
the elastic energy we solve a generalized form of the equation of elastodynamic
in which we have introduced some unspecified operators to represent
the dissipation of the elastic energy. By confronting these operators with
the observations we would hope to find informations on the mechanism
of dissipation. Unfortunately the laws of variation of Q with frequency,
found by various authors who were using different observations, are not in
agreement and are very uncertain. Therefore we can only estimate the
average values of the parameters of the supposed mechanisms of dissipation.
We analyze also the dissipation of energy due to viscous frictions at
the core mantle boundary. This dissipation would be negligible even for
viscosities of the core up to 1010 poise
EFFECTS OF LOCAL DISSIPATION PROFILES ON MAGNETIZED ACCRETION DISK SPECTRA
International Nuclear Information System (INIS)
Tao, Ted; Blaes, Omer
2013-01-01
We present spectral calculations of non-LTE accretion disk models appropriate for high-luminosity stellar mass black hole X-ray binary systems. We first use a dissipation profile based on scaling the results of shearing box simulations of Hirose et al. to a range of annuli parameters. We simultaneously scale the effective temperature, orbital frequency, and surface density with luminosity and radius according to the standard α-model. This naturally brings increased dissipation to the disk surface layers (around the photospheres) at small radii and high luminosities. We find that the local spectrum transitions directly from a modified blackbody to a saturated Compton scattering spectrum as we increase the effective temperature and orbital frequency while decreasing midplane surface density. Next, we construct annuli models based on the parameters of a L/L Edd = 0.8 disk orbiting a 6.62 solar mass black hole using two modified dissipation profiles that explicitly put more dissipation per unit mass near the disk surface. The new dissipation profiles are qualitatively similar to the one found by Hirose et al., but produce strong near power-law spectral tails. Our models also include physically motivated magnetic acceleration support based once again on scaling the Hirose et al. results. We present three full-disk spectra, each based on one of the dissipation prescriptions. Our most aggressive dissipation profile results in a disk spectrum that is in approximate quantitative agreement with certain observations of the steep power-law spectral states from some black hole X-ray binaries.
Effects on the CMB from magnetic field dissipation before recombination
Kunze, Kerstin E.
2017-09-01
Magnetic fields present before decoupling are damped due to radiative viscosity. This energy injection affects the thermal and ionization history of the cosmic plasma. The implications for the CMB anisotropies and polarization are investigated for different parameter choices of a nonhelical stochastic magnetic field. Assuming a Gaussian smoothing scale determined by the magnetic damping wave number at recombination, it is found that magnetic fields with present-day strength less than 0.1 nG and negative magnetic spectral indices have a sizable effect on the CMB temperature anisotropies and polarization.
Directory of Open Access Journals (Sweden)
Juan S. Delgado-Rojas
2007-08-01
Full Text Available Devido à dificuldade de se quantificar o consumo individual de água de uma árvore, tem surgido uma série de técnicas de medida do fluxo de seiva que passa por meio do caule, o qual é relacionado diretamente com a transpiração da planta. Este trabalho teve como objetivo avaliar o desempenho de uma dessas técnicas, denominada método da sonda de dissipação térmica (SDT, na medida de fluxo de seiva em plantas de lima ácida ‘Tahiti’. O experimento foi instalado em pomar de plantas jovens, localizado na fazenda experimental de irrigação, do Departamento de Engenharia Rural da ESALQ, em Piracicaba - SP, sendo a avaliação feita utilizando dois lisímetros de pesagem. Os resultados indicaram que o método estudado pode ser utilizado para essa finalidade em condições de campo; no entanto, a exatidão de suas medidas depende de certos conceitos teóricos que devem ser considerados e de certas correções que devem ser realizadas. Essas considerações, assim como as vantagens e desvantagens desse método, são discutidas neste trabalho.Because of the difficulty to quantify water consumption of a single tree, for irrigation scheduling, a series of techniques has appeared that directly measure the sap flow through the stem which can be related directly to transpiration. The objective of this work was to evaluate the performance of one of these methods, called heat dissipation probe method (HDP, in the measurement of sap flow using ‘Tahiti’ lemon trees. Experiments were installed in an orchard of young trees, located in the experimental farm of irrigation of ESALQ, in Piracicaba, São Paulo State, Brazil. The evaluation was carried out using two weight lysimeters. The results demonstrated that the method can be used to measure the transpiration in citrus; however, the accuracy depends on theoretical concepts that should be considered and of certain corrections that should be accomplished. Those considerations as well as the
International Nuclear Information System (INIS)
Castejon, F.; Pavlov, S.S.; Swanson, D. G.
2002-01-01
Negative dissipation appears when ion cyclotron resonance (ICR) heating at first harmonic in a thermal plasma is estimated using some numerical schemes. The causes of the appearance of such a problem are investigated analytically and numerically in this work showing that the problem is connected with the accuracy with which the absorption coefficient at the first ICR harmonic is estimated. The corrections for the absorption estimation are presented for the case of quasiperpendicular propagation of fast wave in this frequency range. A method to solve the problem of negative dissipation is presented and, as a result, an enhancement of absorption is found for reactor-size plasmas
Han, Haoxue; Schlawitschek, Christiane; Katyal, Naman; Stephan, Peter; Gambaryan-Roisman, Tatiana; Leroy, Frédéric; Müller-Plathe, Florian
2017-05-30
We study the role of solid-liquid interface thermal resistance (Kapitza resistance) on the evaporation rate of droplets on a heated surface by using a multiscale combination of molecular dynamics (MD) simulations and analytical continuum theory. We parametrize the nonbonded interaction potential between perfluorohexane (C 6 F 14 ) and a face-centered-cubic solid surface to reproduce the experimental wetting behavior of C 6 F 14 on black chromium through the solid-liquid work of adhesion (quantity directly related to the wetting angle). The thermal conductances between C 6 F 14 and (100) and (111) solid substrates are evaluated by a nonequilibrium molecular dynamics approach for a liquid pressure lower than 2 MPa. Finally, we examine the influence of the Kapitza resistance on evaporation of droplets in the vicinity of a three-phase contact line with continuum theory, where the thermal resistance of liquid layer is comparable with the Kapitza resistance. We determine the thermodynamic conditions under which the Kapitza resistance plays an important role in correctly predicting the evaporation heat flux.
