WorldWideScience

Sample records for affect muscle activity

  1. How the condition of occlusal support affects the back muscle force and masticatory muscle activity?

    OpenAIRE

    石岡, 克; 河野, 正司; Ishioka, Masaru; Kohno, Shoji

    2002-01-01

    This study was conducted to determine how the condition of occlusal support affects the back muscle force and masticatory muscle activity. Two groups of subjects were enlisted: sport-trained group and normal group. While electrodes of the electromyography (EMG) were attached to the surface of the masticatory muscles, each subject's back muscle force was recorded during upper body stretching using a back muscle force-measuring device. The task was performed under four different occlusal suppor...

  2. In Graves' disease, increased muscle tension and reduced elasticity of affected muscles is primarily caused by active muscle contraction

    NARCIS (Netherlands)

    H.J. Simonsz (Huib); G. Kommerell (Guntram)

    1989-01-01

    textabstractIn three patients with Graves' disease of recent onset, length-tension diagrams were made during surgery for squint under eyedrop anesthesia, while the other eye looked ahead, into the field of action, or out of the field of action of the muscle that was measured. The affected muscles

  3. Might as well jump: sound affects muscle activation in skateboarding.

    Directory of Open Access Journals (Sweden)

    Paola Cesari

    Full Text Available The aim of the study is to reveal the role of sound in action anticipation and performance, and to test whether the level of precision in action planning and execution is related to the level of sensorimotor skills and experience that listeners possess about a specific action. Individuals ranging from 18 to 75 years of age--some of them without any skills in skateboarding and others experts in this sport--were compared in their ability to anticipate and simulate a skateboarding jump by listening to the sound it produces. Only skaters were able to modulate the forces underfoot and to apply muscle synergies that closely resembled the ones that a skater would use if actually jumping on a skateboard. More importantly we showed that only skaters were able to plan the action by activating anticipatory postural adjustments about 200 ms after the jump event. We conclude that expert patterns are guided by auditory events that trigger proper anticipations of the corresponding patterns of movements.

  4. Might as well jump: sound affects muscle activation in skateboarding.

    Science.gov (United States)

    Cesari, Paola; Camponogara, Ivan; Papetti, Stefano; Rocchesso, Davide; Fontana, Federico

    2014-01-01

    The aim of the study is to reveal the role of sound in action anticipation and performance, and to test whether the level of precision in action planning and execution is related to the level of sensorimotor skills and experience that listeners possess about a specific action. Individuals ranging from 18 to 75 years of age--some of them without any skills in skateboarding and others experts in this sport--were compared in their ability to anticipate and simulate a skateboarding jump by listening to the sound it produces. Only skaters were able to modulate the forces underfoot and to apply muscle synergies that closely resembled the ones that a skater would use if actually jumping on a skateboard. More importantly we showed that only skaters were able to plan the action by activating anticipatory postural adjustments about 200 ms after the jump event. We conclude that expert patterns are guided by auditory events that trigger proper anticipations of the corresponding patterns of movements.

  5. Do Changes in Muscle Architecture Affect Post-Activation Potentiation?

    Directory of Open Access Journals (Sweden)

    Danielle Reardon, Jay R. Hoffman, Gerald T. Mangine, Adam J. Wells, Adam M. Gonzalez, Adam R. Jajtner, Jeremy R. Townsend, William P. McCormack, Jeffrey R. Stout, Maren S. Fragala, David H. Fukuda

    2014-09-01

    Full Text Available The purpose of this randomized, cross-over design study was to examine the effect of three different muscle potentiation protocols on acute changes in muscle architecture and vertical jump performance. Eleven experienced, resistance trained men (25.2±3.6y completed three potentiation squat protocols using moderate intensity (MI; 75%, 3 sets x 10 repetitions, high intensity (HI; 90%, 3 sets x 3 repetitions and 100% (1RM; 1 set x 1repetition of their 1RM. In addition, all participants completed a control session (CTL in which no protocol was performed. During each testing session, muscle architecture and vertical jump testing were assessed at baseline (BL, 8min post (8P and 20min post (20P workout. Ultrasound measures included cross sectional area (CSA and pennation angle (PANG of both the rectus femoris (RF and vastus lateralis (VL. Following each ultrasound measure, peak vertical jump power (PVJP and mean (MVJP power was assessed using an accelerometer. Magnitude based inferences were used to make comparisons between trials. The MI trial resulted in a likely greater increase from BL to 8P and 20P in RF-CSA and VL-CSA, while the HI trial resulted in a likely greater change from BL to 20P in both RF-CSA and VL-CSA. Meanwhile, changes in PVJP and MVJP for the MI trial was likely decreased at BL-8P and BL–20P, while the HI trial was shown to result in a likely or possible decrease compared to CTL at BL-8P and BL–20P, respectively. A likely negative relationship was observed between changes in VL-PANG and MVJP (r = -0.35; p , 0.018 at BL-8P, and between changes in PVJP and RF-CSA (r = -0.37; p , 0.014 at BL–20P. Results of this study were unable to demonstrate any potentiation response from the trials employed, however these protocols did result in acute muscle architectural changes.

  6. Does dystonic muscle activity affect sense of effort in cervical dystonia?

    OpenAIRE

    Carment, Lo?c; Maier, Marc A.; Sangla, Sophie; Guiraud, Vincent; Mesure, Serge; Vidailhet, Marie; Lindberg, P?vel G; Bleton, Jean-Pierre

    2017-01-01

    International audience; BackgroundFocal dystonia has been associated with deficient processing of sense of effort cues. However, corresponding studies are lacking in cervical dystonia (CD). We hypothesized that dystonic muscle activity would perturb neck force control based on sense of effort cues.MethodsNeck extension force control was investigated in 18 CD patients with different clinical features (7 with and 11 without retrocollis) and in 19 control subjects. Subjects performed force-match...

  7. Management of sleep-time masticatory muscle activity using stabilisation splints affects psychological stress.

    Science.gov (United States)

    Takahashi, H; Masaki, C; Makino, M; Yoshida, M; Mukaibo, T; Kondo, Y; Nakamoto, T; Hosokawa, R

    2013-12-01

    To treat sleep bruxism (SB), symptomatic therapy using stabilisation splints (SS) is frequently used. However, their effects on psychological stress and sleep quality have not yet been examined fully. The objective of this study was to clarify the effects of SS use on psychological stress and sleep quality. The subjects (11 men, 12 women) were healthy volunteers. A crossover design was used. Sleep measurements were performed for three consecutive days or longer without (baseline) or with an SS or palatal splint (PS), and data for the final day were evaluated. We measured masseter muscle activity during sleep using portable electromyography to evaluate SB. Furthermore, to compare psychological stress before and after sleep, assessments were made based on STAI-JYZ and the measurement of salivary chromogranin A. To compare each parameter among the three groups (baseline, SS and PS), Friedman's and Dunn's tests were used. From the results of the baseline measurements, eight subjects were identified as high group and 15 as low group. Among the high group, a marked decrease in the number of bruxism events per hour and an increase in the difference in the total STAI Y-1 scores were observed in the SS group compared with those at baseline (P sleep stages. SS use may be effective in reducing the number of SB events, while it may increase psychological stress levels, and SS use did not apparently influence sleep stages. © 2013 John Wiley & Sons Ltd.

  8. Does a SLAP lesion affect shoulder muscle recruitment as measured by EMG activity during a rugby tackle?

    Directory of Open Access Journals (Sweden)

    Herrington Lee C

    2010-02-01

    Full Text Available Abstract Background The study objective was to assess the influence of a SLAP lesion on onset of EMG activity in shoulder muscles during a front on rugby football tackle within professional rugby players. Methods Mixed cross-sectional study evaluating between and within group differences in EMG onset times. Testing was carried out within the physiotherapy department of a university sports medicine clinic. The test group consisted of 7 players with clinically diagnosed SLAP lesions, later verified on arthroscopy. The reference group consisted of 15 uninjured and full time professional rugby players from within the same playing squad. Controlled tackles were performed against a tackle dummy. Onset of EMG activity was assessed from surface EMG of Pectorialis Major, Biceps Brachii, Latissimus Dorsi, Serratus Anterior and Infraspinatus muscles relative to time of impact. Analysis of differences in activation timing between muscles and limbs (injured versus non-injured side and non injured side versus matched reference group. Results Serratus Anterior was activated prior to all other muscles in all (P = 0.001-0.03 subjects. In the SLAP injured shoulder Biceps was activated later than in the non-injured side. Onset times of all muscles of the non-injured shoulder in the injured player were consistently earlier compared with the reference group. Whereas, within the injured shoulder, all muscle activation timings were later than in the reference group. Conclusions This study shows that in shoulders with a SLAP lesion there is a trend towards delay in activation time of Biceps and other muscles with the exception of an associated earlier onset of activation of Serratus anterior, possibly due to a coping strategy to protect glenohumeral stability and thoraco-scapular stability. This trend was not statistically significant in all cases

  9. Does a SLAP lesion affect shoulder muscle recruitment as measured by EMG activity during a rugby tackle?

    Science.gov (United States)

    Horsley, Ian G; Herrington, Lee C; Rolf, Christer

    2010-02-25

    The study objective was to assess the influence of a SLAP lesion on onset of EMG activity in shoulder muscles during a front on rugby football tackle within professional rugby players. Mixed cross-sectional study evaluating between and within group differences in EMG onset times. Testing was carried out within the physiotherapy department of a university sports medicine clinic. The test group consisted of 7 players with clinically diagnosed SLAP lesions, later verified on arthroscopy. The reference group consisted of 15 uninjured and full time professional rugby players from within the same playing squad. Controlled tackles were performed against a tackle dummy. Onset of EMG activity was assessed from surface EMG of Pectorialis Major, Biceps Brachii, Latissimus Dorsi, Serratus Anterior and Infraspinatus muscles relative to time of impact. Analysis of differences in activation timing between muscles and limbs (injured versus non-injured side and non injured side versus matched reference group). Serratus Anterior was activated prior to all other muscles in all (P = 0.001-0.03) subjects. In the SLAP injured shoulder Biceps was activated later than in the non-injured side. Onset times of all muscles of the non-injured shoulder in the injured player were consistently earlier compared with the reference group. Whereas, within the injured shoulder, all muscle activation timings were later than in the reference group. This study shows that in shoulders with a SLAP lesion there is a trend towards delay in activation time of Biceps and other muscles with the exception of an associated earlier onset of activation of Serratus anterior, possibly due to a coping strategy to protect glenohumeral stability and thoraco-scapular stability. This trend was not statistically significant in all cases.

  10. Does a SLAP lesion affect shoulder muscle recruitment as measured by EMG activity during a rugby tackle?

    OpenAIRE

    Herrington Lee C; Horsley Ian G; Rolf Christer

    2010-01-01

    Abstract Background The study objective was to assess the influence of a SLAP lesion on onset of EMG activity in shoulder muscles during a front on rugby football tackle within professional rugby players. Methods Mixed cross-sectional study evaluating between and within group differences in EMG onset times. Testing was carried out within the physiotherapy department of a university sports medicine clinic. The test group consisted of 7 players with clinically diagnosed SLAP lesions, later veri...

  11. Muscle cooling delays activation of the muscle metaboreflex in humans.

    Science.gov (United States)

    Ray, C A; Hume, K M; Gracey, K H; Mahoney, E T

    1997-11-01

    Elevation of muscle temperature has been shown to increase muscle sympathetic nerve activity (MSNA) during isometric exercise in humans. The purpose of the present study was to evaluate the effect of muscle cooling on MSNA responses during exercise. Eight subjects performed ischemic isometric handgrip at 30% of maximal voluntary contraction to fatigue followed by 2 min of postexercise muscle ischemia (PEMI), with and without local cooling of the forearm. Local cooling of the forearm decreased forearm muscle temperature from 31.8 +/- 0.4 to 23.1 +/- 0.8 degrees C (P = 0.001). Time to fatigue was not different during the control and cold trials (156 +/- 11 and 154 +/- 5 s, respectively). Arterial pressures and heart rate were not significantly affected by muscle cooling during exercise, although heart rate tended to be higher during the second minute of exercise (P = 0.053) during muscle cooling. Exercise-induced increases in MSNA were delayed during handgrip with local cooling compared with control. However, MSNA responses at fatigue and PEMI were not different between the two conditions. These findings suggest that muscle cooling delayed the activation of the muscle metaboreflex during ischemic isometric exercise but did not prevent its full expression during fatiguing contraction. These results support the concept that muscle temperature can play a role in the regulation of MSNA during exercise.

  12. Dynamic autophagic activity affected the development of thoracic aortic dissection by regulating functional properties of smooth muscle cells

    International Nuclear Information System (INIS)

    Wang, Yang; Zhao, Zhi-Min; Zhang, Guan-Xin; Yang, Fan; Yan, Yan; Liu, Su-Xuan; Li, Song-Hua; Wang, Guo-Kun; Xu, Zhi-Yun

    2016-01-01

    The aortic medial degeneration is the key histopathologic feature of Thoracic aortic dissection (TAD). The aim of this study was to identify the change of autophagic activity in the aortic wall during TAD development, and to explore the roles of autophagy on regulating functional properties of smooth muscle cells (SMCs). Firstly, compared with control group (n = 11), the increased expression of autophagic markers Beclin1 and LC3 was detected in the aortic wall from TAD group (n = 23) by immunochemistry and western blot. We found that more autophagic vacuoles were present in the aortic wall of TAD patients using Transmission electron microscopy. Next, autophagic activity was examined in AD mice model established by β-aminopropionitrile fumarate (BAPN) and angiotensin II. Immunochemistry proved that autophagic activity was dynamically changed during AD development. Beclin1 and LC3 were detected up-regulated in the aortic wall in the second week after BAPN feeding, earlier than the fragmentation or loss of elastic fibers. When AD occurred in the 4th week, the expression of Beclin1 and LC3 began to decrease, but still higher than the control. Furthermore, autophagy was found to inhibit starvation-induced apoptosis of SMCs. Meanwhile, blockage of autophagy could suppress PDGF-induced phenotypic switch of SMCs. Taken together, autophagic activity was dynamically changed in the aortic wall during TAD development. The abnormal autophagy could regulate the functional properties of aortic SMCs, which might be the potential pathogenesis of TAD. - Highlights: • Autophagy is up-regulated in aorta wall from thoracic aorta dissection (TAD) patient. • Autophagic activity is dynamically changed during TAD development. • Dynamically change of autophagy is associated with pathological process of TAD. • Autophagy participate in the development of TAD by regulating function of SMCs.

  13. A muscle model for hybrid muscle activation

    Directory of Open Access Journals (Sweden)

    Klauer Christian

    2015-09-01

    Full Text Available To develop model-based control strategies for Functional Electrical Stimulation (FES in order to support weak voluntary muscle contractions, a hybrid model for describing joint motions induced by concurrent voluntary-and FES induced muscle activation is proposed. It is based on a Hammerstein model – as commonly used in feedback controlled FES – and exemplarily applied to describe the shoulder abduction joint angle. Main component of a Hammerstein muscle model is usually a static input nonlinearity depending on the stimulation intensity. To additionally incorporate voluntary contributions, we extended the static non-linearity by a second input describing the intensity of the voluntary contribution that is estimated by electromyography (EMG measurements – even during active FES. An Artificial Neural Network (ANN is used to describe the static input non-linearity. The output of the ANN drives a second-order linear dynamical system that describes the combined muscle activation and joint angle dynamics. The tunable parameters are adapted to the individual subject by a system identification approach using previously recorded I/O-data. The model has been validated in two healthy subjects yielding RMS values for the joint angle error of 3.56° and 3.44°, respectively.

  14. Study on the apoptosis mediated by cytochrome c and factors that affect the activation of bovine longissimus muscle during postmortem aging.

    Science.gov (United States)

    Zhang, Jiaying; Yu, Qunli; Han, Ling; Chen, Cheng; Li, Hang; Han, Guangxing

    2017-06-01

    This study investigates whether bovine longissimus muscle cell apoptosis occurs during postmortem aging and whether apoptosis is dependent on the mitochondria pathway. This study also determines the apoptosis process mediated by cytochrome c after its release from mitochondria and the factors that affect the activation processes. Results indicate that apoptotic nuclei were detected at 12 h postmortem. Cytochrome c release from the mitochondria to the cytoplasm activated the caspase-9 and caspase-3 at early postmortem aging and the activation of caspase-9 occurs before the activation of caspase-3. The pH level decreased during the first 48 h postmortem, whereas the mitochondria membrane permeability increased from 6 to 12 h. Results demonstrate that an apoptosis process of bovine muscle occurred during postmortem aging. Apoptosis was dependent on the mitochondria pathway and occurred at early postmortem aging. Increased mitochondria membrane permeability and low pH are necessary conditions for the release of cytochrome c during postmortem aging.

  15. Is muscle coordination affected by loading condition in ballistic movements?

    Science.gov (United States)

    Giroux, Caroline; Guilhem, Gaël; Couturier, Antoine; Chollet, Didier; Rabita, Giuseppe

    2015-02-01

    This study aimed to investigate the effect of loading on lower limb muscle coordination involved during ballistic squat jumps. Twenty athletes performed ballistic squat jumps on a force platform. Vertical force, velocity, power and electromyographic (EMG) activity of lower limb muscles were recorded during the push-off phase and compared between seven loading conditions (0-60% of the concentric-only maximal repetition). The increase in external load increased vertical force (from 1962 N to 2559 N; P=0.0001), while movement velocity decreased (from 2.5 to 1.6 ms(-1); P=0.0001). EMG activity of tibialis anterior first peaked at 5% of the push-off phase, followed by gluteus maximus (35%), vastus lateralis and soleus (45%), rectus femoris (55%), gastrocnemius lateralis (65%) and semitendinosus (75%). This sequence of activation (P=0.67) and the amplitude of muscle activity (P=0.41) of each muscle were not affected by loading condition. However, a main effect of muscle was observed on these parameters (peak value: Ppush-off phase. Our findings suggest that muscle coordination is not influenced by external load during a ballistic squat jump. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Differential expression of peroxisome proliferator activated receptor gamma and cyclin D1 does not affect proliferation of asthma- and non-asthma-derived airway smooth muscle cells

    NARCIS (Netherlands)

    Lau, Justine Y; Oliver, Brian G; Moir, Lyn M; Black, Judith L; Burgess, Janette K

    UNLABELLED: PPARgamma levels in asthma- and non-asthma-derived airway smooth muscle cells and PPARgamma activation-induced cell proliferation were investigated. In the presence of FBS, PPARgamma levels were higher in subconfluent asthma-derived cells but lower in confluent cells compared with

  17. Does mental exertion alter maximal muscle activation?

    Directory of Open Access Journals (Sweden)

    Vianney eRozand

    2014-09-01

    Full Text Available Mental exertion is known to impair endurance performance, but its effects on neuromuscular function remain unclear. The purpose of this study was to test the hypothesis that mental exertion reduces torque and muscle activation during intermittent maximal voluntary contractions of the knee extensors. Ten subjects performed in a randomized order three separate mental exertion conditions lasting 27 minutes each: i high mental exertion (incongruent Stroop task, ii moderate mental exertion (congruent Stroop task, iii low mental exertion (watching a movie. In each condition, mental exertion was combined with ten intermittent maximal voluntary contractions of the knee extensor muscles (one maximal voluntary contraction every 3 minutes. Neuromuscular function was assessed using electrical nerve stimulation. Maximal voluntary torque, maximal muscle activation and other neuromuscular parameters were similar across mental exertion conditions and did not change over time. These findings suggest that mental exertion does not affect neuromuscular function during intermittent maximal voluntary contractions of the knee extensors.

  18. Fatigue effects on tracking performance and muscle activity

    NARCIS (Netherlands)

    Huysmans, M.A.; Hoozemans, M.J.M.; van der Beek, A.J.; de Looze, M.P.; van Dieen, J.H.

    2008-01-01

    It has been suggested that fatigue affects proprioception and consequently movement accuracy, the effects of which may be counteracted by increased muscle activity. To determine the effects of fatigue on tracking performance and muscle activity in the M. extensor carpi radialis (ECR), 11 female

  19. Lack of on-going adaptations in the soleus muscle activity during walking in patients affected by large-fiber neuropathy

    DEFF Research Database (Denmark)

    Nazarena, Mazzaro; Grey, Michael James; Sinkjær, Thomas

    2005-01-01

    The aim of this study was to investigate the contribution of feedback from large-diameter sensory fibers to the adaptation of soleus muscle activity after small ankle trajectory modifications during human walking. Small-amplitude and slow-velocity ankle dorsiflexion enhancements and reductions were...... applied during the stance phase of the gait cycle to mimic the normal variability of the ankle trajectory during walking. Patients with demyelination of large sensory fibers (Charcot-Marie-Tooth type 1A and antibodies to myelin-associated glycoprotein neuropathy) and age-matched controls participated...... duration (P ankle dorsiflexion was, respectively, enhanced or reduced. In the patients, the soleus EMG increased during the dorsiflexion...

  20. Influence of gravity compensation on muscle activity during reach and retrieval in healthy elderly.

    NARCIS (Netherlands)

    Prange, Grada Berendina; Kallenberg, L.A.C.; Jannink, M.J.A.; Stienen, Arno; van der Kooij, Herman; IJzerman, Maarten Joost; Hermens, Hermanus J.

    2007-01-01

    INTRODUCTION: Arm support like gravity compensation may improve arm movements during stroke rehabilitation. It is unknown how gravity compensation affects muscle activation patterns during reach and retrieval movements. Since muscle activity during reach is represented by a component varying with

  1. Activation of respiratory muscles during respiratory muscle training.

    Science.gov (United States)

    Walterspacher, Stephan; Pietsch, Fabian; Walker, David Johannes; Röcker, Kai; Kabitz, Hans-Joachim

    2018-01-01

    It is unknown which respiratory muscles are mainly activated by respiratory muscle training. This study evaluated Inspiratory Pressure Threshold Loading (IPTL), Inspiratory Flow Resistive Loading (IFRL) and Voluntary Isocapnic Hyperpnea (VIH) with regard to electromyographic (EMG) activation of the sternocleidomastoid muscle (SCM), parasternal muscles (PARA) and the diaphragm (DIA) in randomized order. Surface EMG were analyzed at the end of each training session and normalized using the peak EMG recorded during maximum inspiratory maneuvers (Sniff nasal pressure: SnPna, maximal inspiratory mouth occlusion pressure: PImax). 41 healthy participants were included. Maximal activation was achieved for SCM by SnPna; the PImax activated predominantly PARA and DIA. Activations of SCM and PARA were higher in IPTL and VIH than for IFRL (p<0.05). DIA was higher applying IPTL compared to IFRL or VIH (p<0.05). IPTL, IFRL and VIH differ in activation of inspiratory respiratory muscles. Whereas all methods mainly stimulate accessory respiratory muscles, diaphragm activation was predominant in IPTL. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Muscle Atrophy Reversed by Growth Factor Activation of Satellite Cells in a Mouse Muscle Atrophy Model

    DEFF Research Database (Denmark)

    Hauerslev, Simon; Vissing, John; Krag, Thomas O

    2014-01-01

    mechanism that may contribute to the progressive muscle wasting seen in severely affected patients with muscular dystrophy and significant on-going regeneration. This treatment could potentially be applied to many conditions that feature muscle wasting to increase muscle bulk and strength.......Muscular dystrophies comprise a large group of inherited disorders that lead to progressive muscle wasting. We wanted to investigate if targeting satellite cells can enhance muscle regeneration and thus increase muscle mass. We treated mice with hepatocyte growth factor and leukemia inhibitory...... factor under three conditions: normoxia, hypoxia and during myostatin deficiency. We found that hepatocyte growth factor treatment led to activation of the Akt/mTOR/p70S6K protein synthesis pathway, up-regulation of the myognic transcription factors MyoD and myogenin, and subsequently the negative growth...

  3. Muscle activity characterization by laser Doppler Myography

    Science.gov (United States)

    Scalise, Lorenzo; Casaccia, Sara; Marchionni, Paolo; Ercoli, Ilaria; Primo Tomasini, Enrico

    2013-09-01

    Electromiography (EMG) is the gold-standard technique used for the evaluation of muscle activity. This technique is used in biomechanics, sport medicine, neurology and rehabilitation therapy and it provides the electrical activity produced by skeletal muscles. Among the parameters measured with EMG, two very important quantities are: signal amplitude and duration of muscle contraction, muscle fatigue and maximum muscle power. Recently, a new measurement procedure, named Laser Doppler Myography (LDMi), for the non contact assessment of muscle activity has been proposed to measure the vibro-mechanical behaviour of the muscle. The aim of this study is to present the LDMi technique and to evaluate its capacity to measure some characteristic features proper of the muscle. In this paper LDMi is compared with standard superficial EMG (sEMG) requiring the application of sensors on the skin of each patient. sEMG and LDMi signals have been simultaneously acquired and processed to test correlations. Three parameters has been analyzed to compare these techniques: Muscle activation timing, signal amplitude and muscle fatigue. LDMi appears to be a reliable and promising measurement technique allowing the measurements without contact with the patient skin.

  4. Muscle activity characterization by laser Doppler Myography

    International Nuclear Information System (INIS)

    Scalise, Lorenzo; Casaccia, Sara; Marchionni, Paolo; Ercoli, Ilaria; Tomasini, Enrico Primo

    2013-01-01

    Electromiography (EMG) is the gold-standard technique used for the evaluation of muscle activity. This technique is used in biomechanics, sport medicine, neurology and rehabilitation therapy and it provides the electrical activity produced by skeletal muscles. Among the parameters measured with EMG, two very important quantities are: signal amplitude and duration of muscle contraction, muscle fatigue and maximum muscle power. Recently, a new measurement procedure, named Laser Doppler Myography (LDMi), for the non contact assessment of muscle activity has been proposed to measure the vibro-mechanical behaviour of the muscle. The aim of this study is to present the LDMi technique and to evaluate its capacity to measure some characteristic features proper of the muscle. In this paper LDMi is compared with standard superficial EMG (sEMG) requiring the application of sensors on the skin of each patient. sEMG and LDMi signals have been simultaneously acquired and processed to test correlations. Three parameters has been analyzed to compare these techniques: Muscle activation timing, signal amplitude and muscle fatigue. LDMi appears to be a reliable and promising measurement technique allowing the measurements without contact with the patient skin

  5. Glucosamine-induced endoplasmic reticulum stress affects GLUT4 expression via activating transcription factor 6 in rat and human skeletal muscle cells

    DEFF Research Database (Denmark)

    Raciti, G A; Iadicicco, C; Ulianich, L

    2010-01-01

    Glucosamine, generated during hyperglycaemia, causes insulin resistance in different cells. Here we sought to evaluate the possible role of endoplasmic reticulum (ER) stress in the induction of insulin resistance by glucosamine in skeletal muscle cells.......Glucosamine, generated during hyperglycaemia, causes insulin resistance in different cells. Here we sought to evaluate the possible role of endoplasmic reticulum (ER) stress in the induction of insulin resistance by glucosamine in skeletal muscle cells....

  6. Mediatised affective activism

    DEFF Research Database (Denmark)

    Reestorff, Camilla Møhring

    2014-01-01

    bodies by addressing affective registers. The mediatised ‘affective environment’ (Massumi, 2009) cues bodies and generates spreadability, yet it also produces disconnections. These disconnections might redistribute the ‘economy of recognizability’ (Butler and Athanasiou, 2013); however, the Femen...

  7. Effects of visually demanding near work on trapezius muscle activity.

    Science.gov (United States)

    Zetterberg, C; Forsman, M; Richter, H O

    2013-10-01

    Poor visual ergonomics is associated with visual and neck/shoulder discomfort, but the relation between visual demands and neck/shoulder muscle activity is unclear. The aims of this study were to investigate whether trapezius muscle activity was affected by: (i) eye-lens accommodation; (ii) incongruence between accommodation and convergence; and (iii) presence of neck/shoulder discomfort. Sixty-six participants (33 controls and 33 with neck pain) performed visually demanding near work under four different trial-lens conditions. Results showed that eye-lens accommodation per se did not affect trapezius muscle activity significantly. However, when incongruence between accommodation and convergence was present, a significant positive relationship between eye-lens accommodation and trapezius muscle activity was found. There were no significant group-differences. It was concluded that incongruence between accommodation and convergence is an important factor in the relation between visually demanding near work and trapezius muscle activity. The relatively low demands on accommodation and convergence in the present study imply that visually demanding near work may contribute to increased muscle activity, and over time to the development of near work related neck/shoulder discomfort. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Muscle activation patterns in posttraumatic neck pain

    NARCIS (Netherlands)

    Nederhand, Marcus Johannes

    2003-01-01

    As an important consequence of our research, we question the relevance of the criteria of the WAD injury severity classification system. We showed that the musculoskeletal signs in WAD grade II are not characterized by muscle spasm, (i.e. increase of muscle activity), but rather by a decrease in

  9. Muscle atrophy reversed by growth factor activation of satellite cells in a mouse muscle atrophy model.

    Directory of Open Access Journals (Sweden)

    Simon Hauerslev

    Full Text Available Muscular dystrophies comprise a large group of inherited disorders that lead to progressive muscle wasting. We wanted to investigate if targeting satellite cells can enhance muscle regeneration and thus increase muscle mass. We treated mice with hepatocyte growth factor and leukemia inhibitory factor under three conditions: normoxia, hypoxia and during myostatin deficiency. We found that hepatocyte growth factor treatment led to activation of the Akt/mTOR/p70S6K protein synthesis pathway, up-regulation of the myognic transcription factors MyoD and myogenin, and subsequently the negative growth control factor, myostatin and atrophy markers MAFbx and MuRF1. Hypoxia-induced atrophy was partially restored by hepatocyte growth factor combined with leukemia inhibitory factor treatment. Dividing satellite cells were three-fold increased in the treatment group compared to control. Finally, we demonstrated that myostatin regulates satellite cell activation and myogenesis in vivo following treatment, consistent with previous findings in vitro. Our results suggest, not only a novel in vivo pharmacological treatment directed specifically at activating the satellite cells, but also a myostatin dependent mechanism that may contribute to the progressive muscle wasting seen in severely affected patients with muscular dystrophy and significant on-going regeneration. This treatment could potentially be applied to many conditions that feature muscle wasting to increase muscle bulk and strength.

  10. Core Muscle Activation in Suspension Training Exercises.

    Science.gov (United States)

    Cugliari, Giovanni; Boccia, Gennaro

    2017-02-01

    A quantitative observational laboratory study was conducted to characterize and classify core training exercises executed in a suspension modality on the base of muscle activation. In a prospective single-group repeated measures design, seventeen active male participants performed four suspension exercises typically associated with core training (roll-out, bodysaw, pike and knee-tuck). Surface electromyographic signals were recorded from lower and upper parts of rectus abdominis, external oblique, internal oblique, lower and upper parts of erector spinae muscles using concentric bipolar electrodes. The average rectified values of electromyographic signals were normalized with respect to individual maximum voluntary isometric contraction of each muscle. Roll-out exercise showed the highest activation of rectus abdominis and oblique muscles compared to the other exercises. The rectus abdominis and external oblique reached an activation higher than 60% of the maximal voluntary contraction (or very close to that threshold, 55%) in roll-out and bodysaw exercises. Findings from this study allow the selection of suspension core training exercises on the basis of quantitative information about the activation of muscles of interest. Roll-out and bodysaw exercises can be considered as suitable for strength training of rectus abdominis and external oblique muscles.

  11. Influence of muscle groups' activation on proximal femoral growth tendency.

    Science.gov (United States)

    Yadav, Priti; Shefelbine, Sandra J; Pontén, Eva; Gutierrez-Farewik, Elena M

    2017-12-01

    Muscle and joint contact force influence stresses at the proximal growth plate of the femur and thus bone growth, affecting the neck shaft angle (NSA) and femoral anteversion (FA). This study aims to illustrate how different muscle groups' activation during gait affects NSA and FA development in able-bodied children. Subject-specific femur models were developed for three able-bodied children (ages 6, 7, and 11 years) using magnetic resonance images. Contributions of different muscle groups-hip flexors, hip extensors, hip adductors, hip abductors, and knee extensors-to overall hip contact force were computed. Specific growth rate for the growth plate was computed, and the growth was simulated in the principal stress direction at each element in the growth front. The predicted growth indicated decreased NSA and FA (of about [Formula: see text] over a four-month period) for able-bodied children. Hip abductors contributed the most, and hip adductors, the least, to growth rate. All muscles groups contributed to a decrease in predicted NSA ([Formula: see text]0.01[Formula: see text]-0.04[Formula: see text] and FA ([Formula: see text]0.004[Formula: see text]-[Formula: see text]), except hip extensors and hip adductors, which showed a tendency to increase the FA ([Formula: see text]0.004[Formula: see text]-[Formula: see text]). Understanding influences of different muscle groups on long bone growth tendency can help in treatment planning for growing children with affected gait.

  12. Training affects muscle phospholipid fatty acid composition in humans

    DEFF Research Database (Denmark)

    Helge, Jørn Wulff; Wu, B J; Willer, Mette

    2001-01-01

    on the muscle membrane phospholipid fatty acid composition in humans. Seven male subjects performed endurance training of the knee extensors of one leg for 4 wk. The other leg served as a control. Before, after 4 days, and after 4 wk, muscle biopsies were obtained from the vastus lateralis. After 4 wk......, the phospholipid fatty acid contents of oleic acid 18:1(n-9) and docosahexaenoic acid 22:6(n-3) were significantly higher in the trained (10.9 +/- 0.5% and 3.2 +/- 0.4% of total fatty acids, respectively) than the untrained leg (8.8 +/- 0.5% and 2.6 +/- 0.4%, P fatty acids...... was significantly lower in the trained (11.1 +/- 0.9) than the untrained leg (13.1 +/- 1.2, P fatty acid composition. Citrate synthase activity was increased by 17% in the trained compared with the untrained leg (P

  13. Muscle activity in sprinting: a review.

    Science.gov (United States)

    Howard, Róisín M; Conway, Richard; Harrison, Andrew J

    2018-03-01

    The use of electromyography (EMG) is widely recognised as a valuable tool for enhancing the understanding of performance drivers and potential injury risk in sprinting. The timings of muscle activations relative to running gait cycle phases and the technology used to obtain muscle activation data during sprinting are of particular interest to scientists and coaches. This review examined the main muscles being analysed by surface EMG (sEMG), their activations and timing, and the technologies used to gather sEMG during sprinting. Electronic databases were searched using 'Electromyography' OR 'EMG' AND 'running' OR 'sprinting'. Based on inclusion criteria, 18 articles were selected for review. While sEMG is widely used in biomechanics, relatively few studies have used sEMG in sprinting due to system constraints. The results demonstrated a focus on the leg muscles, with over 70% of the muscles analysed in the upper leg. This is consistent with the use of tethered and data logging EMG systems and many sprints being performed on treadmills. Through the recent advances in wireless EMG technology, an increase in the studies on high velocity movements such as sprinting is expected and this should allow practitioners to perform the analysis in an ecologically valid environment.

  14. Inherited neurovascular diseases affecting cerebral blood vessels and smooth muscle.

    Science.gov (United States)

    Sam, Christine; Li, Fei-Feng; Liu, Shu-Lin

    2015-10-01

    Neurovascular diseases are among the leading causes of mortality and permanent disability due to stroke, aneurysm, and other cardiovascular complications. Cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) and Marfan syndrome are two neurovascular disorders that affect smooth muscle cells through accumulation of granule and osmiophilic materials and defective elastic fiber formations respectively. Moyamoya disease, hereditary hemorrhagic telangiectasia (HHT), microcephalic osteodysplastic primordial dwarfism type II (MOPD II), and Fabry's disease are disorders that affect the endothelium cells of blood vessels through occlusion or abnormal development. While much research has been done on mapping out mutations in these diseases, the exact mechanisms are still largely unknown. This paper briefly introduces the pathogenesis, genetics, clinical symptoms, and current methods of treatment of the diseases in the hope that it can help us better understand the mechanism of these diseases and work on ways to develop better diagnosis and treatment.

  15. Effect of altering starting length and activation timing of muscle on fiber strain and muscle damage.

    Science.gov (United States)

    Butterfield, Timothy A; Herzog, Walter

    2006-05-01

    Muscle strain injuries are some of the most frequent injuries in sports and command a great deal of attention in an effort to understand their etiology. These injuries may be the culmination of a series of subcellular events accumulated through repetitive lengthening (eccentric) contractions during exercise, and they may be influenced by a variety of variables including fiber strain magnitude, peak joint torque, and starting muscle length. To assess the influence of these variables on muscle injury magnitude in vivo, we measured fiber dynamics and joint torque production during repeated stretch-shortening cycles in the rabbit tibialis anterior muscle, at short and long muscle lengths, while varying the timing of activation before muscle stretch. We found that a muscle subjected to repeated stretch-shortening cycles of constant muscle-tendon unit excursion exhibits significantly different joint torque and fiber strains when the timing of activation or starting muscle length is changed. In particular, measures of fiber strain and muscle injury were significantly increased by altering activation timing and increasing the starting length of the muscle. However, we observed differential effects on peak joint torque during the cyclic stretch-shortening exercise, as increasing the starting length of the muscle did not increase torque production. We conclude that altering activation timing and muscle length before stretch may influence muscle injury by significantly increasing fiber strain magnitude and that fiber dynamics is a more important variable than muscle-tendon unit dynamics and torque production in influencing the magnitude of muscle injury.

  16. Proteomic Assessment of the Relevant Factors Affecting Pork Meat Quality Associated with Muscles in Duroc Pigs

    Directory of Open Access Journals (Sweden)

    Jin Hyoung Cho

    2016-11-01

    Full Text Available Meat quality is a complex trait influenced by many factors, including genetics, nutrition, feeding environment, animal handling, and their interactions. To elucidate relevant factors affecting pork quality associated with oxidative stress and muscle development, we analyzed protein expression in high quality longissimus dorsi muscles (HQLD and low quality longissimus dorsi muscles (LQLD from Duroc pigs by liquid chromatographytandem mass spectrometry (LC-MS/MS–based proteomic analysis. Between HQLD (n = 20 and LQLD (n = 20 Duroc pigs, 24 differentially expressed proteins were identified by LC-MS/MS. A total of 10 and 14 proteins were highly expressed in HQLD and LQLD, respectively. The 24 proteins have putative functions in the following seven categories: catalytic activity (31%, ATPase activity (19%, oxidoreductase activity (13%, cytoskeletal protein binding (13%, actin binding (12%, calcium ion binding (6%, and structural constituent of muscle (6%. Silver-stained image analysis revealed significant differential expression of lactate dehydrogenase A (LDHA between HQLD and LQLD Duroc pigs. LDHA was subjected to in vitro study of myogenesis under oxidative stress conditions and LDH activity assay to verification its role in oxidative stress. No significant difference of mRNA expression level of LDHA was found between normal and oxidative stress condition. However, LDH activity was significantly higher under oxidative stress condition than at normal condition using in vitro model of myogenesis. The highly expressed LDHA was positively correlated with LQLD. Moreover, LDHA activity increased by oxidative stress was reduced by antioxidant resveratrol. This paper emphasizes the importance of differential expression patterns of proteins and their interaction for the development of meat quality traits. Our proteome data provides valuable information on important factors which might aid in the regulation of muscle development and the improvement of

  17. Activation of Selected Core Muscles during Pressing

    Directory of Open Access Journals (Sweden)

    Thomas W. Nesser

    2015-10-01

    Full Text Available Introduction: Unstable surface training is often used to activate core musculature during resistance training. Unfortunately, unstable surface training is risky and leads to detraining. Purpose: The purpose of this study was to determine core muscle activation during stable surface ground-based lifts. Methods: Fourteen recreational trained and former NCAA DI athletes (weight 84.2 ± 13.3 kg; height 176.0 ± 9.5 cm; age 20.9 ± 2.0 years volunteered for participation. Subjects completed two ground-based lifts: overhead press and push-press. Surface EMG was recorded from 4 muscles on the right side of the body (Rectus Abdominus (RA, External Oblique (EO, Transverse Abdominus (TA, and Erector Spinae (ES. Results: Paired sample T-tests identified significant muscle activation differences between the overhead press and the push-press included ES and EO. Average and peak EMG for ES was significantly greater in push-press (P<0.01. Anterior displacement of COP was significantly greater in push-press compared to overhead press during the eccentric phase. Conclusion: The push-press was identified as superior in core muscle activation when compared to the overhead pressing exercise. Keywords: torso, stability, weight lifting, resistance training

  18. Muscle Activity during Dryland Swimming while Wearing a Triathlon Wetsuit

    Directory of Open Access Journals (Sweden)

    Ciro Agnelli

    2018-01-01

    Full Text Available Background: Triathletes typically wear a wetsuit during the swim portion of an event, but it is not clear if muscle activity is influenced by wearing a wetsuit. Purpose: To investigate if shoulder muscle activity was influenced by wearing a full-sleeve wetsuit vs. no wetsuit during dryland swimming. Methods: Participants (n=10 males; 179.1±13.2 cm; 91.2±7.25 kg; 45.6±10.5 years completed two dry land swimming conditions on a swim ergometer: No Wetsuit (NW and with Wetsuit (W. Electromyography (EMG of four upper extremity muscles was recorded (Noraxon telemetry EMG, 500 Hz during each condition: Trapezius (TRAP, Triceps (TRI, Anterior Deltoid (AD and Posterior Deltoid (PD. Each condition lasted 90 seconds with data collected during the last 60 seconds. Resistance setting was self-selected and remained constant for both conditions. Stroke rate was controlled at 60 strokes per minute by having participants match a metronome. Average (AVG and Root Mean Square (RMS EMG were calculated over 45 seconds and each were compared between conditions using a paired t-test (α=0.05 for each muscle. Results: PD and AD AVG and RMS EMG were each greater (on average 40.0% and 66.8% greater, respectively during W vs. NW (p0.05. Conclusion: The greater PD and AD muscle activity while wearing a wetsuit might affect swimming performance and /or stroke technique on long distance event.

  19. Mechanomyogram for identifying muscle activity and fatigue.

    Science.gov (United States)

    Yang, Zhao Feng; Kumar, Dinesh Kant; Arjunan, Sridhar Poosapadi

    2009-01-01

    Mechanomyogram is the recording of the acoustic activity associated with the muscle contraction. While discovered nearly a decade ago with the intention of providing an alternate to the surface electromyogram, it has not yet been investigated thoroughly and there are no current applications associated with MMG. This paper reports an experimental study of MMG against force of contraction and muscle fatigue during cyclic contraction. The results indicate that there is a relationship between the intensity of the MMG recording and force of contraction. A change in the intensity of MMG is also observed with the onset of muscle fatigue. However, the inter-subject variation is very large. The results also indicate that the spectrum of the MMG is very inconsistent and not a useful feature of the signal.

  20. Lower extremity muscle activation during baseball pitching.

    Science.gov (United States)

    Campbell, Brian M; Stodden, David F; Nixon, Megan K

    2010-04-01

    The purpose of this study was to investigate muscle activation levels of select lower extremity muscles during the pitching motion. Bilateral surface electromyography data on 5 lower extremity muscles (biceps femoris, rectus femoris, gluteus maximus, vastus medialis, and gastrocnemius) were collected on 11 highly skilled baseball pitchers and compared with individual maximal voluntary isometric contraction (MVIC) data. The pitching motion was divided into 4 distinct phases: phase 1, initiation of pitching motion to maximum stride leg knee height; phase 2, maximum stride leg knee height to stride foot contact (SFC); phase 3, SFC to ball release; and phase 4, ball release to 0.5 seconds after ball release (follow-through). Results indicated that trail leg musculature elicited moderate to high activity levels during phases 2 and 3 (38-172% of MVIC). Muscle activity levels of the stride leg were moderate to high during phases 2-4 (23-170% of MVIC). These data indicate a high demand for lower extremity strength and endurance. Specifically, coaches should incorporate unilateral and bilateral lower extremity exercises for strength improvement or maintenance and to facilitate dynamic stabilization of the lower extremities during the pitching motion.

  1. The activity pattern of shoulder muscles in subjects with and without subacromial impingement

    DEFF Research Database (Denmark)

    Diederichsen, Louise Pyndt; Nørregaard, Jesper; Dyhre-Poulsen, Poul

    2009-01-01

    Altered shoulder muscle activity is frequently believed to be a pathogenetic factor of subacromial impingement (SI) and therapeutic interventions have been directed towards restoring normal motor patterns. Still, there is a lack of scientific evidence regarding the changes in muscle activity in p...... that the different motor patterns might be a pathogenetic factor of SI, perhaps due to inappropriate neuromuscular strategies affecting both shoulders....

  2. Mimicking muscle activity with electrical stimulation

    Science.gov (United States)

    Johnson, Lise A.; Fuglevand, Andrew J.

    2011-02-01

    Functional electrical stimulation is a rehabilitation technology that can restore some degree of motor function in individuals who have sustained a spinal cord injury or stroke. One way to identify the spatio-temporal patterns of muscle stimulation needed to elicit complex upper limb movements is to use electromyographic (EMG) activity recorded from able-bodied subjects as a template for electrical stimulation. However, this requires a transfer function to convert the recorded (or predicted) EMG signals into an appropriate pattern of electrical stimulation. Here we develop a generalized transfer function that maps EMG activity into a stimulation pattern that modulates muscle output by varying both the pulse frequency and the pulse amplitude. We show that the stimulation patterns produced by this transfer function mimic the active state measured by EMG insofar as they reproduce with good fidelity the complex patterns of joint torque and joint displacement.

  3. Development of rigor mortis is not affected by muscle volume.

    Science.gov (United States)

    Kobayashi, M; Ikegaya, H; Takase, I; Hatanaka, K; Sakurada, K; Iwase, H

    2001-04-01

    There is a hypothesis suggesting that rigor mortis progresses more rapidly in small muscles than in large muscles. We measured rigor mortis as tension determined isometrically in rat musculus erector spinae that had been cut into muscle bundles of various volumes. The muscle volume did not influence either the progress or the resolution of rigor mortis, which contradicts the hypothesis. Differences in pre-rigor load on the muscles influenced the onset and resolution of rigor mortis in a few pairs of samples, but did not influence the time taken for rigor mortis to reach its full extent after death. Moreover, the progress of rigor mortis in this muscle was biphasic; this may reflect the early rigor of red muscle fibres and the late rigor of white muscle fibres.

  4. Differential Muscle Involvement in Mice and Humans Affected by McArdle Disease

    DEFF Research Database (Denmark)

    Krag, Thomas O; Pinós, Tomàs; Nielsen, Tue L

    2016-01-01

    McArdle disease (muscle glycogenosis type V) is caused by myophosphorylase deficiency, which leads to impaired glycogen breakdown. We investigated how myophosphorylase deficiency affects muscle physiology, morphology, and glucose metabolism in 20-week-old McArdle mice and compared the findings...... to those in McArdle disease patients. Muscle contractions in the McArdle mice were affected by structural degeneration due to glycogen accumulation, and glycolytic muscles fatigued prematurely, as occurs in the muscles of McArdle disease patients. Homozygous McArdle mice showed muscle fiber disarray...... no substitution for the missing muscle isoform. In the mice, the tibialis anterior (TA) muscles were invariably more damaged than the quadriceps muscles. This may relate to a 7-fold higher level of myophosphorylase in TA compared to quadriceps in wild-type mice and suggests higher glucose turnover in the TA. Thus...

  5. Protein turnover and cellular stress in mildly and severely affected muscles from patients with limb girdle muscular dystrophy type 2I.

    Directory of Open Access Journals (Sweden)

    Simon Hauerslev

    Full Text Available Patients with Limb girdle muscular dystrophy type 2I (LGMD2I are characterized by progressive muscle weakness and wasting primarily in the proximal muscles, while distal muscles often are spared. Our aim was to investigate if wasting could be caused by impaired regeneration in the proximal compared to distal muscles. Biopsies were simultaneously obtained from proximal and distal muscles of the same patients with LGMD2I (n = 4 and healthy subjects (n = 4. The level of past muscle regeneration was evaluated by counting internally nucleated fibers and determining actively regenerating fibers by using the developmental markers embryonic myosin heavy chain (eMHC and neural cell adhesion molecule (NCAM and also assessing satellite cell activation status by myogenin positivity. Severe muscle histopathology was occasionally observed in the proximal muscles of patients with LGMD2I whereas distal muscles were always relatively spared. No difference was found in the regeneration markers internally nucleated fibers, actively regenerating fibers or activation status of satellite cells between proximal and distal muscles. Protein turnover, both synthesis and breakdown, as well as cellular stress were highly increased in severely affected muscles compared to mildly affected muscles. Our results indicate that alterations in the protein turnover and myostatin levels could progressively impair the muscle mass maintenance and/or regeneration resulting in gradual muscular atrophy.

  6. Gas stunning with CO2 affected meat color, lipid peroxidation, oxidative stress, and gene expression of mitogen-activated protein kinases, glutathione S-transferases, and Cu/Zn-superoxide dismutase in the skeletal muscles of broilers.

    Science.gov (United States)

    Xu, Lei; Zhang, Haijun; Yue, Hongyuan; Wu, Shugeng; Yang, Haiming; Wang, Zhiyue; Qi, Guanghai

    2018-01-01

    Meat color and lipid peroxidation are important traits related to meat quality. CO 2 concentration is a critical factor that can affect meat quality in the commercial use of gas stunning (GS). However, the effect and mechanism of CO 2 stunning on meat color and lipid peroxidation during long-term storage remain poorly studied. We aimed to study the effects of GS methods, especially CO 2 concentration, on meat color and meat lipid peroxidation in broilers during long-term storage at 4 °C and to explore the potential mechanism of meat color change via lipid peroxidation and the inner lipid peroxide scavenging system. Eighteen broilers were sacrificed after exposure to one of the following gas mixtures for 90 s: 40% CO 2  + 21% O 2  + 39% N 2 (G40%), 79% CO 2  + 21% O 2 (G79%), or no stunning (0% CO 2 , control). Meat color, serum variables, enzyme activities, and the gene expression of mitogen-activated protein kinase ( MAPK ), nuclear factor-erythroid 2-related factor 2 ( Nrf2 ), glutathione S-transferase ( GST ) and superoxide dismutase ( SOD ) were determined. The concentrations of serum triiodothyronine (T3, P  = 0.03) and the ratio of serum free triiodothyronine/free thyroxine (FT3/FT4, P  meat and the TBARS 3 d in thigh meat ( P  meat ( r  = - 0.63, P  meat and in the thigh meat ( r  = - 0.57, P  = 0.01; and r  = - 0.53, P  = 0.03 respectively). Compared with the control group, Lightness (L*) 1 d ( P =  0.03) and L* 9 d ( P meat of both the G40% and G79% groups. The values of yellowness (b*) 3 d ( P =  0.01), b* 6 d ( P meat were lower in both the G40% and G79% groups than in the control group. In the breast muscle, the mRNA levels of c-Jun N-terminal kinase 2 ( JNK2, P  = 0.03), GSTT1 ( P  = 0.04), and SOD1 ( P  = 0.05) were decreased, and the mRNA levels of JNK1 ( P  = 0.07), Nrf2 ( P  = 0.09), and GSTA3 ( P  = 0.06) were slightly lower in both the G40% and G79% groups

  7. Ibuprofen Differentially Affects Supraspinatus Muscle and Tendon Adaptations to Exercise in a Rat Model.

    Science.gov (United States)

    Rooney, Sarah Ilkhanipour; Baskin, Rachel; Torino, Daniel J; Vafa, Rameen P; Khandekar, Pooja S; Kuntz, Andrew F; Soslowsky, Louis J

    2016-09-01

    Previous studies have shown that ibuprofen is detrimental to tissue healing after acute injury; however, the effects of ibuprofen when combined with noninjurious exercise are debated. Administration of ibuprofen to rats undergoing a noninjurious treadmill exercise protocol will abolish the beneficial adaptations found with exercise but will have no effect on sedentary muscle and tendon properties. Controlled laboratory study. A total of 167 male Sprague-Dawley rats were divided into exercise or cage activity (sedentary) groups and acute (a single bout of exercise followed by 24 hours of rest) and chronic (2 or 8 weeks of repeated exercise) response times. Half of the rats were administered ibuprofen to investigate the effects of this drug over time when combined with different activity levels (exercise and sedentary). Supraspinatus tendons were used for mechanical testing and histologic assessment (organization, cell shape, cellularity), and supraspinatus muscles were used for morphologic (fiber cross-sectional area, centrally nucleated fibers) and fiber type analysis. Chronic intake of ibuprofen did not impair supraspinatus tendon organization or mechanical adaptations (stiffness, modulus, maximum load, maximum stress, dynamic modulus, or viscoelastic properties) to exercise. Tendon mechanical properties were not diminished and in some instances increased with ibuprofen. In contrast, total supraspinatus muscle fiber cross-sectional area decreased with ibuprofen at chronic response times, and some fiber type-specific changes were detected. Chronic administration of ibuprofen does not impair supraspinatus tendon mechanical properties in a rat model of exercise but does decrease supraspinatus muscle fiber cross-sectional area. This fundamental study adds to the growing literature on the effects of ibuprofen on musculoskeletal tissues and provides a solid foundation on which future work can build. The study findings suggest that ibuprofen does not detrimentally affect

  8. Activation of Selected Core Muscles during Pressing

    OpenAIRE

    Thomas W. Nesser; Neil Fleming; Matthew J. Gage

    2015-01-01

    Introduction: Unstable surface training is often used to activate core musculature during resistance training. Unfortunately, unstable surface training is risky and leads to detraining. Purpose: The purpose of this study was to determine core muscle activation during stable surface ground-based lifts. Methods: Fourteen recreational trained and former NCAA DI athletes (weight 84.2 ± 13.3 kg; height 176.0 ± 9.5 cm; age 20.9 ± 2.0 years) volunteered for participation. Subjects completed two grou...

