WorldWideScience

Sample records for affect plasma arginine

  1. The T1405N carbamoyl phosphate synthetase polymorphism does not affect plasma arginine concentrations in preterm infants.

    Directory of Open Access Journals (Sweden)

    Rob M J Moonen

    Full Text Available BACKGROUND: A C-to-A nucleotide transversion (T1405N in the gene that encodes carbamoyl-phosphate synthetase 1 (CPS1 has been associated with changes in plasma concentrations of L-arginine in term and near term infants but not in adults. In preterm infants homozygosity for the CPS1 Thr1405 variant (CC genotype was associated with an increased risk of having necrotizing enterocolitis (NEC. Plasma L-arginine concentrations are decreased in preterm infants with NEC. AIM: To examine the putative association between the CPS1 T1405N polymorphism and plasma arginine concentrations in preterm infants. METHODS: Prospective multicenter cohort study. Plasma and DNA samples were collected from 128 preterm infants (<30 weeks between 6 and 12 hours after birth. Plasma amino acid and CPS1 T1405N polymorphism analysis were performed. RESULTS: Distribution of genotypes did not differ between the preterm (CC:CA:AA = 55.5%:33.6%:10.9%, n = 128 and term infants (CC:CA:AA = 54.2%:35.4%:10.4%, n = 96. There was no association between the CPS1 genotype and plasma L-arginine or L-citrulline concentration, or the ornithine to citrulline ratio, which varies inversely with CPS1 activity. Also the levels of asymmetric dimethylarginine, and symmetric dimethylarginine were not significantly different among the three genotypes. CONCLUSIONS: The present study in preterm infants did not confirm the earlier reported association between CPS1 genotype and L-arginine levels in term infants.

  2. Acute Escherichia coli endotoxaemia decreases the plasma l-arginine/asymmetrical dimethylarginine ratio in humans.

    Science.gov (United States)

    Mittermayer, Friedrich; Namiranian, Khodadad; Pleiner, Johannes; Schaller, Georg; Wolzt, Michael

    2004-06-01

    Acute inflammation impairs vascular function. Based on the association between endothelial dysfunction and plasma concentrations of L-arginine and the endogenous nitric oxide synthase inhibitor ADMA (asymmetrical dimethylarginine), we hypothesized that the ratio between L-arginine and ADMA could be affected by experimental inflammation. Plasma concentrations of L-arginine, ADMA and SDMA (symmetrical dimethylarginine) were studied at baseline and 3.5 h after intravenous administration of Escherichia coli endotoxin [LPS (lipopolysaccharide), 20 units/kg of body mass; n =8] or placebo ( n =9) in healthy males. L-Arginine and dimethylarginines were quantified after solid-phase extraction by reversed-phase HPLC. Body temperature, heart rate and leucocyte count increased after LPS administration ( P <0.01 for all). LPS administration decreased plasma concentrations of L-arginine from 66 micromol/l [95% CI (confidence interval): 56, 88] at baseline to 48 micromol/l (CI: 40, 60) after 3.5 h ( P <0.02), but did not affect ADMA and SDMA concentrations. Consequently, the L-arginine/ADMA ratio declined significantly from a median of 159 (CI: 137, 193) to 135 (CI: 103, 146); a decrease of 25 (CI: -68, -13; P <0.02). L-Arginine, ADMA, SDMA and the L-arginine/ADMA ratio remained constant over time in controls. Acute inflammation reduces the L-arginine/ADMA ratio which could contribute to impaired vascular function.

  3. The feeding route (enteral or parenteral) affects the plasma response of the dipetide Ala-Gln and the amino acids glutamine, citrulline and arginine, with the administration of Ala-Gln in preoperative patients.

    Science.gov (United States)

    Melis, Gerdien C; Boelens, Petra G; van der Sijp, Joost R M; Popovici, Theodora; De Bandt, Jean-Pascal; Cynober, Luc; van Leeuwen, Paul A M

    2005-07-01

    Enhancement of depressed plasma concentrations of glutamine and arginine is associated with better clinical outcome. Supplementation of glutamine might be a way to provide the patient with glutamine, and also arginine, because glutamine provides the kidney with citrulline, from which the kidney produces arginine when plasma levels of arginine are low. The aim of the present study was to investigate the parenteral and enteral response of the administered dipeptide Ala-Gln, glutamine, citrulline and arginine. Therefore, seven patients received 20 g Ala-Gln, administered over 4 h, parenterally or enterally, on two separate occasions. Arterial blood samples were taken before and during the administration of Ala-Gln. ANOVA and a paired t test were used to test differences (Pglutamine was observed with parenteral infusion of the dipeptide, although enteral infusion also significantly increased plasma levels of glutamine. The highest plasma response of citrulline was observed with the enteral administration of the dipeptide, although parenteral administration also increased plasma levels of citrulline. Plasma arginine increased significantly with parenteral infusion, but not with enteral administration of Ala-Gln. In conclusion, administrations of Ala-Gln, parenteral or enteral, resulted in an increased plasma glutamine response, as compared with baseline. Interestingly, in spite of the high availability of citrulline with enteral administration of the dipeptide, only parenteral infusion of Ala-Gln increased plasma arginine concentration.

  4. Arginine depletion by arginine deiminase does not affect whole protein metabolism or muscle fractional protein synthesis rate in mice.

    Science.gov (United States)

    Marini, Juan C; Didelija, Inka Cajo

    2015-01-01

    Due to the absolute need for arginine that certain cancer cells have, arginine depletion is a therapy in clinical trials to treat several types of cancers. Arginine is an amino acids utilized not only as a precursor for other important molecules, but also for protein synthesis. Because arginine depletion can potentially exacerbate the progressive loss of body weight, and especially lean body mass, in cancer patients we determined the effect of arginine depletion by pegylated arginine deiminase (ADI-PEG 20) on whole body protein synthesis and fractional protein synthesis rate in multiple tissues of mice. ADI-PEG 20 successfully depleted circulating arginine (arginine, whole body protein synthesis and breakdown were maintained in the ADI-PEG 20 treated mice. The fractional protein synthesis rate of muscle was also not affected by arginine depletion. Most tissues (liver, kidney, spleen, heart, lungs, stomach, small and large intestine, pancreas) were able to maintain their fractional protein synthesis rate; however, the fractional protein synthesis rate of brain, thymus and testicles was reduced due to the ADI-PEG 20 treatment. Furthermore, these results were confirmed by the incorporation of ureido [14C]citrulline, which indicate the local conversion into arginine, into protein. In conclusion, the intracellular recycling pathway of citrulline is able to provide enough arginine to maintain protein synthesis rate and prevent the loss of lean body mass and body weight.

  5. The effects on plasma L-arginine levels of combined oral L-citrulline and L-arginine supplementation in healthy males.

    Science.gov (United States)

    Suzuki, Takashi; Morita, Masahiko; Hayashi, Toshio; Kamimura, Ayako

    2017-02-01

    We investigated the effects of combining 1 g of l-citrulline and 1 g of l-arginine as oral supplementation on plasma l-arginine levels in healthy males. Oral l-citrulline plus l-arginine supplementation more efficiently increased plasma l-arginine levels than 2 g of l-citrulline or l-arginine, suggesting that oral l-citrulline and l-arginine increase plasma l-arginine levels more effectively in humans when combined.

  6. Arginine depletion by arginine deiminase does not affect whole protein metabolism or muscle fractional protein synthesis rate in mice.

    Directory of Open Access Journals (Sweden)

    Juan C Marini

    Full Text Available Due to the absolute need for arginine that certain cancer cells have, arginine depletion is a therapy in clinical trials to treat several types of cancers. Arginine is an amino acids utilized not only as a precursor for other important molecules, but also for protein synthesis. Because arginine depletion can potentially exacerbate the progressive loss of body weight, and especially lean body mass, in cancer patients we determined the effect of arginine depletion by pegylated arginine deiminase (ADI-PEG 20 on whole body protein synthesis and fractional protein synthesis rate in multiple tissues of mice. ADI-PEG 20 successfully depleted circulating arginine (<1 μmol/L, and increased citrulline concentration more than tenfold. Body weight and body composition, however, were not affected by ADI-PEG 20. Despite the depletion of arginine, whole body protein synthesis and breakdown were maintained in the ADI-PEG 20 treated mice. The fractional protein synthesis rate of muscle was also not affected by arginine depletion. Most tissues (liver, kidney, spleen, heart, lungs, stomach, small and large intestine, pancreas were able to maintain their fractional protein synthesis rate; however, the fractional protein synthesis rate of brain, thymus and testicles was reduced due to the ADI-PEG 20 treatment. Furthermore, these results were confirmed by the incorporation of ureido [14C]citrulline, which indicate the local conversion into arginine, into protein. In conclusion, the intracellular recycling pathway of citrulline is able to provide enough arginine to maintain protein synthesis rate and prevent the loss of lean body mass and body weight.

  7. Plasma arginine and ornithine are the main citrulline precursors in mice infused with arginine-free diets.

    Science.gov (United States)

    Marini, Juan C; Didelija, Inka Cajo; Castillo, Leticia; Lee, Brendan

    2010-08-01

    Dietary arginine is the main dietary precursor for citrulline synthesis, but it is not known if other precursors can compensate when arginine is absent in the diet. To address this question, the contributions of plasma and dietary precursors were determined by using multitracer protocols in conscious mice infused i.g. either an arginine-sufficient diet [Arg(+)] or an arginine-free diet [Arg(-)]. The plasma entry rate of citrulline and arginine did not differ between the 2 diet groups (156 +/- 6 and 564 +/- 30 micromol kg(-1) h(-1), respectively); however, the entry rate of ornithine was greater in the mice fed the Arg(+) than the Arg(-) diet (332 +/- 33 vs. 180 +/- 16 micromol kg(-1) h(-1)). There was a greater utilization of plasma ornithine for the synthesis of citrulline (49 +/- 4 vs. 36 +/- 3 micromol kg(-1) h(-1), 30 +/- 3% vs. 24 +/- 2% of citrulline entry rate) in the mice fed the Arg(-) diet than the Arg(+) diet. The utilization of plasma arginine did not differ between the 2 diet groups for citrulline synthesis, either through plasma ornithine (approximately 29 +/- 3 micromol kg(-1) h(-1)) or at the site of citrulline synthesis (approximately 12 +/- 3 micromol kg(-1) h(-1)). The contribution of dietary proline to the synthesis of citrulline was mainly at the site of citrulline production (17 +/- 1 micromol kg(-1) h(-1)), rather than through plasma ornithine (5 +/- 0.4 micromol kg(-1) h(-1)). Dietary glutamine was utilized only at the site of citrulline synthesis (4 +/- 0.2 micromol kg(-1) h(-1)). Dietary glutamine and proline made a greater contribution to the synthesis of citrulline in mice fed the Arg(-) diet but remained minor sources for citrulline production. Plasma arginine and ornithine are able to support citrulline synthesis during arginine-free feeding.

  8. Arginine-deficient diets alter plasma and tissue amino acids in young and aged rats.

    Science.gov (United States)

    Gross, K L; Hartman, W J; Ronnenberg, A; Prior, R L

    1991-10-01

    Blood and urine metabolites were measured in two experiments for young (2-mo-old) and aged (20-mo-old) male Sprague-Dawley rats fed arginine-devoid diets made isonitrogenous to a control 1.12% arginine diet by adding alanine or glycine. Diet, fed for 7 or 13 d, had little effect on urinary or plasma ammonia and urea. Urinary orotate excretion was more than 40-fold higher in rats fed the arginine-deficient diets (P less than 0.01) in both experiments. Source of nonessential N (alanine or glycine) in the arginine-deficient diets did not alter orotic acid excretion or plasma or urine ammonia or urea. Changes in plasma arginine, alanine and glycine concentrations reflected the levels of these amino acids in the diet. Tissue ornithine levels reflected dietary arginine level, but tissue citrulline was unaffected by dietary arginine. Glutamate and glutamine were greater in the plasma and liver of rats fed arginine-deficient diets. Plasma concentrations of glutamate and glutamine were positively correlated with urinary orotic acid excretion (P less than 0.05) and ornithine and arginine were negatively correlated with orotic acid excretion (P less than 0.01). Increased tissue glutamine may be related to the greater orotate excretion in rats fed arginine-devoid diets. The metabolic responses to dietary arginine deficiency were similar in young and aged rats. In general, concentrations of amino acids in plasma, liver and spleen were higher in aged rats.

  9. High plasma arginine concentrations in critically ill patients suffering from hepatic failure

    NARCIS (Netherlands)

    R. Nijveldt (Robin); M.P.C. Siroen; B. van der Hoven (Ben); T. Teerlink (Tom); H.A. Prins (Hubert); A.R.J. Girbes (Armand); P.A.M. van Leeuwen

    2004-01-01

    textabstractObjective: In physiological conditions, the liver plays an important role in the regulation of plasma arginine concentrations by taking up large amounts of arginine from the hepatic circulation. When hepatic failure is present, arginine metabolism may be disturbed. Therefore, we hypothes

  10. Circadian variation of plasma arginine vasopressin concentration, or arginine vasopressin in enuresis.

    Science.gov (United States)

    Aikawa, T; Kasahara, T; Uchiyama, M

    1999-01-01

    The objective of these studies was to determine a relationship between primary nocturnal enuresis and arginine vasopressin (AVP) secretion. The first study compared 24-h AVP secretion profiles of enuretic (n = 9) and non-enuretic children (n = 8). Blood samples were collected at 1-h intervals for 24 h. In the second study, nocturnal AVP secretion in group A (n = 40)--with low urinary osmotic pressure (UOP) and large nocturnal urine output (NUO)--was compared with that in group D (n = 11) with normal UOP and small NUO. Plasma AVP levels were measured at 30-min intervals, immediately after falling asleep until 06.00 the following morning. The results of the first study showed that the plasma AVP level was significantly lower (p < 0.05-0.001) in the enuretic group between 23.00 and 04.00. The second study showed that group A had significantly lower AVP levels (p < 0.05-0.001) than group D throughout the night. The mean AVP level during night sleep was 0.64 +/- 0.23 pg/ml in group A and 1.43 +/- 0.66 pg/ml in group D. The results of the first study suggest that decreased nocturnal AVP secretion is a cause of bedwetting. However, the results of the second study suggest that nocturnal enuresis cannot be explained by a decrease in nocturnal AVP secretion alone.

  11. Determination of l-arginine and NG, NG - and NG, NG' -dimethyl-L-arginine in plasma by liquid chromatography as AccQ-Fluor fluorescent derivatives.

    Science.gov (United States)

    Heresztyn, Tamila; Worthley, Matthew I; Horowitz, John D

    2004-06-15

    A new HPLC assay for the detection of L-arginine, NG, NG-dimethyl-L-arginine (ADMA) and NG, NG' -dimethyl-L-arginine (SDMA) in plasma using the derivatisation reagent AccQ-Fluor (6-aminoquinolyl-N-hydroxysuccinimidyl carbamate) is described. The fluorescent derivatives produced are extremely stable enabling routine processing of large numbers of samples. Arginine and its metabolites are extracted from plasma on strong cation exchange (SCX) cartridges with NG-monomethyl-L-arginine (NMMA) as internal standard, derivatised and separated on a C18 column with acetonitrile in 0.1M sodium acetate buffer pH 6. Separation of the stereoisomers ADMA and SDMA was excellent and improvements to the solid phase extraction (SPE) procedure enabled good recovery (>80%) of arginine, ADMA and SDMA. The utility of the method is exemplified by comparison of plasma concentrations of ADMA, SDMA and arginine in healthy volunteers and diabetic/ischaemic patients.

  12. Low plasma arginine:asymmetric dimethyl arginine ratios predict mortality after intracranial aneurysm rupture

    DEFF Research Database (Denmark)

    Staalsø, Jonatan Myrup; Bergström, Anita; Edsen, Troels

    2013-01-01

    Asymmetrical dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthases, predicts mortality in cardiovascular disease and has been linked to cerebral vasospasm after aneurysmal subarachnoid hemorrhage (SAH). In this prospective study, we assessed whether circulating ADMA, arginine...

  13. Arginines Plasma Concentration and Oxidative Stress in Mild to Moderate COPD

    Science.gov (United States)

    Zinellu, Angelo; Fois, Alessandro Giuseppe; Sotgia, Salvatore; Sotgiu, Elisabetta; Zinellu, Elisabetta; Bifulco, Fabiana; Mangoni, Arduino A; Pirina, Pietro; Carru, Ciriaco

    2016-01-01

    Background Elevated plasma concentrations of the endogenous nitric oxide synthase (NOS) inhibitor asymmetric dimethylarginine (ADMA) have been observed in respiratory conditions such as asthma and cystic fibrosis. Since oxidative stress has been shown to increase the activity of arginine methylating enzymes, hence increased ADMA synthesis, and to reduce ADMA degrading enzymes, hence increased ADMA concentrations, we assessed methylated arginines concentrations in chronic obstructive pulmonary disease (COPD), a disease characterized by increased oxidative stress. Methods Plasma arginine, ADMA and symmetric dimethylarginine (SDMA), oxidative stress markers (thiobarbituric acid reactive substances, TBARS, and plasma proteins SH, PSH) and antioxidants (taurine and paraoxonase 1, PON1, activity) were measured in 43 COPD patients with mild (n = 29) or moderate (n = 14) disease and 43 age- and sex-matched controls. Results TBARS significantly increased with COPD presence and severity (median 2.93 vs 3.18 vs 3.64 μmol/L, respectively in controls, mild and moderate group, p<0.0001 by ANOVA) whereas PSH decreased (6.69±1.15 vs 6.04±0.85 vs 5.33±0.96 μmol/gr prot, p<0.0001 by ANOVA). Increased ADMA/arginine ratio, primarily due to reduced arginine concentrations, was also observed with COPD presence and severity (median 0.0067 vs 0.0075 vs 0.0100, p<0.0001 by ANOVA). In multiple logistic regression analysis, only TBARS (OR 0.44, 95% CI 0.25–0.77; p = 0.0045) and ADMA/Arginine ratio (OR 1.72, 95% CI 2.27–13.05; p = 0.02) were independently associated with COPD severity. Conclusion COPD presence and severity are associated with increased oxidative stress and alterations in arginine metabolism. The reduced arginine concentrations in COPD may offer a new target for therapeutic interventions increasing arginine availability. PMID:27479314

  14. Effect of methadone on plasma arginine vasopressin level and urine production in conscious dogs

    NARCIS (Netherlands)

    Hellebrekers, L.J.; Mol, J.A.; Brom, W.E. van den; Wimersma Greidanus, T.B. van

    1987-01-01

    The aim of this study was to examine the effect of i.v. methadone on the plasma arginine-vasopressin (AVP) levels and urine production in 9 conscious dogs. A highly significant increase from the baseline plasma AVP values of below 3 pg/ml occurred within 5 min following methadone administration. Max

  15. Functional variation in the arginine vasopressin 2 receptor as a modifier of human plasma von Willebrand factor levels

    DEFF Research Database (Denmark)

    Nossent, Anne Yaël; Robben, J H; Deen, P M T;

    2010-01-01

    SUMMARY OBJECTIVES: Stimulation of arginine vasopressin 2 receptor (V2R) with arginine vasopressin (AVP) results in a rise in von Willebrand factor (VWF) and factor VIII plasma levels. We hypothesized that gain-of-function variations in the V2R gene (AVPR2) would lead to higher plasma levels of V...

  16. Supplementation with l-arginine stabilizes plasma arginine and nitric oxide metabolites, suppresses elevated liver enzymes and peroxidation in sickle cell anaemia.

    Science.gov (United States)

    Jaja, S I; Ogungbemi, S O; Kehinde, M O; Anigbogu, C N

    2016-06-01

    The effect of l-arginine on liver function in SCD has received little or no attention. The effect of a chronic, oral, low-dose supplementation with l-arginine (1gm/day for 6 weeks) on some liver enzymes, lipid peroxidation and nitric oxide metabolites was studied in 20 normal (non-sickle cell anaemia; NSCA) subjects and 20 sickle cell anaemia (SCA) subjects. Ten milliliters of blood was withdrawn from an ante-cubital vein for the estimation of plasma arginine concentration ([R]), alanine aminotransaminase (ALT), aspartate aminotransaminase (AST) and alkaline phosphatase (ALP), plasma total bilirubin concentration [TB], malondialdehyde concentration [MDA] and nitric oxide metabolites concentration [NOx]. Before supplementation, ALT, AST, ALP (pconcentration and nitric oxide metabolites levels in NSCA and SCA subjects. Responses in SCA subjects to l-arginine were more sensitive than in NSCA subjects.

  17. Specificity of a cytochemical bioassay for arginine-vasopressin and its validation for plasma measurement.

    Science.gov (United States)

    Smith, A; McIntosh, N

    1984-02-01

    The total Na+/K+ ATP-ase activity of the thick ascending limb of the loop of Henle may be stimulated by arginine-vasopressin (AVP). Lysine-vasopressin (LVP), oxytocin (OT), and arginine-vasotocin (AVT) produce less than 5% of the enzyme activity induced by the same concentration of AVP. Physiological concentrations of a mixture of other hormones with known activity on the kidney (T3, T4, aldosterone, angiotensin II, and OT) did not significantly increase total Na+/K+ ATP-ase activity. Specific AVP antiserum consistently removed greater than 90% of the stimulatory effect of plasma. The concentration of AVP in plasmas from dehydrated subjects was greater than 10 times that of the same subjects hydrated. Intra-assay coefficient of variation was 35% and 52% from 200 microliters and 20 microliters of plasma respectively. The interassay coefficient of variation was 53% and 55% from plasma pools with high and low AVP content.

  18. Study of TAMe (p-tosyl-L-arginine methyl ester) esterase activity of bovine plasma.

    Science.gov (United States)

    Claxton, J; Black, W D; Gentry, P A

    1978-07-01

    The TAMe (p-tosyl-L-arginine methyl ester) esterase activity of mature and immature bovine plasma was studied and compared with the activity of this enzyme in human plasma. Kaolin activation of 2 minutes was required to produce maximal activation in cattle, as compared with 1 minute activation in man. The kaolin-activated TAMe esterase values in bovine plasma were approximately one-half the values found in human plasma. The activity of this enzyme was statistically greater in immature than in mature cattle (P less than 0.05) at kaolin activation times of 1, 2, 15, and 20 minutes.

  19. [Radioimmunoassay for human plasma 8-arginine-vasopressin (author's transl)].

    Science.gov (United States)

    Conte-Devolx, B; Rougon-Rapuzzi, G; Millet, Y

    1977-01-01

    The authors have developed a radioimmunoassay for human plasma vasopressin (AVP) which permits the estimation of antidiuretic hormon (ADH) levels as low as 0,8 pg/ml. The average plasma level of AVP after overnight water restriction was found to be 14,3 pg/ml (sd = 4,4 pg/ml) in normal subjects. They provoked a hypersecretion of ADH by the intravenous injection of 1-2 mg of nicotine. In 11 volunteer normal subjects this stimulation by nicotine provoked ADH hypersecretion which reached a maximum between 2nd and 15th minutes after injection. In 3 cases of diabetes insipidus, nicotine injection did not induce ADH hypersecretion; in 1 case of potomania this response was weak; in 2 cases of syndrome of inappropriate ADH secretion, AVP plasma levels were elevated and the response after nicotine stimulation was exaggerated.

  20. Simultaneous measurement of arginine vasopressin and oxytocin in plasma and neurohypophysis by radioimmunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Landgraf, R. (Deutsche Hochschule fuer Koerperkultur, Leipzig (German Democratic Republic). Forschungsinstitut Koerperkultur und Sport)

    1981-12-01

    Arginine vasopressin (AVP) and oxytocin (OXT) were measured simultaneously in the same sample by specific and sensitive radioimmunoassays (RIAs). The antibodies used did not cross-react to a variety of analogs and related peptides. The extraction procedure using Vycor glass powder resulted in mean recoveries of 84.4% (AVP) and 64.6% (OXT). In both assays, the sensitivity was 1 to 2 pg/ml plasma. A preincubation procedure that depresses plasma levels of both AVP and OXT selectively, provided specific blank values for a given plasma sample. To confirm the validity of the RIAs, dehydration experiments were performed. In rats, the basal levels of plasma AVP and OXT (means: 2,63 pg/ml and 6.80 pg/ml, respectively) are increased significantly after 24 h, 48 h and 72 h of water deprivation. Relationships are presented between both neurohormones in the plasma and neurohypophyses of control and dehydrated animals. As shown in cows, a significant correlation exists between plasma AVP and plasma osmolality but not between plasma OXT and osmolality or plasma AVP and OXT. Basal levels as well as physiological changes in plasma and neurohypophyseal AVP and OXT can be measured by the RIAs described.

  1. Plasma arginine vasopressin response to water load during labour

    Energy Technology Data Exchange (ETDEWEB)

    Singhi, S. (West Indies Univ., Mona (Jamaica). Dept. of Child Health); Parshad, O. (West Indies Univ., Mona (Jamaica). Dept. of Physiology)

    1985-02-01

    To find out whether plasma vasopressin (Psub(AVP)) response to a water load during pregnancy is inappropriately high, as had been speculated, we measured Psub(AVP)by radioimmunoassay in 30 women at the time of delivery. Ten women had received infusion of aqueous glucose solution during labour for hydration (GW group); another ten received infusion of glucose solution as a vehicle for oxytocin (IOT group), and ten women did not receive any intrapartum intravenous fluid therapy (controls). Serum sodium and osmolality were also determined in all the subjects. Psub(AVP) levels were significantly lower in GW (0.70 +- 0.4 pg/ml) and OT groups (0.7 +- 0.6 pg/ml) (P < 0.05). Significant negative correlation was seen between the amount of glucose solution infused and levels of Psub(AVP) (r = -0.66; P < 0.01), while a significant positive correlation was seen between Psub(AVP) and serum sodium (r = 0.61; P < 0.01). These findings suggest that during labour, the physiological relationship between serum osmolality and Psub(AVP) in intact, and the infusion of a water load in the form of aqueous glucose solution is attended by an expected lowering of Psub(AVP). We infer that inappropriate ADH response is not the cause of water retention and hyponatremia often seen in women receiving aqueous glucose solution during labor.

  2. Radioimmunoassay of arginine vasopressin in Rhesus Monkey plasma. [/sup 125/I tracer technique

    Energy Technology Data Exchange (ETDEWEB)

    Hayward, J.N.; Pavasuthipaisit, K.; Perez-Lopez, F.R.; Sofroniew, M.V.

    1976-04-01

    Using a new antiserum and an enzymatic radioiodination of arginine vasopressin (AVP), we have developed a sensitive and specific radioimmunoassay for plasma AVP in the monkey. The sensitivity of the assay is 0.5 ..mu..U/ml, the cross reaction with oxytocin (OT), minimal. We used this assay to study the effects that variations in blood osmolality have in regulating AVP secretion in unanesthetized, chair-restrained, chamber-isolated, adult female rhesus monkeys. Under water ad lib conditions, plasma AVP and osmolality were relatively constant, averaging 1.7 +- 0.6 (SD) ..mu..U/ml and 298 +- 3 mosmol/kg, respectively. Water loading decreased plasma AVP and osmolality to 0.6 +- 0.2 ..mu..U/ml and 282 +- 6 mosmol/kg, respectively. When fluid restriction increased osmolality, plasma AVP rose progressively to twice the baseline after 1 day, and to 6 times the baseline after 3 days. The rise in plasma AVP was linearly correlated with the rise in osmolality (r = 0.93; P less than 0.001). Intravenous infusions of hypertonic saline produced significant rises in plasma osmolality and plasma AVP. There was a dose-related rise in plasma AVP that declined later at the expected rate with the infusion of physiological amounts of synthetic AVP.

  3. Breeding L-arginine-producing strains by a novel mutagenesis method: Atmospheric and room temperature plasma (ARTP).

    Science.gov (United States)

    Cheng, Gong; Xu, Jianzhong; Xia, Xiuhua; Guo, Yanfeng; Xu, Kai; Su, Cunsheng; Zhang, Weiguo

    2016-07-03

    A plasma jet, driven by an active helium atom supplied with an atmospheric and room temperature plasma (ARTP) biological breeding system, was used as a novel method to breed L-arginine high-yielding strains. A mutant with resistance to L-homoarginine and 8-azaguaine, ARG 3-15 (L-HA(r), 8-AG(r), L-His(-)), was screened after several rounds of screening. The L-arginine production of these mutants was more than that of the original strain, increased by 43.79% for ARG 3-15. Moreover, N-acetyl-L-glutamate synthase activity of these mutants was also increased. After a series of passages, the hereditary properties of these mutants were found to be stable. Interestingly, beet molasses was utilized in a co-feeding fermentation and benefited to increase the productivity by 5.88%. Moreover, the fermentation with 1.0 g/L betaine could produce 9.33% more L-arginine than without betaine. In fed-batch fermentation, C. glutamicum ARG 3-15 began to produce L-arginine at the initial of logarithmic phase, and continuously increased over 24 hr to a final titer of 45.36 ± 0.42 g/L. The L-arginine productivity was 0.571 g/L/hr and the conversion of glucose (α) was 32.4% after 96 hr. These results indicated that C. glutamicum ARG 3-15 is a promising industrial producer.

  4. Plasma levels of arginine, ornithine, and urea and growth performance of broilers fed supplemental L-arginine during cool temperature exposure.

    Science.gov (United States)

    Ruiz-Feria, C A; Kidd, M T; Wideman, R F

    2001-03-01

    Two experiments (Experiment 1 and 2) were conducted to evaluate growth performance, ascites mortality, and concentrations of plasma Arg, urea, and ornithine in male broilers raised in floor pens (2 x 4 factorial experiment, six pens for treatment) and exposed to cool temperatures averaging 16 C after 21 d of age. Broilers were fed low- or high-CP diets in both Experiments. In Experiment 1, Arg treatments consisted of control (no supplemental Arg); 0.15 or 0.3% supplemental Arg in the diet (low- and medium-Arg feed, respectively); and 0.3% supplemental Arg in the drinking water (Arg-water). Arginine levels were increased in Experiment 2 and consisted of the following: control (no supplemental Arg); 0.3 or 0.85% supplemental Arg in the diet (medium- and high-Arg feed, respectively); and 0.6% supplemental Arg in the drinking water (Arg-water). The water treatment followed a 3-d cyclic regimen, with supplemental Arg being provided for 24 h, followed by tap water for 48 h. When the broilers reached 37 d of age and all groups had consumed tap water for the previous 48 h, blood samples were collected from one bird per pen (Time 0, 0700 h); then supplemental Arg was provided in the Arg-water group, and additional blood samples were collected from the control and Arg-water groups at 3, 6, 12, and 36 h after Time 0. Plasma amino acids were analyzed using HPLC. Birds fed the high-CP diet were heavier at 49 d than birds fed the low-CP diet in Experiment 1, but not in Experiment 2. No differences were found in feed conversion or ascites mortality due to CP or Arg treatments in either experiment. In both experiments, plasma Arg was similar for all groups at Time 0, but increased in the Arg-water group at 3, 6, and 12 h after Arg was provided in the water. Within 12 h after returning to tap water, plasma Arg levels of the Arg-water group did not differ from the control group. Plasma urea and ornithine were parallel to plasma Arg concentrations, and the high-CP diets resulted in

  5. Relationship between urinary concentrating ability, arginine vasopressin in plasma and blood pressure after renal transplantation.

    Science.gov (United States)

    Pedersen, E B; Danielsen, H; Nielsen, A H; Knudsen, F; Jensen, T; Kornerup, H J; Madsen, M

    1985-06-01

    Arginine vasopressin (AVP) and serum osmolality (Sosm) were determined in plasma before and after a 24-h period of water deprivation in 19 patients with post-renal-transplant hypertension (group I), 14 patients with normal blood pressure after renal transplantation (group II), and 16 healthy control subjects (group III). Urine was collected in four periods of 6 h each for measurement of urine volume (V), urine osmolality (Uosm) and tubular capacity for reabsorption of water (Tc water). AVP and Sosm increased significantly in all groups. The AVP levels were the same in groups I and II, but higher in group I than III both before and after water deprivation. In group II, AVP was higher than in group III only after water deprivation; V was significantly reduced in all groups. In groups I and II, V, Tc water and Uosm were the same. In group III, V was significantly lower than in groups I and II in the last three 6-h periods, and in group III, Tc water was higher in the first 6-h period than in groups I and II. There was a significant positive correlation between AVP and Sosm in all groups. In conclusion, renal water excretion cannot be reduced as rapidly and to the same degree in renal transplant recipients as in control subjects because of a decreased renal capacity for reabsorption of water. The higher AVP level in the transplant recipients may be a compensatory phenomenon for the decreased responsiveness of the renal collecting ducts in the transplanted kidneys. The sensitivity of the osmoreceptors to changes in osmotic stimuli was normal.

  6. Arginine-vasopressin marker copeptin is a sensitive plasma surrogate of hypoxic exposure

    Directory of Open Access Journals (Sweden)

    Ostergaard L

    2014-09-01

    Full Text Available Louise Ostergaard,1,2,* Alain Rudiger,3,* Sven Wellmann,2,4,5 Elena Gammella,6 Beatrice Beck-Schimmer,2,3 Joachim Struck,7 Marco Maggiorini,2,8 Max Gassmann,1,2,9 1Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, 2Zürich Center for Integrative Human Physiology, 3Institute of Anesthesiology, 4Division of Neonatology, University Hospital Zürich, Zürich, 5Department of Neonatology, University Children's Hospital Basel, Basel, Switzerland; 6Department of Human Morphology and Biomedical Science, University of Milan, Milan, Italy; 7Research Department, B•R•A•H•M•S Biomarkers, Thermo Fisher Scientific, Hennigsdorf, Germany; 8Medical Intensive Care Unit, University Hospital Zürich, Zürich, Switzerland; 9Universidad Peruana Cayetano Heredia, Lima, Peru *These authors contributed equally to this work and share first authorship Background: A reduced oxygen supply puts patients at risk of tissue hypoxia, organ damage, and even death. In response, several changes are activated that allow for at least partial adaptation, thereby increasing the chances of survival. We aimed to investigate whether the arginine vasopressin marker, copeptin, can be used as a marker of the degree of acclimatization/adaptation in rats exposed to hypoxia. Methods: Sprague-Dawley rats were exposed to 10% oxygen for up to 48 hours. Arterial and right ventricular pressures were measured, and blood gas analysis was performed at set time points. Pulmonary changes were investigated by bronchoalveolar lavage, wet and dry weight measurements, and lung histology. Using a newly developed specific rat copeptin luminescence immunoassay, the regulation of vasopressin in response to hypoxia was studied, as was atrial natriuretic peptide (ANP by detecting mid-regional proANP. Results: With a decreasing oxygen supply, the rats rapidly became cyanotic and inactive. Despite continued exposure to 10% oxygen, all animals recuperated within 16 hours and

  7. Changes in brain arginine vasotocin, isotocin, plasma 11-ketotestosterone and cortisol in round goby, Neogobius melanostomus, males subjected to overcrowding stress during the breeding season.

    Science.gov (United States)

    Sokołowska, Ewa; Kleszczyńska, Agnieszka; Kalamarz-Kubiak, Hanna; Arciszewski, Bartłomiej; Kulczykowska, Ewa

    2013-06-01

    In natural spawning grounds, breeding round goby, Neogobius melanostomus, males are exposed to various social stimuli, including high density of same-sex competitors and separation from females. We hypothesize that breeding males subjected to overcrowding in the wild experience high stress that affects their socio-sexual behavior and their relationships among conspecifics. We designed an experiment to mimic natural stimulation when highly aggregated breeding males are subjected to same-sex opponents. Males were sampled sequentially from experimental tank stocked at decreasing fish densities of 15 fish/m(2), 9 fish/m(2) and 4 fish/m(2). We studied the effects of overcrowding on male behavior and selected hormones, brain arginine vasotocin (AVT) and isotocin (IT) and plasma 11-ketotestosterone (11-KT) and cortisol as these are known to play roles in reproduction and related social interactions. The highest brain AVT and plasma cortisol levels were measured in non-aggressive males kept in the overcrowded group of 15 fish/m(2). IT level was elevated in fish kept at the lower density of 9 fish/m(2), and at which the males began to display territoriality and aggression. The plasma level of 11-KT was similar in all the males. Brain AVT and IT and plasma cortisol along with behavioral observations can be applied as species-specific indicators of the well-being of round goby males.

  8. Oxygen and nitrate in utilization by Bacillus licheniformis of the arginase and arginine deiminase routes of arginine catabolism and other factors affecting their syntheses.

    Science.gov (United States)

    Broman, K; Lauwers, N; Stalon, V; Wiame, J M

    1978-09-01

    Bacillus licheniformis has two pathways of arginine catabolism. In well-aerated cultures, the arginase route is present, and levels of catabolic ornithine carbamoyltransferase were low. An arginase pathway-deficient mutant, BL196, failed to grow on arginine as a nitrogen source under these conditions. In anaerobiosis, the wild type contained very low levels of arginase and ornithine transaminase. BL196 grew normally on glucose plus arginine in anaerobiosis and, like the wild type, had appreciable levels of catabolic transferase. Nitrate, like oxygen, repressed ornithine carbamoyltransferase and stimulated arginase synthesis. In aerobic cultures, arginase was repressed by glutamine in the presence of glucose, but not when the carbon-energy source was poor. In anaerobic cultures, ammonia repressed catabolic ornithine carbamoyltransferase, but glutamate and glutamine stimulated its synthesis. A second mutant, derived from BL196, retained the low arginase and ornithine transaminase levels of BL196 but produced high levels of deiminase pathway enzymes in the presence of oxygen.

  9. Content of non-esterified fatty acids in the blood plasma of rabbits with acute arginine pancreatitis and its correction

    Directory of Open Access Journals (Sweden)

    Y. F. Rivis

    2013-01-01

    Full Text Available The aim of this work was to study the content of non-esterified fatty acids in plasma and liver of rabbits with acute arginine pancreatitis and its correction by linseed oil. The experiment was carried out on male rabbits breed gray giant with live weight 3.8–4.0 kg. The material for the study was sampled from blood and liver. Lipids from plasma and liver were extracted with a mixture of chloroform and methanol. After that the non-esterified fatty acids were isolated and methylated. Methyl esters of fatty acids were studied by the gas-liquid chromatography with the chromatograph ''Chrom 5'' (Prague,CzechRepublic. We have found that the content of non-esterified fatty acids decreases in the blood plasma and liver of rabbits with the acute arginine pancreatitis. It takes place at the expense of a reduce of saturated fatty acids with odd and even number of carbon atoms in a chain, monounsaturated fatty acids of the families ω-7 and ω-9 and polyunsaturated fatty acids of the families ω-3 and ω-6. That may indicate a greater use of non-esterified fatty acids for energy metabolism and esterification of lipids. We suppose that this is a consequence of the probable increase in content of non-esterified and esterified cholesterol in the rabbits’ blood plasma. Those processes provoke the cholesterol deposits in blood vessels and therefore cardiovascular diseases. We tried to influence on the processes by addition of linseed oil to the rabbits diet. We have found that in the linseed oil-fed rabbits the content of non-esterified fatty acids decreases at the expense of saturated fatty acids with odd and even number of carbon atoms in a chain and monounsaturated fatty acids of the families ω-7 and ω-9 inblood plasma and liver of the rabbits with acute arginine pancreatitis. Furthermore the levels of non-esterified polyunsaturated fatty acids of ω-3 family increase in the rabbits’ plasma and liver. As this takes place the ratio of non

  10. Route of administration (enteral or parenteral) affects the contribution of L-glutamine to de novo L-arginine synthesis in mice: a stable-isotope study.

    Science.gov (United States)

    Boelens, Petra G; Melis, Gerdien C; van Leeuwen, Paul A; ten Have, Gabrie A; Deutz, Nicolaas E

    2006-10-01

    A pathway from enteral L-glutamine as substrate for L-arginine synthesis is suggested by previous studies. L-Glutamine and L-glutamine dipeptides exhibit numerous beneficial effects in experimental and clinical studies. In trauma patients, enteral L-glutamine supply increased plasma L-arginine. The present study was designed to quantify the contribution of L-glutamine to the de novo L-citrulline and L-arginine synthesis in mice when L-glutamine is administered in a high dose of labeled L-glutamine or L-alanyl-L-glutamine by the enteral or parenteral route. For this purpose, male Swiss mice (n = 43) underwent a laparotomy, and catheters were inserted for sampling and infusion. A primed, constant, and continuous infusion of L-alanyl-L-[2-(15)N]glutamine (dipeptide groups) or L-[2-(15)N]glutamine (free L-glutamine groups), simultaneously with L-[ureido-(13)C,(2)H(2)]citrulline and L-[guanidino-(15)N(2),(2)H(2)]arginine, was given (steady-state model). Mice received the L-glutamine tracers intravenously (jugular vein) or enterally (duodenum). Enrichments of metabolites were measured by LC-MS. Arterial L-glutamine concentrations were the highest in the intravenous dipeptide group. L-Glutamine was converted to L-citrulline and L-arginine when L-[2-(15)N]glutamine and L-alanyl-L-[2-(15)N]glutamine were given by enteral or parenteral route. The contribution of L-glutamine to the de novo synthesis of L-citrulline and L-arginine was higher in the enteral groups when compared with the intravenous groups (P glutamine, provided as free molecule or dipeptide, to the de novo synthesis of L-arginine in mice.

  11. N-terminal arginines modulate plasma-membrane localization of Kv7.1/KCNE1 channel complexes.

    Directory of Open Access Journals (Sweden)

    Zenawit Girmatsion

    Full Text Available BACKGROUND AND OBJECTIVE: The slow delayed rectifier current (I(Ks is important for cardiac action potential termination. The underlying channel is composed of Kv7.1 α-subunits and KCNE1 β-subunits. While most evidence suggests a role of KCNE1 transmembrane domain and C-terminus for the interaction, the N-terminal KCNE1 polymorphism 38G is associated with reduced I(Ks and atrial fibrillation (a human arrhythmia. Structure-function relationship of the KCNE1 N-terminus for I(Ks modulation is poorly understood and was subject of this study. METHODS: We studied N-terminal KCNE1 constructs disrupting structurally important positively charged amino-acids (arginines at positions 32, 33, 36 as well as KCNE1 constructs that modify position 38 including an N-terminal truncation mutation. Experimental procedures included molecular cloning, patch-clamp recording, protein biochemistry, real-time-PCR and confocal microscopy. RESULTS: All KCNE1 constructs physically interacted with Kv7.1. I(Ks resulting from co-expression of Kv7.1 with non-atrial fibrillation '38S' was greater than with any other construct. Ionic currents resulting from co-transfection of a KCNE1 mutant with arginine substitutions ('38G-3xA' were comparable to currents evoked from cells transfected with an N-terminally truncated KCNE1-construct ('Δ1-38'. Western-blots from plasma-membrane preparations and confocal images consistently showed a greater amount of Kv7.1 protein at the plasma-membrane in cells co-transfected with the non-atrial fibrillation KCNE1-38S than with any other construct. CONCLUSIONS: The results of our study indicate that N-terminal arginines in positions 32, 33, 36 of KCNE1 are important for reconstitution of I(Ks. Furthermore, our results hint towards a role of these N-terminal amino-acids in membrane representation of the delayed rectifier channel complex.

  12. Dietary arginine and N-carbamylglutamate supplementation enhances the antioxidant statuses of the liver and plasma against oxidative stress in rats.

    Science.gov (United States)

    Cao, Wei; Xiao, Liang; Liu, Guangmang; Fang, Tingting; Wu, Xianjian; Jia, Gang; Zhao, Hua; Chen, Xiaoling; Wu, Caimei; Cai, Jingyi; Wang, Jing

    2016-05-18

    N-Carbamylglutamate (NCG), an effective precursor of arginine (ARG), can enhance ARG synthesis, increase intestinal growth, and improve reproductive performance. However, the antioxidant effect of NCG remains largely unknown. This study aims to survey the effects of ARG and NCG supplementation on the antioxidant statuses of the liver and plasma in rats under oxidative stress. Rats were fed for 30 days with one of the three iso-nitrogenous diets: basal diet (BD), BD plus 1% ARG, and BD plus 0.1% NCG. On day 28, half of the rats fed with BD were intraperitoneally injected with 12 mg per kg body weight of diquat (diquat group) and the other half was injected intraperitoneally with sterile 0.9% NaCl solution (control group). The other diet groups also received an intraperitoneal injection of 12 mg per kg body weight of diquat, as follows: diquat + 1% ARG (DT + ARG), and diquat + 0.1% NCG (DT + NCG). Rat liver and plasma samples obtained 48 h after diquat injection were analyzed. Results indicated that diquat significantly affected the plasma conventional biochemical components (relative to the controls), which were partially alleviated in both the DT + ARG and DT + NCG groups (P < 0.05). Diquat also significantly decreased the glutathione (GSH) content (by 30.0%), and decreased anti-superoxide anion (ASA; by 13.8%) and anti-hydroxyl radical (AHR; by 38.9%) abilities in the plasma, and also decreased catalase (CAT) activity both in the liver (by 17.5%) and plasma (by 33.4%) compared with the control group. By contrast, diquat increased the malondialdehyde (MDA) content (by 23.0%) in the plasma (P < 0.05) compared with the control group. Relative to those of the diquat group, higher CAT activity and GSH content were noted in the plasma of the DT + ARG group and in the liver of both DT + ARG and DT + NCG groups (P < 0.05). Furthermore, the DT + ARG group exhibited significantly enhanced plasma ASA activity (P < 0.05). The DT + NCG group showed significantly improved total

  13. Top-dressing 1% arginine supplementation in the lactation diet of sows does not affect the litter performance and milk composition

    Directory of Open Access Journals (Sweden)

    Djane Dallanora

    2016-08-01

    Full Text Available ABSTRACT: The study aimed to evaluate the effects of arginine supplementation in the lactation diet of sows on their milk composition, litter performance and piglet survival. Sixty-four lactating Landrace x Large White sows, parity 1 to 7, were randomly assigned to two treatments: 1 Control - a corn/soybean meal based diet with 1.10% standardized ileal digestible (SID lysine and 3,475kcal of metabolizable energy (ME kg-1, and 2 arginine - the control diet top-dressed daily with arginine at 1% of feed allowance. The daily feed allowance per sow was 5.0 and 7.5kg from day (D0 to D7 and D8 to D21, respectively. The average litter size was 12.8 piglets after cross-fostering. Litters were weighed on D1, D10, and D21 of lactation and pre-weaning mortality was recorded. Samples of milk (60mL were collected from all functional teats at D10 and D20 of lactation. There were no effects (P>0.05 of arginine supplementation on piglet weight, litter weight, and average daily gain of piglets at D10 and D21 of lactation. The interaction between weight day and treatment was not significant (P>0.05 for any of these response variables. The percentages of piglets that survived until D10 and D21 were 90.3% and 88.3%, respectively, with no difference (P>0.05 between treatments. There were no effects (P>0.05 of the lactation day (D10 or D20, treatment or the interaction between them on crude protein and amino acid content in milk. Top-dressing arginine at 1% of feed allowance of the lactation diet of sows does not affect litter performance and survival and does not influence the amino acid content or arginine: lysine ratio of milk.

  14. Effect of exercise on plasma concentrations of arginine vasopressin, angiotensin II and aldosterone in hypertensive and normotensive renal transplant recipients.

    Science.gov (United States)

    Pedersen, E B; Danielsen, H; Nielsen, A H; Knudsen, F; Jensen, T; Kornerup, H J; Madsen, M

    1986-04-01

    Plasma concentrations of angiotensin II (A II), aldosterone (Aldo) and arginine vasopressin (AVP), and serum osmolality (Sosm) were determined before and after gradually increasing exercise loads on a bicycle ergometer in 10 hypertensive (group I) and 10 normotensive renal transplant recipients (group II), and in 15 healthy control subjects (group III). Working capacity was reduced in groups I and II. The A II, Aldo, AVP, Sosm increased in all groups after exercise. The A II was higher in group I than II and the percentage changes were significantly lower in groups I and II than in group III. There were no significant differences in Aldo between the groups either before or after exercise. The AVP was the same in groups I and II, and AVP in these groups was higher than in group III. The Sosm and AVP were significantly correlated in all groups. Neither A II, Aldo nor AVP were significantly correlated to systolic blood pressure (BP). Alterations in AVP, but not in A II or Aldo, were correlated to the degree of exercise load. It can be concluded that the renin-angiotensin-aldosterone system and the osmoregulatory system are stimulated during exercise in renal transplant recipients. The A II is elevated in post-renal transplant hypertension, but the responsiveness is reduced in both hypertensive and normotensive recipients. The alterations in AVP are probably secondary to changes in Sosm, and the higher AVP levels in recipients could be due to a decreased responsiveness of the renal tubules to AVP. Our findings are in good agreement with the hypothesis that hypertension after renal transplantation is angiotensin II-dependent.

  15. Cellular transport of l-arginine determines renal medullary blood flow in control rats, but not in diabetic rats despite enhanced cellular uptake capacity.

    Science.gov (United States)

    Persson, Patrik; Fasching, Angelica; Teerlink, Tom; Hansell, Peter; Palm, Fredrik

    2017-02-01

    Diabetes mellitus is associated with decreased nitric oxide bioavailability thereby affecting renal blood flow regulation. Previous reports have demonstrated that cellular uptake of l-arginine is rate limiting for nitric oxide production and that plasma l-arginine concentration is decreased in diabetes. We therefore investigated whether regional renal blood flow regulation is affected by cellular l-arginine uptake in streptozotocin-induced diabetic rats. Rats were anesthetized with thiobutabarbital, and the left kidney was exposed. Total, cortical, and medullary renal blood flow was investigated before and after renal artery infusion of increasing doses of either l-homoarginine to inhibit cellular uptake of l-arginine or N(ω)-nitro- l-arginine methyl ester (l-NAME) to inhibit nitric oxide synthase. l-Homoarginine infusion did not affect total or cortical blood flow in any of the groups, but caused a dose-dependent reduction in medullary blood flow. l-NAME decreased total, cortical and medullary blood flow in both groups. However, the reductions in medullary blood flow in response to both l-homoarginine and l-NAME were more pronounced in the control groups compared with the diabetic groups. Isolated cortical tubular cells displayed similar l-arginine uptake capacity whereas medullary tubular cells isolated from diabetic rats had increased l-arginine uptake capacity. Diabetics had reduced l-arginine concentrations in plasma and medullary tissue but increased l-arginine concentration in cortical tissue. In conclusion, the reduced l-arginine availability in plasma and medullary tissue in diabetes results in reduced nitric oxide-mediated regulation of renal medullary hemodynamics. Cortical blood flow regulation displays less dependency on extracellular l-arginine and the upregulated cortical tissue l-arginine may protect cortical hemodynamics in diabetes.

  16. Oral Administration of L-Arginine in Patients With Angina or Following Myocardial Infarction May Be Protective By Increasing Plasma Superoxide Dismutase and Total Thiols With Reduction in Serum Cholesterol and Xanthine Oxidase

    Directory of Open Access Journals (Sweden)

    Pratima Tripathi

    2009-01-01

    Full Text Available Administration of L-arginine has been shown to control ischemic injury by producing nitric oxide which dilates the vessels and thus maintains proper blood flow to the myocardium. In the present study attempt has been made to determine whether oral administration of L-arginine has any effect on oxidant/antioxidant homeostasis in ischemic myocardial patients [represented by the patients of acute angina (AA and acute myocardial infarction (MI]. L-arginine has antioxidant and antiapoptotic properties, decreases endothelin-1 expression and improves endothelial function, thereby controlling oxidative injury caused during myocardial ischemic syndrome. Effect of L-arginine administration on the status of free radical scavenging enzymes, pro-oxidant enzyme and antioxidants viz. total thiols, carbonyl content and plasma ascorbic acid levels in the patients has been evaluated. We have observed that L-arginine administration (three grams per day for 15 days resulted in increased activity of free radical scavenging enzyme superoxide dismutase (SOD and increase in the levels of total thiols (T-SH and ascorbic acid with concomitant decrease in lipid per-oxidation, carbonyl content, serum cholesterol and the activity of proxidant enzyme, xanthine oxidase (XO. These findings suggest that the supplementation of L-arginine along with regular therapy may be beneficial to the patients of ischemic myocardial syndromes.

  17. Relationship between urinary prostaglandin E2 and F2 alpha excretion and plasma arginine vasopressin during renal concentrating and diluting tests in renal transplant recipients.

    Science.gov (United States)

    Pedersen, E B; Christensen, P; Danielsen, H; Eiskjaer, H; Jespersen, B; Knudsen, F; Kornerup, H J; Leyssac, P P; Nielsen, A H; Sørensen, S S

    1987-10-01

    Urinary excretion of prostaglandin E2 (PGE2 and F2 alpha (PGF2 alpha) and plasma concentration of arginine vasopressin (AVP) were determined during urinary concentrating and diluting tests in renal transplant recipients and control subjects. During the concentrating test PGE2 and PGF2 alpha remained unchanged in the renal transplant recipients, whereas both PGE2 and PGF2 alpha were significantly reduced in the control subjects. During the diluting test PGE2 and PGF2 alpha increased in both groups but, contrary to PGF2 alpha, PGE2 was significantly higher in all periods in the transplant recipients compared to the controls. However, the prostaglandin excretion rates per kidney were significantly higher in the renal transplant recipients than control subjects, for all periods during both the concentrating and the diluting test. Arginine vasopressin was significantly higher in renal transplant recipients than control subjects during basal conditions, increased to a significantly higher level in the transplant recipients after thirst, but was reduced to the same levels in the two groups during the diluting test. It is concluded that the increased excretion of prostaglandins in renal transplant recipients may be a compensatory phenomenon representing an adaptation to a reduced renal mass in order to maintain adequate renal water excretion. Although a direct relationship between the prostaglandin excretions of PGE2 and PGF2 alpha and AVP does not seem to exist, it is possible that the higher prostaglandin excretion in the renal transplant recipients may be a counterbalancing mechanism to the higher AVP level, which most likely is secondary to a decreased responsiveness to vasopressin of the renal collecting ducts in the transplanted kidney.

  18. An Onion Byproduct Affects Plasma Lipids in Healthy Rats

    DEFF Research Database (Denmark)

    Roldan-Marin, E.; Jensen, R. I.; Krath, Britta

    2010-01-01

    lipids and on factors affecting cholesterol metabolism in healthy rats have been investigated. The OBP or its fractions did not significantly reduce cholesterol or down-regulate hepatic 3-hydroxy-3-methylglutaryl-coenzyme A reductase (Hmgcr) gene expression. The OR even had the effect of increasing...... plasma triacylglycerides (TAG) and cholesterol in the very low density lipoprotein (VLDL-C) fraction. Neither total bile acids nor total primary or secondary bile acids were significantly affected by feeding rats the OBP or its fractions. Principal component analysis combining all markers revealed...

  19. Seminal plasma affects sperm sex sorting in boars.

    Science.gov (United States)

    Alkmin, Diego V; Parrilla, Inmaculada; Tarantini, Tatiana; Del Olmo, David; Vazquez, Juan M; Martinez, Emilio A; Roca, Jordi

    2016-04-01

    Two experiments were conducted in boar semen samples to evaluate how both holding time (24h) and the presence of seminal plasma (SP) before sorting affect sperm sortability and the ability of sex-sorted spermatozoa to tolerate liquid storage. Whole ejaculate samples were divided into three aliquots immediately after collection: one was diluted (1:1, v/v) in Beltsville thawing solution (BTS; 50% SP); the SP of the other two aliquots was removed and the sperm pellets were diluted with BTS + 10% of their own SP (10% SP) or BTS alone (0% SP). The three aliquots of each ejaculate were divided into two portions, one that was processed immediately for sorting and a second that was sorted after 24h storage at 15-17°C. In the first experiment, the ability to exhibit well-defined X- and Y-chromosome-bearing sperm peaks (split) in the cytometry histogram and the subsequent sorting efficiency were assessed (20 ejaculates). In contrast with holding time, the SP proportion influenced the parameters examined, as evidenced by the higher number of ejaculates exhibiting split and better sorting efficiency (P<0.05) in semen samples with 0-10% SP compared with those with 50% SP. In a second experiment, the quality (viability, total and progressive motility) and functionality (plasma membrane fluidity and intracellular generation of reactive oxygen species) of sex-sorted spermatozoa were evaluated after 0, 72 and 120h storage at 15-17°C (10 ejaculates). Holding time and SP proportion did not influence the quality or functionality of stored sex-sorted spermatozoa. In conclusion, a holding time as long as 24h before sorting did not negatively affect sex sorting efficiency or the ability of sorted boar spermatozoa to tolerate long-term liquid storage. A high proportion of SP (50%) in the semen samples before sorting reduced the number of ejaculates to be sorted and negatively influenced the sorting efficiency, but did not affect the ability of sex-sorted spermatozoa to tolerate liquid

  20. The role of arginine in infection and sepsis.

    Science.gov (United States)

    Luiking, Yvette C; Poeze, Martijn; Ramsay, Graham; Deutz, Nicolaas E P

    2005-01-01

    Sepsis is a systemic response to an infection, with high morbidity and mortality rates. Metabolic changes during infection and sepsis could be related to changes in metabolism of the amino acid L-arginine. In sepsis, protein breakdown is increased, which is a key process to maintain arginine delivery because both endogenous de novo arginine production from citrulline and food intake are reduced. Arginine catabolism, on the other hand, is markedly increased by enhanced use of arginine via the arginase and nitric oxide pathways. As a result, lowered plasma arginine levels are usually found. Arginine may therefore be considered as an essential amino acid in sepsis, and supplementation could be beneficial in sepsis by improving microcirculation and protein anabolism. L-Arginine supplementation in a hyperdynamic pig model of sepsis prohibits the increase in pulmonary arterial blood pressure, improves muscle and liver protein metabolism, and restores the intestinal motility pattern. Arguments raised against arginine supplementation are mainly pointed at stimulating nitric oxide (NO) production, with concerns about toxicity of increased NO and hemodynamic instability with refractory hypotension. NO synthase inhibition, however, increased mortality. Arginine supplementation in septic patients has transient effects on hemodynamics when supplied as a bolus but seems without hemodynamic side effects when supplied continuously. In conclusion, arginine could have an essential role in infection and sepsis.

  1. Arginine deprivation using pegylated arginine deiminase has activity against primary acute myeloid leukemia cells in vivo.

    Science.gov (United States)

    Miraki-Moud, Farideh; Ghazaly, Essam; Ariza-McNaughton, Linda; Hodby, Katharine A; Clear, Andrew; Anjos-Afonso, Fernando; Liapis, Konstantinos; Grantham, Marianne; Sohrabi, Fareeda; Cavenagh, Jamie; Bomalaski, John S; Gribben, John G; Szlosarek, Peter W; Bonnet, Dominique; Taussig, David C

    2015-06-25

    The strategy of enzymatic degradation of amino acids to deprive malignant cells of important nutrients is an established component of induction therapy of acute lymphoblastic leukemia. Here we show that acute myeloid leukemia (AML) cells from most patients with AML are deficient in a critical enzyme required for arginine synthesis, argininosuccinate synthetase-1 (ASS1). Thus, these ASS1-deficient AML cells are dependent on importing extracellular arginine. We therefore investigated the effect of plasma arginine deprivation using pegylated arginine deiminase (ADI-PEG 20) against primary AMLs in a xenograft model and in vitro. ADI-PEG 20 alone induced responses in 19 of 38 AMLs in vitro and 3 of 6 AMLs in vivo, leading to caspase activation in sensitive AMLs. ADI-PEG 20-resistant AMLs showed higher relative expression of ASS1 than sensitive AMLs. This suggests that the resistant AMLs survive by producing arginine through this metabolic pathway and ASS1 expression could be used as a biomarker for response. Sensitive AMLs showed more avid uptake of arginine from the extracellular environment consistent with their auxotrophy for arginine. The combination of ADI-PEG 20 and cytarabine chemotherapy was more effective than either treatment alone resulting in responses in 6 of 6 AMLs tested in vivo. Our data show that arginine deprivation is a reasonable strategy in AML that paves the way for clinical trials.

  2. A novel mutation affecting the arginine-137 residue of AVPR2 in dizygous twins leads to nephrogenic diabetes insipidus and attenuated urine exosome aquaporin-2.

    Science.gov (United States)

    Hinrichs, Gitte R; Hansen, Louise H; Nielsen, Maria R; Fagerberg, Christina; Dieperink, Hans; Rittig, Søren; Jensen, Boye L

    2016-04-01

    Mutations in the vasopressin V2 receptor gene AVPR2 may cause X-linked nephrogenic diabetes insipidus by defective apical insertion of aquaporin-2 in the renal collecting duct principal cell. Substitution mutations with exchange of arginine at codon 137 can cause nephrogenic syndrome of inappropriate antidiuresis or congenital X-linked nephrogenic diabetes insipidus. We present a novel mutation in codon 137 within AVPR2 with substitution of glycine for arginine in male dizygotic twins. Nephrogenic diabetes insipidus was demonstrated by water deprivation test and resistance to vasopressin administration. While a similar urine exosome release rate was shown between probands and controls by western blotting for the marker ALIX, there was a selective decrease in exosome aquaporin-2 versus aquaporin-1 protein in probands compared to controls.

  3. Dietary zinc depletion and repletion affects plasma proteins: an analysis of the plasma proteome.

    Science.gov (United States)

    Grider, Arthur; Wickwire, Kathie; Ho, Emily; Chung, Carolyn S; King, Janet

    2013-02-01

    Zinc (Zn) deficiency is a problem world-wide. Current methods for assessing Zn status are limited to measuring plasma or serum Zn within populations suspected of deficiency. Despite the high prevalence of Zn deficiency in the human population there are no methods currently available for sensitively assessing Zn status among individuals. The purpose of this research was to utilize a proteomic approach using two-dimensional gel electrophoresis (2DE) and mass spectrometry to identify protein biomarkers that were sensitive to changes in dietary Zn levels in humans. Proteomic analysis was performed in human plasma samples (n = 6) obtained from healthy adult male subjects that completed a dietary Zn depletion/repletion protocol, current dietary zinc intake has a greater effect on fractional zinc absorption than does longer term zinc consumption in healthy adult men. Chung et al. (Am J Clin Nutr 87 (5):1224-1229, 2008). After a 13 day Zn acclimatization period where subjects consumed a Zn-adequate diet, the male subjects consumed a marginal Zn-depleted diet for 42 days followed by consumption of a Zn-repleted diet for 28 days. The samples at baseline, end of depletion and end of repletion were pre-fractionated through immuno-affinity columns to remove 14 highly abundant proteins, and each fraction separated by 2DE. Following staining by colloidal Coomassie blue and densitometric analysis, three proteins were identified by mass spectrometry as affected by changes in dietary Zn. Fibrin β and chain E, fragment double D were observed in the plasma protein fraction that remained bound to the immunoaffinity column. An unnamed protein that was related to immunoglobulins was observed in the immunodepleted plasma fraction. Fibrin β increased two-fold following the Zn depletion period and decreased to baseline values following the Zn repletion period; this protein may serve as a viable biomarker for Zn status in the future.

  4. Arginine Catabolism and the Arginine Succinyltransferase Pathway in Escherichia coli

    OpenAIRE

    Schneider, Barbara L.; Kiupakis, Alexandros K.; Reitzer, Lawrence J.

    1998-01-01

    Arginine catabolism produces ammonia without transferring nitrogen to another compound, yet the only known pathway of arginine catabolism in Escherichia coli (through arginine decarboxylase) does not produce ammonia. Our aims were to find the ammonia-producing pathway of arginine catabolism in E. coli and to examine its function. We showed that the only previously described pathway of arginine catabolism, which does not produce ammonia, accounted for only 3% of the arginine consumed. A search...

  5. Transcutaneous Electrical Acupoint Stimulation in Children with Autism and Its Impact on Plasma Levels of Arginine-Vasopressin and Oxytocin: A Prospective Single-Blinded Controlled Study

    Science.gov (United States)

    Zhang, Rong; Jia, Mei-Xiang; Zhang, Ji-Sui; Xu, Xin-Jie; Shou, Xiao-Jing; Zhang, Xiu-Ting; Li, Li; Li, Ning; Han, Song-Ping; Han, Ji-Sheng

    2012-01-01

    Acupuncture increases brain levels of arginine-vasopressin (AVP) and oxytocin (OXT), which are known to be involved in the modulation of mammalian social behavior. Transcutaneous electrical acupoint stimulation (TEAS) is often used clinically to produce a similar stimulation to that of acupuncture on the acupoints. In the present study, TEAS was…

  6. L-Arginine Affects Aerobic Capacity and Muscle Metabolism in MELAS (Mitochondrial Encephalomyopathy, Lactic Acidosis and Stroke-Like Episodes Syndrome.

    Directory of Open Access Journals (Sweden)

    Lance H Rodan

    Full Text Available To study the effects of L-arginine (L-Arg on total body aerobic capacity and muscle metabolism as assessed by (31Phosphorus Magnetic Resonance Spectroscopy ((31P-MRS in patients with MELAS (Mitochondrial Encephalomyopathy with Lactic Acidosis and Stroke-like episodes syndrome.We performed a case control study in 3 MELAS siblings (m.3243A>G tRNA(leu(UUR in MTTL1 gene with different % blood mutant mtDNA to evaluate total body maximal aerobic capacity (VO(2peak using graded cycle ergometry and muscle metabolism using 31P-MRS. We then ran a clinical trial pilot study in MELAS sibs to assess response of these parameters to single dose and a 6-week steady-state trial of oral L-Arginine.At baseline (no L-Arg, MELAS had lower serum Arg (p = 0.001. On 3(1P-MRS muscle at rest, MELAS subjects had increased phosphocreatine (PCr (p = 0.05, decreased ATP (p = 0.018, and decreased intracellular Mg(2+ (p = 0.0002 when compared to matched controls. With L-arginine therapy, the following trends were noted in MELAS siblings on cycle ergometry: (1 increase in mean % maximum work at anaerobic threshold (AT (2 increase in % maximum heart rate at AT (3 small increase in VO(2peak. On (31P-MRS the following mean trends were noted: (1 A blunted decrease in pH after exercise (less acidosis (2 increase in Pi/PCr ratio (ADP suggesting increased work capacity (3 a faster half time of PCr recovery (marker of mitochondrial activity following 5 minutes of moderate intensity exercise (4 increase in torque.These results suggest an improvement in aerobic capacity and muscle metabolism in MELAS subjects in response to supplementation with L-Arg. Intramyocellular hypomagnesemia is a novel finding that warrants further study.Class III evidence that L-arginine improves aerobic capacity and muscle metabolism in MELAS subjects.ClinicalTrials.gov NCT01603446.

  7. A novel mutation affecting the arginine-137 residue of AVPR2 in dizygous twins leads to nephrogenic diabetes insipidus and attenuated urine exosome aquaporin-2

    DEFF Research Database (Denmark)

    Hinrichs, Gitte R; Hansen, Louise H; Nielsen, Maria R

    2016-01-01

    Mutations in the vasopressin V2 receptor gene AVPR2 may cause X-linked nephrogenic diabetes insipidus by defective apical insertion of aquaporin-2 in the renal collecting duct principal cell. Substitution mutations with exchange of arginine at codon 137 can cause nephrogenic syndrome of inappropr...... administration. While a similar urine exosome release rate was shown between probands and controls by western blotting for the marker ALIX, there was a selective decrease in exosome aquaporin-2 versus aquaporin-1 protein in probands compared to controls....

  8. Growth hormone modulation of arginine-induced glucagon release: studies of isolated growth hormone deficiency and acromegaly.

    Science.gov (United States)

    Seino, Y; Taminato, T; Goto, Y; Inoue, Y; Kadowaki, S; Hattori, M; Mori, K; Kato, Y; Matsukura, S; Imura, H

    1978-12-01

    Plasma glucagon and insulin responses to L-arginine were compared in normal controls and patients with isolated growth hormone deficiency and acromegaly. Patients with isolated growth hormone deficiency were characterized by high plasma glucagon response and low plasma insulin response, whereas acromegalic patients showed exaggerated plasma glucagon response and almost normal insulin response. These results suggest that growth hormone is probably required for optimum function of the islets, and since hyperglucagonaemia was observed in both growth hormone deficiency and acromegaly, metabolic disturbances stemming from the respective primary diseases may affect glucagon secretion.

  9. Blood sampling and hemolysis affect concentration of plasma metabolites

    DEFF Research Database (Denmark)

    Theil, Peter Kappel; Pedersen, Lene Juul; Jensen, Margit Bak;

    2012-01-01

    , a subset of samples from 24 sows fed twice daily in Exp. 1 was combined with data obtained from 30 sows sampled using jugular vein catheters. All sows in Exp. 2 were fed twice daily (0800 h and 1500 h) and blood samples collected repeatedly 1, 4, 11, and 23 h after morning feeding (other conditions were......Two experiments were carried out to reveal and quantify plasma metabolites that are sensitive to hemolysis and animal stress due to the blood sampling procedure (vein puncture vs. catheter). In Exp. 1, 48 sows were fed 4 diets either once (0800 h) or twice daily (0800 h and 1500 h) in a crossover...... design and blood was collected after restraint via vein puncture 1, 4, 11, and 23 h after morning feeding. Plasma samples were categorized as without or with minor or major hemolysis [clear (n = 218), yellow (n = 97), or red (n = 37)] upon centrifugation. Plasma NEFA (P

  10. Citrulline Supplementation Improves Organ Perfusion and Arginine Availability under Conditions with Enhanced Arginase Activity

    Directory of Open Access Journals (Sweden)

    Karolina A.P. Wijnands

    2015-06-01

    Full Text Available Enhanced arginase-induced arginine consumption is believed to play a key role in the pathogenesis of sickle cell disease-induced end organ failure. Enhancement of arginine availability with l-arginine supplementation exhibited less consistent results; however, l-citrulline, the precursor of l-arginine, may be a promising alternative. In this study, we determined the effects of l-citrulline compared to l-arginine supplementation on arginine-nitric oxide (NO metabolism, arginine availability and microcirculation in a murine model with acutely-enhanced arginase activity. The effects were measured in six groups of mice (n = 8 each injected intraperitoneally with sterile saline or arginase (1000 IE/mouse with or without being separately injected with l-citrulline or l-arginine 1 h prior to assessment of the microcirculation with side stream dark-field (SDF-imaging or in vivo NO-production with electron spin resonance (ESR spectroscopy. Arginase injection caused a decrease in plasma and tissue arginine concentrations. l-arginine and l-citrulline supplementation both enhanced plasma and tissue arginine concentrations in arginase-injected mice. However, only the citrulline supplementation increased NO production and improved microcirculatory flow in arginase-injected mice. In conclusion, the present study provides for the first time in vivo experimental evidence that l-citrulline, and not l-arginine supplementation, improves the end organ microcirculation during conditions with acute arginase-induced arginine deficiency by increasing the NO concentration in tissues.

  11. Plasma degradome affected by variable storage of human blood

    NARCIS (Netherlands)

    Kaisar, Maria; Van Dullemen, Leon F. A.; Thezenas, Marie-Laetitia; Akhtar, M. Zeeshan; Huang, Honglei; Rendel, Sandrine; Charles, Philip D.; Fischer, Roman; Ploeg, Rutger J.; Kessler, Benedikt M.

    2016-01-01

    Background: The successful application of-omics technologies in the discovery of novel biomarkers and targets of therapeutic interventions is facilitated by large collections of well curated clinical samples stored in bio banks. Mining the plasma proteome holds promise to improve our understanding o

  12. Plane of nutrition affects plasma ghrelin concentrations in neonatal calves

    Science.gov (United States)

    Investigating different planes of nutrition on appetite-related hormones could provide knowledge into the role of these hormones on growth performance in neonatal calves. The objective of the current study was to investigate the effects of feeding rates on ghrelin in plasma from preruminant calves....

  13. Pancreatic cancer cell lines deficient in argininosuccinate synthetase are sensitive to arginine deprivation by arginine deiminase.

    Science.gov (United States)

    Bowles, Tawnya L; Kim, Randie; Galante, Joseph; Parsons, Colin M; Virudachalam, Subbulakshmi; Kung, Hsing-Jien; Bold, Richard J

    2008-10-15

    Eukaryotic cells can synthesize the non-essential amino acid arginine from aspartate and citrulline using the enzyme argininosuccinate synthetase (ASS). It has been observed that ASS is underexpressed in various types of cancers ASS, for which arginine become auxotrophic. Arginine deiminase (ADI) is a prokaryotic enzyme that metabolizes arginine to citrulline and has been found to inhibit melanoma and hepatoma cancer cells deficient of ASS. We tested the hypothesis that pancreatic cancers have low ASS expression and therefore arginine deprivation by ADI will inhibit cell growth. ASS expression was examined in 47 malignant and 20 non-neoplastic pancreatic tissues as well as a panel of human pancreatic cancer cell lines. Arginine deprivation was achieved by treatment with a recombinant form of ADI formulated with polyethylene glycol (PEG-ADI). Effects on caspase activation, cell growth and cell death were examined. Furthermore, the effect of PEG-ADI on the in vivo growth of pancreatic xenografts was examined. Eighty-seven percent of the tumors lacked ASS expression; 5 of 7 cell lines similarly lacked ASS expression. PEG-ADI specifically inhibited growth of those cell lines lacking ASS. PEG-ADI treatment induced caspase activation and induction of apoptosis. PEG-ADI was well tolerated in mice despite complete elimination of plasma arginine; tumor growth was inhibited by approximately 50%. Reduced expression of ASS occurs in pancreatic cancer and predicts sensitivity to arginine deprivation achieved by PEG-ADI treatment. Therefore, these findings suggest that arginine deprivation by ADI could provide a beneficial strategy for the treatment of pancreatic cancer, a malignancy in which new therapy is desperately needed.

  14. Expression of the arginine deiminase pathway genes in Lactobacillus sakei is strain dependent and is affected by the environmental pH.

    Science.gov (United States)

    Rimaux, T; Rivière, A; Illeghems, K; Weckx, S; De Vuyst, L; Leroy, F

    2012-07-01

    The adaptation of Lactobacillus sakei to a meat environment is reflected in its metabolic potential. For instance, the ability to utilize arginine through the arginine deiminase (ADI) pathway, resulting in additional ATP, represents a competitive benefit. In L. sakei CTC 494, the arc operon (arcABCTDR) shows the same gene order and organization as that in L. sakei 23K, the genome sequence of which is known. However, differences in relative gene expression were found, and these seemed to be optimal in different growth phases, namely, the highest relative gene expression level was in the end exponential growth phase in the case of L. sakei CTC 494 and in the mid-exponential growth phase of L. sakei 23K. Also, the environmental pH influenced the relative expression level of the arc operon, as shown for L. sakei CTC 494, with the highest relative expression level occurring at the optimal pH for growth (pH 6.0). Deviations from this optimal pH (pH 5.0 and pH 7.0) resulted in an overall decline of the relative expression level of all genes of the arc operon. Furthermore, a differential relative expression of the individual genes of the arc operon was found, with the highest relative gene expression occurring for the first two genes of the arc operon (arcA and arcB). Finally, it was shown that some L. sakei strains were able to convert agmatine into putrescine, suggesting an operational agmatine deiminase pathway in these strains, a metabolic trait that is undesirable in meat fermentations. This study shows that this metabolic trait is most probably encoded by a previously erroneously annotated second putative arc operon.

  15. L-arginine

    Science.gov (United States)

    ... that taking L-arginine, alone or together with antioxidants (Niteworks, Herbalife International, Inc), does not improve performance ... administered as a shot, or applied to the skin, short-term. It can cause some side effects ...

  16. Adaptation to a long term (4 weeks) arginine- and precursor (glutamate, proline and aspartate)-free diet

    Science.gov (United States)

    It is not known whether arginine homeostasis is negatively affected by a "long-term" dietary restriction of arginine and its major precursors in healthy adults. To assess the effects of a 4-week arginine- and precursor-free dietary intake on the regulatory mechanisms of arginine homeostasis in healt...

  17. Sex and storage affect cholinesterase activity in blood plasma of Japanese quail

    Science.gov (United States)

    Hill, E.F.

    1989-01-01

    Freezing at -25?C had confounding effects on cholinesterase (ChE) activity in blood plasma from breeding female quail, but did not affect ChE activity in plasma from males. Plasma ChE activity of control females increased consistently during 28 days of storage while both carbamate- and cidrotophos-inhibited ChE decreased. Refrigeration of plasma at 4?C for 2 days had little effect of ChE activity. Plasma ChE activity was averaged about 34% higher in breeding males than in females. Extreme caution should be exercised in use of blood plasma for evaluation of anti ChE exposure in free-living birds.

  18. Arginine nutrition and fetal brown adipose tissue development in nutrient-restricted sheep.

    Science.gov (United States)

    Satterfield, M Carey; Dunlap, Kathrin A; Keisler, Duane H; Bazer, Fuller W; Wu, Guoyao

    2013-09-01

    Intrauterine growth restriction is a significant problem worldwide, resulting in increased rates of neonatal morbidity and mortality, as well as increased risks for metabolic and cardiovascular disease. The present study investigated the role of maternal undernutrition and L-arginine administration on fetal growth and development. Embryo transfer was utilized to generate genetically similar singleton pregnancies. On Day 35 of gestation, ewes were assigned to receive either 50 or 100% of their nutritional requirements. Ewes received i.v. injections of either saline or L-arginine three times daily from Day 100 to Day 125. Fetal growth was assessed at necropsy on Day 125. Maternal dietary manipulation altered circulating concentrations of leptin, progesterone, and amino acids in maternal plasma. Fetal weight was reduced in nutrient-restricted ewes on Day 125 compared with 100% fed ewes. Compared with saline-treated underfed ewes, maternal L-arginine administration did not affect fetal weight but increased weight of the fetal pancreas by 32% and fetal peri-renal brown adipose tissue mass by 48%. These results indicate that L-arginine administration enhanced fetal pancreatic and brown adipose tissue development. The postnatal effects of increased pancreatic and brown adipose tissue growth warrant further study.

  19. Increased arginine vasopressin mRNA expression in the human hypothalamus in depression: A preliminary report

    NARCIS (Netherlands)

    G. Meynen; U.A. Unmehopa; J.J. van Heerikhuize; M.A. Hofman; D.F. Swaab; W.J.G. Hoogendijk

    2006-01-01

    Background: Elevated arginine vasopressin (AVP) plasma levels have been observed in major depression, particularly in relation to the melancholic subtype. Two hypothalamic structures produce plasma vasopressin: the supraoptic nucleus (SON) and the paraventricular nucleus (PVN). The aim of this study

  20. Anaerobic arginine metabolism of Mycobacterium tuberculosis is mediated by arginine deiminase (arcA), but is not essential for chronic persistence in an aerogenic mouse model of infection.

    Science.gov (United States)

    Sürken, Michael; Keller, Christine; Röhker, Claudia; Ehlers, Stefan; Bange, Franz-Christoph

    2008-10-01

    In many pathogens, degradation of arginine via the arginine deiminase pathway supports anaerobic metabolism. Here we show by deletion of Rv1001 (arcA) in Mycobacterium tuberculosis that this gene functions as an arginine deiminase. Arginine metabolism in the presence of oxygen was not affected by the mutation, indicating a separate pathway for arginine degradation under aerobic conditions. Following aerosol infection in mice, the DeltaarcA mutant and wild-type strain of M. tuberculosis multiplied and persisted in infected organs in a similar fashion.

  1. Arginine metabolism in wounds

    Energy Technology Data Exchange (ETDEWEB)

    Albina, J.E.; Mills, C.D.; Barbul, A.; Thirkill, C.E.; Henry, W.L. Jr.; Mastrofrancesco, B.; Caldwell, M.D.

    1988-04-01

    Arginine metabolism in wounds was investigated in the rat in 1) lambda-carrageenan-wounded skeletal muscle, 2) Schilling chambers, and 3) subcutaneous polyvinyl alcohol sponges. All showed decreased arginine and elevated ornithine contents and high arginase activity. Arginase could be brought to the wound by macrophages, which were found to contain arginase activity. However, arginase was expressed by macrophages only after cell lysis and no arginase was released by viable macrophages in vitro. Thus the extracellular arginase of wounds may derive from dead macrophages within the injured tissue. Wound and peritoneal macrophages exhibited arginase deiminase activity as demonstrated by the conversion of (guanido-/sup 14/C)arginine to radiolabeled citrulline during culture, the inhibition of this reaction by formamidinium acetate, and the lack of prokaryotic contamination of the cultures. These findings and the known metabolic fates of the products of arginase and arginine deiminase in the cellular populations of the wound suggest the possibility of cooperativity among cells for the production of substrates for collagen synthesis.

