WorldWideScience

Sample records for affect processivity enzyme

  1. Multi-enzyme Process Modeling

    DEFF Research Database (Denmark)

    Andrade Santacoloma, Paloma de Gracia

    are affected (in a positive or negative way) by the presence of the other enzymes and compounds in the media. In this thesis the concept of multi-enzyme in-pot term is adopted for processes that are carried out by the combination of enzymes in a single reactor and implemented at pilot or industrial scale...... features of the process and provides the information required to structure the process model by using a step-by-step procedure with the required tools and methods. In this way, this framework increases efficiency of the model development process with respect to time and resources needed (fast and effective....... In this way the model parameters that drives the main dynamic behavior can be identified and thus a better understanding of this type of processes. In order to develop, test and verify the methodology, three case studies were selected, specifically the bi-enzyme process for the production of lactobionic acid...

  2. Factors affecting emulsion stability and quality of oil recovered from enzyme-assisted aqueous extraction of soybeans.

    Science.gov (United States)

    Jung, S; Maurer, D; Johnson, L A

    2009-11-01

    The objectives of the present study were to assess how the stability of the emulsion recovered from aqueous extraction processing of soybeans was affected by characteristics of the starting material and extraction and demulsification conditions. Adding endopeptidase Protex 6L during enzyme-assisted aqueous extraction processing (EAEP) of extruded soybean flakes was vital to obtaining emulsions that were easily demulsified with enzymes. Adding salt (up to 1.5 mM NaCl or MgCl(2)) during extraction and storing extruded flakes before extraction at 4 and 30 degrees C for up to 3 months did not affect the stabilities of emulsions recovered from EAEP of soy flour, flakes and extruded flakes. After demulsification, highest free oil yield was obtained with EAEP of extruded flakes, followed by flour and then flakes. The same protease used for the extraction step was used to demulsify the EAEP cream emulsion from extruded full-fat soy flakes at concentrations ranging from 0.03% to 2.50% w/w, incubation times ranging from 2 to 90 min, and temperatures of 25, 50 or 65 degrees C. Highest free oil recoveries were achieved at high enzyme concentrations, mild temperatures, and short incubation times. Both the nature of enzyme (i.e., protease and phospholipase), added alone or as a cocktail, concentration of enzymes (0.5% vs. 2.5%) and incubation time (1 vs. 3 h), use during the extraction step, and nature of enzyme added for demulsifying affected free oil yield. The free oil recovered from EAEP of extruded flakes contained less phosphorus compared with conventional hexane-extracted oil. The present study identified conditions rendering the emulsion less stable, which is critical to increasing free oil yield recovered during EAEP of soybeans, an environmentally friendly alternative processing method to hexane extraction.

  3. Culture conditions affect photoreactivating enzyme levels in human fibroblasts

    International Nuclear Information System (INIS)

    Sutherland, B.M.; Oliver, R.

    1976-01-01

    Photoreactivation of pyrimidine dimers occured under the experimental conditions given in this study, but has not been observed under conditions used by others. Three possible differences were tested in experimental procedures including dimer separation and analysis methods, illumination conditions and cell culture techniques. The methods in this study of dimer separation and analysis indeed measure cis-syn pyrimidine dimers and give results in quantitative agreement with the methods of others. It was found that white light pre-illumination of fibroblasts from the xeroderma pigmentosum line XP12BE or of normal cells does not affect the cellular capacity for dimer photoreactivation. However, the cell culture conditions can affect photoreactivating enzyme levels, and thus cellular dimer photoreactivation capacity. Cells grown in Eagle's minimal essential medium (supplemented with 15% fetal bovine serum) contain very low levels of photoreactivating enzyme and cannot photoreactivate dimers in their DNA; but companion cultures maintained in Dulbecco's modified Eagle's minimal medium do contain photoreactivating enzyme and can reactivate photoreactive cellular dimers

  4. Quality-related enzymes in plant-based products: effects of novel food processing technologies part 2: pulsed electric field processing.

    Science.gov (United States)

    Terefe, Netsanet Shiferaw; Buckow, Roman; Versteeg, Cornelis

    2015-01-01

    Pulsed electric field (PEF) processing is an effective technique for the preservation of pumpable food products as it inactivates vegetative microbial cells at ambient to moderate temperature without significantly affecting the nutritional and sensorial quality of the product. However, conflicting views are expressed about the effect of PEF on enzymes. In this review, which is part 2 of a series of reviews dealing with the effectiveness of novel food preservation technologies for controlling enzymes, the scientific literature over the last decade on the effect of PEF on plant enzymes is critically reviewed to shed more light on the issue. The existing evidence indicates that PEF can result in substantial inactivation of most enzymes, although a much more intense process is required compared to microbial inactivation. Depending on the processing condition and the origin of the enzyme, up to 97% inactivation of pectin methylesterase, polyphenol oxidase, and peroxidase as well as no inactivation have been reported following PEF treatment. Both electrochemical effects and Ohmic heating appear to contribute to the observed inactivation, although the relative contribution depends on a number of factors including the origin of the enzyme, the design of the PEF treatment chamber, the processing condition, and the composition of the medium.

  5. Process for preparing multilayer enzyme coating on a fiber

    Science.gov (United States)

    Kim, Jungbae [Richland, WA; Kwak, Ja Hun [Richland, WA; Grate, Jay W [West Richland, WA

    2009-11-03

    A process for preparing high stability, high activity biocatalytic materials is disclosed and processes for using the same. The process involves coating of a material or fiber with enzymes and enzyme aggregate providing a material or fiber with high biocatalytic activity and stability useful in heterogeneous environments. In one illustrative approach, enzyme "seeds" are covalently attached to polymer nanofibers followed by treatment with a reagent that crosslinks additional enzyme molecules to the seed enzymes forming enzyme aggregates thereby improving biocatalytic activity due to increased enzyme loading and enzyme stability. This approach creates a useful new biocatalytic immobilized enzyme system with potential applications in bioconversion, bioremediation, biosensors, and biofuel cells.

  6. Enzymes as Biocatalysts for Lipid-based Bioproducts Processing

    DEFF Research Database (Denmark)

    Cheong, Ling-Zhi; Guo, Zheng; Fedosov, Sergey

    2012-01-01

    Bioproducts are materials, chemicals and energy derived from renewable biological resources such as agriculture, forestry, and biologically-derived wastes. To date, the use of enzymes as biocatalysts for lipid-based bioproducts processing has shown marked increase. This is mainly due to the fact...... that cost benefit derived from enzymatic processing such as enzyme specificity, higher product purity and lesser or none toxic waste disposal has surpassed the cost of biocatalysts itself. This chapter provided insights into distinct enzymes characteristics essential in industrial processing especially...... enzymes kinetics. Understanding of enzyme kinetics is important especially in designing efficient reaction set-ups including type of bioreactors, reaction conditions and reusability of biocatalysts to ensure efficient running cost. A brief review of state-of-the-art in industrial applications of enzymes...

  7. Applications of Enzymes in Oil and Oilseed Processing

    DEFF Research Database (Denmark)

    Xu, Xuebing

    Enzymes, through the last 20-30 years research and development, have been widely explored for the uses in oil and oilseed processing. Following the conventional processing technology from oilseeds, the oil can be produced through pressing or solvent extraction. The crude oil is then refined to meet...... edible requirements. The oil can be also modified to meet functional or even nutritional needs. In each of those steps, enzymes have been used in industry successfully. For the oil processing stage, enzymes have been used to destroy the cell structure so that makes the oil release easier, where...... conventionally high temperature conditioning or cooking is necessary. The good story in industry is the fish oil and olive oil processing. Good quality and higher oil yield have been achieved through the use of enzymes in the processing stages. For the refining stage, the use of enzymes for degumming has...

  8. Enzymes- An Existing and Promising Tool of Food Processing Industry.

    Science.gov (United States)

    Ray, Lalitagauri; Pramanik, Sunita; Bera, Debabrata

    2016-01-01

    The enzyme catalyzed process technology has enormous potential in the food sectors as indicated by the recent patents studies. It is very well realized that the adaptation of the enzyme catalyzed process depends on the availability of enzyme in affordable prices. Enzymes may be used in different food sectors like dairy, fruits & vegetable processing, meat tenderization, fish processing, brewery and wine making, starch processing and many other. Commercially only a small number of enzymes are used because of several factors including instability of enzymes during processing and high cost. More and more enzymes for food technology are now derived from specially selected or genetically modified microorganisms grown in industrial scale fermenters. Enzymes with microbial source have commercial advantages of using microbial fermentation rather than animal and plant extraction to produce food enzymes. At present only a relatively small number of enzymes are used commercially in food processing. But the number is increasing day by day and field of application will be expanded more and more in near future. The purpose of this review is to describe the practical applications of enzymes in the field of food processing.

  9. Evaluation of thermostable enzymes for bioethanol processing

    DEFF Research Database (Denmark)

    Skovgaard, Pernille Anastasia

    of fermentable sugars (glucose) as cellulose is tightly linked to hemicellulose and lignin. Lignocellulose is disrupted during pretreatment, but to degrade cellulose to single sugars, lignocellulolytic enzymes such as cellulases and hemicellulases are needed. Lignocellulolytic enzymes are costly...... for the ioethanol production, but the expenses can be reduced by using thermostable enzymes, which are known for their increased stability and inhibitor olerance. However, the advantage of using thermostable enzymes has not been studied thoroughly and more knowledge is needed for development of bioethanol processes....... Enzymes are added to the bioethanol process after pretreatment. For an efficient sugar and ethanol yield, the solids content of biomass is normally increased, which results in highly viscous slurries that are difficult to mix. Therefore, the first enzymatic challenge is to ensure rapid reduction...

  10. Recent Advances in Marine Enzymes for Biotechnological Processes.

    Science.gov (United States)

    Lima, R N; Porto, A L M

    In the last decade, new trends in the food and pharmaceutical industries have increased concern for the quality and safety of products. The use of biocatalytic processes using marine enzymes has become an important and useful natural product for biotechnological applications. Bioprocesses using biocatalysts like marine enzymes (fungi, bacteria, plants, animals, algae, etc.) offer hyperthermostability, salt tolerance, barophilicity, cold adaptability, chemoselectivity, regioselectivity, and stereoselectivity. Currently, enzymatic methods are used to produce a large variety of products that humans consume, and the specific nature of the enzymes including processing under mild pH and temperature conditions result in fewer unwanted side-effects and by-products. This offers high selectivity in industrial processes. The marine habitat has been become increasingly studied because it represents a huge source potential biocatalysts. Enzymes include oxidoreductases, hydrolases, transferases, isomerases, ligases, and lyases that can be used in food and pharmaceutical applications. Finally, recent advances in biotechnological processes using enzymes of marine organisms (bacterial, fungi, algal, and sponges) are described and also our work on marine organisms from South America, especially marine-derived fungi and bacteria involved in biotransformations and biodegradation of organic compounds. © 2016 Elsevier Inc. All rights reserved.

  11. Some factors including radiation affecting the productivity of proteinase enzymes by mucor lamprosporus

    International Nuclear Information System (INIS)

    El-Kabbany, H.M.I.

    1996-01-01

    In the present time, great attention has been focused on the production of milk clotting enzymes from microbial source for use as remain substitute due to the increasing demands on rennin for cheese making and the prohibition of the slaughter of small calves. The present investigation included the isolation and identification of remin-like enzyme fungal producers from different egyptian food and soil samples. Different factors including gamma radiation affecting the capability of selected isolate to produce the enzyme was also included. Special attention has also given to study the effect of different purification methods of the produced enzyme. The properties of the purified enzyme were also investigated

  12. Optimization of a novel enzyme treatment process for early-stage processing of sheepskins.

    Science.gov (United States)

    Lim, Y F; Bronlund, J E; Allsop, T F; Shilton, A N; Edmonds, R L

    2010-01-01

    An enzyme treatment process for early-stage processing of sheepskins has been previously reported by the Leather and Shoe Research Association of New Zealand (LASRA) as an alternative to current industry operations. The newly developed process had marked benefits over conventional processing in terms of a lowered energy usage (73%), processing time (47%) as well as water use (49%), but had been developed as a "proof of principle''. The objective of this work was to develop the process further to a stage ready for adoption by industry. Mass balancing was used to investigate potential modifications for the process based on the understanding developed from a detailed analysis of preliminary design trials. Results showed that a configuration utilising a 2 stage counter-current system for the washing stages and segregation and recycling of enzyme float prior to dilution in the neutralization stage was a significant improvement. Benefits over conventional processing include a reduction of residual TDS by 50% at the washing stages and 70% savings on water use overall. Benefits over the un-optimized LASRA process are reduction of solids in product after enzyme treatment and neutralization stages by 30%, additional water savings of 21%, as well as 10% savings of enzyme usage.

  13. Endogenous enzymes, heat, and pH affect flavone profiles in parsley (Petroselinum crispum var. neapolitanum) and celery (Apium graveolens) during juice processing.

    Science.gov (United States)

    Hostetler, Gregory L; Riedl, Ken M; Schwartz, Steven J

    2012-01-11

    Flavones are abundant in parsley and celery and possess unique anti-inflammatory properties in vitro and in animal models. However, their bioavailability and bioactivity depend in part on the conjugation of sugars and other functional groups to the flavone core. The effects of juice extraction, acidification, thermal processing, and endogenous enzymes on flavone glycoside profile and concentration in both parsley and celery were investigated. Parsley yielded 72% juice with 64% of the total flavones extracted, whereas celery yielded 79% juice with 56% of flavones extracted. Fresh parsley juice averaged 281 mg flavones/100 g and fresh celery juice, 28.5 mg/100 g. Flavones in steamed parsley and celery were predominantly malonyl apiosylglucoside conjugates, whereas those in fresh samples were primarily apiosylglucoside conjugates; this was apparently the result of endogenous malonyl esterases. Acidification and thermal processing of celery converted flavone apiosylglucosides to flavone glucosides, which may affect the intestinal absorption and metabolism of these compounds.

  14. Targeted quantification of functional enzyme dynamics in environmental samples for microbially mediated biogeochemical processes: Targeted quantification of functional enzyme dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Li, Minjing [School of Environmental Studies, China University of Geosciences, Wuhan 430074 People' s Republic of China; Gao, Yuqian [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Qian, Wei-Jun [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Shi, Liang [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Liu, Yuanyuan [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Nelson, William C. [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Nicora, Carrie D. [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Resch, Charles T. [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Thompson, Christopher [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Yan, Sen [School of Environmental Studies, China University of Geosciences, Wuhan 430074 People' s Republic of China; Fredrickson, James K. [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Zachara, John M. [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Liu, Chongxuan [Pacific Northwest National Laboratory, Richland, WA 99354 USA; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055 People' s Republic of China

    2017-07-13

    Microbially mediated biogeochemical processes are catalyzed by enzymes that control the transformation of carbon, nitrogen, and other elements in environment. The dynamic linkage between enzymes and biogeochemical species transformation has, however, rarely been investigated because of the lack of analytical approaches to efficiently and reliably quantify enzymes and their dynamics in soils and sediments. Herein, we developed a signature peptide-based technique for sensitively quantifying dissimilatory and assimilatory enzymes using nitrate-reducing enzymes in a hyporheic zone sediment as an example. Moreover, the measured changes in enzyme concentration were found to correlate with the nitrate reduction rate in a way different from that inferred from biogeochemical models based on biomass or functional genes as surrogates for functional enzymes. This phenomenon has important implications for understanding and modeling the dynamics of microbial community functions and biogeochemical processes in environments. Our results also demonstrate the importance of enzyme quantification for the identification and interrogation of those biogeochemical processes with low metabolite concentrations as a result of faster enzyme-catalyzed consumption of metabolites than their production. The dynamic enzyme behaviors provide a basis for the development of enzyme-based models to describe the relationship between the microbial community and biogeochemical processes.

  15. Shear-driven redistribution of surfactant affects enzyme activity in well-mixed femtoliter droplets.

    Science.gov (United States)

    Liu, Yu; Jung, Seung-Yong; Collier, C Patrick

    2009-06-15

    We developed a microfluidic platform for splitting well-mixed, femtoliter-volume droplets from larger water-in-oil plugs, where the sizes of the daughter droplets were not limited by channel width. These droplets were separated from mother plugs at a microfabricated T-junction, which enabled the study of how increased confinement affected enzyme kinetics in droplets 4-10 microm in diameter. Initial rates for enzyme catalysis in the mother plugs and the largest daughter drops were close to the average bulk rate, while the rates in smaller droplets decreased linearly with increasing surface to volume ratio. Rates in the smallest droplets decreased by a factor of 4 compared to the bulk rate. Traditional methods for detecting nonspecific adsorption at the water-oil interface were unable to detect evidence of enzyme adsorption, including pendant drop tensiometry, laser scanning confocal microscopy of drops containing labeled proteins in microemulsions, and epifluorescence microscopy of plugs and drops generated on-chip. We propose the slowing of enzyme reaction kinetics in the smaller droplets was the result of increased adsorption and inactivation of enzymes at the water-oil interface arising from transient interfacial shear stresses imparted on the daughter droplets as they split from the mother plugs and passed through the constricted opening of the T-junction. Such stresses are known to modulate the interfacial area and density of surfactant molecules that can passivate the interface. Bright field images of the splitting processes at the junction indicate that these stresses scaled with increasing surface to volume ratios of the droplets but were relatively insensitive to the average flow rate of plugs upstream of the junction.

  16. Application of residual polysaccharide-degrading enzymes in dried shiitake mushrooms as an enzyme preparation in food processing.

    Science.gov (United States)

    Tatsumi, E; Konishi, Y; Tsujiyama, S

    2016-11-01

    To examine the activities of residual enzymes in dried shiitake mushrooms, which are a traditional foodstuff in Japanese cuisine, for possible applications in food processing. Polysaccharide-degrading enzymes remained intact in dried shiitake mushrooms and the activities of amylase, β-glucosidase and pectinase were high. A potato digestion was tested using dried shiitake powder. The enzymes reacted with potato tuber specimens to solubilize sugars even under a heterogeneous solid-state condition and that their reaction modes were different at 38 and 50 °C. Dried shiitake mushrooms have a potential use in food processing as an enzyme preparation.

  17. Enzyme clustering accelerates processing of intermediates through metabolic channeling

    Science.gov (United States)

    Castellana, Michele; Wilson, Maxwell Z.; Xu, Yifan; Joshi, Preeti; Cristea, Ileana M.; Rabinowitz, Joshua D.; Gitai, Zemer; Wingreen, Ned S.

    2015-01-01

    We present a quantitative model to demonstrate that coclustering multiple enzymes into compact agglomerates accelerates the processing of intermediates, yielding the same efficiency benefits as direct channeling, a well-known mechanism in which enzymes are funneled between enzyme active sites through a physical tunnel. The model predicts the separation and size of coclusters that maximize metabolic efficiency, and this prediction is in agreement with previously reported spacings between coclusters in mammalian cells. For direct validation, we study a metabolic branch point in Escherichia coli and experimentally confirm the model prediction that enzyme agglomerates can accelerate the processing of a shared intermediate by one branch, and thus regulate steady-state flux division. Our studies establish a quantitative framework to understand coclustering-mediated metabolic channeling and its application to both efficiency improvement and metabolic regulation. PMID:25262299

  18. Indicators: Sediment Enzymes

    Science.gov (United States)

    Sediment enzymes are proteins that are produced by microorganisms living in the sediment or soil. They are indicators of key ecosystem processes and can help determine which nutrients are affecting the biological community of a waterbody.

  19. Regulatory proteins (inhibitors or activators) affect estimates of Msub(r) of enzymes and receptors by radiation inactivation

    International Nuclear Information System (INIS)

    Potier, M.; Giroux, S.

    1985-01-01

    The radiation-inactivation method allows the determination of the Msub(r) of enzymes and receptors by monitoring the decay of biological activity as a function of absorbed dose. The presence of regulatory or effector proteins (inhibitors or activators) associated with an enzyme or receptor, or released in the preparation after tissue homogenization, may affect the decay of biological activity. How the activity is affected, however, will depend on the type of inhibition (competitive or non-competitive), the inhibitor or activator concentration, the dissociation constant of the enzyme-effector system, and the effector Msub(r) relative to that of the enzyme. Since little is known on how effector proteins influence radiation inactivation of enzymes and receptors, we have considered a theoretical model in an effort to provide a framework for the interpretation of experimentally obtained data. Our model predicts that competitive and non-competitive inhibitors of enzymes could be distinguished by analysing irradiated samples with various substrate concentrations. Inhibitors will decrease whereas activators will increase the apparent target size of enzymes or receptors. (author)

  20. Protein engineering of enzymes for process applications

    DEFF Research Database (Denmark)

    Woodley, John M

    2013-01-01

    opportunities will be targeted on modification to enable process application. This article discusses the challenges involved in enzyme modification focused on process requirements, such as the need to fulfill reaction thermodynamics, specific activity under the required conditions, kinetics at required...... concentrations, and stability. Finally, future research directions are discussed, including the integration of biocatalysis with neighboring chemical steps....

  1. Highly efficient enzyme encapsulation in a protein nanocage: towards enzyme catalysis in a cellular nanocompartment mimic

    Science.gov (United States)

    Schoonen, Lise; Nolte, Roeland J. M.; van Hest, Jan C. M.

    2016-07-01

    The study of enzyme behavior in small nanocompartments is crucial for the understanding of biocatalytic processes in the cellular environment. We have developed an enzymatic conjugation strategy to attach a model enzyme to the interior of a cowpea chlorotic mottle virus capsid. It is shown that with this methodology high encapsulation efficiencies can be achieved. Additionally, we demonstrate that the encapsulation does not affect the enzyme performance in terms of a decreased activity or a hampered substrate diffusion. Finally, it is shown that the encapsulated enzymes are protected against proteases. We believe that our strategy can be used to study enzyme kinetics in an environment that approaches physiological conditions.The study of enzyme behavior in small nanocompartments is crucial for the understanding of biocatalytic processes in the cellular environment. We have developed an enzymatic conjugation strategy to attach a model enzyme to the interior of a cowpea chlorotic mottle virus capsid. It is shown that with this methodology high encapsulation efficiencies can be achieved. Additionally, we demonstrate that the encapsulation does not affect the enzyme performance in terms of a decreased activity or a hampered substrate diffusion. Finally, it is shown that the encapsulated enzymes are protected against proteases. We believe that our strategy can be used to study enzyme kinetics in an environment that approaches physiological conditions. Electronic supplementary information (ESI) available: Experimental procedures for the cloning, expression, and purification of all proteins, as well as supplementary figures and calculations. See DOI: 10.1039/c6nr04181g

  2. Secretome analysis of Trichoderma reesei and Aspergillus niger cultivated by submerged and sequential fermentation processes: Enzyme production for sugarcane bagasse hydrolysis.

    Science.gov (United States)

    Florencio, Camila; Cunha, Fernanda M; Badino, Alberto C; Farinas, Cristiane S; Ximenes, Eduardo; Ladisch, Michael R

    2016-08-01

    Cellulases and hemicellulases from Trichoderma reesei and Aspergillus niger have been shown to be powerful enzymes for biomass conversion to sugars, but the production costs are still relatively high for commercial application. The choice of an effective microbial cultivation process employed for enzyme production is important, since it may affect titers and the profile of protein secretion. We used proteomic analysis to characterize the secretome of T. reesei and A. niger cultivated in submerged and sequential fermentation processes. The information gained was key to understand differences in hydrolysis of steam exploded sugarcane bagasse for enzyme cocktails obtained from two different cultivation processes. The sequential process for cultivating A. niger gave xylanase and β-glucosidase activities 3- and 8-fold higher, respectively, than corresponding activities from the submerged process. A greater protein diversity of critical cellulolytic and hemicellulolytic enzymes were also observed through secretome analyses. These results helped to explain the 3-fold higher yield for hydrolysis of non-washed pretreated bagasse when combined T. reesei and A. niger enzyme extracts from sequential fermentation were used in place of enzymes obtained from submerged fermentation. An enzyme loading of 0.7 FPU cellulase activity/g glucan was surprisingly effective when compared to the 5-15 times more enzyme loadings commonly reported for other cellulose hydrolysis studies. Analyses showed that more than 80% consisted of proteins other than cellulases whose role is important to the hydrolysis of a lignocellulose substrate. Our work combined proteomic analyses and enzymology studies to show that sequential and submerged cultivation methods differently influence both titers and secretion profile of key enzymes required for the hydrolysis of sugarcane bagasse. The higher diversity of feruloyl esterases, xylanases and other auxiliary hemicellulolytic enzymes observed in the enzyme

  3. Dynamic enzyme docking to the ribosome coordinates N-terminal processing with polypeptide folding.

    Science.gov (United States)

    Sandikci, Arzu; Gloge, Felix; Martinez, Michael; Mayer, Matthias P; Wade, Rebecca; Bukau, Bernd; Kramer, Günter

    2013-07-01

    Newly synthesized polypeptides undergo various cotranslational maturation steps, including N-terminal enzymatic processing, chaperone-assisted folding and membrane targeting, but the spatial and temporal coordination of these steps is unclear. We show that Escherichia coli methionine aminopeptidase (MAP) associates with ribosomes through a charged loop that is crucial for nascent-chain processing and cell viability. MAP competes with peptide deformylase (PDF), the first enzyme to act on nascent chains, for binding sites at the ribosomal tunnel exit. PDF has extremely fast association and dissociation kinetics, which allows it to frequently sample ribosomes and ensure the processing of nascent chains after their emergence. Premature recruitment of the chaperone trigger factor, or polypeptide folding, negatively affect processing efficiency. Thus, the fast ribosome association kinetics of PDF and MAP are crucial for the temporal separation of nascent-chain processing from later maturation events, including chaperone recruitment and folding.

  4. PRODUCTION AND USES OF MICROBIAL ENZYMES FOR DAIRY PROCESSING

    International Nuclear Information System (INIS)

    EL-KABBANY, H.M.I.

    2008-01-01

    The isolation and identification of fungal producer from various Egyptian dairy products samples was studied. Among fungi testes, only one out of the 48 isolates was found to be positive yielded a suitable enzyme substitute (rennet) and identified as Cryphonectria parasitica (C. parasitica) and was found to be negative for mycotoxins. The highest growth and production of the crude enzyme were obtained from barley medium after an incubation period for 6-8 days at 25 0 C and pH 5. It was found also to be sensitive to gamma rays, since 2.5 kGy completely inactivated the germination of the spores while very low doses up to 0.05 kGy did not affect the production of rennet like enzyme (RLE). Precipitation of the crude enzyme produced by C. parasitica using ammonium sulphate (NH 4 ) 2 SO 4 gave the highest milk clotting activity (MCA) at 50 0 C. Further purification was achieved by using Sephadex G-100 to give pure RLE. MCA of the fungal and animal rennin proved to be essentially identical in milk containing various concentrations of CaCl 2 . An addition of 160 ppm of CaCl 2 increased the enzyme activity. The optimum temperature was 60 0 C while pre-heating thermophiles at 15 0 C for 10 minutes complete inactivation. Both rennins manifested comparable clotting activities in milk at pH 6

  5. Enzyme technology for precision functional food ingredient processes

    DEFF Research Database (Denmark)

    Meyer, Anne S.

    2010-01-01

    modification of potato starch processing residues. Such targeted enzyme-catalyzed reactions provide new invention opportunities for designing functional foods with significant health benefits. The provision of well-defined naturally structured compounds can, moreover, assist in obtaining the much...

  6. Perceptual Processing Affects Conceptual Processing

    Science.gov (United States)

    van Dantzig, Saskia; Pecher, Diane; Zeelenberg, Rene; Barsalou, Lawrence W.

    2008-01-01

    According to the Perceptual Symbols Theory of cognition (Barsalou, 1999), modality-specific simulations underlie the representation of concepts. A strong prediction of this view is that perceptual processing affects conceptual processing. In this study, participants performed a perceptual detection task and a conceptual property-verification task…

  7. Influence of COMT genotype and affective distractors on the processing of self-generated thought.

    Science.gov (United States)

    Kilford, Emma J; Dumontheil, Iroise; Wood, Nicholas W; Blakemore, Sarah-Jayne

    2015-06-01

    The catechol-O-methyltransferase (COMT) enzyme is a major determinant of prefrontal dopamine levels. The Val(158)Met polymorphism affects COMT enzymatic activity and has been associated with variation in executive function and affective processing. This study investigated the effect of COMT genotype on the flexible modulation of the balance between processing self-generated and processing stimulus-oriented information, in the presence or absence of affective distractors. Analyses included 124 healthy adult participants, who were also assessed on standard working memory (WM) tasks. Relative to Val carriers, Met homozygotes made fewer errors when selecting and manipulating self-generated thoughts. This effect was partly accounted for by an association between COMT genotype and visuospatial WM performance. We also observed a complex interaction between the influence of affective distractors, COMT genotype and sex on task accuracy: male, but not female, participants showed a sensitivity to the affective distractors that was dependent on COMT genotype. This was not accounted for by WM performance. This study provides novel evidence of the role of dopaminergic genetic variation on the ability to select and manipulate self-generated thoughts. The results also suggest sexually dimorphic effects of COMT genotype on the influence of affective distractors on executive function. © The Author (2014). Published by Oxford University Press.

  8. Proglobulin processing enzyme in vacuoles isolated from developing pumpkin cotyledons

    International Nuclear Information System (INIS)

    Hara-Nishimura, I.; Nishimura, M.

    1987-01-01

    The enzymic conversion of proglobulin to globulin catalyzed by the extracts of vacuoles isolated from developing pumpkin (Cucurbita sp. cv Kurokawa Amakuri Nankin) cotyledons was investigated. The endoplasmic reticulum fraction isolated from the developing cotyledons pulse-labeled with [ 35 S]methionine was shown to contain mainly the radiolabeled proglobulin, which was used as a substrate for assaying the proteolytic processing in vitro. The vacuolar extracts catalyzed the proteolytic processing of the proglobulin molecule to produce globulin containing two kinds of polypeptide chains, γ and δ. The pH optimum for the vacuole-mediated conversion was at pH 5.0. The proteolytic processing of proglobulin by the vacuolar extracts was inhibited in the presence of various thiol reagents, e.g. p-chloromercuribenzoate, N-ethylmaleimide, iodoacetic acid, Hg 2+ , and Cu 2+ , but not phenylmethylsulfonyl fluoride, EDTA, o-phenanthroline, leupeptin, antipain, pepstatin, chymostatin, or pumpkin trypsin inhibitor, and was activated in the presence of dithiothreitol and cysteine, indicating that the processing enzyme is a thiol protease. The suborganellar fractionation of the vacuoles showed that the processing activity was localized in the matrix fraction, but not in the membrane or crystalloid fractions. During the seed development, the enzyme was shown to increase, exhibiting the maximal activity at the late developmental stage. The matrix fraction of the protein bodies isolated from the dry castor bean (Ricinus communis) exhibited the processing activity toward the pumpkin proglobulin molecules in the same manner as that by the matrix fraction of pumpkin vacuoles

  9. Nedd8 processing enzymes in Schizosaccharomyces pombe

    DEFF Research Database (Denmark)

    O'Donoghue, Jean; Bech-Otschir, Dawadschargal; Larsen, Ida

    2013-01-01

    Conjugation of the ubiquitin-like modifier Nedd8 to cullins is critical for the function of SCF-type ubiquitin ligases and thus facilitates ubiquitin conjugation and ultimately degradation of SCF substrates, including several cell cycle regulators. Like ubiquitin, Nedd8 is produced as a precursor...... that must first be processed before it becomes active. In Saccharomyces cerevisiae this is carried out exclusively by the enzyme Yuh1....

  10. Critical Factors Affecting the Success of Cloning, Expression, and Mass Production of Enzymes by Recombinant E. coli.

    Science.gov (United States)

    Fakruddin, Md; Mohammad Mazumdar, Reaz; Bin Mannan, Khanjada Shahnewaj; Chowdhury, Abhijit; Hossain, Md Nur

    2013-01-01

    E. coli is the most frequently used host for production of enzymes and other proteins by recombinant DNA technology. E. coli is preferable for its relative simplicity, inexpensive and fast high-density cultivation, well-known genetics, and large number of compatible molecular tools available. Despite all these advantages, expression and production of recombinant enzymes are not always successful and often result in insoluble and nonfunctional proteins. There are many factors that affect the success of cloning, expression, and mass production of enzymes by recombinant E. coli. In this paper, these critical factors and approaches to overcome these obstacles are summarized focusing controlled expression of target protein/enzyme in an unmodified form at industrial level.

  11. PROCESS FOR DUST-FREE ENZYME MANUFACTURE

    NARCIS (Netherlands)

    Andela, C.; Feijen, Jan; Dillissen, Marc

    1994-01-01

    New enzyme granules are provided with improved properties. The granules are based on core particles having a good pore size and pore size distribution to allow an enzyme solution to enter into the particle. Accordingly, the core material comprises the enzyme in liquid form, thus eliminating the

  12. Impact of pH and Total Soluble Solids on Enzyme Inactivation Kinetics during High Pressure Processing of Mango (Mangifera indica) Pulp.

    Science.gov (United States)

    Kaushik, Neelima; Nadella, Tejaswi; Rao, P Srinivasa

    2015-11-01

    This study was undertaken with an aim to enhance the enzyme inactivation during high pressure processing (HPP) with pH and total soluble solids (TSS) as additional hurdles. Impact of mango pulp pH (3.5, 4.0, 4.5) and TSS (15, 20, 25 °Brix) variations on the inactivation of pectin methylesterase (PME), polyphenol oxidase (PPO), and peroxidase (POD) enzymes were studied during HPP at 400 to 600 MPa pressure (P), 40 to 70 °C temperature (T), and 6- to 20-min pressure-hold time (t). The enzyme inactivation (%) was modeled using second order polynomial equations with a good fit that revealed that all the enzymes were significantly affected by HPP. Response surface and contour models predicted the kinetic behavior of mango pulp enzymes adequately as indicated by the small error between predicted and experimental data. The predicted kinetics indicated that for a fixed P and T, higher pulse pressure effect and increased isobaric inactivation rates were possible at lower levels of pH and TSS. In contrast, at a fixed pH or TSS level, an increase in P or T led to enhanced inactivation rates, irrespective of the type of enzyme. PPO and POD were found to have similar barosensitivity, whereas PME was found to be most resistant to HPP. Furthermore, simultaneous variation in pH and TSS levels of mango pulp resulted in higher enzyme inactivation at lower pH and TSS during HPP, where the effect of pH was found to be predominant than TSS within the experimental domain. Exploration of additional hurdles such as pH, TSS, and temperature for enzyme inactivation during high pressure processing of fruits is useful from industrial point of view, as these parameters play key role in preservation process design. © 2015 Institute of Food Technologists®

  13. Bio-processing of Agro-industrial Wastes for Production of Food-grade Enzymes: Progress and Prospects

    Directory of Open Access Journals (Sweden)

    Parmjit S Panesar

    2016-10-01

    Full Text Available Background and Objectives: In the era of global industrialization, enzymes are being used extensively in the various sectors including food processing. Owing to the high price of enzymes, various initiatives have been undertaken by the R&D sector for the development of new processes or improvement in the existing processes for production of cost effective enzymes. With the advancement in the field of biotechnology, different bioprocesses are being used for utilization of different agro-industrial residues for the production of various enzymes. This review focuses on different types of agro-industrial wastes and their utilization in the production of enzymes. The present scenario as well as the future scope of utilization of enzymes in the food industry has also been discussed.Results and Conclusion: The regulations from the various governmental as well as environmental agencies for the demand of cleaner environment have led to the advancement in various technologies for utilization of the wastes for the production of value-added products such as enzymes. Among the different types of fermentation, maximum work has been carried under solid state conditions by batch fermentation. The research has indicated the significant potential of agro-industrial wastes for production of food-grade enzymes in order to improve the economics of the process.Conflict of interests: The authors declare no conflict of interest.

  14. A model-based framework for design of intensified enzyme-based processes

    DEFF Research Database (Denmark)

    Román-Martinez, Alicia

    This thesis presents a generic and systematic model-based framework to design intensified enzyme-based processes. The development of the presented methodology was motivated by the needs of the bio-based industry for a more systematic approach to achieve intensification in its production plants...... in enzyme-based processes which have found significant application in the pharmaceutical, food, and renewable fuels sector. The framework uses model-based strategies for (bio)-chemical process design and optimization, including the use of a superstructure to generate all potential reaction......(s)-separation(s) options according to a desired performance criteria and a generic mathematical model represented by the superstructure to derive the specific models corresponding to a specific process option. In principle, three methods of intensification of bioprocess are considered in this thesis: 1. enzymatic one...

  15. Modeling physiological processes in plankton on enzyme kinetic principles

    Directory of Open Access Journals (Sweden)

    Ted Packard

    2004-04-01

    Full Text Available Many ecologically important chemical transformations in the ocean are controlled by biochemical enzyme reactions in plankton. Nitrogenase regulates the transformation of N2 to ammonium in some cyanobacteria and serves as the entryway for N2 into the ocean biosphere. Nitrate reductase controls the reduction of NO3 to NO2 and hence new production in phytoplankton. The respiratory electron transfer system in all organisms links the carbon oxidation reactions of intermediary metabolism with the reduction of oxygen in respiration. Rubisco controls the fixation of CO2 into organic matter in phytoplankton and thus is the major entry point of carbon into the oceanic biosphere. In addition to these, there are the enzymes that control CO2 production, NH4 excretion and the fluxes of phosphate. Some of these enzymes have been recognized and researched by marine scientists in the last thirty years. However, until recently the kinetic principles of enzyme control have not been exploited to formulate accurate mathematical equations of the controlling physiological expressions. Were such expressions available they would increase our power to predict the rates of chemical transformations in the extracellular environment of microbial populations whether this extracellular environment is culture media or the ocean. Here we formulate from the principles of bisubstrate enzyme kinetics, mathematical expressions for the processes of NO3 reduction, O2 consumption, N2 fixation, total nitrogen uptake.

  16. Critical Factors Affecting the Success of Cloning, Expression, and Mass Production of Enzymes by Recombinant E. coli

    OpenAIRE

    Fakruddin, Md.; Mohammad Mazumdar, Reaz; Bin Mannan, Khanjada Shahnewaj; Chowdhury, Abhijit; Hossain, Md. Nur

    2013-01-01

    E. coli is the most frequently used host for production of enzymes and other proteins by recombinant DNA technology. E. coli is preferable for its relative simplicity, inexpensive and fast high-density cultivation, well-known genetics, and large number of compatible molecular tools available. Despite all these advantages, expression and production of recombinant enzymes are not always successful and often result in insoluble and nonfunctional proteins. There are many factors that affect the s...

  17. Process Simulation of enzymatic biodiesel production -at what cost can biodiesel be made with enzymes?

    DEFF Research Database (Denmark)

    Fjerbæk Søtoft, Lene; Christensen, Knud Villy; Rong, Benguang

    as well as environmental impacts of the alternative process must be evaluated towards the conventional process. With process simulation tools, an evaluation will be carried out looking at what it will cost to produce biodiesel with enzymes. Different scenarios will be taken into account with variations...... in raw material prices, process designs and enzyme cost and performance....

  18. Enzyme technology for precision functional food ingredient processes.

    Science.gov (United States)

    Meyer, Anne S

    2010-03-01

    A number of naturally occurring dietary substances may exert physiological benefits. The production of enhanced levels or particularly tailored versions of such candidate functional compounds can be targeted by enzymatic catalysis. The recent literature contains examples of enhancing bioavailability of iron via enzyme-catalyzed degradation of phytate in wheat bran, increasing diacyl-glycerol and conjugated linoleic acid levels by lipase action, enhancing the absorption of the citrus flavonoid hesperetin via rhamnosidase treatment, and obtaining solubilized dietary fiber via enzymatic modification of potato starch processing residues. Such targeted enzyme-catalyzed reactions provide new invention opportunities for designing functional foods with significant health benefits. The provision of well-defined naturally structured compounds can, moreover, assist in obtaining the much-needed improved understanding of the physiological benefits of complex natural substances.

  19. Functional Enzyme-Based Approach for Linking Microbial Community Functions with Biogeochemical Process Kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Li, Minjing [School; Qian, Wei-jun [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Gao, Yuqian [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Shi, Liang [School; Liu, Chongxuan [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; School

    2017-09-28

    The kinetics of biogeochemical processes in natural and engineered environmental systems are typically described using Monod-type or modified Monod-type models. These models rely on biomass as surrogates for functional enzymes in microbial community that catalyze biogeochemical reactions. A major challenge to apply such models is the difficulty to quantitatively measure functional biomass for constraining and validating the models. On the other hand, omics-based approaches have been increasingly used to characterize microbial community structure, functions, and metabolites. Here we proposed an enzyme-based model that can incorporate omics-data to link microbial community functions with biogeochemical process kinetics. The model treats enzymes as time-variable catalysts for biogeochemical reactions and applies biogeochemical reaction network to incorporate intermediate metabolites. The sequences of genes and proteins from metagenomes, as well as those from the UniProt database, were used for targeted enzyme quantification and to provide insights into the dynamic linkage among functional genes, enzymes, and metabolites that are necessary to be incorporated in the model. The application of the model was demonstrated using denitrification as an example by comparing model-simulated with measured functional enzymes, genes, denitrification substrates and intermediates

  20. Site- and horizon-specific patterns of microbial community structure and enzyme activities in permafrost-affected soils of Greenland

    Science.gov (United States)

    Gittel, Antje; Bárta, Jiří; Kohoutová, Iva; Schnecker, Jörg; Wild, Birgit; Čapek, Petr; Kaiser, Christina; Torsvik, Vigdis L.; Richter, Andreas; Schleper, Christa; Urich, Tim

    2014-01-01

    Permafrost-affected soils in the Northern latitudes store huge amounts of organic carbon (OC) that is prone to microbial degradation and subsequent release of greenhouse gasses to the atmosphere. In Greenland, the consequences of permafrost thaw have only recently been addressed, and predictions on its impact on the carbon budget are thus still highly uncertain. However, the fate of OC is not only determined by abiotic factors, but closely tied to microbial activity. We investigated eight soil profiles in northeast Greenland comprising two sites with typical tundra vegetation and one wet fen site. We assessed microbial community structure and diversity (SSU rRNA gene tag sequencing, quantification of bacteria, archaea and fungi), and measured hydrolytic and oxidative enzyme activities. Sampling site and thus abiotic factors had a significant impact on microbial community structure, diversity and activity, the wet fen site exhibiting higher potential enzyme activities and presumably being a hot spot for anaerobic degradation processes such as fermentation and methanogenesis. Lowest fungal to bacterial ratios were found in topsoils that had been relocated by cryoturbation (“buried topsoils”), resulting from a decrease in fungal abundance compared to recent (“unburied”) topsoils. Actinobacteria (in particular Intrasporangiaceae) accounted for a major fraction of the microbial community in buried topsoils, but were only of minor abundance in all other soil horizons. It was indicated that the distribution pattern of Actinobacteria and a variety of other bacterial classes was related to the activity of phenol oxidases and peroxidases supporting the hypothesis that bacteria might resume the role of fungi in oxidative enzyme production and degradation of phenolic and other complex substrates in these soils. Our study sheds light on the highly diverse, but poorly-studied communities in permafrost-affected soils in Greenland and their role in OC degradation. PMID

  1. The contribution of enzymes and process chemicals to the life cycle of ethanol

    International Nuclear Information System (INIS)

    MacLean, Heather L; Spatari, Sabrina

    2009-01-01

    Most life cycle studies of biofuels have not examined the impact of process chemicals and enzymes, both necessary inputs to biochemical production and which vary depending upon the technology platform (feedstock, pretreatment and hydrolysis system). We examine whether this omission is warranted for sugar-platform technologies. We develop life cycle ('well-to-tank') case studies for a corn dry-mill and for one 'mature' and two near-term lignocellulosic ethanol technologies. Process chemical and enzyme inputs contribute only 3% of fossil energy use and greenhouse gas (GHG) emissions for corn ethanol. Assuming considerable improvement compared to current enzyme performance, the inputs for the near-term lignocellulosic technologies studied are found to be responsible for 30%-40% of fossil energy use and 30%-35% of GHG emissions, not an insignificant fraction given that these models represent technology developers' nth plant performance. Mature technologies which assume lower chemical and enzyme loadings, high enzyme specific activity and on-site production utilizing renewable energy would significantly improve performance. Although the lignocellulosic technologies modeled offer benefits over today's corn ethanol through reducing life cycle fossil energy demand and GHG emissions by factors of three and six, achieving those performance levels requires continued research into and development of the manufacture of low dose, high specific activity enzyme systems. Realizing the benefits of low carbon fuels through biological conversion will otherwise not be possible. Tracking the technological performance of process conversion materials remains an important step in measuring the life cycle performance of biofuels.

  2. Applying neural networks as software sensors for enzyme engineering.

    Science.gov (United States)

    Linko, S; Zhu, Y H; Linko, P

    1999-04-01

    The on-line control of enzyme-production processes is difficult, owing to the uncertainties typical of biological systems and to the lack of suitable on-line sensors for key process variables. For example, intelligent methods to predict the end point of fermentation could be of great economic value. Computer-assisted control based on artificial-neural-network models offers a novel solution in such situations. Well-trained feedforward-backpropagation neural networks can be used as software sensors in enzyme-process control; their performance can be affected by a number of factors.

  3. Improvement of phenolic antioxidants and quality characteristics of virgin olive oil with the addition of enzymes and nitrogen during olive paste processing

    Energy Technology Data Exchange (ETDEWEB)

    Inconomou, D.; Arapoglou, D.; Israilides, C.

    2010-07-01

    The evolution of phenolic compounds and their contribution to the quality characteristics in virgin olive oil during fruit processing was studied with the addition of a combination of various commercial enzymes containing pectinases, polygalacturonases, cellulase and {beta}-glucanase with or without nitrogen flush. Olive fruits (Olea europaea, L.) of the cultivar Megaritiki, at the semi black pigmentation stage of maturity, were used in a 3-phase extraction system in an experiment at industrial scale. The addition of enzymes in the olive paste during processing increased the total phenol and ortho-diphenol contents, as well as some simple phenolic compounds (3,4-DHPEA, p-HPEA) and the secoiridoid derivatives (3,4-DHPEA-EDA and 3,4-DHPEAEA) in olive oil and therefore improved its oxidative stability. Furthermore, enzyme treatment ameliorated the quality parameters of the produced olive oil (acidity and peroxide value) and their sensory attributes. The use of additional N{sub 2} flush with the enzyme treatments did not improve the quality parameters of olive oil any further; however it did not affect the concentration of individual and total sterols or most of the fatty acid composition. Consequently, olive paste treatment with enzymes not only improved the quality characteristics of olive oil and enhanced the overall organoleptic quality, but also increased the olive oil yield. (Author) 33 refs.

  4. Does cypermethrin affect enzyme activity, respiration rate and walking behavior of the maize weevil (Sitophilus zeamais)?

    Institute of Scientific and Technical Information of China (English)

    Ronnie Von Santos Veloso; Eliseu José G.Pereira; Raul Narciso C.Guedes; Maria Goreti A.Oliveira

    2013-01-01

    Insecticides cause a range of sub-lethal effects on targeted insects,which are frequently detrimental to them.However,targeted insects are able to cope with insecticides within sub-lethal ranges,which vary with their susceptibility.Here we assessed the response of three strains of the maize weevil Sitophilus zeamais Motschulsky (Coleoptera:Curculionidae) to sub-lethal exposure to the pyrethoid insecticide cypermethrin.We expected enzyme induction associated with cypermethrin resistance since it would aid the resistant insects in surviving such exposure.Lower respiration rate and lower activity were also expected in insecticide-resistant insects since these traits are also likely to favor survivorship under insecticide exposure.Curiously though,cypermethrin did not affect activity of digestive and energy metabolism enzymes,and even reduced the activity of some enzymes (particularly for cellulase and cysteine-proteinase activity in this case).There was strain variation in response,which may be (partially) related to insecticide resistance in some strains.Sub-lethal exposure to cypermethrin depressed proteolytic and mainly cellulolytic activity in the exposed insects,which is likely to impair their fitness.However,such exposure did not affect respiration rate and walking behavior of the insects (except for the susceptible strain where walking activity was reduced).Walking activity varies with strain and may minimize insecticide exposure,which should be a concern,particularly if associated with (physiological) insecticide resistance.

  5. Composition and microstructure alteration of triticale grain surface after processing by enzymes of cellulase complex

    Directory of Open Access Journals (Sweden)

    Elena Kuznetsova

    2016-01-01

    Full Text Available It is found that the pericarp tissue of grain have considerable strength and stiffness, that has an adverse effect on quality of whole-grain bread. Thereby, there exists the need for preliminary chemical and biochemical processing of durable cell walls before industrial use. Increasingly used in the production of bread finds an artificial hybrid of the traditional grain crops of wheat and rye - triticale, grain which has high nutritional value. The purpose of this research was to evaluate the influence of cellulose complex (Penicillium canescens enzymes on composition and microstructure alteration of triticale grain surface, for grain used in baking. Triticale grain was processed by cellulolytic enzyme preparations with different composition (producer is Penicillium canescens. During experiment it is found that triticale grain processing by enzymes of cellulase complex leads to an increase in the content of water-soluble pentosans by 36.3 - 39.2%. The total amount of low molecular sugars increased by 3.8 - 10.5 %. Studies show that under the influence of enzymes the microstructure of the triticale grain surface is changing. Microphotographs characterizing grain surface structure alteration in dynamic (every 2 hours during 10 hours of substrate hydrolysis are shown. It is found that the depth and direction of destruction process for non-starch polysaccharides of grain integument are determined by the composition of the enzyme complex preparation and duration of exposure. It is found, that xylanase involved in the modification of hemicelluloses fiber having both longitudinal and radial orientation. Hydrolysis of non-starch polysaccharides from grain shells led to increase of antioxidant activity. Ferulic acid was identified in alcoholic extract of triticale grain after enzymatic hydrolysis under the influence of complex preparation containing cellulase, xylanase and β-glucanase. Grain processing by independent enzymes containing in complex

  6. Do new cellulolytic enzyme preparations affect the industrial strategies for high solids lignocellulosic ethanol production?

    DEFF Research Database (Denmark)

    Cannella, David; Jørgensen, Henning

    2014-01-01

    proven essential for economic feasibility at industrial scale. Historically, simultaneous saccharification and fermentation (SSF) was found to give better ethanol yields compared to separate hydrolysis and fermentation (SHF), but data in literature are typically based on operating the process at low dry...... matter conditions. In this work the impact of selected enzyme preparation and processing strategy (SHF, presaccharification and simultaneous saccharification and fermentation—PSSF, and SSF) on final ethanol yield and overall performance was investigated with pretreated wheat straw up to 30% DM...... cellulose to around 94%, revealing that the most relevant products could be accounted for. One observation was the presence of oxidized sugar (gluconic acid) upon enzymatic hydrolysis with the latest enzyme preparation. Experiments showed gluconic acid formation by recently discovered enzymatic class...

  7. Enzymes in Fermented Fish.

    Science.gov (United States)

    Giyatmi; Irianto, H E

    Fermented fish products are very popular particularly in Southeast Asian countries. These products have unique characteristics, especially in terms of aroma, flavor, and texture developing during fermentation process. Proteolytic enzymes have a main role in hydrolyzing protein into simpler compounds. Fermentation process of fish relies both on naturally occurring enzymes (in the muscle or the intestinal tract) as well as bacteria. Fermented fish products processed using the whole fish show a different characteristic compared to those prepared from headed and gutted fish. Endogenous enzymes like trypsin, chymotrypsin, elastase, and aminopeptidase are the most involved in the fermentation process. Muscle tissue enzymes like cathepsins, peptidases, transaminases, amidases, amino acid decarboxylases, glutamic dehydrogenases, and related enzymes may also play a role in fish fermentation. Due to the decreased bacterial number during fermentation, contribution of microbial enzymes to proteolysis may be expected prior to salting of fish. Commercial enzymes are supplemented during processing for specific purposes, such as quality improvement and process acceleration. In the case of fish sauce, efforts to accelerate fermentation process and to improve product quality have been studied by addition of enzymes such as papain, bromelain, trypsin, pepsin, and chymotrypsin. © 2017 Elsevier Inc. All rights reserved.

  8. Polyphenol Oxidase Enzyme and Inactivation Methods

    Directory of Open Access Journals (Sweden)

    Leman Yılmaz

    2018-03-01

    Full Text Available Polyphenol oxidase enzyme is found in vegetables and fruits, as well as in some animal organs and microorganisms. Polyphenol oxidase enzyme responsible for enzymatic browning is a group of copper proteins that catalyses the oxidation of phenolic compounds to quinones, which produce brown pigments, commonly found in fruits and vegetables. During the industrial preparation of fruits and vegetables, results of catalytic effect of polyphenol oxidase causes enzymatic browning. Enzymatic browning impairs the appearance of products containing phenolic compounds along with undesirable colour, odor and taste formation and significant loss of nutritional value of the products. This affects the acceptability of the products by the consumers and causes economic losses. In this review, some characteristics of polyphenol oxidase enzyme in different fruits and vegetables have been reviewed and information about chemical antibrowning agents, thermal applications, irradiation applications and alternative methods such as high pressure processing, pulse electric field, supercritical carbon dioxide and ultrasound applications to inactivate this enzyme has been presented.

  9. Fermentation Process of Cocoa Based on Optimum Condition of Pulp PectinDepolymerization by Endogenous Pectolityc Enzymes

    OpenAIRE

    Ganda-Putra, G.P; Wrasiati, L.P; Wartini, N.M

    2010-01-01

    Pulp degradation during cocoa fermentation can be carried out by depolymerization process of pulp pectin using endogenous pectolytic enzymes at optimum condition. The objectives of this research were to study the effect of fermentation process based on optimum condition in terms of temperature and pH of pulp pectin depolymerization using endogenous pectolytic enzymes polygalakturonase (PG) and pectin metyl esterase (PME) and fermentation period in cocoa processing on quality characteristics o...

  10. Enzyme Assay: An Investigative Approach to Enhance Science Process Skills

    Science.gov (United States)

    Vartak, Rekha; Ronad, Anupama; Ghanekar, Vikrant

    2013-01-01

    Scientific investigations play a vital role in teaching and learning the process of science. An investigative task that was developed for pre-university students is described here. The task involves extraction of an enzyme from a vegetable source and its detection by biochemical method. At the beginning of the experiment, a hypothesis is presented…

  11. Enzyme-substrate binding landscapes in the process of nitrile biodegradation mediated by nitrile hydratase and amidase.

    Science.gov (United States)

    Zhang, Yu; Zeng, Zhuotong; Zeng, Guangming; Liu, Xuanming; Chen, Ming; Liu, Lifeng; Liu, Zhifeng; Xie, Gengxin

    2013-08-01

    The continuing discharge of nitriles in various industrial processes has caused serious environmental consequences of nitrile pollution. Microorganisms possess several nitrile-degrading pathways by direct interactions of nitriles with nitrile-degrading enzymes. However, these interactions are largely unknown and difficult to experimentally determine but important for interpretation of nitrile metabolisms and design of nitrile-degrading enzymes with better nitrile-converting activity. Here, we undertook a molecular modeling study of enzyme-substrate binding modes in the bi-enzyme pathway for degradation of nitrile to acid. Docking results showed that the top substrates having favorable interactions with nitrile hydratase from Rhodococcus erythropolis AJ270 (ReNHase), nitrile hydratase from Pseudonocardia thermophila JCM 3095 (PtNHase), and amidase from Rhodococcus sp. N-771 (RhAmidase) were benzonitrile, 3-cyanopyridine, and L-methioninamide, respectively. We further analyzed the interactional profiles of these top poses with corresponding enzymes, showing that specific residues within the enzyme's binding pockets formed diverse contacts with substrates. This information on binding landscapes and interactional profiles is of great importance for the design of nitrile-degrading enzyme mutants with better oxidation activity toward nitriles or amides in the process of pollutant treatments.

  12. Multi-enzyme catalyzed processes: Next generation biocatalysis

    DEFF Research Database (Denmark)

    Andrade Santacoloma, Paloma de Gracia; Sin, Gürkan; Gernaey, Krist

    2011-01-01

    Biocatalysis has been attracting increasing interest in recent years. Nevertheless, most studies concerning biocatalysis have been carried out using single enzymes (soluble or immobilized). Currently, multiple enzyme mixtures are attractive for the production of many compounds at an industrial...

  13. Temperature and UV light affect the activity of marine cell-free enzymes

    Directory of Open Access Journals (Sweden)

    B. Thomson

    2017-09-01

    Full Text Available Microbial extracellular enzymatic activity (EEA is the rate-limiting step in the degradation of organic matter in the oceans. These extracellular enzymes exist in two forms: cell-bound, which are attached to the microbial cell wall, and cell-free, which are completely free of the cell. Contrary to previous understanding, cell-free extracellular enzymes make up a substantial proportion of the total marine EEA. Little is known about these abundant cell-free enzymes, including what factors control their activity once they are away from their sites (cells. Experiments were run to assess how cell-free enzymes (excluding microbes respond to ultraviolet radiation (UVR and temperature manipulations, previously suggested as potential control factors for these enzymes. The experiments were done with New Zealand coastal waters and the enzymes studied were alkaline phosphatase (APase, β-glucosidase, (BGase, and leucine aminopeptidase (LAPase. Environmentally relevant UVR (i.e. in situ UVR levels measured at our site reduced cell-free enzyme activities by up to 87 % when compared to controls, likely a consequence of photodegradation. This effect of UVR on cell-free enzymes differed depending on the UVR fraction. Ambient levels of UV radiation were shown to reduce the activity of cell-free enzymes for the first time. Elevated temperatures (15 °C increased the activity of cell-free enzymes by up to 53 % when compared to controls (10 °C, likely by enhancing the catalytic activity of the enzymes. Our results suggest the importance of both UVR and temperature as control mechanisms for cell-free enzymes. Given the projected warming ocean environment and the variable UVR light regime, it is possible that there could be major changes in the cell-free EEA and in the enzymes contribution to organic matter remineralization in the future.

  14. Influence of fungal morphology on the performance of industrial fermentation processes for enzyme production

    DEFF Research Database (Denmark)

    Quintanilla Hernandez, Daniela Alejandra

    Production of industrial enzymes is usually carried out as submerged aerobic fermentations. Filamentous microorganisms are widely used as hosts in these processes due to multiple advantages. Nevertheless, they also present major drawbacks, due to the unavoidable oxygen transfer limitations...... in this work, along with its correlation to viscosity and other process variables. Considerable research work has been conducted through the years to study fungal morphology and its relation to productivity. However, the work reported in the literature lacks relevant industrial data. In this work, a platform...... was developed which was able to produce high enzyme titers in comparison with what has been reported thus far in fed-batch fermentation using a soluble inducer (lactose). Different nitrogen sources were compared, and it was found that soy meal allowed for higher enzyme titers compared to what has been reported...

  15. Process development of continuous glycerolysis in an immobilized enzyme-packed reactor for industrial monoacylglycerol production

    DEFF Research Database (Denmark)

    Damstrup, Marianne; Kiil, Søren; Jensen, Anker Degn

    2007-01-01

    Continuous and easily operated glycerolysis was studied in different lipase-packed columns to evaluate the most potential process set-ups for industrial monoacylglycerol (MAG) production. Practical design-related issues such as enzyme-filling degree, required reaction time, mass transfer investig......Continuous and easily operated glycerolysis was studied in different lipase-packed columns to evaluate the most potential process set-ups for industrial monoacylglycerol (MAG) production. Practical design-related issues such as enzyme-filling degree, required reaction time, mass transfer...

  16. Cellulosic ethanol: interactions between cultivar and enzyme loading in wheat straw processing

    Directory of Open Access Journals (Sweden)

    Felby Claus

    2010-11-01

    Full Text Available Abstract Background Variations in sugar yield due to genotypic qualities of feedstock are largely undescribed for pilot-scale ethanol processing. Our objectives were to compare glucose and xylose yield (conversion and total sugar yield from straw of five winter wheat cultivars at three enzyme loadings (2.5, 5 and 10 FPU g-1 dm pretreated straw and to compare particle size distribution of cultivars after pilot-scale hydrothermal pretreatment. Results Significant interactions between enzyme loading and cultivars show that breeding for cultivars with high sugar yields under modest enzyme loading could be warranted. At an enzyme loading of 5 FPU g-1 dm pretreated straw, a significant difference in sugar yields of 17% was found between the highest and lowest yielding cultivars. Sugar yield from separately hydrolyzed particle-size fractions of each cultivar showed that finer particles had 11% to 21% higher yields than coarse particles. The amount of coarse particles from the cultivar with lowest sugar yield was negatively correlated with sugar conversion. Conclusions We conclude that genetic differences in sugar yield and response to enzyme loading exist for wheat straw at pilot scale, depending on differences in removal of hemicellulose, accumulation of ash and particle-size distribution introduced by the pretreatment.

  17. Affective processing in bilingual speakers: disembodied cognition?

    Science.gov (United States)

    Pavlenko, Aneta

    2012-01-01

    A recent study by Keysar, Hayakawa, and An (2012) suggests that "thinking in a foreign language" may reduce decision biases because a foreign language provides a greater emotional distance than a native tongue. The possibility of such "disembodied" cognition is of great interest for theories of affect and cognition and for many other areas of psychological theory and practice, from clinical and forensic psychology to marketing, but first this claim needs to be properly evaluated. The purpose of this review is to examine the findings of clinical, introspective, cognitive, psychophysiological, and neuroimaging studies of affective processing in bilingual speakers in order to identify converging patterns of results, to evaluate the claim about "disembodied cognition," and to outline directions for future inquiry. The findings to date reveal two interrelated processing effects. First-language (L1) advantage refers to increased automaticity of affective processing in the L1 and heightened electrodermal reactivity to L1 emotion-laden words. Second-language (L2) advantage refers to decreased automaticity of affective processing in the L2, which reduces interference effects and lowers electrodermal reactivity to negative emotional stimuli. The differences in L1 and L2 affective processing suggest that in some bilingual speakers, in particular late bilinguals and foreign language users, respective languages may be differentially embodied, with the later learned language processed semantically but not affectively. This difference accounts for the reduction of framing biases in L2 processing in the study by Keysar et al. (2012). The follow-up discussion identifies the limits of the findings to date in terms of participant populations, levels of processing, and types of stimuli, puts forth alternative explanations of the documented effects, and articulates predictions to be tested in future research.

  18. Vacuolar processing enzyme: an executor of plant cell death.

    Science.gov (United States)

    Hara-Nishimura, Ikuko; Hatsugai, Noriyuki; Nakaune, Satoru; Kuroyanagi, Miwa; Nishimura, Mikio

    2005-08-01

    Apoptotic cell death in animals is regulated by cysteine proteinases called caspases. Recently, vacuolar processing enzyme (VPE) was identified as a plant caspase. VPE deficiency prevents cell death during hypersensitive response and cell death of limited cell layers at the early stage of embryogenesis. Because plants do not have macrophages, dying cells must degrade their materials by themselves. VPE plays an essential role in the regulation of the lytic system of plants during the processes of defense and development. VPE is localized in the vacuoles, unlike animal caspases, which are localized in the cytosol. Thus, plants might have evolved a regulated cellular suicide strategy that, unlike animal apoptosis, is mediated by VPE and the vacuoles.

  19. Influence of enzymes on the oil extraction processes in aqueous media

    Directory of Open Access Journals (Sweden)

    Ricochon Guillaume

    2010-11-01

    Full Text Available The methods of oil aqueous extraction process (AEP assisted by enzymes are, over the last 50 years, an alternative designed to replace traditional methods of extraction using organic solvents. To extract the oil using an AEP, the use of specific enzymes, able to hydrolyze some or all components of seeds, can significantly increase the yields of extraction. Hydrolyzing the different constituents of cell walls (cellulose, hemicellulose, pectins, proteins, etc., enzymes are able to enhance the liberation of the oil. A number of physico-chemical parameters must also be considered for the better expression of the enzymatic mixture, while maintaining the quality of oils and meals. This article presents the various factors influencing the release of oil in aqueous media and the main results obtained by this process on various substrates.

  20. Use of a proteolytic enzyme in cocoa (Theobroma cacao L.) processing

    OpenAIRE

    Brito,Edy Sousa de; Pezoa García,Nelson Horacio; Amancio,Allan César

    2004-01-01

    Protein hydrolysis using an exogenous protease on cocoa nibs was performed to verify the formation of precursors and the effect on cocoa flavour. An experimental design was used to check the influence of temperature (30 to 70 ºC) and enzyme : substrate ratio [E/S] (97.5 to 1267.5 U g-1 of protein). The % Degree of Hydrolysis (% DH) was affected mainly by [E/S] leading to a 4-fold increase (from 5 to 20 %) after 6 hours of treatment. During cocoa nibs roasting, there was a greater consumption ...

  1. Vacuolar processing enzyme in plant programmed cell death

    Directory of Open Access Journals (Sweden)

    Noriyuki eHatsugai

    2015-04-01

    Full Text Available Vacuolar processing enzyme (VPE is a cysteine proteinase originally identified as the proteinase responsible for the maturation and activation of vacuolar proteins in plants, and it is known to be an orthologue of animal asparaginyl endopeptidase (AEP/VPE/legumain. VPE has been shown to exhibit enzymatic properties similar to that of caspase 1, which is a cysteine protease that mediates the programmed cell death (PCD pathway in animals. Although there is limited sequence identity between VPE and caspase 1, their predicted three-dimensional structures revealed that the essential amino-acid residues for these enzymes form similar pockets for the substrate peptide YVAD. In contrast to the cytosolic localization of caspases, VPE is localized in vacuoles. VPE provokes vacuolar rupture, initiating the proteolytic cascade leading to PCD in the plant immune response. It has become apparent that the VPE-dependent PCD pathway is involved not only in the immune response, but also in the responses to a variety of stress inducers and in the development of various tissues. This review summarizes the current knowledge on the contribution of VPE to plant PCD and its role in vacuole-mediated cell death, and it also compares VPE with the animal cell death executor caspase 1.

  2. Diurnal gradual heat stress affects antioxidant enzymes, proline ...

    African Journals Online (AJOL)

    USER

    2010-02-15

    Feb 15, 2010 ... to non-toxic levels by catabolizing it to water and oxygen. (Mittler ... within hours, unlike drought and salinity stresses. Therefore ... mechanism of response of cotton to elevated ..... Copper enzymes in isolated chloroplasts; polyphenol- .... transcription factor-dependent expression and activity of ascorbate.

  3. Affect intensity and processing fluency of deterrents.

    Science.gov (United States)

    Holman, Andrei

    2013-01-01

    The theory of emotional intensity (Brehm, 1999) suggests that the intensity of affective states depends on the magnitude of their current deterrents. Our study investigated the role that fluency--the subjective experience of ease of information processing--plays in the emotional intensity modulations as reactions to deterrents. Following an induction phase of good mood, we manipulated both the magnitude of deterrents (using sets of photographs with pre-tested potential to instigate an emotion incompatible with the pre-existent affective state--pity) and their processing fluency (normal vs. enhanced through subliminal priming). Current affective state and perception of deterrents were then measured. In the normal processing conditions, the results revealed the cubic effect predicted by the emotional intensity theory, with the initial affective state being replaced by the one appropriate to the deterrent only in participants exposed to the high magnitude deterrence. In the enhanced fluency conditions the emotional intensity pattern was drastically altered; also, the replacement of the initial affective state occurred at a lower level of deterrence magnitude (moderate instead of high), suggesting the strengthening of deterrence emotional impact by enhanced fluency.

  4. Immobilized enzyme reactor chromatography: Optimization of protein retention and enzyme activity in monolithic silica stationary phases

    International Nuclear Information System (INIS)

    Besanger, Travis R.; Hodgson, Richard J.; Green, James R.A.; Brennan, John D.

    2006-01-01

    Our group recently reported on the application of protein-doped monolithic silica columns for immobilized enzyme reactor chromatography, which allowed screening of enzyme inhibitors present in mixtures using mass spectrometry for detection. The enzyme was immobilized by entrapment within a bimodal meso/macroporous silica material prepared by a biocompatible sol-gel processing route. While such columns proved to be useful for applications such as screening of protein-ligand interactions, significant amounts of entrapped proteins leached from the columns owing to the high proportion of macropores within the materials. Herein, we describe a detailed study of factors affecting the morphology of protein-doped bioaffinity columns and demonstrate that specific pH values and concentrations of poly(ethylene glycol) can be used to prepare essentially mesoporous columns that retain over 80% of initially loaded enzyme in an active and accessible form and yet still retain sufficient porosity to allow pressure-driven flow in the low μL/min range. Using the enzyme γ-glutamyl transpeptidase (γ-GT), we further evaluated the catalytic constants of the enzyme entrapped in capillary columns with different silica morphologies as a function of flowrate and backpressure using the enzyme reactor assay mode. It was found that the apparent activity of the enzyme was highest in mesoporous columns that retained high levels of enzyme. In such columns, enzyme activity increased by ∼2-fold with increases in both flowrate (from 250 to 1000 nL/min) and backpressure generated (from 500 to 2100 psi) during the chromatographic activity assay owing to increases in k cat and decreases in K M , switching from diffusion controlled to reaction controlled conditions at ca. 2000 psi. These results suggest that columns with minimal macropore volumes (<5%) are advantageous for the entrapment of soluble proteins for bioaffinity and bioreactor chromatography

  5. Positive affect improves working memory: implications for controlled cognitive processing.

    Science.gov (United States)

    Yang, Hwajin; Yang, Sujin; Isen, Alice M

    2013-01-01

    This study examined the effects of positive affect on working memory (WM) and short-term memory (STM). Given that WM involves both storage and controlled processing and that STM primarily involves storage processing, we hypothesised that if positive affect facilitates controlled processing, it should improve WM more than STM. The results demonstrated that positive affect, compared with neutral affect, significantly enhanced WM, as measured by the operation span task. The influence of positive affect on STM, however, was weaker. These results suggest that positive affect enhances WM, a task that involves controlled processing, not just storage processing. Additional analyses of recall and processing times and accuracy further suggest that improved WM under positive affect is not attributable to motivational differences, but results instead from improved controlled cognitive processing.

  6. Processing of poultry feathers by alkaline keratin hydrolyzing enzyme from Serratia sp. HPC 1383.

    Science.gov (United States)

    Khardenavis, Anshuman A; Kapley, Atya; Purohit, Hemant J

    2009-04-01

    The present study describes the production and characterization of a feather hydrolyzing enzyme by Serratia sp. HPC 1383 isolated from tannery sludge, which was identified by the ability to form clear zones around colonies on milk agar plates. The proteolytic activity was expressed in terms of the micromoles of tyrosine released from substrate casein per ml per min (U/mL min). Induction of the inoculum with protein was essential to stimulate higher activity of the enzyme, with 0.03% feathermeal in the inoculum resulting in increased enzyme activity (45U/mL) that further increased to 90U/mL when 3d old inoculum was used. The highest enzyme activity, 130U/mL, was observed in the presence of 0.2% yeast extract. The optimum assay temperature and pH for the enzyme were found to be 60 degrees C and 10.0, respectively. The enzyme had a half-life of 10min at 60 degrees C, which improved slightly to 18min in presence of 1mM Ca(2+). Inhibition of the enzyme by phenylmethyl sulfonyl fluoride (PMSF) indicated that the enzyme was a serine protease. The enzyme was also partially inhibited (39%) by the reducing agent beta-mercaptoethanol and by divalent metal ions such as Zn(2+) (41% inhibition). However, Ca(2+) and Fe(2+) resulted in increases in enzyme activity of 15% and 26%, respectively. The kinetic constants of the keratinase were found to be 3.84 microM (K(m)) and 108.7 microM/mLmin (V(max)). These results suggest that this extracellular keratinase may be a useful alternative and eco-friendly route for handling the abundant amount of waste feathers or for applications in other industrial processes.