Deposition stress effects on thermal barrier coating burner rig life
Watson, J. W.; Levine, S. R.
1984-01-01
A study of the effect of plasma spray processing parameters on the life of a two layer thermal barrier coating was conducted. The ceramic layer was plasma sprayed at plasma arc currents of 900 and 600 amps onto uncooled tubes, cooled tubes, and solid bars of Waspalloy in a lathe with 1 or 8 passes of the plasma gun. These processing changes affected the residual stress state of the coating. When the specimens were tested in a Mach 0.3 cyclic burner rig at 1130 deg C, a wide range of coating lives resulted. Processing factors which reduced the residual stress state in the coating, such as reduced plasma temperature and increased heat dissipation, significantly increased coating life.
Bifurcations and Patterns in Nonlinear Dissipative Systems
Energy Technology Data Exchange (ETDEWEB)
Guenter Ahlers
2005-05-27
This project consists of experimental investigations of heat transport, pattern formation, and bifurcation phenomena in non-linear non-equilibrium fluid-mechanical systems. These issues are studies in Rayleigh-B\\'enard convection, using both pure and multicomponent fluids. They are of fundamental scientific interest, but also play an important role in engineering, materials science, ecology, meteorology, geophysics, and astrophysics. For instance, various forms of convection are important in such diverse phenomena as crystal growth from a melt with or without impurities, energy production in solar ponds, flow in the earth's mantle and outer core, geo-thermal stratifications, and various oceanographic and atmospheric phenomena. Our work utilizes computer-enhanced shadowgraph imaging of flow patterns, sophisticated digital image analysis, and high-resolution heat transport measurements.
Energy Technology Data Exchange (ETDEWEB)
Druce, S.G.; Gage, G.; Jordan, G.
1985-04-01
Manganese-molybdenum-nickel steels are used commonly in the fabrication of critical components in the PWR primary circuit operating at temperatures up to 345 C for periods up to several hundred thousand hours. Demonstration of structural integrity throughout service life requires quantification of the effects of thermal ageing on mechanical properties. Thermal ageing in the temperature range 300 to 550 C for durations up to 2000 h was studied in quenched and tempered A533B plate and simulated heat-affected-zone (HAZ) microstructures in A533B and A508 materials. A combination of tensile, hardness and Charpy impact tests were used to assess changes in rheological and toughness related properties. Quantitative fractography and Auger spectroscopy were used to characterize associated changes in fracture mode and grain boundary composition.
Observation-based input and dissipation version of WAVEWATCH III
Zieger, Stefan; Babanin, Alexander; Rogers, Erick; Young, Ian
2013-04-01
Measurements collected at Lake George, Australia, resulted in new insights on the processes of wind wave interaction and white-capping dissipation and consequently new parameterisations of these source terms. The new nonlinear wind input source term accounts for dependence of the growth increment on wave steepness, for airflow separation which leads to a relative reduction of the growth under extreme wind conditions, and for negative growth rate under adverse winds. The new wave breaking and whitecapping dissipation source function features two separate terms: the inherent breaking term and a cumulative dissipation term due to influences of longer waves on wave breaking of shorter waves. Another novel feature of this dissipation is the threshold in terms of spectral density: below this threshold breaking stops and whitecapping becomes zero. In such conditions dissipation due to wave interaction with water turbulence takes over, which regime is particularly relevant for decaying seas and for swell. This paper describes these source terms implemented in WAVEWATCH III and evaluates the performance against existing source terms in duration-limited simulations and against buoy measurements for windsea-dominated conditions. Results show agreement by means of growth curves and integral parameters in the simulations and hindcast. The paper also introduces wave breaking probability as model output, along with standard wind-wave metrics.
Power injected in dissipative systems and the fluctuation theorem
Aumaître, S.; Fauve, S.; McNamara, S.; Poggi, P.
We consider three examples of dissipative dynamical systems involving many degrees of freedom, driven far from equilibrium by a constant or time dependent forcing. We study the statistical properties of the injected and dissipated power as well as the fluctuations of the total energy of these systems. The three systems under consideration are: a shell model of turbulence, a gas of hard spheres colliding inelastically and excited by a vibrating piston, and a Burridge-Knopoff spring-block model. Although they involve different types of forcing and dissipation, we show that the statistics of the injected power obey the ``fluctuation theorem" demonstrated in the case of time reversible dissipative systems maintained at constant total energy, or in the case of some stochastic processes. Although this may be only a consequence of the theory of large deviations, this allows a possible definition of ``temperature" for a dissipative system out of equilibrium. We consider how this ``temperature" scales with the energy and the number of degrees of freedom in the different systems under consideration.
Coronal heating by Alfven waves dissipation in compressible nonuniform media
International Nuclear Information System (INIS)
Malara, Francesco; Primavera, Leonardo; Veltri, Pierluigi
1996-01-01
The possibility to produce small scales and then to efficiently dissipate energy has been studied by Malara et al. [1992b] in the case of MHD disturbances propagating in an weakly dissipative incompressible and inhomogeneous medium, for a strictly 2D geometry. We extend this work to include both compressibility and the third component for vector quantities. Numerical simulations show that, when an Alfven wave propagates in a compressible nonuniform medium, the two dynamical effects responsible for the small scales formation in the incompressible case are still at work: energy pinching and phase-mixing. These effects give rise to the formation of compressible perturbations (fast and slow waves or a static entropy wave). Some of these compressive fluctuations are subject to the steepening of the wave front and become shock waves, which are extremely efficient in dissipating their energy, their dissipation being independent of the Reynolds number. Rough estimates of the typical times the various dynamical processes take to produce small scales show that these times are consistent with those required to dissipate inside the solar corona the energy of Alfven waves of photospheric origin
Dissipative dark matter halos: The steady state solution
Foot, R.