  2. Restoration of impaired nitric oxide production in MELAS syndrome with citrulline and arginine supplementation.

    Science.gov (United States)

    El-Hattab, Ayman W; Hsu, Jean W; Emrick, Lisa T; Wong, Lee-Jun C; Craigen, William J; Jahoor, Farook; Scaglia, Fernando

    2012-04-01

    Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is one of the most common mitochondrial disorders. Although the pathogenesis of stroke-like episodes remains unclear, it has been suggested that mitochondrial proliferation may result in endothelial dysfunction and decreased nitric oxide (NO) availability leading to cerebral ischemic events. This study aimed to assess NO production in subjects with MELAS syndrome and the effect of the NO precursors arginine and citrulline. Using stable isotope infusion techniques, we assessed arginine, citrulline, and NO metabolism in control subjects and subjects with MELAS syndrome before and after arginine or citrulline supplementation. The results showed that subjects with MELAS had lower NO synthesis rate associated with reduced citrulline flux, de novo arginine synthesis rate, and plasma arginine and citrulline concentrations, and higher plasma asymmetric dimethylarginine (ADMA) concentration and arginine clearance. We conclude that the observed impaired NO production is due to multiple factors including elevated ADMA, higher arginine clearance, and, most importantly, decreased de novo arginine synthesis secondary to decreased citrulline availability. Arginine and, to a greater extent, citrulline supplementation increased the de novo arginine synthesis rate, the plasma concentrations and flux of arginine and citrulline, and NO production. De novo arginine synthesis increased markedly with citrulline supplementation, explaining the superior efficacy of citrulline in increasing NO production. The improvement in NO production with arginine or citrulline supplementation supports their use in MELAS and suggests that citrulline may have a better therapeutic effect than arginine. These findings can have a broader relevance for other disorders marked by perturbations in NO metabolism.

  3. The Ergogenic Potential of Arginine

    Directory of Open Access Journals (Sweden)

    La Bounty Paul M

    2004-12-01

    Full Text Available Abstract Arginine is a conditionally essential amino acid that is involved in protein synthesis, the detoxification of ammonia, and its conversion to glucose as well as being catabolized to produce energy. In addition to these physiological functions, arginine has been purported to have ergogenic potential. Athletes have taken arginine for three main reasons: 1 its role in the secretion of endogenous growth hormone; 2 its involvement in the synthesis of creatine; 3 its role in augmenting nitric oxide. These aspects of arginine supplementation will be discussed as well as a review of clinical investigations involving exercise performance and arginine ingestion.

  4. Arginine vasopressin 1a receptor RS3 promoter microsatellites in schizophrenia: a study of the effect of the "risk" allele on clinical symptoms and facial affect recognition.

    Science.gov (United States)

    Golimbet, Vera; Alfimova, Margarita; Abramova, Lilia; Kaleda, Vasily; Gritsenko, Inga

    2015-02-28

    We studied AVPR1A RS3 polymorphism in schizophrenic patients and controls. AVPR1A RS3 was not associated with schizophrenia. The allele 327bp implicated in autism and social behavior was associated with negative symptoms and tended to be linked to patient facial affect recognition suggesting its impact on schizophrenia social phenotypes.

  5. Evolutionary clade affects resistance of Clostridium difficile spores to Cold Atmospheric Plasma

    Science.gov (United States)

    Connor, Mairéad; Flynn, Padrig B.; Fairley, Derek J.; Marks, Nikki; Manesiotis, Panagiotis; Graham, William G.; Gilmore, Brendan F.; McGrath, John W.

    2017-02-01

    Clostridium difficile is a spore forming bacterium and the leading cause of colitis and antibiotic associated diarrhoea in the developed world. Spores produced by C. difficile are robust and can remain viable for months, leading to prolonged healthcare-associated outbreaks with high mortality. Exposure of C. difficile spores to a novel, non-thermal atmospheric pressure gas plasma was assessed. Factors affecting sporicidal efficacy, including percentage of oxygen in the helium carrier gas admixture, and the effect on spores from different strains representing the five evolutionary C. difficile clades was investigated. Strains from different clades displayed varying resistance to cold plasma. Strain R20291, representing the globally epidemic ribotype 027 type, was the most resistant. However all tested strains displayed a ~3 log reduction in viable spore counts after plasma treatment for 5 minutes. Inactivation of a ribotype 078 strain, the most prevalent clinical type seen in Northern Ireland, was further assessed with respect to surface decontamination, pH, and hydrogen peroxide concentration. Environmental factors affected plasma activity, with dry spores without the presence of organic matter being most susceptible. This study demonstrates that cold atmospheric plasma can effectively inactivate C. difficile spores, and highlights factors that can affect sporicidal activity.

  6. Herring and chicken/pork meals lead to differences in plasma levels of TCA intermediates and arginine metabolites in overweight and obese men and women

    DEFF Research Database (Denmark)

    Vincent, Andrew; Savolainen, Otto I; Sen, Partho

    2017-01-01

    Scope: What effect does replacing chicken or pork with herring as the main dietary source of protein have on the human plasma metabolome? Method and results: A randomised crossover trial with 15 healthy obese men and women (age 24–70 years). Subjects were randomly assigned to four weeks of herring...... diet or a reference diet of chicken and lean pork, five meals per week, followed by a washout and the other intervention arm. Fasting blood serum metabolites were analysed at 0, 2 and 4 weeks for eleven subjects with available samples, using GC-MS based metabolomics. The herring diet decreased plasma...

  7. Plasma treatment of polystyrene thin films affects more than the surface.

    Science.gov (United States)

    Calchera, Angela R; Curtis, Alexander D; Patterson, James E

    2012-07-25

    Plasma treatment of polymer materials introduces chemical functionalities and modifies the material to make the native hydrophobic surface more hydrophilic. It is generally assumed that this process only affects the surface of the material. We used vibrationally resonant sum-frequency generation spectroscopy to observe changes in the orientation of phenyl groups in polystyrene (PS) thin films on various substrates before and after plasma treatment. VR-SFG selectively probes regions of broken symmetry, such as surfaces, but can also detect the emergence of anisotropy. On dielectric substrates, such as fused silica, the spectroscopic peak corresponding to the symmetric stretching (ν2) mode of the phenyl rings was undetectable after plasma treatment, showing that surface phenyl rings were altered. This peak also diminished on conducting substrates, but the intensity of another peak corresponding to the same mode in a bulklike environment increased significantly, suggesting that plasma treatment induces partial ordering of the bulk polymer. This ordering is seen on conducting substrates even when the polymer is not directly exposed to the plasma. Annealing reverses these effects on the polystyrene bulk; however, the surface phenyl rings do not return to the orientation observed for untreated films. These results call into question the assumption that the effects of plasma treatment are limited to the free surface and opens up other possibilities for material modification with low-temperature plasmas.

  8. The Arginine/ADMA Ratio Is Related to the Prevention of Atherosclerotic Plaques in Hypercholesterolemic Rabbits When Giving a Combined Therapy with Atorvastatine and Arginine

    Directory of Open Access Journals (Sweden)

    Saskia J. H. Brinkmann

    2015-05-01

    Full Text Available Supplementation with arginine in combination with atorvastatin is more efficient in reducing the size of an atherosclerotic plaque than treatment with a statin or arginine alone in homozygous Watanabe heritable hyperlipidemic (WHHL rabbits. We evaluated the mechanism behind this feature by exploring the role of the arginine/asymmetric dimethylarginine (ADMA ratio, which is the substrate and inhibitor of nitric oxide synthase (NOS and thereby nitric oxide (NO, respectively. Methods: Rabbits were fed either an arginine diet (group A, n = 9, standard rabbit chow plus atorvastatin (group S, n = 8, standard rabbit chow plus an arginine diet with atorvastatin (group SA, n = 8 or standard rabbit chow (group C, n = 9 as control. Blood was sampled and the aorta was harvested for topographic and histological analysis. Plasma levels of arginine, ADMA, cholesterol and nitric oxide were determined and the arginine/ADMA ratio was calculated. Results: The decrease in ADMA levels over time was significantly correlated to fewer aortic lesions in the distal aorta and total aorta. The arginine/ADMA ratio was correlated to cholesterol levels and decrease in cholesterol levels over time in the SA group. A lower arginine/ADMA ratio was significantly correlated to lower NO levels in the S and C group. Discussion: A balance between arginine and ADMA is an important indicator in the prevention of the development of atherosclerotic plaques.

  9. Vasodilator effects of L-arginine are stereospecific and augmented by insulin in humans.

    Science.gov (United States)

    Dallinger, Susanne; Sieder, Anna; Strametz, Jeanette; Bayerle-Eder, Michaela; Wolzt, Michael; Schmetterer, Leopold

    2003-06-01

    The amino acid l-arginine, the precursor of nitric oxide (NO) synthesis, induces vasodilation in vivo, but the mechanism behind this effect is unclear. There is, however, some evidence to assume that the l-arginine membrane transport capacity is dependent on insulin plasma levels. We hypothesized that vasodilator effects of l-arginine may be dependent on insulin plasma levels. Accordingly, we performed two randomized, double-blind crossover studies in healthy male subjects. In protocol 1 (n = 15), subjects received an infusion of insulin (6 mU x kg(-1) x min(-1) for 120 min) or placebo and, during the last 30 min, l-arginine or d-arginine (1 g/min for 30 min) x In protocol 2 (n = 8), subjects received l-arginine in stepwise increasing doses in the presence (1.5 mU x kg(-1) x min(-1)) or absence of insulin. Renal plasma flow and glomerular filtration rate were assessed by the para-aminohippurate and inulin plasma clearance methods, respectively. Pulsatile choroidal blood flow was assessed with laser interferometric measurement of fundus pulsation, and mean flow velocity in the ophthalmic artery was measured with Doppler sonography. l-arginine, but not d-arginine, significantly increased renal and ocular hemodynamic parameters. Coinfusion of l-arginine with insulin caused a dose-dependent leftward shift of the vasodilator effect of l-arginine. This stereospecific renal and ocular vasodilator potency of l-arginine is enhanced by insulin, which may result from facilitated l-arginine membrane transport, enhanced intracellular NO formation, or increased NO bioavailability.

  10. Effect of methylation on the side-chain pKa value of arginine.

    Science.gov (United States)

    Evich, Marina; Stroeva, Ekaterina; Zheng, Yujun George; Germann, Markus W

    2016-02-01

    Arginine methylation is important in biological systems. Recent studies link the deregulation of protein arginine methyltransferases with certain cancers. To assess the impact of methylation on interaction with other biomolecules, the pKa values of methylated arginine variants were determined using NMR data. The pKa values of monomethylated, symmetrically dimethylated, and asymmetrically dimethylated arginine are similar to the unmodified arginine (14.2 ± 0.4). Although the pKa value has not been significantly affected by methylation, consequences of methylation include changes in charge distribution and steric effects, suggesting alternative mechanisms for recognition.

  11. Spinocerebellar ataxia-13 Kv3.3 potassium channels: arginine-to-histidine mutations affect both functional and protein expression on the cell surface.

    Science.gov (United States)

    Zhao, Jian; Zhu, Jing; Thornhill, William B

    2013-09-01

    The voltage-gated potassium channel Kv3.3 is the causative gene of SCA13 (spinocerebellar ataxia type 13), an autosomal dominant neurological disorder. The four dominant mutations identified to date cause Kv3.3 channels to be non-functional or have altered gating properties in Xenopus oocytes. In the present paper, we report that SCA13 mutations affect functional as well as protein expression of Kv3.3 channels in a mammalian cell line. The reduced protein level of SCA13 mutants is caused by a shorter protein half-life, and blocking the ubiquitin-proteasome pathway increases the total protein of SCA13 mutants more than wild-type. SCA13 mutated amino acids are highly conserved, and the side chains of these residues play a critical role in the stable expression of Kv3.3 proteins. In addition, we show that mutant Kv3.3 protein levels could be partially rescued by treatment with the chemical chaperone TMAO (trimethylamine N-oxide) and to a lesser extent with co-expression of Kv3.1b. Thus our results suggest that amino acid side chains of SCA13 positions affect the protein half-life and/or function of Kv3.3, and the adverse effect on protein expression cannot be fully rescued.

  12. Role of arginine in immunonutrition.

    Science.gov (United States)

    Efron, D; Barbul, A

    2000-01-01

    Arginine plays an important role in many physiologic and biologic processes beyond its role as a protein-incorporated amino acid. Dietary supplementation of arginine can enhance wound healing, regulate endocrine activity and potentiate immune activity. Under normal unstressed conditions the arginine requirement of adult humans is fulfilled by endogenous sources, however this is compromised during times of stress, especially in critical illness. These finding have led to use of arginine supplementation as part of an immune-enhancing dietary regimen to help combat the immune suppression seen in such patients. Though the results from studies examining the use of this type of immunonutrition in critically ill patients are far from definitive, they are promising that this mode of therapy may be of some advantage. A better understanding of the in vivo biology of arginine and its metabolism is necessary to truly define a benefit from arginine supplementation.

  13. The Ergogenic Potential of Arginine

    OpenAIRE

    La Bounty Paul M; Campbell Bill I; Roberts Mike

    2004-01-01

    Abstract Arginine is a conditionally essential amino acid that is involved in protein synthesis, the detoxification of ammonia, and its conversion to glucose as well as being catabolized to produce energy. In addition to these physiological functions, arginine has been purported to have ergogenic potential. Athletes have taken arginine for three main reasons: 1) its role in the secretion of endogenous growth hormone; 2) its involvement in the synthesis of creatine; 3) its role in augmenting n...

  14. Case-control studies show that a non-conservative amino-acid change from a glutamine to arginine in the P2RX7 purinergic receptor protein is associated with both bipolar- and unipolar-affective disorders.

    Science.gov (United States)

    McQuillin, A; Bass, N J; Choudhury, K; Puri, V; Kosmin, M; Lawrence, J; Curtis, D; Gurling, H M D

    2009-06-01

    Three linkage studies of bipolar disorder have implicated chromosome 12q24.3 with lod scores of over 3.0 and several other linkage studies have found lods between 2 and 3. Fine mapping within the original chromosomal linkage regions has identified several loci that show association with bipolar disorder. One of these is the P2RX7 gene encoding a central nervous system-expressed purinergic receptor. A non-synonymous single nucleotide polymorphism, rs2230912 (P2RX7-E13A, G allele) and a microsatellite marker NBG6 were both previously found to be associated with bipolar disorder (P=0.00071 and 0.008, respectively). rs2230912 has also been found to show association with unipolar depression. The effect of the polymorphism is non-conservative and results in a glutamine to arginine change (Gln460Arg), which is likely to affect P2RX7 dimerization and protein-protein interactions. We have confirmed the allelic associations between bipolar disorder and the markers rs2230912 (P2RX7-E13A, G allele, P=0.043) and NBG6 (P=0.010) in a London-based sample of 604 bipolar cases and 560 controls. When we combined these data with the published case-control studies of P2RX7 and mood disorder (3586 individuals) the association between rs2230912 (Gln460Arg) and affective disorders became more robust (P=0.002). The increase in Gln460Arg was confined to heterozygotes rather than homozygotes suggesting a dominant effect (odds ratio 1.302, CI=1.129-1.503). Although further research is needed to prove that the Gln460Arg change has an aetiological role, it is so far the most convincing mutation to have been found with a role for increasing susceptibility to bipolar and genetically related unipolar disorders.

  15. Oral L-Arginine Stimulates GLP-1 Secretion to Improve Glucose Tolerance in Male Mice

    DEFF Research Database (Denmark)

    Clemmensen, Christoffer; Smajilovic, Sanela; Smith, Eric P

    2013-01-01

    in vivo, to augment postprandial insulin secretion and improve glucose tolerance. To test this, we administered l-arginine or vehicle by oral gavage, immediately prior to an oral glucose tolerance test in lean and diet-induced obese mice. In both lean and obese mice oral l-arginine increased plasma GLP-1...

  16. Short Hypoxia Does not Affect Plasma Leptin in Healthy Men under Euglycemic Clamp Conditions

    Directory of Open Access Journals (Sweden)

    Andre Schmoller

    2009-01-01

    Full Text Available Leptin is involved in the endocrine control of energy expenditure and body weight regulation. Previous studies emphasize a relationship between hypoxic states and leptin concentrations. The aim of this study was to investigate the effects of acute hypoxia on leptin concentrations in healthy subjects. We examined 14 healthy men. Hypoxic conditions were induced by decreasing oxygen saturation to 75% for 30 minutes. Plasma leptin concentrations were determined at baseline, after 3 hours of euglycemic clamping, during hypoxia, and repeatedly the following 2.5 hours thereafter. Our results show an increase of plasma leptin concentrations in the course of 6 hours of hyperinsulinemic-euglycemic clamping which may reflect diurnal rhythmicity. Notwithstanding, there was no difference between levels of leptin in the hypoxic and the normoxic condition (=.2. Since we did not find any significant changes in leptin responses upon hypoxia, plasma leptin levels do not seem to be affected by short hypoxic episodes of moderate degree.

  17. Ssh4, Rcr2 and Rcr1 affect plasma membrane transporter activity in Saccharomyces cerevisiae.

    Science.gov (United States)

    Kota, Jhansi; Melin-Larsson, Monika; Ljungdahl, Per O; Forsberg, Hanna

    2007-04-01

    Nutrient uptake in the yeast Saccharomyces cerevisiae is a highly regulated process. Cells adjust levels of nutrient transporters within the plasma membrane at multiple stages of the secretory and endosomal pathways. In the absence of the ER-membrane-localized chaperone Shr3, amino acid permeases (AAP) inefficiently fold and are largely retained in the ER. Consequently, shr3 null mutants exhibit greatly reduced rates of amino acid uptake due to lower levels of AAPs in their plasma membranes. To further our understanding of mechanisms affecting AAP localization, we identified SSH4 and RCR2 as high-copy suppressors of shr3 null mutations. The overexpression of SSH4, RCR2, or the RCR2 homolog RCR1 increases steady-state AAP levels, whereas the genetic inactivation of these genes reduces steady-state AAP levels. Additionally, the overexpression of any of these suppressor genes exerts a positive effect on phosphate and uracil uptake systems. Ssh4 and Rcr2 primarily localize to structures associated with the vacuole; however, Rcr2 also localizes to endosome-like vesicles. Our findings are consistent with a model in which Ssh4, Rcr2, and presumably Rcr1, function within the endosome-vacuole trafficking pathway, where they affect events that determine whether plasma membrane proteins are degraded or routed to the plasma membrane.

  18. Fresh frozen plasma transfusion does not affect outcomes following hepatic resection for hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Yoshito; Tomimaru; Hiroshi; Wada; Shigeru; Marubashi; Shogo; Kobayashi; Hidetoshi; Eguchi; Yutaka; Takeda; Masahiro; Tanemura; Takehiro; Noda; Koji; Umeshita; Yuichiro; Doki; Masaki; Mori; Hiroak; Nagano

    2010-01-01

    AIM:To investigate whether fresh frozen plasma (FFP) transfusion affects outcomes following hepatic resection for hepatocellular carcinoma (HCC) in terms of liver function,postoperative complications and cancer prognosis.METHODS:We retrospectively compared the incidence of postoperative complications between 204 patients who underwent hepatectomy for HCC with routine FFP transfusion in an early period (1983-1993,Group A) and 293 with necessity for FFP transfusion during a later period (1998-2006,Group B),an...

  19. Does Reactive Thrombocytosis Observed in Iron Deficiency Anemia Affect Plasma Viscosity?

    Directory of Open Access Journals (Sweden)

    Selami K. Toprak

    2012-09-01

    Full Text Available OBJECTIVE: The accompanying thrombocytosis is referred to as the major factor associated with thromboembolism in iron deficiency anemia (IDA. Increased viscosity may increase the risk of thrombosis. We hypothesized that increased platelet count -with reactive thrombocytosis- might also affect plasma viscosity. We planned to evaluate the influence of normal and high platelet count on plasma viscosity in IDA patients. METHODS: The patient population consisted of fifty-three newly diagnosed and untreated women aged between 18 and 62 years with IDA. Group 1 consisted of 33 patients, platelet levels below 400 x 109/L. Group 2 consisted of 20 patients, platelet levels above 400 x 109/L. Measurements of plasma viscosity were performed using Brookfield viscometer. RESULTS: Mean plasma viscosity was found as 1.05 ± 0.08 mPa.s. in Group 1, and 1.03 ± 0.06 mPa.s. in Group 2. Mean plasma viscosity was not statistically different. White blood cell count was significantly higher in Group 2. Vitamin B12 levels were significantly higher in Group 2, while folic acid levels were higher in Group 1 (p=0.011 and p=0.033. Plasma viscosity was correlated with erythrocyte sedimentation rate (r=0.512 p=0.002 in Group 1 and inversely correlated with vitamin B12 (r=−0.480 p=0.032 in Group 2. CONCLUSION: Despite the significant difference between groups in terms of platelet count, no significant difference was detected in plasma viscosity and this finding could be explained as the following; 1-These platelets were not thrombocythemic platelets; 2-Similar to the theory about leukocytes, higher platelet counts – even non-thrombocythemic – may increase plasma viscosity; 3-Evaluating platelet count alone is not sufficient and the associating red-cell deformability should also be taken into account; and 4-Although other diseases that could affect viscosity are excluded, some definitely proven literature criteria such as fibrinogen, hyperlipidemia, and the inflammatory

  20. Conserved arginine residues in the carboxyl terminus of the equine arteritis virus E protein may play a role in heparin binding but may not affect viral infectivity in equine endothelial cells.

    Science.gov (United States)

    Lu, Zhengchun; Sarkar, Sanjay; Zhang, Jianqiang; Balasuriya, Udeni B R

    2016-04-01

    Equine arteritis virus (EAV), the causative agent of equine viral arteritis, has relatively broad cell tropism in vitro. In horses, EAV primarily replicates in macrophages and endothelial cells of small blood vessels. Until now, neither the cellular receptor(s) nor the mechanism(s) of virus attachment and entry have been determined for this virus. In this study, we investigated the effect of heparin on EAV infection in equine endothelial cells (EECs). Heparin, but not other glycosaminoglycans, could reduce EAV infection up to 93 %. Sequence analysis of the EAV E minor envelope protein revealed a conserved amino acid sequence (52 RSLVARCSRGARYR 65) at the carboxy terminus of the E protein, which was predicted to be the heparin-binding domain. The basic arginine (R) amino acid residues were subsequently mutated to glycine by site-directed mutagenesis of ORF2a in an E protein expression vector and an infectious cDNA clone of EAV. Two single mutations in E (R52G and R57G) did not affect the heparin-binding capability, whereas the E double mutation (R52,60G) completely eliminated the interaction between the E protein and heparin. Although the mutant R52,60G EAV did not bind heparin, the mutations did not completely abolish infectivity, indicating that heparin is not the only critical factor for EAV infection. This also suggested that other viral envelope protein(s) might be involved in attachment through heparin or other cell-surface molecules, and this warrants further investigation.

  1. Study of correlation between plasma asymmetric dimethyl arginine and homocysteine levels in patients with pre-eclampsia%先兆子痫患者血浆ADMA与同型半胱氨酸水平相关性研究

    Institute of Scientific and Technical Information of China (English)

    刘科鹏; 张笠; 柴虹; 高武; 韩跃武; 徐攀

    2014-01-01

    Objective To investigate the correlation between the plasma asymmetric dimethyl arginine(ADMA)and homocys-teine(Hcy)levels in the patients with pre-eclampsia and their relationship with pre-eclampsia.Methods Plasma ADMA and Hcy levels in 91 cases of pre-eclampsia were detected by enzyme-linked immunosorbent assay.80 healthy normotensive pregnant women were taken as the control group.Results The plasma ADMA level in the pre-eclampsia group was(0.625 ±0.186)μmol/L,which was significantly higher than(0.524±0.106)μmol/L in the control group(P <0.05);plasma Hcy level in the pre-eclampsia group was(12.447±6.134)μmol/L,which was significantly higher than(8.207 ±2.797)μmol/L in the control group(P <0.05).Plasma ADMA level was positively correlated with the Hcy level in the Pre-eclampsia group(r =0.623,P <0.05 ).Conclusion Plasma ADMA and Hcy levels in pre-eclampsia are elevated,which indicating that the increase of ADMA and Hcy is related with the occur-rence and development of pre-eclampsia,ADMA and Hcy are the risk factors of pre-eclampsia.%目的:探讨先兆子痫患者血浆不对称性二甲基精氨酸(asymmetric dimethylarginine,ADMA)水平与同型半胱氨酸(homocysteine,Hcy)水平的相关性,以及 ADMA、Hcy 水平与先兆子痫的关系。方法用酶联免疫吸附法检测91例先兆子痫患者血浆 ADMA 及血浆 Hcy 水平。以80例血压正常的健康孕妇为对照。结果先兆子痫组血浆 ADMA 水平(0.625±0.186μmol/L)显著高于对照组(0.524±0.106μmol/L)(P <0.05);先兆子痫组血浆 Hcy 水平(12.447±6.134μmol/L)显著高于对照组(8.207±2.797μmol/L)(P <0.05)。先兆子痫组血浆 ADMA 水平与 Hcy 水平呈正相关(r=0.623,P <0.05)。结论先兆子痫患者的血浆中不对称性二甲基精氨酸和同型半胱氨酸是升高的,这说明 ADMA 和 Hcy 的升高与先兆子痫的发生、发展有关, ADMA、Hcy 可能是先兆子痫的危险

  2. Post-renal-transplant hypertension. Urine volume, free water clearance and plasma concentrations of arginine vasopressin, angiotensin II and aldosterone before and after oral water loading in hypertensive and normotensive renal transplant recipients.

    Science.gov (United States)

    Pedersen, E B; Danielsen, H; Knudsen, F; Nielsen, A H; Jensen, T; Kornerup, H J; Madsen, M

    1986-09-01

    Urine volume (V), free water clearance (CH2O) and plasma concentrations of arginine vasopressin (AVP), angiotensin II (A II) and aldosterone (Aldo) were determined before and three times during the first 5 h after an oral water load of 20 ml/kg body wt in 19 patients with post-renal-transplant hypertension (group I), in 13 normotensive renal transplant recipients (group II) and in 20 control subjects (group III). Both V and CH2O increased significantly in all groups, but considerably less in groups I and II than in group III. When CH2O was related to glomerular filtration rate no differences existed between patients and control subjects. Basal AVP was the same in groups I (3.3 pmol/l, median) and II (3.0 pmol/l), but significantly (p less than 0.01) higher than in group III (1.9 pmol/l). Basal A II was significantly (p less than 0.01) elevated in group I (18 pmol/l) when compared to both groups II (10 pmol/l) and III (11 pmol/l), and the level was independent of the presence of native kidneys. Basal Aldo was the same in all groups. During loading, AVP was reduced in all groups, A II was almost unchanged, and Aldo was increased in groups I and II and reduced in group III depending on alterations in serum potassium. Thus urinary diluting ability is reduced in renal transplant recipients due to a reduced glomerular filtration rate. The enhanced A II in hypertensive renal transplant recipients gives further evidence for the point of view that hypertension is angiotensin-dependent in most of these patients.

  3. Genetic variants in ABCA1 promoter affect transcription activity and plasma HDL level in pigs.

    Science.gov (United States)

    Dang, Xiao-yong; Chu, Wei-wei; Shi, Heng-chuan; Yu, Shi-gang; Han, Hai-yin; Gu, Shu-Hua; Chen, Jie

    2015-01-25

    Excess accumulation of cholesterol in plasma may result in coronary artery disease. Numerous studies have demonstrated that ATP-binding cassette protein A1 (ABCA1) mediates the efflux of cholesterol and phospholipids to apolipoproteins, a process necessary for plasma high density lipoprotein (HDL) formation. Higher plasma levels of HDL are associated with lower risk for cardiovascular disease. Studies of human disease and animal models had shown that an increased hepatic ABCA1 activity relates to an enhanced plasma HDL level. In this study, we hypothesized that functional mutations in the ABCA1 promoter in pigs may affect gene transcription activity, and consequently the HDL level in plasma. The promoter region of ABCA1 was comparatively scanned by direct sequencing with pool DNA of high- and low-HDL groups (n=30 for each group). Two polymorphisms, c. - 608A>G and c. - 418T>A, were revealed with reverse allele distribution in the two groups. The two polymorphisms were completely linked and formed only G-A or A-T haplotypes when genotyped in a larger population (n=526). Furthermore, we found that the G-A/G-A genotype was associated with higher HDL and ABCA1 mRNA level than A-T/A-T genotype. Luciferase assay also revealed that G-A haplotype promoter had higher activity than A-T haplotype. Single-nucleotide mutant assay showed that c.-418T>A was the causal mutation for ABCA1 transcription activity alteration. Conclusively, we identified two completely linked SNPs in porcine ABCA1 promoter region which have influence on the plasma HDL level by altering ABCA1 gene transcriptional activity.

  4. Arginine consumption by the intestinal parasite Giardia intestinalis reduces proliferation of intestinal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Britta Stadelmann

    Full Text Available In the field of infectious diseases the multifaceted amino acid arginine has reached special attention as substrate for the hosts production of the antimicrobial agent nitric oxide (NO. A variety of infectious organisms interfere with this part of the host immune response by reducing the availability of arginine. This prompted us to further investigate additional roles of arginine during pathogen infections. As a model we used the intestinal parasite Giardia intestinalis that actively consumes arginine as main energy source and secretes an arginine-consuming enzyme, arginine deiminase (ADI. Reduced intestinal epithelial cell (IEC proliferation is a common theme during bacterial and viral intestinal infections, but it has never been connected to arginine-consumption. Our specific question was thereby, whether the arginine-consumption by Giardia leads to reduced IEC proliferation, in addition to NO reduction. In vitro cultivation of human IEC lines in arginine-free or arginine/citrulline-complemented medium, as well as in interaction with different G. intestinalis isolates, were used to study effects on host cell replication by MTT assay. IEC proliferation was further analyzed by DNA content analysis, polyamine measurements and expressional analysis of cell cycle regulatory genes. IEC proliferation was reduced upon arginine-withdrawal and also in an arginine-dependent manner upon interaction with G. intestinalis or addition of Giardia ADI. We show that arginine-withdrawal by intestinal pathogens leads to a halt in the cell cycle in IECs through reduced polyamine levels and upregulated cell cycle inhibitory genes. This is of importance with regards to intestinal tissue homeostasis that is affected through reduced cell proliferation. Thus, the slower epithelial cell turnover helps the pathogen to maintain a more stable niche for colonization. This study also shows why supplementation therapy of diarrhea patients with arginine/citrulline is helpful

  5. Arginine consumption by the intestinal parasite Giardia intestinalis reduces proliferation of intestinal epithelial cells.

    Science.gov (United States)

    Stadelmann, Britta; Merino, María C; Persson, Lo; Svärd, Staffan G

    2012-01-01

    In the field of infectious diseases the multifaceted amino acid arginine has reached special attention as substrate for the hosts production of the antimicrobial agent nitric oxide (NO). A variety of infectious organisms interfere with this part of the host immune response by reducing the availability of arginine. This prompted us to further investigate additional roles of arginine during pathogen infections. As a model we used the intestinal parasite Giardia intestinalis that actively consumes arginine as main energy source and secretes an arginine-consuming enzyme, arginine deiminase (ADI). Reduced intestinal epithelial cell (IEC) proliferation is a common theme during bacterial and viral intestinal infections, but it has never been connected to arginine-consumption. Our specific question was thereby, whether the arginine-consumption by Giardia leads to reduced IEC proliferation, in addition to NO reduction. In vitro cultivation of human IEC lines in arginine-free or arginine/citrulline-complemented medium, as well as in interaction with different G. intestinalis isolates, were used to study effects on host cell replication by MTT assay. IEC proliferation was further analyzed by DNA content analysis, polyamine measurements and expressional analysis of cell cycle regulatory genes. IEC proliferation was reduced upon arginine-withdrawal and also in an arginine-dependent manner upon interaction with G. intestinalis or addition of Giardia ADI. We show that arginine-withdrawal by intestinal pathogens leads to a halt in the cell cycle in IECs through reduced polyamine levels and upregulated cell cycle inhibitory genes. This is of importance with regards to intestinal tissue homeostasis that is affected through reduced cell proliferation. Thus, the slower epithelial cell turnover helps the pathogen to maintain a more stable niche for colonization. This study also shows why supplementation therapy of diarrhea patients with arginine/citrulline is helpful and that

  6. Effects of a chronic l-arginine supplementation on the arginase pathway in aged rats.

    Science.gov (United States)

    Moretto, Johnny; Guglielmetti, Anne-Sophie; Tournier-Nappey, Maude; Martin, Hélène; Prigent-Tessier, Anne; Marie, Christine; Demougeot, Céline

    2017-04-01

    While ageing is frequently associated with l-arginine deficiency, clinical and experimental studies provided controversial data on the interest of a chronic l-arginine supplementation with beneficial, no or even deleterious effects. It was hypothesized that these discrepancies might relate to a deviation of l-arginine metabolism towards production of l-ornithine rather than nitric oxide as a result of age-induced increase in arginase activity. This study investigated the effect of ageing on arginase activity/expression in target tissues and determined whether l-arginine supplementation modulated the effect of ageing on arginase activity. Arginase activity and expression were measured in the heart, vessel, brain, lung, kidney and liver in young rats (3-months old) and aged Wistar rats (22-24-months-old) with or without l-arginine supplementation (2.25% in drinking water for 6weeks). Plasma levels of l-arginine and l-ornithine were quantified in order to calculate the plasma l-arginine/l-ornithine ratio, considered as a reflection of arginase activity. Cardiovascular parameters (blood pressure, heart rate) and aortic vascular reactivity were also studied. Ageing dramatically reduced plasma l-arginine and l-arginine/l-ornithine ratio, decreased liver and kidney arginase activities but did not change activities in other tissues. l-Arginine supplementation normalized plasma l-arginine and l-arginine/l-ornithine ratio, improved endothelial function and decreased systolic blood pressure. These effects were associated with decreased arginase activity in aorta along with no change in the other tissues except in the lung in which activity was increased. A strong mismatch was therefore observed between arginase activity and expression in analyzed tissues. The present study reveals that ageing selectively changes arginase activity in clearance tissues, but does not support a role of the arginase pathway in the potential deleterious effect of the l-arginine supplementation in

  7. Longitudinal instabilities affecting the moving critical layer laser-plasma ion accelerators

    CERN Document Server

    Sahai, Aakash Ajit

    2014-01-01

    In this work we analyze the longitudinal instabilities of propagating acceleration structures that are driven by a relativistically intense laser at the moving plasma critical layer [1]. These instabilities affect the energy-spectra of the accelerated ion-beams in propagating critical layer acceleration schemes [2][3]. Specifically, using analytical theory and PIC simulations we look into three fundamental physical processes and their interplay that are crucial to the understanding of energy spectral control by making the laser-plasma ion accelerators stable. The interacting processes are (i) Doppler-shifted ponderomotive bunching [1][4] (ii) potential quenching by beam-loading [2] and (iii) two-stream instabilities. These phenomenon have been observed in simulations analyzing these acceleration processes [5][6][7]. From the preliminary models and results we present in this work, we can infer measures by which these instabilities can be controlled [8] for improving the energy-spread of the beams.

  8. Absence of Btn1p in the yeast model for juvenile Batten disease may cause arginine to become toxic to yeast cells.

    Science.gov (United States)

    Vitiello, Seasson Phillips; Wolfe, Devin M; Pearce, David A

    2007-05-01

    Lymphoblast cell lines established from individuals with juvenile Batten disease (JNCL) bearing mutations in CLN3 and yeast strains lacking Btn1p (btn1-Delta), the homolog to CLN3, have decreased intracellular levels of arginine and defective lysosomal/vacuolar transport of arginine. It is important to establish the basis for this decrease in arginine levels and whether restoration of arginine levels would be of therapeutic value for Batten disease. Previous studies have suggested that synthesis and degradation of arginine are unaltered in btn1-Delta. Using the yeast model for the Batten disease, we have determined that although btn1-Delta results in decreased intracellular arginine levels, it does not result from altered arginine uptake, arginine efflux or differences in arginine incorporation into peptides. However, expression of BTN1 is dependent on arginine and Gcn4p, the master regulator of amino acid biosynthesis. Moreover, deletion of GCN4 (gcn4-Delta), in combination with btn1-Delta, results in a very specific growth requirement for arginine. In addition, increasing the intracellular levels of arginine through overexpression of Can1p, the plasma membrane basic amino acid permease, results in increased cell volume and a severe growth defect specific to basic amino acid availability for btn1-Delta, but not wild-type cells. Therefore, elevation of intracellular levels of arginine in btn1-Delta cells is detrimental and is suggestive that btn1-Delta and perhaps mutation of CLN3 predispose cells to keep arginine levels lower than normal.

  9. Aircraft noise exposure affects rat behavior, plasma norepinephrine levels, and cell morphology of the temporal lobe

    Institute of Scientific and Technical Information of China (English)

    Guo-qing DI; Bing ZHOU; Zheng-guang; LI, Qi-li LIN

    2011-01-01

    In order to investigate the physiological effects of airport noise exposure on organisms,in this study,we exposed Sprague-Dawley rats in soundproof chambers to previously recorded aircraft-related noise for 65 d.For comparison,we also used unexposed control rats.Noise was arranged according to aircraft flight schedules and was adjusted to its weighted equivalent continuous perceived noise levels (LwEcPN) of 75 and 80 dB for the two experimental groups.We examined rat behaviors through an open field test and measured the concentrations of plasma norepinephrine (NE) by high performance liquid chromatography-fluorimetric detection (HPLC-FLD).We also examined the morphologies of neurons and synapses in the temporal lobe by transmission electron microscopy (TEM).Our results showed that rats exposed to airport noise of 80 dB had significantly lower line crossing number (P<0.05) and significantly longer center area duration (P<0.05) than control animals.After 29 d of airport noise exposure,the concentration of plasma NE of exposed rats was significantly higher than that of the control group (P<0.05).We also determined that the neuron and synapsis of the temporal lobe of rats showed signs of damage after aircraft noise of 80 dB exposure for 65 d.In conclusion,exposing rats to long-term aircraft noise affects their behaviors,plasma NE levels,and cell morphology of the temporal lobe.

  10. Aircraft noise exposure affects rat behavior, plasma norepinephrine levels, and cell morphology of the temporal lobe*

    Science.gov (United States)

    Di, Guo-qing; Zhou, Bing; Li, Zheng-guang; Lin, Qi-li

    2011-01-01

    In order to investigate the physiological effects of airport noise exposure on organisms, in this study, we exposed Sprague-Dawley rats in soundproof chambers to previously recorded aircraft-related noise for 65 d. For comparison, we also used unexposed control rats. Noise was arranged according to aircraft flight schedules and was adjusted to its weighted equivalent continuous perceived noise levels (L WECPN) of 75 and 80 dB for the two experimental groups. We examined rat behaviors through an open field test and measured the concentrations of plasma norepinephrine (NE) by high performance liquid chromatography-fluorimetric detection (HPLC-FLD). We also examined the morphologies of neurons and synapses in the temporal lobe by transmission electron microscopy (TEM). Our results showed that rats exposed to airport noise of 80 dB had significantly lower line crossing number (P<0.05) and significantly longer center area duration (P<0.05) than control animals. After 29 d of airport noise exposure, the concentration of plasma NE of exposed rats was significantly higher than that of the control group (P<0.05). We also determined that the neuron and synapsis of the temporal lobe of rats showed signs of damage after aircraft noise of 80 dB exposure for 65 d. In conclusion, exposing rats to long-term aircraft noise affects their behaviors, plasma NE levels, and cell morphology of the temporal lobe. PMID:22135145

  11. L-Arginine Supplementation and Metabolism in Asthma

    Directory of Open Access Journals (Sweden)

    Angela Linderholm

    2011-01-01

    Full Text Available L-Arginine, the amino acid substrate for nitric oxide synthase, has been tested as a therapeutic intervention in a variety of chronic diseases and is commonly used as a nutritional supplement. In this study, we hypothesized that a subset of moderate to severe persistent asthma patients would benefit from supplementation with L-arginine by transiently increasing nitric oxide levels, resulting in bronchodilation and a reduction in inflammation. The pilot study consisted of a 3 month randomized, double-blind, placebo-controlled trial of L-arginine (0.05 g/kg twice daily in patients with moderate to severe asthma. We measured spirometry, exhaled breath nitric oxide, serum arginine metabolites, questionnaire scores, daily medication use and PEFR with the primary endpoint being the number of minor exacerbations at three months. Interim analysis of the 20 subjects showed no difference in the number of exacerbations, exhaled nitric oxide levels or lung function between groups, though participants in the L-arginine group had higher serum L-arginine at day 60 (2.0 ± 0.6 × 10−3 vs. 1.1 ± 0.2 × 10−3 µmol/L, p < 0.05, ornithine at day 30 (2.4 ± 0.9 vs. 1.2 ± 0.3 µmol/L serum, p < 0.05 and ADMA at day 30 (6.0 ± 1.5 × 10−1 vs. 2.6 ± 0.6 × 10−1 µmol/L serum, p < 0.05 on average compared to the placebo group. The study was terminated prematurely. Supplementing asthma subjects with L-arginine increases plasma levels; whether subgroups might benefit from such supplementation requires further study.

  12. Arginine synthesis from enteral glutamine in healthy adults in the fed state.

    Science.gov (United States)

    Tomlinson, Chris; Rafii, Mahroukh; Ball, Ronald O; Pencharz, Paul

    2011-08-01

    Recent studies have documented transfer of labeled nitrogen from [2-(15)N]glutamine to citrulline and arginine in fasting human adults. Conversely, in neonates and piglets we have shown no synthesis of arginine from [2-(15)N]glutamate, and others have shown in mice that glutamine is a nitrogen, but not a carbon donor, for arginine synthesis. Therefore, we performed a multitracer study to determine whether glutamine is a nitrogen and/or carbon donor for arginine in healthy adult men. Two glutamine tracers, 2-(15)N and 1-(13)C, were given enterally to five healthy men fed a standardized milkshake diet. There was no difference in plasma enrichments between the two glutamine tracers. 1-(13)C isotopomers of citrulline and arginine were synthesized from [1-(13)C]glutamine. Three isotopomers each of citrulline and arginine were synthesized from the [2-(15)N]glutamine tracer: 2-(15)N, 5-(15)N, and 2,5-(15)N(2). Significantly greater enrichment was found of both [5-(15)N]arginine (0.75%) and citrulline (3.98%) compared with [2-(15)N]arginine (0.44%) and [2-(15)N]citrulline (2.62%), indicating the amino NH(2) from glutamine is mostly transferred to arginine and citrulline by transamination. Similarly, the enrichment of the 1-(13)C isotopomers was significantly less than the 2-(15)N isotopomers, suggesting rapid formation of α-ketoglutarate and recycling of the nitrogen label. Our results show that the carbon for 50% of newly synthesized arginine comes from dietary glutamine but that glutamine acts primarily as a nitrogen donor for arginine synthesis. Hence, studies using [2-(15)N]glutamine will overestimate arginine synthesis rates.

  13. Ceylon cinnamon does not affect postprandial plasma glucose or insulin in subjects with impaired glucose tolerance.

    Science.gov (United States)

    Wickenberg, Jennie; Lindstedt, Sandra; Berntorp, Kerstin; Nilsson, Jan; Hlebowicz, Joanna

    2012-06-01

    Previous studies on healthy subjects have shown that the intake of 6 g Cinnamomum cassia reduces postprandial glucose and that the intake of 3 g C. cassia reduces insulin response, without affecting postprandial glucose concentrations. Coumarin, which may damage the liver, is present in C. cassia, but not in Cinnamomum zeylanicum. The aim of the present study was to study the effect of C. zeylanicum on postprandial concentrations of plasma glucose, insulin, glycaemic index (GI) and insulinaemic index (GII) in subjects with impaired glucose tolerance (IGT). A total of ten subjects with IGT were assessed in a crossover trial. A standard 75 g oral glucose tolerance test (OGTT) was administered together with placebo or C. zeylanicum capsules. Finger-prick capillary blood samples were taken for glucose measurements and venous blood for insulin measurements, before and at 15, 30, 45, 60, 90, 120, 150 and 180 min after the start of the OGTT. The ingestion of 6 g C. zeylanicum had no significant effect on glucose level, insulin response, GI or GII. Ingestion of C. zeylanicum does not affect postprandial plasma glucose or insulin levels in human subjects. The Federal Institute for Risk Assessment in Europe has suggested the replacement of C. cassia by C. zeylanicum or the use of aqueous extracts of C. cassia to lower coumarin exposure. However, the positive effects seen with C. cassia in subjects with poor glycaemic control would then be lost.

  14. Directed arginine deiminase evolution for efficient inhibition of arginine-auxotrophic melanomas.

    Science.gov (United States)

    Cheng, Feng; Zhu, Leilei; Lue, Hongqi; Bernhagen, Jürgen; Schwaneberg, Ulrich

    2015-02-01

    Arginine deiminase (ADI) is a therapeutic protein for cancer therapy of arginine-auxotrophic tumors. However, ADI's application as anticancer drug is hampered by its low activity for arginine under physiological conditions mainly due to its high "K M" (S₀.₅) values which are often 1 magnitude higher than the arginine concentration in blood (0.10-0.12 mM arginine in human plasma). Previous evolution campaigns were directed by us with the aim of boosting activity of PpADI (ADI from Pseudomonas plecoglossicida, k cat = 0.18 s(-1); S₀.₅ = 1.30 mM), and yielded variant M6 with slightly reduced S₀.₅ values and enhanced k cat (S₀.₅ = 0.81 mM; k cat = 11.64 s(-1)). In order to further reduce the S₀.₅ value and to increase the activity of PpADI at physiological arginine concentration, a more sensitive screening system based on ammonia detection in 96-well microtiter plate to reliably detect ≥0.005 mM ammonia was developed. After screening ~5,500 clones with the ammonia detection system (ADS) in two rounds of random mutagenesis and site-directed mutagenesis, variant M19 with increased k cat value (21.1 s(-1); 105.5-fold higher compared to WT) and reduced S₀.₅ value (0.35 mM compared to 0.81 mM (M6) and 1.30 mM (WT)) was identified. Improved performance of M19 was validated by determining IC₅₀ values for two melanoma cell lines. The IC₅₀ value for SK-MEL-28 dropped from 8.67 (WT) to 0.10 (M6) to 0.04 μg/mL (M19); the IC₅₀ values for G361 dropped from 4.85 (WT) to 0.12 (M6) to 0.05 μg/mL (M19).

  15. Engineering an arginine catabolizing bioconjugate: Biochemical and pharmacological characterization of PEGylated derivatives of arginine deiminase from Mycoplasma arthritidis.

    Science.gov (United States)

    Wang, Maoliang; Basu, Amartya; Palm, Thomas; Hua, Jack; Youngster, Stephen; Hwang, Lisa; Liu, Hsien-Ching; Li, Xiguang; Peng, Ping; Zhang, Yue; Zhao, Hong; Zhang, Zhihua; Longley, Clifford; Mehlig, Mary; Borowski, Virna; Sai, Prakash; Viswanathan, Manickam; Jang, Eun; Petti, Gerald; Liu, Sam; Yang, Karen; Filpula, David

    2006-01-01

    Arginine is an important metabolite in the normal function of several biological systems, and arginine deprivation has been investigated in animal models and human clinical trials for its effects on inhibition of tumor growth, angiogenesis, or nitric oxide synthesis. In order to design an optimal arginine-catabolizing enzyme bioconjugate, a novel recombinant arginine deiminase (ADI) from Mycoplasma arthritidis was prepared, and multi-PEGylated derivatives were examined for enzymatic and biochemical properties in vitro, as well as pharmacokinetic and pharmacodynamic behavior in rats and mice. ADI bioconjugates constructed with 12 kDa or 20 kDa monomethoxy-poly(ethylene glycol) polymers with linear succinimidyl carbonate linkers were investigated via intravenous, intramuscular, or subcutaneous administration in rodents. The selected PEG-ADI compounds have 22 +/- 2 PEG strands per protein dimer, providing an additional molecular mass of about 0.2-0.5 x 10(6) Da and prolonging the plasma mean residence time of the enzyme over 30-fold in mice. Prolonged plasma arginine deprivation was demonstrated with each injection route for these bioconjugates. Pharmacokinetic analysis employed parallel measurement of enzyme activity in bioassays and enzyme assays and demonstrated a correlation with the pharmacodynamic analysis of plasma arginine concentrations. Either ADI bioconjugate depressed plasma arginine to undetectable levels for 10 days when administered intravenously at 5 IU per mouse, while the subcutaneous and intramuscular routes exhibited only slightly reduced potency. Both bioconjugates exhibited potent growth inhibition of several cultured tumor lines that are deficient in the anabolic enzyme, argininosuccinate synthetase. Investigations of structure-activity optimization for PEGylated ADI compounds revealed a benefit to constraining the PEG size and number of attachments to both conserve catabolic activity and streamline manufacturing of the experimental therapeutics

  16. The 2007 ESPEN Sir David Cuthbertson Lecture: amino acids between and within organs. The glutamate-glutamine-citrulline-arginine pathway.

    Science.gov (United States)

    Deutz, Nicolaas E P

    2008-06-01

    In daily practice, the plasma concentration of amino acids is usually viewed as a parameter of production. However, both a high production and/or a reduced disposal capacity can result in an increased plasma concentration. In this presentation, I will discuss my research on interorgan relationships of the amino acids glutamate, glutamine, citrulline and arginine to explain the regulation of the plasma arginine level. The reduced glutamine disposal during liver failure is related to enhanced plasma glutamine level without any change in muscle and gut production or consumption rate. In contrast during sepsis, a small reduction in plasma glutamine is related to a substantially enhanced organ glutamate and glutamine production or consumption rate. These observations are a good example that plasma levels are directly related to production or consumption rates. Because glutamine breakdown in the gut produces citrulline, there is a good relation between the amount of metabolically active gut tissue and gut and whole body citrulline production. Arginine is produces from citrulline in the kidney and a reduced gut glutamine to citrulline conversion during sepsis explains the reduced de novo arginine production that is related to the reduced plasma arginine level. The interorgan route between muscle, gut, liver and kidney of the amino acids glutamate, glutamine, citrulline and arginine is a very good example of how complicated the regulation of plasma amino acid levels can be. However, in-depth research is necessary and will give us important clues to new nutritional strategies.

  17. The tribulations of toothpaste trials: Unethical arginine dentifrice research.

    Science.gov (United States)

    Shaw, D; Naimi-Akbar, A; Astvaldsdottir, A

    2015-12-18

    Arginine toothpaste is being promoted as being more efficacious than conventional fluoride-only toothpaste. Recent revelations concerning the design and conduct of the clinical trials conducted on schoolchildren in China and Thailand cast serious doubt on these claims. This paper describes and analyses the ethical and design flaws affecting these studies.

  18. Common studied polymorphisms do not affect plasma cytokine levels upon endotoxin exposure in humans

    DEFF Research Database (Denmark)

    Taudorf, S.; Krabbe, K.S.; Berg, R.M.

    2008-01-01

    -607, IFN-gamma+874, IL-6-174, IL-10-592 and IL-10-1082) and endotoxin-induced changes in plasma levels of TNF-alpha, IL-6 and IL-10. IL-18 levels were unaffected by endotoxin. In conclusion, the investigated SNPs did not affect endotoxin-induced low-grade cytokine production of TNF-alpha, IL-6, IL-18 or IL......The aim of this study was to investigate to what extent single nucleotide polymorphisms (SNPs) in promoter regions of genes of Toll-like receptor (TLR)-4, tumour necrosis factor (TNF)-alpha, interleukin (IL)-18, interferon (IFN)-gamma, IL-6 and IL-10 affect the cytokine response during a controlled...... low-grade inflammatory response in vivo. Two hundred healthy young male volunteers were genotyped, and cytokine levels were measured in response to a low-dose intravenous bolus of Escherichia coli endotoxin. No association was detected between SNPs (TLR-4299, TLR-4399, TNF-308, IL-18-137, IL-18...

  19. Regulation of Arginine-Ornithine Exchange and the Arginine Deiminase Pathway in Streptococcus lactis

    NARCIS (Netherlands)

    POOLMAN, B; DRIESSEN, AJM; KONINGS, WN

    1987-01-01

    Streptococcus lactis metabolizes arginine by the argiqine deiminase (ADI) pathway. Resting cells of S. lactis grown in the presence of galactose and arginine maintain a high intracellular ornithine pool in the absence of arginine and other exogenous energy sources. Addition of arginine results in a

  20. Characterization of arginine decarboxylase from Dianthus caryophyllus.

    Science.gov (United States)

    Ha, Byung Hak; Cho, Ki Joon; Choi, Yu Jin; Park, Ky Young; Kim, Kyung Hyun

    2004-04-01

    Arginine decarboxylase (ADC, EC 4.1.1.9) is a key enzyme in the biosynthesis of polyamines in higher plants, whereas ornithine decarboxylase represents the sole pathway of polyamine biosynthesis in animals. Previously, we characterized a genomic clone from Dianthus caryophyllus, in which the deduced polypeptide of ADC was 725 amino acids with a molecular mass of 78 kDa. In the present study, the ADC gene was subcloned into the pGEX4T1 expression vector in combination with glutathione S-transferase (GST). The fusion protein GST-ADC was water-soluble and thus was purified by sequential GSTrap-arginine affinity chromatography. A thrombin-mediated on-column cleavage reaction was employed to release free ADC from GST. Hiload superdex gel filtration FPLC was then used to obtain a highly purified ADC. The identity of the ADC was confirmed by immunoblot analysis, and its specific activity with respect to (14)C-arginine decarboxylation reaction was determined to be 0.9 CO(2) pkat mg(-1) protein. K(m) and V(max) of the reaction between ADC and the substrate were 0.077 +/- 0.001 mM and 6.0 +/- 0.6 pkat mg(-1) protein, respectively. ADC activity was reduced by 70% in the presence of 0.1 mM Cu(2+) or CO(2+), but was only marginally affected by Mg(2+), or Ca(2+) at the same concentration. Moreover, spermine at 1 mM significantly reduced its activity by 30%.

  1. Dietary arginine and linear growth

    DEFF Research Database (Denmark)

    van Vught, Anneke J A H; Dagnelie, Pieter C; Arts, Ilja C W;

    2013-01-01

    Child Intervention Study during 2001-2 (baseline), and at 3-year and 7-year follow-up, were used. Arginine intake was estimated via a 7 d precoded food diary at baseline and 3-year follow-up. Data were analysed in a multilevel structure in which children were embedded within schools. Random intercept...

  2. Twin-Arginine Protein Translocation

    NARCIS (Netherlands)

    Goosens, Vivianne J; van Dijl, Jan Maarten

    2016-01-01

    Twin-arginine protein translocation systems (Tat) translocate fully folded and co-factor-containing proteins across biological membranes. In this review, we focus on the Tat pathway of Gram-positive bacteria. The minimal Tat pathway is composed of two components, namely a TatA and TatC pair, which a

  3. Occurrence of Arginine Deiminase Pathway Enzymes in Arginine Catabolism by Wine Lactic Acid Bacteria

    OpenAIRE

    Liu., S; Pritchard, G. G.; Hardman, M. J.; Pilone, G. J.

    1995-01-01

    l-Arginine, an amino acid found in significant quantities in grape juice and wine, is known to be catabolized by some wine lactic acid bacteria. The correlation between the occurrence of arginine deiminase pathway enzymes and the ability to catabolize arginine was examined in this study. The activities of the three arginine deiminase pathway enzymes, arginine deiminase, ornithine transcarbamylase, and carbamate kinase, were measured in cell extracts of 35 strains of wine lactic acid bacteria....

  4. Arginine methylation dysfunction increased risk of acute coronary syndrome in coronary artery disease population

    Science.gov (United States)

    Zhang, Shengyu; Zhang, Shuyang; Wang, Hongyun; Wu, Wei; Ye, Yicong

    2017-01-01

    Abstract The plasma levels of asymmetric dimethylarginine (ADMA) had been proved to be an independent cardiovascular risk factor. Few studies involved the entire arginine methylation dysfunction. This study was designed to investigate whether arginine methylation dysfunction is associated with acute coronary syndrome risk in coronary artery disease population. In total 298 patients undergoing coronary angiography because of chest pain with the diagnosis of stable angina pectoris or acute coronary syndrome from February 2013 to June 2014 were included. Plasma levels of free arginine, citrulline, ornithine, and the methylated form of arginine, ADMA, and symmetric dimethylarginine (SDMA) were measured with high-performance liquid chromatography coupled with tandem mass spectrometry. We examined the relationship between arginine metabolism-related amino acids or arginine methylation index (AMI, defined as ratio of [arginine + citrulline + ornithine]/[ADMA + SDMA]) and acute coronary events. We found that plasma ADMA levels were similar in the stable angina pectoris group and the acute coronary syndrome group (P = 0.88); the AMI differed significantly between 2 groups (P angina and acute coronary syndrome patients; AMI might be an independent risk factor of acute coronary events in coronary artery disease population. PMID:28207514

  5. A high intake of industrial or ruminant trans fatty acids does not affect the plasma proteome in healthy men.

    Science.gov (United States)

    de Roos, Baukje; Wanders, Anne J; Wood, Sharon; Horgan, Graham; Rucklige, Garry; Reid, Martin; Siebelink, Els; Brouwer, Ingeborg A

    2011-10-01

    Consumption of industrial trans fat raises the risk of cardiovascular disease, but it is unclear whether cis9,trans11-conjugated linoleic acid (CLA)--a trans fatty acid in dairy products--modulates disease development. We investigated the effects of complete diets providing 7% of energy as industrial trans fat or cis9, trans11 CLA, compared with oleic acid, on regulation of plasma proteins in 12 healthy men. Diets were provided for 3 wk each, in random order. Plasma was collected at the end of each 3 wk intervention period, depleted of its 12 most abundant proteins and analyzed by 2-DE. Principal component analysis of protein spot intensity values revealed that the nature of the dietary intervention did not significantly affect the plasma proteome. The intervention provided in the 1st period produced a significant treatment effect compared with the interventions provided in the other two periods, and there was a significant subject effect. In conclusion, the nature of an extreme dietary intervention, i.e. 7% of energy provided by industrial trans fat or cis9,trans11 CLA, did not markedly affect the plasma proteome. Thus plasma proteomics using 2-DE appears, by and large, an unsuitable approach to detect regulation of plasma proteins due to changes in the diet.

  6. Oral L-arginine before resistance exercise blunts growth hormone in strength trained males.

    Science.gov (United States)

    Forbes, Scott C; Harber, Vicki; Bell, Gordon J

    2014-04-01

    Acute resistance exercise and L-arginine have both been shown to independently elevate plasma growth hormone (GH) concentrations; however, their combined effect is controversial. The purpose was to investigate the combined effects of resistance exercise and L-arginine supplementation on plasma L-arginine, GH, GH secretagogues, and IGF-1 in strength trained participants. Fourteen strength trained males (age: 25 ± 4 y; body mass: 81.4 ± 9.0 kg; height: 179.4 ± 6.9 cm; and training experience: 6.3 ± 3.4 y) participated in a randomized double-blind crossover design (separated by ~7 days). Subjects reported to the laboratory at 08:00 in a fasted state, consumed L-arginine (ARG; 0.075 g·kg-1 body mass) or a placebo (PLA) before performing an acute bout of resistance exercise (3 sets of 8 exercises, 10 repetitions at ~75% 1RM). Blood samples were collected at rest, before exercise, and at 0, 15, 30, and 60 min of rest-recovery. The ARG condition significantly increased plasma L-arginine concentrations (~120%) while no change was detected in the PLA condition. There were no differences between conditions for GH, GH-releasing hormone, ghrelin, or IGF-1 at any time point. GH-inhibiting hormone was significantly lower in the ARG condition. However, integrated area under the curve for GH was blunted in the ARG condition (L-arginine = 288.4 ± 368.7 vs. placebo = 487.9± 482.0 min·ng·mL1, p exercise significantly elevated plasma L-arginine concentration but attenuated plasma GH in strength trained individuals despite a lower GHIH. Furthermore our data shows that the GH suppression was not due to a GH or IGF-1 induced autonegative feedback loop.

  7. Dynamic and Static Exercises Differentially Affect Plasma Cytokine Content in Elite Endurance- and Strength-Trained Athletes and Untrained Volunteers

    Science.gov (United States)

    Kapilevich, Leonid V.; Zakharova, Anna N.; Kabachkova, Anastasia V.; Kironenko, Tatyana A.; Orlov, Sergei N.

    2017-01-01

    Extensive exercise increases the plasma content of IL-6, IL-8, IL-15, leukemia inhibitory factor (LIF), and several other cytokines via their augmented transcription in skeletal muscle cells. However, the relative impact of aerobic and resistant training interventions on cytokine production remains poorly defined. In this study, we compared effects of dynamic and static load on cytokine plasma content in elite strength- and endurance-trained athletes vs. healthy untrained volunteers. The plasma cytokine content was measured before, immediately after, and 30 min post-exercise using enzyme-linked immunosorbent assay. Pedaling on a bicycle ergometer increased IL-6 and IL-8 content in the plasma of trained athletes by about 4- and 2-fold, respectively. In contrast to dynamic load, weightlifting had negligible impact on these parameters in strength exercise-trained athletes. Unlike IL-6 and IL-8, dynamic exercise had no impact on IL-15 and LIF, whereas static load increases the content of these cytokines by ~50%. Two-fold increment of IL-8 content seen in athletes subjected to dynamic exercise was absent in untrained individuals, whereas the ~50% increase in IL-15 triggered by static load in the plasma of weightlifting athletes was not registered in the control group. Thus, our results show the distinct impact of static and dynamic exercises on cytokine content in the plasma of trained athletes. They also demonstrate that both types of exercises differentially affect cytokine content in plasma of athletes and untrained persons.

  8. Heat Transfer Affected by Transverse Magnetic Field using 3D Modeling of Arc Plasma

    Science.gov (United States)

    Maeda, Yoshifumi; Tanaka, Tatsuro; Yamamoto, Shinji; Iwao, Toru

    2016-10-01

    Gas shielded metal arc welding is used to join the various metal because this is the high quality joining technology. Thus, this welding is used for a welding of large buildings such as bridges and LNG tanks. However, the welding defect caused by the heat transfer decrement may occur with increasing the wind velocity. This is because that the convection loss increases because the arc deflects to leeward side with increasing the wind velocity. In order to prevent from the arc deflection, it is used that the transverse magnetic field is applied to the arc. However, the arc deflection occurs with increasing the transverse magnetic field excessively. The energy balance of the arc is changed with increasing the convection loss caused by the arc deflection, and the heat transfer to the anode decreases. Therefore, the analysis including the arc and anode is necessary to elucidate the heat transfer to the anode. In this paper, the heat transfer affected by the transverse magnetic field using 3D modeling of the arc plasma is elucidated. The heat transfer to the anode is calculated by using the EMTF(electromagnetic thermal fluid) simulation with increasing the transverse magnetic field. As a result, the heat transfer decreased with increasing the transverse magnetic field.

  9. Plasma soluble (pro)renin receptor is independent of plasma renin, prorenin, and aldosterone concentrations but is affected by ethnicity.

    Science.gov (United States)

    Nguyen, Geneviève; Blanchard, Anne; Curis, Emmanuel; Bergerot, Damien; Chambon, Yann; Hirose, Takuo; Caumont-Prim, Aurore; Tabard, Sylvie Brailly; Baron, Stéphanie; Frank, Michael; Totsune, Kazuhito; Azizi, Michel

    2014-02-01

    A soluble (pro)renin receptor (sPRR) circulates in plasma and is able to bind renin and prorenin. It is not known whether plasma sPRR concentrations vary with the activity of the renin-angiotensin system. We measured plasma sPRR, renin, prorenin, and aldosterone concentrations in 121 white and 9 black healthy subjects, 40 patients with diabetes mellitus, 41 hypertensive patients with or without renin-angiotensin system blockers, 9 patients with primary aldosteronism, and 10 patients with Gitelman syndrome. Median physiological plasma sPRR concentration was 23.5 ng/mL (interquartile range, 20.9-26.5) under usual uncontrolled sodium diet. sPRR concentration in healthy subjects, unlike renin and prorenin, did not display circadian variation or dependence on age, sex, posture, or hormonal status. sPRR concentrations were ≈25% lower in black than in white subjects, whereas renin concentrations were ≈40% lower. Patients with diabetes mellitus (average renin-high prorenin levels) and with hypertension only (average renin-average prorenin levels) had sPRR concentrations similar to healthy subjects. Renin-angiotensin system blockade was associated with increase of sPRR concentration by ≈12%. sPRR in patients with primary aldosteronism (low renin-low prorenin) and Gitelman syndrome (high renin-high prorenin) were similar and ≈10% higher than in healthy subjects. There was no correlation between sPRR and renin or prorenin. In conclusion, our results show that plasma sPRR concentrations are dependent on ethnicity and independent of renin, prorenin, and aldosterone concentrations in healthy subjects and in patients with contrasted degrees of renin-angiotensin system activity.

  10. Dietary fructooligosaccharides and transgalactooligosaccharides can affect fermentation characteristics in gut contents and portal plasma of growing pigs

    NARCIS (Netherlands)

    Houdijk, J.G.M.; Verstegen, M.W.A.; Bosch, M.W.; Laere, van K.J.M.

    2002-01-01

    We studied whether dietary non-digestible oligosaccharides (NDOs) affected pH and volatile fatty acids (VFAs) in gastrointestinal contents and in portal plasma of young pigs. Five groups of five 57-day-old pigs received for 44 days either a corn-based control diet or this diet with 7.5 or 15 g/kg fr

  11. Mannitol/l-Arginine-Based Formulation Systems for Freeze Drying of Protein Pharmaceuticals: Effect of the l-Arginine Counter Ion and Formulation Composition on the Formulation Properties and the Physical State of Mannitol.

    Science.gov (United States)

    Stärtzel, Peter; Gieseler, Henning; Gieseler, Margit; Abdul-Fattah, Ahmad M; Adler, Michael; Mahler, Hanns-Christian; Goldbach, Pierre

    2016-10-01

    Previous studies have shown that protein storage stability in freeze-dried l-arginine-based systems improved in the presence of chloride ions. However, chloride ions reduced the glass transition temperature of the freeze concentrate (Tg') and made freeze drying more challenging. In this study, l-arginine was freeze dried with mannitol to obtain partially crystalline solids that can be freeze dried in a fast process and result in elegant cakes. We characterized the effect of different l-arginine counter ions on physicochemical properties of mannitol compared with mannitol/sucrose systems. Thermal properties of formulations with different compositions were correlated to thermal history during freeze drying and to physicochemical properties (cake appearance, residual moisture, reconstitution time, crystallinity). Partially crystalline solids were obtained even at the highest l-arginine level (mannitol:l-arginine of 2:1) used in this study. All l-arginine-containing formulations yielded elegant cakes. Only cakes containing l-arginine chloride and succinate showed a surface "crust" formed by phase separation. X-ray powder diffraction showed that inhibition of mannitol crystallization was stronger for l-arginine compared with sucrose and varied with the type of l-arginine counter ion. The counter ion affected mannitol polymorphism and higher levels of mannitol hemi-hydrate were obtained at high levels of l-arginine chloride.

  12. RNAi-mediated downregulation of poplar plasma membrane intrinsic proteins (PIPs) changes plasma membrane proteome composition and affects leaf physiology.

    Science.gov (United States)

    Bi, Zhen; Merl-Pham, Juliane; Uehlein, Norbert; Zimmer, Ina; Mühlhans, Stefanie; Aichler, Michaela; Walch, Axel Karl; Kaldenhoff, Ralf; Palme, Klaus; Schnitzler, Jörg-Peter; Block, Katja

    2015-10-14

    Plasma membrane intrinsic proteins (PIPs) are one subfamily of aquaporins that mediate the transmembrane transport of water. To reveal their function in poplar, we generated transgenic poplar plants in which the translation of PIP genes was downregulated by RNA interference investigated these plants with a comprehensive leaf plasma membrane proteome and physiome analysis. First, inhibition of PIP synthesis strongly altered the leaf plasma membrane protein composition. Strikingly, several signaling components and transporters involved in the regulation of stomatal movement were differentially regulated in transgenic poplars. Furthermore, hormonal crosstalk related to abscisic acid, auxin and brassinosteroids was altered, in addition to cell wall biosynthesis/cutinization, the organization of cellular structures and membrane trafficking. A physiological analysis confirmed the proteomic results. The leaves had wider opened stomata and higher net CO2 assimilation and transpiration rates as well as greater mesophyll conductance for CO2 (gm) and leaf hydraulic conductance (Kleaf). Based on these results, we conclude that PIP proteins not only play essential roles in whole leaf water and CO2 flux but have important roles in the regulation of stomatal movement.

  13. Sensitive arginine sensing based on inner filter effect of Au nanoparticles on the fluorescence of CdTe quantum dots

    Science.gov (United States)

    Liu, Haijian; Li, Ming; Jiang, Linye; Shen, Feng; Hu, Yufeng; Ren, Xueqin

    2017-02-01

    Arginine plays an important role in many biological functions, whose detection is very significant. Herein, a sensitive, simple and cost-effective fluorescent method for the detection of arginine has been developed based on the inner filter effect (IFE) of citrate-stabilized gold nanoparticles (AuNPs) on the fluorescence of thioglycolic acid-capped CdTe quantum dots (QDs). When citrate-stabilized AuNPs were mixed with thioglycolic acid-capped CdTe QDs, the fluorescence of CdTe QDs was significantly quenched by AuNPs via the IFE. With the presence of arginine, arginine could induce the aggregation and corresponding absorption spectra change of AuNPs, which then IFE-decreased fluorescence could gradually recover with increasing amounts of arginine, achieving fluorescence "turn on" sensing for arginine. The detection mechanism is clearly illustrated and various experimental conditions were also optimized. Under the optimum conditions, a decent linear relationship was obtained in the range from 16 to 121 μg L- 1 and the limit of detection was 5.6 μg L- 1. And satisfactory results were achieved in arginine analysis using arginine injection, compound amino acid injection, even blood plasma as samples. Therefore, the present assay showed various merits, such as simplicity, low cost, high sensitivity and selectivity, making it promising for sensing arginine in biological samples.

  14. Vascular and hormonal responses to arginine: provision of substrate for nitric oxide or non-specific effect?

    Science.gov (United States)

    MacAllister, R J; Calver, A L; Collier, J; Edwards, C M; Herreros, B; Nussey, S S; Vallance, P

    1995-08-01

    1. The vascular and hormonal effects of L- and D-arginine were compared in healthy subjects and in patients with insulin-dependent diabetes mellitus or untreated essential hypertension. 2. Infusion of L- or D-arginine (40 mumol/l) in the forearm vascular bed, sufficient to increase the local concentration approximately 20-fold, had no effect on blood flow or the vasodilator response to acetylcholine (30 and 100 nmol/min) in patients with insulin-dependent diabetes (n = 7) or essential hypertension (n = 7), or in age- and sex-matched control subjects (n = 7 in both groups). 3. Systemic infusion of 10 g of L-arginine (n = 5) or D-arginine (n = 3) increased plasma concentration of arginine approximately 20-fold without altering supine or erect haemodynamics. Increases in plasma insulin, prolactin and glucagon were seen with both enantiomers. The stereopurity of arginine was confirmed in a cell-culture assay system. 4. We conclude that, in healthy subjects and patients with essential hypertension or insulin-dependent diabetes, synthesis of nitric oxide within the vasculature is not limited by substrate availability. At high concentrations of arginine, non-stereospecific effects, including alterations in hormone concentration, occur. It remains to be determined whether these non-stereospecific hormonal changes might contribute to certain haemodynamic effects of arginine.

  15. The Effects of Pretreatment with Various Doses of L-Arginine on Cisplatin-Induced Nephropathy of Male Rats

    Directory of Open Access Journals (Sweden)

    B Rasoulian

    2016-09-01

    Full Text Available Introduction: Cisplatin is a widely used anti-cancer drug, which its application is limited by nephrotoxicity. In this study, the effect of pretreatment with different l-arginine doses on Cisplatin-induced renal functional injury was investigated. Methods: 63 male rats were divided into 7 groups: In groups 3, 4, 5 and 6, 60 min before the Cisplatin injection (5mg/kg; L-Arginine with doses of 50,100,200 or 400mg/kg was injected, respectively. In group7, normal saline was injected before Cisplatin administration. In groups 1 and 2, normal saline was injected instead of Cisplatin. In group 2, 60min before normal saline injection, 400mg/kg L-Arginine was administered and in group1, instead of L-arginine, normal saline was injected too. Injections were intraperitoneal. 72h after Cisplatin injection, blood sampling and plasma separation were done. Urine sample was collected 24 hours before blood sampling by metabolic cage. The mean of plasma urea and creatinine levels and creatinine clearance (ml/day.kg and fractional excretion of Na (FENa, % were compared among different groups as renal functional parameters. Results: In comparison to group 7, L-arginine injection in a dose of 400mg/kg led to significant amelioration of all parameters. 200 mg/kg L-arginine administration led to significant decrease in plasma urea level and FENa. 100mg/kg L-arginine caused significant improvement in fractional excretion of sodium. L-arginine injection with 50mg/kg dose, significantly ameliorate all renal function tests instead of creatinine clearance. Conclusion: Pretreatment with L-arginine administration with 400 or 50 mg/kg doses, respectively, had the highest effect on reducing Cisplatin-induced nephropathy. L-arginine injection with intermediate doses i.e. 200 or 100 mg/kg had less effect in reducing Cisplatin-induced nephropathy and it needs more investigations.

  16. Different roles of cell surface and exogenous glycosaminoglycans in controlling gene delivery by arginine-rich peptides with varied distribution of arginines.

    Science.gov (United States)

    Naik, Rangeetha J; Chatterjee, Anindo; Ganguli, Munia

    2013-06-01

    The role of cell surface and exogenous glycosaminoglycans (GAGs) in DNA delivery by cationic peptides is controlled to a large extent by the peptide chemistry and the nature of its complex with DNA. We have previously shown that complexes formed by arginine homopeptides with DNA adopt a GAG-independent cellular internalization mechanism and show enhanced gene delivery in presence of exogenous GAGs. In contrast, lysine complexes gain cellular entry primarily by a GAG-dependent pathway and are destabilized by exogenous GAGs. The aim of the current study was to elucidate the factors governing the role of cell surface and soluble glycosaminoglycans in DNA delivery by sequences of arginine-rich peptides with altered arginine distributions (compared to homopeptide). Using peptides with clustered arginines which constitute known heparin-binding motifs and a control peptide with arginines alternating with alanines, we show that complexes formed by these peptides do not require cell surface GAGs for cellular uptake and DNA delivery. However, the charge distribution and the spacing of arginine residues affects DNA delivery efficiency of these peptides in presence of soluble GAGs, since these peptides show only a marginal increase in transfection in presence of exogenous GAGs unlike that observed with arginine homopeptides. Our results indicate that presence of arginine by itself drives these peptides to a cell surface GAG-independent route of entry to efficiently deliver functional DNA into cells in vitro. However, the inherent stability of the complexes differ when the distribution of arginines in the peptides is altered, thereby modulating its interaction with exogenous GAGs.

  17. Physical activity affects plasma coenzyme Q10 levels differently in young and old humans.

    Science.gov (United States)

    Del Pozo-Cruz, Jesús; Rodríguez-Bies, Elisabet; Ballesteros-Simarro, Manuel; Navas-Enamorado, Ignacio; Tung, Bui Thanh; Navas, Plácido; López-Lluch, Guillermo

    2014-04-01

    Coenzyme Q (Q) is a key lipidic compound for cell bioenergetics and membrane antioxidant activities. It has been shown that also has a central role in the prevention of oxidation of plasma lipoproteins. Q has been associated with the prevention of cholesterol oxidation and several aging-related diseases. However, to date no clear data on the levels of plasma Q during aging are available. We have measured the levels of plasmatic Q10 and cholesterol in young and old individuals showing different degrees of physical activity. Our results indicate that plasma Q10 levels in old people are higher that the levels found in young people. Our analysis also indicates that there is no a relationship between the degree of physical activity and Q10 levels when the general population is studied. However, very interestingly, we have found a different tendency between Q10 levels and physical activity depending on the age of individuals. In young people, higher activity correlates with lower Q10 levels in plasma whereas in older adults this ratio changes and higher activity is related to higher plasma Q10 levels and higher Q10/Chol ratios. Higher Q10 levels in plasma are related to lower lipoperoxidation and oxidized LDL levels in elderly people. Our results highlight the importance of life habits in the analysis of Q10 in plasma and indicate that the practice of physical activity at old age can improve antioxidant capacity in plasma and help to prevent cardiovascular diseases.

  18. L-Arginine promotes protein synthesis and cell growth in brown adipocyte precursor cells via the mTOR signal pathway.

    Science.gov (United States)

    Ma, Xi; Han, Meng; Li, Defa; Hu, Shengdi; Gilbreath, Kyler R; Bazer, Fuller W; Wu, Guoyao

    2017-03-04

    L-Arginine has been reported to enhance brown adipose tissue developments in fetal lambs of obese ewes, but the underlying mechanism is unknown. The present study tested the hypothesis that L-arginine stimulates growth and development of brown adipocyte precursor cells (BAPCs) through activation of mammalian target of rapamycin cell signaling. BAPCs isolated from fetal lambs at day 90 of gestation were incubated   for 6 h in arginine-free DMEM, and then cultured in DMEM with concentrations of 50, 100, 200, 500 or 1000 μmol L-arginine/L for 24-96 h. Cell proliferation, protein turnover, the mammalian target of rapamycin (mTOR) signaling pathway and pre-adipocyte differentiation markers were determined. L-arginine treatment enhanced (P L (the concentrations of arginine in the maternal plasma of obese ewes), 200 μmol L-arginine/L (the concentrations of arginine in the maternal plasma of obese ewes receiving arginine supplementation) increased (P L activates mTOR cell signaling in BAPCs and enhances their growth and development in a dose-dependent manner. Our results provide a mechanism for arginine supplementation to enhance the development of brown adipose tissue in fetal lambs.

  19. The effect of citrulline and arginine supplementation on lactic acidemia in MELAS syndrome.

    Science.gov (United States)

    El-Hattab, Ayman W; Emrick, Lisa T; Williamson, Kaitlin C; Craigen, William J; Scaglia, Fernando

    2013-12-01

    Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is a mitochondrial disorder in which nitric oxide (NO) deficiency may play a role in the pathogenesis of several complications including stroke-like episodes and lactic acidosis. Supplementing the NO precursors arginine and citrulline restores NO production in MELAS syndrome. In this study we evaluated the effect of arginine or citrulline on lactic acidemia in adults with MELAS syndrome. Plasma lactate decreased significantly after citrulline supplementation, whereas the effect of arginine supplementation did not reach statistical significance. These results support the potential therapeutic utility of arginine and citrulline in MELAS syndrome and suggest that citrulline supplementation may be more efficacious. However, therapeutic efficacy of these compounds should be further evaluated in clinical trials.

  20. Pancreatic cancer cell lines deficient in argininosuccinate synthetase are sensitive to arginine deprivation by arginine deiminase

    OpenAIRE

    Bowles, Tawnya L.; Kim, Randie; Galante, Joseph; Parsons, Colin M.; Virudachalam, Subbulakshmi; Kung, Hsing-Jien; Bold, Richard J.

    2008-01-01

    Eukaryotic cells can synthesize the non-essential amino acid arginine from aspartate and citrulline using the enzyme argininosuccinate synthetase (ASS). It has been observed that ASS is under-expressed in various types of cancers ASS, for which arginine become auxotrophic. Arginine deiminase (ADI) is a prokaryotic enzyme that metabolizes arginine to citrulline and has been found to inhibit melanoma and hepatoma cancer cells deficient of ASS. We tested the hypothesis that pancreatic cancers ha...

  1. The role of arginine and arginine-metabolizing enzymes during Giardia - host cell interactions in vitro

    OpenAIRE

    Stadelmann, Britta; Hanevik, Kurt; Andersson, Mattias; Bruserud, Øystein; Staffan G Svärd

    2013-01-01

    Background: Arginine is a conditionally essential amino acid important in growing individuals and under nonhomeostatic conditions/disease. Many pathogens interfere with arginine-utilization in host cells, especially nitric oxide (NO) production, by changing the expression of host enzymes involved in arginine metabolism. Here we used human intestinal epithelial cells (IEC) and three different isolates of the protozoan parasite Giardia intestinalis to investigate the role of arginine and argini...