  7. Fructose intake during gestation and lactation differentially affects the expression of hippocampal neurosteroidogenic enzymes in rat offspring.

    Science.gov (United States)

    Mizuno, Genki; Munetsuna, Eiji; Yamada, Hiroya; Ando, Yoshitaka; Yamazaki, Mirai; Murase, Yuri; Kondo, Kanako; Ishikawa, Hiroaki; Teradaira, Ryoji; Suzuki, Koji; Ohashi, Koji

    2017-02-01

    Neurosteroids, steroidal hormones synthesized de novo from cholesterol within the brain, stimulate hippocampal functions such as neuron protection and synapse formation. Previously, we examined the effect of maternal fructose on the transcriptional regulation of neurosteroidogenic enzymes. We found that the mRNA expression level of the steroidogenic acute regulatory protein (StAR), peripheral benzodiazepine receptor (PBR), cytochrome P450(11β), 11β-hydroxysteroid dehydrogenase (HSD), and 17β-HSD was altered. However, we could not determine whether maternal fructose intake played a role in the gestation or lactation period because the dam rats were fed fructose solution during both periods. Thus, in this study, we analyzed the hippocampi of the offspring of dams fed fructose during the gestation or lactation period. Maternal fructose consumption during either the gestation or lactation period did not affect the mRNA levels of StAR, P450(17α), 11β-HSD-2, and 17β-HSD-1. PBR expression was down-regulated, even when rats consumed fructose during the lactation period only, while fructose consumption during gestation tended to activate the expression of P450(11β)-2. We found that maternal fructose intake during gestation and lactation differentially affected the expression of hippocampal neurosteroidogenic enzymes in the offspring.

  8. Regulation-Structured Dynamic Metabolic Model Provides a Potential Mechanism for Delayed Enzyme Response in Denitrification Process

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hyun-Seob; Thomas, Dennis G.; Stegen, James C.; Li, Minjing; Liu, Chongxuan; Song, Xuehang; Chen, Xingyuan; Fredrickson, Jim K.; Zachara, John M.; Scheibe, Timothy D.

    2017-09-29

    In a recent study of denitrification dynamics in hyporheic zone sediments, we observed a significant time lag (up to several days) in enzymatic response to the changes in substrate concentration. To explore an underlying mechanism and understand the interactive dynamics between enzymes and nutrients, we developed a trait-based model that associates a community’s traits with functional enzymes, instead of typically used species guilds (or functional guilds). This enzyme-based formulation allows to collectively describe biogeochemical functions of microbial communities without directly parameterizing the dynamics of species guilds, therefore being scalable to complex communities. As a key component of modeling, we accounted for microbial regulation occurring through transcriptional and translational processes, the dynamics of which was parameterized based on the temporal profiles of enzyme concentrations measured using a new signature peptide-based method. The simulation results using the resulting model showed several days of a time lag in enzymatic responses as observed in experiments. Further, the model showed that the delayed enzymatic reactions could be primarily controlled by transcriptional responses and that the dynamics of transcripts and enzymes are closely correlated. The developed model can serve as a useful tool for predicting biogeochemical processes in natural environments, either independently or through integration with hydrologic flow simulators.

  9. Factors Affecting the Growth and Production of Milk-Clotting Enzyme by Amylomyces rouxii in Rice Liquid Medium

    Directory of Open Access Journals (Sweden)

    Pei-Jing Yu

    2005-01-01

    Full Text Available Amylomyces rouxii is one of the main fungi usually coexisting with yeasts in Chinese yeast ball, the starter of chiu-niang, a traditional Chinese fermented product from rice. In the present study, growth and production of milk-clotting enzyme (MCE in gelatinous rice liquid culture of A. rouxii as influenced by waxy (gelatinous rice content in the medium (5–20 %, temperature (25–40 °C, cultivation time (1–6 days, shaking speeds (0–150 rpm and metal ions (Na+, K+, Zn2+, Mg2+, Mn2+, Cu2+, Ca2+, Fe3+ and Al3+ were investigated. Results revealed that rice content in the medium, shaking speed, temperature and cultivation time all affected the mycelial propagation and the production of milk-clotting enzyme by A. rouxii in the rice liquid culture. The maximum milk-clotting enzyme activity of ca. 1.22 unit/mL of medium was observed in the 3-day static culture of test organism grown at 30 °C in the medium containing 20 % of gelatinous rice, while mycelial propagation increased with the increase of cultivation time and shaking speed. Furthermore, a significant increase (p<0.05 in the milk-clotting enzyme activity of ca. 1.90 unit/mL of medium, which was about 1.55-fold of the control, was observed when Al3+ was added to the rice liquid medium.

  10. Descriptive and predictive assessment of enzyme activity and enzyme related processes in biorefinery using IR spectroscopy and chemometrics

    DEFF Research Database (Denmark)

    Baum, Andreas

    the understanding of the structural properties of the extracted pectin. Secondly, enzyme kinetics of biomass converting enzymes was examined in terms of measuring enzyme activity by spectral evolution profiling utilizing FTIR. Chemometric multiway methods were used to analyze the tensor datasets enabling the second......-order calibration advantage (reference Theory of Analytical chemistry). As PAPER 3 illustrates the method is universally applicable without the need of any external standards and was exemplified by performing quantitative enzyme activity determinations for glucose oxidase, pectin lyase and a cellolytic enzyme blend...... (Celluclast 1.5L). In PAPER 4, the concept is extended to quantify enzyme activity of two simultaneously acting enzymes, namely pectin lyase and pectin methyl esterase. By doing so the multiway methods PARAFAC, TUCKER3 and NPLS were compared and evaluated towards accuracy and precision....

  11. Multifunctional Cellulolytic Enzymes Outperform Processive Fungal Cellulases for Coproduction of Nanocellulose and Biofuels.

    Science.gov (United States)

    Yarbrough, John M; Zhang, Ruoran; Mittal, Ashutosh; Vander Wall, Todd; Bomble, Yannick J; Decker, Stephen R; Himmel, Michael E; Ciesielski, Peter N

    2017-03-28

    Producing fuels, chemicals, and materials from renewable resources to meet societal demands remains an important step in the transition to a sustainable, clean energy economy. The use of cellulolytic enzymes for the production of nanocellulose enables the coproduction of sugars for biofuels production in a format that is largely compatible with the process design employed by modern lignocellulosic (second generation) biorefineries. However, yields of enzymatically produced nanocellulose are typically much lower than those achieved by mineral acid production methods. In this study, we compare the capacity for coproduction of nanocellulose and fermentable sugars using two vastly different cellulase systems: the classical "free enzyme" system of the saprophytic fungus, Trichoderma reesei (T. reesei) and the complexed, multifunctional enzymes produced by the hot springs resident, Caldicellulosiruptor bescii (C. bescii). We demonstrate by comparative digestions that the C. bescii system outperforms the fungal enzyme system in terms of total cellulose conversion, sugar production, and nanocellulose production. In addition, we show by multimodal imaging and dynamic light scattering that the nanocellulose produced by the C. bescii cellulase system is substantially more uniform than that produced by the T. reesei system. These disparities in the yields and characteristics of the nanocellulose produced by these disparate systems can be attributed to the dramatic differences in the mechanisms of action of the dominant enzymes in each system.

  12. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes

    Science.gov (United States)

    Mohamad, Nur Royhaila; Marzuki, Nur Haziqah Che; Buang, Nor Aziah; Huyop, Fahrul; Wahab, Roswanira Abdul

    2015-01-01

    The current demands of sustainable green methodologies have increased the use of enzymatic technology in industrial processes. Employment of enzyme as biocatalysts offers the benefits of mild reaction conditions, biodegradability and catalytic efficiency. The harsh conditions of industrial processes, however, increase propensity of enzyme destabilization, shortening their industrial lifespan. Consequently, the technology of enzyme immobilization provides an effective means to circumvent these concerns by enhancing enzyme catalytic properties and also simplify downstream processing and improve operational stability. There are several techniques used to immobilize the enzymes onto supports which range from reversible physical adsorption and ionic linkages, to the irreversible stable covalent bonds. Such techniques produce immobilized enzymes of varying stability due to changes in the surface microenvironment and degree of multipoint attachment. Hence, it is mandatory to obtain information about the structure of the enzyme protein following interaction with the support surface as well as interactions of the enzymes with other proteins. Characterization technologies at the nanoscale level to study enzymes immobilized on surfaces are crucial to obtain valuable qualitative and quantitative information, including morphological visualization of the immobilized enzymes. These technologies are pertinent to assess efficacy of an immobilization technique and development of future enzyme immobilization strategies. PMID:26019635

  13. Parallel factor analysis PARAFAC of process affected water

    Energy Technology Data Exchange (ETDEWEB)

    Ewanchuk, A.M.; Ulrich, A.C.; Sego, D. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil and Environmental Engineering; Alostaz, M. [Thurber Engineering Ltd., Calgary, AB (Canada)

    2010-07-01

    A parallel factor analysis (PARAFAC) of oil sands process-affected water was presented. Naphthenic acids (NA) are traditionally described as monobasic carboxylic acids. Research has indicated that oil sands NA do not fit classical definitions of NA. Oil sands organic acids have toxic and corrosive properties. When analyzed by fluorescence technology, oil sands process-affected water displays a characteristic peak at 290 nm excitation and approximately 346 nm emission. In this study, a parallel factor analysis (PARAFAC) was used to decompose process-affected water multi-way data into components representing analytes, chemical compounds, and groups of compounds. Water samples from various oil sands operations were analyzed in order to obtain EEMs. The EEMs were then arranged into a large matrix in decreasing process-affected water content for PARAFAC. Data were divided into 5 components. A comparison with commercially prepared NA samples suggested that oil sands NA is fundamentally different. Further research is needed to determine what each of the 5 components represent. tabs., figs.

  14. Unintentionality of affective attention across visual processing stages

    Directory of Open Access Journals (Sweden)

    Andero eUusberg

    2013-12-01

    Full Text Available Affective attention involves bottom-up perceptual selection that prioritizes motivationally significant stimuli. To clarify the extent to which this process is automatic, we investigated the dependence of affective attention on the intention to process emotional meaning. Affective attention was manipulated by presenting IAPS images with variable arousal and intentionality by requiring participants to make affective and non-affective evaluations. Polytomous rather than binary decisions were required from the participants in order to elicit relatively deep emotional processing. The temporal dynamics of prioritized processing were assessed using Early Posterior Negativity (EPN, 175-300 ms as well as P3-like (P3, 300 – 500 ms and Slow Wave (SW, 500 – 1500 ms portions of the Late Positive Potential. All analysed components were differentially sensitive to stimulus categories suggesting that they indeed reflect distinct stages of motivational significance encoding. The intention to perceive emotional meaning had no effect on EPN, an additive effect on P3, and an interactive effect on SW. We concluded that affective attention went from completely unintentional during the EPN to partially unintentional during P3 and SW where top-down signals, respectively, complemented and modulated bottom-up differences in stimulus prioritization. The findings were interpreted in light of two-stage models of visual perception by associating the EPN with large-capacity initial relevance detection and the P3 as well as SW with capacity-limited consolidation and elaboration of affective stimuli.

  15. Proteinaceous inhibitors of carbohydrate-active enzymes in cereals – Implication in agriculture, cereal-processing and nutrition

    DEFF Research Database (Denmark)

    Juge, N.; Svensson, Birte

    2006-01-01

    Enzymes that degrade, modify, or create glycosidic bonds are involved in carbohydrate biosynthesis and remodelling. Microbial carbohydrate-active enzymes form the basis of current green technology in the food, feed, starch, paper and pulp industries and the revolution in genomics may offer long...... knowledge on their structure, function, and implication in cereal processing, agriculture and nutrition. (c) 2006 Society of Chemical Industry...

  16. Multiple RNA processing defects and impaired chloroplast function in plants deficient in the organellar protein-only RNase P enzyme.

    Directory of Open Access Journals (Sweden)

    Wenbin Zhou

    Full Text Available Transfer RNA (tRNA precursors undergo endoribonucleolytic processing of their 5' and 3' ends. 5' cleavage of the precursor transcript is performed by ribonuclease P (RNase P. While in most organisms RNase P is a ribonucleoprotein that harbors a catalytically active RNA component, human mitochondria and the chloroplasts (plastids and mitochondria of seed plants possess protein-only RNase P enzymes (PRORPs. The plant organellar PRORP (PRORP1 has been characterized to some extent in vitro and by transient gene silencing, but the molecular, phenotypic and physiological consequences of its down-regulation in stable transgenic plants have not been assessed. Here we have addressed the function of the dually targeted organellar PRORP enzyme in vivo by generating stably transformed Arabidopsis plants in which expression of the PRORP1 gene was suppressed by RNA interference (RNAi. PRORP1 knock-down lines show defects in photosynthesis, while mitochondrial respiration is not appreciably affected. In both plastids and mitochondria, the effects of PRORP1 knock-down on the processing of individual tRNA species are highly variable. The drastic reduction in the levels of mature plastid tRNA-Phe(GAA and tRNA-Arg(ACG suggests that these two tRNA species limit plastid gene expression in the PRORP1 mutants and, hence, are causally responsible for the mutant phenotype.

  17. Activity of carbohydrate metabolism enzymes of bone marrow cells of rats affected by radiation

    International Nuclear Information System (INIS)

    Sukhomlinov, B.F.; Grinyuk, Yu.S.; Sibirnaya, N.A.; Starikovich, L.S.; Khmil', M.V.

    1990-01-01

    The influence of ionizing radiation (154.8 mC/kg on activity of some carbohydrate metabolism dehydrogenases in cells of the whole and fractionated rat bone marrow has been investigated. Different glucose metabolism units differently responded to radiation, the highest radiation response being exhibited by pentosophosphate cycle processes. The pattern of changes in the enzyme activity of different myelocaryocyte populations was shown to depend directly on the functional specilization of cells and the energy exchange types predominated in them

  18. Low Operational Stability of Enzymes in Dry Organic Solvents: Changes in the Active Site Might Affect Catalysis

    Directory of Open Access Journals (Sweden)

    Gabriel Barletta

    2012-02-01

    Full Text Available The potential of enzyme catalysis in organic solvents for synthetic applications has been overshadowed by the fact that their catalytic properties are affected by organic solvents. In addition, it has recently been shown that an enzyme’s initial activity diminishes considerably after prolonged exposure to organic media. Studies geared towards understanding this last drawback have yielded unclear results. In the present work we decided to use electron paramagnetic resonance spectroscopy (EPR to study the motion of an active site spin label (a nitroxide free radical during 96 h of exposure of the serine protease subtilisin Carlsberg to four different organic solvents. Our EPR data shows a typical two component spectra that was quantified by the ratio of the anisotropic and isotropic signals. The isotropic component, associated with a mobile nitroxide free radical, increases during prolonged exposure to all solvents used in the study. The maximum increase (of 43% was observed in 1,4-dioxane. Based on these and previous studies we suggest that prolonged exposure of the enzyme to these solvents provokes a cascade of events that could induce substrates to adopt different binding conformations. This is the first EPR study of the motion of an active-site spin label during prolonged exposure of an enzyme to organic solvents ever reported.

  19. Comparative study of pulsed electric field and thermal processing of apple juice with particular consideration of juice quality and enzyme deactivation.

    Science.gov (United States)

    Schilling, Susanne; Schmid, Sandra; Jäger, Henry; Ludwig, Michael; Dietrich, Helmut; Toepfl, Stefan; Knorr, Dietrich; Neidhart, Sybille; Schieber, Andreas; Carle, Reinhold

    2008-06-25

    As an alternative to thermal pasteurization, pulsed electric fields (PEF) were applied to apple juices on laboratory and pilot plant scale, investigating the effects on juice quality. PEF application still falls under the EU Novel Food Regulation. Consequently, extensive investigation of quality parameters is a prerequisite to prove substantial equivalence of juices resulting from the novel process and conventional production, respectively. Juice composition was not affected by PEF treatment. However, browning of the juices provided evidence of residual enzyme activities. On laboratory scale, complete deactivation of peroxidase (POD) and polyphenoloxidase (PPO) was achieved when PEF treatment and preheating of the juices to 60 degrees C were combined. Under these conditions, a synergistic effect of heat and PEF was observed. On pilot plant scale, maximum PPO deactivation of 48% was achieved when the juices were preheated to 40 degrees C and PEF-treated at 30 kV/cm (100 kJ/kg). Thus, minimally processed juices resulted from PEF processing, when applied without additional conventional thermal preservation. Since this product type was characterized by residual native enzyme activities and nondetectable levels of 5-hydroxymethylfurfural, also when preheating up to 40 degrees C was included, it ranged between fresh and pasteurized juices regarding consumers' expectation of freshness and shelf life. Consistent with comparable iron contents among all juice samples, no electrode corrosion was observed under the PEF conditions applied.

  20. Characterization of the aroma of a meatlike process flavoring from soybean-based enzyme-hydrolyzed vegetable protein.

    Science.gov (United States)

    Wu, Yi-Fang G; Cadwallader, Keith R

    2002-05-08

    Defatted soybean meal was converted into enzyme-hydrolyzed vegetable protein (E-HVP) using the proteolytic enzyme Flavorzyme. Total free amino acids increased by 40-fold after enzyme hydrolysis, with leucine being the most abundant, followed by phenylalanine, lysine, glutamine/glutamic acid, and alanine. Volatile components from a meatlike process flavoring made from E-HVP were isolated by direct solvent extraction (DSE)-high vacuum transfer (HVT), dynamic headspace sampling and static headspace sampling and analyzed by gas chromatography (GC)-mass spectrometry and GC-olfactometry. Aroma extract dilution analysis was used to establish a flavor dilution chromatogram of the DSE-HVT extract. Results of these complementary techniques indicated the importance of odorants of high (hydrogen sulfide and methanethiol), intermediate (2-methyl-3-furanthiol, 3-mercapto-2-pentanone, 2-furanmethanethiol, and 3-(methylthiol)propanal) and low volatility (maltol and Furaneol) in the overall aroma of the meatlike process flavoring.

  1. The Amborella vacuolar processing enzyme family

    Directory of Open Access Journals (Sweden)

    Valérie ePoncet

    2015-08-01

    Full Text Available Most vacuolar proteins are synthesized on rough endoplasmic reticulum as proprotein precursors and then transported to the vacuoles, where they are converted into their respective mature forms by vacuolar processing enzymes (VPEs. In the case of the seed storage proteins, this process is of major importance, as it conditions the establishment of vigorous seedlings. Toward the goal of identifying proteome signatures that could be associated with the origin and early diversification of angiosperms, we previously characterized the 11S-legumin-type of seed storage proteins from Amborella trichopoda, a rainforest shrub endemic to New Caledonia that is also the probable sister to all other angiosperms (Amborella Genome Project, 2013. In the present study, proteomic and genomic approaches were used to characterize the VPE family in this species. Three genes were found to encode VPEs in the Amborella’s genome. Phylogenetic analyses showed that the Amborella sequences grouped within two major clades of angiosperm VPEs, indicating that the duplication that generated the ancestors of these clades occurred before the most recent common ancestor of living angiosperms. A further important duplication within the VPE family appears to have occurred in common ancestor of the core eudicots, while many more recent duplications have also occurred in specific taxa, including both Arabidopsis thaliana and Amborella. An analysis of natural genetic variation for each of the three Amborella VPE genes revealed the absence of selective forces acting on intronic and exonic single-nucleotide polymorphisms among several natural Amborella populations of in New Caledonia.

  2. Monkeys preferentially process body information while viewing affective displays.

    Science.gov (United States)

    Bliss-Moreau, Eliza; Moadab, Gilda; Machado, Christopher J

    2017-08-01

    Despite evolutionary claims about the function of facial behaviors across phylogeny, rarely are those hypotheses tested in a comparative context-that is, by evaluating how nonhuman animals process such behaviors. Further, while increasing evidence indicates that humans make meaning of faces by integrating contextual information, including that from the body, the extent to which nonhuman animals process contextual information during affective displays is unknown. In the present study, we evaluated the extent to which rhesus macaques (Macaca mulatta) process dynamic affective displays of conspecifics that included both facial and body behaviors. Contrary to hypotheses that they would preferentially attend to faces during affective displays, monkeys looked for longest, most frequently, and first at conspecifics' bodies rather than their heads. These findings indicate that macaques, like humans, attend to available contextual information during the processing of affective displays, and that the body may also be providing unique information about affective states. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  3. Recycling of cellulases in a continuous process for production of bioethanol

    DEFF Research Database (Denmark)

    Haven, Mai Østergaard

    studies, this PhD project investigates enzyme recycling at industrial relevant conditions in the Inbicon process, e.g. high dry matter conditions and process configurations that could be implemented in large scale. The results point towards potential processes for industrial recycling of enzymes......The focus of the work presented in this thesis is recycling of commercial enzymes in a continuous process for production of bioethanol from biomass. To get a deeper understanding of the factors affecting the potential for enzyme recycling, the interactions between enzymes and biomass......, the adsorption and desorption as well as stability and recovery of activity was investigated. More knowledge on these factors have enabled a process adapted for enzyme recycling. The driver being that enzyme consumption remains a major cost when producing bioethanol from lignocellulosic biomass. Unlike previous...

  4. BIOINSPIRED DESIGN AND DIRECTED EVOLUTION OF IRON CONTAINING ENZYMES FOR GREENSYNTHETIC PROCESSES AND BIOREMEDIATION

    Science.gov (United States)

    SU833912Title: Bioinspired Design and Directed Evolution of Iron Containing Enzymes for Green Synthetic Processes and BioremediationEdward I. Solomon, Shaun D. Wong, Lei Liu, Caleb B. Bell, IIICynthia Nolt-HelmsProject Period: August 15, 2008 - August 14,...

  5. Enzymes for Enhanced Oil Recovery (EOR)

    Energy Technology Data Exchange (ETDEWEB)

    Nasiri, Hamidreza

    2011-04-15

    enzymes on interactions in the oil/brine/solid system was studied. It was found that enzymes can change the adhesion behavior of the crude oil on glass surfaces from adhesion to non-adhesion when they are added to the brine solution. This was confirmed by contact angle measurements, which showed that contact angles became more water-wet (i.e. decreased) after exposure to enzyme solutions. Possible mechanisms giving rise to these observations, including catalysis of ester hydrolysis and enzyme adsorption, were discussed and tested. An experimental study of changes in oil-water interfacial properties by addition of enzymes and proteins, including measurements of interfacial tension and electrophoretic mobility, has been performed. It was found that the effect of enzymes on oil-water properties is minor compared to their effect on oil-water-solid properties. Their contribution to change interfacial tension between oil and water is not significant while they affect the electrophoretic mobility of emulsified oil in enzyme-brine solution to some extent. Attempts were also made to study changes in both oil and water phase composition after equilibration with enzymes. However, since the chemical composition of crude oil is highly complex, a model oil was used in some of the experiments. The model oil was chosen to be a water insoluble ester (ethyl decanoate) solved in mineral oil in an effort to verify the possible role of catalysis of ester hydrolysis. Dynamic core displacements using sandstone and carbonate rocks were conducted to show the potential of improved oil recovery by enzyme- and combined enzyme-surfactant flooding. Most of the core flooding experiments commenced with water flooding from initial water saturation, Swi, (established with synthetic sea water) which will be referred to as secondary mode displacements. Accordingly, tertiary oil recovery processes were used to describe injection of enzyme and/or enzyme-surfactant solutions from residual oil saturation, Sor

  6. Enzymic lactose hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J J; Brand, J C

    1980-01-01

    Acid or enzymic hydrolysis can be used to hydrolyze lactose. Advantages of both are compared and details of enzymic hydrolysis using yeast or fungal enzymes given. The new scheme outlined involves recycling lactase. Because lactose and lactase react to ultrafiltration (UF) membranes differently separation is possible. Milk or milk products are ultrafiltered to separate a concentrate from a lactose-rich permeate which is treated with lactase in a reactor until hydrolysis reaches a required level. The lactase can be removed by UF as it does not permeate the membrane, and it is recycled back to the reactor. Permeate from the second UF stage may or may not be recombined with the concentrate from the first stage to produce a low lactose product (analysis of a typical low-lactose dried whole milk is given). Batch or continuous processes are explained and a batch process without enzyme recovery is discussed. (Refs. 4).

  7. The predominant molecular state of bound enzyme determines the strength and type of product inhibition in the hydrolysis of recalcitrant polysaccharides by processive enzymes.

    Science.gov (United States)

    Kuusk, Silja; Sørlie, Morten; Väljamäe, Priit

    2015-05-01

    Processive enzymes are major components of the efficient enzyme systems that are responsible for the degradation of the recalcitrant polysaccharides cellulose and chitin. Despite intensive research, there is no consensus on which step is rate-limiting for these enzymes. Here, we performed a comparative study of two well characterized enzymes, the cellobiohydrolase Cel7A from Hypocrea jecorina and the chitinase ChiA from Serratia marcescens. Both enzymes were inhibited by their disaccharide product, namely chitobiose for ChiA and cellobiose for Cel7A. The products behaved as noncompetitive inhibitors according to studies using the (14)C-labeled crystalline polymeric substrates (14)C chitin nanowhiskers and (14)C-labeled bacterial microcrystalline cellulose for ChiA and Cel7A, respectively. The resulting observed Ki (obs) values were 0.45 ± 0.08 mm for ChiA and 0.17 ± 0.02 mm for Cel7A. However, in contrast to ChiA, the Ki (obs) of Cel7A was an order of magnitude higher than the true Ki value governed by the thermodynamic stability of the enzyme-inhibitor complex. Theoretical analysis of product inhibition suggested that the inhibition strength and pattern can be accounted for by assuming different rate-limiting steps for ChiA and Cel7A. Measuring the population of enzymes whose active site was occupied by a polymer chain revealed that Cel7A was bound predominantly via its active site. Conversely, the active-site-mediated binding of ChiA was slow, and most ChiA exhibited a free active site, even when the substrate concentration was saturating for the activity. Collectively, our data suggest that complexation with the polymer chain is rate-limiting for ChiA, whereas Cel7A is limited by dissociation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. SCREENING OF THERMOPHYLIC MICROORGANISM FROM IJEN CRATER BANYUWANGI AS PHYTASE ENZYME PRODUCER

    Directory of Open Access Journals (Sweden)

    Aline Puspita Kusumadjaja

    2010-06-01

    Full Text Available Phytase is enzyme which hydrolysis phytic acid to anorganic phosphate and myo-inositol pentakis-, tetrakis-, tris-, bis-, and monophosphate. The use of phytase in feed industry can overcome environment and nutrition problems which were arisen from unmetabolism phytic acid or its salt by poultry, swine and fish. The feed industry needs a thermostable enzyme due to the need of high temperature in pelleting process, i.e. 81 °C. By using thermostabile phytase, the pelleting process will not affect the enzyme activity. Thermostabile phytase can be isolated from microorganism live in hot spring water or volcano crater. In this study, the screening of thermophylic microorganism having thermostabile phytase activity in Ijen Crater, Banyuwangi, has been done. From this process, it was obtained 33 isolates that produce phytase enzyme. Isolate was code by AP-17 yields highest phytase activity, that is 0.0296 U/mL, so this isolate was choosen for further study. The activity of crude phytase enzyme was measured based on the amount of anorganic phosphate that was produced in enzymatic reaction using UV-VIS spectrophotometer at 392 nm. Based on morphology test to identify the gram type of microorganism, isolate AP-17 has a bacill cell type and identified as positive gram bacteria. This isolate was assumed as Bacillus type.   Keywords: Phytase, thermophilic microorganism, phytase activity

  9. ENZYME MARKERS ACTIVITY AND BILE FORMATION FUNCTION OF LIVER IN CASES OF TUBERCULOSTATICS AND HEXAVALENT CHROMIUM COMPOUNDS AFFECTION IN RATS

    Directory of Open Access Journals (Sweden)

    N. I. Burmas

    2016-05-01

    Full Text Available Background. Currently, the growing incidence of toxic lesions of the liver is associated with industrial chemicalization and uncontrolled use of hepatotoxic drugs in everyday life. There are about one thousand drugs with high or low hepatotoxicity, such as anti-TB drugs. Objective. In this research we studied the intracellular enzymes activity and bile formation function of the liver in rats of different ages in cases of tuberculostatic (isoniazid and rifampicin affection and chromium (potassium dichromate intoxication. Methods. The experimental affection of rats of different ages was performed by combined injection of hexavalent chromium compounds (a solution of potassium dichromate, 3 mg/kg, isoniazid (0.05 g/kg and rifampicin (0.25 g/kg. On the 7th and 14th days the rats were injected with enterosorbent Sorbex (150 mg/kg. Enzyme markers activity of the liver was evaluated due to alanine and aspartate aminotransferases (ALT and AST and alkaline phosphatase (ALP rates. Bile formation function of the liver was evaluated by total bilirubin and bile acids content in blood. Results. The disorders in hepatocytes plasma membranes permeability were defined by the increased rates of ALT, AST and alkaline phosphatase in blood serum which were decreased in the liver. It was determined that total bilirubin and bile acids content in blood serum of the affected animals increased. It influenced hepatocytes excretion in bile capillaries and caused cholestasis and revenues decrease in bile. Conclusions. The most significant metabolic disorders in cases of chrome-isoniazid-rifampicin affection were defined in immature and senior animals in comparison with mature animals.

  10. Inferring Group Processes from Computer-Mediated Affective Text Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Schryver, Jack C [ORNL; Begoli, Edmon [ORNL; Jose, Ajith [Missouri University of Science and Technology; Griffin, Christopher [Pennsylvania State University

    2011-02-01

    Political communications in the form of unstructured text convey rich connotative meaning that can reveal underlying group social processes. Previous research has focused on sentiment analysis at the document level, but we extend this analysis to sub-document levels through a detailed analysis of affective relationships between entities extracted from a document. Instead of pure sentiment analysis, which is just positive or negative, we explore nuances of affective meaning in 22 affect categories. Our affect propagation algorithm automatically calculates and displays extracted affective relationships among entities in graphical form in our prototype (TEAMSTER), starting with seed lists of affect terms. Several useful metrics are defined to infer underlying group processes by aggregating affective relationships discovered in a text. Our approach has been validated with annotated documents from the MPQA corpus, achieving a performance gain of 74% over comparable random guessers.

  11. Radiation sterilization of enzyme hybrids with biodegradable polymers

    International Nuclear Information System (INIS)

    Furuta, Masakazu; Oka, Masahito; Hayashi, Toshio

    2002-01-01

    Ionizing radiations, which have already been utilized for the sterilization of medical supplies as well as gas fumigation, should be the final candidate to decontaminate 'hybrid' biomaterials containing bio-active materials including enzymes because irradiation induces neither heat nor substances affecting the quality of the materials and our health. In order to check the feasibility of 60 Co-gamma rays on these materials, we selected commercial proteases including papain and bromelain hybridized with commercial activated chitosan beads and demonstrated that these enzyme-hybrids suspended in water showed the significant radiation durability of more than twice as much as free enzyme solution at 25-kGy irradiation. Enhanced thermal and storage stability of the enzyme hybrids were not affected by the same dose level of irradiation, either, indicating that commercial irradiation sterilization method is applicable to enzyme hybrids without modification

  12. DYNAMIC MODELLING AND ADVANCED PREDICTIVE CONTROL OF A CONTINUOUS PROCESS OF ENZYME PURIFICATION

    Directory of Open Access Journals (Sweden)

    Dechechi E.C.

    1997-01-01

    Full Text Available A dynamic mathematical model, simulation and computer control of a Continuous Affinity Recycle Extraction (CARE process, a protein purification technique based on protein adsorption on solid-phase adsorbents is described in this work. This process, consisting of three reactors, is a multivariable process with considerable time delay in the on-line analyses of the controlled variable. An advanced predictive control configuration, specifically the Dynamic Matrix Control (DMC, was applied. The DMC algorithm was applied in process schemes where the aim was to maintain constant the enzyme concentration in the outlet of the third reactor. The performance of the DMC controller was analyzed in the feed-flow disturbances and the results are presented.

  13. An in vitro assay to study the recruitment and substrate specificity of chromatin modifying enzymes

    Directory of Open Access Journals (Sweden)

    Vermeulen Michiel

    2004-01-01

    Full Text Available Post-translational modifications of core histones play an important role in regulating fundamental biological processes such as DNA repair, transcription and replication. In this paper, we describe a novel assay that allows sequential targeting of distinct histone modifying enzymes to immobilized nucleosomal templates using recombinant chimeric targeting molecules. The assay can be used to study the histone substrate specificity of chromatin modifying enzymes as well as whether and how certain enzymes affect each other's histone modifying activities. As such the assay can help to understand how a certain histone code is established and interpreted.

  14. Factors affecting medication-order processing time.

    Science.gov (United States)

    Beaman, M A; Kotzan, J A

    1982-11-01

    The factors affecting medication-order processing time at one hospital were studied. The order processing time was determined by directly observing the time to process randomly selected new drug orders on all three work shifts during two one-week periods. An order could list more than one drug for an individual patient. The observer recorded the nature, location, and cost of the drugs ordered, as well as the time to process the order. The time and type of interruptions also were noted. The time to process a drug order was classified as six dependent variables: (1) total time, (2) work time, (3) check time, (4) waiting time I--time from arrival on the dumbwaiter until work was initiated, (5) waiting time II--time between completion of the work and initiation of checking, and (6) waiting time III--time after the check was completed until the order left on the dumbwaiter. The significant predictors of each of the six dependent variables were determined using stepwise multiple regression. The total time to process a prescription order was 58.33 +/- 48.72 minutes; the urgency status of the order was the only significant determinant of total time. Urgency status also significantly predicted the three waiting-time variables. Interruptions and the number of drugs on the order were significant determinants of work time and check time. Each telephone interruption increased the work time by 1.72 minutes. While the results of this study cannot be generalized to other institutions, pharmacy managers can use the method of determining factors that affect medication-order processing time to identify problem areas in their institutions.

  15. Materials And Carbon Flow In A Waste Refinery Process Using Enzymes

    DEFF Research Database (Denmark)

    Tonini, Davide; Woods, M.; Astrup, Thomas

    2011-01-01

    Recovery of resources from mixed Municipal Solid Waste (MSW) is a crucial aspect of waste management practices. In this paper the materials and carbon flows of an innovative waste refinery process using enzymes are presented. Through enzymatic treatment the process produces two main streams from...... the initial mixed MSW: a bioslurry (liquefied paper and organics) and a solid fraction (non-degradable materials). The discussion is based on the performance of the process in separating recyclables and recovery Cbiogenic as well as nutrients from the input MSW. The results of MFA and SFA illustrate...... that the waste refinery has great potential for resource recovery: about 100% of the Cbiogenic and up to 90% of N and P can potentially be recovered in the bioslurry and returned to land after anaerobic digestion. Recovery of ferrous and non-ferrous material is estimated double compared to recovering the same...

  16. Computational Biochemistry-Enzyme Mechanisms Explored.

    Science.gov (United States)

    Culka, Martin; Gisdon, Florian J; Ullmann, G Matthias

    2017-01-01

    Understanding enzyme mechanisms is a major task to achieve in order to comprehend how living cells work. Recent advances in biomolecular research provide huge amount of data on enzyme kinetics and structure. The analysis of diverse experimental results and their combination into an overall picture is, however, often challenging. Microscopic details of the enzymatic processes are often anticipated based on several hints from macroscopic experimental data. Computational biochemistry aims at creation of a computational model of an enzyme in order to explain microscopic details of the catalytic process and reproduce or predict macroscopic experimental findings. Results of such computations are in part complementary to experimental data and provide an explanation of a biochemical process at the microscopic level. In order to evaluate the mechanism of an enzyme, a structural model is constructed which can be analyzed by several theoretical approaches. Several simulation methods can and should be combined to get a reliable picture of the process of interest. Furthermore, abstract models of biological systems can be constructed combining computational and experimental data. In this review, we discuss structural computational models of enzymatic systems. We first discuss various models to simulate enzyme catalysis. Furthermore, we review various approaches how to characterize the enzyme mechanism both qualitatively and quantitatively using different modeling approaches. © 2017 Elsevier Inc. All rights reserved.

  17. BAKERY ENZYMES IN CEREAL TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Václav Koman

    2012-10-01

    Full Text Available Normal 0 21 false false false SK X-NONE X-NONE Bread is the most common and traditional food in the world. For years, enzymes such as malt and fungal alpha-amylase have been used in bread making. Due to the changes in the baking industry and the ever-increasing demand for more natural products, enzymes have gained real importance in bread-making. If an enzyme is added, it is often destroyed by the heat during the baking process. For generations, enzymes have been used for the improvement of texture and appearance, enhancement of nutritional values and generation of appealing flavours and aromas. Enzymes used in bakery industry constitute nearly one third of the market. The bakery products have undergone radical improvements in quality over the past years in terms of flavour, texture and shelf-life. The the biggest contributor for these improvementsis the usage of enzymes. Present work seeks to systematically describe bakery enzymes, their classification, benefits, usage and chemical reactions in the bread making process.doi:10.5219/193

  18. Heavy enzymes--experimental and computational insights in enzyme dynamics.

    Science.gov (United States)

    Swiderek, Katarzyna; Ruiz-Pernía, J Javier; Moliner, Vicent; Tuñón, Iñaki

    2014-08-01

    The role of protein motions in the chemical step of enzyme-catalyzed reactions is the subject of an open debate in the scientific literature. The systematic use of isotopically substituted enzymes has been revealed as a useful tool to quantify the role of these motions. According to the Born-Oppenheimer approximation, changing the mass of the protein does not change the forces acting on the system but alters the frequencies of the protein motions, which in turn can affect the rate constant. Experimental and theoretical studies carried out in this field are presented in this article and discussed in the framework of Transition State Theory. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Light-regulation of enzyme activity in anacystis nidulans (Richt.).

    Science.gov (United States)

    Duggan, J X; Anderson, L E

    1975-01-01

    The effect of light on the levels of activity of six enzymes which are light-modulated in higher plants was examined in the photosynthetic procaryot Anacystis nidulans. Ribulose-5-phosphate kinase (EC 2.7.1.19) was found to be light-activated in vivo and dithiothreitol-activated in vitro while glucose-6-phosphate dehydrogenase (EC 1.1.1.49) was light-inactivated and dithiothreitol-inactivated. The enzymes fructose-1,6-diphosphate phosphatase (EC 3.1.3.11), sedoheptulose-1,7-diphosphate phosphatase, NAD- and NADP-linked glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12; EC 1.2.1.13) were not affected by light treatment of the intact algae, but sedoheptulose-diphosphate phosphatase and the glyceraldehyde-3-phosphate dehydrogenases were dithiothreitol-activated in crude extracts. Light apparently controls the activity of the reductive and oxidative pentose phosphate pathway in this photosynthetic procaryot as in higher plants, through a process which probably involves reductive modulation of enzyme activity.

  20. Post-cold-storage conditioning time affects soil denitrifying enzyme activity

    DEFF Research Database (Denmark)

    Chirinda, Ngonidzashe; Olesen, Jørgen Eivind; Porter, John Roy

    2011-01-01

    Soil denitrifying enzyme activity (DEA) is often assessed after cold storage. Previous studies using the short-term acetylene inhibition method have not considered conditioning time (post-cold-storage warm-up time prior to soil analysis) as a factor influencing results. We observed fluctuations...

  1. Neuroimaging of affect processing in schizophrenia

    International Nuclear Information System (INIS)

    Habel, U.; Kircher, T.; Schneider, F.

    2005-01-01

    Functional imaging of normal and dysfunctional emotional processes is an important tool for a better understanding of the pathophysiology of affective symptoms in schizophrenia patients. These symptoms are still poorly characterized with respect to their neural correlates. Comparisons of cerebral activation during emotional paradigms offered the possibility for a better characterization of cerebral dysfunctions during emotional processing in schizophrenia. Abnormal activation patterns reveal a complex dysfunctional subcortical-cortical network. This is modulated by respective genotypes as well as psycho- and pharmacotherapy. (orig.) [de

  2. Immobilized enzymes: understanding enzyme - surface interactions at the molecular level.

    Science.gov (United States)

    Hoarau, Marie; Badieyan, Somayesadat; Marsh, E Neil G

    2017-11-22

    Enzymes immobilized on solid supports have important and industrial and medical applications. However, their uses are limited by the significant reductions in activity and stability that often accompany the immobilization process. Here we review recent advances in our understanding of the molecular level interactions between proteins and supporting surfaces that contribute to changes in stability and activity. This understanding has been facilitated by the application of various surface-sensitive spectroscopic techniques that allow the structure and orientation of enzymes at the solid/liquid interface to be probed, often with monolayer sensitivity. An appreciation of the molecular interactions between enzyme and surface support has allowed the surface chemistry and method of enzyme attachement to be fine-tuned such that activity and stability can be greatly enhanced. These advances suggest that a much wider variety of enzymes may eventually be amenable to immobilization as green catalysts.

  3. Affective processes in human-automation interactions.

    Science.gov (United States)

    Merritt, Stephanie M

    2011-08-01

    This study contributes to the literature on automation reliance by illuminating the influences of user moods and emotions on reliance on automated systems. Past work has focused predominantly on cognitive and attitudinal variables, such as perceived machine reliability and trust. However, recent work on human decision making suggests that affective variables (i.e., moods and emotions) are also important. Drawing from the affect infusion model, significant effects of affect are hypothesized. Furthermore, a new affectively laden attitude termed liking is introduced. Participants watched video clips selected to induce positive or negative moods, then interacted with a fictitious automated system on an X-ray screening task At five time points, important variables were assessed including trust, liking, perceived machine accuracy, user self-perceived accuracy, and reliance.These variables, along with propensity to trust machines and state affect, were integrated in a structural equation model. Happiness significantly increased trust and liking for the system throughout the task. Liking was the only variable that significantly predicted reliance early in the task. Trust predicted reliance later in the task, whereas perceived machine accuracy and user self-perceived accuracy had no significant direct effects on reliance at any time. Affective influences on automation reliance are demonstrated, suggesting that this decision-making process may be less rational and more emotional than previously acknowledged. Liking for a new system may be key to appropriate reliance, particularly early in the task. Positive affect can be easily induced and may be a lever for increasing liking.

  4. Dry-grind processing using amylase corn and superior yeast to reduce the exogenous enzyme requirements in bioethanol production.

    Science.gov (United States)

    Kumar, Deepak; Singh, Vijay

    2016-01-01

    Conventional corn dry-grind ethanol production process requires exogenous alpha and glucoamylases enzymes to breakdown starch into glucose, which is fermented to ethanol by yeast. This study evaluates the potential use of new genetically engineered corn and yeast, which can eliminate or minimize the use of these external enzymes, improve the economics and process efficiencies, and simplify the process. An approach of in situ ethanol removal during fermentation was also investigated for its potential to improve the efficiency of high-solid fermentation, which can significantly reduce the downstream ethanol and co-product recovery cost. The fermentation of amylase corn (producing endogenous α-amylase) using conventional yeast and no addition of exogenous α-amylase resulted in ethanol concentration of 4.1 % higher compared to control treatment (conventional corn using exogenous α-amylase). Conventional corn processed with exogenous α-amylase and superior yeast (producing glucoamylase or GA) with no exogenous glucoamylase addition resulted in ethanol concentration similar to control treatment (conventional yeast with exogenous glucoamylase addition). Combination of amylase corn and superior yeast required only 25 % of recommended glucoamylase dose to complete fermentation and achieve ethanol concentration and yield similar to control treatment (conventional corn with exogenous α-amylase, conventional yeast with exogenous glucoamylase). Use of superior yeast with 50 % GA addition resulted in similar increases in yield for conventional or amylase corn of approximately 7 % compared to that of control treatment. Combination of amylase corn, superior yeast, and in situ ethanol removal resulted in a process that allowed complete fermentation of 40 % slurry solids with only 50 % of exogenous GA enzyme requirements and 64.6 % higher ethanol yield compared to that of conventional process. Use of amylase corn and superior yeast in the dry-grind processing industry

  5. Production of cellulolytic enzymes from ascomycetes

    DEFF Research Database (Denmark)

    Hansen, Gustav Hammerich; Lübeck, Mette; Frisvad, Jens Christian

    2015-01-01

    Optimizing production of cellulose degrading enzymes is of great interest in order to increase the feasibility of constructing biorefinery facilities for a sustainable supply of energy and chemical products. The ascomycete phylum has a large potential for the production of cellulolytic enzymes....... Although numerous enzymatic profiles have already been unraveled, the research has been covering only a limited number of species and genera, thus leaving many ascomycetes to be analyzed. Such analysis requires choosing appropriate media and cultivation methods that ensure enzyme profiles with high...... specificities and activities. However, the choice of media, cultivation methods and enzyme assays highly affect the enzyme activity profile observed. This review provides an overview of enzymatic profiles for several ascomycetes covering phylogenetically distinct genera and species. The profiles of cellulose...

  6. Glycosylation Helps Cellulase Enzymes Bind to Plant Cell Walls (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2012-06-01

    Computer simulations suggest a new strategy to design enhanced enzymes for biofuels production. Large-scale computer simulations predict that the addition of glycosylation on carbohydrate-binding modules can dramatically improve the binding affinity of these protein domains over amino acid mutations alone. These simulations suggest that glycosylation can be used as a protein engineering tool to enhance the activity of cellulase enzymes, which are a key component in the conversion of cellulose to soluble sugars in the production of biofuels. Glycosylation is the covalent attachment of carbohydrate molecules to protein side chains, and is present in many proteins across all kingdoms of life. Moreover, glycosylation is known to serve a wide variety of functions in biological recognition, cell signaling, and metabolism. Cellulase enzymes, which are responsible for deconstructing cellulose found in plant cell walls to glucose, contain glycosylation that when modified can affect enzymatic activity-often in an unpredictable manner. To gain insight into the role of glycosylation on cellulase activity, scientists at the National Renewable Energy Laboratory (NREL) used computer simulation to predict that adding glycosylation on the carbohydrate-binding module of a cellulase enzyme dramatically boosts the binding affinity to cellulose-more than standard protein engineering approaches in which amino acids are mutated. Because it is known that higher binding affinity in cellulases leads to higher activity, this work suggests a new route to designing enhanced enzymes for biofuels production. More generally, this work suggests that tuning glycosylation in cellulase enzymes is a key factor to consider when engineering biochemical conversion processes, and that more work is needed to understand how glycosylation affects cellulase activity at the molecular level.

  7. Attachment affects social information processing: Specific electrophysiological effects of maternal stimuli.

    Science.gov (United States)

    Wu, Lili; Gu, Ruolei; Zhang, Jianxin

    2016-01-01

    Attachment is critical to each individual. It affects the cognitive-affective processing of social information. The present study examines how attachment affects the processing of social information, specifically maternal information. We assessed the behavioral and electrophysiological responses to maternal information (compared to non-specific others) in a Go/No-go Association Task (GNAT) with 22 participants. The results illustrated that attachment affected maternal information processing during three sequential stages of information processing. First, attachment affected visual perception, reflected by enhanced P100 and N170 elicited by maternal information as compared to others information. Second, compared to others, mother obtained more attentional resources, reflected by faster behavioral response to maternal information and larger P200 and P300. Finally, mother was evaluated positively, reflected by shorter P300 latency in a mother + good condition as compared to a mother + bad condition. These findings indicated that the processing of attachment-relevant information is neurologically differentiated from other types of social information from an early stage of perceptual processing to late high-level processing.

  8. Combined Enzymatic and High-Pressure Processing Affect Cell Wall Polysaccharides in Berries

    NARCIS (Netherlands)

    Hilz, H.; Lille, M.; Poutanen, K.; Schols, H.A.; Voragen, A.G.J.

    2006-01-01

    The effect of high-pressure processing (HPP) on cell wall polysaccharides in berries was investigated. HPP decreased the degree of methyl esterification (DM), probably by activation of pectin methyl esterase (PME), and improved the extractability of pectins. When commercial enzyme mixtures were

  9. Enzymes - important players in green chemistry

    Directory of Open Access Journals (Sweden)

    Agata Tarczykowska

    2017-09-01

    Full Text Available Green chemistry has become a worldwide approach that leads to sustainable growth through application and development of its principles. A lot of work has to be put into designing new processes comprising of materials which do not emit pollutants to the atmosphere. Inventing new safer methods and finding less harmful products can be challenging. Enzymes are a great hope of scientists in the field of green chemistry. Enzymes as catalysts require mild conditions therefore it is a great way of saving resources such as energy or water. Processes with the use of enzymes have become more feasible by being more cost effective and eco friendly. Taking into account the benefits of green chemistry, enzyme biocatalysis has quickly replaced traditional chemical processes in several fields, and this substitution is going to reach even more areas because of new emerging technologies in enzyme engineering.

  10. Autophagy and Mis-targeting of Therapeutic Enzyme in Skeletal Muscle in Pompe Disease

    Science.gov (United States)

    Fukuda, Tokiko; Ahearn, Meghan; Roberts, Ashley; Mattaliano, Robert J.; Zaal, Kristien; Ralston, Evelyn; Plotz, Paul H.; Raben, Nina

    2009-01-01

    Enzyme replacement therapy (ERT) became a reality for patients with Pompe disease, a fatal cardiomyopathy and skeletal muscle myopathy caused by a deficiency of glycogen-degrading lysosomal enzyme acid alpha-glucosidase (GAA). The therapy, which relies on receptor-mediated endocytosis of recombinant human GAA (rhGAA), appears to be effective in cardiac muscle, but less so in skeletal muscle. We have previously shown a profound disturbance of the lysosomal degradative pathway (autophagy) in therapy-resistant muscle of GAA knockout mice (KO). Our findings here demonstrate a progressive age-dependent autophagic build-up in addition to enlargement of glycogen-filled lysosomes in multiple muscle groups in the KO. Trafficking and processing of the therapeutic enzyme along the endocytic pathway appear to be affected by the autophagy. Confocal microscopy of live single muscle fibers exposed to fluorescently labeled rhGAA indicates that a significant portion of the endocytosed enzyme in the KO was trapped as a partially processed form in the autophagic areas instead of reaching its target – the lysosomes. A fluid-phase endocytic marker was similarly mis-targeted and accumulated in vesicular structures within the autophagic areas. These findings may explain why ERT often falls short of reversing the disease process, and point to new avenues for the development of pharmacological intervention. PMID:17008131

  11. Molecular dynamics of formation of TD lesioned DNA complexed with repair enzyme - onset of the enzymatic repair process

    Energy Technology Data Exchange (ETDEWEB)

    Pinak, Miroslav [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1999-12-01

    To describe the first step of the enzymatic repair process (formation of complex enzyme-DNA), in which the thymine dimer (TD) part is removed from DNA, the 500 picosecond (ps) molecular dynamics (MD) simulation of TD lesioned DNA and part of repair enzyme cell (inclusive of catalytic center - Arg-22, Glu-23, Arg-26 and Thr-2) was performed. TD is UV originated lesion in DNA and T4 Endonuclease V is TD specific repair enzyme. Both molecules were located in the same simulation cell and their relative movement was examined. During the simulation the research was focused on the role of electrostatic energy in formation of complex enzyme-DNA. It is found, that during the first 100 ps of MD, the part of enzyme approaches the DNA surface at the TD lesion, interacts extensively by electrostatic and van der Walls interactions with TD part of DNA and forms complex that lasts stabile for 500 ps of MD. In the beginning of MD, the positive electrostatic interaction energy between part of enzyme and TD ({approx} +10 kcal/mol) drives enzyme towards the DNA molecule. Water-mediated hydrogen bonds between enzyme and DNA help to keep complex stabile. As a reference, the MD simulation of the identical system with native DNA molecule (two native thymines (TT) instead of TD) was performed. In this system the negative electrostatic interaction energy between part of enzyme and TT ({approx} -11 kcal/mol), in contrary to the positive one in the system with TD, doesn't drive enzyme towards DNA and complex is not formed. (author)

  12. Molecular dynamics of formation of TD lesioned DNA complexed with repair enzyme - onset of the enzymatic repair process

    International Nuclear Information System (INIS)

    Pinak, Miroslav

    1999-12-01

    To describe the first step of the enzymatic repair process (formation of complex enzyme-DNA), in which the thymine dimer (TD) part is removed from DNA, the 500 picosecond (ps) molecular dynamics (MD) simulation of TD lesioned DNA and part of repair enzyme cell (inclusive of catalytic center - Arg-22, Glu-23, Arg-26 and Thr-2) was performed. TD is UV originated lesion in DNA and T4 Endonuclease V is TD specific repair enzyme. Both molecules were located in the same simulation cell and their relative movement was examined. During the simulation the research was focused on the role of electrostatic energy in formation of complex enzyme-DNA. It is found, that during the first 100 ps of MD, the part of enzyme approaches the DNA surface at the TD lesion, interacts extensively by electrostatic and van der Walls interactions with TD part of DNA and forms complex that lasts stabile for 500 ps of MD. In the beginning of MD, the positive electrostatic interaction energy between part of enzyme and TD (∼ +10 kcal/mol) drives enzyme towards the DNA molecule. Water-mediated hydrogen bonds between enzyme and DNA help to keep complex stabile. As a reference, the MD simulation of the identical system with native DNA molecule (two native thymines (TT) instead of TD) was performed. In this system the negative electrostatic interaction energy between part of enzyme and TT (∼ -11 kcal/mol), in contrary to the positive one in the system with TD, doesn't drive enzyme towards DNA and complex is not formed. (author)

  13. Stress modulation of cognitive and affective processes

    Science.gov (United States)

    CAMPEAU, SERGE; LIBERZON, ISRAEL; MORILAK, DAVID; RESSLER, KERRY

    2012-01-01

    This review summarizes the major discussion points of a symposium on stress modulation of cognitive and affective processes, which was held during the 2010 workshop on the neurobiology of stress (Boulder, CO, USA). The four discussants addressed a number of specific cognitive and affective factors that are modulated by exposure to acute or repeated stress. Dr David Morilak discussed the effects of various repeated stress situations on cognitive flexibility, as assessed with a rodent model of attentional set-shifting task, and how performance on slightly different aspects of this test is modulated by different prefrontal regions through monoaminergic neurotransmission. Dr Serge Campeau summarized the findings of several studies exploring a number of factors and brain regions that regulate habituation of various autonomic and neuroendocrine responses to repeated audiogenic stress exposures. Dr Kerry Ressler discussed a body of work exploring the modulation and extinction of fear memories in rodents and humans, especially focusing on the role of key neurotransmitter systems including excitatory amino acids and brain-derived neurotrophic factor. Dr Israel Liberzon presented recent results on human decision-making processes in response to exogenous glucocorticoid hormone administration. Overall, these discussions are casting a wider framework on the cognitive/affective processes that are distinctly regulated by the experience of stress and some of the brain regions and neurotransmitter systems associated with these effects. PMID:21790481

  14. Facial affect processing and depression susceptibility: cognitive biases and cognitive neuroscience.

    Science.gov (United States)

    Bistricky, Steven L; Ingram, Rick E; Atchley, Ruth Ann

    2011-11-01

    Facial affect processing is essential to social development and functioning and is particularly relevant to models of depression. Although cognitive and interpersonal theories have long described different pathways to depression, cognitive-interpersonal and evolutionary social risk models of depression focus on the interrelation of interpersonal experience, cognition, and social behavior. We therefore review the burgeoning depressive facial affect processing literature and examine its potential for integrating disciplines, theories, and research. In particular, we evaluate studies in which information processing or cognitive neuroscience paradigms were used to assess facial affect processing in depressed and depression-susceptible populations. Most studies have assessed and supported cognitive models. This research suggests that depressed and depression-vulnerable groups show abnormal facial affect interpretation, attention, and memory, although findings vary based on depression severity, comorbid anxiety, or length of time faces are viewed. Facial affect processing biases appear to correspond with distinct neural activity patterns and increased depressive emotion and thought. Biases typically emerge in depressed moods but are occasionally found in the absence of such moods. Indirect evidence suggests that childhood neglect might cultivate abnormal facial affect processing, which can impede social functioning in ways consistent with cognitive-interpersonal and interpersonal models. However, reviewed studies provide mixed support for the social risk model prediction that depressive states prompt cognitive hypervigilance to social threat information. We recommend prospective interdisciplinary research examining whether facial affect processing abnormalities promote-or are promoted by-depressogenic attachment experiences, negative thinking, and social dysfunction.

  15. Effect of enzyme supplements on macronutrient digestibility by healthy adult dogs.

    Science.gov (United States)

    Villaverde, Cecilia; Manzanilla, Edgar G; Molina, Jenifer; Larsen, Jennifer A

    2017-01-01

    Some enzyme supplement products claim benefits for healthy dogs to compensate for alleged suboptimal production of endogenous enzymes and the loss of enzymes in commercial pet foods secondary to processing. The objective of the current study was to determine macronutrient and energy digestibility by healthy adult dogs fed a commercial maintenance diet with or without supplementation with plant- and animal-origin enzyme products at the dosage recommended by their respective manufacturers. A group of fourteen healthy neutered adult Beagle dogs (average age 8 years) was divided into two equal groups and fed the basal diet alone and then with either the plant- or animal-origin enzyme supplement in three consecutive 10-d periods; the treatment groups received the opposite enzyme supplement in the third period. Digestibility in each period was performed by the total faecal collection method. Serum trypsin-like immunoreactivity (TLI) was measured at the end of each trial. Data were analysed by repeated measures and the α level of significance was set at 0·05. There were no differences in energy and nutrient digestibility between enzyme treatments. When comparing basal with enzyme supplementation, fat digestibility was higher for the basal diet compared with the animal-origin enzyme treatment, which could be a period effect and was not biologically significant (94·7 v . 93·5 %). Serum TLI was not affected by supplementation with either enzyme product. Exogenous enzyme supplementation did not significantly increase digestibility of a typical commercial dry diet in healthy adult dogs and routine use of such products is not recommended.

  16. ENZYME MARKERS ACTIVITY AND BILE FORMATION FUNCTION OF LIVER IN CASES OF TUBERCULOSTATICS AND HEXAVALENT CHROMIUM COMPOUNDS AFFECTION IN RATS

    OpenAIRE

    N. I. Burmas; L. S. Fira; P. H. Lyhackyy

    2016-01-01

    Background. Currently, the growing incidence of toxic lesions of the liver is associated with industrial chemicalization and uncontrolled use of hepatotoxic drugs in everyday life. There are about one thousand drugs with high or low hepatotoxicity, such as anti-TB drugs. Objective. In this research we studied the intracellular enzymes activity and bile formation function of the liver in rats of different ages in cases of tuberculostatic (isoniazid and rifampicin) affection and chromium (p...

  17. Electrophysiological differences in the processing of affect misattribution.

    Directory of Open Access Journals (Sweden)

    Yohei Hashimoto

    Full Text Available The affect misattribution procedure (AMP was proposed as a technique to measure an implicit attitude to a prime image [1]. In the AMP, neutral symbols (e.g., a Chinese pictograph, called the target are presented, following an emotional stimulus (known as the prime. Participants often misattribute the positive or negative affect of the priming images to the targets in spite of receiving an instruction to ignore the primes. The AMP effect has been investigated using behavioral measures; however, it is difficult to identify when the AMP effect occurs in emotional processing-whether the effect may occur in the earlier attention allocation stage or in the later evaluation stage. In this study, we examined the neural correlates of affect misattribution, using event-related potential (ERP dividing the participants into two groups based on their tendency toward affect misattribution. The ERP results showed that the amplitude of P2 was larger for the prime at the parietal location in participants showing a low tendency to misattribution than for those showing a high tendency, while the effect of judging neutral targets amiss according to the primes was reflected in the late processing of targets (LPP. In addition, the topographic pattern analysis revealed that EPN-like component to targets was correlated with the difference of AMP tendency as well as P2 to primes and LPP to targets. Taken together, the mechanism of the affective misattribution was closely related to the attention allocation processing. Our findings provide neural evidence that evaluations of neutral targets are misattributed to emotional primes.

  18. Applications of Microbial Enzymes in Food Industry

    Directory of Open Access Journals (Sweden)

    Binod Parameswaran

    2018-01-01

    Full Text Available The use of enzymes or microorganisms in food preparations is an age-old process. With the advancement of technology, novel enzymes with wide range of applications and specificity have been developed and new application areas are still being explored. Microorganisms such as bacteria, yeast and fungi and their enzymes are widely used in several food preparations for improving the taste and texture and they offer huge economic benefits to industries. Microbial enzymes are the preferred source to plants or animals due to several advantages such as easy, cost-effective and consistent production. The present review discusses the recent advancement in enzyme technology for food industries. A comprehensive list of enzymes used in food processing, the microbial source of these enzymes and the wide range of their application are discussed.

  19. Engineering Cellulase Enzymes for Bioenergy

    Science.gov (United States)

    Atreya, Meera Elizabeth

    Sustainable energy sources, such as biofuels, offer increasingly important alternatives to fossil fuels that contribute less to global climate change. The energy contained within cellulosic biofuels derives from sunlight energy stored in the form of carbon-carbon bonds comprising sugars such as glucose. Second-generation biofuels are produced from lignocellulosic biomass feedstocks, including agricultural waste products and non-food crops like Miscanthus, that contain lignin and the polysaccharides hemicellulose and cellulose. Cellulose is the most abundant biological material on Earth; it is a polymer of glucose and a structural component of plant cell walls. Accessing the sugar is challenging, as the crystalline structure of cellulose resists degradation; biochemical and thermochemical means can be used to depolymerize cellulose. Cellulase enzymes catalyze the biochemical depolymerization of cellulose into glucose. Glucose can be used as a carbon source for growth of a biofuel-producing microorganism. When it converts glucose to a hydrocarbon fuel, this microbe completes the biofuels process of transforming sunlight energy into accessible, chemical energy capable of replacing non-renewable transportation fuels. Due to strong intermolecular interactions between polymer chains, cellulose is significantly more challenging to depolymerize than starch, a more accessible polymer of glucose utilized in first-generation biofuels processes (often derived from corn). While most mammals cannot digest cellulose (dietary fiber), certain fungi and bacteria produce cellulase enzymes capable of hydrolyzing it. These organisms secrete a wide variety of glycoside hydrolase and other classes of enzymes that work in concert. Because cellulase enzymes are slow-acting and expensive to produce, my aim has been to improve the properties of these enzymes as a means to make a cellulosic biofuels process possible that is more efficient and, consequently, more economical than current

  20. Improving digestive utilization of fiber-rich feedstuffs in pigs and poultry by processing and enzyme technologies: A review

    NARCIS (Netherlands)

    Vries, de S.; Pustjens, A.M.; Schols, H.A.; Hendriks, W.H.; Gerrits, W.J.J.

    2012-01-01

    The effects of processing technologies, whether or not combined with cell wall degrading enzymes, on the physicochemical properties of non-starch polysaccharides (NSP) and the resulting effects on NSP degradation in both pigs and poultry were reviewed. Evaluation of the effects of processing

  1. Effects of thermal processing on the enzyme-linked immunosorbent assay (ELISA) detection of milk residues in a model food matrix.

    Science.gov (United States)

    Downs, Melanie L; Taylor, Steve L

    2010-09-22

    Food products and ingredients are frequently tested for the presence of undeclared allergenic food residues (including milk) using commercial enzyme-linked immunosorbent assays (ELISAs). However, little is understood about the efficacy of these kits with thermally processed foods. This study evaluated the performance of three milk ELISA kits with a model food processed by several methods. A model food (pastry dough squares) was spiked with nonfat dry milk at several concentrations. The pastry squares were processed by boiling (100 °C for 2 min), baking (190 °C for 30 min), frying (190 °C for 2 min), and retorting (121 °C for 20 min with 17 psi overpressure). Samples were analyzed with three commercial ELISA kits: Neogen Veratox Total Milk, ELISA Systems β-lactoglobulin, and ELISA Systems casein. The detection of milk residues depended upon the type of processing applied to the food and the specific milk analyte targeted by the ELISA kit. Poor recoveries were obtained in all processed samples (2-10% of expected values) using the β-lactoglobulin kit. Better recoveries were obtained in boiled samples (44 and 59%, respectively) using the total milk and casein kits. However, these kits performed poorly with baked (9 and 21%) and fried (7 and 18%) samples. Moderate recoveries were observed in retorted samples (23 and 28%). The decreased detection in processed samples is likely due to protein modifications, including aggregation and Maillard reactions, which affect the solubility and immunoreactivity of the antigens detected by the ELISA methods. The observed decreases in ELISA detection of milk are dramatic enough to affect risk-assessment decisions. However, a lower detection of milk residues does not necessarily indicate decreased allergenicity. These ELISA kits are not acceptable for all applications, and users should understand the strengths and limitations of each method.

  2. Phage lytic enzymes: a history.

    Science.gov (United States)

    Trudil, David

    2015-02-01

    There are many recent studies regarding the efficacy of bacteriophage-related lytic enzymes: the enzymes of 'bacteria-eaters' or viruses that infect bacteria. By degrading the cell wall of the targeted bacteria, these lytic enzymes have been shown to efficiently lyse Gram-positive bacteria without affecting normal flora and non-related bacteria. Recent studies have suggested approaches for lysing Gram-negative bacteria as well (Briersa Y, et al., 2014). These enzymes include: phage-lysozyme, endolysin, lysozyme, lysin, phage lysin, phage lytic enzymes, phageassociated enzymes, enzybiotics, muralysin, muramidase, virolysin and designations such as Ply, PAE and others. Bacteriophages are viruses that kill bacteria, do not contribute to antimicrobial resistance, are easy to develop, inexpensive to manufacture and safe for humans, animals and the environment. The current focus on lytic enzymes has been on their use as anti-infectives in humans and more recently in agricultural research models. The initial translational application of lytic enzymes, however, was not associated with treating or preventing a specific disease but rather as an extraction method to be incorporated in a rapid bacterial detection assay (Bernstein D, 1997).The current review traces the translational history of phage lytic enzymes-from their initial discovery in 1986 for the rapid detection of group A streptococcus in clinical specimens to evolving applications in the detection and prevention of disease in humans and in agriculture.

  3. Extracellular Enzyme Composition and Functional Characteristics of Aspergillus niger An-76 Induced by Food Processing Byproducts and Based on Integrated Functional Omics.

    Science.gov (United States)

    Liu, Lin; Gong, Weili; Sun, Xiaomeng; Chen, Guanjun; Wang, Lushan

    2018-02-07

    Byproducts of food processing can be utilized for the production of high-value-added enzyme cocktails. In this study, we utilized integrated functional omics technology to analyze composition and functional characteristics of extracellular enzymes produced by Aspergillus niger grown on food processing byproducts. The results showed that oligosaccharides constituted by arabinose, xylose, and glucose in wheat bran were able to efficiently induce the production of extracellular enzymes of A. niger. Compared with other substrates, wheat bran was more effective at inducing the secretion of β-glucosidases from GH1 and GH3 families, as well as >50% of proteases from A1-family aspartic proteases. Compared with proteins induced by single wheat bran or soybean dregs, the protein yield induced by their mixture was doubled, and the time required to reach peak enzyme activity was shortened by 25%. This study provided a technical platform for the complex formulation of various substrates and functional analysis of extracellular enzymes.

  4. Regulatory mechanisms of RNA function: emerging roles of DNA repair enzymes.

    Science.gov (United States)

    Jobert, Laure; Nilsen, Hilde

    2014-07-01

    The acquisition of an appropriate set of chemical modifications is required in order to establish correct structure of RNA molecules, and essential for their function. Modification of RNA bases affects RNA maturation, RNA processing, RNA quality control, and protein translation. Some RNA modifications are directly involved in the regulation of these processes. RNA epigenetics is emerging as a mechanism to achieve dynamic regulation of RNA function. Other modifications may prevent or be a signal for degradation. All types of RNA species are subject to processing or degradation, and numerous cellular mechanisms are involved. Unexpectedly, several studies during the last decade have established a connection between DNA and RNA surveillance mechanisms in eukaryotes. Several proteins that respond to DNA damage, either to process or to signal the presence of damaged DNA, have been shown to participate in RNA quality control, turnover or processing. Some enzymes that repair DNA damage may also process modified RNA substrates. In this review, we give an overview of the DNA repair proteins that function in RNA metabolism. We also discuss the roles of two base excision repair enzymes, SMUG1 and APE1, in RNA quality control.

  5. Industrial Applications of Enzymes: Recent Advances, Techniques, and Outlooks

    Directory of Open Access Journals (Sweden)

    Jordan Chapman

    2018-06-01

    Full Text Available Enzymes as industrial biocatalysts offer numerous advantages over traditional chemical processes with respect to sustainability and process efficiency. Enzyme catalysis has been scaled up for commercial processes in the pharmaceutical, food and beverage industries, although further enhancements in stability and biocatalyst functionality are required for optimal biocatalytic processes in the energy sector for biofuel production and in natural gas conversion. The technical barriers associated with the implementation of immobilized enzymes suggest that a multidisciplinary approach is necessary for the development of immobilized biocatalysts applicable in such industrial-scale processes. Specifically, the overlap of technical expertise in enzyme immobilization, protein and process engineering will define the next generation of immobilized biocatalysts and the successful scale-up of their induced processes. This review discusses how biocatalysis has been successfully deployed, how enzyme immobilization can improve industrial processes, as well as focuses on the analysis tools critical for the multi-scale implementation of enzyme immobilization for increased product yield at maximum market profitability and minimum logistical burden on the environment and user.

  6. The mechanisms of Excited states in enzymes

    DEFF Research Database (Denmark)

    Petersen, Frederic Nicolas Rønne; Bohr, Henrik

    2010-01-01

    Enzyme catalysis is studied on the basis of excited state processes, which are of electronic, vibrational and thermal nature. The ways of achieving the excited state, such as photo-absorption and ligand binding, are discussed and exemplified by various cases of enzymes.......Enzyme catalysis is studied on the basis of excited state processes, which are of electronic, vibrational and thermal nature. The ways of achieving the excited state, such as photo-absorption and ligand binding, are discussed and exemplified by various cases of enzymes....