2018-02-01
Dissipative dark matter, where dark matter particle properties closely resemble familiar baryonic matter, is considered. Mirror dark matter, which arises from an isomorphic hidden sector, is a specific and theoretically constrained scenario. Other possibilities include models with more generic hidden sectors that contain massless dark photons [unbroken U (1 ) gauge interactions]. Such dark matter not only features dissipative cooling processes but also is assumed to have nontrivial heating sourced by ordinary supernovae (facilitated by the kinetic mixing interaction). The dynamics of dissipative dark matter halos around rotationally supported galaxies, influenced by heating as well as cooling processes, can be modeled by fluid equations. For a sufficiently isolated galaxy with a stable star formation rate, the dissipative dark matter halos are expected to evolve to a steady state configuration which is in hydrostatic equilibrium and where heating and cooling rates locally balance. Here, we take into account the major cooling and heating processes, and numerically solve for the steady state solution under the assumptions of spherical symmetry, negligible dark magnetic fields, and that supernova sourced energy is transported to the halo via dark radiation. For the parameters considered, and assumptions made, we were unable to find a physically realistic solution for the constrained case of mirror dark matter halos. Halo cooling generally exceeds heating at realistic halo mass densities. This problem can be rectified in more generic dissipative dark matter models, and we discuss a specific example in some detail.
Evaluation of turbulent dissipation rate retrievals from Doppler Cloud Radar
Directory of Open Access Journals (Sweden)
M. D. Shupe
2012-06-01
Full Text Available Turbulent dissipation rate retrievals from cloud radar Doppler velocity measurements are evaluated using independent, in situ observations in Arctic stratocumulus clouds. In situ validation data sets of dissipation rate are derived using sonic anemometer measurements from a tethered balloon and high frequency pressure variation observations from a research aircraft, both flown in proximity to stationary, ground-based radars. Modest biases are found among the data sets in particularly low- or high-turbulence regimes, but in general the radar-retrieved values correspond well with the in situ measurements. Root mean square differences are typically a factor of 4–6 relative to any given magnitude of dissipation rate. These differences are no larger than those found when comparing dissipation rates computed from tethered-balloon and meteorological tower-mounted sonic anemometer measurements made at spatial distances of a few hundred meters. Temporal lag analyses suggest that approximately half of the observed differences are due to spatial sampling considerations, such that the anticipated radar-based retrieval uncertainty is on the order of a factor of 2–3. Moreover, radar retrievals are clearly able to capture the vertical dissipation rate structure observed by the in situ sensors, while offering substantially more information on the time variability of turbulence profiles. Together these evaluations indicate that radar-based retrievals can, at a minimum, be used to determine the vertical structure of turbulence in Arctic stratocumulus clouds.
Signatures of a dissipative phase transition in photon correlation measurements
Fink, Thomas; Schade, Anne; Höfling, Sven; Schneider, Christian; Imamoglu, Ataç
2018-04-01
Understanding and characterizing phase transitions in driven-dissipative systems constitutes a new frontier for many-body physics1-8. A generic feature of dissipative phase transitions is a vanishing gap in the Liouvillian spectrum9, which leads to long-lived deviations from the steady state as the system is driven towards the transition. Here, we show that photon correlation measurements can be used to characterize the corresponding critical slowing down of non-equilibrium dynamics. We focus on the extensively studied phenomenon of optical bistability in GaAs cavity polaritons10,11, which can be described as a first-order dissipative phase transition12-14. Increasing the excitation strength towards the bistable range results in an increasing photon-bunching signal along with a decay time that is prolonged by more than nine orders of magnitude as compared with that of single polaritons. In the limit of strong polariton interactions leading to pronounced quantum fluctuations, the mean-field bistability threshold is washed out. Nevertheless, the functional form with which the Liouvillian gap closes as the thermodynamic limit is approached provides a signature of the emerging dissipative phase transition. Our results establish photon correlation measurements as an invaluable tool for studying dynamical properties of dissipative phase transitions without requiring phase-sensitive interferometric measurements.
Non-invasive estimation of dissipation from non-equilibrium fluctuations in chemical reactions.
Muy, S; Kundu, A; Lacoste, D
2013-09-28
We show how to extract an estimate of the entropy production from a sufficiently long time series of stationary fluctuations of chemical reactions. This method, which is based on recent work on fluctuation theorems, is direct, non-invasive, does not require any knowledge about the underlying dynamics and is applicable even when only partial information is available. We apply it to simple stochastic models of chemical reactions involving a finite number of states, and for this case, we study how the estimate of dissipation is affected by the degree of coarse-graining present in the input data.
Energy Technology Data Exchange (ETDEWEB)
Zenkour, A. M.; Alnefaie, K. A.; Abu-Hamdeh, N. H.; Aljinaid, A. A.; Aifanti, E. C. [King Abdulaziz University, Jeddah (Saudi Arabia); Abouelregal, A. E. [Mansoura University, Mansoura (Egypt)
2015-07-15
In this article, an Euler-Bernoulli beam model based upon nonlocal thermoelasticity theory without energy dissipation is used to study the vibration of a nanobeam subjected to ramp-type heating. Classical continuum theory is inherently size independent, while nonlocal elasticity exhibits size dependence. Among other things, this leads to a new expression for the effective nonlocal bending moment as contrasted to its classical counterpart. The thermal problem is addressed in the context of the Green-Naghdi (GN) theory of heat transport without energy dissipation. The governing partial differential equations are solved in the Laplace transform domain by the state space approach of modern control theory. Inverse of Laplace transforms are computed numerically using Fourier expansion techniques. The effects of nonlocality and ramping time parameters on the lateral vibration, temperature, displacement and bending moment are discussed.