  2. Effect of l-Arginine in One Patient with Peroxisome Biogenesis Disorder due to PEX12 Deficiency.

    Science.gov (United States)

    Sorlin, Arthur; Briand, Gilbert; Cheillan, David; Wiedemann, Arnaud; Montaut-Verient, Bettina; Schmitt, Emmanuelle; Feillet, François

    2016-06-01

    Peroxisome biogenesis disorders (PBD) are a heterogeneous group of disorders due to PEX genes mutations, with a broad clinical spectrum comprising severe neonatal disease to mild presentation. Recently, Berendse et al reported an improvement of peroxisomal functions with l-arginine supplementation in fibroblasts with specific mutations of PEX1, PEX6, and PEX12. We report the first treatment by l-arginine in a patient homozygous for the specific PEX12 mutation shown to be l-arginine responsive in fibroblasts. We described the effect of l-arginine on biochemical (decrease of some plasma peroxisomal parameters) and neurophysiological (improvement of deafness) parameters. Some subjective clinical effects have also been observed (no more sialorrhea, behavior improvement). More studies are needed to assess the efficacy of l-arginine in some PBD patients with specific mutations.

  3. Seminal plasma applied post-thawing affects boar sperm physiology: a flow cytometry study.

    Science.gov (United States)

    Fernández-Gago, Rocío; Domínguez, Juan Carlos; Martínez-Pastor, Felipe

    2013-09-01

    Cryopreservation induces extensive biophysical and biochemical changes in the sperm. In the present study, we used flow cytometry to assess the capacitation-like status of frozen-thawed boar spermatozoa and its relationship with intracellular calcium, assessment of membrane fluidity, modification of thiol groups in plasma membrane proteins, reactive oxygen species (ROS) levels, viability, acrosomal status, and mitochondrial activity. This experiment was performed to verify the effect of adding seminal plasma on post-thaw sperm functions. To determine these effects after cryopreservation, frozen-thawed semen from seven boars was examined after supplementation with different concentrations of pooled seminal plasma (0%, 10%, and 50%) at various times of incubation from 0 to 4 hours. Incubation caused a decrease in membrane integrity and an increase in acrosomal damage, with small changes in other parameters (P > 0.05). Although 10% seminal plasma showed few differences with 0% (ROS increase at 4 hours, P boar spermatozoa, possibly through membrane changes and ROS increase. Although some effects were detrimental, the stimulatory effect of 50% seminal plasma could favor the performance of post-thawed boar semen, as showed in the field (García JC, Domínguez JC, Peña FJ, Alegre B, Gonzalez R, Castro MJ, Habing GG, Kirkwood RN. Thawing boar semen in the presence of seminal plasma: effects on sperm quality and fertility. Anim Reprod Sci 2010;119:160-5).

  4. Convergent evolution of the arginine deiminase pathway : the ArcD and ArcE arginine/ornithine exchangers

    NARCIS (Netherlands)

    Noens, Elke E E; Lolkema, Juke S

    2016-01-01

    The arginine deiminase (ADI) pathway converts L-arginine into L-ornithine and yields 1 mol of ATP per mol of L-arginine consumed. The L-arginine/L-ornithine exchanger in the pathway takes up L-arginine and excretes L-ornithine from the cytoplasm. Analysis of the genomes of 1281 bacterial species rev

  5. Thrombolytic therapy reduces red blood cell aggregation in plasma without affecting intrinsic aggregability.

    Science.gov (United States)

    Ben-Ami, R; Sheinman, G; Yedgar, S; Eldor, A; Roth, A; Berliner, A S; Barshtein, G

    2002-03-15

    Red blood cell (RBC) aggregation may contribute to occlusion of the coronary microcirculation during myocardial infarction. We studied the effect of thrombolytic therapy on RBC aggregation in patients with acute myocardial infarction (AMI). Compared with patients with myocardial infarction who did not receive thrombolytic therapy, those treated with systemic thrombolysis exhibited significantly reduced RBC aggregation, reduced plasma fibrinogen levels and increased plasma D-dimer levels. Using measurement of RBC aggregation in a standardized dextran-500 solution, reduction in RBC aggregation after thrombolysis was shown to be plasma dependent. Thrombolytic therapy had no direct effect on intrinsic RBC aggregability in patients with AMI. We conclude that thrombolytic therapy has rheologic consequences that may contribute to its overall efficacy. Inhibition of RBC aggregation by thrombolytic therapy may result from the degradation of fibrinogen, a key factor in the formation of RBC aggregates, and from the generation of fibrinogen degradation products capable of disaggregating RBCs.

  6. Proteomic analysis of seminal plasma from asthenozoospermia patients reveals proteins that affect oxidative stress responses and semen quality.

    Science.gov (United States)

    Wang, Jun; Wang, Jian; Zhang, Hua-Rong; Shi, Hui-Juan; Ma, Duan; Zhao, Hong-Xin; Lin, Biaoyang; Li, Run-Sheng

    2009-07-01

    Asthenozoospermia (AS) is a common cause of human male infertility. In one study, more than 80% of the samples from infertile men had reduced sperm motility. Seminal plasma is a mixture of secretions from the testis, epididymis and several male accessory glands, including the prostate, seminal vesicles and Cowper's gland. Studies have shown that seminal plasma contains proteins that are important for sperm motility. To further explore the pathophysiological character of AS, we separated the seminal plasma proteins from AS patients and healthy donors using sodium dodecyl sulfate polyacrylamide gel electrophoresis and in-gel digestion, and then subjected the proteins to liquid chromatography-mass spectrometry (LC-MS/MS) analysis. A total of 741 proteins were identified in the seminal plasma, with a false discovery rate of 3.3%. Using spectral counting, we found that 45 proteins were threefold upregulated and 56 proteins were threefold downregulated in the AS group when compared with the control. Most of these proteins originated from the epididymis and prostate. This study identified a rich source of biomarker candidates for male infertility and indicates that functional abnormalities of the epididymis and prostate can contribute to AS. We identified DJ-1-a protein that has been shown elsewhere to be involved in the control of oxidative stress (OS)-as a downregulated protein in AS seminal plasma. The levels of DJ-1 in AS seminal plasma were about half of those in the control samples. In addition, the levels of reactive oxygen species were 3.3-fold higher in the AS samples than in the controls. Taken together, these data suggest that downregulation of DJ-1 is involved in OS in semen, and therefore affects the quality of the semen.

  7. Phase I/II study of pegylated arginine deiminase (ADI-PEG 20) in patients with advanced melanoma.

    Science.gov (United States)

    Ott, Patrick A; Carvajal, Richard D; Pandit-Taskar, Neeta; Jungbluth, Achim A; Hoffman, Eric W; Wu, Bor-Wen; Bomalaski, John S; Venhaus, Ralph; Pan, Linda; Old, Lloyd J; Pavlick, Anna C; Wolchok, Jedd D

    2013-04-01

    Background Arginine deiminase (ADI) is an enzyme that degrades arginine, an amino acid that is important for growth and development of normal and neoplastic cells. Melanoma cells are auxotrophic for arginine, because they lack argininosuccinatesynthetase (ASS), a key enzyme required for the synthesis of arginine. Patients and methods Patients with advanced melanoma were treated with 40, 80 or 160 IU/m(2) ADI-PEG 20 i.m. weekly. Primary endpoints were toxicity and tumor response, secondary endpoints included metabolic response by (18)FDG-PET, pharmacodynamic (PD) effects upon circulating arginine levels, and argininosuccinate synthetase tumor expression by immunohistochemistry. Results 31 previously treated patients were enrolled. The main toxicities were grade 1 and 2 adverse events including injection site pain, rash, and fatigue. No objective responses were seen. Nine patients achieved stable disease (SD), with 2 of these durable for >6 months. Four of the 9 patients with SD had uveal melanoma. PD analysis showed complete plasma arginine depletion in 30/31 patients by day 8. Mean plasma levels of ADI-PEG 20 correlated inversely with ADI-PEG 20 antibody levels. Immunohistochemical ASS expression analysis in tumor tissue was negative in 24 patients, whereas 5 patients had arginine depletion. Although no RECIST responses were observed, the encouraging rate of SD in uveal melanoma patients indicates that it may be worthwhile to evaluate ADI-PEG 20 in this melanoma subgroup.

  8. Role of L-arginine in the biological effects of blue light

    Science.gov (United States)

    Makela, Anu M.

    2005-11-01

    Arginine, a semi-essential amino acid, and metabolites of arginine exert multiple biological effects. It has been known that arginine causes the release of various hormones such as insulin, glucagon, growth hormone, prolactin, and adrenal catecholamines. Arginine infusion also produces vasodilation, and in the kidney increased plasma flow accompanied by increases in glomerular filtration rate (GFR). Recent studies have showed that blue and red light irradiation in vitro and in vivo can increase production of nitric oxide (NO), superoxide anion, and related reactive oxygen species (ROS). These then can modulate the production and secretion of several cytokines and other mediators and play an important role as regulatory mediators in signaling processes which can then modulate the production, mobilization and homing of stem cells. It is proposed that some of the therapeutic effects of light can be considered to be due to the changes in the metabolism of L-arginine. The regulation of L-arginine turnover by the use of light at blue wavelengths between 400nm and 510nm can be the explanation for some of the observed effects of blue light: lowering of blood pressure, pain killing effect, regulating insulin production, anti-inflammatory action, and possible effects on the release and homing of stem cells.

  9. Cold plasma inactivates salmonella on grape tomatoes in a commercial PET plastic container without affecting quality

    Science.gov (United States)

    Introduction: The number of outbreaks of foodborne illnesses associated with the consumption of fresh tomatoes has increased. Little research has been conducted on the effects of direct treatment of cold plasma (CP) on the microbial decontamination and preservation of bulk tomatoes packaged in comme...

  10. Phenylbutyrate reduces plasma leucine concentrations without affecting the flux of leucine

    Science.gov (United States)

    Phenylbutyrate (PB) has been used as an alternative pathway to excrete nitrogen in urea cycle disorder patients for the last 20 years. PB, after oxidation to phenylacetate, is conjugated with glutamine and excreted in the urine. A reduction in the plasma concentration of branched amino acids (BCAA) ...

  11. European Sea Bass (Dicentrarchus labrax Immune Status and Disease Resistance Are Impaired by Arginine Dietary Supplementation.

    Directory of Open Access Journals (Sweden)

    Rita Azeredo

    Full Text Available Infectious diseases and fish feeds management are probably the major expenses in the aquaculture business. Hence, it is a priority to define sustainable strategies which simultaneously avoid therapeutic procedures and reinforce fish immunity. Currently, one preferred approach is the use of immunostimulants which can be supplemented to the fish diets. Arginine is a versatile amino acid with important mechanisms closely related to the immune response. Aiming at finding out how arginine affects the innate immune status or improve disease resistance of European seabass (Dicentrarchus labrax against vibriosis, fish were fed two arginine-supplemented diets (1% and 2% arginine supplementation. A third diet meeting arginine requirement level for seabass served as control diet. Following 15 or 29 days of feeding, fish were sampled for blood, spleen and gut to assess cell-mediated immune parameters and immune-related gene expression. At the same time, fish from each dietary group were challenged against Vibrio anguillarum and survival was monitored. Cell-mediated immune parameters such as the extracellular superoxide and nitric oxide decreased in fish fed arginine-supplemented diets. Interleukins and immune-cell marker transcripts were down-regulated by the highest supplementation level. Disease resistance data were in accordance with a generally depressed immune status, with increased susceptibility to vibriosis in fish fed arginine supplemented diets. Altogether, these results suggest a general inhibitory effect of arginine on the immune defences and disease resistance of European seabass. Still, further research will certainly clarify arginine immunomodulation pathways thereby allowing the validation of its potential as a prophylactic strategy.

  12. L-Arginine but not L-glutamine likely increases exogenous carbohydrate oxidation during endurance exercise.

    Science.gov (United States)

    Rowlands, David S; Clarke, Jim; Green, Jackson G; Shi, Xiaocai

    2012-07-01

    The addition of L-arginine or L-glutamine to glucose-electrolyte solutions can increase intestinal water, glucose, and sodium absorption in rats and humans. We evaluated the utility of L-arginine and L-glutamine in energy-rehydration beverages through assessment of exogenous glucose oxidation and perceptions of exertion and gastrointestinal distress during endurance exercise. Eight cyclists rode 150 min at 50% of peak power on four occasions while ingesting solutions at a rate of 150 mL 15 min(-1) that contained (13)C-enriched glucose (266 mmol L(-1)) and sodium citrate ([Na(+)] 60 mmol L(-1)), and either: 4.25 mmol L(-1) L-arginine or 45 mmol L(-1) L-glutamine, and as controls glucose only or no glucose. Relative to glucose only, L-arginine invoked a likely 12% increase in exogenous glucose oxidation (90% confidence limits: ± 8%); however, the effect of L-glutamine was possibly trivial (4.5 ± 7.3%). L-Arginine also led to very likely small reductions in endogenous fat oxidation rate relative to glucose (12 ± 4%) and L-glutamine (14 ± 4%), and relative to no glucose, likely reductions in exercise oxygen consumption (2.6 ± 1.5%) and plasma lactate concentration (0.20 ± 0.16 mmol L(-1)). Effects on endogenous and total carbohydrate oxidation were inconsequential. Compared with glucose only, L-arginine and L-glutamine caused likely small-moderate effect size increases in perceptions of stomach fullness, abdominal cramp, exertion, and muscle tiredness during exercise. Addition of L-arginine to a glucose and electrolyte solution increases the oxidation of exogenous glucose and decreases the oxygen cost of exercise, although the mechanisms responsible and impact on endurance performance require further investigation. However, L-arginine also increases subjective feelings of gastrointestinal distress, which may attenuate its other benefits.

  13. Increasing the potency of a cytotoxin with an arginine graft.

    Science.gov (United States)

    Fuchs, Stephen M; Rutkoski, Thomas J; Kung, Vanessa M; Groeschl, Ryan T; Raines, Ronald T

    2007-10-01

    Variants and homologs of bovine pancreatic ribonuclease (RNase A) can exhibit cytotoxic activity. This toxicity relies on cellular internalization of the enzyme. Residues Glu49 and Asp53 form an anionic patch on the surface of RNase A. We find that replacing these two residues with arginine does not affect catalytic activity or affinity for the cytosolic ribonuclease inhibitor (RI) protein. This 'arginine graft' does, however, increase toxicity towards human cancer cells. Appending a nonaarginine domain to this cationic variant results in an additional increase in cytotoxicity, providing one of the most cytotoxic known variants of RNase A. These findings correlate the potency of a ribonuclease with its deliverance of ribonucleolytic activity to the cytosol, and indicate a rational means to enhance the efficacy of ribonucleases and other cytotoxic proteins.

  14. Arginine and Nitric Oxide Pathways in Obesity-Associated Asthma

    Directory of Open Access Journals (Sweden)

    Fernando Holguin

    2013-01-01

    Full Text Available Obesity is a comorbidity that adversely affects asthma severity and control by mechanisms that are not fully understood. This review will discuss evidence supporting a role for nitric oxide (NO as a potential mechanistic link between obesity and late-onset asthma (>12 years. Several studies have shown that there is an inverse association between increasing body mass index (BMI and reduced exhaled NO. Newer evidence suggests that a potential explanation for this paradoxical relationship is related to nitric oxide synthase (NOS uncoupling, which occurs due to an imbalance between L-arginine (NOS substrate and its endogenous inhibitor, asymmetric di-methyl arginine (ADMA. The review will propose a theoretical framework to understand the relevance of this pathway and how it may differ between early and late-onset obese asthmatics. Finally, the paper will discuss potential new therapeutic approaches, based on these paradigms, for improving the respiratory health of obese subjects with asthma.

  15. Fish oil affects blood pressure and the plasma lipid profile in healthy Danish infants

    DEFF Research Database (Denmark)

    Damsgaard, C.T.; Schack-Nielsen, L.; Michaelsen, K.F.;

    2006-01-01

    Animal and epidemiologic studies indicate that early nutrition has lasting effects on metabolism and cardiovascular disease risk. In adults, (n-3) long-chain PUFA (LCPUFA) from fish oils improve blood pressure, the lipid profile, and possibly cardiovascular disease mortality. This randomized trial...... with an oscillometric device, and blood was sampled for analysis of erythrocyte fatty acid composition and the plasma lipid profile. This paper examines the effects of the fish oil supplement, with adjustment for the effects of the milk intervention when relevant. The fish oil intervention increased erythrocyte (n-3.......04) than infants not administered fish oil. Plasma triacylglycerol was inversely associated with the erythrocyte content of eicosapentaenoic acid (r = 0.34, P

  16. Long-term high fructose and saturated fat diet affects plasma fatty acid profile in rats

    Institute of Scientific and Technical Information of China (English)

    Fabrice TRANCHIDA; Léopold TCHIAKPE; Zo RAKOTONIAINA; Valérie DEYRIS; Olivier RAVION; Abel HIOL

    2012-01-01

    As the consumption of fructose and saturated fatty acids (FAs) has greatly increased in western diets and is linked with an increased risk of metabolic syndrome,the aim of this study was to investigate the effects of a moderate (10 weeks) and a prolonged (30 weeks) high fructose and saturated fatty acid (HFS) diet on plasma FA composition in rats.The effects of a few weeks of HFS diet had already been described,but in this paper we tried to establish whether these effects persist or if they are modified after 10 or 30 weeks.We hypothesized that the plasma FA profile would be altered between 10 and 30 weeks of the HFS diet.Rats fed with either the HFS or a standard diet were tested after 10 weeks and again after 30 weeks.After 10 weeks of feeding,HFS-fed rats developed the metabolic syndrome,as manifested by an increase in fasting insulinemia,total cholesterol and triglyceride levels,as well as by impaired glucose tolerance.Furthermore,the plasma FA profile of the HFS group showed higher proportions of monounsaturated FAs like palmitoleic acid [16:1(n-7)] and oleic acid [18:1(n-9)],whereas the proportions of some polyunsaturated n-6 FAs,such as linoleic acid [18:2(n-6)] and arachidonic acid [20:4(n-6)],were lower than those in the control group.After 30 weeks of the HFS diet,we observed changes mainly in the levels of 16:1(n-7) (decreased)and 20:4(n-6) (increased).Together,our results suggest that an HFS diet could lead to an adaptive response of the plasma FA profile over time,in association with the development of the metabolic syndrome.

  17. Robust computational method for fast calculations of multicharged ions lineshapes affected by a low-frequency electrostatic plasma turbulence

    Science.gov (United States)

    Dalimier, E.; Oks, E.

    2017-01-01

    Transport phenomena in plasmas, such as, e.g., resistivity, can be affected by electrostatic turbulence that frequently occurs in various kinds of laboratory and astrophysical plasmas. Transport phenomena are affected most significantly by a low-frequency electrostatic turbulence—such as, e.g., ion acoustic waves, also known as ionic sound—causing anomalous resistivity. In this case, for computing profiles of spectral lines, emitted by plasma ions, by any appropriate code for diagnostic purposes, it is necessary to calculate the distribution of the total quasistatic field. For a practically important situation, where the average turbulent field is much greater than the characteristic ion microfield, we develop a robust computational method valid for any appropriate distribution of the ion microfield at a charged point. We show that the correction to the Rayleigh distribution of the turbulent field is controlled by the behavior of the ion microfield distribution at large fields—in distinction to the opposite (and therefore, erroneous) result in the literature. We also obtain a universal analytical expression for the correction to the Rayleigh distribution based on the asymptotic of the ion microfield distribution at large fields at a charged point. By comparison with various known distributions of the ion microfield, we show that our asymptotic formula has a sufficiently high accuracy. Also exact computations are used to verify the high accuracy of the method. This robust approximate, but accurate method yields faster computational results than the exact calculations and therefore should be important for practical situations requiring simultaneous computations of a large number of spectral lineshapes (e.g., for calculating opacities)—especially for laser-produced plasmas.

  18. The amount of macrophages and activated plasma cells on wound healing process affected by spirulina

    Directory of Open Access Journals (Sweden)

    Regina Purnama Dewi Iskandar

    2015-12-01

    Full Text Available Background: Spirulina which grows abundantly in tropical seas have been investigated to enhance immune system. The administration of spirulina in tooth extraction sockets was expected to optimise the function of immunocompetent cells. Therefore, wound healing process would be improved. Purpose: The aim of this study was to prove that administration of spirulina could influence immune system in tooth extraction sockets. Method: There were 28 Cavia cobayas used in this study and were put in group of four. Mandibular left incisive were extracted from each of them. The basis made from mixture of polyethylene glycol (PEG 400 and PEG 4000 was administrated into each socket in control group (TG0. In addition, spirulina 12% was administrated into group TG1, spirulina 24% was administrated into group TG2, and spirulina 48% was administrated into group TG3. All of the Cavia cobaya were decapitated and the jaws were removed in day 5 after tooth extraction. The jaws were decalcified in EDTA solution, formed into paraffin block, processed for hematoxylin and eosin (H & E and immunohistochemistry staining afterwards. Datas were analysed statistically using Anova method. Result: There was an augmentation in the number of macrophages and activated plasma cells after spirulina application. The administration of higher concentrations of Spirulina leads to greater amount of macrophages and activated plasma cells in each groups. Conclusion: In conclusion, spirulina is able to increase the amount of macrophages and activated plasma cells which play important role in healing process.

  19. Plasma inflammatory and vascular homeostasis biomarkers increase during human pregnancy but are not affected by oily fish intake.

    Science.gov (United States)

    García-Rodríguez, Cruz E; Olza, Josune; Aguilera, Concepción M; Mesa, María D; Miles, Elizabeth A; Noakes, Paul S; Vlachava, Maria; Kremmyda, Lefkothea-Stella; Diaper, Norma D; Godfrey, Keith M; Calder, Philip C; Gil, Angel

    2012-07-01

    The Salmon in Pregnancy Study investigated whether the increased consumption of (n-3) long-chain PUFA (LC-PUFA) from farmed Atlantic salmon affects immune function during pregnancy and atopic disease in neonates compared with a habitual diet low in oily fish. In this context, because the ingestion of (n-3) LC-PUFA may lower the concentrations of inflammatory biomarkers, we investigated whether the consumption of oily fish affects the levels of inflammatory cytokines and vascular adhesion factors during pregnancy. Pregnant women (n = 123) were randomly assigned to continue their habitual diet (control group, n = 61), which was low in oily fish, or to consume two 150-g salmon portions/wk (salmon group, n = 62; providing 3.45 g EPA plus DHA) from 20 wk of gestation until delivery. Plasma inflammatory cytokines and vascular adhesion factors were measured in maternal plasma samples. Inflammatory biomarkers, including IL-8, hepatocyte growth factor, and monocyte chemotactic protein, increased over the course of pregnancy (P pregnancy progressed (P pregnancy, they are not affected by the increased intake of farmed salmon.

  20. Changes in Dietary Fat Content Rapidly Alters the Mouse Plasma Coagulation Profile without Affecting Relative Transcript Levels of Coagulation Factors.

    Directory of Open Access Journals (Sweden)

    Audrey C A Cleuren

    Full Text Available Obesity is associated with a hypercoagulable state and increased risk for thrombotic cardiovascular events.Establish the onset and reversibility of the hypercoagulable state during the development and regression of nutritionally-induced obesity in mice, and its relation to transcriptional changes and clearance rates of coagulation factors as well as its relation to changes in metabolic and inflammatory parameters.Male C57BL/6J mice were fed a low fat (10% kcal as fat; LFD or high fat diet (45% kcal as fat; HFD for 2, 4, 8 or 16 weeks. To study the effects of weight loss, mice were fed the HFD for 16 weeks and switched to the LFD for 1, 2 or 4 weeks. For each time point analyses of plasma and hepatic mRNA levels of coagulation factors were performed after overnight fasting, as well as measurements of circulating metabolic and inflammatory parameters. Furthermore, in vivo clearance rates of human factor (F VII, FVIII and FIX proteins were determined after 2 weeks of HFD-feeding.HFD feeding gradually increased the body and liver weight, which was accompanied by a significant increase in plasma glucose levels from 8 weeks onwards, while insulin levels were affected after 16 weeks. Besides a transient rise in cytokine levels at 2 weeks after starting the HFD, no significant effect on inflammation markers was present. Increased plasma levels of fibrinogen, FII, FVII, FVIII, FIX, FXI and FXII were observed in mice on a HFD for 2 weeks, which in general persisted throughout the 16 weeks of HFD-feeding. Interestingly, with the exception of FXI the effects on plasma coagulation levels were not paralleled by changes in relative transcript levels in the liver, nor by decreased clearance rates. Switching from HFD to LFD reversed the HFD-induced procoagulant shift in plasma, again not coinciding with transcriptional modulation.Changes in dietary fat content rapidly alter the mouse plasma coagulation profile, thereby preceding plasma metabolic changes, which

  1. Impaired nitric oxide production in children with MELAS syndrome and the effect of arginine and citrulline supplementation.

    Science.gov (United States)

    El-Hattab, Ayman W; Emrick, Lisa T; Hsu, Jean W; Chanprasert, Sirisak; Almannai, Mohammed; Craigen, William J; Jahoor, Farook; Scaglia, Fernando

    2016-04-01

    Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is one of the most frequent maternally inherited mitochondrial disorders. The pathogenesis of this syndrome is not fully understood and believed to result from several interacting mechanisms including impaired mitochondrial energy production, microvasculature angiopathy, and nitric oxide (NO) deficiency. NO deficiency in MELAS syndrome is likely to be multifactorial in origin with the decreased availability of the NO precursors, arginine and citrulline, playing a major role. In this study we used stable isotope infusion techniques to assess NO production in children with MELAS syndrome and healthy pediatric controls. We also assessed the effect of oral arginine and citrulline supplementations on NO production in children with MELAS syndrome. When compared to control subjects, children with MELAS syndrome were found to have lower NO production, arginine flux, plasma arginine, and citrulline flux. In children with MELAS syndrome, arginine supplementation resulted in increased NO production, arginine flux, and arginine concentration. Citrulline supplementation resulted in a greater increase of these parameters. Additionally, citrulline supplementation was associated with a robust increase in citrulline concentration and flux and de novo arginine synthesis rate. The greater effect of citrulline in increasing NO production is due to its greater ability to increase arginine availability particularly in the intracellular compartment in which NO synthesis takes place. This study, which is the first one to assess NO metabolism in children with mitochondrial diseases, adds more evidence to the notion that NO deficiency occurs in MELAS syndrome, suggests a better effect for citrulline because of its greater role as NO precursor, and indicates that impaired NO production occurs in children as well as adults with MELAS syndrome. Thus, the initiation of treatment with NO precursors may be

  2. Regulatory role for L-arginine in the utilization of amino acids by pig small-intestinal bacteria.

    Science.gov (United States)

    Dai, Zhao-Lai; Li, Xi-Long; Xi, Peng-Bin; Zhang, Jing; Wu, Guoyao; Zhu, Wei-Yun

    2012-07-01

    We recently reported that bacteria from the pig small intestine rapidly utilize and metabolize amino acids (AA). This study investigated the effect of L-arginine on the utilization of AA by pure bacterial strains (Streptococcus sp., Escherichia coli and Klebsiella sp.) and mixed bacterial cultures derived from the pig small intestine. Bacteria were incubated at 37°C for 3 h in anaerobic AA media containing 0-5 mmol/L of arginine to determine the effect of arginine on the bacterial utilization of AA. Amino acids in the medium plus cell extracts were analyzed by high-performance liquid chromatography. Results indicated concentration-dependent increases in the bacterial utilization of arginine and altered fluxes of arginine into ornithine and citrulline in the bacteria. Net glutamine utilization increased in pure bacterial strains with increased concentrations of arginine. With the addition of arginine, net utilization of threonine, glycine, phenylalanine and branched-chain AA increased (P<0.05) in Streptococcus sp. and Klebsiella sp., but decreased in E. coli. Net utilization of lysine, threonine, isoleucine, leucine, glycine and alanine by jejunal or ileal mixed bacteria decreased (P<0.05) with the addition of arginine. Complete utilization of asparagine, aspartate and serine were observed in pig small-intestinal bacteria after 3 h of incubation. Overall, the addition of arginine affected the metabolism of the arginine-family of AA and the serine- and aspartate-family of AA in small-intestinal bacteria and reduced the utilization of most AA in ileal mixed bacteria. These novel findings indicate that arginine exerts its beneficial effects on swine nutrition partially by regulating AA utilization and metabolism in the small-intestinal microbiota.

  3. The effect of recombinant erythropoietin on plasma brain derived neurotrophic factor levels in patients with affective disorders

    DEFF Research Database (Denmark)

    Vinberg, Maj; Miskowiak, Kamilla; Hoejman, Pernille

    2015-01-01

    UNLABELLED: The study aims to investigate the effect of repeated infusions of recombinant erythropoietin (EPO) on plasma brain derived neurotrophic factor (BDNF) levels in patients with affective disorders. In total, 83 patients were recruited: 40 currently depressed patients with treatment......-resistant depression (TRD) (Hamilton Depression Rating Scale-17 items (HDRS-17) score >17) (study 1) and 43 patients with bipolar disorder (BD) in partial remission (HDRS-17 and Young Mania Rating Scale (YMRS) ≤ 14) (study 2). In both studies, patients were randomised to receive eight weekly EPO (Eprex; 40,000 IU...

  4. Glycosaminoglycans affect the interaction of human plasma kallikrein with plasminogen, factor XII and inhibitors

    Directory of Open Access Journals (Sweden)

    Gozzo A.J.

    2003-01-01

    Full Text Available Human plasma kallikrein, a serine proteinase, plays a key role in intrinsic blood clotting, in the kallikrein-kinin system, and in fibrinolysis. The proteolytic enzymes involved in these processes are usually controlled by specific inhibitors and may be influenced by several factors including glycosaminoglycans, as recently demonstrated by our group. The aim of the present study was to investigate the effect of glycosaminoglycans (30 to 250 µg/ml on kallikrein activity on plasminogen and factor XII and on the inhibition of kallikrein by the plasma proteins C1-inhibitor and antithrombin. Almost all available glycosaminoglycans (heparin, heparan sulfate, bovine and tuna dermatan sulfate, chondroitin 4- and 6-sulfates reduced (1.2 to 3.0 times the catalytic efficiency of kallikrein (in a nanomolar range on the hydrolysis of plasminogen (0.3 to 1.8 µM and increased (1.9 to 7.7 times the enzyme efficiency in factor XII (0.1 to 10 µM activation. On the other hand, heparin, heparan sulfate, and bovine and tuna dermatan sulfate improved (1.2 to 3.4 times kallikrein inhibition by antithrombin (1.4 µM, while chondroitin 4- and 6-sulfates reduced it (1.3 times. Heparin and heparan sulfate increased (1.4 times the enzyme inhibition by the C1-inhibitor (150 nM.

  5. Factors affecting the microstructural stability and durability of thermal barrier coatings fabricated by air plasma spraying

    Energy Technology Data Exchange (ETDEWEB)

    Helminiak, M.A.; Yanar, N.M.; Pettit, F.S.; Meier, G.H. [National Energy Technology Laboratory, Pittsburgh, PA 15236 (United States); Department of Mechanical Engineering and Materials Science, University of Pittsburgh, 636 Benedum Hall, 3700 O& #x27; Hara Street, Pittsburgh, PA 15261 (United States); Taylor, T.A. [Praxair Surface Technologies, Inc., 1400 Polco Street, Indianapolis, IN 46224 (United States)

    2012-10-15

    The high-temperature behavior of high-purity, low-density (HP-LD) air plasma sprayed (APS) thermal barrier coatings (TBCs) with NiCoCrAlY bond coats deposited by argon-shrouded plasma spraying is described. The high purity yttria-stabilized zirconia resulted in top coats which are highly resistant to sintering and transformation from the metastable tetragonal phase to the equilibrium mixture of monoclinic and cubic phases. The thermal conductivity of the as-processed TBC is low but increases during high temperature exposure even before densification occurs. The porous topcoat microstructure also resulted in good spallation resistance during thermal cycling. The actual failure mechanisms of the APS coatings were found to depend on topcoat thickness, topcoat density, and the thermal cycle frequency. The failure mechanisms are described and the durability of the HP-LD coatings is compared with that of state-of-the-art electron beam physical vapor deposition TBCs. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Transjugular intrahepatic portosystemic shunt-placement increases arginine/asymmetric dimethylarginine ratio in cirrhotic patients

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    AIM: To analyze the change of dimethylarginine plasma levels in cirrhotic patients receiving transjugular intrahepatic portosystemic shunt (TIPS). METHODS: TO determine arginine, asymmetric dimethylarginine (ADMA), symmetric dimethylarginine (SDMA), and nitric oxide (NO) plasma levels, blood samples were collected from the superior cava, hepatic, and portal vein just before, directly after, and 3 mo after TIPS-placement.RESULTS: A significant increase in the arginine/ADMA ratio after TIPS placement was shown. Moreover, TIPS placement enhanced renal function and thereby decreased systemic SDMA levels. In patients with renal dysfunction before TIPS placement, both the arginine/ ADMA ratio and creatinine clearance rate increased significantly, while this was not the case in patients with normal renal function before TIPS placement. Hepatic function did not change significantly after TIPS placement and no significant decline in ADMA plasma levels was measured.CONCLUSION: The increase of the arginine/ADMA ratio after TIPS placement suggests an increase in intracellular NO bioavailability. In addition, this study suggests that TIPS placement does not alter dimethylarginine dimethylaminohydrolase (DDAH) activity and confirms the major role of the liver as an ADMA clearing organ.

  7. Genetic and biochemical characterization of arginine biosynthesis in Sinorhizobium meliloti 1021.

    Science.gov (United States)

    Hernández, Victor M; Girard, Lourdes; Hernández-Lucas, Ismael; Vázquez, Alejandra; Ortíz-Ortíz, Catalina; Díaz, Rafael; Dunn, Michael F

    2015-08-01

    L-Ornithine production in the alfalfa microsymbiont Sinorhizobium meliloti occurs as an intermediate step in arginine biosynthesis. Ornithine is required for effective symbiosis but its synthesis in S. meliloti has been little studied. Unlike most bacteria, S. meliloti 1021 is annotated as encoding two enzymes producing ornithine: N-acetylornithine (NAO) deacetylase (ArgE) hydrolyses NAO to acetate and ornithine, and glutamate N-acetyltransferase (ArgJ) transacetylates l-glutamate with the acetyl group from NAO, forming ornithine and N-acetylglutamate (NAG). NAG is the substrate for the second step of arginine biosynthesis catalysed by NAG kinase (ArgB). Inactivation of argB in strain 1021 resulted in arginine auxotrophy. The activity of purified ArgB was significantly inhibited by arginine but not by ornithine. The purified ArgJ was highly active in NAO deacetylation/glutamate transacetylation and was significantly inhibited by ornithine but not by arginine. The purified ArgE protein (with a 6His-Sumo affinity tag) was also active in deacetylating NAO. argE and argJ single mutants, and an argEJ double mutant, are arginine prototrophs. Extracts of the double mutant contained aminoacylase (Ama) activity that deacetylated NAO to form ornithine. The purified products of three candidate ama genes (smc00682 (hipO1), smc02256 (hipO2) and smb21279) all possessed NAO deacetylase activity. hipO1 and hipO2, but not smb21279, expressed in trans functionally complemented an Escherichia coli ΔargE : : Km mutant. We conclude that Ama activity accounts for the arginine prototrophy of the argEJ mutant. Transcriptional assays of argB, argE and argJ, fused to a promoterless gusA gene, showed that their expression was not significantly affected by exogenous arginine or ornithine.

  8. Genome-wide association reveals that common genetic variation in the kallikrein-kinin system is associated with serum L-arginine levels.

    Science.gov (United States)

    Zhang, Weihua; Jernerén, Fredrik; Lehne, Benjamin C; Chen, Ming-Huei; Luben, Robert N; Johnston, Carole; Elshorbagy, Amany; Eppinga, Ruben N; Scott, William R; Adeyeye, Elizabeth; Scott, James; Böger, Rainer H; Khaw, Kay-Tee; van der Harst, Pim; Wareham, Nicholas J; Vasan, Ramachandran S; Chambers, John C; Refsum, Helga; Kooner, Jaspal S

    2016-11-30

    L-arginine is the essential precursor of nitric oxide, and is involved in multiple key physiological processes, including vascular and immune function. The genetic regulation of blood L-arginine levels is largely unknown. We performed a genome-wide association study (GWAS) to identify genetic factors determining serum L-arginine levels, amongst 901 Europeans and 1,394 Indian Asians. We show that common genetic variations at the KLKB1 and F12 loci are strongly associated with serum L-arginine levels. The G allele of single nucleotide polymorphism (SNP) rs71640036 (T/G) in KLKB1 is associated with lower serum L-arginine concentrations (10 µmol/l per allele copy, p=1×10(-24)), while allele T of rs2545801 (T/C) near the F12 gene is associated with lower serum L-arginine levels (7 µmol/l per allele copy, p=7×10(-12)). Together these two loci explain 7 % of the total variance in serum L-arginine concentrations. The associations at both loci were replicated in independent cohorts with plasma L-arginine measurements (pL-arginine and its potential relationship with cardiovascular risk.

  9. Arginine requirement of starting broiler chicks.

    Science.gov (United States)

    Cuca, M; Jensen, L S

    1990-08-01

    Three experiments were conducted to estimate the arginine requirement of male broiler chicks from 0 to 3 wk of age. The experiments were conducted in battery brooders with wires floors, and the birds received water and feed ad libitum. In the first experiment, chicks were fed a diet based on corn, soybean meal, casein, and corn-gluten meal containing 3,200 kcal ME per kg and either 20 or 23% crude protein. Regression analysis indicated an arginine requirement of 1.22% for maximum growth rate and feed efficiency with the 20% protein diet. For chicks fed the 23% protein diet, neither growth rate nor feed efficiency was significantly different among the diets containing arginine ranging from 1.13 to 1.43%. In the second experiment, a basal diet was used containing 17.5% casein and 22.5% protein with arginine ranging from 1.03 to 1.43%. An arginine requirement of 1.18% for maximum body weight gain was estimated by regression analysis, but no significant response to arginine above the basal level was observed for feed efficiency. Performance of chicks fed the basal diet was somewhat reduced because of a difficulty with adherence of feed to the beaks. In a third experiment, three basal diets containing 21, 22, or 23% protein were formulated from practical ingredients without use of casein. The requirement for maximum growth rate and feed efficiency was estimated to be 1.24 to 1.28% for the three diets. The results of these investigations indicate that the arginine requirement for starting chicks suggested by the National Research Council in 1984 of 1.44% in diets containing 3,200 kcal ME per kg is too high for practical diets. The data presented here support an arginine requirement of 1.25%.

  10. Effects of Arginine Supplementation on Amino Acid Profiles in Blood and Tissues in Fed and Overnight-Fasted Rats

    Directory of Open Access Journals (Sweden)

    Milan Holecek

    2016-04-01

    Full Text Available Chronic arginine intake is believed to have favorable effects on the body. However, it might be hypothesized that excessive consumption of an individual amino acid exerts adverse effects on distribution and metabolism of other amino acids. We evaluated the effect of chronic intake of arginine on amino acid concentrations in blood plasma, liver, kidneys, and soleus and extensor digitorum longus muscles. Rats were fed a standard diet or a high-arginine diet (HAD for two months. Half of the animals in each group were sacrificed in the fed state, and the other half after fasting overnight. HAD increased blood plasma concentrations of urea, creatinine, arginine, and ornithine and decreased most other amino acids. Arginine and ornithine also increased in muscles and kidneys; an increase of lysine was observed in both muscle types. Methionine, phenylalanine, threonine, asparagine, glycine, serine, and taurine decreased in most tissues of HAD fed animals. Most of the effects of HAD disappeared after overnight fasting. It is concluded that (i enhanced dietary arginine intake alters distribution of almost all amino acids; and (ii to attain a better assessment of the effects of various nutritional interventions, an appropriate number of biochemical measurements must be performed in both postprandial and postabsorptive states.

  11. The Effects of L-arginine Supplement on Growth, Meat Production, and Fat Deposition in Broiler Chickens

    Directory of Open Access Journals (Sweden)

    Marziyeh Ebrahimi

    2014-04-01

    Full Text Available The objective of the present study was to investigate the effects of dietary L-arginine on performance, meat production and its chemical composition, carcass fat deposition, intestine morphology and blood parameters of Ross broiler chickens during 46 days. In this experiment, 192 day old commercial female Ross broiler chicks were used with 4 dietary treatments and 4 replications in a completely randomized design. Dietary treatments included 100, 153, 168 and 183 percentages of digestible arginine, based on the Ross catalogue recommendation. On 46th day of experiment, three chickens per replication were selected randomly, blood samples were collected from each, and thereafter they were slaughtered in order to measure carcass traits, intestine morphology and meat chemical composition. The results showed that dietary arginine treatments caused a significant increase on body weight, carcass efficiency, muscle yield, protein and fat content of muscle, heart weight, and growth of small intestine, while decreased abdominal fat weight. Arginine supplementation increased plasma concentrations of triiodothyronine and thyroxine, but reduced plasma concentrations of cholesterol, triglyceride, and urea. According to the results of this study, consumption level of 168% digestible arginine, based on the Ross catalogue recommendation, had the best results on growth improvement and carcass traits, while consumption level of 183% digestible arginine had the greatest fat carcass reduction.

  12. Efficacy L-Arginine In Patients With Nonalcoholic Steatohepatitis Associated With Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Oleksandr Fediv

    2015-01-01

    Full Text Available Abstract Background and Purpose Recent research in the field of hematology indicate that among the many pathogenic mechanisms of development and progression of nonalcoholic steatohepatitis NASH which occurs on the background of the metabolic syndrome an important role is played by endothelial dysfunction and violations of haemocoagulation. The aim of this research was to study the effectiveness of L-arginine as it corrects endothelial dysfunction and disorders of homeostasis haemocoagulation link in patients with NASH associated with the metabolic syndrome. Subjects and Methods 128 patients with nonalcoholic steatohepatitis associated with metabolic syndrome were examined. Some patients 63 persons received standard treatment according to national guidelines. To another group 65 patients on the background of basic therapy L-arginine hydrochloride followed by transition to oral form of L-arginine aspartate was administered. Blood levels of stable nitrogen monoxide metabolites nitrites nitrates endothelin-1 and plasma recalcification time prothrombin time thrombin time activated partial thromboplastin time fibrinogen plasma level activity of antithrombin III and coagulation factor XIII potential activity of plasminogen plasma fibrinolytic blood activity were studied. Results Originally significantly increased levels of endothelin-1 decreased after the therapy in all studied groups but more noticeable changes in the group with L-arginine appointment were observed p0.05. In the studied groups normalization of stable nitrogen monoxide metabolites after treatment was also noticed. Significant p0.05 increase in all haemocoagulation time characteristics and activities of antithrombin-III and factor XIII was found. The positive effect of L-arginine on blood fibrinolytic activity was noted. Discussion and Conclusion Combined therapy of nonalcoholic steatohepatitis associated with metabolic syndrome with a differentiated degreeal L-arginine assignment by

  13. Effect of L-arginine on metabolism of polyamines in rat's brain with extrahepatic cholestasis.

    Science.gov (United States)

    Sokolovic, Dusan; Bjelakovic, Gordana; Nikolic, Jelenka; Djindjic, Boris; Pavlovic, Dusica; Kocic, Gordana; Stojanovic, Ivana; Pavlovic, Voja

    2010-01-01

    Cholestatic encephalopathy results from accumulation of unconjugated bilirubin and hydrophobic bile acids in the brain. The aim of this study was to determine disturbances of polyamine metabolism in the brains of rats with experimental extrahepatic cholestasis and the effects of L-arginine administration. Wister rats were divided into groups: I: sham-operated, II: rats treated with L-arginine, III: animals with bile-duct ligation (BDL), and IV: cholestatic-BDL rats treated with L-arginine. Increased plasma gamma-glutamyltransferase and alkaline phosphatase activity and increased bile-acids and bilirubin levels in BDL rats were reduced by administration of L-arginine (P < 0.001). Cholestasis increased the brain's putrescine (P < 0.001) and decreased spermidine and spermine concentration (P < 0.05). The activity of polyamine oxidase was increased (P < 0.001) and diamine oxidase was decreased (P < 0.001) in the brains of BDL rats. Cholestasis increased the activity of arginase (P < 0.05) and decreased the level of citrulline (P < 0.001). Administration of L-arginine in BDL rats prevents metabolic disorders of polyamines and establishes a neuroprotective role in the brain during cholestasis.

  14. Cheddar cheese ripening affects plasma nonesterified fatty acids and serum insulin concentrations in growing pigs

    DEFF Research Database (Denmark)

    Thorning, Tanja Kongerslev; Bendsen, Nathalie T; Jensen, Søren Krogh

    2015-01-01

    by means of a porcine model how cheeses with different ripening times affect blood glucose, insulin, and lipid concentrations and fecal-fat excretion. Methods: A parallel-arm randomized intervention study with 36 Landrace × Yorkshire × Duroc crossbred 3-mo-old female pigs was conducted. The pigs were fed...... resistance was lower in the 24-MRC diet group (0.030 ± 0.003) than in the 4-MRC diet group (0.041 ± 0.005; P growing pigs...

  15. YKL-40 Gene Expression and Plasma Levels of CD30 are not Affected by Isoflurane or Propofol: Pilot Study

    Directory of Open Access Journals (Sweden)

    Shirin Lak

    2016-10-01

    Full Text Available Background: It has been hypothesized that the body's response to anesthesia techniques can increase risk of cancer recurrence and metastatic disease after surgery and also can modulate immune responses. Some acute inflammatory markers have been measured to survey the immunomodulatory effect of anesthesia, but in this research, we studied the plasma level of CD30 and YKL-40 gene expression which can present major changes of the immune system.Materials and Methods: Our study was a controlled before and after study. 34 women with biopsy-proven breast cancer were randomized to receive either propofol general anesthesia (n=17 or standard isoflurane general anesthesia (n=17. There were no significant differences between the two patient groups in age, body weight, and height, length of general anesthesia, operative time and group of surgery. The blood samples were collected in two different sets, before anesthesia and 72-h postoperatively. Soluble CD30 (sCD30 plasma level was measured by ELISA and YKL-40/CHI3L1 gene expression was evaluated by real-time-PCR.Results: The results showed that the anesthetics, propofol and isoflurane, have no effect on the expression of YKL-40. Despite increased in the expression of YKL-40 that was observed in patients receiving isoflurane, this increase was not statistically significant. There was no significant increase or decrease in plasma concentrations of sCD30.Conclusion: YKL-40 and sCD30 are not affected by isoflurane or propofol.  So, in immunological perspective, there is no preference in use of isoflurane or propofol in breast cancer patients.

  16. IMMUNOSUPPRESSIVE EFFECTS OF ARGININE DEIMINASE FROM STREPTOCOCCUS PYOGENES

    Directory of Open Access Journals (Sweden)

    E. A. Starikova

    2015-01-01

    Full Text Available Many pathogens use metabolic pathway of arginine for successful dissemination. Bacterial arginine deiminase hydrolyzes arginine to form one molecule of ammonia and two molecules of ATP. The activity of the enzyme contributes to the improvement of survival of pathogenic bacteria in conditions of low pH at the site of infection or in phagolysosome, as well as in anaerobic conditions, and also leads to deficiency of arginine. Metabolism of arginine plays an important role in regulating the functions of immune system cells in mammals. Arginine is a substrate of enzymes NOS and arginase. Arginine depletion, potentially contributs to immunosuppression. The review analyzed the literature data on the effect of streptococcal arginine deiminase on the metabolism of arginine eukaryotic cells, and discusses immunosuppressive action of the enzyme.

  17. Effects of acute supplementation of L-arginine and nitrate on endurance and sprint performance in elite athletes.

    Science.gov (United States)

    Sandbakk, Silvana Bucher; Sandbakk, Øyvind; Peacock, Oliver; James, Philip; Welde, Boye; Stokes, Keith; Böhlke, Nikolai; Tjønna, Arnt Erik

    2015-08-01

    This study examined the effects of acute supplementation with L-arginine and nitrate on running economy, endurance and sprint performance in endurance-trained athletes. In a randomised cross-over, double-blinded design we compared the effects of combined supplementation with 6 g L-arginine and 614 mg nitrate against 614 mg nitrate alone and placebo in nine male elite cross-country skiers (age 18 ± 0 years, VO2max 69.3 ± 5.8 ml ⋅ min(-1) ⋅ kg(-1)). After a 48-hour standardisation of nutrition and exercise the athletes were tested for plasma nitrate and nitrite concentrations, blood pressure, submaximal running economy at 10 km ⋅ h(-1) and 14 km ⋅ h(-1) at 1% incline and 180 m as well as 5-km time-trial running performances. Plasma nitrite concentration following L-arginine + nitrate supplementation (319 ± 54 nmol ⋅ L(-1)) did not differ from nitrate alone (328 ± 107 nmol ⋅ L(-1)), and both were higher than placebo (149 ± 64 nmol ⋅ L(-1), p performance between treatments. The plasma nitrite concentrations indicate greater nitric oxide availability both following acute supplementation of L-arginine + nitrate and with nitrate alone compared to placebo, but no additional effect was revealed when L-arginine was added to nitrate. Still, there were no effects of supplementation on exercise economy or endurance running performance in endurance-trained cross-country skiers.

  18. Cardiac tamponade as an independent condition affecting the relationship between the plasma B-type natriuretic peptide levels and cardiac function.

    Science.gov (United States)

    Minai, Kosuke; Komukai, Kimiaki; Arase, Satoshi; Nagoshi, Tomohisa; Matsuo, Seiichiro; Ogawa, Kazuo; Kayama, Yosuke; Inada, Keiichi; Tanigawa, Shin-Ichi; Takemoto, Tomoyuki; Sekiyama, Hiroshi; Date, Taro; Ogawa, Takayuki; Taniguchi, Ikuo; Yoshimura, Michihiro

    2013-07-01

    Plasma B-type natriuretic peptide (BNP) is finely regulated by the cardiac function and several extracardiac factors. Therefore, the relationship between the plasma BNP levels and the severity of heart failure sometimes seems inconsistent. The purpose of the present study was to investigate the plasma BNP levels in patients with cardiac tamponade and their changes after pericardial drainage. This study included 14 patients with cardiac tamponade who underwent pericardiocentesis. The cardiac tamponade was due to malignant diseases in 13 patients and uremia in 1 patient. The plasma BNP levels were measured before and 24-48 h after drainage. Although the patients reported severe symptoms of heart failure, their plasma BNP levels were only 71.2 ± 11.1 pg/ml before drainage. After appropriate drainage, the plasma BNP levels increased to 186.0 ± 22.5 pg/ml, which was significantly higher than that before drainage (P = 0.0002). In patients with cardiac tamponade, the plasma BNP levels were low, probably because of impaired ventricular stretching, and the levels significantly increased in response to the primary condition after drainage. This study demonstrates an additional condition that affects the relationship between the plasma BNP levels and cardiac function. If inconsistency is seen in the relationship between the plasma BNP levels and clinical signs of heart failure, the presence of cardiac tamponade should therefore be considered.

  19. The food matrix and sterol characteristics affect the plasma cholesterol lowering of phytosterol/phytostanol.

    Science.gov (United States)

    Cusack, Laura Kells; Fernandez, Maria Luz; Volek, Jeff S

    2013-11-01

    Foods with added phytosterols/phytostanols (PS) are recommended to lower LDL cholesterol (LDL-c) concentrations. Manufacturers have incorporated PS into a variety of common foods. Understanding the cholesterol-lowering impact of the food matrix and the PS characteristics would maximize their success and increase the benefit to consumers. This review systematically examines whether the PS characteristics and the fatty acid composition of foods with added PS affects serum LDL-c. A total of 33 studies published between the years 1998 and 2011 inclusive of 66 individual primary variables (strata) were evaluated. The functional food matrices included margarine, mayonnaise, yogurt, milk, cheese, meat, grain, juice, and chocolate. Consistently, ≥10% reductions in LDL-c were reported when the characteristics of the food matrix included poly- and monounsaturated fatty acids known to lower LDL-c. Also, >10% mean reductions in LDL-c were reported when β-sitostanol and campestanol as well as stanol esters were used. These characteristics allow both low-fat and high-fat foods to successfully incorporate PS and significantly lower LDL-c.

  20. Pre-Analytical Parameters Affecting Vascular Endothelial Growth Factor Measurement in Plasma: Identifying Confounders.

    Directory of Open Access Journals (Sweden)

    Johanna M Walz

    Full Text Available Vascular endothelial growth factor-A (VEGF-A is intensively investigated in various medical fields. However, comparing VEGF-A measurements is difficult because sample acquisition and pre-analytic procedures differ between studies. We therefore investigated which variables act as confounders of VEGF-A measurements.Following a standardized protocol, blood was taken at three clinical sites from six healthy participants (one male and one female participant at each center twice one week apart. The following pre-analytical parameters were varied in order to analyze their impact on VEGF-A measurements: analyzing center, anticoagulant (EDTA vs. PECT / CTAD, cannula (butterfly vs. neonatal, type of centrifuge (swing-out vs. fixed-angle, time before and after centrifugation, filling level (completely filled vs. half-filled tubes and analyzing method (ELISA vs. multiplex bead array. Additionally, intrapersonal variations over time and sex differences were explored. Statistical analysis was performed using a linear regression model.The following parameters were identified as statistically significant independent confounders of VEGF-A measurements: analyzing center, anticoagulant, centrifuge, analyzing method and sex of the proband. The following parameters were no significant confounders in our data set: intrapersonal variation over one week, cannula, time before and after centrifugation and filling level of collection tubes.VEGF-A measurement results can be affected significantly by the identified pre-analytical parameters. We recommend the use of CTAD anticoagulant, a standardized type of centrifuge and one central laboratory using the same analyzing method for all samples.

  1. Arginine Deiminase Enzyme Evolving As A Potential Antitumor Agent.

    Science.gov (United States)

    Somani, Rakesh; Chaskar, Pratip K

    2016-08-17

    Some melanomas and hepatocellular carcinomas have been shown to be auxotrophic for arginine. Arginine deiminase (ADI), an arginine degrading enzyme isolated from Mycoplasma, can inhibit the growth of these tumors. It is a catabolizing enzyme which catabolizes arginine to citrulline. Tumor cells do not express an enzyme called arginosuccinate synthetase (ASS) and hence, these cells becomes auxotrophic for arginine. It is found that ADI is specific for arginine and did not degrade other amino acid. This review covers various aspects of ADIs like origin, properties and chemical modifications for better antitumor activity.

  2. Effects of dietary lysine levels on plasma free amino acid profile in late-stage finishing pigs.

    Science.gov (United States)

    Regmi, Naresh; Wang, Taiji; Crenshaw, Mark A; Rude, Brian J; Wu, Guoyao; Liao, Shengfa F

    2016-01-01

    Muscle growth requires a constant supply of amino acids (AAs) from the blood. Therefore, plasma AA profile is a critical factor for maximizing the growth performance of animals, including pigs. This research was conducted to study how dietary lysine intake affects plasma AA profile in pigs at the late production stage. Eighteen crossbred (Large White × Landrace) finishing pigs (nine barrows and nine gilts; initial BW 92.3 ± 6.9 kg) were individually penned in an environment controlled barn. Pigs were assigned randomly to one of the three dietary treatments according to a randomized complete block design with sex as block and pig as experiment unit (6 pigs/treatment). Three corn- and soybean meal-based diets contained 0.43 % (lysine-deficient, Diet I), 0.71 % (lysine-adequate, Diet II), and 0.98 % (lysine-excess, Diet III) l-lysine, respectively. After a 4-week period of feeding, jugular vein blood samples were collected from the pigs and plasma was obtained for AA analysis using established HPLC methods. The change of plasma lysine concentration followed the same pattern as that of dietary lysine supply. The plasma concentrations of threonine, histidine, phenylalanine, isoleucine, valine, arginine, and citrulline of pigs fed Diet II or III were lower (P pigs fed Diet I. The plasma concentrations of alanine, glutamate, and glycine of pigs fed Diet II or III were higher (P pigs fed Diet I. The change of plasma leucine and asparagine concentrations followed the patterns similar to that of plasma lysine. Among those affected AAs, arginine was decreased (P pigs may be further increased with a lysine-excess diet if the plasma concentration of arginine can be increased through dietary supplementation or other practical nutritional management strategies.

  3. Arginine and glutamine availability and macrophage functions in the obese insulin-resistant Zucker rat.

    Science.gov (United States)

    Blanc, Marie-Céline; Moinard, Christophe; Béziel, Aurélie; Darquy, Sylviane; Cynober, Luc; De Bandt, Jean-Pascal

    2005-01-01

    Increased susceptibility to infections in obese patients may be related to decreased availability of arginine and glutamine, which may affect immune cell functions. Our aim was to evaluate the in vitro effects of these amino acids on the function of macrophages from obese insulin-resistant Zucker rats. Macrophages, isolated from male Zucker obese or lean rats by peritoneal lavage, were incubated in Dulbecco's modified Eagle medium (DMEM) without arginine or glutamine. Arginine or glutamine was added to the medium at increasing final concentrations (0, 0.25, 0.5, 1 or 2 mM). After stimulation by lipopolysaccharide (LPS) from E. coli (40 microg/ml), productions of tumour necrosis factor alpha (TNFalpha) and of nitric oxide (NO) were measured after 3 or 48 h incubation, respectively. NO production, lower in macrophages from obese rats, decreased in macrophages from lean rats (0 mM: 2,423 +/- 1,174 vs. 2 mM: 198 +/- 31 microM/mg protein/24 h; P glutamine was added. TNFalpha production, lower in macrophages from obese rats, was inversely correlated with glutamine concentration. In the presence of arginine, NO production was constantly higher in macrophages from obese rats. It peaked at 0.5 mM arginine and decreased thereafter in both groups. TNFalpha production in macrophages from lean rats was unaffected by arginine, but decreased in macrophages from obese rats (0 mM: 1920 +/- 450 vs. 2 mM: 810 +/- 90 microM/mg protein/3 h; P arginine and glutamine metabolism in macrophages of obese rats, resulting in decreased TNFalpha production and increased NO release, may contribute to increased susceptibility to infection in insulin-resistant states.

  4. Characterization of the PRMT gene family in rice reveals conservation of arginine methylation.

    Directory of Open Access Journals (Sweden)

    Ayaz Ahmad

    Full Text Available Post-translational methylation of arginine residues profoundly affects the structure and functions of protein and, hence, implicated in a myriad of essential cellular processes such as signal transduction, mRNA splicing and transcriptional regulation. Protein arginine methyltransferases (PRMTs, the enzymes catalyzing arginine methylation have been extensively studied in animals, yeast and, to some extent, in model plant Arabidopsis thaliana. Eight genes coding for the PRMTs were identified in Oryza sativa, previously. Here, we report that these genes show distinct expression patterns in various parts of the plant. In vivo targeting experiment demonstrated that GFP-tagged OsPRMT1, OsPRMT5 and OsPRMT10 were localized to both the cytoplasm and nucleus, whereas OsPRMT6a and OsPRMT6b were predominantly localized to the nucleus. OsPRMT1, OsPRMT4, OsPRMT5, OsPRMT6a, OsPRMT6b and OsPRMT10 exhibited in vitro arginine methyltransferase activity against myelin basic protein, glycine-arginine-rich domain of fibrillarin and calf thymus core histones. Furthermore, they depicted specificities for the arginine residues in histones H3 and H4 and were classified into type I and Type II PRMTs, based on the formation of type of dimethylarginine in the substrate proteins. The two homologs of OsPRMT6 showed direct interaction in vitro and further titrating different amounts of these proteins in the methyltransferase assay revealed that OsPRMT6a inhibits the methyltransferase activity of OsPRMT6b, probably, by the formation of heterodimer. The identification and characterization of PRMTs in rice suggests the conservation of arginine methylation in monocots and hold promise for gaining further insight into regulation of plant development.

  5. Roles of export genes cgmA and lysE for the production of L-arginine and L-citrulline by Corynebacterium glutamicum.

    Science.gov (United States)

    Lubitz, Dorit; Jorge, João M P; Pérez-García, Fernando; Taniguchi, Hironori; Wendisch, Volker F

    2016-10-01

    L-arginine is a semi-essential amino acid with application in cosmetic, pharmaceutical, and food industries. Metabolic engineering strategies have been applied for overproduction of L-arginine by Corynebacterium glutamicum. LysE was the only known L-arginine exporter of this bacterium. However, an L-arginine-producing strain carrying a deletion of lysE still accumulated about 10 mM L-arginine in the growth medium. Overexpression of the putative putrescine and cadaverine export permease gene cgmA was shown to compensate for the lack of lysE with regard to L-arginine export. Moreover, plasmid-borne overexpression of cgmA rescued the toxic effect caused by feeding of the dipeptide Arg-Ala to lysE-deficient C. glutamicum and argO-deficient Escherichia coli strains. Deletion of the repressor gene cgmR improved L-arginine titers by 5 %. Production of L-lysine and L-citrulline was not affected by cgmA overexpression. Taken together, CgmA may function as an export system not only for the diamine putrescine and cadaverine but also for L-arginine. The major export system for L-lysine and L-arginine LysE may also play a role in L-citrulline export since production of L-citrulline was reduced when lysE was deleted and improved by 45 % when lysE was overproduced.

  6. Metabolic effects of a novel silicate inositol complex of the nitric oxide precursor arginine in the obese insulin-resistant JCR:LA-cp rat.

    Science.gov (United States)

    Proctor, Spencer D; Kelly, Sandra E; Vine, Donna F; Russell, James C

    2007-10-01

    Insulin resistance is a major contributor to macro- and microvascular complications, particularly in the presence of the metabolic syndrome, and is also associated with polycystic ovary syndrome. Impaired nitric oxide metabolism and endothelial function are important components of the vascular disease. Increasing the bioavailability of arginine, the precursor of nitric oxide, thus potentially offers protection against end-stage disease. We have recently demonstrated that dietary supplementation with a novel silicate inositol arginine complex reduces vasculopathy and glomerular sclerosis in the insulin-resistant JCR:LA-cp rat. The objective of this study was to address the absorption of, and the underlying metabolic alterations caused by, the arginine silicate inositol complex and arginine HCl (as a reference agent) in obese insulin-resistant male and female JCR:LA-cp rats. Male and female rats were treated with the preparations at 1.0 mg/(kg d) (expressed as arginine HCl) from 8 to 12 and 12 to 18 weeks of age, respectively. Obese female, but not male, rats treated with the arginine silicate inositol complex showed a reduced rate of weight gain without concomitant reduction in food intake. Plasma silicon levels were raised very significantly in arginine silicate-treated rats, consistent with significant absorption of the complex. In male rats, arginine levels were elevated by treatment with arginine silicate only; and female rats responded to both preparations. Plasma concentrations of oxides of nitrogen in rats treated with the silicate complex showed a dimorphism, decreasing in male and increasing in female rats. Fasting insulin levels were elevated in male rats treated with the arginine silicate complex, whereas fasting and postprandial insulin levels were decreased in female rats. Furthermore, female, but not male, rats treated with either of the arginine preparations showed significant reductions in cholesterol, triglyceride, and phospholipid concentrations

  7. [L-arginine and male infertility].

    Science.gov (United States)

    Scibona, M; Meschini, P; Capparelli, S; Pecori, C; Rossi, P; Menchini Fabris, G F

    1994-12-01

    The clinical efficacy and acceptance of L-arginina HCL was tested in 40 infertile men. All of these men had a normal number of spermatozoa (> 20 million/ml), but a decreased motility; this decreased motility was not due to infection or to immunological disorders. The treatment consisted of 80 ml of 10% L-arginine HCL administered daily per os for 6 months. L-arginine HCL showed to be able to improve the motility of spermatozoa without any side-effects.

  8. Suprathermal electron energy spectrum and nonlocally affected plasma-wall interaction in helium/air micro-plasma at atmospheric pressure

    Science.gov (United States)

    Demidov, V. I.; Adams, S. F.; Miles, J. A.; Koepke, M. E.; Kurlyandskaya, I. P.

    2016-10-01

    Details of ground-state and excited-state neutral atoms and molecules in an atmospheric-pressure micro-discharge plasma may be obtained by plasma electron spectroscopy (PLES), based on a wall probe. The presence and transport of energetic (suprathermal) electrons, having a nonlocal origin, are responsible for electrostatic charging of the plasma boundary surfaces to potentials many times that associated with the ambient electron kinetic energy. The energy-flux distribution function is shown to be controllable for applications involving analysis of composition and processes taking place in a multiphase (plasma-gas-solid), chemically reactive, interaction region.

  9. ARGININE STIMULATED GLUCAGON AND INSULIN-SECRETION BY ISLETS OF LANGERHANS OF PREGNANT AND LACTATING RATS

    NARCIS (Netherlands)

    MOES, H; SCHUILING, GA; KOITER, TR

    1993-01-01

    Glucagon secretion by isolated pancreatic rat islets was not affected by an increase of the glucose concentration from 2.5 to 5.0 mM, but was stimulated by 25 mM arginine. This stimulation was only slightly increased by pregnancy and lactation. Insulin secretion increased, when the glucose concentra

  10. Anti-tumor activity of arginine deiminase via arginine deprivation in retinoblastoma.

    Science.gov (United States)

    Kim, Jeong Hun; Kim, Jin Hyoung; Yu, Young Suk; Kim, Dong Hun; Min, Bon-Hong; Kim, Kyu-Won

    2007-12-01

    In spite of recent advances in the treatment of retinoblastoma, chemotherapy is still challenging in high-stage intraocular retinoblastoma or metastatic retinoblastoma. Here, we investigated whether arginine deprivation via arginine deiminase (ADI) could be a new anti-tumor therapy in retinoblastoma cells. Expression of argininosuccinate synthetase (ASS) was detected in human retinoblastoma tissues. Even with a high expression of ASS, ADI effectively inhibited the proliferation of retinoblastoma cells and induced retinoblastoma cell death in a dose-dependent manner. These results indicate that arginine deprivation via ADI could be another treatment option for retinoblastoma due to low ASS activity in retinoblastoma cells.

  11. N-carbamylglutamate and L-arginine improved maternal and placental development in underfed ewes.

    Science.gov (United States)

    Zhang, Hao; Sun, Lingwei; Wang, Ziyu; Deng, Mingtian; Nie, Haitao; Zhang, Guomin; Ma, Tiewei; Wang, Feng

    2016-06-01

    The objectives of this study were to determine how dietary supplementation of N-carbamylglutamate (NCG) and rumen-protected L-arginine (RP-Arg) in nutrient-restricted pregnant Hu sheep would affect (1) maternal endocrine status; (2) maternal, fetal, and placental antioxidation capability; and (3) placental development. From day 35 to day 110 of gestation, 32 Hu ewes carrying twin fetuses were allocated randomly into four groups: 100% of NRC-recommended nutrient requirements, 50% of NRC recommendations, 50% of NRC recommendations supplemented with 20g/day RP-Arg, and 50% of NRC recommendations supplemented with 5g/day NCG product. The results showed that in maternal and fetal plasma and placentomes, the activities of total antioxidant capacity and superoxide dismutase were increased (P0.05) in both NCG- and RP-Arg-treated underfed ewes. A supplement of RP-Arg and NCG reduced (P<0.05) the concentrations of progesterone, cortisol, and estradiol-17β; had no effect on T4/T3; and improved (P<0.05) the concentrations of leptin, insulin-like growth factor 1, tri-iodothyronine (T3), and thyroxine (T4) in serum from underfed ewes. These results indicate that dietary supplementation of NCG and RP-Arg in underfed ewes could influence maternal endocrine status, improve the maternal-fetal-placental antioxidation capability, and promote fetal and placental development during early-to-late gestation.

  12. Feed gas humidity: a vital parameter affecting a cold atmospheric-pressure plasma jet and plasma-treated human skin cells

    Science.gov (United States)

    Winter, J.; Wende, K.; Masur, K.; Iseni, S.; Dünnbier, M.; Hammer, M. U.; Tresp, H.; Weltmann, K.-D.; Reuter, S.

    2013-07-01

    In this study, the effect of feed gas humidity on the reactive component generation of an atmospheric-pressure argon plasma jet and its effect on human skin cells are investigated. Feed gas humidity is identified as one key parameter that strongly influences stability and reproducibility of plasma medical studies. The plasma jet is investigated by absorption spectroscopy in the ultraviolet and infrared spectral region for its ozone production depending on the humidity concentration in the feed gas. By optical emission spectroscopy the dependence of present excited plasma species such as hydroxyl radicals, molecular nitrogen, argon and atomic oxygen on the feed gas humidity is investigated. As an interface layer between the plasma jet effluent and the biological cell, a buffer solution is treated and the hydrogen peroxide (H2O2) production is studied with two independent colorimetric assays as a function of humidity admixture to the feed gas. Ultimately, the effect of varying feed gas humidity on the cell viability of indirect plasma treated adherent HaCAT cells is investigated. The highest viability is found for the driest feed gas condition. Furthermore, this work shows answers for the relevance of unwanted—or intended—feed gas humidity in plasma medical experiments and their comparatively large relevance with respect to ambient humidity. The findings will lead to more reproducible experiments in the field of plasma medicine.

  13. Anti-stress and Adaptogenic Activity of l-Arginine Supplementation

    Directory of Open Access Journals (Sweden)

    Vanita Gupta

    2005-01-01

    Full Text Available In the present study, oral supplementation of l-arginine in rats was evaluated for its anti-stress and adaptogenic activity using the cold (5°C–hypoxia (428 mmHg–restraint (C-H-R animal model. A dose-dependent study of l-arginine was carried out at doses of 12.5, 25.0, 50.0, 100.0, 200.0 and 500.0 mg/kg body weight, administered orally 30 min prior to C-H-R exposure. The time taken by the rat to attain a rectal temperature of 23°C (Trec 23°C during C-H-R exposure and its recovery to Trec 37°C at normal atmospheric pressure and 32 ± 1°C were used as biomarkers of anti-stress and adaptogenic activity. Biochemical parameters related to lipid peroxidation, anti-oxidants, cell membrane permeability, nitric oxide and stress, with and without administration of the least effective l-arginine dose, were measured in rats on attaining Trec 23°C and Trec 37°C. The least effective adaptogenic dose of l-arginine was 100.0 mg/kg body weight. The C-H-R exposure of control rats, on attaining Trec 23°C, resulted in a significant increase in plasma malondialdehyde (MDA, blood lactate dehydrogenase (LDH and a decrease in blood catalase (CAT and plasma testosterone levels. On recovery (Trec 37°C of control rats, there was a further decrease in CAT and plasma testosterone, and an increase in LDH. l-Arginine supplementation resulted in a significant decrease in plasma MDA, an increase in blood superoxide dismutase (SOD, CAT levels maintained at control values and a lower increase in LDH compared with controls (45.3 versus 58.5% and 21.5 versus 105.2% on attaining Trec 23°C during C-H-R exposure and on recovery to Trec 37°C. The results suggested that l-arginine possesses potent anti-stress activity during C-H-R exposure and recovery from C-H-R-induced hypothermia.

  14. Lysine and arginine requirements of Salminus brasiliensis

    Directory of Open Access Journals (Sweden)

    Jony Koji Dairiki

    2013-08-01

    Full Text Available The objective of this work was to determine the dietary lysine (DL and dietary arginine (DA requirements of dourado (Salminus brasiliensis, through dose-response trials using the amino acid profiles of whole carcasses as a reference. Two experiments were carried out in a completely randomized design (n=4. In the first experiment, groups of 12 feed-conditioned dourado juveniles (11.4±0.2 g were stocked in 60 L cages placed in 300 L plastic indoor tanks in a closed circulation system. Fish were fed for 60 days on diets containing 1.0, 1.5, 2.0, 2.5, 3.0, or 3.5 % dietary lysine. In the second experiment, dourado juveniles (27.0±0.8 g were fed for 60 days on semipurified diets containing arginine at 1.0, 1.5, 2.0, 2.5 or 3.0%, in similar conditions to those of the first experiment. Optimal DL requirements, as determined by broken-line analysis method for final weight, weight gain and specific growth rate, were 2.15% DL or 5% lysine in dietary protein, and 1.48% DA or 3.43% arginine in dietary protein. The best feed conversion ratio is attained with 2.5% DL or 5.8% lysine in dietary protein and 1.4% DA or 3.25% arginine in dietary protein.

  15. Arginine residues as stabilizing elements in proteins

    NARCIS (Netherlands)

    MRABET, NT; VANDENBROECK, A; VANDENBRANDE, JL; STANSSENS, P; LAROCHE, Y; LAMBEIR, AM; MATTHIJSSENS, G; JENKINS, J; CHIADMI, M; VANTILBEURGH, H; REY, F; JANIN, J; QUAX, WJ; LASTERS, [No Value; DEMAEYER, M; WODAK, SJ

    1992-01-01

    Site-specific substitutions of arginine for lysine in the thermostable D-xylose isomerase (XI) from Actinoplanes missouriensis are shown to impart significant heat stability enhancement in the presence of sugar substrates most probably by interfering with nonenzymatic glycation. The same substitutio

  16. Unexpected depletion in plasma choline and phosphatidylcholine concentrations in a pregnant woman with bipolar affective disorder being treated with lithuim, haloperidol and benztropine: a case report

    OpenAIRE

    2008-01-01

    Abstract Introduction Patients with bipolar affective disorder can be effectively managed with pharmacological intervention. This case report describes a pregnant woman with a ten-year history of bipolar affective disorder that was being treated with lithium, haloperidol and benztropine. Case presentation The patient had a normal pregnancy, but developed an elevated blood pressure and started to lose weight at 36 weeks of gestation. During pregnancy, plasma concentrations of choline and phosp...

  17. Perioperative glutamine supplementation restores disturbed renal arginine synthesis after open aortic surgery: a randomized controlled clinical trial.

    Science.gov (United States)

    Brinkmann, Saskia J H; Buijs, Nikki; Vermeulen, Mechteld A R; Oosterink, Efraim; Schierbeek, Henk; Beishuizen, Albertus; de Vries, Jean-Paul P M; Wisselink, Willem; van Leeuwen, Paul A M

    2016-09-01

    Postoperative renal failure is a common complication after open repair of an abdominal aortic aneurysm. The amino acid arginine is formed in the kidneys from its precursor citrulline, and citrulline is formed from glutamine in the intestines. Arginine enhances the function of the immune and cardiovascular systems, which is important for recovery after surgery. We hypothesized that renal arginine production is diminished after ischemia-reperfusion injury caused by clamping of the aorta during open abdominal aortic surgery and that parenteral glutamine supplementation might compensate for this impaired arginine synthesis. This open-label clinical trial randomized patients who underwent clamping of the aorta during open abdominal aortic surgery to receive a perioperative supplement of intravenous alanyl-glutamine (0.5 g·kg(-1)·day(-1); group A, n = 5) or no supplement (group B, n = 5). One day after surgery, stable isotopes and tracer methods were used to analyze the metabolism and conversion of glutamine, citrulline, and arginine. Whole body plasma flux of glutamine, citrulline, and arginine was significantly higher in group A than in group B (glutamine: 391 ± 34 vs. 258 ± 19 μmol·kg(-1)·h(-1), citrulline: 5.7 ± 0.4 vs. 2.8 ± 0.4 μmol·kg(-1)·h(-1), and arginine: 50 ± 4 vs. 26 ± 2 μmol·kg(-1)·h(-1), P glutamine (4.8 ± 0.7 vs. 1.6 ± 0.3 μmol·kg(-1)·h(-1)), citrulline from arginine (2.3 ± 0.3 vs. 0.96 ± 0.1 μmol·kg(-1)·h(-1)), and arginine from glutamine (7.7 ± 0.4 vs. 2.8 ± 0.2 μmol·kg(-1)·h(-1)), respectively (P arginine is severely reduced after clamping during aortic surgery. This study shows that an intravenous supplement of glutamine increases the production of citrulline and arginine and compensates for the inhibitory effect of ischemia-reperfusion injury.

  18. Arginine deiminase inhibits Porphyromonas gingivalis surface attachment.

    Science.gov (United States)

    Cugini, Carla; Stephens, Danielle N; Nguyen, Daniel; Kantarci, Alpdogan; Davey, Mary E

    2013-02-01

    The oral cavity is host to a complex microbial community whose maintenance depends on an array of cell-to-cell interactions and communication networks, with little known regarding the nature of the signals or mechanisms by which they are sensed and transmitted. Determining the signals that control attachment, biofilm development and outgrowth of oral pathogens is fundamental to understanding pathogenic biofilm development. We have previously identified a secreted arginine deiminase (ADI) produced by Streptococcus intermedius that inhibited biofilm development of the commensal pathogen Porphyromonas gingivalis through downregulation of genes encoding the major (fimA) and minor (mfa1) fimbriae, both of which are required for proper biofilm development. Here we report that this inhibitory effect is dependent on enzymic activity. We have successfully cloned, expressed and defined the conditions to ensure that ADI from S. intermedius is enzymically active. Along with the cloning of the wild-type allele, we have created a catalytic mutant (ADIC399S), in which the resulting protein is not able to catalyse the hydrolysis of l-arginine to l-citrulline. P. gingivalis is insensitive to the ADIC399S catalytic mutant, demonstrating that enzymic activity is required for the effects of ADI on biofilm formation. Biofilm formation is absent under l-arginine-deplete conditions, and can be recovered by the addition of the amino acid. Taken together, the results indicate that arginine is an important signal that directs biofilm formation by this anaerobe. Based on our findings, we postulate that ADI functions to reduce arginine levels and, by a yet to be identified mechanism, signals P. gingivalis to alter biofilm development. ADI release from the streptococcal cell and its cross-genera effects are important findings in understanding the nature of inter-bacterial signalling and biofilm-mediated diseases of the oral cavity.

  19. Pancreatic A and B cell stimulation in euthermic and hibernating marmots (Marmota flaviventris): effects of glucose and arginine administration.

    Science.gov (United States)

    Florant, G L; Hoo-Paris, R; Castex, C; Bauman, W A; Sutter, B C

    1986-01-01

    In euthermic and hibernating marmots (Marmota flaviventris), the pancreatic A and B cells respond in the appropriate secretory manner to glucose or arginine injection. Although reduced, this response, is clearly present in hibernating marmots. When glucose is administered to euthermic or hibernating marmots, plasma insulin concentrations rise and glucagon levels fall. While similar results are obtained in hibernation, the time period of the response is much longer due to the slowing of temperature dependent metabolic processes. Injection of L-arginine stimulates an increase in plasma glucose, insulin, and glucagon as expected. Measurements of plasma glucose, insulin, and glucagon under basal conditions, suggest that there are no significant differences between any phase of hibernation (eg. entrance, deep hibernation, arousal) and euthermia. These results provide indirect evidence that the pancreatic A and B cells of hibernating marmots continue to function in order to help regulate plasma glucose concentration.

  20. Post-glucose-load urinary C-peptide and glucose concentration obtained during OGTT do not affect oral minimal model-based plasma indices

    NARCIS (Netherlands)

    S. Jainandunsing (Sjaam); J.L.D. Wattimena (Josias); T. Rietveld (Trinet); J.N.I. van Miert (Joram); E.J.G. Sijbrands (Eric); F.W.M. de Rooij (Felix)

    2016-01-01

    textabstractThe purpose of this study was to investigate how renal loss of both C-peptide and glucose during oral glucose tolerance test (OGTT) relate to and affect plasma-derived oral minimal model (OMM) indices. All individuals were recruited during family screening between August 2007 and January

  1. Arginine Metabolism in Myeloid Cells Shapes Innate and Adaptive Immunity

    Science.gov (United States)

    Rodriguez, Paulo C.; Ochoa, Augusto C.; Al-Khami, Amir A.

    2017-01-01

    Arginine metabolism has been a key catabolic and anabolic process throughout the evolution of the immune response. Accruing evidence indicates that arginine-catabolizing enzymes, mainly nitric oxide synthases and arginases, are closely integrated with the control of immune response under physiological and pathological conditions. Myeloid cells are major players that exploit the regulators of arginine metabolism to mediate diverse, although often opposing, immunological and functional consequences. In this article, we focus on the importance of arginine catabolism by myeloid cells in regulating innate and adaptive immunity. Revisiting this matter could result in novel therapeutic approaches by which the immunoregulatory nodes instructed by arginine metabolism can be targeted.