  9. Vibration and muscle contraction affect somatosensory evoked potentials

    OpenAIRE

    Cohen, LG; Starr, A

    1985-01-01

    We recorded potentials evoked by specific somatosensory stimuli over peripheral nerve, spinal cord, and cerebral cortex. Vibration attenuated spinal and cerebral potentials evoked by mixed nerve and muscle spindle stimulation; in one subject that was tested, there was no effect on cutaneous input. Presynaptic inhibition of Ia input in the spinal cord and muscle spindle receptor occupancy are probably the responsible mechanisms. In contrast, muscle contraction attenuated cerebral potentials to...

  10. Bioelectrical activity of the pelvic floor muscles after 6-week biofeedback training in nulliparous continent women.

    Science.gov (United States)

    Chmielewska, Daria; Stania, Magdalena; Smykla, Agnieszka; Kwaśna, Krystyna; Błaszczak, Edward; Sobota, Grzegorz; Skrzypulec-Plinta, Violetta

    2016-01-01

    The aim of the study was to evaluate the effects of a 6-week sEMG-biofeedback-assisted pelvic floor muscle training program on pelvic floor muscle activity in young continent women. Pelvic floor muscle activity was recorded using a vaginal probe during five experimental trials. Biofeedback training was continued for 6 weeks, 3 times a week. Muscle strenghtening and endurance exercises were performed alternately. SEMG (surface electromyography) measurements were recorded on four different occasions: before training started, after the third week of training, after the sixth week of training, and one month after training ended. A 6-week sEMG-biofeedback-assisted pelvic floor muscle training program significantly decreased the resting activity of the pelvic floor muscles in supine lying and standing. The ability to relax the pelvic floor muscles after a sustained 60-second contraction improved significantly after the 6-week training in both positions. SEMG-biofeedback training program did not seem to affect the activity of the pelvic floor muscles or muscle fatigue during voluntary pelvic floor muscle contractions. SEMG-biofeedback-assisted pelvic floor muscle training might be recommended for physiotherapists to improve the effectiveness of their relaxation techniques.

  11. Protein Turnover and Cellular Stress in Mildly and Severely Affected Muscles from Patients with Limb Girdle Muscular Dystrophy Type 2I

    DEFF Research Database (Denmark)

    Hauerslev, Simon; Sveen, Marie-Louise; Vissing, John

    2013-01-01

    Patients with Limb girdle muscular dystrophy type 2I (LGMD2I) are characterized by progressive muscle weakness and wasting primarily in the proximal muscles, while distal muscles often are spared. Our aim was to investigate if wasting could be caused by impaired regeneration in the proximal...... by using the developmental markers embryonic myosin heavy chain (eMHC) and neural cell adhesion molecule (NCAM) and also assessing satellite cell activation status by myogenin positivity. Severe muscle histopathology was occasionally observed in the proximal muscles of patients with LGMD2I whereas distal...... highly increased in severely affected muscles compared to mildly affected muscles. Our results indicate that alterations in the protein turnover and myostatin levels could progressively impair the muscle mass maintenance and/or regeneration resulting in gradual muscular atrophy....

  12. Catechins activate muscle stem cells by Myf5 induction and stimulate muscle regeneration.

    Science.gov (United States)

    Kim, A Rum; Kim, Kyung Min; Byun, Mi Ran; Hwang, Jun-Ha; Park, Jung Il; Oh, Ho Taek; Kim, Hyo Kyeong; Jeong, Mi Gyeong; Hwang, Eun Sook; Hong, Jeong-Ho

    2017-07-22

    Muscle weakness is one of the most common symptoms in aged individuals and increases risk of mortality. Thus, maintenance of muscle mass is important for inhibiting aging. In this study, we investigated the effect of catechins, polyphenol compounds in green tea, on muscle regeneration. We found that (-)-epicatechin gallate (ECG) and (-)-epigallocatechin-3-gallate (EGCG) activate satellite cells by induction of Myf5 transcription factors. For satellite cell activation, Akt kinase was significantly induced after ECG treatment and ECG-induced satellite cell activation was blocked in the presence of Akt inhibitor. ECG also promotes myogenic differentiation through the induction of myogenic markers, including Myogenin and Muscle creatine kinase (MCK), in satellite and C2C12 myoblast cells. Finally, EGCG administration to mice significantly increased muscle fiber size for regeneration. Taken together, the results suggest that catechins stimulate muscle stem cell activation and differentiation for muscle regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Compensatory muscle activation in patients with glenohumeral cuff tears

    NARCIS (Netherlands)

    Steenbrink, Franciscus

    2010-01-01

    Patients suffering tendon tears in the glenohumeral cuff muscles show activation of muscles which pull the arm downwards during arm elevation tasks. This so-called co-activation deviates from healthy controls and is triggered by pain. Goal of this thesis was to demonstrate that deviating muscle

  14. Muscle activity pattern dependent pain development and alleviation.

    Science.gov (United States)

    Sjøgaard, Gisela; Søgaard, Karen

    2014-12-01

    Muscle activity is for decades considered to provide health benefits irrespectively of the muscle activity pattern performed and whether it is during e.g. sports, transportation, or occupational work tasks. Accordingly, the international recommendations for public health-promoting physical activity do not distinguish between occupational and leisure time physical activity. However, in this body of literature, attention has not been paid to the extensive documentation on occupational physical activity imposing a risk of impairment of health - in particular musculoskeletal health in terms of muscle pain. Focusing on muscle activity patterns and musculoskeletal health it is pertinent to elucidate the more specific aspects regarding exposure profiles and body regional pain. Static sustained muscle contraction for prolonged periods often occurs in the neck/shoulder area during occupational tasks and may underlie muscle pain development in spite of rather low relative muscle load. Causal mechanisms include a stereotype recruitment of low threshold motor units (activating type 1 muscle fibers) characterized by a lack of temporal as well as spatial variation in recruitment. In contrast during physical activities at leisure and sport the motor recruitment patterns are more dynamic including regularly relatively high muscle forces - also activating type 2 muscles fibers - as well as periods of full relaxation even of the type 1 muscle fibers. Such activity is unrelated to muscle pain development if adequate recovery is granted. However, delayed muscle soreness may develop following intensive eccentric muscle activity (e.g. down-hill skiing) with peak pain levels in thigh muscles 1-2 days after the exercise bout and a total recovery within 1 week. This acute pain profile is in contrast to the chronic muscle pain profile related to repetitive monotonous work tasks. The painful muscles show adverse functional, morphological, hormonal, as well as metabolic characteristics. Of

  15. Differences in muscle pain and plasma creatine kinase activity after ...

    African Journals Online (AJOL)

    encephalopathy,18 and the decrement in muscle power associated with muscle damage.6 ... A high degree of intra-individual variability in plasma. CK activity was ..... 21. Komi PV. Stretch-shortening cycle exercise: a powerful model to study.

  16. How does tissue preparation affect skeletal muscle transverse isotropy?

    Science.gov (United States)

    Wheatley, Benjamin B.; Odegard, Gregory M.; Kaufman, Kenton R.; Haut Donahue, Tammy L.

    2016-01-01

    The passive tensile properties of skeletal muscle play a key role in its physiological function. Previous research has identified conflicting reports of muscle transverse isotropy, with some data suggesting the longitudinal direction is stiffest, while others show the transverse direction is stiffest. Accurate constitutive models of skeletal muscle must be employed to provide correct recommendations for and observations of clinical methods. The goal of this work was to identify transversely isotropic tensile muscle properties as a function of post mortem handling. Six pairs of tibialis anterior muscles were harvested from Giant Flemish rabbits and split into two groups: fresh testing (within four hours post mortem), and non-fresh testing (subject to delayed testing and a freeze/thaw cycle). Longitudinal and transverse samples were removed from each muscle and tested to identify tensile modulus and relaxation behavior. Longitudinal non-fresh samples exhibited a higher initial modulus value and faster relaxation than longitudinal fresh, transverse fresh, and transverse rigor samples (p<0.05), while longitudinal fresh samples were less stiff at lower strain levels than longitudinal non-fresh, transverse fresh, and transverse non-fresh samples (p<0.05), but exhibited more nonlinear behavior. While fresh skeletal muscle exhibits a higher transverse modulus than longitudinal modulus, discrepancies in previously published data may be the result of a number of differences in experimental protocol. Constitutive modeling of fresh muscle should reflect these data by identifying the material as truly transversely isotropic and not as an isotropic matrix reinforced with fibers. PMID:27425557

  17. Different atrophy-hypertrophy transcription pathways in muscles affected by severe and mild spinal muscular atrophy

    Directory of Open Access Journals (Sweden)

    Millino Caterina

    2009-04-01

    Full Text Available Abstract Background Spinal muscular atrophy (SMA is a neurodegenerative disorder associated with mutations of the survival motor neuron gene SMN and is characterized by muscle weakness and atrophy caused by degeneration of spinal motor neurons. SMN has a role in neurons but its deficiency may have a direct effect on muscle tissue. Methods We applied microarray and quantitative real-time PCR to study at transcriptional level the effects of a defective SMN gene in skeletal muscles affected by the two forms of SMA: the most severe type I and the mild type III. Results The two forms of SMA generated distinct expression signatures: the SMA III muscle transcriptome is close to that found under normal conditions, whereas in SMA I there is strong alteration of gene expression. Genes implicated in signal transduction were up-regulated in SMA III whereas those of energy metabolism and muscle contraction were consistently down-regulated in SMA I. The expression pattern of gene networks involved in atrophy signaling was completed by qRT-PCR, showing that specific pathways are involved, namely IGF/PI3K/Akt, TNF-α/p38 MAPK and Ras/ERK pathways. Conclusion Our study suggests a different picture of atrophy pathways in each of the two forms of SMA. In particular, p38 may be the regulator of protein synthesis in SMA I. The SMA III profile appears as the result of the concurrent presence of atrophic and hypertrophic fibers. This more favorable condition might be due to the over-expression of MTOR that, given its role in the activation of protein synthesis, could lead to compensatory hypertrophy in SMA III muscle fibers.

  18. Inhibition of muscle spindle afferent activity during masseter muscle fatigue in the rat.

    Science.gov (United States)

    Brunetti, Orazio; Della Torre, Giovannella; Lucchi, Maria Luisa; Chiocchetti, Roberto; Bortolami, Ruggero; Pettorossi, Vito Enrico

    2003-09-01

    The influence of muscle fatigue on the jaw-closing muscle spindle activity has been investigated by analyzing: (1) the field potentials evoked in the trigeminal motor nucleus (Vmot) by trigeminal mesencephalic nucleus (Vmes) stimulation, (2) the orthodromic and antidromic responses evoked in the Vmes by stimulation of the peripheral and central axons of the muscle proprioceptive afferents, and (3) the extracellular unitary discharge of masseter muscle spindles recorded in the Vmes. The masseter muscle was fatigued by prolonged tetanic masseter nerve electrical stimulation. Pre- and postsynaptic components of the potentials evoked in the Vmot showed a significant reduction in amplitude following muscle fatigue. Orthodromic and antidromic potentials recorded in the Vmes also showed a similar amplitude decrease. Furthermore, muscle fatigue caused a decrease of the discharge frequency of masseter muscle spindle afferents in most of the examined units. The inhibition of the potential amplitude and discharge frequency was strictly correlated with the extent of muscle fatigue and was mediated by the group III and IV afferent muscle fibers activated by fatigue. In fact, the inhibitory effect was abolished by capsaicin injection in the masseter muscle that provokes selective degeneration of small afferent muscle fibers containing neurokinins. We concluded that fatigue signals originating from the muscle and traveling through capsaicin-sensitive fibers are able to diminish the proprioceptive input by a central presynaptic influence. In the second part of the study, we examined the central projection of the masseter small afferents sensitive to capsaicin at the electron-microscopic level. Fiber degeneration was induced by injecting capsaicin into the masseter muscle. Degenerating terminals were found on the soma and stem process in Vmes and on the dendritic tree of neurons in Vmot. This suggests that small muscle afferents may influence the muscle spindle activity through

  19. Knee joint angle affects EMG-force relationship in the vastus intermedius muscle.

    Science.gov (United States)

    Saito, Akira; Akima, Hiroshi

    2013-12-01

    It is not understood how the knee joint angle affects the relationship between electromyography (EMG) and force of four individual quadriceps femoris (QF) muscles. The purpose of this study was to examine the effect of the knee joint angle on the EMG-force relationship of the four individual QF muscles, particularly the vastus intermedius (VI), during isometric knee extensions. Eleven healthy men performed 20-100% of maximal voluntary contraction (MVC) at knee joint angles of 90°, 120° and 150°. Surface EMG of the four QF synergists was recorded and normalized by the root mean square during MVC. The normalized EMG of the four QF synergists at a knee joint angle of 150° was significantly lower than that at 90° and 120° (P knee joint angle of 150°. Furthermore, the neuromuscular activation of the VI was the most sensitive to change in muscle length among the four QF synergistic muscles. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Electrically and hybrid-induced muscle activations: effects of muscle size and fiber type

    Directory of Open Access Journals (Sweden)

    Kelly Stratton

    2016-07-01

    Full Text Available The effect of three electrical stimulation (ES frequencies (10, 35, and 50 Hz on two muscle groups with different proportions of fast and slow twitch fibers (abductor pollicis brevis (APB and vastus lateralis (VL was explored. We evaluated the acute muscles’ responses individually and during hybrid activations (ES superimposed by voluntary activations. Surface electromyography (sEMG and force measurements were evaluated as outcomes. Ten healthy adults (mean age: 24.4 ± 2.5 years participated after signing an informed consent form approved by the university Institutional Review Board. Protocols were developed to: 1 compare EMG activities during each frequency for each muscle when generating 25% Maximum Voluntary Contraction (MVC force, and 2 compare EMG activities during each frequency when additional voluntary activation was superimposed over ES-induced 25% MVC to reach 50% and 75% MVC. Empirical mode decomposition (EMD was utilized to separate ES artifacts from voluntary muscle activation. For both muscles, higher stimulation frequency (35 and 50Hz induced higher electrical output detected at 25% of MVC, suggesting more recruitment with higher frequencies. Hybrid activation generated proportionally less electrical activity than ES alone. ES and voluntary activations appear to generate two different modes of muscle recruitment. ES may provoke muscle strength by activating more fatiguing fast acting fibers, but voluntary activation elicits more muscle coordination. Therefore, during the hybrid activation, less electrical activity may be detected due to recruitment of more fatigue-resistant deeper muscle fibers, not reachable by surface EMG.

  1. Muscle activity of leg muscles during unipedal stance on therapy devices with different stability properties.

    Science.gov (United States)

    Wolburg, Thomas; Rapp, Walter; Rieger, Jochen; Horstmann, Thomas

    2016-01-01

    To test the hypotheses that less stable therapy devices require greater muscle activity and that lower leg muscles will have greater increases in muscle activity with less stable therapy devices than upper leg muscles. Cross-sectional laboratory study. Laboratory setting. Twenty-five healthy subjects. Electromyographic activity of four lower (gastrocnemius medialis, soleus, tibialis anterior, peroneus longus) and four upper leg muscles (vastus medialis and lateralis, biceps femoris, semitendinosus) during unipedal quiet barefoot stance on the dominant leg on a flat rigid surface and on five therapy devices with varying stability properties. Muscle activity during unipedal stance differed significantly between therapy devices (P < 0.001). The order from lowest to highest relative muscle activity matched the order from most to least stable therapy device. There was no significant interaction between muscle location (lower versus upper leg) and therapy device (P = 0.985). Magnitudes of additional relative muscle activity for the respective therapy devices differed substantially among lower extremity muscles. The therapy devices offer a progressive increase in training intensity, and thus may be useful for incremental training programs in physiotherapeutic practice and sports training programs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Regulation of myogenesis and skeletal muscle regeneration: effects of oxygen levels on satellite cell activity.

    Science.gov (United States)

    Chaillou, Thomas; Lanner, Johanna T

    2016-12-01

    Reduced oxygen (O 2 ) levels (hypoxia) are present during embryogenesis and exposure to altitude and in pathologic conditions. During embryogenesis, myogenic progenitor cells reside in a hypoxic microenvironment, which may regulate their activity. Satellite cells are myogenic progenitor cells localized in a local environment, suggesting that the O 2 level could affect their activity during muscle regeneration. In this review, we present the idea that O 2 levels regulate myogenesis and muscle regeneration, we elucidate the molecular mechanisms underlying myogenesis and muscle regeneration in hypoxia and depict therapeutic strategies using changes in O 2 levels to promote muscle regeneration. Severe hypoxia (≤1% O 2 ) appears detrimental for myogenic differentiation in vitro, whereas a 3-6% O 2 level could promote myogenesis. Hypoxia impairs the regenerative capacity of injured muscles. Although it remains to be explored, hypoxia may contribute to the muscle damage observed in patients with pathologies associated with hypoxia (chronic obstructive pulmonary disease, and peripheral arterial disease). Hypoxia affects satellite cell activity and myogenesis through mechanisms dependent and independent of hypoxia-inducible factor-1α. Finally, hyperbaric oxygen therapy and transplantation of hypoxia-conditioned myoblasts are beneficial procedures to enhance muscle regeneration in animals. These therapies may be clinically relevant to treatment of patients with severe muscle damage.-Chaillou, T. Lanner, J. T. Regulation of myogenesis and skeletal muscle regeneration: effects of oxygen levels on satellite cell activity. © FASEB.

  3. How is AMPK activity regulated in skeletal muscles during exercise?

    DEFF Research Database (Denmark)

    Jørgensen, Sebastian Beck; Rose, Adam John

    2008-01-01

    AMPK is a metabolic "master" controller activated in skeletal muscle by exercise in a time and intensity dependent manner, and has been implicated in regulating metabolic pathways in muscle during physical exercise. AMPK signaling in skeletal muscle is regulated by several systemic...... and intracellular factors and the regulation of skeletal muscle AMPK in response to exercise is the focus of this review. Specifically, the role of LKB1 and phosphatase PP2C in nucleotide-dependent activation of AMPK, and ionized calcium in CaMKK-dependent activation of AMPK in working muscle is discussed. We also...

  4. Muscle activity pattern dependent pain development and alleviation

    DEFF Research Database (Denmark)

    Sjøgaard, Gisela; Søgaard, Karen

    2014-01-01

    Muscle activity is for decades considered to provide health benefits irrespectively of the muscle activity pattern performed and whether it is during e.g. sports, transportation, or occupational work tasks. Accordingly, the international recommendations for public health-promoting physical activity...... do not distinguish between occupational and leisure time physical activity. However, in this body of literature, attention has not been paid to the extensive documentation on occupational physical activity imposing a risk of impairment of health - in particular musculoskeletal health in terms...... during physical activities at leisure and sport the motor recruitment patterns are more dynamic including regularly relatively high muscle forces - also activating type 2 muscles fibers - as well as periods of full relaxation even of the type 1 muscle fibers. Such activity is unrelated to muscle pain...

  5. Muscle activation during selected strength exercises in women with chronic neck muscle pain

    DEFF Research Database (Denmark)

    Andersen, Lars L; Kjaer, Michael; Andersen, Christoffer H

    2008-01-01

    selected strengthening exercises in women undergoing rehabilitation for chronic neck muscle pain (defined as a clinical diagnosis of trapezius myalgia). SUBJECTS: The subjects were 12 female workers (age=30-60 years) with a clinical diagnosis of trapezius myalgia and a mean baseline pain intensity of 5......BACKGROUND AND PURPOSE: Muscle-specific strength training has previously been shown to be effective in the rehabilitation of chronic neck muscle pain in women. The aim of this study was to determine the level of activation of the neck and shoulder muscles using surface electromyography (EMG) during...... muscle pain. Several of the strength exercises had high activation of neck and shoulder muscles in women with chronic neck pain. These exercises can be used equally in the attempt to achieve a beneficial treatment effect on chronic neck muscle pain....

  6. Behavioral and Locomotor Measurements Using an Open Field Activity Monitoring System for Skeletal Muscle Diseases

    OpenAIRE

    Tatem, Kathleen S.; Quinn, James L.; Phadke, Aditi; Yu, Qing; Gordish-Dressman, Heather; Nagaraju, Kanneboyina

    2014-01-01

    The open field activity monitoring system comprehensively assesses locomotor and behavioral activity levels of mice. It is a useful tool for assessing locomotive impairment in animal models of neuromuscular disease and efficacy of therapeutic drugs that may improve locomotion and/or muscle function. The open field activity measurement provides a different measure than muscle strength, which is commonly assessed by grip strength measurements. It can also show how drugs may affect other body sy...

  7. Skeletal muscle expression of p43, a truncated thyroid hormone receptor α, affects lipid composition and metabolism.

    Science.gov (United States)

    Casas, François; Fouret, Gilles; Lecomte, Jérome; Cortade, Fabienne; Pessemesse, Laurence; Blanchet, Emilie; Wrutniak-Cabello, Chantal; Coudray, Charles; Feillet-Coudray, Christine

    2018-02-01

    Thyroid hormone is a major regulator of metabolism and mitochondrial function. Thyroid hormone also affects reactions in almost all pathways of lipids metabolism and as such is considered as the main hormonal regulator of lipid biogenesis. The aim of this study was to explore the possible involvement of p43, a 43 Kda truncated form of the nuclear thyroid hormone receptor TRα1 which stimulates mitochondrial activity. Therefore, using mouse models overexpressing p43 in skeletal muscle (p43-Tg) or lacking p43 (p43-/-), we have investigated the lipid composition in quadriceps muscle and in mitochondria. Here, we reported in the quadriceps muscle of p43-/- mice, a fall in triglycerides, an inhibition of monounsaturated fatty acids (MUFA) synthesis, an increase in elongase index and an decrease in desaturase index. However, in mitochondria from p43-/- mice, fatty acid profile was barely modified. In the quadriceps muscle of p43-Tg mice, MUFA content was decreased whereas the unsaturation index was increased. In addition, in quadriceps mitochondria of p43-Tg mice, we found an increase of linoleic acid level and unsaturation index. Last, we showed that cardiolipin content, a key phospholipid for mitochondrial function, remained unchanged both in quadriceps muscle and in its mitochondria whatever the mice genotype. In conclusion, this study shows that muscle lipid content and fatty acid profile are strongly affected in skeletal muscle by p43 levels. We also demonstrate that regulation of cardiolipin biosynthesis by the thyroid hormone does not imply p43.

  8. Modulation of the Muscle Activity During Sleep in Cervical Dystonia.

    Science.gov (United States)

    Antelmi, Elena; Ferri, Raffaele; Provini, Federica; Scaglione, Cesa M L; Mignani, Francesco; Rundo, Francesco; Vandi, Stefano; Fabbri, Margherita; Pizza, Fabio; Plazzi, Giuseppe; Martinelli, Paolo; Liguori, Rocco

    2017-07-01

    Impaired sleep has been reported as an important nonmotor feature in dystonia, but so far, self-reported complaints have never been compared with nocturnal video-polysomnographic (PSG) recording, which is the gold standard to assess sleep-related disorders. Twenty patients with idiopathic isolated cervical dystonia and 22 healthy controls (HC) underwent extensive clinical investigations, neurological examination, and questionnaire screening for excessive daytime sleepiness and sleep-related disorders. A full-night video PSG was performed in both patients and HC. An ad hoc montage, adding electromyographic leads over the muscle affected with dystonia, was used. When compared to controls, patients showed significantly increased pathological values on the scale assessing self-reported complaints of impaired nocturnal sleep. Higher scores of impaired nocturnal sleep did not correlate with any clinical descriptors but for a weak correlation with higher scores on the scale for depression. On video-PSG, patients had significantly affected sleep architecture (with decreased sleep efficiency and increased sleep latency). Activity over cervical muscles disappears during all the sleep stages, reaching significantly decreased values when compared to controls both in nonrapid eye movements and rapid eye movements sleep. Patients with cervical dystonia reported poor sleep quality and showed impaired sleep architecture. These features however cannot be related to the persistence of muscle activity over the cervical muscles, which disappears in all the sleep stages, reaching significantly decreased values when compared to HC. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  9. Intrinsic Hand Muscle Activation for Grasp and Horizontal Transport

    OpenAIRE

    Winges, Sara A.; Kundu, Bornali; Soechting, John F.; Flanders, Martha

    2007-01-01

    During object manipulation, the hand and arm muscles produce internal forces on the object (grasping forces) and forces that result in external translation or rotation of the object in space (transport forces). The present study tested whether the intrinsic hand muscles are actively involved in transport as well as grasping. Intrinsic hand muscle activity increased with increasing demands for grasp stability, but also showed the timing and directional tuning patterns appropriate for actively ...

  10. The callipyge mutation and other genes that affect muscle hypertrophy in sheep

    Directory of Open Access Journals (Sweden)

    Cockett Noelle E

    2005-12-01

    Full Text Available Abstract Genetic strategies to improve the profitability of sheep operations have generally focused on traits for reproduction. However, natural mutations exist in sheep that affect muscle growth and development, and the exploitation of these mutations in breeding strategies has the potential to significantly improve lamb-meat quality. The best-documented mutation for muscle development in sheep is callipyge (CLPG, which causes a postnatal muscle hypertrophy that is localized to the pelvic limbs and loin. Enhanced skeletal muscle growth is also observed in animals with the Carwell (or rib-eye muscling mutation, and a double-muscling phenotype has been documented for animals of the Texel sheep breed. However, the actual mutations responsible for these muscular hypertrophy phenotypes in sheep have yet to be identified, and further characterization of the genetic basis for these phenotypes will provide insight into the biological control of muscle growth and body composition.

  11. The origin of activity in the biceps brachii muscle during voluntary contractions of the contralateral elbow flexor muscles

    NARCIS (Netherlands)

    Zijdewind, Inge; Butler, Jane E.; Gandevia, Simon C.; Taylor, Janet L.

    During strong voluntary contractions, activity is not restricted to the target muscles. Other muscles, including contralateral muscles, often contract. We used transcranial magnetic stimulation (TMS) to analyse the origin of these unintended contralateral contractions (termed "associated"

  12. THE NEPHROTOXICITY RISK IN RATS SUBJECTED TO HEAVY MUSCLE ACTIVITY

    Directory of Open Access Journals (Sweden)

    Gülsen Öner

    2009-09-01

    Full Text Available When the body is exposed to insults, the kidneys exhibit adaptive changes termed renal cytoresistance, characterized by cholesterol accumulation in the membranes of the tubule cells. However, heavy muscle activity has not yet been accepted as one of the stressors that could lead to cytoresistance. In order to study the renal functional characteristics of animals exposed to heavy muscle activity, rats were subjected to exhaustive treadmill exercise for 5 days and their data was compared to those of sedentary controls. It was found that in exercised rats, blood lactate, muscle citrate synthase and proximal tubule peroxynitrite levels were all elevated, suggesting the presence of oxidative stress in the proximal tubule segments. However, mean arterial pressure, renal blood flow, glomerular filtration rate, fractional excretion of sodium and potassium, and organic anion excretion remained normal. Despite unchanged blood cholesterol levels, cholesterol loading in the proximal tubule segments, especially the free form, and decreased lactate dehydrogenase release from cytoresistant proximal tubule segments indicated the development of renal cytoresistance. However, this resistance did not seem to have protected the kidneys as expected because organic anion accumulation associated with glycosuria and proteinuria, in addition to the elevated urinary cholesterol levels, all imply the presence of an impaired glomerular permeability and reabsorption in the proximal tubule cells. Therefore, we suggest that in response to heavy muscle activity the tubular secretion may remain intact, although cytoresistance in the proximal tubule cells may affect the tubular reabsorptive functions and basolateral uptake of substances. Thus, this differential sensitivity in the cytoresistance should be taken into account during functional evaluation of the kidneys

  13. Concentric resistance training increases muscle strength without affecting microcirculation

    International Nuclear Information System (INIS)

    Weber, Marc-Andre; Hildebrandt, Wulf; Schroeder, Leif; Kinscherf, Ralf; Krix, Martin; Bachert, Peter; Delorme, Stefan; Essig, Marco; Kauczor, Hans-Ulrich; Krakowski-Roosen, Holger

    2010-01-01

    Purpose: While the evidence is conclusive regarding the positive effects of endurance training, there is still some controversy regarding the effects of resistance training on muscular capillarity. Thus, the purpose was to assess whether resistance strength training influences resting skeletal muscle microcirculation in vivo. Materials and methods: Thirty-nine middle-aged subjects (15 female, 24 male; mean age, 54 ± 9 years) were trained twice a week on an isokinetic system (altogether 16 sessions lasting 50 min, intensity 75% of maximum isokinetic and isometric force of knee flexors and extensors). To evaluate success of training, cross-sectional area (CSA) of the quadriceps femoris muscle and its isokinetic and isometric force were quantified. Muscular capillarization was measured in biopsies of the vastus lateralis muscle. In vivo, muscular energy and lipid metabolites were quantified by magnetic resonance spectroscopy and parameters of muscular microcirculation, such as local blood volume, blood flow and velocity, by contrast-enhanced ultrasound analyzing replenishment kinetics. Results: The significant (P 2 after training) and in absolute muscle strength (isometric, 146 ± 44 vs. 174 ± 50 Nm; isokinetic, 151 ± 53 vs. 174 ± 62 Nm) demonstrated successful training. Neither capillary density ex vivo (351 ± 75 vs. 326 ± 62) nor ultrasonographic parameters of resting muscle perfusion were significantly different (blood flow, 1.2 ± 1.2 vs. 1.1 ± 1.1 ml/min/100 g; blood flow velocity, 0.49 ± 0.44 vs. 0.52 ± 0.74 mm s -1 ). Also, the intensities of high-energy phosphates phosphocreatine and β-adenosintriphosphate were not different after training within the skeletal muscle at rest (β-ATP/phosphocreatine, 0.29 ± 0.06 vs. 0.28 ± 0.04). Conclusion: The significant increase in muscle size and strength in response to concentric isokinetic and isometric resistance training occurs without an increase in the in vivo microcirculation of the skeletal muscles at

  14. Concentric resistance training increases muscle strength without affecting microcirculation

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Marc-Andre [Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg (Germany)], E-mail: MarcAndre.Weber@med.uni-heidelberg.de; Hildebrandt, Wulf [Immunochemistry, German Cancer Research Center (dkfz), Heidelberg (Germany); Schroeder, Leif [Medical Physics in Radiology, German Cancer Research Center (dkfz), Heidelberg (Germany); Kinscherf, Ralf [Department of Anatomy and Developmental Biology, University of Heidelberg, Heidelberg (Germany); Krix, Martin [Radiology, German Cancer Research Center (dkfz), Heidelberg (Germany); Bachert, Peter [Medical Physics in Radiology, German Cancer Research Center (dkfz), Heidelberg (Germany); Delorme, Stefan; Essig, Marco [Radiology, German Cancer Research Center (dkfz), Heidelberg (Germany); Kauczor, Hans-Ulrich [Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg (Germany); Krakowski-Roosen, Holger [National Center for Tumor Diseases (NCT), Heidelberg (Germany)

    2010-03-15

    Purpose: While the evidence is conclusive regarding the positive effects of endurance training, there is still some controversy regarding the effects of resistance training on muscular capillarity. Thus, the purpose was to assess whether resistance strength training influences resting skeletal muscle microcirculation in vivo. Materials and methods: Thirty-nine middle-aged subjects (15 female, 24 male; mean age, 54 {+-} 9 years) were trained twice a week on an isokinetic system (altogether 16 sessions lasting 50 min, intensity 75% of maximum isokinetic and isometric force of knee flexors and extensors). To evaluate success of training, cross-sectional area (CSA) of the quadriceps femoris muscle and its isokinetic and isometric force were quantified. Muscular capillarization was measured in biopsies of the vastus lateralis muscle. In vivo, muscular energy and lipid metabolites were quantified by magnetic resonance spectroscopy and parameters of muscular microcirculation, such as local blood volume, blood flow and velocity, by contrast-enhanced ultrasound analyzing replenishment kinetics. Results: The significant (P < 0.001) increase in CSA (60 {+-} 16 before vs. 64 {+-} 15 cm{sup 2} after training) and in absolute muscle strength (isometric, 146 {+-} 44 vs. 174 {+-} 50 Nm; isokinetic, 151 {+-} 53 vs. 174 {+-} 62 Nm) demonstrated successful training. Neither capillary density ex vivo (351 {+-} 75 vs. 326 {+-} 62) nor ultrasonographic parameters of resting muscle perfusion were significantly different (blood flow, 1.2 {+-} 1.2 vs. 1.1 {+-} 1.1 ml/min/100 g; blood flow velocity, 0.49 {+-} 0.44 vs. 0.52 {+-} 0.74 mm s{sup -1}). Also, the intensities of high-energy phosphates phosphocreatine and {beta}-adenosintriphosphate were not different after training within the skeletal muscle at rest ({beta}-ATP/phosphocreatine, 0.29 {+-} 0.06 vs. 0.28 {+-} 0.04). Conclusion: The significant increase in muscle size and strength in response to concentric isokinetic and isometric

  15. Hip and trunk muscles activity during nordic hamstring exercise

    Science.gov (United States)

    Narouei, Shideh; Imai, Atsushi; Akuzawa, Hiroshi; Hasebe, Kiyotaka; Kaneoka, Koji

    2018-01-01

    The nordic hamstring exercise (NHE) is a dynamic lengthening hamstring exercise that requires trunk and hip muscles activation. Thigh muscles activation, specifically hamstring/quadriceps contractions has been previously examined during NHE. Trunk and hip muscles activity have not been enough studied. The aim of this study was to analyze of hip and trunk muscles activity during NHE. Surface electromyography (EMG) and kinematic data were collected during NHE. Ten healthy men with the age range of 21–36 years performed two sets of two repetitions with downward and upward motions each of NHE. EMG activity of fifteen trunk and hip muscles and knee kinematic data were collected. Muscle activity levels were calculated through repeated measure analysis of variance in downward and upward motions, through Paired t-test between downward and upward motions and gluteus maximus to erector spine activity ratio (Gmax/ES ratio) using Pearson correlation analyses were evaluated. Semitendinosus and biceps femoris muscles activity levels were the greatest in both motions and back extensors and internal oblique muscles activity were greater than other muscles (Phamstrings contractions. It could be important for early assessment of subjects with hamstring injury risk. PMID:29740557

  16. Hip and trunk muscles activity during nordic hamstring exercise.

    Science.gov (United States)

    Narouei, Shideh; Imai, Atsushi; Akuzawa, Hiroshi; Hasebe, Kiyotaka; Kaneoka, Koji

    2018-04-01

    The nordic hamstring exercise (NHE) is a dynamic lengthening hamstring exercise that requires trunk and hip muscles activation. Thigh muscles activation, specifically hamstring/quadriceps contractions has been previously examined during NHE. Trunk and hip muscles activity have not been enough studied. The aim of this study was to analyze of hip and trunk muscles activity during NHE. Surface electromyography (EMG) and kinematic data were collected during NHE. Ten healthy men with the age range of 21-36 years performed two sets of two repetitions with downward and upward motions each of NHE. EMG activity of fifteen trunk and hip muscles and knee kinematic data were collected. Muscle activity levels were calculated through repeated measure analysis of variance in downward and upward motions, through Paired t -test between downward and upward motions and gluteus maximus to erector spine activity ratio (Gmax/ES ratio) using Pearson correlation analyses were evaluated. Semitendinosus and biceps femoris muscles activity levels were the greatest in both motions and back extensors and internal oblique muscles activity were greater than other muscles ( P hamstrings contractions. It could be important for early assessment of subjects with hamstring injury risk.

  17. Pneumatic Muscles Actuated Lower-Limb Orthosis Model Verification with Actual Human Muscle Activation Patterns

    Directory of Open Access Journals (Sweden)

    Dzahir M.A.M

    2017-01-01

    Full Text Available A review study was conducted on existing lower-limb orthosis systems for rehabilitation which implemented pneumatic muscle type of actuators with the aim to clarify the current and on-going research in this field. The implementation of pneumatic artificial muscle will play an important role for the development of the advanced robotic system. In this research a derivation model for the antagonistic mono- and bi-articular muscles using pneumatic artificial muscles of a lower limb orthosis will be verified with actual human’s muscle activities models. A healthy and young male 29 years old subject with height 174cm and weight 68kg was used as a test subject. Two mono-articular muscles Vastus Medialis (VM and Vastus Lateralis (VL were selected to verify the mono-articular muscle models and muscle synergy between anterior muscles. Two biarticular muscles Rectus Femoris (RF and Bicep Femoris (BF were selected to verify the bi-articular muscle models and muscle co-contraction between anterior-posterior muscles. The test was carried out on a treadmill with a speed of 4.0 km/h, which approximately around 1.25 m/s for completing one cycle of walking motion. The data was collected for about one minute on a treadmill and 20 complete cycles of walking motion were successfully recorded. For the evaluations, the mathematical model obtained from the derivation and the actual human muscle activation patterns obtained using the surface electromyography (sEMG system were compared and analysed. The results shown that, high correlation values ranging from 0.83 up to 0.93 were obtained in between the derivation model and the actual human muscle’s model for both mono- and biarticular muscles. As a conclusion, based on the verification with the sEMG muscle activities data and its correlation values, the proposed derivation models of the antagonistic mono- and bi-articular muscles were suitable to simulate and controls the pneumatic muscles actuated lower limb

  18. Are muscle activation patterns altered during shod and barefoot running with a forefoot footfall pattern?

    Science.gov (United States)

    Ervilha, Ulysses Fernandes; Mochizuki, Luis; Figueira, Aylton; Hamill, Joseph

    2017-09-01

    This study aimed to investigate the activation of lower limb muscles during barefoot and shod running with forefoot or rearfoot footfall patterns. Nine habitually shod runners were asked to run straight for 20 m at self-selected speed. Ground reaction forces and thigh and shank muscle surface electromyographic (EMG) were recorded. EMG outcomes (EMG intensity [iEMG], latency between muscle activation and ground reaction force, latency between muscle pairs and co-activation index between muscle pairs) were compared across condition (shod and barefoot), running cycle epochs (pre-strike, strike, propulsion) and footfall (rearfoot and forefoot) by ANOVA. Condition affected iEMG at pre-strike epoch. Forefoot and rearfoot strike patterns induced different EMG activation time patterns affecting co-activation index for pairs of thigh and shank muscles. All these timing changes suggest that wearing shoes or not is less important for muscle activation than the way runners strike the foot on the ground. In conclusion, the guidance for changing external forces applied on lower limbs should be pointed to the question of rearfoot or forefoot footfall patterns.

  19. The influence of experimentally induced pain on shoulder muscle activity

    DEFF Research Database (Denmark)

    Diederichsen, L.P.; Winther, A.; Dyhre-Poulsen, P.

    2009-01-01

    muscles. EMG was recorded before pain, during pain and after pain had subsided and pain intensity was continuously scored on a visual analog scale (VAS). During abduction, experimentally induced pain in the supraspinatus muscle caused a significant decrease in activity of the anterior deltoid, upper......-105A degrees) at a speed of approximately 120A degrees/s, controlled by a metronome. During abduction, electromyographic (EMG) activity was recorded by intramuscular wire electrodes inserted in two deeply located shoulder muscles and by surface-electrodes over six superficially located shoulder...... trapezius and the infraspinatus and an increase in activity of lower trapezius and latissimus dorsi muscles. Following subacromial injection a significantly increased muscle activity was seen in the lower trapezius, the serratus anterior and the latissimus dorsi muscles. In conclusion, this study shows...

  20. Oxidative stress (glutathionylation and Na,K-ATPase activity in rat skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Carsten Juel

    Full Text Available Changes in ion distribution across skeletal muscle membranes during muscle activity affect excitability and may impair force development. These changes are counteracted by the Na,K-ATPase. Regulation of the Na,K-ATPase is therefore important for skeletal muscle function. The present study investigated the presence of oxidative stress (glutathionylation on the Na,K-ATPase in rat skeletal muscle membranes.Immunoprecipitation with an anti-glutathione antibody and subsequent immunodetection of Na,K-ATPase protein subunits demonstrated 9.0±1.3% and 4.1±1.0% glutathionylation of the α isoforms in oxidative and glycolytic skeletal muscle, respectively. In oxidative muscle, 20.0±6.1% of the β1 units were glutathionylated, whereas 14.8±2.8% of the β2-subunits appear to be glutathionylated in glycolytic muscle. Treatment with the reducing agent dithiothreitol (DTT, 1 mM increased the in vitro maximal Na,K-ATPase activity by 19% (P<0.05 in membranes from glycolytic muscle. Oxidized glutathione (GSSG, 0-10 mM increased the in vitro glutathionylation level detected with antibodies, and decreased the in vitro maximal Na,K-ATPase activity in a dose-dependent manner, and with a larger effect in oxidative compared to glycolytic skeletal muscle.This study demonstrates the existence of basal glutathionylation of both the α and the β units of rat skeletal muscle Na,K-ATPase. In addition, the study suggests a negative correlation between glutathionylation levels and maximal Na,K-ATPase activity.Glutathionylation likely contributes to the complex regulation of Na,K-ATPase function in skeletal muscle. Especially, glutathionylation induced by oxidative stress may have a role in Na,K-ATPase regulation during prolonged muscle activity.

  1. Ibuprofen Differentially Affects Supraspinatus Muscle and Tendon Adaptations to Exercise in a Rat Model

    Science.gov (United States)

    Rooney, Sarah Ilkhanipour; Baskin, Rachel; Torino, Daniel J.; Vafa, Rameen P.; Khandekar, Pooja S.; Kuntz, Andrew F.; Soslowsky, Louis J.

    2017-01-01

    Background Previous studies have shown that ibuprofen is detrimental to tissue healing following acute injury; however, the effects of ibuprofen when combined with non-injurious exercise are debated. Hypothesis We hypothesized that administration of ibuprofen to rats undergoing a non-injurious treadmill exercise protocol would abolish the beneficial adaptations found with exercise but have no effect on sedentary muscle and tendon properties. Study Design Controlled laboratory study Methods Rats were divided into exercise or cage activity (sedentary) groups and acute (a single bout of exercise followed by 24 hours of rest) and chronic (2 or 8 weeks of repeated exercise) time points. Half of the rats received ibuprofen to investigate the effects of this drug over time when combined with different activity levels (exercise and sedentary). Supraspinatus tendons were used for mechanical testing and histology (organization, cell shape, cellularity), and supraspinatus muscles were used for morphological (fiber CSA, centrally nucleated fibers) and fiber type analysis. Results Chronic intake of ibuprofen did not impair supraspinatus tendon organization or mechanical adaptations (stiffness, modulus, max load, max stress, dynamic modulus, or viscoelastic properties) to exercise. Tendon mechanical properties were not diminished and in some instances increased with ibuprofen. In contrast, total supraspinatus muscle fiber cross-sectional area decreased with ibuprofen at chronic time points, and some fiber type-specific changes were detected. Conclusions Chronic administration of ibuprofen does not impair supraspinatus tendon mechanical properties in a rat model of exercise but does decrease supraspinatus muscle fiber cross-sectional area. Clinically, these findings suggest that ibuprofen does not detrimentally affect regulation of supraspinatus tendon adaptions to exercise but does decrease muscle growth. Individuals should be advised on the risk of decreased muscle hypertrophy

  2. Respiratory muscle strength and muscle endurance are not affected by acute metabolic acidemia.

    NARCIS (Netherlands)

    Nizet, T.A.C.; Heijdra, Y.F.; Elshout, F.J.J. van den; Ven, M.J.T. van de; Bosch, F.H.; Mulder, P.H.M. de; Folgering, H.T.M.

    2009-01-01

    Respiratory muscle fatigue in asthma and chronic obstructive lung disease (COPD) contributes to respiratory failure with hypercapnia, and subsequent respiratory acidosis. Therapeutic induction of acute metabolic acidosis further increases the respiratory drive and, therefore, may diminish

  3. Selective activation of neuromuscular compartments within the human trapezius muscle

    DEFF Research Database (Denmark)

    Holtermann, A; Roeleveld, K; Mork, P J

    2009-01-01

    of the human trapezius muscle can be independently activated by voluntary command, indicating neuromuscular compartmentalization of the trapezius muscle. The independent activation of the upper and lower subdivisions of the trapezius is in accordance with the selective innervation by the fine cranial and main...... branch of the accessory nerve to the upper and lower subdivisions. These findings provide new insight into motor control characteristics, learning possibilities, and function of the clinically relevant human trapezius muscle....

  4. Daily durations of spontaneous activity in cat's ankle muscles

    NARCIS (Netherlands)

    Hensbergen, E; Kernell, D

    For an understanding of how various degrees of altered use (training, disuse) affect the properties of skeletal muscles, it is important to know how much they are used normally. The main aim of the present project was to produce such background knowledge for hindlimb muscles of the cat. In four

  5. Modulation of jaw muscle spindle afferent activity following intramuscular injections with hypertonic saline.

    Science.gov (United States)

    Ro, J Y; Capra, N F

    2001-05-01

    Transient noxious chemical stimulation of small diameter muscle afferents modulates jaw movement-related responses of caudal brainstem neurons. While it is likely that the effect is mediated from the spindle afferents in the mesencephalic nucleus (Vmes) via the caudally projecting Probst's tract, the mechanisms of pain induced modulations of jaw muscle spindle afferents is not known. In the present study, we tested the hypothesis that jaw muscle nociceptors gain access to muscle spindle afferents in the same muscle via central mechanisms and alter their sensitivity. Thirty-five neurons recorded from the Vmes were characterized as muscle spindle afferents based on their responses to passive jaw movements, muscle palpation, and electrical stimulation of the masseter nerve. Each cell was tested by injecting a small volume (250 microl) of either 5% hypertonic and/or isotonic saline into the receptor-bearing muscle. Twenty-nine units were tested with 5% hypertonic saline, of which 79% (23/29) showed significant modulation of mean firing rates (MFRs) during one or more phases of ramp-and-hold movements. Among the muscle spindle primary-like units (n = 12), MFRs of 4 units were facilitated, five reduced, two showed mixed responses and one unchanged. In secondary-like units (n = 17), MFRs of 9 were facilitated, three reduced and five unchanged. Thirteen units were tested with isotonic saline, of which 77% showed no significant changes of MFRs. Further analysis revealed that the hypertonic saline not only affected the overall output of muscle spindle afferents, but also increased the variability of firing and altered the relationship between afferent signal and muscle length. These results demonstrated that activation of muscle nociceptors significantly affects proprioceptive properties of jaw muscle spindles via central neural mechanisms. The changes can have deleterious effects on oral motor function as well as kinesthetic sensibility.

  6. Muscle activation patterns when passively stretching spastic lower limb muscles of children with cerebral palsy.

    Directory of Open Access Journals (Sweden)

    Lynn Bar-On

    Full Text Available The definition of spasticity as a velocity-dependent activation of the tonic stretch reflex during a stretch to a passive muscle is the most widely accepted. However, other mechanisms are also thought to contribute to pathological muscle activity and, in patients post-stroke and spinal cord injury can result in different activation patterns. In the lower-limbs of children with spastic cerebral palsy (CP these distinct activation patterns have not yet been thoroughly explored. The aim of the study was to apply an instrumented assessment to quantify different muscle activation patterns in four lower-limb muscles of children with CP. Fifty-four children with CP were included (males/females n = 35/19; 10.8 ± 3.8 yrs; bilateral/unilateral involvement n =  32/22; Gross Motor Functional Classification Score I-IV of whom ten were retested to evaluate intra-rater reliability. With the subject relaxed, single-joint, sagittal-plane movements of the hip, knee, and ankle were performed to stretch the lower-limb muscles at three increasing velocities. Muscle activity and joint motion were synchronously recorded using inertial sensors and electromyography (EMG from the adductors, medial hamstrings, rectus femoris, and gastrocnemius. Muscles were visually categorised into activation patterns using average, normalized root mean square EMG (RMS-EMG compared across increasing position zones and velocities. Based on the visual categorisation, quantitative parameters were defined using stretch-reflex thresholds and normalized RMS-EMG. These parameters were compared between muscles with different activation patterns. All patterns were dominated by high velocity-dependent muscle activation, but in more than half, low velocity-dependent activation was also observed. Muscle activation patterns were found to be both muscle- and subject-specific (p<0.01. The intra-rater reliability of all quantitative parameters was moderate to good. Comparing RMS-EMG between

  7. Effects of muscle activation on shear between human soleus and gastrocnemius muscles.

    Science.gov (United States)

    Finni, T; Cronin, N J; Mayfield, D; Lichtwark, G A; Cresswell, A G

    2017-01-01

    Lateral connections between muscles provide pathways for myofascial force transmission. To elucidate whether these pathways have functional roles in vivo, we examined whether activation could alter the shear between the soleus (SOL) and lateral gastrocnemius (LG) muscles. We hypothesized that selective activation of LG would decrease the stretch-induced shear between LG and SOL. Eleven volunteers underwent a series of knee joint manipulations where plantar flexion force, LG, and SOL muscle fascicle lengths and relative displacement of aponeuroses between the muscles were obtained. Data during a passive full range of motion were recorded, followed by 20° knee extension stretches in both passive conditions and with selective electrical stimulation of LG. During active stretch, plantar flexion force was 22% greater (P stronger (stiffer) connectivity between the two muscles, at least at flexed knee joint angles, which may serve to facilitate myofascial force transmission. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Muscle triacylglycerol and hormone-sensitive lipase activity in untrained and trained human muscles

    DEFF Research Database (Denmark)

    Helge, Jørn Wulff; Biba, Taus O; Galbo, Henrik

    2006-01-01

    During exercise, triacylglycerol (TG) is recruited in skeletal muscles. We hypothesized that both muscle hormone-sensitive lipase (HSL) activity and TG recruitment would be higher in trained than in untrained subjects in response to prolonged exercise. Healthy male subjects (26 +/- 1 years, body ...