Perry, Jennifer J; Yousef, Ahmed E
2013-02-01
Infection of laying hens with Salmonella enterica serovar Enteritidis leads to deposition of the pathogen into the albumen or yolk of forming eggs. Heat treatment can inactivate internalized Salmonella Enteritidis in shell eggs, but factors such as the nature and location of contamination may influence the efficacy of thermal treatments. In the current research, natural contamination was mimicked by introducing small inocula of Salmonella Enteritidis into different locations of shell eggs and incubating inoculated eggs. These pathogen-containing eggs were heated at 57°C for 40 min, and temperature within eggs was monitored at the locations of inocula. Comparison of inactivation at equivalent internal temperatures revealed similar levels of lethality regardless of inoculum location. Refrigeration between incubation and heat treatment did not increase thermal resistance of cells in albumen but decreased cell inactivation in yolk. Sequential application of heat and gaseous ozone allows for the development of a process capable of decontaminating shell eggs with minimal thermal treatment and impact on egg quality. Inoculated eggs were subjected to (i) an immersion heating process similar to that used in commercial pasteurization or (ii) immersion heating, at reduced duration, followed by vacuum (50.8 kPa) and treatment with ozone gas (maximum 160 g/m(3)) under pressure (∼187.5 kPa). All treatments tested produced greater than 5-log inactivation, which is required for "pasteurization" processes. Differences were observed in the visual quality of eggs depending on treatment parameters. Application of ozone subsequent to heating allows for a significant reduction in heating time without decreasing process lethality.
Energy Technology Data Exchange (ETDEWEB)
Lutaif, N.A. [Departamento de Clínica Médica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP (Brazil); Palazzo, R. Jr [Departamento de Telemática, Faculdade de Engenharia Elétrica e Computação, Universidade Estadual de Campinas, Campinas, SP (Brazil); Gontijo, J.A.R. [Departamento de Clínica Médica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP (Brazil)
2014-01-17
Maintenance of thermal homeostasis in rats fed a high-fat diet (HFD) is associated with changes in their thermal balance. The thermodynamic relationship between heat dissipation and energy storage is altered by the ingestion of high-energy diet content. Observation of thermal registers of core temperature behavior, in humans and rodents, permits identification of some characteristics of time series, such as autoreference and stationarity that fit adequately to a stochastic analysis. To identify this change, we used, for the first time, a stochastic autoregressive model, the concepts of which match those associated with physiological systems involved and applied in male HFD rats compared with their appropriate standard food intake age-matched male controls (n=7 per group). By analyzing a recorded temperature time series, we were able to identify when thermal homeostasis would be affected by a new diet. The autoregressive time series model (AR model) was used to predict the occurrence of thermal homeostasis, and this model proved to be very effective in distinguishing such a physiological disorder. Thus, we infer from the results of our study that maximum entropy distribution as a means for stochastic characterization of temperature time series registers may be established as an important and early tool to aid in the diagnosis and prevention of metabolic diseases due to their ability to detect small variations in thermal profile.
International Nuclear Information System (INIS)
Lutaif, N.A.; Palazzo, R. Jr; Gontijo, J.A.R.
2014-01-01
Maintenance of thermal homeostasis in rats fed a high-fat diet (HFD) is associated with changes in their thermal balance. The thermodynamic relationship between heat dissipation and energy storage is altered by the ingestion of high-energy diet content. Observation of thermal registers of core temperature behavior, in humans and rodents, permits identification of some characteristics of time series, such as autoreference and stationarity that fit adequately to a stochastic analysis. To identify this change, we used, for the first time, a stochastic autoregressive model, the concepts of which match those associated with physiological systems involved and applied in male HFD rats compared with their appropriate standard food intake age-matched male controls (n=7 per group). By analyzing a recorded temperature time series, we were able to identify when thermal homeostasis would be affected by a new diet. The autoregressive time series model (AR model) was used to predict the occurrence of thermal homeostasis, and this model proved to be very effective in distinguishing such a physiological disorder. Thus, we infer from the results of our study that maximum entropy distribution as a means for stochastic characterization of temperature time series registers may be established as an important and early tool to aid in the diagnosis and prevention of metabolic diseases due to their ability to detect small variations in thermal profile
Heat transfer analysis of frictional heat dissipation during articulation of femoral implants.
Davidson, J A; Gir, S; Paul, J P
1988-12-01
Previous studies have shown the tendency for frictional heating to occur during articulation of total hip systems in vitro under simulated hip loading conditions. The magnitude of this heating is sufficient to accelerate wear, creep, and oxidation degradation of the UHMWPE bearing surface. It was shown that ceramic articulating systems generate less frictional heating than polished cobalt alloy against UHMWPE. This frictional heating is expected to occur primarily for younger, heavier, and more active patients. Thus, long-term performance of the articulating hip system in these patients may not be that predicted from current, body-temperature wear, creep, and degradation studies. Although the tendency to generate frictional heat has been observed only during in vitro simulated hip loading, a heat transfer analysis of this phenomenon is presented to evaluate the ability of the hip joint to dissipate such heating in vivo. Additional experiments were performed using controlled resistance heaters inside a cobalt femoral head to verify the calculated levels of frictional heat and to assess the heat dissipation under simulated in vivo conditions. The effect of blood perfusion on the effective thermal conductivity of the joint capsule is also discussed. The present study describes and analyzes the various heat dissipation mechanisms present both in vitro and in vivo during articulation of metal and ceramic hip systems. From these tests and analyses, it is concluded that frictional heating in the reconstructed hip cannot be effectively removed, and that degredative elevated temperature processes can be expected to occur in vivo to both the UHMWPE and adjacent tissue under extended periods of excessive patient activity. This is particularly true for metal cobalt alloy femoral heads articulating on UHMWPE versus ceramic heads which generate significantly lower levels of heat.