  2. Dual role of arginine metabolism in establishing pathogenesis.

    Science.gov (United States)

    Gogoi, Mayuri; Datey, Akshay; Wilson, Keith T; Chakravortty, Dipshikha

    2016-02-01

    Arginine is an integral part of host defense when invading pathogens are encountered. The arginine metabolite nitric oxide (NO) confers antimicrobial properties, whereas the metabolite ornithine is utilized for polyamine synthesis. Polyamines are crucial to tissue repair and anti-inflammatory responses. iNOS/arginase balance can determine Th1/Th2 response. Furthermore, the host arginine pool and its metabolites are utilized as energy sources by various pathogens. Apart from its role as an immune modulator, recent studies have also highlighted the therapeutic effects of arginine. This article sheds light upon the roles of arginine metabolism during pathological conditions and its therapeutic potential.

  3. Universal stress protein Rv2624c alters abundance of arginine and enhances intracellular survival by ATP binding in mycobacteria

    Science.gov (United States)

    Jia, Qiong; Hu, Xinling; Shi, Dawei; Zhang, Yan; Sun, Meihao; Wang, Jianwei; Mi, Kaixia; Zhu, Guofeng

    2016-01-01

    The universal stress protein family is a family of stress-induced proteins. Universal stress proteins affect latency and antibiotic resistance in mycobacteria. Here, we showed that Mycobacterium smegmatis overexpressing M. tuberculosis universal stress protein Rv2624c exhibits increased survival in human monocyte THP-1 cells. Transcriptome analysis suggested that Rv2624c affects histidine metabolism, and arginine and proline metabolism. LC-MS/MS analysis showed that Rv2624c affects the abundance of arginine, a modulator of both mycobacteria and infected THP-1 cells. Biochemical analysis showed that Rv2624c is a nucleotide-binding universal stress protein, and an Rv2624c mutant incapable of binding ATP abrogated the growth advantage in THP-1 cells. Rv2624c may therefore modulate metabolic pathways in an ATP-dependent manner, changing the abundance of arginine and thus increasing survival in THP-1 cells. PMID:27762279

  4. Biosynthetic arginine decarboxylase in phytopathogenic fungi.

    Science.gov (United States)

    Khan, A J; Minocha, S C

    1989-01-01

    It has been reported that while bacteria and higher plants possess two different pathways for the biosynthesis of putrescine, via ornithine decarboxylase (ODC) and arginine decarboxylase (ADC); the fungi, like animals, only use the former pathway. We found that contrary to the earlier reports, two of the phytopathogenic fungi (Ceratocystis minor and Verticillium dahliae) contain significant levels of ADC activity with very little ODC. The ADC in these fungi has high pH optimum (8.4) and low Km (0.237 mM for C. minor, 0.103 mM for V. dahliae), and is strongly inhibited by alpha-difluoromethylarginine (DFMA), putrescine and spermidine, further showing that this enzyme is probably involved in the biosynthesis of polyamines and not in the catabolism of arginine as in Escherichia coli. The growth of these fungi is strongly inhibited by DFMA while alpha-difluoromethylornithine (DFMO) has little effect.

  5. Converting the yeast arginine can1 permease to a lysine permease.

    Science.gov (United States)

    Ghaddar, Kassem; Krammer, Eva-Maria; Mihajlovic, Natalija; Brohée, Sylvain; André, Bruno; Prévost, Martine

    2014-03-01

    Amino acid uptake in yeast cells is mediated by about 16 plasma membrane permeases, most of which belong to the amino acid-polyamine-organocation (APC) transporter family. These proteins display various substrate specificity ranges. For instance, the general amino acid permease Gap1 transports all amino acids, whereas Can1 and Lyp1 catalyze specific uptake of arginine and lysine, respectively. Although Can1 and Lyp1 have different narrow substrate specificities, they are close homologs. Here we investigated the molecular rules determining the substrate specificity of the H(+)-driven arginine-specific permease Can1. Using a Can1-Lyp1 sequence alignment as a guideline and a three-dimensional Can1 structural model based on the crystal structure of the bacterial APC family arginine/agmatine antiporter, we introduced amino acid substitutions liable to alter Can1 substrate specificity. We show that the single substitution T456S results in a Can1 variant transporting lysine in addition to arginine and that the combined substitutions T456S and S176N convert Can1 to a Lyp1-like permease. Replacement of a highly conserved glutamate in the Can1 binding site leads to variants (E184Q and E184A) incapable of any amino acid transport, pointing to a potential role for this glutamate in H(+) coupling. Measurements of the kinetic parameters of arginine and lysine uptake by the wild-type and mutant Can1 permeases, together with docking calculations for each amino acid in their binding site, suggest a model in which residues at positions 176 and 456 confer substrate selectivity at the ligand-binding stage and/or in the course of conformational changes required for transport.

  6. Patient age does not affect mefloquine concentrations in erythrocytes and plasma during the acute phase of falciparum malaria

    Directory of Open Access Journals (Sweden)

    José Luiz Fernandes Vieira

    Full Text Available Abstract Objective To evaluate whether patient age has a significant impact on mefloquine concentrations in the plasma and erythrocytes over the course of treatment for uncomplicated falciparum malaria. Methods A total of 20 children aged between 8 and 11 years and 20 adult males aged between 22 and 41 years with uncomplicated falciparum malaria were enrolled in the study. Mefloquine was administered to patients in both age groups at a dose of 20 mg kg−1. The steady-state drug concentrations were measured by reversed-phase high performance liquid chromatography. Results All patients had an undetectable mefloquine concentration on day 0. In adults, the plasma mefloquine concentrations ranged from 770 to 2930 ng mL−1 and the erythrocyte concentrations ranged from 2000 to 6030 ng mL−1. In children, plasma mefloquine concentrations ranged from 881 to 3300 ng mL−1 and erythrocyte concentrations ranged from 3000 to 4920 ng mL−1. There was no significant correlation between mefloquine concentrations in the plasma and erythrocytes in either adults or children. Conclusion In the present study, we observed no effect of patient age on the steady-state concentrations of mefloquine in the plasma and erythrocytes. We found that the mefloquine concentration in the erythrocytes was approximately 2.8-times higher than in the plasma. There were no significant correlations between mefloquine concentrations in the erythrocytes and plasma for either age group.

  7. A lignan complex isolated from flaxseed does not affect plasma lipid concentrations or antioxidant capacity in healthy postmenopausal women

    DEFF Research Database (Denmark)

    Hallund, Jesper; Ravn-Haren, Gitte; Bügel, S.;

    2006-01-01

    A lignan complex rich in the plant lignan secoisolariciresinol diglucoside (SDG) was isolated from flaxseed. SDG is metabolized by the colonic microflora to the mammalian lignans enterodiol (END) and enterolactone (ENL), and was hypothesized to reduce plasma lipid concentrations and improve...... (LDL-C), HDL cholesterol (HDL-C), triacylglycerol (TAG), serum lipoprotein oxidation lag time, plasma Trolox-equivalent antioxidant capacity (TEAC), and ferric reducing ability of plasma (FRAP) were measured at the beginning and end of each intervention period. ENL concentrations in serum (P

  8. Lipid-based nutrient supplements do not affect efavirenz but lower plasma nevirapine concentrations in Ethiopian adult HIV patients

    DEFF Research Database (Denmark)

    Abdissa, A; Olsen, Mette Frahm; Yilma, D

    2015-01-01

    OBJECTIVES: Lipid-based nutrient supplements (LNSs) are increasingly used in HIV programmes in resource-limited settings. However, the possible effects of LNSs on the plasma concentrations of antiretroviral drugs have not been assessed. Here, we aimed to assess the effects of LNSs on plasma...... efavirenz and nevirapine trough concentrations in Ethiopian adult HIV-infected patients. METHODS: The effects of LNSs were studied in adults initiating antiretroviral therapy (ART) in a randomized trial. Patients with body mass index (BMI) > 17 kg/m(2) (n = 282) received daily supplementation of an LNS.......9; -0.9 μg/mL; P = 0.01), respectively, compared with the group not receiving supplements. There were no differences between groups with respect to efavirenz plasma concentrations. The CYP2B6 516 G>T polymorphism was associated with a 5 μg/mL higher plasma efavirenz concentration compared with the wild...

  9. Factors affecting ion kinetic temperature, number density, and containment time in the NASA Lewis bumpy-torus plasma

    Science.gov (United States)

    Roth, J. R.

    1977-01-01

    The degree of toroidal symmetry of the plasma, the number of midplane electrode rings, the configuration of electrode rings, and the location of the diagnostic instruments with respect to the electrode rings used to generate the plasma are discussed. Impurities were deliberately introduced into the plasma, and the effects of the impurity fraction on ion kinetic temperature and electron number density were observed. It is concluded that, if necessary precautions are taken, the plasma communicates extremely well along the magnetic field lines and displays a high degree of symmetry from sector to sector for a wide range of electrode ring configurations and operating conditions. Finally, some characteristic data taken under nonoptimized conditions are presented, which include the highest electron number density and the longest particle containment time (1.9 msec) observed. Also, evidence from a paired comparison test is presented which shows that the electric field acting along the minor radius of the toroidal plasma improves the plasma density and the calculated containment time more than an order of magnitude if the electric field points inward, relative to the values observed when it points (and pushes ions) radially outward.

  10. Body Position Modulates Gastric Emptying and Affects the Post-Prandial Rise in Plasma Amino Acid Concentrations Following Protein Ingestion in Humans

    Directory of Open Access Journals (Sweden)

    Andrew M. Holwerda

    2016-04-01

    Full Text Available Dietary protein digestion and amino acid absorption kinetics determine the post-prandial muscle protein synthetic response. Body position may affect gastrointestinal function and modulate the post-prandial rise in plasma amino acid availability. We aimed to assess the impact of body position on gastric emptying rate and the post-prandial rise in plasma amino acid concentrations following ingestion of a single, meal-like amount of protein. In a randomized, cross-over design, eight healthy males (25 ± 2 years, 23.9 ± 0.8 kg·m−2 ingested 22 g protein and 1.5 g paracetamol (acetaminophen in an upright seated position (control and in a −20° head-down tilted position (inversion. Blood samples were collected during a 240-min post-prandial period and analyzed for paracetamol and plasma amino acid concentrations to assess gastric emptying rate and post-prandial amino acid availability, respectively. Peak plasma leucine concentrations were lower in the inversion compared with the control treatment (177 ± 15 vs. 236 ± 15 mmol·L−1, p < 0.05, which was accompanied by a lower plasma essential amino acid (EAA response over 240 min (31,956 ± 6441 vs. 50,351 ± 4015 AU; p < 0.05. Peak plasma paracetamol concentrations were lower in the inversion vs. control treatment (5.8 ± 1.1 vs. 10.0 ± 0.6 mg·L−1, p < 0.05. Gastric emptying rate and post-prandial plasma amino acid availability are significantly decreased after protein ingestion in a head-down tilted position. Therefore, upright body positioning should be considered when aiming to augment post-prandial muscle protein accretion in both health and disease.

  11. Post-glucose-load urinary C-peptide and glucose concentration obtained during OGTT do not affect oral minimal model-based plasma indices.

    Science.gov (United States)

    Jainandunsing, Sjaam; Wattimena, J L Darcos; Rietveld, Trinet; van Miert, Joram N I; Sijbrands, Eric J G; de Rooij, Felix W M

    2016-05-01

    The purpose of this study was to investigate how renal loss of both C-peptide and glucose during oral glucose tolerance test (OGTT) relate to and affect plasma-derived oral minimal model (OMM) indices. All individuals were recruited during family screening between August 2007 and January 2011 and underwent a 3.5-h OGTT, collecting nine plasma samples and urine during OGTT. We obtained the following three subgroups: normoglycemic, at risk, and T2D. We recruited South Asian and Caucasian families, and we report separate analyses if differences occurred. Plasma glucose, insulin, and C-peptide concentrations were analyzed as AUCs during OGTT, OMM estimate of renal C-peptide secretion, and OMM beta-cell and insulin sensitivity indices were calculated to obtain disposition indices. Post-glucose load glucose and C-peptide in urine were measured and related to plasma-based indices. Urinary glucose corresponded well with plasma glucose AUC (Cau r = 0.64, P oral (Cau r = -0.61, P indices in general nor in T2D patients (renal clearance range 0-2.1 %, with median 0.2 % of plasma glucose AUC). C-indices of urinary glucose to detect various stages of glucose intolerance were excellent (Cau 0.83-0.98; SA 0.75-0.89). The limited role of renal glucose secretion validates the neglecting of urinary glucose secretion in kinetic models of glucose homeostasis using plasma glucose concentrations. Both C-peptide and glucose in urine collected during OGTT might be used as non-invasive measures for endogenous insulin secretion and glucose tolerance state.

  12. Effect of an hyperbaric nitrogen narcotic ambience on arginine and citrulline levels, the precursor and co-product of nitric oxide, in rat striatum.

    Science.gov (United States)

    Vallée, Nicolas; Rissoe, Jean-Jacques; Blatteau, Jean-Eric

    2011-07-05

    Previous studies performed in the laboratory have shown that nitrogen narcosis induces a decrease in striatal glutamate and dopamine levels. Although we stimulated the N-methyl-D-aspartate (NMDA) receptor, an important glutamate receptor required for motor and locomotor activity managed by the striatum, and demonstrated that the receptor was effective when exposed to nitrogen at 3MPa, it was not possible to return the striatal glutamate level to its base values. We conclude that it was the striatopetal neurons of the glutamatergic pathways that were mainly affected in this hyperbaric syndrome, without understanding the principal reasons. Hence we sought to establish what happens in the vicinity of the plasma membrane, downstream the NMDA-Receptor, and we used the hypothesis that there could be neuronal nitric oxide synthase (nNOS) disturbances. A microdialysis study was performed in rat striatum in order to analyse levels of citrulline, the NO co-product, and arginine, the NO precursor. Those both NO metabolites were detectable with an HPLC coupled to a fluorimetric detector. Exposure to pressurized nitrogen induced a reduction in citrulline (-18.9%) and arginine (-10.4%) levels. Under the control normobaric conditions, the striatal NMDA infusion enhanced the citrulline level (+85.6%), whereas under 3 MPa of nitrogen, the same NMDA infusion did not change the citrulline level which remains equivalent to that of the baseline. The level of arginine increased (+45.7%) under normobaric conditions but a decrease occurred in pressurized nitrogen (-51.6%). Retrodialysis with Saclofen and KCl in the prefrontal cortex under normobaric conditions led to an increase in striatal levels of citrulline (+30.5%) and a decrease in arginine levels (-67.4%). There was no significant difference when nitrogen at 3MPa was added. To conclude, the synthesis of citrulline/NO is reduced in nitrogen narcosis while it seems possible to activate it artificially by infusion. We have suggested

  13. Effect of an hyperbaric nitrogen narcotic ambience on arginine and citrulline levels, the precursor and co-product of nitric oxide, in rat striatum

    Directory of Open Access Journals (Sweden)

    Vallée Nicolas

    2011-07-01

    Full Text Available Abstract Previous studies performed in the laboratory have shown that nitrogen narcosis induces a decrease in striatal glutamate and dopamine levels. Although we stimulated the N-methyl-D-aspartate (NMDA receptor, an important glutamate receptor required for motor and locomotor activity managed by the striatum, and demonstrated that the receptor was effective when exposed to nitrogen at 3MPa, it was not possible to return the striatal glutamate level to its base values. We conclude that it was the striatopetal neurons of the glutamatergic pathways that were mainly affected in this hyperbaric syndrome, without understanding the principal reasons. Hence we sought to establish what happens in the vicinity of the plasma membrane, downstream the NMDA-Receptor, and we used the hypothesis that there could be neuronal nitric oxide synthase (nNOS disturbances. A microdialysis study was performed in rat striatum in order to analyse levels of citrulline, the NO co-product, and arginine, the NO precursor. Those both NO metabolites were detectable with an HPLC coupled to a fluorimetric detector. Exposure to pressurized nitrogen induced a reduction in citrulline (-18.9% and arginine (-10.4% levels. Under the control normobaric conditions, the striatal NMDA infusion enhanced the citrulline level (+85.6%, whereas under 3 MPa of nitrogen, the same NMDA infusion did not change the citrulline level which remains equivalent to that of the baseline. The level of arginine increased (+45.7% under normobaric conditions but a decrease occurred in pressurized nitrogen (-51.6%. Retrodialysis with Saclofen and KCl in the prefrontal cortex under normobaric conditions led to an increase in striatal levels of citrulline (+30.5% and a decrease in arginine levels (-67.4%. There was no significant difference when nitrogen at 3MPa was added. To conclude, the synthesis of citrulline/NO is reduced in nitrogen narcosis while it seems possible to activate it artificially by infusion

  14. Increasing levels of dietary crystalline methionine affect plasma methionine profiles, ammonia excretion, and the expression of genes related to the hepatic intermediary metabolism in rainbow trout (Oncorhynchus mykiss)

    DEFF Research Database (Denmark)

    Rolland, Marine; Skov, Peter Vilhelm; Larsen, Bodil Katrine;

    2016-01-01

    . The diets were fed in excess for six weeks before three sampling campaigns carried out successively to elucidate (i) the hepatic expression of selected genes involved in lipid, glucose and amino acid metabolism; (ii) the postprandial ammonia excretion; and (iii) the postprandial plasma methionine...... significantly affected by the increase in dietary methionine. Changes in gene expression reflected to some extent the decrease in ammonia excretion (P=0.022) and in the hepatosomatic index (HSI; P...

  15. Poly(ethylene glycol) (PEG) conjugated arginine deiminase: effects of PEG formulations on its pharmacological properties.

    Science.gov (United States)

    Holtsberg, Frederick W; Ensor, Charles Mark; Steiner, Marion R; Bomalaski, John S; Clark, Mike A

    2002-04-23

    Some tumors, such as melanomas and hepatocellular carcinomas, have a unique nutritional requirement for arginine. Thus, enzymatic degradation of extracellular arginine is one possible means for inhibiting these tumors. Arginine deiminase is an arginine degrading enzyme (ADI) that has been studied as an anti-cancer enzyme. However, ADI has a short serum half-life and, as a microbial enzyme, is highly immunogenic. Formulation of other therapeutic proteins with poly(ethylene glycol) (PEG) has overcome these problems. Here, ADI-PEGs were synthesized using PEGs of varying size, structure (linear or branched chain) and linker chemistries. All ADI-PEGs retained approximately 50% of enzyme activity when PEG was covalently attached to approximately 40% of the primary amines irrespective of the PEG molecular weight or attachment chemistry used. However, it was observed that, as the PEG size increases to 20 kDa, there was a corresponding increase in the pharmacokinetic (pK) and pharmacodynamic (pD) properties of the formulation. Variation in PEG linker or structure, or the use of PEGs >20,000 mw, did not affect the pK or pD. As has been shown with other therapeutic proteins, repeated injection of ADI-PEG into experimental animals resulted in significantly lower titers of antibodies against this protein than unmodified ADI. These data suggest that formulation of ADI with PEG of 20,000 mw results is the optimal method for formulating this promising therapeutic agent.

  16. Nitrite-induced methemoglobinaemia affects blood ionized and total magnesium level by hydrolysis of plasma adenosine triphosphate in rat.

    Science.gov (United States)

    Rahman, Md Mizanur; Kim, Shang-Jin; Kim, Gi-Beum; Hong, Chul-Un; Lee, Young-Up; Kim, Sung-Zoo; Kim, Jin-Shang; Kang, Hyung-Sub

    2009-11-01

    The objective of this study was to evaluate the effects of sodium nitrite (NaNO(2))-induced methemoglobinaemia on plasma ATP (adenosine triphosphate) and corresponding changes of blood-ionized magnesium (iMg(2+)) as well as total magnesium (tMg(2+)) in a time-dependent manner. This study was performed on male Sprague-Dawley rats to which NaNO(2) was injected (10 mg/kg i.p.) to induce methemoglobinaemia. Methemoglobin (MetHb) in blood was measured before (0 min.) and after 10, 30, 60 and 120 min. of NaNO(2) injection. At respective time points, the tMg(2+), blood ions and gases were measured by atomic absorption spectrometry and ion selective electrode, respectively. Haematological parameters were checked by automatic blood cell count, and blood films were observed under light microscope. Plasma ATP was measured by bioluminescence assay using a luminometer, and plasma proteins were measured by an automatic analyser. Blood cell count (RBC, WBC and platelet), haematocrit, and haemoglobin were found to be decreased with the advancement of MetHb concentration. With the gradual increase of MetHb concentration, the plasma ATP decreased and blood iMg(2+) and plasma tMg(2+) increased significantly as time passed by in comparison with the pre-drug values. A significant decrease of the ratio of ionized calcium to iMg(2+), Na(+) and increase of K(+) was observed. In conclusion, NaNO(2)-induced methemoglobinaemia is a cause of hydrolysis of plasma ATP which is responsible for the increase of blood iMg(2+) and plasma tMg(2+) in rats.

  17. Arginine catabolism in Lactobacillus sake isolated from meat.

    OpenAIRE

    Montel, M C; Champomier, M C

    1987-01-01

    Lactobacillus sake isolated from meat can hydrolyze arginine via the arginine deiminase pathway. Two enzymes, arginine deiminase and ornithine transcarbamylase, have been revealed by detection of their reaction products, citrulline and ornithine, respectively. The production of citrulline depends on the concentration of glucose in a synthetic medium; it does not occur when the concentration of glucose is 27.5 mM or higher.

  18. Plasma nesfatin-1 is not affected by long-term food restriction and does not predict rematuration among iteroparous female rainbow trout (Oncorhynchus mykiss.

    Directory of Open Access Journals (Sweden)

    Lucius K Caldwell

    Full Text Available The metabolic peptide hormone nesfatin-1 has been linked to the reproductive axis in fishes. The purpose of this study was to determine how energy availability after spawning affects plasma levels of nesfatin-1, the metabolic peptide hormone ghrelin, and sex steroid hormones in rematuring female rainbow trout (Oncorhynchus mykiss. To limit reproductive maturation, a group of female trout was food-restricted after spawning and compared with a control group that was fed a standard broodstock ration. The experiment was conducted twice, once using two-year-old trout (second-time spawners and once using three-year-old trout (third-time spawners. During monthly sampling, blood was collected from all fish, and a subset of fish from each treatment was sacrificed for pituitaries. Pituitary follicle-stimulating hormone-beta (fsh-β mRNA expression was analyzed with q-RT-PCR; plasma hormone levels were quantified by radioimmunoassay (17β-estradiol and ghrelin and enzyme-linked immunosorbent assay (11-keto-testosterone and nesfatin-1. Although plasma nesfatin-1 levels increased significantly in the months immediately after spawning within both feeding treatments, plasma nesfatin-1 did not differ significantly between the two treatments at any point. Similarly, plasma ghrelin levels did not differ significantly between the two treatments at any point. Food restriction arrested ovarian development by 15-20 weeks after spawning, shown by significantly lower plasma E2 levels among restricted-ration fish. Pituitary fsh-β mRNA levels were higher among control-ration fish than restricted-ration fish starting at 20 weeks, but did not differ significantly between treatment groups until 30 weeks after spawning. Within both treatment groups, plasma 11-KT was elevated immediately after spawning and rapidly decreased to and persisted at low levels; starting between 20 and 25 weeks after spawning, plasma 11-KT was higher among control-ration fish than restricted

  19. Ageing and long-term smoking affects KL-6 levels in the lung, induced sputum and plasma

    Directory of Open Access Journals (Sweden)

    Horimasu Yasushi

    2011-05-01

    Full Text Available Abstract Background KL-6 is a high-molecular-weight glycoprotein classified as a human MUC1 mucin. It was hypothesized that KL-6 could be detectable in the circulating blood and especially in airway secretions in lung diseases associated with mucus production such as chronic obstructive pulmonary disease (COPD. Additional aims of this study were to investigate whether the levels of KL-6 in plasma and sputum are related to ageing and smoking history. Methods The concentrations of KL-6 in plasma and induced sputum supernatants from young and/or middle aged/elderly non-smokers, smokers and patients with COPD were assayed by ELISA (n = 201. The subjects were classified into five groups according to age, smoking status and presence of COPD. In addition, KL-6 expression in control and diseased lung i.e. samples from patients with COPD (n = 28, were analyzed by immunohistochemistry and digital image analysis. Results The plasma levels of KL-6 increased with age both in non-smokers and smokers. Among middle aged/elderly subjects, plasma KL-6 levels in all smokers regardless of COPD were significantly higher than in non-smokers, whereas sputum levels of KL-6 were significantly higher in COPD compared not only to non-smokers but also to smokers. KL-6 was more prominently expressed in the bronchiolar/alveolar epithelium in COPD than in the control lungs. Plasma and sputum KL-6 levels correlated inversely with obstruction and positively with smoking history and ageing. The linear multiple regression analysis confirmed that age and cigarette smoking had independent effects on plasma KL-6. Conclusions KL-6 increases with ageing and chronic smoking history, but prospective studies will be needed to elucidate the significance of KL-6 in chronic airway diseases.

  20. Arginine deiminase pathway genes and arginine degradation variability in Oenococcus oeni strains.

    Science.gov (United States)

    Araque, Isabel; Gil, Joana; Carreté, Ramon; Constantí, Magda; Bordons, Albert; Reguant, Cristina

    2016-03-01

    Trace amounts of the carcinogenic ethyl carbamate can appear in wine as a result of a reaction between ethanol and citrulline, which is produced from arginine degradation by some bacteria used in winemaking. In this study, arginine deiminase (ADI) pathway genes were evaluated in 44 Oenococcus oeni strains from wines originating from several locations in order to establish the relationship between the ability of a strain to degrade arginine and the presence of related genes. To detect the presence of arc genes of the ADI pathway in O. oeni, pairs of primers were designed to amplify arcA, arcB, arcC and arcD1 sequences. All strains contained these four genes. The same primers were used to confirm the organization of these genes in an arcABCD1 operon. Nevertheless, considerable variability in the ability to degrade arginine among these O. oeni strains was observed. Therefore, despite the presence of the arc genes in all strains, the expression patterns of individual genes must be strain dependent and influenced by the different wine conditions. Additionally, the presence of arc genes was also determined in the 57 sequenced strains of O. oeni available in GenBank, and the complete operon was found in 83% of strains derived from wine. The other strains were found to lack the arcB, arcC and arcD genes, but all contained sequences homologous to arcA, and some of them had also ADI activity.

  1. Weissella halotolerans W22 combines arginine deiminase and ornithine decarboxylation pathways and converts arginine to putrescine

    NARCIS (Netherlands)

    Pereira, C. I.; San Romao, M. V.; Lolkema, J. S.; Barreto Crespo, M. T.; Baretto Crespo, M.

    2009-01-01

    Aims: To demonstrate that the meat food strain Weissella halotolerans combines an ornithine decarboxylation pathway and an arginine deiminase (ADI) pathway and is able to produce putrescine, a biogenic amine. Evidence is shown that these two pathways produce a proton motive force (PMF). Methods and

  2. Depletion of arginine by recombinant arginine deiminase induces nNOS-activated neurotoxicity in neuroblastoma cells.

    Science.gov (United States)

    Lin, Shan-Erh; Wu, Fe-Lin Lin; Wei, Ming-Feng; Shen, Li-Jiuan

    2014-01-01

    The abnormal regulation of inducible nitric oxide synthase (iNOS) and neuronal nitric oxide synthase (nNOS) is associated with neurodegenerative disorders. Recombinant arginine deiminase (rADI) is a selective NO modulator of iNOS and eNOS in endothelial cells, and it also exhibits neuroprotective activity in an iNOS-induced neuron-microglia coculture system. However, the effect of rADI on nNOS remains unknown. Addressing this issue is important for evaluating the potential application of rADI in neurodegenerative diseases. SH-SY5Y cells were treated with N-methyl-D-aspartic acid (NMDA) to activate nNOS. NMDA increased NO production by 39.7 ± 3.9% via nNOS under arginine-containing conditions, but there was no significant increase in both arginine-free and rADI pretreated arginine-containing (citrulline) buffer. Subsequently, neither NMDA nor rADI alone caused cytotoxicity, whereas cotreatment with NMDA and rADI resulted in dissipation of the cell mitochondrial membrane potential and decreased cell viability. The mechanism of rADI cytotoxicity in the presence of NMDA is caused by the inhibition of NO production via nNOS mediated by the NMDA receptor, which was abolished when extracellular arginine was absent, even in the presence of citrulline. rADI not only reduced NO production but also caused cellular toxicity in nNOS-activated SH-SY5Y cells, suggesting a dual role for rADI in NOS-mediated neurotoxicity.

  3. Depletion of Arginine by Recombinant Arginine Deiminase Induces nNOS-Activated Neurotoxicity in Neuroblastoma Cells

    Directory of Open Access Journals (Sweden)

    Shan-Erh Lin

    2014-01-01

    Full Text Available The abnormal regulation of inducible nitric oxide synthase (iNOS and neuronal nitric oxide synthase (nNOS is associated with neurodegenerative disorders. Recombinant arginine deiminase (rADI is a selective NO modulator of iNOS and eNOS in endothelial cells, and it also exhibits neuroprotective activity in an iNOS-induced neuron-microglia coculture system. However, the effect of rADI on nNOS remains unknown. Addressing this issue is important for evaluating the potential application of rADI in neurodegenerative diseases. SH-SY5Y cells were treated with N-methyl-D-aspartic acid (NMDA to activate nNOS. NMDA increased NO production by 39.7 ± 3.9% via nNOS under arginine-containing conditions, but there was no significant increase in both arginine-free and rADI pretreated arginine-containing (citrulline buffer. Subsequently, neither NMDA nor rADI alone caused cytotoxicity, whereas cotreatment with NMDA and rADI resulted in dissipation of the cell mitochondrial membrane potential and decreased cell viability. The mechanism of rADI cytotoxicity in the presence of NMDA is caused by the inhibition of NO production via nNOS mediated by the NMDA receptor, which was abolished when extracellular arginine was absent, even in the presence of citrulline. rADI not only reduced NO production but also caused cellular toxicity in nNOS-activated SH-SY5Y cells, suggesting a dual role for rADI in NOS-mediated neurotoxicity.

  4. arcD, the First Gene of the arc Operon for Anaerobic Arginine Catabolism in Pseudomonas aeruginosa, Encodes an Arginine-Ornithine Exchanger

    NARCIS (Netherlands)

    Verhoogt, Hans J.C.; Abee, Tjakko; Gamper, Marianne; Driessen, Arnold J.M.; Haas, Dieter; Konings, Wil N.

    1992-01-01

    In the absence of oxygen and nitrate, Pseudomonas aeruginosa metabolizes arginine via the arginine deiminase pathway, which allows slow growth on rich media. The conversion of arginine to ornithine, CO2, and NH3 is coupled to the production of ATP from ADP. The enzymes of the arginine deiminase path

  5. ARCD, THE 1ST GENE OF THE ARC OPERON FOR ANAEROBIC ARGININE CATABOLISM IN PSEUDOMONAS-AERUGINOSA, ENCODES AN ARGININE-ORNITHINE EXCHANGER

    NARCIS (Netherlands)

    VERHOOGT, HJC; SMIT, H; ABEE, T; GAMPER, M; DRIESSEN, AJM; KONINGS, WN

    1992-01-01

    In the absence of oxygen and nitrate, Pseudomonas aeruginosa metabolizes arginine via the arginine deiminase pathway, which allows slow growth on rich media. The conversion of arginine to ornithine, CO2, and NH3 is coupled to the production of ATP from ADP. The enzymes of the arginine deiminase path

  6. Novel Vasoregulatory Aspects of Hereditary Angioedema: the Role of Arginine Vasopressin, Adrenomedullin and Endothelin-1.

    Science.gov (United States)

    Kajdácsi, Erika; Jani, Péter K; Csuka, Dorottya; Varga, Lilian; Prohászka, Zoltán; Farkas, Henriette; Cervenak, László

    2016-02-01

    The elevation of bradykinin (BK) level during attacks of hereditary angioedema due to C1-Inhibitor deficiency (C1-INH-HAE) is well known. We previously demonstrated that endothelin-1 (ET-1) level also increases during C1-INH-HAE attacks. Although BK and ET-1 are both potent vasoactive peptides, the vasoregulatory aspect of the pathomechanism of C1-INH-HAE has not yet been investigated. Hence we studied the levels of vasoactive peptides in controls and in C1-INH-HAE patients, as well as evaluated their changes during C1-INH-HAE attacks. The levels of arginine vasopressin (AVP), adrenomedullin (ADM) and ET-1 were measured in the plasma of 100 C1-INH-HAE patients in inter-attack periods and of 111 control subjects, using BRAHMS Kryptor technologies. In 18 of the 100 C1-INH-HAE patients, the levels of vasoactive peptides were compared in blood samples obtained during attacks, or in inter-attack periods. AVP, ADM and ET-1 levels were similar in inter-attack samples from C1-INH-HAE patients and in the samples of controls, although cardiovascular risk has an effect on the levels of vasoactive peptides in both groups. The levels of all three vasoactive peptides increased during C1-INH-HAE attacks. Moreover, the levels of ET-1 and ADM as well as their changes during attacks were significantly correlated. This study demonstrated that vascular regulation by vasoactive peptides is affected during C1-INH-HAE attacks. Our results suggest that the cooperation of several vasoactive peptides may be necessary to counterbalance the actions of excess BK, and to terminate the attacks. This may reveal a novel pathophysiological aspect of C1-INH-HAE.

  7. Radioimmunoassay of (8-arginine)-vasopressin. II. Application to determination of antidiuretic hormone in urine.

    Science.gov (United States)

    Merkelbach, U; Czernichow, P; Gaillard, R C; Vallotton, M B

    1975-11-01

    A radioimmunoassay for [8-arginine]-vasopressin (AVP), previously described (Czernichow et al. 1975) has been used for the determination of antidiuretic hormone in a 4 ml urine sample. AVP is extracted from acidified urine with a cation exchanger (Amberlite CG 50) with an overall recovery of 72%. The blank value measured in extracted samples of urine was 0.29 pg/ml +/- 0.21 (SEM) and calculated by extrapolation of the regression line of the recovery experiment was 0.49 pg/ml. The coefficient of variation within-assay was 13% and between-assay 18%. Addition of the amounts of AVP found in each specimen of urine voided gave results nearly identical to those of the amounts found in 24 h pool of urine, indicating that the assay was not affected by changes in concentration of the other urinary components during the day. The daily urinary excretion of AVP measured in 34 subjects was found to be 34 ng in 17 women and 70 ng in 17 men, a significant difference. Urinary concentration and excretion rate of AVP rose during thirst test and during Carter-Robbins test performed in 13 healthy subjects. In the latter test it was observed that the women displayed a strikingly more pronounced AVP elevation after the osmolar stimulus than the men. In both sexes a significant correlation was found between AVP excretion rate and plasma osmolality as well as free water clearance. Three cases of complete or incomplete diabetes insipidus and potomania could be clearly differentiated according to the total output of AVP during the thirst test. Extremely high values of AVP were found in the urine of 5 subjects with Schwartz-Bartter syndrome associated with bronchogenic tumours.

  8. Arginine specific aminopeptidase from Lactobacillus brevis

    Directory of Open Access Journals (Sweden)

    Arya Nandan

    2010-12-01

    Full Text Available The proteolytic system of lactic acid bacteria contribute to the development of flavor during the ripening of cheese through the generation of short peptides and free amino acids, which directly or indirectly act as flavor precursors. Newly isolated lactic acid bacteria (LAB as well as those procured from culture collection centers were screened for the production of various substrate specific aminopeptidases. Among all the strains screened, L. brevis (NRRL B-1836 was found to produce quantifiable amount of intracellular arginine specific aminopeptidase (EC 3.4.11.6. The productivity of arginine aminopeptidase in 5 L fermentor was 36 IU/L/h. The Luedeking and Piret model was tested for intracellular production of aminopeptidase and the data seemed to fit well, as the correlation coefficient was 0.9964 for MRS. The αAP and βAP was 0.4865 and 0.0046, respectively in MRS medium indicating that the yield was predominantly depended on growth. The culture produced lactic acid and also tolerated pH 2.0-3.0 and 0.3-0.5% bile salts, the most important probiotic features.

  9. Structures of Bacterial Biosynthetic Arginine Decarboxylases

    Energy Technology Data Exchange (ETDEWEB)

    F Forouhar; S Lew; J Seetharaman; R Xiao; T Acton; G Montelione; L Tong

    2011-12-31

    Biosynthetic arginine decarboxylase (ADC; also known as SpeA) plays an important role in the biosynthesis of polyamines from arginine in bacteria and plants. SpeA is a pyridoxal-5'-phosphate (PLP)-dependent enzyme and shares weak sequence homology with several other PLP-dependent decarboxylases. Here, the crystal structure of PLP-bound SpeA from Campylobacter jejuni is reported at 3.0 {angstrom} resolution and that of Escherichia coli SpeA in complex with a sulfate ion is reported at 3.1 {angstrom} resolution. The structure of the SpeA monomer contains two large domains, an N-terminal TIM-barrel domain followed by a {beta}-sandwich domain, as well as two smaller helical domains. The TIM-barrel and {beta}-sandwich domains share structural homology with several other PLP-dependent decarboxylases, even though the sequence conservation among these enzymes is less than 25%. A similar tetramer is observed for both C. jejuni and E. coli SpeA, composed of two dimers of tightly associated monomers. The active site of SpeA is located at the interface of this dimer and is formed by residues from the TIM-barrel domain of one monomer and a highly conserved loop in the {beta}-sandwich domain of the other monomer. The PLP cofactor is recognized by hydrogen-bonding, {pi}-stacking and van der Waals interactions.

  10. L-arginine-induced experimental pancreatitis

    Institute of Scientific and Technical Information of China (English)

    Péter Hegyi; Zoltán Rakonczay Jr; Réka Sári; Csaba Góg; János Lonovics; Tamás Takács; László Czakó

    2004-01-01

    Despite medical treatment, the lethality of severe acute pancreatitis is still high (20-30%). Therefore, it is very important to find good animal models to characterise the events of this severe disease. In 1984, Mizunuma et al.developed a new type of experimental necrotizing pancreatitis by intraperitoneal administration of a high dose of L-arginine in rats. This non-invasive model is highly reproducible and produces selective, dose-dependent acinar cell necrosis.Not only is this a good model to study the pathomechanisms of acute necrotizing pancreatitis, but it is also excellent to observe and influence the time course changes of the disease. By writing this review we iluminate some new aspects of cell physiology and pathology of acute necrotizing pancreatitis. Unfortunately, the reviews about acute experimental pancreatitis usually did not discuss this model.Therefore, the aim of this manuscript was to summarise the observations and address some challenges for the future in L-arginine-induced pancreatitis.

  11. L-arginine-induced experimental pancreatitis

    Science.gov (United States)

    Hegyi, Péter; Jr, Zoltán Rakonczay; Sári, Réka; Góg, Csaba; Lonovics, János; Takács, Tamás; Czakó, László

    2004-01-01

    Despite medical treatment, the lethality of severe acute pancreatitis is still high (20%-30%). Therefore, it is very important to find good animal models to characterise the events of this severe disease. In 1984, Mizunuma et al[1] developed a new type of experimental necrotizing pancreatitis by intraperitoneal administration of a high dose of L-arginine in rats. This non-invasive model is highly reproducible and produces selective, dose-dependent acinar cell necrosis. Not only is this a good model to study the pathomechanisms of acute necrotizing pancreatitis, but it is also excellent to observe and influence the time course changes of the disease. By writing this review we iluminate some new aspects of cell physiology and pathology of acute necrotizing pancreatitis. Unfortunately, the reviews about acute experimental pancreatitis usually did not discuss this model. Therefore, the aim of this manuscript was to summarise the observations and address some challenges for the future in L-arginine-induced pancreatitis. PMID:15237423

  12. Effect of rare-earth dopants on the growth and structural, optical, electrical and mechanical properties of L-arginine phosphate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Arjunan, S., E-mail: arjunan_hce@yahoo.co.i [Department of Physics, Sri Ramachandra University, Porur, Chennai (India); Bhaskaran, A. [Department of Physics, Dr. Ambedkar Government College, Chennai (India); Kumar, R. Mohan; Mohan, R. [Department of Physics, Presidency College, Chennai (India); Jayavel, R. [Crystal Growth Centre, Anna University, Chennai (India)

    2010-09-17

    Research highlights: {yields} Thorium, Lanthanum and Cerium rare-earth ions were doped with L-arginine phosphate material and the crystals were grown by slow evaporation technique. {yields} The transparency of the rare-earth doped LAP crystals has enhanced compared to pure LAP. {yields} The powder SHG measurements revealed that the SHG output of rare-earth doped LAP crystals increases considerably compared to that of LAP. {yields} Vicker's hardness number of as-grown crystal of LAP is higher than that of rare-earth doped LAP crystals. - Abstract: Effect of Thorium, Lanthanum and Cerium rare-earth ions on the growth and properties of L-arginine phosphate single crystals has been reported. The incorporation of rare-earth dopants into the L-arginine phosphate crystals is confirmed by Inductively Coupled Plasma-Mass Spectroscopy analysis. The unit cell parameters for pure and rare-earth doped L-arginine phosphate crystals have been estimated by powder X-ray diffraction studies. UV-visible studies revealed the transmittance percentage and cut-off wavelengths of the grown crystals. Powder second harmonic generation measurement has been carried out for pure and doped L-arginine phosphate crystals. The dielectric behavior of the grown crystals was analyzed for different frequencies at room temperature. The mechanical properties have been determined for pure and the doped L-arginine phosphate crystals.

  13. Effect of psychological stress on the L-arginine-nitric oxide pathway and semen quality

    Directory of Open Access Journals (Sweden)

    S. Eskiocak

    2006-05-01

    Full Text Available It has been reported that mental stress causes abnormality of spermiogram parameters. We investigated the effect of psychological stress on the L-arginine-nitric oxide (NO pathway. Semen samples were collected from 29 healthy fourth semester medical students just before (stress and 3 months after (non-stress the final examinations. Psychological stress was measured by the State Anxiety Inventory questionnaire. After standard semen analysis, arginase activity and NO concentration were measured spectrophotometrically in the seminal plasma. Measurements were made in duplicate. During the stress period, sperm concentration (41.28 ± 3.70 vs 77.62 ± 7.13 x 10(6/mL, rapid progressive motility of spermatozoa (8.79 ± 1.66 vs 20.86 ± 1.63% and seminal plasma arginase activity (0.12 ± 0.01 vs 0.22 ± 0.01 U/mL were significantly lower than in the non-stress situation, whereas seminal plasma NO (17.28 ± 0.56 vs 10.02 ± 0.49 µmol/L was higher compared to the non-stress period (P < 0.001 for all. During stress there was a negative correlation between NO concentration and sperm concentration, the percentage of rapid progressive motility and arginase activity (r = -0.622, P < 0.01; r = -0.425, P < 0.05 and r = -0.445, P < 0.05, respectively. These results indicate that psychological stress causes an increase of NO level and a decrease of arginase activity in the L-arginine-NO pathway. Furthermore, poor sperm quality may be due to excessive production of NO under psychological stress. In the light of these results, we suggest that the arginine-NO pathway, together with arginase and NO synthase, are involved in semen quality under stress conditions.

  14. Chemical modification of extracellular matrix by cold atmospheric plasma-generated reactive species affects chondrogenesis and bone formation.

    Science.gov (United States)

    Eisenhauer, Peter; Chernets, Natalie; Song, You; Dobrynin, Danil; Pleshko, Nancy; Steinbeck, Marla J; Freeman, Theresa A

    2016-09-01

    The goal of this study was to investigate whether cold plasma generated by dielectric barrier discharge (DBD) modifies extracellular matrices (ECM) to influence chondrogenesis and endochondral ossification. Replacement of cartilage by bone during endochondral ossification is essential in fetal skeletal development, bone growth and fracture healing. Regulation of this process by the ECM occurs through matrix remodelling, involving a variety of cell attachment molecules and growth factors, which influence cell morphology and protein expression. The commercially available ECM, Matrigel, was treated with microsecond or nanosecond pulsed (μsp or nsp, respectively) DBD frequencies conditions at the equivalent frequencies (1 kHz) or power (~1 W). Recombinant human bone morphogenetic protein-2 was added and the mixture subcutaneously injected into mice to simulate ectopic endochondral ossification. Two weeks later, the masses were extracted and analysed by microcomputed tomography. A significant increase in bone formation was observed in Matrigel treated with μsp DBD compared with control, while a significant decrease in bone formation was observed for both nsp treatments. Histological and immunohistochemical analysis showed Matrigel treated with μsp plasma increased the number of invading cells, the amount of vascular endothelial growth factor and chondrogenesis while the opposite was true for Matrigel treated with nsp plasma. In support of the in vivo Matrigel study, 10 T1/2 cells cultured in vitro on μsp DBD-treated type I collagen showed increased expression of adhesion proteins and activation of survival pathways, which decreased with nsp plasma treatments. These results indicate DBD modification of ECM can influence cellular behaviours to accelerate or inhibit chondrogenesis and endochondral ossification. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Computer-based design of novel HIV-1 entry inhibitors: neomycin conjugated to arginine peptides at two specific sites.

    Science.gov (United States)

    Berchanski, Alexander; Lapidot, Aviva

    2009-03-01

    Aminoglycoside-arginine conjugates (AAC and APAC) are multi-target inhibitors of human immunodeficiency virus type-1 (HIV-1). Here, we predict new conjugates of neomycin with two arginine peptide chains binding at specific sites on neomycin [poly-arginine-neomycin-poly-arginine (PA-Neo-PA)]. The rationale for the design of such compounds is to separate two short arginine peptides with neomycin, which may extend the binding region of the CXC chemokine receptor type 4 (CXCR4). We used homology models of CXCR4 and unliganded envelope glycoprotein 120 (HIV-1(IIIB) gp120) and docked PA-Neo-PAs and APACs to these using a multistep docking procedure. The results indicate that PA-Neo-PAs spread over two negatively charged patches of CXCR4. PA-Neo-PA-CXCR4 complexes are energetically more favorable than AACs/APAC-CXCR4 complexes. Notably, our CXCR4 model and docking procedure can be applied to predict new compounds that are either inhibitors of gp120-CXCR4 binding without affecting stromal cell-derived factor 1 alpha (SDF-1 alpha) chemotaxis activity, or inhibitors of SDF-1 alpha-CXCR4 binding resulting in an anti-metastasis effect. We also predict that PA-Neo-PAs and APACs can interfere with CD4-gp120 binding in unliganded conformation.

  16. Early social instability affects plasma testosterone during adolescence but does not alter reproductive capacity or measures of stress later in life.

    Science.gov (United States)

    Siegeler, Katja; Wistuba, Joachim; Damm, Oliver S; von Engelhardt, Nikolaus; Sachser, Norbert; Kaiser, Sylvia

    2013-08-15

    The social environment plays an important role in modulating processes of the hormonal and behavioural profile of an animal in a variety of group-living species. In wild cavies for instance, unstable social environmental conditions during pregnancy and lactation lead to an infantilised biobehavioural profile of the male offspring. In the present study, the influence of the social environment during pregnancy and lactation on the male wild cavy offsprings' plasma testosterone development, reproductive capacity and stress system activity was investigated. To this purpose, 12 sons whose mothers had lived in an unstable social environment during pregnancy and lactation were compared with 12 sons whose mothers had lived in a stable social environment during the same time. Plasma testosterone (T) and plasma cortisol (C) concentrations were determined from days 20 to 107 of age. Adrenal tyrosine hydroxylase (TH) activity and different parameters of reproductive capacity (weights of testes, epididymides and accessory sex glands, cellular composition of the testes, DNA fragmentation indices and sperm motility parameters) were analysed at day 107 of age. TH activity and plasma C were unaffected by different social environmental conditions early in life. The developmental time course of T concentrations, however, was significantly different: Sons whose mothers had lived in an unstable social environment during pregnancy and lactation showed a delayed increase in T concentrations around adolescence compared to controls. In contrast, no reproduction-related parameters measured within this study differed significantly between the two groups. Thus, early social instability affects plasma testosterone development during adolescence in a significant way but does not alter reproductive capacity or measures of stress later in life.

  17. Effects of dietary L-arginine or N-carbamylglutamate supplementation during late gestation of sows on the miR-15b/16, miR-221/222, VEGFA and eNOS expression in umbilical vein.

    Science.gov (United States)

    Liu, X D; Wu, X; Yin, Y L; Liu, Y Q; Geng, M M; Yang, H S; Blachier, Francois; Wu, G Y

    2012-06-01

    Placental vascular formation and blood flow are crucial for fetal survival, growth and development, and arginine regulates vascular development and function. This study determined the effects of dietary arginine or N-carbamylglutamate (NCG) supplementation during late gestation of sows on the microRNAs, vascular endothelial growth factor A (VEGFA) and endothelial nitric oxide synthase (eNOS) expression in umbilical vein. Twenty-seven landrace×large white sows at day (d) 90 of gestation were assigned randomly to three groups and fed the following diets: a control diet and the control diet supplemented with 1.0% L-arginine or 0.10% NCG. Umbilical vein of fetuses with body weight around 2.0 kg (oversized), 1.5 kg (normal) and 0.6 kg (intrauterine growth restriction, IUGR) were obtained immediately after farrowing for miR-15b, miR-16, miR-221, miR-222, VEGFA and eNOS real-time PCR analysis. Compared with the control diets, dietary Arg or NCG supplementation enhanced the reproductive performance of sows, significantly increased (P<0.05) plasma arginine and decreased plasma VEGF and eNOS (P<0.05). The miR-15b expression in the umbilical vein was higher (P<0.05) in the NCG-supplemented group than in the control group. There was a trend in that the miR-222 expression in the umbilical vein of the oversized fetuses was higher (0.05affect microRNAs (miR-15b, miR-222) targeting VEGFA and eNOS gene expressions in umbilical vein, so as to regulate the function and volume of the umbilical vein

  18. Comparative analysis of twin-arginine (Tat)-dependent protein secretion of a heterologous model protein (GFP) in three different Gram-positive bacteria

    NARCIS (Netherlands)

    Meissner, Daniel; Vollstedt, Angela; van Dijl, Jan Maarten; Freudl, Roland

    2007-01-01

    In contrast to the general protein secretion (Sec) system, the twin-arginine translocation (Tat) export pathway allows the translocation of proteins across the bacterial plasma membrane in a fully folded conformation. Due to this feature, the Tat pathway provides an attractive alternative to the sec

  19. Glucose Autoxidation Induces Functional Damage to Proteins via Modification of Critical Arginine Residues†

    Science.gov (United States)

    Chetyrkin, Sergei; Mathis, Missy; Pedchenko, Vadim; Sanchez, Otto A.; McDonald, W. Hayes; Hachey, David L.; Madu, Hartman; Stec, Donald; Hudson, Billy; Voziyan, Paul

    2011-01-01

    Non-enzymatic modification of proteins in hyperglycemia is a major mechanism causing diabetic complications. These modifications can have pathogenic consequences when they target active site residues, thus affecting protein function. In the present study, we examined the role of glucose autoxidation in functional protein damage using lysozyme and RGD-α3NC1 domain of collagen IV as model proteins in vitro. We demonstrated that glucose autoxidation induced inhibition of lysozyme activity as well as NC1 domain binding to αVβ3 integrin receptor via modification of critical arginine residues by reactive carbonyl species (RCS) glyoxal (GO) and methylglyoxal while non-oxidative glucose adduction to the protein did not affect protein function. The role of RCS in protein damage was confirmed using pyridoxamine which blocked glucose autoxidation and RCS production, thus protecting protein function, even in the presence of high concentrations of glucose. Glucose autoxidation may cause protein damage in vivo since increased levels of GO-derived modifications of arginine residues were detected within the assembly interface of collagen IV NC1 domains isolated from renal ECM of diabetic rats. Since arginine residues are frequently present within protein active sites, glucose autoxidation may be a common mechanism contributing to ECM protein functional damage in hyperglycemia and oxidative environment. Our data also point out the pitfalls in functional studies, particularly in cell culture experiments, that involve glucose treatment but do not take into account toxic effects of RCS derived from glucose autoxidation. PMID:21661747

  20. Glucose autoxidation induces functional damage to proteins via modification of critical arginine residues.

    Science.gov (United States)

    Chetyrkin, Sergei; Mathis, Missy; Pedchenko, Vadim; Sanchez, Otto A; McDonald, W Hayes; Hachey, David L; Madu, Hartman; Stec, Donald; Hudson, Billy; Voziyan, Paul

    2011-07-12

    Nonenzymatic modification of proteins in hyperglycemia is a major mechanism causing diabetic complications. These modifications can have pathogenic consequences when they target active site residues, thus affecting protein function. In the present study, we examined the role of glucose autoxidation in functional protein damage using lysozyme and RGD-α3NC1 domain of collagen IV as model proteins in vitro. We demonstrated that glucose autoxidation induced inhibition of lysozyme activity as well as NC1 domain binding to α(V)β(3) integrin receptor via modification of critical arginine residues by reactive carbonyl species (RCS) glyoxal (GO) and methylglyoxal while nonoxidative glucose adduction to the protein did not affect protein function. The role of RCS in protein damage was confirmed using pyridoxamine which blocked glucose autoxidation and RCS production, thus protecting protein function, even in the presence of high concentrations of glucose. Glucose autoxidation may cause protein damage in vivo since increased levels of GO-derived modifications of arginine residues were detected within the assembly interface of collagen IV NC1 domains isolated from renal ECM of diabetic rats. Since arginine residues are frequently present within protein active sites, glucose autoxidation may be a common mechanism contributing to ECM protein functional damage in hyperglycemia and oxidative environment. Our data also point out the pitfalls in functional studies, particularly in cell culture experiments, that involve glucose treatment but do not take into account toxic effects of RCS derived from glucose autoxidation.

  1. Zinc induces unfolding and aggregation of dimeric arginine kinase by trapping reversible unfolding intermediate.

    Science.gov (United States)

    Liu, Taotao; Wang, Xicheng

    2010-11-01

    Arginine kinase plays an important role in the cellular energy metabolism of invertebrates. Dimeric arginine kinase (dAK) is unique in some marine invertebrates. The effects of Zn²(+) on the unfolding and aggregation of dAK from the sea cucumber Stichopus japonicus were investigated. Our results indicated that Zn²(+) caused dAK inactivation accompanied by conformational unfolding, the exposure of hydrophobic surface, and aggregation. Kinetic studies showed the inactivation and unfolding of dAK followed biphasic kinetic courses. Zn²(+) can affect unfolding and refolding of dAK by trapping the reversible intermediate. Our study provides important information regarding the effect of Zn²(+) on metabolic enzymes in marine invertebrates.

  2. Wheat Bran Does Not Affect Postprandial Plasma Short-Chain Fatty Acids from 13C-inulin Fermentation in Healthy Subjects

    Science.gov (United States)

    Deroover, Lise; Verspreet, Joran; Luypaerts, Anja; Vandermeulen, Greet; Courtin, Christophe M.; Verbeke, Kristin

    2017-01-01

    Wheat bran (WB) is a constituent of whole grain products with beneficial effects for human health. Within the human colon, such insoluble particles may be colonized by specific microbial teams which can stimulate cross-feeding, leading to a more efficient carbohydrate fermentation and an increased butyrate production. We investigated the extent to which WB fractions with different properties affect the fermentation of other carbohydrates in the colon. Ten healthy subjects performed four test days, during which they consumed a standard breakfast supplemented with 10 g 13C-inulin. A total of 20 g of a WB fraction (unmodified WB, wheat bran with a reduced particle size (WB RPS), or de-starched pericarp-enriched wheat bran (PE WB)) was also added to the breakfast, except for one test day, which served as a control. Blood samples were collected at regular time points for 14 h, in order to measure 13C-labeled short-chain fatty acid (SCFA; acetate, propionate and butyrate) concentrations. Fermentation of 13C-inulin resulted in increased plasma SCFA for about 8 h, suggesting that a sustained increase in plasma SCFA can be achieved by administering a moderate dose of carbohydrates, three times per day. However, the addition of a single dose of a WB fraction did not further increase the 13C-SCFA concentrations in plasma, nor did it stimulate cross-feeding (Wilcoxon signed ranks test). PMID:28117694

  3. Cardioprotective activity of placental growth factor combined with oral supplementation of L-arginine in a rat model of acute myocardial infarction

    Directory of Open Access Journals (Sweden)

    Luo L

    2016-10-01

    Full Text Available Liyun Luo,1,* Bairong Chen,1,* Yin Huang,1 Zibin Liang,2 Songbiao Li,1 Yuelan Yin,1 Jian Chen,1 Wei Wu1 1Department of Cardiology, 2Department of Oncological Radiotherapy, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, People’s Republic of China*These authors contributed equally to this workObjective: Exogenous administration of placental growth factor (PlGF stimulates angiogenesis and improves ventricular remodeling after acute myocardial infarction (AMI, and supplementation with L-arginine ameliorates endothelial function. The objective of the present study was to compare the cardioprotective effects of combination therapy of PlGF and L-arginine with those of direct administration of PlGF alone in a rat model of AMI.Materials and methods: Fifty male Sprague Dawley rats were randomly divided into five groups: sham group, normal saline group, L-arginine group, PlGF group, and combination group (PlGF + L-arginine. An AMI rat model was established by ligation of the left anterior descending of coronary arteries. After 4 weeks of postligation treatment, cardiac function, scar area, angiogenesis and arteriogenesis, myocardial endothelial nitric oxide synthase (eNOS and collagen I protein content, and plasma concentration of brain natriuretic peptide (BNP were studied. Echocardiography, Masson’s staining, immunohistochemical analyses, Western blot, and enzyme-linked immunosorbent assay were performed.Results: Left ventricular ejection fraction (LVEF, left ventricular fraction shortening (LVFS, and capillary and arteriole densities were higher in the PlGF group than in the normal saline group (P<0.01. Scar area, collagen I protein content, and plasma concentration of BNP were decreased in the PlGF group (P<0.01. Myocardial eNOS protein level was elevated in the L-arginine group and PlGF + L-arginine group (P<0.01. Compared with the PlGF group, LVEF, LVFS, myocardial eNOS, and capillary and arteriole densities were

  4. Oral administration of both tetrahydrobiopterin and L-arginine prevents endothelial dysfunction in rats with chronic renal failure.

    Science.gov (United States)

    Yamamizu, Kohei; Shinozaki, Kazuya; Ayajiki, Kazuhide; Gemba, Munekazu; Okamura, Tomio

    2007-03-01

    We examined the mechanism of endothelial dysfunction in chronic renal failure (CRF), with reference to NO synthase. CRF was induced by 5/6 nephrectomy in rats. Either L-arginine (1.25 g/L in drinking water), tetrahydrobiopterin (BH4, 10 mg/kg per day in food), or a combination of the 2 were orally administered to CRF rats for 9 weeks. CRF rats showed elevation of systolic blood pressure compared with sham-operated rats. Endothelium-dependent relaxation induced by acetylcholine or A23187 in the isolated aorta was significantly reduced, and in vitro treatment with L-arginine, BH4, or superoxide dismutase restored the relaxation. Aortic segments from CRF rats showed significantly higher superoxide production in response to A23187, which was inhibited by L-NAME. Plasma concentrations of asymmetric dimethylarginine and symmetric dimethylarginine were higher in CRF rats. These changes in CRF rats were totally or partially decreased by L-arginine or BH4 supplementation in vivo. Interestingly, the combined treatment showed additive effects in certain parameters. These results suggest that vascular disorders in CRF rats may be partly due to NOS uncoupling caused by a relative deficiency of BH4 and partially due to accumulation of endogenous inhibitors of NOS and L-arginine uptake, resulting in the decrease of NO production and the increase of reactive oxygen species.

  5. Arsenic exposure affects plasma insulin-like growth factor 1 (IGF-1 in children in rural Bangladesh.

    Directory of Open Access Journals (Sweden)

    Sultan Ahmed

    Full Text Available BACKGROUND: Exposure to inorganic arsenic (As through drinking water during pregnancy is associated with lower birth size and child growth. The aim of the study was to assess the effects of As exposure on child growth parameters to evaluate causal associations. METHODOLOGY/FINDINGS: Children born in a longitudinal mother-child cohort in rural Bangladesh were studied at 4.5 years (n=640 as well as at birth (n=134. Exposure to arsenic was assessed by concurrent and prenatal (maternal urinary concentrations of arsenic metabolites (U-As. Associations with plasma concentrations of insulin-like growth factor 1 (IGF-1, calcium (Ca, vitamin D (Vit-D, bone-specific alkaline phosphatase (B-ALP, intact parathyroid hormone (iPTH, and phosphate (PO4 were evaluated by linear regression analysis, adjusted for socioeconomic factor, parity and child sex. Child U-As (per 10 µg/L was significantly inversely associated with concurrent plasma IGF-1 (β=-0.27; 95% confidence interval: -0.50, -0.0042 at 4.5 years. The effect was more obvious in girls (β=-0.29; -0.59, 0.021 than in boys, and particularly in girls with adequate height (β=-0.491; -0.97, -0.02 or weight (β=-0.47; 0.97, 0.01. Maternal U-As was inversely associated with child IGF-1 at birth (r=-0.254, P=0.003, but not at 4.5 years. There was a tendency of positive association between U-As and plasma PO4 in stunted boys (β=0.27; 0.089, 0.46. When stratified by % monomethylarsonic acid (MMA, arsenic metabolite (median split at 9.7%, a much stronger inverse association between U-As and IGF-1 in the girls (β=-0.41; -0.77, -0.03 was obtained above the median split. CONCLUSION: The results suggest that As-related growth impairment in children is mediated, at least partly, through suppressed IGF-1 levels.

  6. Periconceptional undernutrition affects in utero methyltransferase expression and steroid hormone concentrations in uterine flushings and blood plasma during the peri-implantation period in domestic pigs.

    Science.gov (United States)

    Franczak, A; Zglejc, K; Waszkiewicz, E; Wojciechowicz, B; Martyniak, M; Sobotka, W; Okrasa, S; Kotwica, G

    2016-08-18

    Female undernutrition during early pregnancy may affect the physiological pattern of genomic DNA methylation. We hypothesised that in utero DNA methylation may be impaired in females fed a restrictive diet in early pregnancy. In this study we evaluated whether poor maternal nutritional status, induced by applying a restricted diet during the peri-conceptional period, may influence: (1) the potential for in utero DNA methylation, expressed as changes in the mRNA expression and protein abundance of methyltransferases: DNA methyltransferase 1 (DNMT1) and DNMT3a in the endometrium and the myometrium, (2) the intrauterine microenvironment, measured as oestradiol 17β (E2) and progesterone (P4) concentrations in uterine flushings and (3) plasma concentration of E2 and P4 during the peri-implantation period. Our results indicate that maternal peri-conceptional undernutrition affects maintenance and de novo DNA methylation in the endometrium, de novo methylation in the myometrium and a results in a decrease in intrauterine E2 concentration during the peri-implantation period. The intrauterine concentration of P4 and plasma concentrations of E2 and P4 did not change. These findings suggest that undernutrition during the earliest period of pregnancy, and perhaps the pre-pregnancy period, may create changes in epigenetic mechanisms in the uterus and intrauterine milieu of E2 during the peri-implantation period.

  7. Type 2 diabetes mellitus interacts with obesity and common variations in PLTP to affect plasma phospholipid transfer protein activity

    NARCIS (Netherlands)

    Dullaart, R. P. F.; Vergeer, M.; de Vries, R.; Kappelle, Paul J.W.H.; Dallinga-Thie, G. M.

    2012-01-01

    Dullaart RPF, Vergeer M, de Vries R, Kappelle PJWH, Dallinga-Thie GM (University Medical Center Groningen, University of Groningen, Groningen; and Academic Medical Center Amsterdam, Amsterdam; The Netherlands). Type 2 diabetes mellitus interacts with obesity and common variations in PLTP to affect p

  8. Arginine-aromatic interactions and their effects on arginine-induced solubilization of aromatic solutes and suppression of protein aggregation

    KAUST Repository

    Shah, Dhawal

    2011-09-21

    We examine the interaction of aromatic residues of proteins with arginine, an additive commonly used to suppress protein aggregation, using experiments and molecular dynamics simulations. An aromatic-rich peptide, FFYTP (a segment of insulin), and lysozyme and insulin are used as model systems. Mass spectrometry shows that arginine increases the solubility of FFYTP by binding to the peptide, with the simulations revealing the predominant association of arginine to be with the aromatic residues. The calculations further show a positive preferential interaction coefficient, Γ XP, contrary to conventional thinking that positive Γ XP\\'s indicate aggregation rather than suppression of aggregation. Simulations with lysozyme and insulin also show arginine\\'s preference for aromatic residues, in addition to acidic residues. We use these observations and earlier results reported by us and others to discuss the possible implications of arginine\\'s interactions with aromatic residues on the solubilization of aromatic moieties and proteins. Our results also highlight the fact that explanations based purely on Γ XP, which measures average affinity of an additive to a protein, could obscure or misinterpret the underlying molecular mechanisms behind additive-induced suppression of protein aggregation. © 2011 American Institute of Chemical Engineers (AIChE).

  9. Convergent evolution of the arginine deiminase pathway: the ArcD and ArcE arginine/ornithine exchangers.

    Science.gov (United States)

    Noens, Elke E E; Lolkema, Juke S

    2017-02-01

    The arginine deiminase (ADI) pathway converts L-arginine into L-ornithine and yields 1 mol of ATP per mol of L-arginine consumed. The L-arginine/L-ornithine exchanger in the pathway takes up L-arginine and excretes L-ornithine from the cytoplasm. Analysis of the genomes of 1281 bacterial species revealed the presence of 124 arc gene clusters encoding the pathway. About half of the clusters contained the gene encoding the well-studied L-arginine/L-ornithine exchanger ArcD, while the other half contained a gene, termed here arcE, encoding a membrane protein that is not a homolog of ArcD. The arcE gene product of Streptococcus pneumoniae was shown to take up L-arginine and L-ornithine with affinities of 0.6 and 1 μmol/L, respectively, and to catalyze metabolic energy-independent, electroneutral exchange. ArcE of S. pneumoniae could replace ArcD in the ADI pathway of Lactococcus lactis and provided the cells with a growth advantage. In contrast to ArcD, ArcE catalyzed translocation of the pathway intermediate L-citrulline with high efficiency. A short version of the ADI pathway is proposed for L-citrulline catabolism and the presence of the evolutionary unrelated arcD and arcE genes in different organisms is discussed in the context of the evolution of the ADI pathway.

  10. Arginine transport in Streptococcus lactis is catalyzed by a cationic exchanger

    NARCIS (Netherlands)

    Driessen, Arnold J.M.; Poolman, Bert; Kiewiet, Rense; Konings, Wil N.

    1987-01-01

    Streptococcus lactis metabolizes arginine via the arginine deiminase pathway to ornithine, CO2, NH3, and ATP. The translocation of arginine and ornithine has been studied using membrane vesicles of galactose/arginine-grown cells of S. lactis fused with cytochrome c oxidase proteoliposomes by the fre

  11. The arginine deiminase pathway of Lactobacillus fermentum IMDO 130101 responds to growth under stress conditions of both temperature and salt.

    Science.gov (United States)

    Vrancken, G; Rimaux, T; Wouters, D; Leroy, F; De Vuyst, L

    2009-10-01

    The arginine deiminase (ADI) pathway is a means by which certain sourdough lactic acid bacteria (LAB) convert arginine into ornithine via citrulline while producing ammonia and ATP, thereby coping with acid stress and gaining an energetic advantage. Lactobacillus fermentum IMDO 130101, an isolate from a spontaneous laboratory rye sourdough, possesses an ADI pathway which is modulated by environmental pH. In the present study, a broader view of the activity of the ADI pathway in response to growth under two other commonly encountered stress factors, temperature and added salt, was obtained. In both cases, an increase in ornithine production was observed as a response to growth under both temperature and salt stress conditions. Biokinetic parameters were obtained to describe the kinetics of the ADI pathway as a function of temperature and added salt. The arginine conversion rate increased as a function of added NaCl concentrations but was hardly affected by temperature. In addition, arginine-into-citrulline conversion rate was not affected by temperature but increased with increasing NaCl concentrations. Citrulline-into-ornithine conversion rate increased with increasing temperature, while it dropped to zero with added salt. These findings suggest a more pronounced adaptation of the strain through the ADI pathway to added salt, as compared with different constant temperatures. Furthermore, these results suggest that the ADI pathway in L. fermentum IMDO 130101 is active in adapting to non-optimal growth conditions.

  12. Inhibition of platelet aggregation by polyaspartoyl L-arginine and its mechanism

    Institute of Scientific and Technical Information of China (English)

    Yin-ye WANG; Zhi-yu TANG; Min DONG; Xiao-yan LIU; Shi-qi PENG

    2004-01-01

    AIM: To observe the oral anti-platelet efficacy and the potential action mechanism of polyaspartoyl L-arginine (PDR), a new L-arginine rich compound. METHODS: Platelet aggregation was conducted by Born's method;bleeding time was determined using tail's bleeding time in mice; platelet adhesion was carried out with glass bottle method; nitric oxide (NO) was tested with Griess' method; and cAMP, thromboxane B2 (TXB2) and 6-keto-PGF1a were assessed with commercial kits. RESULTS: The inhibition by PDR (15-60 mg/kg ig or 10 mg/kg iv) of platelet aggregation induced by adenosine diphosphate (ADP), collagen or thrombin at 1 h after oral administration or at 20 min after iv injection for rats (P<0.01), and its (15 mg/kg, ig) inhibition of ADP-induced platelet aggregation for rabbits during 6 h after administration were observed. PDR (15-60 mg/kg) prolonged the bleeding time of mice (P<0.05) and (30 mg/kg) increased NO concentration in plasma. On the other hand PDR did not change the contents of cAMP in platelet and TXB2 or 6-keto-PGF1a in plasma. CONCLUSION: PDR is a novel, oral effective platelet aggregation inhibitor and its action mechanism possibly related to increasing NO generation.

  13. Control of enzyme synthesis in the arginine deiminase pathway of Streptococcus faecalis.

    OpenAIRE

    Simon, J.P.; Wargnies, B; Stalon, V

    1982-01-01

    The formation of the arginine deiminase pathway enzymes in Streptococcus faecalis ATCC 11700 was investigated. The addition of arginine to growing cells resulted in the coinduction of arginine diminase (EC 3.5.3.6), ornithine carbamoyltransferase (EC 2.1.3.3), and carbamate kinase (EC 2.7.2.3). Growth on glucose-arginine or on glucose-fumarate-arginine produced a decrease in the specific activity of the arginine fermentation system. Aeration had a weak repressing effect on the arginine deimin...

  14. Rapid evolution of arginine deiminase for improved anti-tumor activity.

    Science.gov (United States)

    Ni, Ye; Liu, Yongmei; Schwaneberg, Ulrich; Zhu, Leilei; Li, Na; Li, Lifeng; Sun, Zhihao

    2011-04-01

    Arginine deiminase (ADI), an arginine-degrading enzyme, has been studied as a potential anti-cancer agent for inhibiting arginine-auxotrophic tumors, such as melanomas and hepatocellular carcinomas. Based on our preliminary results, it was noticed that the optimum pH of ADI from Pseudomonas plecoglossicida (PpADI) was 6.0, and less than 10% of the activity was retained at pH 7.4 (pH of human plasma). Additionally, the K(m) value for wild-type ADI (WT-ADI) was 2.88 mM (pH 6.0), which is over 20 times of the serum arginine level (100-120 μM). These are two major limitations for PpADI as a potential anti-cancer drug. A highly sensitive and efficient high-throughput screening strategy based on a modified diacetylmonoxime-thiosemicarbazide method was established to isolate ADI mutants with higher activity and lower K(m) under physiological pH. Three improved mutants was selected from 650 variants after one round of ep-PCR, among which mutant 314 (M314: A128T, H404R, I410L) exhibiting the highest activity. Interestingly, sequence alignment shows that three amino acid substitutes in M314 are coincident with corresponding residues in ADI from Mycoplasma arginini. The specific activity of M314 (9.02 U/mg) is over 20-fold higher than that of WT-ADI (0.44 U/mg) at pH 7.4, and the K(m) value was reduced to 0.65 mM (pH 7.4). Noticeably, the pH optimum was shifted from 6.0 to 6.5 in M314. Homology model of M314 was constructed to understand the molecular basis of the improved enzymatic properties. This work could provide promising drug candidate for curing arginine-auxotrophic cancers.

  15. Poststroke Depression as a Factor Adversely Affecting the Level of Oxidative Damage to Plasma Proteins during a Brain Stroke

    Directory of Open Access Journals (Sweden)

    Natalia Cichoń

    2015-01-01

    Full Text Available Poststroke depression, the second most serious psychosomatic complication after brain stroke, leads to delay of the rehabilitation process and is associated with an increased disability and cognitive impairment along with increase in term mortality. Research into the biochemical changes in depression is still insufficiently described. The aim of our study was therefore to evaluate the possible association between plasma protein oxidative/nitrative damages and the development of poststroke depression. We evaluated oxidative/nitrative modifications of specific proteins by measurement of 3-nitrotyrosine and carbonyl groups levels using ELISA test. Additionally, we checked differences in proteins thiol groups by spectrophotometric assay based on reaction between DTNB and thiols. We also evaluated catalase activity in erythrocytes measured as ability to decompose H2O2. Correlation analysis was performed using Spearman’s rank. We observed significant (P<0.001 differences in all oxidative/nitrative stress parameters in brain stroke patients compared to healthy group. Our research shows that oxidative damage of proteins is correlated with the degree of poststroke depression, while nitrative changes do not show any relationship. We demonstrate a positive correlation between the concentration of carbonyl groups and the Geriatric Depression Scale and a negative correlation between the degree of depression and the concentration of -SH groups or catalase activity.

  16. Poststroke depression as a factor adversely affecting the level of oxidative damage to plasma proteins during a brain stroke.

    Science.gov (United States)

    Cichoń, Natalia; Bijak, Michał; Miller, Elżbieta; Niwald, Marta; Saluk, Joanna

    2015-01-01

    Poststroke depression, the second most serious psychosomatic complication after brain stroke, leads to delay of the rehabilitation process and is associated with an increased disability and cognitive impairment along with increase in term mortality. Research into the biochemical changes in depression is still insufficiently described. The aim of our study was therefore to evaluate the possible association between plasma protein oxidative/nitrative damages and the development of poststroke depression. We evaluated oxidative/nitrative modifications of specific proteins by measurement of 3-nitrotyrosine and carbonyl groups levels using ELISA test. Additionally, we checked differences in proteins thiol groups by spectrophotometric assay based on reaction between DTNB and thiols. We also evaluated catalase activity in erythrocytes measured as ability to decompose H2O2. Correlation analysis was performed using Spearman's rank. We observed significant (P stroke patients compared to healthy group. Our research shows that oxidative damage of proteins is correlated with the degree of poststroke depression, while nitrative changes do not show any relationship. We demonstrate a positive correlation between the concentration of carbonyl groups and the Geriatric Depression Scale and a negative correlation between the degree of depression and the concentration of -SH groups or catalase activity.

  17. Glycation sites of human plasma proteins are affected to different extents by hyperglycemic conditions in type 2 diabetes mellitus.

    Science.gov (United States)

    Frolov, Andrej; Blüher, Matthias; Hoffmann, Ralf

    2014-09-01

    Glucose can modify proteins in human blood, forming early glycation products (e.g., Amadori compounds), which can slowly degrade to advanced glycation endproducts (AGEs). AGEs contribute significantly to complications of diabetes mellitus and, thus, represent markers of advanced disease stages. They are, however, currently unsuitable for early diagnosis and therapeutic monitoring. Here, we report sensitive strategies to identify and relatively quantify protein glycation sites in human plasma samples obtained from type 2 diabetes mellitus (T2DM) patients and age-matched nondiabetic individuals using a bottom-up approach. Specifically, Amadori peptides were enriched from tryptic digests by boronic acid affinity chromatography, separated by reversed-phase chromatography, and analyzed on-line by high-resolution mass spectrometry. Among the 52 Amadori peptides studied here were 20 peptides resembling 19 glycation sites in six human proteins detected at statistically significantly higher levels in T2DM than in the normoglycemic controls. Four positions appeared to be unique for T2DM within the detection limit. All 19 glycation sites represent promising new biomarker candidates for early diagnosis of T2DM and adequate therapeutic control, as they may indicate early metabolic changes preceding T2DM.

  18. Transport of maternal cholesterol to the fetus is affected by maternal plasma cholesterol concentrations in the golden Syrian hamster.

    Science.gov (United States)

    Burke, Katie T; Colvin, Perry L; Myatt, Leslie; Graf, Gregory A; Schroeder, Friedhelm; Woollett, Laura A

    2009-06-01

    The fetus has a high requirement for cholesterol and synthesizes cholesterol at elevated rates. Recent studies suggest that fetal cholesterol also can be obtained from exogenous sources. The purpose of the current study was to examine the transport of maternal cholesterol to the fetus and determine the mechanism responsible for any cholesterol-driven changes in transport. Studies were completed in pregnant hamsters with normal and elevated plasma cholesterol concentrations. Cholesterol feeding resulted in a 3.1-fold increase in the amount of LDL-cholesterol taken up by the fetus and a 2.4-fold increase in the amount of HDL-cholesterol taken up. LDL-cholesterol was transported to the fetus primarily by the placenta, and HDL-cholesterol was transported by the yolk sac and placenta. Several proteins associated with sterol transport and efflux, including those induced by activated liver X receptor, were expressed in hamster and human placentas: NPC1, NPC1L1, ABCA2, SCP-x, and ABCG1, but not ABCG8. NPC1L1 was the only protein increased in hypercholesterolemic placentas. Thus, increasing maternal lipoprotein-cholesterol concentrations can enhance transport of maternal cholesterol to the fetus, leading to 1) increased movement of cholesterol down a concentration gradient in the placenta, 2) increased lipoprotein secretion from the yolk sac (shown previously), and possibly 3) increased placental NPC1L1 expression.

  19. L-Arginine Pathway in COPD Patients with Acute Exacerbation

    DEFF Research Database (Denmark)

    Ruzsics, Istvan; Nagy, Lajos; Keki, Sandor

    2016-01-01

    (ADMA, SDMA) is related to hypoxia. In COPD, a rise in ADMA results in a shift of L-arginine breakdown, contributing to airway obstruction. We aimed to compare serum levels of ADMA, SDMA and L-arginine in patients with and without AECOPD. METHODS: L-arginine metabolites quantified by high......-performance liquid chromatography in venous blood samples and partial capillary oxygen pressure were prospectively investigated in 32 patients with COPD, 12 with AECOPD and 30 healthy subjects. RESULTS: Both ADMA and SDMA were significantly higher in AECOPD compared to stable COPD (p = 0.004 and p ....001, respectively). Oxygen content in capillaries correlated with serum ADMA concentration. However, the concentration of L-arginine was not different between AECOPD and stable COPD. Both ADMA and SDMA separated AECOPD with high sensitivity and specificity (AUC: 0.81, p = 0.001; AUC: 0.91, p

  20. Plant PRMTs Broaden the Scope of Arginine Methylation

    Institute of Scientific and Technical Information of China (English)

    Ayaz Ahmad; Xiaofeng Cao

    2012-01-01

    Post-translational methylation at arginine residues is one of the most important covalent modifications of proteins,involved in a myriad of essential cellular processes in eukaryotes,such as transcriptional regulation,RNA processing,signal transduction,and DNA repair.Methylation at arginine residues is catalyzed by a family of enzymes called protein arginine methyltransferases (PRMTs).PRMTs have been extensively studied in various taxa and there is a growing tendency to unveil their functional importance in plants.Recent studies in plants revealed that this evolutionarily conserved family of enzymes regulates essential traits including vegetative growth,flowering time,circadian cycle,and response to high medium salinity and ABA.In this review,we highlight recent advances in the field of posttranslational arginine methylation with special emphasis on the roles and future prospects of this modification in plants.

  1. Increased erythrocytes by-products of arginine catabolism are associated with hyperglycemia and could be involved in the pathogenesis of type 2 diabetes mellitus.