  9. Nickel affects gill and muscle development in oriental fire-bellied toad (Bombina orientalis) embryos

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chan Jin; Song, Sang Ha; Kim, Dae Han; Gye, Myung Chan, E-mail: mcgye@hanyang.ac.kr

    2017-01-15

    Highlights: • Nickel inhibited the development of external gill in B. orientalis embryos. • The 168 h LC{sub 50} and EC{sub 50} values of nickel were 33.8 and 5.4 μM, respectively, in embryos. • Nickel induced abnormal tail development of embryos. • NF stage 26–31 was the most sensitive window for embryos to nickel exposure. • Nickel affected the calcium-dependent myogenic gene expression in embryos. - Abstract: The developmental toxicity of nickel was examined in the embryos of Bombina orientalis, a common amphibian in Korea. Based on a standard frog embryo teratogenesis assay, the LC{sub 50} and EC{sub 50} for malformation of nickel after 168 h of treatment were 33.8 μM and 5.4 μM, respectively. At a lethal concentration (100 μM), nickel treatment decreased the space between gill filaments and caused epithelial swelling and abnormal fusion of gill filaments. These findings suggest that nickel affects the functional development of gills, leading to embryonic death. At sublethal concentrations (1–10 μM), nickel produced multiple embryonic abnormalities, including bent tail and tail dysplasia. At 10 μM, nickel significantly decreased tail length and tail muscle fiber density in tadpoles, indicating inhibition of myogenic differentiation. Before hatching, the pre-muscular response to muscular response stages (stages 26–31) were the most sensitive period to nickel with respect to tail muscle development. During these stages, MyoD mRNA was upregulated, whereas myogenic regulatory factor 4 mRNA was downregulated by 0.1 μM nickel. Calcium-dependent kinase activities in muscular response stage embryos were significantly decreased by nickel, whereas these activities were restored by exogenous calcium. In tadpoles, 10 μM nickel significantly decreased the expression of the myosin heavy chain and the 12/101 muscle marker protein in the tail. Expression was restored by exogenous calcium. Our results indicate that nickel affects muscle development by

  10. Muscles Activity in the elderly with Balance Impairments in walking under Dual tasks

    Directory of Open Access Journals (Sweden)

    Elaheh Azadian

    2016-09-01

    Full Text Available Objectives: Each step during gait requires different attention demands that will affect muscles activity. The study of changes in the timing and intensity of the muscles activity in walking with dual task has received less attention from researchers. The purpose of this study was to evaluate changes in electromyography patterns of gait with cognitive dual tasks in balance impaired elderly. Methods: Thirty older adults were recruited for this study. People were selected through berg balance test. Subjects walked 12-meters in two conditions, normal walking and walking with a cognitive dual task. Spatial-temporal kinematic parameters were recorded through the motion analysis and muscles activities were recorded through electromyography system. The data obtained was analyzed using repeated measures ANOVA at a significant level of p< 0.05.  Results: The results showed that walking under dual tasks would decrease gait speed and increase stride time and stance time. Also muscle activity in Tibialis anterior and Vastus lateralis in stance-phase would decrease significantly in dual tasks as compared with single task (p< 0.05, but timing of muscle activity would not change in dual task conditions.  Conclusions: Based on the results, it can be argued that walking under a dual task can change spatial-temporal parameters and muscle activity in gait pattern in the elderly with balance impairment. One explanation could be that the decreased control of the central nervous system on muscle activity in stance phase due to the performing of a dual task.

  11. Changes in shoulder muscle activity pattern on surface electromyography after breast cancer surgery.

    Science.gov (United States)

    Yang, Eun Joo; Kwon, YoungOk

    2018-02-01

    Alterations in muscle activation and restricted shoulder mobility, which are common in breast cancer patients, have been found to affect upper limb function. The purpose of this study was to determine muscle activity patterns, and to compare the prevalence of abnormal patterns among the type of breast surgery. In total, 274 breast cancer patients were recruited after surgery. Type of breast surgery was divided into mastectomy without reconstruction (Mastectomy), reconstruction with tissue expander/implant (TEI), latissimus dorsi (LD) flap, or transverse rectus abdominis flap (TRAM). Activities of shoulder muscles were measured using surface electromyography. Experimental analysis was conducted using a Gaussian filter smoothing method with regression. Patients demonstrated different patterns of muscle activation, such as normal, lower muscle electrical activity, and tightness. After adjusting for BMI and breast surgery, the odds of lower muscle electrical activity and tightness in the TRAM are 40.2% and 38.4% less than in the Mastectomy only group. The prevalence of abnormal patterns was significantly greater in the ALND than SLNB in all except TRAM. Alterations in muscle activity patterns differed by breast surgery and reconstruction type. For breast cancer patients with ALND, TRAM may be the best choice for maintaining upper limb function. © 2017 Wiley Periodicals, Inc.

  12. Activation of plantar flexor muscles is constrained by multiple muscle synergies rather than joint torques.

    Directory of Open Access Journals (Sweden)

    Takahito Suzuki

    Full Text Available Behavioral evidence has suggested that a small number of muscle synergies may be responsible for activating a variety of muscles. Nevertheless, such dimensionality reduction may also be explained using the perspective of alternative hypotheses, such as predictions based on linear combinations of joint torques multiplied by corresponding coefficients. To compare the explanatory capacity of these hypotheses for describing muscle activation, we enrolled 12 male volunteers who performed isometric plantar flexor contractions at 10-100% of maximum effort. During each plantar flexor contraction, the knee extensor muscles were isometrically contracted at 0%, 50%, or 100% of maximum effort. Electromyographic activity was recorded from the vastus lateralis, medial gastrocnemius (MG, lateral gastrocnemius (LG, and soleus muscles and quantified using the average rectified value (ARV. At lower plantar flexion torque, regression analysis identified a clear linear relationship between the MG and soleus ARVs and between the MG and LG ARVs, suggesting the presence of muscle synergy (r2 > 0.65. The contraction of the knee extensor muscles induced a significant change in the slope of this relationship for both pairs of muscles (MG × soleus, P = 0.002; MG × LG, P = 0.006. Similarly, the slope of the linear relationship between the plantar flexion torque and the ARV of the MG or soleus changed significantly with knee extensor contraction (P = 0.031 and P = 0.041, respectively. These results suggest that muscle synergies characterized by non-mechanical constraints are selectively recruited according to whether contraction of the knee extensor muscles is performed simultaneously, which is relatively consistent with the muscle synergy hypothesis.

  13. Masticatory muscle activity during deliberately performed oral tasks

    International Nuclear Information System (INIS)

    Farella, M; Palla, S; Erni, S; Gallo, L M; Michelotti, A

    2008-01-01

    The aim of this study was to investigate masticatory muscle activity during deliberately performed functional and non-functional oral tasks. Electromyographic (EMG) surface activity was recorded unilaterally from the masseter, anterior temporalis and suprahyoid muscles in 11 subjects (5 men, 6 women; age = 34.6 ± 10.8 years), who were accurately instructed to perform 30 different oral tasks under computer guidance using task markers. Data were analyzed by descriptive statistics, repeated measurements analysis of variance (ANOVA) and hierarchical cluster analysis. The maximum EMG amplitude of the masseter and anterior temporalis muscles was more often found during hard chewing tasks than during maximum clenching tasks. The relative contribution of masseter and anterior temporalis changed across the tasks examined (F ≥ 5.2; p ≤ 0.001). The masseter muscle was significantly (p ≤ 0.05) more active than the anterior temporalis muscle during tasks involving incisal biting, jaw protrusion, laterotrusion and jaw cupping, the difference being statistically significant (p ≤ 0.05). The anterior temporalis muscle was significantly (p ≤ 0.01) more active than the masseter muscle during tasks performed in intercuspal position, during tooth grinding, and during hard chewing on the working side. Based upon the relative contribution of the masseter, anterior temporalis, and suprahyoid muscles, the investigated oral tasks could be grouped into six separate clusters. The findings provided further insight into muscle- and task-specific EMG patterns during functional and non-functional oral behaviors

  14. The effects of therapeutic hip exercise with abdominal core activation on recruitment of the hip muscles.

    Science.gov (United States)

    Chan, Mandy Ky; Chow, Ka Wai; Lai, Alfred Ys; Mak, Noble Kc; Sze, Jason Ch; Tsang, Sharon Mh

    2017-07-21

    Core stabilization has been utilized for rehabilitation and prevention of lower limb musculoskeletal injuries. Previous studies showed that activation of the abdominal core muscles enhanced the hip muscle activity in hip extension and abduction exercises. However, the lack of the direct measurement and quantification of the activation level of the abdominal core muscles during the execution of the hip exercises affect the level of evidence to substantiate the proposed application of core exercises to promote training and rehabilitation outcome of the hip region. The aim of the present study was to examine the effects of abdominal core activation, which is monitored directly by surface electromyography (EMG), on hip muscle activation while performing different hip exercises, and to explore whether participant characteristics such as gender, physical activity level and contractile properties of muscles, which is assessed by tensiomyography (TMG), have confounding effect to the activation of hip muscles in enhanced core condition. Surface EMG of bilateral internal obliques (IO), upper gluteus maximus (UGMax), lower gluteus maximus (LGMax), gluteus medius (GMed) and biceps femoris (BF) of dominant leg was recorded in 20 young healthy subjects while performing 3 hip exercises: Clam, side-lying hip abduction (HABD), and prone hip extension (PHE) in 2 conditions: natural core activation (NC) and enhanced core activation (CO). EMG signals normalized to percentage of maximal voluntary isometric contraction (%MVIC) were compared between two core conditions with the threshold of the enhanced abdominal core condition defined as >20%MVIC of IO. Enhanced abdominal core activation has significantly promoted the activation level of GMed in all phases of clam exercise (P recruitment in Clam, HABD and PHE exercises, and this enhancement is correlated with higher physical activity and stiffer hip muscle. Our results suggest the potential application of abdominal core activation for

  15. Electrically-induced muscle fatigue affects feedforward mechanisms of control.

    Science.gov (United States)

    Monjo, F; Forestier, N

    2015-08-01

    To investigate the effects of focal muscle fatigue induced by electromyostimulation (EMS) on Anticipatory Postural Adjustments (APAs) during arm flexions performed at maximal velocity. Fifteen healthy subjects performed self-paced arm flexions at maximal velocity before and after the completion of fatiguing electromyostimulation programs involving the medial and anterior deltoids and aiming to degrade movement peak acceleration. APA timing and magnitude were measured using surface electromyography. Following muscle fatigue, despite a lower mechanical disturbance evidenced by significant decreased peak accelerations (-12%, pcontrol trials (p>.11 for all analyses). The fatigue signals evoked by externally-generated contractions seem to be gated by the Central Nervous System and result in postural strategy changes which aim to increase the postural safety margin. EMS is widely used in rehabilitation and training programs for its neuromuscular function-related benefits. However and from a motor control viewpoint, the present results show that the use of EMS can lead to acute inaccuracies in predictive motor control. We propose that clinicians should investigate the chronic and global effects of EMS on motor control. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  16. Frequency band analysis of muscle activation during cycling to exhaustion

    Directory of Open Access Journals (Sweden)

    Fernando Diefenthaeler

    2012-04-01

    Full Text Available DOI: http://dx.doi.org/10.5007/1980-0037.2012v14n3p243 Lower limb muscles activation was assessed during cycling to exhaustion using frequency band analysis. Nine cyclists were evaluated in two days. On the first day, cyclists performed a maximal incremental cycling exercise to measure peak power output, which was used on the second day to define the workload for a constant load time to exhaustion cycling exercise (maximal aerobic power output from day 1. Muscle activation of vastus lateralis (VL, long head of biceps femoris (BF, lateral head of gastrocnemius (GL, and tibialis anterior (TA from the right lower limb was recorded during the time to exhaustion cycling exercise. A series of nine band-pass Butterworth digital filters was used to analyze muscle activity amplitude for each band. The overall amplitude of activation and the high and low frequency components were defined to assess the magnitude of fatigue effects on muscle activity via effect sizes. The profile of the overall muscle activation during the test was analyzed using a second order polynomial, and the variability of the overall bands was analyzed by the coefficient of variation for each muscle in each instant of the test. Substantial reduction in the high frequency components of VL and BF activation was observed. The overall and low frequency bands presented trivial to small changes for all muscles. High relationship between the second order polynomial fitting and muscle activity was found (R2 > 0.89 for all muscles. High variability (~25% was found for muscle activation at the four instants of the fatigue test. Changes in the spectral properties of the EMG signal were only substantial when extreme changes in fatigue state were induced.

  17. A three-dimensional muscle activity imaging technique for assessing pelvic muscle function

    Science.gov (United States)

    Zhang, Yingchun; Wang, Dan; Timm, Gerald W.

    2010-11-01

    A novel multi-channel surface electromyography (EMG)-based three-dimensional muscle activity imaging (MAI) technique has been developed by combining the bioelectrical source reconstruction approach and subject-specific finite element modeling approach. Internal muscle activities are modeled by a current density distribution and estimated from the intra-vaginal surface EMG signals with the aid of a weighted minimum norm estimation algorithm. The MAI technique was employed to minimally invasively reconstruct electrical activity in the pelvic floor muscles and urethral sphincter from multi-channel intra-vaginal surface EMG recordings. A series of computer simulations were conducted to evaluate the performance of the present MAI technique. With appropriate numerical modeling and inverse estimation techniques, we have demonstrated the capability of the MAI technique to accurately reconstruct internal muscle activities from surface EMG recordings. This MAI technique combined with traditional EMG signal analysis techniques is being used to study etiologic factors associated with stress urinary incontinence in women by correlating functional status of muscles characterized from the intra-vaginal surface EMG measurements with the specific pelvic muscle groups that generated these signals. The developed MAI technique described herein holds promise for eliminating the need to place needle electrodes into muscles to obtain accurate EMG recordings in some clinical applications.

  18. Coordination of intrinsic and extrinsic hand muscle activity as a function of wrist joint angle during two-digit grasping.

    Science.gov (United States)

    Johnston, Jamie A; Bobich, Lisa R; Santello, Marco

    2010-04-26

    Fingertip forces result from the activation of muscles that cross the wrist and muscles whose origins and insertions reside within the hand (extrinsic and intrinsic hand muscles, respectively). Thus, tasks that involve changes in wrist angle affect the moment arm and length, hence the force-producing capabilities, of extrinsic muscles only. If a grasping task requires the exertion of constant fingertip forces, the Central Nervous System (CNS) may respond to changes in wrist angle by modulating the neural drive to extrinsic or intrinsic muscles only or by co-activating both sets of muscles. To distinguish between these scenarios, we recorded electromyographic (EMG) activity of intrinsic and extrinsic muscles of the thumb and index finger as a function of wrist angle during a two-digit object hold task. We hypothesized that changes in wrist angle would elicit EMG amplitude modulation of the extrinsic and intrinsic hand muscles. In one experimental condition we asked subjects to exert the same digit forces at each wrist angle, whereas in a second condition subjects could choose digit forces for holding the object. EMG activity was significantly modulated in both extrinsic and intrinsic muscles as a function of wrist angle (both pextrinsic and intrinsic muscles as a muscle synergy. These findings are discussed within the theoretical frameworks of synergies and common neural input across motor nuclei of hand muscles. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  19. Muscle Activation during Gait in Children with Duchenne Muscular Dystrophy.

    Science.gov (United States)

    Ropars, Juliette; Lempereur, Mathieu; Vuillerot, Carole; Tiffreau, Vincent; Peudenier, Sylviane; Cuisset, Jean-Marie; Pereon, Yann; Leboeuf, Fabien; Delporte, Ludovic; Delpierre, Yannick; Gross, Raphaël; Brochard, Sylvain

    2016-01-01

    The aim of this prospective study was to investigate changes in muscle activity during gait in children with Duchenne muscular Dystrophy (DMD). Dynamic surface electromyography recordings (EMGs) of 16 children with DMD and pathological gait were compared with those of 15 control children. The activity of the rectus femoris (RF), vastus lateralis (VL), medial hamstrings (HS), tibialis anterior (TA) and gastrocnemius soleus (GAS) muscles was recorded and analysed quantitatively and qualitatively. The overall muscle activity in the children with DMD was significantly different from that of the control group. Percentage activation amplitudes of RF, HS and TA were greater throughout the gait cycle in the children with DMD and the timing of GAS activity differed from the control children. Significantly greater muscle coactivation was found in the children with DMD. There were no significant differences between sides. Since the motor command is normal in DMD, the hyper-activity and co-contractions likely compensate for gait instability and muscle weakness, however may have negative consequences on the muscles and may increase the energy cost of gait. Simple rehabilitative strategies such as targeted physical therapies may improve stability and thus the pattern of muscle activity.

  20. Muscle Activation during Gait in Children with Duchenne Muscular Dystrophy.

    Directory of Open Access Journals (Sweden)

    Juliette Ropars

    Full Text Available The aim of this prospective study was to investigate changes in muscle activity during gait in children with Duchenne muscular Dystrophy (DMD. Dynamic surface electromyography recordings (EMGs of 16 children with DMD and pathological gait were compared with those of 15 control children. The activity of the rectus femoris (RF, vastus lateralis (VL, medial hamstrings (HS, tibialis anterior (TA and gastrocnemius soleus (GAS muscles was recorded and analysed quantitatively and qualitatively. The overall muscle activity in the children with DMD was significantly different from that of the control group. Percentage activation amplitudes of RF, HS and TA were greater throughout the gait cycle in the children with DMD and the timing of GAS activity differed from the control children. Significantly greater muscle coactivation was found in the children with DMD. There were no significant differences between sides. Since the motor command is normal in DMD, the hyper-activity and co-contractions likely compensate for gait instability and muscle weakness, however may have negative consequences on the muscles and may increase the energy cost of gait. Simple rehabilitative strategies such as targeted physical therapies may improve stability and thus the pattern of muscle activity.

  1. Gait and muscle activation changes in men with knee osteoarthritis.

    Science.gov (United States)

    Liikavainio, Tuomas; Bragge, Timo; Hakkarainen, Marko; Karjalainen, Pasi A; Arokoski, Jari P

    2010-01-01

    The aim was to examine the biomechanics of level- and stair-walking in men with knee osteoarthritis (OA) at different pre-determined gait speeds and to compare the results with those obtained from healthy control subjects. Special emphasis was placed on the estimation of joint loading. Fifty-four men with knee OA (50-69 years) and 53 healthy age- and sex-matched controls were enrolled in the study. The participants walked barefoot in the laboratory (1.2 m/s+/-5%), corridor (1.2; 1.5 and 1.7 m/s+/-5%), and climbing and coming down stairs (0.5 and 0.8 m/s+/-5%) separately. Joint loading was assessed with skin mounted accelerometers (SMAs) attached just above and below the more affected knee joint. The 3-D ground reaction forces (GRFs) and muscle activation with surface-electromyography (EMG) from vastus medialis (VM) and biceps femoris (BF) were also measured simultaneously. There were no differences in SMA variables between groups during level-walking, but maximal loading rate (LR(max)) was higher bilaterally in the controls (Pstair descent at faster speed. The distinctions in muscle activation both at level- and stair ambulation in VM and BF muscles revealed that the patients used different strategies to execute the same walking tasks. It is concluded that the differences in measured SMA and GRF parameters between the knee OA patients and the controls were only minor at constant gait speeds. It is speculated that the faster speeds in the stair descent subjected the compensatory mechanisms to the maximum highlighting the differences between groups.

  2. Relationships between lower limb muscle architecture and activities and participation of children with cerebral palsy.

    Science.gov (United States)

    Ko, In-Hee; Kim, Jung-Hee; Lee, Byoung-Hee

    2013-01-01

    The purpose of this study was to determine the effects of the structure of skeletal muscle of lower extremities on function, activity, and participation of children with cerebral palsy. The subjects were 38 hospitalized patients and 13 infants with normal development. The following clinical measures were used for assessment of activity daily living and functional level of gross motor: Gross Motor Function Classification System (GMFCS), Gross Motor Function Measure (GMFM), Wee Functional Independence Measure (WeeFIM), International Classification of Functioning Child and Youth (ICF CY). Muscle thickness and strength of knee extensor and ankle extensor were collected using ultrasonography and manual muscle tester. Following the results of ICF CY evaluation for body function, activity, learning and application of knowledge, communication and environmental factors showed a decline (Psocial acknowledgement (Pfunction, daily activity and participation; the score of ICF-CY was shown to decline due to the high score for differences in thickness of muscle, muscle strength, WeeFIM, and GMFM. The thickness and muscle strength of lower extremities affect main functions of the body and improvement of muscle strength of lower extremities may have positive effects on social standards such as activity and participation of cerebral palsy.

  3. The influence of experimentally induced pain on shoulder muscle activity

    DEFF Research Database (Denmark)

    Diederichsen, L.P.; Winther, A.; Dyhre-Poulsen, P.

    2009-01-01

    healthy men (range 22-27 years), with no history of shoulder or cervical problems, were included in the study. Pain was induced by 5% hypertonic saline injections into the supraspinatus muscle or subacromially. Seated in a shoulder machine, subjects performed standardized concentric abduction (0A degrees......Muscle function is altered in painful shoulder conditions. However, the influence of shoulder pain on muscle coordination of the shoulder has not been fully clarified. The aim of the present study was to examine the effect of experimentally induced shoulder pain on shoulder muscle function. Eleven...... muscles. EMG was recorded before pain, during pain and after pain had subsided and pain intensity was continuously scored on a visual analog scale (VAS). During abduction, experimentally induced pain in the supraspinatus muscle caused a significant decrease in activity of the anterior deltoid, upper...

  4. Thoracic posture, shoulder muscle activation patterns and isokinetic ...

    African Journals Online (AJOL)

    Background. Shoulder injuries are the most severe injuries in rugby union players, accounting for almost 20% of injuries related to the sport and resulting in lost playing hours. Objective. To profile the thoracic posture, scapular muscle activation patterns and rotator cuff muscle isokinetic strength of semi-professional

  5. Relationship between sleep stages and nocturnal trapezius muscle activity.

    Science.gov (United States)

    Müller, Christian; Nicoletti, Corinne; Omlin, Sarah; Brink, Mark; Läubli, Thomas

    2015-06-01

    Former studies reported a relationship between increased nocturnal low level trapezius muscle activity and neck or shoulder pain but it has not been explored whether trapezius muscle relaxation is related to sleep stages. The goal of the present study was to investigate whether trapezius muscle activity is related to different sleep stages, as measured by polysomnography. Twenty one healthy subjects were measured on four consecutive nights in their homes, whereas the first night served as adaptation night. The measurements included full polysomnography (electroencephalography (EEG), electrooculography (EOG), electromyography (EMG) and electrocardiography (ECG)), as well as surface EMG of the m. trapezius descendens of the dominant arm. Periods with detectable EMG activity of the trapezius muscle lasted on average 1.5% of the length of the nights and only in four nights it lasted longer than 5% of sleeping time. Neither rest time nor the length of periods with higher activity levels of the trapezius muscle did significantly differ between sleep stages. We found no evidence that nocturnal trapezius muscle activity is markedly moderated by the different sleep stages. Thus the results support that EMG measurements of trapezius muscle activity in healthy subjects can be carried out without concurrent polysomnographic recordings. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Redundancy or heterogeneity in the electric activity of the biceps brachii muscle? Added value of PCA-processed multi-channel EMG muscle activation estimates in a parallel-fibered muscle

    NARCIS (Netherlands)

    Staudenmann, D.; Stegeman, D.F.; van Dieen, J.H.

    2013-01-01

    Conventional bipolar EMG provides imprecise muscle activation estimates due to possibly heterogeneous activity within muscles and due to improper alignment of the electrodes with the muscle fibers. Principal component analysis (PCA), applied on multi-channel monopolar EMG yielded substantial

  7. Epidermal growth factor and active caspase-3 expression in the levator ani muscle of dogs with and without perineal hernia.

    Science.gov (United States)

    Pérez-Gutiérrez, J F; Argüelles, J C; Iglesias-Núñez, M; Oliveira, K S; De La Muela, M Sánchez

    2011-07-01

    To perform a histological and immunohistochemical study of epidermal growth factor, transforming growth factor-alpha and their receptor, as well as the apoptotic signal active caspase-3 in the levator ani muscle of dogs with and without perineal hernia. Biopsy specimens of the levator ani muscle were obtained from 25 dogs with perineal hernia and 4 non-affected dogs and were processed for Masson and immunohistochemical staining. The affected dogs exhibited myopathological features, internalised nuclei, destruction and abnormal size of muscle fibres, which were replaced by collagen. The immunohistochemical study revealed active caspase-3, epidermal growth factor, transforming growth factor-alpha and epidermal growth factor receptor in the levator ani. Compared to the healthy muscle, transforming growth factor-alpha staining intensity was lower in the affected muscle, whereas epidermal growth factor receptor and active caspase-3 staining were higher. Pelvic diaphragm muscle weakening is the leading cause of perineal hernia in the dog. Survival and death signals expressed in these muscles may contribute to the pathogenesis of this disease. This study reports epidermal growth factor, transforming growth factor-alpha and epidermal growth factor receptor immunohistochemical expression in the skeletal muscle and suggests that perineal hernia in the dog is accompanied by levator ani muscle atrophy, increased expression of epidermal growth factor receptor, caspase-3 activation, and decreased expression of transforming growth factor-alpha. © 2011 British Small Animal Veterinary Association.

  8. Abdominal muscle activity during a standing long jump.

    Science.gov (United States)

    Okubo, Yu; Kaneoka, Koji; Shiina, Itsuo; Tatsumura, Masaki; Miyakawa, Shumpei

    2013-08-01

    Experimental laboratory study. To measure the activation patterns (onset and magnitude) of the abdominal muscles during a standing long jump using wire and surface electromyography. Activation patterns of the abdominal muscles, especially the deep muscles such as the transversus abdominis (TrA), have yet to be examined during full-body movements such as jumping. Thirteen healthy men participated. Wire electrodes were inserted into the TrA with the guidance of ultrasonography, and surface electrodes were attached to the skin overlying the rectus abdominis (RA) and external oblique (EO). Electromyographic signals and video images were recorded while each subject performed a standing long jump. The jump task was divided into 3 phases: preparation, push-off, and float. For each muscle, activation onset relative to the onset of the RA and normalized muscle activation levels (percent maximum voluntary contraction) were analyzed during each phase. Comparisons between muscles and phases were assessed using 2-way analyses of variance. The onset times of the TrA and EO relative to the onset of the RA were -0.13 ? 0.17 seconds and -0.02 ? 0.07 seconds, respectively. Onset of TrA activation was earlier than that of the EO. The activation levels of all 3 muscles were significantly greater during the push-off phase than during the preparation and float phases. Consistent with previously published trunk-perturbation studies in healthy persons, the TrA was activated prior to the RA and EO. Additionally, the highest muscle activation levels were observed during the push-off phase.

  9. Affective Activism and Political Secularism

    DEFF Research Database (Denmark)

    Reestorff, Camilla Møhring

    2018-01-01

    The activist movement Femen is notorious for topless protests and the ideology ‘sextremism, atheism, and feminism’. The movement’s manifesto reads: ‘Our God is a woman! Our Mission is Protest! Our Weapon are [sic] bare breasts!’ (femen.org). The references to religion are evident in phrases...... are often the center of attention on Femen’s official webpage – www.femen.org – making it possible to study the way in which activism, atheism, and feminism are articulated in relation to the two religions. This is the background for this chapter in which I focus on three Femen protests: 1) Yana Zhdanova...

  10. Effects of in vivo-like activation frequency on the length-dependent force generation of skeletal muscle fibre bundles

    NARCIS (Netherlands)

    Zuurbier, C. J.; Lee-de Groot, M. B.; van der Laarse, W. J.; Huijing, P. A.

    1998-01-01

    It is known that a range of firing frequencies can be observed during in vivo muscle activity, yet information is lacking as to how different in vivo-like frequencies may affect force generation of skeletal muscle. This study examined the effects of constant (CSF, constant within one contraction)

  11. Decorin binds myostatin and modulates its activity to muscle cells

    International Nuclear Information System (INIS)

    Miura, Takayuki; Kishioka, Yasuhiro; Wakamatsu, Jun-ichi; Hattori, Akihito; Hennebry, Alex; Berry, Carole J.; Sharma, Mridula; Kambadur, Ravi; Nishimura, Takanori

    2006-01-01

    Myostatin, a member of TGF-β superfamily of growth factors, acts as a negative regulator of skeletal muscle mass. The mechanism whereby myostatin controls the proliferation and differentiation of myogenic cells is mostly clarified. However, the regulation of myostatin activity to myogenic cells after its secretion in the extracellular matrix (ECM) is still unknown. Decorin, a small leucine-rich proteoglycan, binds TGF-β and regulates its activity in the ECM. Thus, we hypothesized that decorin could also bind to myostatin and participate in modulation of its activity to myogenic cells. In order to test the hypothesis, we investigated the interaction between myostatin and decorin by surface plasmon assay. Decorin interacted with mature myostatin in the presence of concentrations of Zn 2+ greater than 10 μM, but not in the absence of Zn 2+ . Kinetic analysis with a 1:1 binding model resulted in dissociation constants (K D ) of 2.02 x 10 -8 M and 9.36 x 10 -9 M for decorin and the core protein of decorin, respectively. Removal of the glycosaminoglycan chain by chondroitinase ABC digestion did not affect binding, suggesting that decorin could bind to myostatin with its core protein. Furthermore, we demonstrated that immobilized decorin could rescue the inhibitory effect of myostatin on myoblast proliferation in vitro. These results suggest that decorin could trap myostatin and modulate its activity to myogenic cells in the ECM

  12. Muscle activity and inactivity periods during normal daily life.

    Directory of Open Access Journals (Sweden)

    Olli Tikkanen

    Full Text Available Recent findings suggest that not only the lack of physical activity, but also prolonged times of sedentary behaviour where major locomotor muscles are inactive, significantly increase the risk of chronic diseases. The purpose of this study was to provide details of quadriceps and hamstring muscle inactivity and activity during normal daily life of ordinary people. Eighty-four volunteers (44 females, 40 males, 44.1±17.3 years, 172.3±6.1 cm, 70.1±10.2 kg were measured during normal daily life using shorts measuring muscle electromyographic (EMG activity (recording time 11.3±2.0 hours. EMG was normalized to isometric MVC (EMG(MVC during knee flexion and extension, and inactivity threshold of each muscle group was defined as 90% of EMG activity during standing (2.5±1.7% of EMG(MVC. During normal daily life the average EMG amplitude was 4.0±2.6% and average activity burst amplitude was 5.8±3.4% of EMG(MVC (mean duration of 1.4±1.4 s which is below the EMG level required for walking (5 km/h corresponding to EMG level of about 10% of EMG(MVC. Using the proposed individual inactivity threshold, thigh muscles were inactive 67.5±11.9% of the total recording time and the longest inactivity periods lasted for 13.9±7.3 min (2.5-38.3 min. Women had more activity bursts and spent more time at intensities above 40% EMG(MVC than men (p<0.05. In conclusion, during normal daily life the locomotor muscles are inactive about 7.5 hours, and only a small fraction of muscle's maximal voluntary activation capacity is used averaging only 4% of the maximal recruitment of the thigh muscles. Some daily non-exercise activities such as stair climbing produce much higher muscle activity levels than brisk walking, and replacing sitting by standing can considerably increase cumulative daily muscle activity.

  13. Selumetinib Attenuates Skeletal Muscle Wasting in Murine Cachexia Model through ERK Inhibition and AKT Activation.

    Science.gov (United States)

    Quan-Jun, Yang; Yan, Huo; Yong-Long, Han; Li-Li, Wan; Jie, Li; Jin-Lu, Huang; Jin, Lu; Peng-Guo, Chen; Run, Gan; Cheng, Guo

    2017-02-01

    Cancer cachexia is a multifactorial syndrome affecting the skeletal muscle. Previous clinical trials showed that treatment with MEK inhibitor selumetinib resulted in skeletal muscle anabolism. However, it is conflicting that MAPK/ERK pathway controls the mass of the skeletal muscle. The current study investigated the therapeutic effect and mechanisms of selumetinib in amelioration of cancer cachexia. The classical cancer cachexia model was established via transplantation of CT26 colon adenocarcinoma cells into BALB/c mice. The effect of selumetinib on body weight, tumor growth, skeletal muscle, food intake, serum proinflammatory cytokines, E3 ligases, and MEK/ERK-related pathways was analyzed. Two independent experiments showed that 30 mg/kg/d selumetinib prevented the loss of body weight in murine cachexia mice. Muscle wasting was attenuated and the expression of E3 ligases, MuRF1 and Fbx32, was inhibited following selumetinib treatment of the gastrocnemius muscle. Furthermore, selumetinib efficiently reduced tumor burden without influencing the cancer cell proliferation, cumulative food intake, and serum cytokines. These results indicated that the role of selumetinib in attenuating muscle wasting was independent of cancer burden. Detailed analysis of the mechanism revealed AKT and mTOR were activated, while ERK, FoxO3a, and GSK3β were inhibited in the selumetinib -treated cachexia group. These indicated that selumetinib effectively prevented skeletal muscle wasting in cancer cachexia model through ERK inhibition and AKT activation in gastrocnemius muscle via cross-inhibition. The study not only elucidated the mechanism of MEK/ERK inhibition in skeletal muscle anabolism, but also validated selumetinib therapy as an effective intervention against cancer cachexia. Mol Cancer Ther; 16(2); 334-43. ©2016 AACR. ©2016 American Association for Cancer Research.

  14. Effects of physical activity and inactivity on muscle fatigue

    Directory of Open Access Journals (Sweden)

    Gregory C. Bogdanis

    2012-05-01

    Full Text Available The aim of this review was to examine the mechanisms by which physical activity and inactivity modify muscle fatigue. It is well known that acute or chronic increases in physical activity result in structural, metabolic, hormonal, neural and molecular adaptations that increase the level of force or power that can be sustained by a muscle. These adaptations depend on the type, intensity and volume of the exercise stimulus, but recent studies have highlighted the role of high intensity, short duration exercise as a time-efficient method to achieve both anaerobic and aerobic/endurance type adaptations. The factors that determine the fatigue profile of a muscle during intense exercise include muscle fibre composition, neuromuscular characteristics high energy metabolite stores, buffering capacity, ionic regulation, capillarization and mitochondrial density. Muscle fiber type transformation during exercise training is usually towards the intermediate type IIA at the expense of both type I and type IIx myosin heavy chain isoforms. High intensity training results in increases of both glycolyic and oxidative enzymes, muscle capilarization, improved phosphocreatine resynthesis and regulation of K+, H+ and lactate ions. Decreases of the habitual activity level due to injury or sedentary lifestyle result in partial or even compete reversal of the adaptations due to previous training, manifested by reductions in fibre cross-sectional area, decreased oxidative capacity and capillarization. Complete immobilization due to injury results in markedly decreased force output and fatigue resistance. Muscle unloading reduces electromyographic activity and causes muscle atrophy and significant decreases in capillarization and oxidative enzymes activity. The last part of the review discusses the beneficial effects of intermittent high intensity exercise training in patients with different health conditions to demonstrate the powerful effect exercise on health and well

  15. Muscle activity and kinematics of forefoot and rearfoot strike runners

    Directory of Open Access Journals (Sweden)

    A.N. Ahn

    2014-06-01

    Conclusion: This earlier and longer relative activation of the plantarflexors likely enhances the capacity for the passive structures of the foot and ankle to store elastic energy, and may also enhance the performance of the active muscle by increasing the storage of elastic strain energy in the cross-bridges and activated titin.

  16. Corticospinal contribution to arm muscle activity during human walking

    DEFF Research Database (Denmark)

    Barthélemy, Dorothy; Nielsen, Jens Bo

    2010-01-01

    inhibitory interneurones, the suppression is in all likelihood caused by removal of a corticospinal contribution to the ongoing EMG activity. The data thus suggest that the motor cortex makes an active contribution, through the corticospinal tract, to the ongoing EMG activity in arm muscles during walking....

  17. Effects of experimental muscle pain on muscle activity and co-ordination during static and dynamic motor function.

    Science.gov (United States)

    Graven-Nielsen, T; Svensson, P; Arendt-Nielsen, L

    1997-04-01

    The relation between muscle pain, muscle activity, and muscle co-ordination is still controversial. The present human study investigates the influence of experimental muscle pain on resting, static, and dynamic muscle activity. In the resting and static experiments, the electromyography (EMG) activity and the contraction force of m. tibialis anterior were assessed before and after injection of 0.5 ml hypertonic saline (5%) into the same muscle. In the dynamic experiment, injections of 0.5 ml hypertonic saline (5%) were performed into either m. tibialis anterior (TA) or m. gastrocnemius (GA) and the muscle activity and co-ordination were investigated during gait on a treadmill by EMG recordings from m. TA and m. GA. At rest no evidence of EMG hyperactivity was found during muscle pain. The maximal voluntary contraction (MVC) during muscle pain was significantly lower than the control condition (P Fibromyalgia and Myofascial Pain. Elsevier, Amsterdam, 1993, pp. 311-327.) which predicts increased activity of antagonistic muscle and decreased activity of agonistic muscle during experimental and clinical muscle pain.

  18. Differences in muscle activity between natural forefoot and rearfoot strikers during running.

    Science.gov (United States)

    Yong, Jennifer R; Silder, Amy; Delp, Scott L

    2014-11-28

    Running research has focused on reducing injuries by changing running technique. One proposed method is to change from rearfoot striking (RFS) to forefoot striking (FFS) because FFS is thought to be a more natural running pattern that may reduce loading and injury risk. Muscle activity affects loading and influences running patterns; however, the differences in muscle activity between natural FFS runners and natural RFS runners are unknown. The purpose of this study was to measure muscle activity in natural FFS runners and natural RFS runners. We tested the hypotheses that tibialis anterior activity would be significantly lower while activity of the plantarflexors would be significantly greater in FFS runners, compared to RFS runners, during late swing phase and early stance phase. Gait kinematics, ground reaction forces and electromyographic patterns of ten muscles were collected from twelve natural RFS runners and ten natural FFS runners. The root mean square (RMS) of each muscle׳s activity was calculated during terminal swing phase and early stance phase. We found significantly lower RMS activity in the tibialis anterior in FFS runners during terminal swing phase, compared to RFS runners. In contrast, the medial and lateral gastrocnemius showed significantly greater RMS activity in terminal swing phase in FFS runners. No significant differences were found during early stance phase for the tibialis anterior or the plantarflexors. Recognizing the differences in muscle activity between FFS and RFS runners is an important step toward understanding how foot strike patterns may contribute to different types of injury. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Impaired glycogen synthase activity and mitochondrial dysfunction in skeletal muscle

    DEFF Research Database (Denmark)

    Højlund, Kurt; Beck-Nielsen, Henning

    2006-01-01

    Insulin resistance in skeletal muscle is a major hallmark of type 2 diabetes and an early detectable abnormality in the development of this disease. The cellular mechanisms of insulin resistance include impaired insulin-mediated muscle glycogen synthesis and increased intramyocellular lipid content......, whereas impaired insulin activation of muscle glycogen synthase represents a consistent, molecular defect found in both type 2 diabetic and high-risk individuals. Despite several studies of the insulin signaling pathway believed to mediate dephosphorylation and hence activation of glycogen synthase......, the molecular mechanisms responsible for this defect remain unknown. Recently, the use of phospho-specific antibodies in human diabetic muscle has revealed hyperphosphorylation of glycogen synthase at sites not regulated by the classical insulin signaling pathway. In addition, novel approaches such as gene...

  20. Scapular kinematics and muscle activities during pushing tasks.

    Science.gov (United States)

    Huang, Chun-Kai; Siu, Ka-Chun; Lien, Hen-Yu; Lee, Yun-Ju; Lin, Yang-Hua

    2013-01-01

    Pushing tasks are functional activities of daily living. However, shoulder complaints exist among workers exposed to regular pushing conditions. It is crucial to investigate the control of shoulder girdles during pushing tasks. The objective of the study was to demonstrate scapular muscle activities and motions on the dominant side during pushing tasks and the relationship between scapular kinematics and muscle activities in different pushing conditions. Thirty healthy adults were recruited to push a four-wheel cart in six pushing conditions. The electromyographic signals of the upper trapezius (UT) and serratus anterior (SA) muscles were recorded. A video-based system was used for measuring the movement of the shoulder girdle and scapular kinematics. Differences in scapular kinematics and muscle activities due to the effects of handle heights and weights of the cart were analyzed using two-way ANOVA with repeated measures. The relationships between scapular kinematics and muscle activities were examined by Pearson's correlation coefficients. The changes in upper trapezius and serratus anterior muscle activities increased significantly with increased pushing weights in the one-step pushing phase. The UT/SA ratio on the dominant side decreases significantly with increased handle heights in the one-step pushing phase. The changes in upward rotation, lateral slide and elevation of the scapula decreased with increased pushing loads in the trunk-forward pushing phase. This study indicated that increased pushing loads result in decreased motions of upward rotation, lateral slide and elevation of the scapula; decreased handle heights result in relatively increased activities of the serratus anterior muscles during pushing tasks.

  1. Inhibition of FoxO transcriptional activity prevents muscle fiber atrophy during cachexia and induces hypertrophy

    Science.gov (United States)

    Reed, Sarah A.; Sandesara, Pooja B.; Senf, Sarah M.; Judge, Andrew R.

    2012-01-01

    Cachexia is characterized by inexorable muscle wasting that significantly affects patient prognosis and increases mortality. Therefore, understanding the molecular basis of this muscle wasting is of significant importance. Recent work showed that components of the forkhead box O (FoxO) pathway are increased in skeletal muscle during cachexia. In the current study, we tested the physiological significance of FoxO activation in the progression of muscle atrophy associated with cachexia. FoxO-DNA binding dependent transcription was blocked in the muscles of mice through injection of a dominant negative (DN) FoxO expression plasmid prior to inoculation with Lewis lung carcinoma cells or the induction of sepsis. Expression of DN FoxO inhibited the increased mRNA levels of atrogin-1, MuRF1, cathepsin L, and/or Bnip3 and inhibited muscle fiber atrophy during cancer cachexia and sepsis. Interestingly, during control conditions, expression of DN FoxO decreased myostatin expression, increased MyoD expression and satellite cell proliferation, and induced fiber hypertrophy, which required de novo protein synthesis. Collectively, these data show that FoxO-DNA binding-dependent transcription is necessary for normal muscle fiber atrophy during cancer cachexia and sepsis, and further suggest that basal levels of FoxO play an important role during normal conditions to depress satellite cell activation and limit muscle growth.—Reed, S. A., Sandesara, P. B., Senf, S. F., Judge, A. R. Inhibition of FoxO transcriptional activity prevents muscle fiber atrophy during cachexia and induces hypertrophy. PMID:22102632

  2. T2 mapping of muscle activity using ultrafast imaging

    International Nuclear Information System (INIS)

    Tawara, Noriyuki; Nitta, Osamu; Kuruma, Hironobu; Niitsu, Mamoru; Itoh, Akiyoshi

    2011-01-01

    Measuring exercise-induced muscle activity is essential in sports medicine. Previous studies proposed measuring transverse relaxation time (T 2 ) using muscle functional magnetic resonance imaging (mfMRI) to map muscle activity. However, mfMRI uses a spin-echo (SE) sequence that requires several minutes for acquisition. We evaluated the feasibility of T 2 mapping of muscle activity using ultrafast imaging, called fast-acquired mfMRI (fast-mfMRI), to reduce image acquisition time. The current method uses 2 pulse sequences, spin-echo echo-planar imaging (SE-EPI) and true fast imaging with steady precession (TrueFISP). SE-EPI images are used to calculate T 2 , and TrueFISP images are used to obtain morphological information. The functional image is produced by subtracting the image of muscle activity obtained using T 2 at rest from that produced after exercise. Final fast-mfMRI images are produced by fusing the functional images with the morphologic images. Ten subjects repeated ankle plantar flexion 200 times. In the fused images, the areas of activated muscle in the fast-mfMRI and SE-EPI images were identical. The geometric location of the fast-mfMRI did not differ between the morphologic and functional images. Morphological and functional information from fast-mfMRI can be applied to the human trunk, which requires limited scan duration. The difference obtained by subtracting T 2 at rest from T 2 after exercise can be used as a functional image of muscle activity. (author)

  3. Maternal and paternal genomes differentially affect myofibre characteristics and muscle weights of bovine fetuses at midgestation.

    Science.gov (United States)

    Xiang, Ruidong; Ghanipoor-Samami, Mani; Johns, William H; Eindorf, Tanja; Rutley, David L; Kruk, Zbigniew A; Fitzsimmons, Carolyn J; Thomsen, Dana A; Roberts, Claire T; Burns, Brian M; Anderson, Gail I; Greenwood, Paul L; Hiendleder, Stefan

    2013-01-01

    Postnatal myofibre characteristics and muscle mass are largely determined during fetal development and may be significantly affected by epigenetic parent-of-origin effects. However, data on such effects in prenatal muscle development that could help understand unexplained variation in postnatal muscle traits are lacking. In a bovine model we studied effects of distinct maternal and paternal genomes, fetal sex, and non-genetic maternal effects on fetal myofibre characteristics and muscle mass. Data from 73 fetuses (Day153, 54% term) of four genetic groups with purebred and reciprocal cross Angus and Brahman genetics were analyzed using general linear models. Parental genomes explained the greatest proportion of variation in myofibre size of Musculus semitendinosus (80-96%) and in absolute and relative weights of M. supraspinatus, M. longissimus dorsi, M. quadriceps femoris and M. semimembranosus (82-89% and 56-93%, respectively). Paternal genome in interaction with maternal genome (Pmaternal genome alone explained most genetic variation in CSA of fast myofibres (93%, Pmaternal genome independently (M. semimembranosus, 88%, Pmaternal weight effect (5-6%, Ppaternal genome on muscle mass decreased from thoracic to pelvic limb and accounted for all (M. supraspinatus, 97%, Pinteraction between maternal and paternal genomes (Pmaternal weight (Pmaternal and paternal genomes on fetal muscle.

  4. MeCP2 Affects Skeletal Muscle Growth and Morphology through Non Cell-Autonomous Mechanisms.

    Directory of Open Access Journals (Sweden)

    Valentina Conti

    Full Text Available Rett syndrome (RTT is an autism spectrum disorder mainly caused by mutations in the X-linked MECP2 gene and affecting roughly 1 out of 10.000 born girls. Symptoms range in severity and include stereotypical movement, lack of spoken language, seizures, ataxia and severe intellectual disability. Notably, muscle tone is generally abnormal in RTT girls and women and the Mecp2-null mouse model constitutively reflects this disease feature. We hypothesized that MeCP2 in muscle might physiologically contribute to its development and/or homeostasis, and conversely its defects in RTT might alter the tissue integrity or function. We show here that a disorganized architecture, with hypotrophic fibres and tissue fibrosis, characterizes skeletal muscles retrieved from Mecp2-null mice. Alterations of the IGF-1/Akt/mTOR pathway accompany the muscle phenotype. A conditional mouse model selectively depleted of Mecp2 in skeletal muscles is characterized by healthy muscles that are morphologically and molecularly indistinguishable from those of wild-type mice raising the possibility that hypotonia in RTT is mainly, if not exclusively, mediated by non-cell autonomous effects. Our results suggest that defects in paracrine/endocrine signaling and, in particular, in the GH/IGF axis appear as the major cause of the observed muscular defects. Remarkably, this is the first study describing the selective deletion of Mecp2 outside the brain. Similar future studies will permit to unambiguously define the direct impact of MeCP2 on tissue dysfunctions.

  5. Physical activity as intervention for age-related loss of muscle mass and function

    DEFF Research Database (Denmark)

    Eriksen, Christian Skou; Garde, Ellen; Reislev, Nina Linde

    2016-01-01

    insights into training-induced promotion of functional ability and independency after retirement and will help to formulate national recommendations regarding physical activity schemes for the growing population of older individuals in western societies. Results will be published in scientific peer......INTRODUCTION: Physical and cognitive function decline with age, accelerating during the 6th decade. Loss of muscle power (force×velocity product) is a dominant physical determinant for loss of functional ability, especially if the lower extremities are affected. Muscle strength training is known...... to maintain or even improve muscle power as well as physical function in older adults, but the optimal type of training for beneficial long-term training effects over several years is unknown. Moreover, the impact of muscle strength training on cognitive function and brain structure remains speculative...

  6. Muscle Activity Adaptations to Spinal Tissue Creep in the Presence of Muscle Fatigue

    Science.gov (United States)

    Nougarou, François

    2016-01-01

    Aim The aim of this study was to identify adaptations in muscle activity distribution to spinal tissue creep in presence of muscle fatigue. Methods Twenty-three healthy participants performed a fatigue task before and after 30 minutes of passive spinal tissue deformation in flexion. Right and left erector spinae activity was recorded using large-arrays surface electromyography (EMG). To characterize muscle activity distribution, dispersion was used. During the fatigue task, EMG amplitude root mean square (RMS), median frequency and dispersion in x- and y-axis were compared before and after spinal creep. Results Important fatigue-related changes in EMG median frequency were observed during muscle fatigue. Median frequency values showed a significant main creep effect, with lower median frequency values on the left side under the creep condition (p≤0.0001). A significant main creep effect on RMS values was also observed as RMS values were higher after creep deformation on the right side (p = 0.014); a similar tendency, although not significant, was observed on the left side (p = 0.06). A significant creep effects for x-axis dispersion values was observed, with higher dispersion values following the deformation protocol on the left side (p≤0.001). Regarding y-axis dispersion values, a significant creep x fatigue interaction effect was observed on the left side (p = 0.016); a similar tendency, although not significant, was observed on the right side (p = 0.08). Conclusion Combined muscle fatigue and creep deformation of spinal tissues led to changes in muscle activity amplitude, frequency domain and distribution. PMID:26866911

  7. Nerve–muscle activation by rotating permanent magnet configurations

    Science.gov (United States)

    Nicholson, Graham M.