Estimating Half-Lives for Pesticide Dissipation from Plants
DEFF Research Database (Denmark)
Fantke, Peter; Gillespie, Brenda W.; Juraske, Ronnie
2014-01-01
Pesticide risk and impact assessment models critically rely on and are sensitive to information describing dissipation from plants. Despite recent progress, experimental data are not available for all relevant pesticide−plant combinations, and currently no model predicting plant dissipation...... accounts for the influence of substance properties, plant characteristics, temperature, and study conditions. In this study, we propose models to estimate half-lives for pesticide dissipation from plants and provide recommendations for how to use our results. On the basis of fitting experimental...... under field conditions. Half-lives range from 0.2 days for pyrethrins to 31 days for dalapon. Parameter estimates are provided to correct for specific plant species, temperatures, and study conditions. Finally, we propose a predictive regression model for pesticides without available measured...
Memory effects in dissipative nucleus-nucleus collision
International Nuclear Information System (INIS)
Yadav, H.L.; Agarwal, K.C.
2002-01-01
A macroscopic dynamical model within the framework of a multidimensional Fokker-Planck equation is employed for a theoretical description of low-energy dissipative collisions between two heavy nuclei. The effect of two-body collisions leading to intrinsic equilibrium has been treated phenomenologically using the basic concepts of dissipative diabatic dynamics. The heavy-ion reaction 86 Kr(8.18 MeV/u) + 166 Er has been as a prototype to study and demonstrate the memory effects for dissipation and diffusion processes. Our calculated results for the deflection angle, angular distributions dσ/dθ cm , energy distributions dσ/dΔΕ, and element distributions dσ/dΖ illustrate a remarkable dependence on the memory effects and are consistent with the experimental data
Memory effects in dissipative nucleus-nucleus collision
Yadav, H L
2002-01-01
A macroscopic dynamical model within the framework of a multidimensional Fokker-Planck equation is employed for a theoretical description of low-energy dissipative collisions between two heavy nuclei. The effect of two-body collisions leading to intrinsic equilibrium has been treated phenomenologically using the basic concepts of dissipative diabatic dynamics. The heavy-ion reaction sup 8 sup 6 Kr(8.18 MeV/u) + sup 1 sup 6 sup 6 Er has been as a prototype to study and demonstrate the memory effects for dissipation and diffusion processes. Our calculated results for the deflection angle, angular distributions d sigma/d theta sub c sub m , energy distributions d sigma/d DELTA EPSILON, and element distributions d sigma/d ZETA illustrate a remarkable dependence on the memory effects and are consistent with the experimental data
Log-Normal Turbulence Dissipation in Global Ocean Models
Pearson, Brodie; Fox-Kemper, Baylor
2018-03-01
Data from turbulent numerical simulations of the global ocean demonstrate that the dissipation of kinetic energy obeys a nearly log-normal distribution even at large horizontal scales O (10 km ) . As the horizontal scales of resolved turbulence are larger than the ocean is deep, the Kolmogorov-Yaglom theory for intermittency in 3D homogeneous, isotropic turbulence cannot apply; instead, the down-scale potential enstrophy cascade of quasigeostrophic turbulence should. Yet, energy dissipation obeys approximate log-normality—robustly across depths, seasons, regions, and subgrid schemes. The distribution parameters, skewness and kurtosis, show small systematic departures from log-normality with depth and subgrid friction schemes. Log-normality suggests that a few high-dissipation locations dominate the integrated energy and enstrophy budgets, which should be taken into account when making inferences from simplified models and inferring global energy budgets from sparse observations.
Dissipative elastic metamaterial with a low-frequency passband
Directory of Open Access Journals (Sweden)
Yongquan Liu
2017-06-01
Full Text Available We design and experimentally demonstrate a dissipative elastic metamaterial structure that functions as a bandpass filter with a low-frequency passband. The mechanism of dissipation in this structure is well described by a mass-spring-damper model that reveals that the imaginary part of the wavenumber is non-zero, even in the passband of dissipative metamaterials. This indicates that transmittance in this range can be low. A prototype for this viscoelastic metamaterial model is fabricated by 3D printing techniques using soft and hard acrylics as constituent materials. The transmittance of the printed metamaterial is measured and shows good agreement with theoretical predictions, demonstrating its potential in the design of compact waveguides, filters and other advanced devices for controlling mechanical waves.
Logarithmic scaling in the near-dissipation range of turbulence
International Nuclear Information System (INIS)
Sreenivasan, K.R.; Bershadskii, A.
2006-12-01
A logarithmic scaling for structure functions, in the form S p ∼ [ln(r/η)] ζp , where η is the Kolmogorov dissipation scale and ζ p are the scaling exponents, is suggested for the statistical description of the near-dissipation range for which classical power-law scaling does not apply. From experimental data at moderate Reynolds numbers, it is shown that the logarithmic scaling, deduced from general considerations for the near-dissipation range, covers almost the entire range of scales (about two decades) of structure functions, for both velocity and passive scalar fields. This new scaling requires two empirical constants, just as the classical scaling does, and can be considered the basis for extended self-similarity. (author)
Transport behavior in superconductors at extreme dissipation levels
International Nuclear Information System (INIS)
Kunchur, M.N.
1996-09-01
A number of fundamental physical phenomena unfold in the mixed state of superconductor, when subjected to enormous current and power-dissipation levels. A sufficiently large current can destroy the superconducting state itself--the so-called pair-breaking effect. At intermediate current densities, below the onset of pair-breaking, one expects to see the free viscous flow of flux vortices. In the present work a pulsed-current technique was used to explore this dissipative regime of high-T c superconductors, verifying both free flux flow and the pair-breaking effect, as predicted by traditional theories. This paper concentrates on the dissipation and Hall behavior in the free flux flow state
Dissipative optomechanics in a Michelson-Sagnac interferometer.