  7. The Endosome-associated Deubiquitinating Enzyme USP8 Regulates BACE1 Enzyme Ubiquitination and Degradation.

    Science.gov (United States)

    Yeates, Eniola Funmilayo Aduke; Tesco, Giuseppina

    2016-07-22

    The β-site amyloid precursor protein-cleaving enzyme (BACE1) is the rate-limiting enzyme in the production of amyloid-β, the toxic peptide that accumulates in the brain of subjects affected by Alzheimer disease. Our previous studies have shown that BACE1 is degraded via the lysosomal pathway and that that depletion of the trafficking molecule Golgi-localized γ-ear-containing ARF-binding protein 3 (GGA3) results in increased BACE1 levels and activity because of impaired lysosomal degradation. We also determined that GGA3 regulation of BACE1 levels requires its ability to bind ubiquitin. Accordingly, we reported that BACE1 is ubiquitinated at lysine 501 and that lack of ubiquitination at lysine 501 produces BACE1 stabilization. Ubiquitin conjugation is a reversible process mediated by deubiquitinating enzymes. The ubiquitin-specific peptidase 8 (USP8), an endosome-associated deubiquitinating enzyme, regulates the ubiquitination, trafficking, and lysosomal degradation of several plasma membrane proteins. Here, we report that RNAi-mediated depletion of USP8 reduced levels of both ectopically expressed and endogenous BACE1 in H4 human neuroglioma cells. Moreover, USP8 depletion increased BACE1 ubiquitination, promoted BACE1 accumulation in the early endosomes and late endosomes/lysosomes, and decreased levels of BACE1 in the recycling endosomes. We also found that decreased BACE1 protein levels were accompanied by a decrease in BACE1-mediated amyloid precursor protein cleavage and amyloid-β levels. Our findings demonstrate that USP8 plays a key role in the trafficking and degradation of BACE1 by deubiquitinating lysine 501. These studies suggest that therapies able to accelerate BACE1 degradation (e.g. by increasing BACE1 ubiquitination) may represent a potential treatment for Alzheimer disease. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. The Endosome-associated Deubiquitinating Enzyme USP8 Regulates BACE1 Enzyme Ubiquitination and Degradation*

    Science.gov (United States)

    Yeates, Eniola Funmilayo Aduke; Tesco, Giuseppina

    2016-01-01

    The β-site amyloid precursor protein-cleaving enzyme (BACE1) is the rate-limiting enzyme in the production of amyloid-β, the toxic peptide that accumulates in the brain of subjects affected by Alzheimer disease. Our previous studies have shown that BACE1 is degraded via the lysosomal pathway and that that depletion of the trafficking molecule Golgi-localized γ-ear-containing ARF-binding protein 3 (GGA3) results in increased BACE1 levels and activity because of impaired lysosomal degradation. We also determined that GGA3 regulation of BACE1 levels requires its ability to bind ubiquitin. Accordingly, we reported that BACE1 is ubiquitinated at lysine 501 and that lack of ubiquitination at lysine 501 produces BACE1 stabilization. Ubiquitin conjugation is a reversible process mediated by deubiquitinating enzymes. The ubiquitin-specific peptidase 8 (USP8), an endosome-associated deubiquitinating enzyme, regulates the ubiquitination, trafficking, and lysosomal degradation of several plasma membrane proteins. Here, we report that RNAi-mediated depletion of USP8 reduced levels of both ectopically expressed and endogenous BACE1 in H4 human neuroglioma cells. Moreover, USP8 depletion increased BACE1 ubiquitination, promoted BACE1 accumulation in the early endosomes and late endosomes/lysosomes, and decreased levels of BACE1 in the recycling endosomes. We also found that decreased BACE1 protein levels were accompanied by a decrease in BACE1-mediated amyloid precursor protein cleavage and amyloid-β levels. Our findings demonstrate that USP8 plays a key role in the trafficking and degradation of BACE1 by deubiquitinating lysine 501. These studies suggest that therapies able to accelerate BACE1 degradation (e.g. by increasing BACE1 ubiquitination) may represent a potential treatment for Alzheimer disease. PMID:27302062

  9. The use of enzymes for beer brewing

    NARCIS (Netherlands)

    Donkelaar, van Laura H.G.; Mostert, Joost; Zisopoulos, Filippos K.; Boom, Remko M.; Goot, van der Atze Jan

    2016-01-01

    The exergetic performance of beer produced by the conventional malting and brewing process is compared with that of beer produced using an enzyme-assisted process. The aim is to estimate if the use of an exogenous enzyme formulation reduces the environmental impact of the overall brewing process.

  10. Enzyme recycling in lignocellulosic biorefineries

    DEFF Research Database (Denmark)

    Jørgensen, Henning; Pinelo, Manuel

    2017-01-01

    platform. Cellulases are the most important enzymes required in this process, but the complex nature of lignocellulose requires several other enzymes (hemicellulases and auxiliary enzymes) for efficient hydrolysis. Enzyme recycling increases the catalytic productivity of the enzymes by reusing them...... for several batches of hydrolysis, and thereby reduces the overall cost associated with the hydrolysis. Research on this subject has been ongoing for many years and several promising technologies and methods have been developed and demonstrated. But only in a very few cases have these technologies been...... upscaled and tested in industrial settings, mainly because of many difficulties with recycling of enzymes from the complex lignocellulose hydrolyzate at industrially relevant conditions, i.e., high solids loadings. The challenges are associated with the large number of different enzymes required...

  11. Enzymes from Higher Eukaryotes for Industrial Biocatalysis

    Directory of Open Access Journals (Sweden)

    Zhibin Liu

    2004-01-01

    Full Text Available The industrial production of fine chemicals, feed and food ingredients, pharmaceuticals, agrochemicals and their respective intermediates relies on an increasing application of biocatalysis, i.e. on enzyme or whole-cell catalyzed conversions of molecules. Simple procedures for discovery, cloning and over-expression as well as fast growth favour fungi, yeasts and especially bacteria as sources of biocatalysts. Higher eukaryotes also harbour an almost unlimited number of potential biocatalysts, although to date the limited supply of enzymes, the high heterogeneity of enzyme preparations and the hazard of infectious contaminants keep some interesting candidates out of reach for industrial bioprocesses. In the past only a few animal and plant enzymes from agricultural waste materials were employed in food processing. The use of bacterial expression strains or non-conventional yeasts for the heterologous production of efficient eukaryotic enzymes can overcome the bottleneck in enzyme supply and provide sufficient amounts of homogenous enzyme preparations for reliable and economically feasible applications at large scale. Ideal enzymatic processes represent an environmentally friendly, »near-to-completion« conversion of (mostly non-natural substrates to pure products. Recent developments demonstrate the commercial feasibility of large-scale biocatalytic processes employing enzymes from higher eukaryotes (e.g. plants, animals and also their usefulness in some small-scale industrial applications.

  12. Stabilization of red fruit-based smoothies by high-pressure processing. Part A. Effects on microbial growth, enzyme activity, antioxidant capacity and physical stability.

    Science.gov (United States)

    Hurtado, Adriana; Guàrdia, Maria Dolors; Picouet, Pierre; Jofré, Anna; Ros, José María; Bañón, Sancho

    2017-02-01

    Non-thermal pasteurization by high-pressure processing (HPP) is increasingly replacing thermal processing (TP) to maintain the properties of fresh fruit products. However, most of the research on HPP-fruit products only partially addresses fruit-pressure interaction, which limits its practical interest. The objective of this study was to assess the use of a mild HPP treatment to stabilize red fruit-based smoothies (microbial, enzymatic, oxidative and physical stability). HPP (350 MPa/10 °C/5 min) was slightly less effective than TP (85 °C/7 min) in inactivating microbes (mesophilic and psychrophilic bacteria, coliforms, yeasts and moulds) in smoothies kept at 4 °C for up to 28 days. The main limitation of using HPP was its low efficacy in inactivating oxidative (polyphenol oxidase and peroxidase) and hydrolytic (pectin methyl esterase) enzymes. Data on antioxidant status, colour parameters, browning index, transmittance, turbidity and viscosity confirmed that the HPP-smoothies have a greater tendency towards oxidation and clarification, which might lead to undesirable sensory and nutritional changes (see Part B). The microbial quality of smoothies was adequately controlled by mild HPP treatment without affecting their physical-chemical characteristics; however, oxidative and hydrolytic enzymes are highly pressure-resistant, which suggests that additional strategies should be used to stabilize smoothies. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  13. Enzyme-MOF (metal-organic framework) composites.

    Science.gov (United States)

    Lian, Xizhen; Fang, Yu; Joseph, Elizabeth; Wang, Qi; Li, Jialuo; Banerjee, Sayan; Lollar, Christina; Wang, Xuan; Zhou, Hong-Cai

    2017-06-06

    The ex vivo application of enzymes in various processes, especially via enzyme immobilization techniques, has been extensively studied in recent years in order to enhance the recyclability of enzymes, to minimize enzyme contamination in the product, and to explore novel horizons for enzymes in biomedical applications. Possessing remarkable amenability in structural design of the frameworks as well as almost unparalelled surface tunability, Metal-Organic Frameworks (MOFs) have been gaining popularity as candidates for enzyme immobilization platforms. Many MOF-enzyme composites have achieved unprecedented results, far outperforming free enzymes in many aspects. This review summarizes recent developments of MOF-enzyme composites with special emphasis on preparative techniques and the synergistic effects of enzymes and MOFs. The applications of MOF-enzyme composites, primarily in transferation, catalysis and sensing, are presented as well. The enhancement of enzymatic activity of the composites over free enzymes in biologically incompatible conditions is emphasized in many cases.

  14. Temperature sensitivity of extracellular enzyme kinetics in subtropical wetland soils under different nutrient and water level conditions

    Science.gov (United States)

    Goswami, S.; Inglett, K.; Inglett, P.

    2012-12-01

    Microbial extracellular enzymes play an important role in the initial steps of soil organic matter decomposition and are involved in regulating nutrient cycle processes. Moreover, with the recent concern of climate change, microbial extracellular enzymes may affect the functioning (C losses, C sequestration, greenhouse gas emissions, vegetation changes) of different ecosystems. Hence, it is imperative to understand the biogeochemical processes that may be climate change sensitive. Here, we have measured the Michaelis Menten Kinetics [maximal rate of velocity (Vmax) and half-saturation constant (Km)] of 6 enzymes involved in soil organic matter decomposition (phosphatase, phosphodiesterase, β-D-glucosidase, cellobiohydrolase, leucine aminopeptidase, N-Acetyl-β-D glucosaminidase) in different nutrient(P) concentration both aerobically and anaerobically in Everglade water conservation area 2A (F1, F4-slough and U3-slough). Temperature sensitivity of different enzymes is assessed within soil of different P concentrations. We hypothesized that the temperature sensitivity of the enzyme changes with the biogeochemical conditions including water level and nutrient condition. Furthermore, we have tested specific hypothesis that higher P concentration will initiate more C demand for microbes leading to higher Vmax value for carbon processing enzymes in high P site. We found temperature sensitivity of all enzymes for Vmax and Km under both aerobic and anaerobic condition ranges from 0.6 to 3.2 for Vmax and 0.5 to 2.5 for Km. Q10 values of Km for glucosidase indicate more temperature sensitivity under anaerobic condition. Under aerobic condition higher temperature showed significant effect on Vmax for bisphosphatase between high P and low P site. Decreasing P concentration from F1 site to U3-S site had showed significant effect in all temperature on carbon processing enzyme. This suggests that in high P site, microbes will use more carbon-processing enzyme to get more carbon

  15. Enzyme activities by indicator of quality in organic soil

    Science.gov (United States)

    Raigon Jiménez, Mo; Fita, Ana Delores; Rodriguez Burruezo, Adrián

    2016-04-01

    The analytical determination of biochemical parameters, as soil enzyme activities and those related to the microbial biomass is growing importance by biological indicator in soil science studies. The metabolic activity in soil is responsible of important processes such as mineralization and humification of organic matter. These biological reactions will affect other key processes involved with elements like carbon, nitrogen and phosphorus , and all transformations related in soil microbial biomass. The determination of biochemical parameters is useful in studies carried out on organic soil where microbial processes that are key to their conservation can be analyzed through parameters of the metabolic activity of these soils. The main objective of this work is to apply analytical methodologies of enzyme activities in soil collections of different physicochemical characteristics. There have been selective sampling of natural soils, organic farming soils, conventional farming soils and urban soils. The soils have been properly identified conserved at 4 ° C until analysis. The enzyme activities determinations have been: catalase, urease, cellulase, dehydrogenase and alkaline phosphatase, which bring together a representative group of biological transformations that occur in the soil environment. The results indicate that for natural and agronomic soil collections, the values of the enzymatic activities are within the ranges established for forestry and agricultural soils. Organic soils are generally higher level of enzymatic, regardless activity of the enzyme involved. Soil near an urban area, levels of activities have been significantly reduced. The vegetation cover applied to organic soils, results in greater enzymatic activity. So the quality of these soils, defined as the ability to maintain their biological productivity is increased with the use of cover crops, whether or spontaneous species. The practice of cover based on legumes could be used as an ideal choice

  16. Cellulolytic enzyme compositions and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Iyer, Prashant; Gaspar, Armindo Ribiero; Croonenberghs, James; Binder, Thomas P.

    2017-07-25

    The present invention relates enzyme composition comprising a cellulolytic preparation and an acetylxylan esterase (AXE); and the used of cellulolytic enzyme compositions for hydrolyzing acetylated cellulosic material. Finally the invention also relates to processes of producing fermentation products from acetylated cellulosic materials using a cellulolytic enzyme composition of the invention.

  17. Allosteric regulation of epigenetic modifying enzymes.

    Science.gov (United States)

    Zucconi, Beth E; Cole, Philip A

    2017-08-01

    Epigenetic enzymes including histone modifying enzymes are key regulators of gene expression in normal and disease processes. Many drug development strategies to target histone modifying enzymes have focused on ligands that bind to enzyme active sites, but allosteric pockets offer potentially attractive opportunities for therapeutic development. Recent biochemical studies have revealed roles for small molecule and peptide ligands binding outside of the active sites in modulating the catalytic activities of histone modifying enzymes. Here we highlight several examples of allosteric regulation of epigenetic enzymes and discuss the biological significance of these findings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Preparation of immobilized enzyme membrane by radiation-cast-polymerization

    International Nuclear Information System (INIS)

    Kumakura, M.; Kaetsu, I.

    1989-01-01

    The preparation of immobilized enzyme membranes was studied by radiation cast-polymerization at low temperatures using cellulase enzyme, hydrophilic and hydrophobic monomers. The enzyme activity of the membranes was affected by monomer concentration, membrane thickness, and hydrophilicity of monomer, in which the membranes with 100 μm thickness from high monomer concentration (80%) had high enzyme activity, which was similar to that of the membranes with 1.0 mm thickness from low monomer concentration (20%). (author)

  19. Inhibition of free radical scavenging enzymes affects mitochondrial membrane permeability transition during growth and aging of yeast cells.

    Science.gov (United States)

    Deryabina, Yulia; Isakova, Elena; Sekova, Varvara; Antipov, Alexey; Saris, Nils-Erik L

    2014-12-01

    In this study, we investigated the change in the antioxidant enzymes activity, cell respiration, reactive oxygen species (ROS), and impairment of membrane mitochondria permeability in the Endomyces magnusii yeasts during culture growth and aging. We showed that the transition into stationary phase is the key tool to understanding interaction of these processes. This growth stage is distinguished by two-fold increase in ROS production and respiration rate as compared to those in the logarithmic phase. It results in induction of alternative oxidase (AO) in the stationary phase, decline of the main antioxidant enzymes activities, ROS-production, and mitochondria membrane permeability. Significant increase in the share of mitochondrial isoform of superoxide dismutase (SOD2) occurred in the stationary phase from 51.8% (24 h of cultivation) to 68.6% (48 h of cultivation). Upon blocking the essential ROS-scavenging enzymes, SODs and catalases (CATs) some heterogeneity of cell population was observed: 80-90% of cells displayed evident signs of early apoptosis (such as disorientation of mitochondria cristae, mitochondrial fragmentation and deformation of nuclear chromatine). However, 10-20% of the population were definitely healthy. It allowed to draw the conclusion that a complete system of cell antioxidant protection underlies normal mitochondria functioning while the E. magnusii yeasts grow and age. Moreover, this system provides unimpaired cell physiology under oxidative stress during culture aging in the stationary phase. Failures in mitochondria functions due to inhibition of ROS-scavenging enzymes of CATs and SODs could lead to damage of the cells and some signs of early apoptosis.

  20. Bioethanol from lignocellulose - pretreatment, enzyme immobilization and hydrolysis kinetics

    DEFF Research Database (Denmark)

    Tsai, Chien Tai

    , the cost of enzyme is still the bottle neck, re-using the enzyme is apossible way to reduce the input of enzyme in the process. In the point view of engineering, the prediction of enzymatic hydrolysis kinetics under different substrate loading, enzyme combination is usful for process design. Therefore...... lignocellulose is the required high cellulase enzyme dosages that increase the processing costs. One method to decrease the enzyme dosage is to re-use BG, which hydrolyze the soluble substrate cellobiose. Based on the hypothesis that immobilized BG can be re-used, how many times the enzyme could be recycled...... liquid and pretreatment time can be reduced, the influence of substrate concentration, pretreatment time and temperature were investigated and optimized. Pretreatment of barley straw by [EMIM]Ac, correlative models were constructed using 3 different pretreatment parameters (temperature, time...

  1. Genetic Dominance & Cellular Processes

    Science.gov (United States)

    Seager, Robert D.

    2014-01-01

    In learning genetics, many students misunderstand and misinterpret what "dominance" means. Understanding is easier if students realize that dominance is not a mechanism, but rather a consequence of underlying cellular processes. For example, metabolic pathways are often little affected by changes in enzyme concentration. This means that…

  2. An approach to determine multiple enzyme activities in the same soil sample for soil health-biogeochemical indexes

    Science.gov (United States)

    Enzyme activities (EAs) are soil health indicators of changes in decomposition processes due to management and the crop(s) affecting the quantity and quality of plant residues and nutrients entering the soil. More commonly assessed soil EAs can provide information of reactions where plant available ...

  3. Enzymatic biodiesel synthesis. Key factors affecting efficiency of the process

    Energy Technology Data Exchange (ETDEWEB)

    Szczesna Antczak, Miroslawa; Kubiak, Aneta; Antczak, Tadeusz; Bielecki, Stanislaw [Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Technical University of Lodz, Stefanowskiego 4/10, 90-924 Lodz (Poland)

    2009-05-15

    Chemical processes of biodiesel production are energy-consuming and generate undesirable by-products such as soaps and polymeric pigments that retard separation of pure methyl or ethyl esters of fatty acids from glycerol and di- and monoacylglycerols. Enzymatic, lipase-catalyzed biodiesel synthesis has no such drawbacks. Comprehension of the latter process and an appreciable progress in production of robust preparations of lipases may soon result in the replacement of chemical catalysts with enzymes in biodiesel synthesis. Engineering of enzymatic biodiesel synthesis processes requires optimization of such factors as: molar ratio of substrates (triacylglycerols: alcohol), temperature, type of organic solvent (if any) and water activity. All of them are correlated with properties of lipase preparation. This paper reports on the interplay between the crucial parameters of the lipase-catalyzed reactions carried out in non-aqueous systems and the yield of biodiesel synthesis. (author)

  4. Effects of the toxic dinoflagellate, Gymnodinium catenatum on hydrolytic and antioxidant enzymes, in tissues of the giant lions-paw scallop Nodipecten subnodosus.

    Science.gov (United States)

    Estrada, Norma; de Jesús Romero, Maria; Campa-Córdova, Angel; Luna, Antonio; Ascencio, Felipe

    2007-11-01

    This study documents effects of the toxic dinoflagellate Gymnodinium catenatum, a producer of paralytic shellfish poison, on juvenile farmed (5.9+/-0.39 cm) giant lions-paw scallop Nodipecten subnodosus. Scallops were fed bloom concentrations of toxic dinoflagellate G. catenatum for 7 h. The effect of the toxic dinoflagellate in different tissues was determined by analysis of antioxidant enzymes (catalase, superoxide dismutase, gluthathione peroxidase), thiobarbituric acid reactive substances (lipid peroxidation), and hydrolytic enzymes (proteases, glycosidases, phosphatases, lipases, and esterases). Histopathological photos record the effects of the toxic dinoflagellate in various tissues. The results show that juvenile lions-paw scallops produce pseudo-feces, partially close their shell, increase melanization, and aggregate hemocytes. Several enzymes were affected and could serve as biological markers. In general, the adductor muscle was not affected. In the digestive gland, some enzymes could be the result of defensive and digestive processes. Gills and mantle tissue were markedly affected because these sites respond first to toxic dinoflagellates, leading to the idea that proteolytic cascades could be involved.

  5. Enzyme technology: Key to selective biorefining

    DEFF Research Database (Denmark)

    Meyer, Anne S.

    2014-01-01

    to the reaction is a unique trait of enzyme catalysis. Since enzyme selectivity means that a specific reaction is catalysed between particular species to produce definite products, enzymes are particularly fit for converting specific compounds in mixed biomass streams. Since enzymes are protein molecules...... their rational use in biorefinery processes requires an understanding of the basic features of enzymes and reaction traits with respect to specificity, kinetics, reaction optima, stability and structure-function relations – we are now at a stage where it is possible to use nature’s enzyme structures as starting...... point and then improve the functional traits by targeted mutation of the protein. The talk will display some of our recent hypotheses related to enzyme action, recently obtained results within knowledge-based enzyme improvements as well as cast light on research methods used in optimizing enzyme...

  6. Changes in attentional processing and affective reactivity in pregnancy and postpartum

    Directory of Open Access Journals (Sweden)

    Gollan JK

    2014-11-01

    Full Text Available Jackie K Gollan, Laina Rosebrock, Denada Hoxha, Katherine L Wisner Asher Center for the Study and Treatment of Depressive Disorders, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA Abstract: The aim of this review is to provide an overview of the research in attentional processing and affective reactivity in pregnancy and postpartum to inform future research. Numerous changes occur in attentional processing and affective reactivity across the childbearing period. This review focuses on the definition and methods of measuring attentional processing and affective reactivity. We discuss research studies that have examined the changes in these two processes during the perinatal phases of pregnancy and postpartum, with and without depression and anxiety. We evaluate the importance of using multiple levels of measurement, including physiological and neuroimaging techniques, to study these processes via implicit and explicit tasks. Research that has identified regions of brain activation using functional magnetic resonance imaging as well as other physiological assessments is integrated into the discussion. The importance of using sophisticated methodological techniques in future studies, such as multiple mediation models, for the purpose of elucidating mechanisms of change during these processes in pregnancy and postpartum is emphasized. We conclude with a discussion of the effect of these processes on maternal psychological functioning and infant outcomes. These processes support a strategy for individualizing treatment for pregnant and postpartum women suffering from depression and anxiety. Keywords: attentional processing, emotion, affective reactivity, depression, pregnancy, postpartum

  7. Effects of Recurring Droughts on Extracellular Enzyme Activity in Mountain Grassland

    Science.gov (United States)

    Fuchslueger, L.; Bahn, M.; Kienzl, S.; Hofhansl, F.; Schnecker, J.; Richter, A.

    2015-12-01

    Water availability is a key factor for biogeochemical processes and determines microbial activity and functioning, and thereby organic matter decomposition in soils by affecting the osmotic potential, soil pore connectivity, substrate diffusion and nutrient availability. Low water availability during drought periods therefore directly affects microbial activity. Recurring drought periods likely induce shifts in microbial structure that might be reflected in altered responses of microbial turnover of organic matter by extracellular enzymes. To study this we measured a set of potential extracellular enzyme activity rates (cellobiohydrolase CBH; leucine-amino-peptidase LAP; phosphatase PHOS; phenoloxidase POX), in grassland soils that were exposed to extreme experimental droughts during the growing seasons of up to five subsequent years. During the first drought period after eight weeks of rain exclusion all measured potential enzyme activities were significantly decreased. In parallel, soil extractable organic carbon and nitrogen concentrations increased and microbial community structure, determined by phospholipid fatty acid analysis, changed. In soils that were exposed to two and three drought periods only PHOS decreased. After four years of drought again CBH, PHOS and POX decreased, while LAP was unaffected; after five years of drought PHOS and POX decreased and CBH and LAP remained stable. Thus, our results suggest that recurring extreme drought events can cause different responses of extracellular enzyme activities and that the responses change over time. We will discuss whether and to what degree these changes were related to shifts in microbial community composition. However, independent of whether a solitary or a recurrent drought was imposed, in cases when enzyme activity rates were altered during drought, they quickly recovered after rewetting. Overall, our data suggest that microbial functioning in mountain grassland is sensitive to drought, but highly

  8. The use of enzymes for beer brewing: Thermodynamic comparison on resource use

    International Nuclear Information System (INIS)

    Donkelaar, Laura H.G. van; Mostert, Joost; Zisopoulos, Filippos K.; Boom, Remko M.; Goot, Atze-Jan van der

    2016-01-01

    The exergetic performance of beer produced by the conventional malting and brewing process is compared with that of beer produced using an enzyme-assisted process. The aim is to estimate if the use of an exogenous enzyme formulation reduces the environmental impact of the overall brewing process. The exergy efficiency of malting was 77%. The main exergy losses stem from the use of natural gas for kilning and from starch loss during germination. The exergy efficiency of the enzyme production process ranges between 20% and 42% depending on if the by-product was considered useful. The main exergy loss was due to high power requirement for fermentation. The total exergy input in the enzyme production process was 30 times the standard chemical exergy of the enzyme, which makes it exergetically expensive. Nevertheless, the total exergy input for the production of 100 kg beer was larger for the conventional process (441 MJ) than for the enzyme-assisted process (354 MJ). Moreover, beer produced using enzymes reduced the use of water, raw materials and natural gas by 7%, 14% and 78% respectively. Consequently, the exergy loss in the enzyme production process is compensated by the prevention of exergy loss in the total beer brewing process. - Highlights: • The exergetic production costs of enzymes are ±30 times their standard chemical exergy. • These costs of enzymes should be taken into account in exergy analysis. • Enzyme-assisted brewing is more exergy efficient than brewing with malted barley. • Enzyme-assisted brewing saves raw material, water and energy.

  9. Elaboration Likelihood and the Counseling Process: The Role of Affect.

    Science.gov (United States)

    Stoltenberg, Cal D.; And Others

    The role of affect in counseling has been examined from several orientations. The depth of processing model views the efficiency of information processing as a function of the extent to which the information is processed. The notion of cognitive processing capacity states that processing information at deeper levels engages more of one's limited…

  10. Enzyme Immobilization: An Overview on Methods, Support Material, and Applications of Immobilized Enzymes.

    Science.gov (United States)

    Sirisha, V L; Jain, Ankita; Jain, Amita

    Immobilized enzymes can be used in a wide range of processes. In recent years, a variety of new approaches have emerged for the immobilization of enzymes that have greater efficiency and wider usage. During the course of the last two decades, this area has rapidly expanded into a multidisciplinary field. This current study is a comprehensive review of a variety of literature produced on the different enzymes that have been immobilized on various supporting materials. These immobilized enzymes have a wide range of applications. These include applications in the sugar, fish, and wine industries, where they are used for removing organic compounds from waste water. This study also reviews their use in sophisticated biosensors for metabolite control and in situ measurements of environmental pollutants. Immobilized enzymes also find significant application in drug metabolism, biodiesel and antibiotic production, bioremediation, and the food industry. The widespread usage of immobilized enzymes is largely due to the fact that they are cheaper, environment friendly, and much easier to use when compared to equivalent technologies. © 2016 Elsevier Inc. All rights reserved.

  11. Macroscopic brain dynamics during verbal and pictorial processing of affective stimuli.

    Science.gov (United States)

    Keil, Andreas

    2006-01-01

    Emotions can be viewed as action dispositions, preparing an individual to act efficiently and successfully in situations of behavioral relevance. To initiate optimized behavior, it is essential to accurately process the perceptual elements indicative of emotional relevance. The present chapter discusses effects of affective content on neural and behavioral parameters of perception, across different information channels. Electrocortical data are presented from studies examining affective perception with pictures and words in different task contexts. As a main result, these data suggest that sensory facilitation has an important role in affective processing. Affective pictures appear to facilitate perception as a function of emotional arousal at multiple levels of visual analysis. If the discrimination between affectively arousing vs. nonarousing content relies on fine-grained differences, amplification of the cortical representation may occur as early as 60-90 ms after stimulus onset. Affectively arousing information as conveyed via visual verbal channels was not subject to such very early enhancement. However, electrocortical indices of lexical access and/or activation of semantic networks showed that affectively arousing content may enhance the formation of semantic representations during word encoding. It can be concluded that affective arousal is associated with activation of widespread networks, which act to optimize sensory processing. On the basis of prioritized sensory analysis for affectively relevant stimuli, subsequent steps such as working memory, motor preparation, and action may be adjusted to meet the adaptive requirements of the situation perceived.

  12. Mycelial growth interactions and mannan-degrading enzyme ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-05-18

    May 18, 2009 ... enzymes (Frost and Moss, 1987). However, microbial enzymes are more in use due to cheaper substrates and ease of process modification. In microbial enzyme and biomass production, defined mixed culture method in which more than one organism grows simultaneously can result in increased biomass ...

  13. Contribution of attendant anions on cadmium toxicity to soil enzymes.

    Science.gov (United States)

    Tian, Haixia; Kong, Long; Megharaj, Mallavarapu; He, Wenxiang

    2017-11-01

    Sorption and desorption are critical processes to control the mobility and biotoxicity of cadmium (Cd) in soils. It is known that attendant anion species of heavy metals could affect metal adsorption on soils and might further alter their biotoxicity. However, for Cd, the influence of attendant anions on its sorption in soils and subsequent toxicity on soil enzymes are still unknown. In this work, four Cd compounds with different salt anions (SO 4 2- , NO 3 - , Cl - , and Ac - ) were selected to investigate their impact of on the sorption, soil dehydrogenase activity (DHA) and alkaline phosphatase activity (ALP). Thus, a series of simulated Cd pollution batch experiments including measuring adsorption-desorption behavior of Cd on soils and soil enzyme activities were carried out. Results showed that CdSO 4 exhibited highest sorption capacity among the tested soils except in Hunan soil. The Cd sorption with NO 3 - displayed a similar behavior with Cl - on all tested soils. Compared with soil properties, all four kinds of anions on Cd sorption played a more significant role affecting Cd ecological toxicity to soil DHA and ALP. Cd in acetate or nitrate form appears more sensitive towards DHA than sulphate and chloride, while the later pair is more toxic towards ALP than the former. These results have important implications for evaluation of Cd contamination using soil enzyme as bioindicator. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Intestinal enzyme distribution after supralethal irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Becciolini, A; Gerber, G B; Buracchi, A; Deroo, J [Florence Univ. (Italy). Istituto di Radiologia; Centre d' Etude de l' Energie Nucleaire, Mol (Belgium). Dept. de Radiobiologie)

    1977-07-01

    The activity of some intestinal enzymes has been studied after 2 kR irradiation. Brush border enzymes, maltase and leucineaminopeptidase (LAP) show an increase 20 hours after irradiation, while after 72 hours their activities are reduced to very low levels. Lysosomal enzymes show a completely different behaviour: acid phosphatase activity increases only 72 hours after irradiation, whereas ..beta.. glucuronidase increases significantly after 20 hours and reaches values two or three times higher than controls after 72 hours. The histologic picture at the first interval after irradiation shows gross alterations in the crypt region, but the villi appear nearly normal. Seventy-two hours after irradiation the whole epithelium is affected and very numerous leukocytes are present in the stroma.

  15. Design and modelling of enzyme/poly-pyrrole modified electrodes for bio-catalyzed electro-synthesis processes

    International Nuclear Information System (INIS)

    Gros, Pierre

    1996-01-01

    This research thesis reports a study which aims at developing, analyzing and integrating an electrode-enzyme interface within an electro-enzymatic reactor to develop electrochemical biosensors. The adopted method comprises a confinement of the enzyme at the electrode surface by means of an electro-formed poly-pyrrole film. The author reports an experimental and theoretical study of the coupling between electrochemical reaction, enzymatic reaction and matter transfer in the polymer in order to better understand the operation of so-modified electrodes. Different parameters have an influence on the reaction rate. A numerical model (validated by experiments) allows the identification of the reaction limiting stages. A new elaboration protocol allows the polymer permeability to be increased. The interface is first applied to the reduction of the NAD coenzyme, and the process is also applied to the production of gluconic acid [fr

  16. Enzymes: The possibility of production and applications

    Directory of Open Access Journals (Sweden)

    Petronijević Živomir B.

    2003-01-01

    Full Text Available Enzymes are biological catalysts with increasing application in the food pharmaceutical, cosmetic, textile and chemical industry. They are also important as reagents in chemical analysis, leather fabrications and as targets for the design of new drugs. Keeping in mind the growing need to replace classical chemical processes by alternative ones, because of ever growing environmental pollution, it is important that enzyme and other biotechnological processes are economical. Therefore, price decrease and stability and enzyme preparation efficiency increase are required more and more. This paper presents a short review of methods for yield increase and the improvement of the quality of enzyme products as commercial products, as well as a review of the possibilities of their application.

  17. Uteroplacental insufficiency down regulates insulin receptor and affects expression of key enzymes of long-chain fatty acid (LCFA metabolism in skeletal muscle at birth

    Directory of Open Access Journals (Sweden)

    Puglianiello Antonella

    2008-05-01

    Full Text Available Abstract Background Epidemiological studies have revealed a relationship between early growth restriction and the subsequent development of insulin resistance and type 2 diabetes. Ligation of the uterine arteries in rats mimics uteroplacental insufficiency and serves as a model of intrauterine growth restriction (IUGR and subsequent developmental programming of impaired glucose tolerance, hyperinsulinemia and adiposity in the offspring. The objective of this study was to investigate the effects of uterine artery ligation on the skeletal muscle expression of insulin receptor and key enzymes of LCFA metabolism. Methods Bilateral uterine artery ligation was performed on day 19 of gestation in Sprague-Dawley pregnant rats. Muscle of the posterior limb was dissected at birth and processed by real-time RT-PCR to analyze the expression of insulin receptor, ACCα, ACCβ (acetyl-CoA carboxylase alpha and beta subunits, ACS (acyl-CoA synthase, AMPK (AMP-activated protein kinase, alpha2 catalytic subunit, CPT1B (carnitine palmitoyltransferase-1 beta subunit, MCD (malonyl-CoA decarboxylase in 14 sham and 8 IUGR pups. Muscle tissue was treated with lysis buffer and Western immunoblotting was performed to assay the protein content of insulin receptor and ACC. Results A significant down regulation of insulin receptor protein (p Conclusion Our data suggest that uteroplacental insufficiency may affect skeletal muscle metabolism down regulating insulin receptor and reducing the expression of key enzymes involved in LCFA formation and oxidation.

  18. Primary structure of the precursor for the anthozoan neuropeptide Antho-RFamide from Renilla köllikeri: Evidence for unusual processing enzymes

    DEFF Research Database (Denmark)

    Reinscheid, R K; Grimmelikhuijzen, C J

    1994-01-01

    distributed over the precursor protein. Of the 36 Antho-RFamide sequences, 29 copies are separated by the five amino acid spacer sequence Arg-Glu/Gly-Asn/Ser/Asp-Glu/Lys-Glu. This implicates processing at single Arg and single Glu residues. Endoproteolytic cleavage at the C-terminal side of paired or single......, and possibly also at other residues, and thus liberate all Antho-RFamide sequences. The processing of one precursor molecule probably yields 38 neuropeptides.(ABSTRACT TRUNCATED AT 250 WORDS)...... basic residues is a well known initial step in the maturation of precursor proteins. Cleavage at the C-terminal side of acidic residues, however, is unusual and must be catalyzed by a new type of processing enzyme. This processing enzyme is most likely to be an endoprotease, because the simplest way...

  19. Process optimization for bioethanol production from cassava starch using novel eco-friendly enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Shanavas, S.; Padmaja, G.; Moorthy, S.N.; Sajeev, M.S.; Sheriff, J.T. [Division of Crop Utilization, Central Tuber Crops Research Institute, Thiruvananthapuram, 695 017 Kerala (India)

    2011-02-15

    Although cassava (Manihot esculenta Crantz) is a potential bioethanol crop, high operational costs resulted in a negative energy balance in the earlier processes. The present study aimed at optimizing the bioethanol production from cassava starch using new enzymes like Spezyme {sup registered} Xtra and Stargen trademark 001. The liquefying enzyme Spezyme was optimally active at 90 C and pH 5.5 on a 10% (w/v) starch slurry at levels of 20.0 mg (280 Amylase Activity Units) for 30 min. Stargen levels of 100 mg (45.6 Granular Starch Hydrolyzing Units) were sufficient to almost completely hydrolyze 10% (w/v) starch at room temperature (30 {+-} 1 C). Ethanol yield and fermentation efficiency were very high (533 g/kg and 94.0% respectively) in the Stargen + yeast process with 10% (w/v) starch for 48 h. Raising Spezyme and Stargen levels to 560 AAU and 91.2 GSHU respectively for a two step loading [initial 20% (w/v) followed by 20% starch after Spezyme thinning]/initial higher loading of starch (40% w/v) resulted in poor fermentation efficiency. Upscaling experiments using 1.0 kg starch showed that Stargen to starch ratio of 1:100 (w/w) could yield around 558 g ethanol/kg starch, with a high fermentation efficiency of 98.4%. The study showed that Spezyme level beyond 20.0 mg for a 10% (w/v) starch slurry was not critical for optimizing bioethanol yield from cassava starch, although an initial thinning of starch for 30 min by Spezyme facilitated rapid saccharification-fermentation by Stargen + yeast system. The specific advantage of the new process was that the reaction could be completed within 48.5 h at 30 {+-} 1 C. (author)

  20. Prediction of Wild-type Enzyme Characteristics

    DEFF Research Database (Denmark)

    Geertz-Hansen, Henrik Marcus

    of biotechnology, including enzyme discovery and characterization. This work presents two articles on sequence-based discovery and functional annotation of enzymes in environmental samples, and two articles on analysis and prediction of enzyme thermostability and cofactor requirements. The first article presents...... a sequence-based approach to discovery of proteolytic enzymes in metagenomes obtained from the Polar oceans. We show that microorganisms living in these extreme environments of constant low temperature harbour genes encoding novel proteolytic enzymes with potential industrial relevance. The second article...... presents a web server for the processing and annotation of functional metagenomics sequencing data, tailored to meet the requirements of non-bioinformaticians. The third article presents analyses of the molecular determinants of enzyme thermostability, and a feature-based prediction method of the melting...

  1. Utilization of cellulosic materials through enzymic hydrolysis. 11. Preliminary assessment of an integrated processing scheme

    Energy Technology Data Exchange (ETDEWEB)

    Wilke, C R; Cysewski, G R; Yang, R D

    1976-01-01

    An integrated processing scheme is described for the conversion of a cellulose waste (newsprint) to sugars by enzymic hydrolysis and then to ethanol and yeast by fermentation. The unconverted solids are burned to produce process energy requirements and surplus electric power. With the preliminary design at an estimate total capital investment of $33.4 x 10/sup 6/, 95% ethanol may be produced FOB (free on board) the plant for approx.61 cents/gal, assuming zero cost for cellulosic feed; taking into account interest rates and taxes and a cellulose feed cost of $20/ton the figure becomes $1.67/gal.

  2. Spatiotemporal expression of endogenous opioid processing enzymes in mouse uterus at peri-implantation.

    Science.gov (United States)

    Wu, Weiwei; Kong, Shuangbo; Wang, Bingyan; Chen, Yongjie; Wang, Haibin

    2016-02-01

    Successful implantation requires intimate interactions between a competent blastocyst and a receptive uterus. We recently demonstrated that the aberrant activation of opioid signaling by exogenous ligands adversely affects preimplantation embryonic development and subsequent implantation in mice. However, the underlying machinery governing the dynamic homeostasis of the endogenous opioid system in the uterus during early pregnancy remains elusive. We now show that all three major endogenous opioid precursors are spatiotemporally expressed in the uterus during early pregnancy. Moreover, we observe the well-coordinated expression of the synthetic enzyme prohormone convertases 1/3 (PC1/3) at lower levels and of its inhibitor proprotein convertase subtilisin/kexin type 1 inhibitor (Pcsk1n) and the degrading enzyme membrane metallo-endopeptidase (MME) at higher levels in the receptive uterus. Both estrogen and progestin tend to reduce the uterine levels of opioid ligand precursors in the ovariectomized mouse model. This tight regulation of the endogenous opioid system by PC1/3, Pcsk1n and MME has been further confirmed in physiologically related pseudopregnancy and delayed implantation mouse models. The coordinated regulation of opioid precursor biosynthesis and metabolism helps to create appropriate opioid signaling ensuring uterine receptivity for implantation. Thus, endogenous uterine opioid levels are primarily determined by the coordinated expressions of PC1/3, Pcsk1n and MME under the influence of ovarian progestin and estrogen. Our findings raise an additional cautionary note regarding the effects of opioid abuse on early pregnancy events.

  3. Regulations of enzymes in animals: effects of developmental processes, cancer, and radiation. Final report. [Analysis of enzymes in human cancer tissue

    Energy Technology Data Exchange (ETDEWEB)

    Knox, W.E.

    1978-09-01

    Low grade tumors of various origins are chemically very different. High grade tumors, whatever their origin, are chemically very similar to one another and to embryonic tissues. Analyses of human tumor tissues and sera from cancer patients were conducted for two new groups of enzymes expected to be informative about the physiological state of the tissue. The enzymes measured in tumors and sera were chosen because they were characteristic of fetal tissues and high grade neoplasms in rats, and could, therefore, be expected to exist in human cancers (and fetuses) and to predominate more in those of higher grade malignancies. Results indicated that the classification of enzymes (or isozymes) as fetal or adult types in the rat could be extended to man. Human cancers do contain most of the enzymes expected, and lack others, as expected. Analyses of the same enzymes in sera gave less clear results. It was recognized at the outset that no simple proportionality existed between tissue and serum levels. The tendency existed in cancer patients to have in serum elevated amounts of those enzymes characteristic of undifferentiated tissues. The abnormalities in a specific patient are conditioned by his physiological state, by the grade of his tumor, and by the mass of tumor present. The tumor mass had a very significant effect, so that monitoring this tumor burden by chemical means should be quite possible. The latest work focused on particular enzymes that have not previously been measured in cancer patients. These studies concentrated on pyrroline-5-carboxylate (P-5-C) reductase and its inhibition and on lysosomal glucosidases and phosphatases. Both groups are relatively high in fetal and neoplastic tissues.

  4. Factors affecting the periapical healing process of endodontically treated teeth

    Directory of Open Access Journals (Sweden)

    Roberto Holland

    Full Text Available Abstract Tissue repair is an essential process that reestablishes tissue integrity and regular function. Nevertheless, different therapeutic factors and clinical conditions may interfere in this process of periapical healing. This review aims to discuss the important therapeutic factors associated with the clinical protocol used during root canal treatment and to highlight the systemic conditions associated with the periapical healing process of endodontically treated teeth. The antibacterial strategies indicated in the conventional treatment of an inflamed and infected pulp and the modulation of the host's immune response may assist in tissue repair, if wound healing has been hindered by infection. Systemic conditions, such as diabetes mellitus and hypertension, can also inhibit wound healing. The success of root canal treatment is affected by the correct choice of clinical protocol. These factors are dependent on the sanitization process (instrumentation, irrigant solution, irrigating strategies, and intracanal dressing, the apical limit of the root canal preparation and obturation, and the quality of the sealer. The challenges affecting the healing process of endodontically treated teeth include control of the inflammation of pulp or infectious processes and simultaneous neutralization of unpredictable provocations to the periapical tissue. Along with these factors, one must understand the local and general clinical conditions (systemic health of the patient that affect the outcome of root canal treatment prediction.

  5. Enzyme-based solutions for textile processing and dye contaminant biodegradation-a review.

    Science.gov (United States)

    Chatha, Shahzad Ali Shahid; Asgher, Muhammad; Iqbal, Hafiz M N

    2017-06-01

    The textile industry, as recognized conformist and stake industry in the world's economy, is facing serious environmental challenges. In numerous industries, in practice, various chemical-based processes from initial sizing to final washing are fascinating harsh environment concerns. Some of these chemicals are corrosive to equipment and cause serious damage itself. Therefore, in the twenty-first century, chemical and allied industries quest a paradigm transition from traditional chemical-based concepts to a greener, sustainable, and environmentally friendlier catalytic alternative, both at the laboratory and industrial scales. Bio-based catalysis offers numerous benefits in the context of biotechnological industry and environmental applications. In recent years, bio-based processing has received particular interest among the scientist for inter- and multi-disciplinary investigations in the areas of natural and engineering sciences for the application in biotechnology sector at large and textile industries in particular. Different enzymatic processes such as chemical substitution have been developed or in the process of development for various textile wet processes. In this context, the present review article summarizes current developments and highlights those areas where environment-friendly enzymatic textile processing might play an increasingly important role in the textile industry. In the first part of the review, a special focus has been given to a comparative discussion of the chemical-based "classical/conventional" treatments and the modern enzyme-based treatment processes. Some relevant information is also reported to identify the major research gaps to be worked out in future.

  6. Protective Antioxidant Enzyme Activities are Affected by Drought in Quinoa (Chenopodium Quinoa Willd)

    DEFF Research Database (Denmark)

    Fghire, Rachid; Ali, Oudou Issa; Anaya, Fatima

    2013-01-01

    Changes in water availability are responsible for a variety of biochemical stress responses in plant organisms. Stress induced by this factor may be associated with enhanced reactive oxygen species (ROS) generations, which cause oxidative damage. In the present study we investigated the activities...... increased in all treatments. These results suggest that antioxidant enzymes play important roles in reducing oxidative stress in quinoa plant exposed to drought stress....... of antioxidant enzymes superoxide dismutase (SOD), polyphenoloxydase (PPO), peroxidase (POD) and catalase (CAT), measured at flowering in quinoa, subjected to varying levels of drought stress. Drought levels were 100, 50 and 33% of evapotranspiration (ETc), and rainfed. Compared to full water supply (100%ETc...

  7. Volatile compounds and changes in flavour-related enzymes during cold storage of high-intensity pulsed electric field- and heat-processed tomato juices.

    Science.gov (United States)

    Aguiló-Aguayo, Ingrid; Soliva-Fortuny, Robert; Martín-Belloso, Olga

    2010-08-15

    The effects of high-intensity pulsed electric field (HIPEF) processing (35 kV cm(-1) for 1500 micros, using 4 micros bipolar pulses at 100 Hz) on the production of volatile compounds and flavour-related enzymes in tomato juice were investigated and compared with those of thermal processing (90 degrees C for 30 or 60 s). Tomato juice treated by HIPEF showed lower residual lipoxygenase (LOX) activity (70.2%) than juice heated at 90 degrees C for 60 s (80.1%) or 30 s (93.2%). In contrast, hydroperoxide lyase (HPL) was almost completely inactivated when the juice was subjected to 90 degrees C for 60 s, whereas roughly 50% of the control tomato juice was depleted after HIPEF treatment or thermal processing at 90 degrees C for 30 s. A slight decrease was observed in the initial LOX activity of treated and untreated samples during storage, whereas initial HPL activity was strongly affected over time. HIPEF-treated juice exhibited higher levels of compounds contributing to tomato aroma than untreated and heat-treated juices throughout storage. Thus HIPEF processing can preserve flavour quality and stability of tomato juice compared with conventional thermal treatments. Copyright (c) 2010 Society of Chemical Industry.

  8. Random-walk enzymes

    Science.gov (United States)

    Mak, Chi H.; Pham, Phuong; Afif, Samir A.; Goodman, Myron F.

    2015-09-01

    Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C →U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics.

  9. Can we always sweep the details of RNA-processing under the carpet?

    International Nuclear Information System (INIS)

    Klironomos, Filippos D; Berg, Johannes; De Meaux, Juliette

    2013-01-01

    RNA molecules follow a succession of enzyme-mediated processing steps from transcription to maturation. The participating enzymes, for example the spliceosome for mRNAs and Drosha and Dicer for microRNAs, are also produced in the cell and their copy-numbers fluctuate over time. Enzyme copy-number changes affect the processing rate of the substrate molecules; high enzyme numbers increase the processing rate, while low enzyme numbers decrease it. We study different RNA-processing cascades where enzyme copy-numbers are either fixed or fluctuate. We find that for the fixed enzyme copy-numbers, the substrates at steady-state are Poisson-distributed, and the whole RNA cascade dynamics can be understood as a single birth–death process of the mature RNA product. In this case, solely fluctuations in the timing of RNA processing lead to variation in the number of RNA molecules. However, we show analytically and numerically that when enzyme copy-numbers fluctuate, the strength of RNA fluctuations increases linearly with the RNA transcription rate. This linear effect becomes stronger as the speed of enzyme dynamics decreases relative to the speed of RNA dynamics. Interestingly, we find that under certain conditions, the RNA cascade can reduce the strength of fluctuations in the expression level of the mature RNA product. Finally, by investigating the effects of processing polymorphisms, we show that it is possible for the effects of transcriptional polymorphisms to be enhanced, reduced or even reversed. Our results provide a framework to understand the dynamics of RNA processing. (paper)

  10. Radioisotope-enzymes and cancer study

    International Nuclear Information System (INIS)

    Luyen, T. van

    2008-01-01

    Cancer is a pathological sign, when the abnormal cells appear in certain human tissues or organs. These cells can reproduce beyond the control of normal biological protection mechanism. Because they reproduce very fast, the metabolic process is accelerated, which causes the extreme need for more energy, substrate and catalyzing enzymes. Based on these needs, we can control the metabolic process by: Stopping supplying the energy. Stopping supplying the substrate and the materials to build up the cell's structure. Stopping operating catalysis by breaking out the enzyme's structure. Destroying the tumor cell by extra agents such as radiations and chemicals. All of these methods have been studied for a long time, which costs too much money, time and labor. Although we succeeded in some ways, the results are still not satisfactory. There are many reasons for this situation but the main one is the lack of information to understand all the processes taking place in the cell and our body. However, as far as we studied, we would like to propose the method to break the structure of the enzyme by nuclear decay process. (author)

  11. Guidelines for Affective Signal Processing (ASP): From lab to life

    NARCIS (Netherlands)

    van den Broek, Egon; Janssen, Joris H.; Westerink, Joyce H.D.M.; Cohn, J.; Nijholt, Antinus; Pantic, Maja

    2009-01-01

    This article presents the rationale behind ACII2009’s special session: Guidelines for Affective Signal Processing (ASP): From lab to life. Although affect is embraced by both science and engineering, its recognition has not reached a satisfying level. Through a concise overview of ASP and the

  12. [Interaction between CYP450 enzymes and metabolism of traditional Chinese medicine as well as enzyme activity assay].

    Science.gov (United States)

    Lu, Tu-lin; Su, Lian-lin; Ji, De; Gu, Wei; Mao, Chun-qin

    2015-09-01

    Drugs are exogenous compounds for human bodies, and will be metabolized by many enzymes after administration. CYP450 enzyme, as a major metabolic enzyme, is an important phase I drug metabolizing enzyme. In human bodies, about 75% of drug metabolism is conducted by CYP450 enzymes, and CYP450 enzymes is the key factor for drug interactions between traditional Chinese medicine( TCM) -TCM, TCM-medicine and other drug combination. In order to make clear the interaction between metabolic enzymes and TCM metabolism, we generally chose the enzymatic activity as an evaluation index. That is to say, the enhancement or reduction of CYP450 enzyme activity was used to infer the inducing or inhibitory effect of active ingredients and extracts of traditional Chinese medicine on enzymes. At present, the common method for measuring metabolic enzyme activity is Cocktail probe drugs, and it is the key to select the suitable probe substrates. This is of great significance for study drug's absorption, distribution, metabolism and excretion (ADME) process in organisms. The study focuses on the interaction between TCMs, active ingredients, herbal extracts, cocktail probe substrates as well as CYP450 enzymes, in order to guide future studies.

  13. Optimization of parameters for enhanced oil recovery from enzyme treated wild apricot kernels.

    Science.gov (United States)

    Rajaram, Mahatre R; Kumbhar, Baburao K; Singh, Anupama; Lohani, Umesh Chandra; Shahi, Navin C

    2012-08-01

    Present investigation was undertaken with the overall objective of optimizing the enzymatic parameters i.e. moisture content during hydrolysis, enzyme concentration, enzyme ratio and incubation period on wild apricot kernel processing for better oil extractability and increased oil recovery. Response surface methodology was adopted in the experimental design. A central composite rotatable design of four variables at five levels was chosen. The parameters and their range for the experiments were moisture content during hydrolysis (20-32%, w.b.), enzyme concentration (12-16% v/w of sample), combination of pectolytic and cellulolytic enzyme i.e. enzyme ratio (30:70-70:30) and incubation period (12-16 h). Aspergillus foetidus and Trichoderma viride was used for production of crude enzyme i.e. pectolytic and cellulolytic enzyme respectively. A complete second order model for increased oil recovery as the function of enzymatic parameters fitted the data well. The best fit model for oil recovery was also developed. The effect of various parameters on increased oil recovery was determined at linear, quadric and interaction level. The increased oil recovery ranged from 0.14 to 2.53%. The corresponding conditions for maximum oil recovery were 23% (w.b.), 15 v/w of the sample, 60:40 (pectolytic:cellulolytic), 13 h. Results of the study indicated that incubation period during enzymatic hydrolysis is the most important factor affecting oil yield followed by enzyme ratio, moisture content and enzyme concentration in the decreasing order. Enzyme ratio, incubation period and moisture content had insignificant effect on oil recovery. Second order model for increased oil recovery as a function of enzymatic hydrolysis parameters predicted the data adequately.

  14. Loneliness in late-life depression: structural and functional connectivity during affective processing.

    Science.gov (United States)

    Wong, N M L; Liu, H-L; Lin, C; Huang, C-M; Wai, Y-Y; Lee, S-H; Lee, T M C

    2016-09-01

    Late-life depression (LLD) in the elderly was reported to present with emotion dysregulation accompanied by high perceived loneliness. Previous research has suggested that LLD is a disorder of connectivity and is associated with aberrant network properties. On the other hand, perceived loneliness is found to adversely affect the brain, but little is known about its neurobiological basis in LLD. The current study investigated the relationships between the structural connectivity, functional connectivity during affective processing, and perceived loneliness in LLD. The current study included 54 participants aged >60 years of whom 31 were diagnosed with LLD. Diffusion tensor imaging (DTI) data and task-based functional magnetic resonance imaging (fMRI) data of an affective processing task were collected. Network-based statistics and graph theory techniques were applied, and the participants' perceived loneliness and depression level were measured. The affective processing task included viewing affective stimuli. Structurally, a loneliness-related sub-network was identified across all subjects. Functionally, perceived loneliness was related to connectivity differently in LLD than that in controls when they were processing negative stimuli, with aberrant networking in subcortical area. Perceived loneliness was identified to have a unique role in relation to the negative affective processing in LLD at the functional brain connectional and network levels. The findings increas our understanding of LLD and provide initial evidence of the neurobiological mechanisms of loneliness in LLD. Loneliness might be a potential intervention target in depressive patients.

  15. Determining the safety of enzymes used in animal feed.

    Science.gov (United States)

    Pariza, Michael W; Cook, Mark

    2010-04-01

    The purpose of this paper is to provide guidance for evaluating the safety of enzyme preparations used in animal feed. Feed enzymes are typically added to animal feed to increase nutrient bioavailability by acting on feed components prior to or after consumption, i.e., within the gastrointestinal tract. In contrast, food processing enzymes are generally used during processing and then inactivated or removed prior to consumption. The enzymes used in both applications are almost always impure mixtures of active enzyme and other metabolites from the production strain, hence similar safety evaluation procedures for both are warranted. We propose that the primary consideration should be the safety of the production strain and that the decision tree mechanism developed previously for food processing enzymes (Pariza and Johnson, 2001) is appropriate for determining the safety of feed enzymes. Thoroughly characterized non-pathogenic, non-toxigenic microbial strains with a history of safe use in enzyme manufacture are also logical candidates for generating safe strain lineages, from which additional strains may be derived via genetic modification by traditional and non-traditional strategies. For new feed enzyme products derived from a safe strain lineage, it is important to ensure a sufficiently high safety margin for the intended use, and that the product complies with appropriate specifications for chemical and microbial contamination. Copyright 2009 Elsevier Inc. All rights reserved.

  16. Electrical stimulation affects metabolic enzyme phosphorylation, protease activation and meat tenderization in beef

    DEFF Research Database (Denmark)

    Li, C.B.; Li, J.; Zhou, G.H.

    2012-01-01

    The objective of this study was to investigate the response of sarcoplasmic proteins in bovine longissimus muscle to low-voltage electrical stimulation (ES, 80 V, 35 s) after dressing and its contribution to meat tenderization at early postmortem time. Proteome analysis showed that ES resulted...... muscles up to 24 h. Immunohistochemistry and transmission electron microscopy further indicated that lysosomal enzymes were released at early postmortem time. ES also induced ultrastructural disruption of sarcomeres. In addition, ES accelerated (P ..., as well as pH decline and more preferred pH/temperature decline mode. Finally, ES accelerated meat tenderization with lower (P time. A possible relationship was suggested between change in phosphorylation level of energy metabolic enzymes and postmortem...

  17. Dose-dependency of radiation on enzyme production in Trichoderma reesei

    International Nuclear Information System (INIS)

    Kumakura, Minoru

    1993-01-01

    Effect of irradiation dose on the production of cellulase and amylase related enzymes in Trichoderma reesei was studied in which post-irradiation time response pattern was measured. The damage of the cells irradiated with certain irradiation doses (1.40±0.20x10 5 , 2.20±0.10x10 5 , 3.00±0.50x10 5 and 3.50±0.20x10 5 rad) was rapidly recovered. The increased enzyme production in the culture of the irradiated cells resulted from the recovery of radiation damage after irradiation. The function of cell growth was not affected by irradiation below dose of 5x10 5 rad, though the function of enzyme synthesis was drastically affected. (orig.)

  18. Adsorption of cellulase on cellulolytic enzyme lignin from lodgepole pine.

    Science.gov (United States)

    Tu, Maobing; Pan, Xuejun; Saddler, Jack N

    2009-09-09

    Enzymatic hydrolysis of lignocellulosic materials is significantly affected by cellulase adsorption onto the lignocellulosic substrates and lignin. The presence of lignin plays an important role in lignocellulosic hydrolysis and enzyme recycling. Three cellulase preparations (Celluclast, Spezyme CP, and MSUBC) were evaluated to determine their adsorption onto cellulolytic enzyme lignin (CEL) from steam-exploded Lodgepole pine (SELP) and ethanol (organosolv)-pretreated Lodgepole pine (EPLP). The adsorption affinity of cellulase (Celluclast) onto isolated lignin (CEL-EPLP and CEL-SELP) was slightly higher than that from corresponding EPLP and SELP substrates on the basis of the Langmuir constants. Effects of temperature, ionic strength, and surfactant on cellulase adsorption onto isolated lignin were also explored in this study. Thermodynamic analysis of enzyme adsorption onto isolated lignin (Gibbs free energy change DeltaG(0) approximately -30 kJ/mol) indicated this adsorption was a spontaneous process. The addition of surfactant (0.2% w/v) could reduce the adsorption of cellulase onto CEL-SELP by 60%. Two types of adsorption isotherm were compared for cellulase adsorption onto isolated lignin. A Langmuir adsorption isotherm showed better fit for the experimental data than a Freundlich adsorption isotherm.

  19. Biochemical characterization of thermostable cellulase enzyme from ...

    African Journals Online (AJOL)

    user

    2012-05-29

    May 29, 2012 ... tested for their ability to produce cellulase complex enzyme by growing on a defined substrates as well ... In the current industrial processes, cellulolytic enzymes ... energy sources such as glucose, ethanol, hydrogen and.

  20. Evaluation of pressure tuning of enzymes

    DEFF Research Database (Denmark)

    Naghshineh, Mahsa

    and high energy consumption. Therefore, searching for an environmentally friendly method of pectin extraction is a task for science and industry. Employment of hydrolytic enzymes may represent a green approach to obtain intact pectin polymer. However, the low stability/activity of enzymes, and low polymer...... yield of enzymatic extraction limits the application of enzyme in pectin production. There is evidence that emerging technology of high hydrostatic pressure processing can result in stabilization and activation of some enzymes. Therefore, the use of high hydrostatic pressure in combination with enzyme...... (cellulase/xylanase: 50/0, 50/25, 50/50, 25/50, and 0/50 U/g lime peel) at ambient pressure, 100 and 200 MPa were used to extract pectin from dried lime peel waste. It was found that pressure level, type and concentration of enzyme significantly influenced pectin yield and degree of esterification (DE...

  1. Growth of Candida boidinii on methanol and the activity of methanol-degrading enzymes as affected from formaldehyde and methylformate.

    Science.gov (United States)

    Aggelis, G; Margariti, N; Kralli, C; Flouri, F

    2000-06-23

    Formaldehyde and methylformate affect the growth of Candida boidinii on methanol and the activity of methanol-degrading enzymes. The presence of both intermediates in the feeding medium caused an increase in biomass yield and productivity and a decrease in the specific rate of methanol consumption. In the presence of formaldehyde, the activity of formaldehyde dehydrogenase and formate dehydrogenase was essentially increased, whereas the activity of methanol oxidase was decreased. On the contrary, the presence of methylformate caused an increase of the activity of methanol oxidase and a decrease of the activity of formaldehyde dehydrogenase and formate dehydrogenase. Interpretations concerning the yeast behavior in the presence of intermediate oxidation products were considered and discussed.

  2. Enzyme Engineering for In Situ Immobilization.

    Science.gov (United States)

    Rehm, Fabian B H; Chen, Shuxiong; Rehm, Bernd H A

    2016-10-14

    Enzymes are used as biocatalysts in a vast range of industrial applications. Immobilization of enzymes to solid supports or their self-assembly into insoluble particles enhances their applicability by strongly improving properties such as stability in changing environments, re-usability and applicability in continuous biocatalytic processes. The possibility of co-immobilizing various functionally related enzymes involved in multistep synthesis, conversion or degradation reactions enables the design of multifunctional biocatalyst with enhanced performance compared to their soluble counterparts. This review provides a brief overview of up-to-date in vitro immobilization strategies while focusing on recent advances in enzyme engineering towards in situ self-assembly into insoluble particles. In situ self-assembly approaches include the bioengineering of bacteria to abundantly form enzymatically active inclusion bodies such as enzyme inclusions or enzyme-coated polyhydroxyalkanoate granules. These one-step production strategies for immobilized enzymes avoid prefabrication of the carrier as well as chemical cross-linking or attachment to a support material while the controlled oriented display strongly enhances the fraction of accessible catalytic sites and hence functional enzymes.

  3. Gender effects in alcohol dependence: an fMRI pilot study examining affective processing.

    Science.gov (United States)

    Padula, Claudia B; Anthenelli, Robert M; Eliassen, James C; Nelson, Erik; Lisdahl, Krista M

    2015-02-01

    Alcohol dependence (AD) has global effects on brain structure and function, including frontolimbic regions regulating affective processing. Preliminary evidence suggests alcohol blunts limbic response to negative affective stimuli and increases activation to positive affective stimuli. Subtle gender differences are also evident during affective processing. Fourteen abstinent AD individuals (8 F, 6 M) and 14 healthy controls (9 F, 5 M), ages 23 to 60, were included in this facial affective processing functional magnetic resonance imaging pilot study. Whole-brain linear regression analyses were performed, and follow-up analyses examined whether AD status significantly predicted depressive symptoms and/or coping. Fearful Condition-The AD group demonstrated reduced activation in the right medial frontal gyrus, compared with controls. Gender moderated the effects of AD in bilateral inferior frontal gyri. Happy Condition-AD individuals had increased activation in the right thalamus. Gender moderated the effects of AD in the left caudate, right middle frontal gyrus, left paracentral lobule, and right lingual gyrus. Interactive AD and gender effects for fearful and happy faces were such that AD men activated more than control men, but AD women activated less than control women. Enhanced coping was associated with greater activation in right medial frontal gyrus during fearful condition in AD individuals. Abnormal affective processing in AD may be a marker of alcoholism risk or a consequence of chronic alcoholism. Subtle gender differences were observed, and gender moderated the effects of AD on neural substrates of affective processing. AD individuals with enhanced coping had brain activation patterns more similar to controls. Results help elucidate the effects of alcohol, gender, and their interaction on affective processing. Copyright © 2015 by the Research Society on Alcoholism.

  4. Political Expertise and Affect: Effects on News Processing.

    Science.gov (United States)

    Hsu, Mei-Ling; Price, Vincent

    1993-01-01

    Investigates interactions between political expertise and affect in shaping cognitive strategies people employ in forming reactions to newspaper stories. Finds that, in processing the news articles, political experts produced a greater number of thoughts and a larger share of arguments than did novices. Observes no predicted main effects of…

  5. Enzymes of industrial purpose - review of the market of enzyme preparations and prospects for its development

    Directory of Open Access Journals (Sweden)

    A. A. Tolkacheva

    2017-01-01

    Full Text Available Microbial enzyme preparations are increasingly replacing conventional chemical catalysts in a number of industrial processes. Such drugs, in addition to environmental friendliness and high activity, have a number of advantages over enzyme preparations of vegetable and animal origin, namely: the production of microbial enzymes in bioreactors is easily controlled and predictable; excreted microbiological enzymes are more stable than intracellular animals and plant enzymes; the genetic diversity of microorganisms makes it possible to produce enzyme preparations with a wide range of specificity; microbiological enzymes can be synthesized year-round, in contrast to the production of plant enzymes, which is often seasonal. The leaders of the world market of enzymes are proteases and amylases, which account for 25% and 15%, respectively. Over the past five years, the world market for carbohydrases, including mainly amylases, cellulases and xylanases, has been the fastest growing segment of the enzyme market with an aggregate annual growth rate of more than 7.0%. Another major product of the industrial enzyme market, which has a great potential for growth, is lipases. From the point of view of designation, the main part is represented by food and food enzymes. The Russian market continues to be unsaturated - the current supply is not able to meet the needs of the Russian feed and food industry in enzyme preparations. Enzyme preparations of domestic producers are in demand in forage production, while food industrial enterprises prefer imported products. The most significant enterprises in the enzymatic industry in Russia at the moment are Sibbiofarm, AgroSistema, Agroferment. In the light of the Russian policy of increasing food security, the development of the domestic enzyme industry is an extremely topical task.

  6. Streptozotocin-induced diabetes mellitus affects lysosomal enzymes in rat liver

    Directory of Open Access Journals (Sweden)

    G.B. Peres

    2014-06-01

    Full Text Available It has been previously shown that dextran sulfate administered to diabetic rats accumulates in the liver and kidney, and this could be due to a malfunction of the lysosomal digestive pathway. The aim of the present study was to evaluate the expression and activities of lysosomal enzymes that act upon proteins and sulfated polysaccharides in the livers of diabetic rats. Diabetes mellitus was induced by streptozotocin in 26 male Wistar rats (12 weeks old, while 26 age-matched controls received only vehicle. The livers were removed on either the 10th or the 30th day of the disease, weighed, and used to evaluate the activity, expression, and localization of lysosomal enzymes. A 50-60% decrease in the specific activities of cysteine proteases, especially cathepsin B, was observed in streptozotocin-induced diabetes mellitus. Expression (mRNA of cathepsins B and L was also decreased on the 10th, but not on the 30th day. Sulfatase decreased 30% on the 30th day, while glycosidases did not vary (or presented a transitory and slight decrease. There were no apparent changes in liver morphology, and immunohistochemistry revealed the presence of cathepsin B in hepatocyte granules. The decrease in sulfatase could be responsible for the dextran sulfate build-up in the diabetic liver, since the action of sulfatase precedes glycosidases in the digestive pathway of sulfated polysaccharides. Our findings suggest that the decreased activities of cathepsins resulted from decreased expression of their genes, and not from general lysosomal failure, because the levels of glycosidases were normal in the diabetic liver.

  7. Streptozotocin-induced diabetes mellitus affects lysosomal enzymes in rat liver

    Energy Technology Data Exchange (ETDEWEB)

    Peres, G.B. [Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Bioquímica, São Paulo, SP, Brasil, Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Juliano, M.A. [Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Biofísica, São Paulo, SP, Brasil, Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Aguiar, J.A.K.; Michelacci, Y.M. [Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Bioquímica, São Paulo, SP, Brasil, Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil)

    2014-05-09

    It has been previously shown that dextran sulfate administered to diabetic rats accumulates in the liver and kidney, and this could be due to a malfunction of the lysosomal digestive pathway. The aim of the present study was to evaluate the expression and activities of lysosomal enzymes that act upon proteins and sulfated polysaccharides in the livers of diabetic rats. Diabetes mellitus was induced by streptozotocin in 26 male Wistar rats (12 weeks old), while 26 age-matched controls received only vehicle. The livers were removed on either the 10{sup th} or the 30{sup th} day of the disease, weighed, and used to evaluate the activity, expression, and localization of lysosomal enzymes. A 50-60% decrease in the specific activities of cysteine proteases, especially cathepsin B, was observed in streptozotocin-induced diabetes mellitus. Expression (mRNA) of cathepsins B and L was also decreased on the 10{sup th}, but not on the 30{sup th} day. Sulfatase decreased 30% on the 30{sup th} day, while glycosidases did not vary (or presented a transitory and slight decrease). There were no apparent changes in liver morphology, and immunohistochemistry revealed the presence of cathepsin B in hepatocyte granules. The decrease in sulfatase could be responsible for the dextran sulfate build-up in the diabetic liver, since the action of sulfatase precedes glycosidases in the digestive pathway of sulfated polysaccharides. Our findings suggest that the decreased activities of cathepsins resulted from decreased expression of their genes, and not from general lysosomal failure, because the levels of glycosidases were normal in the diabetic liver.

  8. Streptozotocin-induced diabetes mellitus affects lysosomal enzymes in rat liver

    International Nuclear Information System (INIS)

    Peres, G.B.; Juliano, M.A.; Aguiar, J.A.K.; Michelacci, Y.M.

    2014-01-01

    It has been previously shown that dextran sulfate administered to diabetic rats accumulates in the liver and kidney, and this could be due to a malfunction of the lysosomal digestive pathway. The aim of the present study was to evaluate the expression and activities of lysosomal enzymes that act upon proteins and sulfated polysaccharides in the livers of diabetic rats. Diabetes mellitus was induced by streptozotocin in 26 male Wistar rats (12 weeks old), while 26 age-matched controls received only vehicle. The livers were removed on either the 10 th or the 30 th day of the disease, weighed, and used to evaluate the activity, expression, and localization of lysosomal enzymes. A 50-60% decrease in the specific activities of cysteine proteases, especially cathepsin B, was observed in streptozotocin-induced diabetes mellitus. Expression (mRNA) of cathepsins B and L was also decreased on the 10 th , but not on the 30 th day. Sulfatase decreased 30% on the 30 th day, while glycosidases did not vary (or presented a transitory and slight decrease). There were no apparent changes in liver morphology, and immunohistochemistry revealed the presence of cathepsin B in hepatocyte granules. The decrease in sulfatase could be responsible for the dextran sulfate build-up in the diabetic liver, since the action of sulfatase precedes glycosidases in the digestive pathway of sulfated polysaccharides. Our findings suggest that the decreased activities of cathepsins resulted from decreased expression of their genes, and not from general lysosomal failure, because the levels of glycosidases were normal in the diabetic liver

  9. Ultrasound in Enzyme Activation and Inactivation

    Science.gov (United States)

    Mawson, Raymond; Gamage, Mala; Terefe, Netsanet Shiferaw; Knoerzer, Kai

    As discussed in previous chapters, most effects due to ultrasound arise from cavitation events, in particular, collapsing cavitation bubbles. These collapsing bubbles generate very high localized temperatures and pressure shockwaves along with micro-streaming that is associated with high shear forces. These effects can be used to accelerate the transport of substrates and reaction products to and from enzymes, and to enhance mass transfer in enzyme reactor systems, and thus improve efficiency. However, the high velocity streaming, together with the formation of hydroxy radicals and heat generation during collapsing of bubbles, may also potentially affect the biocatalyst stability, and this can be a limiting factor in combined ultrasound/enzymatic applications. Typically, enzymes can be readily denatured by slight changes in environmental conditions, including temperature, pressure, shear stress, pH and ionic strength.