    2016-01-01

    Key points The standard method of magnetic nerve activation using pulses of high current in coils has drawbacks of high cost, high electrical power (of order 1 kW), and limited repetition rate without liquid cooling.Here we report a new technique for nerve activation using high speed rotation of permanent magnet configurations, generating a sustained sinusoidal electric field using very low power (of order 10 W).A high ratio of the electric field gradient divided by frequency is shown to be the key indicator for nerve activation at high frequencies.Activation of the cane toad sciatic nerve and attached gastrocnemius muscle was observed at frequencies as low as 180 Hz for activation of the muscle directly and 230 Hz for curved nerves, but probably not in straight sections of nerve.These results, employing the first prototype device, suggest the opportunity for a new class of small low‐cost magnetic nerve and/or muscle stimulators. Abstract Conventional pulsed current systems for magnetic neurostimulation are large and expensive and have limited repetition rate because of overheating. Here we report a new technique for nerve activation, namely high‐speed rotation of a configuration of permanent magnets. Analytical solutions of the cable equation are derived for the oscillating electric field generated, which has amplitude proportional to the rotation speed. The prototype device built comprised a configuration of two cylindrical magnets with antiparallel magnetisations, made to rotate by interaction between the magnets’ own magnetic field and three‐phase currents in coils mounted on one side of the device. The electric field in a rectangular bath placed on top of the device was both numerically evaluated and measured. The ratio of the electric field gradient on frequency was approximately 1 V m−2 Hz−1 near the device. An exploratory series of physiological tests was conducted on the sciatic nerve and attached gastrocnemius muscle of the cane toad

  8. Nerve-muscle activation by rotating permanent magnet configurations.

    Science.gov (United States)

    Watterson, Peter A; Nicholson, Graham M

    2016-04-01

    The standard method of magnetic nerve activation using pulses of high current in coils has drawbacks of high cost, high electrical power (of order 1 kW), and limited repetition rate without liquid cooling. Here we report a new technique for nerve activation using high speed rotation of permanent magnet configurations, generating a sustained sinusoidal electric field using very low power (of order 10 W). A high ratio of the electric field gradient divided by frequency is shown to be the key indicator for nerve activation at high frequencies. Activation of the cane toad sciatic nerve and attached gastrocnemius muscle was observed at frequencies as low as 180 Hz for activation of the muscle directly and 230 Hz for curved nerves, but probably not in straight sections of nerve. These results, employing the first prototype device, suggest the opportunity for a new class of small low-cost magnetic nerve and/or muscle stimulators. Conventional pulsed current systems for magnetic neurostimulation are large and expensive and have limited repetition rate because of overheating. Here we report a new technique for nerve activation, namely high-speed rotation of a configuration of permanent magnets. Analytical solutions of the cable equation are derived for the oscillating electric field generated, which has amplitude proportional to the rotation speed. The prototype device built comprised a configuration of two cylindrical magnets with antiparallel magnetisations, made to rotate by interaction between the magnets' own magnetic field and three-phase currents in coils mounted on one side of the device. The electric field in a rectangular bath placed on top of the device was both numerically evaluated and measured. The ratio of the electric field gradient on frequency was approximately 1 V m(-2) Hz(-1) near the device. An exploratory series of physiological tests was conducted on the sciatic nerve and attached gastrocnemius muscle of the cane toad (Bufo marinus). Activation was

  9. The effect of whole body vibration exercise on muscle activation ...

    African Journals Online (AJOL)

    African Journal for Physical Activity and Health Sciences ... The effect of whole body vibration exercise (WBV) on muscle activation has recently been a topic for discussion amongst some researchers. ... Participants then performed two different exercises: standing calf raises and prone bridging, without and with WBV.

  10. Anthropogenic changes in sodium affect neural and muscle development in butterflies

    Science.gov (United States)

    Snell-Rood, Emilie C.; Espeset, Anne; Boser, Christopher J.; White, William A.; Smykalski, Rhea

    2014-01-01

    The development of organisms is changing drastically because of anthropogenic changes in once-limited nutrients. Although the importance of changing macronutrients, such as nitrogen and phosphorus, is well-established, it is less clear how anthropogenic changes in micronutrients will affect organismal development, potentially changing dynamics of selection. We use butterflies as a study system to test whether changes in sodium availability due to road salt runoff have significant effects on the development of sodium-limited traits, such as neural and muscle tissue. We first document how road salt runoff can elevate sodium concentrations in the tissue of some plant groups by 1.5–30 times. Using monarch butterflies reared on roadside- and prairie-collected milkweed, we then show that road salt runoff can result in increased muscle mass (in males) and neural investment (in females). Finally, we use an artificial diet manipulation in cabbage white butterflies to show that variation in sodium chloride per se positively affects male flight muscle and female brain size. Variation in sodium not only has different effects depending on sex, but also can have opposing effects on the same tissue: across both species, males increase investment in flight muscle with increasing sodium, whereas females show the opposite pattern. Taken together, our results show that anthropogenic changes in sodium availability can affect the development of traits in roadside-feeding herbivores. This research suggests that changing micronutrient availability could alter selection on foraging behavior for some roadside-developing invertebrates. PMID:24927579

  11. Anthropogenic changes in sodium affect neural and muscle development in butterflies.

    Science.gov (United States)

    Snell-Rood, Emilie C; Espeset, Anne; Boser, Christopher J; White, William A; Smykalski, Rhea

    2014-07-15

    The development of organisms is changing drastically because of anthropogenic changes in once-limited nutrients. Although the importance of changing macronutrients, such as nitrogen and phosphorus, is well-established, it is less clear how anthropogenic changes in micronutrients will affect organismal development, potentially changing dynamics of selection. We use butterflies as a study system to test whether changes in sodium availability due to road salt runoff have significant effects on the development of sodium-limited traits, such as neural and muscle tissue. We first document how road salt runoff can elevate sodium concentrations in the tissue of some plant groups by 1.5-30 times. Using monarch butterflies reared on roadside- and prairie-collected milkweed, we then show that road salt runoff can result in increased muscle mass (in males) and neural investment (in females). Finally, we use an artificial diet manipulation in cabbage white butterflies to show that variation in sodium chloride per se positively affects male flight muscle and female brain size. Variation in sodium not only has different effects depending on sex, but also can have opposing effects on the same tissue: across both species, males increase investment in flight muscle with increasing sodium, whereas females show the opposite pattern. Taken together, our results show that anthropogenic changes in sodium availability can affect the development of traits in roadside-feeding herbivores. This research suggests that changing micronutrient availability could alter selection on foraging behavior for some roadside-developing invertebrates.

  12. Active biofeedback changes the spatial distribution of upper trapezius muscle activity during computer work

    DEFF Research Database (Denmark)

    Samani, Afshin; Holtermann, Andreas; Søgaard, Karen

    2010-01-01

    The aim of this study was to investigate the spatio-temporal effects of advanced biofeedback by inducing active and passive pauses on the trapezius activity pattern using high-density surface electromyography (HD-EMG). Thirteen healthy male subjects performed computer work with superimposed...... benefit of superimposed muscle contraction in relation to the spatial organization of muscle activity during computer work....

  13. Ficus Deltoidea Enhance Glucose Uptake Activity in Cultured Muscle Cells

    International Nuclear Information System (INIS)

    Zainah Adam; Shafii Khamis; Amin Ismail; Muhajir Hamid

    2015-01-01

    Ficus deltoidea or locally known as Mas cotek is one of the common medicinal plants used in Malaysia. Our previous studies showed that this plant have blood glucose lowering effect. Glucose uptake into muscle and adipocytes cells is one of the known mechanisms of blood glucose lowering effect. This study was performed to evaluate the effect of Ficus deltoidea on glucose uptake activity into muscle cells. The cells were incubated with Ficus deltoidea extracts either alone or combination with insulin. Amount of glucose uptake by L6 myotubes was determined using glucose tracer, 2-deoxy-(1- 3 H 1 )-glucose. The results showed that Ficus deltoidea extracts at particular doses enhanced basal or insulin-mediated glucose uptake into muscle cells significantly. Hot aqueous extract enhanced glucose uptake at the low concentration (10 μg/ ml) whereas methanolic extract enhanced glucose uptake at low and high concentrations. Methanolic extract also mimicked insulin activity during enhancing glucose uptake into L^ muscle cells. Glucose uptake activity of Ficus deltoidea could be attributed by the phenolic compound presence in the plant. This study had shown that Ficus deltoidea has the ability to enhance glucose uptake into muscle cells which is partly contributed the antidiabetic activity of this plant. (author)

  14. Force steadiness, muscle activity, and maximal muscle strength in subjects with subacromial impingement syndrome

    DEFF Research Database (Denmark)

    Bandholm, Thomas; Rasmussen, Lars; Aagaard, Per

    2006-01-01

    physically active in spite of shoulder pain and nine healthy matched controls were examined to determine isometric and isokinetic submaximal shoulder-abduction force steadiness at target forces corresponding to 20%, 27.5%, and 35% of the maximal shoulder abductor torque, and maximal shoulder muscle strength......We investigated the effects of the subacromial impingement syndrome (SIS) on shoulder sensory-motor control and maximal shoulder muscle strength. It was hypothesized that both would be impaired due to chronic shoulder pain associated with the syndrome. Nine subjects with unilateral SIS who remained...

  15. Physical activity counteracts tumor cell growth in colon carcinoma C26-injected muscles: an interim report

    Directory of Open Access Journals (Sweden)

    Charlotte Hiroux

    2016-06-01

    Full Text Available Skeletal muscle tissue is a rare site of tumor metastasis but is the main target of the degenerative processes occurring in cancer-associated cachexia syndrome. Beneficial effects of physical activity in counteracting cancer-related muscle wasting have been described in the last decades. Recently it has been shown that, in tumor xeno-transplanted mouse models, physical activity is able to directly affect tumor growth by modulating inflammatory responses in the tumor mass microenvironment. Here, we investigated the effect of physical activity on tumor cell growth in colon carcinoma C26 cells injected tibialis anterior muscles of BALB/c mice. Histological analyses revealed that 4 days of voluntary wheel running significantly counteracts tumor cell growth in C26-injected muscles compared to the non-injected sedentary controls. Since striated skeletal muscle tissue is the site of voluntary contraction, our results confirm that physical activity can also directly counteract tumor cell growth in a metabolically active tissue that is usually not a target for metastasis.

  16. Sex steroids do not affect muscle weight, oxidative metabolism or cytosolic androgen reception binding of functionally overloaded rat Plantaris muscles

    Science.gov (United States)

    Max, S. R.; Rance, N.

    1983-01-01

    The effects of sex steroids on muscle weight and oxidative capacity of rat planaris muscles subjected to functional overload by removal of synergistic muscles were investigated. Ten weeks after bilateral synergist removal, plantaris muscles were significantly hypertrophic compared with unoperated controls. After this period, the ability of the muscles to oxide three substrates of oxidative metabolism was assessed. Experimental procedures are discussed and results are presented herein. Results suggest a lack of beneficial effect of sex hormone status on the process of hypertrophy and on biochemical changes in overloaded muscle. Such findings are not consistent with the idea of synergistic effects of sex steroids and muscle usage.

  17. Trunk Muscle Activation at the Initiation and Braking of Bilateral Shoulder Flexion Movements of Different Amplitudes.

    Directory of Open Access Journals (Sweden)

    M Eriksson Crommert

    Full Text Available The aim of this study was to investigate if trunk muscle activation patterns during rapid bilateral shoulder flexions are affected by movement amplitude. Eleven healthy males performed shoulder flexion movements starting from a position with arms along sides (0° to either 45°, 90° or 180°. EMG was measured bilaterally from transversus abdominis (TrA, obliquus internus (OI with intra-muscular electrodes, and from rectus abdominis (RA, erector spinae (ES and deltoideus with surface electrodes. 3D kinematics was recorded and inverse dynamics was used to calculate the reactive linear forces and torque about the shoulders and the linear and angular impulses. The sequencing of trunk muscle onsets at the initiation of arm movements was the same across movement amplitudes with ES as the first muscle activated, followed by TrA, RA and OI. All arm movements induced a flexion angular impulse about the shoulders during acceleration that was reversed during deceleration. Increased movement amplitude led to shortened onset latencies of the abdominal muscles and increased level of activation in TrA and ES. The activation magnitude of TrA was similar in acceleration and deceleration where the other muscles were specific to acceleration or deceleration. The findings show that arm movements need to be standardized when used as a method to evaluate trunk muscle activation patterns and that inclusion of the deceleration of the arms in the analysis allow the study of the relationship between trunk muscle activation and direction of perturbing torque during one and the same arm movement.

  18. Contributions of central command and muscle feedback to sympathetic nerve activity in contracting human skeletal muscle

    Directory of Open Access Journals (Sweden)

    Daniel eBoulton

    2016-05-01

    Full Text Available During voluntary contractions, muscle sympathetic nerve activity (MSNA to contracting muscles increases in proportion to force but the underlying mechanisms are not clear. To shed light on these mechanisms, particularly the influences of central command and muscle afferent feedback, the present study tested the hypothesis that MSNA is greater during voluntary compared with electrically-evoked contractions. Seven male subjects performed a series of 1-minute isometric dorsiflexion contractions (left leg separated by 2-minute rest periods, alternating between voluntary and electrically-evoked contractions at similar forces (5-10 % of maximum. MSNA was recorded continuously (microneurography from the left peroneal nerve and quantified from cardiac-synchronised, negative-going spikes in the neurogram. Compared with pre-contraction values, MSNA increased by 51 ± 34 % (P 0.05. MSNA analysed at 15-s intervals revealed that this effect of voluntary contraction appeared 15-30 s after contraction onset (P < 0.01, remained elevated until the end of contraction, and disappeared within 15 s after contraction. These findings suggest that central command, and not feedback from contracting muscle, is the primary mechanism responsible for the increase in MSNA to contracting muscle. The time-course of MSNA suggests that there is a longer delay in the onset of this effect compared with its cessation after contraction.

  19. Decreased torque and electromyographic activity in the extensor thigh muscles in chondromalacia patellae.

    Science.gov (United States)

    Väätäinen, U; Airaksinen, O; Jaroma, H; Kiviranta, I

    1995-01-01

    The alterations in thigh muscle properties of chondromalacia patellae patients during isometric and dynamic endurance tests were studied using a variokinetic knee testing system linked to surface EMG. A total of 41 patients (chondromalacia group) with arthroscopically certified chondromalacia of the patella were studied. The control group consisted of 31 healthy adult volunteers with no history of knee pain or trauma. Peak torque values were 21% (p chondromalacia group than in the control group. The decrease in the ratio between integrated EMG (IEMG) and measured force were found in all parts of the quadriceps femoris muscle in patients with chondromalacia of the patella in isometric extension. No change in the normalized IEMG levels of the thigh muscles were found between chondromalacia patients and controls in dynamic endurance test. The severity of the chondromalacia of the patella did not affect the level of electromyographic activation in thigh muscles. The ratio of normalized EMG levels of vastus medialis and vastus lateralis did not differ between the groups. The present study showed that chondromalacia patellae patients have reduced force and electromyographic activation levels of quadriceps femoris muscle. Especially, the explosive strength of the quadriceps femoris muscle is reduced.

  20. Congenital muscle dystrophy and diet consistency affect mouse skull shape differently.

    Science.gov (United States)

    Spassov, Alexander; Toro-Ibacache, Viviana; Krautwald, Mirjam; Brinkmeier, Heinrich; Kupczik, Kornelius

    2017-11-01

    The bones of the mammalian skull respond plastically to changes in masticatory function. However, the extent to which muscle function affects the growth and development of the skull, whose regions have different maturity patterns, remains unclear. Using muscle dissection and 3D landmark-based geometric morphometrics we investigated the effect of changes in muscle function established either before or after weaning, on skull shape and muscle mass in adult mice. We compared temporalis and masseter mass and skull shape in mice with a congenital muscle dystrophy (mdx) and wild type (wt) mice fed on either a hard or a soft diet. We found that dystrophy and diet have distinct effects on the morphology of the skull and the masticatory muscles. Mdx mice show a flattened neurocranium with a more dorsally displaced foramen magnum and an anteriorly placed mandibular condyle compared with wt mice. Compared with hard diet mice, soft diet mice had lower masseter mass and a face with more gracile features as well as labially inclined incisors, suggesting reduced bite strength. Thus, while the early-maturing neurocranium and the posterior portion of the mandible are affected by the congenital dystrophy, the late-maturing face including the anterior part of the mandible responds to dietary differences irrespective of the mdx mutation. Our study confirms a hierarchical, tripartite organisation of the skull (comprising neurocranium, face and mandible) with a modular division based on development and function. Moreover, we provide further experimental evidence that masticatory loading is one of the main environmental stimuli that generate craniofacial variation. © 2017 Anatomical Society.

  1. CHANGES IN QUADRICEPS MUSCLE ACTIVITY DURING SUSTAINED RECREATIONAL ALPINE SKIING

    Directory of Open Access Journals (Sweden)

    Josef Kröll

    2011-03-01

    Full Text Available During a day of skiing thousands of repeated contractions take place. Previous research on prolonged recreational alpine skiing show that physiological changes occur and hence some level of fatigue is inevitable. In the present paper the effect of prolonged skiing on the recruitment and coordination of the muscle activity was investigated. Six subjects performed 24 standardized runs. Muscle activity during the first two (PREskiing and the last two (POSTskiing runs was measured from the vastus lateralis (VL and rectus femoris (RF using EMG and quantified using wavelet and principal component analysis. The frequency content of the EMG signal shifted in seven out of eight cases significantly towards lower frequencies with highest effects observed for RF on outside leg. A significant pronounced outside leg loading occurred during POSTskiing and the timing of muscle activity peaks occurred more towards turn completion. Specific EMG frequency changes were observed at certain time points throughout the time windows and not over the whole double turn. It is suggested that general muscular fatigue, where additional specific muscle fibers have to be recruited due to the reduced power output of other fibers did not occur. The EMG frequency decrease and intensity changes for RF and VL are caused by altered timing (coordination within the turn towards a most likely more uncontrolled skiing technique. Hence, these data provide evidence to suggest recreational skiers alter their skiing technique before a potential change in muscle fiber recruitment occurs

  2. Multivariable Dynamic Ankle Mechanical Impedance With Active Muscles

    Science.gov (United States)

    Lee, Hyunglae; Krebs, Hermano Igo; Hogan, Neville

    2015-01-01

    Multivariable dynamic ankle mechanical impedance in two coupled degrees-of-freedom (DOFs) was quantified when muscles were active. Measurements were performed at five different target activation levels of tibialis anterior and soleus, from 10% to 30% of maximum voluntary contraction (MVC) with increments of 5% MVC. Interestingly, several ankle behaviors characterized in our previous study of the relaxed ankle were observed with muscles active: ankle mechanical impedance in joint coordinates showed responses largely consistent with a second-order system consisting of inertia, viscosity, and stiffness; stiffness was greater in the sagittal plane than in the frontal plane at all activation conditions for all subjects; and the coupling between dorsiflexion–plantarflexion and inversion–eversion was small—the two DOF measurements were well explained by a strictly diagonal impedance matrix. In general, ankle stiffness increased linearly with muscle activation in all directions in the 2-D space formed by the sagittal and frontal planes, but more in the sagittal than in the frontal plane, resulting in an accentuated “peanut shape.” This characterization of young healthy subjects’ ankle mechanical impedance with active muscles will serve as a baseline to investigate pathophysiological ankle behaviors of biomechanically and/or neurologically impaired patients. PMID:25203497

  3. Deletion of Dicer in smooth muscle affects voiding pattern and reduces detrusor contractility and neuroeffector transmission.

    Directory of Open Access Journals (Sweden)

    Mardjaneh Karbalaei Sadegh

    Full Text Available MicroRNAs have emerged as important regulators of smooth muscle phenotype and may play important roles in pathogenesis of various smooth muscle related disease states. The aim of this study was to investigate the role of miRNAs for urinary bladder function. We used an inducible and smooth muscle specific Dicer knockout (KO mouse which resulted in significantly reduced levels of miRNAs, including miR-145, miR-143, miR-22, miR125b-5p and miR-27a, from detrusor preparations without mucosa. Deletion of Dicer resulted in a disturbed micturition pattern in vivo and reduced depolarization-induced pressure development in the isolated detrusor. Furthermore, electrical field stimulation revealed a decreased cholinergic but maintained purinergic component of neurogenic activation in Dicer KO bladder strips. The ultrastructure of detrusor smooth muscle cells was well maintained, and the density of nerve terminals was similar. Western blotting demonstrated reduced contents of calponin and desmin. Smooth muscle α-actin, SM22α and myocardin were unchanged. Activation of strips with exogenous agonists showed that depolarization-induced contraction was preferentially reduced; ATP- and calyculin A-induced contractions were unchanged. Quantitative real time PCR and western blotting demonstrated reduced expression of Cav1.2 (Cacna1c. It is concluded that smooth muscle miRNAs play an important role for detrusor contractility and voiding pattern of unrestrained mice. This is mediated in part via effects on expression of smooth muscle differentiation markers and L-type Ca(2+ channels in the detrusor.

  4. Cytoskeleton, L-type Ca2+ and stretch activated channels in injured skeletal muscle

    Directory of Open Access Journals (Sweden)

    Fabio Francini

    2013-07-01

    Full Text Available The extra-sarcomeric cytoskeleton (actin microfilaments and anchoring proteins is involved in maintaining the sarco-membrane stiffness and integrity and in turn the mechanical stability and function of the intra- and sub-sarcoplasmic proteins. Accordingly, it regulates Ca2+ entry through the L-type Ca2+ channels and the mechano-sensitivity of the stretch activated channels (SACs. Moreover, being intra-sarcomeric cytoskeleton bound to costameric proteins and other proteins of the sarcoplasma by intermediate filaments, as desmin, it integrates the properties of the sarcolemma with the skeletal muscle fibres contraction. The aim of this research was to compare the cytoskeleton, SACs and the ECC alterations in two different types of injured skeletal muscle fibres: by muscle denervation and mechanical overload (eccentric contraction. Experiments on denervation were made in isolated Soleus muscle of male Wistar rats; forced eccentric-contraction (EC injury was achieved in Extensor Digitorum Longus muscles of Swiss mice. The method employed conventional intracellular recording with microelectrodes inserted in a single fibre of an isolated skeletal muscle bundle. The state of cytoskeleton was evaluated by recording SAC currents and by evaluating the resting membrane potential (RMP value determined in current-clamp mode. The results demonstrated that in both injured skeletal muscle conditions the functionality of L-type Ca2+ current, ICa, was affected. In parallel, muscle fibres showed an increase of the resting membrane permeability and of the SAC current. These issues, together with a more depolarized RMP are an index of altered cytoskeleton. In conclusion, we found a symilar alteration of ICa, SAC and cytoskeleton in both injured skeletal muscle conditions.

  5. Human activities affecting trace gases and climate

    International Nuclear Information System (INIS)

    Braatz, B.; Ebert, C.

    1990-01-01

    The Earth's climate has been in a constant state of change throughout geologic time due to natural perturbations in the global geobiosphere. However, various human activities have the potential to cause future global warming over a relatively short amount of time. These activities, which affect the Earth's climate by altering the concentrations of trace gases in the atmosphere, include energy consumption, particularly fossil-fuel consumption; industrial processes (production and use of chlorofluorocarbons, halons, and chlorocarbons, landfilling of wastes, and cement manufacture); changes in land use patterns, particularly deforestation and biomass burning; and agricultural practices (waste burning, fertilizer usage, rice production, and animal husbandry). Population growth is an important underlying factor affecting the level of growth in each activity. This paper describes how the human activities listed above contribute to atmospheric change, the current pattern of each activity, and how levels of each activity have changed since the early part of this century

  6. Scapular muscle activity in a variety of plyometric exercises.

    Science.gov (United States)

    Maenhout, Annelies; Benzoor, Maya; Werin, Maria; Cools, Ann

    2016-04-01

    Plyometric shoulder exercises are commonly used to progress from slow analytical strength training to more demanding high speed power training in the return to play phase after shoulder injury. The aim of this study was first, to investigate scapular muscle activity in plyometric exercises to support exercise selection in practice and second, to enhance understanding of how scapular muscles are recruited during the back and forth movement phase of these exercises. Thirty-two healthy subjects performed 10 plyometric exercises while surface EMG-activity of the scapular muscles (upper (UT), middle (MT) and lower trapezius (LT) and serratus anterior (SA)) was registered. A high speed camera tracked start and end of the back and forth movement. Mean scapular EMG activity during the 10 exercises ranged from 14.50% to 76.26%MVC for UT, from 15.19% to 96.55%MVC for MT, from 13.18% to 94.35%MVC for LT and from 13.50% to 98.50%MVC for SA. Anova for repeated measures showed significant differences in scapular muscle activity between exercises (pPlyometric shoulder exercises require moderate (31-60%MVC) to high (>60%MVC) scapular muscle activity. Highest MT/LT activity was present in prone plyometric external rotation and flexion. Highest SA activity was found in plyometric external rotation and flexion with Xco and plyometric push up on Bosu. Specific exercises can be selected that recruit minimal levels of UT activity (plyometric external rotation and horizontal abduction or plyometric push up on the Bosu. The results of this study support exercise selection for clinical practice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Trunk muscle activity increases with unstable squat movements.

    Science.gov (United States)

    Anderson, Kenneth; Behm, David G

    2005-02-01

    The objective of this study was to determine differences in electromyographic (EMG) activity of the soleus (SOL), vastus lateralis (VL), biceps femoris (BF), abdominal stabilizers (AS), upper lumbar erector spinae (ULES), and lumbo-sacral erector spinae (LSES) muscles while performing squats of varied stability and resistance. Stability was altered by doing the squat movement on a Smith machine, a free squat, and while standing on two balance discs. Fourteen male subjects performed the movements. Activities of the SOL, AS, ULES, and LSES were highest during the unstable squat and lowest with the Smith machine protocol (p squats on unstable surfaces may permit a training adaptation of the trunk muscles responsible for supporting the spinal column (i.e., erector spinae) as well as the muscles most responsible for maintaining posture (i.e., SOL).

  8. The effect of flexible acrylic resin on masticatory muscle activity in implant-supported mandibular overdentures: a controlled clinical trial

    OpenAIRE

    Ibraheem, Eman Mostafa Ahmed; Nassani, Mohammad Zakaria

    2016-01-01

    Background It is not yet clear from the current literature to what extent masticatory muscle activity is affected by the use of flexible acrylic resin in the construction of implant-supported mandibular overdentures. Objective To compare masticatory muscle activity between patients who were provided with implant-supported mandibular overdentures constructed from flexible acrylic resin and those who were provided with implant-supported mandibular overdentures constructed from heat-cured conven...

  9. The Effect of Various Standing Positions in Muscles Activity between Healthy Young Men and those with Genu Varum

    Directory of Open Access Journals (Sweden)

    Persian Abstract Amir Hossein Barati

    2015-09-01

    Full Text Available Objective: Genu varum is considered a risk factor for knee osteoarthritis. Being aware of the changes in muscles activity in various standing positions among genu varum patients, can provide insight for preventing osteoarthritis in this population. This study is undertaken to compare muscles activity in various standing positions between young healthy and genu varum male individuals. Methods: 80 healthy male university students, 40 normal and 40 subjects with genu varum deformity, participated in this study. Deformity of genu varum was assessed with caliper and Goniometer. Each subject stood in five different positions and muscles activity was recorded with EMG device. For data analysis, Matlab and SPSS software were employed and Mixed variance analysis test (Mixed ANOVA was run to compare the dependent variables at a significance level of P ≤ 0.05. Results: Significant differences were observed between the two groups for muscles activity of the tensor fasia latae (at single leg with closed eye position, tertius fibulae and gluteus medius muscles (at single leg with closed eye and upward head postions( p≤0.05 while no significant differences were observed in other muscles. Conclusion: According to the obtained results, it can be suggested that frontal knee angle may affect muscles activity. Perhaps one of the reasons for higher injury risk and knee osteoarthritis in genu varum population is the increase in muscles activity. Therefor, It is proposed that focusing on corrective exercises can reduce these risks.

  10. Patterns of arm muscle activation involved in octopus reaching movements.

    Science.gov (United States)

    Gutfreund, Y; Flash, T; Fiorito, G; Hochner, B

    1998-08-01

    The extreme flexibility of the octopus arm allows it to perform many different movements, yet octopuses reach toward a target in a stereotyped manner using a basic invariant motor structure: a bend traveling from the base of the arm toward the tip (Gutfreund et al., 1996a). To study the neuronal control of these movements, arm muscle activation [electromyogram (EMG)] was measured together with the kinematics of reaching movements. The traveling bend is associated with a propagating wave of muscle activation, with maximal muscle activation slightly preceding the traveling bend. Tonic activation was occasionally maintained afterward. Correlation of the EMG signals with the kinematic variables (velocities and accelerations) reveals that a significant part of the kinematic variability can be explained by the level of muscle activation. Furthermore, the EMG level measured during the initial stages of movement predicts the peak velocity attained toward the end of the reaching movement. These results suggest that feed-forward motor commands play an important role in the control of movement velocity and that simple adjustment of the excitation levels at the initial stages of the movement can set the velocity profile of the whole movement. A simple model of octopus arm extension is proposed in which the driving force is set initially and is then decreased in proportion to arm diameter at the bend. The model qualitatively reproduces the typical velocity profiles of octopus reaching movements, suggesting a simple control mechanism for bend propagation in the octopus arm.

  11. Molecular mechanism by which AMP-activated protein kinase activation promotes glycogen accumulation in muscle

    DEFF Research Database (Denmark)

    Hunter, Roger W; Treebak, Jonas Thue; Wojtaszewski, Jørgen

    2011-01-01

    AND METHODS We recently generated knock-in mice in which wild-type muscle GS was replaced by a mutant (Arg582Ala) that could not be activated by glucose-6-phosphate (G6P), but possessed full catalytic activity and could still be activated normally by dephosphorylation. Muscles from GS knock-in or transgenic......-insensitive GS knock-in mice, although AICAR-stimulated AMPK activation, glucose transport, and total glucose utilization were normal. CONCLUSIONS We provide genetic evidence that AMPK activation promotes muscle glycogen accumulation by allosteric activation of GS through an increase in glucose uptake...

  12. Changes in muscle force-length properties affect the early rise of force in vivo

    DEFF Research Database (Denmark)

    Blazevich, Anthony J; Cannavan, Dale; Horne, Sara

    2009-01-01

    Changes in contractile rate of force development (RFD), measured within a short time interval from contraction initiation, were measured after a period of strength training that led to increases in muscle fascicle length but no measurable change in neuromuscular activity. The relationship between...

  13. Denervation-Induced Activation of the Ubiquitin-Proteasome System Reduces Skeletal Muscle Quantity Not Quality.

    Science.gov (United States)

    Baumann, Cory W; Liu, Haiming M; Thompson, LaDora V

    2016-01-01

    It is well known that the ubiquitin-proteasome system is activated in response to skeletal muscle wasting and functions to degrade contractile proteins. The loss of these proteins inevitably reduces skeletal muscle size (i.e., quantity). However, it is currently unknown whether activation of this pathway also affects function by impairing the muscle's intrinsic ability to produce force (i.e., quality). Therefore, the purpose of this study was twofold, (1) document how the ubiquitin-proteasome system responds to denervation and (2) identify the physiological consequences of these changes. To induce soleus muscle atrophy, C57BL6 mice underwent tibial nerve transection of the left hindlimb for 7 or 14 days (n = 6-8 per group). At these time points, content of several proteins within the ubiquitin-proteasome system were determined via Western blot, while ex vivo whole muscle contractility was specifically analyzed at day 14. Denervation temporarily increased several key proteins within the ubiquitin-proteasome system, including the E3 ligase MuRF1 and the proteasome subunits 19S, α7 and β5. These changes were accompanied by reductions in absolute peak force and power, which were offset when expressed relative to physiological cross-sectional area. Contrary to peak force, absolute and relative forces at submaximal stimulation frequencies were significantly greater following 14 days of denervation. Taken together, these data represent two keys findings. First, activation of the ubiquitin-proteasome system is associated with reductions in skeletal muscle quantity rather than quality. Second, shortly after denervation, it appears the muscle remodels to compensate for the loss of neural activity via changes in Ca2+ handling.

  14. Muscle Activity during Unilateral Vs. Bilateral Battle Rope Exercises

    DEFF Research Database (Denmark)

    Calatayud, J.; Martin, F.; Colado, J. C.

    2015-01-01

    Calatayud, J, Martin, F, Colado, JC, Benitez, JC, Jakobsen, MD, and Andersen, LL. Muscle activity during unilateral vs. bilateral battle rope exercises. J Strength Cond Res 29(10): 2854-2859, 2015High training intensity is important for efficient strength gains. Although battle rope training is m...

  15. Nutritional strategies of physically active subjects with muscle dysmorphia.

    Science.gov (United States)

    Contesini, Nadir; Adami, Fernando; Blake, Márcia de-Toledo; Monteiro, Carlos Bm; Abreu, Luiz C; Valenti, Vitor E; Almeida, Fernando S; Luciano, Alexandre P; Cardoso, Marco A; Benedet, Jucemar; de Assis Guedes de Vasconcelos, Francisco; Leone, Claudio; Frainer, Deivis Elton Schlickmann

    2013-05-26

    The aim of this study was to identify dietary strategies for physically active individuals with muscle dysmorphia based on a systematic literature review. References were included if the study population consisted of adults over 18 years old who were physically active in fitness centers. We identified reports through an electronic search ofScielo, Lilacs and Medline using the following keywords: muscle dysmorphia, vigorexia, distorted body image, and exercise. We found eight articles in Scielo, 17 in Medline and 12 in Lilacs. Among the total number of 37 articles, only 17 were eligible for inclusion in this review. The results indicated that the feeding strategies used by physically active individuals with muscle dysmorphia did not include planning or the supervision of a nutritionist. Diet included high protein and low fat foods and the ingestion of dietary and ergogenic supplements to reduce weight. Physically active subjects with muscle dysmorphia could benefit from the help of nutritional professionals to evaluate energy estimation, guide the diet and its distribution in macronutrient and consider the principle of nutrition to functional recovery of the digestive process, promote liver detoxification, balance and guide to organic adequate intake of supplemental nutrients and other substances.

  16. Changes in Quadriceps Muscle Activity During Sustained Recreational Alpine Skiing

    Science.gov (United States)

    Kröll, Josef; Müller, Erich; Seifert, John G.; Wakeling, James M.

    2011-01-01

    During a day of skiing thousands of repeated contractions take place. Previous research on prolonged recreational alpine skiing show that physiological changes occur and hence some level of fatigue is inevitable. In the present paper the effect of prolonged skiing on the recruitment and coordination of the muscle activity was investigated. Six subjects performed 24 standardized runs. Muscle activity during the first two (PREskiing) and the last two (POSTskiing) runs was measured from the vastus lateralis (VL) and rectus femoris (RF) using EMG and quantified using wavelet and principal component analysis. The frequency content of the EMG signal shifted in seven out of eight cases significantly towards lower frequencies with highest effects observed for RF on outside leg. A significant pronounced outside leg loading occurred during POSTskiing and the timing of muscle activity peaks occurred more towards turn completion. Specific EMG frequency changes were observed at certain time points throughout the time windows and not over the whole double turn. It is suggested that general muscular fatigue, where additional specific muscle fibers have to be recruited due to the reduced power output of other fibers did not occur. The EMG frequency decrease and intensity changes for RF and VL are caused by altered timing (coordination) within the turn towards a most likely more uncontrolled skiing technique. Hence, these data provide evidence to suggest recreational skiers alter their skiing technique before a potential change in muscle fiber recruitment occurs. Key points The frequency content of the EMG signal shifted in seven out of eight cases significantly towards lower frequencies with highest effects observed for RF. General muscular fatigue, where additional specific fibers have to be recruited due to the reduced power output of other fibers, did not occur. A modified skiing style towards a less functional and hence more uncontrolled skiing technique seems to be a key

  17. Mapping Muscles Activation to Force Perception during Unloading.

    Directory of Open Access Journals (Sweden)

    Simone Toma

    Full Text Available It has been largely proved that while judging a force humans mainly rely on the motor commands produced to interact with that force (i.e., sense of effort. Despite of a large bulk of previous investigations interested in understanding the contributions of the descending and ascending signals in force perception, very few attempts have been made to link a measure of neural output (i.e., EMG to the psychophysical performance. Indeed, the amount of correlation between EMG activity and perceptual decisions can be interpreted as an estimate of the contribution of central signals involved in the sensation of force. In this study we investigated this correlation by measuring the muscular activity of eight arm muscles while participants performed a quasi-isometric force detection task. Here we showed a method to quantitatively describe muscular activity ("muscle-metric function" that was directly comparable to the description of the participants' psychophysical decisions about the stimulus force. We observed that under our experimental conditions, muscle-metric absolute thresholds and the shape of the muscle-metric curves were closely related to those provided by the psychophysics. In fact a global measure of the muscles considered was able to predict approximately 60% of the perceptual decisions total variance. Moreover the inter-subjects differences in psychophysical sensitivity showed high correlation with both participants' muscles sensitivity and participants' joint torques. Overall, our findings gave insights into both the role played by the corticospinal motor commands while performing a force detection task and the influence of the gravitational muscular torque on the estimation of vertical forces.

  18. McArdle disease does not affect skeletal muscle fibre type profiles in humans

    Directory of Open Access Journals (Sweden)

    Tertius Abraham Kohn

    2014-11-01

    Full Text Available Patients suffering from glycogen storage disease V (McArdle disease were shown to have higher surface electrical activity in their skeletal muscles when exercising at the same intensity as their healthy counterparts, indicating more muscle fibre recruitment. To explain this phenomenon, this study investigated whether muscle fibre type is shifted towards a predominance in type I fibres as a consequence of the disease. Muscle biopsies from the Biceps brachii (BB (n = 9 or Vastus lateralis (VL (n = 8 were collected over a 13-year period from male and female patients diagnosed with McArdle disease, analysed for myosin heavy chain (MHC isoform content using SDS-PAGE, and compared to healthy controls (BB: n = 3; VL: n = 10. All three isoforms were expressed and no difference in isoform expression in VL was found between the McArdle patients and healthy controls (MHC I: 33±19% vs. 43±7%; MHC IIa: 52±9% vs. 40±7%; MHC IIx: 15±18% vs. 17±9%. Similarly, the BB isoform content was also not different between the two groups (MHC I: 33±14% vs. 30±11%; MHC IIa: 46±17% vs. 39±5%; MHC IIx: 21±13% vs. 31±14%. In conclusion, fibre type distribution does not seem to explain the higher surface EMG in McArdle patients. Future studies need to investigate muscle fibre size and contractility of McArdle patients.

  19. Ankle muscle activity modulation during single-leg stance differs between children, young adults and seniors.

    Science.gov (United States)

    Kurz, Eduard; Faude, Oliver; Roth, Ralf; Zahner, Lukas; Donath, Lars

    2018-02-01

    Incomplete maturation and aging-induced declines of the neuromuscular system affect postural control both in children and older adults and lead to high fall rates. Age-specific comparisons of the modulation of ankle muscle activation and behavioral center of pressure (COP) indices during upright stance have been rarely conducted. The objective of the present study was to quantify aging effects on a neuromuscular level. Thus, surface electromyography (SEMG) modulation and co-activity of ankle muscles during single-leg standing was compared in healthy children, young adults and seniors. Postural steadiness (velocity and mean sway frequency of COP), relative muscle activation (SEMG modulation) and co-activation of two ankle muscles (tibialis anterior, TA; soleus, SO) were examined during single-leg stance in 19 children [age, 9.7 (SD 0.5) years], 30 adults [23.3 (1.5) years] and 29 seniors [62.7 (6.1) years]. Velocity of COP in medio-lateral and anterior-posterior directions, mean sway frequency in anterior-posterior direction, relative muscle activation (TA and SO) and co-activation revealed large age effects (P  0.14). Post-hoc comparisons indicated higher COP velocities, anterior-posterior frequencies, relative SO activation and co-activation in children and seniors when compared with adults. Relative TA activation was higher in children and adults compared with seniors (P seniors seems to be counteracted with higher TA/SO co-activity and SO modulation. However, TA modulation is higher in children and adults, whereas seniors' TA modulation capacity is diminished. An aging-induced decline of TA motor units might account for deteriorations of TA modulation in seniors.

  20. Muscle activation in the loaded free barbell squat: a brief review.

    Science.gov (United States)

    Clark, Dave R; Lambert, Mike I; Hunter, Angus M

    2012-04-01

    The purpose of this article was to review a series of studies (n = 18) where muscle activation in the free barbell back squat was measured and discussed. The loaded barbell squat is widely used and central to many strength training programs. It is a functional and safe exercise that is obviously transferable to many movements in sports and life. Hence, a large and growing body of research has been published on various aspects of the squat. Training studies have measured the impact of barbell squat loading schemes on selected training adaptations including maximal strength and power changes in the squat. Squat exercise training adaptations and their impact on a variety of performance parameters, in particular countermovement jump, acceleration, and running speed, have also been reported. Furthermore, studies have reported on the muscle activation of the lower limb resulting from variations of squat depth, foot placement, training status, and training intensity. There have also been studies on the impact of squatting with or without a weight belt on trunk muscle activation (TMA). More recently, studies have reported on the effect of instability on TMA and squat performance. Research has also shown that muscle activation of the prime movers in the squat exercise increases with an increase in the external load. Also common variations such as stance width, hip rotation, and front squat do not significantly affect muscle activation. However, despite many studies, this information has not been consolidated, resulting in a lack of consensus about how the information can be applied. Therefore, the purpose of this review was to examine studies that reported muscle activation measured by electromyography in the free barbell back squat with the goal of clarifying the understanding of how the exercise can be applied.

  1. [Central muscle relaxant activities of 2-methyl-3-aminopropiophenone derivatives].

    Science.gov (United States)

    Kontani, H; Mano, A; Koshiura, R; Yamazaki, M; Shimada, Y; Oshita, M; Morikawa, K; Kato, H; Ito, Y

    1987-02-01

    In this experiment, we synthetized new 2-methyl-3-aminopropiophenone (MP) derivatives, whose structure is known to have central muscle relaxant activities, and quinolizidine and indan . tetralin derivatives derived from MP by cyclization, and we investigated the central muscle relaxant activity. Among the quinolizidine derivatives, there was a very strong central depressant agent, trans (3H, 9aH)-3-(p-chloro) benzoyl-quinolizidine (HSR-740), and among the indan . tetralin derivatives, there was an excitant agents, trans (1H, 2H)-5-methoxy-3, 3-dimethyl-2-piperidinomethyl indan-1-ol (HSR-719). From the results, these derivatives were not considered to be adequate for central muscle relaxant. Among the MP derivatives, (4'-chloro-2'-methoxy-3-piperidino) propiophenone HCl (HSR-733) and (4'-ethyl-2-methyl-3-pyrrolidino) propiophenone HCl (HSR-770) strongly inhibited the cooperative movement in the rotating rod method using mice, and it exerted almost the same depressant activity on the cross extensor reflex using alpha-chloralose anesthetized rats. However, the inhibitory effects of HSR-733 on the anemic decerebrate rigidity and the rigidity induced by intracollicular decerebration in rats were weaker than those of HSR-770 and eperisone. In spinal cats, at a low dose (5 mg/kg, i.v.), HSR-733 depressed monosynaptic and dorsal root reflex potentials as compared with polysynaptic reflex potentials, and inhibitory effects of HSR-733 on these three reflex potentials were more potent than those of eperisone and HSR-770. Although HSR-770 acts on the spinal cord and supraspinal level on which eperisone has been reported to act, HSR-733 may mainly act on the spinal cord. These results indicate that the MP derivative with a 2-methyl group may be suitable as a central muscle relaxant. HSR-770, which has equipotent muscle relaxant activity to eperisone, exerted strong inhibitory effects on oxotremorine-induced tremor and weak inhibitory effects on spontaneous motor activity in the

  2. Syndrome of Continuous Muscle Fibre Activity

    African Journals Online (AJOL)

    1974-08-10

    Aug 10, 1974 ... A period of electrical silence follows each period of strenuous activity and .... the cell during this period of stimulation. Rises in intra- cellular Na+ .... and brain stem origin, but may be a peripheral manifesta- tion of a similar ...

  3. Acute moderate elevation of TNF-{alpha} does not affect systemic and skeletal muscle protein turnover in healthy humans

    DEFF Research Database (Denmark)

    Petersen, Anne Marie; Plomgaard, Peter; Fischer, Christian P

    2009-01-01

    -alpha infusion (rhTNF-alpha). We hypothesize that TNF-alpha increases human muscle protein breakdown and/or inhibit synthesis. Subjects and Methods: Using a randomized controlled, crossover design post-absorptive healthy young males (n=8) were studied 2 hours under basal conditions followed by 4 hours infusion...... with the phenylalanine 3-compartment model showed similar muscle synthesis, breakdown and net muscle degradation after 2 hours basal and after 4 hours Control or rhTNF-alpha infusion. Conclusion: This study is the first to show in humans that TNF-alpha does not affect systemic and skeletal muscle protein turnover, when......Context: Skeletal muscle wasting has been associated with elevations in circulating inflammatory cytokines, in particular TNF-alpha. Objective: In this study, we investigated whether TNF-alpha affects human systemic and skeletal muscle protein turnover, via a 4 hours recombinant human TNF...

  4. The cell nuclei of skeletal muscle cells are transcriptionally active in hibernating edible dormice

    Directory of Open Access Journals (Sweden)

    Muller Sylviane

    2009-03-01

    Full Text Available Abstract Background Skeletal muscle is able to react in a rapid, dynamic way to metabolic and mechanical stimuli. In particular, exposure to either prolonged starvation or disuse results in muscle atrophy. At variance, in hibernating animals muscle atrophy may be scarce or absent after bouts of hibernation i.e., periods of prolonged (months inactivity and food deprivation, and muscle function is fully preserved at arousal. In this study, myocytes from the quadriceps muscle of euthermic and hibernating edible dormice were investigated by a combination of morphological, morphometrical and immunocytochemical analyses at the light and electron microscopy level. The focus was on cell nuclei and mitochondria, which are highly sensitive markers of changing metabolic rate. Results Findings presented herein demonstrate that: 1 the general histology of the muscle, inclusive of muscle fibre shape and size, and the ratio of fast and slow fibre types are not affected by hibernation; 2 the fine structure of cytoplasmic and nuclear constituents is similar in euthermia and hibernation but for lipid droplets, which accumulate during lethargy; 3 during hibernation, mitochondria are larger in size with longer cristae, and 4 myonuclei maintain the same amount and distribution of transcripts and transcription factors as in euthermia. Conclusion In this study we demonstrate that skeletal muscle cells of the hibernating edible dormouse maintain their structural and functional integrity in full, even after months in the nest. A twofold explanation for that is envisaged: 1 the maintenance, during hibernation, of low-rate nuclear and mitochondrial activity counterbalancing myofibre wasting, 2 the intensive muscle stimulation (shivering during periodic arousals in the nest, which would mimic physical exercise. These two factors would prevent muscle atrophy usually occurring in mammals after prolonged starvation and/or inactivity as a consequence of prevailing catabolism

  5. Maternal and paternal genomes differentially affect myofibre characteristics and muscle weights of bovine fetuses at midgestation.

    Directory of Open Access Journals (Sweden)

    Ruidong Xiang

    Full Text Available Postnatal myofibre characteristics and muscle mass are largely determined during fetal development and may be significantly affected by epigenetic parent-of-origin effects. However, data on such effects in prenatal muscle development that could help understand unexplained variation in postnatal muscle traits are lacking. In a bovine model we studied effects of distinct maternal and paternal genomes, fetal sex, and non-genetic maternal effects on fetal myofibre characteristics and muscle mass. Data from 73 fetuses (Day153, 54% term of four genetic groups with purebred and reciprocal cross Angus and Brahman genetics were analyzed using general linear models. Parental genomes explained the greatest proportion of variation in myofibre size of Musculus semitendinosus (80-96% and in absolute and relative weights of M. supraspinatus, M. longissimus dorsi, M. quadriceps femoris and M. semimembranosus (82-89% and 56-93%, respectively. Paternal genome in interaction with maternal genome (P<0.05 explained most genetic variation in cross sectional area (CSA of fast myotubes (68%, while maternal genome alone explained most genetic variation in CSA of fast myofibres (93%, P<0.01. Furthermore, maternal genome independently (M. semimembranosus, 88%, P<0.0001 or in combination (M. supraspinatus, 82%; M. longissimus dorsi, 93%; M. quadriceps femoris, 86% with nested maternal weight effect (5-6%, P<0.05, was the predominant source of variation for absolute muscle weights. Effects of paternal genome on muscle mass decreased from thoracic to pelvic limb and accounted for all (M. supraspinatus, 97%, P<0.0001 or most (M. longissimus dorsi, 69%, P<0.0001; M. quadriceps femoris, 54%, P<0.001 genetic variation in relative weights. An interaction between maternal and paternal genomes (P<0.01 and effects of maternal weight (P<0.05 on expression of H19, a master regulator of an imprinted gene network, and negative correlations between H19 expression and fetal muscle mass (P

  6. Oral muscles are progressively affected in Duchenne muscular dystrophy: implications for dysphagia treatment.

    Science.gov (United States)

    van den Engel-Hoek, Lenie; Erasmus, Corrie E; Hendriks, Jan C M; Geurts, Alexander C H; Klein, Willemijn M; Pillen, Sigrid; Sie, Lilian T; de Swart, Bert J M; de Groot, Imelda J M

    2013-05-01

    Dysphagia is reported in advanced stages of Duchenne muscular dystrophy (DMD). The population of DMD is changing due to an increasing survival. We aimed to describe the dysphagia in consecutive stages and to assess the underlying mechanisms of dysphagia in DMD, in order to develop mechanism based recommendations for safe swallowing. In this cross-sectional study, participants were divided into: early and late ambulatory stage (AS, n = 6), early non-ambulatory stage (ENAS, n = 7), and late non-ambulatory stage (LNAS, n = 11). Quantitative oral muscle ultrasound was performed to quantify echo intensity. Swallowing was assessed with a video fluoroscopic swallow study, surface electromyography (sEMG) of the submental muscle group and tongue pressure. Differences in outcome parameters among the three DMD stages were tested with analysis of variance. Oral muscles related to swallowing were progressively affected, starting in the AS with the geniohyoid muscle. Tongue (pseudo) hypertrophy was found in 70 % of patients in the ENAS and LNAS. Oral phase problems and post-swallow residue were observed, mostly in the LNAS with solid food. sEMG and tongue pressure data of swallowing solid food revealed the lowest sEMG amplitude, the longest duration and lowest tongue pressure in the LNAS. In case of swallowing problems in DMD, based on the disturbed mechanisms of swallowing, it is suggested to (1) adjust meals in terms of less solid food, and (2) drink water after meals to clear the oropharyngeal area.

  7. Pyrrolidine Dithiocarbamate (PDTC Attenuates Cancer Cachexia by Affecting Muscle Atrophy and Fat Lipolysis

    Directory of Open Access Journals (Sweden)

    Chunxiao Miao

    2017-12-01

    Full Text Available Cancer cachexia is a kind of whole body metabolic disorder syndrome accompanied with severe wasting of muscle and adipose tissue. NF-κB signaling plays an important role during skeletal muscle atrophy and fat lipolysis. As an inhibitor of NF-κB signaling, Pyrrolidine dithiocarbamate (PDTC was reported to relieve cancer cachexia; however, its mechanism remains largely unknown. In our study, we showed that PDTC attenuated cancer cachexia symptom in C26 tumor bearing mice models in vivo without influencing tumor volume. What’s more, PDTC inhibited muscle atrophy and lipolysis in cells models in vitro induced by TNFα and C26 tumor medium. PDTC suppressed atrophy of myotubes differentiated from C2C12 by reducing MyoD and upregulating MuRF1, and preserving the expression of perilipin as well as blocking the activation of HSL in 3T3-L1 mature adipocytes. Meaningfully, we observed that PDTC also inhibited p38 MAPK signaling besides the NF-κB signaling in cancer cachexia in vitro models. In addition, PDTC also influenced the protein synthesis of skeletal muscle by activating AKT signaling and regulated fat energy metabolism by inhibiting AMPK signaling. Therefore, PDTC primarily influenced different pathways in different tissues. The study not only established a simple and reliable screening drugs model of cancer cachexia in vitro but also provided new theoretical basis for future treatment of cancer cachexia.

  8. Baroreflex and neurovascular responses to skeletal muscle mechanoreflex activation in humans: an exercise in integrative physiology.