Xuereb, André; Schnabel, Roman; Hammerer, Klemens
2011-11-18
Dissipative optomechanics studies the coupling of the motion of an optical element to the decay rate of a cavity. We propose and theoretically explore a realization of this system in the optical domain, using a combined Michelson-Sagnac interferometer, which enables a strong and tunable dissipative coupling. Quantum interference in such a setup results in the suppression of the lower motional sideband, leading to strongly enhanced cooling in the non-sideband-resolved regime. With state-of-the-art parameters, ground-state cooling and low-power quantum-limited position transduction are both possible. The possibility of a strong, tunable dissipative coupling opens up a new route towards observation of such fundamental optomechanical effects as nonlinear dynamics. Beyond optomechanics, the suggested method can be readily transferred to other setups involving nonlinear media, atomic ensembles, or single atoms.
Nanomechanical dissipation at a tip-induced Kondo onset
Baruselli, Pier Paolo; Fabrizio, Michele; Tosatti, Erio
2017-08-01
The onset or demise of Kondo effect in a magnetic impurity on a metal surface can be triggered, as sometimes observed, by the simple mechanical nudging of a tip. Such a mechanically driven quantum phase transition must reflect in a corresponding mechanical dissipation peak; yet, this kind of signature has not been focused upon so far. Aiming at the simplest theoretical modeling, we treat the impurity as an Anderson impurity model, the tip action as a hybridization switching, and solve the problem by numerical renormalization group. Studying this model as function of temperature and magnetic field we are able to isolate the Kondo contribution to dissipation. While that is, reasonably, of the order of the Kondo energy, its temperature evolution shows a surprisingly large tail even above the Kondo temperature. The detectability of Kondo mechanical dissipation in atomic force microscopy is also discussed.
Dissipation, intermittency, and singularities in incompressible turbulent flows
Debue, P.; Shukla, V.; Kuzzay, D.; Faranda, D.; Saw, E.-W.; Daviaud, F.; Dubrulle, B.
2018-05-01
We examine the connection between the singularities or quasisingularities in the solutions of the incompressible Navier-Stokes equation (INSE) and the local energy transfer and dissipation, in order to explore in detail how the former contributes to the phenomenon of intermittency. We do so by analyzing the velocity fields (a) measured in the experiments on the turbulent von Kármán swirling flow at high Reynolds numbers and (b) obtained from the direct numerical simulations of the INSE at a moderate resolution. To compute the local interscale energy transfer and viscous dissipation in experimental and supporting numerical data, we use the weak solution formulation generalization of the Kármán-Howarth-Monin equation. In the presence of a singularity in the velocity field, this formulation yields a nonzero dissipation (inertial dissipation) in the limit of an infinite resolution. Moreover, at finite resolutions, it provides an expression for local interscale energy transfers down to the scale where the energy is dissipated by viscosity. In the presence of a quasisingularity that is regularized by viscosity, the formulation provides the contribution to the viscous dissipation due to the presence of the quasisingularity. Therefore, our formulation provides a concrete support to the general multifractal description of the intermittency. We present the maps and statistics of the interscale energy transfer and show that the extreme events of this transfer govern the intermittency corrections and are compatible with a refined similarity hypothesis based on this transfer. We characterize the probability distribution functions of these extreme events via generalized Pareto distribution analysis and find that the widths of the tails are compatible with a similarity of the second kind. Finally, we make a connection between the topological and the statistical properties of the extreme events of the interscale energy transfer field and its multifractal properties.
Dissipation of Turbulence in the Wake of a Wind Turbine
Lundquist, J. K.; Bariteau, L.
2015-02-01
The wake of a wind turbine is characterized by increased turbulence and decreased wind speed. Turbines are generally deployed in large groups in wind farms, and so the behaviour of an individual wake as it merges with other wakes and propagates downwind is critical in assessing wind-farm power production. This evolution depends on the rate of turbulence dissipation in the wind-turbine wake, which has not been previously quantified in field-scale measurements. In situ measurements of winds and turbulence dissipation from the wake region of a multi-MW turbine were collected using a tethered lifting system (TLS) carrying a payload of high-rate turbulence probes. Ambient flow measurements were provided from sonic anemometers on a meteorological tower located near the turbine. Good agreement between the tower measurements and the TLS measurements was established for a case without a wind-turbine wake. When an operating wind turbine is located between the tower and the TLS so that the wake propagates to the TLS, the TLS measures dissipation rates one to two orders of magnitude higher in the wake than outside of the wake. These data, collected between two and three rotor diameters downwind of the turbine, document the significant enhancement of turbulent kinetic energy dissipation rate within the wind-turbine wake. These wake measurements suggest that it may be useful to pursue modelling approaches that account for enhanced dissipation. Comparisons of wake and non-wake dissipation rates to mean wind speed, wind-speed variance, and turbulence intensity are presented to facilitate the inclusion of these measurements in wake modelling schemes.
International Nuclear Information System (INIS)
Gupta, A.; Hong, S.; Moacanin, J.