  10. Influence of different forest system management practices on leaf litter decomposition rates, nutrient dynamics and the activity of ligninolytic enzymes: a case study from central European forests.

    Science.gov (United States)

    Purahong, Witoon; Kapturska, Danuta; Pecyna, Marek J; Schulz, Elke; Schloter, Michael; Buscot, François; Hofrichter, Martin; Krüger, Dirk

    2014-01-01

    Leaf litter decomposition is the key ecological process that determines the sustainability of managed forest ecosystems, however very few studies hitherto have investigated this process with respect to silvicultural management practices. The aims of the present study were to investigate the effects of forest management practices on leaf litter decomposition rates, nutrient dynamics (C, N, Mg, K, Ca, P) and the activity of ligninolytic enzymes. We approached these questions using a 473 day long litterbag experiment. We found that age-class beech and spruce forests (high forest management intensity) had significantly higher decomposition rates and nutrient release (most nutrients) than unmanaged deciduous forest reserves (Pforest management (low forest management intensity) exhibited no significant differences in litter decomposition rate, C release, lignin decomposition, and C/N, lignin/N and ligninolytic enzyme patterns compared to the unmanaged deciduous forest reserves, but most nutrient dynamics examined in this study were significantly faster under such near-to-nature forest management practices. Analyzing the activities of ligninolytic enzymes provided evidence that different forest system management practices affect litter decomposition by changing microbial enzyme activities, at least over the investigated time frame of 473 days (laccase, Pforest system management practices can significantly affect important ecological processes and services such as decomposition and nutrient cycling.

  11. The Mechanism of Valence-Space Metaphors: ERP Evidence for Affective Word Processing

    Science.gov (United States)

    Xie, Jiushu; Wang, Ruiming; Chang, Song

    2014-01-01

    Embodied cognition contends that the representation and processing of concepts involve perceptual, somatosensory, motoric, and other physical re-experiencing information. In this view, affective concepts are also grounded in physical information. For instance, people often say “feeling down” or “cheer up” in daily life. These phrases use spatial information to understand affective concepts. This process is referred to as valence-space metaphor. Valence-space metaphors refer to the employment of spatial information (lower/higher space) to elaborate affective concepts (negative/positive concepts). Previous studies have demonstrated that processing affective words affects performance on a spatial detection task. However, the mechanism(s) behind this effect remain unclear. In the current study, we hypothesized that processing affective words might produce spatial information. Consequently, spatial information would affect the following spatial cue detection/discrimination task. In Experiment 1, participants were asked to remember an affective word. Then, they completed a spatial cue detection task while event-related potentials were recorded. The results indicated that the top cues induced enhanced amplitude of P200 component while participants kept positive words relative to negative words in mind. On the contrary, the bottom cues induced enhanced P200 amplitudes while participants kept negative words relative to positive words in mind. In Experiment 2, we conducted a behavioral experiment that employed a similar paradigm to Experiment 1, but used arrows instead of dots to test the attentional nature of the valence-space metaphor. We found a similar facilitation effect as found in Experiment 1. Positive words facilitated the discrimination of upper arrows, whereas negative words facilitated the discrimination of lower arrows. In summary, affective words might activate spatial information and cause participants to allocate their attention to corresponding

  12. The mechanism of valence-space metaphors: ERP evidence for affective word processing.

    Science.gov (United States)

    Xie, Jiushu; Wang, Ruiming; Chang, Song

    2014-01-01

    Embodied cognition contends that the representation and processing of concepts involve perceptual, somatosensory, motoric, and other physical re-experiencing information. In this view, affective concepts are also grounded in physical information. For instance, people often say "feeling down" or "cheer up" in daily life. These phrases use spatial information to understand affective concepts. This process is referred to as valence-space metaphor. Valence-space metaphors refer to the employment of spatial information (lower/higher space) to elaborate affective concepts (negative/positive concepts). Previous studies have demonstrated that processing affective words affects performance on a spatial detection task. However, the mechanism(s) behind this effect remain unclear. In the current study, we hypothesized that processing affective words might produce spatial information. Consequently, spatial information would affect the following spatial cue detection/discrimination task. In Experiment 1, participants were asked to remember an affective word. Then, they completed a spatial cue detection task while event-related potentials were recorded. The results indicated that the top cues induced enhanced amplitude of P200 component while participants kept positive words relative to negative words in mind. On the contrary, the bottom cues induced enhanced P200 amplitudes while participants kept negative words relative to positive words in mind. In Experiment 2, we conducted a behavioral experiment that employed a similar paradigm to Experiment 1, but used arrows instead of dots to test the attentional nature of the valence-space metaphor. We found a similar facilitation effect as found in Experiment 1. Positive words facilitated the discrimination of upper arrows, whereas negative words facilitated the discrimination of lower arrows. In summary, affective words might activate spatial information and cause participants to allocate their attention to corresponding locations

  13. Crystal Structure of 4,6-α-Glucanotransferase Supports Diet-Driven Evolution of GH70 Enzymes from α-Amylases in Oral Bacteria

    NARCIS (Netherlands)

    Bai, Yuxiang; Gangoiti, Joana; Dijkstra, Bauke W; Dijkhuizen, Lubbert; Pijning, Tjaard

    2017-01-01

    Food processing and refining has dramatically changed the human diet, but little is known about whether this affected the evolution of enzymes in human microbiota. We present evidence that glycoside hydrolase family 70 (GH70) glucansucrases from lactobacilli, synthesizing α-glucan-type extracellular

  14. Genetics Home Reference: myopathy with deficiency of iron-sulfur cluster assembly enzyme

    Science.gov (United States)

    ... Myopathy with deficiency of iron-sulfur cluster assembly enzyme Printable PDF Open All Close All Enable Javascript ... Myopathy with deficiency of iron-sulfur cluster assembly enzyme is an inherited disorder that primarily affects muscles ...

  15. Processing of Snake Venom Metalloproteinases: Generation of Toxin Diversity and Enzyme Inactivation

    Directory of Open Access Journals (Sweden)

    Ana M. Moura-da-Silva

    2016-06-01

    Full Text Available Snake venom metalloproteinases (SVMPs are abundant in the venoms of vipers and rattlesnakes, playing important roles for the snake adaptation to different environments, and are related to most of the pathological effects of these venoms in human victims. The effectiveness of SVMPs is greatly due to their functional diversity, targeting important physiological proteins or receptors in different tissues and in the coagulation system. Functional diversity is often related to the genetic diversification of the snake venom. In this review, we discuss some published evidence that posit that processing and post-translational modifications are great contributors for the generation of functional diversity and for maintaining latency or inactivation of enzymes belonging to this relevant family of venom toxins.

  16. Therapeutic Enzymes: Applications and Approaches to Pharmacological Improvement.

    Science.gov (United States)

    Yari, Maryam; Ghoshoon, Mohammad B; Vakili, Bahareh; Ghasemi, Younes

    2017-01-01

    Among therapeutic proteins, enzymes represent small and of course profitable market. They can be used to treat important, rare, and deadly diseases. Enzyme therapy is the only available treatment for certain disorders. Here, pharmaceutical enzymes are reviewed. They are categorized in four main groups, enzymes in replacement therapy, enzymes in cancer treatment, enzymes for fibrinolysis, and finally enzymes that are used topically for various treatments. Furthermore, enzyme gene therapy and future perspective of therapeutic enzymes are mentioned in brief. There are many important approved enzymes in pharmaceutical market. Several approaches such as point mutation, fusion protein designing, glycoengineering, and PEGylation were used to achieve improved enzymes. Although sometimes enzymes were engineered to facilitate production and purification process, appropriate delivery to target sites, extending half-life, and reducing immunogenicity are among the main goals of engineering approaches. Overall, enzymes play a critical role in treatment of common and rare diseases. Evaluation of new enzymes as well as improvement of approved enzymes are of the most important challenges in biotechnology. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. County-Scale Spatial Distribution of Soil Enzyme Activities and Enzyme Activity Indices in Agricultural Land: Implications for Soil Quality Assessment

    Directory of Open Access Journals (Sweden)

    Xiangping Tan

    2014-01-01

    Full Text Available Here the spatial distribution of soil enzymatic properties in agricultural land was evaluated on a county-wide (567 km2 scale in Changwu, Shaanxi Province, China. The spatial variations in activities of five hydrolytic enzymes were examined using geostatistical methods. The relationships between soil enzyme activities and other soil properties were evaluated using both an integrated total enzyme activity index (TEI and the geometric mean of enzyme activities (GME. At the county scale, soil invertase, phosphatase, and catalase activities were moderately spatially correlated, whereas urease and dehydrogenase activities were weakly spatially correlated. Correlation analysis showed that both TEI and GME were better correlated with selected soil physicochemical properties than single enzyme activities. Multivariate regression analysis showed that soil OM content had the strongest positive effect while soil pH had a negative effect on the two enzyme activity indices. In addition, total phosphorous content had a positive effect on TEI and GME in orchard soils, whereas alkali-hydrolyzable nitrogen and available potassium contents, respectively, had negative and positive effects on these two enzyme indices in cropland soils. The results indicate that land use changes strongly affect soil enzyme activities in agricultural land, where TEI provides a sensitive biological indicator for soil quality.

  18. Practical steady-state enzyme kinetics.

    Science.gov (United States)

    Lorsch, Jon R

    2014-01-01

    Enzymes are key components of most biological processes. Characterization of enzymes is therefore frequently required during the study of biological systems. Steady-state kinetics provides a simple and rapid means of assessing the substrate specificity of an enzyme. When combined with site-directed mutagenesis (see Site-Directed Mutagenesis), it can be used to probe the roles of particular amino acids in the enzyme in substrate recognition and catalysis. Effects of interaction partners and posttranslational modifications can also be assessed using steady-state kinetics. This overview explains the general principles of steady-state enzyme kinetics experiments in a practical, rather than theoretical, way. Any biochemistry textbook will have a section on the theory of Michaelis-Menten kinetics, including derivations of the relevant equations. No specific enzymatic assay is described here, although a method for monitoring product formation or substrate consumption over time (an assay) is required to perform the experiments described. © 2014 Elsevier Inc. All rights reserved.

  19. Production of Biodiesel from High Acid Value Waste Cooking Oil Using an Optimized Lipase Enzyme/Acid-Catalyzed Hybrid Process

    Directory of Open Access Journals (Sweden)

    N. Saifuddin

    2009-01-01

    Full Text Available The present study is aimed at developing an enzymatic/acid-catalyzed hybrid process for biodiesel production using waste cooking oil with high acid value (poor quality as feedstock. Tuned enzyme was prepared using a rapid drying technique of microwave dehydration (time required around 15 minutes. Further enhancement was achieved by three phase partitioning (TPP method. The results on the lipase enzyme which was subjected to pH tuning and TPP, indicated remarkable increase in the initial rate of transesterification by 3.8 times. Microwave irradiation was found to increase the initial reaction rates by further 1.6 times, hence giving a combined increase in activity of about 5.4 times. The optimized enzyme was used for hydrolysis and 88% of the oil taken initially was hydrolyzed by the lipase. The hydrolysate was further used in acid-catalyzed esterification for biodiesel production. By using a feedstock to methanol molar ratio of 1:15 and a sulphuric acid concentration of 2.5%, a biodiesel conversion of 88% was obtained at 50 °C for an hour reaction time. This hybrid process may open a way for biodiesel production using unrefined and used oil with high acid value as feedstock.

  20. The chaperone role of the pyridoxal 5'-phosphate and its implications for rare diseases involving B6-dependent enzymes.

    Science.gov (United States)

    Cellini, Barbara; Montioli, Riccardo; Oppici, Elisa; Astegno, Alessandra; Voltattorni, Carla Borri

    2014-02-01

    The biologically active form of the B6 vitamers is pyridoxal 5'-phosphate (PLP), which plays a coenzymatic role in several distinct enzymatic activities ranging from the synthesis, interconversion and degradation of amino acids to the replenishment of one-carbon units, synthesis and degradation of biogenic amines, synthesis of tetrapyrrolic compounds and metabolism of amino-sugars. In the catalytic process of PLP-dependent enzymes, the substrate amino acid forms a Schiff base with PLP and the electrophilicity of the PLP pyridine ring plays important roles in the subsequent catalytic steps. While the essential role of PLP in the acquisition of biological activity of many proteins is long recognized, the finding that some PLP-enzymes require the coenzyme for refolding in vitro points to an additional role of PLP as a chaperone in the folding process. Mutations in the genes encoding PLP-enzymes are causative of several rare inherited diseases. Patients affected by some of these diseases (AADC deficiency, cystathionuria, homocystinuria, gyrate atrophy, primary hyperoxaluria type 1, xanthurenic aciduria, X-linked sideroblastic anaemia) can benefit, although at different degrees, from the administration of pyridoxine, a PLP precursor. The effect of the coenzyme is not limited to mutations that affect the enzyme-coenzyme interaction, but also to those that cause folding defects, reinforcing the idea that PLP could play a chaperone role and improve the folding efficiency of misfolded variants. In this review, recent biochemical and cell biology studies highlighting the chaperoning activity of the coenzyme on folding-defective variants of PLP-enzymes associated with rare diseases are presented and discussed. Copyright © 2013 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  1. Autoantibodies against Cytochrome P450 Side-Chain Cleavage Enzyme in Dogs (Canis lupus familiaris) Affected with Hypoadrenocorticism (Addison's Disease).

    Science.gov (United States)

    Boag, Alisdair M; Christie, Michael R; McLaughlin, Kerry A; Syme, Harriet M; Graham, Peter; Catchpole, Brian

    2015-01-01

    Canine hypoadrenocorticism likely arises from immune-mediated destruction of adrenocortical tissue, leading to glucocorticoid and mineralocorticoid deficiency. In humans with autoimmune Addison's disease (AAD) or autoimmune polyendocrine syndrome (APS), circulating autoantibodies have been demonstrated against enzymes associated with adrenal steroid synthesis. The current study investigates autoantibodies against steroid synthesis enzymes in dogs with spontaneous hypoadrenocorticism. Coding regions of canine CYP21A2 (21-hydroxylase; 21-OH), CYP17A1 (17-hydroxylase; 17-OH), CYP11A1 (P450 side-chain cleavage enzyme; P450scc) and HSD3B2 (3β hydroxysteroid dehydrogenase; 3βHSD) were amplified, cloned and expressed as 35S-methionine radiolabelled recombinant protein. In a pilot study, serum samples from 20 dogs with hypoadrenocorticism and four unaffected control dogs were screened by radio-immunoprecipitation assay. There was no evidence of reactivity against 21-OH, 17-OH or 3βHSD, but five dogs with hypoadrenocorticism showed immunoreactivity to P450scc compared with controls. Serum samples were subsequently obtained from 213 dogs diagnosed with hypoadrenocorticism and 110 dogs from a hospital control population. Thirty control dogs were randomly selected to establish a threshold for antibody positivity (mean + 3 × standard deviation). Dogs with hypoadrenocorticism were more likely to be P450scc autoantibody positive than hospital controls (24% vs. 1.2%, respectively; p = 0.0016). Sex was significantly associated with the presence of P450scc autoantibodies in the case population, with 30% of females testing positive compared with 17% of males (p = 0.037). Significant associations with breed (p = 0.015) and DLA-type (DQA1*006:01 allele; p = 0.017) were also found. This cross-sectional study indicates that P450scc autoantibodies are present in a proportion of dogs affected with hypoadrenocorticism.

  2. Autoantibodies against Cytochrome P450 Side-Chain Cleavage Enzyme in Dogs (Canis lupus familiaris Affected with Hypoadrenocorticism (Addison's Disease.

    Directory of Open Access Journals (Sweden)

    Alisdair M Boag

    Full Text Available Canine hypoadrenocorticism likely arises from immune-mediated destruction of adrenocortical tissue, leading to glucocorticoid and mineralocorticoid deficiency. In humans with autoimmune Addison's disease (AAD or autoimmune polyendocrine syndrome (APS, circulating autoantibodies have been demonstrated against enzymes associated with adrenal steroid synthesis. The current study investigates autoantibodies against steroid synthesis enzymes in dogs with spontaneous hypoadrenocorticism. Coding regions of canine CYP21A2 (21-hydroxylase; 21-OH, CYP17A1 (17-hydroxylase; 17-OH, CYP11A1 (P450 side-chain cleavage enzyme; P450scc and HSD3B2 (3β hydroxysteroid dehydrogenase; 3βHSD were amplified, cloned and expressed as 35S-methionine radiolabelled recombinant protein. In a pilot study, serum samples from 20 dogs with hypoadrenocorticism and four unaffected control dogs were screened by radio-immunoprecipitation assay. There was no evidence of reactivity against 21-OH, 17-OH or 3βHSD, but five dogs with hypoadrenocorticism showed immunoreactivity to P450scc compared with controls. Serum samples were subsequently obtained from 213 dogs diagnosed with hypoadrenocorticism and 110 dogs from a hospital control population. Thirty control dogs were randomly selected to establish a threshold for antibody positivity (mean + 3 × standard deviation. Dogs with hypoadrenocorticism were more likely to be P450scc autoantibody positive than hospital controls (24% vs. 1.2%, respectively; p = 0.0016. Sex was significantly associated with the presence of P450scc autoantibodies in the case population, with 30% of females testing positive compared with 17% of males (p = 0.037. Significant associations with breed (p = 0.015 and DLA-type (DQA1*006:01 allele; p = 0.017 were also found. This cross-sectional study indicates that P450scc autoantibodies are present in a proportion of dogs affected with hypoadrenocorticism.

  3. Cadmium toxicity affects chlorophyll a and b content, antioxidant enzyme activities and mineral nutrient accumulation in strawberry

    Directory of Open Access Journals (Sweden)

    Ferhad Muradoglu

    2015-01-01

    Full Text Available BACKGROUND: Cadmium (Cd is well known as one of the most toxic metals affecting the environment and can severely restrict plant growth and development. In this study, Cd toxicities were studied in strawberry cv. Camarosa using pot experiment. Chlorophyll and malondialdehyde (MDA contents, catalase (CAT, superoxide dismutase (SOD, ascorbate peroxidase (APX activities and mineral nutrient concentrations were investigated in both roots and leaves of strawberry plant after exposure Cd. RESULTS: Cd content in both roots and leaves was increased with the application of increasing concentrations of Cd. We found higher Cd concentration in roots rather than in leaves. Chlorophyll a and b was decreased in leaves but MDA significantly increased under increased Cd concentration treatments in both roots and leaves. SOD and CAT activities was also increased with the increase Cd concentrations. K, Mn and Mg concentrations were found higher in leaves than roots under Cd stress. In general, increased Cd treatments increased K, Mg, Fe, Ca, Cu and Zn concentration in both roots and leaves. Excessive Cd treatments reduced chlorophyll contents, increased antioxidant enzyme activities and changes in plant nutrition concentrations in both roots and leaves. CONCLUSION: The results presented in this work suggested that Cd treatments have negative effect on chlorophyll content and nearly decreased 30% of plant growth in strawberry. Strawberry roots accumulated higher Cd than leaves. We found that MDA and antioxidant enzyme (CAT, SOD and APX contents may have considered a good indicator in determining Cd tolerance in strawberry plant.

  4. Biosphere processes affecting environmnetal impacts of hazardous wastes

    International Nuclear Information System (INIS)

    Watkins, B.; Broderick, M.

    1991-01-01

    ANS Consultants Limited has reviewed and assessed a number of biosphere processes which affect the environmental impact of hazardous waste disposal. Processes examined have included the long-term effects of climate change on biosphere characteristics and the transport of toxic materials in food chains; the role of soil animals and plants roots in cycling elements from depth to the soil surface; volatisation mechanisms; the transport of elements in soil with particular reference to erosion and resuspension; mechanisms for foliar contamination via irrigation waters; and organic matter decomposition in varying environmental conditions. (au)

  5. Enzyme Characterization in Microreactors by UV-Vis Spectroscopy

    DEFF Research Database (Denmark)

    Ringborg, Rolf Hoffmeyer; Krühne, Ulrich; Woodley, John

    for selection can at this point be improved by characterization of the enzyme performance where also inhibition and toxicity effects are taken into account. Enzyme characterization is here defined as the effect on initial rate of reaction with respect to pH, enzyme, substrate, co-substrate, product and co......-product concentration [2]. From this investigation, it will be possible to determine whether the enzyme meets the criteria for process requirements or not. The development of the process will determine the requirements and this can also reach a state of maturity that resolves obstacles, lowers criteria and paves......, as the enzyme resource is scarce at this point of development. In the case where the reaction operates with UV active components, UV can be used to detect compounds with high sensitivity supplemented by multivariate data analysis. The spectra are here decorrelated and regressed to yield concentrations...

  6. Modification of polymer surfaces to enhance enzyme activity and stability

    DEFF Research Database (Denmark)

    Hoffmann, Christian

    Enzyme immobilization is an important concept for the development of improved biocatalytic processes, primarily through facilitated separation procedures. However, enzyme immobilization usually comes at a price of reduced biocatalytic activity. For this reason, different immobilization methods have...... already been developed, combining the same goal to improve enzyme activity, stability and selectivity. Polymer materials have shown, due to their easy processibility and versatile properties, high potential as enzyme support. However, in order to achieve improved enzyme performance, the combination...... on their tailored surface modification in order to obtain improved enzyme-support systems. Firstly, an off-stoichiometric thiol-ene (OSTE) thermosetting material was used for the development of a screening platform allowing the investigation of micro-environmental effects and their impact on the activity...

  7. Matrix Metalloproteinase Enzyme Family

    Directory of Open Access Journals (Sweden)

    Ozlem Goruroglu Ozturk

    2013-04-01

    Full Text Available Matrix metalloproteinases play an important role in many biological processes such as embriogenesis, tissue remodeling, wound healing, and angiogenesis, and in some pathological conditions such as atherosclerosis, arthritis and cancer. Currently, 24 genes have been identified in humans that encode different groups of matrix metalloproteinase enzymes. This review discuss the members of the matrix metalloproteinase family and their substrate specificity, structure, function and the regulation of their enzyme activity by tissue inhibitors. [Archives Medical Review Journal 2013; 22(2.000: 209-220

  8. Enzymes: principles and biotechnological applications

    Science.gov (United States)

    Robinson, Peter K.

    2015-01-01

    Enzymes are biological catalysts (also known as biocatalysts) that speed up biochemical reactions in living organisms, and which can be extracted from cells and then used to catalyse a wide range of commercially important processes. This chapter covers the basic principles of enzymology, such as classification, structure, kinetics and inhibition, and also provides an overview of industrial applications. In addition, techniques for the purification of enzymes are discussed. PMID:26504249

  9. DICER-ARGONAUTE2 complex in continuous fluorogenic assays of RNA interference enzymes.

    Directory of Open Access Journals (Sweden)

    Mark A Bernard

    Full Text Available Mechanistic studies of RNA processing in the RNA-Induced Silencing Complex (RISC have been hindered by lack of methods for continuous monitoring of enzymatic activity. "Quencherless" fluorogenic substrates of RNAi enzymes enable continuous monitoring of enzymatic reactions for detailed kinetics studies. Recombinant RISC enzymes cleave the fluorogenic substrates targeting human thymidylate synthase (TYMS and hypoxia-inducible factor 1-α subunit (HIF1A. Using fluorogenic dsRNA DICER substrates and fluorogenic siRNA, DICER+ARGONAUTE2 mixtures exhibit synergistic enzymatic activity relative to either enzyme alone, and addition of TRBP does not enhance the apparent activity. Titration of AGO2 and DICER in enzyme assays suggests that AGO2 and DICER form a functional high-affinity complex in equimolar ratio. DICER and DICER+AGO2 exhibit Michaelis-Menten kinetics with DICER substrates. However, AGO2 cannot process the fluorogenic siRNA without DICER enzyme, suggesting that AGO2 cannot self-load siRNA into its active site. The DICER+AGO2 combination processes the fluorogenic siRNA substrate (Km=74 nM with substrate inhibition kinetics (Ki=105 nM, demonstrating experimentally that siRNA binds two different sites that affect Dicing and AGO2-loading reactions in RISC. This result suggests that siRNA (product of DICER bound in the active site of DICER may undergo direct transfer (as AGO2 substrate to the active site of AGO2 in the DICER+AGO2 complex. Competitive substrate assays indicate that DICER+AGO2 cleavage of fluorogenic siRNA is specific, since unlabeled siRNA and DICER substrates serve as competing substrates that cause a concentration-dependent decrease in fluorescent rates. Competitive substrate assays of a series of DICER substrates in vitro were correlated with cell-based assays of HIF1A mRNA knockdown (log-log slope=0.29, suggesting that improved DICER substrate designs with 10-fold greater processing by the DICER+AGO2 complex can provide a

  10. A thermodynamic and theoretical view for enzyme regulation.

    Science.gov (United States)

    Zhao, Qinyi

    2015-01-01

    Precise regulation is fundamental to the proper functioning of enzymes in a cell. Current opinions about this, such as allosteric regulation and dynamic contribution to enzyme regulation, are experimental models and substantially empirical. Here we proposed a theoretical and thermodynamic model of enzyme regulation. The main idea is that enzyme regulation is processed via the regulation of abundance of active conformation in the reaction buffer. The theoretical foundation, experimental evidence, and experimental criteria to test our model are discussed and reviewed. We conclude that basic principles of enzyme regulation are laws of protein thermodynamics and it can be analyzed using the concept of distribution curve of active conformations of enzymes.

  11. The Effect of Positive Mood on Flexible Processing of Affective Information.

    Science.gov (United States)

    Grol, Maud; De Raedt, Rudi

    2017-07-17

    Recent efforts have been made to understand the cognitive mechanisms underlying psychological resilience. Cognitive flexibility in the context of affective information has been related to individual differences in resilience. However, it is unclear whether flexible affective processing is sensitive to mood fluctuations. Furthermore, it remains to be investigated how effects on flexible affective processing interact with the affective valence of information that is presented. To fill this gap, we tested the effects of positive mood and individual differences in self-reported resilience on affective flexibility, using a task switching paradigm (N = 80). The main findings showed that positive mood was related to lower task switching costs, reflecting increased flexibility, in line with previous findings. In line with this effect of positive mood, we showed that greater resilience levels, specifically levels of acceptance of self and life, also facilitated task set switching in the context of affective information. However, the effects of resilience on affective flexibility seem more complex. Resilience tended to relate to more efficient task switching when negative information was preceded by positive information, possibly because the presentation of positive information, as well as positive mood, can facilitate task set switching. Positive mood also influenced costs associated with switching affective valence of the presented information. This latter effect was indicative of a reduced impact of no longer relevant negative information and more impact of no longer relevant positive information. Future research should confirm these effects of individual differences in resilience on affective flexibility, considering the affective valence of the presented information. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  12. The ultrasound technology for modifying enzyme activity

    Directory of Open Access Journals (Sweden)

    Meliza Lindsay

    2016-06-01

    Full Text Available Enzymes are protein complexes compounds widely studied and used due to their ability to catalyze reactions. The food processing mainly aims the inactivation of enzymes due to various undesirable effects. However, there are many processes that can be optimized by its catalytic activity. In this context, different technologies have been applied both to inactivate or to improve the enzymes efficiency. The Ultrasound technology emerges as an alternative mainly applied to achieve the enzyme inactivation. On the contrary, very few investigations show the ability of this technology under certain conditions to achieve the opposite effect (i.e. increase the catalytic activity of enzymes. The objective of this study was to correlate the ultrasonic energy delivered to the sample (J/mL with the residual enzymatic activity and explain the possible mechanisms which results in the enzymatic activation/inactivation complex behavior. The activity of POD in coconut water was evaluated as a model. The enzymatic activity initially increased, followed by reduction with a trend to enzyme inactivation. This complex behavior is directly related to the applied ultrasonic energy and their direct mechanical effects on the product, as well as the effect in the enzymatic infinite intermediate states and its structural conformation changes. The obtained results are useful for both academic and industrial perspectives.

  13. Watching Individual Enzymes at Work

    Science.gov (United States)

    Blank, Kerstin; Rocha, Susana; De Cremer, Gert; Roeffaers, Maarten B. J.; Uji-i, Hiroshi; Hofkens, Johan

    Single-molecule fluorescence experiments are a powerful tool to analyze reaction mechanisms of enzymes. Because of their unique potential to detect heterogeneities in space and time, they have provided unprecedented insights into the nature and mechanisms of conformational changes related to the catalytic reaction. The most important finding from experiments with single enzymes is the generally observed phenomenon that the catalytic rate constants fluctuate over time (dynamic disorder). These fluctuations originate from conformational changes occurring on time scales, which are similar to or slower than that of the catalytic reaction. Here, we summarize experiments with enzymes that show dynamic disorder and introduce new experimental strategies showing how single-molecule fluorescence experiments can be applied to address other open questions in medical and industrial enzymology, such as enzyme inactivation processes, reactant transfer in cascade reactions, and the mechanisms of interfacial catalysis.

  14. Changes In Certain Enzymes Activities In Tribolium CONFUSUM As Affected By Vanillin Or GAMMA Irradiation

    International Nuclear Information System (INIS)

    MOHAMED, S.A.; SHOMAN, A.A.; AHMED, Z.A.

    2009-01-01

    The effect of 1 or 4 g vanillin/100 g whole wheat flour on the alkaline phosphatase of one day old larvae revealed that the mean enzyme activity was highly significantly increased in male and non-significant in female Triboluim confusum. As pupae were irradiated, the mean enzyme activity was significantly decreased in males and females (except at dose 300 Gy). Alanine transaminase (ALT or GPT) activity was decreased in males due to the effect of 4% vanillin and increased by irradiation while in female, the activity of ALT was increased when the larvae were reared on flour containing 1% or 4% vanillin and increased when pupae were irradiated at all doses used. There was a positive relationship between all treatments and the activity of aspartate transaminase (AST or GOT) in both sexes. The activity of AST was increased when the male or female larvae were reared on wheat flour containing 1 or 4 % vanillin and when pupae of males or females were irradiated. The choline esterase enzyme in T. confusum adults of both sexes was inhibited according to the effect of treatments with vanillin or gamma irradiation. Treated larvae with 1 or 4 % vanillin or irradiated as pupae at 300, 600 and 800 Gy led to decrease in the activity of choline esterase enzyme with the same pattern in both sexes.

  15. Thinking back about a positive event: The impact of processing style on positive affect

    Directory of Open Access Journals (Sweden)

    Sabine eNelis

    2015-03-01

    Full Text Available The manner in which individuals recall an autobiographical positive life event has affective consequences. Two studies addressed the processing styles during positive memory recall in a non-clinical sample. Participants retrieved a positive memory which was self-generated (Study 1, n = 70 or experimenter-chosen (i.e., academic achievement, Study 2, n = 159, followed by the induction of one of three processing styles (between-subjects: In Study 1, a ‘concrete/imagery’ vs. ‘abstract/verbal’ processing style was compared. In Study 2, a ‘concrete/imagery’, ‘abstract/verbal’, and ‘comparative/verbal’ processing style were compared. The processing of a personal memory in a concrete/imagery-based way led to a larger increase in positive affect compared to abstract/verbal processing in Study 1, as well as compared to comparative/verbal thinking in Study 2. Results of Study 2 further suggest that it is making unfavourable verbal comparisons that may hinder affective benefits to positive memories (rather then general abstract/verbal processing per se. The comparative/verbal thinking style failed to lead to improvements in positive affect, and with increasing levels of depressive symptoms it had a more negative impact on change in positive affect. We found no evidence that participant’s tendency to have dampening thoughts in response to positive affect in daily life contributed to the affective impact of positive memory recall. The results support the potential for current trainings in boosting positive memories and mental imagery, and underline the search for parameters that determine at times deleterious outcomes of abstract/verbal memory processing in the face of positive information.

  16. Application of ultrasound processed images in space: assessing diffuse affectations

    Science.gov (United States)

    Pérez-Poch, A.; Bru, C.; Nicolau, C.

    The purpose of this study was to evaluate diffuse affectations in the liver using texture image processing techniques. Ultrasound diagnose equipments are the election of choice to be used in space environments as they are free from hazardous effects on health. However, due to the need for highly trained radiologists to assess the images, this imaging method is mainly applied on focal lesions rather than on non-focal ones. We have conducted a clinical study on 72 patients with different degrees of chronic hepatopaties and a group of control of 18 individuals. All subjects' clinical reports and results of biopsies were compared to the degree of affectation calculated by our computer system , thus validating the method. Full statistical results are given in the present paper showing a good correlation (r=0.61) between pathologist's report and analysis of the heterogenicity of the processed images from the liver. This computer system to analyze diffuse affectations may be used in-situ or via telemedicine to the ground.

  17. Magnetic cross-linked enzyme aggregates (CLEAs): a novel concept towards carrier free immobilization of lignocellulolytic enzymes.

    Science.gov (United States)

    Bhattacharya, Abhishek; Pletschke, Brett I

    2014-01-01

    The enzymatic conversion of lignocellulosic biomass into biofuels has been identified as an excellent strategy to generate clean energy. However, the current process is cost-intensive as an effective immobilization approach to reuse the enzyme(s) has been a major challenge. The present study introduces the concept and application of novel magnetic cross-linked enzyme aggregates (mag-CLEAs). Both mag-CLEAs and calcium-mag-CLEAs (Ca-mag-CLEAs) exhibited a 1.35 fold higher xylanase activity compared to the free enzyme and retained more than 80.0% and 90.0% activity, respectively, after 136h of incubation at 50°C, compared to 50% activity retained by CLEAs. A 7.4 and 9.0 fold higher sugar release from lime-pretreated and NH4OH pre-treated sugar bagasse, respectively, was achieved with Ca-mag-CLEAs compared to the free enzymes. The present study promotes the successful application of mag-CLEAs and Ca-mag-CLEAs as carrier free immobilized enzymes for the effective hydrolysis of lignocellulolytic biomass and associated biofuel feedstocks. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Tumour Microenvironments Induce Expression of Urokinase Plasminogen Activator Receptor (uPAR) and Concomitant Activation of Gelatinolytic Enzymes

    Science.gov (United States)

    Magnussen, Synnøve; Hadler-Olsen, Elin; Latysheva, Nadezhda; Pirila, Emma; Steigen, Sonja E.; Hanes, Robert; Salo, Tuula; Winberg, Jan-Olof; Uhlin-Hansen, Lars; Svineng, Gunbjørg

    2014-01-01

    Background The urokinase plasminogen activator receptor (uPAR) is associated with poor prognosis in oral squamous cell carcinoma (OSCC), and increased expression of uPAR is often found at the invasive tumour front. The aim of the current study was to elucidate the role of uPAR in invasion and metastasis of OSCC, and the effects of various tumour microenvironments in these processes. Furthermore, we wanted to study whether the cells’ expression level of uPAR affected the activity of gelatinolytic enzymes. Methods The Plaur gene was both overexpressed and knocked-down in the murine OSCC cell line AT84. Tongue and skin tumours were established in syngeneic mice, and cells were also studied in an ex vivo leiomyoma invasion model. Soluble factors derived from leiomyoma tissue, as well as purified extracellular matrix (ECM) proteins, were assessed for their ability to affect uPAR expression, glycosylation and cleavage. Activity of gelatinolytic enzymes in the tissues were assessed by in situ zymography. Results We found that increased levels of uPAR did not induce tumour invasion or metastasis. However, cells expressing low endogenous levels of uPAR in vitro up-regulated uPAR expression both in tongue, skin and leiomyoma tissue. Various ECM proteins had no effect on uPAR expression, while soluble factors originating from the leiomyoma tissue increased both the expression and glycosylation of uPAR, and possibly also affected the proteolytic processing of uPAR. Tumours with high levels of uPAR, as well as cells invading leiomyoma tissue with up-regulated uPAR expression, all displayed enhanced activity of gelatinolytic enzymes. Conclusions Although high levels of uPAR are not sufficient to induce invasion and metastasis, the activity of gelatinolytic enzymes was increased. Furthermore, several tumour microenvironments have the capacity to induce up-regulation of uPAR expression, and soluble factors in the tumour microenvironment may have an important role in the

  19. Tumour microenvironments induce expression of urokinase plasminogen activator receptor (uPAR and concomitant activation of gelatinolytic enzymes.

    Directory of Open Access Journals (Sweden)

    Synnøve Magnussen

    Full Text Available The urokinase plasminogen activator receptor (uPAR is associated with poor prognosis in oral squamous cell carcinoma (OSCC, and increased expression of uPAR is often found at the invasive tumour front. The aim of the current study was to elucidate the role of uPAR in invasion and metastasis of OSCC, and the effects of various tumour microenvironments in these processes. Furthermore, we wanted to study whether the cells' expression level of uPAR affected the activity of gelatinolytic enzymes.The Plaur gene was both overexpressed and knocked-down in the murine OSCC cell line AT84. Tongue and skin tumours were established in syngeneic mice, and cells were also studied in an ex vivo leiomyoma invasion model. Soluble factors derived from leiomyoma tissue, as well as purified extracellular matrix (ECM proteins, were assessed for their ability to affect uPAR expression, glycosylation and cleavage. Activity of gelatinolytic enzymes in the tissues were assessed by in situ zymography.We found that increased levels of uPAR did not induce tumour invasion or metastasis. However, cells expressing low endogenous levels of uPAR in vitro up-regulated uPAR expression both in tongue, skin and leiomyoma tissue. Various ECM proteins had no effect on uPAR expression, while soluble factors originating from the leiomyoma tissue increased both the expression and glycosylation of uPAR, and possibly also affected the proteolytic processing of uPAR. Tumours with high levels of uPAR, as well as cells invading leiomyoma tissue with up-regulated uPAR expression, all displayed enhanced activity of gelatinolytic enzymes.Although high levels of uPAR are not sufficient to induce invasion and metastasis, the activity of gelatinolytic enzymes was increased. Furthermore, several tumour microenvironments have the capacity to induce up-regulation of uPAR expression, and soluble factors in the tumour microenvironment may have an important role in the regulation of posttranslational

  20. Affective priming effects of musical sounds on the processing of word meaning.

    Science.gov (United States)

    Steinbeis, Nikolaus; Koelsch, Stefan

    2011-03-01

    Recent studies have shown that music is capable of conveying semantically meaningful concepts. Several questions have subsequently arisen particularly with regard to the precise mechanisms underlying the communication of musical meaning as well as the role of specific musical features. The present article reports three studies investigating the role of affect expressed by various musical features in priming subsequent word processing at the semantic level. By means of an affective priming paradigm, it was shown that both musically trained and untrained participants evaluated emotional words congruous to the affect expressed by a preceding chord faster than words incongruous to the preceding chord. This behavioral effect was accompanied by an N400, an ERP typically linked with semantic processing, which was specifically modulated by the (mis)match between the prime and the target. This finding was shown for the musical parameter of consonance/dissonance (Experiment 1) and then extended to mode (major/minor) (Experiment 2) and timbre (Experiment 3). Seeing that the N400 is taken to reflect the processing of meaning, the present findings suggest that the emotional expression of single musical features is understood by listeners as such and is probably processed on a level akin to other affective communications (i.e., prosody or vocalizations) because it interferes with subsequent semantic processing. There were no group differences, suggesting that musical expertise does not have an influence on the processing of emotional expression in music and its semantic connotations.

  1. On whether mirror neurons play a significant role in processing affective prosody.

    Science.gov (United States)

    Ramachandra, Vijayachandra

    2009-02-01

    Several behavioral and neuroimaging studies have indicated that both right and left cortical structures and a few subcortical ones are involved in processing affective prosody. Recent investigations have shown that the mirror neuron system plays a crucial role in several higher-level functions such as empathy, theory of mind, language, etc., but no studies so far link the mirror neuron system with affective prosody. In this paper is a speculation that the mirror neuron system, which serves as a common neural substrate for different higher-level functions, may play a significant role in processing affective prosody via its connections with the limbic lobe. Actual research must apply electrophysiological and neuroimaging techniques to assess whether the mirror neuron systems underly affective prosody in humans.

  2. Crystal Structure of a 4,6-α-Glucanotransferase Supports Diet-Driven Evolution of GH70 Enzymes from α-Amylases in Oral Bacteria

    NARCIS (Netherlands)

    Pijning, Tjaard; Bai, Yuxiang; Gangoiti Muñecas, Joana; Dijkhuizen, Lubbert

    2016-01-01

    The human diet has been subject to dramatic changes due to food processing and refining. However, whether this affected the evolution of enzymes in human microbiota is largely unknown. It was proposed that glycoside hydrolase family 70 (GH70) glucansucrases (GS) from Lactobacilli, which synthesize

  3. Strategies for enzyme saving during saccharification of pretreated lignocellulo-starch biomass: effect of enzyme dosage and detoxification chemicals

    Directory of Open Access Journals (Sweden)

    M.G. Mithra

    2017-08-01

    Full Text Available Two strategies leading to enzyme saving during saccharification of pretreated lignocellulo-starch biomass (LCSB was investigated which included reducing enzyme dosage by varying their levels in enzyme cocktails and enhancing the fermentable sugar yield in enzyme-reduced systems using detoxification chemicals. Time course release of reducing sugars (RS during 24–120 h was significantly higher when an enzyme cocktail containing full dose of cellulase (16 FPU/g cellulose along with half dose each of xylanase (1.5 mg protein/g hemicelluloses and Stargen (12.5 μl/g biomass was used to saccharify conventional dilute sulphuric acid (DSA pretreated biomass compared to a parallel system where only one-fourth the dose of the latter two enzymes was used. The reduction in RS content in the 120 h saccharified mash to the extent of 3–4 g/L compared to the system saccharified with full complement of the three enzymes could be overcome considerably by supplementing the system (half dose of two enzymes with detoxification chemical mix incorporating Tween 20, PEG 4000 and sodium borohydride. Microwave (MW-assisted DSA pretreated biomass on saccharification with enzyme cocktail having full dose of cellulase and half dose of Stargen along with detoxification chemicals gave significantly higher RS yield than DSA pretreated system saccharified using three enzymes. The study showed that xylanase could be eliminated during saccharification of MW-assisted DSA pretreated biomass without affecting RS yield when detoxification chemicals were also supplemented. The Saccharification Efficiency and Overall Conversion Efficiency were also high for the MW-assisted DSA pretreated biomass. Since whole slurry saccharifcation of pretreated biomass is essential to conserve fermentable sugars in LCSB saccharification, detoxification of soluble inhibitors is equally important as channelling out of insoluble lignin remaining in the residue. As one of the major factors contributing

  4. Enzymes are a sweet way to do business

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-04

    The use of enzymes in industry is growing steadily. This artic discusses some areas of enzyme research: included are enzyme treatments for the production of high-fructose corn syrup and ethanol for gasohol blends, enzyme research focusing on cellulose breakdown, especially from municipal waste and pulp and paper waste to produce ethanol and the conversion of soybeans into a protein-rich powder. The enzymatic process for nitrogen fixation in the nodules of certain leguminous plants and in medical diagnostics are also mentioned.

  5. Serine proteases as candidates for proteolytic processing of angiotensin-I converting enzyme.

    Science.gov (United States)

    Aragão, Danielle S; de Andrade, Maria Claudina C; Ebihara, Fabiana; Watanabe, Ingrid K M; Magalhães, Dayane C B P; Juliano, Maria Aparecida; Hirata, Izaura Yoshico; Casarini, Dulce Elena

    2015-01-01

    Somatic angiotensin-I converting enzyme (sACE) is a broadly distributed peptidase which plays a role in blood pressure and electrolyte homeostasis by the conversion of angiotensin I into angiotensin II. N-domain isoforms (nACE) with 65 and 90 kDa have been described in body fluids, tissues and mesangial cells (MC), and a 90 kDa nACE has been described only in spontaneously hypertensive rats. The aim of this study was to investigate the existence of proteolytic enzymes that may act in the hydrolysis of sACE generating nACEs in MC. After the confirmation of the presence of ACE sheddases in Immortalized MC (IMC), we purified and characterized these enzymes using fluorogenic substrates specifically designed for ACE sheddases. Purified enzyme identified as a serine protease by N-terminal sequence was able to generate nACE. In the present study, we described for the first time the presence of ACE sheddases in IMC, identified as serine proteases able to hydrolyze sACE in vitro. Further investigations are necessary to elucidate the mechanisms responsible for the expression and regulation of ACE sheddases in MC and their roles in the generation of nACEs, especially the 90 kDa form possibly related to hypertension. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Microbial enzyme-catalyzed processes in soils and their analysis

    Czech Academy of Sciences Publication Activity Database

    Baldrian, Petr

    2009-01-01

    Roč. 55, č. 9 (2009), s. 370-378 ISSN 1214-1178 R&D Projects: GA MŠk LC06066; GA MŠk OC 155; GA MŠk OC08050; GA MZe QH72216 Institutional research plan: CEZ:AV0Z50200510 Keywords : assay methods * extracellular enzymes * ecology Subject RIV: EE - Microbiology, Virology Impact factor: 0.697, year: 2009

  7. Enzyme

    Science.gov (United States)

    Enzymes are complex proteins that cause a specific chemical change in all parts of the body. For ... use them. Blood clotting is another example of enzymes at work. Enzymes are needed for all body ...

  8. CHANGES IN SERUM ENZYMES LEVELS ASSOCIATED WITH LIVER FUNCTIONS IN STRESSED MARWARI GOAT

    Directory of Open Access Journals (Sweden)

    Kataria N.

    2011-03-01

    Full Text Available Serum enzyme levels were determined in goats of Marwari breed belonging to farmers’ stock of arid tract of Rajasthan state, India. The animals were grouped into healthy and stressed comprising of gastrointestinal parasiticised, pneumonia affected, and drought affected. The serum enzymes determined were sorbitol dehydrogenase, malate dehydrogenase, glucose-6-phosphate dehydrogenase, glutamate dehydrogenase, ornithine carbamoyl transferase, gamma-glutamayl transferase, 5’nucleotidase, glucose-6-phosphatase, arginase, and aldolase. In stressed group the mean values of all the enzymes increased significantly (p≤0.05 as compared to respective healthy mean value. All the enzymes showed highest values in the gastrointestinal parasiticised animals and least values in the animals having pneumonia. In gastrointestinal parasiticised animals maximum change was observed in G-6-Pase activity and minimum change was observed in malate dehydrogenase mean value. It was concluded that Increased activity of all the serum enzymes was due to modulation of liver functions directly or indirectly.

  9. Effects of particle size of processed barley grain, enzyme addition and microwave treatment on disappearance and gas production for feedlot cattle

    Directory of Open Access Journals (Sweden)

    Shin-ichi Tagawa

    2017-04-01

    Full Text Available Objective The effects of particle size of processed barley grain, enzyme addition and microwave treatment on in vitro dry matter (DM disappearance (DMD, gas production and fermentation pH were investigated for feedlot cattle. Methods Rumen fluid from four fistulated feedlot cattle fed a diet of 860 dry-rolled barley grain, 90 maize silage and 50 supplement g/kg DM was used as inoculum in 3 batch culture in vitro studies. In Experiment 1, dry-rolled barley and barley ground through a 1-, 2-, or 4-mm screen were used to obtain four substrates differing in particle size. In Experiment 2, cellulase enzyme (ENZ from Acremonium cellulolyticus Y-94 was added to dry-rolled and ground barley (2-mm at 0, 0.1, 0.5, 1, and 2 mg/g, while Experiment 3 examined the interactions between microwaving (0, 30, and 60 s microwaving and ENZ addition (0, 1, and 2 mg/g using dry-rolled barley and 2-mm ground barley. Results In Experiment 1, decreasing particle size increased DMD and gas production, and decreased fermentation pH (p<0.01. The DMD (g/kg DM of the dry-rolled barley after 24 h incubation was considerably lower (p<0.05 than that of the ground barley (119.1 dry-rolled barley versus 284.8 for 4-mm, 341.7 for 2-mm; and 358.6 for 1-mm. In Experiment 2, addition of ENZ to dry-rolled barley increased DMD (p<0.01 and tended to increase (p = 0.09 gas production and decreased (p<0.01 fermentation pH, but these variables were not affected by ENZ addition to ground barley. In Experiment 3, there were no interactions between microwaving and ENZ addition after microwaving for any of the variables. Microwaving had minimal effects (except decreased fermentation pH, but consistent with Experiment 2, ENZ addition increased (p<0.01 DMD and gas production, and decreased (p<0.05 fermentation pH of dry-rolled barley, but not ground barley. Conclusion We conclude that cellulase enzymes can be used to increase the rumen disappearance of barley grain when it is coarsely processed

  10. A Qualitative Approach to Enzyme Inhibition

    Science.gov (United States)

    Waldrop, Grover L.

    2009-01-01

    Most general biochemistry textbooks present enzyme inhibition by showing how the basic Michaelis-Menten parameters K[subscript m] and V[subscript max] are affected mathematically by a particular type of inhibitor. This approach, while mathematically rigorous, does not lend itself to understanding how inhibition patterns are used to determine the…

  11. Psychometric Characteristics of the EEAA (Scale of Affective Strategies in the Learning Process)

    Science.gov (United States)

    Villardón-Gallego, Lourdes; Yániz, Concepción

    2014-01-01

    Introduction: Affective strategies for coping with affective states linked to the learning process may be oriented toward controlling emotions or toward controlling motivation. Both types affect performance, directly and indirectly. The objective of this research was to design an instrument for measuring the affective strategies used by university…

  12. Affect of different ICT processing parameters to the quality of tomograms

    International Nuclear Information System (INIS)

    Zhou Jiang; Sun Lingxia; Ye Yunchang

    2009-01-01

    The quality of ICT tomograms is affected by detecting processing parameters and image processing methods besides the performances of ICT systems. Optimal processing parameters and image processing methods can promote not only the quality of tomogram but also the resolution. Some research work was carried out about processing parameters and image processing methods including choice of collimator, filter, false color composite image. And some examples were given in this paper, which can provide the ICT analyst with reference. (authors)

  13. The ultrasound technology for modifying enzyme activity

    Directory of Open Access Journals (Sweden)

    Meliza Lindsay Rojas

    2016-01-01

    Full Text Available Enzymes are protein complexes compounds widely studied and used due to their ability to catalyze reactions. The food processing mainly a ims the inactivation of enzymes due to various undesirable effects. However, there are many processes that can be optimized by its catalytic activity. In this context, different technologies have been applied both to inactivate or to improve the enzymes ef ficiency. The Ultrasound technology emerges as an alternative mainly applied to achieve the enzyme inactivation. On the contrary, very few investigations show the ability of this technology under certain conditions to achieve the opposite effect (i.e. increase the catalytic activity of enzymes. The objective of this study was to correlate the ultrasonic energy delivered to the sample (J/mL with the residual enzymatic activity and explain the possible mechanisms which results in the enzymatic activation/in activation complex behavior. The activity of POD in coconut water was evaluated as a model. The enzymatic activity initially increased, followed by reduction with a trend to enzyme inactivation. This complex behavior is directly related to the applied ultr asonic energy and their direct mechanical effects on the product, as well as the effect in the enzymatic infinite intermediate states and its structural conformation changes. The obtained results are useful for both academic and industrial perspectives.

  14. (1) H-MRS processing parameters affect metabolite quantification

    DEFF Research Database (Denmark)

    Bhogal, Alex A; Schür, Remmelt R; Houtepen, Lotte C

    2017-01-01

    investigated the influence of model parameters and spectral quantification software on fitted metabolite concentration values. Sixty spectra in 30 individuals (repeated measures) were acquired using a 7-T MRI scanner. Data were processed by four independent research groups with the freedom to choose their own...... + NAAG/Cr + PCr and Glu/Cr + PCr, respectively. Metabolite quantification using identical (1) H-MRS data was influenced by processing parameters, basis sets and software choice. Locally preferred processing choices affected metabolite quantification, even when using identical software. Our results......Proton magnetic resonance spectroscopy ((1) H-MRS) can be used to quantify in vivo metabolite levels, such as lactate, γ-aminobutyric acid (GABA) and glutamate (Glu). However, there are considerable analysis choices which can alter the accuracy or precision of (1) H-MRS metabolite quantification...

  15. Modification of enzymes by use of high-pressure homogenization.

    Science.gov (United States)

    Dos Santos Aguilar, Jessika Gonçalves; Cristianini, Marcelo; Sato, Helia Harumi

    2018-07-01

    High-pressure is an emerging and relatively new technology that can modify various molecules. High-pressure homogenization (HPH) has been used in several studies on protein modification, especially in enzymes used or found in food, from animal, plant or microbial resources. According to the literature, the enzymatic activity can be modulated under pressure causing inactivation, stabilization or activation of the enzymes, which, depending on the point of view could be very useful. Homogenization can generate changes in the structure of the enzyme modifying various chemical bonds (mainly weak bonds) causing different denaturation levels and, consequently, affecting the catalytic activity. This review aims to describe the various alterations due to HPH treatment in enzymes, to show the influence of high-pressure on proteins and to report the HPH effects on the enzymatic activity of different enzymes employed in the food industry and research. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. The Effects of the Types of Milk (Cow, Goat, Soya and Enzymes (Rennet, Papain, Bromelain Toward Cheddar Cheese Production

    Directory of Open Access Journals (Sweden)

    Ariestya Arlene

    2015-04-01

    Full Text Available The objectives of this research are to study the effects of different types of milk and enzymes toward the yield and quality (moisture, ash, protein, fat content, and texture of cheddar cheese and the interaction between those two variables during the process. The types of milk are cow, goat, and soya milk, while the types of enzymes are rennet, papain, and bromelain enzymes. Regarding the procedure, the milk is first pasteurized before CaCl2 and Lactobacillus lactis that acts as the acidifier starter as much as 0.2% (w/v and 0.5% of the milk volume are added respectively. The amount of enzyme added is appropriate for the determination of enzyme dose. The curd is separated from the whey and then 2.5 grams of salt is added to 100 grams of curd. Afterwards, the curd is pressed until the water content decreases (cheese, then ripened for 1 month. The analyses conducted are moisture, ash, protein, fat content, and texture (hardness. The conclusion is the goat milk and the rennet enzyme are the suitable raw material for cheddar cheese production. Furthermore, different types of milk and enzymes affect the yield. However, there is no interaction between the types of milk and enzymes to the yield.

  17. High throughput, high resolution enzymatic lithography process: effect of crystallite size, moisture, and enzyme concentration.

    Science.gov (United States)

    Mao, Zhantong; Ganesh, Manoj; Bucaro, Michael; Smolianski, Igor; Gross, Richard A; Lyons, Alan M

    2014-12-08

    By bringing enzymes into contact with predefined regions of a surface, a polymer film can be selectively degraded to form desired patterns that find a variety of applications in biotechnology and electronics. This so-called "enzymatic lithography" is an environmentally friendly process as it does not require actinic radiation or synthetic chemicals to develop the patterns. A significant challenge to using enzymatic lithography has been the need to restrict the mobility of the enzyme in order to maintain control of feature sizes. Previous approaches have resulted in low throughput and were limited to polymer films only a few nanometers thick. In this paper, we demonstrate an enzymatic lithography system based on Candida antartica lipase B (CALB) and poly(ε-caprolactone) (PCL) that can resolve fine-scale features, (<1 μm across) in thick (0.1-2.0 μm) polymer films. A Polymer Pen Lithography (PPL) tool was developed to deposit an aqueous solution of CALB onto a spin-cast PCL film. Immobilization of the enzyme on the polymer surface was monitored using fluorescence microscopy by labeling CALB with FITC. The crystallite size in the PCL films was systematically varied; small crystallites resulted in significantly faster etch rates (20 nm/min) and the ability to resolve smaller features (as fine as 1 μm). The effect of printing conditions and relative humidity during incubation is also presented. Patterns formed in the PCL film were transferred to an underlying copper foil demonstrating a "Green" approach to the fabrication of printed circuit boards.

  18. Effect of irradiation on lysosomal enzyme activation in cultured macrophages

    International Nuclear Information System (INIS)

    Clarke, C.; Wills, E.D.

    1980-01-01

    The effect of γrays on lysosomal enzyme activity of normal and immune macrophages of DBA/2 mice cultured in vitro has been studied. A dose of 500 rad did not significantly affect lysosomal enzyme activity 3 hours after irradiation but caused the activity to increase to 1.4 times the control value 22.5 hours after irradiation. 22.5 hours after a dose of 3000 rad the enzyme activity increased to 2.5 times the control. Lysosomal enzyme activity of the macrophages was also markedly increased by immunization of the mice with D lymphoma cells, before culture in vitro, but irradiation of these cells with a dose of 500 rad caused a further increase in lysosomal enzyme activity. The results indicate that immunization and irradiation both cause stimulation of lysosomal enzyme activity in macrophages but that the mechanisms of activation are unlikely to be identical. (author)

  19. Searching for Judy: How small mysteries affect narrative processes and memory

    Science.gov (United States)

    Love, Jessica; McKoon, Gail; Gerrig, Richard J.

    2010-01-01

    Current theories of text processing say little about how author’s narrative choices, including the introduction of small mysteries, can affect readers’ narrative experiences. Gerrig, Love, and McKoon (2009) provided evidence that one type of small mystery—a character introduced without information linking him or her to the story—affects readers’ moment-by-moment processing. For that project, participants read stories that introduced characters by proper name alone (e.g., Judy) or with information connecting the character to the rest of the story (e.g., our principal Judy). In an on-line recognition probe task, responses to the character’s name three lines after his or her introduction were faster when the character had not been introduced with connecting information, suggesting that the character remained accessible awaiting resolution. In the four experiments in this paper, we extended our theoretical analysis of small mysteries. In Experiments 1 and 2, we found evidence that trait information (e.g., daredevil Judy) is not sufficient to connect a character to a text. In Experiments 3 and 4, we provide evidence that the moment-by-moment processing effects of such small mysteries also affect readers’ memory for the stories. We interpret the results in terms of Kintsch’s Construction-Integration model (1988) of discourse processing. PMID:20438273

  20. Influence of 2. 45 GHz microwave radiation on enzyme activity

    Energy Technology Data Exchange (ETDEWEB)

    Galvin, M J; Parks, D L; McRee, D I

    1981-05-01

    The in vitro activity of acetylcholinesterase and creatine phosphokinase was determined during in vitro exposure to 2.45 GHz microwave radiation. The enzyme activities were examined during exposure to microwave radiation at specific absorption rates (SAR) of 1, 10, 50, and 100 mW/g. These specific absorption rates had no effect on the activity of either enzyme when the temperature of the control and exposed samples were similar. These data demonstrate that the activity of these two enzymes is not affected by microwave radiation at the SARs and frequency employed in this study.

  1. 10 years of BAWLing into affective and aesthetic processes in reading: what are the echoes?

    Science.gov (United States)

    Jacobs, Arthur M.; Võ, Melissa L.-H.; Briesemeister, Benny B.; Conrad, Markus; Hofmann, Markus J.; Kuchinke, Lars; Lüdtke, Jana; Braun, Mario

    2015-01-01

    Reading is not only “cold” information processing, but involves affective and aesthetic processes that go far beyond what current models of word recognition, sentence processing, or text comprehension can explain. To investigate such “hot” reading processes, standardized instruments that quantify both psycholinguistic and emotional variables at the sublexical, lexical, inter-, and supralexical levels (e.g., phonological iconicity, word valence, arousal-span, or passage suspense) are necessary. One such instrument, the Berlin Affective Word List (BAWL) has been used in over 50 published studies demonstrating effects of lexical emotional variables on all relevant processing levels (experiential, behavioral, neuronal). In this paper, we first present new data from several BAWL studies. Together, these studies examine various views on affective effects in reading arising from dimensional (e.g., valence) and discrete emotion features (e.g., happiness), or embodied cognition features like smelling. Second, we extend our investigation of the complex issue of affective word processing to words characterized by a mixture of affects. These words entail positive and negative valence, and/or features making them beautiful or ugly. Finally, we discuss tentative neurocognitive models of affective word processing in the light of the present results, raising new issues for future studies. PMID:26089808

  2. Enzymes in biogenesis of plant cell wall polysaccharides. Enzyme characterization using tracer techniques

    International Nuclear Information System (INIS)

    Dickinson, D.B.

    1975-01-01

    Enzymes and metabolic pathways, by which starch and cell wall polysaccharides are formed, were investigated in order to learn how these processes are regulated and to identify the enzymatic regulatory mechanisms involved. Germinating lily pollen was used for studies of cell wall formation, and pollen and maize endosperm for studies of starch biosynthesis. Hexokinase being the first step in conversion of hexoses to starch, wall polysaccharides and respiratory substrates, maize endosperm enzyme was assayed by its conversion of 14 C-hexose to 14 C-hexose-6-P, and rapid separation of the two labelled compounds on anion-exchange paper. This enzyme did not appear to be under tight regulation by feed-back inhibition or activation, nor to be severely inhibited by glucose-6-P or activated by citrate. ADP-glucose pyrophosphorylase and other pyrophosphorylases were assayed radiochemically with 14 C-glucose-1-P (forward direction) or 32-PPsub(i) (reverse direction). They showed that the maize endosperm enzyme was activated by the glycolytic intermediates fructose-6-P and 3-phosphoglycerate, and that low levels of the enzyme were present in the high sucrose-low starch mutant named shrunken-2. Under optimal in-vitro assay conditions, the pollen enzyme reacted four times faster than the observed in-vivo rate of starch accumulation. Biogenesis of plant cell wall polysaccharides requires the conversion of hexose phosphates to various sugar nucleotides and utilization of the latter by the appropriate polysaccharide synthetases. Lily pollen possesses a β-1,3-glucan synthetase which is activated up to six-fold by β-linked oligosaccharides. Hence, the in-vivo activity of this enzyme may be modulated by such effector molecules

  3. A model system for targeted drug release triggered by biomolecular signals logically processed through enzyme logic networks.

    Science.gov (United States)

    Mailloux, Shay; Halámek, Jan; Katz, Evgeny

    2014-03-07

    A new Sense-and-Act system was realized by the integration of a biocomputing system, performing analytical processes, with a signal-responsive electrode. A drug-mimicking release process was triggered by biomolecular signals processed by different logic networks, including three concatenated AND logic gates or a 3-input OR logic gate. Biocatalytically produced NADH, controlled by various combinations of input signals, was used to activate the electrochemical system. A biocatalytic electrode associated with signal-processing "biocomputing" systems was electrically connected to another electrode coated with a polymer film, which was dissolved upon the formation of negative potential releasing entrapped drug-mimicking species, an enzyme-antibody conjugate, operating as a model for targeted immune-delivery and consequent "prodrug" activation. The system offers great versatility for future applications in controlled drug release and personalized medicine.

  4. Methods for Efficiently and Accurately Computing Quantum Mechanical Free Energies for Enzyme Catalysis.

    Science.gov (United States)

    Kearns, F L; Hudson, P S; Boresch, S; Woodcock, H L

    2016-01-01

    Enzyme activity is inherently linked to free energies of transition states, ligand binding, protonation/deprotonation, etc.; these free energies, and thus enzyme function, can be affected by residue mutations, allosterically induced conformational changes, and much more. Therefore, being able to predict free energies associated with enzymatic processes is critical to understanding and predicting their function. Free energy simulation (FES) has historically been a computational challenge as it requires both the accurate description of inter- and intramolecular interactions and adequate sampling of all relevant conformational degrees of freedom. The hybrid quantum mechanical molecular mechanical (QM/MM) framework is the current tool of choice when accurate computations of macromolecular systems are essential. Unfortunately, robust and efficient approaches that employ the high levels of computational theory needed to accurately describe many reactive processes (ie, ab initio, DFT), while also including explicit solvation effects and accounting for extensive conformational sampling are essentially nonexistent. In this chapter, we will give a brief overview of two recently developed methods that mitigate several major challenges associated with QM/MM FES: the QM non-Boltzmann Bennett's acceptance ratio method and the QM nonequilibrium work method. We will also describe usage of these methods to calculate free energies associated with (1) relative properties and (2) along reaction paths, using simple test cases with relevance to enzymes examples. © 2016 Elsevier Inc. All rights reserved.

  5. Biocatalytic material comprising multilayer enzyme coated fiber

    Science.gov (United States)

    Kim, Jungbae [Richland, WA; Kwak, Ja Hun [Richland, WA; Grate, Jay W [West Richland, WA

    2009-11-03

    The present invention relates generally to high stability, high activity biocatalytic materials and processes for using the same. The materials comprise enzyme aggregate coatings having high biocatalytic activity and stability useful in heterogeneous environment. These new materials provide a new biocatalytic immobilized enzyme system with applications in bioconversion, bioremediation, biosensors, and biofuel cells.

  6. The adsorption of α-amylase on barley proteins affects the in vitro digestion of starch in barley flour.

    Science.gov (United States)

    Yu, Wenwen; Zou, Wei; Dhital, Sushil; Wu, Peng; Gidley, Michael J; Fox, Glen P; Gilbert, Robert G

    2018-02-15

    The conversion of barley starch to sugars is a complex enzymic process. Most previous work concerned the biotechnical aspect of in situ barley enzymes. However, the interactions among the macromolecular substrates and their effects on enzymic catalysis has been little examined. Here, we explore the mechanisms whereby interactions of protein and starch in barley flour affect the kinetics of enzymatic hydrolysis of starch in an in vitro system, using digestion rate data and structural analysis by confocal microscopy. The degradation kinetics of both uncooked barley flour and of purified starches are found to be two-step sequential processes. Barley proteins, especially the water-soluble component, are found to retard the digestion of starch degraded by α-amylase: the enzyme binds with water-insoluble protein and with starch granules, leading to reduced starch hydrolysis. These findings are of potential industrial value in both the brewing and food industries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Studies on the preparation of immobilized enzymes by radio-polymerization, 10

    International Nuclear Information System (INIS)

    Amarakone, S.P.; Hayashi, Toru; Kawashima, Koji.

    1983-01-01

    β-Galactosidase of E. coli origin was immobilized in the form of beads by the radiopolymerization of different combinations of monomers using a gamma irradiation technique. With the dialysed enzyme, recoveries of over 300 % could be obtained on suitable monomer combinations containing magnesium and sodium acrylates. The recovery of the enzyme also depended on the irradiation time. The immobilized enzyme had better pH and temperature stability and was less affected by the presence of metal ions in the medium, compared to the native enzyme. The optimum pH and temperatures of the immobilized enzyme were different from those of the native enzyme and were 7.0 to 7.5 and 50 deg C respectively. The immobilized enzyme was used in a column for the continuous determination of lactose with a standard type autoanalyser. Good linearity could be observed even up to 3 % lactose in the sample. (author)

  8. Research Applications of Proteolytic Enzymes in Molecular Biology

    OpenAIRE

    Mótyán, János András; Tóth, Ferenc; Tőzsér, József

    2013-01-01

    Proteolytic enzymes (also termed peptidases, proteases and proteinases) are capable of hydrolyzing peptide bonds in proteins. They can be found in all living organisms, from viruses to animals and humans. Proteolytic enzymes have great medical and pharmaceutical importance due to their key role in biological processes and in the life-cycle of many pathogens. Proteases are extensively applied enzymes in several sectors of industry and biotechnology, furthermore, numerous research applications ...

  9. Enzyme activity as an indicator of soil-rehabilitation processes at a zinc and lead ore mining and processing area.

    Science.gov (United States)

    Ciarkowska, Krystyna; Sołek-Podwika, Katarzyna; Wieczorek, Jerzy

    2014-01-01

    The activities of soil enzymes in relation to the changes occurring in the soil on a degraded area in southern Poland after zinc and lead mining were analyzed. An evaluation of the usefulness of urease and invertase activities for estimating the progress of the rehabilitation processes in degraded soil was performed. The data show that the soil samples differed significantly in organic carbon (0.68-104.0 g kg(-1)) and total nitrogen (0.03-8.64 g kg(-1)) content in their surface horizons. All of the soil samples (apart from one covered with forest) had very high total concentrations of zinc (4050-10,884 mg kg(-1)), lead (959-6661 mg kg(-1)) and cadmium (24.4-174.3 mg kg(-1)) in their surface horizons, and similar concentrations in their deeper horizons. Nevertheless, the amounts of the soluble forms of the above-mentioned heavy metals were quite low and they accounted for only a small percentage of the total concentrations: 1.4% for Zn, 0.01% for Pb and 2.6% for Cd. Urease activities were ranked as follows: soil from flotation settler (0.88-1.78 μg N-NH4(+) 2h(-1) g(-1))slag heaps (1.77-2.51 μg N-NH4(+) 2h(-1) g(-1))slag heaps, ranging from 20.5 to 77.1mg of the inverted sugar, but they were much lower in soil from the flotation settler (0.12-6.95 mg of the inverted sugar). The results demonstrated that heavy pollution with Zn, Pb and Cd slightly decreased the activities of urease and invertase. It is thought that it resulted from the enzyme reactions occurring in slightly acidic or alkaline soil conditions. Under such conditions, heavy metals occur mainly in insoluble forms. The activities of these enzymes are strongly dependent on the content and decomposition of organic matter in the soil. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Relation between facial affect recognition and configural face processing in antipsychotic-free schizophrenia.

    Science.gov (United States)

    Fakra, Eric; Jouve, Elisabeth; Guillaume, Fabrice; Azorin, Jean-Michel; Blin, Olivier

    2015-03-01

    Deficit in facial affect recognition is a well-documented impairment in schizophrenia, closely connected to social outcome. This deficit could be related to psychopathology, but also to a broader dysfunction in processing facial information. In addition, patients with schizophrenia inadequately use configural information-a type of processing that relies on spatial relationships between facial features. To date, no study has specifically examined the link between symptoms and misuse of configural information in the deficit in facial affect recognition. Unmedicated schizophrenia patients (n = 30) and matched healthy controls (n = 30) performed a facial affect recognition task and a face inversion task, which tests aptitude to rely on configural information. In patients, regressions were carried out between facial affect recognition, symptom dimensions and inversion effect. Patients, compared with controls, showed a deficit in facial affect recognition and a lower inversion effect. Negative symptoms and lower inversion effect could account for 41.2% of the variance in facial affect recognition. This study confirms the presence of a deficit in facial affect recognition, and also of dysfunctional manipulation in configural information in antipsychotic-free patients. Negative symptoms and poor processing of configural information explained a substantial part of the deficient recognition of facial affect. We speculate that this deficit may be caused by several factors, among which independently stand psychopathology and failure in correctly manipulating configural information. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  11. Database of ligand-induced domain movements in enzymes

    Directory of Open Access Journals (Sweden)

    Hayward Steven

    2009-03-01

    Full Text Available Abstract Background Conformational change induced by the binding of a substrate or coenzyme is a poorly understood stage in the process of enzyme catalysed reactions. For enzymes that exhibit a domain movement, the conformational change can be clearly characterized and therefore the opportunity exists to gain an understanding of the mechanisms involved. The development of the non-redundant database of protein domain movements contains examples of ligand-induced domain movements in enzymes, but this valuable data has remained unexploited. Description The domain movements in the non-redundant database of protein domain movements are those found by applying the DynDom program to pairs of crystallographic structures contained in Protein Data Bank files. For each pair of structures cross-checking ligands in their Protein Data Bank files with the KEGG-LIGAND database and using methods that search for ligands that contact the enzyme in one conformation but not the other, the non-redundant database of protein domain movements was refined down to a set of 203 enzymes where a domain movement is apparently triggered by the binding of a functional ligand. For these cases, ligand binding information, including hydrogen bonds and salt-bridges between the ligand and specific residues on the enzyme is presented in the context of dynamical information such as the regions that form the dynamic domains, the hinge bending residues, and the hinge axes. Conclusion The presentation at a single website of data on interactions between a ligand and specific residues on the enzyme alongside data on the movement that these interactions induce, should lead to new insights into the mechanisms of these enzymes in particular, and help in trying to understand the general process of ligand-induced domain closure in enzymes. The website can be found at: http://www.cmp.uea.ac.uk/dyndom/enzymeList.do

  12. Recycle of enzymes and substrate following enzymatic hydrolysis of steam-pretreated aspenwood

    Energy Technology Data Exchange (ETDEWEB)

    Mes-Hartree, M.; Hogan, C.M.; Saddler, J.N.