    Science.gov (United States)

    Drew, Rachel C

    2017-12-01

    Cardiovascular adjustments to exercise resulting in increased blood pressure (BP) and heart rate (HR) occur in response to activation of several neural mechanisms: the exercise pressor reflex, central command, and the arterial baroreflex. Neural inputs from these feedback and feedforward mechanisms integrate in the cardiovascular control centers in the brain stem and modulate sympathetic and parasympathetic neural outflow, resulting in the increased BP and HR observed during exercise. Another specific consequence of the central neural integration of these inputs during exercise is increased sympathetic neural outflow directed to the kidneys, causing renal vasoconstriction, a key reflex mechanism involved in blood flow redistribution during increased skeletal muscle work. Studies in humans have shown that muscle mechanoreflex activation inhibits cardiac vagal outflow, decreasing the sensitivity of baroreflex control of HR. Metabolite sensitization of muscle mechanoreceptors can lead to reduced sensitivity of baroreflex control of HR, with thromboxane being one of the metabolites involved, via greater inhibition of cardiac vagal outflow without affecting baroreflex control of BP or baroreflex resetting. Muscle mechanoreflex activation appears to play a predominant role in causing renal vasoconstriction, both in isolation and in the presence of local metabolites. Limited investigations in older adults and patients with cardiovascular-related disease have provided some insight into how the influence of muscle mechanoreflex activation on baroreflex function and renal vasoconstriction is altered in these populations. However, future research is warranted to better elucidate the specific effect of muscle mechanoreflex activation on baroreflex and neurovascular responses with aging and cardiovascular-related disease. Copyright © 2017 the American Physiological Society.

  9. Abnormal reflex activation of hamstring muscles in dogs with cranial cruciate ligament rupture.

    Science.gov (United States)

    Hayes, Graham M; Granger, Nicolas; Langley-Hobbs, Sorrel J; Jeffery, Nick D

    2013-06-01

    The mechanisms underlying cranial cruciate ligament rupture (CCLR) in dogs are poorly understood. In this study hamstring muscle reflexes in response to cranial tibial translation were analysed to determine whether these active stabilisers of the stifle joint are differently activated in dogs with CCLR compared to control dogs. In a prospective clinical study reflex muscle activity from the lateral and medial hamstring muscles (biceps femoris and semimembranosus) was recorded using surface electrodes in control dogs (n=21) and dogs with CCLR (n=22). These electromyographic recordings were analysed using an algorithm previously validated in humans. The hamstring reflex was reliably and reproducibly recorded in normal dogs. Both a short latency response (SLR, 17.6±2.1ms) and a medium latency response (MLR, 37.7±2.7ms) could be identified. In dogs with unilateral CCLR, the SLR and MLR were not significantly different between the affected and the unaffected limbs, but the MLR latency of both affected and unaffected limbs in CCLR dogs were significantly prolonged compared to controls. In conclusion, the hamstring reflex can be recorded in dogs and the MLR is prolonged in dogs with CCLR. Since both affected and unaffected limbs exhibit prolonged MLR, it is possible that abnormal hamstring reflex activation is a mechanism by which progressive CCL damage may occur. The methodology allows for further investigation of the relationship between neuromuscular imbalance and CCLR or limitations in functional recovery following surgical intervention. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Muscle Co-activation: Definitions, Mechanisms, and Functions.

    Science.gov (United States)

    Latash, Mark L

    2018-03-28

    The phenomenon of agonist-antagonist muscle co-activation is discussed with respect to its consequences for movement mechanics (such as increasing joint apparent stiffness, facilitating faster movements, and effects on action stability), implication for movement optimization, and involvement of different neurophysiological structures. Effects of co-activation on movement stability are ambiguous and depend on the effector representing a kinematic chain with a fixed origin or free origin. Further, co-activation is discussed within the framework of the equilibrium-point hypothesis and the idea of hierarchical control with spatial referent coordinates. Relations of muscle co-activation to changes in one of the basic commands, the c-command, are discussed and illustrated. A hypothesis is suggested that agonist-antagonist co-activation reflects a deliberate neural control strategy to preserve effector-level control and avoid making it degenerate and facing the necessity to control at the level of signals to individual muscles. This strategy, in particular, allows stabilizing motor actions by co-varied adjustments in spaces of control variables. This hypothesis is able to account for higher levels of co-activation in young healthy persons performing challenging tasks and across various populations with movement impairments.

  11. Evaluating the Relationship Between Muscle Activation and Spine Kinematics Through Wavelet Coherence.

    Science.gov (United States)

    Hay, Dean C; Wachowiak, Mark P; Graham, Ryan B

    2016-10-01

    Advances in time-frequency analysis can provide new insights into the important, yet complex relationship between muscle activation (ie, electromyography [EMG]) and motion during dynamic tasks. We use wavelet coherence to compare a fundamental cyclical movement (lumbar spine flexion and extension) to the surface EMG linear envelope of 2 trunk muscles (lumbar erector spinae and internal oblique). Both muscles cohere to the spine kinematics at the main cyclic frequency, but lumbar erector spinae exhibits significantly greater coherence than internal oblique to kinematics at 0.25, 0.5, and 1.0 Hz. Coherence phase plots of the 2 muscles exhibit different characteristics. The lumbar erector spinae precedes trunk extension at 0.25 Hz, whereas internal oblique is in phase with spine kinematics. These differences may be due to their proposed contrasting functions as a primary spine mover (lumbar erector spinae) versus a spine stabilizer (internal oblique). We believe that this method will be useful in evaluating how a variety of factors (eg, pain, dysfunction, pathology, fatigue) affect the relationship between muscles' motor inputs (ie, activation measured using EMG) and outputs (ie, the resulting joint motion patterns).

  12. Lower Extremity Muscle Activity During a Women's Overhand Lacrosse Shot

    Directory of Open Access Journals (Sweden)

    Millard Brianna M.

    2014-07-01

    Full Text Available The purpose of this study was to describe lower extremity muscle activity during the lacrosse shot. Participants (n=5 females, age 22±2 years, body height 162.6±15.2 cm, body mass 63.7±23.6 kg were free from injury and had at least one year of lacrosse experience. The lead leg was instrumented with electromyography (EMG leads to measure muscle activity of the rectus femoris (RF, biceps femoris (BF, tibialis anterior (TA, and medial gastrocnemius (GA. Participants completed five trials of a warm-up speed shot (Slow and a game speed shot (Fast. Video analysis was used to identify the discrete events defining specific movement phases. Full-wave rectified data were averaged per muscle per phase (Crank Back Minor, Crank Back Major, Stick Acceleration, Stick Deceleration. Average EMG per muscle was analyzed using a 4 (Phase x 2 (Speed ANOVA. BF was greater during Fast vs. Slow for all phases (p0.05. RF and GA were each influenced by the interaction of Phase and Speed (p<0.05 with GA being greater during Fast vs. Slow shots during all phases and RF greater during Crank Back Minor and Major as well as Stick Deceleration (p<0.05 but only tended to be greater during Stick Acceleration (p=0.076 for Fast vs. Slow. The greater muscle activity (BF, RF, GA during Fast vs. Slow shots may have been related to a faster approach speed and/or need to create a stiff lower extremity to allow for faster upper extremity movements.

  13. Trunk muscle activation during golf swing: Baseline and threshold.

    Science.gov (United States)

    Silva, Luís; Marta, Sérgio; Vaz, João; Fernandes, Orlando; Castro, Maria António; Pezarat-Correia, Pedro

    2013-10-01

    There is a lack of studies regarding EMG temporal analysis during dynamic and complex motor tasks, such as golf swing. The aim of this study is to analyze the EMG onset during the golf swing, by comparing two different threshold methods. Method A threshold was determined using the baseline activity recorded between two maximum voluntary contraction (MVC). Method B threshold was calculated using the mean EMG activity for 1000ms before the 500ms prior to the start of the Backswing. Two different clubs were also studied. Three-way repeated measures ANOVA was used to compare methods, muscles and clubs. Two-way mixed Intraclass Correlation Coefficient (ICC) with absolute agreement was used to determine the methods reliability. Club type usage showed no influence in onset detection. Rectus abdominis (RA) showed the higher agreement between methods. Erector spinae (ES), on the other hand, showed a very low agreement, that might be related to postural activity before the swing. External oblique (EO) is the first being activated, at 1295ms prior impact. There is a similar activation time between right and left muscles sides, although the right EO showed better agreement between methods than left side. Therefore, the algorithms usage is task- and muscle-dependent. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Activity of upper limb muscles during human walking.

    Science.gov (United States)

    Kuhtz-Buschbeck, Johann P; Jing, Bo

    2012-04-01

    The EMG activity of upper limb muscles during human gait has rarely been studied previously. It was examined in 20 normal volunteers in four conditions: walking on a treadmill (1) with unrestrained natural arm swing (Normal), (2) while volitionally holding the arms still (Held), (3) with the arms immobilized (Bound), and (4) with the arms swinging in phase with the ipsilateral legs, i.e. opposite-to-normal phasing (Anti-Normal). Normal arm swing involved weak rhythmical lengthening and shortening contractions of arm and shoulder muscles. Phasic muscle activity was needed to keep the unrestricted arms still during walking (Held), indicating a passive component of arm swing. An active component, possibly programmed centrally, existed as well, because some EMG signals persisted when the arms were immobilized during walking (Bound). Anti-Normal gait involved stronger EMG activity than Normal walking and was uneconomical. The present results indicate that normal arm swing has both passive and active components. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Relations between muscle endurance and subjectively reported fatigue, walking capacity, and participation in mildly affected adolescents with cerebral palsy

    NARCIS (Netherlands)

    Eken, Maaike M.; Houdijk, Han; Doorenbosch, Caroline A. M.; Kiezebrink, Francisca E. M.; van Bennekom, Coen A. M.; Harlaar, Jaap; Dallmeijer, Annet J.

    2016-01-01

    To investigate the relation between muscle endurance and subjectively reported fatigue, walking capacity, and participation in mildly affected adolescents with cerebral palsy (CP) and peers with typical development. In this case-control study, knee extensor muscle endurance was estimated from

  16. Relations between muscle endurance and subjectively reported fatigue, walking capacity, and participation in mildly affected adolescents with cerebral palsy

    NARCIS (Netherlands)

    Eken, Maaike M; Houdijk, Han; Doorenbosch, Caroline A M; Kiezebrink, Francisca E.M.; van Bennekom, Coen A.M.; Harlaar, Jaap; Dallmeijer, Annet J.

    2016-01-01

    Aim: To investigate the relation between muscle endurance and subjectively reported fatigue, walking capacity, and participation in mildly affected adolescents with cerebral palsy (CP) and peers with typical development. Method: In this case–control study, knee extensor muscle endurance was

  17. Increased neck muscle activity and impaired balance among females with whiplash-related chronic neck pain

    DEFF Research Database (Denmark)

    Juul-Kristensen, Birgit; Clausen, Brian; Ris Hansen, Inge

    2013-01-01

    To investigate neck muscle activity and postural control in patients with whiplash-associated disorder compared with healthy controls.......To investigate neck muscle activity and postural control in patients with whiplash-associated disorder compared with healthy controls....

  18. Do recreational activities affect coastal biodiversity?

    Science.gov (United States)

    Riera, Rodrigo; Menci, Cristiano; Sanabria-Fernández, José Antonio; Becerro, Mikel A.

    2016-09-01

    Human activities are largely affecting coastal communities worldwide. Recreational perturbations have been overlooked in comparison to other perturbations, yet they are potential threats to marine biodiversity. They affect coastal communities in different ways, underpinning consistent shifts in fish and invertebrates assemblages. Several sites were sampled subjected to varying effects by recreational fishermen (low and high pressure) and scuba divers (low and high) in an overpopulated Atlantic island. Non-consistent differences in ecological, trophic and functional diversity were found in coastal communities, considering both factors (;diving; and ;fishing;). Multivariate analyses only showed significant differences in benthic invertebrates between intensively-dived and non-dived sites. The lack of clear trends may be explained by the depletion of coastal resources in the study area, an extensively-affected island by overfishing.

  19. Does the habitual mastication side impact jaw muscle activity?

    Science.gov (United States)

    Turcio, Karina Helga Leal; Zuim, Paulo Renato Junqueira; Guiotti, Aimée Maria; Dos Santos, Daniela Micheline; Goiato, Marcelo Coelho; Brandini, Daniela Atili

    2016-07-01

    To compare electrical activity in the anterior temporal and masseter muscles on the habitual (HMS) and non-habitual mastication side (NHMS), during mastication and in the mandibular postural position. In addition, the increase in electrical activity during mastication was assessed for the HMS and NHMS, analysing both working (WSM) and non-working side during mastication (NWSM). A total of 28 healthy women (18-32 years) participated in the study. They were submitted to Kazazoglu's test to identify the HMS. Bioresearch 'Bio EMG' software and bipolar surface electrodes were used in the exams. The exams were conducted in the postural position and during the unilateral mastication of raisins, on both the HMS and NHMS. The working and non-working side on HMS and NHMS were assessed separately. The obtained data were then statistically analysed with SPSS 20.0, using the Paired Samples Test at a significance level of 95%. The differences in the average EMG values between HMS and NHMS were not statistically significant in the postural position (Temporal p=0.2; Masseter p=0.4) or during mastication (Temporal WSM p=0.8; Temporal NWSM p=0.8; Masseter WSM p=0.6; Masseter NWSM p=0.2). Differences in the increase in electrical activity between the masseter and temporal muscles occurred on the working side, on the HMS and NHMS (p=0.0), but not on the non-working side: HMS (p=0.9) and NHMS (p=0.3). The increase in electrical activity was about 35% higher in the masseter than in the temporal muscle. Mastication side preference does not significantly impact electrical activity of the anterior temporal and masseter muscles during mastication or in postural position. Copyright © 2016. Published by Elsevier Ltd.

  20. Contraction intensity and feeding affect collagen and myofibrillar protein synthesis rates differently in human skeletal muscle

    DEFF Research Database (Denmark)

    Holm, Lars; Hall, Gerrit van; Rose, Adam John

    2010-01-01

    Exercise stimulates muscle protein fractional synthesis rate (FSR) but the importance of contractile intensity and whether it interplays with feeding is not understood. This was investigated following two distinct resistance exercise (RE) contraction intensities using an intra-subject design...... to feeding. Further, although functionally linked, the contractile and the supportive matrix structures upregulate their protein synthesis rate quite differently in response to feeding and contractile-activity and -intensity....

  1. Perceived loading and muscle activity during hip strengthening exercises

    DEFF Research Database (Denmark)

    Brandt, Mikkel; Jakobsen, Markus Due; Thorborg, Kristian

    2013-01-01

    hip muscle activity during hip abduction and hip adduction exercises using elastic resistance and isotonic machines, using electromyography (EMG). METHODS: EMG activity was recorded from 11 muscles at the hip, thigh and trunk during hip adduction and hip abduction exercises in 16 untrained women......, using elastic resistance and isotonic exercise machines. These recordings were normalized to maximal voluntary contraction (MVC) EMG (nEMG). The exercises were performed at four levels of perceived loading reported using the Borg CR10: light (Borg ≤2), moderate (Borg >2-... (r =0.62±0.54). The abduction exercise performed with elastic resistance displayed significantly higher gluteus medius nEMG recruitment than the in machine exercise. CONCLUSIONS: The results of this study show that the Borg CR10 scale can be a useful tool for estimating intensity levels during...

  2. Effects of flight speed upon muscle activity in hummingbirds.

    Science.gov (United States)

    Tobalske, Bret W; Biewener, Andrew A; Warrick, Douglas R; Hedrick, Tyson L; Powers, Donald R

    2010-07-15

    Hummingbirds have the smallest body size and highest wingbeat frequencies of all flying vertebrates, so they represent one endpoint for evaluating the effects of body size on sustained muscle function and flight performance. Other bird species vary neuromuscular recruitment and contractile behavior to accomplish flight over a wide range of speeds, typically exhibiting a U-shaped curve with maxima at the slowest and fastest flight speeds. To test whether the high wingbeat frequencies and aerodynamically active upstroke of hummingbirds lead to different patterns, we flew rufous hummingbirds (Selasphorus rufus, 3 g body mass, 42 Hz wingbeat frequency) in a variable-speed wind tunnel (0-10 m s(-1)). We measured neuromuscular activity in the pectoralis (PECT) and supracoracoideus (SUPRA) muscles using electromyography (EMG, N=4 birds), and we measured changes in PECT length using sonomicrometry (N=1). Differing markedly from the pattern in other birds, PECT deactivation occurred before the start of downstroke and the SUPRA was deactivated before the start of upstroke. The relative amplitude of EMG signal in the PECT and SUPRA varied according to a U-shaped curve with flight speed; additionally, the onset of SUPRA activity became relatively later in the wingbeat at intermediate flight speeds (4 and 6 m s(-1)). Variation in the relative amplitude of EMG was comparable with that observed in other birds but the timing of muscle activity was different. These data indicate the high wingbeat frequency of hummingbirds limits the time available for flight muscle relaxation before the next half stroke of a wingbeat. Unlike in a previous study that reported single-twitch EMG signals in the PECT of hovering hummingbirds, across all flight speeds we observed 2.9+/-0.8 spikes per contraction in the PECT and 3.8+/-0.8 spikes per contraction in the SUPRA. Muscle strain in the PECT was 10.8+/-0.5%, the lowest reported for a flying bird, and average strain rate was 7.4+/-0.2 muscle

  3. Length and activation dependent variations in muscle shear wave speed

    International Nuclear Information System (INIS)

    Chernak, L A; DeWall, R J; Lee, K S; Thelen, D G

    2013-01-01

    Muscle stiffness is known to vary as a result of a variety of disease states, yet current clinical methods for quantifying muscle stiffness have limitations including cost and availability. We investigated the capability of shear wave elastography (SWE) to measure variations in gastrocnemius shear wave speed induced via active contraction and passive stretch. Ten healthy young adults were tested. Shear wave speeds were measured using a SWE transducer positioned over the medial gastrocnemius at ankle angles ranging from maximum dorsiflexion to maximum plantarflexion. Shear wave speeds were also measured during voluntary plantarflexor contractions at a fixed ankle angle. Average shear wave speed increased significantly from 2.6 to 5.6 m s –1 with passive dorsiflexion and the knee in an extended posture, but did not vary with dorsiflexion when the gastrocnemius was shortened in a flexed knee posture. During active contractions, shear wave speed monotonically varied with the net ankle moment generated, reaching 8.3 m s –1 in the maximally contracted condition. There was a linear correlation between shear wave speed and net ankle moment in both the active and passive conditions; however, the slope of this linear relationship was significantly steeper for the data collected during passive loading conditions. The results show that SWE is a promising approach for quantitatively assessing changes in mechanical muscle loading. However, the differential effect of active and passive loading on shear wave speed makes it important to carefully consider the relevant loading conditions in which to use SWE to characterize in vivo muscle properties. (paper)

  4. Reorganized trunk muscle activity during multidirectional floor perturbations after experimental low back pain

    DEFF Research Database (Denmark)

    Larsen, Lars Henrik; Hirata, Rogerio Pessoto; Graven-Nielsen, Thomas

    2016-01-01

    Low back pain changes the trunk muscle activity after external perturbations but the relationship between pain intensities and distributions and their effect on the trunk muscle activity remains unclear. The effects of unilateral and bilateral experimental low back pain on trunk muscle activity w...

  5. Age affects the contraction-induced mitochondrial redox response in skeletal muscle

    Directory of Open Access Journals (Sweden)

    Dennis R Claflin

    2015-02-01

    Full Text Available Compromised mitochondrial respiratory function is associated with advancing age. Damage due to an increase in reactive oxygen species (ROS with age is thought to contribute to the mitochondrial deficits. The coenzyme nicotinamide adenine dinucleotide in its reduced (NADH and oxidized (NAD+ forms plays an essential role in the cyclic sequence of reactions that result in the regeneration of ATP by oxidative phosphorylation in mitochondria. Monitoring mitochondrial NADH/NAD+ redox status during recovery from an episode of high energy demand thus allows assessment of mitochondrial function. NADH fluoresces when excited with ultraviolet light in the UV-A band and NAD+ does not, allowing NADH/NAD+ to be monitored in real time using fluorescence microscopy. Our goal was to assess mitochondrial function by monitoring the NADH fluorescence response following a brief period of high energy demand in muscle from adult and old wild-type (WT mice. This was accomplished by isolating whole lumbrical muscles from the hind paws of 7- and 28-month-old WT mice and making simultaneous measurements of force and NADH fluorescence responses during and after a 5 s maximum isometric contraction. All muscles exhibited fluorescence oscillations that were qualitatively similar and consisted of a brief transient increase followed by a longer transient period of reduced fluorescence and, finally, an increase that included an overshoot before recovering to resting level. Compared with the adult WT mice, muscles from the 28 mo WT mice exhibited a delayed peak during the first fluorescence transient and an attenuated recovery following the second transient. These findings indicate an impaired mitochondrial capacity to maintain NADH/NAD+ redox homeostasis during contractile activity in skeletal muscles of old mice.

  6. How Hinge Positioning in Cross-Country Ski Bindings Affect Exercise Efficiency, Cycle Characteristics and Muscle Coordination during Submaximal Roller Skiing.

    Directory of Open Access Journals (Sweden)

    Conor M Bolger

    Full Text Available The purposes of the current study were to 1 test if the hinge position in the binding of skating skis has an effect on gross efficiency or cycle characteristics and 2 investigate whether hinge positioning affects synergistic components of the muscle activation in six lower leg muscles. Eleven male skiers performed three 4-min sessions at moderate intensity while cross-country ski-skating and using a klapskate binding. Three different positions were tested for the binding's hinge, ranging from the front of the first distal phalange to the metatarsal-phalangeal joint. Gross efficiency and cycle characteristics were determined, and the electromyographic (EMG signals of six lower limb muscles were collected. EMG signals were wavelet transformed, normalized, joined into a multi-dimensional vector, and submitted to a principle component analysis (PCA. Our results did not reveal any changes to gross efficiency or cycle characteristics when altering the hinge position. However, our EMG analysis found small but significant effects of hinge positioning on muscle coordinative patterns (P < 0.05. The changed patterns in muscle activation are in alignment with previously described mechanisms that explain the effects of hinge positioning in speed-skating klapskates. Finally, the within-subject results of the EMG analysis suggested that in addition to the between-subject effects, further forms of muscle coordination patterns appear to be employed by some, but not all participants.

  7. Gain-of-function screen for genes that affect Drosophila muscle pattern formation.

    Directory of Open Access Journals (Sweden)

    Nicole Staudt

    2005-10-01

    Full Text Available This article reports the production of an EP-element insertion library with more than 3,700 unique target sites within the Drosophila melanogaster genome and its use to systematically identify genes that affect embryonic muscle pattern formation. We designed a UAS/GAL4 system to drive GAL4-responsive expression of the EP-targeted genes in developing apodeme cells to which migrating myotubes finally attach and in an intrasegmental pattern of cells that serve myotubes as a migration substrate on their way towards the apodemes. The results suggest that misexpression of more than 1.5% of the Drosophila genes can interfere with proper myotube guidance and/or muscle attachment. In addition to factors already known to participate in these processes, we identified a number of enzymes that participate in the synthesis or modification of protein carbohydrate side chains and in Ubiquitin modifications and/or the Ubiquitin-dependent degradation of proteins, suggesting that these processes are relevant for muscle pattern formation.

  8. The Assessment Methods of Laryngeal Muscle Activity in Muscle Tension Dysphonia: A Review

    Science.gov (United States)

    Khoddami, Seyyedeh Maryam; Nakhostin Ansari, Noureddin; Izadi, Farzad; Talebian Moghadam, Saeed

    2013-01-01

    The purpose of this paper is to review the methods used for the assessment of muscular tension dysphonia (MTD). The MTD is a functional voice disorder associated with abnormal laryngeal muscle activity. Various assessment methods are available in the literature to evaluate the laryngeal hyperfunction. The case history, laryngoscopy, and palpation are clinical methods for the assessment of patients with MTD. Radiography and surface electromyography (EMG) are objective methods to provide physiological information about MTD. Recent studies show that surface EMG can be an effective tool for assessing muscular tension in MTD. PMID:24319372

  9. Factors affecting residual exotropia after two muscle surgery for intermittent exotropia

    Directory of Open Access Journals (Sweden)

    Shailja Tibrewal

    2017-07-01

    Full Text Available AIM: To study the factors affecting residual exotropia (>10 PD at 4-6wk postoperative visit following two rectus muscle surgery for intermittent exotropia [bilateral lateral rectus (LR recession or unilateral recess resect procedure]. METHODS: A retrospective chart review of patients with intermittent exotropia ≤50 PD who underwent two rectus muscle surgery in between Jan. 2011 to Dec. 2013 was performed. Possible factors were compared between patients with residual exotropia (>10 PD and successful outcome (within 10 PD of orthotropia at the 4-6wk postoperative visit. Effect/dose ratio was calculated by dividing the effect of surgery by the total amount (mm of muscle surgery done. RESULTS: One hundred and fifty-seven patients with mean age of 14y (range 3-53y were included. Twenty-seven patients (17.2% had residual exotropia at 4-6wk postoperative follow up. Age at surgery (P=0.009 and preoperative deviation for distance (P≤0.001 and near (P=0.001 were identified as important predictors of unsuccessful outcome. The occurrence of residual exotropia was not affected by amblyopia, anisometropia, lateral incomitance, pattern deviation, vertical deviation, type of exotropia or type of surgery done (recess-resect or bilateral LR recession. The effect/dose ratio was more in deviations >40 PD in the both recess-resect and bilateral LR recession type of surgery. The effect/dose ratio was less in patients with residual exotropia as compared to the successful outcome group (1.36 PD/mm vs 2.05 PD/mm in the bilateral LR recession surgery and 1.93 PD/mm vs 2.63 PD/mm in the unilateral recess-resect surgery. CONCLUSION: Residual exotropia is seen in 17% of patients after two muscle surgery for intermittent exotropia. Patients with older age and larger preoperative deviation have greater chances of developing failure of two muscle strabismus surgery for intermittent exotropia.

  10. Influence of glutamate-evoked pain and sustained elevated muscle activity on blood oxygenation in the human masseter muscle.

    Science.gov (United States)

    Suzuki, Shunichi; Arima, Taro; Kitagawa, Yoshimasa; Svensson, Peter; Castrillon, Eduardo

    2017-12-01

    This study aimed to investigate the effect of glutamate-evoked masseter muscle pain on intramuscular oxygenation during rest and sustained elevated muscle activity (SEMA). Seventeen healthy individuals participated in two sessions in which they were injected with glutamate and saline in random order. Each session was divided into three, 10-min periods. During the first (period 1) and the last (period 3) 10-min periods, participants performed five intercalated 1-min bouts of masseter SEMA with 1-min periods of 'rest'. At onset of the second 10-min period, glutamate (0.5 ml, 1 M; Ajinomoto, Tokyo, Japan) or isotonic saline (0.5 ml; 0.9%) was injected into the masseter muscle and the participants kept the muscle relaxed in a resting position for 10 min (period 2). The hemodynamic characteristics of the masseter muscle were recorded simultaneously during the experiment by a laser blood-oxygenation monitor. The results demonstrated that glutamate injections caused significant levels of self-reported pain in the masseter muscle; however, this nociceptive input did not have robust effects on intramuscular oxygenation during rest or SEMA tasks. Interestingly, these findings suggest an uncoupling between acute nociceptive activity and hemodynamic parameters in both resting and low-level active jaw muscles. Further studies are needed to explore the pathophysiological significance of blood-flow changes for persistent jaw-muscle pain conditions. © 2017 Eur J Oral Sci.

  11. Development and Validation of the Total HUman Model for Safety (THUMS) Version 5 Containing Multiple 1D Muscles for Estimating Occupant Motions with Muscle Activation During Side Impacts.

    Science.gov (United States)

    Iwamoto, Masami; Nakahira, Yuko

    2015-11-01

    Accurate prediction of occupant head kinematics is critical for better understanding of head/face injury mechanisms in side impacts, especially far-side occupants. In light of the fact that researchers have demonstrated that muscle activations, especially in neck muscles, can affect occupant head kinematics, a human body finite element (FE) model that considers muscle activation is useful for predicting occupant head kinematics in real-world automotive accidents. In this study, we developed a human body FE model called the THUMS (Total HUman Model for Safety) Version 5 that contains 262 one-dimensional (1D) Hill-type muscle models over the entire body. The THUMS was validated against 36 series of PMHS (Post Mortem Human Surrogate) and volunteer test data in this study, and 16 series of PMHS and volunteer test data on side impacts are presented. Validation results with force-time curves were also evaluated quantitatively using the CORA (CORrelation and Analysis) method. The validation results suggest that the THUMS has good biofidelity in the responses of the regional or full body for side impacts, but relatively poor biofidelity in its local level of responses such as brain displacements. Occupant kinematics predicted by the THUMS with a muscle controller using 22 PID (Proportional-Integral- Derivative) controllers were compared with those of volunteer test data on low-speed lateral impacts. The THUMS with muscle controller reproduced the head kinematics of the volunteer data more accurately than that without muscle activation, although further studies on validation of torso kinematics are needed for more accurate predictions of occupant head kinematics.

  12. Lipid accumulation, oxidative stress and immune-related molecules affected by tributyltin exposure in muscle tissues of rare minnow (Gobiocypris rarus).

    Science.gov (United States)

    Zhang, Jiliang; Zhang, Chunnuan; Ma, Dongdong; Liu, Min; Huang, Shuntao

    2017-12-01

    Tributyltin (TBT) is reported to induce adipogenesis in fish, which might affect nutritional qualities and health status. Muscle tissues account for the majority of body mass, and have been described as a major site of fat deposition and an immunologically active organ. Therefore, the present study aims to evaluate whether chronic exposures of TBT, at environmental concentrations of 1, 10 and 100 ng/L, affects lipid accumulation, oxidative stress and immune status in muscle tissues of rare minnow (Gobiocypris rarus). After 60 d of exposure, TBT increased contents of total lipid, total cholesterol, triglyceride and fatty acids in muscle tissues. Interestingly, TBT exposure disrupted fatty acid composition and increased contents of unsaturated fatty acids (such as eicosapentaenoic acid and docosahexaenoic acid) in muscle tissues, which might be a response to preserve membrane functions from TBT exposure. Meanwhile, the concentrations of hepatic fatty acid desaturase 2 (Δ6-desaturase) and stearoyl-CoA desaturase (Δ9-desaturase) were increased after TBT exposure, which might contribute the increase of unsaturated fatty acids. Furthermore, TBT increased muscle lipid peroxidation products, antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase), and the expression of immune-related molecules (tumor necrosis factor alpha, interleukin 1 beta and nuclear factor kappa B) in muscle tissues. The disruption of TBT on the lipid accumulation, oxidative stress and immune-toxic effects in muscle tissues of fish might reduce nutritional qualities, and affect growth and health status, which might pose a constant and serious threat to fish and result in economic loss in aquaculture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Activation of estrogen response elements is mediated both via estrogen and muscle contractions in rat skeletal muscle myotubes

    DEFF Research Database (Denmark)

    Wiik, A.; Hellsten, Ylva; Berthelson, P.

    2009-01-01

    is ER independent. The muscle contraction-induced transactivation of ERE and increase in ERbeta mRNA were instead found to be MAP kinase (MAPK) dependent. This study demonstrates for the first time that muscle contractions have a similar functional effect as estrogen in skeletal muscle myotubes, causing......The aim of the present study was to investigate the activation of estrogen response elements (EREs) by estrogen and muscle contractions in rat myotubes in culture and to assess whether the activation is dependent on the estrogen receptors (ERs). In addition, the effect of estrogen and contraction...... on the mRNA levels of ERalpha and ERbeta was studied to determine the functional consequence of the transactivation. Myoblasts were isolated from rat skeletal muscle and transfected with a vector consisting of sequences of EREs coupled to the gene for luciferase. The transfected myoblasts were...

  14. Sedative and muscle relaxant activities of diterpenoids from Phlomidoschema parviflorum

    Directory of Open Access Journals (Sweden)

    Abdur Rauf

    Full Text Available Abstract Phlomidoschema parviflorum (Benth. Vved. (Basionym: Stachys parviflora Benth. Lamiaceae, have significance medicinal importance as it is used in number of health disorders including diarrhea, fever, sore mouth and throat, internal bleeding, weaknesses of the liver and heart genital tumors, sclerosis of the spleen, inflammatory tumors and cancerous ulcers. The present contribution deals with the sedative and muscle relaxant like effects of diterpenoids trivially named stachysrosane and stachysrosane, isolated from the ethyl acetate soluble fraction of P. parviflorum. Both compounds (at 5, 10 and 15 mg/kg, i.p were assessed for their in vivo sedative and muscle relaxant activity in open field and inclined plane test, respectively. The geometries of both compounds were optimized with density functional theory. The molecular docking of both compounds were performed with receptor gamma aminobutyric acid. Both compounds showed marked activity in a dose dependent manner. The docking studies showed that both compounds interact strongly with important residues in receptor gamma aminobutyric acid. The reported data demonstrate that both compounds exhibited significant sedative and muscle relaxant-like effects in animal models, which opens a door for novel therapeutic applications.

  15. Trapezius muscle activity increases during near work activity regardless of accommodation/vergence demand level.

    Science.gov (United States)

    Richter, H O; Zetterberg, C; Forsman, M

    2015-07-01

    To investigate if trapezius muscle activity increases over time during visually demanding near work. The vision task consisted of sustained focusing on a contrast-varying black and white Gabor grating. Sixty-six participants with a median age of 38 (range 19-47) fixated the grating from a distance of 65 cm (1.5 D) during four counterbalanced 7-min periods: binocularly through -3.5 D lenses, and monocularly through -3.5 D, 0 D and +3.5 D. Accommodation, heart rate variability and trapezius muscle activity were recorded in parallel. General estimating equation analyses showed that trapezius muscle activity increased significantly over time in all four lens conditions. A concurrent effect of accommodation response on trapezius muscle activity was observed with the minus lenses irrespective of whether incongruence between accommodation and convergence was present or not. Trapezius muscle activity increased significantly over time during the near work task. The increase in muscle activity over time may be caused by an increased need of mental effort and visual attention to maintain performance during the visual tasks to counteract mental fatigue.

  16. The Evaluation of Bioelectrical Activity of Pelvic Floor Muscles Depending on Probe Location: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Tomasz Halski

    2013-01-01

    Full Text Available Objectives. The main objective was to determine how the depth of probe placement affects functional and resting bioelectrical activity of the PFM and whether the recorded signal might be dependent on the direction in which the probe is rotated. Participants. The study comprised of healthy, nulliparous women between the ages of 21 and 25. Outcome Measures. Bioelectric activity of the PFM was recorded from four locations of the vagina by surface EMG and vaginal probe. Results. There were no statistically significant differences between the results during functional sEMG activity. During resting sEMG activity, the highest bioelectrical activity of the PFM was observed in the L1 and the lowest in the L4 and a statistically significant difference between the highest and the lowest results of resting sEMG activity was observed (P=0.0043. Conclusion. Different electrodes placement during functional contraction of PFM does not affect the obtained results in sEMG evaluation. In order to diagnose the highest resting activity of PFM the recording plates should be placed toward the anterior vaginal wall and distally from the introitus. However, all of the PFM have similar bioelectrical activity and it seems that these muscles could be treated as a single muscle.

  17. Suboptimal Muscle Synergy Activation Patterns Generalize their Motor Function across Postures.

    Science.gov (United States)

    Sohn, M Hongchul; Ting, Lena H

    2016-01-01

    We used a musculoskeletal model to investigate the possible biomechanical and neural bases of using consistent muscle synergy patterns to produce functional motor outputs across different biomechanical conditions, which we define as generalizability. Experimental studies in cats demonstrate that the same muscle synergies are used during reactive postural responses at widely varying configurations, producing similarly-oriented endpoint force vectors with respect to the limb axis. However, whether generalizability across postures arises due to similar biomechanical properties or to neural selection of a particular muscle activation pattern has not been explicitly tested. Here, we used a detailed cat hindlimb model to explore the set of feasible muscle activation patterns that produce experimental synergy force vectors at a target posture, and tested their generalizability by applying them to different test postures. We used three methods to select candidate muscle activation patterns: (1) randomly-selected feasible muscle activation patterns, (2) optimal muscle activation patterns minimizing muscle effort at a given posture, and (3) generalizable muscle activation patterns that explicitly minimized deviations from experimentally-identified synergy force vectors across all postures. Generalizability was measured by the deviation between the simulated force direction of the candidate muscle activation pattern and the experimental synergy force vectors at the test postures. Force angle deviations were the greatest for the randomly selected feasible muscle activation patterns (e.g., >100°), intermediate for effort-wise optimal muscle activation patterns (e.g., ~20°), and smallest for generalizable muscle activation patterns (e.g., synergy force vector was reduced by ~45% when generalizability requirements were imposed. Muscles recruited in the generalizable muscle activation patterns had less sensitive torque-producing characteristics to changes in postures. We

  18. A Human Pluripotent Stem Cell Model of Facioscapulohumeral Muscular Dystrophy-Affected Skeletal Muscles.

    Science.gov (United States)

    Caron, Leslie; Kher, Devaki; Lee, Kian Leong; McKernan, Robert; Dumevska, Biljana; Hidalgo, Alejandro; Li, Jia; Yang, Henry; Main, Heather; Ferri, Giulia; Petek, Lisa M; Poellinger, Lorenz; Miller, Daniel G; Gabellini, Davide; Schmidt, Uli

    2016-09-01

    : Facioscapulohumeral muscular dystrophy (FSHD) represents a major unmet clinical need arising from the progressive weakness and atrophy of skeletal muscles. The dearth of adequate experimental models has severely hampered our understanding of the disease. To date, no treatment is available for FSHD. Human embryonic stem cells (hESCs) potentially represent a renewable source of skeletal muscle cells (SkMCs) and provide an alternative to invasive patient biopsies. We developed a scalable monolayer system to differentiate hESCs into mature SkMCs within 26 days, without cell sorting or genetic manipulation. Here we show that SkMCs derived from FSHD1-affected hESC lines exclusively express the FSHD pathogenic marker double homeobox 4 and exhibit some of the defects reported in FSHD. FSHD1 myotubes are thinner when compared with unaffected and Becker muscular dystrophy myotubes, and differentially regulate genes involved in cell cycle control, oxidative stress response, and cell adhesion. This cellular model will be a powerful tool for studying FSHD and will ultimately assist in the development of effective treatments for muscular dystrophies. This work describes an efficient and highly scalable monolayer system to differentiate human pluripotent stem cells (hPSCs) into skeletal muscle cells (SkMCs) and demonstrates disease-specific phenotypes in SkMCs derived from both embryonic and induced hPSCs affected with facioscapulohumeral muscular dystrophy. This study represents the first human stem cell-based cellular model for a muscular dystrophy that is suitable for high-throughput screening and drug development. ©AlphaMed Press.

  19. Model identification of stomatognathic muscle system activity during mastication

    Science.gov (United States)

    Kijak, Edward; Margielewicz, Jerzy; Lietz-Kijak, Danuta; Wilemska-Kucharzewska, Katarzyna; Kucharzewski, Marek; Śliwiński, Zbigniew

    2017-01-01

    The present study aimed to determine the numeric projection of the function of the mandible and muscle system during mastication. An experimental study was conducted on a healthy 47 year-old subject. On clinical examination no functional disorders were observed. To evaluate the activity of mastication during muscle functioning, bread cubes and hazelnuts were selected (2 cm2 and 1.2/1.3 cm in diameter, respectively) for condyloid processing. An assessment of the activity of mastication during muscle functioning was determined on the basis of numeric calculations conducted with a novel software programme, Kinematics 3D, designed specifically for this study. The efficacy of the model was verified by ensuring the experimentally recorded trajectories were concordant with those calculated numerically. Experimental measurements of the characteristic points of the mandible trajectory were recorded six times. Using the configuration coordinates that were calculated, the dominant componential harmonics of the amplitude-frequency spectrum were identified. The average value of the dominant frequency during mastication of the bread cubes was ~1.16±0.06 Hz, whereas in the case of the hazelnut, this value was nearly two-fold higher at 1.84±0.07 Hz. The most asymmetrical action during mastication was demonstrated to be carried out by the lateral pterygoid muscles, provided that their functioning was not influenced by food consistency. The consistency of the food products had a decisive impact on the frequency of mastication and the number of cycles necessary to grind the food. Model tests on the function of the masticatory organ serve as effective tools since they provide qualitative and quantitative novel information on the functioning of the human masticatory organ. PMID:28123482

  20. On the origin of muscle synergies: invariant balance in the co-activation of agonist and antagonist muscle pairs

    Directory of Open Access Journals (Sweden)

    Hiroaki eHirai

    2015-11-01

    Full Text Available Investigation of neural representation of movement planning has attracted the attention of neuroscientists, as it may reveal the sensorimotor transformation essential to motor control. The analysis of muscle synergies based on the activity of agonist-antagonist (AA muscle pairs may provide insight into such transformations, especially for a reference frame in the muscle space. In this study, we examined the AA concept using the following explanatory variables: the AA ratio, which is related to the equilibrium-joint angle, and the AA sum, which is associated with joint stiffness. We formulated muscle synergies as a function of AA sums, positing that muscle synergies are composite units of mechanical impedance. The AA concept can be regarded as another form of the equilibrium-point (EP hypothesis, and it can be extended to the concept of EP-based synergies. We introduce here a novel tool for analyzing the neurological and motor functions underlying human movements and review some initial insights from our results about the relationships between muscle synergies, endpoint stiffness, and virtual trajectories (time series of EP. Our results suggest that (1 muscle synergies reflect an invariant balance in the co-activation of AA muscle pairs; (2 each synergy represents the basis for the radial, tangential, and null movements of the virtual trajectory in the polar coordinates centered on the specific joint at the base of the body; and (3 the alteration of muscle synergies (for example, due to spasticity or rigidity following neurological injury results in significant distortion of endpoint stiffness and concomitant virtual trajectories. These results indicate that muscle synergies (i.e., the balance of muscle mechanical impedance are essential for motor control.

  1. On the Origin of Muscle Synergies: Invariant Balance in the Co-activation of Agonist and Antagonist Muscle Pairs.

    Science.gov (United States)

    Hirai, Hiroaki; Miyazaki, Fumio; Naritomi, Hiroaki; Koba, Keitaro; Oku, Takanori; Uno, Kanna; Uemura, Mitsunori; Nishi, Tomoki; Kageyama, Masayuki; Krebs, Hermano Igo

    2015-01-01

    Investigation of neural representation of movement planning has attracted the attention of neuroscientists, as it may reveal the sensorimotor transformation essential to motor control. The analysis of muscle synergies based on the activity of agonist-antagonist (AA) muscle pairs may provide insight into such transformations, especially for a reference frame in the muscle space. In this study, we examined the AA concept using the following explanatory variables: the AA ratio, which is related to the equilibrium-joint angle, and the AA sum, which is associated with joint stiffness. We formulated muscle synergies as a function of AA sums, positing that muscle synergies are composite units of mechanical impedance. The AA concept can be regarded as another form of the equilibrium-point (EP) hypothesis, and it can be extended to the concept of EP-based synergies. We introduce, here, a novel tool for analyzing the neurological and motor functions underlying human movements and review some initial insights from our results about the relationships between muscle synergies, endpoint stiffness, and virtual trajectories (time series of EP). Our results suggest that (1) muscle synergies reflect an invariant balance in the co-activation of AA muscle pairs; (2) each synergy represents the basis for the radial, tangential, and null movements of the virtual trajectory in the polar coordinates centered on the specific joint at the base of the body; and (3) the alteration of muscle synergies (for example, due to spasticity or rigidity following neurological injury) results in significant distortion of endpoint stiffness and concomitant virtual trajectories. These results indicate that muscle synergies (i.e., the balance of muscle mechanical impedance) are essential for motor control.

  2. Whole body and muscle energy metabolism in preruminant calves: effects of nutrient synchrony and physical activity

    NARCIS (Netherlands)

    Borne, van den J.J.G.C.; Hocquette, J.F.; Verstegen, M.W.A.; Gerrits, W.J.J.

    2007-01-01

    The effects of asynchronous availability of amino acids and glucose on muscle composition and enzyme activities in skeletal muscle were studied in preruminant calves. It was hypothesized that decreased oxidative enzyme activities in muscle would explain a decreased whole body heat production with

  3. Iron Content Affects Lipogenic Gene Expression in the Muscle of Nelore Beef Cattle.

    Directory of Open Access Journals (Sweden)

    Wellison Jarles da Silva Diniz

    Full Text Available Iron (Fe is an essential mineral for metabolism and plays a central role in a range of biochemical processes. Therefore, this study aimed to identify differentially expressed (DE genes and metabolic pathways in Longissimus dorsi (LD muscle from cattle with divergent iron content, as well as to investigate the likely role of these DE genes in biological processes underlying beef quality parameters. Samples for RNA extraction for sequencing and iron, copper, manganese, and zinc determination were collected from LD muscles at slaughter. Eight Nelore steers, with extreme genomic estimated breeding values for iron content (Fe-GEBV, were selected from a reference population of 373 animals. From the 49 annotated DE genes (FDR<0.05 found between the two groups, 18 were up-regulated and 31 down-regulated for the animals in the low Fe-GEBV group. The functional enrichment analyses identified several biological processes, such as lipid transport and metabolism, and cell growth. Lipid metabolism was the main pathway observed in the analysis of metabolic and canonical signaling pathways for the genes identified as DE, including the genes FASN, FABP4, and THRSP, which are functional candidates for beef quality, suggesting reduced lipogenic activities with lower iron content. Our results indicate metabolic pathways that are partially influenced by iron, contributing to a better understanding of its participation in skeletal muscle physiology.

  4. The hypobaric hypoxia affects the oxidant balance in skeletal muscle regeneration of women

    Directory of Open Access Journals (Sweden)

    Rosa Mancinelli

    2016-07-01

    Full Text Available Aim: The aim of this study was to determine whether a 14-day trekking expeditions, in high altitude hypoxic environment, triggers redox disturbance at the level of satellite cells (adult stem cells in young women.Methods: We collected muscle biopsies from Vastus Lateralis muscle for both single fiber analysis and satellite cells isolation. The samples collected before (PRE-Hypoxia and after (POST-Hypoxia the trekking in the Himalayas were compared. Satellite cells were investigated for oxidative stress (oxidant production, antioxidant enzyme activity and lipid damage, mitochondrial potential variation, gene profile of HIF and myogenic transcription factors (Pax7, MyoD, myogenin and miRNA expression (miR-1, miR-133, miR-206.Results: The nuclear domain analysis showed a significant fusion and consequent reduction of the Pax7+ satellite cells in the single mature fibers. The POST-Hypoxia myoblasts obtained by two out of six volunteers showed high superoxide anion production and lipid peroxidation along with impaired dismutase and catalase and mitochondrial potential. The transcription profile and miRNA expression were different for oxidized and non oxidized cells.Conclusions: The present study supports the phenomenon of hypobaric-hypoxia-induced oxidative stress and its role in the impairment of the regenerative capacity of satellite cells derived from the Vastus Lateralis muscle of young adult female subjects.

  5. AMPK Activation Affects Glutamate Metabolism in Astrocytes

    DEFF Research Database (Denmark)

    Voss, Caroline Marie; Pajęcka, Kamilla; Stridh, Malin H

    2015-01-01

    acid (TCA) cycle was studied using high-performance liquid chromatography analysis supplemented with gas chromatography-mass spectrometry technology. It was found that AMPK activation had profound effects on the pathways involved in glutamate metabolism since the entrance of the glutamate carbon...... on glutamate metabolism in astrocytes was studied using primary cultures of these cells from mouse cerebral cortex during incubation in media containing 2.5 mM glucose and 100 µM [U-(13)C]glutamate. The metabolism of glutamate including a detailed analysis of its metabolic pathways involving the tricarboxylic...... skeleton into the TCA cycle was reduced. On the other hand, glutamate uptake into the astrocytes as well as its conversion to glutamine catalyzed by glutamine synthetase was not affected by AMPK activation. Interestingly, synthesis and release of citrate, which are hallmarks of astrocytic function, were...

  6. Initiating running barefoot: Effects on muscle activation and impact accelerations in habitually rearfoot shod runners.

    Science.gov (United States)

    Lucas-Cuevas, Angel Gabriel; Priego Quesada, José Ignacio; Giménez, José Vicente; Aparicio, Inma; Jimenez-Perez, Irene; Pérez-Soriano, Pedro

    2016-11-01

    Runners tend to shift from a rearfoot to a forefoot strike pattern when running barefoot. However, it is unclear how the first attempts at running barefoot affect habitually rearfoot shod runners. Due to the inconsistency of their recently adopted barefoot technique, a number of new barefoot-related running injuries are emerging among novice barefoot runners. The aim of this study was therefore to analyse the influence of three running conditions (natural barefoot [BF], barefoot with a forced rearfoot strike [BRS], and shod [SH]) on muscle activity and impact accelerations in habitually rearfoot shod runners. Twenty-two participants ran at 60% of their maximal aerobic speed while foot strike, tibial and head impact accelerations, and tibialis anterior (TA), peroneus longus (PL), gastrocnemius medialis (GM) and gastrocnemius lateralis (GL) muscle activity were registered. Only 68% of the runners adopted a non-rearfoot strike pattern during BF. Running BF led to a reduction of TA activity as well as to an increase of GL and GM activity compared to BRS and SH. Furthermore, BRS increased tibial peak acceleration, tibial magnitude and tibial acceleration rate compared to SH and BF. In conclusion, 32% of our runners showed a rearfoot strike pattern at the first attempts at running barefoot, which corresponds to a running style (BRS) that led to increased muscle activation and impact accelerations and thereby to a potentially higher risk of injury compared to running shod.

  7. Behavioral and locomotor measurements using an open field activity monitoring system for skeletal muscle diseases.

    Science.gov (United States)

    Tatem, Kathleen S; Quinn, James L; Phadke, Aditi; Yu, Qing; Gordish-Dressman, Heather; Nagaraju, Kanneboyina

    2014-09-29

    The open field activity monitoring system comprehensively assesses locomotor and behavioral activity levels of mice. It is a useful tool for assessing locomotive impairment in animal models of neuromuscular disease and efficacy of therapeutic drugs that may improve locomotion and/or muscle function. The open field activity measurement provides a different measure than muscle strength, which is commonly assessed by grip strength measurements. It can also show how drugs may affect other body systems as well when used with additional outcome measures. In addition, measures such as total distance traveled mirror the 6 min walk test, a clinical trial outcome measure. However, open field activity monitoring is also associated with significant challenges: Open field activity measurements vary according to animal strain, age, sex, and circadian rhythm. In addition, room temperature, humidity, lighting, noise, and even odor can affect assessment outcomes. Overall, this manuscript provides a well-tested and standardized open field activity SOP for preclinical trials in animal models of neuromuscular diseases. We provide a discussion of important considerations, typical results, data analysis, and detail the strengths and weaknesses of open field testing. In addition, we provide recommendations for optimal study design when using open field activity in a preclinical trial.

  8. Type of Ground Surface during Plyometric Training Affects the Severity of Exercise-Induced Muscle Damage

    Directory of Open Access Journals (Sweden)

    Hamid Arazi

    2016-03-01

    Full Text Available The purpose of this study was to compare the changes in the symptoms of exercise-induced muscle damage from a bout of plyometric exercise (PE; 10 × 10 vertical jumps performed in aquatic, sand and firm conditions. Twenty-four healthy college-aged men were randomly assigned to one of three groups: Aquatic (AG, n = 8, Sand (SG, n = 8 and Firm (FG, n = 8. The AG performed PE in an aquatic setting with a depth of ~130 cm. The SG performed PE on a dry sand surface at a depth of 20 cm, and the FG performed PE on a 10-cm-thick wooden surface. Plasma creatine kinase (CK activity, delayed onset muscle soreness (DOMS, knee range of motion (KROM, maximal isometric voluntary contraction (MIVC of the knee extensors, vertical jump (VJ and 10-m sprint were measured before and 24, 48 and 72 h after the PE. Compared to baseline values, FG showed significantly (p < 0.05 greater changes in CK, DOMS, and VJ at 24 until 48 h. The MIVC decreased significantly for the SG and FG at 24 until 48 h post-exercise in comparison to the pre-exercise values. There were no significant (p > 0.05 time or group by time interactions in KROM. In the 10-m sprint, all the treatment groups showed significant (p < 0.05 changes compared to pre-exercise values at 24 h, and there were no significant (p > 0.05 differences between groups. The results indicate that PE in an aquatic setting and on a sand surface induces less muscle damage than on a firm surface. Therefore, training in aquatic conditions and on sand may be beneficial for the improvement of performance, with a concurrently lower risk of muscle damage and soreness.