    Science.gov (United States)

    Ramírez-Zamora, Serafín; Méndez-Rodríguez, Miguel L; Olguín-Martínez, Marisela; Sánchez-Sevilla, Lourdes; Quintana-Quintana, Miguel; García-García, Norberto; Hernández-Muñoz, Rolando

    2013-01-01

    Diabetes mellitus (DM) is a worldwide disease characterized by metabolic disturbances, frequently associated with high risk of atherosclerosis and renal and nervous system damage. Here, we assessed whether metabolites reflecting oxidative redox state, arginine and nitric oxide metabolism, are differentially distributed between serum and red blood cells (RBC), and whether significant metabolism of arginine exists in RBC. In 90 patients with type 2 DM without regular treatment for diabetes and 90 healthy controls, paired by age and gender, we measured serum and RBC levels of malondialdehyde (MDA), nitrites, ornithine, citrulline, and urea. In isolated RBC, metabolism of L-[(14)C]-arginine was also determined. In both groups, nitrites were equally distributed in serum and RBC; citrulline predominated in serum, whereas urea, arginine, and ornithine were found mainly in RBC. DM patients showed hyperglycemia and increased blood HbA1C, and increased levels of these metabolites, except for arginine, significantly correlating with blood glucose levels. RBC were observed to be capable of catabolizing arginine to ornithine, citrulline and urea, which was increased in RBC from DM patients, and correlated with an increased affinity for arginine in the activities of putative RBC arginase (Km = 0.23±0.06 vs. 0.50±0.13 mM, in controls) and nitric oxide synthase (Km = 0.28±0.06 vs. 0.43±0.09 mM, in controls). In conclusion, our results suggest that DM alters metabolite distribution between serum and RBC, demonstrating that RBC regulate serum levels of metabolites which affect nitrogen metabolism, not only by transporting them but also by metabolizing amino acids such as arginine. Moreover, we confirmed that urea can be produced also by human RBC besides hepatocytes, being much more evident in RBC from patients with type 2 DM. These events are probably involved in the specific physiopathology of this disease, i.e., endothelial damage and dysfunction.

  2. Role of arginine in the stabilization of proteins against aggregation.

    Science.gov (United States)

    Baynes, Brian M; Wang, Daniel I C; Trout, Bernhardt L

    2005-03-29

    The amino acid arginine is frequently used as a solution additive to stabilize proteins against aggregation, especially in the process of protein refolding. Despite arginine's prevalence, the mechanism by which it stabilizes proteins is not presently understood. We propose that arginine deters aggregation by slowing protein-protein association reactions, with only a small concomitant effect on protein folding. The associated rate effect was observed experimentally in association of globular proteins (insulin and a monoclonal anti-insulin) and in refolding of carbonic anhydrase. We suggest that this effect arises because arginine is preferentially excluded from protein-protein encounter complexes but not from dissociated protein molecules. Such an effect is predicted by our gap effect theory [Baynes and Trout (2004) Biophys. J. 87, 1631] for "neutral crowder" additives such as arginine which are significantly larger than water but have only a small effect on the free energies of isolated protein molecules. The effect of arginine on refolding of carbonic anhydrase was also shown to be consistent with this hypothesis.

  3. Geometry of guanidinium groups in arginines.

    Science.gov (United States)

    Malinska, Maura; Dauter, Miroslawa; Dauter, Zbigniew

    2016-09-01

    The restraints in common usage today have been obtained based on small molecule X-ray crystal structures available 25 years ago and recent reports have shown that the values of bond lengths and valence angles can be, in fact, significantly different from those stored in libraries, for example for the peptide bond or the histidine ring geometry. We showed that almost 50% of outliers found in protein validation reports released in the Protein Data Bank on 23 March 2016 come from geometry of guanidine groups in arginines. Therefore, structures of small molecules and atomic resolution protein crystal structures have been used to derive new target values for the geometry of this group. The most significant difference was found for NE-CZ-NH1 and NE-CZ-NH2 angles, showing that the guanidinium group is not symmetric. The NE-CZ-NH1 angle is larger, 121.5(10)˚, than NE-CZ-NH2, 119.2(10)˚, due to the repulsive interaction between NH1 and CD1 atom.

  4. Fluorometric enzymatic assay of L-arginine

    Science.gov (United States)

    Stasyuk, Nataliya; Gayda, Galina; Yepremyan, Hasmik; Stepien, Agnieszka; Gonchar, Mykhailo

    2017-01-01

    The enzymes of L-arginine (further - Arg) metabolism are promising tools for elaboration of selective methods for quantitative Arg analysis. In our study we propose an enzymatic method for Arg assay based on fluorometric monitoring of ammonia, a final product of Arg splitting by human liver arginase I (further - arginase), isolated from the recombinant yeast strain, and commercial urease. The selective analysis of ammonia (at 415 nm under excitation at 360 nm) is based on reaction with o-phthalaldehyde (OPA) in the presence of sulfite in alkali medium: these conditions permit to avoid the reaction of OPA with any amino acid. A linearity range of the fluorometric arginase-urease-OPA method is from 100 nM to 6 μМ with a limit of detection of 34 nM Arg. The method was used for the quantitative determination of Arg in the pooled sample of blood serum. The obtained results proved to be in a good correlation with the reference enzymatic method and literature data. The proposed arginase-urease-OPA method being sensitive, economical, selective and suitable for both routine and micro-volume formats, can be used in clinical diagnostics for the simultaneous determination of Arg as well as urea and ammonia in serum samples.

  5. Arginine vasopressin and copeptin in perinatology

    Directory of Open Access Journals (Sweden)

    Katrina Suzanne Evers

    2016-08-01

    Full Text Available Arginine vasopressin (AVP plays a major role in the homeostasis of fluid balance, vascular tonus and the regulation of the endocrine stress response. The measurement of AVP levels is difficult due to its short half-life and laborious method of detection. Copeptin is a more stable peptide derived from the same precursor molecule, is released in an equimolar ratio to AVP and has a very similar response to osmotic, hemodynamic and stress-related stimuli. In fact, copeptin has been propagated as surrogate marker to indirectly determine circulating AVP concentrations in various conditions. Here, we present an overview of the current knowledge on AVP and copeptin in perinatology with a particular focus on the baby’s transition from placenta to lung breathing. We performed a systematic review of the literature on fetal stress hormone levels, including norepinephrine, cortisol, AVP and copeptin, in regard to birth stress. Finally, diagnostic and therapeutic options for copeptin measurement and AVP functions are discussed.

  6. The effect of recombinant erythropoietin on plasma brain derived neurotrophic factor levels in patients with affective disorders: a randomised controlled study.

    Directory of Open Access Journals (Sweden)

    Maj Vinberg

    Full Text Available The study aims to investigate the effect of repeated infusions of recombinant erythropoietin (EPO on plasma brain derived neurotrophic factor (BDNF levels in patients with affective disorders. In total, 83 patients were recruited: 40 currently depressed patients with treatment-resistant depression (TRD (Hamilton Depression Rating Scale-17 items (HDRS-17 score >17 (study 1 and 43 patients with bipolar disorder (BD in partial remission (HDRS-17 and Young Mania Rating Scale (YMRS ≤ 14 (study 2. In both studies, patients were randomised to receive eight weekly EPO (Eprex; 40,000 IU or saline (0.9% NaCl infusions in a double-blind, placebo-controlled, parallel--group design. Plasma BDNF levels were measured at baseline and at weeks 5, 9 and at follow up, week 14. In contrast with our hypothesis, EPO down regulated plasma BDNF levels in patients with TRD (mean reduction at week 9 (95% CI: EPO 10.94 ng/l (4.51-21.41 ng/l; mean increase at week 9: Saline 0.52 ng/l, p=0.04 (-5.88-4.48 ng/l p=0.04, partial ŋ2=0.12. No significant effects were found on BDNF levels in partially remitted patients with BD (p=0.35. The present effects of EPO on BDNF levels in patients with TRD point to a role of neurotrophic factors in the potential effects of EPO seen in TRD and BD. The neurobiological mechanisms underlying these effects and the interaction between EPO and peripheral levels on BDNF need to be further elucidated in human studies including a broad range of biomarkers.ClinicalTrials.gov: NCT00916552.

  7. Listeria monocytogenes 10403S Arginine Repressor ArgR Finely Tunes Arginine Metabolism Regulation under Acidic Conditions

    Science.gov (United States)

    Cheng, Changyong; Dong, Zhimei; Han, Xiao; Sun, Jing; Wang, Hang; Jiang, Li; Yang, Yongchun; Ma, Tiantian; Chen, Zhongwei; Yu, Jing; Fang, Weihuan; Song, Houhui

    2017-01-01

    Listeria monocytogenes is able to colonize human and animal intestinal tracts and to subsequently cross the intestinal barrier, causing systemic infection. For successful establishment of infection, L. monocytogenes must survive the low pH environment of the stomach. L. monocytogenes encodes a functional ArgR, a transcriptional regulator belonging to the ArgR/AhrC arginine repressor family. We aimed at clarifying the specific functions of ArgR in arginine metabolism regulation, and more importantly, in acid tolerance of L. monocytogenes. We showed that ArgR in the presence of 10 mM arginine represses transcription and expression of the argGH and argCJBDF operons, indicating that L. monocytogenes ArgR plays the classical role of ArgR/AhrC family proteins in feedback inhibition of the arginine biosynthetic pathway. Notably, transcription and expression of arcA (encoding arginine deiminase) and sigB (encoding an alternative sigma factor B) were also markedly repressed by ArgR when bacteria were exposed to pH 5.5 in the absence of arginine. However, addition of arginine enabled ArgR to derepress the transcription and expression of these two genes. Electrophoretic mobility shift assays showed that ArgR binds to the putative ARG boxes in the promoter regions of argC, argG, arcA, and sigB. Reporter gene analysis with gfp under control of the argG promoter demonstrated that ArgR was able to activate the argG promoter. Unexpectedly, deletion of argR significantly increased bacterial survival in BHI medium adjusted to pH 3.5 with lactic acid. We conclude that this phenomenon is due to activation of arcA and sigB. Collectively, our results show that L. monocytogenes ArgR finely tunes arginine metabolism through negative transcriptional regulation of the arginine biosynthetic operons and of the catabolic arcA gene in an arginine-independent manner during lactic acid-induced acid stress. ArgR also appears to activate catabolism as well as sigB transcription by anti

  8. Novel arginine deiminase-based method to assay L-arginine in beverages.

    Science.gov (United States)

    Stasyuk, N Ye; Gayda, G Z; Fayura, L R; Boretskyy, Y R; Gonchar, M V; Sibirny, A A

    2016-06-15

    A highly selective and sensitive enzymatic method for the quantitative determination of L-arginine (Arg) has been developed. The method is based on the use of recombinant bacterial arginine deiminase (ADI) isolated from the cells of a recombinant strain Escherichia coli and o-phthalaldehyde (OPA) as a chemical reagent. Ammonia, the product of the enzymatic digestion of Arg by ADI, reacts with OPA and forms in the presence of sulfite a product, which can be detected by spectrophotometry (S) and fluorometry (F). The linear concentration range for Arg assay in the final reaction mixture varies for ADI-OPA-F variant of the method from 0.35 μM to 24 μM with the detection limit of 0.25 μM. For ADI-OPA-S variant of the assay, the linearity varies from 0.7 μM to 50 μM with the detection limit of 0.55 μM. The new method was tested on real samples of wines and juices. A high correlation (R=0.978) was shown for the results obtained with the proposed and the reference enzymatic method.

  9. R59949, a diacylglycerol kinase inhibitor, inhibits inducible nitric oxide production through decreasing transplasmalemmal L-arginine uptake in vascular smooth muscle cells.

    Science.gov (United States)

    Shimomura, Tomoko; Nakano, Tomoyuki; Goto, Kaoru; Wakabayashi, Ichiro

    2017-02-01

    Although diacylglycerol kinase (DGK) is known to be expressed in vascular smooth muscle cell, its functional significance remains to be clarified. We hypothesized that DGK is involved in the pathway of cytokine-induced nitric oxide (NO) production in vascular smooth muscle cells. The purpose of this study was to investigate the effects of R59949, a diacylglycerol kinase inhibitor, on inducible nitric oxide production in vascular smooth muscle cell. Cultured rat aortic smooth muscle cells (RASMCs) were used to elucidate the effects of R59949 on basal and interleukin-1β (IL-1β)-induced NO production. The effects of R59949 on protein and mRNA expression of induced nitric oxide synthase (iNOS) and on transplasmalemmal L-arginine uptake were also evaluated using RASMCs. Treatment of RASMCs with R59949 (10 μM) inhibited IL-1β (10 ng/ml)-induced NO production but not basal NO production. Neither protein nor mRNA expression level of iNOS after stimulation with IL-1β was significantly affected by R59949. Estimated enzymatic activities of iNOS in RASMCs were comparable in the absence and presence of R59949. Stimulation of RASMCs with IL-1β caused a marked increase in transplasmalemmal L-arginine uptake into RASMCs. L-Arginine uptake in the presence of IL-1β was markedly inhibited by R59949, while basal L-arginine uptake was not significantly affected by R59949. Both IL-1β-induced NO production and L-arginine uptake were abolished in the presence of cycloheximide (1 μM). The results indicate that R59949 inhibits inducible NO production through decreasing transplasmalemmal L-arginine uptake. DGK is suggested to be involved in cytokine-stimulated L-arginine transport and regulate its intracellular concentration in vascular smooth muscle cell.

  10. Arginine, soy isoflavone and hydroxypropylmethylcellulose have protective effects against obesity in broiler breeder hens fed on high-energy diets.

    Science.gov (United States)

    Khalaji, S; Zaghari, M; Ganjkhanloo, M; Ghaziani, F

    2013-01-01

    1. The present study was undertaken to determine the effects of arginine, soy isoflavone (ISF) and hydroxypropylmethylcellulose (HPMC) on obesity in broiler breeder hens. 2. A total of 320 Cobb 500 hens, 45 weeks of age, were assigned to 64 floor pens. The experiment was conducted as a completely randomised design in a factorial arrangement (2 × 2 × 2 × 2) with 4 replicates of 5 hens in each pen. Factors included two concentrations of HPMC (0 and 1%), two concentrations of arginine (8.4 and 12 g/kg), two concentrations of ISF (zero and three times more than that present in basal diets) and two contents of energy (11.7 and 14.6 MJ/kg). Performance criteria and blood characteristics of hens were measured during the experimental period. Expression of genes involved in lipid metabolism was determined in the liver at 55 weeks of age. 3. Hens given high-energy diets showed increased BW (body weight), ovary weight and abdominal fat pad and enhanced plasma glucose, triglyceride (TG), cholesterol, haemoglobin, haematocrit and low lymphocyte percentages. The expression of malic enzyme, peroxisome proliferator-activated receptor-α (PPARα), peroxisome proliferator-activated receptor-γ (PPARγ) and inducible nitric oxide (iNOS) increased and sterol regulatory element binding protein-1c (SREBP1c) decreased with increasing energy content of diets. Arginine addition decreased TG, cholesterol and A1-c haemoglobin concentration and increased PPARα, PPARγ and iNOS expression. Inclusion of ISF and HPMC decreased BW, egg weight, plasma TG, cholesterol and increased egg production and also enhanced PPARγ and iNOS expression. Significant interactions were observed between energy concentration and ISF and HPMC on BW. 4. The results of the current study revealed that ISF, HPMC and arginine have beneficial effects on controlling the metabolism of obese broiler breeder hens and using a mix of these products minimises the harmful effects of obesity.

  11. Alterations of intestinal immune function and regulatory effects of L-arginine in experimental severe acute pancreatitis rats

    Institute of Scientific and Technical Information of China (English)

    Shi-Feng Qiao; Tian-Jing Lü; Jia-Bang Sun; Fei Li

    2005-01-01

    AIM: To discuss the changes of intestinal mucosal immune function in rats with experimental severe acute pancreatitis(SAP) and the regulatory effect of L-arginine.METHODS: Male adult Wistar rats were randomly divided into pancreatitis group, sham-operation group, and L-arginine treatment group. Animals were killed at 24, 48, and 72 h after SAP models were developed and specimens were harvested. Endotoxin concentration in portal vein was determined by limulus endotoxin analysis kit. CD3+, CD4+,CD8+ T lymphocytes in intestinal mucosal lamina propria were examined by immunohistochemistry. Secretory immunoglobulin A (SIgA) in cecum feces was examined by radioimmunoassay.RESULTS: Compared to the control group, plasma endotoxin concentration in the portal vein increased, percentage of CD3+ and CD4+ T lymphocyte subsets in the end of intestinal mucosal lamina propria reduced significantly,CD4+/CD8+ ratio decreased, and SIgA concentrations in cecum feces reduced at 24, 48, and 72 h after SAP developed. Compared to SAP group, the L-arginine treatment group had a lower level of plasma endotoxin concentration in the portal vein, a higher CD3+ and CD4+ T lymphocyte percentage in the end of intestinal mucosal lamina propria,an increased ratio of CD4+/CD8+ and a higher SIgA concentration in cecum feces.CONCLUSION: Intestinal immune suppression occurs in the early stage of SAP rats, which may be the main reason for bacterial and endotoxin translocation. L-arginine can improve the intestinal immunity and reduce bacterial and endotoxin translocation in SAP rats.

  12. Psoralen and Ultraviolet A Light Treatment Directly Affects Phosphatidylinositol 3-Kinase Signal Transduction by Altering Plasma Membrane Packing.

    Science.gov (United States)

    Van Aelst, Britt; Devloo, Rosalie; Zachée, Pierre; t'Kindt, Ruben; Sandra, Koen; Vandekerckhove, Philippe; Compernolle, Veerle; Feys, Hendrik B

    2016-11-18

    Psoralen and ultraviolet A light (PUVA) are used to kill pathogens in blood products and as a treatment of aberrant cell proliferation in dermatitis, cutaneous T-cell lymphoma, and graft-versus-host disease. DNA damage is well described, but the direct effects of PUVA on cell signal transduction are poorly understood. Because platelets are anucleate and contain archetypal signal transduction machinery, they are ideally suited to address this. Lipidomics on platelet membrane extracts showed that psoralen forms adducts with unsaturated carbon bonds of fatty acyls in all major phospholipid classes after PUVA. Such adducts increased lipid packing as measured by a blue shift of an environment-sensitive fluorescent probe in model liposomes. Furthermore, the interaction of these liposomes with lipid order-sensitive proteins like amphipathic lipid-packing sensor and α-synuclein was inhibited by PUVA. In platelets, PUVA caused poor membrane binding of Akt and Bruton's tyrosine kinase effectors following activation of the collagen glycoprotein VI and thrombin protease-activated receptor (PAR) 1. This resulted in defective Akt phosphorylation despite unaltered phosphatidylinositol 3,4,5-trisphosphate levels. Downstream integrin activation was furthermore affected similarly by PUVA following PAR1 (effective half-maximal concentration (EC50), 8.4 ± 1.1 versus 4.3 ± 1.1 μm) and glycoprotein VI (EC50, 1.61 ± 0.85 versus 0.26 ± 0.21 μg/ml) but not PAR4 (EC50, 50 ± 1 versus 58 ± 1 μm) signal transduction. Our findings were confirmed in T-cells from graft-versus-host disease patients treated with extracorporeal photopheresis, a form of systemic PUVA. In conclusion, PUVA increases the order of lipid phases by covalent modification of phospholipids, thereby inhibiting membrane recruitment of effector kinases.

  13. The effect of arginine on oral biofilm communities.

    Science.gov (United States)

    Nascimento, M M; Browngardt, C; Xiaohui, X; Klepac-Ceraj, V; Paster, B J; Burne, R A

    2014-02-01

    Alkali production by oral bacteria via the arginine deiminase system (ADS) increases the pH of oral biofilms and reduces the risk for development of carious lesions. This study tested the hypothesis that increased availability of arginine in the oral environment through an exogenous source enhances the ADS activity levels in saliva and dental plaque. Saliva and supra-gingival plaque samples were collected from 19 caries-free (CF) individuals (DMFT = 0) and 19 caries-active (CA) individuals (DMFT ≥ 2) before and after treatment, which comprised the use of a fluoride-free toothpaste containing 1.5% arginine, or a regular fluoride-containing toothpaste twice daily for 4 weeks. ADS activity was measured by quantification of ammonia produced from arginine by oral samples at baseline, after washout period, 4 weeks of treatment, and 2 weeks post-treatment. Higher ADS activity levels were observed in plaque samples from CF compared to those of CA individuals (P = 0.048) at baseline. The use of the arginine toothpaste significantly increased ADS activity in plaque of CA individuals (P = 0.026). The plaque microbial profiles of CA treated with the arginine toothpaste showed a shift in bacterial composition to a healthier community, more similar to that of CF individuals. Thus, an anti-caries effect may be expected from arginine-containing formulations due in large part to the enhancement of ADS activity levels and potential favorable modification to the composition of the oral microbiome.

  14. Potential ergogenic effects of arginine and creatine supplementation.

    Science.gov (United States)

    Paddon-Jones, Douglas; Børsheim, Elisabet; Wolfe, Robert R

    2004-10-01

    The rationale for the use of nutritional supplements to enhance exercise capacity is based on the assumption that they will confer an ergogenic effect above and beyond that afforded by regular food ingestion alone. The proposed or advertised ergogenic effect of many supplements is based on a presumptive metabolic pathway and may not necessarily translate to quantifiable changes in a variable as broadly defined as exercise performance. L-arginine is a conditionally essential amino acid that has received considerable attention due to potential effects on growth hormone secretion and nitric oxide production. In some clinical circumstances (e.g., burn injury, sepsis) in which the demand for arginine cannot be fully met by de novo synthesis and normal dietary intake, exogenous arginine has been shown to facilitate the maintenance of lean body mass and functional capacity. However, the evidence that supplemental arginine may also confer an ergogenic effect in normal healthy individuals is less compelling. In contrast to arginine, numerous studies have reported that supplementation with the arginine metabolite creatine facilitates an increase in anaerobic work capacity and muscle mass when accompanied by resistance training programs in both normal and patient populations. Whereas improvement in the rate of phosphocreatine resynthesis is largely responsible for improvements in acute work capacity, the direct effect of creatine supplementation on skeletal muscle protein synthesis is less clear. The purpose of this review is to summarize the role of arginine and its metabolite creatine in the context of a nutrition supplement for use in conjunction with an exercise stimulus in both healthy and patient populations.

  15. Glutamine, arginine, and leucine signaling in the intestine.

    Science.gov (United States)

    Marc Rhoads, J; Wu, Guoyao

    2009-05-01

    Glutamine and leucine are abundant constituents of plant and animal proteins, whereas the content of arginine in foods and physiological fluids varies greatly. Besides their role in protein synthesis, these three amino acids individually activate signaling pathway to promote protein synthesis and possibly inhibit autophagy-mediated protein degradation in intestinal epithelial cells. In addition, glutamine and arginine stimulate the mitogen-activated protein kinase and mammalian target of rapamycin (mTOR)/p70 (s6) kinase pathways, respectively, to enhance mucosal cell migration and restitution. Moreover, through the nitric oxide-dependent cGMP signaling cascade, arginine regulates multiple physiological events in the intestine that are beneficial for cell homeostasis and survival. Available evidence from both in vitro and in vivo animal studies shows that glutamine and arginine promote cell proliferation and exert differential cytoprotective effects in response to nutrient deprivation, oxidative injury, stress, and immunological challenge. Additionally, when nitric oxide is available, leucine increases the migration of intestinal cells. Therefore, through cellular signaling mechanisms, arginine, glutamine, and leucine play crucial roles in intestinal growth, integrity, and function.

  16. Arginine Metabolism in Bacterial Pathogenesis and Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Lifeng Xiong

    2016-03-01

    Full Text Available Antibacterial resistance to infectious diseases is a significant global concern for health care organizations; along with aging populations and increasing cancer rates, it represents a great burden for government healthcare systems. Therefore, the development of therapies against bacterial infection and cancer is an important strategy for healthcare research. Pathogenic bacteria and cancer have developed a broad range of sophisticated strategies to survive or propagate inside a host and cause infection or spread disease. Bacteria can employ their own metabolism pathways to obtain nutrients from the host cells in order to survive. Similarly, cancer cells can dysregulate normal human cell metabolic pathways so that they can grow and spread. One common feature of the adaption and disruption of metabolic pathways observed in bacterial and cancer cell growth is amino acid pathways; these have recently been targeted as a novel approach to manage bacterial infections and cancer therapy. In particular, arginine metabolism has been illustrated to be important not only for bacterial pathogenesis but also for cancer therapy. Therefore, greater insights into arginine metabolism of pathogenic bacteria and cancer cells would provide possible targets for controlling of bacterial infection and cancer treatment. This review will summarize the recent progress on the relationship of arginine metabolism with bacterial pathogenesis and cancer therapy, with a particular focus on arginase and arginine deiminase pathways of arginine catabolism.

  17. Arginine and citrulline supplementation in sports and exercise: ergogenic nutrients?

    Science.gov (United States)

    Sureda, Antoni; Pons, Antoni

    2012-01-01

    Dietary L-citrulline malate supplements may increase levels of nitric oxide (NO) metabolites, although this response has not been related to an improvement in athletic performance. NO plays an important role in many functions in the body regulating vasodilatation, blood flow, mitochondrial respiration and platelet function. L-Arginine is the main precursor of NO via nitric oxide synthase (NOS) activity. Additionally, L-citrulline has been indicated to be a second NO donor in the NOS-dependent pathway, since it can be converted to L-arginine. The importance of L-citrulline as an ergogenic support derives from the fact that L-citrulline is not subject to pre-systemic elimination and, consequently, could be a more efficient way to elevate extracellular levels of L-arginine by itself. L-Citrulline malate can develop beneficial effects on the elimination of NH(3) in the course of recovery from exhaustive muscular exercise and also as an effective precursor of L-arginine and creatine. Dietary supplementation with L-citrulline alone does not improve exercise performance. The ergogenic response of L-citrulline or L-arginine supplements depends on the training status of the subjects. Studies involving untrained or moderately healthy subjects showed that NO donors could improve tolerance to aerobic and anaerobic exercise. However, when highly-trained subjects were supplemented, no positive effect on performance was indicated.

  18. The determination of potential ammonification in soil by arginine method

    Directory of Open Access Journals (Sweden)

    Kresović Mirjana M.

    2002-01-01

    Full Text Available In this paper investigations were carried out on two soil types (vertisol and brown forest soil with different doses of applied N-fertilizer: diameter, N60 N90; N120 and N250. The potential ammonification in soil was obtained by arginine method. The following properties of soil were determined: pH value organic C, available NH4-N and mobile-Al. The pH value in vertisol was 3.75-4.07; mobile-Al was 0.67-4.90 mg/100g; % organic C 1.38-1.46 and the content of available nitrogen was 4.4-11.2 ppm. The amount of released NH4-N by arginine ammonification in this soil type was very low [(-0.12-0.27mg/g-1h-1]. Correlation coefficients between released NH4-N from arginine and soil pH were (-0.96*, mobile Al - (-0.99**, applied fertilizer doses - (-0.95*. In brown forest soil the amount of released NH4-N by arginine ammonification was greater than in vertisol, ranging from 3.16 to 7.11mg/g-1h-1. Correlation coefficients between soil properties and released NH4-N from arginine were not statistically significant.

  19. Oxyntomodulin increases the concentrations of insulin and glucose in plasma but does not affect ghrelin secretion in Holstein cattle under normal physiological conditions.

    Science.gov (United States)

    ThanThan, S; Zhao, H; Yannaing, S; Ishikawa, T; Kuwayama, H

    2010-10-01

    Ghrelin, the natural ligand of the growth hormone secretagogue receptor (GHS-R1a), has been shown to stimulate growth hormone (GH) secretion. Regulation of ghrelin secretion in ruminants is not well studied. We investigated the effects of oxyntomodulin (OXM) and secretin on the secretions of ghrelin, insulin, glucagon, glucose, and nonesterified fatty acids (NEFA) in pre-ruminants (5 wk old) and ruminants (10 wk old) under normal physiological (feeding) conditions. Eight male Holstein calves (pre-ruminants: 52 +/- 1 kg body weight [BW]; and ruminants: 85 +/- 1 kg BW) were injected intravenously with 30 microg of OXM/kg BW, 50 microg of secretin/kg BW, and vehicle (0.1% bovine serum albumin [BSA] in saline as a control) in random order. Blood samples were collected, and plasma hormones and metabolites were analyzed using a double-antibody radioimmunoassay system and commercially available kits, respectively. We found that OXM increased the concentrations of insulin and glucose but did not affect the concentrations of ghrelin in both pre-ruminants and ruminants and that there was no effect of secretin on the concentrations of ghrelin, insulin, and glucose in these calves. We also investigated the dose-response effects of OXM on the secretion of insulin and glucose in 8 Holstein steers (401 +/- 1 d old, 398 +/- 10 kg BW). We found that OXM increased the concentrations of insulin and glucose even at physiological plasma concentrations, with a minimum effective dose of 0.4 microg/kg for the promotion of glucose secretion and 2 microg/kg for the stimulation of insulin secretion. These findings suggest that OXM takes part in glucose metabolism in ruminants.

  20. TatE as a Regular Constituent of Bacterial Twin-arginine Protein Translocases.

    Science.gov (United States)

    Eimer, Ekaterina; Fröbel, Julia; Blümmel, Anne-Sophie; Müller, Matthias

    2015-12-01

    Twin-arginine translocation (Tat) systems mediate the transmembrane translocation of completely folded proteins that possess a conserved twin-arginine (RR) motif in their signal sequences. Many Tat systems consist of three essential membrane components named TatA, TatB, and TatC. It is not understood why some bacteria, in addition, constitutively express a functional paralog of TatA called TatE. Here we show, in live Escherichia coli cells, that, upon expression of a Tat substrate protein, fluorescently labeled TatE-GFP relocates from a rather uniform distribution in the plasma membrane into a number of discrete clusters. Clustering strictly required an intact RR signal peptide and the presence of the TatABC subunits, suggesting that TatE-GFP associates with functional Tat translocases. In support of this notion, site-specific photo cross-linking revealed interactions of TatE with TatA, TatB, and TatC. The same approach also disclosed a pronounced tendency of TatE and TatA to hetero-oligomerize. Under in vitro conditions, we found that TatE replaces TatA inefficiently. Our collective results are consistent with TatE being a regular constituent of the Tat translocase in E. coli.

  1. Cell surface binding and uptake of arginine- and lysine-rich penetratin peptides in absence and presence of proteoglycans

    KAUST Repository

    Åmand, Helene L.

    2012-11-01

    Cell surface proteoglycans (PGs) appear to promote uptake of arginine-rich cell-penetrating peptides (CPPs), but their exact functions are unclear. To address if there is specificity in the interactions of arginines and PGs leading to improved internalization, we used flow cytometry to examine uptake in relation to cell surface binding for penetratin and two arginine/lysine substituted variants (PenArg and PenLys) in wildtype CHO-K1 and PG-deficient A745 cells. All peptides were more efficiently internalized into CHO-K1 than into A745, but their cell surface binding was independent of cell type. Thus, PGs promote internalization of cationic peptides, irrespective of the chemical nature of their positive charges. Uptake of each peptide was linearly dependent on its cell surface binding, and affinity is thus important for efficiency. However, the gradients of these linear dependencies varied significantly. Thus each peptide\\'s ability to stimulate uptake once bound to the cell surface is reliant on formation of specific uptake-promoting interactions. Heparin affinity chromatography and clustering experiments showed that penetratin and PenArg binding to sulfated sugars is stabilized by hydrophobic interactions and result in clustering, whereas PenLys only interacts through electrostatic attraction. This may have implications for the molecular mechanisms behind arginine-specific uptake stimulation as penetratin and PenArg are more efficiently internalized than PenLys upon interaction with PGs. However, PenArg is also least affected by removal of PGs. This indicates that an increased arginine content not only improve PG-dependent uptake but also that PenArg is more adaptable as it can use several portals of entry into the cell. © 2012 Elsevier B.V.

  2. Characterisation of neuroprotective efficacy of modified poly-arginine-9 (R9) peptides using a neuronal glutamic acid excitotoxicity model.

    Science.gov (United States)

    Edwards, Adam B; Anderton, Ryan S; Knuckey, Neville W; Meloni, Bruno P

    2017-02-01

    In a recent study, we highlighted the importance of cationic charge and arginine residues for the neuroprotective properties of poly-arginine and arginine-rich peptides. In this study, using cortical neuronal cultures and an in vitro glutamic acid excitotoxicity model, we examined the neuroprotective efficacy of different modifications to the poly-arginine-9 peptide (R9). We compared an unmodified R9 peptide with R9 peptides containing the following modifications: (i) C-terminal amidation (R9-NH2); (ii) N-terminal acetylation (Ac-R9); (iii) C-terminal amidation with N-terminal acetylation (Ac-R9-NH2); and (iv) C-terminal amidation with D-amino acids (R9D-NH2). The three C-terminal amidated peptides (R9-NH2, Ac-R9-NH2, and R9D-NH2) displayed neuroprotective effects greater than the unmodified R9 peptide, while the N-terminal acetylated peptide (Ac-R9) had reduced efficacy. Using the R9-NH2 peptide, neuroprotection could be induced with a 10 min peptide pre-treatment, 1-6 h before glutamic acid insult, or when added to neuronal cultures up to 45 min post-insult. In addition, all peptides were capable of reducing glutamic acid-mediated neuronal intracellular calcium influx, in a manner that reflected their neuroprotective efficacy. This study further highlights the neuroprotective properties of poly-arginine peptides and provides insight into peptide modifications that affect efficacy.

  3. Redox function of tetrahydrobiopterin and effect of L-arginine on oxygen binding in endothelial nitric oxide synthase.

    Science.gov (United States)

    Berka, Vladimir; Yeh, Hui-Chun; Gao, De; Kiran, Farheen; Tsai, Ah-Lim

    2004-10-19

    Tetrahydrobiopterin (BH(4)), not dihydrobiopterin or biopterin, is a critical element required for NO formation by nitric oxide synthase (NOS). To elucidate how BH(4) affects eNOS activity, we have investigated BH(4) redox functions in the endothelial NOS (eNOS). Redox-state changes of BH(4) in eNOS were examined by chemical quench/HPLC analysis during the autoinactivation of eNOS using oxyhemoglobin oxidation assay for NO formation at room temperature. Loss of NO formation activity linearly correlated with BH(4) oxidation, and was recovered by overnight incubation with fresh BH(4). Thus, thiol reagents commonly added to NOS enzyme preparations, such as dithiothreitol and beta-mercaptoethanol, probably preserve enzyme activity by preventing BH(4) oxidation. It has been shown that conversion of L-arginine to N-hydroxy-L-arginine in the first step of NOS catalysis requires two reducing equivalents. The first electron that reduces ferric to the ferrous heme is derived from flavin oxidation. The issue of whether BH(4) supplies the second reducing equivalent in the monooxygenation of eNOS was investigated by rapid-scan stopped-flow and rapid-freeze-quench EPR kinetic measurements. In the presence of L-arginine, oxygen binding kinetics to ferrous eNOS or to the ferrous eNOS oxygenase domain (eNOS(ox)) followed a sequential mechanism: Fe(II) Fe(II)O(2) --> Fe(III) + O(2)(-). Without L-arginine, little accumulation of the Fe(II)O(2) intermediate occurred and essentially a direct optical transition from the Fe(II) form to the Fe(III) form was observed. Stabilization of the Fe(II)O(2) intermediate by L-arginine has been established convincingly. On the other hand, BH(4) did not have significant effects on the oxygen binding and decay of the oxyferrous intermediate of the eNOS or eNOS oxygenase domain. Rapid-freeze-quench EPR kinetic measurements in the presence of L-arginine showed a direct correlation between BH(4) radical formation and decay of the Fe(II)O(2) intermediate

  4. Mitochondria: role of citrulline and arginine supplementation in MELAS syndrome.

    Science.gov (United States)

    El-Hattab, Ayman W; Emrick, Lisa T; Chanprasert, Sirisak; Craigen, William J; Scaglia, Fernando

    2014-03-01

    Mitochondria are found in all nucleated human cells and generate most of the cellular energy. Mitochondrial disorders result from dysfunctional mitochondria that are unable to generate sufficient ATP to meet the energy needs of various organs. Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is a frequent maternally inherited mitochondrial disorder. There is growing evidence that nitric oxide (NO) deficiency occurs in MELAS syndrome and results in impaired blood perfusion that contributes significantly to several complications including stroke-like episodes, myopathy, and lactic acidosis. Both arginine and citrulline act as NO precursors and their administration results in increased NO production and hence can potentially have therapeutic utility in MELAS syndrome. Citrulline raises NO production to a greater extent than arginine, therefore, citrulline may have a better therapeutic effect. Controlled studies assessing the effects of arginine or citrulline supplementation on different clinical aspects of MELAS syndrome are needed.

  5. Lotus hairy roots expressing inducible arginine decarboxylase activity.

    Science.gov (United States)

    Chiesa, María A; Ruiz, Oscar A; Sánchez, Diego H

    2004-05-01

    Biotechnological uses of plant cell-tissue culture usually rely on constitutive transgene expression. However, such expression of transgenes may not always be desirable. In those cases, the use of an inducible promoter could be an alternative approach. To test this hypothesis, we developed two binary vectors harboring a stress-inducible promoter from Arabidopsis thaliana, driving the beta-glucuronidase reporter gene and the oat arginine decarboxylase. Transgenic hairy roots of Lotus corniculatus were obtained with osmotic- and cold-inducible beta-glucuronidase and arginine decarboxylase activities. The increase in the activity of the latter was accompanied by a significant rise in total free polyamines level. Through an organogenesis process, we obtained L. corniculatus transgenic plants avoiding deleterious phenotypes frequently associated with the constitutive over-expression of arginine decarboxylation and putrescine accumulation.

  6. Renal cell carcinoma does not express argininosuccinate synthetase and is highly sensitive to arginine deprivation via arginine deiminase.

    Science.gov (United States)

    Yoon, Cheol-Yong; Shim, Young-Jun; Kim, Eun-Ho; Lee, Ju-Han; Won, Nam-Hee; Kim, Jeong-Hun; Park, In-Sun; Yoon, Duck-Ki; Min, Bon-Hong

    2007-02-15

    Recently, pegylated arginine deiminase (ADI; EC 3.5.3.6) has been used to treat the patients with hepatocellular carcinoma or melanoma, in which the level of argininosuccinate synthetase (ASS) activity is low or undetectable. The efficacy of its antitumor activity largely depends on the level of intracellular ASS, which enables tumor cells to recycle citrulline to arginine. Thus, we examined the expression levels of ASS in various cancer cells and found that it is low in renal cell carcinoma (RCC) cells, rendering the cells highly sensitive to arginine deprivation by ADI treatment. Immunohistochemical analysis revealed that in biopsy specimens from RCC patients (n = 98), the expression of ASS is highly demonstrated in the epithelium of normal proximal tubule but not seen in tumor cells. Furthermore, RCC cells treated with ADI showed remarkable growth retardation in a dose dependent manner. ADI also exerted in vivo antiproliferative effect on the allografted renal cell carcinoma (RENCA) tumor cells and prolonged the survival of tumor-bearing mice. Histological examination of the tumors revealed that tumor angiogenesis and vascular endothelial growth factor (VEGF) expression were significantly diminished by ADI administration. Therefore, these findings suggest that arginine deprivation by ADI could provide a beneficial strategy for the treatment of RCC in ways of inhibitions of arginine availability and neovascularization.

  7. A clinical evaluation to determine the safety, pharmacokinetics, and pharmacodynamics of an inositol-stabilized arginine silicate dietary supplement in healthy adult males

    Directory of Open Access Journals (Sweden)

    Kalman DS

    2015-10-01

    Full Text Available Douglas S Kalman, Samantha Feldman, Adam Samson, Diane R Krieger Miami Research Associates, Miami, FL, USA Purpose: The purpose of this study was to characterize the pharmacokinetics (PKs and pharmacodynamics (PDs of an oral inositol-stabilized arginine silicate dietary supplement. Subjects and methods: Ten healthy males, 26.7±5.4 years, took three 500 mg arginine silicate capsules (active product for 14 days. The subjects attended test visits on Days 1 and 14. Fasting blood and saliva collections were performed predose and at 0.5 hours, 1 hour, 1.5 hours, 2 hours, 3 hours, 4 hours, 5 hours, and 6 hours postdose for plasma arginine, serum silicon, and salivary nitric oxide (NO + nitrite. Results: Day 1 PK parameters (adjusted for body weight for arginine were peak serum concentration (CMax 30.06±7.80 µg/mL, time it takes to reach peak serum concentration (tMax 1.13±0.52 hours, and time required to reach half its original concentration (t1/2 15.93±9.55 hours and for silicon were CMax 2.99±0.63 µg/mL, tMax 2.44±2.05 hours, and t1/2 34.56±16.56 hours. After Day 1 dose, arginine levels increased at 0.5 hours, 1 hour, 1.5 hours, 2 hours, 3 hours, and 5 hours (P<0.01 and silicon levels increased at 1 hour and 1.5 hours (P<0.05. After Day 14 dose, arginine levels increased at 0.5 hours, 1 hour, and 1.5 hours (P<0.05 and silicon levels increased at 1 hour, 1.5 hours, 2 hours, and 3 hours (P<0.01. After 14 days of use, baseline arginine trended toward being higher than baseline Day 1 (P=0.0645, and 4-hour postdose plasma arginine was significantly higher (P=0.0488 at Day 14 than Day 1. Although not a significant difference, NO, as measured as salivary nitrate, increased in four subjects and stayed the same in six subjects at 0.5 hours after the first dose (P=0.125. After 14 days of use, baseline NO levels increased in six subjects and stayed the same in four subjects; this shift was significant (P=0.031. Conclusion: The arginine silicate dietary

  8. Peptidomimetics as protein arginine deiminase 4 (PAD4) inhibitors.

    Science.gov (United States)

    Trabocchi, Andrea; Pala, Nicolino; Krimmelbein, Ilga; Menchi, Gloria; Guarna, Antonio; Sechi, Mario; Dreker, Tobias; Scozzafava, Andrea; Supuran, Claudiu T; Carta, Fabrizio

    2015-06-01

    The protein arginine deiminase 4 (PAD4) is a calcium-dependent enzyme, which catalyses the irreversible conversion of peptidyl-arginines into peptidyl-citrullines and plays an important role in several diseases such as in the rheumatoid arthritis, multiple sclerosis, Alzheimer's disease, Creutzfeldt-Jacob's disease and cancer. In this study, we report the inhibition profiles and computational docking toward the PAD4 enzyme of a series of 1,2,3-triazole peptidomimetic-based derivatives incorporating the β-phenylalanine and guanidine scaffolds. Several effective, low micromolar PAD4 inhibitors are reported in this study.

  9. Dengue fever activates the L-arginine-nitric oxide pathway: an explanation for reduced aggregation of human platelets.

    Science.gov (United States)

    Mendes-Ribeiro, Antonio C; Moss, Monique B; Siqueira, Mariana As; Moraes, Thalyta L; Ellory, J Clive; Mann, Giovanni E; Brunini, Tatiana Mc

    2008-10-01

    In patients with Dengue fever, a viral inflammatory syndrome, haemorrhage is a significant pathological feature, yet the underlying mechanisms remain unclear. Nitric oxide (NO) is an important regulator of platelet function, inhibiting aggregation, recruitment and adhesion to the vascular endothelium. We have investigated whether changes in the activity of the L-arginine-NO pathway in human platelets may account for increased bleeding in patients with Dengue fever. A total of 16 patients with Dengue fever and 18 age-matched healthy volunteers participated in the study. Collagen induced platelet aggregation in a dose-dependent manner in both Dengue patients and controls, but the degree of platelet aggregation was significantly reduced in the patient group. Elevated rates of L-arginine transport in Dengue fever patients were associated with enhanced NO synthase activity and elevated plasma fibrinogen levels. The present study provides the first evidence that Dengue fever is associated with increased L-arginine transport and NO generation and reduced platelet aggregation.

  10. Role of Arginine and Omega-3 Fatty Acids in Wound Healing and Infection.

    Science.gov (United States)

    Alexander, J Wesley; Supp, Dorothy M

    2014-11-01

    Significance: Only a few decades ago, the primary focus of nutritional supplementation was to prevent deficiencies of essential nutrients. It is now recognized that, at higher than essential levels, selected nutrients can have a pharmacologic effect to prevent or treat disease. Recent Advances: Two of the most important pharmaconutrients, arginine, and the omega-3 polyunsaturated fatty acids in fish oil, have been shown to have profound effects on wound healing and infections. Critical Issues: Both arginine and fish oils have independent benefits, but the combination appears to be much more effective. This combination has been shown to affect outcomes involving wound healing and infections, as reviewed here, and can also affect incidence and outcomes in cardiovascular disease, diabetes, organ transplant rejection, and other inflammatory conditions. These possibilities have not yet progressed to widespread clinical application. Future Directions: The optimal combinations of immunonutrients, timing of administration, and the doses needed for best results need to be determined in preclinical and clinical studies. Also, the mechanisms involved in the administration of pharmaconutrients need to be established.

  11. Salt bridge stabilization of charged zwitterionic arginine aggregates in the gas phase.

    Science.gov (United States)

    Julian, R R; Hodyss, R; Beauchamp, J L

    2001-04-18

    The discovery of several new unusually stable aggregates of arginine that are intermolecularly bound by salt bridges is reported. Quadrupole ion-trap mass spectrometry provides evidence for the stability of arginine in the zwitterionic state, where the protonated guanidinium group of one arginine interacts strongly with the carboxylate of another to form stable noncovalent complexes, coordinated to either a cation or anion. Clusters of arginine with itself, sodium, potassium, lithium, magnesium, chloride, fluoride, bromide, iodide, and nitrate are observed. DFT calculations at the B3LYP/6-31G level are used to assess the structures and energetics of particularly prominent clusters. An examination of mixtures of D-arginine with isotopically labeled L-arginine indicates that the stability of these clusters does not depend on arginine enantiomeric purity. The cyclic trimers of arginine, capped with either Cl(-) or NO(3)(-), possess exceptional stability.

  12. Evaluation the effects of L-arginine supplementation on exercise performance, body composition and serum sodium and potassium in healthy male athletes

    Directory of Open Access Journals (Sweden)

    Jahanger Karimian

    2016-01-01

    Full Text Available Background: L- Arginine is a semi-essential amino acid that can affect athletic performance. Thus the purpose of this study was to evaluate the effect of L- arginine supplementation on athletic performance, body composition and serum sodium and potassium levels in male athletes. Materials and Methods: This study was a randomized double-blind controlled clinical trial. Participants, 56 male athletes with an average age of 20.85±4.29 years were selected in Isfahan University of Medical Science clubs in the winter of 2014. Athletes received l- arginine supplementation with a dose of 2 g daily for 45 days in the intervention group and the same amount of placebo (maltodextrin in the control group received. At the beginning and end of the study, the level of athletic performance, body composition and serum sodium and potassium levels were measured and data were analysis with using SPSS software version 19. Results: At the end of the study athletic performance in the group receiving supplements of L - arginine significantly improved compared to the control group (P=0.035. However, no significant changes in body composition and serum sodium and potassium levels were observed (P>0.05. Conclusion: Supplementation of L - arginine can improve athletic performance in semi-professional athletes.

  13. Role of amino acid insertions on intermolecular forces between arginine peptide condensed DNA helices: implications for protamine-DNA packaging in sperm.

    Science.gov (United States)

    DeRouchey, Jason E; Rau, Donald C

    2011-12-09

    In spermatogenesis, chromatin histones are replaced by arginine-rich protamines to densely compact DNA in sperm heads. Tight packaging is considered necessary to protect the DNA from damage. To better understand the nature of the forces condensing protamine-DNA assemblies and their dependence on amino acid content, the effect of neutral and negatively charged amino acids on DNA-DNA intermolecular forces was studied using model peptides containing six arginines. We have previously observed that the neutral amino acids in salmon protamine decrease the net attraction between protamine-DNA helices compared with the equivalent homo-arginine peptide. Using osmotic stress coupled with x-ray scattering, we have investigated the component attractive and repulsive forces that determine the net attraction and equilibrium interhelical distance as a function of the chemistry, position, and number of the amino acid inserted. Neutral amino acids inserted into hexa-arginine increase the short range repulsion while only slightly affecting longer range attraction. The amino acid content alone of salmon protamine is enough to rationalize the forces that package DNA in sperm heads. Inserting a negatively charged amino acid into hexa-arginine dramatically weakens the net attraction. Both of these observations have biological implications for protamine-DNA packaging in sperm heads.

  14. Contents of corticotropin-releasing hormone and arginine vasopressin immunoreativity in the spleen and thymus during a chronic inflammatory stress

    DEFF Research Database (Denmark)

    Chowdrey, H.S.; Lightman, S.L.; Harbuz, M.S.;

    1994-01-01

    Corticotropin-releasing hormone, spleen, thymus, immune system, stress, arthritis, arginine vasopressin......Corticotropin-releasing hormone, spleen, thymus, immune system, stress, arthritis, arginine vasopressin...

  15. Differential effects of arginine methylation on diastolic dysfunction and disease progression in patients with chronic systolic heart failure

    Science.gov (United States)

    Wilson Tang, Wai Hong; Tong, Wilson; Shrestha, Kevin; Wang, Zeneng; Levison, Bruce S.; Delfraino, Brian; Hu, Bo; Troughton, Richard W.; Klein, Allan L.; Hazen, Stanley L.

    2008-01-01

    Aims To investigate the association of arginine methylation with myocardial function and prognosis in chronic systolic heart failure patients. Methods and results Asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA), as well as N-mono-methylarginine (MMA) and methyl-lysine, were simultaneously measured by tandem mass spectrometry in 132 patients with chronic systolic heart failure with echocardiographic evaluation and follow-up. Increasing ADMA and SDMA levels were associated with elevated natriuretic peptide levels (both P < 0.001), and increasing SDMA levels were associated with worsening renal function (P < 0.001). Higher plasma levels of methylated arginine metabolites (but not methyl-lysine) were associated with the presence of left ventricular (LV) diastolic dysfunction (E/septal E′, Spearman's r = 0.31–0.36, P < 0.001). Patients taking beta-blockers had lower ADMA levels than those not taking beta-blockers [0.42 (0.33, 0.50) vs. 0.51 (0.40, 0.58), P < 0.001]. Only increasing ADMA levels were associated with advanced right ventricular (RV) systolic dysfunction. Elevated ADMA levels remained a consistent independent predictor of adverse clinical events (hazard ratio = 1.64, 95% CI: 1.20–2.22, P = 0.002). Conclusion In chronic systolic heart failure, accumulation of methylated arginine metabolites is associated with the presence of LV diastolic dysfunction. Among the methylated derivatives of arginine, ADMA provides the strongest independent prediction of disease progression and adverse long-term outcomes. PMID:18687662

  16. Intestinal trophic effect of enteral arginine is independent of blood flow in neonatal piglets

    Science.gov (United States)

    Arginine is an indispensable amino acid in neonates. Arginine is synthesized by gut epithelial cells and may have a protective role in preventing necrotizing enterocolitis. We hypothesized our method included that enteral arginine is a stimulus for intestinal blood flow and subsequent mucosal growth...

  17. Plasma fatty acid ratios affect blood gene expression profiles--a cross-sectional study of the Norwegian Women and Cancer Post-Genome Cohort.

    Science.gov (United States)

    Olsen, Karina Standahl; Fenton, Christopher; Frøyland, Livar; Waaseth, Marit; Paulssen, Ruth H; Lund, Eiliv

    2013-01-01

    High blood concentrations of n-6 fatty acids (FAs) relative to n-3 FAs may lead to a "physiological switch" towards permanent low-grade inflammation, potentially influencing the onset of cardiovascular and inflammatory diseases, as well as cancer. To explore the potential effects of FA ratios prior to disease onset, we measured blood gene expression profiles and plasma FA ratios (linoleic acid/alpha-linolenic acid, LA/ALA; arachidonic acid/eicosapentaenoic acid, AA/EPA; and total n-6/n-3) in a cross-section of middle-aged Norwegian women (n = 227). After arranging samples from the highest values to the lowest for all three FA ratios (LA/ALA, AA/EPA and total n-6/n-3), the highest and lowest deciles of samples were compared. Differences in gene expression profiles were assessed by single-gene and pathway-level analyses. The LA/ALA ratio had the largest impact on gene expression profiles, with 135 differentially expressed genes, followed by the total n-6/n-3 ratio (125 genes) and the AA/EPA ratio (72 genes). All FA ratios were associated with genes related to immune processes, with a tendency for increased pro-inflammatory signaling in the highest FA ratio deciles. Lipid metabolism related to peroxisome proliferator-activated receptor γ (PPARγ) signaling was modified, with possible implications for foam cell formation and development of cardiovascular diseases. We identified higher expression levels of several autophagy marker genes, mainly in the lowest LA/ALA decile. This finding may point to the regulation of autophagy as a novel aspect of FA biology which warrants further study. Lastly, all FA ratios were associated with gene sets that included targets of specific microRNAs, and gene sets containing common promoter motifs that did not match any known transcription factors. We conclude that plasma FA ratios are associated with differences in blood gene expression profiles in this free-living population, and that affected genes and pathways may influence the

  18. Plasma fatty acid ratios affect blood gene expression profiles--a cross-sectional study of the Norwegian Women and Cancer Post-Genome Cohort.

    Directory of Open Access Journals (Sweden)

    Karina Standahl Olsen

    Full Text Available High blood concentrations of n-6 fatty acids (FAs relative to n-3 FAs may lead to a "physiological switch" towards permanent low-grade inflammation, potentially influencing the onset of cardiovascular and inflammatory diseases, as well as cancer. To explore the potential effects of FA ratios prior to disease onset, we measured blood gene expression profiles and plasma FA ratios (linoleic acid/alpha-linolenic acid, LA/ALA; arachidonic acid/eicosapentaenoic acid, AA/EPA; and total n-6/n-3 in a cross-section of middle-aged Norwegian women (n = 227. After arranging samples from the highest values to the lowest for all three FA ratios (LA/ALA, AA/EPA and total n-6/n-3, the highest and lowest deciles of samples were compared. Differences in gene expression profiles were assessed by single-gene and pathway-level analyses. The LA/ALA ratio had the largest impact on gene expression profiles, with 135 differentially expressed genes, followed by the total n-6/n-3 ratio (125 genes and the AA/EPA ratio (72 genes. All FA ratios were associated with genes related to immune processes, with a tendency for increased pro-inflammatory signaling in the highest FA ratio deciles. Lipid metabolism related to peroxisome proliferator-activated receptor γ (PPARγ signaling was modified, with possible implications for foam cell formation and development of cardiovascular diseases. We identified higher expression levels of several autophagy marker genes, mainly in the lowest LA/ALA decile. This finding may point to the regulation of autophagy as a novel aspect of FA biology which warrants further study. Lastly, all FA ratios were associated with gene sets that included targets of specific microRNAs, and gene sets containing common promoter motifs that did not match any known transcription factors. We conclude that plasma FA ratios are associated with differences in blood gene expression profiles in this free-living population, and that affected genes and pathways may

  19. Theoretical insights into catalytic mechanism of protein arginine methyltransferase 1.

    Directory of Open Access Journals (Sweden)

    Ruihan Zhang

    Full Text Available Protein arginine methyltransferase 1 (PRMT1, the major arginine asymmetric dimethylation enzyme in mammals, is emerging as a potential drug target for cancer and cardiovascular disease. Understanding the catalytic mechanism of PRMT1 will facilitate inhibitor design. However, detailed mechanisms of the methyl transfer process and substrate deprotonation of PRMT1 remain unclear. In this study, we present a theoretical study on PRMT1 catalyzed arginine dimethylation by employing molecular dynamics (MD simulation and quantum mechanics/molecular mechanics (QM/MM calculation. Ternary complex models, composed of PRMT1, peptide substrate, and S-adenosyl-methionine (AdoMet as cofactor, were constructed and verified by 30-ns MD simulation. The snapshots selected from the MD trajectory were applied for the QM/MM calculation. The typical SN2-favored transition states of the first and second methyl transfers were identified from the potential energy profile. Deprotonation of substrate arginine occurs immediately after methyl transfer, and the carboxylate group of E144 acts as proton acceptor. Furthermore, natural bond orbital analysis and electrostatic potential calculation showed that E144 facilitates the charge redistribution during the reaction and reduces the energy barrier. In this study, we propose the detailed mechanism of PRMT1-catalyzed asymmetric dimethylation, which increases insight on the small-molecule effectors design, and enables further investigations into the physiological function of this family.

  20. Arginine dimethylation products in pediatric patients with chronic kidney disease

    Directory of Open Access Journals (Sweden)

    Akram E. El-Sadek

    2016-08-01

    Conclusion: Disturbed serum levels of arginine and its dimethyl derivatives may underlie development and/or progression of CKD. Elevated serum SDMA level is strongly correlated with impaired kidney functions and could be considered as a predictor for kidney functions deterioration and CKD progression.

  1. Arginine methylation regulates the p53 response

    DEFF Research Database (Denmark)

    Jansson, Martin; Durant, Stephen T; Cho, Er-Chieh;

    2008-01-01

    Activation of the p53 tumour suppressor protein in response to DNA damage leads to apoptosis or cell-cycle arrest. Enzymatic modifications are widely believed to affect and regulate p53 activity. We describe here a level of post-translational control that has an important functional consequence o...

  2. Enzymatic production of l-citrulline by hydrolysis of the guanidinium group of l-arginine with recombinant arginine deiminase.

    Science.gov (United States)

    Song, Wei; Sun, Xia; Chen, Xiulai; Liu, Dongxu; Liu, Liming

    2015-08-20

    In this study, a simple, efficient enzymatic production process for the environmentally friendly synthesis of l-citrulline from l-arginine was developed using arginine deiminase (ADI) from Lactococcus lactis. Following overexpression of L. lactis ADI in Escherichia. coli BL21 (DE3) and experimental evolution using error-prone PCR, mutant FMME106 was obtained with a Km for l-arginine of 3.5mM and a specific activity of 195.7U/mg. This mutant exhibited a maximal conversion of 92.6% and achieved a final l-citrulline concentration of 176.9g/L under optimal conditions (190g/L l-arginine, 15g/L whole-cell biocatalyst treated with 2% isopropanol for 30min, 50°C, pH 7.2, 8h). The average l-citrulline synthesis rate of 22.1g/L/h is considerably higher than that reported for other similar biocatalytic approaches, therefore the process developed in the present work has great potential for large-scale production of l-citrulline.

  3. Ca2+- and Mg2+-ATPase activities in winter wheat root plasma membranes as affected by NaCl stress during growth

    NARCIS (Netherlands)

    Mansour, MMF; van Hasselt, PR; Kuiper, PJC

    1998-01-01

    Winter wheat seedlings were grown in Hoagland nutrient solution with or without 100 mmol/L NaCl added. Plasma membranes from root cells were prepared by aqueous polymer two phase partitioning and the stimulation of plasma membrane ATPase activity by Mg2+ and Ca2+ was investigated. The enzyme was act

  4. Analysis of an Alanine/Arginine Mixture by Using TLC/FTIR Technique

    Directory of Open Access Journals (Sweden)

    Jun Liu

    2014-01-01

    Full Text Available We applied TLC/FTIR coupled with mapping technique to analyze an alanine/arginine mixture. Narrow band TLC plates prepared by using AgI as a stationary phase were used to separate alanine and arginine. The distribution of alanine and arginine spots was manifested by a 3D chromatogram. Alanine and arginine can be successfully separated by the narrow band TLC plate. In addition, the FTIR spectra of the separated alanine and arginine spots on the narrow band TLC plate are roughly the same as the corresponding reference IR spectra.

  5. [A sensitive and specific radioimmunoassay for arginine vasopressin and its validation].

    Science.gov (United States)

    Oki, Y; Ohgo, S; Yoshimi, T

    1984-03-20

    A sensitive and specific radioimmunoassay (RIA) for arginine vasopressin (AVP) has been developed and validated. Synthetic AVP was coupled to bovine serum albumin (BSA) with glutaraldehyde. Antisera against AVP were raised in three rabbits immunized with AVP-BSA complex. After 6 months, at the 16th injection, one of the antisera had a titer high enough to be utilizable for RIA at a final dilution of 1:400,000. The labeling of AVP with 125I Na was performed with the modified chloramine T method, and the purification of iodinated AVP was done with gel filtration chromatography on a Sephadex G-25 fine column (1 X 20 cm) with an elution buffer of 0.01 M acetic acid containing 0.1% BSA. Radioactivities from the Sephadex G-25 were eluted in three peaks. 125I-AVP, which was reactive to the antiserum, was contained in the third peak, and 125I-AVP in the fractions on the down slope of the peak was used for the radioligand in the amount of 1000 cpm. The specific activity of purified 125I-AVP was about 400 muCi/microgram. Diluted antiserum and samples, unlabeled AVP or related peptides were preincubated at 4 degrees C for 24 hr, and then 125I-AVP was added to the mixture and incubated for a further 72 hr. Separation of B and F was done with polyethyleneglycol. The minimal detection limit of AVP, which was 95% of the confidence limit of the mean value of B0, was 0.4 pg/tube. The cross-reactivities with lysine vasopressin, arginine vasotocin, DDAVP and oxytocin were 0.1%, 30%, 1% and 0%, respectively. AVP in plasma was extracted with cold acetone and petroleum ether. The recoveries of synthetic AVP from plasma which was added (2-16 pg) were more than 94%. The intra and inter-assay coefficients of variation determined by plasma of AVP concentration of about 4.8 pg/ml were 8.7% and 11.3%, respectively. The RIA detected AVP of concentration as low as 1 pg/ml following the extraction procedure. AVP immunoreactivity was detected without extraction in urine, and the lyophilized

  6. Arginine starvation in colorectal carcinoma cells: Sensing, impact on translation control and cell cycle distribution.

    Science.gov (United States)

    Vynnytska-Myronovska, Bozhena O; Kurlishchuk, Yuliya; Chen, Oleh; Bobak, Yaroslav; Dittfeld, Claudia; Hüther, Melanie; Kunz-Schughart, Leoni A; Stasyk, Oleh V

    2016-02-01

    Tumor cells rely on a continued exogenous nutrient supply in order to maintain a high proliferative activity. Although a strong dependence of some tumor types on exogenous arginine sources has been reported, the mechanisms of arginine sensing by tumor cells and the impact of changes in arginine availability on translation and cell cycle regulation are not fully understood. The results presented herein state that human colorectal carcinoma cells rapidly exhaust the internal arginine sources in the absence of exogenous arginine and repress global translation by activation of the GCN2-mediated pathway and inhibition of mTOR signaling. Tumor suppressor protein p53 activation and G1/G0 cell cycle arrest support cell survival upon prolonged arginine starvation. Cells with the mutant or deleted TP53 fail to stop cell cycle progression at defined cell cycle checkpoints which appears to be associated with reduced recovery after durable metabolic stress triggered by arginine withdrawal.

  7. Altered sodium intake affects plasma concentrations of BNP but not proBNP in healthy individuals and patients with compensated heart failure

    DEFF Research Database (Denmark)

    Damgaard, Morten; Goetze, Jens Peter; Norsk, Peter

    2007-01-01

    AIMS: Plasma B-type natriuretic peptide (BNP) and proBNP are promising markers for treatment of heart failure (HF), but the intra-individual biological variation is high. We investigated whether changes in sodium intake and posture contribute to this variation. METHODS AND RESULTS: A total of 12...... has a considerable effect on plasma BNP and therefore contributes to the intra-individual variability. We suggest dietary sodium intake to be standardized at least 3 days prior to blood sampling for the determination of plasma BNP....

  8. Obese women on a low energy rice and bean diet: effects of leucine, arginine or glycine supplementation on protein turnover

    Directory of Open Access Journals (Sweden)

    J.S. Marchini

    2001-10-01

    Full Text Available This study examined if leucine, arginine or glycine supplementation in adult obese patients (body mass index of 33 ± 4 kg/m² consuming a Brazilian low energy and protein diet (4.2 MJ/day and 0.6 g protein/kg affects protein and amino acid metabolism. After four weeks adaptation to this diet, each subject received supplements of these amino acids (equivalent to 0.2 g protein kg-1 day-1 in random order. On the seventh day of each amino acid supplementation, a single-dose 15N-glycine study was carried out. There were no significant differences in protein flux, synthesis or breakdown. The protein flux (grams of nitrogen, gN/9 h was 55 ± 24 during the nonsupplemented diet intake and 39 ± 10, 44 ± 22 and 58 ± 35 during the leucine-, glycine- and arginine-supplemented diet intake, respectively; protein synthesis (gN/9 h was 57 ± 24, 36 ± 10, 41 ± 22 and 56 ± 36, respectively; protein breakdown (gN/9 h was 51 ± 24, 34 ± 10, 32 ± 28 and 53 ± 35, respectively; kinetic balance (gN/9 h was 3.2 ± 1.8, 4.1 ± 1.7, 3.4 ± 2.9 and 3.9 ± 1.6. There was no difference in amino acid profiles due to leucine, arginine or glycine supplementation. The present results suggest that 0.6 g/kg of dietary protein is enough to maintain protein turnover in obese women consuming a reduced energy diet and that leucine, arginine or glycine supplementation does not change kinetic balance or protein synthesis.

  9. Arginine decarboxylase as the source of putrescine for tobacco alkaloids

    Science.gov (United States)

    Tiburcio, A. F.; Galston, A. W.

    1986-01-01

    The putrescine which forms a part of nicotine and other pyrrolidine alkaloids is generally assumed to arise through the action of ornithine decarboxylase (ODC). However, we have previously noted that changes in the activity of arginine decarboxylase (ADC), an alternate source of putrescine, parallel changes in tissue alkaloids, while changes in ODC activity do not. This led us to undertake experiments to permit discrimination between ADC and ODC as enzymatic sources of putrescine destined for alkaloids. Two kinds of evidence presented here support a major role for ADC in the generation of putrescine going into alkaloids: (a) A specific 'suicide inhibitor' of ADC effectively inhibits the biosynthesis of nicotine and nornicotine in tobacco callus, while the analogous inhibitor of ODC is less effective, and (b) the flow of 14C from uniformly labelled arginine into nicotine is much more efficient than that from ornithine.

  10. Metabolic and clinical response to Escherichia coli lipopolysaccharide in layer pullets of different genetic backgrounds supplied with graded dietary L-arginine.

    Science.gov (United States)

    Lieboldt, M A; Frahm, J; Halle, I; Görs, S; Schrader, L; Weigend, S; Preisinger, R; Metges, C C; Breves, G; Dänicke, S

    2016-03-01

    L-arginine (Arg) is an essential amino acid in birds that plays a decisive role in avian protein synthesis and immune response. Effects of graded dietary Arg supply on metabolic and clinical response to Escherichia coli lipopolysaccharide (LPS) were studied over 48 hours after a single intramuscular LPS injection in 18-week-old genetically diverse purebred pullets. LPS induced a genotype-specific fever response within 4 hours post injectionem. Whereas brown genotypes showed an initial hypothermia followed by longer-lasting moderate hyperthermia, white genotypes exhibited a biphasic hyperthermia without initial hypothermia. Furthermore, within 2 hours after LPS injection, sickness behavior characterized by lethargy, anorexia, intensified respiration, and ruffled feathers appeared, persisted for 3 to 5 hours and recovered 12 hours post injectionem. The varying grades of Arg did not alter the examined traits named above, whereas insufficient Arg reduced body growth and increased relative weights of liver and pancreas significantly. At 48 hours post injectionem, increased relative weights of liver and spleen were also found in LPS treated pullets, whereas LPS decreased those of pancreas, bursa, thymus, and cecal tonsils. Moreover, LPS lowered the sum of plasma amino acids and decreased plasma concentrations of Arg, citrulline, glutamate, methionine, ornithine, phenylalanine, proline, tryptophan, and tyrosine, and increased those of aspartate, glutamine, lysine, 1- and 3-methyl-histidine. Elevating concentrations of dietary Arg led to increasing plasma concentrations of Arg, citrulline, ornithine, and 3-methyl-histidine subsequently. As quantitative expression of LPS-induced anorexia, proteolysis, and the following changes in plasma amino acids, pullets showed a significant decrease of feed and nitrogen intake and catabolic metabolism characterized by negative nitrogen balance and body weight loss in the first 24 hours post injectionem. Pullets recovered from the

  11. Characterization of the arginine deiminase of Streptococcus equi subsp. zooepidemicus.

    Science.gov (United States)

    Hong, Kyongsu

    2006-09-01

    Streptococcus equi subsp. zooepidemicus is an important cause of infectious diseases in horses and rarely humans. Little is known about the virulence factors or protective antigens of S. equi subsp. zooepidemicus. In the present study, I designed original primers based on an alignment of the gene sagp(arcA) from Streptococcus pyogenes encoding streptococcal acid glycoprotein-arginine deiminase (SAGP/AD) to amplify the S. equi subsp. zooepidemicus counterpart sequence by polymerase chain reaction, and I analyzed the sagp(arcA) gene of the organism. Using chromosomal walking steps, I identified a contiguous eight-gene locus involved in SAGP/AD production. Their open reading frames were found to share significant homologies and to correspond closely in molecular mass to previously sequenced arc genes of S. pyogenes, thus they were designated ahrC.2 (arginine repressor), arcR (CRP/FNR transcription regulator), sagp(arcA) (streptococcal acid glycoprotein-arginine deiminase), putative acetyltransferase gene, arcB (ornithine carbamyl transferase), arcD (arginine-ornithine antiporter), arcT (Xaa-His peptidase), and arcC (carbamate kinase). The SAGP homologue of S. equi subsp. zooepidemicus (SzSAGP), encoded by arcA gene of the bacteria (arcA(SZ)), was successfully expressed in Escherichia coli and purified to homogeneity. When in vitro growth inhibitory activity of the recombinant SzSAGP was tested against MOLT-3 cells, it inhibited the growth of the cells during the 3 days of culture in a dose-dependent manner, accompanied by the induction of apoptotic cell death. The recombinant protein also possessed AD activity. By immunoblot analysis using both anti-SzSAGP-SfbI(H8) and anti-SfbI(H8) sera, I was able to demonstrate that the SzSAGP protein is expressed on the streptococcal surface.

  12. Arginine vasopressin and oxytocin modulate human social behavior.

    Science.gov (United States)

    Ebstein, Richard P; Israel, Salomon; Lerer, Elad; Uzefovsky, Florina; Shalev, Idan; Gritsenko, Inga; Riebold, Mathias; Salomon, Shahaf; Yirmiya, Nurit

    2009-06-01

    Increasing evidence suggests that two nonapeptides, arginine vasopressin and oxytocin, shape human social behavior in both nonclinical and clinical subjects. Evidence is discussed that in autism spectrum disorders genetic polymorphisms in the vasopressin-oxytocin pathway, notably the arginine vasopressin receptor 1a (AVPR1a), the oxytocin receptor (OXTR), neurophysin I and II, and CD38 (recently shown to be critical for social behavior by mediating oxytocin secretion) contribute to deficits in socialization skills in this group of patients. We also present first evidence that CD38 expression in lymphoblastoid cells derived from subjects diagnosed with autism is correlated with social skill phenotype inventoried by the Vineland Adaptive Behavioral Scales. Additionally, we discuss molecular genetic evidence that in nonclinical subjects both AVPR1a and OXTR genes contribute to prosocial or altruistic behavior inventoried by two experimental paradigms, the dictator game and social values orientation. The role of the AVPR1a is also analyzed in prepulse inhibition. Prepulse inhibition of the startle response to auditory stimuli is a largely autonomic response that resonates with social cognition in both animal models and humans. First results are presented showing that intranasal administration of arginine vasopressin increases salivary cortisol levels in the Trier Social Stress test. To summarize, accumulating studies employing a broad array of cutting-edge tools in psychology, neuroeconomics, molecular genetics, pharmacology, electrophysiology, and brain imaging are beginning to elaborate the intriguing role of oxytocin and arginine vasopressin in human social behavior. We expect that future studies will continue this advance and deepen our understanding of these complex events.

  13. Peptidyl arginine deiminase-4 activation exacerbates kidney ischemia-reperfusion injury.

    Science.gov (United States)

    Ham, Ahrom; Rabadi, May; Kim, Mihwa; Brown, Kevin M; Ma, Zhe; D'Agati, Vivette; Lee, H Thomas

    2014-11-01

    Peptidyl arginine deiminase (PAD)4 is a nuclear enzyme that catalyzes the posttranslational conversion of arginine residues to citrulline. Posttranslational protein citrullination has been implicated in several inflammatory autoimmune diseases, including rheumatoid arthritis, colitis, and multiple sclerosis. Here, we tested the hypothesis that PAD4 contributes to ischemic acute kidney injury (AKI) by exacerbating the inflammatory response after renal ischemia-reperfusion (I/R). Renal I/R injury in mice increased PAD4 activity as well as PAD4 expression in the mouse kidney. After 30 min of renal I/R, vehicle-treated mice developed severe AKI with large increases in plasma creatinine. In contrast, mice pretreated with PAD4 inhibitors (2-chloroamidine or streptonigrin) had significantly reduced renal I/R injury. Further supporting a critical role for PAD4 in generating ischemic AKI, mice pretreated with recombinant human PAD4 (rPAD4) protein and subjected to mild (20 min) renal I/R developed exacerbated ischemic AKI. Consistent with the hypothesis that PAD4 regulates renal tubular inflammation after I/R, mice treated with a PAD4 inhibitor had significantly reduced renal neutrophil chemotactic cytokine (macrophage inflammatory protein-2 and keratinocyte-derived cytokine) expression and had decreased neutrophil infiltration. Furthermore, mice treated with rPAD4 had significantly increased renal tubular macrophage inflammatory protein-2 and keratinocyte-derived cytokine expression as well as increased neutrophil infiltration and necrosis. Finally, cultured mouse kidney proximal tubules treated with rPAD4 had significantly increased proinflammatory chemokine expression compared with vehicle-treated cells. Taken together, our results suggest that PAD4 plays a critical role in renal I/R injury by increasing renal tubular inflammatory responses and neutrophil infiltration after renal I/R.

  14. Crystal structure of shrimp arginine kinase in binary complex with arginine-a molecular view of the phosphagen precursor binding to the enzyme.

    Science.gov (United States)

    López-Zavala, Alonso A; García-Orozco, Karina D; Carrasco-Miranda, Jesús S; Sugich-Miranda, Rocio; Velázquez-Contreras, Enrique F; Criscitiello, Michael F; Brieba, Luis G; Rudiño-Piñera, Enrique; Sotelo-Mundo, Rogerio R

    2013-12-01

    Arginine kinase (AK) is a key enzyme for energetic balance in invertebrates. Although AK is a well-studied system that provides fast energy to invertebrates using the phosphagen phospho-arginine, the structural details on the AK-arginine binary complex interaction remain unclear. Herein, we determined two crystal structures of the Pacific whiteleg shrimp (Litopenaeus vannamei) arginine kinase, one in binary complex with arginine (LvAK-Arg) and a ternary transition state analog complex (TSAC). We found that the arginine guanidinium group makes ionic contacts with Glu225, Cys271 and a network of ordered water molecules. On the zwitterionic side of the amino acid, the backbone amide nitrogens of Gly64 and Val65 coordinate the arginine carboxylate. Glu314, one of proposed acid-base catalytic residues, did not interact with arginine in the binary complex. This residue is located in the flexible loop 310-320 that covers the active site and only stabilizes in the LvAK-TSAC. This is the first binary complex crystal structure of a guanidine kinase in complex with the guanidine substrate and could give insights into the nature of the early steps of phosphagen biosynthesis.

  15. PRMT1-mediated arginine methylation controls ATXN2L localization

    Energy Technology Data Exchange (ETDEWEB)

    Kaehler, Christian; Guenther, Anika; Uhlich, Anja; Krobitsch, Sylvia, E-mail: krobitsc@molgen.mpg.de

    2015-05-15

    Arginine methylation is a posttranslational modification that is of importance in diverse cellular processes. Recent proteomic mass spectrometry studies reported arginine methylation of ataxin-2-like (ATXN2L), the paralog of ataxin-2, a protein that is implicated in the neurodegenerative disorder spinocerebellar ataxia type 2. Here, we investigated the methylation state of ATXN2L and its significance for ATXN2L localization. We first confirmed that ATXN2L is asymmetrically dimethylated in vivo, and observed that the nuclear localization of ATXN2L is altered under methylation inhibition. We further discovered that ATXN2L associates with the protein arginine-N-methyltransferase 1 (PRMT1). Finally, we showed that neither mutation of the arginine–glycine-rich motifs of ATXN2L nor methylation inhibition alters ATXN2L localization to stress granules, suggesting that methylation of ATXN2L is probably not mandatory. - Highlights: • ATXN2L is asymmetrically dimethylated in vivo. • ATXN2L interacts with PRMT1 under normal and stress conditions. • PRMT1-mediated dimethylation of ATXN2L controls its nuclear localization. • ATXN2L localization to stress granules appears independent of its methylation state.

  16. [Mechanism of arginine deiminase activity by site-directed mutagenesis].

    Science.gov (United States)

    Li, Lifeng; Ni, Ye; Sun, Zhihao

    2012-04-01

    Arginine deiminase (ADI) has been studied as a potential anti-cancer agent for inhibiting arginine-auxotrophic tumors (such as melanomas and hepatocellular carcinomas) in phase III clinical trials. In this work, we studied the molecular mechanism of arginine deiminase activity by site-directed mutagenesis. Three mutation sites, A128, H404 and 1410, were introduced into wild-type ADI gene by QuikChange site-directed mutagenesis method, and four ADI mutants M1 (A128T), M2 (H404R), M3 (I410L), and M4 (A128T, H404R) were obtained. The ADI mutants were individually expressed in Escherichia coli BL21 (DE3), and the enzymatic properties of the purified mutant proteins were determined. The results show that both A128T and H404R had enhanced optimum pH, higher activity and stability of ADI under physiological condition (pH 7.4), as well as reduced K(m) value. This study provides an insight into the molecular mechanism of the ADI activity, and also the experimental evidence for the rational protein evolution in the future.

  17. Effects of L-Arginine on Physicochemical and Sensory Characteristics of Pork Sausage

    Directory of Open Access Journals (Sweden)

    Cunliu Zhou

    2014-05-01

    Full Text Available The objective of this study is to investigate the effects of L-arginine on physicochemical and sensory properties of pork sausage. CL decreased while pH increased with L-arginine levels (p<0.05. WHC increased at 0.8% L-arginine, but decreased at 0.2% L-arginine, compared with the control. L* decreased while a* increased at 0.4-0.8% L-arginine, compared with the control. Hardness, springiness and chewiness increased at 0.2-0.8% L-arginine (p<0.05, compared with the control. SEM illustrated that the addition of 0.6% L-arginine induced myofibrillar proteins to form a more smooth, compact and uniform gel matrix. DSC disclosed that the addition of 0.6% L-arginine increased the two thermal transition temperatures (Tp. The sample containing 0.6% L-arginine had higher sensory color, flavor, mouthfeel and slice traits than the control. Therefore, L-arginine showed a potential for improvement of yield, texture and sensory qualities of pork sausage.

  18. International movement of plasma and plasma contracting.

    Science.gov (United States)

    Farrugia, A

    2005-01-01

    Plasma fractionation is a global business characterised by technological stability, increasing consolidation and a high level of regulatory oversight. All these factors affect the ease with which plasma derivatives can be accessed in the world market. As domestic regulatory measures in the first world blood economies become increasingly resonant to the precautionary approach, the availability of plasma as a raw material, as well as its cost, become an increasingly significant component in the cost of the final product. This decreases the amount of plasma which fractionators are able to allocate for export activities. Also, regulatory standards in the country of manufacture will reflect priorities in that country which may not be similar to those in export markets, but which will affect entry to those markets. While many countries possess a fractionation capacity, the limiting factor in supply worldwide is the amount of plasma available, and nationalistic drivers for each country to have its own plant are inimical to product safety and supply. Rather, the provision of sufficient supplies of domestic plasma should be the focus of resource allocation, with a choice of an appropriate contract fractionator. However, contract fractionation too may be affected by domestic considerations unrelated to the needs of the country of plasma origin. This chapter will review the global plasma market and the influences on plasma and plasma product movement across national borders. Problems in ensuring adequate safety and supply will be identified, and some tentative approaches to the amelioration of current barriers to the provision of plasma derivatives will be outlined.