1981-01-01
A method and apparatus for measuring thermal diffusivity and molecular relaxation processes in a sample material utilizing two light beams, one being a pulsed laser light beam for forming a thermal lens in the sample material, and the other being a relatively low power probe light beam for measuring changes in the refractive index of the sample material during formation and dissipation of the thermal lens. More specifically, a sample material is irradiated by relatively high power, short pulses from a dye laser. Energy from the pulses is absorbed by the sample material, thereby forming a thermal lens in the area of absorption. The pulse repetition rate is chosen so that the thermal lens is substantially dissipated by the time the next pulse reaches the sample material. A probe light beam, which in a specific embodiment is a relatively low power, continuous wave (Cw) laser beam, irradiates the thermal lens formed in the sample material. The intensity characteristics of the probe light beam subsequent to irradiation of the thermal lens is related to changes in the refractive index of the sample material as the thermal lens is formed and dissipated. A plot of the changes in refractive index as a function of time during formation of the thermal lens as reflected by changes in intensity of the probe beam, provides a curve related to molecular relaxation characteristics of the material, and a plot during dissipation of the thermal lens provides a curve related to the thermal diffusivity of the sample material
Energy Dissipation in Sandwich Structures During Axial Compression
DEFF Research Database (Denmark)
Urban, Jesper
2002-01-01
The purpose of this paper is to investigate the energy dissipation in sandwich structures during axial crushing. Axial crushing tests on six sandwich elements are described. The sandwich elements consist of a polyurethane core and E-glass/Polyester skin. The elements compare to full-scale structu......The purpose of this paper is to investigate the energy dissipation in sandwich structures during axial crushing. Axial crushing tests on six sandwich elements are described. The sandwich elements consist of a polyurethane core and E-glass/Polyester skin. The elements compare to full...
Entanglement generation through local field and quantum dissipation
International Nuclear Information System (INIS)
Stockburger, Jürgen T; Schmidt, Rebecca; Ankerhold, Joachim
2015-01-01
Entanglement in a Gaussian two-mode system can be generated by local driving if additional non-local features are introduced to the dynamics. We demonstrate that weak to moderate ohmic friction arising from a dissipative environment can enable entanglement generation in a driven system. This synergy of driving and dissipation is highly sensitive to the pulse shape; several simple pulse shapes fail to produce this effect at all or deposit large amounts of energy in the system as a side effect. Complex pulse shapes, determined by optimal control techniques, however, are effective without detrimental side effects. (paper)
ΛCDM model with dissipative nonextensive viscous dark matter
Gimenes, H. S.; Viswanathan, G. M.; Silva, R.
2018-03-01
Many models in cosmology typically assume the standard bulk viscosity. We study an alternative interpretation for the origin of the bulk viscosity. Using nonadditive statistics proposed by Tsallis, we propose a bulk viscosity component that can only exist by a nonextensive effect through the nonextensive/dissipative correspondence (NexDC). In this paper, we consider a ΛCDM model for a flat universe with a dissipative nonextensive viscous dark matter component, following the Eckart theory of bulk viscosity, without any perturbative approach. In order to analyze cosmological constraints, we use one of the most recent observations of Type Ia Supernova, baryon acoustic oscillations and cosmic microwave background data.
Radiation and viscous dissipation effect on square porous annulus
Energy Technology Data Exchange (ETDEWEB)
Badruddin, Irfan Anjum [Dept. of Mechanical Engineering, University of Malaya, Kuala Lumpur, 50603 (Malaysia); Quadir, G. A. [School of Mechatronic Engineering, University Malaysia Perlis, Pauh Putra, 02600 Arau, Perlis (Malaysia)
2016-06-08
The present study is carried out to investigate the effect of radiation and viscous dissipation in a square porous annulus subjected to outside hot T{sub h} and inside cold T{sub c} temperature. The square annulus has a hollow section of dimension D×D at the interior of annulus. The flow is assumed to obey Darcy law. The governing equations are non-dimensionalised and solved with the help of finite element method. Results are discussed with respect to viscous dissipation parameter, radiation parameter and size of the hollow section of annulus.
New Measure of the Dissipation Region in Collisionless Magnetic Reconnection
International Nuclear Information System (INIS)
Zenitani, Seiji; Hesse, Michael; Klimas, Alex; Kuznetsova, Masha
2011-01-01
A new measure to identify a small-scale dissipation region in collisionless magnetic reconnection is proposed. The energy transfer from the electromagnetic field to plasmas in the electron's rest frame is formulated as a Lorentz-invariant scalar quantity. The measure is tested by two-dimensional particle-in-cell simulations in typical configurations: symmetric and asymmetric reconnection, with and without the guide field. The innermost region surrounding the reconnection site is accurately located in all cases. We further discuss implications for nonideal MHD dissipation.
New Measure of the Dissipation Region in Collisionless Magnetic Reconnection
Zenitani, Seiji; Hesse, Michael; Klimas, Alex; Kuznetsova, Masha
2012-01-01
A new measure to identify a small-scale dissipation region in collisionless magnetic reconnection is proposed. The energy transfer from the electromagnetic field to plasmas in the electron s rest frame is formulated as a Lorentz-invariant scalar quantity. The measure is tested by two-dimensional particle-in-cell simulations in typical configurations: symmetric and asymmetric reconnection, with and without the guide field. The innermost region surrounding the reconnection site is accurately located in all cases. We further discuss implications for nonideal MHD dissipation.
An exact solution for quantum tunneling in a dissipative system
International Nuclear Information System (INIS)
Yu, L.H.
1996-01-01
Applying a technique developed recently for a harmonic oscillator coupled to a bath of harmonic oscillators, we present an exact solution for the tunneling problem in an Ohmic dissipative system with inverted harmonic potential. The result shows that while the dissipation tends to suppress the tunneling, the Brownian motion tends to enhance the tunneling. Whether the tunneling rate increases or not would then depend on the initial conditions. We give a specific formula to calculate the tunneling probability determined by various parameters and the initial conditions
Energy Dissipation Rate in an Agitated Crucible Containing Molten Metal
Li, Tao; Shimasaki, Shin-ichi; Narita, Shunsuke; Taniguchi, Shoji
2017-10-01
The energy dissipation rate (EDR) is an important parameter for characterizing the behavior of inclusion coagulation in agitated molten metal. To clarify the inclusion coagulation mechanism, we review previous water model studies by particularly focusing on the relation between the impeller torque and the EDR of the fluid, which indicates the ratio of energy dissipated in the viscous medium to the energy inputted by the rotating impeller. In the present study, simulations coupled with experiments were performed to determine the relation between the torque and the effective EDR for water and liquid Al in crucibles with and without baffles.