  9. Does hip joint positioning affect maximal voluntary contraction in the gluteus maximus, gluteus medius, tensor fasciae latae and sartorius muscles?

    Science.gov (United States)

    Bernard, J; Beldame, J; Van Driessche, S; Brunel, H; Poirier, T; Guiffault, P; Matsoukis, J; Billuart, F

    2017-11-01

    Minimally invasive total hip arthroplasty (THA) is presumed to provide functional and clinical benefits, whereas in fact the literature reveals that gait and posturographic parameters following THA do not recover values found in the general population. There is a significant disturbance of postural sway in THA patients, regardless of the surgical approach, although with some differences between approaches compared to controls: the anterior and anterolateral minimally invasive approaches seem to be more disruptive of postural parameters than the posterior approach. Electromyographic (EMG) study of the hip muscles involved in surgery [gluteus maximus (GMax), gluteus medius (GMed), tensor fasciae latae (TFL), and sartorius (S)] could shed light, the relevant literature involves discordant methodologies. We developed a methodology to assess EMG activity during maximal voluntary contraction (MVC) of the GMax, GMed, TFL and sartorius muscles as a reference for normalization. A prospective study aimed to assess whether hip joint positioning and the learning curve on an MVC test affect the EMG signal during a maximal voluntary contraction. Hip positioning and the learning curve on an MVC test affect EMG signal during MVC of GMax, GMed, TFL and S. Thirty young asymptomatic subjects participated in the study. Each performed 8 hip muscle MVCs in various joint positions recorded with surface EMG sensors. Each MVC was performed 3 times in 1 week, with the same schedule every day, controlling for activity levels in the preceding 24h. EMG activity during MVC was expressed as a ratio of EMG activity during unipedal stance. Non-parametric tests were applied. Statistical analysis showed no difference according to hip position for abductors or flexors in assessing EMG signal during MVC over the 3 sessions. Hip abductors showed no difference between abduction in lateral decubitus with hip straight versus hip flexed: GMax (19.8±13.7 vs. 14.5±7.8, P=0.78), GMed (13.4±9.0 vs. 9.9±6

  10. The effect of fear of movement on muscle activation in posttraumatic neck pain disability

    NARCIS (Netherlands)

    Nederhand, Marcus Johannes; Hermens, Hermanus J.; IJzerman, Maarten Joost; Groothuis-Oudshoorn, Catharina Gerarda Maria; Turk, Dennis C.

    Studies using surface electromyography have demonstrated a reorganization of muscle activation patterns of the neck and shoulder muscles in patients with posttraumatic neck pain disability. The neurophysiologically oriented "pain adaptation" model explains this reorganization as a useful adaptation

  11. Female PFP patients present alterations in eccentric muscle activity but not the temporal order of activation of the vastus lateralis muscle during the single leg triple hop test.

    Science.gov (United States)

    Kalytczak, Marcelo Martins; Lucareli, Paulo Roberto Garcia; Dos Reis, Amir Curcio; Bley, André Serra; Biasotto-Gonzalez, Daniela Aparecida; Correa, João Carlos Ferrari; Politti, Fabiano

    2018-04-07

    This study aimed to compare the concentric and eccentric activity and the temporal order of peak activity of the hip and knee muscles between women with patellofemoral pain (PFP) and healthy women during the single leg triple hop test (SLTHT). Electromyographic (EMG) and Kinematic data were collected from 14 healthy women (CG) and 14 women diagnosed with PFP (PFG) during a single session of the single leg triple hop test. Integral surface electromyography (iEMG) data of the hip and knee muscles in eccentric and concentric phases and the length of time that each muscle needed to reach the maximal peak of muscle activity were calculated. The iEMG in the eccentric phase was significantly higher (p < 0.05) than the concentric phase, for the gluteus maximus and gluteus medius muscles (CG and PFG) and for the vastus lateralis muscle (PFG). The vastus lateralis muscle was the first muscle to reach the highest peak of activity in the PFG, and the third to reach this peak in the CG. In the present study, the activity of the vastus lateralis muscle during the eccentric phase of the jump was greater than concentric phase, as a temporal anticipation of its peak in activity among women with PFP. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Does feed restriction and re-alimentation differently affect lipid content and metabolism according to muscle type in pigs (Sus scrofa)?

    Science.gov (United States)

    Gondret, Florence; Lebret, Bénédicte

    2007-06-01

    This study aimed to investigate whether feed restriction and re-alimentation differently affect lipid content and activities of lipogenic or catabolic enzymes according to muscle types in pigs. At around 28 kg body mass (BW), sixty pigs (n=30 per group) were allocated to either ad libitum (AL) or restricted/re-feeding (RA) regimens. After feed restriction (80 kg BW), lipid content was reduced (P<0.01) in the oxidative rhomboideus (RH) as in the glycolytic biceps femoris (BF) muscles of RA pigs compared with AL pigs. Lower activities (P<0.05) of the lipogenic enzymes fatty acid synthase (FAS) and malic enzyme (ME) were observed in the RH but not in the BF of RA vs. AL pigs. After re-feeding (110 kg BW), lipid content was restored in the RH, but was still 12% lower (P<0.05) in the BF of RA compared with AL pigs. In the RH, the trend for an enhanced FAS activity and for a smaller weight-related decrease of ME activity in RA pigs than AL pigs during re-feeding, may have contributed to the muscle fat recovery observed in the RA pigs. In the BF, higher oxidative enzyme activities (P<0.10) in RA pigs compared to AL pigs might explain the incomplete lipid recovery observed after re-feeding in the former animals. In conclusion, metabolic activities in response to restriction and re-feeding differed according to muscle metabolic type.

  13. Age-associated changes in muscle activity during isometric contraction.

    Science.gov (United States)

    Arjunan, Sridhar P; Kumar, Dinesh K

    2013-04-01

    We investigated the effect of age on the complexity of muscle activity and the variance in the force of isometric contraction. Surface electromyography (sEMG) from biceps brachii muscle and force of contraction were recorded from 96 subjects (20-70 years of age) during isometric contractions. There was a reduction in the complexity of sEMG associated with aging. The relationship of age and complexity was approximated using a bilinear fit, with the average knee point at 45 years. There was an age-associated increase in the coefficient of variation (CoV) of the force of muscle contraction, and this increase was correlated with the decrease in complexity of sEMG (r(2) = 0.76). There was an age-associated increase in CoV and also a reduction in the complexity of sEMG. The correlation between these 2 factors can be explained based on the age-associated increase in motor unit density. Copyright © 2012 Wiley Periodicals, Inc.

  14. Direct optical activation of skeletal muscle fibres efficiently controls muscle contraction and attenuates denervation atrophy.

    Science.gov (United States)

    Magown, Philippe; Shettar, Basavaraj; Zhang, Ying; Rafuse, Victor F

    2015-10-13

    Neural prostheses can restore meaningful function to paralysed muscles by electrically stimulating innervating motor axons, but fail when muscles are completely denervated, as seen in amyotrophic lateral sclerosis, or after a peripheral nerve or spinal cord injury. Here we show that channelrhodopsin-2 is expressed within the sarcolemma and T-tubules of skeletal muscle fibres in transgenic mice. This expression pattern allows for optical control of muscle contraction with comparable forces to nerve stimulation. Force can be controlled by varying light pulse intensity, duration or frequency. Light-stimulated muscle fibres depolarize proportionally to light intensity and duration. Denervated triceps surae muscles transcutaneously stimulated optically on a daily basis for 10 days show a significant attenuation in atrophy resulting in significantly greater contractile forces compared with chronically denervated muscles. Together, this study shows that channelrhodopsin-2/H134R can be used to restore function to permanently denervated muscles and reduce pathophysiological changes associated with denervation pathologies.

  15. Trunk muscle activation during moderate- and high-intensity running.

    Science.gov (United States)

    Behm, David G; Cappa, Dario; Power, Geoffrey A

    2009-12-01

    Time constraints are cited as a barrier to regular exercise. If particular exercises can achieve multiple training functions, the number of exercises and the time needed to achieve a training goal may be decreased. It was the objective of this study to compare the extent of trunk muscle electromyographic (EMG) activity during running and callisthenic activities. EMG activity of the external obliques, lower abdominals (LA), upper lumbar erector spinae (ULES), and lumbosacral erector spinae (LSES) was monitored while triathletes and active nonrunners ran on a treadmill for 30 min at 60% and 80% of their maximum heart rate (HR) reserve, as well as during 30 repetitions of a partial curl-up and 3 min of a modified Biering-Sørensen back extension exercise. The mean root mean square (RMS) amplitude of the EMG signal was monitored over 10-s periods with measures normalized to a maximum voluntary contraction rotating curl-up (external obliques), hollowing exercise (LA), or back extension (ULES and LSES). A main effect for group was that triathletes had greater overall activation of the external obliques (p runs, respectively, than with the curl-ups (p = 0.001). The back extension exercise provided less ULES (p = 0.009) and LSES (p = 0.0001) EMG activity than the 60% and 80% runs, respectively. In conclusion, triathletes had greater trunk activation than nonrunners did while running, which could have contributed to their better performance. Back-stabilizing muscles can be activated more effectively with running than with a prolonged back extension activity. Running can be considered as an efficient, multifunctional exercise combining cardiovascular and trunk endurance benefits.

  16. Effects of mouthguards on vertical dimension, muscle activation, and athlete preference: a prospective cross-sectional study.

    Science.gov (United States)

    Gage, C Colby; Huxel Bliven, Kellie C; Bay, R Curtis; Sturgill, Jeremiah S; Park, Jae Hyun

    2015-01-01

    Mandibular repositioning and subsequent neuromuscular signaling are proposed mechanisms of action for commercial mouthguards marketed for performance enhancement. A prospective cross-sectional study of 24 healthy adult weightlifters with normal occlusal relationships was designed to determine whether 2 self-fit performance mouthguards; a custom-fabricated, bilaterally balanced, dual-laminated mouthguard; and no mouthguard (control) differed in their effects on vertical dimension, muscle activation, and user preference during a 75% maximum power clean lift. Each subject was tested for each of the mouthguard categories: Power Balance POWERUP, Under Armour ArmourBite, custom, and no mouthguard. Interocclusal distance was measured at baseline and with each mouthguard. Mean and peak activity of the anterior temporalis, masseter, sternocleidomastoid, and cervical paraspinal muscles was measured during sitting and during a 75% maximum power clean lift. A mouthguard preference questionnaire was completed. Analyses were conducted to determine whether interocclusal distance differed among mouthguard type and to examine the effect of mouthguard type on mean and peak muscle activation during the clean lift. Interocclusal distance was affected by mouthguard type (P = 0.01). Mean and peak activity of the anterior temporalis and masseter muscles and mean activity of the sternocleidomastoid muscle differed among mouthguards (P < 0.05). Mouthguard type did not influence muscle activation of the cervical paraspinal muscle group. Overall, the Power Balance mouthguard produced more muscle activity. Participants preferred custom mouthguards nearly 2:1 over self-fit performance mouthguards (P = 0.05). Participants perceived that they were stronger and were less encumbered when using a custom mouthguard during submaximum power clean lifts.

  17. Morphometry, ultrastructure, myosin isoforms, and metabolic capacities of the "mini muscles" favoured by selection for high activity in house mice.

    Science.gov (United States)

    Guderley, Helga; Houle-Leroy, Philippe; Diffee, Gary M; Camp, Dana M; Garland, Theodore

    2006-07-01

    Prolonged selective breeding of mice (Mus musculus) for high levels of voluntary wheel running has favoured an unusual phenotype ("mini muscles"), apparently caused by a single Mendelian recessive allele, in which most hind-limb muscles are markedly reduced in mass, but have increased mass-specific activities of mitochondrial enzymes. We examined whether these changes reflect changes in fibre size, number or ultrastructure in normal and "mini-muscle" mice within the two (of four) selectively bred lines (lab designations L3 and L6) that exhibit the phenotype at generations 26 and 27. In both lines, the gastrocnemius and plantaris muscles are smaller in mass (by >50% and 20%, respectively) in affected individuals. The mass-specific activities of mitochondrial enzymes in the gastrocnemius and plantaris muscles were increased in the mini phenotype in both lines, with stronger effects in the gastrocnemius muscle. In the gastrocnemius, the % myosin heavy chain (MHC) IIb was reduced by 50% in L3 and by 30% in L6, whereas the % MHC IIa and I were higher, particularly in L3. Fibre number in the plantaris muscle did not significantly differ between mini and normal muscles, although muscle mass was a significant positive correlate of fibre number. Small fibres were more abundant in mini than normal muscles in L3. Mitochondrial volume density was significantly higher in mini than normal muscle fibres in L3, but not in L6. Microscopy revealed a surprising attribute of the mini muscles: an abundance of small, minimally differentiated, myofibril-containing cells positioned in a disorderly fashion, particularly in the surface layer. We hypothesise that these unusual cells may be satellite cells or type IIb fibres that did not complete their differentiation. Together, these observations suggest that mice with the mini phenotype have reduced numbers of type IIb fibres in many of their hind-limb muscles, leading to a decrease in mass and an increase in mass-specific aerobic capacity

  18. Muscle Activation During Landing Before and After Fatigue in Individuals With or Without Chronic Ankle Instability

    Science.gov (United States)

    Webster, Kathryn A.; Pietrosimone, Brian G.; Gribble, Phillip A.

    2016-01-01

    Context: Ankle instability is a common condition in physically active individuals. It often occurs during a jump landing or lateral motion, particularly when participants are fatigued. Objective: To compare muscle activation during a lateral hop prefatigue and postfatigue in individuals with or without chronic ankle instability (CAI). Design: Cross-sectional study. Setting: Sports medicine research laboratory. Patients or Other Participants: A total of 32 physically active participants volunteered for the study. Sixteen participants with CAI (8 men, 8 women; age = 20.50 ± 2.00 years, height = 172.25 ± 10.87 cm, mass = 69.13 ± 13.31 kg) were matched with 16 control participants without CAI (8 men, 8 women; age = 22.00 ± 3.30 years, height = 170.50 ± 9.94 cm, mass = 69.63 ± 14.82 kg) by age, height, mass, sex, and affected side. Intervention(s): Electromyography of the tibialis anterior, peroneus longus, gluteus medius, and gluteus maximus was measured before and after a functional fatigue protocol. Main Outcome Measure(s): Activation of 4 lower extremity muscles was measured 200 milliseconds before and after landing from a lateral hop. Results: We observed no interactions. The group main effects for the peroneus longus demonstrated higher muscle activation in the CAI group (52.89% ± 11.36%) than in the control group (41.12% ± 11.36%) just before landing the lateral hop (F1,30 = 8.58, P = .01), with a strong effect size (d = 1.01). The gluteus maximus also demonstrated higher muscle activation in the CAI group (45.55% ± 12.08%) than in the control group (36.81% ± 12.08%) just before landing the lateral hop (F1,30 = 4.19, P = .049), with a moderate effect size (d = 0.71). We observed a main effect for fatigue for the tibialis anterior, with postfatigue activation higher than prefatigue activation (F1,30 = 7.45, P = .01). No differences were present between groups for the gluteus medius. Conclusions: Our results support the presence of a centralized feed

  19. Electromiography comparison of distal and proximal lower limb muscle activity patterns during external perturbation in subjects with and without functional ankle instability.

    Science.gov (United States)

    Kazemi, Khadijeh; Arab, Amir Massoud; Abdollahi, Iraj; López-López, Daniel; Calvo-Lobo, César

    2017-10-01

    Ankle sprain is one of the most common injuries among athletes and the general population. Most ankle injuries commonly affect the lateral ligament complex. Changes in postural sway and hip abductor muscle strength may be generated after inversion ankle sprain. Therefore, the consequences of ankle injury may affect proximal structures of the lower limb. The aim is to describe and compare the activity patterns of distal and proximal lower limb muscles following external perturbation in individuals with and without functional ankle instability. The sample consisted of 16 women with functional ankle instability and 18 healthy women were recruited to participate in this research. The external perturbation via body jacket using surface electromyography, amplitude and onset of muscle activity of gluteus maximums, gluteus medius, tibialis anterior, and peroneus longus was recorded and analyzed during external perturbation. There were differences between the onset of muscles activity due to perturbation direction in the two groups (healthy and functional ankle instability). In the healthy group, there were statistically significant differences in amplitude of proximal muscle activity with distal muscle activity during front perturbation with eyes open and closed. In the functional ankle instability group; there were statistically significant differences in amplitude of proximal muscle activity with distal muscle activity during perturbation of the front and back with eyes open. There were statistically significant differences in the onset of muscle activity and amplitude of muscle activity, with-in and between groups (Pankle instability, activation patterns of the lower limb proximal muscles may be altered. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Assessment of bioelectrical activity of synergistic muscles during pelvic floor muscles activation in postmenopausal women with and without stress urinary incontinence: a preliminary observational study.

    Science.gov (United States)

    Ptaszkowski, Kuba; Paprocka-Borowicz, Małgorzata; Słupska, Lucyna; Bartnicki, Janusz; Dymarek, Robert; Rosińczuk, Joanna; Heimrath, Jerzy; Dembowski, Janusz; Zdrojowy, Romuald

    2015-01-01

    Muscles such as adductor magnus (AM), gluteus maximus (GM), rectus abdominis (RA), and abdominal external and internal oblique muscles are considered to play an important role in the treatment of stress urinary incontinence (SUI), and the relationship between contraction of these muscles and pelvic floor muscles (PFM) has been established in previous studies. Synergistic muscle activation intensifies a woman's ability to contract the PFM. In some cases, even for continent women, it is not possible to fully contract their PFM without involving the synergistic muscles. The primary aim of this study was to assess the surface electromyographic activity of synergistic muscles to PFM (SPFM) during resting and functional PFM activation in postmenopausal women with and without SUI. This study was a preliminary, prospective, cross-sectional observational study and included volunteers and patients who visited the Department and Clinic of Urology, University Hospital in Wroclaw, Poland. Forty-two patients participated in the study and were screened for eligibility criteria. Thirty participants satisfied the criteria and were categorized into two groups: women with SUI (n=16) and continent women (n=14). The bioelectrical activity of PFM and SPFM (AM, RA, GM) was recorded with a surface electromyographic instrument in a standing position during resting and functional PFM activity. Bioelectrical activity of RA was significantly higher in the incontinent group than in the continent group. These results concern the RA activity during resting and functional PFM activity. The results for other muscles showed no significant difference in bioelectrical activity between groups. In women with SUI, during the isolated activation of PFM, an increased synergistic activity of RA muscle was observed; however, this activity was not observed in asymptomatic women. This may indicate the important accessory contribution of these muscles in the mechanism of continence.

  1. Using Contingent Reinforcement to Augment Muscle Activation After Perinatal Brachial Plexus Injury: A Pilot Study.

    Science.gov (United States)

    Duff, S V; Sargent, B; Kutch, J J; Berggren, J; Leiby, B E; Fetters, L

    2017-10-20

    Examine the feasibility of increasing muscle activation with electromyographically (EMG)-triggered musical-video as reinforcement for children with perinatal brachial plexus injury (PBPI). Six children with PBPI (9.3 ± 6.3 months; 5 female, 1 male) and 13 typically developing (TD) controls (7.8 ± 3.5 months; 4 female, 9 males) participated. The left arm was affected in 5/6 children with PBPI. We recorded the integral (Vs) of biceps activation with surface EMG during two conditions per arm in one session: (1) 100 second (s) baseline without reinforcement and (2) 300 s reinforcement (musical-video triggered to play with biceps activation above threshold [V]). We examined the relation between the mean integral with reinforcement and hand preference. Mean biceps activation significantly increased from baseline in the affected arm of the group with PBPI by the 2nd (p < .008) and 3rd (p < .0004) 100 s intervals of reinforcement. Six of 6 children with PBPI and 12/13 TD controls increased activation in at least one arm. A lower integral was linked with hand preference for the unaffected right side in the PBPI group. This study supports contingent reinforcement as a feasible method to increase muscle activation. Future work will examine training dose and intensity to increase arm function.

  2. Impact of exercise selection on hamstring muscle activation.

    Science.gov (United States)

    Bourne, Matthew N; Williams, Morgan D; Opar, David A; Al Najjar, Aiman; Kerr, Graham K; Shield, Anthony J

    2017-07-01

    To determine which strength training exercises selectively activate the biceps femoris long head (BF LongHead ) muscle. We recruited 24 recreationally active men for this two-part observational study . Part 1: We explored the amplitudes and the ratios of lateral (BF) to medial hamstring (MH) normalised electromyography (nEMG) during the concentric and eccentric phases of 10 common strength training exercises. Part 2: We used functional MRI (fMRI) to determine the spatial patterns of hamstring activation during two exercises which (1) most selectively and (2) least selectively activated the BF in part 1. Eccentrically, the largest BF/MH nEMG ratio occurred in the 45° hip-extension exercise; the lowest was in the Nordic hamstring (Nordic) and bent-knee bridge exercises. Concentrically, the highest BF/MH nEMG ratio occurred during the lunge and 45° hip extension; the lowest was during the leg curl and bent-knee bridge. fMRI revealed a greater BF (LongHead) to semitendinosus activation ratio in the 45° hip extension than the Nordic (phamstring muscles (p≤0.002). We highlight the heterogeneity of hamstring activation patterns in different tasks. Hip-extension exercise selectively activates the long hamstrings, and the Nordic exercise preferentially recruits the semitendinosus. These findings have implications for strategies to prevent hamstring injury as well as potentially for clinicians targeting specific hamstring components for treatment (mechanotherapy). Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  3. [Core muscle chains activation during core exercises determined by EMG-a systematic review].

    Science.gov (United States)

    Rogan, Slavko; Riesen, Jan; Taeymans, Jan

    2014-10-15

    Good core muscles strength is essential for daily life and sports activities. However, the mechanism how core muscles may be effectively triggered by exercises is not yet precisely described in the literature. The aim of this systematic review was to evaluate the rate of activation as measured by electromyography of the ventral, lateral and dorsal core muscle chains during core (trunk) muscle exercises. A total of 16 studies were included. Exercises with a vertical starting position, such as the deadlift or squat activated significantly more core muscles than exercises in the horizontal initial position.

  4. Associations between personality traits, physical activity level, and muscle strength

    Science.gov (United States)

    Tolea, Magdalena I.; Terracciano, Antonio; Simonsick, Eleanor M.; Metter, E. Jeffrey; Costa, Paul T.; Ferrucci, Luigi

    2013-01-01

    Associations among personality as measured by the Five Factor Model, physical activity, and muscle strength were assessed using data from the Baltimore Longitudinal Study of Aging (N = 1220, age: mean = 58, SD = 16). General linear modeling with adjustment for age, sex, race, and body mass index, and bootstrapping for mediation were used. We found neuroticism and most of its facets to negatively correlate with strength. The extraversion domain and its facets of warmth, activity, and positive-emotions were positively correlated with strength, independent of covariates. Mediation analysis results suggest that these associations are partly explained by physical activity level. Findings extend the evidence of an association between personality and physical function to its strength component and indicate health behavior as an important pathway. PMID:23966753

  5. Effect of experimental stress in 2 different pain conditions affecting the facial muscles.

    Science.gov (United States)

    Woda, Alain; L'heveder, Gildas; Ouchchane, Lemlih; Bodéré, Céline

    2013-05-01

    Chronic facial muscle pain is a common feature in both fibromyalgia (FM) and myofascial (MF) pain conditions. In this controlled study, a possible difference in the mode of deregulation of the physiological response to a stressing stimulus was explored by applying an acute mental stress to FM and MF patients and to controls. The effects of the stress test were observed on pain, sympathetic variables, and both tonic and reflex electromyographic activities of masseteric and temporal muscles. The statistical analyses were performed through a generalized linear model including mixed effects. Painful reaction to the stressor was stronger (P < .001) and longer (P = .011) in FM than in MF independently of a higher pain level at baseline. The stress-induced autonomic changes only seen in FM patients did not reach significance. The electromyographic responses to the stress test were strongest for controls and weakest for FM. The stress test had no effect on reflex activity (area under the curve [AUC]) or latency, although AUC was high in FM and latencies were low in both pain groups. It is suggested that FM is characterized by a lower ability to adapt to acute stress than MF. This study showed that an acute psychosocial stress triggered several changes in 2 pain conditions including an increase in pain of larger amplitude in FM than in MF pain. Similar stress-induced changes should be explored as possible mechanisms for differentiation between dysfunctional pain conditions. Copyright © 2013 American Pain Society. Published by Elsevier Inc. All rights reserved.

  6. Methods for demonstration of enzyme activity in muscle fibres at the muscle/bone interface in demineralized tissue

    DEFF Research Database (Denmark)

    Kirkeby, S; Vilmann, H

    1981-01-01

    A method for demonstration of activity for ATPase and various oxidative enzymes (succinic dehydrogenase, alpha-glycerophosphate dehydrogenase, and lactic dehydrogenase) in muscle/bone sections of fixed and demineralized tissue has been developed. It was found that it is possible to preserve...... considerable amounts of the above mentioned enzymes in the muscle fibres at the muscle/bone interfaces. The best results were obtained after 20 min fixation, and 2-3 weeks of storage in MgNa2EDTA containing media. As the same technique previously has been used to describe patterns of resorption and deposition...

  7. The Effects of Active Straight Leg Raising on Tonicity and Activity of Pelvic Stabilizer Muscles

    Directory of Open Access Journals (Sweden)

    Azadeh Shadmehr

    2011-01-01

    Full Text Available Objective: Active straight leg raising (SLR test is advocated as a valid diagnostic method in diagnosis of sacroiliac joint (SIJ dysfunction that can assess the quality of load transfer between trunk and lower limb. The aim of this study is Comparison of changes in tonicity and activity of pelvic stabilizer muscles during active SLR, between healthy individuals and patients with sacroiliac joint pain. Materials & Methods: A case – control study was designed in 26 women (19-50 years old. With use of simple sampling, surface electromyography from rectus abdominis, external oblique, internal oblique, adductor longus, erector spine, gluteus maximus and biceps femoris was recorded in 26 subjects (15 healthy females and 11 females with sacroiliac pain in resting position and during active SLR test. Resting muscle tonicity and rms during ramp time and hold time in active SLR test were assessed by non parametric-two independent sample test. Results: Biceps femoris activity in resting position was significantly larger in patients group (P<0.05. During the active SLR, the women with sacroiliac joint pain used much less activity in some pelvic stabilizer muscles compared to the healthy subjects (P<0.05. Conclusion: The increased resting tonicity of biceps femoris and decreased activity of pelvic stabilizer muscles in subjects with sacroiliac joint pain, suggests an alteration in the strategy for lumbopelvic stabilization that may disrupt load transference through the pelvis.

  8. Glycogen synthesis from lactate in a chronically active muscle

    International Nuclear Information System (INIS)

    Talmadge, R.J.; Scheide, J.I.; Silverman, H.

    1989-01-01

    In response to neural overactivity (pseudomyotonia), gastrocnemius muscle fibers from C57Bl/6Jdy2J/dy2J mice have different metabolic profiles compared with normal mice. A population of fibers in the fast-twitch superficial region of the dy2J gastrocnemius stores unusually high amounts of glycogen, leading to an increased glycogen storage in the whole muscle. The dy2J muscle also contains twice as much lactate as normal muscle. A [ 14 C]lactate intraperitoneal injection leads to preferential 14 C incorporation into glycogen in the dy2J muscle compared with normal muscle. To determine whether skeletal muscles were incorporating lactate into glycogen without body organ (liver, kidney) input, gastrocnemius muscles were bathed in 10 mM [ 14 C]lactate with intact neural and arterial supply but with impeded venous return. The contralateral gastrocnemius serves as a control for body organ input. By using this in situ procedure, we demonstrate that under conditions of high lactate both normal and dy2J muscle can directly synthesize glycogen from lactate. In this case, normal whole muscle incorporates [14C] lactate into glycogen at a higher rate than dy2J whole muscle. Autoradiography, however, suggests that the high-glycogen-containing muscle fibers in the dy2J muscle incorporate lactate into glycogen at nearly four times the rate of normal or surrounding muscle fibers

  9. IL-6 signaling blockade increases inflammation but does not affect muscle function in the mdx mouse

    Directory of Open Access Journals (Sweden)

    Kostek Matthew C

    2012-06-01

    Full Text Available Abstract Background IL-6 is a pleiotropic cytokine that modulates inflammatory responses and plays critical roles in muscle maintenance and remodeling. In the mouse model (mdx of Duchenne Muscular Dystrophy, IL-6 and muscle inflammation are elevated, which is believed to contribute to the chronic inflammation and failure of muscle regeneration in DMD. The purpose of the current study was to examine the effect of blocking IL-6 signaling on the muscle phenotype including muscle weakness and pathology in the mdx mouse. Methods A monoclonal antibody against the IL-6 receptor (IL-6r mAb that blocks local and systemic IL-6 signaling was administered to mdx and BL-10 mice for 5 weeks and muscle function, histology, and inflammation were examined. Results IL-6r mAb treatment increased mdx muscle inflammation including total inflammation score and ICAM-1 positive lumens in muscles. There was no significant improvement in muscle strength nor muscle pathology due to IL-6r mAb treatment in mdx mice. Conclusions These results showed that instead of reducing inflammation, IL-6 signaling blockade for 5 weeks caused an increase in muscle inflammation, with no significant change in indices related to muscle regeneration and muscle function. The results suggest a potential anti-inflammatory instead of the original hypothesized pro-inflammatory role of IL-6 signaling in the mdx mice.

  10. Rebound boots change lower limb muscle activation and kinematics during different fitness exercises.

    Science.gov (United States)

    Rossato, Mateus; Dellagrana, Rodolfo André; Dos Santos, Juliane Cristine Lopes; Carpes, Felipe P; Gheller, Rodrigo Ghedini; da Silva, De Angelys de Ceselles Seixas; Bezerra, Ewertton de Souza; Dos Santos, João Otacílio Libardoni

    2017-10-01

    The purpose of this study was to evaluate electromyography and kinematic parameters of the lower limbs using rebound boots (RB) and barefoot during a gym workout. This information can be helpful to practitioners to schedule rehabilitation and training programs. Ten women (25 ± 9 years) volunteered for the study; inclusion criteria were as follows: subjects must have experienced the use of RB and the analyzed exercises for at least 6 months, and have no previous injuries in the lower limbs. Seven exercises were performed for 30 s with the RB and subsequently barefoot. Data from muscle activation of vastus lateralis (VL), biceps femoris (BF), lateral gastrocnemius (LG) and 2D kinematics were collected. The use of RB triggered postural changes, characterized by greater hip extension (in 4 of the exercises) and knee extension (in 6 of the exercises) for the landing. RB reduced activation mainly in LG (in 6 of the exercise) while no changes were observed for VL (except in exercise 1) and BF. RB change kinematics and muscle activation suggesting changes in the way the legs absorb and transmit force during jumps. LG was the main muscle affected by the use of RB. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Influence of botulinum toxin on rabbit jaw muscle activity and anatomy.

    Science.gov (United States)

    Korfage, J A M; Wang, Jeffrey; Lie, S H J T J; Langenbach, Geerling E J

    2012-05-01

    Muscles can adapt their fiber properties to accommodate to new conditions. We investigated the extent to which a decrease in muscle activation can cause an adaptation of fiber properties in synergistic and antagonistic jaw muscles. Three months after the injection of botulinum toxin type A in one masseter (anterior or posterior) muscle changes in fiber type composition and fiber cross-sectional areas in jaw muscles were studied at the microscopic level. The injected masseter showed a steep increase in myosin type IIX fibers, whereas fast fibers decreased by about 50% in size. Depending on the injection site, both synergistic and antagonistic muscles showed a significant increase in the size of their fast IIA fibers, sometimes combined with an increased number of IIX fibers. Silencing the activity in the masseter not only causes changes in the fibers of the injected muscle but also leads to changes in other jaw muscles. Copyright © 2012 Wiley Periodicals, Inc.

  12. Influence of botulinum toxin on rabbit jaw muscle activity and anatomy

    NARCIS (Netherlands)

    Korfage, J.A.M.; Wang, J.; Lie, S.H.J.T.J.; Langenbach, G.E.J.

    2012-01-01

    Introduction: Muscles can adapt their fiber properties to accommodate to new conditions. We investigated the extent to which a decrease in muscle activation can cause an adaptation of fiber properties in synergistic and antagonistic jaw muscles. Methods: Three months after the injection of botulinum

  13. The prognostic factors affecting survival in muscle invasive bladder cancer treated with radiotherapy

    International Nuclear Information System (INIS)

    Chung, Woong Ki; Oh, Bong Ryoul; Ahn, Sung Ja; Nah, Byung Sik; Kwon, Dong Deuk; Park, Kwang Sung; Ryu, Soo Bang; Park, Yang Il

    2002-01-01

    This study analyzed the prognostic factors affecting the survival rate and evaluated the role of radiation therapy in muscle-invading bladder cancer. Twenty eight patient with bladder cancer who completed planned definitive radiotherapy in the Departments of Therapeutic Radiology and Urology, Chonnam National University Hospital between Jan. 1986 to Dec. 1998 were retrospectively analyzed. The reviews were performed based on the patients' medical records. There were 21 males and 7 females in this study. The median of age was 72 years old ranging from 49 to 84 years. All patients were confirmed as having transitional cell carcinoma with histological grade 1 in one patient, grade 2 in 15, grade 3 in 9, and uniformed in 3. Radiation therapy was performed using a linear accelerator with 6 or 10 MV X-rays. Radiation was delivered daily with a 1.8 or 2.0 Gy fraction size by 4 ports (anterior-posterior, both lateral, alternatively) or 3 ports (Anterior and both lateral). The median radiation dose delivered to the isocenter of the target volume was 61.24 Gy ranging from 59 to 66.6 Gy. The survival rate was calculated by the Kaplan-Meier method. Multivariate analysis was performed on the prognostic factors affecting the survival rate. The survival rate was 76%, 46%, 33%, 33% at 1, 2, 3, 5 years, respectively, with 19 months of median survival. The potential factors of age (less than 70 years vs above 70), sex, diabetes mellitus, hypertension, hydronephrosis, T-stage (T3a vs T3b), TUR, chemotherapy, total duration of radiotherapy, radiation dose (less than 60 Gy vs above 60 Gy), and the treatment response were investigated with uni- and multivariate analysis. In univariate analysis, the T-stage (ρ 0.078) and radiation dose (ρ = 0.051) were marginally significant, and the treatment response (ρ = 0.011) was a statistically significant factor on the survival rate. Multivariate analysis showed there were no significant prognostic factors affecting the survival rate. The

  14. The prognostic factors affecting survival in muscle invasive bladder cancer treated with radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Woong Ki; Oh, Bong Ryoul; Ahn, Sung Ja; Nah, Byung Sik; Kwon, Dong Deuk; Park, Kwang Sung; Ryu, Soo Bang; Park, Yang Il [Chonnam National University Medical School, Chonnam National University Hospital, Kwangju (Korea, Republic of)

    2002-06-15

    This study analyzed the prognostic factors affecting the survival rate and evaluated the role of radiation therapy in muscle-invading bladder cancer. Twenty eight patient with bladder cancer who completed planned definitive radiotherapy in the Departments of Therapeutic Radiology and Urology, Chonnam National University Hospital between Jan. 1986 to Dec. 1998 were retrospectively analyzed. The reviews were performed based on the patients' medical records. There were 21 males and 7 females in this study. The median of age was 72 years old ranging from 49 to 84 years. All patients were confirmed as having transitional cell carcinoma with histological grade 1 in one patient, grade 2 in 15, grade 3 in 9, and uniformed in 3. Radiation therapy was performed using a linear accelerator with 6 or 10 MV X-rays. Radiation was delivered daily with a 1.8 or 2.0 Gy fraction size by 4 ports (anterior-posterior, both lateral, alternatively) or 3 ports (Anterior and both lateral). The median radiation dose delivered to the isocenter of the target volume was 61.24 Gy ranging from 59 to 66.6 Gy. The survival rate was calculated by the Kaplan-Meier method. Multivariate analysis was performed on the prognostic factors affecting the survival rate. The survival rate was 76%, 46%, 33%, 33% at 1, 2, 3, 5 years, respectively, with 19 months of median survival. The potential factors of age (less than 70 years vs above 70), sex, diabetes mellitus, hypertension, hydronephrosis, T-stage (T3a vs T3b), TUR, chemotherapy, total duration of radiotherapy, radiation dose (less than 60 Gy vs above 60 Gy), and the treatment response were investigated with uni- and multivariate analysis. In univariate analysis, the T-stage ({rho} 0.078) and radiation dose ({rho} = 0.051) were marginally significant, and the treatment response ({rho} = 0.011) was a statistically significant factor on the survival rate. Multivariate analysis showed there were no significant prognostic factors affecting the survival

  15. Detection of differentially expressed genes in broiler pectoralis major muscle affected by White Striping - Wooden Breast myopathies.

    Science.gov (United States)

    Zambonelli, Paolo; Zappaterra, Martina; Soglia, Francesca; Petracci, Massimiliano; Sirri, Federico; Cavani, Claudio; Davoli, Roberta

    2016-12-01

    White Striping and Wooden Breast (WS/WB) are abnormalities increasingly occurring in the fillets of high breast yield and growth rate chicken hybrids. These defects lead to consistent economic losses for poultry meat industry, as affected broiler fillets present an impaired visual appearance that negatively affects consumers' acceptability. Previous studies have highlighted in affected fillets a severely damaged muscle, showing profound inflammation, fibrosis, and lipidosis. The present study investigated the differentially expressed genes and pathways linked to the compositional changes observed in WS/WB breast muscles, in order to outline a more complete framework of the gene networks related to the occurrence of this complex pathological picture. The biochemical composition was performed on 20 pectoralis major samples obtained from high breast yield and growth rate broilers (10 affected vs. 10 normal) and 12 out of the 20 samples were used for the microarray gene expression profiling (6 affected vs. 6 normal). The obtained results indicate strong changes in muscle mineral composition, coupled to an increased deposition of fat. In addition, 204 differentially expressed genes (DEG) were found: 102 up-regulated and 102 down-regulated in affected breasts. The gene expression pathways found more altered in WS/WB muscles are those related to muscle development, polysaccharide metabolic processes, proteoglycans synthesis, inflammation, and calcium signaling pathway. On the whole, the findings suggest that a multifactorial and complex etiology is associated with the occurrence of WS/WB muscle abnormalities, contributing to further defining the transcription patterns associated with these myopathies. © 2016 Poultry Science Association Inc.

  16. Acute hypoxia limits endurance but does not affect muscle contractile properties.

    NARCIS (Netherlands)

    Degens, H.; Sanchez Horneros, J.M.; Hopman, M.T.E.

    2006-01-01

    Acute hypoxia causes skeletal muscle dysfunction in vitro, but little is known about its effect on muscle function in vivo. In 10 healthy male subjects, isometric contractile properties and fatigue resistance of the quadriceps muscle were determined during normoxia and hypoxia using electrically

  17. Muscle networks: Connectivity analysis of EMG activity during postural control

    Science.gov (United States)

    Boonstra, Tjeerd W.; Danna-Dos-Santos, Alessander; Xie, Hong-Bo; Roerdink, Melvyn; Stins, John F.; Breakspear, Michael

    2015-12-01

    Understanding the mechanisms that reduce the many degrees of freedom in the musculoskeletal system remains an outstanding challenge. Muscle synergies reduce the dimensionality and hence simplify the control problem. How this is achieved is not yet known. Here we use network theory to assess the coordination between multiple muscles and to elucidate the neural implementation of muscle synergies. We performed connectivity analysis of surface EMG from ten leg muscles to extract the muscle networks while human participants were standing upright in four different conditions. We observed widespread connectivity between muscles at multiple distinct frequency bands. The network topology differed significantly between frequencies and between conditions. These findings demonstrate how muscle networks can be used to investigate the neural circuitry of motor coordination. The presence of disparate muscle networks across frequencies suggests that the neuromuscular system is organized into a multiplex network allowing for parallel and hierarchical control structures.

  18. Effects of spinal cord injury-induced changes in muscle activation on foot drag in a computational rat ankle model.

    Science.gov (United States)

    Hillen, Brian K; Jindrich, Devin L; Abbas, James J; Yamaguchi, Gary T; Jung, Ranu

    2015-04-01

    Spinal cord injury (SCI) can lead to changes in muscle activation patterns and atrophy of affected muscles. Moderate levels of SCI are typically associated with foot drag during the swing phase of locomotion. Foot drag is often used to assess locomotor recovery, but the causes remain unclear. We hypothesized that foot drag results from inappropriate muscle coordination preventing flexion at the stance-to-swing transition. To test this hypothesis and to assess the relative contributions of neural and muscular changes on foot drag, we developed a two-dimensional, one degree of freedom ankle musculoskeletal model with gastrocnemius and tibialis anterior muscles. Anatomical data collected from sham-injured and incomplete SCI (iSCI) female Long-Evans rats as well as physiological data from the literature were used to implement an open-loop muscle dynamics model. Muscle insertion point motion was calculated with imposed ankle trajectories from kinematic analysis of treadmill walking in sham-injured and iSCI animals. Relative gastrocnemius deactivation and tibialis anterior activation onset times were varied within physiologically relevant ranges based on simplified locomotor electromyogram profiles. No-atrophy and moderate muscle atrophy as well as normal and injured muscle activation profiles were also simulated. Positive moments coinciding with the transition from stance to swing phase were defined as foot swing and negative moments as foot drag. Whereas decreases in activation delay caused by delayed gastrocnemius deactivation promote foot drag, all other changes associated with iSCI facilitate foot swing. Our results suggest that even small changes in the ability to precisely deactivate the gastrocnemius could result in foot drag after iSCI. Copyright © 2015 the American Physiological Society.

  19. Simulating the activation, contraction and movement of skeletal muscles using the bidomain model.

    Science.gov (United States)

    Lopez Rincon, A; Cantu, C; Soto, R; Shimoda, S

    2016-08-01

    A simulation of the muscle activation, contraction and movement is here presented. This system was developed based on the Bidomain mathematical model of the electrical propagation in muscles. This study shows an electrical stimuli input to a muscle and how this behave. The comparison between healthy subject and patient with muscle activation impairment is depicted, depending on whether the signal reaches a threshold. A 3D model of a bicep muscle and a forearm bone connected was constructed using OpenGL. This platform could be used for development of controllers for biomechatronic systems in future works. This kind of bioinspired model could be used for a better understanding of the neuromotor system.

  20. When phosphorylated at Thr148, the β2-subunit of AMP-activated kinase does not associate with glycogen in skeletal muscle.

    Science.gov (United States)

    Xu, Hongyang; Frankenberg, Noni T; Lamb, Graham D; Gooley, Paul R; Stapleton, David I; Murphy, Robyn M

    2016-07-01

    The 5'-AMP-activated protein kinase (AMPK), a heterotrimeric complex that functions as an intracellular fuel sensor that affects metabolism, is activated in skeletal muscle in response to exercise and utilization of stored energy. The diffusibility properties of α- and β-AMPK were examined in isolated skeletal muscle fiber segments dissected from rat fast-twitch extensor digitorum longus and oxidative soleus muscles from which the surface membranes were removed by mechanical dissection. After the muscle segments were washed for 1 and 10 min, ∼60% and 75%, respectively, of the total AMPK pools were found in the diffusible fraction. After in vitro stimulation of the muscle, which resulted in an ∼80% decline in maximal force, 20% of the diffusible pool became bound in the fiber. This bound pool was not associated with glycogen, as determined by addition of a wash step containing amylase. Stimulation of extensor digitorum longus muscles resulted in 28% glycogen utilization and a 40% increase in phosphorylation of the downstream AMPK target acetyl carboxylase-CoA. This, however, had no effect on the proportion of total β2-AMPK that was phosphorylated in whole muscle homogenates measured by immunoprecipitation. These findings suggest that, in rat skeletal muscle, β2-AMPK is not associated with glycogen and that activation of AMPK by muscle contraction does not dephosphorylate β2-AMPK. These findings question the physiological relevance of the carbohydrate-binding function of β2-AMPK in skeletal muscle. Copyright © 2016 the American Physiological Society.

  1. How Hinge Positioning in Cross-Country Ski Bindings Affect Exercise Efficiency, Cycle Characteristics and Muscle Coordination during Submaximal Roller Skiing

    Science.gov (United States)

    Bolger, Conor M.; Sandbakk, Øyvind; Ettema, Gertjan; Federolf, Peter

    2016-01-01

    The purposes of the current study were to 1) test if the hinge position in the binding of skating skis has an effect on gross efficiency or cycle characteristics and 2) investigate whether hinge positioning affects synergistic components of the muscle activation in six lower leg muscles. Eleven male skiers performed three 4-min sessions at moderate intensity while cross-country ski-skating and using a klapskate binding. Three different positions were tested for the binding’s hinge, ranging from the front of the first distal phalange to the metatarsal-phalangeal joint. Gross efficiency and cycle characteristics were determined, and the electromyographic (EMG) signals of six lower limb muscles were collected. EMG signals were wavelet transformed, normalized, joined into a multi-dimensional vector, and submitted to a principle component analysis (PCA). Our results did not reveal any changes to gross efficiency or cycle characteristics when altering the hinge position. However, our EMG analysis found small but significant effects of hinge positioning on muscle coordinative patterns (P skating klapskates. Finally, the within-subject results of the EMG analysis suggested that in addition to the between-subject effects, further forms of muscle coordination patterns appear to be employed by some, but not all participants. PMID:27203597

  2. ALUMINUM CHLORIDE EFFECT ON Ca2+,Mg(2+)-ATPase ACTIVITY AND DYNAMIC PARAMETERS OF SKELETAL MUSCLE CONTRACTION.

    Science.gov (United States)

    Nozdrenko, D M; Abramchuk, O M; Soroca, V M; Miroshnichenko, N S

    2015-01-01

    We studied enzymatic activity and measured strain-gauge contraction properties of the frog Rana temporaria m. tibialis anterior muscle fascicles during the action of aluminum chloride solution. It was shown that AlCl3 solutions did not affect the dynamic properties of skeletal muscle preparation in concentrations less than 10(-4) M Increasing the concentration of AlCl3 to 10(-2) M induce complete inhibition of muscle contraction. A linear correlation between decrease in Ca2+,Mg(2+)-ATPase activity of sarcoplasmic reticulum and the investigated concentrations range of aluminum chloride was observed. The reduction in the dynamic contraction performance and the decrease Ca2+,Mg(2+)-ATPase activity of the sarcoplasmic reticulum under the effect of the investigated AlCl3 solution were minimal in pre-tetanus period of contraction.

  3. Aluminum chloride effect on Ca(2+,Mg(2+-ATPase activity and dynamic parameters of skeletal muscle contraction

    Directory of Open Access Journals (Sweden)

    D. M. Nozdrenko

    2015-10-01

    Full Text Available We studied enzymatic activity and measured strain-gauge contraction properties of the frog Rana temporaria m. tibialis anterior muscle fascicles during the action of aluminum chloride solution. It was shown that AlCl3 solutions did not affect the dynamic properties of skeletal muscle preparation in concentrations less than 10-4 M. Increasing the concentration of AlCl3 to 10-2 M induce complete inhibition of muscle contraction. A linear correlation between decrease in Ca2+,Mg2+-ATPase activity of sarcoplasmic reticulum and the investigated concentrations range of aluminum chloride was observed. The reduction in the dynamic contraction performance and the decrease Ca2+,Mg2+-ATPase activity of the sarcoplasmic reticulum under the effect of the investigated AlCl3 solution were minimal in pre-tetanus period of contraction.

  4. Adaptive responses of mouse skeletal muscle to contractile activity: The effect of age.

    Science.gov (United States)

    Vasilaki, A; McArdle, F; Iwanejko, L M; McArdle, A

    2006-11-01

    This study has characterised the time course of two major transcriptional adaptive responses to exercise (changes in antioxidant defence enzyme activity and heat shock protein (HSP) content) in muscles of adult and old male mice following isometric contractions and has examined the mechanisms involved in the age-related reduction in transcription factor activation. Muscles of B6XSJL mice were subjected to isometric contractions and analysed for antioxidant defence enzyme activities, heat shock protein content and transcription factor DNA binding activity. Data demonstrated a significant increase in superoxide dismutase (SOD) and catalase activity and HSP content of muscles of adult mice following contractile activity which was associated with increased activation of the transcription factors, nuclear factor-kappaB (NF-kappaB), activator protein-1 (AP-1) and heat shock factor (HSF) following contractions. Significant increases in SOD and catalase activity and heat shock cognate (HSC70) content were seen in quiescent muscles of old mice. The increase in antioxidant defence enzyme activity following contractile activity seen in muscles of adult mice was not seen in muscles of old mice and this was associated with a failure to fully activate NF-kappaB and AP-1 following contractions. In contrast, although the production of HSPs was also reduced in muscles of old mice following contractile activity compared with muscles of adult mice following contractions, this was not due to a gross reduction in the DNA binding activity of HSF.

  5. Comparison of four specific dynamic office chairs with a conventional office chair: impact upon muscle activation, physical activity and posture.

    Science.gov (United States)

    Ellegast, Rolf P; Kraft, Kathrin; Groenesteijn, Liesbeth; Krause, Frank; Berger, Helmut; Vink, Peter

    2012-03-01

    Prolonged and static sitting postures provoke physical inactivity at VDU workplaces and are therefore discussed as risk factors for the musculoskeletal system. Manufacturers have designed specific dynamic office chairs featuring structural elements which promote dynamic sitting and therefore physical activity. The aim of the present study was to evaluate the effects of four specific dynamic chairs on erector spinae and trapezius EMG, postures/joint angles and physical activity intensity (PAI) compared to those of a conventional standard office chair. All chairs were fitted with sensors for measurement of the chair parameters (backrest inclination, forward and sideward seat pan inclination), and tested in the laboratory by 10 subjects performing 7 standardized office tasks and by another 12 subjects in the field during their normal office work. Muscle activation revealed no significant differences between the specific dynamic chairs and the reference chair. Analysis of postures/joint angles and PAI revealed only a few differences between the chairs, whereas the tasks performed strongly affected the measured muscle activation, postures and kinematics. The characteristic dynamic elements of each specific chair yielded significant differences in the measured chair parameters, but these characteristics did not appear to affect the sitting dynamics of the subjects performing their office tasks. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  6. An electromyographic study of the effect of hand grip sizes on forearm muscle activity and golf performance.

    Science.gov (United States)

    Sorbie, Graeme G; Hunter, Henry H; Grace, Fergal M; Gu, Yaodong; Baker, Julien S; Ugbolue, Ukadike Chris

    2016-01-01

    The study describes the differences in surface electromyography (EMG) activity of two forearm muscles in the lead and trail arm at specific phases of the golf swing using a 7-iron with three different grip sizes among amateur and professional golfers. Fifteen right-handed male golfers performed five golf swings using golf clubs with three different grip sizes. Surface EMG was used to measure muscle activity of the extensor carpi radialis brevis (ECRB) and flexor digitorum superficialis (FDS) on both forearms. There were no significant differences in forearm muscle activity when using the three golf grips within the group of 15 golfers (p > 0.05). When using the undersize grip, club head speed significantly increased (p = 0.044). During the backswing and downswing phases, amateurs produced significantly greater forearm muscle activity with all three grip sizes (p < 0.05). In conclusion, forearm muscle activity is not affected by grip sizes. However, club head speed increases when using undersize grips.