  19. Effect of pravastatin on responsiveness to N-monomethyl-L-arginine in patients with hypercholesterolaemia.

    Science.gov (United States)

    Bayerle-Eder, Michaela; Fuchsjäger-Mayrl, Gabriele; Sieder, Anna; Polska, Elzbieta; Roden, Michael; Stulnig, Thomas; Bischof, Martin G; Waldhäusl, Werner; Schmetterer, Leopold; Wolzt, Michael

    2002-01-01

    Improvement of endothelial function in hypercholesterolaemia is attributed to lipid lowering and to pleiotropic effects of statin therapy. We investigated whether responsiveness to inhibition of constitutive NO formation with N-monomethyl-L-arginine (L-NMMA) is improved after 7 and 28 days of pravastatin. Twelve female and four male subjects with mild or moderate primary hypercholesterolaemia were randomized to pravastatin (20 mg per oral (p.o.) n=8) or placebo (n=8) in a double blind parallel group design. Vascular responsiveness was studied by intravenous bolus infusions of L-NMMA (cumulative doses of 3 and 6 mg/kg). Mean arterial blood pressure (MAP) and pulse rate (PR) were measured noninvasively, pulsatile choroidal blood flow was assessed with laser interferometric measurement of fundus pulsation amplitudes (FPA) and renal plasma flow (RPF) was measured by the PAH clearance method. Pravastatin lowered plasma cholesterol levels by 16 and 24% after 7 and 28 days of treatment, respectively (P<0.01). L-NMMA caused comparable changes in MAP, PR and RPF between groups. L-NMMA reduced FPA to a similar extent in both groups before and after 7 days of treatment, but the response to L-NMMA was significantly enhanced after 28 days of pravastatin (21%; P<0.001 vs baseline) and greater than after placebo (15%; P<0.01 vs pravastatin). Pravastatin enhances responsiveness to L-NMMA in the ocular microvasculature. Improved responsiveness is associated with changes in total cholesterol levels.

  20. L-Arginine improves multiple physiological parameters in mice exposed to diet-induced metabolic disturbances

    DEFF Research Database (Denmark)

    Clemmensen, Christoffer; Madsen, Andreas Nygaard; Smajilovic, Sanela;

    2012-01-01

    L: -Arginine (L: -Arg) is a conditionally essential amino acid and a natural constituent of dietary proteins. Studies in obese rats and type 2 diabetic humans have indicated that dietary supplementation with L: -Arg can diminish gain in white adipose tissue (WAT) and improve insulin sensitivity...... on locomotor activity, substrate metabolism or expression of uncoupling proteins (UCP1 and UCP2) in adipose tissues was displayed. In conclusion, dietary L: -Arg supplementation substantially affects an array of metabolic-associated parameters including a reduction in WAT, hyperphagia, improved insulin...... groups. Glucose homeostasis experiments revealed a major effect of L: -Arg supplementation on glucose tolerance and insulin sensitivity, interestingly, independent of a parallel regulation in whole-body adiposity. Increased L: -Arg ingestion also raised energy expenditure; however, no concurrent effect...

  1. Arginine deprivation by arginine deiminase of Streptococcus pyogenes controls primary glioblastoma growth in vitro and in vivo.

    Science.gov (United States)

    Fiedler, Tomas; Strauss, Madlen; Hering, Silvio; Redanz, Ulrike; William, Doreen; Rosche, Yvonne; Classen, Carl Friedrich; Kreikemeyer, Bernd; Linnebacher, Michael; Maletzki, Claudia

    2015-01-01

    Arginine auxotrophy constitutes a weak point of several tumors, among them glioblastoma multiforme (GBM). Hence, those tumors are supposed to be sensitive for arginine-depleting substances, such as arginine deiminase (ADI). Here we elucidated the sensitivity of patient-individual GBM cell lines toward Streptococcus pyogenes-derived ADI. To improve therapy, ADI was combined with currently established and pre-clinical cytostatic drugs. Additionally, effectiveness of local ADI therapy was determined in xenopatients. Half of the GBM cell lines tested responded well toward ADI monotherapy. In those cell lines, viability decreased significantly (up to 50%). Responding cell lines were subjected to combination therapy experiments to test if any additive or even synergistic effects may be achieved. Such promising results were obtained in 2/3 cases. In cell lines HROG02, HROG05 and HROG10, ADI and Palomid 529 combinations were most effective yielding more than 70% killing after 2 rounds of treatment. Comparable boosted antitumoral effects were observed after adding chloroquine to ADI (>60% killing). Apoptosis, as well as cell cycle dysregulation were found to play a minor role. In some, but clearly not all cases, (epi-) genetic silencing of arginine synthesis pathway genes (argininosuccinate synthetase 1 and argininosuccinate lyase) explained obtained results. In vivo, ADI as well as the combination of ADI and SAHA efficiently controlled HROG05 xenograft growth, whereas adding Palomid 529 to ADI did not further increase the strong antitumoral effect of ADI. The cumulative in vitro and in vivo results proved ADI as a very promising candidate therapeutic, especially for development of adjuvant GBM combination treatments.

  2. Arginine methylation and citrullination of splicing factor proline- and glutamine-rich (SFPQ/PSF) regulates its association with mRNA.

    Science.gov (United States)

    Snijders, Ambrosius P; Hautbergue, Guillaume M; Bloom, Alex; Williamson, James C; Minshull, Thomas C; Phillips, Helen L; Mihaylov, Simeon R; Gjerde, Douglas T; Hornby, David P; Wilson, Stuart A; Hurd, Paul J; Dickman, Mark J

    2015-03-01

    Splicing factor proline- and glutamine-rich (SFPQ) also commonly known as polypyrimidine tract-binding protein-associated-splicing factor (PSF) and its binding partner non-POU domain-containing octamer-binding protein (NONO/p54nrb), are highly abundant, multifunctional nuclear proteins. However, the exact role of this complex is yet to be determined. Following purification of the endogeneous SFPQ/NONO complex, mass spectrometry analysis identified a wide range of interacting proteins, including those involved in RNA processing, RNA splicing, and transcriptional regulation, consistent with a multifunctional role for SFPQ/NONO. In addition, we have identified several sites of arginine methylation in SFPQ/PSF using mass spectrometry and found that several arginines in the N-terminal domain of SFPQ/PSF are asymmetrically dimethylated. Furthermore, we find that the protein arginine N-methyltransferase, PRMT1, catalyzes this methylation in vitro and that this is antagonized by citrullination of SFPQ. Arginine methylation and citrullination of SFPQ/PSF does not affect complex formation with NONO. However, arginine methylation was shown to increase the association with mRNA in mRNP complexes in mammalian cells. Finally we show that the biochemical properties of the endogenous complex from cell lysates are significantly influenced by the ionic strength during purification. At low ionic strength, the SFPQ/NONO complex forms large heterogeneous protein assemblies or aggregates, preventing the purification of the SFPQ/NONO complex. The ability of the SFPQ/NONO complex to form varying protein assemblies, in conjunction with the effect of post-translational modifications of SFPQ modulating mRNA binding, suggests key roles affecting mRNP dynamics within the cell.

  3. Novel Flow Cytometry Analyses of Boar Sperm Viability: Can the Addition of Whole Sperm-Rich Fraction Seminal Plasma to Frozen-Thawed Boar Sperm Affect It?

    Science.gov (United States)

    Díaz, Rommy; Boguen, Rodrigo; Martins, Simone Maria Massami Kitamura; Ravagnani, Gisele Mouro; Leal, Diego Feitosa; Oliveira, Melissa de Lima; Muro, Bruno Bracco Donatelli; Parra, Beatriz Martins; Meirelles, Flávio Vieira; Papa, Frederico Ozanan; Dell’Aqua, José Antônio; Alvarenga, Marco Antônio; Moretti, Aníbal de Sant’Anna; Sepúlveda, Néstor

    2016-01-01

    Boar semen cryopreservation remains a challenge due to the extension of cold shock damage. Thus, many alternatives have emerged to improve the quality of frozen-thawed boar sperm. Although the use of seminal plasma arising from boar sperm-rich fraction (SP-SRF) has shown good efficacy; however, the majority of actual sperm evaluation techniques include a single or dual sperm parameter analysis, which overrates the real sperm viability. Within this context, this work was performed to introduce a sperm flow cytometry fourfold stain technique for simultaneous evaluation of plasma and acrosomal membrane integrity and mitochondrial membrane potential. We then used the sperm flow cytometry fourfold stain technique to study the effect of SP-SRF on frozen-thawed boar sperm and further evaluated the effect of this treatment on sperm movement, tyrosine phosphorylation and fertility rate (FR). The sperm fourfold stain technique is accurate (R2 = 0.9356, p > 0.01) for simultaneous evaluation of plasma and acrosomal membrane integrity and mitochondrial membrane potential (IPIAH cells). Centrifugation pre-cryopreservation was not deleterious (p > 0.05) for any analyzed variables. Addition of SP-SRF after cryopreservation was able to improve total and progressive motility (p 0.05) or improve IPIAH cells (p > 0.05). FR was not (p > 0.05) statistically increased by the addition of seminal plasma, though females inseminated with frozen-thawed boar semen plus SP-SRF did perform better than those inseminated with sperm lacking seminal plasma. Thus, we conclude that sperm fourfold stain can be used to simultaneously evaluate plasma and acrosomal membrane integrity and mitochondrial membrane potential, and the addition of SP-SRF at thawed boar semen cryopreserved in absence of SP-SRF improve its total and progressive motility. PMID:27529819

  4. Proteome-wide analysis of arginine monomethylation reveals widespread occurrence in human cells

    DEFF Research Database (Denmark)

    Larsen, Sara C; Sylvestersen, Kathrine B; Mund, Andreas

    2016-01-01

    as coactivator-associated arginine methyltransferase 1 (CARM1)] or PRMT1 increased the RNA binding function of HNRNPUL1. High-content single-cell imaging additionally revealed that knocking down CARM1 promoted the nuclear accumulation of SRSF2, independent of cell cycle phase. Collectively, the presented human...... kidney 293 cells, indicating that the occurrence of this modification is comparable to phosphorylation and ubiquitylation. A site-level conservation analysis revealed that arginine methylation sites are less evolutionarily conserved compared to arginines that were not identified as modified...... to the frequency of somatic mutations at arginine methylation sites throughout the proteome, we observed that somatic mutations were common at arginine methylation sites in proteins involved in mRNA splicing. Furthermore, in HeLa and U2OS cells, we found that distinct arginine methyltransferases differentially...

  5. Inhibition of Protein Aggregation: Supramolecular Assemblies of Arginine Hold the Key

    Science.gov (United States)

    Das, Utpal; Hariprasad, Gururao; Ethayathulla, Abdul S.; Manral, Pallavi; Das, Taposh K.; Pasha, Santosh; Mann, Anita; Ganguli, Munia; Verma, Amit K.; Bhat, Rajiv; Chandrayan, Sanjeev Kumar; Ahmed, Shubbir; Sharma, Sujata; Kaur, Punit; Singh, Tej P.; Srinivasan, Alagiri

    2007-01-01

    Background Aggregation of unfolded proteins occurs mainly through the exposed hydrophobic surfaces. Any mechanism of inhibition of this aggregation should explain the prevention of these hydrophobic interactions. Though arginine is prevalently used as an aggregation suppressor, its mechanism of action is not clearly understood. We propose a mechanism based on the hydrophobic interactions of arginine. Methodology We have analyzed arginine solution for its hydrotropic effect by pyrene solubility and the presence of hydrophobic environment by 1-anilino-8-naphthalene sulfonic acid fluorescence. Mass spectroscopic analyses show that arginine forms molecular clusters in the gas phase and the cluster composition is dependent on the solution conditions. Light scattering studies indicate that arginine exists as clusters in solution. In the presence of arginine, the reverse phase chromatographic elution profile of Alzheimer's amyloid beta 1-42 (Aβ1-42) peptide is modified. Changes in the hydrodynamic volume of Aβ1-42 in the presence of arginine measured by size exclusion chromatography show that arginine binds to Aβ1-42. Arginine increases the solubility of Aβ1-42 peptide in aqueous medium. It decreases the aggregation of Aβ1-42 as observed by atomic force microscopy. Conclusions Based on our experimental results we propose that molecular clusters of arginine in aqueous solutions display a hydrophobic surface by the alignment of its three methylene groups. The hydrophobic surfaces present on the proteins interact with the hydrophobic surface presented by the arginine clusters. The masking of hydrophobic surface inhibits protein-protein aggregation. This mechanism is also responsible for the hydrotropic effect of arginine on various compounds. It is also explained why other amino acids fail to inhibit the protein aggregation. PMID:18000547

  6. Inhibition of protein aggregation: supramolecular assemblies of arginine hold the key.

    Directory of Open Access Journals (Sweden)

    Utpal Das

    Full Text Available BACKGROUND: Aggregation of unfolded proteins occurs mainly through the exposed hydrophobic surfaces. Any mechanism of inhibition of this aggregation should explain the prevention of these hydrophobic interactions. Though arginine is prevalently used as an aggregation suppressor, its mechanism of action is not clearly understood. We propose a mechanism based on the hydrophobic interactions of arginine. METHODOLOGY: We have analyzed arginine solution for its hydrotropic effect by pyrene solubility and the presence of hydrophobic environment by 1-anilino-8-naphthalene sulfonic acid fluorescence. Mass spectroscopic analyses show that arginine forms molecular clusters in the gas phase and the cluster composition is dependent on the solution conditions. Light scattering studies indicate that arginine exists as clusters in solution. In the presence of arginine, the reverse phase chromatographic elution profile of Alzheimer's amyloid beta 1-42 (Abeta(1-42 peptide is modified. Changes in the hydrodynamic volume of Abeta(1-42 in the presence of arginine measured by size exclusion chromatography show that arginine binds to Abeta(1-42. Arginine increases the solubility of Abeta(1-42 peptide in aqueous medium. It decreases the aggregation of Abeta(1-42 as observed by atomic force microscopy. CONCLUSIONS: Based on our experimental results we propose that molecular clusters of arginine in aqueous solutions display a hydrophobic surface by the alignment of its three methylene groups. The hydrophobic surfaces present on the proteins interact with the hydrophobic surface presented by the arginine clusters. The masking of hydrophobic surface inhibits protein-protein aggregation. This mechanism is also responsible for the hydrotropic effect of arginine on various compounds. It is also explained why other amino acids fail to inhibit the protein aggregation.

  7. The Role of Autophagy with Arginine Deiminase as a Novel Prostate Cancer Therapy

    Science.gov (United States)

    2009-07-01

    Summary 3. DATES COVERED (From - To) 1 July 2008 – 30 June 2009 4. TITLE AND SUBTITLE The Role of Autophagy with Arginine Deiminase as a Novel... arginine deiminase ; autophagy; caspase-independent apoptosis 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES...deprivation as an anti-cancer therapy has historically been met with limited success. The development of pegylated arginine deiminase (ADI-PEG20

  8. Arginine Consumption by the Intestinal Parasite Giardia intestinalis Reduces Proliferation of Intestinal Epithelial Cells

    OpenAIRE

    Britta Stadelmann; Merino, María C.; Lo Persson; Staffan G Svärd

    2012-01-01

    In the field of infectious diseases the multifaceted amino acid arginine has reached special attention as substrate for the host´s production of the antimicrobial agent nitric oxide (NO). A variety of infectious organisms interfere with this part of the host immune response by reducing the availability of arginine. This prompted us to further investigate additional roles of arginine during pathogen infections. As a model we used the intestinal parasite Giardia intestinalis that actively consu...

  9. The arginine-ornithine antiporter ArcD contributes to biological fitness of Streptococcus suis.

    Science.gov (United States)

    Fulde, Marcus; Willenborg, Joerg; Huber, Claudia; Hitzmann, Angela; Willms, Daniela; Seitz, Maren; Eisenreich, Wolfgang; Valentin-Weigand, Peter; Goethe, Ralph

    2014-01-01

    The arginine-ornithine antiporter (ArcD) is part of the Arginine Deiminase System (ADS), a catabolic, energy-providing pathway found in a variety of different bacterial species, including the porcine zoonotic pathogen Streptococcus suis. The ADS has recently been shown to play a role in the pathogenicity of S. suis, in particular in its survival in host cells. The contribution of arginine and arginine transport mediated by ArcD, however, has yet to be clarified. In the present study, we showed by experiments using [U-(13)C6]arginine as a tracer molecule that S. suis is auxotrophic for arginine and that bacterial growth depends on the uptake of extracellular arginine. To further study the role of ArcD in arginine metabolism, we generated an arcD-specific mutant strain and characterized its growth compared to the wild-type (WT) strain, a virulent serotype 2 strain. The mutant strain showed a markedly reduced growth in chemically defined media supplemented with arginine when compared to the WT strain, suggesting that ArcD promotes arginine uptake. To further evaluate the in vivo relevance of ArcD, we studied the intracellular bacterial survival of the arcD mutant strain in an epithelial cell culture infection model. The mutant strain was substantially attenuated, and its reduced intracellular survival rate correlated with a lower ability to neutralize the acidified environment. Based on these results, we propose that ArcD, by its function as an arginine-ornithine antiporter, is important for supplying arginine as substrate of the ADS and, thereby, contributes to biological fitness and virulence of S. suis in the host.

  10. The arginine-ornithine antiporter ArcD contributes to biological fitness of Streptococcus suis

    Directory of Open Access Journals (Sweden)

    Marcus eFulde

    2014-08-01

    Full Text Available The arginine-ornithine antiporter (ArcD is part of the Arginine Deiminase System (ADS, a catabolic, energy-providing pathway found in a variety of different bacterial species, including the porcine zoonotic pathogen Streptococcus suis. The ADS has recently been shown to play a role in the pathogenicity of S. suis, in particular in its survival in host cells. The contribution of arginine and arginine transport mediated by ArcD, however, has yet to be clarified. In the present study, we showed by experiments using [U-13C6]arginine as a tracer molecule that S. suis is auxotrophic for arginine and that bacterial growth depends on the uptake of extracellular arginine. To further study the role of ArcD in arginine metabolism, we generated an arcD-specific mutant strain and characterized its growth compared to the wild-type (WT strain, a virulent serotype 2 strain. The mutant strain showed a markedly reduced growth rate in chemically defined media supplemented with arginine when compared to the WT strain, indicating that ArcD promotes arginine uptake. To further evaluate the in vivo relevance of ArcD, we studied the intracellular bacterial survival of the arcD mutant strain in an epithelial cell culture infection model. The mutant strain was substantially attenuated, and its reduced intracellular survival rate correlated with a lower ability to neutralize the acidified environment. Based on these results, we propose that ArcD, by its function as an arginine-ornithine antiporter, is important for supplying arginine as substrate of the ADS and, thereby, contributes to biological fitness and virulence of S. suis in the host.

  11. Effect of Sodium Alginate Concentration on Membrane Strength and Permeating Property of Poly-l-arginine Group Microcapsule

    Institute of Scientific and Technical Information of China (English)

    Shi Bin WANG; Yuan Gang LIU; Lian Jin WENG; Xiao Jun MA

    2004-01-01

    A novel poly-l-arginine microcapsule was prepared due to its nutritional function and pharmacological efficacy. A high-voltage electrostatic droplet generator was used to make uniform microcapsules. The results show that the membrane strength and permeating property are both remarkably affected with the changes of sodium alginate concentration. With the sodium alginate concentration increasing, gel beads sizes increase from 233μm to 350μm, release ratio is also higher at the same time, but the membrane strength decreases.

  12. CYP7A1 A-278C polymorphism affects the response of plasma lipids after dietary cholesterol and cafestol interventions in humans.

    NARCIS (Netherlands)

    Hofman, M.K.; Weggemans, R.M.; Zock, P.L.; Schouten, E.G.; Katan, M.B.; Princen, H.M.G.

    2004-01-01

    The response of plasma lipids to dietary cholesterol and fat varies among individuals. Variations in genes involved in cholesterol metabolism can be important in these interindividual differences. The rate-limiting enzyme in the conversion of cholesterol into bile acids is cholesterol 7-hydroxylase

  13. Different environmental temperatures affect amino acid metabolism in the eurytherm teleost Senegalese sole (Solea senegalensis Kaup, 1858) as indicated by changes in plasma metabolites.

    NARCIS (Netherlands)

    Costas, B.; Aragao, C.; Ruiz-Jarabo, I.; Vargas-Chacoff, L.; Arjona, F.J.; Mancera, J.M.; Dinis, M.T.; Conceicao, L.E.

    2012-01-01

    Senegalese sole (Solea senegalensis) is a eurytherm teleost that under natural conditions can be exposed to annual water temperature fluctuations between 12 and 26 degrees C. This study assessed the effects of temperature on sole metabolic status, in particular in what concerns plasma free amino aci

  14. Triple therapy with pyridoxine, arginine supplementation and dietary lysine restriction in pyridoxine-dependent epilepsy: Neurodevelopmental outcome.

    Science.gov (United States)

    Coughlin, Curtis R; van Karnebeek, Clara D M; Al-Hertani, Walla; Shuen, Andrew Y; Jaggumantri, Sravan; Jack, Rhona M; Gaughan, Sommer; Burns, Casey; Mirsky, David M; Gallagher, Renata C; Van Hove, Johan L K

    2015-01-01

    Pyridoxine-dependent epilepsy (PDE) is an epileptic encephalopathy characterized by response to pharmacologic doses of pyridoxine. PDE is caused by deficiency of α-aminoadipic semialdehyde dehydrogenase resulting in impaired lysine degradation and subsequent accumulation of α-aminoadipic semialdehyde. Despite adequate seizure control with pyridoxine monotherapy, 75% of individuals with PDE have significant developmental delay and intellectual disability. We describe a new combined therapeutic approach to reduce putative toxic metabolites from impaired lysine metabolism. This approach utilizes pyridoxine, a lysine-restricted diet to limit the substrate that leads to neurotoxic metabolite accumulation and L-arginine to compete for brain lysine influx and liver mitochondrial import. We report the developmental and biochemical outcome of six subjects who were treated with this triple therapy. Triple therapy reduced CSF, plasma, and urine biomarkers associated with neurotoxicity in PDE. The addition of arginine supplementation to children already treated with dietary lysine restriction and pyridoxine further reduced toxic metabolites, and in some subjects appeared to improve neurodevelopmental outcome. Dietary lysine restriction was associated with improved seizure control in one subject, and the addition of arginine supplementation increased the objective motor outcome scale in two twin siblings, illustrating the contribution of each component of this treatment combination. Optimal results were noted in the individual treated with triple therapy early in the course of the disease. Residual disease symptoms could be related to early injury suggested by initial MR imaging prior to initiation of treatment or from severe epilepsy prior to diagnosis. This observational study reports the use of triple therapy, which combines three effective components in this rare condition, and suggests that early diagnosis and treatment with this new triple therapy may ameliorate the

  15. Synergistic myoprotection of L-arginine and adenosine in a canine model of global myocardial ischaemic reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    DU Lei; DIAN Ke; CHEN Hui-jiao; AN Qi; JIA Meng-xing; YANG Ping-liang; WANG Wei; DENG Shuo-zeng; LIU Jin

    2007-01-01

    Background Endogenous nitric oxide and adenosine increase simultaneously to keep the balance of energy demand and supply when the oxygen supply is insufficient, which suggests that nitric oxide and adenosine might exert a synergistic myoprotection during tissue hypoxia. In this study, we tested this hypothesis utilizing a canine model of prolonged global myocardial ischaemic reperfusion injury.Methods In this double blind, controlled study, the hearts of 24 anaesthetized mongrel dogs were arrested for 2 hours with aortic cross clamping and blood cardioplegia. The treatment groups were those supplemented with 2 mmol/L L-arginine (ARG), supplemented with 1 mmol/L adenosine (ADO), ARG + ADO supplemented with both, and no supplementation (control) (n=6 in each group). Haemodynamics, biochemical indices, adenosine triphosphate (ATP) content and myeloperoxidase activities of myocardium were determined to evaluate myocardial injury. Statistical comparison was performed by two way ANOVA.Results Although the requirements for inotropic supports were higher, the cardiac outputs were lower in control group than in ARG, ADO and the combination groups. Plasma cardiac troponin I levels were higher and the areas of hydropic changes were larger in control group than in ARG and ADO groups. Combination of arginine and adenosine provided further myoprotection with respect to better cardiac performance, lower release of cardiac troponin I, and smaller areas of hydropic changes compared with ARG and ADO groups. ATP content was higher, but myeloperoxidase activities of myocardium were significantly lower in the combination group than in control, ARG and ADO groups (P<0.05).Conclusions Combination of L-arginine and adenosine provides synergistic myoprotection in a canine model of global myocardial ischaemia. Thus, the combination is recommended when the heart is exposed to a prolonged ischaemia during cardiac surgery.

  16. Genome-Wide Association Study of L-Arginine and Dimethylarginines Reveals Novel Metabolic Pathway for Symmetric Dimethylarginine

    Science.gov (United States)

    Lüneburg, Nicole; Lieb, Wolfgang; Zeller, Tanja; Chen, Ming-Huei; Maas, Renke; Carter, Angela M.; Xanthakis, Vanessa; Glazer, Nicole L; Schwedhelm, Edzard; Seshadri, Sudha; Ikram, M. Arfan; Longstreth, W.T.; Fornage, Myriam; König, Inke R.; Loley, Christina; Ojeda, Francisco M.; Schillert, Arne; Wang, Thomas J.; Sticht, Heinrich; Kittel, Anja; König, Jörg; Benjamin, Emelia J.; Sullivan, Lisa M.; Bernges, Isabel; Anderssohn, Maike; Ziegler, Andreas; Gieger, Christian; Illig, Thomas; Meisinger, Christa; Wichmann, H.-Erich; Wild, Philipp S.; Schunkert, Heribert; Psaty, Bruce M.; Wiggins, Kerri L.; Heckbert, Susan R.; Smith, Nicholas; Lackner, Karl; Lunetta, Kathryn L.; Blankenberg, Stefan; Erdmann, Jeanette; Munzel, Thomas; Grant, Peter J.; Vasan, Ramachandran S.; Böger, Rainer H.

    2016-01-01

    Background Dimethylarginines (DMA) interfere with nitric oxide (NO) formation by inhibiting NO synthase (asymmetric dimethylarginine, ADMA) and L-arginine uptake into the cell (ADMA and symmetric dimethylarginine, SDMA). In prospective clinical studies ADMA has been characterized as a cardiovascular risk marker whereas SDMA is a novel marker for renal function and associated with all-cause mortality after ischemic stroke. The aim of the current study was to characterise the environmental and genetic contributions to inter-individual variability of these biomarkers. Methods and Results This study comprised a genome-wide association analysis of 3 well-characterized population-based cohorts (FHS (n=2992), GHS (n=4354) and MONICA/KORA F3 (n=581)) and identified replicated loci (DDAH1, MED23, Arg1 and AGXT2) associated with the inter-individual variability in ADMA, L-arginine and SDMA. Experimental in-silico and in-vitro studies confirmed functional significance of the identified AGXT2 variants. Clinical outcome analysis in 384 patients of the Leeds stroke study demonstrated an association between increased plasma levels of SDMA, AGXT2 variants and various cardiometabolic risk factors. AGXT2 variants were not associated with post-stroke survival in the Leeds study, nor were they associated with incident stroke in the CHARGE consortium. Conclusion These GWAS support the importance of DDAH1 and MED23/Arg1 in regulating ADMA and L-arginine metabolism, respectively, and identify a novel regulatory renal pathway for SDMA by AGXT2. AGXT2 variants might explain part of the pathogenic link between SDMA, renal function, and outcome. An association between AGXT2 variants and stroke is unclear and warrants further investigation. PMID:25245031

  17. A low-saturated-fat, low-cholesterol diet decreases plasma CETP activity and pre beta-HDL formation but does not affect cellular cholesterol efflux to plasma from type 1 diabetic patients

    NARCIS (Netherlands)

    De Vries, R; Beusekamp, BJ; Kerstens, MN; Groen, AK; Van Tol, A; Dullaart, RPF

    2005-01-01

    The aim of this study was to evaluate the effect of a low-saturated-fat, low-cholesterol diet on plasma lipopoproteins, pre beta-high density lipoprotein (HDL) formation, lecithin: cholesterol acyltransferase (LCAT), cholesteryl ester transfer protein (CETP) and phospholipid transfer protein (PLTP)

  18. Bioinformatic evaluation of L-arginine catabolic pathways in 24 cyanobacteria and transcriptional analysis of genes encoding enzymes of L-arginine catabolism in the cyanobacterium Synechocystis sp. PCC 6803

    Directory of Open Access Journals (Sweden)

    Pistorius Elfriede K

    2007-11-01

    Full Text Available Abstract Background So far very limited knowledge exists on L-arginine catabolism in cyanobacteria, although six major L-arginine-degrading pathways have been described for prokaryotes. Thus, we have performed a bioinformatic analysis of possible L-arginine-degrading pathways in cyanobacteria. Further, we chose Synechocystis sp. PCC 6803 for a more detailed bioinformatic analysis and for validation of the bioinformatic predictions on L-arginine catabolism with a transcript analysis. Results We have evaluated 24 cyanobacterial genomes of freshwater or marine strains for the presence of putative L-arginine-degrading enzymes. We identified an L-arginine decarboxylase pathway in all 24 strains. In addition, cyanobacteria have one or two further pathways representing either an arginase pathway or L-arginine deiminase pathway or an L-arginine oxidase/dehydrogenase pathway. An L-arginine amidinotransferase pathway as a major L-arginine-degrading pathway is not likely but can not be entirely excluded. A rather unusual finding was that the cyanobacterial L-arginine deiminases are substantially larger than the enzymes in non-photosynthetic bacteria and that they are membrane-bound. A more detailed bioinformatic analysis of Synechocystis sp. PCC 6803 revealed that three different L-arginine-degrading pathways may in principle be functional in this cyanobacterium. These are (i an L-arginine decarboxylase pathway, (ii an L-arginine deiminase pathway, and (iii an L-arginine oxidase/dehydrogenase pathway. A transcript analysis of cells grown either with nitrate or L-arginine as sole N-source and with an illumination of 50 μmol photons m-2 s-1 showed that the transcripts for the first enzyme(s of all three pathways were present, but that the transcript levels for the L-arginine deiminase and the L-arginine oxidase/dehydrogenase were substantially higher than that of the three isoenzymes of L-arginine decarboxylase. Conclusion The evaluation of 24

  19. Proteomic analysis of arginine methylation sites in human cells reveals dynamic regulation during transcriptional arrest

    DEFF Research Database (Denmark)

    Sylvestersen, Kathrine B; Horn, Heiko; Jungmichel, Stephanie;

    2014-01-01

    The covalent attachment of methyl groups to the side-chain of arginine residues is known to play essential roles in regulation of transcription, protein function and RNA metabolism. The specific N-methylation of arginine residues is catalyzed by a small family of gene products known as protein......, transcription, and chromatin remodeling are predominantly found modified with MMA. Despite this, MMA sites prominently are located outside RNA-binding domains as compared to the proteome-wide distribution of arginine residues. Quantification of arginine methylation in cells treated with Actinomycin D uncovers...

  20. Expression and Characterization of ArgR, An Arginine Regulatory Protein in Corynebacterium crenatum

    Institute of Scientific and Technical Information of China (English)

    CHEN Xue Lan; ZHANG Bin; TANG Li; JIAO Hai Tao; XU Heng Yi; XU Feng; XU Hong; WEI Hua; XIONG Yong Hua

    2014-01-01

    Objective Corynebacterium crenatum MT, a mutant from C. crenatum AS 1.542 with a lethal argR gene, exhibits high arginine production. To confirm the effect of ArgR on arginine biosynthesis in C. crenatum, an intact argR gene from wild-type AS 1.542 was introduced into C. crenatum MT, resulting in C. crenatum MT. sp, and the changes of transcriptional levels of the arginine biosynthetic genes and arginine production were compared between the mutant strain and the recombinant strain. Methods Quantitative real-time polymerase chain reaction was employed to analyze the changes of the related genes at the transcriptional level, electrophoretic mobility shift assays were used to determine ArgR binding with the argCJBDF, argGH, and carAB promoter regions, and arginine production was determined with an automated amino acid analyzer. Results Arginine production assays showed a 69.9%reduction in arginine from 9.01±0.22 mg/mL in C. crenatum MT to 2.71±0.13 mg/mL (P Conclusion The arginine biosynthetic genes in C. crenatum are clearly controlled by the negative regulator ArgR, and intact ArgR in C. crenatum MT results in a significant descrease in arginine production.

  1. Implications of the role of reactive cystein in arginine kinase: reactivation kinetics of 5,5'-dithiobis-(2-nitrobenzoic acid)-modified arginine kinase reactivated by dithiothreitol.

    Science.gov (United States)

    Pan, Ji-Cheng; Cheng, Yuan; Hui, En-Fu; Zhou, Hai-Meng

    2004-04-30

    The reduction of 5,5'-dithiobis-(2-nitrobenzoic acid)-modified arginine kinase by dithiothreitol has been investigated using the kinetic theory of the substrate reaction during modification of enzyme activity. The results show that the modified arginine kinase can be fully reactivated by an excess concentration of dithiothreitol in a monophasic kinetic course. The presence of ATP or the transition-state analog markedly slows the apparent reactivation rate constant, while arginine shows no effect. The results of ultraviolet (UV) difference and intrinsic fluorescence spectra indicate that the substrate arginine-ADP-Mg2+ can induce conformational changes of the modified enzyme but adding NO3- cannot induce further changes that occur with the native enzyme. The reactive cysteines' location and role in the catalysis of arginine kinase are discussed. It is suggested that the cysteine may be located in the hinge region of the two domains of arginine kinase. The reactive cysteine of arginine kinase may play an important role not in the binding to the transition-state analog but in the conformational changes caused by the transition-state analog.

  2. Gender, but not CYP7A1 or SLCO1B1 polymorphism, affects the fasting plasma concentrations of bile acids in human beings.

    Science.gov (United States)

    Xiang, Xiaoqiang; Backman, Janne T; Neuvonen, Pertti J; Niemi, Mikko

    2012-03-01

    Cholesterol 7α-hydroxylase (CYP7A1) is the rate-limiting enzyme of bile acid production in human beings, and organic anion-transporting polypeptide 1B1 (OATP1B1) may influence bile acid hepatic uptake and cholesterol and bile acid synthesis rate. Our purpose was to investigate the effects of gender and CYP7A1 and SLCO1B1 polymorphisms on the fasting plasma concentrations of bile acids, bile acid synthesis marker and total cholesterol in a Finnish population. Fasting plasma concentrations of 16 endogenous bile acids, their synthesis marker (7α-hydroxy-4-cholesten-3-one) and total cholesterol were measured in 243 samples from 143 healthy volunteers. The volunteers were genotyped for 6 haplotype-tagging single-nucleotide polymorphisms (SNPs) of CYP7A1 and two functionally relevant SNPs in SLCO1B1. The mean plasma concentrations of chenodeoxycholic acid, glycochenodeoxycholic acid, ursodeoxycholic acid and glycoursodeoxycholic acid were 61-111% higher in men than in women (P ≤ 0.001). Accordingly, the mean concentration of total bile acids was 51% higher in men than in women (P = 0.001). The CYP7A1 rs8192879 and rs1023652 SNPs were associated with deoxycholic acid and hyodeoxycholic acid concentrations, respectively, but the associations were not significant after correction for multiple testing. None of the six CYP7A1 SNPs was associated with the plasma concentrations of cholesterol or 7α-hydroxy-4-cholesten-3-one. SLCO1B1 genotype was associated with total plasma cholesterol concentration only, but the association was not significant after correction for multiple testing. In general, the gender contributes substantially more to variation in fasting plasma bile acid concentrations than CYP7A1 or SLCO1B1 polymorphism do. Common genetic variability in CYP7A1 is unlikely to play a significant role in cholesterol metabolism and bile acid homeostasis under normal physiological conditions.

  3. Three transcription factors and the way immune cells affected by different plasma change in opposite ways in the development of the syndrome of pre-eclampsia

    Institute of Scientific and Technical Information of China (English)

    Liang Zhou; Zhu Jing; Wang Yunfei; Wang You; Zhang Yu; Lin Jianhua; Di Wen

    2014-01-01

    Background How the transcriptional factors regulated the innate and adaptive immune system in pregnancy and preeclampsia are less understood.Nevertheless,what the plasma work in the development of this disease was not sure.The present study was design to evaluate what the transcriptional factors change in innate and adaptive immune system and what the plasma do in this filed.Methods Peripheral blood mononuclear cells (PBMC) from non-pregnant women (n=18),women with clinically normal pregnancies (n=23) and women with pre-eclampsia (n=20) were separated from peripheral blood to isolate monocytes and T cells.The purity of monocytes and T cells were analysed by flow cytometry.Monocytes and T cells were stimulated in either lipopolysaccharides (LPS) or phorbol-myristate-acetate (PMA),respectively.Transcription Factor Arrays were used to screen the transcription factors of interest in comparing of different groups.PBMC were isolated from another 8 nonpregnant samples were co-incubated with different groups of plasma.Polymerase chain reaction (PCR) was performed using whole cell extractions of the samples.Results Nuclear factor of activated T-cells-1 (NFAT-1),signal transducers and activators of transcription-1 (STAT-1) and activator protein-1 (AP-1) are up-regulated in monocytes in pregnancy and more so in pre-eclampsia.On the the contrary,NFAT-1,STAT-1 and AP-1 are down-regulated in T cells in pregnancy and more so in pre-eclampsia.A reduction was observed in interferon (IFN)-y,interleukin (IL)-12 and IL-4 expression in T cells incubated with pre-eclamptic plasma.An elevation was observed in tumor necrosis factor (TNF)-α,IL-1 and IL-12 expression in monocytes incubated with preeclamptic plasma.Conclusions Innate immunity is over activated and adaptive immunity is over suppressed in the development of preeclampsia.NFAT-1,STAT-1 and AP-1 might be the central transcription factors in the pathogenesis of pre-eclampsia.They induced some changes in plasma and "educate" the

  4. Intravenous Selenium Modulates L-Arginine-Induced Experimental Acute Pancreatitis

    Directory of Open Access Journals (Sweden)

    Jonathan Hardman

    2005-09-01

    Full Text Available Context Oxidative stress is understood to have a critical role in the development of acinar injury in experimental acute pancreatitis. We have previously demonstrated that compound multiple antioxidant therapy ameliorates end-organ damage in the intra-peritoneal L-arginine rat model. As the principal co-factor for glutathione, selenium is a key constituent of multiple antioxidant preparations. Objective The intention of this study was to investigate the effect of selenium on pancreatic and remote organ injury in a wellvalidated experimental model of acute pancreatitis. Methods Male Sprague-Dawley rats were randomly allocated to one of 3 groups (n=5/group and sacrificed at 72 hours. Acute pancreatitis was induced by 250 mg per 100 g body weight of 20% L-arginine hydrochloride in 0.15 mol/L sodium chloride. Group allocations were: Group 1, control; Group 2, acute pancreatitis; Group 3, selenium. Main outcome measures Serum amylase, anti-oxidant levels, bronchoalveolar lavage protein, lung myeloperoxidase activity, and histological assessment of pancreatic injury. Results L-arginine induced acute pancreatitis characterised by oedema, neutrophil infiltration, acinar cell degranulation and elevated serum amylase. Selenium treatment was associated with reduced pancreatic oedema and inflammatory cell infiltration. Acinar degranulation and dilatation were completely absent. A reduction in bronchoalveolar lavage protein content was also demonstrated. Conclusion Intravenous selenium given 24 hours after induction of experimental acute pancreatitis was associated with a reduction in the histological stigmata of pancreatic injury and a dramatic reduction in broncho-alveolar lavage protein content. Serum selenium fell during the course of experimental acute pancreatitis and this effect was not reversed by exogenous selenium supplementation.

  5. Mechanistic studies on transcriptional coactivator protein arginine methyltransferase 1.

    Science.gov (United States)

    Rust, Heather L; Zurita-Lopez, Cecilia I; Clarke, Steven; Thompson, Paul R

    2011-04-26

    Protein arginine methyltransferases (PRMTs) catalyze the transfer of methyl groups from S-adenosylmethionine (SAM) to the guanidinium group of arginine residues in a number of important cell signaling proteins. PRMT1 is the founding member of this family, and its activity appears to be dysregulated in heart disease and cancer. To begin to characterize the catalytic mechanism of this isozyme, we assessed the effects of mutating a number of highly conserved active site residues (i.e., Y39, R54, E100, E144, E153, M155, and H293), which are believed to play key roles in SAM recognition, substrate binding, and catalysis. The results of these studies, as well as pH-rate studies, and the determination of solvent isotope effects (SIEs) indicate that M155 plays a critical role in both SAM binding and the processivity of the reaction but is not responsible for the regiospecific formation of asymmetrically dimethylated arginine (ADMA). Additionally, mutagenesis studies on H293, combined with pH studies and the lack of a normal SIE, do not support a role for this residue as a general base. Furthermore, the lack of a normal SIE with either the wild type or catalytically impaired mutants suggests that general acid/base catalysis is not important for promoting methyl transfer. This result, combined with the fact that the E144A/E153A double mutant retains considerably more activity then the single mutants alone, suggests that the PRMT1-catalyzed reaction is primarily driven by bringing the substrate guanidinium into the proximity of the S-methyl group of SAM and that the prior deprotonation of the substrate guanidinium is not required for methyl transfer.

  6. Plasma dynamo

    CERN Document Server

    Rincon, F; Schekochihin, A A; Valentini, F

    2015-01-01

    Magnetic fields pervade the entire Universe and, through their dynamical interactions with matter, affect the formation and evolution of astrophysical systems from cosmological to planetary scales. How primordial cosmological seed fields arose and were further amplified to $\\mu$Gauss levels reported in nearby galaxy clusters, near equipartition with kinetic energy of plasma motions and on scales of at least tens of kiloparsecs, is a major theoretical puzzle still largely unconstrained by observations. Extragalactic plasmas are weakly collisional (as opposed to collisional magnetohydrodynamic fluids), and whether magnetic-field growth and its sustainment through an efficient dynamo instability driven by chaotic motions is possible in such plasmas is not known. Fully kinetic numerical simulations of the Vlasov equation in a six-dimensional phase space necessary to answer this question have until recently remained beyond computational capabilities. Here, we show by means of such simulations that magnetic-field a...

  7. Respiratory mechanics and plasma levels of tumor necrosis factor alpha and interleukin 6 are affected by gas humidification during mechanical ventilation in dogs.

    Directory of Open Access Journals (Sweden)

    Claudia Hernández-Jiménez

    Full Text Available The use of dry gases during mechanical ventilation has been associated with the risk of serious airway complications. The goal of the present study was to quantify the plasma levels of TNF-alpha and IL-6 and to determine the radiological, hemodynamic, gasometric, and microscopic changes in lung mechanics in dogs subjected to short-term mechanical ventilation with and without humidification of the inhaled gas. The experiment was conducted for 24 hours in 10 dogs divided into two groups: Group I (n = 5, mechanical ventilation with dry oxygen dispensation, and Group II (n = 5, mechanical ventilation with oxygen dispensation using a moisture chamber. Variance analysis was used. No changes in physiological, hemodynamic, or gasometric, and radiographic constants were observed. Plasma TNF-alpha levels increased in group I, reaching a maximum 24 hours after mechanical ventilation was initiated (ANOVA p = 0.77. This increase was correlated to changes in mechanical ventilation. Plasma IL-6 levels decreased at 12 hours and increased again towards the end of the study (ANOVA p>0.05. Both groups exhibited a decrease in lung compliance and functional residual capacity values, but this was more pronounced in group I. Pplat increased in group I (ANOVA p = 0.02. Inhalation of dry gas caused histological lesions in the entire respiratory tract, including pulmonary parenchyma, to a greater extent than humidified gas. Humidification of inspired gases can attenuate damage associated with mechanical ventilation.

  8. Respiratory mechanics and plasma levels of tumor necrosis factor alpha and interleukin 6 are affected by gas humidification during mechanical ventilation in dogs.

    Science.gov (United States)

    Hernández-Jiménez, Claudia; García-Torrentera, Rogelio; Olmos-Zúñiga, J Raúl; Jasso-Victoria, Rogelio; Gaxiola-Gaxiola, Miguel O; Baltazares-Lipp, Matilde; Gutiérrez-González, Luis H

    2014-01-01

    The use of dry gases during mechanical ventilation has been associated with the risk of serious airway complications. The goal of the present study was to quantify the plasma levels of TNF-alpha and IL-6 and to determine the radiological, hemodynamic, gasometric, and microscopic changes in lung mechanics in dogs subjected to short-term mechanical ventilation with and without humidification of the inhaled gas. The experiment was conducted for 24 hours in 10 dogs divided into two groups: Group I (n = 5), mechanical ventilation with dry oxygen dispensation, and Group II (n = 5), mechanical ventilation with oxygen dispensation using a moisture chamber. Variance analysis was used. No changes in physiological, hemodynamic, or gasometric, and radiographic constants were observed. Plasma TNF-alpha levels increased in group I, reaching a maximum 24 hours after mechanical ventilation was initiated (ANOVA p = 0.77). This increase was correlated to changes in mechanical ventilation. Plasma IL-6 levels decreased at 12 hours and increased again towards the end of the study (ANOVA p>0.05). Both groups exhibited a decrease in lung compliance and functional residual capacity values, but this was more pronounced in group I. Pplat increased in group I (ANOVA p = 0.02). Inhalation of dry gas caused histological lesions in the entire respiratory tract, including pulmonary parenchyma, to a greater extent than humidified gas. Humidification of inspired gases can attenuate damage associated with mechanical ventilation.

  9. [Plasma aminogram in critical patients].

    Science.gov (United States)

    Martínez, M J; Giráldez, J

    1993-02-01

    This study of the plasma aminogram was done on 35 patients with a moderate to high level of stress and/or sepsis. For the criteria of illness, the SAPS (Simplified Acute Physiological Score) was used on their admission to the intensive Care Unit, and the diagnosis of sepsis was established according to the criteria of Jacobs and Boone. The stress level was calculated according to Bistrian. The plasma aminogram was determined with High Resolution Liquid Chromatography. The plasma samples were taken while nutrient units containing what is considered a standard solution of amino acids were infused. The eight essential amino acids (EAA) and 10 non-essential were quantified. The ratio of ramified to aromatic amino acids (RAA/AAA) was calculated by Fisher's criteria. An increase in AAA (phenylalanine, p arginine, p metabolic stress and/or sepsis.

  10. AS1411 alters the localization of a complex containing protein arginine methyltransferase 5 and nucleolin.

    Science.gov (United States)

    Teng, Yun; Girvan, Allicia C; Casson, Lavona K; Pierce, William M; Qian, Mingwei; Thomas, Shelia D; Bates, Paula J

    2007-11-01

    AS1411 is a quadruplex-forming oligonucleotide aptamer that targets nucleolin. It is currently in clinical trials as a treatment for various cancers. We have proposed that AS1411 inhibits cancer cell proliferation by affecting the activities of certain nucleolin-containing complexes. Here, we report that protein arginine methyltransferase 5 (PRMT5), an enzyme that catalyzes the formation of symmetrical dimethylarginine (sDMA), is a nucleolin-associated protein whose localization and activity are altered by AS1411. Levels of PRMT5 were found to be decreased in the nucleus of AS1411-treated DU145 human prostate cancer cells, but increased in the cytoplasm. These changes were dependent on nucleolin and were not observed in cells pretreated with nucleolin-specific small interfering RNA. Treatment with AS1411 altered levels of PRMT5 activity (assessed by sDMA levels) in accord with changes in its localization. In addition, our data indicate that nucleolin itself is a substrate for PRMT5 and that distribution of sDMA-modified nucleolin is altered by AS1411. Because histone arginine methylation by PRMT5 causes transcriptional repression, we also examined expression of selected PRMT5 target genes in AS1411-treated cells. For some genes, including cyclin E2 and tumor suppressor ST7, a significant up-regulation was noted, which corresponded with decreased PRMT5 association with the gene promoter. We conclude that nucleolin is a novel binding partner and substrate for PRMT5, and that AS1411 causes relocalization of the nucleolin-PRMT5 complex from the nucleus to the cytoplasm. Consequently, the nuclear activity of PRMT5 is decreased, leading to derepression of some PRMT5 target genes, which may contribute to the biological effects of AS1411.

  11. Arginine Vasotocin Regulation of Interspecific Cooperative Behaviour in a Cleaner Fish

    Science.gov (United States)

    Soares, Marta C.; Bshary, Redouan; Mendonça, Rute; Grutter, Alexandra S.; Oliveira, Rui F.

    2012-01-01

    In an interspecific cooperative context, individuals must be prepared to tolerate close interactive proximity to other species but also need to be able to respond to relevant social stimuli in the most appropriate manner. The neuropeptides vasopressin and oxytocin and their non-mammalian homologues have been implicated in the evolution of sociality and in the regulation of social behaviour across vertebrates. However, little is known about the underlying physiological mechanisms of interspecific cooperative interactions. In interspecific cleaning mutualisms, interactions functionally resemble most intraspecific social interactions. Here we provide the first empirical evidence that arginine vasotocin (AVT), a non-mammalian homologue of arginine vasopressin (AVP), plays a critical role as moderator of interspecific behaviour in the best studied and ubiquitous marine cleaning mutualism involving the Indo-Pacific bluestreak cleaner wrasse Labroides dimidiatus. Exogenous administration of AVT caused a substantial decrease of most interspecific cleaning activities, without similarly affecting the expression of conspecific directed behaviour, which suggests a differential effect of AVT on cleaning behaviour and not a general effect on social behaviour. Furthermore, the AVP-V1a receptor antagonist (manning compound) induced a higher likelihood for cleaners to engage in cleaning interactions and also to increase their levels of dishonesty towards clients. The present findings extend the knowledge of neuropeptide effects on social interactions beyond the study of their influence on conspecific social behaviour. Our evidence demonstrates that AVT pathways might play a pivotal role in the regulation of interspecific cooperative behaviour and conspecific social behaviour among stabilized pairs of cleaner fish. Moreover, our results suggest that the role of AVT as a neurochemical regulator of social behaviour may have been co-opted in the evolution of cooperative behaviour in an

  12. Potential role of growth hormone in impairment of insulin signaling in skeletal muscle, adipose tissue, and liver of rats chronically treated with arginine.

    Science.gov (United States)

    de Castro Barbosa, Thais; de Carvalho, José Edgar Nicoletti; Poyares, Leonice Lourenço; Bordin, Silvana; Machado, Ubiratan Fabres; Nunes, Maria Tereza

    2009-05-01

    We have shown that rats chronically treated with Arginine (Arg), although normoglycemic, exhibit hyperinsulinemia and decreased blood glucose disappearance rate after an insulin challenge. Attempting to investigate the processes underlying these alterations, male Wistar rats were treated with Arg (35 mg/d), in drinking water, for 4 wk. Rats were then acutely stimulated with insulin, and the soleus and extensorum digitalis longus muscles, white adipose tissue (WAT), and liver were excised for total and/or phosphorylated insulin receptor (IR), IR substrate 1/2, Akt, Janus kinase 2, signal transducer and activator of transcription (STAT) 1/3/5, and p85alpha/55alpha determination. Muscles and WAT were also used for plasma membrane (PM) and microsome evaluation of glucose transporter (GLUT) 4 content. Pituitary GH mRNA, GH, and liver IGF-I mRNA expression were estimated. It was shown that Arg treatment: 1) did not affect phosphotyrosine-IR, whereas it decreased phosphotyrosine-IR substrate 1/2 and phosphoserine-Akt content in all tissues studied, indicating that insulin signaling is impaired at post-receptor level; 2) decreased PM GLUT4 content in both muscles and WAT; 3) increased the pituitary GH mRNA, GH, and liver IGF-I mRNA expression, the levels of phosphotyrosine-STAT5 in both muscles, phosphotyrosine-Janus kinase 2 in extensorum digitalis longus, phosphotyrosine-STAT3 in liver, and WAT as well as total p85alpha in soleus, indicating that GH signaling is enhanced in these tissues; and 4) increased p55alpha total content in muscles, WAT, and liver. The present findings provide the molecular mechanisms by which insulin resistance and, by extension, reduced GLUT4 content in PM of muscles and WAT take place after chronic administration of Arg, and further suggest a putative role for GH in its genesis, considering its diabetogenic effect.

  13. Arginine metabolising enzymes as therapeutic tools for Alzheimer's disease: peptidyl arginine deiminase catalyses fibrillogenesis of beta-amyloid peptides.

    Science.gov (United States)

    Mohlake, Peter; Whiteley, Chris G

    2010-06-01

    The accumulation of arginine in the cerebrospinal fluid and brains of patients suffering from acute neurodegenerative diseases like Alzheimer's disease, point to defects in the metabolic pathways involving this amino acids. The deposits of neurofibrillary tangles and senile plaques perhaps as a consequence of fibrillogenesis of beta-amyloid peptides has also been shown to be a hallmark in the aetiology of certain neurodegenerative diseases. Peptidylarginine deiminase (PAD II) is an enzyme that uses arginine as a substrate and we now show that PAD II not only binds with the peptides Abeta(1-40), Abeta(22-35), Abeta(17-28), Abeta(25-35) and Abeta(32-35) but assists in the proteolytic degradation of these peptides with the concomitant formation of insoluble fibrils. PAD was purified in 12.5% yield and 137 fold with a specific activity of 59 micromol min(-1) mg(-1) from bovine brain by chromatography on diethylaminoethyl (DEAE)-Sephacel. Characterisation of the enzyme gave a pH and temperature optima of 7.5 degrees C and 68 degrees C, respectively, and the enzyme lost 50% activity within 38 min at this temperature. Michaelis-Menten kinetics established a V(max) and K(m) of 1.57 micromol min(-1) ml(-1) and 1.35 mM, respectively, with N-benzoyl arginine ethyl ester as substrate. Kinetic analysis was used to measure the affinity (K(i)) of the amyloid peptides to PAD with values between 1.4 and 4.6 microM. The formation of Abeta fibrils was rate limiting involving an initial lag time of about 24 h that was dependent on the concentration of the amyloid peptides. Turbidity measurements at 400 nm, Congo Red assay and Thioflavin-T staining fluorescence were used to establish the aggregation kinetics of PAD-induced fibril formation.

  14. The Role of Protein Arginine Methyltransferases in Inflammatory Responses

    Directory of Open Access Journals (Sweden)

    Ji Hye Kim

    2016-01-01

    Full Text Available Protein arginine methyltransferases (PRMTs mediate the methylation of a number of protein substrates of arginine residues and serve critical functions in many cellular responses, including cancer development, progression, and aggressiveness, T-lymphocyte activation, and hepatic gluconeogenesis. There are nine members of the PRMT family, which are divided into 4 types (types I–IV. Although most PRMTs do not require posttranslational modification (PTM to be activated, fine-tuning modifications, such as interactions between cofactor proteins, subcellular compartmentalization, and regulation of RNA, via micro-RNAs, seem to be required. Inflammation is an essential defense reaction of the body to eliminate harmful stimuli, including damaged cells, irritants, or pathogens. However, chronic inflammation can eventually cause several types of diseases, including some cancers, atherosclerosis, rheumatoid arthritis, and periodontitis. Therefore, inflammation responses should be well modulated. In this review, we briefly discuss the role of PRMTs in the control of inflammation. More specifically, we review the roles of four PRMTs (CARM1, PRMT1, PRMT5, and PRMT6 in modulating inflammation responses, particularly in terms of modulating the transcriptional factors or cofactors related to inflammation. Based on the regulatory roles known so far, we propose that PRMTs should be considered one of the target molecule groups that modulate inflammatory responses.

  15. An allosteric inhibitor of protein arginine methyltransferase 3.

    Science.gov (United States)

    Siarheyeva, Alena; Senisterra, Guillermo; Allali-Hassani, Abdellah; Dong, Aiping; Dobrovetsky, Elena; Wasney, Gregory A; Chau, Irene; Marcellus, Richard; Hajian, Taraneh; Liu, Feng; Korboukh, Ilia; Smil, David; Bolshan, Yuri; Min, Jinrong; Wu, Hong; Zeng, Hong; Loppnau, Peter; Poda, Gennadiy; Griffin, Carly; Aman, Ahmed; Brown, Peter J; Jin, Jian; Al-Awar, Rima; Arrowsmith, Cheryl H; Schapira, Matthieu; Vedadi, Masoud

    2012-08-01

    PRMT3, a protein arginine methyltransferase, has been shown to influence ribosomal biosynthesis by catalyzing the dimethylation of the 40S ribosomal protein S2. Although PRMT3 has been reported to be a cytosolic protein, it has been shown to methylate histone H4 peptide (H4 1-24) in vitro. Here, we report the identification of a PRMT3 inhibitor (1-(benzo[d][1,2,3]thiadiazol-6-yl)-3-(2-cyclohexenylethyl)urea; compound 1) with IC50 value of 2.5 μM by screening a library of 16,000 compounds using H4 (1-24) peptide as a substrate. The crystal structure of PRMT3 in complex with compound 1 as well as kinetic analysis reveals an allosteric mechanism of inhibition. Mutating PRMT3 residues within the allosteric site or using compound 1 analogs that disrupt interactions with allosteric site residues both abrogated binding and inhibitory activity. These data demonstrate an allosteric mechanism for inhibition of protein arginine methyltransferases, an emerging class of therapeutic targets.

  16. Pegylated Arginine Deiminase Downregulates Colitis in Murine Models

    Directory of Open Access Journals (Sweden)

    Helieh S. Oz

    2012-01-01

    Full Text Available Arginine deiminase (ADI, an arginine-metabolizing enzyme involved in cell signaling, is dysregulated in multiple inflammatory diseases and cancers. We hypothesized that pegylated ADI (ADI-PEG provide protection against colitis. Methods. Dextran sodium sulfate colitis was induced in IL-10-deficient and BALB/c (WT mice. ADI-PEG was administered i.p., and inflammatory mediators and pathology were evaluated. Results. Acute colitis in mice was manifested by increases in inflammatory biomarkers, such as serum amyloid A (SAA, P<0.001, IL-12 p40, and disease index (3-Fold. In contrast, ADI-PEG significantly decreased clinical disease index, SAA levels, and inflammatory cytokines in blood as well as in colonic explants. Animals developed moderate (2.2±0.3 WT to severe (3.6±0.5 IL-10 deficient colonic pathology; and ADI-PEG treatment significantly improved the severity of colitis (P<0.05. Marked infiltration of CD68+ macrophages and iNOS expression were detected in colonic submucosa in colitic animals but not detected in ADI-PEG-treated animals. Conclusion. ADI-PEG attenuated inflammatory responses by suppression of macrophage infiltration and iNOS expression in colitic animals. ADI-PEG can serve as a potential therapeutic value in IBD.

  17. Arginine Silicate Inositol Complex Accelerates Cutaneous Wound Healing.

    Science.gov (United States)

    Durmus, Ali Said; Tuzcu, Mehmet; Ozdemir, Oguzhan; Orhan, Cemal; Sahin, Nurhan; Ozercan, Ibrahim Hanifi; Komorowski, James Richard; Ali, Shakir; Sahin, Kazim

    2016-10-14

    Arginine silicate inositol (ASI) complex is a composition of arginine, silicon, and inositol that has been shown to have beneficial effects on vascular health. This study reports the effects of an ASI ointment on wound healing in rats. A full-thickness excision wound was created by using a disposable 5 mm diameter skin punch biopsy tool. In this placebo-controlled study, the treatment group's wound areas were covered by 4 or 10 % ASI ointments twice a day for 5, 10, or 15 days. The rats were sacrificed either 5, 10, or 15 days after the wounds were created, and biopsy samples were taken for biochemical and histopathological analysis. Granulation tissue appeared significantly faster in the ASI-treated groups than in the control groups (P B cells (NF-κB), and various cytokines (TNF-α and IL-1β) measured in this study showed a significant fall in expression level in ASI-treated wounds. The results suggest that topical application of ASI ointment (especially 4 % concentration) has beneficial effects on the healing response of an excisional wound.

  18. Arginine methylation initiates BMP-induced Smad signaling

    Science.gov (United States)

    Xu, Jian; Wang, A. Hongjun; Oses-Prieto, Juan; Makhijani, Kalpana; Katsuno, Yoko; Pei, Ming; Yan, Leilei; Zheng, Y. George; Burlingame, Alma; Brückner, Katja; Derynck, Rik

    2014-01-01

    Summary Kinase activation and substrate phosphorylation commonly form the backbone of signaling cascades. Bone morphogenetic proteins (BMPs), a subclass of TGF-β family ligands, induce activation of their signaling effectors, the Smads, through C-terminal phosphorylation by transmembrane receptor kinases. However, the slow kinetics of Smad activation in response to BMP suggests a preceding step in the initiation of BMP signaling. We now show that arginine methylation, which is known to regulate gene expression, yet also modifies some signaling mediators, initiates BMP-induced Smad signaling. BMP-induced receptor complex formation promotes interaction of the methyltransferase PRMT1 with the inhibitory Smad6, resulting in Smad6 methylation and relocalization at the receptor, leading to activation of effector Smads through phosphorylation. PRMT1 is required for BMP-induced biological responses across species, as evidenced by the role of its ortholog Dart1 in BMP signaling during Drosophila wing development. Activation of signaling by arginine methylation may also apply to other signaling pathways. PMID:23747011

  19. Low- and high-dose plant and marine (n-3) fatty acids do not affect plasma inflammatory markers in adults with metabolic syndrome.

    Science.gov (United States)

    Dewell, Antonella; Marvasti, Farshad Fani; Harris, William S; Tsao, Philip; Gardner, Christopher D

    2011-12-01

    Chronic inflammation is considered to play a role in the development of cardiovascular disease. Various (n-3) fatty acids (FA) have been reported to have antiinflammatory effects, but there is a lack of consensus in this area, particularly in regard to optimal source(s) and dose(s). This study aimed to determine the effects of high and low doses of (n-3) FA from plant and marine sources on plasma inflammatory marker concentrations. One-hundred adults with metabolic syndrome were randomly assigned to a low or high dose of plant- (2.2 or 6.6 g/d α-linolenic acid) or marine- (1.2 or 3.6 g/d EPA and DHA) derived (n-3) FA or placebo for 8 wk, using a parallel arm design (n = 20/arm). Fasting blood samples collected at 0, 4, and 8 wk were analyzed for concentrations of monocyte chemotactic protein-1 (MCP-1), IL-6, and soluble intercellular adhesion molecule-1 (sICAM-1) and for cardiovascular risk factors. Baseline concentrations across all 5 groups combined were (mean ± SD) 103 ± 32 ng/L for MCP-1, 1.06 ± 0.56 ng/L for IL-6, and 0.197 ± 0.041 ng/L for sICAM-1. There were no significant differences in 8-wk changes in plasma inflammatory marker concentrations among the 5 groups. Plasma TG and blood pressure decreased significantly more and the LDL cholesterol concentration increased more in the high-dose fish oil group compared to the 8-wk changes in some of the other 4 groups (P ≤ 0.04). In conclusion, no beneficial effects were detected for any of the 3 inflammatory markers investigated in response to (n-3) FA in adults with metabolic syndrome regardless of dose or source.

  20. Enzymatic Synthesis of Agmatine by Immobilized Escherichia coli Cells with Arginine Decarboxylase Activity

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei-guo; ZHAO Gen-hai; LIU Jun-zhong; LIU Qian; JIAO Qing-cai

    2011-01-01

    A new method for the enzymatic synthesis of agmatine by immobilized Escherichia coli cells with arginine decarboxylase(ADC)activity was established and a series of optimal reaction conditions was set down.The arginine decarboxylase showed the maximum activity when the pyridoxal phosphate(PLP)concentration was 50 mmol/L,pH=7 and 45 ℃.The arginine decarboxylase exhibited the maximum production efficiency when the substrate concentration was 100 mmol/L and the reaction time was 15 h.It was also observed that the appropriate concentration of Mg2+,especially at 0.5 mmol/L promoted the arginine decarboxylase activity; Mn2+ had little effect on the arginine decarboxylase activity.The inhibition of Cu2+ and Zn2+ to the arginine decarboxylase activity was significant.The immobilized cells were continuously used 6 times and the average conversion rate during the six-time usage was 55.6%.The immobilized cells exhibited favourable operational stability.After optimization,the maximally cumulative amount of agmatine could be up to 20 g/L.In addition,this method can also catalyze D,L-arginine to agmatine,leaving the pure optically D-arginine simultaneously.The method has a very important guiding significance to the enzymatic preparation of agmatine.

  1. Enteral L-Arginine and Glutamine Supplementation for Prevention of NEC in Preterm Neonates.

    Science.gov (United States)

    El-Shimi, M S; Awad, H A; Abdelwahed, M A; Mohamed, M H; Khafagy, S M; Saleh, G

    2015-01-01

    Objective. Evaluating the efficacy and safety of arginine and glutamine supplementation in decreasing the incidence of NEC among preterm neonates. Methods. Prospective case-control study done on 75 preterm neonates ≤34 weeks, divided equally into L-arginine group receiving enteral L-arginine, glutamine group receiving enteral glutamine, and control group. Serum L-arginine and glutamine levels were measured at time of enrollment (sample 1), after 14 days of enrollment (sample 2), and at time of diagnosis of NEC (sample 3). Results. The incidence of NEC was 9.3%. There was no difference in the frequency of NEC between L-arginine and control groups (P > 0.05). NEC was not detected in glutamine group; L-arginine concentrations were significantly lower in arginine group than control group in both samples while glutamine concentrations were comparable in glutamine and control groups in both samples. No significant difference was found between groups as regards number of septic episodes, duration to reach full oral intake, or duration of hospital stay. Conclusion. Enteral L-arginine supplementation did not seem to reduce the incidence of NEC. Enteral glutamine may have a preventive role against NEC if supplied early to preterm neonates. However, larger studies are needed to confirm these findings. This work is registered in ClinicalTrials.gov (ClinicalTrials.gov Identifier: NCT01263041).

  2. Enteral L-Arginine and Glutamine Supplementation for Prevention of NEC in Preterm Neonates

    Directory of Open Access Journals (Sweden)

    M. S. El-Shimi

    2015-01-01

    Full Text Available Objective. Evaluating the efficacy and safety of arginine and glutamine supplementation in decreasing the incidence of NEC among preterm neonates. Methods. Prospective case-control study done on 75 preterm neonates ≤34 weeks, divided equally into L-arginine group receiving enteral L-arginine, glutamine group receiving enteral glutamine, and control group. Serum L-arginine and glutamine levels were measured at time of enrollment (sample 1, after 14 days of enrollment (sample 2, and at time of diagnosis of NEC (sample 3. Results. The incidence of NEC was 9.3%. There was no difference in the frequency of NEC between L-arginine and control groups (P>0.05. NEC was not detected in glutamine group; L-arginine concentrations were significantly lower in arginine group than control group in both samples while glutamine concentrations were comparable in glutamine and control groups in both samples. No significant difference was found between groups as regards number of septic episodes, duration to reach full oral intake, or duration of hospital stay. Conclusion. Enteral L-arginine supplementation did not seem to reduce the incidence of NEC. Enteral glutamine may have a preventive role against NEC if supplied early to preterm neonates. However, larger studies are needed to confirm these findings. This work is registered in ClinicalTrials.gov (ClinicalTrials.gov Identifier: NCT01263041.

  3. Polymorphism in genes for the enzyme arginine deiminase among Mycoplasma species.

    OpenAIRE

    Sugimura, K.; Ohno, T.; Azuma, I; Yamamoto, K.

    1993-01-01

    The extent of restriction fragment length polymorphism in genes for the arginine deiminase enzyme among 28 species of mycoplasmas was assessed by Southern blot analysis of DNA digested with EcoRI or TaqI nuclease probed with a 725-bp internal fragment of the arginine deiminase gene from Mycoplasma arginini. The results indicated unexpected heterogeneity among species of a single genus.

  4. Facilitation of peptide fibre formation by arginine-phosphate/carboxylate interactions

    Indian Academy of Sciences (India)

    K Krishna Prasad; Sandeep Verma

    2008-01-01

    This study describes peptide fibre formation in a hexapeptide, derived from the V3 loop of HIV-1, mediated by the interactions between arginine residues and phosphate/carboxylate anions. This charge neutralization approach was further confirmed when the deletion of arginine residue from the hexapeptide sequence resulted in fibre formation, which was studied by a combination of microscopic techniques.

  5. Structural diversity in twin-arginine signal peptide-binding proteins

    NARCIS (Netherlands)

    Maillard, J.; Spronk, C.A.E.M.; Buchanan, G.; Lyall, V.; Richardson, D.J.; Palmer, T.; Vuister, G.W.; Sargent, F.

    2007-01-01

    The twin-arginine transport (Tat) system is dedicated to the translocation of folded proteins across the bacterial cytoplasmic membrane. Proteins are targeted to the Tat system by signal peptides containing a twin-arginine motif. In Escherichia coli, many Tat substrates bind redox-active cofactors i

  6. Protein arginine N-methyltransferase 1 promotes the proliferation and metastasis of hepatocellular carcinoma cells.

    Science.gov (United States)

    Gou, Qing; He, ShuJiao; Zhou, ZeJian

    2017-02-01

    Hepatocellular carcinoma is the most common subtype of liver cancer. Protein arginine N-methyltransferase 1 was shown to be upregulated in various cancers. However, the role of protein arginine N-methyltransferase 1 in hepatocellular carcinoma progression remains incompletely understood. We investigated the clinical and functional significance of protein arginine N-methyltransferase 1 in a series of clinical hepatocellular carcinoma samples and a panel of hepatocellular carcinoma cell lines. We performed suppression analysis of protein arginine N-methyltransferase 1 using small interfering RNA to determine the biological roles of protein arginine N-methyltransferase 1 in hepatocellular carcinoma. In addition, the expression of epithelial-mesenchymal transition indicators was verified by western blotting in hepatocellular carcinoma cell lines after small interfering RNA treatment. Protein arginine N-methyltransferase 1 expression was found to be significantly upregulated in hepatocellular carcinoma cell lines and clinical tissues. Moreover, downregulation of protein arginine N-methyltransferase 1 in hepatocellular carcinoma cells by small interfering RNA could inhibit cell proliferation, migration, and invasion in vitro. These results indicate that protein arginine N-methyltransferase 1 may contribute to hepatocellular carcinoma progression and serves as a promising target for the treatment of hepatocellular carcinoma patients.

  7. Arginine does not exacerbate markers of inflammation in cocultures of human enterocytes and leukocytes

    DEFF Research Database (Denmark)

    Parlesak, Alexandr; Negrier, I.; Neveux, N.

    2007-01-01

    Enteral arginine supplementation in the critically ill has become a matter of controversy. In this study, we investigated effects of the addition of 0.4 and 1.2 mmol/L arginine in a coculture model on markers of inflammation, enterocyte layer integrity, and amino acid transport. In this model, a ...

  8. Effect of L-arginine, dimercaptosuccinic acid (DMSA and the association of L-arginine and DMSA on tissue lead mobilization and blood pressure level in plumbism

    Directory of Open Access Journals (Sweden)

    Malvezzi C.K.

    2001-01-01

    Full Text Available Lead (Pb-induced hypertension is characterized by an increase in reactive oxygen species (ROS and a decrease in nitric oxide (NO. In the present study we evaluated the effect of L-arginine (NO precursor, dimercaptosuccinic acid (DMSA, a chelating agent and ROS scavenger, and the association of L-arginine/DMSA on tissue Pb mobilization and blood pressure levels in plumbism. Tissue Pb levels and blood pressure evolution were evaluated in rats exposed to: 1 Pb (750 ppm, in drinking water, for 70 days, 2 Pb plus water for 30 more days, 3 Pb plus DMSA (50 mg kg-1 day-1, po, L-arginine (0.6%, in drinking water, and the combination of L-arginine/DMSA for 30 more days, and 4 their respective matching controls. Pb exposure increased Pb levels in the blood, liver, femur, kidney and aorta. Pb levels in tissues decreased after cessation of Pb administration, except in the aorta. These levels did not reach those observed in nonintoxicated rats. All treatments mobilized Pb from the kidney, femur and liver. Pb mobilization from the aorta was only effective with the L-arginine/DMSA treatment. Blood Pb concentrations in Pb-treated groups were not different from those of the Pb/water group. Pb increased blood pressure starting from the 5th week. L-arginine and DMSA treatments (4th week and the combination of L-arginine/DMSA (3rd and 4th weeks decreased blood pressure levels of intoxicated rats. These levels did not reach those of nonintoxicated rats. Treatment with L-arginine/DMSA was more effective than the isolated treatments in mobilizing Pb from tissues and in reducing the blood pressure of intoxicated rats.

  9. The ArcD1 and ArcD2 arginine/ornithine exchangers encoded in the arginine deiminase (ADI) pathway gene cluster of Lactococcus lactis

    NARCIS (Netherlands)

    Noens, Elke E E; Kaczmarek, Michał B; Żygo, Monika; Lolkema, Juke S

    2015-01-01

    The arginine deiminase pathway (ADI) gene cluster in Lactococcus lactis contains two copies of a gene encoding an L-arginine/L-ornithine exchanger, the arcD1 and arcD2 genes. The physiological function of ArcD1 and ArcD2 was studied by deleting the two genes. Deletion of arcD1 resulted in loss of th

  10. Giardia duodenalis arginine deiminase modulates the phenotype and cytokine secretion of human dendritic cells by depletion of arginine and formation of ammonia.

    Science.gov (United States)

    Banik, Stefanie; Renner Viveros, Pablo; Seeber, Frank; Klotz, Christian; Ignatius, Ralf; Aebischer, Toni

    2013-07-01

    Depletion of arginine is a recognized strategy that pathogens use to evade immune effector mechanisms. Depletion depends on microbial enzymes such as arginases, which are considered virulence factors. The effect is mostly interpreted as being a consequence of successful competition with host enzymes for the substrate. However, both arginases and arginine deiminases (ADI) have been associated with pathogen virulence. Both deplete arginine, but their reaction products differ. An ADI has been implicated in the virulence of Giardia duodenalis, an intestinal parasite that infects humans and animals, causing significant morbidity. Dendritic cells (DC) play a critical role in host defense and also in a murine G. duodenalis infection model. The functional properties of these innate immune cells depend on the milieu in which they are activated. Here, the dependence of the response of these cells on arginine was studied by using Giardia ADI and lipopolysaccharide-stimulated human monocyte-derived DC. Arginine depletion by ADI significantly increased tumor necrosis factor alpha and decreased interleukin-10 (IL-10) and IL-12p40 secretion. It also reduced the upregulation of surface CD83 and CD86 molecules, which are involved in cell-cell interactions. Arginine depletion also reduced the phosphorylation of S6 kinase in DC, suggesting the involvement of the mammalian target of rapamycin signaling pathway. The changes were due to arginine depletion and the formation of reaction products, in particular, ammonium ions. Comparison of NH(4)(+) and urea revealed distinct immunomodulatory activities of these products of deiminases and arginases, respectively. The data suggest that a better understanding of the role of arginine-depleting pathogen enzymes for immune evasion will have to take enzyme class and reaction products into consideration.

  11. Giardia duodenalis Arginine Deiminase Modulates the Phenotype and Cytokine Secretion of Human Dendritic Cells by Depletion of Arginine and Formation of Ammonia

    Science.gov (United States)

    Banik, Stefanie; Renner Viveros, Pablo; Seeber, Frank; Klotz, Christian; Ignatius, Ralf

    2013-01-01

    Depletion of arginine is a recognized strategy that pathogens use to evade immune effector mechanisms. Depletion depends on microbial enzymes such as arginases, which are considered virulence factors. The effect is mostly interpreted as being a consequence of successful competition with host enzymes for the substrate. However, both arginases and arginine deiminases (ADI) have been associated with pathogen virulence. Both deplete arginine, but their reaction products differ. An ADI has been implicated in the virulence of Giardia duodenalis, an intestinal parasite that infects humans and animals, causing significant morbidity. Dendritic cells (DC) play a critical role in host defense and also in a murine G. duodenalis infection model. The functional properties of these innate immune cells depend on the milieu in which they are activated. Here, the dependence of the response of these cells on arginine was studied by using Giardia ADI and lipopolysaccharide-stimulated human monocyte-derived DC. Arginine depletion by ADI significantly increased tumor necrosis factor alpha and decreased interleukin-10 (IL-10) and IL-12p40 secretion. It also reduced the upregulation of surface CD83 and CD86 molecules, which are involved in cell-cell interactions. Arginine depletion also reduced the phosphorylation of S6 kinase in DC, suggesting the involvement of the mammalian target of rapamycin signaling pathway. The changes were due to arginine depletion and the formation of reaction products, in particular, ammonium ions. Comparison of NH4+ and urea revealed distinct immunomodulatory activities of these products of deiminases and arginases, respectively. The data suggest that a better understanding of the role of arginine-depleting pathogen enzymes for immune evasion will have to take enzyme class and reaction products into consideration. PMID:23589577

  12. Changes in the electro-physical properties of MCT epitaxial films affected by a plasma volume discharge induced by an avalanche beam in atmospheric-pressure air

    Science.gov (United States)

    Grigoryev, D. V.; Voitsekhovskii, A. V.; Lozovoy, K. A.; Tarasenko, V. F.; Shulepov, M. A.

    2015-11-01

    In this paper the influence of the plasma volume discharge of nanosecond duration formed in a non-uniform electric field at atmospheric pressure on samples of epitaxial films HgCdTe (MCT) films are discussed. The experimental data show that the action of pulses of nanosecond volume discharge in air at atmospheric pressure leads to changes in the electrophysical properties of MCT epitaxial films due to formation of a near-surface high- conductivity layer of the n-type conduction. The preliminary results show that it is possible to use such actions in the development of technologies for the controlled change of the properties of MCT.

  13. Nona-Arginine Facilitates Delivery of Quantum Dots into Cells via Multiple Pathways

    Directory of Open Access Journals (Sweden)

    Yi Xu

    2010-01-01

    Full Text Available Semiconductor quantum dots (QDs have recently been used to deliver and monitor biomolecules, such as drugs and proteins. However, QDs alone have a low efficiency of transport across the plasma membrane. In order to increase the efficiency, we used synthetic nona-arginine (SR9, a cell-penetrating peptide, to facilitate uptake. We found that SR9 increased the cellular uptake of QDs in a noncovalent binding manner between QDs and SR9. Further, we investigated mechanisms of QD/SR9 cellular internalization. Low temperature and metabolic inhibitors markedly inhibited the uptake of QD/SR9, indicating that internalization is an energy-dependent process. Results from both the pathway inhibitors and the RNA interference (RNAi technique suggest that cellular uptake of QD/SR9 is predominantly a lipid raft-dependent process mediated by macropinocytosis. However, involvement of clathrin and caveolin-1 proteins in transducing QD/SR9 across the membrane cannot be completely ruled out.

  14. Activity and Structure Changes of Arginine Kinase from Shrimp Feneropenaeus chinensis Muscle in Trifluoroethanol Solutions

    Institute of Scientific and Technical Information of China (English)

    于振行; 高丹; 潘继承; 陆捷; 周海梦

    2003-01-01

    Trifluoroethanol has often been used in protein folding studies.The changes in activity and unfolding of arginine kinase from shrimp Feneropenaeus chinensis muscle during denaturation in different concentrations of trifuoroethanol were investigated using far-ultraviolet circular dichroism and fluorescence emission spectra.Arginine kinase was inactivated in trifluoroethanol solutions.The tertiary and secondary structures of arginine kinase were also destroyed in the trifluoroethanol solutions.The unfolding and inactivation courses were measured and compared.Inactivation occurred prior to unfolding, which suggests that the arginine kinase active site is more easily damaged by the denaturant than the enzyme as a whole.The result also indicates that the arginine kinase active site is situated in a limited and flexible region of the enzyme molecule.

  15. Preharvest L-arginine treatment induced postharvest disease resistance to Botrysis cinerea in tomato fruits.

    Science.gov (United States)

    Zheng, Yang; Sheng, Jiping; Zhao, Ruirui; Zhang, Jian; Lv, Shengnan; Liu, Lingyi; Shen, Lin

    2011-06-22

    L-arginine is the precursor of nitric oxide (NO). In order to examine the influence of L-arginine on tomato fruit resistance, preharvest green mature tomato fruits (Solanum lycopersicum cv. No. 4 Zhongshu) were treated with 0.5, 1, and 5 mM L-arginine. The reduced lesion size (in diameter) on fruit caused by Botrytis cinerea, as well as activities of phenylalanine ammonia-lyase (PAL), Chitinase (CHI), β-1,3-glucanase (GLU), and polyphenoloxidase (PPO), was compared between L-arginine treated fruits and untreated fruits. We found that induced resistance increased and reached the highest level at 3-6 days after treatment. Endogenous NO concentrations were positively correlated with PAL, PPO, CHI, and GLU activities after treatment with Pearson coefficients of 0.71, 0.94, 0.97, and 0.87, respectively. These results indicate that arginine induces disease resistance via its effects on NO biosynthesis and defensive enzyme activity.