    1987-09-01

    The commercial production of chemicals and fuels from lignocellulosic residues by enzymatic means still requires considerable research on both the technical and economic aspects. Two technical problems that have been identified as requiring further research are the recycle of the enzymes used in hydrolysis and the reuse of the recalcitrant cellulose remaining after incomplete hydrolysis. Enzyme recycle is required to lower the cost of the enzymes, while the reuse of the spent cellulose will lower the feedstock cost. The conversion process studied was a combined enzymatic hydrolysis and fermentation (CHF) procedure that utilized the cellulolytic enzymes derived from the fungus Trichoderma harzianum E58 and the yeast Saccharomyces cerevisiae. The rate and extent of hydrolysis and ethanol production was monitored as was the activity and hydrolytic potential of the enzymes remaining in the filtrate after the hydrolysis period. When a commercial cellulose was used as the substrate for a routine 2-day CHF process, 60% of the original filter paper activity could be recovered. When steam-treated, water-extracted aspenwood was used as the substrate, only 13% of the original filter paper activity was detected after a similar procedure. The combination of 60% spent enzymes with 40% fresh enzymes resulted in the production of 30% less reducing sugars than the original enzyme mixture. Since 100% hydrolysis of the cellulose portion is seldom accomplished in an enzymatic hydrolysis process, the residual cellulose was used as a substrate for the growth of T. harzianum E58 and production of cellulolytic enzymes. The residue remaining after the CHF process was used as a substrate for the production of the cellulolytic enzymes. The production of enzymes from the residue of the Solka Floc hydrolysis was greater than the production of enzymes from the original Solka Floc. (Refs. 14).

  13. Effect of Bacillus cereus Enzymes on Milk Quality following Ultra High Temperature Processing

    Directory of Open Access Journals (Sweden)

    B. Janštová

    2006-01-01

    Full Text Available Using a model case of contamination of long-life semi-skimmed milk with the spores of six B. cereus strains, isolated from the farm environment and raw milk, proteolysis was monitored by measuring changes in protein content by infra-red spectroscopy; free tyrosine was measured by the Lowry method according to Juffs, and the reduction in casein fractions by SDS-PAGE. Lipolysis was monitored by the dilution extractive method. At a storage temperature of 4 °C for 4 months no enzyme processes were observed, whereas at a storage temperature of 24 °C a marked enzyme activity was found during maximum 3 weeks as well as sensory changes of UHT milk. After three weeks of storage, a reduction in protein content from 34.55 g l-1 milk to 29.46 ± 2.00 g l-1 milk, and a reduction in the free tyrosine from 0.65 to 2.13 ± 0.28 mg ml-1 was found, as well as increased molar contents of free fatty acids (FFA from 41.97 to 1617.22 ± 68.17 mmol kg-1 milk fat. After six days of storage, α-casein, β-casein and κ-casein dropped to 69 ± 10%, 56 ± 16% and 43 ± 10%, respectively. Majority of changes in UHT milk depended on the B. cereus strain used, initial microbial counts and the method of heat inactivation of spores.

  14. Proteomic analyses for profiling regulated proteins/enzymes by Fucus vesiculosus fucoidan in B16 melanoma cells: A combination of enzyme kinetics functional study.

    Science.gov (United States)

    Wang, Zhi-Jiang; Zheng, Li; Yang, Jun-Mo; Kang, Yani; Park, Yong-Doo

    2018-06-01

    Fucoidans are complex sulfated polysaccharides that have a wide range of biological activities. Previously, we reported the various effects of Fucus vesiculosus fucoidan on tyrosinase and B16 melanoma cells. In this study, to identify fucoidan-targeted proteins in B16 melanoma cells, we performed a proteomics study and integrated enzyme kinetics. We detected 19 candidate proteins dysregulated by fucoidan treatment. Among the probed proteins, the enzyme kinetics of two candidate enzymes, namely lactate dehydrogenase (LDH) as an upregulated protein and superoxide dismutase (SOD) as a downregulated enzyme, were determined. The enzyme kinetics results showed that Fucus vesiculosus fucoidan significantly inhibited LDH catalytic function while it did not affect SOD activity even at a high dose, while only slightly decreased activity (up to 10%) at a low dose. Based on our previous and present observations, fucoidan could inhibit B16 melanoma cells growth via regulating proteins/enzymes expression levels such as LDH and SOD known as cell survival biomarkers. Interestingly, both expression level and enzyme catalytic activity of LDH were regulated by fucoidan, which could directly induce the apoptotic effect on B16 melanoma cells along with SOD downregulation. This study highlights how combining proteomics with enzyme kinetics can yield valuable insights into fucoidan targets. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Partial Characterization of α-Galactosidic Activity from the Antarctic Bacterial Isolate, . LX-20 as a Potential Feed Enzyme Source

    Directory of Open Access Journals (Sweden)

    Inkyung Park

    2012-06-01

    Full Text Available An Antarctic bacterial isolate displaying extracellular α-galactosidic activity was named Paenibacillus sp. LX-20 based on 16S rRNA gene sequence analysis. Optimal activity for the LX-20 α-galactosidase occurred at pH 6.0–6.5 and 45°C. The enzyme immobilized on the smart polymer Eudragit L-100 retained 70% of its original activity after incubation for 30 min at 50°C, while the free enzyme retained 58% of activity. The enzyme had relatively high specificity for α-D-galactosides such as p-nitrophenyl-α-galactopyranoside, melibiose, raffinose and stachyose, and was resistant to some proteases such as trypsin, pancreatin and pronase. Enzyme activity was almost completely inhibited by Ag+, Hg2+, Cu2+, and sodium dodecyl sulfate, but activity was not affected by β-mercaptoethanol or EDTA. LX-20 α-galactosidase may be potentially useful as an additive for soybean processing in the feed industry.

  16. Rethinking a Negative Event: The Affective Impact of Ruminative versus Imagery-Based Processing of Aversive Autobiographical Memories.

    Science.gov (United States)

    Slofstra, Christien; Eisma, Maarten C; Holmes, Emily A; Bockting, Claudi L H; Nauta, Maaike H

    2017-01-01

    Ruminative (abstract verbal) processing during recall of aversive autobiographical memories may serve to dampen their short-term affective impact. Experimental studies indeed demonstrate that verbal processing of non-autobiographical material and positive autobiographical memories evokes weaker affective responses than imagery-based processing. In the current study, we hypothesized that abstract verbal or concrete verbal processing of an aversive autobiographical memory would result in weaker affective responses than imagery-based processing. The affective impact of abstract verbal versus concrete verbal versus imagery-based processing during recall of an aversive autobiographical memory was investigated in a non-clinical sample ( n  = 99) using both an observational and an experimental design. Observationally, it was examined whether spontaneous use of processing modes (both state and trait measures) was associated with impact of aversive autobiographical memory recall on negative and positive affect. Experimentally, the causal relation between processing modes and affective impact was investigated by manipulating the processing mode during retrieval of the same aversive autobiographical memory. Main findings were that higher levels of trait (but not state) measures of both ruminative and imagery-based processing and depressive symptomatology were positively correlated with higher levels of negative affective impact in the observational part of the study. In the experimental part, no main effect of processing modes on affective impact of autobiographical memories was found. However, a significant moderating effect of depressive symptomatology was found. Only for individuals with low levels of depressive symptomatology, concrete verbal (but not abstract verbal) processing of the aversive autobiographical memory did result in weaker affective responses, compared to imagery-based processing. These results cast doubt on the hypothesis that ruminative processing of

  17. Experiment K-6-21. Effect of microgravity on 1) metabolic enzymes of type 1 and type 2 muscle fibers and on 2) metabolic enzymes, neutransmitter amino acids, and neurotransmitter associated enzymes in motor and somatosensory cerebral cortex. Part 1: Metabolic enzymes of individual muscle fibers; part 2: metabolic enzymes of hippocampus and spinal cord

    Science.gov (United States)

    Lowry, O.; Mcdougal, D., Jr.; Nemeth, Patti M.; Maggie, M.-Y. Chi; Pusateri, M.; Carter, J.; Manchester, J.; Norris, Beverly; Krasnov, I.

    1990-01-01

    The individual fibers of any individual muscle vary greatly in enzyme composition, a fact which is obscured when enzyme levels of a whole muscle are measured. The purpose of this study was therefore to assess the changes due to weightless on the enzyme patterns composed by the individual fibers within the flight muscles. In spite of the limitation in numbers of muscles examined, it is apparent that: (1) that the size of individual fibers (i.e., their dry weight) was reduced about a third, (2) that this loss in dry mass was accompanied by changes in the eight enzymes studied, and (3) that these changes were different for the two muscles, and different for the two enzyme groups. In the soleus muscle the absolute amounts of the three enzymes of oxidative metabolism decreased about in proportion to the dry weight loss, so that their concentration in the atrophic fibers was almost unchanged. In contrast, there was little loss among the four enzymes of glycogenolysis - glycolysis so that their concentrations were substantially increased in the atrophic fibers. In the TA muscle, these seven enzymes were affected in just the opposite direction. There appeared to be no absolute loss among the oxidative enzymes, whereas the glycogenolytic enzymes were reduced by nearly half, so that the concentrations of the first metabolic group were increased within the atrophic fibers and the concentrations of the second group were only marginally decreased. The behavior of hexokinase was exceptional in that it did not decrease in absolute terms in either type of muscle and probably increased as much as 50 percent in soleus. Thus, their was a large increase in concentration of this enzyme in the atrophied fibers of both muscles. Another clear-cut finding was the large increase in the range of activities of the glycolytic enzymes among individual fibers of TA muscles. This was due to the emergence of TA fibers with activities for enzymes of this group extending down to levels as low as

  18. Electrophysiological differences in the processing of affective information in words and pictures.

    Science.gov (United States)

    Hinojosa, José A; Carretié, Luis; Valcárcel, María A; Méndez-Bértolo, Constantino; Pozo, Miguel A

    2009-06-01

    It is generally assumed that affective picture viewing is related to higher levels of physiological arousal than is the reading of emotional words. However, this assertion is based mainly on studies in which the processing of either words or pictures has been investigated under heterogenic conditions. Positive, negative, relaxing, neutral, and background (stimulus fragments) words and pictures were presented to subjects in two experiments under equivalent experimental conditions. In Experiment 1, neutral words elicited an enhanced late positive component (LPC) that was associated with an increased difficulty in discriminating neutral from background stimuli. In Experiment 2, high-arousing pictures elicited an enhanced early negativity and LPC that were related to a facilitated processing for these stimuli. Thus, it seems that under some circumstances, the processing of affective information captures attention only with more biologically relevant stimuli. Also, these data might be better interpreted on the basis of those models that postulate a different access to affective information for words and pictures.

  19. Enzymic hydrolysis of cellulosic wastes to glucose

    Energy Technology Data Exchange (ETDEWEB)

    Spano, L A; Medeiros, J; Mandels, M

    1976-01-01

    An enzymic process for the conversion of cellulose to glucose is based on the use of a specific enzyme derived from mutant strains of the fungus trichoderma viride which is capable of reacting with the crystalline fraction of the cellulose molecule. The production and mode of action of the cellulase complex produced during the growth of trichoderma viride is discussed as well as the application of such enzymes for the conversion of cellulosic wastes to crude glucose syrup for use in production of chemical feedstocks, single-cell proteins, fuels, solvents, etc.

  20. Process Design for the Biocatalysis of Value-Added Chemicals from Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Mark Eiteman

    2007-07-31

    This report describes results toward developing a process to sequester CO{sub 2} centered on the enzymes PEP carboxylase and pyruvate carboxylase. The process involves the use of bacteria to convert CO{sub 2} and glucose as a co-substrate and generates succinic acid as a commodity chemical product. The study reports on strain development and process development. In the area of strain development, knockouts in genes which divert carbon from the enzymatic steps involved in CO{sub 2} consumption were completed, and were shown not to affect significantly the rate of CO{sub 2} sequestration and succinic acid generation. Furthermore, the pyc gene encoding for pyruvate carboxylase proved to be unstable when integrated onto the chromosome. In the area of process development, an optimal medium, pH and base counterion were obtained, leading to a sequestration rate as great as 800 mg/Lh. Detailed studies of gas phase composition demonstrated that CO{sub 2} composition has a significant affect on CO{sub 2} sequestration, while the presence of 'toxic' compounds in the gas, including NO{sub 2}, CO and SO{sub 2} did not have a detrimental effect on sequestration. Some results on prolonging the rate of sequestration indicate that enzyme activities decrease with time, suggesting methods to prolong enzyme activity may benefit the overall process.

  1. Lactic acid bacteria affect serum cholesterol levels, harmful fecal enzyme activity, and fecal water content.

    Science.gov (United States)

    Lee, Do Kyung; Jang, Seok; Baek, Eun Hye; Kim, Mi Jin; Lee, Kyung Soon; Shin, Hea Soon; Chung, Myung Jun; Kim, Jin Eung; Lee, Kang Oh; Ha, Nam Joo

    2009-06-11

    Lactic acid bacteria (LAB) are beneficial probiotic organisms that contribute to improved nutrition, microbial balance, and immuno-enhancement of the intestinal tract, as well as lower cholesterol. Although present in many foods, most trials have been in spreads or dairy products. Here we tested whether Bifidobacteria isolates could lower cholesterol, inhibit harmful enzyme activities, and control fecal water content. In vitro culture experiments were performed to evaluate the ability of Bifidobacterium spp. isolated from healthy Koreans (20 approximately 30 years old) to reduce cholesterol-levels in MRS broth containing polyoxyethanylcholesterol sebacate. Animal experiments were performed to investigate the effects on lowering cholesterol, inhibiting harmful enzyme activities, and controlling fecal water content. For animal studies, 0.2 ml of the selected strain cultures (108 approximately 109 CFU/ml) were orally administered to SD rats (fed a high-cholesterol diet) every day for 2 weeks. B. longum SPM1207 reduced serum total cholesterol and LDL levels significantly (p water content, and reduced body weight and harmful intestinal enzyme activities. Daily consumption of B. longum SPM1207 can help in managing mild to moderate hypercholesterolemia, with potential to improve human health by helping to prevent colon cancer and constipation.

  2. Neural correlates of affect processing and aggression in methamphetamine dependence.

    Science.gov (United States)

    Payer, Doris E; Lieberman, Matthew D; London, Edythe D

    2011-03-01

    Methamphetamine abuse is associated with high rates of aggression but few studies have addressed the contributing neurobiological factors. To quantify aggression, investigate function in the amygdala and prefrontal cortex, and assess relationships between brain function and behavior in methamphetamine-dependent individuals. In a case-control study, aggression and brain activation were compared between methamphetamine-dependent and control participants. Participants were recruited from the general community to an academic research center. Thirty-nine methamphetamine-dependent volunteers (16 women) who were abstinent for 7 to 10 days and 37 drug-free control volunteers (18 women) participated in the study; subsets completed self-report and behavioral measures. Functional magnetic resonance imaging (fMRI) was performed on 25 methamphetamine-dependent and 23 control participants. We measured self-reported and perpetrated aggression and self-reported alexithymia. Brain activation was assessed using fMRI during visual processing of facial affect (affect matching) and symbolic processing (affect labeling), the latter representing an incidental form of emotion regulation. Methamphetamine-dependent participants self-reported more aggression and alexithymia than control participants and escalated perpetrated aggression more following provocation. Alexithymia scores correlated with measures of aggression. During affect matching, fMRI showed no differences between groups in amygdala activation but found lower activation in methamphetamine-dependent than control participants in the bilateral ventral inferior frontal gyrus. During affect labeling, participants recruited the dorsal inferior frontal gyrus and exhibited decreased amygdala activity, consistent with successful emotion regulation; there was no group difference in this effect. The magnitude of decrease in amygdala activity during affect labeling correlated inversely with self-reported aggression in control participants

  3. Study on immobilization enzyme using radiation grafting and condensation covalent

    International Nuclear Information System (INIS)

    Cao Jin; Su Zongxian; Gao Jianfeng

    1989-01-01

    The immobilization of gluecose oxidase (GOD) on polyethylene and F 46 is described by radiation grafting and condensation covalent. The GOD on polyethylene film is characterized with IR-spectrum. The results show that the enzyme activity on F 46 film is high when dose rate and covalent yield are low. When covalent yield is 4.3% the enzyme relative activity achieves the greatest value for F 46 film. The experiment also demonstrates that acrylic acid affects the relative activity of enzyme and the method of IR-pectrum character is convenient and efficient for GOD on polyethylene film

  4. Social and nonsocial affective processing in schizophrenia - An ERP study.

    Science.gov (United States)

    Okruszek, Ł; Wichniak, A; Jarkiewicz, M; Schudy, A; Gola, M; Jednoróg, K; Marchewka, A; Łojek, E

    2016-09-01

    Despite social cognitive dysfunction that may be observed in patients with schizophrenia, the knowledge about social and nonsocial affective processing in schizophrenia is scant. The aim of this study was to examine neurophysiological and behavioural responses to neutral and negative stimuli with (faces, people) and without (animals, objects) social content in schizophrenia. Twenty-six patients with schizophrenia (SCZ) and 21 healthy controls (HC) completed a visual oddball paradigm with either negative or neutral pictures from the Nencki Affective Picture System (NAPS) as targets while EEG was recorded. Half of the stimuli within each category presented social content (faces, people). Negative stimuli with social content produced lower N2 amplitude and higher mean LPP than any other type of stimuli in both groups. Despite differences in behavioural ratings and alterations in ERP processing of affective stimuli (lack of EPN differentiation, decreased P3 to neutral stimuli) SCZ were still able to respond to specific categories of stimuli similarly to HC. The pattern of results suggests that with no additional emotion-related task demands patients with schizophrenia may present similar attentional engagement with negative social stimuli as healthy controls. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Neural processing associated with cognitive and affective Theory of Mind in adolescents and adults.

    Science.gov (United States)

    Sebastian, Catherine L; Fontaine, Nathalie M G; Bird, Geoffrey; Blakemore, Sarah-Jayne; Brito, Stephane A De; McCrory, Eamon J P; Viding, Essi

    2012-01-01

    Theory of Mind (ToM) is the ability to attribute thoughts, intentions and beliefs to others. This involves component processes, including cognitive perspective taking (cognitive ToM) and understanding emotions (affective ToM). This study assessed the distinction and overlap of neural processes involved in these respective components, and also investigated their development between adolescence and adulthood. While data suggest that ToM develops between adolescence and adulthood, these populations have not been compared on cognitive and affective ToM domains. Using fMRI with 15 adolescent (aged 11-16 years) and 15 adult (aged 24-40 years) males, we assessed neural responses during cartoon vignettes requiring cognitive ToM, affective ToM or physical causality comprehension (control). An additional aim was to explore relationships between fMRI data and self-reported empathy. Both cognitive and affective ToM conditions were associated with neural responses in the classic ToM network across both groups, although only affective ToM recruited medial/ventromedial PFC (mPFC/vmPFC). Adolescents additionally activated vmPFC more than did adults during affective ToM. The specificity of the mPFC/vmPFC response during affective ToM supports evidence from lesion studies suggesting that vmPFC may integrate affective information during ToM. Furthermore, the differential neural response in vmPFC between adult and adolescent groups indicates developmental changes in affective ToM processing.

  6. Economic Analysis of an Organosolv Process for Bioethanol Production

    Directory of Open Access Journals (Sweden)

    Jesse Kautto

    2014-08-01

    Full Text Available In a previous paper, conceptual process design, simulation, and mass and energy balances were presented for an organosolv process with a hardwood feed of 2350 metric tons (MT per day and ethanol, lignin, furfural, and acetic acid production rates of 459, 310, 6.6, and 30.3 MT/day, respectively. In this paper, the investment and operating costs of the process and the minimum ethanol selling price (MESP to make the process economically feasible were estimated. The total capital investment of the plant was approximately 720 million USD. Lignin price was found to affect the MESP considerably. With a base case lignin price of 450 USD/MT, the MESP was approximately 3.1 USD per gallon (gal. Higher lignin price of 1000 USD/MT was required to equal the MESP with the December 2013 ethanol market price (2.0 USD/gal. In addition to lignin price, the MESP was found to be strongly affected by feedstock, enzyme, and investment costs. Variations in feedstock and investment costs affected the MESP by approximately 0.2 and 0.5 USD/gal, respectively. Changing the enzyme dosage and price from base case estimate of 5270 USD/MT and 0.02 g/g cellulose to more conservative 3700 USD/MT and 0.06 g/g cellulose, respectively, increased the MESP by 0.59 USD/gal.

  7. ENZYME ACTIVITIES OF PADDY SOILS AND RELATIONSHIPS WITH THE SOIL PROPERTIES

    Directory of Open Access Journals (Sweden)

    Rıdvan KIZILKAYA

    1998-03-01

    Full Text Available This study was carried out to determine the effect of soil properties on enzyme activities of paddy soils, the sample of which were taken from Üçpınar, Harız, Doğancı, Kaygusuz, Emenli, Sarıköy and Gelemenağarı villages where rice cultivation is an intensive agricultural system. In this study, soil properties having effects on urease, phosphatase, ß-glucosidase and catalase enzyme activities were setforth. Urease enzyme activities of soil samples varied from 24.12 to 39.03 mg N 100 g dry soil -1 . Significant correlations were determined between urease enzyme activities and organic matter (r = 0.89**, extractable Mn (r = 0.74**, exchangable K (r = 0.73** and total P content of soil (r = 0.81*. Acid phosphatase enzyme activity varied between 3.00-17.44 mg phenol 100 g dry soil -1 , alkaline phosphatase enzyme activity between 12.00-25.53 mg phenol 100 g dry soil-1 . Exchangable Mg (r = 0.71* and extractable Cu (r = 0.74* were found to have positive effect on acid phosphatase enzyme activity and pH (r = 0.73*, exchangable Ca (r = 0.74*, exchangable Mg (r = 0.71*, exchangable total basic cations (r = 0.79* and extractable Cu (r = 0.70* had positive effects on alkaline phosphatase enzyme activity, whereas total P (r = - 0.84** affected the activity negatively. ß-glucosidase enzyme activity was measured to vary between 1.12-3.64 mg salingen 100 g dry soil -1 . It was also observed that extractable Zn content of soil samples (r = - 0.97** had negative effect on ß-glucosidase activity, wheras total exchangable acidic cations (r = 0.70* affected the activity positively. Catalase enzyme activities of soils changed between 5.25 - 9.00 mg O2 5 g dry soil -1 . Significant correlations were found between catalase activities and fraction of soils and extractable Fe content. Positive correlations, however, were determined between catalase activities and clay fraction (r = 0.82* and salt content (r = 0.83** of samples.

  8. Improvement of phenolic antioxidants and quality characteristics of virgin olive oil with the addition of enzymes and nitrogen during olive paste processing

    Directory of Open Access Journals (Sweden)

    Iconomou, D.

    2010-09-01

    Full Text Available The evolution of phenolic compounds and their contribution to the quality characteristics in virgin olive oil during fruit processing was studied with the addition of a combination of various commercial enzymes containing pectinases, polygalacturonases, cellulase and β-glucanase with or without nitrogen flush. Olive fruits (Olea europaea, L. of the cultivar Megaritiki, at the semi black pigmentation stage of maturity, were used in a 3-phase extraction system in an experiment at industrial scale. The addition of enzymes in the olive paste during processing increased the total phenol and ortho-diphenol contents, as well as some simple phenolic compounds (3,4-DHPEA, p-HPEA and the secoiridoid derivatives (3,4-DHPEA-EDA and 3,4-DHPEAEA in olive oil and therefore improved its oxidative stability. Furthermore, enzyme treatment ameliorated the quality parameters of the produced olive oil (acidity and peroxide value and their sensory attributes. The use of additional N2 flush with the enzyme treatments did not improve the quality parameters of olive oil any further; however it did not affect the concentration of individual and total sterols or most of the fatty acid composition. Consequently, olive paste treatment with enzymes not only improved the quality characteristics of olive oil and enhanced the overall ogranoleptic quality, but also increased the olive oil yield.

    La evolución de los compuestos fenólicos y su contribución a las caracterísiticas de calidad de aceite de oliva virgen durante el procesado del fruto fue estudiado mediante la adición de una combinación de varias enzimas comerciales conteniendo pectinasas, poligalacturonasa, celulasa y β-glucanasa con y sin flujo de nitrógeno. Las aceitunas (Olea europaea, L. de la variedad Megaritiki, con un estado de madurez correspondiente a una pigmentación semi-negra, fueron usadas en un experimento a escala industrial mediante un sistema de extracción de 3-fase. La

  9. Enzyme Informatics

    Science.gov (United States)

    Alderson, Rosanna G.; Ferrari, Luna De; Mavridis, Lazaros; McDonagh, James L.; Mitchell, John B. O.; Nath, Neetika

    2012-01-01

    Over the last 50 years, sequencing, structural biology and bioinformatics have completely revolutionised biomolecular science, with millions of sequences and tens of thousands of three dimensional structures becoming available. The bioinformatics of enzymes is well served by, mostly free, online databases. BRENDA describes the chemistry, substrate specificity, kinetics, preparation and biological sources of enzymes, while KEGG is valuable for understanding enzymes and metabolic pathways. EzCatDB, SFLD and MACiE are key repositories for data on the chemical mechanisms by which enzymes operate. At the current rate of genome sequencing and manual annotation, human curation will never finish the functional annotation of the ever-expanding list of known enzymes. Hence there is an increasing need for automated annotation, though it is not yet widespread for enzyme data. In contrast, functional ontologies such as the Gene Ontology already profit from automation. Despite our growing understanding of enzyme structure and dynamics, we are only beginning to be able to design novel enzymes. One can now begin to trace the functional evolution of enzymes using phylogenetics. The ability of enzymes to perform secondary functions, albeit relatively inefficiently, gives clues as to how enzyme function evolves. Substrate promiscuity in enzymes is one example of imperfect specificity in protein-ligand interactions. Similarly, most drugs bind to more than one protein target. This may sometimes result in helpful polypharmacology as a drug modulates plural targets, but also often leads to adverse side-effects. Many cheminformatics approaches can be used to model the interactions between druglike molecules and proteins in silico. We can even use quantum chemical techniques like DFT and QM/MM to compute the structural and energetic course of enzyme catalysed chemical reaction mechanisms, including a full description of bond making and breaking. PMID:23116471

  10. Factors Affecting Youth Voice in Decision-Making Processes within Youth Development Programs

    Directory of Open Access Journals (Sweden)

    Todd Tarifa

    2009-12-01

    Full Text Available Results of a study aimed at determining the factors affecting the level of inclusiveness of youth voice in the decision-making process of the 4-H youth development program are discussed in this paper. State and field level 4-H professionals identified potential factors which affect youth voice in the decision-making process. The information gathered was utilized to identify the degree to which youth voice was incorporated in the decision-making process, to better understand how to suit youth’s needs, identify promising practices, and diagnose barriers towards fostering youth voice within the 4-H youth development program. This feature article presents the findings of the study, and discusses potential ramifications and remedies.

  11. Change in enzyme production by gradually drying culture substrate during solid-state fermentation.

    Science.gov (United States)

    Ito, Kazunari; Gomi, Katsuya; Kariyama, Masahiro; Miyake, Tsuyoshi

    2015-06-01

    The influence of drying the culture substrate during solid-state fermentation on enzyme production was investigated using a non-airflow box. The drying caused a significant increase in enzyme production, while the mycelium content decreased slightly. This suggests that changes in the water content in the substrate during culture affect enzyme production in fungi. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. LC-MS/MS and UPLC-UV evaluation of anthocyanins and anthocyanidins during rabbiteye blueberry juice processing

    Science.gov (United States)

    Blueberry juice processing includes multiple steps and each affect the chemical composition of the berries, including thermal degradation of anthocyanins. Not from concentrate juice was made by heating and enzyme processing blueberries before pressing followed by ultrafiltration and pasteurization. ...

  13. Rethinking a Negative Event: The Affective Impact of Ruminative versus Imagery-Based Processing of Aversive Autobiographical Memories

    Directory of Open Access Journals (Sweden)

    Christien Slofstra

    2017-05-01

    Full Text Available IntroductionRuminative (abstract verbal processing during recall of aversive autobiographical memories may serve to dampen their short-term affective impact. Experimental studies indeed demonstrate that verbal processing of non-autobiographical material and positive autobiographical memories evokes weaker affective responses than imagery-based processing. In the current study, we hypothesized that abstract verbal or concrete verbal processing of an aversive autobiographical memory would result in weaker affective responses than imagery-based processing.MethodsThe affective impact of abstract verbal versus concrete verbal versus imagery-based processing during recall of an aversive autobiographical memory was investigated in a non-clinical sample (n = 99 using both an observational and an experimental design. Observationally, it was examined whether spontaneous use of processing modes (both state and trait measures was associated with impact of aversive autobiographical memory recall on negative and positive affect. Experimentally, the causal relation between processing modes and affective impact was investigated by manipulating the processing mode during retrieval of the same aversive autobiographical memory.ResultsMain findings were that higher levels of trait (but not state measures of both ruminative and imagery-based processing and depressive symptomatology were positively correlated with higher levels of negative affective impact in the observational part of the study. In the experimental part, no main effect of processing modes on affective impact of autobiographical memories was found. However, a significant moderating effect of depressive symptomatology was found. Only for individuals with low levels of depressive symptomatology, concrete verbal (but not abstract verbal processing of the aversive autobiographical memory did result in weaker affective responses, compared to imagery-based processing.DiscussionThese results cast doubt

  14. Production of amylase enzyme from mangrove fungal isolates ...

    African Journals Online (AJOL)

    The mangrove ecosystem serves as a bioresource for various industrially important microorganisms. The use of fungi as a source of industrially relevant enzymes led to an increased interest in the application of microbial enzymes in various industrial processes. Fungal colonies were isolated from sediments of five different ...

  15. Copper stressed anaerobic fermentation: biogas properties, process stability, biodegradation and enzyme responses.

    Science.gov (United States)

    Hao, He; Tian, Yonglan; Zhang, Huayong; Chai, Yang

    2017-12-01

    The effect of copper (added as CuCl 2 ) on the anaerobic co-digestion of Phragmites straw and cow dung was studied in pilot experiments by investigating the biogas properties, process stability, substrate degradation and enzyme activities at different stages of mesophilic fermentation. The results showed that 30 and 100 mg/L Cu 2+ addition increased the cumulative biogas yields by up to 43.62 and 20.77% respectively, and brought forward the daily biogas yield peak, while 500 mg/L Cu 2+ addition inhibited biogas production. Meanwhile, the CH 4 content in the 30 and 100 mg/L Cu 2+ -added groups was higher than that in the control group. Higher pH values (close to pH 7) and lower oxidation-reduction potential (ORP) values in the Cu 2+ -added groups after the 8th day indicated better process stability compared to the control group. In the presence of Cu 2+ , the degradation of volatile fatty acids (VFAs) and other organic molecules (represented by chemical oxygen demand, COD) generated from hydrolysis was enhanced, and the ammonia nitrogen (NH 4 + -N) concentrations were more stable than in the control group. The contents of lignin and hemicellulose in the substrate declined in the Cu 2+ -added groups while the cellulose contents did not. Neither the cellulase nor the coenzyme F 420 activities could determine the biogas producing efficiency. Taking the whole fermentation process into account, the promoting effect of Cu 2+ addition on biogas yields was mainly attributable to better process stability, the enhanced degradation of lignin and hemicellulose, the transformation of intermediates into VFA, and the generation of CH 4 from VFA.

  16. Discovery of enzymes for toluene synthesis from anoxic microbial communities

    DEFF Research Database (Denmark)

    Beller, Harry R.; Rodrigues, Andria V.; Zargar, Kamrun

    2018-01-01

    Microbial toluene biosynthesis was reported in anoxic lake sediments more than three decades ago, but the enzyme catalyzing this biochemically challenging reaction has never been identified. Here we report the toluene-producing enzyme PhdB, a glycyl radical enzyme of bacterial origin that catalyzes...... phenylacetate decarboxylation, and its cognate activating enzyme PhdA, a radical S-adenosylmethionine enzyme, discovered in two distinct anoxic microbial communities that produce toluene. The unconventional process of enzyme discovery from a complex microbial community (>300,000 genes), rather than from...... a microbial isolate, involved metagenomics- and metaproteomics-enabled biochemistry, as well as in vitro confirmation of activity with recombinant enzymes. This work expands the known catalytic range of glycyl radical enzymes (only seven reaction types had been characterized previously) and aromatic...

  17. Archaeal Enzymes and Applications in Industrial Biocatalysts.

    Science.gov (United States)

    Littlechild, Jennifer A

    2015-01-01

    Archaeal enzymes are playing an important role in industrial biotechnology. Many representatives of organisms living in "extreme" conditions, the so-called Extremophiles, belong to the archaeal kingdom of life. This paper will review studies carried by the Exeter group and others regarding archaeal enzymes that have important applications in commercial biocatalysis. Some of these biocatalysts are already being used in large scale industrial processes for the production of optically pure drug intermediates and amino acids and their analogues. Other enzymes have been characterised at laboratory scale regarding their substrate specificity and properties for potential industrial application. The increasing availability of DNA sequences from new archaeal species and metagenomes will provide a continuing resource to identify new enzymes of commercial interest using both bioinformatics and screening approaches.

  18. Evaluation of the efficiency of alternative enzyme production technologies

    DEFF Research Database (Denmark)

    Albæk, Mads Orla

    Enzymes are used in an increasing number of industries. The application of enzymes is extending into the production of lignocellulosic ethanol in processes that economically can compete with fossil fuels. Since lignocellulosic ethanol is based on renewable resources it will have a positive impact...... production of cellulases and hemi-cellulases. The aim of the thesiswas to use modeling tools to identify alternative technologies that have higher energy or raw material efficiency than the current technology. The enzyme production by T. reesei was conducted as an aerobic fed-batch fermentation. The process...... of the uncertainty and sensitivity of the model indicated the biological parameters to be responsible for most of the model uncertainty. A number of alternative fermentation technologies for enzyme production were identified in the open literature. Their mass transfer capabilities and their energy efficiencies were...

  19. Effect of Barley and Enzyme on Performance, Carcass, Enzyme Activity and Digestion Parameters of Broilers

    Directory of Open Access Journals (Sweden)

    majid kalantar

    2016-04-01

    Full Text Available Introduction Corn has been recently used for producing ethanol fuel in the major corn-producing countries such as the US and Brazil. Recent diversion of corn for biofuel production along with the increased world's demand for this feedstuff has resulted in unprecedented rise in feed cost for poultry worldwide. Alternative grains such as wheat and barley can be successfully replaced for corn in poultry diets. These cereal grains can locally grow in many parts of the world as they have remarkably lower water requirement than corn. Wheat and barley are generally used as major sources of energy in poultry diets. Though the major components of these grains are starch and proteins, they have considerable content of non-starch polysaccharides (NSPs, derived from the cell walls (Olukosi et al. 2007; Mirzaie et al. 2012. NSPs are generally considered as anti-nutritional factors (Jamroz et al. 2002. The content and structure of NSP polymers vary between different grains, which consequently affect their nutritive value (Olukosi et al. 2007.Wheat and barley are generally used as major sources of energy in poultry diets. The major components of these grains are starch and proteins, they have considerable content of non-starch polysaccharides (NSPs, derived from the cell walls. NSPs are generally considered as anti-nutritional factors. The content and structure of NSP polymers vary between different grains, which consequently affect their nutritive value. The major part of NSPs in barley comprises polymers of (1→3 (1→4-β- glucans which could impede growth factors and consequently carcass quality through lowering the rate and amount of available nutrients in the mucosal surface of the intestinal. Materials and Methods This experiment was conducted to evaluate the effect of corn and barley based diets supplemented with multi-enzyme on growth, carcass, pancreas enzyme activity and physiological characteristics of broilers. A total number of 375 one day old

  20. Inhibitory activities of Moringa oleifera leaf extract against α-glucosidase enzyme in vitro

    Science.gov (United States)

    Natsir, H.; Wahab, A. W.; Laga, A.; Arif, A. R.

    2018-03-01

    Alpha-glucosidase is a key enzyme in the final process of breaking carbohydrates into glucose. Inhibition of α-glucosidase affected more absorption of glucose, so it can reduce hyperglycemia condition. The aims of this study is to determine the effectiveness of inhibition wet and dried Moringa oleifera leaf extract through α-glucosidase activity in vitro. The effectiveness study of inhibition on the activity of α-glucosidase enzyme obtained from white glutinous rice (Oryza sativa glutinosa) was carried out using wet and dried kelor leaf extract of 13% (w/v) with 10 mM α-D-glucopyranoside (PNPG) substrate. A positive control used 1% acarbose and substrate without addition of extract was a negative control. Inhibitory activity was measured using spectrophotometers at a wavelength of 400 nm. The result showed that the inhibition activity against α-glucosidase enzyme of dried leaf extract, wet leaf extract and acarbose was 81,39%, 83,94%, and 95,4%, respectively on pH 7,0. The effectiveness inhibition of the wet Moringa leaf extract was greater than the dried leaf extract. The findings suggest that M. oleifera leaf has the potential to be developed as an alternative food therapy for diabetics.

  1. Technological advances and applications of hydrolytic enzymes for valorization of lignocellulosic biomass.

    Science.gov (United States)

    Manisha; Yadav, Sudesh Kumar

    2017-12-01

    Hydrolytic enzymes are indispensable tools in the production of various foodstuffs, drugs, and consumables owing to their applications in almost every industrial process nowadays. One of the foremost areas of interest involving the use of hydrolytic enzymes is in the transformation of lignocellulosic biomass into value added products. However, limitations of the processes due to inadequate enzyme activity and stability with a narrow range of pH and temperature optima often limit their effective usage. The innovative technologies, involving manipulation of enzyme activity and stability through mutagenesis, genetic engineering and metagenomics lead to a major leap in all the fields using hydrolytic enzymes. This article provides recent advancement towards the isolation and use of microbes for lignocellulosic biomass utilisation, microbes producing the hydrolytic enzymes, the modern age technologies used to manipulate and enhance the hydrolytic enzyme activity and the applications of such enzymes in value added products development from lignocellulosic biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. High-throughput assay of 9 lysosomal enzymes for newborn screening.

    Science.gov (United States)

    Spacil, Zdenek; Tatipaka, Haribabu; Barcenas, Mariana; Scott, C Ronald; Turecek, Frantisek; Gelb, Michael H

    2013-03-01

    There is interest in newborn screening of lysosomal storage diseases (LSDs) because of the availability of treatments. Pilot studies have used tandem mass spectrometry with flow injection of samples to achieve multiplex detection of enzyme products. We report a multiplexing method of 9 enzymatic assays that uses HPLC-tandem mass spectrometry (MS/MS). The assay of 9 enzymes was carried out in 1 or 2 buffers with a cassette of substrates and internal standards and 1 or 2 punches of a dried blood spot (DBS) from a newborn screening card as the source of enzymes. The pre-HPLC-MS/MS sample preparation required only 4 liquid transfers before injection into a dual-column HPLC equipped with switching valves to direct the flow to separation and column equilibration. Product-specific and internal standard-specific ion fragmentations were used for MS/MS quantification in the selected reaction monitoring mode. Analysis of blood spots from 58 random newborns and lysosomal storage disease-affected patients showed that the assay readily distinguished affected from nonaffected individuals. The time per 9-plex analysis (1.8 min) was sufficiently short to be compatible with the workflow of newborn screening laboratories. HPLC-MS/MS provides a viable alternative to flow-injection MS/MS for the quantification of lysosomal enzyme activities. It is possible to assay 9 lysosomal enzymes using 1 or 2 reaction buffers, thus minimizing the number of separate incubations necessary.

  3. Microbial genetic engineering and enzyme technology

    Energy Technology Data Exchange (ETDEWEB)

    Hollenberg, C.P.; Sahm, H.

    1987-01-01

    In a series of up-to-date contributions BIOTEC 1 has experts discussing the current topics in microbial gene technology and enzyme technology and speculating on future developments. Bacterial and yeast systems for the production of interferons, growth hormone or viral antigenes are described as well as the impact of gene technology on plants. Exciting is the prospect of degrading toxic compounds in our environment by microorganisms tuned in the laboratory. Enzymes are the most effective catalysts we know. They exhibit a very high substrate- and stereospecificity. These properties make enzymes extremely attractive as industrial catalysts, leading to new production processes that are non-polluting and save both energy and raw materials. (orig.) With 135 figs., 36 tabs.

  4. The N-glycan processing enzymes α-mannosidase and β-D-N-acetylhexosaminidase are involved in ripening-associated softening in the non-climacteric fruits of capsicum

    Science.gov (United States)

    Ghosh, Sumit; Meli, Vijaykumar S.; Kumar, Anil; Thakur, Archana; Chakraborty, Niranjan; Chakraborty, Subhra; Datta, Asis

    2011-01-01

    Excessive softening of fruits during the ripening process leads to deterioration. This is of significant global importance as softening-mediated deterioration leads to huge postharvest losses. N-glycan processing enzymes are reported to play an important role during climacteric fruit softening: however, to date these enzymes have not been characterized in non-climacteric fruit. Two ripening-specific N-glycan processing enzymes, α-mannosidase (α-Man) and β-D-N-acetylhexosaminidase (β-Hex), have been identified and targeted to enhance the shelf life in non-climacteric fruits such as capsicum (Capsicum annuum). The purification, cloning, and functional characterization of α-Man and β-Hex from capsicum, which belong to glycosyl hydrolase (GH) families 38 and 20, respectively, are described here. α-Man and β-Hex are cell wall glycoproteins that are able to cleave terminal α-mannose and β-D-N-acetylglucosamine residues of N-glycans, respectively. α-Man and β-Hex transcripts as well as enzyme activity increase with the ripening and/or softening of capsicum. The function of α-Man and β-Hex in capsicum softening is investigated through RNA interference (RNAi) in fruits. α-Man and β-Hex RNAi fruits were approximately two times firmer compared with the control and fruit deterioration was delayed by approximately 7 d. It is shown that silencing of α-Man and β-Hex enhances fruit shelf life due to the reduced degradation of N-glycoproteins which resulted in delayed softening. Altogether, the results provide evidence for the involvement of N-glycan processing in non-climacteric fruit softening. In conclusion, genetic engineering of N-glycan processing can be a common strategy in both climacteric and non-climacteric species to reduce the post-harvest crop losses. PMID:21030387

  5. Enzyme loading dependence of cellulose hydrolysis of sugarcane bagasse

    Directory of Open Access Journals (Sweden)

    Carlos Martín

    2012-01-01

    Full Text Available The enzymatic hydrolysis of steam-pretreated sugarcane bagasse, either delignified or non-delignified, was studied as a function of enzyme loading. Hydrolysis experiments were carried out using five enzyme loadings (2.5 to 20 FPU/g cellulose and the concentration of solids was 2% for both materials. Alkaline delignification improved cellulose hydrolysis by increasing surface area. For both materials, glucose concentrations increased with enzyme loading. On the other hand, enzyme loadings higher than 15 FPU/g did not result in any increase in the initial rate, since the excess of enzyme adsorbed onto the substrate restricted the diffusion process through the structure.

  6. Kinetics of leather dyeing pretreated with enzymes: role of acid protease.

    Science.gov (United States)

    Kanth, Swarna Vinodh; Venba, Rajangam; Jayakumar, Gladstone Christopher; Chandrababu, Narasimhan Kannan

    2009-04-01

    In the present investigation, kinetics of dyeing involving pretreatment with acid protease has been presented. Application of acid protease in dyeing process resulted in increased absorption and diffusion of dye into the leather matrix. Enzyme treatment at 1% concentration, 60 min duration and 50 degrees C resulted in maximum of 98% dye exhaustion and increased absorption rate constants. The final exhaustion (C(infinity)) for the best fit of CI Acid Black 194 dye has been 98.5% with K and r2 values from the modified Cegarra-Puente isotherm as 0.1033 and 0.0631. CI Acid Black 194 being a 2:1 metal complex acid dye exhibited higher absorption rate than the acid dye CI Acid Black 210. A reduction in 50% activation energy calculated from Arrhenius equation has been observed in enzyme assisted dyeing process of both the dyes that substantiates enhanced dye absorption. The absorption rate constant calculated with modified Cegarra-Puente equation confirm higher rate constants and faster kinetics for enzyme assisted dyeing process. Enzyme treated leather exhibited richness of color and shade when compared with control. The present study substantiates the essential role of enzyme pretreatment as an eco-friendly leather dyeing process.

  7. Lactic acid bacteria affect serum cholesterol levels, harmful fecal enzyme activity, and fecal water content

    Directory of Open Access Journals (Sweden)

    Chung Myung

    2009-06-01

    Full Text Available Abstract Background Lactic acid bacteria (LAB are beneficial probiotic organisms that contribute to improved nutrition, microbial balance, and immuno-enhancement of the intestinal tract, as well as lower cholesterol. Although present in many foods, most trials have been in spreads or dairy products. Here we tested whether Bifidobacteria isolates could lower cholesterol, inhibit harmful enzyme activities, and control fecal water content. Methods In vitro culture experiments were performed to evaluate the ability of Bifidobacterium spp. isolated from healthy Koreans (20~30 years old to reduce cholesterol-levels in MRS broth containing polyoxyethanylcholesterol sebacate. Animal experiments were performed to investigate the effects on lowering cholesterol, inhibiting harmful enzyme activities, and controlling fecal water content. For animal studies, 0.2 ml of the selected strain cultures (108~109 CFU/ml were orally administered to SD rats (fed a high-cholesterol diet every day for 2 weeks. Results B. longum SPM1207 reduced serum total cholesterol and LDL levels significantly (p B. longum SPM1207 also increased fecal LAB levels and fecal water content, and reduced body weight and harmful intestinal enzyme activities. Conclusion Daily consumption of B. longum SPM1207 can help in managing mild to moderate hypercholesterolemia, with potential to improve human health by helping to prevent colon cancer and constipation.

  8. Exploring the nature of facial affect processing deficits in schizophrenia

    NARCIS (Netherlands)

    Wout, Mascha van 't; Aleman, Andre; Kessels, Roy P. C.; Cahn, Wiepke; Haan, Edward H. F. de; Kahn, Rene S.

    2007-01-01

    Schizophrenia has been associated with deficits in facial affect processing, especially negative emotions. However, the exact nature of the deficit remains unclear. The aim of the present study was to investigate whether schizophrenia patients have problems in automatic allocation of attention as

  9. Exploring the nature of facial affect processing deficits in schizophrenia.

    NARCIS (Netherlands)

    Wout, M. van 't; Aleman, A.; Kessels, R.P.C.; Cahn, W.; Haan, E.H.F. de; Kahn, R.S.

    2007-01-01

    Schizophrenia has been associated with deficits in facial affect processing, especially negative emotions. However, the exact nature of the deficit remains unclear. The aim of the present study was to investigate whether schizophrenia patients have problems in automatic allocation of attention as

  10. Enzyme Technology for Shipboard Waste Management

    Science.gov (United States)

    1976-12-01

    sucrose to the sweeter invert sugar by the enzyme invertase is a well established process, as is the conversion of starch to glucose by the enzyme...aspects of our health and daily lives. Recent advances in fundamental and applied enzymology indicate that we have already started in that direction. At a...Chemtech, p. 677 (Nov 1973) 11 - Bungay, H. P., "Applied Enzymology ," Worthington, Biochemical Corp., Notes for an AIChE Lecture, Washington, D. C. (Dec

  11. Structural similarities and functional differences clarify evolutionary relationships between tRNA healing enzymes and the myelin enzyme CNPase.

    Science.gov (United States)

    Muruganandam, Gopinath; Raasakka, Arne; Myllykoski, Matti; Kursula, Inari; Kursula, Petri

    2017-05-16

    Eukaryotic tRNA splicing is an essential process in the transformation of a primary tRNA transcript into a mature functional tRNA molecule. 5'-phosphate ligation involves two steps: a healing reaction catalyzed by polynucleotide kinase (PNK) in association with cyclic phosphodiesterase (CPDase), and a sealing reaction catalyzed by an RNA ligase. The enzymes that catalyze tRNA healing in yeast and higher eukaryotes are homologous to the members of the 2H phosphoesterase superfamily, in particular to the vertebrate myelin enzyme 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase). We employed different biophysical and biochemical methods to elucidate the overall structural and functional features of the tRNA healing enzymes yeast Trl1 PNK/CPDase and lancelet PNK/CPDase and compared them with vertebrate CNPase. The yeast and the lancelet enzymes have cyclic phosphodiesterase and polynucleotide kinase activity, while vertebrate CNPase lacks PNK activity. In addition, we also show that the healing enzymes are structurally similar to the vertebrate CNPase by applying synchrotron radiation circular dichroism spectroscopy and small-angle X-ray scattering. We provide a structural analysis of the tRNA healing enzyme PNK and CPDase domains together. Our results support evolution of vertebrate CNPase from tRNA healing enzymes with a loss of function at its N-terminal PNK-like domain.

  12. Effects of protease and non-starch polysaccharide enzyme on performance, digestive function, activity and gene expression of endogenous enzyme of broilers.

    Directory of Open Access Journals (Sweden)

    Lin Yuan

    pancreatic trypsin mRNA levels by 40%, 44% and 28%, respectively. Supplementation with NSP enzyme and 160 mg/kg protease decreased pancreatic trypsin mRNA levels by 13%. Pancreatic lipase and amylase mRNA expression were significantly elevated in treated animals compared to the control group (p<0.05. These results suggest that the amount of NSP enzyme and acid protease in the diet significantly affects digestive function, endogenous digestive-enzyme activity and mRNA expression in broilers.

  13. A sensitive enzyme-linked immunosorbent assay for the determination of fish protein in processed foods.

    Science.gov (United States)

    Shibahara, Yusuke; Uesaka, Yoshihiko; Wang, Jun; Yamada, Shoichi; Shiomi, Kazuo

    2013-01-15

    Fish is one of the most common causes of food allergy and its major allergen is parvalbumin, a 12 kDa muscular protein. In this study, a sandwich enzyme-linked immunosorbent assay (ELISA) for the determination of fish protein in processed foods was developed using a polyclonal antibody raised against Pacific mackerel parvalbumin. The developed sandwich ELISA showed 22.6-99.0% reactivity (based on the reactivity to Pacific mackerel parvalbumin) to parvalbumins from various species of fish. The limits of detection and quantitation were estimated to be 0.23 and 0.70 μg protein per g of food, respectively. When the sandwich ELISA was subjected to inter-laboratory validation, spiked fish protein was recovered from five model processed foods in the range of 69.4-84.8% and the repeatability and reproducibility relative standard deviations were satisfactorily low (≤ 10.5%). Thus, the sandwich ELISA was judged to be a useful tool to determine fish protein in processed foods. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Study of cellulase enzymes self-assembly in aqueous-acetonitrile solvent: Viscosity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ghaouar, N., E-mail: naoufel-ghaouar@lycos.co [Laboratoire de Physique de la Matiere Molle, Faculte des Sciences de Tunis, Campus Universitaire, 2092 (Tunisia); Institut National des Sciences Appliquees et de Technologie, INSAT, Centre Urbain Nord, BP. 676, Tunis (Tunisia); Aschi, A. [Laboratoire de Physique de la Matiere Molle, Faculte des Sciences de Tunis, Campus Universitaire, 2092 (Tunisia); Belbahri, L. [School of Engineering of Lullier, University of Applied Sciences of Western Switzerland, 150, Route de Presinge, 1254 Jussy (Switzerland); Trabelsi, S.; Gharbi, A. [Laboratoire de Physique de la Matiere Molle, Faculte des Sciences de Tunis, Campus Universitaire, 2092 (Tunisia)

    2009-11-15

    The present study extends the viscosity measurements performed by Ghaouar et al. [Physica B, submitted for publication.] to study the conformational change of the cellulase enzymes in aqueous-acetonitrile mixture. We aim to investigate: (i) the denaturation process by measuring the specific viscosity for temperatures varying between 25 and 65 deg. C and acetonitrile concentrations between 0% and 50%, (ii) the enzyme-enzyme interaction by calculating the Huggins coefficient and (iii) the enzyme sizes by following the hydrodynamic radius for various temperatures. The precipitation of cellulases versus acetonitrile concentration is also considered. We show from all physical quantities measured in this work that the precipitation and the denaturation processes of cellulase enzymes exist together.

  15. Study of cellulase enzymes self-assembly in aqueous-acetonitrile solvent: Viscosity measurements

    International Nuclear Information System (INIS)

    Ghaouar, N.; Aschi, A.; Belbahri, L.; Trabelsi, S.; Gharbi, A.

    2009-01-01

    The present study extends the viscosity measurements performed by Ghaouar et al. [Physica B, submitted for publication.] to study the conformational change of the cellulase enzymes in aqueous-acetonitrile mixture. We aim to investigate: (i) the denaturation process by measuring the specific viscosity for temperatures varying between 25 and 65 deg. C and acetonitrile concentrations between 0% and 50%, (ii) the enzyme-enzyme interaction by calculating the Huggins coefficient and (iii) the enzyme sizes by following the hydrodynamic radius for various temperatures. The precipitation of cellulases versus acetonitrile concentration is also considered. We show from all physical quantities measured in this work that the precipitation and the denaturation processes of cellulase enzymes exist together.

  16. Affective reactions and context-dependent processing of negations

    Directory of Open Access Journals (Sweden)

    Enrico Rubaltelli

    2008-12-01

    Full Text Available Three experiments demonstrate how the processing of negations is contingent on the evaluation context in which the negative information is presented. In addition, the strategy used to process the negations induced different affective reactions toward the stimuli, leading to inconsistency of preference. Participants were presented with stimuli described by either stating the presence of positive features (explicitly positive alternative or negating the presence of negative features (non-negative alternative. Alternatives were presented for either joint (JE or separate evaluation (SE. Experiment 1 showed that the non-negative stimuli were judged less attractive than the positive ones in JE but not in SE. Experiment 2 revealed that the non-negative stimuli induced a less clear and less positive feeling when they were paired with explicitly positive stimuli rather than evaluated separately. Non-negative options were also found less easy to judge than the positive ones in JE but not in SE. Finally, Experiment 3 showed that people process negations using two different models depending on the evaluation mode. Through a memory task, we found that in JE people process the non-negative attributes as negations of negative features, whereas in SE they directly process the non-negative attributes as positive features.

  17. Astrocyte-neuron crosstalk regulates the expression and subcellular localization of carbohydrate metabolism enzymes.

    Science.gov (United States)

    Mamczur, Piotr; Borsuk, Borys; Paszko, Jadwiga; Sas, Zuzanna; Mozrzymas, Jerzy; Wiśniewski, Jacek R; Gizak, Agnieszka; Rakus, Dariusz

    2015-02-01

    Astrocytes releasing glucose- and/or glycogen-derived lactate and glutamine play a crucial role in shaping neuronal function and plasticity. Little is known, however, how metabolic functions of astrocytes, e.g., their ability to degrade glucosyl units, are affected by the presence of neurons. To address this issue we carried out experiments which demonstrated that co-culturing of rat hippocampal astrocytes with neurons significantly elevates the level of mRNA and protein for crucial enzymes of glycolysis (phosphofructokinase, aldolase, and pyruvate kinase), glycogen metabolism (glycogen synthase and glycogen phosphorylase), and glutamine synthetase in astrocytes. Simultaneously, the decrease of the capability of neurons to metabolize glucose and glutamine is observed. We provide evidence that neurons alter the expression of astrocytic enzymes by secretion of as yet unknown molecule(s) into the extracellular fluid. Moreover, our data demonstrate that almost all studied enzymes may localize in astrocytic nuclei and this localization is affected by the co-culturing with neurons which also reduces proliferative activity of astrocytes. Our results provide the first experimental evidence that the astrocyte-neuron crosstalk substantially affects the expression of basal metabolic enzymes in the both types of cells and influences their subcellular localization in astrocytes. © 2014 Wiley Periodicals, Inc.

  18. Development of a commercial enzymes system for lignocellulosic biomass saccharification

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Manoj

    2012-12-20

    DSM Innovation Inc., in its four year effort was able to evaluate and develop its in-house DSM fungal cellulolytic enzymes system to reach enzyme efficiency mandates set by DoE Biomass program MYPP goals. DSM enzyme cocktail is uniquely active at high temperature and acidic pH, offering many benefits and product differentiation in 2G bioethanol production. Under this project, strain and process development, ratio optimization of enzymes, protein and genetic engineering has led to multitudes of improvement in productivity and efficiency making development of a commercial enzyme system for lignocellulosic biomass saccharification viable. DSM is continuing further improvement by additional biodiversity screening, protein engineering and overexpression of enzymes to continue to further lower the cost of enzymes for saccharification of biomass.

  19. Enzymatic cell disruption of microalgae biomass in biorefinery processes.

    Science.gov (United States)

    Demuez, Marie; Mahdy, Ahmed; Tomás-Pejó, Elia; González-Fernández, Cristina; Ballesteros, Mercedes

    2015-10-01

    When employing biotechnological processes for the procurement of biofuels and bio-products from microalgae, one of the most critical steps affecting economy and yields is the "cell disruption" stage. Currently, enzymatic cell disruption has delivered effective and cost competitive results when compared to mechanical and chemical cell disruption methods. However, the introduction of enzymes implies additional associated cost within the overall process. In order to reduce this cost, autolysis of microalgae is proposed as alternative enzymatic cell disruption method. This review aims to provide the state of the art of enzymatic cell disruption treatments employed in biorefinery processes and highlights the use of endopeptidases. During the enzymatic processes of microalgae life cycle, some lytic enzymes involved in cell division and programmed cell death have been proven useful in performing cell lysis. In this context, the role of endopeptidases is emphasized. Mirroring these natural events, an alternative cell disruption approach is proposed and described with the potential to induce the autolysis process using intrinsic cell enzymes. Integrating induced autolysis within biofuel production processes offers a promising approach to reduce overall global costs and energetic input associated with those of current cell disruption methods. A number of options for further inquiry are also discussed. © 2015 Wiley Periodicals, Inc.

  20. Screen-printable sol-gel enzyme-containing carbon inks.

    Science.gov (United States)

    Wang, J; Pamidi, P V; Park, D S

    1996-08-01

    Enzymes usually cannot withstand the high-temperature curing associated with the thick-film fabrication process and require a separate immobilization step in connection with the production of single-use biosensors. We report on the development of sol-gel-derived enzyme-containing carbon inks that display compatibility with the screen-printing process. Such coupling of sol-gel and thick-film technologies offers a one-step fabrication of disposable enzyme electrodes, as it obviates the need for thermal curing. The enzyme-containing sol-gel carbon ink, prepared by dispersing the biocatalyst, along with the graphite powder and a binder, within the sol-gel precursors, is cured very rapidly (10 min) at low temperature (4 °C). The influence of the ink preparation conditions is explored, and the sensor performance is evaluated in connection with the incorporation of glucose oxidase or horseradish peroxidase. The resulting strips are stable for at least 3 months. Such sol-gel-derived carbon inks should serve as hosts for other heat-sensitive biomaterials in connection with the microfabrication of various thick-film biosensors.

  1. On the Temperature Dependence of Enzyme-Catalyzed Rates.

    Science.gov (United States)

    Arcus, Vickery L; Prentice, Erica J; Hobbs, Joanne K; Mulholland, Adrian J; Van der Kamp, Marc W; Pudney, Christopher R; Parker, Emily J; Schipper, Louis A

    2016-03-29

    One of the critical variables that determine the rate of any reaction is temperature. For biological systems, the effects of temperature are convoluted with myriad (and often opposing) contributions from enzyme catalysis, protein stability, and temperature-dependent regulation, for example. We have coined the phrase "macromolecular rate theory (MMRT)" to describe the temperature dependence of enzyme-catalyzed rates independent of stability or regulatory processes. Central to MMRT is the observation that enzyme-catalyzed reactions occur with significant values of ΔCp(‡) that are in general negative. That is, the heat capacity (Cp) for the enzyme-substrate complex is generally larger than the Cp for the enzyme-transition state complex. Consistent with a classical description of enzyme catalysis, a negative value for ΔCp(‡) is the result of the enzyme binding relatively weakly to the substrate and very tightly to the transition state. This observation of negative ΔCp(‡) has important implications for the temperature dependence of enzyme-catalyzed rates. Here, we lay out the fundamentals of MMRT. We present a number of hypotheses that arise directly from MMRT including a theoretical justification for the large size of enzymes and the basis for their optimum temperatures. We rationalize the behavior of psychrophilic enzymes and describe a "psychrophilic trap" which places limits on the evolution of enzymes in low temperature environments. One of the defining characteristics of biology is catalysis of chemical reactions by enzymes, and enzymes drive much of metabolism. Therefore, we also expect to see characteristics of MMRT at the level of cells, whole organisms, and even ecosystems.

  2. Pancreatic Enzymes

    Science.gov (United States)

    ... Contact Us DONATE NOW GENERAL DONATION PURPLESTRIDE Pancreatic enzymes Home Facing Pancreatic Cancer Living with Pancreatic Cancer ... and see a registered dietitian. What are pancreatic enzymes? Pancreatic enzymes help break down fats, proteins and ...

  3. Application of enzymes in the textile industry: a review

    OpenAIRE

    Mojsov, Kiro

    2011-01-01

    The use of enzymes in textile industry is one of the most rapidly growing field in industrial enzymology. The enzymes used in the textile field are amylases, catalase, and laccase which are used to removing the starch, degrading excess hydrogen peroxide, bleaching textiles and degrading lignin. The use of enzymes in the textile chemical processing is rapidly gaining globally recognition because of their non-toxic and eco-friendly characteristics with the increasinly important requirements for...

  4. Expression of lignocellulolytic enzymes in Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Mellitzer Andrea

    2012-05-01

    Full Text Available Abstract Background Sustainable utilization of plant biomass as renewable source for fuels and chemical building blocks requires a complex mixture of diverse enzymes, including hydrolases which comprise the largest class of lignocellulolytic enzymes. These enzymes need to be available in large amounts at a low price to allow sustainable and economic biotechnological processes. Over the past years Pichia pastoris has become an attractive host for the cost-efficient production and engineering of heterologous (eukaryotic proteins due to several advantages. Results In this paper codon optimized genes and synthetic alcohol oxidase 1 promoter variants were used to generate Pichia pastoris strains which individually expressed cellobiohydrolase 1, cellobiohydrolase 2 and beta-mannanase from Trichoderma reesei and xylanase A from Thermomyces lanuginosus. For three of these enzymes we could develop strains capable of secreting gram quantities of enzyme per liter in fed-batch cultivations. Additionally, we compared our achieved yields of secreted enzymes and the corresponding activities to literature data. Conclusion In our experiments we could clearly show the importance of gene optimization and strain characterization for successfully improving secretion levels. We also present a basic guideline how to correctly interpret the interplay of promoter strength and gene dosage for a successful improvement of the secretory production of lignocellulolytic enzymes in Pichia pastoris.

  5. Marine Enzymes and Microorganisms for Bioethanol Production.

    Science.gov (United States)

    Swain, M R; Natarajan, V; Krishnan, C

    Bioethanol is a potential alternative fuel to fossil fuels. Bioethanol as a fuel has several economic and environmental benefits. Though bioethanol is produced using starch and sugarcane juice, these materials are in conflict with food availability. To avoid food-fuel conflict, the second-generation bioethanol production by utilizing nonfood lignocellulosic materials has been extensively investigated. However, due to the complexity of lignocellulose architecture, the process is complicated and not economically competitive. The cultivation of lignocellulosic energy crops indirectly affects the food supplies by extensive land use. Marine algae have attracted attention to replace the lignocellulosic feedstock for bioethanol production, since the algae grow fast, do not use land, avoid food-fuel conflict and have several varieties to suit the cultivation environment. The composition of algae is not as complex as lignocellulose due to the absence of lignin, which renders easy hydrolysis of polysaccharides to fermentable sugars. Marine organisms also produce cold-active enzymes for hydrolysis of starch, cellulose, and algal polysaccharides, which can be employed in bioethanol process. Marine microoorganisms are also capable of fermenting sugars under high salt environment. Therefore, marine biocatalysts are promising for development of efficient processes for bioethanol production. © 2017 Elsevier Inc. All rights reserved.

  6. Enzymes in CO2 Capture

    DEFF Research Database (Denmark)

    Fosbøl, Philip Loldrup; Gladis, Arne; Thomsen, Kaj

    The enzyme Carbonic Anhydrase (CA) can accelerate the absorption rate of CO2 into aqueous solutions by several-fold. It exist in almost all living organisms and catalyses different important processes like CO2 transport, respiration and the acid-base balances. A new technology in the field...... of carbon capture is the application of enzymes for acceleration of typically slow ternary amines or inorganic carbonates. There is a hidden potential to revive currently infeasible amines which have an interesting low energy consumption for regeneration but too slow kinetics for viable CO2 capture. The aim...... of this work is to discuss the measurements of kinetic properties for CA promoted CO2 capture solvent systems. The development of a rate-based model for enzymes will be discussed showing the principles of implementation and the results on using a well-known ternary amine for CO2 capture. Conclusions...

  7. Consecutive emamectin benzoate and deltamethrin treatments affect the expressions and activities of detoxification enzymes in the rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Cárcamo, Juan Guillermo; Aguilar, Marcelo N; Carreño, Constanza F; Vera, Tamara; Arias-Darraz, Luis; Figueroa, Jaime E; Romero, Alex P; Alvarez, Marco; Yañez, Alejandro J

    2017-01-01

    Rainbow trout (Oncorhynchus mykiss) subjected to three consecutive, alternating treatments with emamectin benzoate (EMB) and deltamethrin (DM) during outbreaks of Caligus rogercresseyi in a farm located in southern Chile (Hornopiren, Chiloé), were studied to determine the effects of these treatments on the protein and enzymatic activity levels of cytochrome P450 1A (CYP1A), flavin-containing monooxygenase (FMO) and glutathione S-transferase (GST) in different tissues. Consecutive and alternating EMB/DM treatments resulted in a 10-fold increase and 3-fold decrease of CYP1A protein levels in the intestine and gills, respectively. Notably, CYP1A activity levels decreased in most of the analyzed tissues. FMO protein and activity levels markedly increased in the kidney and the intestine. GST was up-regulated in all tissues, either as protein or enzyme activity. When comparing consecutive EMB/DM treatments against previous studies of EMB treatment alone, CYP1A activity levels were similarly diminished, except in muscle. Likewise, FMO activity levels were increased in most of the analyzed tissues, particularly in the muscle, kidney, and intestine. The increases observed for GST were essentially unchanged between consecutive EMB/DM and EMB only treatments. These results indicate that consecutive EMB/DM treatments in rainbow trout induce the expression and activity of FMO and GST enzymes and decrease CYP1A activity. These altered activities of detoxification enzymes could generate imbalances in metabolic processes, synthesis, degradation of hormones and complications associated with drug interactions. It is especially important when analyzing possible effects of consecutive antiparasitic treatments on withholding periods and salmon farming yields. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Application of magnetic nanoparticles in smart enzyme immobilization.

    Science.gov (United States)

    Vaghari, Hamideh; Jafarizadeh-Malmiri, Hoda; Mohammadlou, Mojgan; Berenjian, Aydin; Anarjan, Navideh; Jafari, Nahideh; Nasiri, Shahin

    2016-02-01

    Immobilization of enzymes enhances their properties for efficient utilization in industrial processes. Magnetic nanoparticles, due to their high surface area, large surface-to-volume ratio and easy separation under external magnetic fields, are highly valued. Significant progress has been made to develop new catalytic systems that are immobilized onto magnetic nanocarriers. This review provides an overview of recent developments in enzyme immobilization and stabilization protocols using this technology. The current applications of immobilized enzymes based on magnetic nanoparticles are summarized and future growth prospects are discussed. Recommendations are also given for areas of future research.

  9. Visual and associated affective processing of face information in schizophrenia: A selective review.

    Science.gov (United States)

    Chen, Yue; Ekstrom, Tor

    Perception of facial features is crucial in social life. In past decades, extensive research showed that the ability to perceive facial emotion expression was compromised in schizophrenia patients. Given that face perception involves visual/cognitive and affective processing, the roles of these two processing domains in the compromised face perception in schizophrenia were studied and discussed, but not clearly defined. One particular issue was whether face-specific processing is implicated in this psychiatric disorder. Recent investigations have probed into the components of face perception processes such as visual detection, identity recognition, emotion expression discrimination and working memory conveyed from faces. Recent investigations have further assessed the associations between face processing and basic visual processing and between face processing and social cognitive processing such as Theory of Mind. In this selective review, we discuss the investigative findings relevant to the issues of cognitive and affective association and face-specific processing. We highlight the implications of multiple processing domains and face-specific processes as potential mechanisms underlying compromised face perception in schizophrenia. These findings suggest a need for a domain-specific therapeutic approach to the improvement of face perception in schizophrenia.