  7. Comparison of the Effects of Walking with and without Nordic Pole on Upper Extremity and Lower Extremity Muscle Activation.

    Science.gov (United States)

    Shim, Je-Myung; Kwon, Hae-Yeon; Kim, Ha-Roo; Kim, Bo-In; Jung, Ju-Hyeon

    2013-12-01

    [Purpose] The aim of this study was to assess the effect of Nordic pole walking on the electromyographic activities of upper extremity and lower extremity muscles. [Subjects and Methods] The subjects were randomly divided into two groups as follows: without Nordic pole walking group (n=13) and with Nordic pole walking group (n=13). The EMG data were collected by measurement while the subjects walking on a treadmill for 30 minutes by measuring from one heel strike to the next. [Results] Both the average values and maximum values of the muscle activity of the upper extremity increased in both the group that used Nordic poles and the group that did not use Nordic poles, and the values showed statistically significant differences. There was an increase in the average value for muscle activity of the latissimus dorsi, but the difference was not statistically significant, although there was a statistically significant increase in its maximum value. The average and maximum values for muscle activity of the lower extremity did not show large differences in either group, and the values did not show any statistically significant differences. [Conclusion] The use of Nordic poles by increased muscle activity of the upper extremity compared with regular walking but did not affect the lower extremity.

  8. Ibuprofen ingestion does not affect markers of post-exercise muscle inflammation.

    Directory of Open Access Journals (Sweden)

    Luke eVella

    2016-03-01

    Full Text Available Purpose: We investigated if oral ingestion of ibuprofen influenced leucocyte recruitment and infiltration following an acute bout of traditional resistance exercise. Methods: Sixteen male subjects were divided into two groups that received the maximum over-the-counter dose of ibuprofen (1200 mg d-1 or a similarly administered placebo following lower body resistance exercise. Muscle biopsies were taken from m.vastus lateralis and blood serum samples were obtained before and immediately after exercise, and at 3 h and 24 h after exercise. Muscle cross-sections were stained with antibodies against neutrophils (CD66b and MPO and macrophages (CD68. Muscle damage was assessed via creatine kinase and myoglobin in blood serum samples, and muscle soreness was rated on a ten-point pain scale. Results: The resistance exercise protocol stimulated a significant increase in the number of CD66b+ and MPO+ cells when measured 3 h post exercise. Serum creatine kinase, myoglobin and subjective muscle soreness all increased post-exercise. Muscle leucocyte infiltration, creatine kinase, myoglobin and subjective muscle soreness were unaffected by ibuprofen treatment when compared to placebo. There was also no association between increases in inflammatory leucocytes and any other marker of cellular muscle damage. Conclusion: Ibuprofen administration had no effect on the accumulation of neutrophils, markers of muscle damage or muscle soreness during the first 24 h of post-exercise muscle recovery.

  9. Evaluation of Bioelectrical Activity of Pelvic Floor Muscles and Synergistic Muscles Depending on Orientation of Pelvis in Menopausal Women with Symptoms of Stress Urinary Incontinence: A Preliminary Observational Study

    Directory of Open Access Journals (Sweden)

    Tomasz Halski

    2014-01-01

    Full Text Available Objectives. Evaluation of resting and functional bioelectrical activity of the pelvic floor muscles (PFM and the synergistic muscles, depending on the orientation of the pelvis, in anterior (P1 and posterior (P2 pelvic tilt. Design. Preliminary, prospective observational study. Setting. Department and Clinic of Urology, University Hospital in Wroclaw, Poland. Participants. Thirty-two menopausal and postmenopausal women with stress urinary incontinence were recruited. Based on inclusion and exclusion criteria, sixteen women aged 55 to 70 years were enrolled in the study. Primary Outcome Measures. Evaluation of resting and functional bioelectrical activity of the pelvic floor muscles by electromyography (sEMG and vaginal probe. Secondary Outcome Measures. Evaluation of activity of the synergistic muscles by sEMG and surface electrodes. Results. No significant differences between orientations P1 and P2 were found in functional and resting sEMG activity of the PFM. During resting and functional PFM activity, higher electrical activity in P2 than in P1 has been recorded in some of the synergistic muscles. Conclusions. This preliminary study does not provide initial evidence that pelvic tilt influences PFM activation. Although different activity of synergistic muscles occurs in various orientations of the pelvic tilt, it does not have to affect the sEMG activity of the PFM.

  10. Aging affects the transcriptional regulation of human skeletal muscle disuse atrophy

    DEFF Research Database (Denmark)

    Suetta, Charlotte Arneboe; Frandsen, Ulrik; Jensen, Line

    2012-01-01

    Important insights concerning the molecular basis of skeletal muscle disuse-atrophy and aging related muscle loss have been obtained in cell culture and animal models, but these regulatory signaling pathways have not previously been studied in aging human muscle. In the present study, muscle...... atrophy was induced by immobilization in healthy old and young individuals to study the time-course and transcriptional factors underlying human skeletal muscle atrophy. The results reveal that irrespectively of age, mRNA expression levels of MuRF-1 and Atrogin-1 increased in the very initial phase (2......-4 days) of human disuse-muscle atrophy along with a marked reduction in PGC-1α and PGC-1β (1-4 days) and a ∼10% decrease in myofiber size (4 days). Further, an age-specific decrease in Akt and S6 phosphorylation was observed in young muscle within the first days (1-4 days) of immobilization. In contrast...

  11. Differences in Muscle Activity During Cable Resistance Training Are Influenced by Variations in Handle Types.

    Science.gov (United States)

    Rendos, Nicole K; Heredia Vargas, Héctor M; Alipio, Taislaine C; Regis, Rebeca C; Romero, Matthew A; Signorile, Joseph F

    2016-07-01

    Rendos, NK, Heredia Vargas, HM, Alipio, TC, Regis, RC, Romero, MA, and Signorile, JF. Differences in muscle activity during cable resistance training are influenced by variations in handle types. J Strength Cond Res 30(7): 2001-2009, 2016-There has been a recent resurgence in the use of cable machines for resistance training allowing movements that more effectively simulate daily activities and sports-specific movements. By necessity, these devices require a machine/human interface through some type of handle. Considerable data from material handling, industrial engineering, and exercise training studies indicate that handle qualities, especially size and shape, can significantly influence force production and muscular activity, particularly of the forearm muscles, which affect the critical link in activities that require object manipulation. The purpose for this study was to examine the influence of three different handle conditions: standard handle (StandH), ball handle with the cable between the index and middle fingers (BallIM), and ball handle with the cable between the middle and ring fingers (BallMR), on activity levels (rmsEMG) of the triceps brachii lateral and long heads (TriHLat, TriHLong), brachioradialis (BR), flexor carpi radialis (FCR), extensor carpi ulnaris, and extensor digitorum (ED) during eight repetitions of standing triceps pushdown performed from 90° to 0° elbow flexion at 1.5 s per contractile stage. Handle order was randomized. No significant differences were seen for triceps or BR rmsEMG across handle conditions; however, relative patterns of activation did vary for the forearm muscles by handle condition, with more coordinated activation levels for the FCR and ED during the ball handle conditions. In addition, the rmsEMG for the ED was significantly higher during the BallIM than any other condition and during the BallMR than the StandH. These results indicate that the use of ball handles with the cable passing between different fingers

  12. Assessment of bioelectrical activity of synergistic muscles during pelvic floor muscles activation in postmenopausal women with and without stress urinary incontinence: a preliminary observational study

    Directory of Open Access Journals (Sweden)

    Ptaszkowski K

    2015-09-01

    Full Text Available Kuba Ptaszkowski,1 Małgorzata Paprocka-Borowicz,2 Lucyna Słupska,2 Janusz Bartnicki,1,3 Robert Dymarek,4 Joanna Rosińczuk,4 Jerzy Heimrath,5 Janusz Dembowski,6 Romuald Zdrojowy6 1Department of Obstetrics, 2Department of Clinical Biomechanics and Physiotherapy in Motor System Disorders, Wroclaw Medical University, Wroclaw, Poland; 3Department of Obstetrics and Gynecology, Health Center Bitterfeld/Wolfen gGmbH, Bitterfeld-Wolfen, Germany; 4Department of Nervous System Diseases, 5Department of Gynaecology and Obstetrics, Faculty of Health Science, 6Department and Clinic of Urology, Faculty of Postgraduate Medical Training, Wroclaw Medical University, Wroclaw, Poland Objective: Muscles such as adductor magnus (AM, gluteus maximus (GM, rectus abdominis (RA, and abdominal external and internal oblique muscles are considered to play an important role in the treatment of stress urinary incontinence (SUI, and the relationship between contraction of these muscles and pelvic floor muscles (PFM has been established in previous studies. Synergistic muscle activation intensifies a woman’s ability to contract the PFM. In some cases, even for continent women, it is not possible to fully contract their PFM without involving the synergistic muscles. The primary aim of this study was to assess the surface electromyographic activity of synergistic muscles to PFM (SPFM during resting and functional PFM activation in postmenopausal women with and without SUI.Materials and methods: This study was a preliminary, prospective, cross-sectional observational study and included volunteers and patients who visited the Department and Clinic of Urology, University Hospital in Wroclaw, Poland. Forty-two patients participated in the study and were screened for eligibility criteria. Thirty participants satisfied the criteria and were categorized into two groups: women with SUI (n=16 and continent women (n=14. The bioelectrical activity of PFM and SPFM (AM, RA, GM was

  13. Muscles provide protection during microbial infection by activating innate immune response pathways in Drosophila and zebrafish

    Directory of Open Access Journals (Sweden)

    Arunita Chatterjee

    2016-06-01

    Full Text Available Muscle contraction brings about movement and locomotion in animals. However, muscles have also been implicated in several atypical physiological processes including immune response. The role of muscles in immunity and the mechanism involved has not yet been deciphered. In this paper, using Drosophila indirect flight muscles (IFMs as a model, we show that muscles are immune-responsive tissues. Flies with defective IFMs are incapable of mounting a potent humoral immune response. Upon immune challenge, the IFMs produce anti-microbial peptides (AMPs through the activation of canonical signaling pathways, and these IFM-synthesized AMPs are essential for survival upon infection. The trunk muscles of zebrafish, a vertebrate model system, also possess the capacity to mount an immune response against bacterial infections, thus establishing that immune responsiveness of muscles is evolutionarily conserved. Our results suggest that physiologically fit muscles might boost the innate immune response of an individual.

  14. The association between premature plantarflexor muscle activity, muscle strength, and equinus gait in patients with various pathologies.

    Science.gov (United States)

    Schweizer, Katrin; Romkes, Jacqueline; Brunner, Reinald

    2013-09-01

    This study provides an overview on the association between premature plantarflexor muscle activity (PPF), muscle strength, and equinus gait in patients with various pathologies. The purpose was to evaluate whether muscular weakness and biomechanical alterations are aetiological factors for PPF during walking, independent of the underlying pathology. In a retrospective design, 716 patients from our clinical database with 46 different pathologies (orthopaedic and neurologic) were evaluated. Gait analysis data of the patients included kinematics, kinetics, electromyographic activity (EMG) data, and manual muscle strength testing. All patients were clustered three times. First, patients were grouped according to their primary pathology. Second, all patients were again clustered, this time according to their impaired joints. Third, groups of patients with normal EMG or PPF, and equinus or normal foot contact were formed to evaluate the association between PPF and equinus gait. The patient groups derived by the first two cluster methods were further subdivided into patients with normal or reduced muscle strength. Additionally, the phi correlation coefficient was calculated between PPF and equinus gait. Independent of the clustering, PPF was present in all patient groups. Weak patients revealed PPF more frequently. The correlations of PPF and equinus gait were lower than expected, due to patients with normal EMG during loading response and equinus. These patients, however, showed higher gastrocnemius activity prior to foot strike together with lower peak tibialis anterior muscle activity in loading response. Patients with PPF and a normal foot contact possibly apply the plantarflexion-knee extension couple during loading response. While increased gastrocnemius activity around foot strike seems essential for equinus gait, premature gastrocnemius activity does not necessarily produce an equinus gait. We conclude that premature gastrocnemius activity is strongly associated

  15. Predicted optimum ambient temperatures for broiler chickens to dissipate metabolic heat do not affect performance or improve breast muscle quality.

    Science.gov (United States)

    Zahoor, I; Mitchell, M A; Hall, S; Beard, P M; Gous, R M; De Koning, D J; Hocking, P M

    2016-01-01

    An experiment was conducted to test the hypothesis that muscle damage in fast-growing broiler chickens is associated with an ambient temperature that does not permit the birds to lose metabolic heat resulting in physiological heat stress and a reduction in meat quality. The experiment was performed in 4 climate chambers and was repeated in 2 trials using a total of 200 male broiler chickens. Two treatments compared the recommended temperature profile and a cool regimen. The cool regimen was defined by a theoretical model that determined the environmental temperature that would enable heat generated by the bird to be lost to the environment. There were no differences in growth rate or feed intake between the two treatments. Breast muscles from birds on the recommended temperature regimen were lighter, less red and more yellow than those from the cool temperature regimen. There were no differences in moisture loss or shear strength but stiffness was greater in breast muscle from birds housed in the cool compared to the recommended regimen. Histopathological changes in the breast muscle were similar in both treatments and were characterised by mild to severe myofibre degeneration and necrosis with regeneration, fibrosis and adipocyte infiltration. There was no difference in plasma creatine kinase activity, a measure of muscle cell damage, between the two treatments consistent with the absence of differences in muscle pathology. It was concluded that breast muscle damage in fast-growing broiler chickens was not the result of an inability to lose metabolic heat at recommended ambient temperatures. The results suggest that muscle cell damage and breast meat quality concerns in modern broiler chickens are related to genetic selection for muscle yields and that genetic selection to address breast muscle integrity in a balanced breeding programme is imperative.

  16. Physical exercise in aging human skeletal muscle increases mitochondrial calcium uniporter expression levels and affects mitochondria dynamics.

    Science.gov (United States)

    Zampieri, Sandra; Mammucari, Cristina; Romanello, Vanina; Barberi, Laura; Pietrangelo, Laura; Fusella, Aurora; Mosole, Simone; Gherardi, Gaia; Höfer, Christian; Löfler, Stefan; Sarabon, Nejc; Cvecka, Jan; Krenn, Matthias; Carraro, Ugo; Kern, Helmut; Protasi, Feliciano; Musarò, Antonio; Sandri, Marco; Rizzuto, Rosario

    2016-12-01

    Age-related sarcopenia is characterized by a progressive loss of muscle mass with decline in specific force, having dramatic consequences on mobility and quality of life in seniors. The etiology of sarcopenia is multifactorial and underlying mechanisms are currently not fully elucidated. Physical exercise is known to have beneficial effects on muscle trophism and force production. Alterations of mitochondrial Ca 2+ homeostasis regulated by mitochondrial calcium uniporter (MCU) have been recently shown to affect muscle trophism in vivo in mice. To understand the relevance of MCU-dependent mitochondrial Ca 2+ uptake in aging and to investigate the effect of physical exercise on MCU expression and mitochondria dynamics, we analyzed skeletal muscle biopsies from 70-year-old subjects 9 weeks trained with either neuromuscular electrical stimulation (ES) or leg press. Here, we demonstrate that improved muscle function and structure induced by both trainings are linked to increased protein levels of MCU Ultrastructural analyses by electron microscopy showed remodeling of mitochondrial apparatus in ES-trained muscles that is consistent with an adaptation to physical exercise, a response likely mediated by an increased expression of mitochondrial fusion protein OPA1. Altogether these results indicate that the ES-dependent physiological effects on skeletal muscle size and force are associated with changes in mitochondrial-related proteins involved in Ca 2+ homeostasis and mitochondrial shape. These original findings in aging human skeletal muscle confirm the data obtained in mice and propose MCU and mitochondria-related proteins as potential pharmacological targets to counteract age-related muscle loss. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  17. Rapid increases in training load affects markers of skeletal muscle damage and mechanical performance

    DEFF Research Database (Denmark)

    Kamandulis, Sigitas; Snieckus, Audrius; Venckunas, Tomas

    2012-01-01

    The aim of the present study was to monitor the changes in indirect markers of muscle damage during 3 weeks (nine training sessions) of stretch-shortening (drop jump) exercise with constant load alternated with steep increases in load. Physically active men (n = 9, mean age 19.1 years) performed....... Maximal jump height increased by 7.8% ± 6.3% (P training session, respectively. Gains in isometric knee extension MVC (7.9% ± 8.2%) and 100-Hz-evoked torque (9.9% ± 9.6%) (both P ... within 17 days after the end of training. The magnitude of improvement was greater after this protocol than that induced by a continuous constant progression loading pattern with small gradual load increments in each training session. These findings suggest that plyometric training using infrequent...

  18. Effect of knee joint angle on neuromuscular activation of the vastus intermedius muscle during isometric contraction.

    Science.gov (United States)

    Watanabe, K; Akima, H

    2011-12-01

    The purpose of this study was to compare the relationship between surface electromyography (EMG) and knee joint angle of the vastus intermedius muscle (VI) with the synergistic muscles in the quadriceps femoris (QF) muscle group. Fourteen healthy men performed maximal voluntary contractions during isometric knee extension at four knee joint angles from 90°, 115°, 140°, and 165° (180° being full extension). During the contractions, surface EMG was recorded at four muscle components of the QF muscle group: the VI, vastus lateralis (VL), vastus medialis (VM), and rectus femoris (RF) muscles. The root mean square of the surface EMG at each knee joint angle was calculated and normalized by that at a knee joint angle of 90° for individual muscles. The normalized RMS of the VI muscle was significantly lower than those of the VL and RF muscles at the knee joint angles of 115° and 165° and those of the VL, VM, and RF muscles at the knee joint angle of 140° (Pneuromuscular activation of the VI muscle is regulated in a manner different from the alteration of the knee joint angle compared with other muscle components of the QF muscle group. © 2011 John Wiley & Sons A/S.

  19. Differential activation of an identified motor neuron and neuromodulation provide Aplysia's retractor muscle an additional function.

    Science.gov (United States)

    McManus, Jeffrey M; Lu, Hui; Cullins, Miranda J; Chiel, Hillel J

    2014-08-15

    To survive, animals must use the same peripheral structures to perform a variety of tasks. How does a nervous system employ one muscle to perform multiple functions? We addressed this question through work on the I3 jaw muscle of the marine mollusk Aplysia californica's feeding system. This muscle mediates retraction of Aplysia's food grasper in multiple feeding responses and is innervated by a pool of identified neurons that activate different muscle regions. One I3 motor neuron, B38, is active in the protraction phase, rather than the retraction phase, suggesting the muscle has an additional function. We used intracellular, extracellular, and muscle force recordings in several in vitro preparations as well as recordings of nerve and muscle activity from intact, behaving animals to characterize B38's activation of the muscle and its activity in different behavior types. We show that B38 specifically activates the anterior region of I3 and is specifically recruited during one behavior, swallowing. The function of this protraction-phase jaw muscle contraction is to hold food; thus the I3 muscle has an additional function beyond mediating retraction. We additionally show that B38's typical activity during in vivo swallowing is insufficient to generate force in an unmodulated muscle and that intrinsic and extrinsic modulation shift the force-frequency relationship to allow contraction. Using methods that traverse levels from individual neuron to muscle to intact animal, we show how regional muscle activation, differential motor neuron recruitment, and neuromodulation are key components in Aplysia's generation of multifunctionality. Copyright © 2014 the American Physiological Society.

  20. The Changes of Muscle Strength and Functional Activities During Aging in Male and Female Populations

    Directory of Open Access Journals (Sweden)

    Shih-Jung Cheng

    2014-12-01

    Conclusion: We noted that the muscle strength and functional activities were decreased earlier in female than male individuals. The decrease of functional activities during the aging process seems to be earlier than the decrease of muscle strength. It is important to implement functional activities training in addition to strengthening exercise to maintain functional levels of the geriatric population.

  1. Na+-K+-ATPase in rat skeletal muscle: muscle fiber-specific differences in exercise-induced changes in ion affinity and maximal activity

    DEFF Research Database (Denmark)

    Juel, Carsten

    2008-01-01

    It is unclear whether muscle activity reduces or increases Na(+)-K(+)-ATPase maximal in vitro activity in rat skeletal muscle, and it is not known whether muscle activity changes the Na(+)-K(+)-ATPase ion affinity. The present study uses quantification of ATP hydrolysis to characterize muscle fiber...... membranes of glycolytic muscle, which abolished the fiber-type difference in Na(+) affinity. K(m) for K(+) (in the presence of Na(+)) was not influenced by running. Running only increased the maximal in vitro activity (V(max)) in total membranes from soleus, whereas V(max) remained constant in the three...... other muscles tested. In conclusion, muscle activity induces fiber type-specific changes both in Na(+) affinity and maximal in vitro activity of the Na(+)-K(+)-ATPase. The underlying mechanisms may involve translocation of subunits and increased association between PLM units and the alphabeta complex...

  2. Humeral external rotation handling by using the Bobath concept approach affects trunk extensor muscles electromyography in children with cerebral palsy.

    Science.gov (United States)

    Grazziotin Dos Santos, C; Pagnussat, Aline S; Simon, A S; Py, Rodrigo; Pinho, Alexandre Severo do; Wagner, Mário B

    2014-10-20

    This study aimed to investigate the electromyographic activity of cervical and trunk extensors muscles in children with cerebral palsy during two handlings according to the Bobath concept. A crossover trial involving 40 spastic diplegic children was conducted. Electromyography (EMG) was used to measure muscular activity at sitting position (SP), during shoulder internal rotation (IR) and shoulder external rotation (ER) handlings, which were performed using the elbow joint as key point of control. Muscle recordings were performed at the fourth cervical (C4) and at the tenth thoracic (T10) vertebral levels. The Gross Motor Function Classification System (GMFCS) was used to assess whether muscle activity would vary according to different levels of severity. Humeral ER handling induced an increase on EMG signal of trunk extensor muscles at the C4 (P=0.007) and T10 (P<0.001) vertebral levels. No significant effects were observed between SP and humeral IR handling at C4 level; However at T10 region, humeral IR handling induced an increase of EMG signal (P=0.019). Humeral ER resulted in an increase of EMG signal at both levels, suggesting increase of extensor muscle activation. Furthermore, the humeral ER handling caused different responses on EMG signal at T10 vertebra level, according to the GMFCS classification (P=0.017). In summary, an increase of EMG signal was observed during ER handling in both evaluated levels, suggesting an increase of muscle activation. These results indicate that humeral ER handling can be used for diplegic CP children rehabilitation to facilitate cervical and trunk extensor muscles activity in a GMFCS level-dependent manner. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. α-smooth muscle actin is not a marker of fibrogenic cell activity in skeletal muscle fibrosis.

    Directory of Open Access Journals (Sweden)

    Wanming Zhao

    Full Text Available α-Smooth muscle actin (α-SMA is used as a marker for a subset of activated fibrogenic cells, myofibroblasts, which are regarded as important effector cells of tissue fibrogenesis. We address whether α-SMA-expressing myofibroblasts are detectable in fibrotic muscles of mdx5cv mice, a mouse model for Duchenne muscular dystrophy (DMD, and whether the α-SMA expression correlates with the fibrogenic function of intramuscular fibrogenic cells. α-SMA immunostaining signal was not detected in collagen I (GFP-expressing cells in fibrotic muscles of ColI-GFP/mdx5cv mice, but it was readily detected in smooth muscle cells lining intramuscular blood vessel walls. α-SMA expression was detected by quantitative RT-PCR and Western blot in fibrogenic cells sorted from diaphragm and quadriceps muscles of the ColI-GFP/mdx5cv mice. Consistent with the more severe fibrosis in the ColI-GFP/mdx5cv diaphragm, the fibrogenic cells in the diaphragm exerted a stronger fibrogenic function than the fibrogenic cells in the quadriceps as gauged by their extracellular matrix gene expression. However, both gene and protein expression of α-SMA was lower in the diaphragm fibrogenic cells than in the quadriceps fibrogenic cells in the ColI-GFP/mdx5cv mice. We conclude that myofibroblasts are present in fibrotic skeletal muscles, but their expression of α-SMA is not detectable by immunostaining. The level of α-SMA expression by intramuscular fibrogenic cells does not correlate positively with the level of collagen gene expression or the severity of skeletal muscle fibrosis in the mdx5cv mice. α-SMA is not a functional marker of fibrogenic cells in skeletal muscle fibrosis associated with muscular dystrophy.

  4. Changes in muscle activity and stature recovery after active rehabilitation for chronic low back pain.

    Science.gov (United States)

    Lewis, Sandra; Holmes, Paul; Woby, Steve; Hindle, Jackie; Fowler, Neil

    2014-06-01

    Patients with low back pain often demonstrate elevated paraspinal muscle activity compared to asymptomatic controls. This hyperactivity has been associated with a delayed rate of stature recovery following spinal loading tasks. The aim of this study was to investigate the changes in muscle activity and stature recovery in patients with chronic low back pain following an active rehabilitation programme. The body height recovery over a 40-min unloading period was assessed via stadiometry and surface electromyograms were recorded from the paraspinal muscles during standing. The measurements were repeated after patients had attended the rehabilitation programme and again at a six-month follow-up. Analysis was based on 17 patients who completed the post-treatment analysis and 12 of these who also participated in the follow-up. By the end of the six months, patients recovered significantly more height during the unloading session than at their initial visit (ES = 1.18; P < 0.01). Greater stature recovery immediately following the programme was associated with decreased pain (r = -0.55; P = 0.01). The increased height gain after six months suggests that delayed rates of recovery are not primarily caused by disc degeneration. Muscle activity did not decrease after treatment, perhaps reflecting a period of adaptation or altered patterns of motor control. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Estimating Co-Contraction Activation of Trunk Muscles Using a Novel Musculoskeletal Model for Pregnant Women

    Directory of Open Access Journals (Sweden)

    Saori Morino

    2017-10-01

    Full Text Available Weight gain and stretched abdominal muscles from an enlarged gravid uterus are remarkable features during pregnancy. These changes elicit postural instability and place strain on body segments, contributing to lower back pain. In general, the agonist and antagonist muscles act simultaneously to increase joint stabilization; however, this can cause additional muscle stress during movement. Furthermore, this activation can be observed in pregnant women because of their unstable body joints. Hence, physical modalities based on assessments of muscle activation are useful for managing low back pain during pregnancy. Musculoskeletal models are common when investigating muscle load. However, it is difficult to apply such models to pregnant women and estimate the co-contraction of muscles using musculoskeletal models. Therefore, the purpose of this study is to construct a musculoskeletal model for pregnant women that estimates the co-contraction of trunk muscles. First, motion analysis was conducted on a pregnant woman and the muscle activations of the rectus abdominis and erector spinae were measured. Then, the musculoskeletal model was specifically modified for pregnant women. Finally, the co-contraction was estimated from the results of the musculoskeletal model and electromyography data using a genetic algorithm. With the proposed methods, weakened abdominal muscle torque and the co-contraction activation of trunk muscles were estimated successfully.

  6. STAT3 Activation in Skeletal Muscle Links Muscle Wasting and the Acute Phase Response in Cancer Cachexia

    Science.gov (United States)

    Kunzevitzky, Noelia; Guttridge, Denis C.; Khuri, Sawsan; Koniaris, Leonidas G.; Zimmers, Teresa A.

    2011-01-01

    Background Cachexia, or weight loss despite adequate nutrition, significantly impairs quality of life and response to therapy in cancer patients. In cancer patients, skeletal muscle wasting, weight loss and mortality are all positively associated with increased serum cytokines, particularly Interleukin-6 (IL-6), and the presence of the acute phase response. Acute phase proteins, including fibrinogen and serum amyloid A (SAA) are synthesized by hepatocytes in response to IL-6 as part of the innate immune response. To gain insight into the relationships among these observations, we studied mice with moderate and severe Colon-26 (C26)-carcinoma cachexia. Methodology/Principal Findings Moderate and severe C26 cachexia was associated with high serum IL-6 and IL-6 family cytokines and highly similar patterns of skeletal muscle gene expression. The top canonical pathways up-regulated in both were the complement/coagulation cascade, proteasome, MAPK signaling, and the IL-6 and STAT3 pathways. Cachexia was associated with increased muscle pY705-STAT3 and increased STAT3 localization in myonuclei. STAT3 target genes, including SOCS3 mRNA and acute phase response proteins, were highly induced in cachectic muscle. IL-6 treatment and STAT3 activation both also induced fibrinogen in cultured C2C12 myotubes. Quantitation of muscle versus liver fibrinogen and SAA protein levels indicates that muscle contributes a large fraction of serum acute phase proteins in cancer. Conclusions/Significance These results suggest that the STAT3 transcriptome is a major mechanism for wasting in cancer. Through IL-6/STAT3 activation, skeletal muscle is induced to synthesize acute phase proteins, thus establishing a molecular link between the observations of high IL-6, increased acute phase response proteins and muscle wasting in cancer. These results suggest a mechanism by which STAT3 might causally influence muscle wasting by altering the profile of genes expressed and translated in muscle such

  7. Hydrogen peroxide modulates Ca2+-activation of single permeabilized fibres from fast- and slow-twitch skeletal muscles of rats.

    Science.gov (United States)

    Plant, D R; Lynch, G S; Williams, D A

    2000-01-01

    We examined the effects of redox modulation on single membrane-permeabilized fibre segments from the fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus muscles of adult rats to determine whether the contractile apparatus was the redox target responsible for the increased contractility of muscles exposed to low concentrations of H2O2. The effects of H2O2 on maximum Ca2+-activated force were dose-dependent with 30 min exposure to 5 mM H2O2 causing a progressive decrease by 22+/-3 and 13+/-2% in soleus and EDL permeabilized muscle fibres, respectively. Lower concentrations of exogenous H2O2 (100 microM and 1 mM) had no effect on maximum Ca2+-activated force. Subsequent exposure to the reductant dithiothreitol (DTT, 10 mM, 10 min) fully reversed the H2O2-induced depression of force in EDL, but not in soleus muscle fibres. Incubation with DTT alone for 10 min did not alter Ca2+-activated force in either soleus or EDL muscle fibres. The sensitivity of the contractile filaments to Ca2+ (pCa50) was not altered by exposure to any concentration of exogenous H2O2. However, all concentrations of H2O2 diminished the Hill coefficient in permeabilized fibres from the EDL muscle, indicating that the cooperativity of Ca2+ binding to troponin is altered. H2O2 (5 mM) did not affect rigor force, which indicates that the number of crossbridges participating in contraction was not reduced. In conclusion, H2O2 may reduce the maximum Ca2+ activated force production in skinned muscle fibres by decreasing the force per crossbridge.

  8. ATPase activity and contraction in porcine and human cardiac muscle

    Czech Academy of Sciences Publication Activity Database

    Griffiths, P. J.; Isackson, H.; Redwood, C.; Marston, S.; Pelc, Radek; Funari, S.; Watkins, H.; Ashley, C. C.

    2008-01-01

    Roč. 29, 6-8 (2008), s. 277-277 ISSN 0142-4319. [European Muscle Conference of the European Society for Muscle Research /37./. 13.09.2008-16.09.2008, Oxford] R&D Projects: GA MŠk(CZ) LC06063 Grant - others:EC(XE) RII3-CT-2004-506008 Institutional research plan: CEZ:AV0Z50110509 Keywords : cpo1 * ATP-asa * cardiac muscle * molecular motor Subject RIV: ED - Physiology

  9. Development of active, nanoparticle, antimicrobial technologies for muscle-based packaging applications.

    Science.gov (United States)

    Morris, Michael A; Padmanabhan, Sibu C; Cruz-Romero, Malco C; Cummins, Enda; Kerry, Joseph P

    2017-10-01

    Fresh and processed muscle-based foods are highly perishable food products and packaging plays a crucial role in providing containment so that the full effect of preservation can be achieved through the provision of shelf-life extension. Conventional packaging materials and systems have served the industry well, however, greater demands are being placed upon industrial packaging formats owing to the movement of muscle-based products to increasingly distant markets, as well as increased customer demands for longer product shelf-life and storage capability. Consequently, conventional packaging materials and systems will have to evolve to meet these challenges. This review presents some of the new strategies that have been developed by employing novel nanotechnological concepts which have demonstrated some promise in significantly extending the shelf-life of muscle-based foods by providing commercially-applicable, antimicrobially-active, smart packaging solutions. The primary focus of this paper is applied to subject aspects, such as; material chemistries employed, forming methods utilised, interactions of the packaging functionalities including nanomaterials employed with polymer substrates and how such materials ultimately affect microbes. In order that such materials become industrially feasible, it is important that safe, stable and commercially-viable packaging materials are shown to be producible and effective in order to gain public acceptance, legislative approval and industrial adoption. Copyright © 2017. Published by Elsevier Ltd.

  10. Temporalis and masseter muscle activity in patients with anterior open bite and craniomandibular disorders

    DEFF Research Database (Denmark)

    Bakke, Merete; Michler, L

    1991-01-01

    values, particularly in subjects with muscular affection, but maximal activity increased significantly when biting on the splint. Maximal voluntary contraction was positively correlated to molar contact and negatively to anterior face height, mandibular inclination, vertical jaw relation and gonial angle......Activity in temporalis and masseter muscles, and traits of facial morphology and occlusal stability were studied in 22 patients (19 women, 3 men; 15-45 yr of age) with anterior open bite and symptoms and signs of craniomandibular disorders. Facial morphology was assessed by profile radiographs......, occlusal stability by tooth contacts, and craniomandibular function by clinical and radiological examination. Electromyographic activity was recorded by surface electrodes after primary treatment with a reflex-releasing, stabilizing splint. Maximal voluntary contraction was reduced compared to reference...

  11. Epidemiological investigation of muscle-strengthening activities and cognitive function among older adults.

    Science.gov (United States)

    Loprinzi, Paul D

    2016-06-01

    Limited research has examined the association of muscle-strengthening activities and executive cognitive function among older adults, which was this study's purpose. Data from the 1999-2002 NHANES were employed (N = 2157; 60-85 years). Muscle-strengthening activities were assessed via self-report, with cognitive function assessed using the digit symbol substitution test. After adjusting for age, age-squared, gender, race-ethnicity, poverty level, body mass index, C-reactive protein, smoking, comorbid illness and physical activity, muscle-strengthening activities were significantly associated with cognitive function (βadjusted = 3.4; 95% CI: 1.7-5.1; P cognitive function score. In conclusion, muscle-strengthening activities are associated with executive cognitive function among older U.S. adults, underscoring the importance of promoting both aerobic exercise and muscle-strengthening activities to older adults. © The Author(s) 2016.

  12. Acute effects of massage or active exercise in relieving muscle soreness

    DEFF Research Database (Denmark)

    Andersen, Lars L; Jay, Kenneth; Andersen, Christoffer H

    2013-01-01

    Massage is commonly believed to be the best modality for relieving muscle soreness. However, actively warming up the muscles with exercise may be an effective alternative. The purpose of this study was to compare the acute effect of massage with active exercise for relieving muscle soreness. Twenty...... healthy female volunteers (mean age 32 years) participated in this examiner-blind randomized controlled trial (ClinicalTrials.gov NCT01478451). The participants performed eccentric contractions for the upper trapezius muscle on a Biodex dynamometer. Delayed onset muscle soreness (DOMS) presented 48 hours...... later, at which the participants (a) received 10 minutes of massage of the trapezius muscle or (b) performed 10 minutes of active exercise (shoulder shrugs 10 × 10 reps) with increasing elastic resistance (Thera-Band). First, 1 treatment was randomly applied to 1 shoulder while the contralateral...

  13. Muscle size, neuromuscular activation, and rapid force characteristics in elderly men and women

    DEFF Research Database (Denmark)

    Suetta, C; Aagaard, P; Magnusson, S P

    2007-01-01

    quadriceps muscle cross-sectional area (LCSA), contractile rate of force development (RFD, Delta force/Delta time), impulse (integral force dt), muscle activation deficit (interpolated twitch technique), maximal neuromuscular activity [electromyogram (EMG)], and antagonist muscle coactivation in elderly men......%), contractile RFD (W: 17-26%; M: 15-24%), impulse (W: 10-19%, M: 19-20%), maximal EMG amplitude (W: 22-25%, M: 22-28%), and an increased muscle activation deficit (-18%) compared with UN. Furthermore, women were less strong (AF: 40%; UN: 39%), had less muscle mass (AF: 33%; UN: 34%), and had a lower RFD (AF: 38......-50%; UN: 41-48%) compared with men. Similarly, maximum EMG amplitude was smaller for both agonists (AF: 51-63%; UN: 35-61%) and antagonist (AF: 49-64%; UN: 36-56%) muscles in women compared with men. However, when MVC and RFD were normalized to LCSA, there were no differences between genders. The present...

  14. Electrostimulation improves muscle perfusion but does not affect either muscle deoxygenation or pulmonary oxygen consumption kinetics during a heavy constant-load exercise.

    Science.gov (United States)

    Layec, Gwenael; Millet, Grégoire P; Jougla, Aurélie; Micallef, Jean-Paul; Bendahan, David

    2008-02-01

    Electromyostimulation (EMS) is commonly used as part of training programs. However, the exact effects at the muscle level are largely unknown and it has been recently hypothesized that the beneficial effect of EMS could be mediated by an improved muscle perfusion. In the present study, we investigated rates of changes in pulmonary oxygen consumption (VO(2p)) and muscle deoxygenation during a standardized exercise performed after an EMS warm-up session. We aimed at determining whether EMS could modify pulmonary O(2) uptake and muscle deoxygenation as a result of improved oxygen delivery. Nine subjects performed a 6-min heavy constant load cycling exercise bout preceded either by an EMS session (EMS) or under control conditions (CONT). VO(2p) and heart rate (HR) were measured while deoxy-(HHb), oxy-(HbO(2)) and total haemoglobin/myoglobin (Hb(tot)) relative contents were measured using near infrared spectroscopy. EMS significantly increased (P < 0.05) the Hb(tot) resting level illustrating a residual hyperaemia. The EMS priming exercise did not affect either the HHb time constant (17.7 +/- 14.2 s vs. 13.1 +/- 2.3 s under control conditions) or the VO(2p) kinetics (time-constant = 18.2 +/- 5.2 s vs. 15.4 +/- 4.6 s under control conditions). Likewise, the other VO(2p) parameters were unchanged. Our results further indicated that EMS warm-up improved muscle perfusion through a residual hyperaemia. However, neither VO(2p) nor [HHb] kinetics were modified accordingly. These results suggest that improved O(2) delivery by residual hyperaemia induced by EMS does not accelerate the rate of aerobic metabolism during heavy exercise at least in trained subjects.

  15. Silver nanoparticles administered to chicken affect VEGFA and FGF2 gene expression in breast muscle and heart

    DEFF Research Database (Denmark)

    Hotowy, Anna Malgorzata; Sawosz, Ewa; Pineda, Lane Manalili

    2012-01-01

    Nanoparticles of colloidal silver (AgNano) can influence gene expression. Concerning trials of AgNano application in poultry as antimicrobial and metabolic agents, it is useful to reveal whether they affect the expression of genes crucial for bird development. AgNano were administered to broiler...... chickens as a water solution in two concentrations (10 and 20 ppm). After dissection of the birds, breast muscles and hearts were collected. Gene expression of FGF2 and VEGF on the mRNA and protein levels were evaluated using qPCR and ELISA methods. The results for gene expression in breast muscle revealed...

  16. A Trap Motion in Validating Muscle Activity Prediction from Musculoskeletal Model using EMG

    NARCIS (Netherlands)

    Wibawa, A. D.; Verdonschot, N.; Halbertsma, J.P.K.; Burgerhof, J.G.M.; Diercks, R.L.; Verkerke, G. J.

    2016-01-01

    Musculoskeletal modeling nowadays is becoming the most common tool for studying and analyzing human motion. Besides its potential in predicting muscle activity and muscle force during active motion, musculoskeletal modeling can also calculate many important kinetic data that are difficult to measure

  17. Lower physical activity is associated with fat infiltration within skeletal muscle in young girls

    Science.gov (United States)

    Fat infiltration within skeletal muscle is strongly associated with obesity, type 2 diabetes mellitus, and metabolic syndrome. Lower physical activity may be a risk factor for greater fat infiltration within skeletal muscle, although whether lower physical activity is associated with fat infiltrati...

  18. Effects of training and weight support on muscle activation in Parkinson's disease.

    Science.gov (United States)

    Rose, Martin H; Løkkegaard, Annemette; Sonne-Holm, Stig; Jensen, Bente R

    2013-12-01

    The aim of this study was to investigate the effect of high-intensity locomotor training on knee extensor and flexor muscle activation and adaptability to increased body-weight (BW) support during walking in patients with Parkinson's disease (PD). Thirteen male patients with idiopathic PD and eight healthy participants were included. The PD patients completed an 8-week training program on a lower-body, positive-pressure treadmill. Knee extensor and flexor muscles activation during steady treadmill walking (3 km/h) were measured before, at the mid-point, and after training. Increasing BW support decreased knee extensor muscle activation (normalization) and increased knee flexor muscle activation (abnormal) in PD patients when compared to healthy participants. Training improved flexor peak muscle activation adaptability to increased (BW) support during walking in PD patients. During walking without BW support shorter knee extensor muscle off-activation time and increased relative peak muscle activation was observed in PD patients and did not improve with 8 weeks of training. In conclusion, patients with PD walked with excessive activation of the knee extensor and flexor muscles when compared to healthy participants. Specialized locomotor training may facilitate adaptive processes related to motor control of walking in PD patients. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Biofeedback effectiveness to reduce upper limb muscle activity during computer work is muscle specific and time pressure dependent

    DEFF Research Database (Denmark)

    Vedsted, Pernille; Søgaard, Karen; Blangsted, Anne Katrine

    2011-01-01

    trapezius (TRA) can reduce bilateral TRA activity but not extensor digitorum communis (EDC) activity; (2) biofeedback from EDC can reduce activity in EDC but not in TRA; (3) biofeedback is more effective in no time constraint than in the time constraint working condition. Eleven healthy women performed......Continuous electromyographic (EMG) activity level is considered a risk factor in developing muscle disorders. EMG biofeedback is known to be useful in reducing EMG activity in working muscles during computer work. The purpose was to test the following hypotheses: (1) unilateral biofeedback from...... computer work during two different working conditions (time constraint/no time constraint) while receiving biofeedback. Biofeedback was given from right TRA or EDC through two modes (visual/auditory) by the use of EMG or mechanomyography as biofeedback source. During control sessions (no biofeedback), EMG...

  20. Eccentric contractions affect muscle membrane phospholipid fatty acid composition in rats

    DEFF Research Database (Denmark)

    Helge, Jørn Wulff; Therkildsen, K J; Jørgensen, T B

    2001-01-01

    This study investigated if prior eccentric contractions, and thus mechanical strain and muscle damage, exert an effect on the muscle membrane phospholipid fatty acid composition in rats, and whether a possible effect could be attenuated by dietary supplements. Twenty-three rats were randomised...... muscle, was excised from both legs. In the muscles stimulated to contract eccentrically, compared to the control muscles, the proportion of arachidonic acid, C20:4,n-6 (17.7 +/- 0.6; 16.4 +/- 0.4% of total fatty acids, respectively) and docosapentanoeic acid, C22:5,n-3 (2.9 +/- 0.1 and 2.7 +/- 0.......1% of total fatty acids, respectively) was uniformly higher across groups (P fatty acids) compared to the control leg (38.2 +/- 0...

  1. An Active Learning Mammalian Skeletal Muscle Lab Demonstrating Contractile and Kinetic Properties of Fast- and Slow-Twitch Muscle

    Science.gov (United States)

    Head, S. I.; Arber, M. B.

    2013-01-01

    The fact that humans possess fast and slow-twitch muscle in the ratio of approximately 50% has profound implications for designing exercise training strategies for power and endurance activities. With the growth of exercise and sport science courses, we have seen the need to develop an undergraduate student laboratory that demonstrates the basic…

  2. Acute sex hormone suppression reduces skeletal muscle sympathetic nerve activity.

    Science.gov (United States)

    Day, Danielle S; Gozansky, Wendolyn S; Bell, Christopher; Kohrt, Wendy M

    2011-10-01

    Comparisons of sympathetic nervous system activity (SNA) between young and older women have produced equivocal results, in part due to inadequate control for potential differences in sex hormone concentrations, age, and body composition. The aim of the present study was to determine the effect of a short-term reduction in sex hormones on tonic skeletal muscle sympathetic nerve activity (MSNA), an indirect measure of whole body SNA, using an experimental model of sex hormone deficiency in young women. We also assessed the independent effects of estradiol and progesterone add-back therapy on MSNA. MSNA was measured in 9 women (30±2 years; mean±SE) on three separate occasions: during the mid-luteal menstrual cycle phase, on the fifth day of gonadotropin-releasing hormone antagonist (GnRHant) administration, and after 5 days add-back of either estradiol (n=4) or progesterone (n=3) during continued GnRHant administration. In response to GnRHant, there were significant reductions in serum estradiol and progesterone (both psuppression attenuates MSNA and that this may be related to the suppression of progesterone rather than estradiol.

  3. Solar activity affects avian timing of reproduction

    NARCIS (Netherlands)

    Visser, M.E.; Sanz, J.J.

    2009-01-01

    Avian timing of reproduction is strongly affected by ambient temperature. Here we show that there is an additional effect of sunspots on laying date, from five long-term population studies of great and blue tits (Parus major and Cyanistes caeruleus), demonstrating for the first time that solar

  4. Increased Stiffness in Aged Skeletal Muscle Impairs Muscle Progenitor Cell Proliferative Activity.

    Directory of Open Access Journals (Sweden)

    Grégory Lacraz

    Full Text Available Skeletal muscle aging is associated with a decreased regenerative potential due to the loss of function of endogenous stem cells or myogenic progenitor cells (MPCs. Aged skeletal muscle is characterized by the deposition of extracellular matrix (ECM, which in turn influences the biomechanical properties of myofibers by increasing their stiffness. Since the stiffness of the MPC microenvironment directly impacts MPC function, we hypothesized that the increase in muscle stiffness that occurs with aging impairs the behavior of MPCs, ultimately leading to a decrease in regenerative potential.We showed that freshly isolated individual myofibers from aged mouse muscles contain fewer MPCs overall than myofibers from adult muscles, with fewer quiescent MPCs and more proliferative and differentiating MPCs. We observed alterations in cultured MPC behavior in aged animals, where the proliferation and differentiation of MPCs were lower and higher, respectively. These alterations were not linked to the intrinsic properties of aged myofibers, as shown by the similar values for the cumulative population-doubling values and fusion indexes. However, atomic force microscopy (AFM indentation experiments revealed a nearly 4-fold increase in the stiffness of the MPC microenvironment. We further showed that the increase in stiffness is associated with alterations to muscle ECM, including the accumulation of collagen, which was correlated with higher hydroxyproline and advanced glycation end-product content. Lastly, we recapitulated the impaired MPC behavior observed in aging using a hydrogel substrate that mimics the stiffness of myofibers.These findings provide novel evidence that the low regenerative potential of aged skeletal muscle is independent of intrinsic MPC properties but is related to the increase in the stiffness of the MPC microenvironment.

  5. Thoracic posture, shoulder muscle activation patterns and isokinetic ...

    African Journals Online (AJOL)

    Poor posture, scapular dyskinesia, altered scapular muscle recruitment patterns and ... postural deviation and incorrect shoulder kinematics.[5]. Knowledge of the .... the contra-lateral hand was placed as far down the spinal column as possible, and the ... produced by muscle contraction for rotation around a joint.[12] During.

  6. The effects of surface condition on abdominal muscle activity during single-legged hold exercise.

    Science.gov (United States)

    Ha, Sung-min; Oh, Jae-seop; Jeon, In-cheol; Kwon, Oh-yun

    2015-02-01

    To treat low-back pain, various spinal stability exercises are commonly used to improve trunk muscle function and strength. Because human movement for normal daily activity occurs in multi-dimensions, the importance of exercise in multi-dimensions or on unstable surfaces has been emphasized. Recently, a motorized rotating platform (MRP) for facilitating multi-dimensions dynamic movement was introduced for clinical use. However, the abdominal muscle activity with this device has not been reported. The purpose of this study was to compare the abdominal muscle activity (rectus abdominis, external and internal oblique muscles) during an active single-leg-hold (SLH) exercise on a floor (stable surface), foam roll, and motorized rotating platform (MRP). Thirteen healthy male subjects participated in this study. Using electromyography, the abdominal muscle activity was measured while the subjects performed SLH exercises on floor (stable surface), foam roll, and MRP. There were significant differences in the abdominal muscle activities among conditions (P.05) (Fig. 2). After the Bonferroni correction, however, no significant differences among conditions remained, except for differences in both side IO muscle activity between the floor and foam roll conditions (padjexercises on a foam roll and MRP is more effective increased activities of both side of RA and IO, and Rt. EO compared to floor condition. However, there were no significant differences in abdominal muscles activity in the multiple comparison between conditions (mean difference were smaller than the standard deviation in the abdominal muscle activities) (padj>0.017), except for differences in both side IO muscle activity between the floor (stable surface) and foam roll (padj<0.017) (effect size: 0.79/0.62 (non-supporting/supporting leg) for foam-roll versus floor). Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Effects of training and weight support on muscle activation in Parkinson's disease

    DEFF Research Database (Denmark)

    Rose, Martin Høyer; Løkkegaard, Annemette; Sonne-Holm, Stig

    2013-01-01

    The aim of this study was to investigate the effect of high-intensity locomotor training on knee extensor and flexor muscle activation and adaptability to increased body-weight (BW) support during walking in patients with Parkinson's disease (PD). Thirteen male patients with idiopathic PD and eight...... healthy participants were included. The PD patients completed an 8-week training program on a lower-body, positive-pressure treadmill. Knee extensor and flexor muscles activation during steady treadmill walking (3km/h) were measured before, at the mid-point, and after training. Increasing BW support...... decreased knee extensor muscle activation (normalization) and increased knee flexor muscle activation (abnormal) in PD patients when compared to healthy participants. Training improved flexor peak muscle activation adaptability to increased (BW) support during walking in PD patients. During walking without...

  8. Quantification of muscle activity during sleep for patients with neurodegenerative diseases

    DEFF Research Database (Denmark)

    Hanif, Umaer; Trap, Lotte; Jennum, Poul

    2015-01-01

    Idiopathic REM sleep behavior disorder (iRBD) is a very strong predictor for later development of Parkinson's disease (PD), and is characterized by REM sleep without atonia (RSWA), resulting in increased muscle activity during REM sleep. Abundant studies have shown the loss of atonia during REM...... sleep, but our aim was to investigate whether iRBD and PD patients have increased muscle activity in both REM and NREM sleep compared to healthy controls. This was achieved by developing a semi-automatic algorithm for quantification of mean muscle activity per second during all sleep stages...... to the different sleep stages and muscle activity beyond the threshold was counted. The results were evaluated statistically using the two-sided Mann-Whitney U-test. The results suggested that iRBD patients also exhibit distinctive muscle activity characteristics in NREM sleep, however not as evident as in REM...

  9. Effect of voluntary physical activity initiated at age 7 months on skeletal hindlimb and cardiac muscle function in mdx mice of both genders.