Spectral signatures for swash on reflective, intermediate and dissipative beaches
DEFF Research Database (Denmark)
Hughes, Michael G; Aagaard, Troels; Baldock, Tom E
2014-01-01
(reflective, intermediate and dissipative), with beach gradients ranging from approximately 1:6 to 1:60 exposed to offshore significant wave heights of 0.5–3.0 m. The ratio of swash energy in the short-wave (f > 0.05 Hz) to long-wave (f ... the three beach types. Swash energy at short-wave frequencies is dominant on reflective and intermediate beaches and swash at long-wave frequencies is dominant on dissipative beaches; consistent with previously reported spectral signatures for the surf zone on these beach types. The available swash spectra...
Construction of Lyapunov Function for Dissipative Gyroscopic System
International Nuclear Information System (INIS)
Xu Wei; Ao Ping; Yuan Bo
2011-01-01
We introduce a force decomposition to construct a potential function in deterministic dynamics described by ordinary differential equations in the context of dissipative gyroscopic systems. Such a potential function serves as the corresponding Lyapunov function for the dynamics, hence it gives both quantitative and qualitative descriptions for stability of motion. As an example we apply our force decomposition to a four-dimensional dissipative gyroscopic system. We explicitly obtain the potential function for all parameter regimes in the linear limit, including those regimes where the Lyapunov function was previously believed not to exist. (general)
Dissipation and fluctuation of quantum fields in expanding universes
International Nuclear Information System (INIS)
Morikawa, M.
1990-01-01
A stochastic dynamics of a long-wavelength part of a scalar field in an expanding universe is derived by using the influence functional method. Dissipation as well as fluctuation are derived for general parameters: a mass, a coupling to the scalar curvature, and a cutoff scale parameter. A dissipation-fluctuation relation is found with a temperature which is proportional to the Hawking temperature, but system dependent. The method is further applied to an expanding universe with a power law and yields the dispersion which agrees with that obtained by the regularization method. The back reaction to the background de Sitter space itself is also obtained
Evolution of wave function in a dissipative system
Yu, Li-Hua; Sun, Chang-Pu
1994-01-01
For a dissipative system with Ohmic friction, we obtain a simple and exact solution for the wave function of the system plus the bath. It is described by the direct product in two independent Hilbert space. One of them is described by an effective Hamiltonian, the other represents the effect of the bath, i.e., the Brownian motion, thus clarifying the structure of the wave function of the system whose energy is dissipated by its interaction with the bath. No path integral technology is needed in this treatment. The derivation of the Weisskopf-Wigner line width theory follows easily.
Radiation and viscous dissipation effect on square porous annulus
International Nuclear Information System (INIS)
Badruddin, Irfan Anjum; Quadir, G. A.
2016-01-01
The present study is carried out to investigate the effect of radiation and viscous dissipation in a square porous annulus subjected to outside hot T h and inside cold T c temperature. The square annulus has a hollow section of dimension D×D at the interior of annulus. The flow is assumed to obey Darcy law. The governing equations are non-dimensionalised and solved with the help of finite element method. Results are discussed with respect to viscous dissipation parameter, radiation parameter and size of the hollow section of annulus.
The interaction of horizontal eddy transport and thermal drive in the stratosphere
Salby, Murry L.; O'Sullivan, Donal; Callaghan, Patrick; Garcia, Rolando R.
1990-01-01
The two processes that determine the average state of the circulation; i.e., horizontal eddy transport and thermal dissipation, are examined, and the effects of their interaction on circulation and on tracer distribution in the stratosphere are investigated using barotropic calculations on the sphere. It is shown that eddy advection tends to homogenize the meridional gradient Q at low latitudes, while thermal dissipation restores the gradient after episodes of mixing.
Case study of mesospheric front dissipation observed over the northeast of Brazil
Fragoso Medeiros, Amauri; Paulino, Igo; Wrasse, Cristiano Max; Fechine, Joaquim; Takahashi, Hisao; Valentin Bageston, José; Paulino, Ana Roberta; Arlen Buriti, Ricardo
2018-03-01
On 3 October 2005 a mesospheric front was observed over São João do Cariri (7.4° S, 36.5° W). This front propagated to the northeast and appeared in the airglow images on the west side of the observatory. By about 1.5 h later, it dissipated completely when the front crossed the local zenith. Ahead of the front, several ripple structures appeared during the dissipative process of the front. Using coincident temperature profile from the TIMED/SABER satellite and wind profiles from a meteor radar at São João do Cariri, the background of the atmosphere was investigated in detail. On the one hand, it was noted that a strong vertical wind shear in the propagation direction of the front produced by a semidiunal thermal tide was mainly responsible for the formation of duct (Doppler duct), in which the front propagated up to the zenith of the images. On the other hand, the evolution of the Richardson number as well as the appearance of ripples ahead of the main front suggested that a presence of instability in the airglow layer that did not allow the propagation of the front to the other side of the local zenith.
Ko, Dong Guk; Cong Ge, Jun; Im, Ik Tae; Choi, Nag Jung; Kim, Min Soo
2018-01-01
In this study, we analyzed the heat dissipation performance of UCD lamp ballast fin with various aspect ratios. The minimum grid size was 0.02 mm and the number of grid was approximately 11,000. In order to determine the influence of the aspect ratio on the heat dissipation performance of UCD lamp ballast fin, the heat transfer area of the fin was kept constant at 4 mm2. The aspect ratios of the fin were 2 mm: 2 mm (basic model), 1.5 mm: 2.7 mm and 2.7 mm: 1.5 mm, respectively. The heat flux and heat flux time at fin were kept constant at 1×105 W/m2 and 10 seconds, respectively. The heat dissipation performance by the fin was the best at an aspect ratio of 1.5 mm: 2.7 mm.