  10. Strain Improvement of Fungi by Induced Mutation through Gamma Irradiation and Selection for Animal Feed Enzymes Production and its Fermentation Process

    International Nuclear Information System (INIS)

    Konsue, Parichart; Piadang, Nattayana; Kitpreechavanich, Vichien

    2006-09-01

    Ten from eighty-nine strains of thermophilic fungi Thermomyces lanuginosus produced high level insoluble xylan degrading enzyme when cultured in submerge condition using untreated corncob as a substrate. Strain of T. lanuginosus THKU56 produced high level of insoluble xylan degrading enzyme with the most stable which was remained 28.2 and 58.9 % after treated at pH 3.5 and 70 o C for 1 h, respectively. To improve xylanase production, the strain was subjected to mutate using gamma ray at 0.4 - 1.6 kGy. The result showed the mutant strains produced insoluble xylanase activity lesser than wild type. Thus wild type strain THKU56 was then selected as potent strains for enzyme production and medium optimization was investigated using a central composite design. The four components, corncobs, yeast extract, KH 2 PO 4 and Tween 8 0, were parameters of this study. It was found that corncobs and yeast extract were discovered to affect on the xylanase production. The optimal concentration of the active nutrients for xylanase production were 41 g/l of corncobs and 24 g/l of yeast extract, which gave a predicted yield of 526.7 units/ml after 5 days culture at a temperature of 50 o C. The xylanase activity obtained from the experiment was 541 units/ml that was close to the predicted value

  11. Metrological aspects of enzyme production

    International Nuclear Information System (INIS)

    Kerber, T M; Pereira-Meirelles, F V; Dellamora-Ortiz, G M

    2010-01-01

    Enzymes are frequently used in biotechnology to carry out specific biological reactions, either in industrial processes or for the production of bioproducts and drugs. Microbial lipases are an important group of biotechnologically valuable enzymes that present widely diversified applications. Lipase production by microorganisms is described in several published papers; however, none of them refer to metrological evaluation and the estimation of the uncertainty in measurement. Moreover, few of them refer to process optimization through experimental design. The objectives of this work were to enhance lipase production in shaken-flasks with Yarrowia lipolytica cells employing experimental design and to evaluate the uncertainty in measurement of lipase activity. The highest lipolytic activity obtained was about three- and fivefold higher than the reported activities of CRMs BCR-693 and BCR-694, respectively. Lipase production by Y. lipolytica cells aiming the classification as certified reference material is recommended after further purification and stability studies

  12. Novel enzymes for the degradation of cellulose

    Directory of Open Access Journals (Sweden)

    Horn Svein

    2012-07-01

    Full Text Available Abstract The bulk terrestrial biomass resource in a future bio-economy will be lignocellulosic biomass, which is recalcitrant and challenging to process. Enzymatic conversion of polysaccharides in the lignocellulosic biomass will be a key technology in future biorefineries and this technology is currently the subject of intensive research. We describe recent developments in enzyme technology for conversion of cellulose, the most abundant, homogeneous and recalcitrant polysaccharide in lignocellulosic biomass. In particular, we focus on a recently discovered new type of enzymes currently classified as CBM33 and GH61 that catalyze oxidative cleavage of polysaccharides. These enzymes promote the efficiency of classical hydrolytic enzymes (cellulases by acting on the surfaces of the insoluble substrate, where they introduce chain breaks in the polysaccharide chains, without the need of first “extracting” these chains from their crystalline matrix.

  13. Effect of cadmium on lung lysosomal enzymes in vitro

    International Nuclear Information System (INIS)

    Giri, S.N.; Hollinger, M.A.

    1995-01-01

    Labilization of lysosomal enzymes is often associated with the general process of inflammation. The present study investigated the effect of the pneumotoxin cadmium on the release and activity of two lung lysosomal enzymes. Incubation of rat lung lysosomes with cadmium resulted in the release of β-glucuronidase but not acid phosphatase. The failure to ''release'' acid phosphatase appears to be the result of a direct inhibitory effect of cadmium on this enzyme. The K I for cadmium was determined to be 26.3 μM. The differential effect of cadmium on these two lysosomal enzymes suggests that caution should be exercised in selecting the appropriate enzyme marker for assessing lysosomal fragility in the presence of this toxicant. Furthermore, the differential basal release rate of the two enzymes from lung lysosomes may reflect the cellular heterogeneity of the lung. (orig.)

  14. Color categories only affect post-perceptual processes when same- and different-category colors are equally discriminable.

    Science.gov (United States)

    He, Xun; Witzel, Christoph; Forder, Lewis; Clifford, Alexandra; Franklin, Anna

    2014-04-01

    Prior claims that color categories affect color perception are confounded by inequalities in the color space used to equate same- and different-category colors. Here, we equate same- and different-category colors in the number of just-noticeable differences, and measure event-related potentials (ERPs) to these colors on a visual oddball task to establish if color categories affect perceptual or post-perceptual stages of processing. Category effects were found from 200 ms after color presentation, only in ERP components that reflect post-perceptual processes (e.g., N2, P3). The findings suggest that color categories affect post-perceptual processing, but do not affect the perceptual representation of color.

  15. Selective attention to affective value alters how the brain processes olfactory stimuli.

    Science.gov (United States)

    Rolls, Edmund T; Grabenhorst, Fabian; Margot, Christian; da Silva, Maria A A P; Velazco, Maria Ines

    2008-10-01

    How does selective attention to affect influence sensory processing? In a functional magnetic resonance imaging investigation, when subjects were instructed to remember and rate the pleasantness of a jasmine odor, activations were greater in the medial orbito-frontal and pregenual cingulate cortex than when subjects were instructed to remember and rate the intensity of the odor. When the subjects were instructed to remember and rate the intensity, activations were greater in the inferior frontal gyrus. These top-down effects occurred not only during odor delivery but started in a preparation period after the instruction before odor delivery, and continued after termination of the odor in a short-term memory period. Thus, depending on the context in which odors are presented and whether affect is relevant, the brain prepares itself, responds to, and remembers an odor differently. These findings show that when attention is paid to affective value, the brain systems engaged to prepare for, represent, and remember a sensory stimulus are different from those engaged when attention is directed to the physical properties of a stimulus such as its intensity. This differential biasing of brain regions engaged in processing a sensory stimulus depending on whether the cognitive demand is for affect-related versus more sensory-related processing may be an important aspect of cognition and attention. This has many implications for understanding the effects not only of olfactory but also of other sensory stimuli.

  16. Molecular Imaging of Hydrolytic Enzymes Using PET and SPECT.

    Science.gov (United States)

    Rempel, Brian P; Price, Eric W; Phenix, Christopher P

    2017-01-01

    Hydrolytic enzymes are a large class of biological catalysts that play a vital role in a plethora of critical biochemical processes required to maintain human health. However, the expression and/or activity of these important enzymes can change in many different diseases and therefore represent exciting targets for the development of positron emission tomography (PET) and single-photon emission computed tomography (SPECT) radiotracers. This review focuses on recently reported radiolabeled substrates, reversible inhibitors, and irreversible inhibitors investigated as PET and SPECT tracers for imaging hydrolytic enzymes. By learning from the most successful examples of tracer development for hydrolytic enzymes, it appears that an early focus on careful enzyme kinetics and cell-based studies are key factors for identifying potentially useful new molecular imaging agents.

  17. White wine taste and mouthfeel as affected by juice extraction and processing.

    Science.gov (United States)

    Gawel, Richard; Day, Martin; Van Sluyter, Steven C; Holt, Helen; Waters, Elizabeth J; Smith, Paul A

    2014-10-15

    The juice used to make white wine can be extracted using various physical processes that affect the amount and timing of contact of juice with skins. The influence of juice extraction processes on the mouthfeel and taste of white wine and their relationship to wine composition were determined. The amount and type of interaction of juice with skins affected both wine total phenolic concentration and phenolic composition. Wine pH strongly influenced perceived viscosity, astringency/drying, and acidity. Despite a 5-fold variation in total phenolics among wines, differences in bitter taste were small. Perceived viscosity was associated with higher phenolics but was not associated with either glycerol or polysaccharide concentration. Bitterness may be reduced by using juice extraction and handling processes that minimize phenolic concentration, but lowering phenolic concentration may also result in wines of lower perceived viscosity.

  18. Measuring the Enzyme Activity of Arabidopsis Deubiquitylating Enzymes.

    Science.gov (United States)

    Kalinowska, Kamila; Nagel, Marie-Kristin; Isono, Erika

    2016-01-01

    Deubiquitylating enzymes, or DUBs, are important regulators of ubiquitin homeostasis and substrate stability, though the molecular mechanisms of most of the DUBs in plants are not yet understood. As different ubiquitin chain types are implicated in different biological pathways, it is important to analyze the enzyme characteristic for studying a DUB. Quantitative analysis of DUB activity is also important to determine enzyme kinetics and the influence of DUB binding proteins on the enzyme activity. Here, we show methods to analyze DUB activity using immunodetection, Coomassie Brilliant Blue staining, and fluorescence measurement that can be useful for understanding the basic characteristic of DUBs.

  19. In-vitro engineering of novel bioactivity in the natural enzymes

    Directory of Open Access Journals (Sweden)

    Vishvanath Tiwari

    2016-10-01

    Full Text Available Enzymes catalyze various biochemical functions with high efficiency and specificity. In-vitro design of the enzyme leads to novel bioactivity in this natural biomolecule that give answers of some vital questions like crucial residues in binding with substrate, molecular evolution, cofactor specificity etc. Enzyme engineering technology involves directed evolution, rational designing, semi-rational designing and structure-based designing using chemical modifications. Similarly, combined computational and in-vitro evolution approaches together help in artificial designing of novel bioactivity in the natural enzyme. DNA shuffling, error prone PCR and staggered extension process are used to artificially redesign active site of enzyme, which can alter its efficiency and specificity. Modifications of the enzyme can lead to the discovery of new path of molecular evolution, designing of efficient enzymes, locating active sites and crucial residues, shift in substrate and cofactor specificity. The methods and thermodynamics of in-vitro designing of the enzyme are also discussed. Similarly, engineered thermophilic and psychrophilic enzymes attain substrate specificity and activity of mesophilic enzymes that may also be beneficial for industry and therapeutics.

  20. Important processes affecting the release and migration of radionuclides from a deep geological repository

    International Nuclear Information System (INIS)

    Barátová, Dana; Nečas, Vladimír

    2017-01-01

    The processes that affect significantly the transport of contaminants through the near field and far field of a deep geological repository of spent nuclear fuel were studied. The processes can be generally divided into (i) processes related to the release of radionuclides from the spent nuclear fuel; (ii) processes related to the radionuclide transport mechanisms (such as advection and diffusion); and (iii) processes affecting the rate of radionuclide migration through the multi-barrier repository system. A near-field and geosphere model of an unspecified geological repository sited in a crystalline rock is also described. Focus of the treatment is on the effects of the different processes on the activity flow of the major safety-relevant radionuclides. The activity flow was simulated for one spent fuel cask by using the GoldSim simulation tool. (orig.)

  1. Hide unhairing and characterization of commercial enzymes used in leather manufacture

    Directory of Open Access Journals (Sweden)

    A Dettmer

    2011-09-01

    Full Text Available The enzymatic treatment of hides in tannery processes is a promising technology. However, the reaction kinetics of commercial enzymes available to the leather industry are not fully understood and their activities have been mainly determined with model proteins such as casein as substrate, which are not of direct relevance for cattle hides. Therefore, it is important to determine their activities on collagen and keratin, the main proteins of skin, in order to use these enzymes in leather processing. This work describes the study of five proteases, used commercially in tanneries, to assess their ability to act upon collagen and keratin and to determine their unhairing. Results showed that all commercial enzymes tested had more activity on collagen than on keratin. Unhairing was also tested and four out of the five enzymes tested showed some unhairing activity. Optima of the temperature and pH of the enzymes were very similar for all five enzymes, with maximal activities around 55ºC and pH 9 to 12, respectively.

  2. Stabilization of oil-in-water emulsions by enzyme catalyzed oxidative gelation of sugar beet pectin

    DEFF Research Database (Denmark)

    Abang Zaidel, Dayang Norulfairuz; Chronakis, Ioannis S.; Meyer, Anne S.

    2013-01-01

    Enzyme catalyzed oxidative cross-linking of feruloyl groups can promote gelation of sugar beet pectin (SBP). It is uncertain how the enzyme kinetics of this cross-linking reaction are affected in emulsion systems and whether the gelation affects emulsion stability. In this study, SBP (2.5% w...... larger average particle sizes than the emulsions in which the SBP was homogenized into the emulsion system during emulsion preparation (referred as Mix B). Mix B type emulsions were stable. Enzyme catalyzed oxidative gelation of SBP helped stabilize the emulsions in Mix A. The kinetics of the enzyme...... catalyzed oxidative gelation of SBP was evaluated by small angle oscillatory measurements for horseradish peroxidase (HRP) (EC 1.11.1.7) and laccase (EC 1.10.3.2) catalysis, respectively. HRP catalyzed gelation rates, determined from the slopes of the increase of elastic modulus (G0) with time, were higher...

  3. Application of ultrasound processed images in space: Quanitative assessment of diffuse affectations

    Science.gov (United States)

    Pérez-Poch, A.; Bru, C.; Nicolau, C.

    The purpose of this study was to evaluate diffuse affectations in the liver using texture image processing techniques. Ultrasound diagnose equipments are the election of choice to be used in space environments as they are free from hazardous effects on health. However, due to the need for highly trained radiologists to assess the images, this imaging method is mainly applied on focal lesions rather than on non-focal ones. We have conducted a clinical study on 72 patients with different degrees of chronic hepatopaties and a group of control of 18 individuals. All subjects' clinical reports and results of biopsies were compared to the degree of affectation calculated by our computer system , thus validating the method. Full statistical results are given in the present paper showing a good correlation (r=0.61) between pathologist's report and analysis of the heterogenicity of the processed images from the liver. This computer system to analyze diffuse affectations may be used in-situ or via telemedicine to the ground.

  4. Self-focused attention affects subsequent processing of positive (but not negative) performance appraisals.

    Science.gov (United States)

    Holzman, Jacob B; Valentiner, David P

    2016-03-01

    Cognitive-behavioral models highlight the conjoint roles of self-focused attention (SFA), post-event processing (PEP), and performance appraisals in the maintenance of social anxiety. SFA, PEP, and biased performance appraisals are related to social anxiety; however, limited research has examined how SFA affects information-processing following social events. The current study examined whether SFA affects the relationships between performance appraisals and PEP following a social event.. 137 participants with high (n = 72) or low (n = 65) social anxiety were randomly assigned to conditions of high SFA or low SFA while engaging in a standardized social performance. Subsequent performance appraisals and PEP were measured. Immediate performance appraisals were not affected by SFA. High levels of SFA led to a stronger, inverse relationship between immediate positive performance appraisals and subsequent negative PEP. High levels of SFA also led to a stronger, inverse relationship between negative PEP and changes in positive performance appraisals.. Future research should examine whether the current findings, which involved a standardized social performance event, extend to interaction events as well as in a clinical sample. These findings suggest that SFA affects the processing of positive information following a social performance event. SFA is particularly important for understanding how negative PEP undermines positive performance appraisals.. Published by Elsevier Ltd.

  5. Lysosomal enzymes and their receptors in invertebrates: an evolutionary perspective.

    Science.gov (United States)

    Kumar, Nadimpalli Siva; Bhamidimarri, Poorna M

    2015-01-01

    Lysosomal biogenesis is an important process in eukaryotic cells to maintain cellular homeostasis. The key components that are involved in the biogenesis such as the lysosomal enzymes, their modifications and the mannose 6-phosphate receptors have been well studied and their evolutionary conservation across mammalian and non-mammalian vertebrates is clearly established. Invertebrate lysosomal biogenesis pathway on the other hand is not well studied. Although, details on mannose 6-phosphate receptors and enzymes involved in lysosomal enzyme modifications were reported earlier, a clear cut pathway has not been established. Recent research on the invertebrate species involving biogenesis of lysosomal enzymes suggests a possible conserved pathway in invertebrates. This review presents certain observations based on these processes that include biochemical, immunological and functional studies. Major conclusions include conservation of MPR-dependent pathway in higher invertebrates and recent evidence suggests that MPR-independent pathway might have been more prominent among lower invertebrates. The possible components of MPR-independent pathway that may play a role in lysosomal enzyme targeting are also discussed here.

  6. Influence of high temperature and ethanol on thermostable lignocellulolytic enzymes

    DEFF Research Database (Denmark)

    Skovgaard, Pernille Anastasia; Jørgensen, Henning

    2013-01-01

    the influence of temperature and ethanol on enzyme activity and stability in the distillation step, where most enzymes are inactivated due to high temperatures. Two enzyme mixtures, a mesophilic and a thermostable mixture, were exposed to typical process conditions [temperatures from 55 to 65 °C and up to 5...... % ethanol (w/v)] followed by specific enzyme activity analyses and SDS-PAGE. The thermostable and mesophilic mixture remained active at up to 65 and 55 °C, respectively. When the enzyme mixtures reached their maximum temperature limit, ethanol had a remarkable influence on enzyme activity, e.g., the more...... ethanol, the faster the inactivation. The reason could be the hydrophobic interaction of ethanol on the tertiary structure of the enzyme protein. The thermostable mixture was more tolerant to temperature and ethanol and could therefore be a potential candidate for recycling after distillation....

  7. Bioremediation of Industrial Waste Through Enzyme Producing Marine Microorganisms.

    Science.gov (United States)

    Sivaperumal, P; Kamala, K; Rajaram, R

    Bioremediation process using microorganisms is a kind of nature-friendly and cost-effective clean green technology. Recently, biodegradation of industrial wastes using enzymes from marine microorganisms has been reported worldwide. The prospectus research activity in remediation area would contribute toward the development of advanced bioprocess technology. To minimize industrial wastes, marine enzymes could constitute a novel alternative in terms of waste treatment. Nowadays, the evidence on the mechanisms of bioremediation-related enzymes from marine microorganisms has been extensively studied. This review also will provide information about enzymes from various marine microorganisms and their complexity in the biodegradation of comprehensive range of industrial wastes. © 2017 Elsevier Inc. All rights reserved.

  8. A roadmap to directed enzyme evolution and screening systems for biotechnological applications

    Directory of Open Access Journals (Sweden)

    Ronny Martínez

    2013-01-01

    Full Text Available Enzymes have been long used in man-made biochemical processes, from brewing and fermentation to current industrial production of fine chemicals. The ever-growing demand for enzymes in increasingly specific applications requires tailoring naturally occurring enzymes to the non-natural conditions found in industrial processes. Relationships between enzyme sequence, structure and activity are far from understood, thus hindering the capacity to design tailored biocatalysts. In the field of protein engineering, directed enzyme evolution is a powerful algorithm to generate and identify novel and improved enzymes through iterative rounds of mutagenesis and screening applying a specific evolutive pressure. In practice, critical checkpoints in directed evolution are: selection of the starting point, generation of the mutant library, development of the screening assay and analysis of the output of the screening campaign. Each step in directed evolution can be performed using conceptually and technically different approaches, all having inherent advantages and challenges. In this article, we present and discuss in a general overview, challenges of designing and performing a directed enzyme evolution campaign, current advances in methods, as well as highlighting some examples of its applications in industrially relevant enzymes.

  9. Investigations of the efficiency of enzyme production technologies using modelling tools

    DEFF Research Database (Denmark)

    Albæk, Mads Orla; Gernaey, Krist; Hansen, Morten Skov

    Growing markets and new innovative applications of industrial enzymes leads to increased interest in efficient production of these products. Most industrial enzymes are currently produced in traditional stirred tank reactors in submerged fed batch culture. The limiting parameter in such processes...... fermentations of the filamentous fungus Trichoderma reesei in 550litre pilot scale stirred tank reactors for a range of process conditions. Based on the experimental data a process model has been created, which satisfactory simulates the effect of the changing process conditions: Aeration rate, agitation speed...

  10. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes.

    Science.gov (United States)

    Wei, Hui; Wang, Erkang

    2013-07-21

    Over the past few decades, researchers have established artificial enzymes as highly stable and low-cost alternatives to natural enzymes in a wide range of applications. A variety of materials including cyclodextrins, metal complexes, porphyrins, polymers, dendrimers and biomolecules have been extensively explored to mimic the structures and functions of naturally occurring enzymes. Recently, some nanomaterials have been found to exhibit unexpected enzyme-like activities, and great advances have been made in this area due to the tremendous progress in nano-research and the unique characteristics of nanomaterials. To highlight the progress in the field of nanomaterial-based artificial enzymes (nanozymes), this review discusses various nanomaterials that have been explored to mimic different kinds of enzymes. We cover their kinetics, mechanisms and applications in numerous fields, from biosensing and immunoassays, to stem cell growth and pollutant removal. We also summarize several approaches to tune the activities of nanozymes. Finally, we make comparisons between nanozymes and other catalytic materials (other artificial enzymes, natural enzymes, organic catalysts and nanomaterial-based catalysts) and address the current challenges and future directions (302 references).

  11. From Protein Engineering to Immobilization: Promising Strategies for the Upgrade of Industrial Enzymes

    Science.gov (United States)

    Singh, Raushan Kumar; Tiwari, Manish Kumar; Singh, Ranjitha; Lee, Jung-Kul

    2013-01-01

    Enzymes found in nature have been exploited in industry due to their inherent catalytic properties in complex chemical processes under mild experimental and environmental conditions. The desired industrial goal is often difficult to achieve using the native form of the enzyme. Recent developments in protein engineering have revolutionized the development of commercially available enzymes into better industrial catalysts. Protein engineering aims at modifying the sequence of a protein, and hence its structure, to create enzymes with improved functional properties such as stability, specific activity, inhibition by reaction products, and selectivity towards non-natural substrates. Soluble enzymes are often immobilized onto solid insoluble supports to be reused in continuous processes and to facilitate the economical recovery of the enzyme after the reaction without any significant loss to its biochemical properties. Immobilization confers considerable stability towards temperature variations and organic solvents. Multipoint and multisubunit covalent attachments of enzymes on appropriately functionalized supports via linkers provide rigidity to the immobilized enzyme structure, ultimately resulting in improved enzyme stability. Protein engineering and immobilization techniques are sequential and compatible approaches for the improvement of enzyme properties. The present review highlights and summarizes various studies that have aimed to improve the biochemical properties of industrially significant enzymes. PMID:23306150

  12. From protein engineering to immobilization: promising strategies for the upgrade of industrial enzymes.

    Science.gov (United States)

    Singh, Raushan Kumar; Tiwari, Manish Kumar; Singh, Ranjitha; Lee, Jung-Kul

    2013-01-10

    Enzymes found in nature have been exploited in industry due to their inherent catalytic properties in complex chemical processes under mild experimental and environmental conditions. The desired industrial goal is often difficult to achieve using the native form of the enzyme. Recent developments in protein engineering have revolutionized the development of commercially available enzymes into better industrial catalysts. Protein engineering aims at modifying the sequence of a protein, and hence its structure, to create enzymes with improved functional properties such as stability, specific activity, inhibition by reaction products, and selectivity towards non-natural substrates. Soluble enzymes are often immobilized onto solid insoluble supports to be reused in continuous processes and to facilitate the economical recovery of the enzyme after the reaction without any significant loss to its biochemical properties. Immobilization confers considerable stability towards temperature variations and organic solvents. Multipoint and multisubunit covalent attachments of enzymes on appropriately functionalized supports via linkers provide rigidity to the immobilized enzyme structure, ultimately resulting in improved enzyme stability. Protein engineering and immobilization techniques are sequential and compatible approaches for the improvement of enzyme properties. The present review highlights and summarizes various studies that have aimed to improve the biochemical properties of industrially significant enzymes.

  13. Continuous recycling of enzymes during production of lignocellulosic bioethanol in demonstration scale

    DEFF Research Database (Denmark)

    Haven, Mai Østergaard; Lindedam, Jane; Jeppesen, Martin D.

    2015-01-01

    Recycling of enzymes in production of lignocellulosic bioethanol has been tried for more than 30 years. So far, the successes have been few and the experiments have been carried out at conditions far from those in an industrially feasible process. Here we have tested continuous enzyme recycling a...... broth also opens up the possibility of lowering the dry matter content in hydrolysis and fermentation while still maintaining high ethanol concentrations....... at demonstration scale using industrial process conditions (high dry matter content and low enzyme dosage) for a period of eight days. The experiment was performed at the Inbicon demonstration plant (Kalundborg, Denmark) capable of converting four tonnes of wheat straw per hour. 20% of the fermentation broth...... was recycled to the hydrolysis reactor while enzyme dosage was reduced by 5%. The results demonstrate that recycling enzymes by this method can reduce overall enzyme consumption and may also increase the ethanol concentrations in the fermentation broth. Our results further show that recycling fermentation...

  14. The dynamic basis of energy transduction in enzymes.

    Science.gov (United States)

    Somogyi, B; Welch, G R; Damjanovich, S

    1984-09-06

    The most important idea underlying our treatment herein is the unity of the enzyme molecule and the medium. Appreciation of this relationship is vital, if enzymology is to graduate from its present reductionistic status to a more holistic posture. Enzymes are biological entities firstly, and isolated objects of physicochemical analysis secondly. Perhaps the most crucial 'biological lesson', particularly apropos of enzymes in intermediary metabolism, concerns the 'cytosociology' of enzyme action in vivo [94,128]. The natural habitat of many enzymes in the living cell is far different from that in bulk aqueous solution in vitro. In order to obtain a real grasp of the nature of enzyme function, one must ultimately couch enzymology in concepts emerging from contemporary cell biology [95]. Notwithstanding, analysis precedes synthesis; and one must needs begin with the individual enzyme molecule. The trenchant efforts of the physical chemist and the organic chemist have produced a wealth of information on the nature of the binding and catalytic events at the enzyme active site. While it is not yet possible to explain precisely the complete sequence of events in the catalytic process, nevertheless, the basic mechanisms by which enzymes effect catalysis (i.e., reduce activation energy) now seem apparent [81,129]. The new frontier is to be found, in exploring the dynamic role of the protein matrix [17]. Not only does the protein provide the 3-D scaffolding for active-site processes, but, more importantly, it serves as the local solvent for the bound chemical subsystem. Thus, the dynamical aspects of enzyme catalysis (for thermally based systems) must arise from the fluctuational properties of the protein molecule. This notion is the common denominator in all of the models in subsection IIC. It is the anisotropic nature of this fluctuational behavior, which would characterize the energy-transduction phenomenon leading to localized catalytic events at the active-site. In

  15. EFFECT OF ENDOSPERM HARDNESS ON AN ETHANOL PROCESS USING A GRANULAR STARCH HYDROLYZING ENZYME

    Energy Technology Data Exchange (ETDEWEB)

    Wang, P; W Liu, D B; Johnston, K D; Rausch, S J; Schmidt, M E; Tumbleson, V Singh

    2010-01-01

    Granular starch hydrolyzing enzymes (GSHE) can hydrolyze starch at low temperature (32°C). The dry grind process using GSHE (GSH process) has fewer unit operations and no changes in process conditions (pH 4.0 and 32°C) compared to the conventional process because it dispenses with the cooking and liquefaction step. In this study, the effects of endosperm hardness, protease, urea, and GSHE levels on GSH process were evaluated. Ground corn, soft endosperm, and hard endosperm were processed using two GSHE levels (0.1 and 0.4 mL per 100 g ground material) and four treatments of protease and urea addition. Soft and hard endosperm materials were obtained by grinding and sifting flaking grits from a dry milling pilot plant; classifications were confirmed using scanning electron microscopy. During 72 h of simultaneous granular starch hydrolysis and fermentation (GSHF), ethanol and glucose profiles were determined using HPLC. Soft endosperm resulted in higher final ethanol concentrations compared to ground corn or hard endosperm. Addition of urea increased final ethanol concentrations for soft and hard endosperm. Protease addition increased ethanol concentrations and fermentation rates for soft endosperm, hard endosperm, and ground corn. The effect of protease addition on ethanol concentrations and fermentation rates was most predominant for soft endosperm, less for hard endosperm, and least for ground corn. Samples (soft endosperm, hard endosperm, or corn) with protease resulted in higher (1.0% to 10.5% v/v) ethanol concentration compared to samples with urea. The GSH process with protease requires little or no urea addition. For fermentation of soft endosperm, GSHE dose can be reduced. Due to nutrients (lipids, minerals, and soluble proteins) present in corn that enhance yeast growth, ground corn fermented faster at the beginning than hard and soft endosperm.

  16. Mucopolysaccharidosis enzyme production by bone marrow and dental pulp derived human mesenchymal stem cells.

    Science.gov (United States)

    Jackson, Matilda; Derrick Roberts, Ainslie; Martin, Ellenore; Rout-Pitt, Nathan; Gronthos, Stan; Byers, Sharon

    2015-04-01

    Mucopolysaccharidoses (MPS) are inherited metabolic disorders that arise from a complete loss or a reduction in one of eleven specific lysosomal enzymes. MPS children display pathology in multiple cell types leading to tissue and organ failure and early death. Mesenchymal stem cells (MSCs) give rise to many of the cell types affected in MPS, including those that are refractory to current treatment protocols such as hematopoietic stem cell (HSC) based therapy. In this study we compared multiple MPS enzyme production by bone marrow derived (hBM) and dental pulp derived (hDP) MSCs to enzyme production by HSCs. hBM MSCs produce significantly higher levels of MPS I, II, IIIA, IVA, VI and VII enzyme than HSCs, while hDP MSCs produce significantly higher levels of MPS I, IIIA, IVA, VI and VII enzymes. Higher transfection efficiency was observed in MSCs (89%) compared to HSCs (23%) using a lentiviral vector. Over-expression of four different lysosomal enzymes resulted in up to 9303-fold and up to 5559-fold greater levels in MSC cell layer and media respectively. Stable, persistent transduction of MSCs and sustained over-expression of MPS VII enzyme was observed in vitro. Transduction of MSCs did not affect the ability of the cells to differentiate down osteogenic, adipogenic or chondrogenic lineages, but did partially delay differentiation down the non-mesodermal neurogenic lineage. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Production of fructose-containing syrup with enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Helwiig-Nielsen, B

    1981-01-01

    A review on enzymic processes used for production of fructose- high syrup from starch including liquefaction by alpha-amylase, saccharification by amyloglucosidase, and isomerization with glucose isomerase.

  18. [Advances on enzymes and enzyme inhibitors research based on microfluidic devices].

    Science.gov (United States)

    Hou, Feng-Hua; Ye, Jian-Qing; Chen, Zuan-Guang; Cheng, Zhi-Yi

    2010-06-01

    With the continuous development in microfluidic fabrication technology, microfluidic analysis has evolved from a concept to one of research frontiers in last twenty years. The research of enzymes and enzyme inhibitors based on microfluidic devices has also made great progress. Microfluidic technology improved greatly the analytical performance of the research of enzymes and enzyme inhibitors by reducing the consumption of reagents, decreasing the analysis time, and developing automation. This review focuses on the development and classification of enzymes and enzyme inhibitors research based on microfluidic devices.

  19. Enzyme Stability and Activity in Non-Aqueous Reaction Systems: A Mini Review

    Directory of Open Access Journals (Sweden)

    Shihui Wang

    2016-02-01

    Full Text Available Enormous interest in biocatalysis in non-aqueous phase has recently been triggered due to the merits of good enantioselectivity, reverse thermodynamic equilibrium, and no water-dependent side reactions. It has been demonstrated that enzyme has high activity and stability in non-aqueous media, and the variation of enzyme activity is attributed to its conformational modifications. This review comprehensively addresses the stability and activity of the intact enzymes in various non-aqueous systems, such as organic solvents, ionic liquids, sub-/super-critical fluids and their combined mixtures. It has been revealed that critical factors such as Log P, functional groups and the molecular structures of the solvents define the microenvironment surrounding the enzyme molecule and affect enzyme tertiary and secondary structure, influencing enzyme catalytic properties. Therefore, it is of high importance for biocatalysis in non-aqueous media to elucidate the links between the microenvironment surrounding enzyme surface and its stability and activity. In fact, a better understanding of the correlation between different non-aqueous environments and enzyme structure, stability and activity can contribute to identifying the most suitable reaction medium for a given biotransformation.

  20. Application of ionic liquids based enzyme-assisted extraction of chlorogenic acid from Eucommia ulmoides leaves

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tingting; Sui, Xiaoyu, E-mail: suixiaoyu@outlook.com; Li, Li; Zhang, Jie; Liang, Xin; Li, Wenjing; Zhang, Honglian; Fu, Shuang

    2016-01-15

    A new approach for ionic liquid based enzyme-assisted extraction (ILEAE) of chlorogenic acid (CGA) from Eucommia ulmoides is presented in which enzyme pretreatment was used in ionic liquids aqueous media to enhance extraction yield. For this purpose, the solubility of CGA and the activity of cellulase were investigated in eight 1-alkyl-3-methylimidazolium ionic liquids. Cellulase in 0.5 M [C6mim]Br aqueous solution was found to provide better performance in extraction. The factors of ILEAE procedures including extraction time, extraction phase pH, extraction temperatures and enzyme concentrations were investigated. Moreover, the novel developed approach offered advantages in term of yield and efficiency compared with other conventional extraction techniques. Scanning electronic microscopy of plant samples indicated that cellulase treated cell wall in ionic liquid solution was subjected to extract, which led to more efficient extraction by reducing mass transfer barrier. The proposed ILEAE method would develope a continuous process for enzyme-assisted extraction including enzyme incubation and solvent extraction process. In this research, we propose a novel view for enzyme-assisted extraction of plant active component, besides concentrating on enzyme facilitated cell wall degradation, focusing on improvement of bad permeability of ionic liquids solutions. - Highlights: • An ionic liquid based enzyme-assisted extraction method of natural product was explored. • ILEAE utilizes enzymatic treatment to improve permeability of ionic liquids solution. • Enzyme incubation and solvent extraction process were ongoing simultaneously. • ILEAE process simplified operating process and suitable for more complete extraction.

  1. Application of ionic liquids based enzyme-assisted extraction of chlorogenic acid from Eucommia ulmoides leaves

    International Nuclear Information System (INIS)

    Liu, Tingting; Sui, Xiaoyu; Li, Li; Zhang, Jie; Liang, Xin; Li, Wenjing; Zhang, Honglian; Fu, Shuang

    2016-01-01

    A new approach for ionic liquid based enzyme-assisted extraction (ILEAE) of chlorogenic acid (CGA) from Eucommia ulmoides is presented in which enzyme pretreatment was used in ionic liquids aqueous media to enhance extraction yield. For this purpose, the solubility of CGA and the activity of cellulase were investigated in eight 1-alkyl-3-methylimidazolium ionic liquids. Cellulase in 0.5 M [C6mim]Br aqueous solution was found to provide better performance in extraction. The factors of ILEAE procedures including extraction time, extraction phase pH, extraction temperatures and enzyme concentrations were investigated. Moreover, the novel developed approach offered advantages in term of yield and efficiency compared with other conventional extraction techniques. Scanning electronic microscopy of plant samples indicated that cellulase treated cell wall in ionic liquid solution was subjected to extract, which led to more efficient extraction by reducing mass transfer barrier. The proposed ILEAE method would develope a continuous process for enzyme-assisted extraction including enzyme incubation and solvent extraction process. In this research, we propose a novel view for enzyme-assisted extraction of plant active component, besides concentrating on enzyme facilitated cell wall degradation, focusing on improvement of bad permeability of ionic liquids solutions. - Highlights: • An ionic liquid based enzyme-assisted extraction method of natural product was explored. • ILEAE utilizes enzymatic treatment to improve permeability of ionic liquids solution. • Enzyme incubation and solvent extraction process were ongoing simultaneously. • ILEAE process simplified operating process and suitable for more complete extraction.

  2. Direct comparison of enzyme histochemical and immunohistochemical methods to localize an enzyme

    NARCIS (Netherlands)

    van Noorden, Cornelis J. F.

    2002-01-01

    Immunohistochemical localization of enzymes is compared directly with localization of enzyme activity with (catalytic) enzyme histochemical methods. The two approaches demonstrate principally different aspects of an enzyme. The immunohistochemical method localizes the enzyme protein whether it is

  3. Effect of cadmium and zinc on antioxidant enzyme activity in the gastropod, Achatina fulica.

    Science.gov (United States)

    Chandran, Rashmi; Sivakumar, A A; Mohandass, S; Aruchami, M

    2005-01-01

    Heavy metal stress results in the production of O(2)(.-), H(2)O(2) and (.)OH, which affect various cellular processes, mostly the functioning of membrane systems. Cells are normally protected against free oxyradicals by the operation of intricate antioxidant systems. The aim of the present work is to examine the effect of CdCl(2) and ZnSO(4) on antioxidative enzyme activity in the gastropod, Achatina fulica. The concentrations of antioxidant enzymes--superoxide dismutase (SOD), catalase (Cat) and glutathione peroxidase (GPx)--and nonenzymatic antioxidants--glutathione and vitamin-C--were found to be decreased in both digestive gland and kidney of the gastropod, Achatina fulica treated with individual concentrations of 0.5 ppm and 1ppm of CdCl(2) and ZnSO(4), compared to that of control animals. Based on the above study, it is evident that Achatina fulica can be used as a bioindicator to monitor the environmental heavy metal pollution.

  4. Process control of an ethanol fermentation with an enzyme thermistor as a sucrose sensor

    Energy Technology Data Exchange (ETDEWEB)

    Mandenius, C F; Danielsson, B; Mattiasson, B

    1981-01-01

    An enzyme thermistor was used to monitor and control the sucrose concentration in a conversion of sucrose to EtOH with immobilized yeast. A continuous stirred tank reactor containing Ca alginate-immobilized Saccharomyces cerevisiae was used. The enzyme thermistor continuously measured the sucrose concentration in the fermentor with an online arrangement giving stable and reproducible heat signals. The control of the sucrose concentration level was performed with an analog P1-controller.

  5. Enzymes in therapy of biofilm-related oral diseases.

    Science.gov (United States)

    Pleszczyńska, Małgorzata; Wiater, Adrian; Bachanek, Teresa; Szczodrak, Janusz

    2017-05-01

    Biofilm-related infections of the oral cavity, including dental caries and periodontitis, represent the most prevalent health problems. For years, the treatment thereof was largely based on antibacterial chemical agents. Recently, however, there has been growing interest in the application of more preventive and minimally invasive biotechnological methods. This review focuses on the potential applications of enzymes in the treatment and prevention of oral diseases. Dental plaque is a microbial community that develops on the tooth surface, embedded in a matrix of extracellular polymeric substances of bacterial and host origin. Both cariogenic microorganisms and the key components of oral biofilm matrix may be the targets of the enzymes. Oxidative salivary enzymes inhibit or limit the growth of oral pathogens, thereby supporting the natural host defense system; polysaccharide hydrolases (mutanases and dextranases) degrade important carbohydrate components of the biofilm matrix, whereas proteases disrupt bacterial adhesion to oral surfaces or affect cell-cell interactions. The efficiency of the enzymes in in vitro and in vivo studies, advantages and limitations, as well as future perspectives for improving the enzymatic strategy are discussed. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  6. Computational enzyme design: transitioning from catalytic proteins to enzymes.

    Science.gov (United States)

    Mak, Wai Shun; Siegel, Justin B

    2014-08-01

    The widespread interest in enzymes stem from their ability to catalyze chemical reactions under mild and ecologically friendly conditions with unparalleled catalytic proficiencies. While thousands of naturally occurring enzymes have been identified and characterized, there are still numerous important applications for which there are no biological catalysts capable of performing the desired chemical transformation. In order to engineer enzymes for which there is no natural starting point, efforts using a combination of quantum chemistry and force-field based protein molecular modeling have led to the design of novel proteins capable of catalyzing chemical reactions not catalyzed by naturally occurring enzymes. Here we discuss the current status and potential avenues to pursue as the field of computational enzyme design moves forward. Published by Elsevier Ltd.

  7. ExplorEnz: the primary source of the IUBMB enzyme list

    Science.gov (United States)

    McDonald, Andrew G.; Boyce, Sinéad; Tipton, Keith F.

    2009-01-01

    ExplorEnz is the MySQL database that is used for the curation and dissemination of the International Union of Biochemistry and Molecular Biology (IUBMB) Enzyme Nomenclature. A simple web-based query interface is provided, along with an advanced search engine for more complex Boolean queries. The WWW front-end is accessible at http://www.enzyme-database.org, from where downloads of the database as SQL and XML are also available. An associated form-based curatorial application has been developed to facilitate the curation of enzyme data as well as the internal and public review processes that occur before an enzyme entry is made official. Suggestions for new enzyme entries, or modifications to existing ones, can be made using the forms provided at http://www.enzyme-database.org/forms.php. PMID:18776214

  8. Considerations for implementation of novel enzyme-based processes

    DEFF Research Database (Denmark)

    Deslauriers, Maria Gundersen

    Biocatalysis is the use of enzymes to catalyze chemical reactions. It is an established synthesisroute in chemical synthesis, alongside conventional chemistry. Biocatalysis is often applied due to excellent regio and stereoselectivity, in addition to its environmentally benign properties....... This thesis aims at increasing the potential use of industrial biocatalysis, both in terms of broadening its current use and expanding it to new applications. This academic study is carried out through two case studies. These two case studies were chosen because they represent each end of the spectra...... learned from these two case studies justify general conclusions for biocatalysis, irrespective of their application. The work in this thesis therefore contributes, not only to industrial biocatalysis in these two areas, but also increases the understanding of biocatalysis as a whole....

  9. The effect of pathological narcissism on interpersonal and affective processes in social interactions.

    Science.gov (United States)

    Wright, Aidan G C; Stepp, Stephanie D; Scott, Lori N; Hallquist, Michael N; Beeney, Joseph E; Lazarus, Sophie A; Pilkonis, Paul A

    2017-10-01

    Narcissism has significant interpersonal costs, yet little research has examined behavioral and affective patterns characteristic of narcissism in naturalistic settings. Here we studied the effect of narcissistic features on the dynamic processes of interpersonal behavior and affect in daily life. We used interpersonal theory to generate transactional models of social interaction (i.e., linkages among perceptions of others' behavior, affect, and one's own behavior) predicted to be characteristic of narcissism. Psychiatric outpatients (N = 102) completed clinical interviews and a 21-day ecological momentary assessment protocol using smartphones. After social interactions (N = 5,781), participants reported on perceptions of their interaction partner's behavior (scored along the dimensions of dominant-submissive and affiliative-quarrelsome), their own affect, and their own behavior. Multilevel structural equation modeling was used to examine dynamic links among behavior and affect across interactions, and the role of narcissism in moderating these links. Results showed that perceptions of others' dominance did not predict dominant behavior, but did predict quarrelsome behavior, and this link was potentiated by narcissism. Furthermore, the link between others' dominance and one's own quarrelsome behavior was mediated by negative affect. Moderated mediation was also found: Narcissism amplified the link between ratings of others' dominance and one's own quarrelsomeness and negative affect. Narcissism did not moderate the link between other dominance and own dominance, nor the link between other affiliation and own affiliation. These results suggest that narcissism is associated with specific interpersonal and affective processes, such that sensitivity to others' dominance triggers antagonistic behavior in daily life. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  10. Evaluation of the energy efficiency of enzyme fermentation by mechanistic modeling.

    Science.gov (United States)

    Albaek, Mads O; Gernaey, Krist V; Hansen, Morten S; Stocks, Stuart M

    2012-04-01

    Modeling biotechnological processes is key to obtaining increased productivity and efficiency. Particularly crucial to successful modeling of such systems is the coupling of the physical transport phenomena and the biological activity in one model. We have applied a model for the expression of cellulosic enzymes by the filamentous fungus Trichoderma reesei and found excellent agreement with experimental data. The most influential factor was demonstrated to be viscosity and its influence on mass transfer. Not surprisingly, the biological model is also shown to have high influence on the model prediction. At different rates of agitation and aeration as well as headspace pressure, we can predict the energy efficiency of oxygen transfer, a key process parameter for economical production of industrial enzymes. An inverse relationship between the productivity and energy efficiency of the process was found. This modeling approach can be used by manufacturers to evaluate the enzyme fermentation process for a range of different process conditions with regard to energy efficiency. Copyright © 2011 Wiley Periodicals, Inc.

  11. Evaluation of the efficiency of alternative enzyme production technologies

    Energy Technology Data Exchange (ETDEWEB)

    Albaek, M.O.

    2012-03-15

    Enzymes are used in an increasing number of industries. The application of enzymes is extending into the production of lignocellulosic ethanol in processes that economically can compete with fossil fuels. Since lignocellulosic ethanol is based on renewable resources it will have a positive impact on for example the emission of green house gasses. Cellulases and hemi-cellulases are used for enzymatic hydrolysis of pretreated lignocellulosic biomass, and fermentable sugars are released upon the enzymatic process. Even though many years of research has decreased the amount of enzyme needed in the process, the cost of enzymes is still considered a bottleneck in the economic feasibility of lignocellulose utilization. The purpose of this project was to investigate and compare different technologies for production of these enzymes. The filamentous fungus Trichoderma reesei is currently used for industrial production of cellulases and hemi-cellulases. The aim of the thesis was to use modeling tools to identify alternative technologies that have higher energy or raw material efficiency than the current technology. The enzyme production by T. reesei was conducted as an aerobic fed-batch fermentation. The process was carried out in pilot scale stirred tank reactors and based on a range of different process conditions, a process model was constructed which satisfactory described the course of fermentation. The process was governed by the rate limiting mass transfer of oxygen from the gas to the liquid phase. During fermentation, filamentous growth of the fungus lead to increased viscosity which hindered mass transfer. These mechanisms were described by a viscosity model based on the biomass concentration of the fermentation broth and a mass transfer correlation that incorporated a viscosity term. An analysis of the uncertainty and sensitivity of the model indicated the biological parameters to be responsible for most of the model uncertainty. A number of alternative

  12. Design of novel nano-carriers for multi-enzyme co-localization

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Feng [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    The main objective of this project is to design novel nano-structured carriers and strategies to co-localize multiple enzymes to mimic the functionalities of MECs. In order to achieve this goal, distinct approaches for enzyme co-localization were developed and evaluated. Specifically, we investigated different polymeric nano-carriers, both flexible and rigid, as platforms for co-localization, as well as distinct enzyme attachment techniques using model enzyme systems using glucose oxidase and horseradish peroxidase to control the spatial arrangement of the multiple enzymes on the nanocarriers. This platform technology can be potentially used to co-localize various enzyme systems and its broad applicability will be tested using the sclareol biosynthesis process to control the formation of products through the formation of MECs with multiple enzymes NgCPS and sSsSS to regulate the pathway of reactive intermediate to enhance the final product conversion rate.

  13. The effect of chemical anti-inhibitors on fibrinolytic enzymes and inhibitors

    DEFF Research Database (Denmark)

    Sidelmann, Johannes Jakobsen; Jespersen, J; Kluft, C

    1997-01-01

    proteases. We studied the influence of chemical anti-inhibitors (chloramine T, flufenamate, sodium lauryl sulfate, and methylamine) on fibrinolytic serine proteases and fibrinolytic enzyme inhibitors using the physiological substrate fibrin as plasmin substrate. Low concentrations of chloramine T (0.01 mmol......%) and plasminogen activators (apparent recovery > 200%). Sodium lauryl sulfate eliminates the major fibrinolytic enzyme inhibitors, but increases the activity of plasmin (apparent recovery > 200%) and plasminogen activator, urokinase type (apparent recovery 130%). Methylamine affects only plasmin inhibition. We...

  14. A coarse-grained model for synergistic action of multiple enzymes on cellulose

    Directory of Open Access Journals (Sweden)

    Asztalos Andrea

    2012-08-01

    Full Text Available Abstract Background Degradation of cellulose to glucose requires the cooperative action of three classes of enzymes, collectively known as cellulases. Endoglucanases randomly bind to cellulose surfaces and generate new chain ends by hydrolyzing β-1,4-D-glycosidic bonds. Exoglucanases bind to free chain ends and hydrolyze glycosidic bonds in a processive manner releasing cellobiose units. Then, β-glucosidases hydrolyze soluble cellobiose to glucose. Optimal synergistic action of these enzymes is essential for efficient digestion of cellulose. Experiments show that as hydrolysis proceeds and the cellulose substrate becomes more heterogeneous, the overall degradation slows down. As catalysis occurs on the surface of crystalline cellulose, several factors affect the overall hydrolysis. Therefore, spatial models of cellulose degradation must capture effects such as enzyme crowding and surface heterogeneity, which have been shown to lead to a reduction in hydrolysis rates. Results We present a coarse-grained stochastic model for capturing the key events associated with the enzymatic degradation of cellulose at the mesoscopic level. This functional model accounts for the mobility and action of a single cellulase enzyme as well as the synergy of multiple endo- and exo-cellulases on a cellulose surface. The quantitative description of cellulose degradation is calculated on a spatial model by including free and bound states of both endo- and exo-cellulases with explicit reactive surface terms (e.g., hydrogen bond breaking, covalent bond cleavages and corresponding reaction rates. The dynamical evolution of the system is simulated by including physical interactions between cellulases and cellulose. Conclusions Our coarse-grained model reproduces the qualitative behavior of endoglucanases and exoglucanases by accounting for the spatial heterogeneity of the cellulose surface as well as other spatial factors such as enzyme crowding. Importantly, it captures

  15. Study on the inactivation of intracellular enzyme molecules by X-ray irradiation

    International Nuclear Information System (INIS)

    Lee, S.B.

    1977-01-01

    Inactivation of the glutamic acid dehydrogenase and glucose-6-phosphate dehydrogenase enzyme molecules in the Ehrlich ascites tumor cells of the mouse were studied. The above mentioned intracellular enzyme molecules were irradiated by the X-ray radiation under the condition of 65 kV, 1 Amp under the atmosphere of nitrogen gases and by 4 0 C. Thereby, irradiation doses were 580 KR/min(error: +-3%). After irradiation, the cell homogentes were prepared through liquid air techniques. There after, the activities of the enzymes were measured with photometric method given by O. Warburg and W. Christian. The dose effect curves of the activities of the two enzymes by the X-ray irradiation showed both exponential and the inactivation doses were 6.5x10 6 and 5.0x10 6 R respectively. These results showed one side that the inactivation process of the intracellular enzyme molecules was one hit reaction after target theory, and the other side that this inactivation process could not be the primary causes of the death through X-ray irradiation of the vertebrate animals, because of the high resistance of the intracellular protein molecules against X-ray irradiation. The one hit reaction by the inactivation process of the irradiated intracellular enzyme molecules was discussed. (author)

  16. Enzyme domain affects the movement of the voltage sensor in ascidian and zebrafish voltage-sensing phosphatases.

    Science.gov (United States)

    Hossain, Md Israil; Iwasaki, Hirohide; Okochi, Yoshifumi; Chahine, Mohamed; Higashijima, Shinichi; Nagayama, Kuniaki; Okamura, Yasushi

    2008-06-27

    The ascidian voltage-sensing phosphatase (Ci-VSP) consists of the voltage sensor domain (VSD) and a cytoplasmic phosphatase region that has significant homology to the phosphatase and tensin homolog deleted on chromosome TEN (PTEN). The phosphatase activity of Ci-VSP is modified by the conformational change of the VSD. In many proteins, two protein modules are bidirectionally coupled, but it is unknown whether the phosphatase domain could affect the movement of the VSD in VSP. We addressed this issue by whole-cell patch recording of gating currents from a teleost VSP (Dr-VSP) cloned from Danio rerio expressed in tsA201 cells. Replacement of a critical cysteine residue, in the phosphatase active center of Dr-VSP, by serine sharpened both ON- and OFF-gating currents. Similar changes were produced by treatment with phosphatase inhibitors, pervanadate and orthovanadate, that constitutively bind to cysteine in the active catalytic center of phosphatases. The distinct kinetics of gating currents dependent on enzyme activity were not because of altered phosphatidylinositol 4,5-bisphosphate levels, because the kinetics of gating current did not change by depletion of phosphatidylinositol 4,5-bisphosphate, as reported by coexpressed KCNQ2/3 channels. These results indicate that the movement of the VSD is influenced by the enzymatic state of the cytoplasmic domain, providing an important clue for understanding mechanisms of coupling between the VSD and its effector.

  17. Network analysis of metabolic enzyme evolution in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Kraulis Per

    2004-02-01

    Full Text Available Abstract Background The two most common models for the evolution of metabolism are the patchwork evolution model, where enzymes are thought to diverge from broad to narrow substrate specificity, and the retrograde evolution model, according to which enzymes evolve in response to substrate depletion. Analysis of the distribution of homologous enzyme pairs in the metabolic network can shed light on the respective importance of the two models. We here investigate the evolution of the metabolism in E. coli viewed as a single network using EcoCyc. Results Sequence comparison between all enzyme pairs was performed and the minimal path length (MPL between all enzyme pairs was determined. We find a strong over-representation of homologous enzymes at MPL 1. We show that the functionally similar and functionally undetermined enzyme pairs are responsible for most of the over-representation of homologous enzyme pairs at MPL 1. Conclusions The retrograde evolution model predicts that homologous enzymes pairs are at short metabolic distances from each other. In general agreement with previous studies we find that homologous enzymes occur close to each other in the network more often than expected by chance, which lends some support to the retrograde evolution model. However, we show that the homologous enzyme pairs which may have evolved through retrograde evolution, namely the pairs that are functionally dissimilar, show a weaker over-representation at MPL 1 than the functionally similar enzyme pairs. Our study indicates that, while the retrograde evolution model may have played a small part, the patchwork evolution model is the predominant process of metabolic enzyme evolution.

  18. Ethosuximide: liver enzyme induction and D-glucaric acid excretion.

    Science.gov (United States)

    Gilbert, J C; Scott, A K; Galloway, D B; Petrie, J C

    1974-06-01

    1 A study has been carried out to determine if ethosuximide induces liver enzymes. 2 Ethosuximide did not affect the urinary excretion of D-glucaric acid by healthy adult subjects nor was the mean daily D-glucaric acid excretion of three epileptic children on long term ethosuximide therapy different from that of three matched controls. 3 Ethosuximide (10 mg/kg or 50 mg/kg daily) did not influence D-glucaric acid excretion or liver microsomal protein and cytochrome P450 contents of guinea pigs but at a dose of 100 mg/kg daily in rats it increased liver microsomal protein and cytochrome P450 without altering D-glucaric acid excretion. 4 These results suggest that at anticonvulsant doses ethosuximide is unlikely to induce liver enzymes. The precise relationship between D-glucaric acid excretion and liver enzyme induction remains in doubt.

  19. Characterization of napthenic acids in oil sands process-affected waters using fluorescence technology

    International Nuclear Information System (INIS)

    Brown, L.; Alostaz, M.; Ulrich, A.

    2009-01-01

    Process-affected water from oil sands production plants presents a major environmental challenge to oil sands operators due to its toxicity to different organisms as well as its corrosiveness in refinery units. This abstract investigated the use of fluorescence excitation-emission matrices to detect and characterize changes in naphthenic acid in oil sands process-affected waters. Samples from oil sands production plants and storage ponds were tested. The study showed that oil sands naphthenic acids show characteristic fluorescence signatures when excited by ultraviolet light in the range of 260 to 350 mm. The signal was a unique attribute of the naphthenic acid molecule. Changes in the fluorescence signature can be used to determine chemical changes such as degradation or aging. It was concluded that the technology can be used as a non-invasive continuous water quality monitoring tool to increase process control in oil sands processing plants

  20. Synchronous contextual irregularities affect early scene processing: replication and extension.

    Science.gov (United States)

    Mudrik, Liad; Shalgi, Shani; Lamy, Dominique; Deouell, Leon Y

    2014-04-01

    Whether contextual regularities facilitate perceptual stages of scene processing is widely debated, and empirical evidence is still inconclusive. Specifically, it was recently suggested that contextual violations affect early processing of a scene only when the incongruent object and the scene are presented a-synchronously, creating expectations. We compared event-related potentials (ERPs) evoked by scenes that depicted a person performing an action using either a congruent or an incongruent object (e.g., a man shaving with a razor or with a fork) when scene and object were presented simultaneously. We also explored the role of attention in contextual processing by using a pre-cue to direct subjects׳ attention towards or away from the congruent/incongruent object. Subjects׳ task was to determine how many hands the person in the picture used in order to perform the action. We replicated our previous findings of frontocentral negativity for incongruent scenes that started ~ 210 ms post stimulus presentation, even earlier than previously found. Surprisingly, this incongruency ERP effect was negatively correlated with the reaction times cost on incongruent scenes. The results did not allow us to draw conclusions about the role of attention in detecting the regularity, due to a weak attention manipulation. By replicating the 200-300 ms incongruity effect with a new group of subjects at even earlier latencies than previously reported, the results strengthen the evidence for contextual processing during this time window even when simultaneous presentation of the scene and object prevent the formation of prior expectations. We discuss possible methodological limitations that may account for previous failures to find this an effect, and conclude that contextual information affects object model selection processes prior to full object identification, with semantic knowledge activation stages unfolding only later on. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. The indirect effect of emotion dysregulation in terms of negative affect and smoking-related cognitive processes.

    Science.gov (United States)

    Johnson, Adrienne L; McLeish, Alison C

    2016-02-01

    Although negative affect is associated with a number of smoking-related cognitive processes, the mechanisms underlying these associations have yet to be examined. The current study sought to examine the indirect effect of emotion regulation difficulties in terms of the association between negative affect and smoking-related cognitive processes (internal barriers to cessation, negative affect reduction smoking motives, negative affect reduction smoking outcome expectancies). Participants were 126 daily cigarette smokers (70.4% male, Mage=36.5years, SD=13.0; 69.8% Caucasian) who smoked an average of 18.5 (SD=8.7) cigarettes per day and reported moderate nicotine dependence. Formal mediation analyses were conducted using PROCESS to examine the indirect effect of negative affect on internal barriers to cessation and negative affect reduction smoking motives and outcome expectancies through emotion regulation difficulties. After accounting for the effects of gender, daily smoking rate, and anxiety sensitivity, negative affect was indirectly related to internal barriers to cessation and negative affect reduction smoking motives through emotion regulation difficulties. There was no significant indirect effect for negative affect reduction smoking outcome expectancies. These findings suggest that greater negative affect is associated with a desire to smoke to reduce this negative affect and perceptions that quitting smoking will be difficult due to negative emotions because of greater difficulties managing these negative emotions. Thus, emotion regulation difficulties may be an important target for smoking cessation interventions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Integrative processing of touch and affect in social perception: an fMRI study

    Directory of Open Access Journals (Sweden)

    Sjoerd eEbisch

    2016-05-01

    Full Text Available Social perception commonly employs multiple sources of information. The present study aimed at investigating the integrative processing of affective social signals. Task-related and task-free functional magnetic resonance imaging was performed in 26 healthy adult participants during a social perception task concerning dynamic visual stimuli simultaneously depicting facial expressions of emotion and tactile sensations that could be either congruent or incongruent. Confounding effects due to affective valence, inhibitory top-down influences, cross-modal integration, and conflict processing were minimized. The results showed that the perception of congruent, compared to incongruent stimuli, elicited enhanced neural activity in a set of brain regions including left amygdala, bilateral posterior cingulate cortex (PCC, and left superior parietal cortex. These congruency effects did not differ as a function of emotion or sensation. A complementary task-related functional interaction analysis preliminarily suggested that amygdala activity depended on previous processing stages in fusiform gyrus and PCC. The findings provide support for the integrative processing of social information about others' feelings from manifold bodily sources (sensory-affective information in amygdala and PCC. Given that the congruent stimuli were also judged as being more self-related and more familiar in terms of personal experience in an independent sample of participants, we speculate that such integrative processing might be mediated by the linking of external stimuli with self-experience. Finally, the prediction of task-related responses in amygdala by intrinsic functional connectivity between amygdala and PCC during a task-free state implies a neuro-functional basis for an individual predisposition for the integrative processing of social stimulus content.

  3. Building a Better Microreactor: Enzyme Catalysis in AOT/Bile Salt Reversed Micelles

    National Research Council Canada - National Science Library

    McGown, Linda

    2001-01-01

    .... We have shown that trihydroxy bile salts modify the interfacial properties of AOT reversed micelles, thereby affecting the reversed micellar structure, the biological activity of entrapped enzymes...

  4. Stabilization of enzymes in ionic liquids via modification of enzyme charge.

    Science.gov (United States)

    Nordwald, Erik M; Kaar, Joel L

    2013-09-01

    Due to the propensity of ionic liquids (ILs) to inactivate enzymes, the development of strategies to improve enzyme utility in these solvents is critical to fully exploit ILs for biocatalysis. We have developed a strategy to broadly improve enzyme utility in ILs based on elucidating the effect of charge modifications on the function of enzymes in IL environments. Results of stability studies in aqueous-IL mixtures indicated a clear connection between the ratio of enzyme-containing positive-to-negative sites and enzyme stability in ILs. Stability studies of the effect of [BMIM][Cl] and [EMIM][EtSO4 ] on chymotrypsin specifically found an optimum ratio of positively-charged amine-to-negatively-charged acid groups (0.39). At this ratio, the half-life of chymotrypsin was increased 1.6- and 4.3-fold relative to wild-type chymotrypsin in [BMIM][Cl] and [EMIM][EtSO4 ], respectively. The half-lives of lipase and papain were similarly increased as much as 4.0 and 2.4-fold, respectively, in [BMIM][Cl] by modifying the ratio of positive-to-negative sites of each enzyme. More generally, the results of stability studies found that modifications that reduce the ratio of enzyme-containing positive-to-negative sites improve enzyme stability in ILs. Understanding the impact of charge modification on enzyme stability in ILs may ultimately be exploited to rationally engineer enzymes for improved function in IL environments. Copyright © 2013 Wiley Periodicals, Inc.

  5. Enhancing polyphenol extraction from unripe apples by carbohydrate-hydrolyzing enzymes*

    Science.gov (United States)

    Zheng, Hu-zhe; Hwang, In-Wook; Chung, Shin-Kyo

    2009-01-01

    The effects of process variables such as enzyme types, enzyme ratio, reaction temperature, pH, time, and ethanol concentration on the extraction of unripe apple polyphenol were investigated. The results indicated that Viscozyme L had the strongest effect on polyphenols extraction and was selected to study the polyphenol composition. The ratio of enzyme (Viscozyme L) to substrate (2 fungal beta-glucanase units (FBG)) at 0.02, reaction at pH 3.7, 50 °C for 12 h, and ethanol concentration of 70% were chosen as the most favorable extraction condition. Total phenolic content (TPC), reducing sugar content (RSC), and extraction yield increased by about 3, 1.5, and 2 times, respectively, compared with control. The contents of p-coumaric acid, ferulic acid, and caffeic acid increased to 8, 4, and 32 times, respectively. The enzyme-aided polyphenol extraction process from unripe apples might be applied to food industry for enhancing bioactive compound production. PMID:19946955

  6. Enhancing polyphenol extraction from unripe apples by carbohydrate-hydrolyzing enzymes.

    Science.gov (United States)

    Zheng, Hu-zhe; Hwang, In-Wook; Chung, Shin-Kyo

    2009-12-01

    The effects of process variables such as enzyme types, enzyme ratio, reaction temperature, pH, time, and ethanol concentration on the extraction of unripe apple polyphenol were investigated. The results indicated that Viscozyme L had the strongest effect on polyphenols extraction and was selected to study the polyphenol composition. The ratio of enzyme (Viscozyme L) to substrate (2 fungal beta-glucanase units (FBG)) at 0.02, reaction at pH 3.7, 50 degrees C for 12 h, and ethanol concentration of 70% were chosen as the most favorable extraction condition. Total phenolic content (TPC), reducing sugar content (RSC), and extraction yield increased by about 3, 1.5, and 2 times, respectively, compared with control. The contents of p-coumaric acid, ferulic acid, and caffeic acid increased to 8, 4, and 32 times, respectively. The enzyme-aided polyphenol extraction process from unripe apples might be applied to food industry for enhancing bioactive compound production.

  7. Analysis of RNA binding by the dengue virus NS5 RNA capping enzyme.

    Directory of Open Access Journals (Sweden)

    Brittney R Henderson

    Full Text Available Flaviviruses are small, capped positive sense RNA viruses that replicate in the cytoplasm of infected cells. Dengue virus and other related flaviviruses have evolved RNA capping enzymes to form the viral RNA cap structure that protects the viral genome and directs efficient viral polyprotein translation. The N-terminal domain of NS5 possesses the methyltransferase and guanylyltransferase activities necessary for forming mature RNA cap structures. The mechanism for flavivirus guanylyltransferase activity is currently unknown, and how the capping enzyme binds its diphosphorylated RNA substrate is important for deciphering how the flavivirus guanylyltransferase functions. In this report we examine how flavivirus NS5 N-terminal capping enzymes bind to the 5' end of the viral RNA using a fluorescence polarization-based RNA binding assay. We observed that the K(D for RNA binding is approximately 200 nM Dengue, Yellow Fever, and West Nile virus capping enzymes. Removal of one or both of the 5' phosphates reduces binding affinity, indicating that the terminal phosphates contribute significantly to binding. RNA binding affinity is negatively affected by the presence of GTP or ATP and positively affected by S-adensyl methoninine (SAM. Structural superpositioning of the dengue virus capping enzyme with the Vaccinia virus VP39 protein bound to RNA suggests how the flavivirus capping enzyme may bind RNA, and mutagenesis analysis of residues in the putative RNA binding site demonstrate that several basic residues are critical for RNA binding. Several mutants show differential binding to 5' di-, mono-, and un-phosphorylated RNAs. The mode of RNA binding appears similar to that found with other methyltransferase enzymes, and a discussion of diphosphorylated RNA binding is presented.

  8. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 309 (FGE.309): Sodium Diacetate

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate sodium diacetate [FL-no: 16.073] in the Flavouring Group Evaluation 309, using the Procedure in Commission Regulation (EC) No 1565/2000. However, although...

  9. Continuous recycling of enzymes during production of lignocellulosic bioethanol in demonstration scale

    International Nuclear Information System (INIS)

    Haven, Mai Østergaard; Lindedam, Jane; Jeppesen, Martin Dan; Elleskov, Michael; Rodrigues, Ana Cristina; Gama, Miguel; Jørgensen, Henning; Felby, Claus

    2015-01-01

    Highlights: • Results from continuous experiments in demonstration scale for a total of 16 days. • Reuse of enzymes is possible through recycling fermentation broth. • Recycling fermentation broth can increase ethanol concentration with lower dry matter. - Abstract: Recycling of enzymes in production of lignocellulosic bioethanol has been tried for more than 30 years. So far, the successes have been few and the experiments have been carried out at conditions far from those in an industrially feasible process. Here we have tested continuous enzyme recycling at demonstration scale using industrial process conditions (high dry matter content and low enzyme dosage) for a period of eight days. The experiment was performed at the Inbicon demonstration plant (Kalundborg, Denmark) capable of converting four tonnes of wheat straw per hour. 20% of the fermentation broth was recycled to the hydrolysis reactor while enzyme dosage was reduced by 5%. The results demonstrate that recycling enzymes by this method can reduce overall enzyme consumption and may also increase the ethanol concentrations in the fermentation broth. Our results further show that recycling fermentation broth also opens up the possibility of lowering the dry matter content in hydrolysis and fermentation while still maintaining high ethanol concentrations.

  10. Neural bases of different cognitive strategies for facial affect processing in schizophrenia.

    Science.gov (United States)

    Fakra, Eric; Salgado-Pineda, Pilar; Delaveau, Pauline; Hariri, Ahmad R; Blin, Olivier

    2008-03-01

    To examine the neural basis and dynamics of facial affect processing in schizophrenic patients as compared to healthy controls. Fourteen schizophrenic patients and fourteen matched controls performed a facial affect identification task during fMRI acquisition. The emotional task included an intuitive emotional condition (matching emotional faces) and a more cognitively demanding condition (labeling emotional faces). Individual analysis for each emotional condition, and second-level t-tests examining both within-, and between-group differences, were carried out using a random effects approach. Psychophysiological interactions (PPI) were tested for variations in functional connectivity between amygdala and other brain regions as a function of changes in experimental conditions (labeling versus matching). During the labeling condition, both groups engaged similar networks. During the matching condition, schizophrenics failed to activate regions of the limbic system implicated in the automatic processing of emotions. PPI revealed an inverse functional connectivity between prefrontal regions and the left amygdala in healthy volunteers but there was no such change in patients. Furthermore, during the matching condition, and compared to controls, patients showed decreased activation of regions involved in holistic face processing (fusiform gyrus) and increased activation of regions associated with feature analysis (inferior parietal cortex, left middle temporal lobe, right precuneus). Our findings suggest that schizophrenic patients invariably adopt a cognitive approach when identifying facial affect. The distributed neocortical network observed during the intuitive condition indicates that patients may resort to feature-based, rather than configuration-based, processing and may constitute a compensatory strategy for limbic dysfunction.

  11. Investigation of some characteristics of enzymes that ensure the process of membrane digestion in paddlefish and Russian sturgeon

    Directory of Open Access Journals (Sweden)

    A. N. Nevalennyy

    2010-01-01

    Full Text Available Complex research of characteristics of some enzymes which are carrying out membrane hydrolysis of food at a spoonbilled cat and Russian sturgeon is carried out. High thermostability enzymes the squirrel of all investigated enzymes is marked.

  12. Artificial Enzymes, "Chemzymes"

    DEFF Research Database (Denmark)

    Bjerre, Jeannette; Rousseau, Cyril Andre Raphaël; Pedersen, Lavinia Georgeta M

    2008-01-01

    Enzymes have fascinated scientists since their discovery and, over some decades, one aim in organic chemistry has been the creation of molecules that mimic the active sites of enzymes and promote catalysis. Nevertheless, even today, there are relatively few examples of enzyme models that successf......Enzymes have fascinated scientists since their discovery and, over some decades, one aim in organic chemistry has been the creation of molecules that mimic the active sites of enzymes and promote catalysis. Nevertheless, even today, there are relatively few examples of enzyme models...... that successfully perform Michaelis-Menten catalysis under enzymatic conditions (i.e., aqueous medium, neutral pH, ambient temperature) and for those that do, very high rate accelerations are seldomly seen. This review will provide a brief summary of the recent developments in artificial enzymes, so called...... "Chemzymes", based on cyclodextrins and other molecules. Only the chemzymes that have shown enzyme-like activity that has been quantified by different methods will be mentioned. This review will summarize the work done in the field of artificial glycosidases, oxidases, epoxidases, and esterases, as well...

  13. Harm avoidance in adolescents modulates late positive potentials during affective picture processing.

    Science.gov (United States)

    Zhang, Wenhai; Lu, Jiamei; Ni, Ziyin; Liu, Xia; Wang, Dahua; Shen, Jiliang

    2013-08-01

    Research in adults has shown that individual differences in harm avoidance (HA) modulate electrophysiological responses to affective stimuli. To determine whether HA in adolescents modulates affective information processing, we collected event-related potentials from 70 adolescents while they viewed 90 pictures from the Chinese affective picture system. Multiple regressions revealed that HA negatively predicted late positive potential (LPP) for positive pictures and positively predicted for negative pictures; however, HA did not correlate with LPP for neutral pictures. The results suggest that at the late evaluative stage, high-HA adolescents display attentional bias to negative pictures while low-HA adolescents display attentional bias to negative pictures. Moreover, these dissociable attentional patterns imply that individual differences in adolescents' HA modulate the late selective attention mechanism of affective information. Copyright © 2013. Published by Elsevier Ltd.