  16. Potentiality of application of the conductometric L-arginine biosensors for the real sample analysis

    Directory of Open Access Journals (Sweden)

    Jaffrezic-Renault N.

    2012-12-01

    Full Text Available Aim. To determine an influence of serum components on the L-arginine biosensor sensitivity and to formulate practical recommendations for its reliable analysis. Methods. The L-arginine biosensor comprised arginase and urease co-immobilized by cross-linking. Results. The biosensor specificity was investigated based on a series of representative studies (namely, through urea determination in the serum; inhibitory effect studies of mercury ions; high temperature treatment of sensors; studying the biosensor sensitivity to the serum treated by enzymes, and selectivity studies. It was found that the response of the biosensor to the serum injections was determined by high sensitivity of the L-arginine biosensor toward not only to L-arginine but also toward two other basic amino acids (L-lysine and L-histidine. Conclusions. A detailed procedure of optimization of the conductometric biosensor for L-arginine determination in blood serum has been proposed.

  17. Stationary phase expression of the arginine biosynthetic operon argCBH in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Sun Yuan

    2006-02-01

    Full Text Available Abstract Background Arginine biosynthesis in Escherichia coli is elevated in response to nutrient limitation, stress or arginine restriction. Though control of the pathway in response to arginine limitation is largely modulated by the ArgR repressor, other factors may be involved in increased stationary phase and stress expression. Results In this study, we report that expression of the argCBH operon is induced in stationary phase cultures and is reduced in strains possessing a mutation in rpoS, which encodes an alternative sigma factor. Using strains carrying defined argR, and rpoS mutations, we evaluated the relative contributions of these two regulators to the expression of argH using operon-lacZ fusions. While ArgR was the main factor responsible for modulating expression of argCBH, RpoS was also required for full expression of this biosynthetic operon at low arginine concentrations (below 60 μM L-arginine, a level at which growth of an arginine auxotroph was limited by arginine. When the argCBH operon was fully de-repressed (arginine limited, levels of expression were only one third of those observed in ΔargR mutants, indicating that the argCBH operon is partially repressed by ArgR even in the absence of arginine. In addition, argCBH expression was 30-fold higher in ΔargR mutants relative to levels found in wild type, fully-repressed strains, and this expression was independent of RpoS. Conclusion The results of this study indicate that both derepression and positive control by RpoS are required for full control of arginine biosynthesis in stationary phase cultures of E. coli.

  18. Changes in the metabolome of rats after exposure to arginine and N-carbamylglutamate in combination with diquat, a compound that causes oxidative stress, assessed by 1H NMR spectroscopy.

    Science.gov (United States)

    Liu, Guangmang; Xiao, Liang; Cao, Wei; Fang, Tingting; Jia, Gang; Chen, Xiaoling; Zhao, Hua; Wu, Caimei; Wang, Jing

    2016-02-01

    Numerous factors can induce oxidative stress in animal production and lead to growth retardation, disease, and even death. Arginine and N-carbamylglutamate can alleviate the effects of oxidative stress. However, the systematic changes in metabolic biochemistry linked to oxidative stress and arginine and N-carbamylglutamate treatment remain largely unknown. This study aims to examine the effects of arginine and N-carbamylglutamate on rat metabolism under oxidative stress. Thirty rats were randomly divided into three dietary groups (n = 10 each). The rats were fed a basal diet supplemented with 0 (control), 1% arginine, or 0.1% N-carbamylglutamate for 30 days. On day 28, the rats in each treatment were intraperitoneally injected with diquat at 12 mg per kg body weight or sterile solution. Urine and plasma samples were analyzed by metabolomics. Compared with the diquat group, the arginine + diquat group had significantly lower levels of acetamide, alanine, lysine, pyruvate, tyrosine, α-glucose, and β-glucose in plasma; N-carbamylglutamate + diquat had higher levels of 3-hydroxybutyrate, 3-methylhistidine, acetone, allantoin, asparagine, citrate, phenylalanine, trimethylamine-N-oxide, and tyrosine, and lower levels of low density lipoprotein, lipid, lysine, threonine, unsaturated lipid, urea, and very low density lipoprotein (P carbamylglutamate + diquat group had significantly higher levels of allantoin, citrate, homogentisate, phenylacetylglycine, α-ketoglutarate, and β-glucose while lower levels of acetamide, acetate, acetone, benzoate, citrulline, ethanol, hippurate, lactate, N-acetylglutamate, nicotinamide, ornithine, and trigonelline (P carbamylglutamate can alter the metabolome associated with energy metabolism, amino acid metabolism, and gut microbiota metabolism under oxidative stress.

  19. l-Arginine grafted alginate hydrogel beads: A novel pH-sensitive system for specific protein delivery

    Directory of Open Access Journals (Sweden)

    Mohamed S. Mohy Eldin

    2015-05-01

    Full Text Available Novel pH-sensitive hydrogels based on l-arginine grafted alginate (Arg-g-Alg hydrogel beads were synthesized and utilized as a new carrier for protein delivery (BSA in specific pH media. l-arginine was grafted onto the polysaccharide backbone of virgin alginate via amine functions. Evidences of grafting of alginate were extracted from FT-IR and thermal analysis, while the morphological structure of Arg-g-Alg hydrogel beads was investigated by SEM photographs. Factors affecting on the grafting process e.g. l-arginine concentration, reaction time, reaction temperature, reaction pH, and crosslinking conditions, have been studied. Whereas, grafting efficiency of each factor was evaluated. Grafting of alginate has improved both thermal and morphological properties of Arg-g-Alg hydrogel beads. The swelling behavior of Arg-g-Alg beads was determined as a function of pH and compared with virgin calcium alginate beads. The cumulative in vitro release profiles of BSA loaded beads were studied at different pHs for simulating the physiological environments of the gastrointestinal tract. The amount of BSA released from neat alginate beads at pH 2 was almost 15% after 5 h, while the Arg-g-Alg beads at the same conditions were clearly higher than 45%, then it increased to 90% at pH 7.2. Accordingly, grafting of alginate has improved its release profile behavior particularly in acidic media. The preliminary results clearly suggested that the Arg-g-Alg hydrogel may be a potential candidate for polymeric carrier for oral delivery of protein or drugs.

  20. Neither plasma progesterone concentrations nor exogenous eCG affects rates of ovulation or pregnancy in fixed-time artificial insemination (FTAI) protocols for puberal Nellore heifers.

    Science.gov (United States)

    Pegorer, M Figueira; Ereno, R L; Satrapa, R A; Pinheiro, V G; Trinca, L A; Barros, C M

    2011-01-01

    The objective was to evaluate the effects of plasma progesterone (P4) concentrations and exogenous eCG on ovulation and pregnancy rates of pubertal Nellore heifers in fixed-time artificial insemination (FTAI) protocols. In Experiment 1 (Exp. 1), on Day 0 (7 d after ovulation), heifers (n = 15) were given 2 mg of estradiol benzoate (EB) im and randomly allocated to receive: an intravaginal progesterone-releasing device containing 0.558 g of P4 (group 0.5G, n = 4); an intravaginal device containing 1 g of P4 (group 1G, n = 4); 0.558 g of P4 and PGF(2α) (PGF; 150 μg d-cloprostenol, group 0.5G/PGF, n = 4); or 1 g of P4 and PGF (group 1G/PGF, n = 3). On Day 8, PGF was given to all heifers and intravaginal devices removed; 24 h later (Day 9), all heifers were given 1 mg EB im. In Exp. 2, pubertal Nellore heifers (n = 292) were treated as in Exp. 1, with FTAI on Day 10 (30 to 36 h after EB). In Exp. 3, pubertal heifers (n = 459) received the treatments described for groups 0.5G/PGF and 1G/PGF and were also given 300 IU of eCG im (groups 0.5G/PGF/eCG and 1G/PGF/eCG) at device removal (Day 8). In Exp. 1, plasma P4 concentrations were significantly higher in heifers that received 1.0 vs 0.588 g P4, and were significantly lower in heifers that received PGF on Day 0. In Exp. 2 and 3, there were no significant differences among groups in rates of ovulation (65-77%) or pregnancy (Exp. 2: 26-33%; Exp. 3: 39-43%). In Exp. 3, diameter of the dominant ovarian follicle on Day 9 was larger in heifers given 0.558 g vs 1.0 g P4 (10.3 ± 0.2 vs 9.3 ± 0.2 mm; P decreased plasma P4 from Days 1 to 8 and increased diameter of the dominant follicle on Day 9. However, neither of these nor 300 IU of eCG on Day 8 significantly increased rates of ovulation or pregnancy.

  1. Altered Nitrogen Balance and Decreased Urea Excretion in Male Rats Fed Cafeteria Diet Are Related to Arginine Availability

    Directory of Open Access Journals (Sweden)

    David Sabater

    2014-01-01

    rats, but low arginine levels point to a block in the urea cycle between ornithine and arginine, thereby preventing the elimination of excess nitrogen as urea. The ultimate consequence of this paradoxical block in the urea cycle seems to be the limitation of arginine production and/or availability.

  2. Plasma dipeptidyl peptidase-IV activity in patients with type-2 diabetes mellitus correlates positively with HbAlc levels, but is not acutely affected by food intake

    DEFF Research Database (Denmark)

    Ryskjaer, Jakob; Deacon, Carolyn F.; Carr, Richard D;

    2006-01-01

    a standard meal test (566 kcal) was estimated. RESULTS: Mean fasting plasma DPP-IV activity (expressed as degradation of GLP-1) was significantly higher in this patient group compared with the control subjects (67.5 +/- 1.9 vs 56.8 +/- 2.2 fmol GLP-1/h (mean +/- s.e.m.); P=0.001). In the type-2 diabetic...... patients and control subjects. DESIGN: The study included two protocols. Protocol one involved 40 fasting type-2 diabetic patients (28 men); age 61 +/- 1.4 (mean +/- s.e.m.) years; body mass index (BMI) 31 +/- 0.6 kg/m(2); HbAlc 7.2 +/- 0.2%; and 20 matched control subjects (14 men) were studied. Protocol...

  3. Haloarchaeal Protein Translocation via the Twin Arginine Translocation Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Pohlschroder Mechthild

    2009-02-03

    Protein transport across hydrophobic membranes that partition cellular compartments is essential in all cells. The twin arginine translocation (Tat) pathway transports proteins across the prokaryotic cytoplasmic membranes. Distinct from the universally conserved Sec pathway, which secretes unfolded proteins, the Tat machinery is unique in that it secretes proteins in a folded conformation, making it an attractive pathway for the transport and secretion of heterologously expressed proteins that are Sec-incompatible. During the past 7 years, the DOE-supported project has focused on the characterization of the diversity of bacterial and archaeal Tat substrates as well as on the characterization of the Tat pathway of a model archaeon, Haloferax volcanii, a member of the haloarchaea. We have demonstrated that H. volcanii uses this pathway to transport most of its secretome.

  4. Microwave heating of arginine yields highly fluorescent nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Philippidis, Aggelos [Foundation for Research and Technology-Hellas, Institute of Electronic Structure and Laser (Greece); Stefanakis, Dimitrios [University of Crete, Department of Chemistry (Greece); Anglos, Demetrios, E-mail: anglos@iesl.forth.gr [Foundation for Research and Technology-Hellas, Institute of Electronic Structure and Laser (Greece); Ghanotakis, Demetrios, E-mail: ghanotakis@chemistry.uoc.gr [University of Crete, Department of Chemistry (Greece)

    2013-01-15

    Brightly fluorescent nanoparticles were produced via a single-step, single-precursor procedure based on microwave heating of an aqueous solution of the amino acid arginine. Key structural and optical properties of the resulting Arg nanoparticles, Arg-dots, are reported and discussed with emphasis on the pH dependence of their fluorescence emission. The surface of the Arg-dots was functionalised through coupling to folic acid, opening up ways for connecting fluorescent nanoparticles to cancer cells. The generality and versatility of the microwave heating procedure was further demonstrated by the synthesis of different types of carbon nanoparticles, such as CE-dots, that were produced by use of citric acid and ethanolamine as precursors and compared to the Arg-dots.

  5. Catabolism and safety of supplemental L-arginine in animals.

    Science.gov (United States)

    Wu, Zhenlong; Hou, Yongqing; Hu, Shengdi; Bazer, Fuller W; Meininger, Cynthia J; McNeal, Catherine J; Wu, Guoyao

    2016-07-01

    L-arginine (Arg) is utilized via multiple pathways to synthesize protein and low-molecular-weight bioactive substances (e.g., nitric oxide, creatine, and polyamines) with enormous physiological importance. Furthermore, Arg regulates cell signaling pathways and gene expression to improve cardiovascular function, augment insulin sensitivity, enhance lean tissue mass, and reduce obesity in humans. Despite its versatile roles, the use of Arg as a dietary supplement is limited due to the lack of data to address concerns over its safety in humans. Data from animal studies are reviewed to assess arginine catabolism and the safety of long-term Arg supplementation. The arginase pathway was responsible for catabolism of 76-85 and 81-96 % Arg in extraintestinal tissues of pigs and rats, respectively. Dietary supplementation with Arg-HCl or the Arg base [315- and 630-mg Arg/(kg BW d) for 91 d] had no adverse effects on male or female pigs. Similarly, no safety issues were observed for male or female rats receiving supplementation with 1.8- and 3.6-g Arg/(kg BW d) for at least 91 d. Intravenous administration of Arg-HCl to gestating sheep at 81 and 180 mg Arg/(kg BW d) is safe for at least 82 and 40 d, respectively. Animals fed conventional diets can well tolerate large amounts of supplemental Arg [up to 630-mg Arg/(kg BW d) in pigs or 3.6-g Arg/(kg BW d) in rats] for 91 d, which are equivalent to 573-mg Arg/(kg BW d) for humans. Collectively, these results can help guide studies to determine the safety of long-term oral administration of Arg in humans.

  6. Site Specific Modification of the Human Plasma Proteome by Methylglyoxal

    Science.gov (United States)

    Kimzey, Michael J.; Kinsky, Owen R.; Yassine, Hussein N.; Tsaprailis, George; Stump, Craig; Monks, Terrence J.; Lau, Serrine S.

    2015-01-01

    Increasing evidence identifies dicarbonyl stress from reactive glucose metabolites, such as methylglyoxal (MG), as a major pathogenic link between hyperglycemia and complications of diabetes. MG covalently modifies arginine residues, yet the site specificity of this modification has not been thoroughly investigated. Sites of MG adduction in the plasma proteome were identified using LC-MS/MS analysis in vitro following incubation of plasma proteins with MG. Treatment of plasma proteins with MG yielded 14 putative MG hotspots from five plasma proteins (albumin [nine hotspots], serotransferrin, haptoglobin [2 hotspots], hemopexin, and Ig lambda-2 chain C regions). The search results revealed two versions of MG-arginine modification, dihydroxyimidazolidine (R+72) and hydroimidazolone (R+54) adducts. One of the sites identified was R257 in human serum albumin, which is a critical residue located in drug binding site I. This site was validated as a target for MG modification by a fluorescent probe displacement assay, which revealed significant drug dissociation at 300 μM MG from a prodan-HSA complex (75 μM). Moreover, twelve human plasma samples (six male, six female, with two type 2 diabetic subjects from both genders) were analyzed using multiple reaction monitoring (MRM) tandem mass spectrometry and revealed the presence of the MG-modified albumin R257 peptide. These data provide insights into the nature of the site-specificity of MG modification of arginine, which may be useful for therapeutic treatments that aim to prevent MG-mediated adverse responses in patients. PMID:26435215

  7. Site specific modification of the human plasma proteome by methylglyoxal.

    Science.gov (United States)

    Kimzey, Michael J; Kinsky, Owen R; Yassine, Hussein N; Tsaprailis, George; Stump, Craig S; Monks, Terrence J; Lau, Serrine S

    2015-12-01

    Increasing evidence identifies dicarbonyl stress from reactive glucose metabolites, such as methylglyoxal (MG), as a major pathogenic link between hyperglycemia and complications of diabetes. MG covalently modifies arginine residues, yet the site specificity of this modification has not been thoroughly investigated. Sites of MG adduction in the plasma proteome were identified using LC-MS/MS analysis in vitro following incubation of plasma proteins with MG. Treatment of plasma proteins with MG yielded 14 putative MG hotspots from five plasma proteins (albumin [nine hotspots], serotransferrin, haptoglobin [2 hotspots], hemopexin, and Ig lambda-2 chain C regions). The search results revealed two versions of MG-arginine modification, dihydroxyimidazolidine (R+72) and hydroimidazolone (R+54) adducts. One of the sites identified was R257 in human serum albumin, which is a critical residue located in drug binding site I. This site was validated as a target for MG modification by a fluorescent probe displacement assay, which revealed significant drug dissociation at 300 μM MG from a prodan-HSA complex (75 μM). Moreover, twelve human plasma samples (six male, six female, with two type 2 diabetic subjects from both genders) were analyzed using multiple reaction monitoring (MRM) tandem mass spectrometry and revealed the presence of the MG-modified albumin R257 peptide. These data provide insights into the nature of the site-specificity of MG modification of arginine, which may be useful for therapeutic treatments that aim to prevent MG-mediated adverse responses in patients.

  8. Fish oil in combination with high or low intakes of linoleic acid lowers plasma triacylglycerols but does not affect other cardiovascular risk markers in healthy men

    DEFF Research Database (Denmark)

    Damsgaard, Camilla T.; Frøkiær, Hanne; Andersen, Anders D.

    2008-01-01

    with a high- or low-LA intake affects overall CVD risk profile. Healthy men (n = 64) were randomized to 5 mL/d fish oil capsules (FO) [mean intake 3.1 g/d (n-3) LCPUFA] or olive oil capsules (control) and to oils and spreads with either a high (S/B) or a low (R/K) LA content, resulting in a 7.3 g/d higher LA...

  9. Plasma levels of nitric oxide related amino acids in demented subjects with Down syndrome are related to neopterin concentrations.

    Science.gov (United States)

    Coppus, A M W; Fekkes, D; Verhoeven, W M A; Tuinier, S; van Duijn, C M

    2010-03-01

    Subjects with Down syndrome (DS) have abnormalities in virtually all aspects of the immune system and almost all will be affected with Alzheimer's disease (AD). It is thought that nitric oxide (NO) is involved in the pathophysiology of AD. In the present study, including a total of 401 elderly DS subjects, the spectrum of plasma amino acids and neopterin was investigated and related to development of AD. Concentrations of nearly all amino acids in DS subjects differed significantly from those of healthy controls. Neopterin was increased in DS subjects, especially in dementia. The production of NO as reflected by an increased citrulline/arginine ratio (Cit/Arg ratio) was enhanced during development of clinical dementia. Neopterin concentrations correlated to the Cit/Arg ratio only in the group of prevalent demented subjects (rho = 0.48, P = 0.006). The results of this study are suggestive for an increase in oxidative processes in DS subjects with AD.

  10. L-arginine, the substrate of nitric oxide synthase,inhibits fertility of male rats

    Institute of Scientific and Technical Information of China (English)

    W. D. Ramasooriya; M. G. Dharmasiri

    2001-01-01

    Aim: To examine the effect of L-arginine, the substrate of nitric oxide (NO) synthase, on reproductive function of male rots. Methods: Male rats were gavaged with either L-arginine (100 or 200 mg@ kg- 1@ d-1), D-arginine (200 mg@ kg- 1@ d-1 ) or vehicle (0.9% NaCl) for seven consecutive days. Their sexual behaviour and fertility were evaluat ed using receptive females. Results: L-arginine (200 mg/kg) had no significant effect on sexual competence (in terms of sexual arousal, libido, sexual vigour and sexual performance). In mating experiments, the higher dose of L arginine effectively and reversibly inhibited fertility, whilst the lower dose and the inactive stereoisomer D-arginine had no significant effect. The antifertility effect caused by L-arginine was due to a profound elevation in the preimplantation loss mediated possibly by impairment in epididymal sperm maturation, hyperactivated sperm motility and sperm capaci ration. Conclusion: Elevated NO production may be detrimental to male fertility.

  11. Enteral Glutamine Administration in Critically Ill Nonseptic Patients Does Not Trigger Arginine Synthesis

    Science.gov (United States)

    Vermeulen, Mechteld A. R.; Brinkmann, Saskia J. H.; Buijs, Nikki; Beishuizen, Albertus; Bet, Pierre M.; Houdijk, Alexander P. J.; van Goudoever, Johannes B.; van Leeuwen, Paul A. M.

    2016-01-01

    Glutamine supplementation in specific groups of critically ill patients results in favourable clinical outcome. Enhancement of citrulline and arginine synthesis by glutamine could serve as a potential mechanism. However, while receiving optimal enteral nutrition, uptake and enteral metabolism of glutamine in critically ill patients remain unknown. Therefore we investigated the effect of a therapeutically relevant dose of L-glutamine on synthesis of L-citrulline and subsequent L-arginine in this group. Ten versus ten critically ill patients receiving full enteral nutrition, or isocaloric isonitrogenous enteral nutrition including 0.5 g/kg L-alanyl-L-glutamine, were studied using stable isotopes. A cross-over design using intravenous and enteral tracers enabled splanchnic extraction (SE) calculations. Endogenous rate of appearance and SE of glutamine citrulline and arginine was not different (SE controls versus alanyl-glutamine: glutamine 48 and 48%, citrulline 33 versus 45%, and arginine 45 versus 42%). Turnover from glutamine to citrulline and arginine was not higher in glutamine-administered patients. In critically ill nonseptic patients receiving adequate nutrition and a relevant dose of glutamine there was no extra citrulline or arginine synthesis and glutamine SE was not increased. This suggests that for arginine synthesis enhancement there is no need for an additional dose of glutamine when this population is adequately fed. This trial is registered with NTR2285. PMID:27200186

  12. Enteral Glutamine Administration in Critically Ill Nonseptic Patients Does Not Trigger Arginine Synthesis

    Directory of Open Access Journals (Sweden)

    Mechteld A. R. Vermeulen

    2016-01-01

    Full Text Available Glutamine supplementation in specific groups of critically ill patients results in favourable clinical outcome. Enhancement of citrulline and arginine synthesis by glutamine could serve as a potential mechanism. However, while receiving optimal enteral nutrition, uptake and enteral metabolism of glutamine in critically ill patients remain unknown. Therefore we investigated the effect of a therapeutically relevant dose of L-glutamine on synthesis of L-citrulline and subsequent L-arginine in this group. Ten versus ten critically ill patients receiving full enteral nutrition, or isocaloric isonitrogenous enteral nutrition including 0.5 g/kg L-alanyl-L-glutamine, were studied using stable isotopes. A cross-over design using intravenous and enteral tracers enabled splanchnic extraction (SE calculations. Endogenous rate of appearance and SE of glutamine citrulline and arginine was not different (SE controls versus alanyl-glutamine: glutamine 48 and 48%, citrulline 33 versus 45%, and arginine 45 versus 42%. Turnover from glutamine to citrulline and arginine was not higher in glutamine-administered patients. In critically ill nonseptic patients receiving adequate nutrition and a relevant dose of glutamine there was no extra citrulline or arginine synthesis and glutamine SE was not increased. This suggests that for arginine synthesis enhancement there is no need for an additional dose of glutamine when this population is adequately fed. This trial is registered with NTR2285.

  13. Enteral Glutamine Administration in Critically Ill Nonseptic Patients Does Not Trigger Arginine Synthesis.

    Science.gov (United States)

    Vermeulen, Mechteld A R; Brinkmann, Saskia J H; Buijs, Nikki; Beishuizen, Albertus; Bet, Pierre M; Houdijk, Alexander P J; van Goudoever, Johannes B; van Leeuwen, Paul A M

    2016-01-01

    Glutamine supplementation in specific groups of critically ill patients results in favourable clinical outcome. Enhancement of citrulline and arginine synthesis by glutamine could serve as a potential mechanism. However, while receiving optimal enteral nutrition, uptake and enteral metabolism of glutamine in critically ill patients remain unknown. Therefore we investigated the effect of a therapeutically relevant dose of L-glutamine on synthesis of L-citrulline and subsequent L-arginine in this group. Ten versus ten critically ill patients receiving full enteral nutrition, or isocaloric isonitrogenous enteral nutrition including 0.5 g/kg L-alanyl-L-glutamine, were studied using stable isotopes. A cross-over design using intravenous and enteral tracers enabled splanchnic extraction (SE) calculations. Endogenous rate of appearance and SE of glutamine citrulline and arginine was not different (SE controls versus alanyl-glutamine: glutamine 48 and 48%, citrulline 33 versus 45%, and arginine 45 versus 42%). Turnover from glutamine to citrulline and arginine was not higher in glutamine-administered patients. In critically ill nonseptic patients receiving adequate nutrition and a relevant dose of glutamine there was no extra citrulline or arginine synthesis and glutamine SE was not increased. This suggests that for arginine synthesis enhancement there is no need for an additional dose of glutamine when this population is adequately fed. This trial is registered with NTR2285.

  14. Investigation on the remineralization effect of arginine toothpaste for early enamel caries: nanotribological and nanomechanical properties

    Science.gov (United States)

    Yu, Ping; Arola, Dwayne D.; Min, Jie; Yu, Dandan; Xu, Zhou; Li, Zhi; Gao, Shanshan

    2016-11-01

    Remineralization is confirmed as a feasible method to restore early enamel caries. While there is evidence that the 8% arginine toothpaste has a good remineralization effect by increasing surface microhardness, the repair effect on wear-resistance and nanomechanical properties still remains unclear. Therefore, this research was conducted to reveal the nanotribological and nanomechanical properties changes of early caries enamel after remineralized with arginine toothpaste. Early enamel caries were created in bovine enamel blocks, and divided into three groups according to the treatment solutions: distilled and deionized water (DDW group), arginine toothpaste slurry (arginine group) and fluoride toothpaste slurry (fluoride group). All of the samples were subjected to pH cycling for 12 d. The nanotribological and nanomechanical properties were evaluated via the nanoscratch and nanoindentation tests. The wear depth and scratch morphology were observed respectively by scanning probe microscopic (SPM) and scanning electron microscopy (SEM). Finally, x-ray photoelectron spectroscopy (XPS) was used for element analysis of remineralized surfaces. Results showed that the wear depth of early caries enamel decreased after remineralization treatment and both the nanohardness and elastic modulus increased. Compared with the fluoride group, the arginine group exhibited higher nanohardness and elastic modulus with higher levels of calcium, fluoride, nitrogen and phosphorus; this group also underwent less wear and related damage. Overall, the synergistic effect of arginine and fluoride in arginine toothpaste achieves better nanotribological and nanomechanical properties than the single fluoride toothpaste, which could have significant impact on fight against early enamel caries.

  15. Atropine and ODQ antagonize tetanic fade induced by L-arginine in cats

    Directory of Open Access Journals (Sweden)

    J.M. Cruciol-Souza

    1999-10-01

    Full Text Available Although it has been demonstrated that nitric oxide (NO released from sodium nitrite induces tetanic fade in the cat neuromuscular preparations, the effect of L-arginine on tetanic fade and its origin induced by NO have not been studied in these preparations. Furthermore, atropine reduces tetanic fade induced by several cholinergic and anticholinergic drugs in these preparations, whose mechanism is suggested to be mediated by the interaction of acetylcholine with inhibitory presynaptic muscarinic receptors. The present study was conducted in cats to determine the effects of L-arginine alone or after pretreatment with atropine or 1H-[1,2,4]oxadiazole [4,3-a]quinoxalin-1-one (ODQ on neuromuscular preparations indirectly stimulated at high frequency. Drugs were injected into the middle genicular artery. L-arginine (2 mg/kg and S-nitroso-N-acetylpenicillamine (SNAP; 16 µg/kg induced tetanic fade. The Nw-nitro-L-arginine (L-NOARG; 2 mg/kg alone did not produce any effect, but reduced the tetanic fade induced by L-arginine. D-arginine (2 mg/kg did not induce changes in tetanic fade. The tetanic fade induced by L-arginine or SNAP was reduced by previous injection of atropine (1.0 µg/kg or ODQ (15 µg/kg. ODQ alone did not change tetanic fade. The data suggest that the NO-synthase-GC pathway participates in the L-arginine-induced tetanic fade in cat neuromuscular preparations. The tetanic fade induced by L-arginine probably depends on the action of NO at the presynaptic level. NO may stimulate guanylate cyclase increasing acetylcholine release and thereby stimulating presynaptic muscarinic receptors.

  16. Hepatic adaptation compensates inactivation of intestinal arginine biosynthesis in suckling mice.

    Directory of Open Access Journals (Sweden)

    Vincent Marion

    Full Text Available Suckling mammals, including mice, differ from adults in the abundant expression of enzymes that synthesize arginine from citrulline in their enterocytes. To investigate the importance of the small-intestinal arginine synthesis for whole-body arginine production in suckling mice, we floxed exon 13 of the argininosuccinate synthetase (Ass gene, which codes for a key enzyme in arginine biosynthesis, and specifically and completely ablated Ass in enterocytes by crossing Ass (fl and Villin-Cre mice. Unexpectedly, Ass (fl/fl /VilCre (tg/- mice showed no developmental impairments. Amino-acid fluxes across the intestine, liver, and kidneys were calculated after determining the blood flow in the portal vein, and hepatic and renal arteries (86%, 14%, and 33%, respectively, of the transhepatic blood flow in 14-day-old mice. Relative to control mice, citrulline production in the splanchnic region of Ass (fl/fl /VilCre (tg/- mice doubled, while arginine production was abolished. Furthermore, the net production of arginine and most other amino acids in the liver of suckling control mice declined to naught or even changed to consumption in Ass (fl/fl /VilCre (tg/- mice, and had, thus, become remarkably similar to that of post-weaning wild-type mice, which no longer express arginine-biosynthesizing enzymes in their small intestine. The adaptive changes in liver function were accompanied by an increased expression of genes involved in arginine metabolism (Asl, Got1, Gpt2, Glud1, Arg1, and Arg2 and transport (Slc25a13, Slc25a15, and Slc3a2, whereas no such changes were found in the intestine. Our findings suggest that the genetic premature deletion of arginine synthesis in enterocytes causes a premature induction of the post-weaning pattern of amino-acid metabolism in the liver.

  17. Haplotypes in the APOA1-C3-A4-A5 gene cluster affect plasma lipids in both humans and baboons

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qian-fei; Liu, Xin; O' Connell, Jeff; Peng, Ze; Krauss, Ronald M.; Rainwater, David L.; VandeBerg, John L.; Rubin, Edward M.; Cheng, Jan-Fang; Pennacchio, Len A.

    2003-09-15

    Genetic studies in non-human primates serve as a potential strategy for identifying genomic intervals where polymorphisms impact upon human disease-related phenotypes. It remains unclear, however, whether independently arising polymorphisms in orthologous regions of non-human primates leads to similar variation in a quantitative trait found in both species. To explore this paradigm, we studied a baboon apolipoprotein gene cluster (APOA1/C3/A4/A5) for which the human gene orthologs have well established roles in influencing plasma HDL-cholesterol and triglyceride concentrations. Our extensive polymorphism analysis of this 68 kb gene cluster in 96 pedigreed baboons identified several haplotype blocks each with limited diversity, consistent with haplotype findings in humans. To determine whether baboons, like humans, also have particular haplotypes associated with lipid phenotypes, we genotyped 634 well characterized baboons using 16 haplotype tagging SNPs. Genetic analysis of single SNPs, as well as haplotypes, revealed an association of APOA5 and APOC3 variants with HDL cholesterol and triglyceride concentrations, respectively. Thus, independent variation in orthologous genomic intervals does associate with similar quantitative lipid traits in both species, supporting the possibility of uncovering human QTL genes in a highly controlled non-human primate model.

  18. Alterations in the levels of plasma amino acids in polycystic ovary syndrome- A pilot study

    Directory of Open Access Journals (Sweden)

    Sumithra N Unni C

    2015-01-01

    Full Text Available Background & objectives: Plasma amino acid levels are known to be altered in conditions like sepsis and burns which are situations of metabolic stress. Polycystic ovary syndrome (PCOS, a condition which affects a woman throughout her life, is said to be associated with metabolic stress. This study was undertaken to assess if there were significant alterations in the levels of plasma amino acids in women with PCOS. Methods: Sixty five women with PCOS along with the similar number of age matched normal controls were included in this study. Levels of 14 amino acids were determined using reverse phase high performance liquid chromatography. Results: The levels of methionine, cystine, isoleucine, phenylalanine, valine, tyrosine, proline, glycine, lysine and histidine were found to be significantly (P<0.001 lower in cases than in controls. Arginine and alanine levels were found to be significantly (P<0.001 higher in cases compared with controls. Interpretation & conclusions: Our findings showed significant derangement in the levels of plasma amino acids in women with PCOS which might be due to the oxidative and metabolic stress associated with it. Further studies need to be done to confirm the findings.

  19. Nitric oxide control of steroidogenesis: Endocrine effects of N sup G -nitro-L-arginine and comparisons to alcohol

    Energy Technology Data Exchange (ETDEWEB)

    Adams, M.L.; Nock, B.; Truong, R.; Cicero, T.J. (Washington Univ., St. Louis, MO (United States))

    1992-01-01

    Recent studies suggest that nitric oxide (NO) may regulate hormone biosynthesis and secretion. This was tested by treating male rats with N{sup G}-nitro-L-arginine methyl ester (NAME), a NO synthase inhibitor, and measuring serum and testicular interstitial fluid testosterone and serum corticosterone, luteinizing hormone (LH), and prolactin (PRL). The effect of N{sup G}-nitro-L-arginine (NA), a less-soluble form of the same NO synthase inhibitor, on the reproductive suppressant actions of alcohol was also examined. NAME increased testosterone and corticosterone secretion dose-dependently without affecting LH and PRL secretion. The alcohol-induced suppression of testosterone or LH secretion was not altered by treatment with NA. Although effects of NAME and NA on other systems may be involved, these results indicate that testicular and adrenal steroidogenesis are negatively regulated by endogenous NO and that NO does not regulate LH and PRL secretion or inhibit the testicular steroidogenic pathway in the same way as alcohol.

  20. Escherichia coli exhibits a membrane-related response to a small arginine- and tryptophan-rich antimicrobial peptide.

    Science.gov (United States)

    Fränzel, Benjamin; Penkova, Maya; Frese, Christian; Metzler-Nolte, Nils; Andreas Wolters, Dirk

    2012-08-01

    Since multiresistant bacterial strains are more widespread and the victim numbers steadily increase, it is very important to possess a broad bandwidth of antimicrobial substances. Antibiotics often feature membrane-associated effect mechanisms. So, we present a membrane proteomic approach to shed light on the cellular response of Escherichia coli as model organism to the hexapeptide MP196, which is arginine and tryptophan rich. Analyzing integral membrane proteins are still challenging, although various detection strategies have been developed in the past. In particular, membrane proteomics in bacteria have been conducted very little due to the special physical properties of these membrane proteins. To obtain more information on the cellular response of the new compound group of small peptides, the tryptophan- and arginine-rich hexapeptide MP196 was subject to a comprehensive quantitative membrane proteomic study on E. coli by means of metabolic labeling in combination with membrane lipid analyses. This study provides in total 767 protein identifications including 185 integral membrane proteins, from which 624 could be quantified. Among these proteins, 134 were differentially expressed. Thereby, functional groups such as amino acid and membrane biosynthesis were affected, stress response could be observed, and the lipid composition of the membrane was significantly altered. Especially, the strong upregulation of the envelope stress induced protein. Spy indicates membrane damage, as well as the downregulation of the mechano-sensitive channel MscL beside others. Finally, the exceptional downregulation of transport systems strengthens these findings.

  1. The Retentive Strength of Cemented Zirconium Oxide Crowns after Dentin Pretreatment with Desensitizing Paste Containing 8% Arginine and Calcium Carbonate.

    Science.gov (United States)

    Pilo, Raphael; Harel, Noga; Nissan, Joseph; Levartovsky, Shifra

    2016-03-25

    The effect of dentin pretreatment with Desensitizing Paste containing 8% arginine and calcium carbonate on the retention of zirconium oxide (Y-TZP) crowns was tested. Forty molar teeth were mounted and prepared using a standardized protocol. Y-TZP crowns were produced using computer-aided design and computer-aided manufacturing (CAD-CAM) technology. The 40 prepared teeth were either pretreated with Desensitizing Paste or not pretreated. After two weeks, each group was subdivided into two groups, cemented with either Resin Modified Glass Ionomer Cement (RMGIC) or Self Adhesive Resin Cement (SARC)). Prior to cementation, the surface areas of the prepared teeth were measured. After aging, the cemented crown-tooth assemblies were tested for retentive strength using a universal testing machine. The debonded surfaces of the teeth and crowns were examined microscopically at 10× magnification. Pretreating the dentin surfaces with Desensitizing Paste prior to cementation did not affect the retention of the Y-TZP crowns. The retentive values for RMGIC (3.04 ± 0.77 MPa) were significantly higher than those for SARC (2.28 ± 0.58 MPa). The predominant failure modes for the RMGIC and SARC were adhesive cement-dentin and adhesive cement-crown, respectively. An 8.0% arginine and calcium carbonate in-office desensitizing paste can be safely used to reduce post-cementation sensitivity without reducing the retentive strength of Y-TZP crowns.

  2. Are plasma oxytocin and vasopressin levels reflective of amygdala activation during the processing of negative emotions? A preliminary study

    Directory of Open Access Journals (Sweden)

    Kosuke eMotoki

    2016-04-01

    Full Text Available Plasma oxytocin (OT and arginine vasopressin (AVP are associated with individual differences in emotional responses and behaviors. The amygdala is considered to be an important brain region for regulating emotion-based behavior, with OT and AVP modulating activity in the amygdala during the processing of negative emotions. In particular, increased OT levels may diminish amygdala activation (anxiolytic effects and enhanced AVP levels may augment amygdala activation (anxiogenic effects when negative emotions are processed. A growing body of research has shown that the effects of OT and AVP are modulated by sex: the aforementioned anxiolytic effects of OT and the anxiogenic effects of AVP occur in men, but not in women. However, we have little knowledge regarding the biological mechanisms underlying OT and AVP plasma levels or their respective anxiogenic and anxiolytic effects; similarly, little is known about the causes and nature of sex differences related to these neuropeptides and their effects on emotional processing. In the current study, we focused on the neural functions associated with the biological mechanisms underlying such effects. We hypothesized that amygdala activation would correlate with plasma OT (anxiolytic effects and AVP (anxiogenic effects levels because the amygdala is thought to affect the coordinated release of these neuropeptides following affective experiences. We further hypothesized that the effects would be modulated by sex. We assessed 51 participants (male and female using a paradigm involving negative emotion in conjunction with functional magnetic resonance imaging and measurements of plasma OT and AVP levels. We determined that increased plasma AVP levels were positively associated with amygdala activation (anxiogenic effects in men, but not in women. These findings highlight the potential underlying neural mechanisms of plasma AVP levels in men.

  3. Arginine deiminase modulates endothelial tip cells via excessive synthesis of reactive oxygen species.

    Science.gov (United States)

    Zhuo, Wei; Song, Xiaomin; Zhou, Hao; Luo, Yongzhang

    2011-10-01

    ADI (arginine deiminase), an enzyme that hydrolyses arginine, has been reported as an anti-angiogenesis agent. However, its molecular mechanism is unclear. We have demonstrated for the first time that ADI modulates the angiogenic activity of endothelial tip cells. By arginine depletion, ADI disturbs actin filament in endothelial tip cells, causing disordered migratory direction and decreased migration ability. Furthermore, ADI induces excessive synthesis of ROS (reactive oxygen species), and activates caspase 8-, but not caspase 9-, dependent apoptosis in endothelial cells. These findings provide a novel mechanism by which ADI inhibits tumour angiogenesis through modulating endothelial tip cells.

  4. Arginine kinase of the flagellate protozoa Trypanosoma cruzi. Regulation of its expression and catalytic activity.

    Science.gov (United States)

    Alonso, G D; Pereira, C A; Remedi, M S; Paveto, M C; Cochella, L; Ivaldi, M S; Gerez de Burgos, N M; Torres, H N; Flawiá, M M

    2001-06-01

    In epimastigotes of Trypanosoma cruzi, the etiological agent of Chagas' disease, arginine kinase activity increased continuously during the exponential phase of growth. A correlation between growth rate, enzyme-specific activity and enzyme protein was observed. Arginine kinase-specific activity, expressed as a function of enzyme protein, remains roughly constant up to 18 days of culture. In the whole range of the culture time mRNA levels showed minor changes indicating that the enzyme activity is post-transcriptionally regulated. Arginine kinase could be proposed as a modulator of energetic reserves under starvation stress condition.

  5. Pregnancy associated plasma protein A2 (PAPP-A2) affects bone size and shape and contributes to natural variation in postnatal growth in mice.

    Science.gov (United States)

    Christians, Julian Kenneth; de Zwaan, Devin Rhys; Fung, Sunny Ho Yeung

    2013-01-01

    Pregnancy associated plasma protein A2 (PAPP-A2) is a protease of insulin-like growth factor binding protein 5 and is receiving increasing attention for its roles in pregnancy and postnatal growth. The goals of the present study were to characterize the effects of PAPP-A2 deletion on bone size and shape in mice at 10 weeks of age, and to determine whether Pappa2 is the gene responsible for a previously-identified quantitative trait locus (QTL) contributing to natural variation in postnatal growth in mice. Mice homozygous for constitutive PAPP-A2 deletion were lighter than wild-type littermates, and had smaller mandible dimensions and shorter skull, humerus, femur, tibia, pelvic girdle, and tail bone. Furthermore, PAPP-A2 deletion reduced mandible dimensions and the lengths of the skull, femur, pelvic girdle, and tail bone more than would be expected due to the effect on body mass. In addition to its effects on bone size, PAPP-A2 deficiency also altered the shape of the mandible and pelvic girdle, as assessed by geometric morphometrics. Mice homozygous for the PAPP-A2 deletion had less deep mandibles, and pelvic girdles with a more feminine shape. Using a quantitative complementation test, we confirmed that Pappa2 is responsible for the effects of the previously-identified QTL, demonstrating that natural variation in the Pappa2 gene contributes to variation in postnatal growth in mice. If similar functional variation in the Pappa2 gene exists in other species, effects of this variation on the shape of the pelvic girdle might explain the previously-reported associations between Pappa2 SNPs and developmental dysplasia of the hip in humans, and birthing in cattle.

  6. Arginine-vasopressin marker copeptin is a sensitive plasma surrogate of hypoxic exposure

    OpenAIRE

    2014-01-01

    Louise Ostergaard,1,2,* Alain Rudiger,3,* Sven Wellmann,2,4,5 Elena Gammella,6 Beatrice Beck-Schimmer,2,3 Joachim Struck,7 Marco Maggiorini,2,8 Max Gassmann,1,2,9 1Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, 2Zürich Center for Integrative Human Physiology, 3Institute of Anesthesiology, 4Division of Neonatology, University Hospital Zürich, Zürich, 5Department of Neonatology, University Children's Hospital Basel, Basel...

  7. Rapidly alternating photoperiods disrupt central and peripheral rhythmicity and decrease plasma glucose, but do not affect glucose tolerance or insulin secretion in sheep.

    Science.gov (United States)

    Varcoe, Tamara J; Gatford, Kathryn L; Voultsios, Athena; Salkeld, Mark D; Boden, Michael J; Rattanatray, Leewen; Kennaway, David J

    2014-09-01

    Disrupting circadian rhythms in rodents perturbs glucose metabolism and increases adiposity. To determine whether these effects occur in a large diurnal animal, we assessed the impact of circadian rhythm disruption upon metabolic function in sheep. Adult ewes (n = 7) underwent 3 weeks of a control 12 h light-12 h dark photoperiod, followed by 4 weeks of rapidly alternating photoperiods (RAPs) whereby the time of light exposure was reversed twice each week. Measures of central (melatonin secretion and core body temperature) and peripheral rhythmicity (clock and metabolic gene expression in skeletal muscle) were obtained over 24 h in both conditions. Metabolic homeostasis was assessed by glucose tolerance tests and 24 h glucose and insulin profiles. Melatonin and core body temperature rhythms resynchronized within 2 days of the last photoperiod shift. High-amplitude Bmal1, Clock, Nr1d1, Cry2 and Per3 mRNA rhythms were apparent in skeletal muscle, which were phase advanced by up to 3.5 h at 2 days after the last phase shift, whereas Per1 expression was downregulated at this time. Pparα, Pgc1α and Nampt mRNA were constitutively expressed in both conditions. Nocturnal glucose concentrations were reduced following chronic phase shifts (zeitgeber time 0, -5.5%; zeitgeber time 12, -2.9%; and zeitgeber time 16, -5.7%), whereas plasma insulin, glucose tolerance and glucose-stimulated insulin secretion were not altered. These results demonstrate that clock gene expression within ovine skeletal muscle oscillates over 24 h and responds to changing photoperiods. However, metabolic genes which link circadian and metabolic clocks in rodents were arrhythmic in sheep. Differences may be due to the ruminant versus monogastric digestive organization in each species. Together, these results demonstrate that despite disruptions to central and peripheral rhythmicity following exposure to rapidly alternating photoperiods, there was minimal impact on glucose homeostasis in

  8. Protein arginine deiminase 4 inhibition is sufficient for the amelioration of collagen-induced arthritis.

    Science.gov (United States)

    Willis, V C; Banda, N K; Cordova, K N; Chandra, P E; Robinson, W H; Cooper, D C; Lugo, D; Mehta, G; Taylor, S; Tak, P P; Prinjha, R K; Lewis, H D; Holers, V M

    2017-01-27

    Citrullination of joint proteins by the protein arginine deiminase (PAD) family of enzymes is recognized increasingly as a key process in the pathogenesis of rheumatoid arthritis. This present study was undertaken to explore the efficacy of a novel PAD4-selective inhibitor, GSK199, in the murine collagen-induced arthritis model of rheumatoid arthritis. Mice were dosed daily from the time of collagen immunization with GSK199. Efficacy was assessed against a wide range of end-points, including clinical disease scores, joint histology and immunohistochemistry, serum and joint citrulline levels and quantification of synovial autoantibodies using a proteomic array containing joint peptides. Administration of GSK199 at 30 mg/kg led to significant effects on arthritis, assessed both by global clinical disease activity and by histological analyses of synovial inflammation, pannus formation and damage to cartilage and bone. In addition, significant decreases in complement C3 deposition in both synovium and cartilage were observed robustly with GSK199 at 10 mg/kg. Neither the total levels of citrulline measurable in joint and serum, nor levels of circulating collagen antibodies, were affected significantly by treatment with GSK199 at any dose level. In contrast, a subset of serum antibodies reactive against citrullinated and non-citrullinated joint peptides were reduced with GSK199 treatment. These data extend our previous demonstration of efficacy with the pan-PAD inhibitor Cl-amidine and demonstrate robustly that PAD4 inhibition alone is sufficient to block murine arthritis clinical and histopathological end-points.

  9. Corrosion Inhibition Effect of Carbon Steel in Sea Water by L-Arginine-Zn2+ System

    Directory of Open Access Journals (Sweden)

    S. Gowri

    2014-01-01

    Full Text Available The inhibition efficiency of L-Arginine-Zn2+ system in controlling corrosion of carbon steel in sea water has been evaluated by the weight-loss method. The formulation consisting of 250 ppm of L-Arginine and 25 ppm of Zn2+ has 91% IE. A synergistic effect exists between L-Arginine and Zn2+. Polarization study reveals that the L-Arginine-Zn2+ system functions as an anodic inhibitor and the formulation controls the anodic reaction predominantly. AC impedance spectra reveal that protective film is formed on the metal surface. Cyclic voltammetry study reveals that the protective film is more compact and stable even in a 3.5% NaCl environment. The nature of the protective film on a metal surface has been analyzed by FTIR, SEM, and AFM analysis.

  10. Large-Scale Identification of the Arginine Methylome by Mass Spectrometry

    DEFF Research Database (Denmark)

    Sylvestersen, Kathrine B; Nielsen, Michael L

    2016-01-01

    The attachment of one or more methylation groups to the side chain of arginine residues is a regulatory mechanism for cellular proteins. Recent advances in mass spectrometry-based characterization allow comprehensive identification of arginine methylation sites by peptide-level enrichment...... strategies. Described in this unit is a 4-day protocol for enrichment of arginine-methylated peptides and subsequent identification of thousands of distinct sites by mass spectrometry. Specifically, the protocol explains step-by-step sample preparation, enrichment using commercially available antibodies......, prefractionation using strong cation exchange, and identification using liquid chromatography coupled to tandem mass spectrometry. A strategy for relative quantification is described using stable isotope labeling by amino acids in cell culture (SILAC). Approaches for analysis of arginine methylation site occupancy...

  11. Utilization of ornithine and arginine as specific precursors of clavulanic acid.

    Science.gov (United States)

    Romero, J; Liras, P; Martín, J F

    1986-01-01

    Ornithine and arginine (5 to 20 mM), but not glutamic acid or proline, exerted a concentration-dependent stimulatory effect on the biosynthesis of clavulanic acid in both resting-cell cultures and long-term fermentations of Streptomyces clavuligerus. Ornithine strongly inhibited cephamycin biosynthesis in the same strain. [1-14C]-, [5-14C]-, or [U-14 C] ornithine was efficiently incorporated into clavulanic acid, whereas the incorporation of uniformly labeled glutamic acid was very poor. [U-14C] citrulline were not incorporated at all. Mutant nca-1, a strain that is blocked in clavulanic acid biosynthesis, did not incorporate arginine into clavulanic acid. S. clavuligerus showed arginase activity, converting arginine into ornithine, but not amidinotransferase activity. Both arginase activity and clavulanic acid formation were enhanced simultaneously by supplementing the production medium with 10 mM arginine. PMID:2877616

  12. Inhibition of corrosion of carbon steel in well water by arginine-Zn2+ system

    Directory of Open Access Journals (Sweden)

    ANTHONY SAMY SAHAYA RAJA

    2012-06-01

    Full Text Available The environmental friendly inhibitor system arginine-Zn2+, has been investigated by weight-loss method. A synergistic effect exists between arginine and Zn2+ system. The formulation consisting of 250 ppm of arginine and 5 ppm of Zn2+ offers good inhibition efficiency of 98 %. Polarization study reveals that this formulation functions as an anodic inhibitor. AC impedance spectra reveal that a protective film is formed on the metal sur­face. The FTIR spectral study leads to the conclusion that the Fe2+- DL-arginine complex, formed on anodic sites of the metal surface, controls the anodic reaction. Zn(OH2 formed on the cathodic sites of the metal surface controls the cathodic reaction. The surface morphology and the roughness of the metal surface were analyzed with Atomic Force Microscope. A suitable mechanism of corrosion inhibition is proposed based on the results obtained from weight loss study and surface analysis technique.

  13. Synthesis, characterization and properties of L-arginine-passivated silver nanocolloids

    Science.gov (United States)

    Sunatkari, A. L.; Talwatkar, S. S.; Tamgadge, Y. S.; Muley, G. G.

    2016-05-01

    We investigate the effect of L-arginine-surface passivation on localised surface plasmon resonance (LSPR), size and stability of colloidal Silver Nanoparticles (AgNPs) synthesized by chemical reduction method. The surface Plasmon resonance absorption peak of AgNPs shows blue shift with the increase in L-arginine concentration. Transmission electron microscopy (TEM) analysis confirmed that the average size of AgNPs reduces from 10 nm to 6 nm as the concentration of L-Arginine increased from 1 to 5 mM. The X-ray diffraction study (XRD) confirmed the formation face-centred cubic (fcc) structured AgNPs. FT-IR studies revealed strong bonding between L-arginine functional groups and AgNPs.

  14. Thermal, FT–IR and SHG efficiency studies of L-arginine doped KDP crystals

    Indian Academy of Sciences (India)

    K D Parikh; D J Dave; B B Parekh; M J Joshi

    2007-04-01

    Potassium dihydrogen phosphate (KDP) is a well known nonlinear optical (NLO) material with different applications. Since most of the amino acids exhibit NLO property, it is of interest to dope them in KDP. In the present study, amino acid L-arginine was doped in KDP. The doping of L-arginine was confirmed by FT–IR and paper chromatography. Thermogravimetry suggested that as the amount of doping increases the thermal stability decreases as well as the value of thermodynamic and kinetic parameters decreases. The second harmonic generation (SHG) efficiency of L-arginine doped KDP crystals was found to be increasing with doping concentration of L-arginine. The results are discussed here.

  15. Copeptin, a surrogate marker for arginine vasopressin secretion, is associated with higher glucose and insulin concentrations but not higher blood pressure in obese men

    DEFF Research Database (Denmark)

    Asferg, C L; Andersen, Ulrik Bjørn; Linneberg, A

    2014-01-01

    AIM: To explore the putative associations of plasma copeptin, the C-terminal portion of provasopressin and a surrogate marker for arginine vasopressin secretion, with obesity-related health problems, such as hyperlipidaemia, hyperinsulinaemia, hyperglycaemia, high blood pressure and an android fat...... blood pressure (r = 0.11, P = 0.29), 24-h diastolic blood pressure (r = 0.11, P = 0.28), BMI (r = 0.09, P = 0.37), total body fatness percentage (r = 0.10, P = 0.33), android fat mass percentage (r = 0.04, P = 0.66) or serum triglyceride concentrations (r = 0.04; P = 0.68). In contrast, plasma copeptin......, and is associated with abnormalities in glucose and insulin metabolism, but not with higher blood pressure or an android fat distribution in obese men....

  16. Effects of inhaled L-arginine administration in a murine model of acute asthma.

    Directory of Open Access Journals (Sweden)

    Zeynep Arikan-Ayyildiz

    2014-10-01

    Full Text Available Increased arginase activity in the airways decreases L-arginine and causes deficiency of bronchodilating and anti-inflammatory nitric oxide (NO in asthma. As, it is suggested that L-arginine may have therapeutic potential in asthma treatment, we aimed to investigate the effects of inhaled L-arginine on oxygen saturation (SaO₂ and airway histology in a murine model of acute asthma. Twenty eight BALB/c mice were divided into four groups; I, II, III and IV (control. All groups except the control were sensitized and challenged with ovalbumin. After establishement of acute asthma attack by metacholine administration, the mice were treated with inhaled L-arginine (Group I, saline (Group II and budesonide (Group III, respectively. SaO₂was measured by pulse oximeter just before and 5 min after methacholine. A third measurement of SaO₂was also obtained 15 min after drug administration in these study groups. Inflammation in the lung tissues of the sacrificed animals were scored to determine the effects of the study drugs. The number of eosinophils in bronchoalveolar lavage (BAL was determined. The results indicated that inflammatory scores significantly improved in groups receiving study drugs when compared with placebo and L-arginine was similar in decreasing scores when compared with budesonide. SaO₂had a tendency to increase after L-arginine administration after acute asthma attack and this increase was statistically significant (p=0.043. Eosinophilia in BAL significantly reduced in group receiving L-arginine when compared with placebo (p<0.05. Thus in this study we demonstrated that L-arginine improved SaO₂and inflammatory scores in an acute model of asthma.

  17. Effect of L-arginine supplement on liver regeneration after partial hepatectomy in rats

    Directory of Open Access Journals (Sweden)

    Kurokawa Tsuyoshi

    2012-05-01

    Full Text Available Abstract Background Nitric oxide (NO has been reported to be a key mediator in hepatocyte proliferation during liver regeneration. NO is the oxidative metabolite of L-arginine, and is produced by a family of enzymes, collective termed nitric oxide synthase (NOS. Thus, administration of L-arginine might enhance liver regeneration after a hepatectomy. Another amino acid, L-glutamine, which plays an important role in catabolic states and is a crucial factor in various cellular and organ functions, is widely known to enhance liver regeneration experimentally. Thus, the present study was undertaken to evaluate the effects of an L-arginine supplement on liver regeneration, and to compared this with supplementation with L-glutamine and L-alanine (the latter as a negative control, using a rat partial hepatectomy model. Methods Before and after a 70% hepatectomy, rats received one of three amino acid solutions (L-arginine, L-glutamine, or L-alanine. The effects on liver regeneration of the administered solutions were examined by assessment of restituted liver mass, staining for proliferating cell nuclear antigen (PCNA, and total RNA and DNA content 24 and 72 hours after the operation. Results At 72 hours after the hepatectomy, the restituted liver mass, the PCNA labeling index and the DNA quantity were all significantly higher in the L-arginine and L-glutamine groups than in the control. There were no significant differences in those parameters between the L-arginine and L-glutamine groups, nor were any significant differences found between the L-alanine group and the control. Conclusion Oral supplements of L-arginine and L-glutamine enhanced liver regeneration after hepatectomy in rats, suggesting that an oral arginine supplement can clinically improve recovery after a major liver resection.

  18. Biocatalytic synthesis, antimicrobial properties and toxicity studies of arginine derivative surfactants.

    Science.gov (United States)

    Fait, M Elisa; Garrote, Graciela L; Clapés, Pere; Tanco, Sebastian; Lorenzo, Julia; Morcelle, Susana R

    2015-07-01

    Two novel arginine-based cationic surfactants were synthesized using as biocatalyst papain, an endopeptidase from Carica papaya latex, adsorbed onto polyamide. The classical substrate N (α)-benzoyl-arginine ethyl ester hydrochloride for the determination of cysteine and serine proteases activity was used as the arginine donor, whereas decyl- and dodecylamine were used as nucleophiles for the condensation reaction. Yields higher than 90 and 80 % were achieved for the synthesis of N (α)-benzoyl-arginine decyl amide (Bz-Arg-NHC10) and N (α)-benzoyl-arginine dodecyl amide (Bz-Arg-NHC12), respectively. The purification process was developed in order to make it more sustainable, by using water and ethanol as the main separation solvents in a single cationic exchange chromatographic separation step. Bz-Arg-NHC10 and Bz-Arg-NHC12 proved antimicrobial activity against both Gram-positive and Gram-negative bacteria, revealing their potential use as effective disinfectants as they reduced 99 % the initial bacterial population after only 1 h of contact. The cytotoxic effect towards different cell types of both arginine derivatives was also measured. Bz-Arg-NHCn demonstrated lower haemolytic activity and were less eye-irritating than the commercial cationic surfactant cetrimide. A similar trend could also be observed when cytotoxicity was tested on hepatocytes and fibroblast cell lines: both arginine derivatives were less toxic than cetrimide. All these properties would make the two novel arginine compounds a promising alternative to commercial cationic surfactants, especially for their use as additives in topical formulations.

  19. Influence of in ovo injection of L-arginine on productive and physiological performance of quail

    Directory of Open Access Journals (Sweden)

    W. K. Al–Hayani,

    2011-07-01

    Full Text Available This study evaluated the influence of inoculation of different levels of L–arginine into eggs of 0-day-old quail embryos. On 0 day of incubation, 480 eggs (120 for each treatment group were injected with 0% arginine (C group; 1% arginine (T1; 2% arginine (T2; or 3% arginine (T3. After hatching, 336 quail chicks (84 chicks produced from each in ovo injection treatment were placed in an experimental quail house and distributed into 4 treatment groups of 3 replicates each with 16 quail chicks for each replicate. Traits determined in this study were hatchability rate, initial body weight (7 days of age, final body weight (42 days old, feed intake, weight gain, feed conversion ratio, proportional weights of carcass, breast, legs, back bone, wings, neck, abdominal fat, liver, heart, and gizzard, blood serum glucose, protein, cholesterol, total lipids, triglycerides, calcium and phosphorus and Results revealed that in ovo injection with different levels of L–arginine on 0 day of incubation resulted in significant increase (P≤0.05 in hatchability rate, initial body weight, final body weight, feed conversion ratio and serum glucose, protein, total protein, calcium, phosphorus and proportional weights of carcass, breast, legs, liver, heart, and gizzard and significant decrease (P≤0.05 in serum cholesterol, total lipids, triglycerides and proportional weight of back bone, wings and abdominal fat. In conclusion, the inoculation of different levels of L–arginine into eggs of 0–day–old quail embryos especially at the levels of 2% and 3% resulted in significant improvement in productive and physiological performance of quail. Hence in ovo injection with L–arginine could be used as a beneficial tool for enhance productive performance of quail.

  20. Dietary -carbamylglutamate and rumen-protected -arginine supplementation ameliorate fetal growth restriction in undernourished ewes.

    Science.gov (United States)

    Zhang, H; Sun, L W; Wang, Z Y; Deng, M T; Zhang, G M; Guo, R H; Ma, T W; Wang, F

    2016-05-01

    This study was conducted with an ovine intrauterine growth restriction (IUGR) model to test the hypothesis that dietary -carbamylglutamate (NCG) and rumen-protected -Arg (RP-Arg) supplementation are effective in ameliorating fetal growth restriction in undernourished ewes. Beginning on d 35 of gestation, ewes were fed a diet providing 100% of NRC-recommended nutrient requirements, 50% of NRC recommendations (50% NRC), 50% of NRC recommendations supplemented with 20 g/d RP-Arg (providing 10 g/d of Arg), and 50% of NRC recommendations supplemented with 5 g/d NCG product (providing 2.5 g/d of NCG). On d 110, maternal, fetal, and placental tissues and fluids were collected and weighed. Ewe weights were lower ( < 0.05) in nutrient-restricted ewes compared with adequately fed ewes. Maternal RP-Arg or NCG supplementation did not alter ( = 0.26) maternal BW in nutrient-restricted ewes. Weights of most fetal organs were increased ( < 0.05) in RP-Arg-treated and NCG-treated underfed ewes compared with 50% NRC-fed ewes. Supplementation of RP-Arg or NCG reduced ( < 0.05) concentrations of β-hydroxybutyrate, triglycerides, and ammonia in serum of underfed ewes but had no effect on concentrations of lactate and GH. Maternal RP-Arg or NCG supplementation markedly improved ( < 0.05) concentrations of AA (particularly arginine-family AA and branched-chain AA) and polyamines in maternal and fetal plasma and in fetal allantoic and amniotic fluids within nutrient-restricted ewes. These novel results indicate that dietary NCG and RP-Arg supplementation to underfed ewes ameliorated fetal growth restriction, at least in part, by increasing the availability of AA in the conceptus and provide support for its clinical use to ameliorate IUGR in humans and sheep industry production.

  1. Development of a Transnasal Delivery System for Recombinant Human Growth Hormone (rhGH): Effects of the Concentration and Molecular Weight of Poly-L-arginine on the Nasal Absorption of rhGH in Rats.

    Science.gov (United States)

    Kawashima, Ryo; Uchida, Masaki; Yamaki, Tsutomu; Ohtake, Kazuo; Hatanaka, Tomomi; Uchida, Hiroyuki; Ueda, Hideo; Kobayashi, Jun; Morimoto, Yasunori; Natsume, Hideshi

    2016-01-01

    A novel system for delivering recombinant human growth hormone (rhGH) that is noninvasive and has a simple method of administration is strongly desired to improve the compliance of children. The aim of this study was to investigate the potential for the intranasal (i.n.) co-administration of rhGH with poly-L-arginine (PLA) as a novel delivery system by evaluating the effects of the concentration and molecular weight of PLA on the nasal absorption of rhGH. The influence of the formation of insoluble aggregates and a soluble complex in the dosage formulation on nasal rhGH absorption was also evaluated by size-exclusion chromatography and ultrafiltration. PLA enhanced the nasal absorption of rhGH at each concentration and molecular weight examined. Nasal rhGH absorption increased dramatically when the PLA concentration was 1.0 % (w/v) due to the improved solubility of rhGH in the formulation. A delay in rhGH absorption was observed when the molecular weight of PLA was increased. This appeared to be because the increase in molecular weight caused the formation of a soluble complex. It seems that the PLA concentration affects the absorption-enhancing effect on rhGH, while the molecular weight of PLA affects the time when the maximum plasma rhGH concentration was reached (Tmax) of rhGH after i.n. administration, mainly because of the interactions among rhGH, PLA, and additives. Therefore, the transnasal rhGH delivery system using PLA is considered to be a promising alternative to subcutaneous (s.c.) injection if these interactions are sufficiently controlled.

  2. Arginine- and Polyamine-Induced Lactic Acid Resistance in Neisseria gonorrhoeae.

    Directory of Open Access Journals (Sweden)

    Zheng Gong

    Full Text Available Microbe-derived lactic acid protects women from pathogens in their genital tract. The purpose of this study was to determine lactic acid susceptibility of Neisseria gonorrhoeae, and identify potential acid resistance mechanisms present in this pathogen. Tested in vitro, lactic acid killed all 10 gonococcal strains analyzed in a low pH-dependent manner. Full inactivation occurred at pH 4.5. At low pH, lactic acid treatment resulted in the entry of the DNA-binding fluorochrome propidium iodide into the microbial cells, suggesting that hydrogen ions from lactic acid compromise the integrity of the bacterial cell wall/membrane. Most likely, hydrogen ions also inactivate intracellular proteins since arginine rendered significant protection against lactic acid presumably through action of the gonococcal arginine decarboxylase, an enzyme located in the bacterial cytoplasm. Surprisingly, arginine also lessened lactic acid-mediated cell wall/membrane disruption. This effect is probably mediated by agmatine, a triamine product of arginine decarboxylase, since agmatine demonstrated a stronger protective effect on GC than arginine at equal molar concentration. In addition to agmatine, diamines cadaverine and putrescine, which are generated by bacterial vaginosis-associated microbes, also induced significant resistance to lactic acid-mediated GC killing and cell wall/membrane disruption. These findings suggest that the arginine-rich semen protects gonococci through both neutralization-dependent and independent mechanisms, whereas polyamine-induced acid resistance contributes to the increased risk of gonorrhea in women with bacterial vaginosis.

  3. [Pathophysiological and clinical aspects of using L-arginine in cardiology and angiology].

    Science.gov (United States)

    Valeev, V V; Trashkov, A P; Kovalenko, A L; Vasil'ev, A G

    Presented herein is a review of scientific publications dedicated to studying the pharmacodynamics of L-arginine and possibilities of its clinical application. Interest to L-arginine is associated, first of all, with its role as a precursor in endogenous synthesis of nitric oxide (NO), playing an important role in regulation of the functional state of the vascular wall. According to numerous studies, oral and parenteral administration of L-arginine restores endothelial production of NO in such diseases as atherosclerosis, hypertension, type 2 diabetes mellitus, obliterating diseases of arteries of lower extremities. The NO-mediated effect of L-arginine manifests itself in increasing the capability of vessels to dilatation, decreasing blood platelet aggregation, and inhibiting proliferation of smooth muscle cells of vessels. The effect is most pronounced in patients presenting with hypercholesterolaemia and initially decreased reactivity of the blood channel. The mostly pronounced NO-mediated effect of L-arginine is observed in parenteral route of its administration. Prolonged administration of L-arginine slows down progression of atherosclerosis.

  4. Transport of Arginine and Aspartic Acid into Isolated Barley Mesophyll Vacuoles 1

    Science.gov (United States)

    Martinoia, Enrico; Thume, Monika; Vogt, Esther; Rentsch, Doris; Dietz, Karl-Josef

    1991-01-01

    The transport of arginine into isolated barley (Hordeum vulgare L.) mesophyll vacuoles was investigated. In the absence of ATP, arginine uptake was saturable with a Km of 0.3 to 0.4 millimolar. Positively charged amino acids inhibited arginine uptake, lysine being most potent with a Ki of 1.2 millimolar. In the presence of free ATP, but not of its Mg-complex, uptake of arginine was drastically enhanced and a linear function of its concentration up to 16 millimolar. The nonhydrolyzable adenylyl imidodiphosphate, but no other nucleotide tested, could substitute for ATP. Therefore, it is suggested that this process does not require energy and does not involve the tonoplast ATPase. The ATP-dependent arginine uptake was strongly inhibited by p-chloromercuriphenylsulfonic acid. Furthermore, hydrophobic amino acids were inhibitory (I50 phenylalanine 1 millimolar). Similar characteristics were observed for the uptake of aspartic acid. However, rates of ATP-stimulated aspartic acid transport were 10-fold lower as compared to arginine transport. Uptake of aspartate in the absence of ATP was negligible. PMID:16668447

  5. Adaptations of Arginine's Intestinal-Renal Axis in Cachectic Tumor-Bearing Rats.

    Science.gov (United States)

    Buijs, Nikki; Vermeulen, Mechteld A R; Weeda, Viola B; Bading, James R; Houdijk, Alexander P J; van Leeuwen, Paul A M

    2015-01-01

    Malignancies induce disposal of arginine, an important substrate for the immune system. To sustain immune function, the tumor-bearing host accelerates arginine's intestinal-renal axis by glutamine mobilization from skeletal muscle and this may promote cachexia. Glutamine supplementation stimulates argi-nine production in healthy subjects. Arginine's intestinal-renal axis and the effect of glutamine supplementation in cancer cach-exia have not been investigated. This study evaluated the long-term adaptations of the interorgan pathway for arginine production following the onset of cachexia and the metabolic effect of glutamine supplementation in the cachectic state. Fischer-344 rats were randomly divided into a tumor-bearing group (n = 12), control group (n = 7) and tumor-bearing group receiving a glutamine-enriched diet (n = 9). Amino acid fluxes and net fractional extractions across intestine, kidneys, and liver were studied. Compared to controls, the portal-drained viscera of tumor-bearing rats took up significantly more glutamine and released significantly less citrulline. Renal metabolism was unchanged in the cachectic tumor-bearing rats compared with controls. Glutamine supplementation had no effects on intestinal and renal adaptations. In conclusion, in the cachectic state, an increase in intestinal glutamine uptake is not accompanied by an increase in renal arginine production. The adaptations found in the cachectic, tumor-bearing rat do not depend on glutamine availability.

  6. Arginine- and Polyamine-Induced Lactic Acid Resistance in Neisseria gonorrhoeae.

    Science.gov (United States)

    Gong, Zheng; Tang, M Matt; Wu, Xueliang; Phillips, Nancy; Galkowski, Dariusz; Jarvis, Gary A; Fan, Huizhou

    2016-01-01

    Microbe-derived lactic acid protects women from pathogens in their genital tract. The purpose of this study was to determine lactic acid susceptibility of Neisseria gonorrhoeae, and identify potential acid resistance mechanisms present in this pathogen. Tested in vitro, lactic acid killed all 10 gonococcal strains analyzed in a low pH-dependent manner. Full inactivation occurred at pH 4.5. At low pH, lactic acid treatment resulted in the entry of the DNA-binding fluorochrome propidium iodide into the microbial cells, suggesting that hydrogen ions from lactic acid compromise the integrity of the bacterial cell wall/membrane. Most likely, hydrogen ions also inactivate intracellular proteins since arginine rendered significant protection against lactic acid presumably through action of the gonococcal arginine decarboxylase, an enzyme located in the bacterial cytoplasm. Surprisingly, arginine also lessened lactic acid-mediated cell wall/membrane disruption. This effect is probably mediated by agmatine, a triamine product of arginine decarboxylase, since agmatine demonstrated a stronger protective effect on GC than arginine at equal molar concentration. In addition to agmatine, diamines cadaverine and putrescine, which are generated by bacterial vaginosis-associated microbes, also induced significant resistance to lactic acid-mediated GC killing and cell wall/membrane disruption. These findings suggest that the arginine-rich semen protects gonococci through both neutralization-dependent and independent mechanisms, whereas polyamine-induced acid resistance contributes to the increased risk of gonorrhea in women with bacterial vaginosis.

  7. Development and optimization of a novel conductometric bi-enzyme biosensor for L-arginine determination.

    Science.gov (United States)

    Saiapina, O Y; Dzyadevych, S V; Jaffrezic-Renault, N; Soldatkin, O P

    2012-04-15

    A highly sensitive conductometric biosensor for l-arginine determination was developed by exploiting the unique biorecognition capacities of two enzymes of urea cycle - arginase (E.C. 3.5.3.1) and urease (E.C. 3.5.1.5). The enzymes were co-immobilized in a single bioselective membrane on the working sensor, while a lysine rich bovine serum albumin (BSA) membrane was immobilized on the reference sensor, allowing differential measurements. The optimum percentage ratio of arginase and urease within the bioselective membrane was determined when the biosensor sensitivity to l-arginine and urea was optimum. Analytical characteristics of the conductometric biosensor for l-arginine determination were compared for two types of enzyme immobilization (cross-linking with glutaraldehyde (GA) and entrapment in the polymeric membrane). The optimum features in terms of the sensitivity, the linear range, and the detection limit (4.2 μS/mM, 0.01-4mM, and 5.0 × 10(-7)M, respectively) were found for l-arginine biosensor based on enzyme cross-linking with GA. A quantitative determination of l-arginine in the real sample (a drinkable solution "Arginine Veyron") gave a satisfactory result compared to the data provided by the producer (a relative error was 4.6%). The developed biosensor showed high operational and storage stability.

  8. Streptococcus pyogenes arginine and citrulline catabolism promotes infection and modulates innate immunity.

    Science.gov (United States)

    Cusumano, Zachary T; Watson, Michael E; Caparon, Michael G

    2014-01-01

    A bacterium's ability to acquire nutrients from its host during infection is an essential component of pathogenesis. For the Gram-positive pathogen Streptococcus pyogenes, catabolism of the amino acid arginine via the arginine deiminase (ADI) pathway supplements energy production and provides protection against acid stress in vitro. Its expression is enhanced in murine models of infection, suggesting an important role in vivo. To gain insight into the function of the ADI pathway in pathogenesis, the virulence of mutants defective in each of its enzymes was examined. Mutants unable to use arginine (ΔArcA) or citrulline (ΔArcB) were attenuated for carriage in a murine model of asymptomatic mucosal colonization. However, in a murine model of inflammatory infection of cutaneous tissue, the ΔArcA mutant was attenuated but the ΔArcB mutant was hyperattenuated, revealing an unexpected tissue-specific role for citrulline metabolism in pathogenesis. When mice defective for the arginine-dependent production of nitric oxide (iNOS(-/-)) were infected with the ΔArcA mutant, cutaneous virulence was rescued, demonstrating that the ability of S. pyogenes to utilize arginine was dispensable in the absence of nitric oxide-mediated innate immunity. This work demonstrates the importance of arginine and citrulline catabolism and suggests a novel mechanism of virulence by which S. pyogenes uses its metabolism to modulate innate immunity through depletion of an essential host nutrient.

  9. Arginine Inhibits Adsorption of Proteins on Polystyrene Surface

    Science.gov (United States)

    Shikiya, Yui; Tomita, Shunsuke; Arakawa, Tsutomu; Shiraki, Kentaro

    2013-01-01

    Nonspecific adsorption of protein on solid surfaces causes a reduction of concentration as well as enzyme inactivation during purification and storage. However, there are no versatile inhibitors of the adsorption between proteins and solid surfaces at low concentrations. Therefore, we examined additives for the prevention of protein adsorption on polystyrene particles (PS particles) as a commonly-used material for vessels such as disposable test tubes and microtubes. A protein solution was mixed with PS particles, and then adsorption of protein was monitored by the concentration and activity of protein in the supernatant after centrifugation. Five different proteins bound to PS particles through electrostatic, hydrophobic, and aromatic interactions, causing a decrease in protein concentration and loss of enzyme activity in the supernatant. Among the additives, including arginine hydrochloride (Arg), lysine hydrochloride, guanidine hydrochloride, NaCl, glycine, and glucose, Arg was most effective in preventing the binding of proteins to PS particles as well as activity loss. Moreover, even after the mixing of protein and PS particles, the addition of Arg caused desorption of the bound protein from PS particles. This study demonstrated a new function of Arg, which expands the potential for application of Arg to proteins. PMID:23967100

  10. Development of a selective inhibitor of Protein Arginine Deiminase 2.

    Science.gov (United States)

    Muth, Aaron; Subramanian, Venkataraman; Beaumont, Edward; Nagar, Mitesh; Kerry, Philip; McEwan, Paul; Srinath, Hema; Clancy, Kathleen Wanda; Parelkar, Sangram S; Thompson, Paul R

    2017-03-22

    Protein arginine deiminase 2 (PAD2) plays a key role in the onset and progression of multiple sclerosis, rheumatoid arthritis and breast cancer. To date, no PAD2-selective inhibitor has been developed. Such a compound will be critical for elucidating the biological roles of this isozyme and may ultimately be useful for treating specific diseases in which PAD2 activity is dysregulated. To achieve this goal, we synthesized a series of benzimidazole-based derivatives of Cl-amidine, hypothesizing that this scaffold would allow access to a series of PAD2-selective inhibitors with enhanced cellular efficacy. Herein, we demonstrate that substitutions at both the N-terminus and C-terminus of Cl-amidine result in >100-fold increases in PAD2 potency and selectivity (30a, 41a, and 49a) as well as cellular efficacy 30a. Notably, these compounds use the far less reactive fluoroacetamidine warhead. In total, we predict that 30a will be a critical tool for understanding cellular PAD2 function and sets the stage for treating diseases in which PAD2 activity is dysregulated.

  11. Cigarette smoking affects sperm plasma membrane integrity%流式细胞术检测吸烟对精子质膜完整性的影响

    Institute of Scientific and Technical Information of China (English)

    李卫巍; 李娜; 吴秋月; 夏欣一; 崔英霞; 黄宇烽; 姚勤

    2012-01-01

    To detect sperm plasma membrane integrity (PMI) of cigarette smoking infertile males using SYBR-14/ PI fluorescent staining and flow cytometry and investigate its clinical significance. Methods: We collected semen samples from 132 cigarette smoking infertile men and 70 normal fertile controls, the former divided into a heavy-smoker group ( > 20 cigarettes a day, n = 68) and a light-smoker group ( ≤20 cigarettes a day, n = 64). We performed computer-assisted semen analysis of the semen samples , and determined sperm PMI by flow cytometry after rinsing with PBS and staining by SYBR-14/PI, the sperm with normal PMI indicated as the percentage of those emitting green fluorescence ( SYBR-14 + /PI- %) , dead sperm as the percentage of those emitting red (SYBR-14 - /PI+ ) , and moribund sperm as the percentage of those emitting both green and red (SYBR-14 + /PI + ). Results: Both the heavy- and light-smoker groups showed significant differences in SYBR-14 -/PI +% and SYBR-14+/PI - % from the normal controls (P<0.01 or P<0.05). SYBR-14 +/PI- % was remarkably lower, while SYBR-14-/PI+ % markedly higher in the heavy-smoker than in the light-smoker group (P<0.05). There was a significant correlation between SYBR-14+ /PI-'% and sperm motility (r = 0.938, P = 0.000). Conclusion: SYBR-14/PI fluorescent staining and flow cytometry analysis could quickly and exactly detect sperm PMI. Cigarette smoking reduces sperm PMI and consequently sperm motility, which might be an important factor of male infertility.%目的:应用荧光染料SYBR-14/PI双色标记法进行流式细胞术检测不育患者精子质膜完整性,分析吸烟对精子质膜完整性的影响并探讨其临床意义. 方法:收集202例男性精液标本,其中132例为本院就诊男性不育患者,分为大烟量组(n=68)与小烟量组(n=64),正常生育男性为正常对照组(n=70).通过计算机辅助精液分析系统进行精液常规分析.精液标本经PBS洗涤处理后用荧光染料SYBR-14/碘

  12. Protective effects of L-arginine against ischemia-reper fusion injur y in non-heart beating rat liver graft

    Institute of Scientific and Technical Information of China (English)

    Jin Gong; Xue-Jun Lao; Shui-Jun Zhang; Shi Chen

    2008-01-01

    BACKGROUND: Although the use of non-heart beating donors (NHBDs) could bridge the widening gap between organ demand and supply, its application to liver transplantation is limited due to the high incidence of primary graft loss. Prevention of liver injury in NHBDs will beneift the results of transplantation. This study was conducted to evaluate the protective effects of L-arginine on liver grafts from NHBDs. METHODS: One hundred and four Wistar rats were randomly divided into 7 groups: normal control (n=8), controls 1, 2 and 3 (C1, C2, C3, n=16), and experimental 1, 2 and 3 (E1, E2, E3, n=16). For groups C1 and E1, C2 and E2, and C3 and E3, the warm ischemia time was 0, 30, and 45 minutes, respectively. Liver grafts were lfushed with and preserved in 4 ℃ Euro-collins solution containing 1 mmol/L L-arginine for 1 hour in each experimental group. Recipients of each experimental group were injected with L-arginine (10 mg/kg body weight) by tail vein 10 minutes before portal vein reperfusion. Donors and recipients of each experimental control group were treated with normal saline. Then transplantation was performed. At 1, 3, and 24 hours after portal vein reperfusion, blood samples were obtained to determine the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), nitric oxide (NO) and plasma endothelin (ET). At 3 hours after portal vein reperfusion, grafts samples were ifxed in 2.5%glutaraldehyde for electron microscopic observation. RESULTS: At 1 hour after portal vein reperfusion, the levels of NO in groups E1, E2, E3 and C1, C2, C3 were lower, while the levels of plasma ET, serum ALT and AST were higher than those in the normal control group (P CONCLUSIONS: The imbalance between NO and ET plays an important role in the development of ischemia-reperfusion injury of liver grafts from NHBDs. L-arginine can attenuate injury in liver grafts from NHBDs by improving the balance between NO and ET.