  14. Development of a classification scheme for disease-related enzyme information

    Directory of Open Access Journals (Sweden)

    Söhngen Carola

    2011-08-01

    Full Text Available Abstract Background BRENDA (BRaunschweig ENzyme DAtabase, http://www.brenda-enzymes.org is a major resource for enzyme related information. First and foremost, it provides data which are manually curated from the primary literature. DRENDA (Disease RElated ENzyme information DAtabase complements BRENDA with a focus on the automatic search and categorization of enzyme and disease related information from title and abstracts of primary publications. In a two-step procedure DRENDA makes use of text mining and machine learning methods. Results Currently enzyme and disease related references are biannually updated as part of the standard BRENDA update. 910,897 relations of EC-numbers and diseases were extracted from titles or abstracts and are included in the second release in 2010. The enzyme and disease entity recognition has been successfully enhanced by a further relation classification via machine learning. The classification step has been evaluated by a 5-fold cross validation and achieves an F1 score between 0.802 ± 0.032 and 0.738 ± 0.033 depending on the categories and pre-processing procedures. In the eventual DRENDA content every category reaches a classification specificity of at least 96.7% and a precision that ranges from 86-98% in the highest confidence level, and 64-83% for the smallest confidence level associated with higher recall. Conclusions The DRENDA processing chain analyses PubMed, locates references with disease-related information on enzymes and categorises their focus according to the categories causal interaction, therapeutic application, diagnostic usage and ongoing research. The categorisation gives an impression on the focus of the located references. Thus, the relation categorisation can facilitate orientation within the rapidly growing number of references with impact on diseases and enzymes. The DRENDA information is available as additional information in BRENDA.

  15. Subunit topology in the V type ATPase and related enzymes

    NARCIS (Netherlands)

    Chaban, Yuriy

    2005-01-01

    During the last decades impressive progress has been made in understanding of the catalytic mechanism of F-type ATP synthase, which is the key enzyme in the energy metabolism of eukaryotes and most bacteria. This enzyme catalyzes the final step in the process of oxidative phosphorylation in bacteria

  16. Prefrontal cortex executive processes affected by stress in health and disease.

    Science.gov (United States)

    Girotti, Milena; Adler, Samantha M; Bulin, Sarah E; Fucich, Elizabeth A; Paredes, Denisse; Morilak, David A

    2017-07-06

    Prefrontal cortical executive functions comprise a number of cognitive capabilities necessary for goal directed behavior and adaptation to a changing environment. Executive dysfunction that leads to maladaptive behavior and is a symptom of psychiatric pathology can be instigated or exacerbated by stress. In this review we survey research addressing the impact of stress on executive function, with specific focus on working memory, attention, response inhibition, and cognitive flexibility. We then consider the neurochemical pathways underlying these cognitive capabilities and, where known, how stress alters them. Finally, we review work exploring potential pharmacological and non-pharmacological approaches that can ameliorate deficits in executive function. Both preclinical and clinical literature indicates that chronic stress negatively affects executive function. Although some of the circuitry and neurochemical processes underlying executive function have been characterized, a great deal is still unknown regarding how stress affects these processes. Additional work focusing on this question is needed in order to make progress on developing interventions that ameliorate executive dysfunction. Published by Elsevier Inc.

  17. Enzymes from solvent-tolerant microbes: useful biocatalysts for non-aqueous enzymology.

    Science.gov (United States)

    Gupta, Anshu; Khare, S K

    2009-01-01

    Solvent-tolerant microbes are a newly emerging class that possesses the unique ability to thrive in the presence of organic solvents. Their enzymes adapted to mediate cellular and metabolic processes in a solvent-rich environment and are logically stable in the presence of organic solvents. Enzyme catalysis in non-aqueous/low-water media is finding increasing applications for the synthesis of industrially important products, namely peptides, esters, and other trans-esterification products. Solvent stability, however, remains a prerequisite for employing enzymes in non-aqueous systems. Enzymes, in general, get inactivated or give very low rates of reaction in non-aqueous media. Thus, early efforts, and even some recent ones, have aimed at stabilization of enzymes in organic media by immobilization, surface modifications, mutagenesis, and protein engineering. Enzymes from solvent-tolerant microbes appear to be the choicest source for studying solvent-stable enzymes because of their unique ability to survive in the presence of a range of organic solvents. These bacteria circumvent the solvent's toxic effects by virtue of various adaptations, e.g. at the level of the cytoplasmic membrane, by degradation and transformation of solvents, and by active excretion of solvents. The recent screening of these exotic microbes has generated some naturally solvent-stable proteases, lipases, cholesterol oxidase, cholesterol esterase, cyclodextrin glucanotransferase, and other important enzymes. The unique properties of these novel biocatalysts have great potential for applications in non-aqueous enzymology for a range of industrial processes.

  18. Towards understanding how surface life can affect interior geological processes: a non-equilibrium thermodynamics approach

    Directory of Open Access Journals (Sweden)

    J. G. Dyke

    2011-06-01

    Full Text Available Life has significantly altered the Earth's atmosphere, oceans and crust. To what extent has it also affected interior geological processes? To address this question, three models of geological processes are formulated: mantle convection, continental crust uplift and erosion and oceanic crust recycling. These processes are characterised as non-equilibrium thermodynamic systems. Their states of disequilibrium are maintained by the power generated from the dissipation of energy from the interior of the Earth. Altering the thickness of continental crust via weathering and erosion affects the upper mantle temperature which leads to changes in rates of oceanic crust recycling and consequently rates of outgassing of carbon dioxide into the atmosphere. Estimates for the power generated by various elements in the Earth system are shown. This includes, inter alia, surface life generation of 264 TW of power, much greater than those of geological processes such as mantle convection at 12 TW. This high power results from life's ability to harvest energy directly from the sun. Life need only utilise a small fraction of the generated free chemical energy for geochemical transformations at the surface, such as affecting rates of weathering and erosion of continental rocks, in order to affect interior, geological processes. Consequently when assessing the effects of life on Earth, and potentially any planet with a significant biosphere, dynamical models may be required that better capture the coupled nature of biologically-mediated surface and interior processes.

  19. Effect of polymers on the retention and aging of enzyme on bioactive papers.

    Science.gov (United States)

    Khan, Mohidus Samad; Haniffa, Sharon B M; Slater, Alison; Garnier, Gil

    2010-08-01

    The effect of polymer on the retention and the thermal stability of bioactive enzymatic papers was measured using a colorimetric technique quantifying the intensity of the enzyme-substrate product complex. Alkaline phosphatase (ALP) was used as model enzyme. Three water soluble polymers: a cationic polyacrylamide (CPAM), an anionic polyacrylic acid (PAA) and a neutral polyethylene oxide (PEO) were selected as retention aids. The model polymers increased the enzyme adsorption on paper by around 50% and prevented enzyme desorption upon rewetting of the papers. The thermal deactivation of ALP retained on paper with polymers follows two sequential first order reactions. This was also observed for ALP simply physisorbed on paper. The retention aid polymers instigated a rapid initial deactivation which significantly decreased the longevity of the enzymatic papers. This suggests some enzyme-polymer interaction probably affecting the enzyme tertiary structure. A deactivation mathematical model predicting the enzymatic paper half-life was developed. Crown Copyright 2010. Published by Elsevier B.V. All rights reserved.

  20. Purification and properties of amylolytic enzyme from Aspergillus oryzae MIBA316

    OpenAIRE

    仮屋, 麻紀子; 矢野, めぐむ; 瀧井, 幸男; Makiko, Kariya; Megumu, Yano; Yukio, Takii

    2003-01-01

    Amylolytic enzyme was purified to electrophoretically homogeneous state from culture broth of Aspergillus oryzae MIBA316. This enzyme hydrolyzed preferentially amylopectin, starch and glycogen. Approaches to complete breakdown of starch to its components and their utilization in food processing were discussed.

  1. Vacuolar processing enzyme plays an essential role in the crystalline structure of glutelin in rice seed.

    Science.gov (United States)

    Kumamaru, Toshihiro; Uemura, Yuji; Inoue, Yoshimi; Takemoto, Yoko; Siddiqui, Sadar Uddin; Ogawa, Masahiro; Hara-Nishimura, Ikuko; Satoh, Hikaru

    2010-01-01

    To identify the function of genes that regulate the processing of proglutelin, we performed an analysis of glup3 mutants, which accumulates excess amounts of proglutelin and lack the vacuolar processing enzyme (VPE). VPE activity in developing seeds from glup3 lines was reduced remarkably compared with the wild type. DNA sequencing of the VPE gene in glup3 mutants revealed either amino acid substitutions or the appearance of a stop codon within the coding region. Microscopic observations showed that alpha-globulin and proglutelin were distributed homogeneously within glup3 protein storage vacuoles (PSVs), and that glup3 PSVs lacked the crystalline lattice structure typical of wild-type PSVs. This suggests that the processing of proglutelin by VPE in rice is essential for proper PSV structure and compartmentalization of storage proteins. Growth retardation in glup3 seedlings was also observed, indicating that the processing of proglutelin influences early seedling development. These findings indicate that storage of glutelin in its mature form as a crystalline structure in PSVs is required for the rapid use of glutelin as a source of amino acids during early seedling development. In conclusion, VPE plays an important role in the formation of protein crystalline structures in PSVs.

  2. Advancing the Assessment of Personality Pathology With the Cognitive-Affective Processing System.

    Science.gov (United States)

    Huprich, Steven K; Nelson, Sharon M

    2015-01-01

    The Cognitive-Affective Processing System (CAPS) is a dynamic and expansive model of personality proposed by Mischel and Shoda (1995) that incorporates dispositional and processing frameworks by considering the interaction of the individual and the situation, and the patterns of variation that result. These patterns of cognition, affect, and behavior are generally defined through the use of if … then statements, and provide a rich understanding of the individual across varying levels of assessment. In this article, we describe the CAPS model and articulate ways in which it can be applied to conceptualizing and assessing personality pathology. We suggest that the CAPS model is an ideal framework that integrates a number of current theories of personality pathology, and simultaneously overcomes a number of limits that have been empirically identified in the past.

  3. Evolutionarily conserved substrate substructures for automated annotation of enzyme superfamilies.

    Directory of Open Access Journals (Sweden)

    Ranyee A Chiang

    2008-08-01

    Full Text Available The evolution of enzymes affects how well a species can adapt to new environmental conditions. During enzyme evolution, certain aspects of molecular function are conserved while other aspects can vary. Aspects of function that are more difficult to change or that need to be reused in multiple contexts are often conserved, while those that vary may indicate functions that are more easily changed or that are no longer required. In analogy to the study of conservation patterns in enzyme sequences and structures, we have examined the patterns of conservation and variation in enzyme function by analyzing graph isomorphisms among enzyme substrates of a large number of enzyme superfamilies. This systematic analysis of substrate substructures establishes the conservation patterns that typify individual superfamilies. Specifically, we determined the chemical substructures that are conserved among all known substrates of a superfamily and the substructures that are reacting in these substrates and then examined the relationship between the two. Across the 42 superfamilies that were analyzed, substantial variation was found in how much of the conserved substructure is reacting, suggesting that superfamilies may not be easily grouped into discrete and separable categories. Instead, our results suggest that many superfamilies may need to be treated individually for analyses of evolution, function prediction, and guiding enzyme engineering strategies. Annotating superfamilies with these conserved and reacting substructure patterns provides information that is orthogonal to information provided by studies of conservation in superfamily sequences and structures, thereby improving the precision with which we can predict the functions of enzymes of unknown function and direct studies in enzyme engineering. Because the method is automated, it is suitable for large-scale characterization and comparison of fundamental functional capabilities of both characterized

  4. Evolutionarily conserved substrate substructures for automated annotation of enzyme superfamilies.

    Science.gov (United States)

    Chiang, Ranyee A; Sali, Andrej; Babbitt, Patricia C

    2008-08-01

    The evolution of enzymes affects how well a species can adapt to new environmental conditions. During enzyme evolution, certain aspects of molecular function are conserved while other aspects can vary. Aspects of function that are more difficult to change or that need to be reused in multiple contexts are often conserved, while those that vary may indicate functions that are more easily changed or that are no longer required. In analogy to the study of conservation patterns in enzyme sequences and structures, we have examined the patterns of conservation and variation in enzyme function by analyzing graph isomorphisms among enzyme substrates of a large number of enzyme superfamilies. This systematic analysis of substrate substructures establishes the conservation patterns that typify individual superfamilies. Specifically, we determined the chemical substructures that are conserved among all known substrates of a superfamily and the substructures that are reacting in these substrates and then examined the relationship between the two. Across the 42 superfamilies that were analyzed, substantial variation was found in how much of the conserved substructure is reacting, suggesting that superfamilies may not be easily grouped into discrete and separable categories. Instead, our results suggest that many superfamilies may need to be treated individually for analyses of evolution, function prediction, and guiding enzyme engineering strategies. Annotating superfamilies with these conserved and reacting substructure patterns provides information that is orthogonal to information provided by studies of conservation in superfamily sequences and structures, thereby improving the precision with which we can predict the functions of enzymes of unknown function and direct studies in enzyme engineering. Because the method is automated, it is suitable for large-scale characterization and comparison of fundamental functional capabilities of both characterized and uncharacterized

  5. Watch Out for the “Living Dead”: Cell-Free Enzymes and Their Fate

    Directory of Open Access Journals (Sweden)

    Federico Baltar

    2018-01-01

    Full Text Available Microbes are the engines driving biogeochemical cycles. Microbial extracellular enzymatic activities (EEAs are the “gatekeepers” of the carbon cycle. The total EEA is the sum of cell-bound (i.e., cell-attached, and dissolved (i.e., cell-free enzyme activities. Cell-free enzymes make up a substantial proportion (up to 100% of the total marine EEA. Although we are learning more about how microbial diversity and function (including total EEA will be affected by environmental changes, little is known about what factors control the importance of the abundant cell-free enzymes. Since cell-attached EEAs are linked to the cell, their fate will likely be linked to the factors controlling the cell’s fate. In contrast, cell-free enzymes belong to a kind of “living dead” realm because they are not attached to a living cell but still are able to perform their function away from the cell; and as such, the factors controlling their activity and fate might differ from those affecting cell-attached enzymes. This article aims to place cell-free EEA into the wider context of hydrolysis of organic matter, deal with recent studies assessing what controls the production, activity and lifetime of cell-free EEA, and what their fate might be in response to environmental stressors. This perspective article advocates the need to go “beyond the living things,” studying the response of cells/organisms to different stressors, but also to study cell-free enzymes, in order to fully constrain the future and evolution of marine biogeochemical cycles.

  6. Watch Out for the “Living Dead”: Cell-Free Enzymes and Their Fate

    Science.gov (United States)

    Baltar, Federico

    2018-01-01

    Microbes are the engines driving biogeochemical cycles. Microbial extracellular enzymatic activities (EEAs) are the “gatekeepers” of the carbon cycle. The total EEA is the sum of cell-bound (i.e., cell-attached), and dissolved (i.e., cell-free) enzyme activities. Cell-free enzymes make up a substantial proportion (up to 100%) of the total marine EEA. Although we are learning more about how microbial diversity and function (including total EEA) will be affected by environmental changes, little is known about what factors control the importance of the abundant cell-free enzymes. Since cell-attached EEAs are linked to the cell, their fate will likely be linked to the factors controlling the cell’s fate. In contrast, cell-free enzymes belong to a kind of “living dead” realm because they are not attached to a living cell but still are able to perform their function away from the cell; and as such, the factors controlling their activity and fate might differ from those affecting cell-attached enzymes. This article aims to place cell-free EEA into the wider context of hydrolysis of organic matter, deal with recent studies assessing what controls the production, activity and lifetime of cell-free EEA, and what their fate might be in response to environmental stressors. This perspective article advocates the need to go “beyond the living things,” studying the response of cells/organisms to different stressors, but also to study cell-free enzymes, in order to fully constrain the future and evolution of marine biogeochemical cycles. PMID:29354095

  7. Structural Basis of Multifunctionality in a Vitamin B[subscript 12]-processing Enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Koutmos, Markos; Gherasim, Carmen; Smith, Janet L.; Banerjee, Ruma (Michigan)

    2012-07-11

    An early step in the intracellular processing of vitamin B{sub 12} involves CblC, which exhibits dual reactivity, catalyzing the reductive decyanation of cyanocobalamin (vitamin B{sub 12}), and the dealkylation of alkylcobalamins (e.g. methylcobalamin; MeCbl). Insights into how the CblC scaffold supports this chemical dichotomy have been unavailable despite it being the most common locus of patient mutations associated with inherited cobalamin disorders that manifest in both severe homocystinuria and methylmalonic aciduria. Herein, we report structures of human CblC, with and without bound MeCbl, which provide novel biochemical insights into its mechanism of action. Our results reveal that CblC is the most divergent member of the NADPH-dependent flavin reductase family and can use FMN or FAD as a prosthetic group to catalyze reductive decyanation. Furthermore, CblC is the first example of an enzyme with glutathione transferase activity that has a sequence and structure unrelated to the GST superfamily. CblC thus represents an example of evolutionary adaptation of a common structural platform to perform diverse chemistries. The CblC structure allows us to rationalize the biochemical basis of a number of pathological mutations associated with severe clinical phenotypes.

  8. Recent advances in enzyme extraction strategies: A comprehensive review.

    Science.gov (United States)

    Nadar, Shamraja S; Pawar, Rohini G; Rathod, Virendra K

    2017-08-01

    The increasing interest of industrial enzymes demands for development of new downstream strategies for maximizing enzyme recovery. The significant efforts have been focused on the development of newly adapted technologies to purify enzymes in catalytically active form. Recently, an aqueous two phase system (ATPS) is emerged as powerful tools for efficient extraction and purification of enzymes due to their versatility, lower cost, process integration capability and easy scale-up. The present review gives an overview of effect of parameters such as tie line length, pH, neutral salts, properties of polymer and salt involved in traditional polymer/polymer and polymer/salt ATPS for enzyme recovery. Further, advanced ATPS have been developed based on alcohols, surfactants, micellar compounds to avoid tedious recovery steps for getting desired enzyme. In order to improve the selectivity and efficiency of ATPS, recent approaches of conventional ATPS combined with different techniques like affinity ligands, ionic liquids, thermoseparating polymers and microfluidic device based ATPS have been reviewed. Moreover, three phase partitioning is also highlighted for enzymes enrichment as a blooming technology for efficiently integrated bioseparation techniques. At the end, it includes an overview of CLEAs technology and organic-inorganic nanoflowers preparation as novel strategies for simultaneous extraction, purification and immobilization of enzymes. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Relationships between protein-encoding gene abundance and corresponding process are commonly assumed yet rarely observed

    Science.gov (United States)

    Rocca, Jennifer D.; Hall, Edward K.; Lennon, Jay T.; Evans, Sarah E.; Waldrop, Mark P.; Cotner, James B.; Nemergut, Diana R.; Graham, Emily B.; Wallenstein, Matthew D.

    2015-01-01

    For any enzyme-catalyzed reaction to occur, the corresponding protein-encoding genes and transcripts are necessary prerequisites. Thus, a positive relationship between the abundance of gene or transcripts and corresponding process rates is often assumed. To test this assumption, we conducted a meta-analysis of the relationships between gene and/or transcript abundances and corresponding process rates. We identified 415 studies that quantified the abundance of genes or transcripts for enzymes involved in carbon or nitrogen cycling. However, in only 59 of these manuscripts did the authors report both gene or transcript abundance and rates of the appropriate process. We found that within studies there was a significant but weak positive relationship between gene abundance and the corresponding process. Correlations were not strengthened by accounting for habitat type, differences among genes or reaction products versus reactants, suggesting that other ecological and methodological factors may affect the strength of this relationship. Our findings highlight the need for fundamental research on the factors that control transcription, translation and enzyme function in natural systems to better link genomic and transcriptomic data to ecosystem processes.

  10. Commentary: cognitive-affective mechanisms and processes in autobiographical memory.

    Science.gov (United States)

    Conway, Martin A

    2003-03-01

    This commentary highlights some of the interesting points to emerge from the preceding papers about the self, social, and directive functions of autobiographical memory. Additionally some cognitive functions are also considered and especially the way in which autobiographical memory supports, constrains, and maintains the goals of the self. Directions for future research into the self, social, directive, and cognitive-affective functions and processes of autobiographical memory are reviewed. Emphasis is placed on future research into the function of autobiographical memory in representations of attachment.

  11. Major hydrogeochemical processes in an acid mine drainage affected estuary.

    Science.gov (United States)

    Asta, Maria P; Calleja, Maria Ll; Pérez-López, Rafael; Auqué, Luis F

    2015-02-15

    This study provides geochemical data with the aim of identifying and quantifying the main processes occurring in an Acid Mine Drainage (AMD) affected estuary. With that purpose, water samples of the Huelva estuary were collected during a tidal half-cycle and ion-ion plots and geochemical modeling were performed to obtain a general conceptual model. Modeling results indicated that the main processes responsible for the hydrochemical evolution of the waters are: (i) the mixing of acid fluvial water with alkaline ocean water; (ii) precipitation of Fe oxyhydroxysulfates (schwertmannite) and hydroxides (ferrihydrite); (iii) precipitation of Al hydroxysulfates (jurbanite) and hydroxides (amorphous Al(OH)3); (iv) dissolution of calcite; and (v) dissolution of gypsum. All these processes, thermodynamically feasible in the light of their calculated saturation states, were quantified by mass-balance calculations and validated by reaction-path calculations. In addition, sorption processes were deduced by the non-conservative behavior of some elements (e.g., Cu and Zn). Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Enzyme detection by microfluidics

    DEFF Research Database (Denmark)

    2013-01-01

    Microfluidic-implemented methods of detecting an enzyme, in particular a DNA-modifying enzyme, are provided, as well as methods for detecting a cell, or a microorganism expressing said enzyme. The enzyme is detected by providing a nucleic acid substrate, which is specifically targeted...... by that enzyme...

  13. Conversion of xylan by recyclable spores of Bacillus subtilis displaying thermophilic enzymes.

    Science.gov (United States)

    Mattossovich, Rosanna; Iacono, Roberta; Cangiano, Giuseppina; Cobucci-Ponzano, Beatrice; Isticato, Rachele; Moracci, Marco; Ricca, Ezio

    2017-11-28

    The Bacillus subtilis spore has long been used to display antigens and enzymes. Spore display can be accomplished by a recombinant and a non-recombinant approach, with the latter proved more efficient than the recombinant one. We used the non-recombinant approach to independently adsorb two thermophilic enzymes, GH10-XA, an endo-1,4-β-xylanase (EC 3.2.1.8) from Alicyclobacillus acidocaldarius, and GH3-XT, a β-xylosidase (EC 3.2.1.37) from Thermotoga thermarum. These enzymes catalyze, respectively, the endohydrolysis of (1-4)-β-D-xylosidic linkages of xylans and the hydrolysis of (1-4)-β-D-xylans to remove successive D-xylose residues from the non-reducing termini. We report that both purified enzymes were independently adsorbed on purified spores of B. subtilis. The adsorption was tight and both enzymes retained part of their specific activity. When spores displaying either GH10-XA or GH3-XT were mixed together, xylan was hydrolysed more efficiently than by a mixture of the two free, not spore-adsorbed, enzymes. The high total activity of the spore-bound enzymes is most likely due to a stabilization of the enzymes that, upon adsorption on the spore, remained active at the reaction conditions for longer than the free enzymes. Spore-adsorbed enzymes, collected after the two-step reaction and incubated with fresh substrate, were still active and able to continue xylan degradation. The recycling of the mixed spore-bound enzymes allowed a strong increase of xylan degradation. Our results indicate that the two-step degradation of xylans can be accomplished by mixing spores displaying either one of two required enzymes. The two-step process occurs more efficiently than with the two un-adsorbed, free enzymes and adsorbed spores can be reused for at least one other reaction round. The efficiency of the process, the reusability of the adsorbed enzymes, and the well documented robustness of spores of B. subtilis indicate the spore as a suitable platform to display enzymes

  14. Ethanol from wood. Cellulase enzyme production

    Energy Technology Data Exchange (ETDEWEB)

    Szengyel, Zsolt

    2000-03-01

    Conversion of biomass to liquid fuels, such as ethanol, has been investigated during the past decades. First due to the oil crisis of the 1970s and lately because of concerns about greenhouse effect, ethanol has been found to be a suitable substitute for gasoline in transportation. Although ethanol is produced in large quantities from corn starch, the conversion of lignocellulosic biomass to ethanol is rather problematic. However, cellulosic raw materials are important as they are available in large quantities from agriculture and forestry. One of the most extensively investigated processes is the enzymatic process, in which fungal cellulolytic enzymes are used to convert the cellulose content of the biomass to glucose, which is then fermented to ethanol. In order to make the raw material accessible to biological attack, it has to be pretreated first. The most successful method, which has been evaluated for various lignocellulosic materials, is the steam pretreatment. In this thesis the utilization of steam pretreated willow (hardwood) and spruce (softwood) was examined for enzyme production using a filamentous fungus T. reesei RUT C30. Various carbon sources originating from the steam pretreated materials have been investigated. The replacement of the solid carbon source with a liquid carbon source, as well as the effect of pH, was studied. The effect of toxic compounds generated during pretreatment was also examined. Comparative study of softwood and hardwood showed that steam pretreated hardwood is a better carbon source than softwood. The hydrolytic potential of enzyme solutions produced on wood derived carbon sources was better compared to commercial cellulases. Also enzyme solutions produced on steam pretreated spruce showed less sensitivity towards toxic compounds formed during steam pretreatment.

  15. Integrating enzyme fermentation in lignocellulosic ethanol production: life-cycle assessment and techno-economic analysis.

    Science.gov (United States)

    Olofsson, Johanna; Barta, Zsolt; Börjesson, Pål; Wallberg, Ola

    2017-01-01

    Cellulase enzymes have been reported to contribute with a significant share of the total costs and greenhouse gas emissions of lignocellulosic ethanol production today. A potential future alternative to purchasing enzymes from an off-site manufacturer is to integrate enzyme and ethanol production, using microorganisms and part of the lignocellulosic material as feedstock for enzymes. This study modelled two such integrated process designs for ethanol from logging residues from spruce production, and compared it to an off-site case based on existing data regarding purchased enzymes. Greenhouse gas emissions and primary energy balances were studied in a life-cycle assessment, and cost performance in a techno-economic analysis. The base case scenario suggests that greenhouse gas emissions per MJ of ethanol could be significantly lower in the integrated cases than in the off-site case. However, the difference between the integrated and off-site cases is reduced with alternative assumptions regarding enzyme dosage and the environmental impact of the purchased enzymes. The comparison of primary energy balances did not show any significant difference between the cases. The minimum ethanol selling price, to reach break-even costs, was from 0.568 to 0.622 EUR L -1 for the integrated cases, as compared to 0.581 EUR L -1 for the off-site case. An integrated process design could reduce greenhouse gas emissions from lignocellulose-based ethanol production, and the cost of an integrated process could be comparable to purchasing enzymes produced off-site. This study focused on the environmental and economic assessment of an integrated process, and in order to strengthen the comparison to the off-site case, more detailed and updated data regarding industrial off-site enzyme production are especially important.

  16. The growth and photosynthesis of Typha in oil sands process affected material and water

    Energy Technology Data Exchange (ETDEWEB)

    Foote, L. [Alberta Univ., Edmonton, AB (Canada); Hornung, J. [Petro-Canada, Calgary, AB (Canada)

    2007-07-01

    Aquatic plants such as cattail contribute substantially to the energy flow in wetlands. Since Typha (cattail) plants acquire and cycle carbon and nutrients through wetlands, their growth and recycling of captured nutrients are an important part of natural, healthy wetland ecosystems. Cattail are pervasive and satisfy many of the criteria to be used as indicators of wetland integrity. This study investigated if cattail growth and carbon accrual were influenced by oil sands process materials (OSPM) such as consolidated tailings (CT). The purpose was to facilitate land reclamation initiatives by evaluating the impact that constituents of oil sands process material have on aquatic plant growth. The study was conducted at Suncor's experimental trenches. Six lined basins were used, of which 3 were filled with natural water and 3 were filled with trench water. Cattail were planted in different growth medium combinations, including CT over CT; soil over soil; soil over CT; and soil over sterilized sand. All leaf lengths and widths were measured along with the photosynthesis of the leaves and root and plant biomass at planting and after 2-years growth. A larger leaf area was observed under oil sands process influence, which may indicate increased carbon accrual above ground. Leaf area data suggested that CT affected plants are quite productive. The study also indicated that oil sands affected water may reduce plant fitness, and therefore could influence the overall oil sands reclamation timelines. Conversely, cattail grown in soil capped process affected material had a much larger leaf area compared to those grown in soil capped sand, most likely due to the higher levels of ammonia in process affected material.

  17. Action of ionizing radiation on the carbohydrate metabolism enzymes

    International Nuclear Information System (INIS)

    Cherkasova, L.S.; Mironova, T.M.

    1976-01-01

    It follows from data reported in literature and those obtained in our laboratory that ionizing radiation does not drastically change the activity of enzymes of the carbohydrate metabolism in tissues of an animal organism. The data are reported on the effect of a whole-body single, fractionated or continuous irradiation of the enzymes of carbohydrate metabolism and the accompanying interrelated co-operative redistributions within the processes of aerobic and anaerobic glycolysis, and the pentose route of their conversion. The dependence of the postirradiation changes in the activity of enzymes on the neuroendocrine system response to irradiation has been demonstrated

  18. Exquisite Enzyme-Fenton Biomimetic Catalysts for Hydroxyl Radical Production by Mimicking an Enzyme Cascade.

    Science.gov (United States)

    Zhang, Qi; Chen, Shuo; Wang, Hua; Yu, Hongtao

    2018-03-14

    Hydrogen peroxide (H 2 O 2 ) is a key reactant in the Fenton process. As a byproduct of enzymatic reaction, H 2 O 2 can be obtained via catalytical oxidation of glucose using glucose oxidase in the presence of O 2 . Another oxidation product (gluconic acid) can suitably adjust the microenvironmental pH contributing to the Fe 3+ /Fe 2+ cycle in the Fenton reaction. Enzymes are extremely efficient at catalyzing a variety of reactions with high catalytic activity, substrate specificity, and yields in living organisms. Inspired by the multiple functions of natural multienzyme systems, an exquisite nanozyme-modified α-FeOOH/porous carbon (PC) biomimetic catalyst constructed by in situ growth of glucose oxidase-mimicking Au nanoparticles and crystallization of adsorbed ferric ions within carboxyl into hierarchically PC is developed as an efficient enzyme-Fenton catalyst. The products (H 2 O 2 , ∼4.07 mmol·L -1 ) of the first enzymatic reaction are immediately used as substrates for the second Fenton-like reaction to generate the valuable • OH (∼96.84 μmol·L -1 ), thus mimicking an enzyme cascade pathway. α-FeOOH nanocrystals, attached by C-O-Fe bondings, are encapsulated into the mesoporous PC frameworks, facilitating the electron transfer between α-FeOOH and the PC support and greatly suppressing iron leaching. This study paves a new avenue for designing biomimetic enzyme-based Fenton catalysts mimicking a natural system for • OH production.

  19. Characterization of Cellulase Enzyme Inhibitors Formed During the Chemical Pretreatments of Rice Straw

    Science.gov (United States)

    Rajan, Kalavathy

    Production of fuels and chemicals from a renewable and inexpensive resource such as lignocellulosic biomass is a lucrative and sustainable option for the advanced biofuel and bio-based chemical platform. Agricultural residues constitute the bulk of potential feedstock available for cellulosic fuel production. On a global scale, rice straw is the largest source of agricultural residues and is therefore an ideal crop model for biomass deconstruction studies. Lignocellulosic biofuel production involves the processes of biomass conditioning, enzymatic saccharification, microbial fermentation and ethanol distillation, and one of the major factors affecting its techno-economic feasibility is the biomass recalcitrance to enzymatic saccharification. Preconditioning of lignocellulosic biomass, using chemical, physico-chemical, mechanical and biological pretreatments, is often practiced such that biomass becomes available to downstream processing. Pretreatments, such as dilute acid and hot water, are effective means of biomass conversion. However, despite their processing importance, preconditioning biomass also results in the production of carbohydrate and lignin degradation products that are inhibitory to downstream saccharification enzymes. The saccharification enzyme cocktail is made up of endo-cellulase, exo-cellulase and beta-glucosidase enzymes, whose role is to cleave cellulose polymers into glucose monomers. Specifically, endo-cellulase and exo-cellulase enzymes cleave cellulose chains in the middle and at the end, resulting in cellobiose molecules, which are hydrolyzed into glucose by beta-glucosidase. Unfortunately, degradation compounds generated during pretreatment inhibit the saccharification enzyme cocktail. Various research groups have identified specific classes of inhibitors formed during biomass pretreatment and have studied their inhibitory effect on the saccharification cocktail. These various research groups prepared surrogate solutions in an attempt to

  20. Optimization of ultrasound-assisted extraction of pectinase enzyme from guava (Psidium guajava) peel: Enzyme recovery, specific activity, temperature, and storage stability.

    Science.gov (United States)

    Amid, Mehrnoush; Murshid, Fara Syazana; Manap, Mohd Yazid; Islam Sarker, Zaidul

    2016-01-01

    This study aimed to investigate the effects of the ultrasound-assisted extraction conditions on the yield, specific activity, temperature, and storage stability of the pectinase enzyme from guava peel. The ultrasound variables studied were sonication time (10-30 min), ultrasound temperature (30-50 °C), pH (2.0-8.0), and solvent-to-sample ratio (2:1 mL/g to 6:1 mL/g). The main goal was to optimize the ultrasound-assisted extraction conditions to maximize the recovery of pectinase from guava peel with the most desirable enzyme-specific activity and stability. Under the optimum conditions, a high yield (96.2%), good specific activity (18.2 U/mg), temperature stability (88.3%), and storage stability (90.3%) of the extracted enzyme were achieved. The optimal conditions were 20 min sonication time, 40 °C temperature, at pH 5.0, using a 4:1 mL/g solvent-to-sample ratio. The study demonstrated that optimization of ultrasound-assisted process conditions for the enzyme extraction could improve the enzymatic characteristics and yield of the enzyme.

  1. Deoxynucleotide-interconverting enzymes and the quantification of deoxynucleoside triphosphates in mammalian cells

    OpenAIRE

    Fuller, Steven A.; Hutton, John J.; Meier, John; Coleman, Mary Sue

    1982-01-01

    We have demonstrated that methanol extracts of human cells are heterogeneous with regard to content of dNDP (deoxynucleoside diphosphate) and dNMP (deoxynucleoside monophosphate) kinases. The presence of these enzymes can affect the reliability of techniques used to measure intracellular pools of deoxynucleotides. An optimized extraction procedure and enzymic assay for dNTP species in haematopoietic cells are described which provide sensitivity to measure 0.1–40pmol of dATP, dTTP and dGTP, an...

  2. Enzymes for ecdysteroid biosynthesis: their biological functions in insects and beyond.

    Science.gov (United States)

    Niwa, Ryusuke; Niwa, Yuko S

    2014-01-01

    Steroid hormones are responsible for the coordinated regulation of many aspects of biological processes in multicellular organisms. Since the last century, many studies have identified and characterized steroidogenic enzymes in vertebrates, including mammals. However, much less is known about invertebrate steroidogenic enzymes. In the last 15 years, a number of steroidogenic enzymes and their functions have been characterized in ecdysozoan animals, especially in the fruit fly Drosophila melanogaster. In this review, we summarize the latest knowledge of enzymes crucial for synthesizing ecdysteroids, the principal insect steroid hormones. We also discuss the functional conservation and diversity of ecdysteroidogenic enzymes in other insects and even non-insect species, such as nematodes, vertebrates, and lower eukaryotes.

  3. Cyclic fatty acid monomers from dietary heated fats affect rat liver enzyme activity.

    Science.gov (United States)

    Lamboni, C; Sébédio, J L; Perkins, E G

    1998-07-01

    This study was conducted to investigate the effects of dietary cyclic fatty acid monomers (CFAM), contained in heated fat from a commercial deep-fat frying operation, on rat liver enzyme activity. A partially hydrogenated soybean oil (PHSBO) used 7 d (7-DH) for frying foodstuffs, or 0.15% methylated CFAM diets was fed to male weanling rats in comparison to a control group fed a nonheated PHSBO (NH) diet in a 10-wk experiment. All diets were isocaloric with 15% fat. Animals fed either CFAM or 7-DH diets showed increased hepatic content of cytochrome (cyt.) b5 and P450 and increased activity of (E.C. 1.6.2.4) NADPH-cyt. P450 reductase in comparison to the control rats. In addition, the activities of (E.C. 2.3.1.21) carnitine palmitoyltransferase-I and (E.C. 1.1.1.42) isocitrate dehydrogenase were significantly decreased when compared to that of rats fed the NH diet. A significantly depressed activity of (E.C. 1.1.1.49) glucose 6-phosphate dehydrogenase was also observed for these animals compared to the control rats fed NH diet. Moreover, liver and microsomal proteins were significantly increased when CFAM or 7-DH diets were fed to animals in comparison to controls while liver glycogen was decreased significantly in experimental groups of rats. The results obtained in this study indicate that the CFAM in the diet from either synthetic sources or used fats increase the activity of liver enzyme systems that detoxify them.

  4. Interaction between Task Oriented and Affective Information Processing in Cognitive Robotics

    Science.gov (United States)

    Haazebroek, Pascal; van Dantzig, Saskia; Hommel, Bernhard

    There is an increasing interest in endowing robots with emotions. Robot control however is still often very task oriented. We present a cognitive architecture that allows the combination of and interaction between task representations and affective information processing. Our model is validated by comparing simulation results with empirical data from experimental psychology.

  5. Effect of Chromium(VI Toxicity on Enzymes of Nitrogen Metabolism in Clusterbean (Cyamopsis tetragonoloba L.

    Directory of Open Access Journals (Sweden)

    Punesh Sangwan

    2014-01-01

    Full Text Available Heavy metals are the intrinsic component of the environment with both essential and nonessential types. Their excessive levels pose a threat to plant growth and yield. Also, some heavy metals are toxic to plants even at very low concentrations. The present investigation (a pot experiment was conducted to determine the affects of varying chromium(VI levels (0.0, 0.5, 1.0, 2.0, and 4.0 mg chromium(VI kg−1 soil in the form of potassium dichromate on the key enzymes of nitrogen metabolism in clusterbean. Chromium treatment adversely affect nitrogenase, nitrate reductase, nitrite reductase, glutamine synthetase, and glutamate dehydrogenase in various plant organs at different growth stages as specific enzyme activity of these enzymes decreased with an increase in chromium(VI levels from 0 to 2.0 mg chromium(VI kg−1 soil and 4.0 mg chromium(VI kg−1 soil was found to be lethal to clusterbean plants. In general, the enzyme activity increased with advancement of growth to reach maximum at flowering stage and thereafter decreased at grain filling stage.

  6. Importance of Cognitive and Affective Processes when Working with a Computer

    Directory of Open Access Journals (Sweden)

    Blaž Trbižan

    2013-06-01

    Full Text Available Research Question (RQ: Why and how to measure human emotions when working and learning with a computer? Are machines (computers, robots implementing such binary records, where there is a simulation of cognitive phenomena and their processes, or do they actually reflect, therefore, able to think?Purpose: Show the importance of cognitive and affective processes of computer and ICT usage, both in learning and in daily work tasks.Method: Comparative method, where scientific findings were compared and based on these conclusions were drawn.Results: An individual has an active role and the use of ICT enables, through the processes of reflection and exchanges of views, for an individual to resolve problems and consequently is able to achieve excellent results at both the personal (educational level and in business. In learning and working with computers, individuals needinternal motivation. Internal motivation can be increased with positive affective processes that also positively influence cognitive processes.Organization:Knowledge of generational characteristics is currently becoming a competitive advantage of organizations. Younger generations are growing up with computers and both teachers and managers have to beaware and accommodate their teaching and business processes to the requirements of ICT.Society: In the 21st century we live in a knowledge society that is unconditionally connected and dependent on the development of information technology. Digital literacy is an everyday concept that society also is aware of and training programmes are being offered on computer literacy for all generations.Originality: The paper presents a concise synthesis of research and authors points of views recorded over the last 25 years and these are combined with our own conclusions based on observations.Limitations/Future Research:The fundamental limitation is that this is a comparative research study that compares the views and conclusions of different authors

  7. Production of lysosomal enzymes in plant-based expression systems

    OpenAIRE

    1996-01-01

    The invention relates to the production of enzymatically active recombinant human and animal lysosomal enzymes involving construction and expression of recombinant expression constructs comprising coding sequences of human or animal lysosomal enzymes in a plant expression system. The plant expression system provides for post-translational modification and processing to produce a recombinant gene product exhibiting enzymatic activity. The invention is demonstrated by working examples in which ...

  8. 7 CFR 58.436 - Rennet, pepsin, other milk clotting enzymes and flavor enzymes.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Rennet, pepsin, other milk clotting enzymes and flavor enzymes. 58.436 Section 58.436 Agriculture Regulations of the Department of Agriculture (Continued... clotting enzymes and flavor enzymes. Enzyme preparations used in the manufacture of cheese shall be safe...

  9. Bio-functionalization of conductive textile materials with redox enzymes

    Science.gov (United States)

    Kahoush, M.; Behary, N.; Cayla, A.; Nierstrasz, V.

    2017-10-01

    In recent years, immobilization of oxidoreductase enzymes on electrically conductive materials has played an important role in the development of sustainable bio-technologies. Immobilization process allows the re-use of these bio-catalysts in their final applications. In this study, different methods of immobilizing redox enzymes on conductive textile materials were used to produce bio-functionalized electrodes. These electrodes can be used for bio-processes and bio-sensing in eco-designed applications in domains such as medicine and pollution control. However, the main challenge facing the stability and durability of these electrodes is the maintenance of the enzymatic activity after the immobilization. Hence, preventing the enzyme’s denaturation and leaching is a critical factor for the success of the immobilization processes.

  10. Elevated Liver Enzymes

    Science.gov (United States)

    Symptoms Elevated liver enzymes By Mayo Clinic Staff Elevated liver enzymes may indicate inflammation or damage to cells in the liver. Inflamed or ... than normal amounts of certain chemicals, including liver enzymes, into the bloodstream, which can result in elevated ...

  11. Stability of Enzymes in Granular Enzyme Products for Laundry Detergents

    DEFF Research Database (Denmark)

    Biran, Suzan; Bach, Poul; Simonsen, Ole

    Enzymes have long been of interest to the detergent industry due to their ability to improve the cleaning efficiency of synthetic detergents, contribute to shortening washing times, and reduce energy and water consumption, provision of environmentally friendlier wash water effluents and fabric care....... However, incorporating enzymes in detergent formulations gives rise to numerous practical problems due to their incompatibility with and stability against various detergent components. In powdered detergent formulations, these issues can be partly overcome by physically isolating the enzymes in separate...... particles. However, enzymes may loose a significant part of their activity over a time period of several weeks. Possible causes of inactivation of enzymes in a granule may be related to the release of hydrogen peroxide from the bleaching chemicals in a moisture-containing atmosphere, humidity, autolysis...

  12. Differential Contribution of Right and Left Amygdala to Affective Information Processing

    Directory of Open Access Journals (Sweden)

    Hans J. Markowitsch

    1999-01-01

    Full Text Available Evidence for a differential involvement of the human left and right amygdala in emotional and cognitive behaviour is reviewed, with a particular emphasis on functional imaging results and case reports on patients with amygdalar damage. The available evidence allows one to conclude that there is definitely a hemisphere specific processing difference between the left and right amygdala. However, between studies the direction of the asymmetry is partly incongruent. In spite of this, the following tentative proposals are made: the left amygdala is more closely related to affective information encoding with a higher affinity to language and to detailed feature extraction, and the right amygdala to affective information retrieval with a higher affinity to pictorial or image-related material. Furthermore, the right amygdala may be more strongly engaged than the left one in a fast, shallow or gross analysis of affect-related information.

  13. Coproduction of detergent compatible bacterial enzymes and stain removal evaluation.

    Science.gov (United States)

    Niyonzima, Francois N; More, Sunil S

    2015-10-01

    Most of the detergents that are presently produced contain the detergent compatible enzymes to improve and accelerate the washing performance by removing tough stains. The process is environment friendly as the use of enzymes in the detergent formulation reduces the utilization of toxic detergent constituents. The current trend is to use the detergent compatible enzymes that are active at low and ambient temperature in order to save energy and maintain fabric quality. As the detergent compatible bacterial enzymes are used together in the detergent formulation, it is important to co-produce the detergent enzymes in a single fermentation medium as the enzyme stability is assured, and production cost gets reduced enormously. The review reports on the production, purification, characterization and application of detergent compatible amylases, lipases, and proteases are available. However, there is no specific review or minireview on the concomitant production of detergent compatible amylases, lipases, and proteases. In this minireview, the coproduction of detergent compatible enzymes by bacterial species, enzyme stability towards detergents and detergent components, and stain release analysis were discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Effect of Alchornea cordifolia leaf meal inclusion and enzyme supplementation on performance and digestibility of rabbits

    Directory of Open Access Journals (Sweden)

    S.O. Ayodele

    2016-09-01

    Full Text Available A feeding trial was conducted to study the performance, digestibility and health status of weaner rabbits fed diets including Alchornea cordifolia leaf meal (ALM: 18% crude protein [CP] and 12.9% crude fibre and supplemented with a multi-enzyme additive (cellulase, xylanase, β-glucanase, α-amylase, protease, lipase. Six experimental diets were arranged factorially: 3 levels of ALM (0, 5 and 10% substituting palm kernel cake: 16.3% CP and 39.1% neutral detergent fibre combined with 2 levels of enzyme supplementation (0 and 0.35 g/kg. One hundred and eighty healthy, 5-wk-old weaner rabbits of cross-breeds were randomly allotted to 6 dietary treatments (30 rabbits/treatment, 3 rabbits/replicate. Growth rate was not affected (P>0.05 by the main factors (exogenous enzyme and ALM inclusion and their interactions (13.5 g/d on av.. Daily feed intake and feed conversion ratio decreased (P=0.01 with the ALM inclusion by 8%, but did not affect faecal digestibility. However, enzyme supplementation improved crude protein and crude fibre digestibility (P<0.001 by 6%. In conclusion, ALM inclusion and enzyme supplementation had no adverse effect on the performance and digestibility of rabbits.

  15. Potential and utilization of thermophiles and thermostable enzymes in biorefining

    Directory of Open Access Journals (Sweden)

    Karlsson Eva

    2007-03-01

    Full Text Available Abstract In today's world, there is an increasing trend towards the use of renewable, cheap and readily available biomass in the production of a wide variety of fine and bulk chemicals in different biorefineries. Biorefineries utilize the activities of microbial cells and their enzymes to convert biomass into target products. Many of these processes require enzymes which are operationally stable at high temperature thus allowing e.g. easy mixing, better substrate solubility, high mass transfer rate, and lowered risk of contamination. Thermophiles have often been proposed as sources of industrially relevant thermostable enzymes. Here we discuss existing and potential applications of thermophiles and thermostable enzymes with focus on conversion of carbohydrate containing raw materials. Their importance in biorefineries is explained using examples of lignocellulose and starch conversions to desired products. Strategies that enhance thermostablity of enzymes both in vivo and in vitro are also assessed. Moreover, this review deals with efforts made on developing vectors for expressing recombinant enzymes in thermophilic hosts.

  16. Furin is a chemokine-modifying enzyme

    DEFF Research Database (Denmark)

    Hensbergen, Paul J; Verzijl, Dennis; Balog, Crina I A

    2004-01-01

    Chemokines comprise a class of structurally related proteins that are involved in many aspects of leukocyte migration under basal and inflammatory conditions. In addition to the large number of genes, limited processing of these proteins by a variety of enzymes enhances the complexity of the tota...

  17. Enzymes and bioproducts produced by the ascomycete fungus Paecilomyces variotii.

    Science.gov (United States)

    Herrera Bravo de Laguna, I; Toledo Marante, F J; Mioso, R

    2015-12-01

    Due its innate ability to produce extracellular enzymes which can provide eco-friendly solutions for a variety of biotechnological applications, Paecilomyces variotii is a potential source of industrial bioproducts. In this review, we report biotechnological records on the biochemistry of different enzymes produced by the fermentation of the P. variotii fungus, including tannases, phytases, cellulases, xylanases, chitinases, amylases and pectinases. Additionally, the main physicochemical properties which can affect the enzymatic reactions of the enzymes involved in the conversion of a huge number of substrates to high-value bioproducts are described. Despite all the background information compiled in this review, more research is required to consolidate the catalytic efficiency of P. variotii, which must be optimized so that it is more accurate and reproducible on a large scale. © 2015 The Society for Applied Microbiology.

  18. Multivariate Statistical Process Optimization in the Industrial Production of Enzymes

    DEFF Research Database (Denmark)

    Klimkiewicz, Anna

    of productyield. The potential of NIR technology to monitor the activity of the enzyme has beenthe subject of a feasibility study presented in PAPER I. It included (a) evaluation onwhich of the two real-time NIR flow cell configurations is the preferred arrangementfor monitoring of the retentate stream downstream...... strategies for theorganization of these datasets, with varying number of timestamps, into datastructures fit for latent variable (LV) modeling, have been compared. The ultimateaim of the data mining steps is the construction of statistical ‘soft models’ whichcapture the principle or latent behavior...

  19. Enzyme structure, enzyme function and allozyme diversity in ...

    African Journals Online (AJOL)

    In estimates of population genetic diversity based on allozyme heterozygosity, some enzymes are regularly more variable than others. Evolutionary theory suggests that functionally less important molecules, or parts of molecules, evolve more rapidly than more important ones; the latter enzymes should then theoretically be ...

  20. Nicotinamidase modulation of NAD+ biosynthesis and nicotinamide levels separately affect reproductive development and cell survival in C. elegans.

    Science.gov (United States)

    Vrablik, Tracy L; Huang, Li; Lange, Stephanie E; Hanna-Rose, Wendy

    2009-11-01

    Nicotinamide adenine dinucleotide (NAD(+)) is a central molecule in cellular metabolism and an obligate co-substrate for NAD(+)-consuming enzymes, which regulate key biological processes such as longevity and stress responses. Although NAD(+) biosynthesis has been intensely studied, little analysis has been done in developmental models. We have uncovered novel developmental roles for a nicotinamidase (PNC), the first enzyme in the NAD(+) salvage pathway of invertebrates. Mutations in the Caenorhabditis elegans nicotinamidase PNC-1 cause developmental and functional defects in the reproductive system; the development of the gonad is delayed, four uterine cells die by necrosis and the mutant animals are egg-laying defective. The temporal delay in gonad development results from depletion of the salvage pathway product NAD(+), whereas the uv1 cell necrosis and egg-laying defects result from accumulation of the substrate nicotinamide. Thus, regulation of both substrate and product level is key to the biological activity of PNC-1. We also find that diet probably affects the levels of these metabolites, as it affects phenotypes. Finally, we identified a secreted isoform of PNC-1 and confirmed its extracellular localization and functional activity in vivo. We demonstrate that nicotinamide phosphoribosyltransferase (Nampt), the equivalent enzyme in nicotinamide recycling to NAD(+) in vertebrates, can functionally substitute for PNC-1. As Nampt is also secreted, we postulate an evolutionarily conserved extracellular role for NAD(+) biosynthetic enzymes during development and physiology.

  1. Dose-response effects of lycopene on selected drug-metabolizing and antioxidant enzymes in the rat

    DEFF Research Database (Denmark)

    Breinholt, V.; Lauridsen, S. T.; Daneshvar, B.

    2000-01-01

    to be affected by prior. lycopene exposure. The level of PhIP-DNA adducts in the liver or colon was likewise not affected by lycopene at any dose. Overall, the present study provides evidence that lycopene administered in the diet of young female rats exerts minor modifying effects toward antioxidant and drug......-metabolizing enzymes involved in the protection against oxidative stress and cancer. The fact that these enzymatic activities are induced at all of these very low plasma levels, could be taken to suggest that modulation of antioxidant and drug-metabolizing enzymes map indeed be relevant to humans, which in general...

  2. Remote enzyme activation using gold coated magnetite as antennae for radio frequency fields

    Science.gov (United States)

    Collins, Christian B.; Ackerson, Christopher J.

    2018-02-01

    The emerging field of remote enzyme activation, or the ability to remotely turn thermophilic increase enzyme activity, could be a valuable tool for understanding cellular processes. Through exploitation of the temperature dependence of enzymatic processes and high thermal stability of thermophilic enzymes these experiments utilize nanoparticles as `antennae' that convert radiofrequency (RF) radiation into local heat, increasing activity of the enzymes without increasing the temperature of the surrounding bulk solution. To investigate this possible tool, thermolysin, a metalloprotease was covalently conjugated to 4nm gold coated magnetite particles via peptide bond formation with the protecting ligand shell. RF stimulated protease activity at 17.76 MHz in a solenoid shaped antenna, utilizing both electric and magnetic field interactions was investigated. On average 40 percent higher protease activity was observed in the radio frequency fields then when bulk heating the sample to the same temperature. This is attributed to electrophoretic motion of the nanoparticle enzyme conjugates and local regions of heat generated by the relaxation of the magnetite cores with the oscillating field. Radio frequency local heating of nanoparticles conjugated to enzymes as demonstrated could be useful in the activation of specific enzymes in complex cellular environments.

  3. Extraversion and reward-related processing: probing incentive motivation in affective priming tasks.

    Science.gov (United States)

    Robinson, Michael D; Moeller, Sara K; Ode, Scott

    2010-10-01

    Based on an incentive motivation theory of extraversion (Depue & Collins, 1999), it was hypothesized that extraverts (relative to introverts) would exhibit stronger positive priming effects in affective priming tasks, whether involving words or pictures. This hypothesis was systematically supported in four studies involving 229 undergraduates. In each of the four studies, and in a subsequent combined analysis, extraversion was positively predictive of positive affective priming effects, but was not predictive of negative affective priming effects. The results bridge an important gap in the literature between biological and trait models of incentive motivation and do so in a way that should be informative to subsequent efforts to understand the processing basis of extraversion as well as incentive motivation. (PsycINFO Database Record (c) 2010 APA, all rights reserved).

  4. Smokers exhibit biased neural processing of smoking and affective images.

    Science.gov (United States)

    Oliver, Jason A; Jentink, Kade G; Drobes, David J; Evans, David E

    2016-08-01

    There has been growing interest in the role that implicit processing of drug cues can play in motivating drug use behavior. However, the extent to which drug cue processing biases relate to the processing biases exhibited to other types of evocative stimuli is largely unknown. The goal of the present study was to determine how the implicit cognitive processing of smoking cues relates to the processing of affective cues using a novel paradigm. Smokers (n = 50) and nonsmokers (n = 38) completed a picture-viewing task, in which participants were presented with a series of smoking, pleasant, unpleasant, and neutral images while engaging in a distractor task designed to direct controlled resources away from conscious processing of image content. Electroencephalogram recordings were obtained throughout the task for extraction of event-related potentials (ERPs). Smokers exhibited differential processing of smoking cues across 3 different ERP indices compared with nonsmokers. Comparable effects were found for pleasant cues on 2 of these indices. Late cognitive processing of smoking and pleasant cues was associated with nicotine dependence and cigarette use. Results suggest that cognitive biases may extend across classes of stimuli among smokers. This raises important questions about the fundamental meaning of cognitive biases, and suggests the need to consider generalized cognitive biases in theories of drug use behavior and interventions based on cognitive bias modification. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  5. Digestibility, productive performance, and egg quality of laying hens as affected by dried cassava pulp replacement with corn and enzyme supplementation.

    Science.gov (United States)

    Khempaka, Sutisa; Maliwan, Prapot; Okrathok, Supattra; Molee, Wittawat

    2018-02-24

    Two experiments were conducted to investigate the potential use of dried cassava pulp (DCP) supplemented with enzymes as an alternative feed ingredient in laying hen diets. In experiment 1, 45 laying hens (Isa Brown) aged 45 weeks were placed in individual cages to measure nutrient digestibility for 10 days. Nine dietary treatments were control and DCP as a replacement for corn at 20, 25, 30, and 35% supplemented with mixed enzymes (cellulase, glucanase, and xylanase) at 0.10 and 0.15%. Results showed that the use of DCP at 20-35% added with mixed enzymes had no negative effects on dry matter digestibility, while organic matter digestibility and nitrogen retention decreased with increased DCP up to 30-35% in diets. Both enzyme levels (0.10 and 0.15%) showed similar results on nutrient digestibility and retention. In experiment 2, a total of 336 laying hens aged 32 weeks were randomly allocated to seven dietary treatments (control and DCP-substituted diets at 20, 25, and 30%) supplemented with mixed enzymes (0.10 and 0.15%). Diets incorporated with 20-30% of DCP and supplemented with mixed enzymes at both levels had no significant effects on egg production, egg weight, feed intake, egg mass, feed conversion ratio, protein efficiency ratio, or egg quality, except for egg yolk color being decreased with an increase of DCP in diets (P digestibility, productive performance, or egg quality.

  6. A Pontine Region is a Neural Correlate of the Human Affective Processing Network

    Directory of Open Access Journals (Sweden)

    Tatia M.C. Lee

    2015-11-01

    Full Text Available The in vivo neural activity of the pons during the perception of affective stimuli has not been studied despite the strong implications of its role in affective processing. To examine the activity of the pons during the viewing of affective stimuli, and to verify its functional and structural connectivity with other affective neural correlates, a multimodal magnetic resonance imaging methodology was employed in this study. We observed the in vivo activity of the pons when viewing affective stimuli. Furthermore, small-world connectivity indicated that the functional connectivity (FC between the pons and the cortico-limbic affective regions was meaningful, with the coefficient λ being positively associated with self-reported emotional reactivity. The FC between the pons and the cortico-limbic-striatal areas was related to self-reported negative affect. Corroborating this finding was the observation that the tract passing through the pons and the left hippocampus was negatively related to self-reported positive affect and positively correlated with emotional reactivity. Our findings support the framework that the pons works conjunctively with the distributed cortico-limbic-striatal systems in shaping individuals' affective states and reactivity. Our work paves the path for future research on the contribution of the pons to the precipitation and maintenance of affective disorders.

  7. Predictors of affect following treatment decision-making for prostate cancer: conversations, cognitive processing, and coping.

    Science.gov (United States)

    Christie, Kysa M; Meyerowitz, Beth E; Giedzinska-Simons, Antoinette; Gross, Mitchell; Agus, David B

    2009-05-01

    Research suggests that cancer patients who are more involved in treatment decision-making (TDM) report better quality of life following treatment. This study examines the association and possible mechanisms between prostate cancer patient's discussions about TDM and affect following treatment. We predicted that the length of time patients spent discussing treatment options with social networks and physicians prior to treatment would predict emotional adjustment after treatment. We further predicted that cognitive processing, coping, and patient understanding of treatment options would mediate this association. Fifty-seven patients completed questionnaires prior to treatment and at 1 and 6 months following treatment completion. Findings from the present study suggest that discussing treatment options with others, prior to beginning treatment for prostate cancer, significantly contributed to improvements in affect 1 and 6 months following treatment. Residualized regression analyses indicated that discussing treatment options with patient's social networks predicted a decrease in negative affect 1 and 6 months following treatment, while discussions with physicians predicted an increase in positive affect 1 month following treatment. Patients who spent more time discussing treatment options with family and friends also reported greater pre-treatment social support and emotional expression. Mediation analyses indicated that these coping strategies facilitated cognitive processing (as measured by a decrease in intrusive thoughts) and that cognitive processing predicted improvement in affect. Greater time spent talking with family and friends about treatment options may provide opportunities for patients to cope with their cancer diagnosis and facilitate cognitive processing, which may improve patient distress over time. Copyright (c) 2008 John Wiley & Sons Ltd.

  8. Real-time monitoring and chemical profiling of a cultivation process

    DEFF Research Database (Denmark)

    Mortensen, Peter P.; Bro, Rasmus

    2006-01-01

    they are known to reflect important properties of the fermentation process. Focus is also on important sampling issues-mainly structurally sub-optimal primary sampling methods affecting the representativity obtainable relative to the lot characteristics. Several different calibration approaches are investigated....... An enzyme marker profile as well as a tryptophan (protein marker) profile is identified. (c) 2006 Elsevier B.V All rights reserved....

  9. High Pressure Homogenization of Porcine Pepsin Protease: Effects on Enzyme Activity, Stability, Milk Coagulation Profile and Gel Development

    Science.gov (United States)

    Leite Júnior, Bruno Ricardo de Castro; Tribst, Alline Artigiani Lima; Cristianini, Marcelo

    2015-01-01

    This study investigated the effect of high pressure homogenization (HPH) (up to 190 MPa) on porcine pepsin (proteolytic and milk-clotting activities), and the consequences of using the processed enzyme in milk coagulation and gel formation (rheological profile, proteolysis, syneresis, and microstructure). Although the proteolytic activity (PA) was not altered immediately after the HPH process, it reduced during enzyme storage, with a 5% decrease after 60 days of storage for samples obtained with the enzyme processed at 50, 100 and 150 MPa. HPH increased the milk-clotting activity (MCA) of the enzyme processed at 150 MPa, being 15% higher than the MCA of non-processed samples after 60 days of storage. The enzyme processed at 150 MPa produced faster aggregation and a more consistent milk gel (G’ value 92% higher after 90 minutes) when compared with the non-processed enzyme. In addition, the gels produced with the enzyme processed at 150 MPa showed greater syneresis after 40 minutes of coagulation (forming a more compact protein network) and lower porosity (evidenced by confocal microscopy). These effects on the milk gel can be associated with the increment in MCA and reduction in PA caused by the effects of HPH on pepsin during storage. According to the results, HPH stands out as a process capable of changing the proteolytic characteristics of porcine pepsin, with improvements on the milk coagulation step and gel characteristics. Therefore, the porcine pepsin submitted to HPH process can be a suitable alternative for the production of cheese. PMID:25938823

  10. Effects of particle size of processed barley grain, enzyme addition and microwave treatment on in vitro disappearance and gas production for feedlot cattle.

    Science.gov (United States)

    Tagawa, Shin-Ichi; Holtshausen, Lucia; McAllister, Tim A; Yang, Wen Zhu; Beauchemin, Karen Ann

    2017-04-01

    The effects of particle size of processed barley grain, enzyme addition and microwave treatment on in vitro dry matter (DM) disappearance (DMD), gas production and fermentation pH were investigated for feedlot cattle. Rumen fluid from four fistulated feedlot cattle fed a diet of 860 dry-rolled barley grain, 90 maize silage and 50 supplement g/kg DM was used as inoculum in 3 batch culture in vitro studies. In Experiment 1, dry-rolled barley and barley ground through a 1-, 2-, or 4-mm screen were used to obtain four substrates differing in particle size. In Experiment 2, cellulase enzyme (ENZ) from Acremonium cellulolyticus Y-94 was added to dry-rolled and ground barley (2-mm) at 0, 0.1, 0.5, 1, and 2 mg/g, while Experiment 3 examined the interactions between microwaving (0, 30, and 60 s microwaving) and ENZ addition (0, 1, and 2 mg/g) using dry-rolled barley and 2-mm ground barley. In Experiment 1, decreasing particle size increased DMD and gas production, and decreased fermentation pH (pgas production and decreased (pgas production, and decreased (p<0.05) fermentation pH of dry-rolled barley, but not ground barley. We conclude that cellulase enzymes can be used to increase the rumen disappearance of barley grain when it is coarsely processed as in the case of dry-rolled barley. However, microwaving of barley grain offered no further improvements in ruminal fermentation of barley grain.

  11. Use of a proteolytic enzyme in cocoa (Theobroma cacao L. processing

    Directory of Open Access Journals (Sweden)

    Edy Sousa de Brito

    2004-08-01

    Full Text Available Protein hydrolysis using an exogenous protease on cocoa nibs was performed to verify the formation of precursors and the effect on cocoa flavour. An experimental design was used to check the influence of temperature (30 to 70 ºC and enzyme : substrate ratio [E/S] (97.5 to 1267.5 U g-1 of protein. The % Degree of Hydrolysis (% DH was affected mainly by [E/S] leading to a 4-fold increase (from 5 to 20 % after 6 hours of treatment. During cocoa nibs roasting, there was a greater consumption of hydrolysis compounds in the sample treated with protease as compared to the control, indicating their participation in the Maillard reaction. An increased perception of chocolate flavour and bitter taste was observed in a product formulated with protease treated cocoa.Foi feita uma hidrólise da proteína dos nibs de cacau usando-se uma protease para verificar a formação de precursores e o efeito sobre o sabor do cacau. Um desenho experimental foi usado para verificar a influência da temperatura (30 a 70 ºC e razão enzima : substrato [E/S] (97,5 a 1267,5 U g-1 de proteína. O grau de hidrólise % (%DH foi afetado principalmente pela [E/S], tendo sofrido um aumento de 4 vezes (de 5 para 20 % após 6 horas de tratamento. Durante a torração dos nibs houve um consumo maior dos compostos de hidrólise na amostra tratada com protease em comparação com o controle, indicando a participação desses compostos na reação de Maillard. Foi observado um aumento na percepção do sabor de chocolate e do gosto amargo em um produto formulado com o cacau tratado com a protease.

  12. Mini Review: Basic Physiology and Factors Influencing Exogenous Enzymes Activity in the Porcine Gastrointestinal Tract

    DEFF Research Database (Denmark)

    Strube, Mikael Lenz; Meyer, Anne S.; Boye, Mette

    2013-01-01

    activity during intestinal transit are few, it is known that the enzymes, being protein molecules, can be negatively affected by the gastrointestinal proteolytic enzymes and the low pH in the stomach ventricle. In this review, the pH-values, endogenous proteases and other factors native to the digestive......The addition of exogenous enzymes to pig feed is used to enhance general nutrient availability and thus increase daily weight gain per feed unit. The enzymes used are mainly beta-glucanase (EC 3.2.1.4) and xylanase (EC 3.2.1.8) and phytase (EC 3.1.3.8). Although in vivo data assessing feed enzyme...... tract of the adult pig and the piglet are discussed in relation to the stability of exogenous feed enzymes. Development of more consistent assessment methods which acknowledge such factors is warranted both in vitro and in vivo for proper evaluation and prediction of the efficiency of exogenous enzymes...

  13. Enhancement of Palm Oil Extraction Using Cell Wall Degrading Enzyme Formulation

    International Nuclear Information System (INIS)

    Silvamany, H.; Jamaliah Md Jahim

    2015-01-01

    In this recent work, application of aqueous enzymatic process to enhance recovery of palm oil was studied. Experiments were carried out to investigate the structural carbohydrate composition of oil palm mesocarp (Elaeis guineensis) and to analyze the effect of different combination of enzymes on the palm oil recovery and degree of digestibility and the respective correlation. The optimum combination of enzymes comprising of Cellic CTec2 (X 1 ), Cellic HTec2 (X 2 ) and Pectinex Ultra SP-L (X 3 ) for Aqueous Enzymatic Oil Extraction Process (AEOEP), were determined using Simplex Lattice mixture design under fixed parameters. Maximum oil recovery of 88 % was achieved with ratio of enzymes at 0.46: 0.34: 0.2 (X 1 :X 2 :X 3 ), at enzyme loading of 30 mg protein/ 10 g substrate, substrate loading of 50 % w/v, pH 4.8, and 2 hours of incubation at 50 degree Celsius. The conversion of reducing sugar at corresponding condition was measured to evaluate the effectiveness of enzymes in degrading fruit cell wall releasing trapped oil. Moreover, transmission electron microscopy (TEM) was utilized to indicate the increase in cell wall disintegration leading to higher release of oil with enzymatic treatment. (author)

  14. Laccase Enzymes in Inocula Pleurotus spp

    Directory of Open Access Journals (Sweden)

    Nora García-Oduardo

    2017-01-01

    Full Text Available The cultivation of edible and medicinal mushrooms Pleurotus has been aimed at promoting alternative management for agricultural products. This basidiomicete has been the subject of numerous studies because of its fruiting body constitutes a food, being a producer of enzymes with industrial interest and for its ability of biotransformation of lignocellulosic substrates. Pleurotus inocula in the established technology for growing edible and medicinal mushrooms in the CEBI Research- Production Plant were performed using sorghum or wheat. However, it is possible to expand the possibilities with other substrates. In this paper, the results of laccase enzymes production in inocula prepared with sorghum, corn and coffee pulp with two strains Pleurotus ostreatus CCEBI 3021 and Pleurotus ostreatus CCEBI 3024 are presented. The period of preparation of seed reaches 15-21 days, the measurements of laccase activity were performed in periods of seven days. Extraction of crude enzyme was performed in aqueous phase, the determination of the laccase enzyme activity, using guaiacol as substrate. The results obtained in this work with studies in previous work using sorghum as inocula are compared. It is found that higher yields are obtained laccase in coffee pulp. This study contributes to the theoretical knowledge and to provide alternatives for securing the production process of the plant.

  15. Activity of some enzymes of the blood serum during irradiation of intrathoracic tumors

    Energy Technology Data Exchange (ETDEWEB)

    Syromyatnikova, E N; Kallistova, L P; Vasil' eva, I G; Korkina, L V; Goncharova, I M; Golovchenko, A G [Nauchno-Issledovatel' skij Inst. Rentgenologii i Radiologii, Moscow (USSR)

    1978-08-01

    Out of 90 patients with intrathoracic tumours (71) and with tumours of other localizations (19 patients - the control) by the end of the radiation therapy course in 13 patients with tumours of the thoracic cavity organs (the lung and esophagus) the activity of creatine phosphokinase increased with simultaneous increase of aspartate aminotransferase in 6 patients and lactate dehydrogenase in one patient. Electrocardiographically pathological shifts in the heart were registered only in 8 out of 13 patients that makes it possible to make a conclusion about the necessity of studying the enzymes of creatine phosphokinase, aminotransferases and lactate dehydrogenase in patients with intrathoracic tumours during the process and after radiation therapy for the diagnosis of the cardiac muscle affection.

  16. Research Applications of Proteolytic Enzymes in Molecular Biology

    Directory of Open Access Journals (Sweden)

    József Tőzsér

    2013-11-01

    Full Text Available Proteolytic enzymes (also termed peptidases, proteases and proteinases are capable of hydrolyzing peptide bonds in proteins. They can be found in all living organisms, from viruses to animals and humans. Proteolytic enzymes have great medical and pharmaceutical importance due to their key role in biological processes and in the life-cycle of many pathogens. Proteases are extensively applied enzymes in several sectors of industry and biotechnology, furthermore, numerous research applications require their use, including production of Klenow fragments, peptide synthesis, digestion of unwanted proteins during nucleic acid purification, cell culturing and tissue dissociation, preparation of recombinant antibody fragments for research, diagnostics and therapy, exploration of the structure-function relationships by structural studies, removal of affinity tags from fusion proteins in recombinant protein techniques, peptide sequencing and proteolytic digestion of proteins in proteomics. The aim of this paper is to review the molecular biological aspects of proteolytic enzymes and summarize their applications in the life sciences.

  17. Molecular Imaging of Hydrolytic Enzymes Using PET and SPECT

    OpenAIRE

    Rempel, Brian P.; Price, Eric W.; Phenix, Christopher P.

    2017-01-01

    Hydrolytic enzymes are a large class of biological catalysts that play a vital role in a plethora of critical biochemical processes required to maintain human health. However, the expression and/or activity of these important enzymes can change in many different diseases and therefore represent exciting targets for the development of positron emission tomography (PET) and single-photon emission computed tomography (SPECT) radiotracers. This review focuses on recently reported radiolabeled sub...

  18. Performance processes within affect-related performance zones: a multi-modal investigation of golf performance.

    Science.gov (United States)

    van der Lei, Harry; Tenenbaum, Gershon

    2012-12-01

    Individual affect-related performance zones (IAPZs) method utilizing Kamata et al. (J Sport Exerc Psychol 24:189-208, 2002) probabilistic model of determining the individual zone of optimal functioning was utilized as idiosyncratic affective patterns during golf performance. To do so, three male golfers of a varsity golf team were observed during three rounds of golf competition. The investigation implemented a multi-modal assessment approach in which the probabilistic relationship between affective states and both, performance process and performance outcome, measures were determined. More specifically, introspective (i.e., verbal reports) and objective (heart rate and respiration rate) measures of arousal were incorporated to examine the relationships between arousal states and both, process components (i.e., routine consistency, timing), and outcome scores related to golf performance. Results revealed distinguishable and idiosyncratic IAPZs associated with physiological and introspective measures for each golfer. The associations between the IAPZs and decision-making or swing/stroke execution were strong and unique for each golfer. Results are elaborated using cognitive and affect-related concepts, and applications for practitioners are provided.

  19. Selective exposure to information: how different modes of decision making affect subsequent confirmatory information processing.

    Science.gov (United States)

    Fischer, Peter; Fischer, Julia; Weisweiler, Silke; Frey, Dieter

    2010-12-01

    We investigated whether different modes of decision making (deliberate, intuitive, distracted) affect subsequent confirmatory processing of decision-consistent and inconsistent information. Participants showed higher levels of confirmatory information processing when they made a deliberate or an intuitive decision versus a decision under distraction (Studies 1 and 2). As soon as participants have a cognitive (i.e., deliberate cognitive analysis) or affective (i.e., intuitive and gut feeling) reason for their decision, the subjective confidence in the validity of their decision increases, which results in increased levels of confirmatory information processing (Study 2). In contrast, when participants are distracted during decision making, they are less certain about the validity of their decision and thus are subsequently more balanced in the processing of decision-relevant information.

  20. Statistical Mechanics Analysis of ATP Binding to a Multisubunit Enzyme

    International Nuclear Information System (INIS)

    Zhang Yun-Xin

    2014-01-01

    Due to inter-subunit communication, multisubunit enzymes usually hydrolyze ATP in a concerted fashion. However, so far the principle of this process remains poorly understood. In this study, from the viewpoint of statistical mechanics, a simple model is presented. In this model, we assume that the binding of ATP will change the potential of the corresponding enzyme subunit, and the degree of this change depends on the state of its adjacent subunits. The probability of enzyme in a given state satisfies the Boltzmann's distribution. Although it looks much simple, this model can fit the recent experimental data of chaperonin TRiC/CCT well. From this model, the dominant state of TRiC/CCT can be obtained. This study provide a new way to understand biophysical processe by statistical mechanics analysis. (interdisciplinary physics and related areas of science and technology)

  1. Emerging roles of the nucleolus in regulating the DNA damage response: the noncanonical DNA repair enzyme APE1/Ref-1 as a paradigmatical example.

    Science.gov (United States)

    Antoniali, Giulia; Lirussi, Lisa; Poletto, Mattia; Tell, Gianluca

    2014-02-01

    An emerging concept in DNA repair mechanisms is the evidence that some key enzymes, besides their role in the maintenance of genome stability, display also unexpected noncanonical functions associated with RNA metabolism in specific subcellular districts (e.g., nucleoli). During the evolution of these key enzymes, the acquisition of unfolded domains significantly amplified the possibility to interact with different partners and substrates, possibly explaining their phylogenetic gain of functions. After nucleolar stress or DNA damage, many DNA repair proteins can freely relocalize from nucleoli to the nucleoplasm. This process may represent a surveillance mechanism to monitor the synthesis and correct assembly of ribosomal units affecting cell cycle progression or inducing p53-mediated apoptosis or senescence. A paradigm for this kind of regulation is represented by some enzymes of the DNA base excision repair (BER) pathway, such as apurinic/apyrimidinic endonuclease 1 (APE1). In this review, the role of the nucleolus and the noncanonical functions of the APE1 protein are discussed in light of their possible implications in human pathologies. A productive cross-talk between DNA repair enzymes and proteins involved in RNA metabolism seems reasonable as the nucleolus is emerging as a dynamic functional hub that coordinates cell growth arrest and DNA repair mechanisms. These findings will drive further analyses on other BER proteins and might imply that nucleic acid processing enzymes are more versatile than originally thought having evolved DNA-targeted functions after a previous life in the early RNA world.

  2. ATPase Activity Measurements by an Enzyme-Coupled Spectrophotometric Assay.

    Science.gov (United States)

    Sehgal, Pankaj; Olesen, Claus; Møller, Jesper V

    2016-01-01

    Enzymatic coupled assays are usually based on the spectrophotometric registration of changes in NADH/NAD(+) or NADPH/NADP(+) absorption at 340 nm accompanying the oxidation/reduction of reactants that by dehydrogenases and other helper enzymes are linked to the activity of the enzymatic reaction under study. The present NADH-ATP-coupled assay for ATPase activity is a seemingly somewhat complicated procedure, but in practice adaptation to performance is easily acquired. It is a more safe and elegant method than colorimetric methods, but not suitable for handling large number of samples, and also presupposes that the activity of the helper enzymes is not severely affected by the chemical environment of the sample in which it is tested.

  3. Development and process optimization of an enzyme membrane reactor for lactose hydrolysis. Entwicklung und verfahrenstechnische Optimierung eines Enzym-Membranreaktors fuer die Hydrolyse von Laktose

    Energy Technology Data Exchange (ETDEWEB)

    Czermak, P

    1990-01-01

    The development and process optimization up to the production stage of a vapour sterilizable hollow-fiber membrane reactor for dialysis is illustrated by the example of enzymatic hydrolysis of lactose. The expected conversion efficiency of the membrane reactor is a function of the mass transfer resistance and by the deviations from the defined hydrodynamic status. The transport/reaction behaviour of membrane reactors is therefore described by a model for real reactors which takes account of the non-linear kinetics of the native enzyme, the real mixing conditions inside the reactor, and the mass transfer through the membrane. A coupled numerical solution is used for the calculations. The reaction kinetics, the mass transfer inside the membrane, the hydrodynamics and the conversion rate are determined experimentally. The model can calculate important design data from selected data of the reaction system. Measurements of conversion rates show that the results obtained with real substances, e.g. milk, are well compatible with the model calculations. (orig.) With 85 figs., 25 tabs.

  4. Affective picture processing and motivational relevance: arousal and valence effects on ERPs in an oddball task.

    Science.gov (United States)

    Briggs, Kate E; Martin, Frances H

    2009-06-01

    There are two dominant theories of affective picture processing; one that attention is more deeply engaged by motivationally relevant stimuli (i.e., stimuli that activate both the appetitive and aversive systems), and two that attention is more deeply engaged by aversive stimuli described as the negativity bias. In order to identify the theory that can best account for affective picture processing, event-related potentials (ERPs) were recorded from 34 participants during a modified oddball paradigm in which levels of stimulus valence, arousal, and motivational relevance were systematically varied. Results were partially consistent with motivated attention models of emotional perception, as P3b amplitude was enhanced in response to highly arousing and motivationally relevant sexual and unpleasant stimuli compared to respective low arousing and less motivationally relevant stimuli. However P3b amplitudes were significantly larger in response to the highly arousing sexual stimuli compared to all other affective stimuli, which is not consistent with either dominant theory. The current study therefore highlights the need for a revised model of affective picture processing and provides a platform for further research investigating the independent effects of sexual arousal on cognitive processing.

  5. Insecticide exposure affects DNA and antioxidant enzymes activity in honey bee species Apis florea and A. dorsata: Evidence from Punjab, Pakistan.

    Science.gov (United States)

    Hayat, Khizar; Afzal, Muhammad; Aqueel, Muhammad Anjum; Ali, Sajjad; Saeed, Muhammad Farhan; Khan, Qaiser M; Ashfaq, Muhammad; Damalas, Christos A

    2018-04-23

    Insecticide exposure can affect honey bees in agro-ecosystems, posing behavioral stresses that can lead to population decline. In this study, insecticide incidence, DNA damage, and antioxidant enzyme activity were studied in Apis florea and A. dorsata honey bee samples collected from insecticide-treated and insecticide-free areas of Punjab, Pakistan. Seven insecticides: chlorpyrifos, dimethoate, imidacloprid, phorate, emamectin, chlorfenapyr, and acetamiprid were detected in seven samples of A. florea and five samples of A. dorsata. In total, 12 samples (22.2%) of honey bees were found positive to insecticide presence out of 54 samples. The most frequently detected insecticide was chlorpyrifos, which was found in four samples (7.4%), with a concentration ranging from 0.01 to 0.05 μg/g and an average concentration 0.03 μg/g. The comet assay or single cell gel electrophoresis assay, a simple way to measure DNA strand breaks in eukaryotic cells, was used to microscopically find damage of DNA at the level of a single cell. Comet tail lengths of DNA in A. florea and A. dorsata samples from insecticide-treated areas were significantly higher (P honey bee samples from insecticide-treated and insecticide-free areas, while glutathione S-transferase (GST) activity showed a significant reduction in response to insecticide exposure. Significant positive correlations were detected between enzyme activity and insecticide concentration in honey bee species from insecticide-treated areas compared with control groups. Toxicity from pesticide exposure at sub-lethal levels after application or from exposure to pesticide residues should not be underestimated in honey bees, as it may induce physiological impairment that can decline honey bees' health. Copyright © 2018. Published by Elsevier B.V.

  6. Visualization of Enzyme Activities in Earthworm Biopores by In Situ Soil Zymography.

    Science.gov (United States)

    Razavi, Bahar S; Hoang, Duyen; Kuzyakov, Yakov

    2017-01-01

    Earthworms produce biopores with strongly increased microbial and enzyme activities and consequently they form microbial hotspots in soil. In extremely dynamic microhabitats and hotspots such as earthworm biopores, the in situ enzyme activities are a footprint of process rates and complex biotic interactions. The effect of earthworms on enzyme activities inside biopores, relative to earthworm-free soil, can be visualized by in situ soil zymography. Here, we describe the details of the approach and discuss its advantages and limitations. Direct zymography provides high spatial resolution for quantitative images of enzyme activities in biopores.

  7. Stabilizing effect of biochar on soil extracellular enzymes after a denaturing stress.

    Science.gov (United States)

    Elzobair, Khalid A; Stromberger, Mary E; Ippolito, James A

    2016-01-01

    Stabilizing extracellular enzymes may maintain enzymatic activity while protecting enzymes from proteolysis and denaturation. A study determined whether a fast pyrolysis hardwood biochar (CQuest™) would reduce evaporative losses, subsequently stabilizing soil extracellular enzymes and prohibiting potential enzymatic activity loss following a denaturing stress (microwaving). Soil was incubated in the presence of biochar (0%, 1%, 2%, 5%, or 10% by wt.) for 36 days and then exposed to microwave energies (0, 400, 800, 1600, or 3200 J g(-1) soil). Soil enzymes (β-glucosidase, β-d-cellobiosidase, N-acetyl-β-glucosaminidase, phosphatase, leucine aminopeptidase, β-xylosidase) were analyzed by fluorescence-based assays. Biochar amendment reduced leucine aminopeptidase and β-xylosidase potential activity after the incubation period and prior to stress exposure. The 10% biochar rate reduced soil water loss at the lowest stress level (400 J microwave energy g(-1) soil). Enzyme stabilization was demonstrated for β-xylosidase; intermediate biochar application rates prevented a complete loss of this enzyme's potential activity after soil was exposed to 400 (1% biochar treatment) or 1600 (5% biochar treatment) J microwave energy g(-1) soil. Remaining enzyme potential activities were not affected by biochar, and activities decreased with increasing stress levels. We concluded that biochar has the potential to reduce evaporative soil water losses and stabilize certain extracellular enzymes where activity is maintained after a denaturing stress; this effect was biochar rate and enzyme dependent. While biochar may reduce the potential activity of certain soil extracellular enzymes, this phenomenon was not universal as the majority of enzymes assayed in this study were unaffected by exposure to biochar. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Molecular dynamics simulations of deoxyribonucleic acids and repair enzyme T4 endonuclease V

    International Nuclear Information System (INIS)

    Pinak, Miroslav

    1999-01-01

    This report describes the results of molecular dynamics (MD) simulation of deoxyribonucleic acids (DNA) and specific repair enzyme T4 endonuclease V. Namely research described here is focused on the examination of specific recognition process, in which this repair enzyme recognizes the damaged site on the DNA molecule-thymine dimer (TD). TD is frequent DNA damage induced by UV radiation in sun light and unless properly repaired it may be mutagenic or lethal for cell, and is also considered among the major causes of skin cancer. T4 endonuclease V is a DNA specific repair enzyme from bacteriophage T4 that catalyzes the first reaction step of TD repair pathway. MD simulations of three molecules - native DNA dodecamer (12 base pairs), DNA of the same sequence of nucleotides as native one but with TD, and repair enzyme T4 endonuclease V - were performed for 1 ns individually for each molecule. Simulations were analyzed to determine the role of electrostatic interaction in the recognition process. It is found that electrostatic energies calculated for amino acids of the enzyme have positive values of around +15 kcal/mol. The electrostatic energy of TD site has negative value of approximately -9 kcal/mol, different from the nearly neutral value of the respective thymines site of the native DNA. The electrostatic interaction of TD site with surrounding water environment differs from the electrostatic interaction of other nucleotides. Differences found between TD site and respective thymines site of native DNA indicate that the electrostatic energy is an important factor contributing to proper recognition of TD site during scanning process in which enzyme scans the DNA. In addition to the electrostatic energy, the important factor in recognition process might be structural complementarity of enzyme and bent DNA with TD. There is significant kink formed around TD site, that is not observed in native DNA. (author)

  9. Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides.

    Science.gov (United States)

    Cravatt, B F; Giang, D K; Mayfield, S P; Boger, D L; Lerner, R A; Gilula, N B

    1996-11-07

    Endogenous neuromodulatory molecules are commonly coupled to specific metabolic enzymes to ensure rapid signal inactivation. Thus, acetylcholine is hydrolysed by acetylcholine esterase and tryptamine neurotransmitters like serotonin are degraded by monoamine oxidases. Previously, we reported the structure and sleep-inducing properties of cis-9-octadecenamide, a lipid isolated from the cerebrospinal fluid of sleep-deprived cats. cis-9-Octadecenamide, or oleamide, has since been shown to affect serotonergic systems and block gap-junction communication in glial cells (our unpublished results). We also identified a membrane-bound enzyme activity that hydrolyses oleamide to its inactive acid, oleic acid. We now report the mechanism-based isolation, cloning and expression of this enzyme activity, originally named oleamide hydrolase, from rat liver plasma membranes. We also show that oleamide hydrolase converts anandamide, a fatty-acid amide identified as the endogenous ligand for the cannabinoid receptor, to arachidonic acid, indicating that oleamide hydrolase may serve as the general inactivating enzyme for a growing family of bioactive signalling molecules, the fatty-acid amides. Therefore we will hereafter refer to oleamide hydrolase as fatty-acid amide hydrolase, in recognition of the plurality of fatty-acid amides that the enzyme can accept as substrates.

  10. Translational control of an intestinal microvillar enzyme

    DEFF Research Database (Denmark)

    Danielsen, E M; Cowell, G M; Sjöström, H

    1986-01-01

    The rates of biosynthesis of adult and foetal pig small-intestinal aminopeptidase N (EC 3.4.11.2) were compared to determine at which level the expression of the microvillar enzyme is developmentally controlled. In organ-cultured explants, the rate of biosynthesis of foetal aminopeptidase N is only...... about 3% of the adult rate. The small amount synthesized occurs in a high-mannose-glycosylated, membrane-bound, form that is processed to the mature, complex-glycosylated, form at a markedly slower rate than that of the adult enzyme. Extracts of total RNA from adult and foetal intestine contained...

  11. Monosaccharides and Ethanol Production from Superfine Ground Sugarcane Bagasse Using Enzyme Cocktail

    Directory of Open Access Journals (Sweden)

    Jingbo Li

    2014-03-01

    Full Text Available In this work, the effect of particle size on the enzymatic hydrolysis of milled and sieved sugarcane bagasse (SCB was studied. The enzymatic hydrolysis and fermentability of superfine ground SCB (SGP400 using an enzyme cocktail strategy were also explored. Particle size reduction improved the enzymatic hydrolysis. The highest glucose yield was 44.75%, which was obtained from SGP400. The enzyme cocktail strategy greatly enhanced the glucose and xylose yield. The maximum glucose and xylose yield was from the enzyme cocktail of cellulase, xylanase, and pectinase. Synergistic action between xylanase and pectinase as well as cellulase and pectinase was quite noticeable. Hydrolysis times affected the degree of synergism. Ethanol production was carried out by employing simultaneous saccharification and fermentation (SSF and semi-SSF using enzymes and their cocktails. Semi-SSF was found to be the better one compared with SSF. Xylanase and pectinase aided the ethanol production in both fermentation modes. Ethanol yield was 7.81 and 7.30 g/L for semi-SSF and SSF, respectively by using an enzyme cocktail of cellulase, β-glucosidase, pectinase, and xylanase.

  12. Mitomycin C induced alterations in antioxidant enzyme levels in a model insect species, Spodoptera eridania.

    Science.gov (United States)

    Batcabe, J P; MacGill, R S; Zaman, K; Ahmad, S; Pardini, R S

    1994-05-01

    1. An insect species, the southern armyworm Spodoptera eridania, was used as an in vivo model to examine mitomycin C's (MMC) pro-oxidant effect reflected in alterations of antioxidant enzymes. 2. Following a 2-day exposure to 0.01 and 0.05% w/w dietary concentrations, MMC only induced superoxide dismutase activity. All other enzyme activities were not affected, indicating oxidative stress was mild. 3. Following a 5-day exposure to 0.05% w/w dietary MMC, the activities of superoxide dismutase, glutathione-S-transferase and its peroxidase activity and DT-diaphorase were induced. GR activity was not altered. The high constitutive catalase activity was also not affected. These responses of S. eridania's antioxidant enzymes are analogous to those of mammalian systems in alleviating MMC-induced oxidative stress. 4. S. eridania emerges as an appropriate non-mammalian model for initial and cost-effective screening of drug-induced oxidative stress.

  13. Enzyme stabilization by glass-derived silicates in glass-exposed aqueous solutions

    Science.gov (United States)

    Ives, J.A.; Moffett, J.R.; Arun, P.; Lam, D.; Todorov, T.I.; Brothers, A.B.; Anick, D.J.; Centeno, J.; Namboodiri, M.A.A.; Jonas, W.B.

    2010-01-01

    Objectives: To analyze the solutes leaching from glass containers into aqueous solutions, and to show that these solutes have enzyme activity stabilizing effects in very dilute solutions. Methods: Enzyme assays with acetylcholine esterase were used to analyze serially succussed and diluted (SSD) solutions prepared in glass and plastic containers. Aqueous SSD preparations starting with various solutes, or water alone, were prepared under several conditions, and tested for their solute content and their ability to affect enzyme stability in dilute solution. Results: We confirm that water acts to dissolve constituents from glass vials, and show that the solutes derived from the glass have effects on enzymes in the resultant solutions. Enzyme assays demonstrated that enzyme stability in purified and deionized water was enhanced in SSD solutions that were prepared in glass containers, but not those prepared in plastic. The increased enzyme stability could be mimicked in a dose-dependent manner by the addition of silicates to the purified, deionized water that enzymes were dissolved in. Elemental analyses of SSD water preparations made in glass vials showed that boron, silicon, and sodium were present at micromolar concentrations. Conclusions: These results show that silicates and other solutes are present at micromolar levels in all glass-exposed solutions, whether pharmaceutical or homeopathic in nature. Even though silicates are known to have biological activity at higher concentrations, the silicate concentrations we measured in homeopathic preparations were too low to account for any purported in vivo efficacy, but could potentially influence in vitro biological assays reporting homeopathic effects. ?? 2009 The Faculty of Homeopathy.

  14. Enzyme kinetic characterization of protein tyrosine phosphatases

    DEFF Research Database (Denmark)

    Peters, Günther H.J.; Branner, S.; Møller, K. B.

    2003-01-01

    Protein tyrosine phosphatases (PTPs) play a central role in cellular signaling processes, resulting in an increased interest in modulating the activities of PTPs. We therefore decided to undertake a detailed enzyme kinetic evaluation of various transmembrane and cytosolic PTPs (PTPalpha, PTPbeta...

  15. Expanding the Halohydrin Dehalogenase Enzyme Family: Identification of Novel Enzymes by Database Mining.

    Science.gov (United States)

    Schallmey, Marcus; Koopmeiners, Julia; Wells, Elizabeth; Wardenga, Rainer; Schallmey, Anett

    2014-12-01

    Halohydrin dehalogenases are very rare enzymes that are naturally involved in the mineralization of halogenated xenobiotics. Due to their catalytic potential and promiscuity, many biocatalytic reactions have been described that have led to several interesting and industrially important applications. Nevertheless, only a few of these enzymes have been made available through recombinant techniques; hence, it is of general interest to expand the repertoire of these enzymes so as to enable novel biocatalytic applications. After the identification of specific sequence motifs, 37 novel enzyme sequences were readily identified in public sequence databases. All enzymes that could be heterologously expressed also catalyzed typical halohydrin dehalogenase reactions. Phylogenetic inference for enzymes of the halohydrin dehalogenase enzyme family confirmed that all enzymes form a distinct monophyletic clade within the short-chain dehydrogenase/reductase superfamily. In addition, the majority of novel enzymes are substantially different from previously known phylogenetic subtypes. Consequently, four additional phylogenetic subtypes were defined, greatly expanding the halohydrin dehalogenase enzyme family. We show that the enormous wealth of environmental and genome sequences present in public databases can be tapped for in silico identification of very rare but biotechnologically important biocatalysts. Our findings help to readily identify halohydrin dehalogenases in ever-growing sequence databases and, as a consequence, make even more members of this interesting enzyme family available to the scientific and industrial community. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  16. Distribution of enzyme activity hotspots induced by earthworms in top- and subsoil

    Science.gov (United States)

    Hoang, D. T. T.

    2016-12-01

    Earthworms (Lumbricus terrestris L.) not only affect soil physics, but they also boost microbial activities and consequently create important hotspots of microbial mediated carbon and nutrient turnover through their burrowing activity. However, it is still unknown to which extend earthworms change the enzyme distribution and activity inside their burrows in top- and subsoil horizons. We hypothesized that earthworm burrows, which are enriched in available substrates, have higher percentage of enzyme activity hotspots than soil without earthworms, and that enzyme activities decreased with increasing depth because of the increasing recalcitrance of organic matter in subsoil. We visualized enzyme distribution inside and outside of worm burrows (biopores) by in situ soil zymography and measured enzyme kinetics of 6 enzymes - β-glucosidase (GLU), cellobiohydrolase (CBH), xylanase (XYL), chitinase (NAG), leucine aminopeptidase (LAP) and acid phosphatase (APT) - in pore and bulk soil material up to 105 cm. Zymography showed a heterogeneous distribution of hotspots in worm burrows. The hotspot areas was 2.4 to 14 times larger in the burrows than in soil without earthworms. However, the dispersion index of hotspot distribution showed more aggregated hotspots in soil without earthworms than in soil with earthworms and burrow wall. Enzyme activities decreased with depth, by a factor of 2 to 8 due to fresh C input from the soil surface. Compared to bulk soil, enzyme activities in topsoil biopores were up to 11 times higher for all enzymes, but in the subsoil activities of XYL, NAG and APT were lower in earthworm biopores than bulk soil. In conclusion, hotspots were twice as concentrated close to earthworm burrows as in surrounding soil. Earthworms exerted stronger effects on enzyme activities in biopores in the topsoil than in subsoil. Keywords: Earthworms, hotspots, enzyme activities, enzyme distribution, subsoil

  17. Optimization of lag phase shapes the evolution of a bacterial enzyme.

    Science.gov (United States)

    Adkar, Bharat V; Manhart, Michael; Bhattacharyya, Sanchari; Tian, Jian; Musharbash, Michael; Shakhnovich, Eugene I

    2017-04-28

    Mutations provide the variation that drives evolution, yet their effects on fitness remain poorly understood. Here we explore how mutations in the essential enzyme adenylate kinase (Adk) of Escherichia coli affect multiple phases of population growth. We introduce a biophysical fitness landscape for these phases, showing how they depend on molecular and cellular properties of Adk. We find that Adk catalytic capacity in the cell (the product of activity and abundance) is the major determinant of mutational fitness effects. We show that bacterial lag times are at a well-defined optimum with respect to Adk's catalytic capacity, while exponential growth rates are only weakly affected by variation in Adk. Direct pairwise competitions between strains show how environmental conditions modulate the outcome of a competition where growth rates and lag times have a tradeoff, shedding light on the multidimensional nature of fitness and its importance in the evolutionary optimization of enzymes.

  18. On-Site Enzyme Production by Trichoderma asperellum for the Degradation of Duckweed

    DEFF Research Database (Denmark)

    Bech, Lasse; Herbst, Florian-Alexander; Grell, Morten Nedergaard

    2015-01-01

    The on-site production of cell wall degrading enzymes is an important strategy for the development of sustainable bio-refinery processes. This study concerns the optimization of production of plant cell wall-degrading enzymes produced by Trichoderma asperellum. A comparative secretome analysis...

  19. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2014. Scientific Opinion on xylanase from a genetically modified strain of Aspergillus oryzae (strain NZYM-FB)

    DEFF Research Database (Denmark)

    Poulsen, Morten; Binderup, Mona-Lise; Hallas-Møller, Torben

    . The xylanase is intended to be used in a number of food manufacturing processes, such as starch processing, beverage alcohol (distilling), brewing, baking and other cereal based processes. The dietary exposure was assessed according to the Budget method. The food enzyme did not induce gene mutations...

  20. Metagenomics as a Tool for Enzyme Discovery: Hydrolytic Enzymes from Marine-Related Metagenomes.

    Science.gov (United States)

    Popovic, Ana; Tchigvintsev, Anatoly; Tran, Hai; Chernikova, Tatyana N; Golyshina, Olga V; Yakimov, Michail M; Golyshin, Peter N; Yakunin, Alexander F

    2015-01-01

    This chapter discusses metagenomics and its application for enzyme discovery, with a focus on hydrolytic enzymes from marine metagenomic libraries. With less than one percent of culturable microorganisms in the environment, metagenomics, or the collective study of community genetics, has opened up a rich pool of uncharacterized metabolic pathways, enzymes, and adaptations. This great untapped pool of genes provides the particularly exciting potential to mine for new biochemical activities or novel enzymes with activities tailored to peculiar sets of environmental conditions. Metagenomes also represent a huge reservoir of novel enzymes for applications in biocatalysis, biofuels, and bioremediation. Here we present the results of enzyme discovery for four enzyme activities, of particular industrial or environmental interest, including esterase/lipase, glycosyl hydrolase, protease and dehalogenase.

  1. Treatment of wastewaters containing anilines using enzymes: an overview

    International Nuclear Information System (INIS)

    Mantha, R.; Biswas, N.; Taylor, K.E.; Bewtra, J.K.

    2002-01-01

    Aromatic amines are manufactured in a large scale for use in industries dealing with resins, dyes, plastics and rubber, pesticides and explosives. The majority of the production-related waste is either incinerated or released into the environment. The majority of them are highly toxic, carcinogenic or mutagenic and impose serious health hazards to mankind. Available conventional physical-chemical processes including activated carbon adsorption processes, solvent extraction processes, microbial degradation and various chemical-oxidation processes developed over the years are not selective in terms of the range of the aromatic pollutant removed during treatment. Thus, such treatment strategies are more economically suitable for treatment of dilute wastewaters and are invariably used as polishing steps. Enzymes such as peroxidases, in the presence of hydrogen peroxide, and laccases, in the presence of oxygen, catalyze the oxidation of a wide variety of phenols, biphenyls, anilines, benzidines and other related aromatic compounds. Various peroxidases and laccases have been used to treat wastewaters. With respect to anilines, the potential, scope and cost of enzymatic treatment is reviewed here and compared with conventional technology, e.g., the cost of enzymatic treatment using a crude enzyme preparation of soybean peroxidase was reported to be about $0.36/m 3 for synthetic wastewater containing 1 mM of aniline, compared to an activated sludge process of $1.05/m 3 and $1.31/m 3 for activated carbon process, while for p-toluidine, it was about $0.17/m 3 . Thus, through choice of enzyme and its mode of operation, treatment costs less than the conventional treatment strategies can be achieved. (author)

  2. Induction of phenolics, lignin and key defense enzymes in eggplant ...

    African Journals Online (AJOL)

    Elicitors are capable of mimicking the perception of a pathogen by a plant, thereby triggering induction of a sophisticated defense response in plants. In this study, we investigated an induced resistance in eggplant in respect to cell wall strengthening and defense enzyme activation affected by four elicitors such as, chitosan ...

  3. Protoplast preparation from monokaryotic mycelium of Pleurotus sajor-caju using lysing enzyme

    International Nuclear Information System (INIS)

    Hassan Hamdani Mutaat; Mat Rasol Awang

    2004-01-01

    The objective of this study was to determine the optimum parameters of the factors influencing protoplast isolation from monokaryotic mycelium of Pleurotus sajor-caju using lysing enzyme from Trichoderma harzianurm. The study was conducted by manipulating the variables of the factors affecting protoplast isolation, such as age of mycelium culture, period for lysing of mycelium, concentration of lysing enzyme and concentration of osmotic stabilizer. The highest protoplast yield of 8.3 x 104 protoplast/ml was achieved when a 3-day P. sajor-caju mycelium, cultured statically, was incubated for 3 hours in a lytic mixture containing 7.5 mg/ml lysing enzyme and 1.2 M ammonium sulfate as osmotic stabilizer. This protoplast yield, however, is insufficient for regeneration and protoplast fusion works. (Author)

  4. Enzymes and Enzyme Activity Encoded by Nonenveloped Viruses.

    Science.gov (United States)

    Azad, Kimi; Banerjee, Manidipa; Johnson, John E

    2017-09-29

    Viruses are obligate intracellular parasites that rely on host cell machineries for their replication and survival. Although viruses tend to make optimal use of the host cell protein repertoire, they need to encode essential enzymatic or effector functions that may not be available or accessible in the host cellular milieu. The enzymes encoded by nonenveloped viruses-a group of viruses that lack any lipid coating or envelope-play vital roles in all the stages of the viral life cycle. This review summarizes the structural, biochemical, and mechanistic information available for several classes of enzymes and autocatalytic activity encoded by nonenveloped viruses. Advances in research and development of antiviral inhibitors targeting specific viral enzymes are also highlighted.

  5. Direct observation of processive exoribonuclease motion using optical tweezers.

    Science.gov (United States)

    Fazal, Furqan M; Koslover, Daniel J; Luisi, Ben F; Block, Steven M

    2015-12-08

    Bacterial RNases catalyze the turnover of RNA and are essential for gene expression and quality surveillance of transcripts. In Escherichia coli, the exoribonucleases RNase R and polynucleotide phosphorylase (PNPase) play critical roles in degrading RNA. Here, we developed an optical-trapping assay to monitor the translocation of individual enzymes along RNA-based substrates. Single-molecule records of motion reveal RNase R to be highly processive: one molecule can unwind over 500 bp of a structured substrate. However, enzyme progress is interrupted by pausing and stalling events that can slow degradation in a sequence-dependent fashion. We found that the distance traveled by PNPase through structured RNA is dependent on the A+U content of the substrate and that removal of its KH and S1 RNA-binding domains can reduce enzyme processivity without affecting the velocity. By a periodogram analysis of single-molecule records, we establish that PNPase takes discrete steps of six or seven nucleotides. These findings, in combination with previous structural and biochemical data, support an asymmetric inchworm mechanism for PNPase motion. The assay developed here for RNase R and PNPase is well suited to studies of other exonucleases and helicases.

  6. An enzyme to improve the ethanol production; Une enzyme pour ameliorer la production d'ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2005-07-01

    The American firm Genecor launches a technology which allows to improve the production of ethanol from agricultural resources. This technology involves in particular a decrease of the energy consumption and of the production costs and a best yield. In the process, is used a mixture of enzymes composed of alpha-amylase and gluco-amylase. (O.M.)

  7. Hydrolytic enzyme activity enhanced by Barium supplementation

    Directory of Open Access Journals (Sweden)

    Camilo Muñoz

    2016-10-01

    Full Text Available Hydrolysis of polymers is a first and often limiting step during the degradation of plant residues. Plant biomass is generally a major component of waste residues and a major renewable resource to obtain a variety of secondary products including biofuels. Improving the performance of enzymatic hydrolysis of plant material with minimum costs and limiting the use of additional microbial biomass or hydrolytic enzymes directly influences competitiveness of these green biotechnological processes. In this study, we cloned and expressed a cellulase and two esterases recovered from environmental thermophilic soil bacterial communities and characterize their optimum activity conditions including the effect of several metal ions. Results showed that supplementing these hydrolytic reactions with Barium increases the activity of these extracellular hydrolytic enzymes. This observation represents a simple but major improvement to enhance the efficiency and competitiveness of this process within an increasingly important biotechnological sector.

  8. Factors Affecting Christian Parents' School Choice Decision Processes: A Grounded Theory Study

    Science.gov (United States)

    Prichard, Tami G.; Swezey, James A.

    2016-01-01

    This study identifies factors affecting the decision processes for school choice by Christian parents. Grounded theory design incorporated interview transcripts, field notes, and a reflective journal to analyze themes. Comparative analysis, including open, axial, and selective coding, was used to reduce the coded statements to five code families:…

  9. Little enzyme; Shoryo no tobun ga koso wo kappatsuka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-05

    It was discovered that the enzymatic heat-resistance increased by the addition of the trehalose in which the researcher of Institute of Physical and Chemical Research (it is given) is one of the disaccharides to the enzyme process. By this, it becomes possible that enzyme reaction is more promoted under the high temperature. They obtained this idea, because the yeast formed the trehalose over the room temperature for the protection of self it. In the example of some enzyme reaction, the about 20 times the speed has been obtained under 60 degrees C in comparison with the under ordinary temperature. Too the similar example has mainly been otherwise accepted. (translated by NEDO)

  10. Ultrasound assisted intensification of enzyme activity and its properties: a mini-review.

    Science.gov (United States)

    Nadar, Shamraja S; Rathod, Virendra K

    2017-08-22

    Over the last decade, ultrasound technique has emerged as the potential technology which shows large applications in food and biotechnology processes. Earlier, ultrasound has been employed as a method of enzyme inactivation but recently, it has been found that ultrasound does not inactivate all enzymes, particularly, under mild conditions. It has been shown that the use of ultrasonic treatment at appropriate frequencies and intensity levels can lead to enhanced enzyme activity due to favourable conformational changes in protein molecules without altering its structural integrity. The present review article gives an overview of influence of ultrasound irradiation parameters (intensity, duty cycle and frequency) and enzyme related factors (enzyme concentration, temperature and pH) on the catalytic activity of enzyme during ultrasound treatment. Also, it includes the effect of ultrasound on thermal kinetic parameters and Michaelis-Menten kinetic parameters (k m and V max ) of enzymes. Further, in this review, the physical and chemical effects of ultrasound on enzyme have been correlated with thermodynamic parameters (enthalpy and entropy). Various techniques used for investigating the conformation changes in enzyme after sonication have been highlighted. At the end, different techniques of immobilization for ultrasound treated enzyme have been summarized.

  11. Adult Age Differences in Dual Information Processes: Implications for the Role of Affective and Deliberative Processes in Older Adults' Decision Making.

    Science.gov (United States)

    Peters, Ellen; Hess, Thomas M; Västfjäll, Daniel; Auman, Corinne

    2007-03-01

    Age differences in affective/experiential and deliberative processes have important theoretical implications for judgment and decision theory and important pragmatic implications for older-adult decision making. Age-related declines in the efficiency of deliberative processes predict poorer-quality decisions as we age. However, age-related adaptive processes, including motivated selectivity in the use of deliberative capacity, an increased focus on emotional goals, and greater experience, predict better or worse decisions for older adults depending on the situation. The aim of the current review is to examine adult age differences in affective and deliberative information processes in order to understand their potential impact on judgments and decisions. We review evidence for the role of these dual processes in judgment and decision making and then review two representative life-span perspectives (based on aging-related changes to cognitive or motivational processes) on the interplay between these processes. We present relevant predictions for older-adult decisions and make note of contradictions and gaps that currently exist in the literature. Finally, we review the sparse evidence about age differences in decision making and how theories and findings regarding dual processes could be applied to decision theory and decision aiding. In particular, we focus on prospect theory (Kahneman & Tversky, 1979) and how prospect theory and theories regarding age differences in information processing can inform one another. © 2007 Association for Psychological Science.

  12. Responses of absolute and specific enzyme activity to consecutive application of composted sewage sludge in a Fluventic Ustochrept.

    Directory of Open Access Journals (Sweden)

    Xiao Liu

    Full Text Available Composted sewage sludge (CS is considered a rich source of soil nutrients and significantly affects the physical, chemical, and biological characteristics of soil, but its effect on specific enzyme activity in soil is disregarded. The present experiment examined the absolute and specific enzyme activity of the enzymes involved in carbon, nitrogen, and phosphorus cycles, the diversity of soil microbial functions, and soil community composition in a Fluventic Ustochrept under a maize-wheat rotation system in North China during 2012-2015. Application of CS led to increase in MBC and in its ratio to both total organic carbon (TOC and microbial biomass nitrogen (MBN. Absolute enzyme activity, except that of phosphatase, increased in CS-treated soils, whereas specific activity of all the enzymes declined, especially at the highest dose of CS (45 t ha-1. The diversity of soil microbial community also increased in CS-treated soils, whereas its functional diversity declined at higher doses of CS owing to the lowered specific enzyme activity. These changes indicate that CS application induced the domination of microorganisms that are not metabolically active and those that use resources more efficiently, namely fungi. Redundancy analysis showed that fundamental alterations in soil enzyme activity depend on soil pH. Soil specific enzyme activity is affected more than absolute enzyme activity by changes in soil properties, especially soil microbial activity and composition of soil microflora (as judged by the following ratios: MBC/TOC, MBC/MBN, and TOC/LOC, that is labile organic carbon through the Pearson Correlation Coefficient. Specific enzyme activity is thus a more accurate parameter than absolute enzyme activity for monitoring the effect of adding CS on the activities and structure of soil microbial community.

  13. Lactic acid bacteria affect serum cholesterol levels, harmful fecal enzyme activity, and fecal water content

    OpenAIRE

    Chung Myung; Shin Hea; Lee Kyung; Kim Mi; Baek Eun; Jang Seok; Lee Do; Kim Jin; Lee Kang; Ha Nam

    2009-01-01

    Abstract Background Lactic acid bacteria (LAB) are beneficial probiotic organisms that contribute to improved nutrition, microbial balance, and immuno-enhancement of the intestinal tract, as well as lower cholesterol. Although present in many foods, most trials have been in spreads or dairy products. Here we tested whether Bifidobacteria isolates could lower cholesterol, inhibit harmful enzyme activities, and control fecal water content. Methods In vitro culture experiments were performed to ...

  14. SCREENING OF THERMOPHYLIC MICROORGANISM FROM IJEN CRATER BANYUWANGI AS PHYTASE ENZYME PRODUCER

    OpenAIRE

    Kusumadjaja, Aline Puspita; Budiati, Tutuk; Puspaningsih, Ni Nyoman Tri; Sajidan, Sajidan

    2010-01-01

    Phytase is enzyme which hydrolysis phytic acid to anorganic phosphate and myo-inositol pentakis-, tetrakis-, tris-, bis-, and monophosphate. The use of phytase in feed industry can overcome environment and nutrition problems which were arisen from unmetabolism phytic acid or its salt by poultry, swine and fish. The feed industry needs a thermostable enzyme due to the need of high temperature in pelleting process, i.e. 81 °C. By using thermostabile phytase, the pelleting process will not affec...

  15. Effect of Additives on the Selectivity and Reactivity of Enzymes.

    Science.gov (United States)

    Liang, Yi-Ru; Wu, Qi; Lin, Xian-Fu

    2017-01-01

    Enzymes have been widely used as efficient, eco-friendly, and biodegradable catalysts in organic chemistry due to their mild reaction conditions and high selectivity and efficiency. In recent years, the catalytic promiscuity of many enzymes in unnatural reactions has been revealed and studied by chemists and biochemists, which has expanded the application potential of enzymes. To enhance the selectivity and activity of enzymes in their natural or promiscuous reactions, many methods have been recommended, such as protein engineering, process engineering, and media engineering. Among them, the additive approach is very attractive because of its simplicity to use and high efficiency. In this paper, we will review the recent developments about the applications of additives to improve the catalytic performances of enzymes in their natural and promiscuous reactions. These additives include water, organic bases, water mimics, cosolvents, crown ethers, salts, surfactants, and some particular molecular additives. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The surface science of enzymes

    DEFF Research Database (Denmark)

    Rod, Thomas Holm; Nørskov, Jens Kehlet

    2002-01-01

    One of the largest challenges to science in the coming years is to find the relation between enzyme structure and function. Can we predict which reactions an enzyme catalyzes from knowledge of its structure-or from its amino acid sequence? Can we use that knowledge to modify enzyme function......? To solve these problems we must understand in some detail how enzymes interact with reactants from its surroundings. These interactions take place at the surface of the enzyme and the question of enzyme function can be viewed as the surface science of enzymes. In this article we discuss how to describe...... catalysis by enzymes, and in particular the analogies between enzyme catalyzed reactions and surface catalyzed reactions. We do this by discussing two concrete examples of reactions catalyzed both in nature (by enzymes) and in industrial reactors (by inorganic materials), and show that although analogies...

  17. Parallel effects of processing fluency and positive affect on familiarity-based recognition decisions for faces

    Directory of Open Access Journals (Sweden)

    Devin eDuke

    2014-04-01

    Full Text Available According to attribution models of familiarity assessment, people can use a heuristic in recognition-memory decisions, in which they attribute the subjective ease of processing of a memory probe to a prior encounter with the stimulus in question. Research in social cognition suggests that experienced positive affect may be the proximal cue that signals fluency in various experimental contexts. In the present study, we compared the effects of positive affect and fluency on recognition-memory judgments for faces with neutral emotional expression. We predicted that if positive affect is indeed the critical cue that signals processing fluency at retrieval, then its manipulation should produce effects that closely mirror those produced by manipulations of processing fluency. In two experiments, we employed a masked-priming procedure in combination with a Remember-Know paradigm that aimed to separate familiarity- from recollection-based memory decisions. In addition, participants performed a prime-discrimination task that allowed us to take inter-individual differences in prime awareness into account. We found highly similar effects of our priming manipulations of processing fluency and of positive affect. In both cases, the critical effect was specific to familiarity-based recognition responses. Moreover, in both experiments it was reflected in a shift towards a more liberal response bias, rather than in changed discrimination. Finally, in both experiments, the effect was found to be related to prime awareness; it was present only in participants who reported a lack of such awareness on the prime-discrimination task. These findings add to a growing body of evidence that points not only to a role of fluency, but also of positive affect in familiarity assessment. As such they are consistent with the idea that fluency itself may be hedonically marked.

  18. Parallel effects of processing fluency and positive affect on familiarity-based recognition decisions for faces.

    Science.gov (United States)

    Duke, Devin; Fiacconi, Chris M; Köhler, Stefan

    2014-01-01

    According to attribution models of familiarity assessment, people can use a heuristic in recognition-memory decisions, in which they attribute the subjective ease of processing of a memory probe to a prior encounter with the stimulus in question. Research in social cognition suggests that experienced positive affect may be the proximal cue that signals fluency in various experimental contexts. In the present study, we compared the effects of positive affect and fluency on recognition-memory judgments for faces with neutral emotional expression. We predicted that if positive affect is indeed the critical cue that signals processing fluency at retrieval, then its manipulation should produce effects that closely mirror those produced by manipulations of processing fluency. In two experiments, we employed a masked-priming procedure in combination with a Remember-Know (RK) paradigm that aimed to separate familiarity- from recollection-based memory decisions. In addition, participants performed a prime-discrimination task that allowed us to take inter-individual differences in prime awareness into account. We found highly similar effects of our priming manipulations of processing fluency and of positive affect. In both cases, the critical effect was specific to familiarity-based recognition responses. Moreover, in both experiments it was reflected in a shift toward a more liberal response bias, rather than in changed discrimination. Finally, in both experiments, the effect was found to be related to prime awareness; it was present only in participants who reported a lack of such awareness on the prime-discrimination task. These findings add to a growing body of evidence that points not only to a role of fluency, but also of positive affect in familiarity assessment. As such they are consistent with the idea that fluency itself may be hedonically marked.

  19. Seaweed hydrocolloid production: an update on enzyme assisted extraction and modification technologies.

    Science.gov (United States)

    Rhein-Knudsen, Nanna; Ale, Marcel Tutor; Meyer, Anne S

    2015-05-27

    Agar, alginate, and carrageenans are high-value seaweed hydrocolloids, which are used as gelation and thickening agents in different food, pharmaceutical, and biotechnological applications. The annual global production of these hydrocolloids has recently reached 100,000 tons with a gross market value just above US$ 1.1 billion. The techno-functional properties of the seaweed polysaccharides depend strictly on their unique structural make-up, notably degree and position of sulfation and presence of anhydro-bridges. Classical extraction techniques include hot alkali treatments, but recent research has shown promising results with enzymes. Current methods mainly involve use of commercially available enzyme mixtures developed for terrestrial plant material processing. Application of seaweed polysaccharide targeted enzymes allows for selective extraction at mild conditions as well as tailor-made modifications of the hydrocolloids to obtain specific functionalities. This review provides an update of the detailed structural features of κ-, ι-, λ-carrageenans, agars, and alginate, and a thorough discussion of enzyme assisted extraction and processing techniques for these hydrocolloids.

  20. Microbial-processing of fruit and vegetable wastes for production of vital enzymes and organic acids: Biotechnology and scopes.

    Science.gov (United States)

    Panda, Sandeep K; Mishra, Swati S; Kayitesi, Eugenie; Ray, Ramesh C

    2016-04-01

    Wastes generated from fruits and vegetables are organic in nature and contribute a major share in soil and water pollution. Also, green house gas emission caused by fruit and vegetable wastes (FVWs) is a matter of serious environmental concern. This review addresses the developments over the last one decade on microbial processing technologies for production of enzymes and organic acids from FVWs. The advances in genetic engineering for improvement of microbial strains in order to enhance the production of the value added bio-products as well as the concept of zero-waste economy have been briefly discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Bacterial community composition and extracellular enzyme activity in temperate streambed sediment during drying and rewetting.

    Directory of Open Access Journals (Sweden)

    Elisabeth Pohlon

    Full Text Available Droughts are among the most important disturbance events for stream ecosystems; they not only affect stream hydrology but also the stream biota. Although desiccation of streams is common in Mediterranean regions, phases of dryness in headwaters have been observed more often and for longer periods in extended temperate regions, including Central Europe, reflecting global climate change and enhanced water withdrawal. The effects of desiccation and rewetting on the bacterial community composition and extracellular enzyme activity, a key process in the carbon flow of streams and rivers, were investigated in a typical Central European stream, the Breitenbach (Hesse, Germany. Wet streambed sediment is an important habitat in streams. It was sampled and exposed in the laboratory to different drying scenarios (fast, intermediate, slow for 13 weeks, followed by rewetting of the sediment from the fast drying scenario via a sediment core perfusion technique for 2 weeks. Bacterial community structure was analyzed using CARD-FISH and TGGE, and extracellular enzyme activity was assessed using fluorogenic model substrates. During desiccation the bacterial community composition shifted toward composition in soil, exhibiting increasing proportions of Actinobacteria and Alphaproteobacteria and decreasing proportions of Bacteroidetes and Betaproteobacteria. Simultaneously the activities of extracellular enzymes decreased, most pronounced with aminopeptidases and less pronounced with enzymes involved in the degradation of polymeric carbohydrates. After rewetting, the general ecosystem functioning, with respect to extracellular enzyme activity, recovered after 10 to 14 days. However, the bacterial community composition had not yet achieved its original composition as in unaffected sediments within this time. Thus, whether the bacterial community eventually recovers completely after these events remains unknown. Perhaps this community undergoes permanent changes

  2. Automatic processing of facial affects in patients with borderline personality disorder: associations with symptomatology and comorbid disorders.

    Science.gov (United States)

    Donges, Uta-Susan; Dukalski, Bibiana; Kersting, Anette; Suslow, Thomas

    2015-01-01

    Instability of affects and interpersonal relations are important features of borderline personality disorder (BPD). Interpersonal problems of individuals suffering from BPD might develop based on abnormalities in the processing of facial affects and high sensitivity to negative affective expressions. The aims of the present study were to examine automatic evaluative shifts and latencies as a function of masked facial affects in patients with BPD compared to healthy individuals. As BPD comorbidity rates for mental and personality disorders are high, we investigated also the relationships of affective processing characteristics with specific borderline symptoms and comorbidity. Twenty-nine women with BPD and 38 healthy women participated in the study. The majority of patients suffered from additional Axis I disorders and/or additional personality disorders. In the priming experiment, angry, happy, neutral, or no facial expression was briefly presented (for 33 ms) and masked by neutral faces that had to be evaluated. Evaluative decisions and response latencies were registered. Borderline-typical symptomatology was assessed with the Borderline Symptom List. In the total sample, valence-congruent evaluative shifts and delays of evaluative decision due to facial affect were observed. No between-group differences were obtained for evaluative decisions and latencies. The presence of comorbid anxiety disorders was found to be positively correlated with evaluative shifting owing to masked happy primes, regardless of baseline-neutral or no facial expression condition. The presence of comorbid depressive disorder, paranoid personality disorder, and symptoms of social isolation and self-aggression were significantly correlated with response delay due to masked angry faces, regardless of baseline. In the present affective priming study, no abnormalities in the automatic recognition and processing of facial affects were observed in BPD patients compared to healthy individuals

  3. Preimaginal exposure to azadirachtin affects food selection and digestive enzymes in adults of Drosophila melanogaster (Diptera: Drosophilidae).

    Science.gov (United States)

    Kilani-Morakchi, Samira; Bezzar-Bendjazia, Radia; Ferdenache, Maroua; Aribi, Nadia

    2017-08-01

    Among the plant derived product, azadirachtin, a neem-based insecticide, is exceptional in having a broad range of bioactivity including toxicity, growth, development and reproduction effects, repellency and antifeedancy. If considerable progress on the physiological and biological activities and agricultural application of azadirachtin has been achieved, its exact mechanism of action remains uncertain. In this study, we aimed at assessing the lethal and sublethal behavioral and physiological effects of azadirachtin on Drosophila melanogaster Meigen, 1830 (Diptera: Drosophilidae) as biological model. Azadirachtin was applied topically at two doses LD 25 (0.28μg) and LD 50 (0.67μg) on early third instar larvae. Results showed that flies preferentially ingested control medium rather than azadirachtin-treated medium. Pre-imaginal exposure (L3) to azadirachtin increased aversion to this substance suggesting a memorability of the learned avoidance. In addition, all tested flies revealed a clear preference for solvent odour rather than azadirachtin odour. Moreover, azadirachtin treatment decreased significantly the amount of food intake in the adults of both sexes. Finally, azadirachtin was found to affect digestive enzyme activities in the midgut of flies. Indeed, an inhibition of α-amylase, chitinase, and protease activities and an increase of lipasic activity were noted. These results may reflect interference of azadirachtin with regulation of feeding and metabolism, and provide some evidence of a long term antifeedancy and delayed effects through developmental stage which may reinforce the insecticidal activity of this bioinsecticide. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Glycogen branching enzyme (GBE1) mutation causing equine glycogen storage disease IV.

    Science.gov (United States)

    Ward, Tara L; Valberg, Stephanie J; Adelson, David L; Abbey, Colette A; Binns, Matthew M; Mickelson, James R

    2004-07-01

    Comparative biochemical and histopathological evidence suggests that a deficiency in the glycogen branching enzyme, encoded by the GBE1 gene, is responsible for a recently identified recessive fatal fetal and neonatal glycogen storage disease (GSD) in American Quarter Horses termed GSD IV. We have now derived the complete GBE1 cDNA sequences for control horses and affected foals, and identified a C to A substitution at base 102 that results in a tyrosine (Y) to stop (X) mutation in codon 34 of exon 1. All 11 affected foals were homozygous for the X34 allele, their 11 available dams and sires were heterozygous, and all 16 control horses were homozygous for the Y34 allele. The previous findings of poorly branched glycogen, abnormal polysaccharide accumulation, lack of measurable GBE1 enzyme activity and immunodetectable GBE1 protein, coupled with the present observation of abundant GBE1 mRNA in affected foals, are all consistent with the nonsense mutation in the 699 amino acid GBE1 protein. The affected foal pedigrees have a common ancestor and contain prolific stallions that are likely carriers of the recessive X34 allele. Defining the molecular basis of equine GSD IV will allow for accurate DNA testing and the ability to prevent occurrence of this devastating disease affecting American Quarter Horses and related breeds.

  5. Processes Affecting Groundwater Quality in the La Digue Aquifer, Seychelles

    Energy Technology Data Exchange (ETDEWEB)

    Alcindor, A. [Public Utilities Corporation, Victoria (Seychelles); Sacchi, E. [Dipartimento di Scienze della Terra e dell' ambiente, Universita di Pavia (Italy); Taigbenu, A. E. [University of the Witwatersrand, Johannesburg (South Africa)

    2013-07-15

    This paper presents the results obtained by the public utilities corporation (PUC), within the framework of an IAEA TC project, which aims to evaluate the potential of the la digue aquifer. Several monitoring activities and hydrochemical and isotopic surveys have been conducted. Results indicate the presence of brackish water at shallow depths, and low redox potentials, attesting to the presence of H{sub 2}S and heavy metals. Groundwater quality is affected by the concomitant presence of different adverse factors, namely aquifer characteristics, hydrogeology, and anthropogenic pressure. In addition, seawater penetrates the river course during high tides and infiltrates through the recharge area of the aquifer that is close to the actual pumping station. The positioning of non return high tide gates, an easy and low cost intervention, could enhance groundwater quality. The understanding of the main processes affecting groundwater quality helped in the identification of areas favourable for new wells, located at higher elevations. (author)

  6. Histone Acetylation Modifications Affect Tissue-Dependent Expression of Poplar Homologs of C4 Photosynthetic Enzyme Genes

    Directory of Open Access Journals (Sweden)

    Yuan Li

    2017-06-01

    Full Text Available Histone modifications play important roles in regulating the expression of C4 photosynthetic genes. Given that all enzymes required for the C4 photosynthesis pathway are present in C3 plants, it has been hypothesized that this expression regulatory mechanism has been conserved. However, the relationship between histone modification and the expression of homologs of C4 photosynthetic enzyme genes has not been well determined in C3 plants. In the present study, we cloned nine hybrid poplar (Populus simonii × Populus nigra homologs of maize (Zea mays C4 photosynthetic enzyme genes, carbonic anhydrase (CA, pyruvate orthophosphate dikinase (PPDK, phosphoenolpyruvate carboxykinase (PCK, and phosphoenolpyruvate carboxylase (PEPC, and investigated the correlation between the expression levels of these genes and the levels of promoter histone acetylation modifications in four vegetative tissues. We found that poplar homologs of C4 homologous genes had tissue-dependent expression patterns that were mostly well-correlated with the level of histone acetylation modification (H3K9ac and H4K5ac determined by chromatin immunoprecipitation assays. Treatment with the histone deacetylase inhibitor trichostatin A further confirmed the role of histone acetylation in the regulation of the nine target genes. Collectively, these results suggest that both H3K9ac and H4K5ac positively regulate the tissue-dependent expression pattern of the PsnCAs, PsnPPDKs, PsnPCKs, and PsnPEPCs genes and that this regulatory mechanism seems to be conserved among the C3 and C4 species. Our findings provide new insight that will aid efforts to modify the expression pattern of these homologs of C4 genes to engineer C4 plants from C3 plants.

  7. Magnetically responsive enzyme powders

    Energy Technology Data Exchange (ETDEWEB)

    Pospiskova, Kristyna, E-mail: kristyna.pospiskova@upol.cz [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Safarik, Ivo, E-mail: ivosaf@yahoo.com [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Department of Nanobiotechnology, Institute of Nanobiology and Structural Biology of GCRC, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic)

    2015-04-15

    Powdered enzymes were transformed into their insoluble magnetic derivatives retaining their catalytic activity. Enzyme powders (e.g., trypsin and lipase) were suspended in various liquid media not allowing their solubilization (e.g., saturated ammonium sulfate and highly concentrated polyethylene glycol solutions, ethanol, methanol, 2-propanol) and subsequently cross-linked with glutaraldehyde. Magnetic modification was successfully performed at low temperature in a freezer (−20 °C) using magnetic iron oxides nano- and microparticles prepared by microwave-assisted synthesis from ferrous sulfate. Magnetized cross-linked enzyme powders were stable at least for two months in water suspension without leakage of fixed magnetic particles. Operational stability of magnetically responsive enzymes during eight repeated reaction cycles was generally without loss of enzyme activity. Separation of magnetically modified cross-linked powdered enzymes from reaction mixtures was significantly simplified due to their magnetic properties. - Highlights: • Cross-linked enzyme powders were prepared in various liquid media. • Insoluble enzymes were magnetized using iron oxides particles. • Magnetic iron oxides particles were prepared by microwave-assisted synthesis. • Magnetic modification was performed under low (freezing) temperature. • Cross-linked powdered trypsin and lipase can be used repeatedly for reaction.

  8. Arabinogalactan proteins: focus on carbohydrate active enzymes

    Directory of Open Access Journals (Sweden)

    Eva eKnoch

    2014-06-01

    Full Text Available Arabinogalactan proteins (AGPs are a highly diverse class of cell surface proteoglycans that are commonly found in most plant species. AGPs play important roles in many cellular processes during plant development, such as reproduction, cell proliferation, pattern formation and growth, and in plant-microbe interaction. However, little is known about the molecular mechanisms of their function. Numerous studies using monoclonal antibodies that recognize different AGP glycan epitopes have shown the appearance of a slightly altered AGP glycan in a specific stage of development in plant cells. Therefore, it is anticipated that the biosynthesis and degradation of AGP glycan is tightly regulated during development. Until recently, however, little was known about the enzymes involved in the metabolism of AGP glycans. In this review, we summarize recent discoveries of carbohydrate active enzymes (CAZy; http://www.cazy.org/ involved in the biosynthesis and degradation of AGP glycans, and we discuss the biological role of these enzymes in plant development.

  9. Enzyme Histochemistry for Functional Histology in Invertebrates.

    Science.gov (United States)

    Cima, Francesca

    2017-01-01

    In invertebrates, enzyme histochemistry has recently found a renaissance regarding its applications in morphology and ecology. Many enzyme activities are useful for the morphofunctional characterization of cells, as biomarkers of biological and pathologic processes, and as markers of the response to environmental stressors. Here, the adjustments to classic techniques, including the most common enzymes used for digestion, absorption, transport, and oxidation, as well as techniques for azo-coupling, metal salt substitution and oxidative coupling polymerization, are presented in detail for various terrestrial and aquatic invertebrates. This chapter also provides strategies to solve the problems regarding anesthesia, small body size, the presence of an exo- or endoskeleton and the search for the best fixative in relation to the internal fluid osmolarity. These techniques have the aim of obtaining good results for both the pre- and post-embedding labeling of specimens, tissue blocks, sections, and hemolymph smears using both light and transmission electron microscopy.

  10. Radiation and enzyme degradation of cellulose materials

    International Nuclear Information System (INIS)

    Duchacek, V.

    1983-01-01

    The results are summed up of a study of the effect of gamma radiation on pure cellulose and on wheat straw. The irradiation of cellulose yields acid substances - formic acid and polyhydroxy acids, toxic malondialdehyde and the most substantial fraction - the saccharides xylose, arabinose, glucose and certain oligosaccharides. A ten-fold reduction of the level of cellulose polymerization can be caused by relatively small doses - (up to 250 kGy). A qualitative analysis was made of the straw before and after irradiation and it was shown that irradiation had no significant effect on the qualitative composition of the straw. A 48 hour enzyme hydrolysis of the cellulose and straw were made after irradiation and an economic evaluation of the process was made. Radiation pretreatment is technically and economically advantageous; the production of fodder using enzyme hydrolysis of irradiated straw is not economically feasible due to the high cost of the enzyme. (M.D.)

  11. A new generation of versatile chromogenic substrates for high-throughput analysis of biomass-degrading enzymes

    DEFF Research Database (Denmark)

    Kracun, Stjepan Kresimir; Schückel, Julia; Westereng, Bjørge

    2015-01-01

    of carbohydrate-acting enzymes to be putatively identified. However, there is a paucity of methods for rapidly screening the biochemical activities of these enzymes, and this is a serious bottleneck in the development of enzyme-reliant bio-refining processes. Results: We have developed a new generation of multi...

  12. Kinetic characteristics of polygalacturonase enzymes hydrolyzing galacturonic acid oligomers using isothermal titration calorimetry

    Science.gov (United States)

    Polygalacturonase enzymes hydrolyze the polygalacturonic acid chains found in pectin. Interest in polygalacturonase enzymes continues as they are useful in a number of industrial processes and conversely, detrimental, as they are involved in maceration of economically important crops. While a good...

  13. Thermodynamic activity-based intrinsic enzyme kinetic sheds light on enzyme-solvent interactions.

    Science.gov (United States)

    Grosch, Jan-Hendrik; Wagner, David; Nistelkas, Vasilios; Spieß, Antje C

    2017-01-01

    The reaction medium has major impact on biocatalytic reaction systems and on their economic significance. To allow for tailored medium engineering, thermodynamic phenomena, intrinsic enzyme kinetics, and enzyme-solvent interactions have to be discriminated. To this end, enzyme reaction kinetic modeling was coupled with thermodynamic calculations based on investigations of the alcohol dehydrogenase from Lactobacillus brevis (LbADH) in monophasic water/methyl tert-butyl ether (MTBE) mixtures as a model solvent. Substrate concentrations and substrate thermodynamic activities were varied separately to identify the individual thermodynamic and kinetic effects on the enzyme activity. Microkinetic parameters based on concentration and thermodynamic activity were derived to successfully identify a positive effect of MTBE on the availability of the substrate to the enzyme, but a negative effect on the enzyme performance. In conclusion, thermodynamic activity-based kinetic modeling might be a suitable tool to initially curtail the type of enzyme-solvent interactions and thus, a powerful first step to potentially understand the phenomena that occur in nonconventional media in more detail. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:96-103, 2017. © 2016 American Institute of Chemical Engineers.

  14. Profiling the orphan enzymes

    Science.gov (United States)

    2014-01-01

    The emergence of Next Generation Sequencing generates an incredible amount of sequence and great potential for new enzyme discovery. Despite this huge amount of data and the profusion of bioinformatic methods for function prediction, a large part of known enzyme activities is still lacking an associated protein sequence. These particular activities are called “orphan enzymes”. The present review proposes an update of previous surveys on orphan enzymes by mining the current content of public databases. While the percentage of orphan enzyme activities has decreased from 38% to 22% in ten years, there are still more than 1,000 orphans among the 5,000 entries of the Enzyme Commission (EC) classification. Taking into account all the reactions present in metabolic databases, this proportion dramatically increases to reach nearly 50% of orphans and many of them are not associated to a known pathway. We extended our survey to “local orphan enzymes” that are activities which have no representative sequence in a given clade, but have at least one in organisms belonging to other clades. We observe an important bias in Archaea and find that in general more than 30% of the EC activities have incomplete sequence information in at least one superkingdom. To estimate if candidate proteins for local orphans could be retrieved by homology search, we applied a simple strategy based on the PRIAM software and noticed that candidates may be proposed for an important fraction of local orphan enzymes. Finally, by studying relation between protein domains and catalyzed activities, it appears that newly discovered enzymes are mostly associated with already known enzyme domains. Thus, the exploration of the promiscuity and the multifunctional aspect of known enzyme families may solve part of the orphan enzyme issue. We conclude this review with a presentation of recent initiatives in finding proteins for orphan enzymes and in extending the enzyme world by the discovery of new

  15. The complexities of hydrolytic enzymes from the termite digestive system.

    Science.gov (United States)

    Saadeddin, Anas

    2014-06-01

    The main challenge in second generation bioethanol production is the efficient breakdown of cellulose to sugar monomers (hydrolysis). Due to the recalcitrant character of cellulose, feedstock pretreatment and adapted hydrolysis steps are needed to obtain fermentable sugar monomers. The conventional industrial production process of second-generation bioethanol from biomass comprises several steps: thermochemical pretreatment, enzymatic hydrolysis and sugar fermentation. This process is undergoing continuous optimization in order to increase the bioethanol yield and reduce the economic cost. Therefore, the discovery of new enzymes with high lignocellulytic activity or new strategies is extremely important. In nature, wood-feeding termites have developed a sophisticated and efficient cellulose degrading system in terms of the rate and extent of cellulose hydrolysis and exploitation. This system, which represents a model for digestive symbiosis has attracted the attention of biofuel researchers. This review describes the termite digestive system, gut symbionts, termite enzyme resources, in vitro studies of isolated enzymes and lignin degradation in termites.

  16. Social Information Processing in Children: Specific Relations to Anxiety, Depression, and Affect

    Science.gov (United States)

    Luebbe, Aaron M.; Bell, Debora J.; Allwood, Maureen A.; Swenson, Lance P.; Early, Martha C.

    2010-01-01

    Two studies examined shared and unique relations of social information processing (SIP) to youth's anxious and depressive symptoms. Whether SIP added unique variance over and above trait affect in predicting internalizing symptoms was also examined. In Study 1, 215 youth (ages 8-13) completed symptom measures of anxiety and depression and a…

  17. Basic abnormalities in visual processing affect face processing at an early age in autism spectrum disorder.

    Science.gov (United States)

    Vlamings, Petra Hendrika Johanna Maria; Jonkman, Lisa Marthe; van Daalen, Emma; van der Gaag, Rutger Jan; Kemner, Chantal

    2010-12-15

    A detailed visual processing style has been noted in autism spectrum disorder (ASD); this contributes to problems in face processing and has been directly related to abnormal processing of spatial frequencies (SFs). Little is known about the early development of face processing in ASD and the relation with abnormal SF processing. We investigated whether young ASD children show abnormalities in low spatial frequency (LSF, global) and high spatial frequency (HSF, detailed) processing and explored whether these are crucially involved in the early development of face processing. Three- to 4-year-old children with ASD (n = 22) were compared with developmentally delayed children without ASD (n = 17). Spatial frequency processing was studied by recording visual evoked potentials from visual brain areas while children passively viewed gratings (HSF/LSF). In addition, children watched face stimuli with different expressions, filtered to include only HSF or LSF. Enhanced activity in visual brain areas was found in response to HSF versus LSF information in children with ASD, in contrast to control subjects. Furthermore, facial-expression processing was also primarily driven by detail in ASD. Enhanced visual processing of detailed (HSF) information is present early in ASD and occurs for neutral (gratings), as well as for socially relevant stimuli (facial expressions). These data indicate that there is a general abnormality in visual SF processing in early ASD and are in agreement with suggestions that a fast LSF subcortical face processing route might be affected in ASD. This could suggest that abnormal visual processing is causative in the development of social problems in ASD. Copyright © 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  18. Effect of irradiation on immobilized enzymes compared with that on enzymes in solution

    International Nuclear Information System (INIS)

    Schachinger, L.; Schippel, C.; Altmann, E.; Diepold, B.; Yang, C.; Jaenike, M.; Hochhaeuser, E.

    1985-01-01

    Glucose oxidase and catalase were immobilized by attaching them to nylon fibers that had been treated with triethyloxonium-tetrafluoroborate, diaminohexane and glutaraldialdehyde according to Morris, Campell and Hornby (1975). This method assures that the enzymes are bound to a side chain of the polyamide structure. Enzyme activity (as measured by the O 2 -uptake and by microcalorimetry) was found to be unchanged after 2 years. The apparent Ksub(m)-constants of the immobilized enzymes with glucose were the same as those for enzymes in solution. GOD and catalase immobilized in poly(acrylamide) gel had the same Ksub(m)-value. Despite the high stability during storage, the radiation induced inactivation of enzymes immobilized on gel or chromosorb, an inorganic carrier, was of the same order of magnitude as that of the dissolved enzymes. The enzymes bound to nylon fibers showed a higher radiation sensitivity. This might have been caused by an additional attack on the binding site of the carrier. (orig.)

  19. Chemical composition of litter affects the growth and enzyme production by the saprotrophic basidiomycete Hypholoma fasciculare

    Czech Academy of Sciences Publication Activity Database

    Voříšková, Jana; Dobiášová, Petra; Šnajdr, Jaroslav; Vaněk, D.; Cajthaml, Tomáš; Šantrůčková, D.; Baldrian, Petr

    2011-01-01

    Roč. 4, č. 6 (2011), s. 417-426 ISSN 1754-5048 R&D Projects: GA MŠk LC06066; GA MŠk(CZ) ME10028; GA MŠk(CZ) LA10001 Institutional research plan: CEZ:AV0Z50200510 Keywords : Extracellular enzymes * decomposition * fungal biomass Subject RIV: EE - Microbiology, Virology Impact factor: 2.507, year: 2011

  20. Does transgenic Cry1Ac + CpTI cotton pollen affect hypopharyngeal gland development and midgut proteolytic enzyme activity in the honey bee Apis mellifera L. (Hymenoptera, Apidae)?

    Science.gov (United States)

    Han, Peng; Niu, Chang-Ying; Biondi, Antonio; Desneux, Nicolas

    2012-11-01

    The transgenic Cry1Ac (Bt toxin) + CpTI (Cowpea Trypsin Inhibitor) cotton cultivar CCRI41 is increasingly used in China and potential side effects on the honey bee Apis mellifera L. have been documented recently. Two studies have assessed potential lethal and sublethal effects in young bees fed with CCRI41 cotton pollen but no effect was observed on learning capacities, although lower feeding activity in exposed honey bees was noted (antifeedant effect). The present study aimed at providing further insights into potential side effects of CCRI41 cotton on honey bees. Emerging honey bees were exposed to different pollen diets using no-choice feeding protocols (chronic exposure) in controlled laboratory conditions and we aimed at documenting potential mechanisms underneath the CCRI41 antifeedant effect previously reported. Activity of midgut proteolytic enzyme of young adult honey bees fed on CCRI41 cotton pollen were not significantly affected, i.e. previously observed antifeedant effect was not linked to disturbed activity of the proteolytic enzymes in bees' midgut. Hypopharyngeal gland development was assessed by quantifying total extractable proteins from the glands. Results suggested that CCRI41 cotton pollen carries no risk to hypopharyngeal gland development of young adult honey bees. In the two bioassays, honey bees exposed to 1 % soybean trypsin inhibitor were used as positive controls for both midgut proteolytic enzymes and hypopharyngeal gland proteins quantification, and bees exposed to 48 ppb (part per billion) (i.e. 48 ng g(-1)) imidacloprid were used as controls for exposure to a sublethal concentration of toxic product. The results show that the previously reported antifeedant effect of CCRI41 cotton pollen on honey bees is not linked to effects on their midgut proteolytic enzymes or on the development of their hypopharyngeal glands. The results of the study are discussed in the framework of risk assessment of transgenic crops on honey bees.