  13. Early changes of endothelin, nitric oxide and arginine-vasopressin in patients with acute cerebral injury

    Institute of Scientific and Technical Information of China (English)

    杨云梅; 黄卫东; 吕雪英

    2002-01-01

    Objective: To investigate the early changes and clinical significance of plasma endothelin (ET), nitric oxide (NO) and arginine-vasopressin (AVP) in patients with acute moderate or severe cerebral injury. Methods: The early (at 24 hours after injury) plasma concentrations of ET, NO and AVP were measured with radioimmunoassay and Green technique in 48 cases of acute moderate (GCS≤8 in 27cases ) or severe (GCS>8 in 21 cases) cerebral injury (Group A), in 42 cases of non-cerebral injury (Group B) and in 38 normal individuals (Group C), respectively. Results: The early plasma concentrations of ET (109.73 ng/L±12.61 ng/L), NO (92.82 μmol/L±18.21 μmol/L) and AVP (49.78 ng/L±14.29 ng/L) in Group A were higher than those in Group B (67.90 ng/L±11.33 ng/L, 52.66 μmol/L±12.82 μmol/L and 29.93 ng/L±12.11 ng/L, respectively, P<0.01) and Group C (50.65 ng/L±17.12 ng/L, 36.12 μmol/L±12.16 μmol/L and 5.18 ng/L±4.18 ng/L, respectively, P<0.001). The amounts of ET, NO and AVP in patients with severe cerebral injury were 116.18 ng/L±18.12 ng/L, 108.19 μmol/L±13.28 μmol/L and 58.13 ng/L±16.78 ng/L, respectively, which were significantly higher than that of the patients with moderate cerebral injury (92.33 ng/L±16.32 ng/L, 76.38 μmol/L±12.71 μmol/L and 36.18 ng/L±12.13 ng/L respectively, P<0.01). The early levels of ET, NO and AVP in Group A were negatively related to the GCS scales. The amounts of ET, NO and AVP were 126.23 ng/L±15.23 ng/L, 118.18 μmol/L±10.12 μmol/L and 63.49 ng/L±14.36 ng/L respectively in patients with subdural hematoma, which were significantly higher than those in patients with epidural hematoma (81.13 ng/L±12.37 ng/L, 68.02 μmol/L±13.18 μmol/L and 45.63 ng/L±12.41 ng/L respectively, P<0.01). The plasma concentrations of ET, NO and AVP in stable duration (at 336 hours after injury) in Group A and Group B were similar to those in Group C.Conclusions: ET, NO and AVP were related to the pathophysiological process that occurs in

  14. Plasma turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Horton, W. [Univ. of Texas, Austin, TX (United States). Inst. for Fusion Studies; Hu, G. [Globalstar LP, San Jose, CA (United States)

    1998-07-01

    The origin of plasma turbulence from currents and spatial gradients in plasmas is described and shown to lead to the dominant transport mechanism in many plasma regimes. A wide variety of turbulent transport mechanism exists in plasmas. In this survey the authors summarize some of the universally observed plasma transport rates.

  15. Characterization and translational regulation of the arginine decarboxylase gene in carnation (Dianthus caryophyllus L.).

    Science.gov (United States)

    Chang, K S; Lee, S H; Hwang, S B; Park, K Y

    2000-10-01

    Arginine decarboxylase (ADC; EC 4.1.1.9) is a key enzyme in polyamine biosynthesis in plants. We characterized a carnation genomic clone, gDcADC8, in which the deduced polypeptide of ADC was 725 amino acids with a molecular mass of 77.7 kDa. The unusually long 5'-UTR that contained a short upstream open reading frame (uORF) of seven amino acids (MQKSLHI) was predicted to form an extensive secondary structure (free energy of approximately -117 kcal mol-1) using the Zuker m-fold algorithm. The result that an ADC antibody detected two bands of 45 and 33 kDa in a petal extract suggested the full length of the 78 kDa polypeptide precursor converted into two polypeptides in the processing reaction. To investigate the role of the transcript leader in translation, in vitro transcription/translation reactions with various constructs of deletion and mutation were performed using wheat germ extract. The ADC transcript leader affected positively downstream translation in both wheatgerm extract and primary transformant overexpressing ADC gene. It was demonstrated that heptapeptide (8.6 kDa) encoded by the ADC uORF was synthesized in vitro. Both uORF peptide, and the synthetic heptapeptide MQKSLHI of the uORF, repressed the translation of downstream ORF. Mutation of the uORF ATG codon alleviated the inhibitory effect. ORF translation was not affected by either a frame-shift mutation in uORF or a random peptide. To our knowledge, this is the first report to provide evidence that a uORF may inhibit the translation of a downstream ORF, not only in cis but also in trans, and that the leader sequence of the ADC gene is important for efficient translation.

  16. Influence of betaine and arginine supplementation of reduced protein diets on fatty acid composition and gene expression in the muscle and subcutaneous adipose tissue of cross-bred pigs.

    Science.gov (United States)

    Madeira, Marta S; Rolo, Eva S; Alfaia, Cristina M; Pires, Virgínia R; Luxton, Richard; Doran, Olena; Bessa, Rui J B; Prates, José A M

    2016-03-28

    The isolated or combined effects of betaine and arginine supplementation of reduced protein diets (RPD) on fat content, fatty acid composition and mRNA levels of genes controlling lipid metabolism in pig m. longissimus lumborum and subcutaneous adipose tissue (SAT) were assessed. The experiment was performed on forty intact male pigs (Duroc×Large White×Landrace cross-breed) with initial and final live weights of 60 and 93 kg, respectively. Pigs were randomly assigned to one of the following five diets (n 8): 16·0 % of crude protein (control), 13·0 % of crude protein (RPD), RPD supplemented with 0·33 % of betaine, RPD supplemented with 1·5 % of arginine and RPD supplemented with 0·33 % of betaine and 1·5 % of arginine. Data confirmed that RPD increase intramuscular fat (IMF) content and total fat content in SAT. The increased total fat content in SAT was accompanied by higher GLUT type 4, lipoprotein lipase and stearoyl-CoA desaturase mRNA expression levels. In addition, the supplementation of RPD with betaine and/or arginine did not affect either IMF or total fat in SAT. However, dietary betaine supplementation slightly affected fatty acid composition in both muscle and SAT. This effect was associated with an increase of carnitine O-acetyltransferase mRNA levels in SAT but not in muscle, which suggests that betaine might be involved in the differential regulation of some key genes of lipid metabolism in pig muscle and SAT. Although the arginine-supplemented diet decreased the mRNA expression level of PPARG in muscle and SAT, it did not influence fat content or fatty acid composition in any of these pig tissues.

  17. Arginine deprivation and metabolomics: important aspects of intermediary metabolism in relation to the differential sensitivity of normal and tumour cells.

    Science.gov (United States)

    Wheatley, Denys N

    2005-08-01

    Arginine deprivation causes many types of tumour cells to die, often because they cannot recover or convert urea cycle intermediates into arginine. The powerful homeostatic mechanisms that kicks in to restore arginine levels in vivo are lacking in vitro, where there is no supply of citrulline. Comparison between cells deprived of arginine by direct elimination methods or indirectly via arginine degrading enzymes should show differences depending on their ability to handle alternative intermediates (ornithine, citrulline and argininosuccinate) of the urea cycle. The internal state of cells that can, versus those that cannot, use intermediates will metabolically be quite different. These differences should provide clear indicators regarding the sensitivity (susceptibility) of cells to arginine deprivation, from which we will be in a much better position to judge which tumours to treat, and possibly how to design the best treatment to eliminate them.

  18. Transsulfuration pathway thiols and methylated arginines: the Hunter Community Study.

    Directory of Open Access Journals (Sweden)

    Arduino A Mangoni

    Full Text Available BACKGROUND: Serum homocysteine, when studied singly, has been reported to be positively associated both with the endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine [ADMA, via inhibition of dimethylarginine dimethylaminohydrolase (DDAH activity] and with symmetric dimethylarginine (SDMA. We investigated combined associations between transsulfuration pathway thiols, including homocysteine, and serum ADMA and SDMA concentrations at population level. METHODS: Data on clinical and demographic characteristics, medication exposure, C-reactive protein, serum ADMA and SDMA (LC-MS/MS, and thiols (homocysteine, cysteine, taurine, glutamylcysteine, total glutathione, and cysteinylglycine; capillary electrophoresis were collected from a sample of the Hunter Community Study on human ageing [n = 498, median age (IQR = 64 (60-70 years]. RESULTS: REGRESSION ANALYSIS SHOWED THAT: a age (P = 0.001, gender (P = 0.03, lower estimated glomerular filtration rate (eGFR, P = 0.08, body mass index (P = 0.008, treatment with beta-blockers (P = 0.03, homocysteine (P = 0.02, and glutamylcysteine (P = 0.003 were independently associated with higher ADMA concentrations; and b age (P = 0.001, absence of diabetes (P = 0.001, lower body mass index (P = 0.01, lower eGFR (P<0.001, cysteine (P = 0.007, and glutamylcysteine (P < 0.001 were independently associated with higher SDMA concentrations. No significant associations were observed between methylated arginines and either glutathione or taurine concentrations. CONCLUSIONS: After adjusting for clinical, demographic, biochemical, and pharmacological confounders the combined assessment of transsulfuration pathway thiols shows that glutamylcysteine has the strongest and positive independent associations with ADMA and SDMA. Whether this reflects a direct effect of glutamylcysteine on DDAH activity (for ADMA and/or cationic amino acid transport requires further investigations.

  19. Genetic diversity of arginine catabolic mobile element in Staphylococcus epidermidis.

    Directory of Open Access Journals (Sweden)

    Maria Miragaia

    Full Text Available BACKGROUND: The methicillin-resistant Staphylococcus aureus clone USA300 contains a novel mobile genetic element, arginine catabolic mobile element (ACME, that contributes to its enhanced capacity to grow and survive within the host. Although ACME appears to have been transferred into USA300 from S. epidermidis, the genetic diversity of ACME in the latter species remains poorly characterized. METHODOLOGY/PRINCIPAL FINDINGS: To assess the prevalence and genetic diversity of ACME, 127 geographically diverse S. epidermidis isolates representing 86 different multilocus sequence types (STs were characterized. ACME was found in 51% (65/127 of S. epidermidis isolates. The vast majority (57/65 of ACME-containing isolates belonged to the predominant S. epidermidis clonal complex CC2. ACME was often found in association with different allotypes of staphylococcal chromosome cassette mec (SCCmec which also encodes the recombinase function that facilities mobilization ACME from the S. epidermidis chromosome. Restriction fragment length polymorphism, PCR scanning and DNA sequencing allowed for identification of 39 distinct ACME genetic variants that differ from one another in gene content, thereby revealing a hitherto uncharacterized genetic diversity within ACME. All but one ACME variants were represented by a single S. epidermidis isolate; the singular variant, termed ACME-I.02, was found in 27 isolates, all of which belonged to the CC2 lineage. An evolutionary model constructed based on the eBURST algorithm revealed that ACME-I.02 was acquired at least on 15 different occasions by strains belonging to the CC2 lineage. CONCLUSIONS/SIGNIFICANCE: ACME-I.02 in diverse S. epidermidis isolates were nearly identical in sequence to the prototypical ACME found in USA300 MRSA clone, providing further evidence for the interspecies transfer of ACME from S. epidermidis into USA300.

  20. Metabolism via arginase or nitric oxide synthase: two competing arginine pathways in macrophages

    Directory of Open Access Journals (Sweden)

    Meera eRath

    2014-10-01

    Full Text Available Macrophages play a major role in the immune system, both as antimicrobial effector cells and as immunoregulatory cells, which induce, suppress or modulate adaptive immune responses. These key aspects of macrophage biology are fundamentally driven by the phenotype of macrophage arginine metabolism that is prevalent in an evolving or ongoing immune response. M1 macrophages express the enzyme nitric oxide synthase (NOS, which metabolizes arginine to nitric oxide (NO and citrulline. NO can be metabolized to further downstream reactive nitrogen species, while citrulline might be reused for efficient NO synthesis via the citrulline-NO cycle. M2 macrophages are characterized by expression of the enzyme arginase, which hydrolyzes arginine to ornithine and urea. The arginase pathway limits arginine availability for NO synthesis and ornithine itself can further feed into the important downstream pathways of polyamine and proline syntheses, which are important for cellular proliferation and tissue repair. M1 versus M2 polarization leads to opposing outcomes of inflammatory reactions, but depending on the context, M1 and M2 macrophages can be both pro- and antiinflammatory. Notably, M1/M2 macrophage polarization can be driven by microbial infection or innate danger signals without any influence of adaptive immune cells, secondarily driving the T helper (Th1/Th2 polarization of the evolving adaptive immune response. Since both arginine metabolic pathways cross-inhibit each other on the level of the respective arginine break-down products and Th1 and Th2 lymphocytes can drive or amplify macrophage M1/M2 dichotomy via cytokine activation, this forms the basis of a self-sustaining M1/M2 polarization of the whole immune response. Understanding the arginine metabolism of M1/M2 macrophage phenotypes is therefore central to find new possibilities to manipulate immune responses in infection, autoimmune diseases, chronic inflammatory conditions and cancer.

  1. Expression pattern of a nuclear encoded mitochondrial arginine-ornithine translocator gene from Arabidopsis

    Directory of Open Access Journals (Sweden)

    Schneider Anja

    2003-01-01

    Full Text Available Abstract Background Arginine and citrulline serve as nitrogen storage forms, but are also involved in biosynthetic and catabolic pathways. Metabolism of arginine, citrulline and ornithine is distributed between mitochondria and cytosol. For the shuttle of intermediates between cytosol and mitochondria transporters present on the inner mitochondrial membrane are required. Yeast contains a mitochondrial translocator for ornithine and arginine, Ort1p/Arg11p. Ort1p/Arg11p is a member of the mitochondrial carrier family (MCF essential for ornithine export from mitochondria. The yeast arg11 mutant, which is deficient in Ort1p/Arg11p grows poorly on media lacking arginine. Results High-level expression of a nuclear encoded Arabidopsis thaliana homolog (AtmBAC2 of Ort1p/Arg11p was able to suppress the growth deficiency of arg11. RT-PCR analysis demonstrated expression of AtmBAC2 in all tissues with highest levels in flowers. Promoter-GUS fusions showed preferential expression in flowers, i.e. pollen, in the vasculature of siliques and in aborted seeds. Variable expression was observed in leaf vasculature. Induction of the promoter was not observed during the first two weeks in seedlings grown on media containing NH4NO3, arginine or ornithine as sole nitrogen sources. Conclusion AtmBAC2 was isolated as a mitochondrial transporter for arginine in Arabidopsis. The absence of expression in developing seeds and in cotyledons of seedlings indicates that other transporters are responsible for storage and mobilization of arginine in seeds.

  2. Arginine deiminase resistance in melanoma cells is associated with metabolic reprogramming, glucose dependence, and glutamine addiction.

    Science.gov (United States)

    Long, Yan; Tsai, Wen-Bin; Wangpaichitr, Medhi; Tsukamoto, Takashi; Savaraj, Niramol; Feun, Lynn G; Kuo, Macus Tien

    2013-11-01

    Many malignant human tumors, including melanomas, are auxotrophic for arginine due to reduced expression of argininosuccinate synthetase-1 (ASS1), the rate-limiting enzyme for arginine biosynthesis. Pegylated arginine deiminase (ADI-PEG20), which degrades extracellular arginine, resulting in arginine deprivation, has shown favorable results in clinical trials for treating arginine-auxotrophic tumors. Drug resistance is the major obstacle for effective ADI-PEG20 usage. To elucidate mechanisms of resistance, we established several ADI-PEG20-resistant (ADI(R)) variants from A2058 and SK-Mel-2 melanoma cells. Compared with the parental lines, these ADI(R) variants showed the following characteristics: (i) all ADI(R) cell lines showed elevated ASS1 expression, resulting from the constitutive binding of the transcription factor c-Myc on the ASS1 promoter, suggesting that elevated ASS1 is the major mechanism of resistance; (ii) the ADI(R) cell lines exhibited enhanced AKT signaling and were preferentially sensitive to PI3K/AKT inhibitors, but reduced mTOR signaling, and were preferentially resistant to mTOR inhibitor; (iii) these variants showed enhanced expression of glucose transporter-1 and lactate dehydrogenase-A, reduced expression of pyruvate dehydrogenase, and elevated sensitivity to the glycolytic inhibitors 2-deoxy-glucose and 3-bromopyruvate, consistent with the enhanced glycolytic pathway (the Warburg effect); (iv) the resistant cells showed higher glutamine dehydrogenase and glutaminase expression and were preferentially vulnerable to glutamine inhibitors. We showed that c-Myc, not elevated ASS1 expression, is involved in upregulation of many of these enzymes because knockdown of c-Myc reduced their expression, whereas overexpressed ASS1 by transfection reduced their expression. This study identified multiple targets for overcoming ADI-PEG resistance in cancer chemotherapy using recombinant arginine-degrading enzymes.

  3. Molecular characterization of arginine deiminase pathway in Laribacter hongkongensis and unique regulation of arginine catabolism and anabolism by multiple environmental stresses.

    Science.gov (United States)

    Xiong, Lifeng; Teng, Jade L L; Watt, Rory M; Liu, Cuihua; Lau, Susanna K P; Woo, Patrick C Y

    2015-11-01

    The betaproteobacterium Laribacter hongkongensis is associated with invasive bacteremic infections and gastroenteritis. Its genome contains two adjacent arc gene cassettes (arc1 and arc2) under independent transcriptional control, which are essential for acid resistance. Laribacter hongkongensis also encodes duplicate copies of the argA and argB genes from the arginine biosynthesis pathway. We show that arginine enhances the transcription of arcA2 but suppresses arcA1 expression. We demonstrate that ArgR acts as a transcriptional regulator of the two arc operons through binding to ARG operator sites (ARG boxes). Upon temperature shift from 20°C to 37°C, arcA1 transcription is upregulated while arcA2, argA2, argB2 and argG are downregulated. The transcription of arcA1 and arcA2 are augmented under anaerobic and acidic conditions. The transcription levels of argA1, argA2, argB1, argB2 and argG are significantly increased under anaerobic and acidic conditions but are repressed by the addition of arginine. Deletion of argR significantly decreases bacterial survival in macrophages, while expression of both arc operons, argR and all five of the anabolic arg genes increases 8 h post-infection. Our results show that arginine catabolism in L. hongkongensis is finely regulated by controlling the transcription of two arc operons, whereas arginine anabolism is controlled by two copies of argA and argB.

  4. Ubiquitination of the bacterial inositol phosphatase, SopB, regulates its biological activity at the plasma membrane.

    LENUS (Irish Health Repository)

    Knodler, Leigh A

    2009-11-01

    The Salmonella type III effector, SopB, is an inositol polyphosphate phosphatase that modulates host cell phospholipids at the plasma membrane and the nascent Salmonella-containing vacuole (SCV). Translocated SopB persists for many hours after infection and is ubiquitinated but the significance of this covalent modification has not been investigated. Here we identify by mass spectrometry six lysine residues of SopB that are mono-ubiquitinated. Substitution of these six lysine residues with arginine, SopB-K(6)R, almost completely eliminated SopB ubiquitination. We found that ubiquitination does not affect SopB stability or membrane association, or SopB-dependent events in SCV biogenesis. However, two spatially and temporally distinct events are dependent on ubiquitination, downregulation of SopB activity at the plasma membrane and prolonged retention of SopB on the SCV. Activation of the mammalian pro-survival kinase Akt\\/PKB, a downstream target of SopB, was intensified and prolonged after infection with the SopB-K(6)R mutant. At later times, fewer SCV were decorated with SopB-K(6)R compared with SopB. Instead SopB-K(6)R was present as discrete vesicles spread diffusely throughout the cell. Altogether, our data show that ubiquitination of SopB is not related to its intracellular stability but rather regulates its enzymatic activity at the plasma membrane and intracellular localization.

  5. Plasma harmonics

    CERN Document Server

    Ganeev, Rashid A

    2014-01-01

    Preface; Why plasma harmonics? A very brief introduction Early stage of plasma harmonic studies - hopes and frustrations New developments in plasma harmonics studies: first successes Improvements of plasma harmonics; Theoretical basics of plasma harmonics; Basics of HHG Harmonic generation in fullerenes using few-cycle pulsesVarious approaches for description of observed peculiarities of resonant enhancement of a single harmonic in laser plasmaTwo-colour pump resonance-induced enhancement of odd and even harmonics from a tin plasmaCalculations of single harmonic generation from Mn plasma;Low-o

  6. Effects of a food supplement rich in arginine in patients with smear positive pulmonary tuberculosis--a randomised trial

    DEFF Research Database (Denmark)

    Schön, T; Idh, J; Westman, A

    2011-01-01

    Gondar, Ethiopia (n = 180) were randomized to a food supplementation rich in arginine (peanuts, equivalent to 1 g of arginine/day) or with a low arginine content (wheat crackers, locally called daboqolo) during four weeks. The primary outcome was cure rate according to the WHO classification......In tuberculosis (TB), the production of nitric oxide (NO) is confirmed but its importance in host defense is debated. Our aim was to investigate whether a food supplement rich in arginine could enhance clinical improvement in TB patients by increased NO production. Smear positive TB patients from...

  7. Effect of counter ions of arginine as an additive for the solubilization of protein and aromatic compounds.

    Science.gov (United States)

    Yoshizawa, Shunsuke; Arakawa, Tsutomu; Shiraki, Kentaro

    2016-10-01

    Arginine is widely used in biotechnological application, but mostly with chloride counter ion. Here, we examined the effects of various anions on solubilization of aromatic compounds and reduced lysozyme and on refolding of the lysozyme. All arginine salts tested increased the solubility of propyl gallate with acetate much more effectively than chloride. The effects of arginine salts were compared with those of sodium or guanidine salts, indicating that the ability of anions to modulate the propyl gallate solubility is independent of the cation. Comparison of transfer free energy of propyl gallate between sodium and arginine salts indicates that the interaction of propyl gallate is more favorable with arginine than sodium. On the contrary, the solubility of aromatic amino acids is only slightly modulated by anions, implying that there is specific interaction between acetic acid and propyl gallate. Unlike their effects on the solubility of small aromatic compounds, the solubility of reduced lysozyme was much higher in arginine chloride than in arginine acetate or sulfate. Consistent with high solubility, refolding of reduced lysozyme was most effective in arginine chloride. These results suggest potential broader applications of arginine modulated by different anions.

  8. Arginine-Vasopressin Receptor Blocker Conivaptan Reduces Brain Edema and Blood-Brain Barrier Disruption after Experimental Stroke in Mice.

    Directory of Open Access Journals (Sweden)

    Emil Zeynalov

    Full Text Available Stroke is a major cause of morbidity and mortality. Stroke is complicated by brain edema and blood-brain barrier (BBB disruption, and is often accompanied by increased release of arginine-vasopressin (AVP. AVP acts through V1a and V2 receptors to trigger hyponatremia, vasospasm, and platelet aggregation which can exacerbate brain edema. The AVP receptor blockers conivaptan (V1a and V2 and tolvaptan (V2 are used to correct hyponatremia, but their effect on post-ischemic brain edema and BBB disruption remains to be elucidated. Therefore, we conducted this study to investigate if these drugs can prevent brain edema and BBB disruption in mice after stroke.Experimental mice underwent the filament model of middle cerebral artery occlusion (MCAO with reperfusion. Mice were treated with conivaptan, tolvaptan, or vehicle. Treatments were initiated immediately at reperfusion and administered IV (conivaptan or orally (tolvaptan for 48 hours. Physiological variables, neurological deficit scores (NDS, plasma and urine sodium and osmolality were recorded. Brain water content (BWC and Evans Blue (EB extravasation index were evaluated at the end point.Both conivaptan and tolvaptan produced aquaresis as indicated by changes in plasma and urine sodium levels. However plasma and urine osmolality was changed only by conivaptan. Unlike tolvaptan, conivaptan improved NDS and reduced BWC in the ipsilateral hemisphere: from 81.66 ± 0.43% (vehicle to 78.28 ± 0.48% (conivaptan, 0.2 mg, p < 0.05 vs vehicle. Conivaptan also attenuated the EB extravasation from 1.22 ± 0.08 (vehicle to 1.01 ± 0.02 (conivaptan, 0.2 mg, p < 0.05.Continuous IV infusion with conivaptan for 48 hours after experimental stroke reduces brain edema, and BBB disruption. Conivaptan but not tolvaptan may potentially be used in patients to prevent brain edema after stroke.

  9. Hexa-arginine enhanced uptake and residualization of selective high affinity ligands by Raji lymphoma cells

    Directory of Open Access Journals (Sweden)

    Mirick Gary

    2009-04-01

    Full Text Available Abstract Background A variety of arginine-rich peptide sequences similar to those found in viral proteins have been conjugated to other molecules to facilitate their transport into the cytoplasm and nucleus of targeted cells. The selective high affinity ligand (SHAL (DvLPBaPPP2LLDo, which was developed to bind only to cells expressing HLA-DR10, has been conjugated to one of these peptide transduction domains, hexa-arginine, to assess the impact of the peptide on SHAL uptake and internalization by Raji cells, a B-cell lymphoma. Results An analog of the SHAL (DvLPBaPPP2LLDo containing a hexa-arginine peptide was created by adding six D-arginine residues sequentially to a lysine inserted in the SHAL's linker. SHAL binding, internalization and residualization by Raji cells expressing HLA-DR10 were examined using whole cell binding assays and confocal microscopy. Raji cells were observed to bind two fold more 111In-labeled hexa-arginine SHAL analog than Raji cells treated with the parent SHAL. Three fold more hexa-arginine SHAL remained associated with the Raji cells after washing, suggesting that the peptide also enhanced residualization of the 111In transported into cells. Confocal microscopy showed both SHALs localized in the cytoplasm of Raji cells, whereas a fraction of the hexa-arginine SHAL localized in the nucleus. Conclusion The incorporation of a hexa-D-arginine peptide into the linker of the SHAL (DvLPBaPPP2LLDo enhanced both the uptake and residualization of the SHAL analog by Raji cells. In contrast to the abundant cell surface binding observed with Lym-1 antibody, the majority of (DvLPBaPPP2LArg6AcLLDo and the parent SHAL were internalized. Some of the internalized hexa-arginine SHAL analog was also associated with the nucleus. These results demonstrate that several important SHAL properties, including uptake, internalization, retention and possibly intracellular distribution, can be enhanced or modified by conjugating the SHALs to a

  10. L-Arginine Intake Effect on Adenine Nucleotide Metabolism in Rat Parenchymal and Reproductive Tissues

    Directory of Open Access Journals (Sweden)

    G. Kocic

    2012-01-01

    Full Text Available L-arginine is conditionally essetcial amino acid, required for normal cell growth, protein synthesis, ammonia detoxification, tissue growth and general performance, proposed in the treatment of men sterility and prevention of male impotence. The aim of the present paper was to estimate the activity of the enzymes of adenine nucleotide metabolism: 5′-nucleotidase (5′-NU, adenosine deaminase (ADA, AMP deaminase, and xanthine oxidase (XO, during dietary intake of L-arginine for a period of four weeks of male Wistar rats. Adenosine concentration in tissues is maintained by the relative activities of the adenosine-producing enzyme, 5′-NU and the adenosine-degrading enzyme-ADA adenosine deaminase. Dietary L-arginine intake directed adenine nucleotide metabolism in liver, kidney, and testis tissue toward the activation of adenosine production, by increased 5′-NU activity and decreased ADA activity. Stimulation of adenosine accumulation could be of importance in mediating arginine antiatherosclerotic, vasoactive, immunomodulatory, and antioxidant effects. Assuming that the XO activity reflects the rate of purine catabolism in the cell, while the activity of AMP deaminase is of importance in ATP regeneration, reduced activity of XO, together with the increased AMP-deaminase activity, may suggest that adenine nucleotides are presumably directed to the ATP regenerating process during dietary L-arginine intake.

  11. Resveratrol inhibits Trypanosoma cruzi arginine kinase and exerts a trypanocidal activity.

    Science.gov (United States)

    Valera Vera, Edward A; Sayé, Melisa; Reigada, Chantal; Damasceno, Flávia S; Silber, Ariel M; Miranda, Mariana R; Pereira, Claudio A

    2016-06-01

    Arginine kinase catalyzes the reversible transphosphorylation between ADP and phosphoarginine which plays a critical role in the maintenance of cellular energy homeostasis. Arginine kinase from the protozoan parasite Trypanosoma cruzi, the etiologic agent of Chagas disease, meets the requirements to be considered as a potential therapeutic target for rational drug design including being absent in its mammalian hosts. In this study a group of polyphenolic compounds was evaluated as potential inhibitors of arginine kinase using molecular docking techniques. Among the analyzed compounds with the lowest free binding energy to the arginine kinase active site (cruzi trypomastigotes bursting from infected CHO K1 cells, with IC50=77μM. Additionally epimastigotes overexpressing arginine kinase were 5 times more resistant to resveratrol compared to controls. Taking into account that: (1) resveratrol is considered as completely nontoxic; (2) is easily accessible due to its low market price; and (3) has as a well-defined target enzyme which is absent in the mammalian host, it is a promising compound as a trypanocidal drug for Chagas disease.

  12. L-Arginine Modulates T Cell Metabolism and Enhances Survival and Anti-tumor Activity.

    Science.gov (United States)

    Geiger, Roger; Rieckmann, Jan C; Wolf, Tobias; Basso, Camilla; Feng, Yuehan; Fuhrer, Tobias; Kogadeeva, Maria; Picotti, Paola; Meissner, Felix; Mann, Matthias; Zamboni, Nicola; Sallusto, Federica; Lanzavecchia, Antonio

    2016-10-20

    Metabolic activity is intimately linked to T cell fate and function. Using high-resolution mass spectrometry, we generated dynamic metabolome and proteome profiles of human primary naive T cells following activation. We discovered critical changes in the arginine metabolism that led to a drop in intracellular L-arginine concentration. Elevating L-arginine levels induced global metabolic changes including a shift from glycolysis to oxidative phosphorylation in activated T cells and promoted the generation of central memory-like cells endowed with higher survival capacity and, in a mouse model, anti-tumor activity. Proteome-wide probing of structural alterations, validated by the analysis of knockout T cell clones, identified three transcriptional regulators (BAZ1B, PSIP1, and TSN) that sensed L-arginine levels and promoted T cell survival. Thus, intracellular L-arginine concentrations directly impact the metabolic fitness and survival capacity of T cells that are crucial for anti-tumor responses.

  13. Reconstitution of an active arginine deiminase pathway in Mycoplasma pneumoniae M129.

    Science.gov (United States)

    Rechnitzer, Hagai; Rottem, Shlomo; Herrmann, Richard

    2013-10-01

    Some species of the genus Mycoplasma code for the arginine deiminase pathway (ADI), which enables these bacteria to produce ATP from arginine by the successive reaction of three enzymes: arginine deiminase (ArcA), ornithine carbamoyltransferase (ArcB), and carbamate kinase (ArcC). It so far appears that independently isolated strains of Mycoplasma pneumoniae encode an almost identical truncated version of the ADI pathway in which the proteins ArcA and ArcB have lost their original enzymatic activities due to the deletion of significant regions of these proteins. To study the consequences of a functional ADI pathway, M. pneumoniae M129 was successfully transformed with the cloned functional arcA, arcB, and arcC genes from Mycoplasma fermentans. Enzymatic tests showed that while the M. pneumoniae ArcAB and ArcABC transformants possess functional arginine deiminase, ornithine carbamoyltransferase, and carbamate kinase, they were unable to grow on arginine as the sole energy source. Nevertheless, infection of a lung epithelial cell line, A549, with the M. pneumoniae transformants showed that almost 100% of the infected host cells were nonviable, while most of the lung cells infected with nontransformed M. pneumoniae were viable under the same experimental conditions.

  14. The Relationship of Arginine Deprivation, Argininosuccinate Synthetase and Cell Death in Melanoma

    Directory of Open Access Journals (Sweden)

    Niramol Savaraj

    2007-01-01

    Full Text Available It has been shown that melanoma cells do not express argininosuccinate synthetase (ASS and therefore are unable to synthesize arginine from citrulline. Depleting arginine using pegylated arginine deiminase (ADI-PEG20 results in cell death in melanoma but not normal cells. This concept was translated into clinical trial and responses were seen. However, induction of ASS expression does occur which results in resistance to ADI -PEG20. We have used 4 melanoma cell lines to study factors which may govern ASS expression. Although these 4 melanoma cell lines do not express ASS protein or mRNA as detected by both immunoblot and northernblot analysis, ASS protein can be induced after these cells are grown in the presence of ADI-PEG20, but again repressed after replenishing arginine in the media. The levels of induction are different and one cell line could not be induced. Interestingly, a melanoma cell line with the highest level of induction could also be made resistant to ADI-PEG20. This resistant line possesses high levels of ASS mRNA and protein expression which cannot be repressed with arginine. Our study indicates that ASS expression in melanoma cells is complex and governed by biochemical parameters which are different among melanoma cells.

  15. L-Arginine as a potential ergogenic aid in healthy subjects.

    Science.gov (United States)

    Álvares, Thiago S; Meirelles, Cláudia M; Bhambhani, Yagesh N; Paschoalin, Vânia M F; Gomes, Paulo S C

    2011-03-01

    Dietary supplements containing L-arginine, a semi-essential amino acid, are one of the latest ergogenic aids intended to enhance strength, power and muscle recovery associated with both aerobic and resistance exercise. L-arginine is claimed to promote vasodilation by increasing nitric oxide (NO) production in the active muscle during exercise, improving strength, power and muscular recovery through increased substrate utilization and metabolite removal, such as lactate and ammonia. Research on L-arginine has recently tested this hypothesis, under the assumption that it may be the active compound associated with the vasodilator effects of NO. There were only five acute studies retrieved from the literature that evaluated exercise performance after L-arginine supplementation, three of which reported significant improvements. Regarding studies on chronic effects, eight studies were encountered: four reported enhancements in exercise performance, whilst four reports showed no changes. Whether these improvements in exercise performance - regardless of the aerobic or anaerobic nature of the exercise - can be associated with increases in NO production, has yet to be demonstrated in future studies. Low oral doses (≤20 g) are well tolerated and clinical side effects are rare in healthy subjects. In summary, it is still premature to recommend dietary supplements containing L-arginine as an ergogenic aid for healthy physically active subjects.

  16. The impact of arginine-modified chitosan-DNA nanoparticles on the function of macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Liu Lanxia; Bai Yuanyuan; Song Chunni; Zhu Dunwan; Song Liping; Zhang Hailing; Dong Xia; Leng Xigang, E-mail: lengxg@bme.org.c [Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Laboratory of Bioengineering (China)

    2010-06-15

    It has been demonstrated that incorporation of arginine moieties into chitosan significantly elevates the transgenic efficacy of the chitosan. However, little is known about the impact of arginine-modified chitosan on the function of macrophages, which play a vitally important role in the inflammatory response of the body to foreign substances, especially particulate substances. This study was designed to investigate the impact of arginine-modified chitosan/DNA nanoparticles on the function of the murine macrophage through observation of phagocytic activity and production of pro-inflammatory cytokines (IL-1{beta}, IL-6, IL-10, IL-12, and TNF-{alpha}). Results showed that both chitosan/DNA nanoparticles and arginine-modified chitosan/DNA nanoparticles, containing 20 {mu}g/mL DNA, were internalized by almost all the macrophages in contact. This led to no significant changes, compared to the non-exposure group, in production of cytokines and phagocytic activity of the macrophages 24 h post co-incubation, whereas exposure to LPS induced obviously elevated cytokine production and phagocytic activity, suggesting that incorporation of arginine moieties into chitosan does not have a negative impact on the function of the macrophages.

  17. The impact of arginine-modified chitosan-DNA nanoparticles on the function of macrophages

    Science.gov (United States)

    Liu, Lanxia; Bai, Yuanyuan; Song, Chunni; Zhu, Dunwan; Song, Liping; Zhang, Hailing; Dong, Xia; Leng, Xigang

    2010-06-01

    It has been demonstrated that incorporation of arginine moieties into chitosan significantly elevates the transgenic efficacy of the chitosan. However, little is known about the impact of arginine-modified chitosan on the function of macrophages, which play a vitally important role in the inflammatory response of the body to foreign substances, especially particulate substances. This study was designed to investigate the impact of arginine-modified chitosan/DNA nanoparticles on the function of the murine macrophage through observation of phagocytic activity and production of pro-inflammatory cytokines (IL-1β, IL-6, IL-10, IL-12, and TNF-α). Results showed that both chitosan/DNA nanoparticles and arginine-modified chitosan/DNA nanoparticles, containing 20 μg/mL DNA, were internalized by almost all the macrophages in contact. This led to no significant changes, compared to the non-exposure group, in production of cytokines and phagocytic activity of the macrophages 24 h post co-incubation, whereas exposure to LPS induced obviously elevated cytokine production and phagocytic activity, suggesting that incorporation of arginine moieties into chitosan does not have a negative impact on the function of the macrophages.

  18. Protective effects of arginine on fetal brain under maternal immobilization stress

    Directory of Open Access Journals (Sweden)

    E Enanat

    2015-10-01

    Full Text Available Background & aim: Arginine by regulating the biological activity of the brain plays an important role in reducing stress. Today's, stress is one of the century disease that created many problem.  This study conducted to determine the protective effect of arginine on nitric oxide levels in maternal fetal brain tissue under stress. Methods: Twenty pregnant Wistar rats (200-250 gr were randomly divided into four groups. With and without stress groups received arginine (200 mg/kg intraperitoneal from 5 – 20 days of pregnancies. Control with and sham without stress received 2 ml of normal saline. The pregnant rats were anesthetized by ketamine (100 mg/kg on the day 20 then the fetuses removed and weighed. Twenty five brain of fetal brain rat from each group were chosen for measuring of forebrain thickness and brain volume. Another 25 brain were chosen for measuring of nitric oxide. Data were analyzed by one way ANOVA. Results: Nitric oxide Levels reduced in stress rats treated with arginine compared to control group (P<0.05. The mean thickness of forebrain and hippicampal formation decreased in stress rats versus unstressed, but was not significant. The mean weight decreased significantly in stress group compared to the unstressed group (P<0.05. Conclusions: Arginine could protect the brain tissue and fetal weight by reducing the level of oxidative stress in the pregnant rats.

  19. During the long way to Mars: effects of 520 days of confinement (Mars500 on the assessment of affective stimuli and stage alteration in mood and plasma hormone levels.

    Directory of Open Access Journals (Sweden)

    Yue Wang

    Full Text Available For future interplanetary manned spaceflight, mental issues, as well as physiological problems, must inevitably be considered and solved. Mars500 is a high-fidelity ground simulation experiment that involved 520 days of confined isolation for six multinational crewmembers. This experiment provided a good opportunity to perform psycho-physiological and psycho-social researches on such missions. To investigate emotional responses and psychological adaptation over long-term confinement, the International Affective Pictures System (IAPS was selected as the visual emotional stimuli in this study. Additional data collected and analyzed included the Profile of Mood States (POMS questionnaire and the levels of four types of plasma hormones: cortisol, 5-hydroxy tryptamine, dopamine, and norepinephrine. The results demonstrated an obvious bias on valence rating for unpleasant stimuli with time (p<0.05, and the correlation between psychological and biochemical data was identified (p<0.05. Overall, we concluded that the confined crew tended to assign positive ratings to negative pictures with time, which might be driven by a defensive system. There was a stage-changing pattern of psychological adaptation of the Mars500 crew, which is similar to the third-quarter phenomenon.

  20. Biochemical and biological activity of arginine deiminase from Streptococcus pyogenes M22.

    Science.gov (United States)

    Starikova, Eleonora A; Sokolov, Alexey V; Vlasenko, Anna Yu; Burova, Larisa A; Freidlin, Irina S; Vasilyev, Vadim B

    2016-04-01

    Streptococcus pyogenes (group A Streptococcus; GAS) is an important gram-positive extracellular bacterial pathogen responsible for a number of suppurative infections. This micro-organism has developed complex virulence mechanisms to avoid the host's defenses. We have previously reported that SDSC from GAS type M22 causes endothelial-cell dysfunction, and inhibits cell adhesion, migration, metabolism, and proliferation in a dose-dependent manner, without affecting cell viability. This work aimed to isolate and characterize a component from GAS type M22 supernatant that suppresses the proliferation of endothelial cells (EA.hy926). In the process of isolating a protein possessing antiproliferative activity we identified arginine deiminase (AD). Further study showed that this enzyme is most active at pH 6.8. Calculating Km and Vmax gave the values of 0.67 mmol·L(-1) and 42 s(-1), respectively. A distinctive feature of AD purified from GAS type M22 is that its optimum activity and the maximal rate of the catalytic process is close to neutral pH by comparison with enzymes from other micro-organisms. AD from GAS type M22 suppressed the proliferative activity of endothelial cells in a dose-dependent mode. At the same time, in the presence of AD, the proportion of cells in G0/G1 phase increased. When l-Arg was added at increasing concentrations to the culture medium containing AD (3 μg·mL(-1)), the enzyme's capacity to inhibit cell proliferation became partially depressed. The proportion of cells in phases S/G2 increased concomitantly, although the cells did not fully recover their proliferation activity. This suggests that AD from GAS type M22 has potential for the suppression of excessive cell proliferation.

  1. Copeptin as a marker for arginine-vasopressin/antidiuretic hormone secretion in the diagnosis of paraneoplastic syndrome of inappropriate ADH secretion.

    Science.gov (United States)

    Wuttke, A; Dixit, K C; Szinnai, G; Werth, S C; Haagen, U; Christ-Crain, M; Morgenthaler, N; Brabant, G

    2013-12-01

    Direct measurement of arginine-vasopressin/antidiuretic hormone (AVP/ADH) concentrations is not included in the standard diagnostic procedures for paraneoplastic syndrome of inappropriate ADH secretion (SIADH). Here, we evaluate the potential of copeptin measurement as a surrogate marker of AVP/ADH secretion for the direct diagnosis of suspected SIADH in cancer patients. Forty-six unselected cancer patients with serum sodium concentrations permanently below 135 mmol/L were included in this study. We compared standard diagnostic criteria for SIADH to the measurement of plasma copeptin in relation to osmolality. Normative data for comparison were constructed from 24 healthy controls studied under basal conditions, experimental dehydration, and hypotonic hypervolemia as well as from 222 hospital patients with no suspicion of an altered ADH regulation. Log transformation of copeptin revealed a linear relationship to plasma osmolality in the controls (R = 0.495, p < 0.001). Compared to these normative data, copeptin levels in most cancer patients were inappropriately high for plasma osmolality and were not significantly correlated. These results, suggestive for paraneoplastic SIADH, could be confirmed by conventional diagnostic procedures for SIADH. Current strategies to diagnose SIADH are difficult to perform under outpatients conditions. Our approach allows screening from a single plasma sample for true paraneoplastic ADH oversecretion and thus rapid selection for a specific therapy with an AVP receptor antagonist.

  2. Arginine Vasopressin-Independent Mechanism of Impaired Water Excretion in a Patient with Sarcoidosis Complicated by Central Diabetes Insipidus and Glucocorticoid Deficiency

    Directory of Open Access Journals (Sweden)

    Katsunobu Yoshioka

    2011-01-01

    Full Text Available A 28-year-old man was admitted to our hospital because of reduced livido and increased fatigability. Four months before admission, he noticed polyuria, which was gradually relieved by admission. Magnetic resonance imaging revealed enhancing lesion centrally in the pituitary stalk. Biopsy from the skin revealed noncaseating granuloma composed of epithelioid cells, and a diagnosis of sarcoidosis was made. Although plasma arginine vasopressin (AVP was undetectable after administration of hypertonic saline, urinary output was within normal range (1.5 to 2.2 L/day. The urine osmolality became above plasma levels during the hypertonic saline test. Hormonal provocative tests revealed partial glucocorticoid deficiency. Soon after the glucocorticoid therapy was begun, moderate polyuria (from 3.5–4.0 liters daily occurred. At this time, plasma AVP was undetectable, and urine osmolality was consistently below plasma levels during the hypertonic saline test. In conclusion, we showed in human study that masked diabetes insipidus could be mediated by AVP-independent mechanisms.

  3. Deletion of Genes Encoding Arginase Improves Use of "Heavy" Isotope-Labeled Arginine for Mass Spectrometry in Fission Yeast.

    Directory of Open Access Journals (Sweden)

    Weronika E Borek

    Full Text Available The use of "heavy" isotope-labeled arginine for stable isotope labeling by amino acids in cell culture (SILAC mass spectrometry in the fission yeast Schizosaccharomyces pombe is hindered by the fact that under normal conditions, arginine is extensively catabolized in vivo, resulting in the appearance of "heavy"-isotope label in several other amino acids, most notably proline, but also glutamate, glutamine and lysine. This "arginine conversion problem" significantly impairs quantification of mass spectra. Previously, we developed a method to prevent arginine conversion in fission yeast SILAC, based on deletion of genes involved in arginine catabolism. Here we show that although this method is indeed successful when (13C6-arginine (Arg-6 is used for labeling, it is less successful when (13C6(15N4-arginine (Arg-10, a theoretically preferable label, is used. In particular, we find that with this method, "heavy"-isotope label derived from Arg-10 is observed in amino acids other than arginine, indicating metabolic conversion of Arg-10. Arg-10 conversion, which severely complicates both MS and MS/MS analysis, is further confirmed by the presence of (13C5(15N2-arginine (Arg-7 in arginine-containing peptides from Arg-10-labeled cells. We describe how all of the problems associated with the use of Arg-10 can be overcome by a simple modification of our original method. We show that simultaneous deletion of the fission yeast arginase genes car1+ and aru1+ prevents virtually all of the arginine conversion that would otherwise result from the use of Arg-10. This solution should enable a wider use of heavy isotope-labeled amino acids in fission yeast SILAC.

  4. Dusty plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Fortov, Vladimir E; Khrapak, Aleksei G; Molotkov, Vladimir I; Petrov, Oleg F [Institute for High Energy Densities, Associated Institute for High Temperatures, Russian Academy of Sciences, Moscow (Russian Federation); Khrapak, Sergei A [Max-Planck-Institut fur Extraterrestrische Physik, Garching (Germany)

    2004-05-31

    The properties of dusty plasmas - low-temperature plasmas containing charged macroparticles - are considered. The most important elementary processes in dusty plasmas and the forces acting on dust particles are investigated. The results of experimental and theoretical investigations of different states of strongly nonideal dusty plasmas - crystal-like, liquid-like, gas-like - are summarized. Waves and oscillations in dusty plasmas, as well as their damping and instability mechanisms, are studied. Some results on dusty plasma investigated under microgravity conditions are presented. New directions of experimental research and potential applications of dusty plasmas are discussed. (reviews of topical problems)

  5. Virtual screening and biological characterization of novel histone arginine methyltransferase PRMT1 inhibitors.

    Science.gov (United States)

    Heinke, Ralf; Spannhoff, Astrid; Meier, Rene; Trojer, Patrick; Bauer, Ingo; Jung, Manfred; Sippl, Wolfgang

    2009-01-01

    Lysine and arginine methyltransferases participate in the posttranslational modification of histones and regulate key cellular functions. Protein arginine methyltransferase 1 (PRMT1) has been identified as an essential component of mixed lineage leukemia (MLL) oncogenic complexes, revealing its potential as a novel therapeutic target in human cancer. The first potent arginine methyltransferase inhibitors were recently discovered by random- and target-based screening approaches. Herein we report virtual and biological screening for novel inhibitors of PRMT1. Structure-based virtual screening (VS) of the Chembridge database composed of 328 000 molecules was performed with a combination of ligand- and target-based in silico approaches. Nine inhibitors were identified from the top-scored docking solutions; these were experimentally tested using human PRMT1 and an antibody-based assay with a time-resolved fluorescence readout. Among several aromatic amines, an aliphatic amine and an amide were also found to be active in the micromolar range.

  6. Signifiance of Arginine 20 in the 2A protease for swine vesicular disease virus pathogenicity

    DEFF Research Database (Denmark)

    Inoue, Toru; Zhang, Zhidong; Wang, Leyuan;

    2007-01-01

    of the 2A protease is particularly significant. Inoculation of pigs with mutant viruses containing single amino acid substitutions at this residue leads to the appearance of revertants, often containing an arginine at this position encoded by an AGA codon, one of six codons for this residue. The properties...... in pigs of two chimeric viruses, each with an arginine residue at this position but encoded by different codons, have been investigated in parallel with the parental pathogenic and attenuated strains. Presence of the arginine residue, but not of the AGA codon, is essential for induction of high viraemia......Pathogenic and attenuated strains of swine vesicular disease virus (SVDV), an enterovirus, have been characterized previously and, by using chimeric infectious cDNA clones, the key determinants of pathogenicity in pigs have been mapped to the coding region for 1D–2A. Within this region, residue 20...

  7. Discovery of a Potent Class I Protein Arginine Methyltransferase Fragment Inhibitor.

    Science.gov (United States)

    Ferreira de Freitas, Renato; Eram, Mohammad S; Szewczyk, Magdalena M; Steuber, Holger; Smil, David; Wu, Hong; Li, Fengling; Senisterra, Guillermo; Dong, Aiping; Brown, Peter J; Hitchcock, Marion; Moosmayer, Dieter; Stegmann, Christian M; Egner, Ursula; Arrowsmith, Cheryl; Barsyte-Lovejoy, Dalia; Vedadi, Masoud; Schapira, Matthieu

    2016-02-11

    Protein methyltransferases (PMTs) are a promising target class in oncology and other disease areas. They are composed of SET domain methyltransferases and structurally unrelated Rossman-fold enzymes that include protein arginine methyltransferases (PRMTs). In the absence of a well-defined medicinal chemistry tool-kit focused on PMTs, most current inhibitors were identified by screening large and diverse libraries of leadlike molecules. So far, no successful fragment-based approach was reported against this target class. Here, by deconstructing potent PRMT inhibitors, we find that chemical moieties occupying the substrate arginine-binding site can act as efficient fragment inhibitors. Screening a fragment library against PRMT6 produced numerous hits, including a 300 nM inhibitor (ligand efficiency of 0.56) that decreased global histone 3 arginine 2 methylation in cells, and can serve as a warhead for the development of PRMT chemical probes.

  8. Oral arginine metabolism may decrease the risk for dental caries in children.

    Science.gov (United States)

    Nascimento, M M; Liu, Y; Kalra, R; Perry, S; Adewumi, A; Xu, X; Primosch, R E; Burne, R A

    2013-07-01

    Arginine metabolism by oral bacteria via the arginine deiminase system (ADS) increases the local pH, which can neutralize the effects of acidification from sugar metabolism and reduce the cariogenicity of oral biofilms. To explore the relationship between oral arginine metabolism and dental caries experience in children, we measured ADS activity in oral samples from 100 children and correlated it with their caries status and type of dentition. Supragingival dental plaque was collected from tooth surfaces that were caries-lesion-free (PF) and from dentinal (PD) and enamel (PE) caries lesions. Regardless of children's caries status or type of dentition, PF (378.6) had significantly higher ADS activity compared with PD (208.4; p caries status. Mixed-model analysis showed that plaque caries status is significantly associated with ADS activity despite children's age, caries status, and dentition (p caries.

  9. All Plasma Products Are Not Created Equal: Characterizing Differences Between Plasma Products

    Science.gov (United States)

    2015-06-01

    products that may affect efficacy and safety. METHODS: Four different plasma products were analyzed to include fresh frozen plasma (FFP), liquid plasma...have come onto the market. FFP, plasma frozen at 24 hours (PF-24), and liquid plasma (LP) are single-donor products pre- pared by separating plasma from...Transfusion. 2004;44(11):1674Y1675. 2. American Association of Blood Banks . Standards for Blood Banks and Transfusion Services. 26th ed. Bethesda, MD

  10. Peptide-membrane interactions of arginine-tryptophan peptides probed using quartz crystal microbalance with dissipation monitoring.

    KAUST Repository

    Rydberg, Hanna A

    2014-04-18

    Membrane-active peptides include peptides that can cross cellular membranes and deliver macromolecular cargo as well as peptides that inhibit bacterial growth. Some of these peptides can act as both transporters and antibacterial agents. It is desirable to combine the knowledge from these two different fields of membrane-active peptides into design of new peptides with tailored actions, as transporters of cargo or as antibacterial substances, targeting specific membranes. We have previously shown that the position of the amino acid tryptophan in the peptide sequence of three arginine-tryptophan peptides affects their uptake and intracellular localization in live mammalian cells, as well as their ability to inhibit bacterial growth. Here, we use quartz crystal microbalance with dissipation monitoring to assess the induced changes caused by binding of the three peptides to supported model membranes composed of POPC, POPC/POPG, POPC/POPG/cholesterol or POPC/lactosyl PE. Our results indicate that the tryptophan position in the peptide sequence affects the way these peptides interact with the different model membranes and that the presence of cholesterol in particular seems to affect the membrane interaction of the peptide with an even distribution of tryptophans in the peptide sequence. These results give mechanistic insight into the function of these peptides and may aid in the design of membrane-active peptides with specified cellular targets and actions.

  11. Increased contribution of L-arginine-nitric oxide pathway in aorta of mice lacking the gene for vimentin.

    Science.gov (United States)

    Zhang, J; Henrion, D; Ebrahimian, T; Benessiano, J; Colucci-Guyon, E; Langa, F; Lévy, B I; Boulanger, C M

    2001-10-01

    Experiments were designed to investigate endothelial function in the aorta of mice lacking the gene for the cytoskeleton protein vimentin (vim -/- ). Rings with and without endothelium from wild-type (vim +/+ ), heterozygous (vim +/- ), and homozygous (vim -/- ) mice were suspended in organ chambers to record of changes in isometric tension. During phenylephrine contraction, acetylcholine evoked comparable endothelium-dependent relaxations in the three groups. In the presence of Nomega-nitro-L-arginine, acetylcholine caused endothelium-dependent contractions, which were greater in vim -/- than in vim +/+ and vim +/- aortas. Indomethacin did not affect relaxation to acetylcholine in vim +/+ or in vim +/-, but it significantly increased the maximal response in vim -/- (67 +/- 7 vs. 102 +/- 4%). Response to acetylcholine in vim -/- aortas was not affected by cyclooxygenase type 2 inhibitor NS-398, the thromboxane receptor antagonist SQ-29,548, or superoxide dismutase. Relaxations to sodium nitroprusside were not different between vim +/+ and vim -/- mice and were not affected by cyclooxygenase inhibition. Cyclic guanosine monophosphate levels, which were increased to a comparable level by acetylcholine in vim +/+ and vim -/-, were augmented by indomethacin in vim -/- aortas but not in vim +/+ aortas. Expression of endothelial nitric oxide synthase was not different between vim +/+ and vim -/- preparations. These results suggest that despite comparable endothelium-dependent responses to acetylcholine, endothelial cells from vim -/- mice release a cyclooxygenase product that compensates the augmented contribution of nitric oxide.

  12. Peptide-membrane interactions of arginine-tryptophan peptides probed using quartz crystal microbalance with dissipation monitoring.

    Science.gov (United States)

    Rydberg, Hanna A; Kunze, Angelika; Carlsson, Nils; Altgärde, Noomi; Svedhem, Sofia; Nordén, Bengt

    2014-07-01

    Membrane-active peptides include peptides that can cross cellular membranes and deliver macromolecular cargo as well as peptides that inhibit bacterial growth. Some of these peptides can act as both transporters and antibacterial agents. It is desirable to combine the knowledge from these two different fields of membrane-active peptides into design of new peptides with tailored actions, as transporters of cargo or as antibacterial substances, targeting specific membranes. We have previously shown that the position of the amino acid tryptophan in the peptide sequence of three arginine-tryptophan peptides affects their uptake and intracellular localization in live mammalian cells, as well as their ability to inhibit bacterial growth. Here, we use quartz crystal microbalance with dissipation monitoring to assess the induced changes caused by binding of the three peptides to supported model membranes composed of POPC, POPC/POPG, POPC/POPG/cholesterol or POPC/lactosyl PE. Our results indicate that the tryptophan position in the peptide sequence affects the way these peptides interact with the different model membranes and that the presence of cholesterol in particular seems to affect the membrane interaction of the peptide with an even distribution of tryptophans in the peptide sequence. These results give mechanistic insight into the function of these peptides and may aid in the design of membrane-active peptides with specified cellular targets and actions.

  13. Kinetic characterization of arginine deiminase and carbamate kinase from Streptococcus pyogenes M49.

    Science.gov (United States)

    Hering, Silvio; Sieg, Antje; Kreikemeyer, Bernd; Fiedler, Tomas

    2013-09-01

    Streptococcus pyogenes (group A Streptococcus, GAS) is an important human pathogen causing mild superficial infections of skin and mucous membranes, but also life-threatening systemic diseases. S. pyogenes and other prokaryotic organisms use the arginine deiminase system (ADS) for survival in acidic environments. In this study, the arginine deiminase (AD), and carbamate kinase (CK) from S. pyogenes M49 strain 591 were heterologously expressed in Escherichia coli DH5α, purified, and kinetically characterized. AD and CK from S. pyogenes M49 share high amino acid sequence similarity with the respective enzymes from Lactococcus lactis subsp. lactis IL1403 (45.6% and 53.5% identical amino acids) and Enterococcus faecalis V583 (66.8% and 66.8% identical amino acids). We found that the arginine deiminase of S. pyogenes is not allosterically regulated by the intermediates and products of the arginine degradation (e.g., ATP, citrulline, carbamoyl phosphate). The Km and Vmax values for arginine were 1.13±0.12mM (mean±SD) and 1.51±0.07μmol/min/mg protein. The carbamate kinase is inhibited by ATP but unaffected by arginine and citrulline. The Km and Vmax values for ADP were 0.72±0.08mM and 1.10±0.10μmol/min/mg protein and the Km for carbamoyl phosphate was 0.65±0.07mM. The optimum pH and temperature for both enzymes were 6.5 and 37°C, respectively.

  14. Cytotoxicity of tumor antigen specific human T cells is unimpaired by arginine depletion.

    Directory of Open Access Journals (Sweden)

    Markus Munder

    Full Text Available Tumor-growth is often associated with the expansion of myeloid derived suppressor cells that lead to local or systemic arginine depletion via the enzyme arginase. It is generally assumed that this arginine deficiency induces a global shut-down of T cell activation with ensuing tumor immune escape. While the impact of arginine depletion on polyclonal T cell proliferation and cytokine secretion is well documented, its influence on chemotaxis, cytotoxicity and antigen specific activation of human T cells has not been demonstrated so far. We show here that chemotaxis and early calcium signaling of human T cells are unimpaired in the absence of arginine. We then analyzed CD8(+ T cell activation in a tumor peptide as well as a viral peptide antigen specific system: (i CD8(+ T cells with specificity against the MART-1aa26-35*A27L tumor antigen expanded with in vitro generated dendritic cells, and (ii clonal CMV pp65aa495-503 specific T cells and T cells retrovirally transduced with a CMV pp65aa495-503 specific T cell receptor were analyzed. Our data demonstrate that human CD8(+ T cell antigen specific cytotoxicity and perforin secretion are completely preserved in the absence of arginine, while antigen specific proliferation as well as IFN-γ and granzyme B secretion are severely compromised. These novel results highlight the complexity of antigen specific T cell activation and demonstrate that human T cells can preserve important activation-induced effector functions in the context of arginine deficiency.

  15. Supplementation with rumen-protected L-arginine-HCl increased fertility in sheep with synchronized estrus.

    Science.gov (United States)

    de Chávez, Julio Agustín Ruiz; Guzmán, Adrian; Zamora-Gutiérrez, Diana; Mendoza, Germán David; Melgoza, Luz María; Montes, Sergio; Rosales-Torres, Ana María

    2015-08-01

    The aim of the present study was to evaluate the effects of L-arginine-HCl supplementation on ovulation rate, fertility, prolificacy, and serum VEGF concentrations in ewes with synchronized oestrus. Thirty Suffolk ewes with a mean body weight of 45 ± 3 kg and a mean body condition score (BCS) of 2.4 ± 0.28 were synchronized for estrus presentation with a progestin-containing sponge (20 mg Chronogest® CR) for 9 days plus PGF2-α (Lutalyse; Pfizer, USA) on day 7 after the insertion of the sponge. The ewes were divided into two groups; i.e., a control group (n = 15) that was fed on the native pasture (basal diet) and an L-arginine-HCl group (n = 15) that received 7.8 g of rumen-protected L-arginine-HCl from day 5 of the sponge insertion until day 25 after mating plus the basal diet. The L-arginine-HCl was administered daily via an esophageal probe between days 5 and 9 of the synchronization protocol and every third day subsequently. Blood samples were drawn from the jugular vein every 6 days throughout the entire experimental period. The results revealed that the L-arginine-HCl supplementation increased fertility during the synchronized estrus (P = 0.05). However, no effects were observed on the final BCS (P = 0.78), estrus presentation (P = 0.33), multiple ovulations (P = 0.24), prolificacy (P = 0.63), or serum VEGF concentration. In conclusion, L-arginine-HCl supplementation during the period used in this study increased fertility in sheep with synchronized estrus possibly due to improved embryo-fetal survival during early pregnancy.

  16. Effects of Postoperative Enteral Immune-enhancing Diet on Plasma Endotoxin Level, Plasma Endotoxin Inactivation Capacity and Clinical Outcome

    Institute of Scientific and Technical Information of China (English)

    YAO Guoxiang; XUE Xinbo; LU Xingpei; WANG Jianming; QIAN Jiaqin

    2005-01-01

    This study examined the postoperative plasma endotoxin level, plasma endotoxin inactivation capacity and clinical outcome after administration of an enteral diet supplemented with glutamine, arginine and ω-3-fatty acid in patients undergoing gastrointestinal operations on an prospective, randomized and double-blind design. 40 patients undergoing gastrointestinal operations were randomized into two groups, with each having 20 patients. One group received standard enteral nutrition and the other was fed the formulation supplemented with glutamine, arginine and ω-3-fatty acid. The two groups were isonitrogenous. The infusion was started from day 1 after surgery and continued for 7 days. Blood samples were collected on the morning of day 1 before operation and on the morning of 1, 4 and 7 day(s) after operation and analyzed for plasma endotoxin level and endotoxin inactivation capacity (EIC). Our study found no differences between the two groups on plasma endotoxin level. After surgery a rapid reduction in plasma endotoxin inactivation capacity was observed in both groups, a significant recovery of the plasma endotoxin inactivation capacity was observed on morning of day 4 after surgery in the study group (0.12±0.02 EU/mL and 0. 078±0.022 EU/mL respectively, P<0.01). Shortened hospital stay was observed in the experimental group (11.7±2.0 days in the control group and 10.6±1.2 days in the experimental group respectively, P=0.03). It is concluded that perioperative parenteral nutrition supplemented with glutamine, arginine and ω-3-fatty acid ameliorated postoperative immunodepression but without direct effect on endotoxemia.

  17. Effect of L-arginine on neuromuscular transmission of the chick biventer cervicis muscle

    Directory of Open Access Journals (Sweden)

    B. Esfandiar

    2008-01-01

    Full Text Available biventer cervicis muscleD. Effect of L-arginine on neuromuscular transmission of the chick EsfandiarAbstractBackground and Purpose: NO is a short-lived gas molecule generated by degradation of L-arg to citrulline and by the activation of enzyme NOS Ca2+/calmodulin-dependent. There are multiple NOS isoforms that strongly are expressed in skeletal muscle, suggesting the crucial role of NO in regulating muscular metabolism and function. In this study, the effect of L-arginine was examined at the neuromuscular junction of the chick biventer cervicis muscle.Materials and Methods: Biventer cervicis muscle preparations from chick’s age of 3 weeks were set up in the organ bath. The organ bath had a vessel with volume of about 70 ml; it contained Tyrode solution aerated with oxygen and was kept at 37º C. NO levels was also measured in the chick biventer cervicis muscle homogenates, using spectrophotometer method for the direct detection of NO, nitrite and nitrate. Total nitrite (nitrite+nitrate was measured by a spectrophotometer at 540 nm after the conversion of nitrate to nitrite by copperized cadmium granules.Results: L-Arginine at 500 µg/ml, decreased twitch response to electrical stimulation, and produced rightward shift of the dose-response curve for acetylcholine or carbachol. L-arginine at 1000 µg/ml produced a strong shift to the right of the dose-response curve for acetylcholine or carbachol with a reduction in efficacy. The inhibitory effect of L-arginine on the twitch response was blocked by caffeine (200 µg/ml. NO levels were found to be significantly increased in concentrations 500 and 1000 µg/ml of L-arginine in comparison with the control group (p < 0.001.Conclusion: These findings indicate a possible role of increased NO levels in the suppressive action of L-arginie on the twitch response. In addition, the results indicate that the post-junctional antagonistic action of L-arginine is probably the result of impaired sarcoplasmic

  18. Age-dependent arginine phosphokinase activity changes in male vestigial and wild-type Drosophila melanogaster.

    Science.gov (United States)

    Baker, G T

    1975-01-01

    The activity of arginine phosphokinase, an important muscle enzyme in insects, was investigated with age in vestigial-winged and wild-type Drosophila melanogaster. Identical patterns of age-dependent activity changes were observed in the vestigial-winged flies as in the wild-type, even though vestigial-winged flies exhibit a 50% mortality approximately two thirds that of the wild-type as well as being incapable of flight. Results indicate that the age-dependent changes in arginine phosphokinase activity are intrinsically regulated within the cells of the flight muscle.

  19. Preparation of L-Arginine-Modified Silica-Coated Magnetite Nanoparticles for Au(III) Adsorption

    OpenAIRE

    Amaria; Nuryono; Suyanta, .

    2017-01-01

    L-arginine-modified silica-coated magnetite nanoparticles(Fe3O4/SiO2-GPTMS-Arg) have been synthesized by sol-gel process for adsorption of Au(III) ion in aqueous solution. Modification of L-arginine on silica coated magnetite through a coupling agent of 3-glycidoxypropyl-trimethoxysilane (GPTMS) was performed in avariousmole ratioof GPTMS:Arg 1:0; 1:1; 1:2 and 1:3.The products of Fe3O4/SiO2-GPTMS-Arg were characterized with XRD, FTIR, EDX, TGA, and Kjeldahl methods.The results showed that bas...

  20. Cellular Activity of New Small Molecule Protein Arginine Deiminase 3 (PAD3) Inhibitors.

    Science.gov (United States)

    Jamali, Haya; Khan, Hasan A; Tjin, Caroline C; Ellman, Jonathan A

    2016-09-08

    The protein arginine deiminases (PADs) catalyze the post-translational deimination of arginine side chains. Multiple PAD isozymes have been characterized, and abnormal PAD activity has been associated with several human disease states. PAD3 has been characterized as a modulator of cell growth via apoptosis inducing factor and has been implicated in the neurodegenerative response to spinal cord injury. Here, we describe the design, synthesis, and evaluation of conformationally constrained versions of the potent and selective PAD3 inhibitor 2. The cell activity of representative inhibitors in this series was also demonstrated for the first time by rescue of thapsigargin-induced cell death in PAD3-expressing HEK293T cells.

  1. Endogenous Inactivators of Arginase, l-Arginine Decarboxylase, and Agmatine Amidinohydrolase in Evernia prunastri Thallus 1

    Science.gov (United States)

    Legaz, María Estrella; Vicente, Carlos

    1983-01-01

    Arginase (EC 3.5.3.1), l-arginine decarboxylase (EC 4.1.1.19), and agmatine amidinohydrolase (EC 3.5.3.11) activities spontaneously decay in Evernia prunastri thalli incubated on 40 millimolar l-arginine used as inducer of the three enzymes if dithiothreitol is not added to the media. Lichen thalli accumulate both chloroatranorin and evernic acid in parallel to the loss of activity. These substances behave as inactivators of the enzymes at a range of concentrations between 2 and 20 micromolar, whereas several concentrations of dithiothreitol reverse, to some extent, the in vitro inactivation. PMID:16662821

  2. Endogenous Inactivators of Arginase, l-Arginine Decarboxylase, and Agmatine Amidinohydrolase in Evernia prunastri Thallus.

    Science.gov (United States)

    Legaz, M E; Vicente, C

    1983-02-01

    Arginase (EC 3.5.3.1), l-arginine decarboxylase (EC 4.1.1.19), and agmatine amidinohydrolase (EC 3.5.3.11) activities spontaneously decay in Evernia prunastri thalli incubated on 40 millimolar l-arginine used as inducer of the three enzymes if dithiothreitol is not added to the media. Lichen thalli accumulate both chloroatranorin and evernic acid in parallel to the loss of activity. These substances behave as inactivators of the enzymes at a range of concentrations between 2 and 20 micromolar, whereas several concentrations of dithiothreitol reverse, to some extent, the in vitro inactivation.

  3. The microbiome, intestinal function, and arginine metabolism of healthy Indian women are different from those of American and Jamaican women

    Science.gov (United States)

    Indian women have slower arginine flux during pregnancy compared with American and Jamaican women. Arginine is a semi-essential amino acid that becomes essential during periods of rapid lean tissue deposition. It is synthesized only from citrulline, a nondietary amino acid produced mainly in the gut...

  4. An alternative, arginase-independent pathway for arginine metabolism in Kluyveromyces lactis involves guanidinobutyrase as a key enzyme

    NARCIS (Netherlands)

    Romagnoli, G.; Verhoeven, M.D.; Mans, R.; Fleury Rey, Y.; Bel-Rhlid, R.; Van den Broek, M.; Maleki Seifar, R.; Ten Pierick, A.; Thompson, M.; Müller, V.; Wahl, S.A.; Pronk, J.T.; Daran, J.M.

    2014-01-01

    Most available knowledge on fungal arginine metabolism is derived from studies on Saccharomyces cerevisiae, in which arginine catabolism is initiated by releasing urea via the arginase reaction. Orthologues of the S. cerevisiae genes encoding the first three enzymes in the arginase pathway were clon

  5. L-arginine enhances cell proliferation and reduces apoptosis in human endometrial RL95-2 cells

    Science.gov (United States)

    L-arginine is considered to be one of the most versatile amino acids due to the fact that it serves as a precursor for many important molecules in cellular physiology. When supplemented in the diet, L-arginine can increase the number of implantation sites in mice and rats, suggesting an effect at th...

  6. ArgR and AhrC are both required for regulation of arginine metabolism in Lactococcus lactis

    NARCIS (Netherlands)

    Larsen, R; Buist, G; Kuipers, OP; Kok, J

    2004-01-01

    The DNA binding proteins ArgR and AhrC are essential for regulation of arginine metabolism in Escherichia Coli and Bacillus subtilis, respectively. A unique property of these regulators is that they form hexameric protein complexes, mediating repression of arginine biosynthetic pathways as well as a

  7. Improved method for expression and isolation of the Mycoplasma hominis arginine deiminase from the recombinant strain of Escherichia coli.

    Science.gov (United States)

    Fayura, Lyubov R; Boretsky, Yuriy R; Pynyaha, Yuriy V; Wheatley, Denys N; Sibirny, Andriy A

    2013-09-20

    Arginine deiminase is a promising anticancer drug active against melanoma, hepatocarcinoma and other tumors. Recombinant strains of Escherichia coli that express arginine deiminase from pathogenic bacteria Mycoplasma have been developed. However, production costs of heterologous arginine deiminase are high due to use of an expensive inducer and extraction buffer, as well as using diluted culture for enzyme induction. We report on a new advanced protocol for Mycoplasma hominis arginine deiminase expression, extraction and renaturation. The main improvements include manipulation with dense suspensions of E. coli, use of lactose instead of isopropyl β-D-1-thiogalactopyranoside as an inducer and a cheaper but not less efficient buffer for solubilization of arginine deiminase inclusion bodies. In addition, supplementation of the storage culture medium with glucose and substrate (arginine) significantly stabilized the recombinant arginine deiminase producer. Homogenous preparations of recombinant arginine deiminase were obtained using anion-exchange and hydrophobic chromatography. The purified enzyme retained a specific activity of 30-34 U/mg for 12 months when stored at 4°C in 20 mM sodium phosphate buffer pH 7.2 containing 1 M NaCl.

  8. Mechanisms for Improved Hygroscopicity of L-Arginine Valproate Revealed by X-Ray Single Crystal Structure Analysis.

    Science.gov (United States)

    Ito, Masataka; Nambu, Kaori; Sakon, Aya; Uekusa, Hidehiro; Yonemochi, Etsuo; Noguchi, Shuji; Terada, Katsuhide

    2017-03-01

    Valproic acid is widely used as an antiepileptic agent. Valproic acid is in liquid phase while sodium valproate is in solid phase at room temperature. Sodium valproate is hard to manufacture because of its hygroscopic and deliquescent properties. To improve these, cocrystal and salt screening for valproic acid was employed in this study. Two solid salt forms, l-arginine valproate and l-lysine valproate, were obtained and characterized. By using dynamic vapor sorption method, the critical relative humidity of sodium valproate, l-arginine valproate, and l-lysine valproate were measured. Critical relative humidity of sodium valproate was 40%, of l-lysine valproate was 60%, and of l-arginine valproate was 70%. Single-crystal X-ray structure determination of l-arginine valproate was employed. l-Lysine valproate was of low diffraction quality, and l-arginine valproate formed a 1:1 salt. Crystal l-arginine valproate has a disorder in the methylene carbon chain that creates 2 conformations. The carboxylate group of valproic acid is connected to the amino group of l-arginine. Crystalline morphologies were calculated from its crystal structure. Adsorption of water molecules to crystal facets was simulated by Material Studio. When comparing adsorption energy per site of these salts, sodium valproate is more capable of adsorption of water molecule than l-arginine valproate.

  9. The human neonatal small intestine has the potential for arginine synthesis; developmental changes in the expression of arginine-synthesizing and -catabolizing enzymes

    Directory of Open Access Journals (Sweden)

    Ruijter Jan M

    2008-11-01

    Full Text Available Abstract Background Milk contains too little arginine for normal growth, but its precursors proline and glutamine are abundant; the small intestine of rodents and piglets produces arginine from proline during the suckling period; and parenterally fed premature human neonates frequently suffer from hypoargininemia. These findings raise the question whether the neonatal human small intestine also expresses the enzymes that enable the synthesis of arginine from proline and/or glutamine. Carbamoylphosphate synthetase (CPS, ornithine aminotransferase (OAT, argininosuccinate synthetase (ASS, arginase-1 (ARG1, arginase-2 (ARG2, and nitric-oxide synthase (NOS were visualized by semiquantitative immunohistochemistry in 89 small-intestinal specimens. Results Between 23 weeks of gestation and 3 years after birth, CPS- and ASS-protein content in enterocytes was high and then declined to reach adult levels at 5 years. OAT levels declined more gradually, whereas ARG-1 was not expressed. ARG-2 expression increased neonatally to adult levels. Neurons in the enteric plexus strongly expressed ASS, OAT, NOS1 and ARG2, while varicose nerve fibers in the circular layer of the muscularis propria stained for ASS and NOS1 only. The endothelium of small arterioles expressed ASS and NOS3, while their smooth-muscle layer expressed OAT and ARG2. Conclusion The human small intestine acquires the potential to produce arginine well before fetuses become viable outside the uterus. The perinatal human intestine therefore resembles that of rodents and pigs. Enteral ASS behaves as a typical suckling enzyme because its expression all but disappears in the putative weaning period of human infants.

  10. Increased plasma citrulline in mice marks diet-induced obesity and may predict the development of the metabolic syndrome.

    Science.gov (United States)

    Sailer, Manuela; Dahlhoff, Christoph; Giesbertz, Pieter; Eidens, Mena K; de Wit, Nicole; Rubio-Aliaga, Isabel; Boekschoten, Mark V; Müller, Michael; Daniel, Hannelore

    2013-01-01

    In humans, plasma amino acid concentrations of branched-chain amino acids (BCAA) and aromatic amino acids (AAA) increase in states of obesity, insulin resistance and diabetes. We here assessed whether these putative biomarkers can also be identified in two different obesity and diabetic mouse models. C57BL/6 mice with diet-induced obesity (DIO) mimic the metabolic impairments of obesity in humans characterized by hyperglycemia, hyperinsulinemia and hepatic triglyceride accumulation. Mice treated with streptozotocin (STZ) to induce insulin deficiency were used as a type 1 diabetes model. Plasma amino acid profiling of two high fat (HF) feeding trials revealed that citrulline and ornithine concentrations are elevated in obese mice, while systemic arginine bioavailability (ratio of plasma arginine to ornithine + citrulline) is reduced. In skeletal muscle, HF feeding induced a reduction of arginine levels while citrulline levels were elevated. However, arginine or citrulline remained unchanged in their key metabolic organs, intestine and kidney. Moreover, the intestinal conversion of labeled arginine to ornithine and citrulline in vitro remained unaffected by HF feeding excluding the intestine as prime site of these alterations. In liver, citrulline is mainly derived from ornithine in the urea cycle and DIO mice displayed reduced hepatic ornithine levels. Since both amino acids share an antiport mechanism for mitochondrial import and export, elevated plasma citrulline may indicate impaired hepatic amino acid handling in DIO mice. In the insulin deficient mice, plasma citrulline and ornithine levels also increased and additionally these animals displayed elevated BCAA and AAA levels like insulin resistant and diabetic patients. Therefore, type 1 diabetic mice but not DIO mice show the "diabetic fingerprint" of plasma amino acid changes observed in humans. Additionally, citrulline may serve as an early indicator of the obesity-dependent metabolic impairments.

  11. Increased plasma citrulline in mice marks diet-induced obesity and may predict the development of the metabolic syndrome.

    Directory of Open Access Journals (Sweden)

    Manuela Sailer

    Full Text Available In humans, plasma amino acid concentrations of branched-chain amino acids (BCAA and aromatic amino acids (AAA increase in states of obesity, insulin resistance and diabetes. We here assessed whether these putative biomarkers can also be identified in two different obesity and diabetic mouse models. C57BL/6 mice with diet-induced obesity (DIO mimic the metabolic impairments of obesity in humans characterized by hyperglycemia, hyperinsulinemia and hepatic triglyceride accumulation. Mice treated with streptozotocin (STZ to induce insulin deficiency were used as a type 1 diabetes model. Plasma amino acid profiling of two high fat (HF feeding trials revealed that citrulline and ornithine concentrations are elevated in obese mice, while systemic arginine bioavailability (ratio of plasma arginine to ornithine + citrulline is reduced. In skeletal muscle, HF feeding induced a reduction of arginine levels while citrulline levels were elevated. However, arginine or citrulline remained unchanged in their key metabolic organs, intestine and kidney. Moreover, the intestinal conversion of labeled arginine to ornithine and citrulline in vitro remained unaffected by HF feeding excluding the intestine as prime site of these alterations. In liver, citrulline is mainly derived from ornithine in the urea cycle and DIO mice displayed reduced hepatic ornithine levels. Since both amino acids share an antiport mechanism for mitochondrial import and export, elevated plasma citrulline may indicate impaired hepatic amino acid handling in DIO mice. In the insulin deficient mice, plasma citrulline and ornithine levels also increased and additionally these animals displayed elevated BCAA and AAA levels like insulin resistant and diabetic patients. Therefore, type 1 diabetic mice but not DIO mice show the "diabetic fingerprint" of plasma amino acid changes observed in humans. Additionally, citrulline may serve as an early indicator of the obesity-dependent metabolic

  12. Protective effects of L-arginine on pulmonary oxidative stress and antioxidant defenses during exhaustive exercise in rats

    Inst