    Science.gov (United States)

    Ferry, Arnaud; Benchaouir, Rachid; Joanne, Pierre; Peat, Rachel A; Mougenot, Nathalie; Agbulut, Onnik; Butler-Browne, Gillian

    2015-11-01

    The effects of voluntary activity initiated in adult mdx (C57BL/10ScSc-DMD(mdx) /J) mice on skeletal and cardiac muscle function have not been studied extensively. We studied the effects of 3 months of voluntary wheel running initiated at age 7 months on hindlimb muscle weakness, increased susceptibility to muscle contraction-induced injury, and left ventricular function in mdx mice. We found that voluntary wheel running did not worsen the deficit in force-generating capacity and the force drop after lengthening contractions in either mdx mouse gender. It increased the absolute maximal force of skeletal muscle in female mdx mice. Moreover, it did not affect left ventricular function, structural heart dimensions, cardiac gene expression of inflammation, fibrosis, or remodeling markers. These results indicate that voluntary activity initiated at age 7 months had no detrimental effects on skeletal or cardiac muscles in either mdx mouse gender. © 2015 Wiley Periodicals, Inc.

  10. Uteroplacental insufficiency down regulates insulin receptor and affects expression of key enzymes of long-chain fatty acid (LCFA metabolism in skeletal muscle at birth

    Directory of Open Access Journals (Sweden)

    Puglianiello Antonella

    2008-05-01

    Full Text Available Abstract Background Epidemiological studies have revealed a relationship between early growth restriction and the subsequent development of insulin resistance and type 2 diabetes. Ligation of the uterine arteries in rats mimics uteroplacental insufficiency and serves as a model of intrauterine growth restriction (IUGR and subsequent developmental programming of impaired glucose tolerance, hyperinsulinemia and adiposity in the offspring. The objective of this study was to investigate the effects of uterine artery ligation on the skeletal muscle expression of insulin receptor and key enzymes of LCFA metabolism. Methods Bilateral uterine artery ligation was performed on day 19 of gestation in Sprague-Dawley pregnant rats. Muscle of the posterior limb was dissected at birth and processed by real-time RT-PCR to analyze the expression of insulin receptor, ACCα, ACCβ (acetyl-CoA carboxylase alpha and beta subunits, ACS (acyl-CoA synthase, AMPK (AMP-activated protein kinase, alpha2 catalytic subunit, CPT1B (carnitine palmitoyltransferase-1 beta subunit, MCD (malonyl-CoA decarboxylase in 14 sham and 8 IUGR pups. Muscle tissue was treated with lysis buffer and Western immunoblotting was performed to assay the protein content of insulin receptor and ACC. Results A significant down regulation of insulin receptor protein (p Conclusion Our data suggest that uteroplacental insufficiency may affect skeletal muscle metabolism down regulating insulin receptor and reducing the expression of key enzymes involved in LCFA formation and oxidation.

  11. Resistance exercise-induced fluid shifts: change in active muscle size and plasma volume

    Science.gov (United States)

    Ploutz-Snyder, L. L.; Convertino, V. A.; Dudley, G. A.

    1995-01-01

    The purpose of this study was to test the hypothesis that the reduction in plasma volume (PV) induced by resistance exercise reflects fluid loss to the extravascular space and subsequently selective increase in cross-sectional area (CSA) of active but not inactive skeletal muscle. We compared changes in active and inactive muscle CSA and PV after barbell squat exercise. Magnetic resonance imaging (MRI) was used to quantify muscle involvement in exercise and to determine CSA of muscle groups or individual muscles [vasti (VS), adductor (Add), hamstring (Ham), and rectus femoris (RF)]. Muscle involvement in exercise was determined using exercise-induced contrast shift in spin-spin relaxation time (T2)-weighted MR images immediately postexercise. Alterations in muscle size were based on the mean CSA of individual slices. Hematocrit, hemoglobin, and Evans blue dye were used to estimate changes in PV. Muscle CSA and PV data were obtained preexercise and immediately postexercise and 15 and 45 min thereafter. A hierarchy of muscle involvement in exercise was found such that VS > Add > Ham > RF, with the Ham and RF showing essentially no involvement. CSA of the VS and Add muscle groups were increased 10 and 5%, respectively, immediately after exercise in each thigh with no changes in Ham and RF CSA. PV was decreased 22% immediately following exercise. The absolute loss of PV was correlated (r2 = 0.75) with absolute increase in muscle CSA immediately postexercise, supporting the notion that increased muscle size after resistance exercise reflects primarily fluid movement from the vascular space into active but not inactive muscle.

  12. Active pauses induce more variable electromyographic pattern of the trapezius muscle activity during computer work

    DEFF Research Database (Denmark)

    Samani, Afshin; Holtermann, Andreas; Søgaard, Karen

    2009-01-01

    , with passive (relax) and active (30% maximum voluntary contraction of shoulder elevation) pauses given every 2 min at two different work paces (low/high). Bipolar SEMG from four parts of the trapezius muscle was recorded. The relative rest time was higher for the lower parts compared with the upper......The aim of this laboratory study was to evaluate effects of active and passive pauses and investigate the distribution of the trapezius surface electromyographic (SEMG) activity during computer mouse work. Twelve healthy male subjects performed four sessions of computer work for 10 min in one day...... of the trapezius (pwork with active pause compared with passive one (p

  13. EMG activity of hip and trunk muscles during deep-water running.

    Science.gov (United States)

    Kaneda, Koichi; Sato, Daisuke; Wakabayashi, Hitoshi; Nomura, Takeo

    2009-12-01

    The present study used synchronized motion analysis to investigate the activity of hip and trunk muscles during deep-water running (DWR) relative to land walking (LW) and water walking (WW). Nine healthy men performed each exercise at self-determined slow, moderate, and fast paces, and surface electromyography was used to investigate activity of the adductor longus, gluteus maxima, gluteus medius, rectus abdominis, oblique externus abdominis, and erector spinae. The following kinematic parameters were calculated: the duration of one cycle, range of motion (ROM) of the hip joint, and absolute angles of the pelvis and trunk with respect to the vertical axis in the sagittal plane. The percentages of maximal voluntary contraction (%MVC) of each muscle were higher during DWR than during LW and WW. The %MVC of the erector spinae during WW increased concomitant with the pace increment. The hip joint ROMs were larger in DWR than in LW and WW. Forward inclinations of the trunk were apparent for DWR and fast-paced WW. The pelvis was inclined forward in DWR and WW. In conclusion, the higher-level activities during DWR are affected by greater hip joint motion and body inclinations with an unstable floating situation.

  14. Scapular muscle activity from selected strengthening exercises performed at low and high intensity

    DEFF Research Database (Denmark)

    Andersen, Christoffer H; Zebis, Mette K; Saervoll, Charlotte

    2012-01-01

    A balanced level of muscle strength between the different parts of the scapular muscles is important to optimize performance and prevent injuries in athletes. Emerging evidence suggests that many athletes lack balanced strength in the scapular muscles. Evidence based recommendations are important...... for proper exercise prescription. This study determines scapular muscle activity during strengthening exercises for scapular muscles performed at low and high intensities (Borg-CR10 level 3 and 8). Surface electromyography (EMG) from selected scapular muscles was recorded during seven strengthening exercises...... and expressed as a percentage of the maximal EMG. Seventeen women (aged 24-55 years) without serious disorders participated. Several of the investigated exercises - press-up, prone flexion, one-arm row and prone abduction at Borg 3 and press-up, push-up plus and one-arm row at Borg 8 - predominantly activated...

  15. Dexamethasone up-regulates skeletal muscle maximal Na+,K+ pump activity by muscle group specific mechanisms in humans

    DEFF Research Database (Denmark)

    Nordsborg, Nikolai; Goodmann, Craig; McKenna, Michael J.

    2005-01-01

    Dexamethasone, a widely clinically used glucocorticoid, increases human skeletal muscle Na+,K+ pump content, but the effects on maximal Na+,K+ pump activity and subunit specific mRNA are unknown. Ten healthy male subjects ingested dexamethasone for 5 days and the effects on Na+,K+ pump content......, maximal activity and subunit specific mRNA level (a1, a2, ß1, ß2, ß3) in deltoid and vastus lateralis muscle were investigated. Before treatment, maximal Na+,K+ pump activity, as well as a1, a2, ß1 and ß2 mRNA levels were higher (P ... increased Na+,K+ pump maximal activity in vastus lateralis and deltoid by 14 ± 7% (P Na+,K+ pump content by 18 ± 9% (P

  16. Muscle activity during leg strengthening exercise using free weights and elastic resistance: effects of ballistic vs controlled contractions.

    Science.gov (United States)

    Jakobsen, Markus Due; Sundstrup, Emil; Andersen, Christoffer H; Aagaard, Per; Andersen, Lars L

    2013-02-01

    The present study's aim was to evaluate muscle activity during leg exercises using elastic vs. isoinertial resistance at different exertion and loading levels, respectively. Twenty-four women and eighteen men aged 26-67 years volunteered to participate in the experiment. Electromyographic (EMG) activity was recorded in nine muscles during a standardized forward lunge movement performed with dumbbells and elastic bands during (1) ballistic vs. controlled exertion, and (2) at low, medium and high loads (33%, 66% and 100% of 10 RM, respectively). The recorded EMG signals were normalized to MVC EMG. Knee joint angle was measured using electronic inclinometers. The following results were obtained. Loading intensity affected EMG amplitude in the order: lowBallistic contractions always produced greater EMG activity than slow controlled contractions, and for most muscles ballistic contractions with medium load showed similar EMG amplitude as controlled contractions with high load. At flexed knee joint positions with elastic resistance, quadriceps and gluteus EMG amplitude during medium-load ballistic contractions exceeded that recorded during high-load controlled contractions. Quadriceps and gluteus EMG amplitude increased at flexed knee positions. In contrast, hamstrings EMG amplitude remained constant throughout ROM during dumbbell lunge, but increased at more extended knee joint positions during lunges using elastic resistance. Based on these results, it can be concluded that lunges performed using medium-load ballistic muscle contractions may induce similar or even higher leg muscle activity than lunges using high-load slow-speed contractions. Consequently, lunges using elastic resistance appear to be equally effective in inducing high leg muscle activity as traditional lunges using isoinertial resistance. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Muscle Shear Moduli Changes and Frequency of Alternate Muscle Activity of Plantar Flexor Synergists Induced by Prolonged Low-Level Contraction

    Directory of Open Access Journals (Sweden)

    Ryota Akagi

    2017-09-01

    Full Text Available During prolonged low-level contractions, synergist muscles are activated in an alternating pattern of activity and silence called as alternate muscle activity. Resting muscle stiffness is considered to increase due to muscle fatigue. Thus, we investigated whether the difference in the extent of fatigue of each plantar flexor synergist corresponded to the difference in the frequency of alternate muscle activity between the synergists using muscle shear modulus as an index of muscle stiffness. Nineteen young men voluntarily participated in this study. The shear moduli of the resting medial and lateral gastrocnemius muscles (MG and LG and soleus muscle (SOL were measured using shear wave ultrasound elastography before and after a 1-h sustained contraction at 10% peak torque during maximal voluntary contraction of isometric plantar flexion. One subject did not accomplish the task and the alternate muscle activity for MG was not found in 2 subjects; therefore, data for 16 subjects were used for further analyses. The magnitude of muscle activation during the fatiguing task was similar in MG and SOL. The percent change in shear modulus before and after the fatiguing task (MG: 16.7 ± 12.0%, SOL: −4.1 ± 13.9%; mean ± standard deviation and the alternate muscle activity during the fatiguing task (MG: 33 [20–51] times, SOL: 30 [17–36] times; median [25th–75th percentile] were significantly higher in MG than in SOL. The contraction-induced change in shear modulus (7.4 ± 20.3% and the alternate muscle activity (37 [20–45] times of LG with the lowest magnitude of muscle activation during the fatiguing task among the plantar flexors were not significantly different from those of the other muscles. These results suggest that the degree of increase in muscle shear modulus induced by prolonged contraction corresponds to the frequency of alternate muscle activity between MG and SOL during prolonged contraction. Thus, it is likely that, compared with

  18. FENOFIBRATE ADMINISTRATION DOES NOT AFFECT MUSCLE TRIGLYCERIDE CONCENTRATION OR INSULIN SENSITIVITY IN HUMANS

    Science.gov (United States)

    Perreault, Leigh; Bergman, Bryan C.; Hunerdosse, Devon M.; Howard, David J.; Eckel, Robert H.

    2010-01-01

    Objective Animal data suggest that males, in particular, rely on PPAR-α activity to maintain normal muscle triglyceride metabolism. We sought to examine whether this was also true in men vs. women and its relationship to insulin sensitivity. Materials/Methods Normolipidemic obese men (n=9) and women (n=9) underwent an assessment of insulin sensitivity (IVGTT) and intramuscular triglyceride metabolism (GC/MS and GC/C/IRMS from plasma and muscle biopsies taken after infusion of [U-13C]palmitate) before and after 12 weeks of fenofibrate treatment. Results Women were more insulin sensitive (Si; 5.2(0.7 vs. 2.4(0.4 ×10−4/uU/ml, W vs. M, ptriglyceride (IMTG) concentration (41.9(15.5 vs. 30.8(5.1 ug/mg dry weight, W vs. M, p=0.43), and IMTG fractional synthesis rate (FSR; 0.27(0.07 vs. 0.35(0.06/hr, W vs. M, p=0.41) as men. Fenofibrate enhanced FSR in men (0.35(0.06 to 0.54(0.06, p=0.05), with no such change seen in women (0.27(0.07 to 0.32(0.13, p=0.73), and no change in IMTG concentration in either group (23.0(3.9 in M, p=0.26 vs. baseline; 36.3(12.0 in W, p=0.79 vs. baseline). Insulin sensitivity was unaffected by fenofibrate (p>0.68). Lower percent saturation of IMTG in women vs. men before (29.1(2.3 vs. 35.2(1.7%, p=0.06) and after (27.3(2.8 vs. 35.1(1.9%, p=0.04) fenofibrate most closely related to their greater insulin sensitivity (R2=0.34, p=0.10), and was largely unchanged by the drug. Conclusions PPAR-α agonist therapy had little effect on IMTG metabolism in men or women. IMTG saturation, rather than IMTG concentration or FSR, most closely (but not significantly) related to insulin sensitivity and was unchanged by fenofibrate administration. PMID:21306746

  19. Impact of Functional Appliances on Muscle Activity: A Surface Electromyography Study in Children

    Science.gov (United States)

    Woźniak, Krzysztof; Piątkowska, Dagmara; Szyszka-Sommerfeld, Liliana; Buczkowska-Radlińska, Jadwiga

    2015-01-01

    Background Electromyography (EMG) is the most objective tool for assessing changes in the electrical activity of the masticatory muscles. The purpose of the study was to evaluate the tone of the masseter and anterior temporalis muscles in growing children before and after 6 months of treatment with functional removable orthodontic appliances. Material/Methods The sample conisted of 51 patients with a mean age 10.7 years with Class II malocclusion. EMG recordings were performed by using a DAB-Bluetooth instrument (Zebris Medical GmbH, Germany). Recordings were performed in mandibular rest position, during maximum voluntary contraction (MVC), and during maximum effort. Results The results of the study indicated that the electrical activity of the muscles in each of the clinical situations was the same in the group of girls and boys. The factor that determined the activity of the muscles was their type. In mandibular rest position and in MVC, the activity of the temporalis muscles was significantly higher that that of the masseter muscels. The maximum effort test indicated a higher fatigue in masseter than in temporalis muscles. Conclusions Surface electromyography is a useful tool for monitoring muscle activity. A 6-month period of functional therapy resulted in changes in the activity of the masticatory muscles. PMID:25600247

  20. Evaluation of muscle activity for loaded and unloaded dynamic squats during vertical whole-body vibration.

    Science.gov (United States)

    Hazell, Tom J; Kenno, Kenji A; Jakobi, Jennifer M

    2010-07-01

    The purpose of this investigation was to examine if the addition of a light external load would enhance whole-body vibration (WBV)-induced increases in muscle activity during dynamic squatting in 4 leg muscles. Thirteen recreationally active male university students performed a series of dynamic squats (unloaded with no WBV, unloaded with WBV, loaded with no WBV, and loaded with WBV). The load was set to 30% of body mass and WBV included 25-, 35-, and 45-Hz frequencies with 4-mm amplitude. Muscle activity was recorded with surface electromyography (EMG) on the vastus lateralis (VL), biceps femoris (BF), tibialis anterior (TA), and gastrocnemius (GC) and is reported as EMGrms (root mean square) normalized to %maximal voluntary exertion. During unloaded dynamic squats, exposure to WBV (45 Hz) significantly (p squat exercise in all muscles but decreased the TA. This loaded level of muscle activity was further increased with WBV (45 Hz) in all muscles. The WBV-induced increases in muscle activity in the loaded condition (approximately 3.5%) were of a similar magnitude to the WBV-induced increases during the unloaded condition (approximately 2.5%) demonstrating the addition of WBV to unloaded or loaded dynamic squatting results in an increase in muscle activity. These results demonstrate the potential effectiveness of using external loads with exposure to WBV.

  1. Analysis of scapular muscle EMG activity in patients with idiopathic neck pain: a systematic review.

    Science.gov (United States)

    Castelein, Birgit; Cools, Ann; Bostyn, Emma; Delemarre, Jolien; Lemahieu, Trees; Cagnie, Barbara

    2015-04-01

    It is proposed that altered scapular muscle function can contribute to abnormal loading of the cervical spine. However, it is not clear if patients with idiopathic neck pain show altered activity of the scapular muscles. The aim of this paper was to systematically review the literature regarding the differences or similarities in scapular muscle activity, measured by electromyography ( = EMG), between patients with chronic idiopathic neck pain compared to pain-free controls. Case-control (neck pain/healthy) studies investigating scapular muscle EMG activity (amplitude, timing and fatigue parameters) were searched in Pubmed and Web of Science. 25 articles were included in the systematic review. During rest and activities below shoulder height, no clear differences in mean Upper Trapezius ( = UT) EMG activity exist between patients with idiopathic neck pain and a healthy control group. During overhead activities, no conclusion for scapular EMG amplitude can be drawn as a large variation of results were reported. Adaptation strategies during overhead tasks are not the same between studies. Only one study investigated timing of the scapular muscles and found a delayed onset and shorter duration of the SA during elevation in patients with idiopathic neck pain. For scapular muscle fatigue, no definite conclusions can be made as a wide variation and conflicting results are reported. Further high quality EMG research on scapular muscles (broader than the UT) is necessary to understand/draw conclusions on how scapular muscles react in the presence of idiopathic neck pain. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. An Analysis of Muscle Activities of Healthy Women during Pilates Exercises in a Prone Position.

    Science.gov (United States)

    Kim, Bo-In; Jung, Ju-Hyeon; Shim, Jemyung; Kwon, Hae-Yeon; Kim, Haroo

    2014-01-01

    [Purpose] This study analyzed the activities of the back and hip muscles during Pilates exercises conducted in a prone position. [Subjects] The subjects were 18 healthy women volunteers who had practiced at a Pilates center for more than three months. [Methods] The subjects performed three Pilates exercises. To examine muscle activity during the exercises, 8-channel surface electromyography (Noraxon USA, Inc., Scottsdale, AZ) was used. The surface electrodes were attached to the bilateral latissimus dorsi muscle, multifidus muscle, gluteus maximus, and semitendinous muscle. Three Pilates back exercises were compared: (1) double leg kick (DLK), (2) swimming (SW), and (3) leg beat (LB). Electrical muscle activation was normalized to maximal voluntary isometric contraction. Repeated measures analysis of variance was performed to assess the differences in activation levels among the exercises. [Results] The activity of the multifidus muscle was significantly high for the SW (52.3±11.0, 50.9±9.8) and LB exercises(51.8±12.8, 48.3±13.9) and the activity of the semitendinosus muscle was higher for the LB exercise (49.2±8.7, 52.9±9.3) than for the DLK and SW exercises. [Conclusion] These results may provide basic material for when Pilates exercises are performed in a prone position and may be useful information on clinical Pilates for rehabilitation programs.

  3. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres.

    Science.gov (United States)

    Lin, Jiandie; Wu, Hai; Tarr, Paul T; Zhang, Chen-Yu; Wu, Zhidan; Boss, Olivier; Michael, Laura F; Puigserver, Pere; Isotani, Eiji; Olson, Eric N; Lowell, Bradford B; Bassel-Duby, Rhonda; Spiegelman, Bruce M

    2002-08-15

    The biochemical basis for the regulation of fibre-type determination in skeletal muscle is not well understood. In addition to the expression of particular myofibrillar proteins, type I (slow-twitch) fibres are much higher in mitochondrial content and are more dependent on oxidative metabolism than type II (fast-twitch) fibres. We have previously identified a transcriptional co-activator, peroxisome-proliferator-activated receptor-gamma co-activator-1 (PGC-1 alpha), which is expressed in several tissues including brown fat and skeletal muscle, and that activates mitochondrial biogenesis and oxidative metabolism. We show here that PGC-1 alpha is expressed preferentially in muscle enriched in type I fibres. When PGC-1 alpha is expressed at physiological levels in transgenic mice driven by a muscle creatine kinase (MCK) promoter, a fibre type conversion is observed: muscles normally rich in type II fibres are redder and activate genes of mitochondrial oxidative metabolism. Notably, putative type II muscles from PGC-1 alpha transgenic mice also express proteins characteristic of type I fibres, such as troponin I (slow) and myoglobin, and show a much greater resistance to electrically stimulated fatigue. Using fibre-type-specific promoters, we show in cultured muscle cells that PGC-1 alpha activates transcription in cooperation with Mef2 proteins and serves as a target for calcineurin signalling, which has been implicated in slow fibre gene expression. These data indicate that PGC-1 alpha is a principal factor regulating muscle fibre type determination.

  4. Muscle Activity in Single- vs. Double-Leg Squats.

    Science.gov (United States)

    DeFOREST, Bradley A; Cantrell, Gregory S; Schilling, Brian K

    Muscular activity, vertical displacement and ground reaction forces of back squats (BS), rear-leg elevated split squats (RLESS) and split squats (SS) were examined. Nine resistance-trained men reported for two sessions. The first session consisted of the consent process, practice, and BS 1-repetition maximum testing. In the second session, participants performed the three exercises while EMG, displacment and ground reaction force data (one leg on plate) were collected. EMG data were collected from the gluteus maximus (GMX), biceps femoris (BF), semitendinosus (ST), rectus femoris (RF), vastus lateralis (VL), vastus medialis (VM), tibialis anterior (TA), and medial gastrocnemius (MGas) of the left leg (non-dominant, front leg for unilateral squats). Load for BS was 85% one repetition maximum, and RLESS and SS were performed at 50% of BS load. Repeated measures ANOVA was used to compare all variables for the three exercises, with Bonferroni adjustments for post hoc multiple comparisons, in addition to calculation of standardized mean differences (ES). Muscle activity was similar between exercises except for biceps femoris, which was significantly higher during RLESS than SS during both concentric and eccentric phases (ES = 2.11; p=0.012 and ES= 2.19; p=0.008), and significantly higher during BS than the SS during the concentric phase (ES = 1.78; p=0.029). Vertical displacement was similar between all exercises. Peak vertical force was similar between BS and RLESS and significantly greater during RLESS than SS (ES = 3.03; p=0.001). These findings may be helpful in designing resistance training programs by using RLESS if greater biceps femoris activity is desired.

  5. Impaired voluntary neuromuscular activation limits muscle power in mobility-limited older adults

    Science.gov (United States)

    Background. Age-related alterations of neuromuscular activation may contribute to deficits in muscle power and mobility function. This study assesses whether impaired activation of the agonist quadriceps and antagonist hamstrings, including amplitude- and velocity-dependent characteristics of activa...

  6. p38 MAPK activation upregulates proinflammatory pathways in skeletal muscle cells from insulin-resistant type 2 diabetic patients

    DEFF Research Database (Denmark)

    Brown, Audrey E; Palsgaard, Jane; Borup, Rehannah

    2015-01-01

    Skeletal muscle is the key site of peripheral insulin resistance in type 2 diabetes. Insulin-stimulated glucose uptake is decreased in differentiated diabetic cultured myotubes, which is in keeping with a retained genetic/epigenetic defect of insulin action. We investigated differences in gene...... expression during differentiation between diabetic and control muscle cell cultures. Microarray analysis was performed using skeletal muscle cell cultures established from type 2 diabetic patients with a family history of type 2 diabetes and clinical evidence of marked insulin resistance and nondiabetic...... significantly, it did not improve insulin-stimulated glucose uptake. Increased cytokine expression driven by increased p38 MAPK activation is a key feature of cultured myotubes derived from insulin-resistant type 2 diabetic patients. p38 MAPK inhibition decreased cytokine expression but did not affect...

  7. Short-Term Sensorimotor Effects of Experimental Occlusal Interferences on the Wake-Time Masseter Muscle Activity of Females with Masticatory Muscle Pain.

    Science.gov (United States)

    Cioffi, Iacopo; Farella, Mauro; Festa, Paola; Martina, Roberto; Palla, Sandro; Michelotti, Ambrosina

    2015-01-01

    To investigate the effects of the application of an acute alteration of the occlusion (ie, interference) on the habitual masseter electromyographic (EMG) activity of females with temporomandibular disorders (TMD)-related muscular pain during wakefulness. Seven female volunteers with masticatory myofascial pain participated in a crossover randomized clinical trial. Gold foils were glued on an occlusal contact area (active occlusal interference, AI) or on the vestibular surface of the same molar (dummy interference, DI) and left for 8 days. The masseter electromyogram was recorded during wakefulness in the natural environment by portable recorders under interference-free, dummy-interference, and active-interference conditions. The number, amplitude, and duration of EMG signal fractions with amplitudes above 10% of the maximum voluntary contraction (activity periods, APs) were computed in all experimental conditions. Muscle pain, headache, and perceived stress were each assessed with a visual analog scale (VAS), and an algometer was used to assess masseter and temporalis pressure pain thresholds. Data were analyzed by means of analysis of variance. The frequency and duration of the recorded APs did not differ significantly between the experimental conditions (P>.05), but a small and significant reduction of the EMG mean amplitude of the APs occurred with AI (P.05). An active occlusal interference in female volunteers with masticatory muscle pain had little influence on the masseter EMG activity pattern during wakefulness and did not affect the pressure tenderness of the masseter and temporalis.

  8. Leucine stimulates protein synthesis in skeletal muscle of neonatal pigs by enhancing mTORC1 activation.

    Science.gov (United States)

    Suryawan, Agus; Jeyapalan, Asumthia S; Orellana, Renan A; Wilson, Fiona A; Nguyen, Hanh V; Davis, Teresa A

    2008-10-01

    Skeletal muscle in the neonate grows at a rapid rate due in part to an enhanced sensitivity to the postprandial rise in amino acids, particularly leucine. To elucidate the molecular mechanism by which leucine stimulates protein synthesis in neonatal muscle, overnight-fasted 7-day-old piglets were treated with rapamycin [an inhibitor of mammalian target of rapamycin (mTOR) complex (mTORC)1] for 1 h and then infused with leucine for 1 h. Fractional rates of protein synthesis and activation of signaling components that lead to mRNA translation were determined in skeletal muscle. Rapamycin completely blocked leucine-induced muscle protein synthesis. Rapamycin markedly reduced raptor-mTOR association, an indicator of mTORC1 activation. Rapamycin blocked the leucine-induced phosphorylation of mTOR, S6 kinase 1 (S6K1), and eukaryotic initiation factor (eIF)4E-binding protein-1 (4E-BP1) and formation of the eIF4E.eIF4G complex and increased eIF4E.4E-BP1 complex abundance. Rapamycin had no effect on the association of mTOR with rictor, a crucial component for mTORC2 activation, or G protein beta-subunit-like protein (GbetaL), a component of mTORC1 and mTORC2. Neither leucine nor rapamycin affected the phosphorylation of AMP-activated protein kinase (AMPK), PKB, or tuberous sclerosis complex (TSC)2, signaling components that reside upstream of mTOR. Eukaryotic elongation factor (eEF)2 phosphorylation was not affected by leucine or rapamycin, although current dogma indicates that eEF2 phosphorylation is mTOR dependent. Together, these in vivo data suggest that leucine stimulates muscle protein synthesis in neonates by enhancing mTORC1 activation and its downstream effectors.

  9. MRI role in morphological and functional assessment of the levator ani muscle: Use in patients affected by stress urinary incontinence (SUI) before and after pelvic floor rehabilitation

    International Nuclear Information System (INIS)

    Del Vescovo, Riccardo; Piccolo, Claudia Lucia; Vecchia, Nicoletta Della; Giurazza, Francesco; Cazzato, Roberto Luigi; Grasso, Rosario Francesco; Zobel, Bruno Beomonte

    2014-01-01

    Objective: Pelvic floor dysfunctions affect a very high proportion of female population. Magnetic resonance imaging is the only technique able to provide a multiplanar overview of pelvic organs and muscles without the use of ionizing radiation. The aim of our prospective study is to objectively evaluate the effectiveness of perineal re-education applying MR technique. Materials and methods: 22 patients affected by stress urinary incontinence were enrolled in our prospective study. They underwent urogynaecological, urodynamic examinations, and a questionnaire about symptoms (ICIQ-UI) to investigate the degree of their interference with daily activities. Then they underwent a morphological and dynamic MR exam. Results: The pre-perineal rehabilitation MR examinations showed an asymmetry of the levator ani muscle in 87% of patients; the remaining 13% showed a muscular bilateral volume reduction. In the group with unilateral defect, the muscle total volume had values between 15 and 21 cm 3 . Its overall volume was 34.2% smaller on the defective side (9.28 ± 0.26 cm 3 ) compared to the normal side (12.64 ± 12.31 cm 3 , P < 0.001). In patients with a bilateral impairment, the muscle was replaced by fibro-fatty tissue, without a significant asymmetry between the two sides. The post-perineal rehabilitation MR tests showed three different degrees of response to therapy, with a “complete response” found in 67% of patients and no response in 13%. Conclusions: MR is an useful tool in the management of patients affected by stress urinary incontinence with indication for perineal rehabilitation. Its objective data allow to distinguish different types of response to therapy and, consequently, different outcomes in terms of additional treatments

  10. MRI role in morphological and functional assessment of the levator ani muscle: Use in patients affected by stress urinary incontinence (SUI) before and after pelvic floor rehabilitation

    Energy Technology Data Exchange (ETDEWEB)

    Del Vescovo, Riccardo, E-mail: r.delvescovo@unicampus.it; Piccolo, Claudia Lucia, E-mail: c.piccolo@unicampus.it; Vecchia, Nicoletta Della, E-mail: nico.dvecchia@libero.it; Giurazza, Francesco, E-mail: f.giurazza@unicampus.it; Cazzato, Roberto Luigi, E-mail: r.cazzato@unicampus.it; Grasso, Rosario Francesco, E-mail: r.grasso@unicampus.it; Zobel, Bruno Beomonte, E-mail: b.zobel@unicampus.it

    2014-03-15

    Objective: Pelvic floor dysfunctions affect a very high proportion of female population. Magnetic resonance imaging is the only technique able to provide a multiplanar overview of pelvic organs and muscles without the use of ionizing radiation. The aim of our prospective study is to objectively evaluate the effectiveness of perineal re-education applying MR technique. Materials and methods: 22 patients affected by stress urinary incontinence were enrolled in our prospective study. They underwent urogynaecological, urodynamic examinations, and a questionnaire about symptoms (ICIQ-UI) to investigate the degree of their interference with daily activities. Then they underwent a morphological and dynamic MR exam. Results: The pre-perineal rehabilitation MR examinations showed an asymmetry of the levator ani muscle in 87% of patients; the remaining 13% showed a muscular bilateral volume reduction. In the group with unilateral defect, the muscle total volume had values between 15 and 21 cm{sup 3}. Its overall volume was 34.2% smaller on the defective side (9.28 ± 0.26 cm{sup 3}) compared to the normal side (12.64 ± 12.31 cm{sup 3}, P < 0.001). In patients with a bilateral impairment, the muscle was replaced by fibro-fatty tissue, without a significant asymmetry between the two sides. The post-perineal rehabilitation MR tests showed three different degrees of response to therapy, with a “complete response” found in 67% of patients and no response in 13%. Conclusions: MR is an useful tool in the management of patients affected by stress urinary incontinence with indication for perineal rehabilitation. Its objective data allow to distinguish different types of response to therapy and, consequently, different outcomes in terms of additional treatments.

  11. Electromyographic activity of masticatory muscles in elderly women – a pilot study

    Directory of Open Access Journals (Sweden)

    Gaszynska E

    2017-01-01

    Full Text Available Ewelina Gaszynska,1 Karolina Kopacz,2 Magdalena Fronczek-Wojciechowska,2 Gianluca Padula,2 Franciszek Szatko1 1Department of Hygiene and Health Promotion, 2Academic Laboratory of Movement and Human Physical Performance “DynamoLab”, Medical University of Lodz, Lodz, PolandObjectives: To evaluate the effect of age and chosen factors related to aging such as dentition, muscle strength, and nutrition on masticatory muscles electromyographic activity during chewing in healthy elderly women.Background: With longer lifespan there is a need for maintaining optimal quality of life and health in older age. Skeletal muscle strength deteriorates in older age. This deterioration is also observed within masticatory muscles.Methods: A total of 30 women, aged 68–92 years, were included in the study: 10 indivi­duals had natural functional dentition, 10 were missing posterior teeth in the upper and lower jaw reconstructed with removable partial dentures, and 10 were edontoulous, using complete removable dentures. Surface electromyography was performed to evaluate masticatory muscles activity. Afterwards, measurement of masseter thickness with ultrasound imaging was performed, body mass index and body cell mass index were calculated, and isometric handgrip strength was measured.Results: Isometric maximal voluntary contraction decreased in active masseters with increasing age and in active and passive temporalis muscles with increasing age and increasing body mass index. In active masseter, mean electromyographic activity during the sequence (time from the start of chewing till the end when the test food became ready to swallow decreased with increasing age and during the cycle (single bite time decreased with increasing age and increasing body mass index. In active and passive temporalis muscles, mean electromyographic activity during the sequence and the cycle decreased with increasing age, increasing body mass index, and loss of natural dentition

  12. Physical activity and respiratory muscle strength in elderly: a systematic review

    Directory of Open Access Journals (Sweden)

    Fabio Dutra Pereira

    Full Text Available Introduction The aging will inevitably bring some kind of functional decline in elderly, sarcopenia in this sense stands out because it damages the muscle function and extend also to the respiratory muscles. Objective Systematically review studies that have sought to compare the strength of respiratory muscles between sedentary and physically active elderly in training programs nonspecific respiratory musculature. Materials and methods From the descriptors motor activity, respiratory muscles and elderly, the databases LILACS, MedLine, Cochrane, PEDro, Scirus and Redalyc were consulted. Results Of 1.263 experiments available in said databases, 12 were recovered and 6 were selected due they meet all the inclusion criteria and selection requirements. Conclusion Physical activity programs offered by the selected studies led physically active elderly to have respiratory muscle strength statistically higher than the sedentary. However, this condition did not expressed itself as security to these elderly to present strength levels above of the minimum predictive of normality.

  13. Nitric oxide and Na,K-ATPase activity in rat skeletal muscle

    DEFF Research Database (Denmark)

    Juel, Carsten

    2016-01-01

    Aim: It has been suggested that nitric oxide (NO) stimulates the Na,K-ATPase in cardiac myocytes. Therefore, the aims of this study were to investigate whether NO increases Na,K-ATPase activity in skeletal muscle and, if that is the case, to identify the underlying mechanism. Method: The study used...... isolated rat muscle, muscle homogenates and purified membranes as model systems. Na,K-ATPase activity was quantified from phosphate release due to ATP hydrolysis. Results: Exposure to the NO donor spermine NONOate (10 μm) increased the maximal Na,K-ATPase activity by 27% in isolated glycolytic muscles...... activity was depressed by oxidized glutathione. Conclusion: NO and cGMP stimulate the Na,K-ATPase in glycolytic skeletal muscle. Direct S-nitrosylation and interference with S-glutathionylation seem to be excluded. In addition, phosphorylation of phospholemman at serine 68 is not involved. Most likely...

  14. A comparison of hamstring muscle activity during different screening tests for non-contact ACL injury

    DEFF Research Database (Denmark)

    Husted, Rasmus S; Bencke, Jesper; Andersen, Lars Louis

    2016-01-01

    phenomenon and thereby observable independently of the type of clinical screening tests used is not known. This cross sectional study investigated the rank correlation of knee joint neuromuscular activity between three different ACL injury risk screening tests. METHODS: Sixty-two adolescent female elite......BACKGROUND: Reduced ability to activate the medial hamstring muscles during a sports-specific sidecutting movement has been found to be a potential risk factor for non-contact ACL injury. However, whether a reduced ability to activate the medial hamstring muscle is a general neuromuscular...... football and handball players (16.7±1.3years) participated in the study. Using surface electromyography (EMG) assessment, the neuromuscular activity of medial hamstring muscle (semitendinosus, ST), lateral hamstring muscle (biceps femoris, BF) and quadriceps muscle (vastus lateralis, VL) were monitored...

  15. Comparing trapezius muscle activity in the different planes of shoulder elevation.

    Science.gov (United States)

    Ishigaki, Tomonobu; Ishida, Tomoya; Samukawa, Mina; Saito, Hiroshi; Hirokawa, Motoki; Ezawa, Yuya; Sugawara, Makoto; Tohyama, Harukazu; Yamanaka, Masanori

    2015-05-01

    [Purpose] The purpose of this study was to compare the upper, middle, and lower trapezius muscles' activity in the different planes of shoulder elevation. [Subjects] Twenty male subjects volunteered for this study. [Methods] Surface electromyographic (EMG) activity for each of the three regions of the trapezius muscles in the three different planes of elevation were collected while the participants maintained 30, 60, and 90 degrees of elevation in each plane. The EMG data were normalized with maximum voluntary isometric contraction (%MVIC), and compared among the planes at each angle of elevation. [Results] There were significantly different muscle activities among the elevation planes at each angle. [Conclusion] This study found that the three regions of the trapezius muscles changed their activity depending on the planes of shoulder elevation. These changes in the trapezius muscles could induce appropriate scapular motion to face the glenoid cavity in the correct directions in different planes of shoulder elevation.

  16. Application of Pilates principles increases paraspinal muscle activation.

    Science.gov (United States)

    Andrade, Letícia Souza; Mochizuki, Luís; Pires, Flávio Oliveira; da Silva, Renato André Sousa; Mota, Yomara Lima

    2015-01-01

    To analyze the effect of Pilates principles on the EMG activity of abdominal and paraspinal muscles on stable and unstable surfaces. Surface EMG data about the rectus abdominis (RA), iliocostalis (IL) and lumbar multifidus (MU) of 19 participants were collected while performing three repetitions of a crunch exercise in the following conditions: 1) with no Pilates technique and stable surface (nP + S); 2) with no Pilates technique and unstable surface (nP + U); 3) with Pilates technique and stable surface (P + S); 4) with Pilates and unstable surface (P + U). The EMG Fanalysis was conducted using a custom-made Matlab(®) 10. There was no condition effect in the RA iEMG with stable and unstable surfaces (F(1,290) = 0 p = 0.98) and with and without principles (F(1,290) = 1.2 p = 0.27). IL iEMG was higher for the stable surface condition (F(1,290) = 32.3 p Pilates principles (F(1,290) = 21.9 p Pilates principles (F(1,290) = 84.9 p < 0.001). Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Short-term immobilization and recovery affect skeletal muscle but not collagen tissue turnover in humans

    DEFF Research Database (Denmark)

    Christensen, Britt; Dyrberg, Eva; Aagaard, Per

    2008-01-01

    Not much is known about the effects of immobilization and subsequent recovery on tendon connective tissue. In the present study, healthy young men had their nondominant leg immobilized for a 2-wk period, followed by a recovery period of the same length. Immobilization resulted in a mean decrease...... of 6% (5,413 to 5,077 mm(2)) in cross-sectional area (CSA) of the triceps surae muscles and a mean decrease of 9% (261 to 238 N.m) in strength of the immobilized calf muscles. Two weeks of recovery resulted in a 6% increased in CSA (to 5,367 mm(2)), whereas strength remained suppressed (240 N...... muscle size and strength, while tendon size and collagen turnover were unchanged. While recovery resulted in an increase in muscle size, strength was unchanged. No significant difference in tendon size could be detected between the two legs after 2 wk of recovery, although collagen synthesis...

  18. Glucocorticoids activate the ATP-ubiquitin-dependent proteolytic system in skeletal muscle during fasting

    Science.gov (United States)

    Wing, S. S.; Goldberg, A. L.; Goldberger, A. L. (Principal Investigator)

    1993-01-01

    Glucocorticoids are essential for the increase in protein breakdown in skeletal muscle normally seen during fasting. To determine which proteolytic pathway(s) are activated upon fasting, leg muscles from fed and fasted normal rats were incubated under conditions that block or activate different proteolytic systems. After food deprivation (1 day), the nonlysosomal ATP-dependent process increased by 250%, as shown in experiments involving depletion of muscle ATP. Also, the maximal capacity of the lysosomal process increased 60-100%, but no changes occurred in the Ca(2+)-dependent or the residual energy-independent proteolytic processes. In muscles from fasted normal and adrenalectomized (ADX) rats, the protein breakdown sensitive to inhibitors of the lysosomal or Ca(2+)-dependent pathways did not differ. However, the ATP-dependent process was 30% slower in muscles from fasted ADX rats. Administering dexamethasone to these animals or incubating their muscles with dexamethasone reversed this defect. During fasting, when the ATP-dependent process rises, muscles show a two- to threefold increase in levels of ubiquitin (Ub) mRNA. However, muscles of ADX animals failed to show this response. Injecting dexamethasone into the fasted ADX animals increased muscle Ub mRNA within 6 h. Thus glucocorticoids activate the ATP-Ub-dependent proteolytic pathway in fasting apparently by enhancing the expression of components of this system such as Ub.

  19. Trunk muscle activation in a person with clinically complete thoracic spinal cord injury.

    Science.gov (United States)

    Bjerkefors, Anna; Carpenter, Mark G; Cresswell, Andrew G; Thorstensson, Alf

    2009-04-01

    The aim of this study was to assess if, and how, upper body muscles are activated in a person with high thoracic spinal cord injury, clinically classified as complete, during maximal voluntary contractions and in response to balance perturbations. Data from one person with spinal cord injury (T3 level) and one able-bodied person were recorded with electromyography from 4 abdominal muscles using indwelling fine-wire electrodes and from erector spinae and 3 upper trunk muscles with surface electrodes. Balance perturbations were carried out as forward or backward support surface translations. The person with spinal cord injury was able to activate all trunk muscles, even those below the injury level, both in voluntary efforts and in reaction to balance perturbations. Trunk movements were qualitatively similar in both participants, but the pattern and timing of muscle responses differed: upper trunk muscle involvement and occurrence of co-activation of ventral and dorsal muscles were more frequent in the person with spinal cord injury. These findings prompt further investigation into trunk muscle function in paraplegics, and highlight the importance of including motor tests for trunk muscles in persons with thoracic spinal cord injury, in relation to injury classification, prognosis and rehabilitation.

  20. [Cellular mechanism of the generation of spontaneous activity in gastric muscle].

    Science.gov (United States)

    Nakamura, Eri; Kito, Yoshihiko; Fukuta, Hiroyasu; Yanai, Yoshimasa; Hashitani, Hikaru; Yamamoto, Yoshimichi; Suzuki, Hikaru

    2004-03-01

    In gastric smooth muscles, interstitial cells of Cajal (ICC) might be the pacemaker cells of spontaneous activities since ICC are rich in mitochondria and are connected with smooth muscle cells via gap junctions. Several types of ICC are distributed widely in the stomach wall. A group of ICC distributed in the myenteric layer (ICC-MY) were the pacemaker cells of gastrointestinal smooth muscles. Pacemaker potentials were generated in ICC-MY, and the potentials were conducted to circular smooth muscles to trigger slow waves and also conducted to longitudinal muscles to form follower potentials. In circular muscle preparations, interstitial cells distributed within muscle bundles (ICC-IM) produced unitary potentials, which were conducted to circular muscles to form slow potentials by summation. In mutant mice lacking inositol trisphosphate (IP(3)) receptor, slow waves were absent in gastric smooth muscles. The generation of spontaneous activity was impaired by the inhibition of Ca(2+)-release from internal stores through IP(3) receptors, inhibition of mitochondrial Ca(2+)-handling with proton pump inhibitors, and inhibition of ATP-sensitive K(+)-channels at the mitochondrial inner membrane. These results suggested that mitochondrial Ca(2+)-handling causes the generation of spontaneous activity in pacemaker cells. Possible involvement of protein kinase C (PKC) in the Ca(2+) signaling system was also suggested.

  1. Transient receptor potential A1 channel contributes to activation of the muscle reflex.

    Science.gov (United States)

    Koba, Satoshi; Hayes, Shawn G; Sinoway, Lawrence I

    2011-01-01

    This study was undertaken to elucidate the role played by transient receptor potential A1 channels (TRPA1) in activating the muscle reflex, a sympathoexcitatory drive originating in contracting muscle. First, we tested the hypothesis that stimulation of the TRPA1 located on muscle afferents reflexly increases sympathetic nerve activity. In decerebrate rats, allyl isothiocyanate, a TRPA1 agonist, was injected intra-arterially into the hindlimb muscle circulation. This led to a 33% increase in renal sympathetic nerve activity (RSNA). The effect of allyl isothiocyanate was a reflex because the response was prevented by sectioning the sciatic nerve. Second, we tested the hypothesis that blockade of TRPA1 reduces RSNA response to contraction. Thirty-second continuous static contraction of the hindlimb muscles, induced by electrical stimulation of the peripheral cut ends of L(4) and L(5) ventral roots, increased RSNA and blood pressure. The integrated RSNA during contraction was reduced by HC-030031, a TRPA1 antagonist, injected intra-arterially (163 ± 24 vs. 95 ± 21 arbitrary units, before vs. after HC-030031, P reflex. Increases in RSNA in response to injection into the muscle circulation of arachidonic acid, bradykinin, and diprotonated phosphate, which are metabolic by-products of contraction and stimulants of muscle afferents during contraction, were reduced by HC-030031. These observations suggest that the TRPA1 located on muscle afferents is part of the muscle reflex and further support the notion that arachidonic acid metabolites, bradykinin, and diprotonated phosphate are candidates for endogenous agonists of TRPA1.

  2. Effect of electrical muscle stimulation on prevention of ICU acquired ...

    African Journals Online (AJOL)

    Hassan Abdelaziz Abu-Khaber

    2013-04-19

    Apr 19, 2013 ... shown to increase after an EMS session in rat skeletal muscles.10, ... output, and therefore affect the skeletal muscle metabolism .... Grade 1 No active range of motion & palpable muscle contraction. Grade 0 No active range of motion & no palpable muscle contraction. Table 1 Functions assessed in MRCS.

  3. PPARβ/δ regulates glucocorticoid- and sepsis-induced FOXO1 activation and muscle wasting.

    Directory of Open Access Journals (Sweden)

    Estibaliz Castillero

    Full Text Available FOXO1 is involved in glucocorticoid- and sepsis-induced muscle wasting, in part reflecting regulation of atrogin-1 and MuRF1. Mechanisms influencing FOXO1 expression in muscle wasting are poorly understood. We hypothesized that the transcription factor peroxisome proliferator-activated receptor β/δ (PPARβ/δ upregulates muscle FOXO1 expression and activity with a downstream upregulation of atrogin-1 and MuRF1 expression during sepsis and glucocorticoid treatment and that inhibition of PPARβ/δ activity can prevent muscle wasting. We found that activation of PPARβ/δ in cultured myotubes increased FOXO1 activity, atrogin-1 and MuRF1 expression, protein degradation and myotube atrophy. Treatment of myotubes with dexamethasone increased PPARβ/δ expression and activity. Dexamethasone-induced FOXO1 activation and atrogin-1 and MuRF1 expression, protein degradation, and myotube atrophy were inhibited by PPARβ/δ blocker or siRNA. Importantly, muscle wasting induced in rats by dexamethasone or sepsis was prevented by treatment with a PPARβ/δ inhibitor. The present results suggest that PPARβ/δ regulates FOXO1 activation in glucocorticoid- and sepsis-induced muscle wasting and that treatment with a PPARβ/δ inhibitor may ameliorate loss of muscle mass in these conditions.

  4. 28 CFR 55.15 - Affected activities.

    Science.gov (United States)

    2010-07-01

    ... the electoral process, including ballots.” The basic purpose of these requirements is to allow members... stages of the electoral process, from voter registration through activities related to conducting... registration, the time, places and subject matters of elections, and the absentee voting process. ...

  5. Intra-subject variability in muscle activity and co-contraction during jumps and landings in children and adults

    DEFF Research Database (Denmark)

    Raffalt, P C; Alkjaer, T; Simonsen, E B

    2017-01-01

    -subject variability in the muscle activity. Co-contraction was quantified for two thigh muscle pairs and one plantar flexor/dorsiflexor muscle pair and group differences were assessed (two-way ANOVA). No significant differences were observed in the less eccentric demanding CMJ while significantly higher muscle...

  6. Oral glucose ingestion attenuates exercise-induced activation of 5'-AMP-activated protein kinase in human skeletal muscle

    DEFF Research Database (Denmark)

    Åkerström, Thorbjörn; Birk, Jesper Bratz; Klein, Ditte Kjærsgaard

    2006-01-01

    5'-AMP-activated protein kinase (AMPK) has been suggested to be a 'metabolic master switch' regulating various aspects of muscle glucose and fat metabolism. In isolated rat skeletal muscle, glucose suppresses the activity of AMPK and in human muscle glycogen loading decreases exercise-induced AMPK...... activation. We hypothesized that oral glucose ingestion during exercise would attenuate muscle AMPK activation. Nine male subjects performed two bouts of one-legged knee-extensor exercise at 60% of maximal workload. The subjects were randomly assigned to either consume a glucose containing drink or a placebo...... drink during the two trials. Muscle biopsies were taken from the vastus lateralis before and after 2 h of exercise. Plasma glucose was higher (6.0 +/- 0.2 vs. 4.9 +/- 0.1 mmol L-1, P

  7. Ectomycorrhizal activity as affected by soil liming

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Solbritt

    1996-05-01

    Acidification of the forest soils in southern Sweden due to atmospheric deposition has become evident during recent decades. To counteract further acidification, liming of forests in the most affected areas has been proposed. Most forest trees in the temperate and boreal forest ecosystems live in symbiosis with ectomycorrhizal fungi, and their uptake of mineral nutrients from the soil is greatly influenced by the symbiosis. In this thesis effects of liming on ectomycorrhiza have been studied in relation to effects on root colonization, fungal growth and nitrogen uptake. In field experiments the effects of liming on ectomycorrhizal colonization of root tips were variable, possibly due to different soil types and climatic variations. However, a changed mycorrhizal community structure could be detected. Laboratory studies also showed that the substrate may influence the outcome of lime applications; the nutrient status of the substrate had a marked effect on how mycelial growth was affected by liming. Under the experimental conditions used in the studies presented in this thesis, liming reduced the uptake of nitrogen and phosphorus by both mycorrhizal and non-mycorrhizal plants. The amount of extractable nitrogen and phosphorus in the peat was also reduced by liming. The latter could be due to either microbial or chemical immobilization. The lime induced decrease in nitrogen uptake was stronger in non-mycorrhizal plants than in mycorrhizal plants. Thus, the mycorrhizal plants had a higher ability to deal with the negative effects of liming on nitrogen availability. This was not the case for phosphorus. The lime induced decrease in phosphorus uptake was stronger for mycorrhizal plants, and in the highest lime treatment there was no significant difference between the mycorrhizal and the non-mycorrhizal spruce plants. 76 refs, 2 figs, 1 tab

  8. Knockout of the predominant conventional PKC isoform, PKCalpha, in mouse skeletal muscle does not affect contraction-stimulated glucose uptake

    DEFF Research Database (Denmark)

    Jensen, Thomas E; Maarbjerg, Stine J; Rose, Adam J

    2009-01-01

    Conventional (c) protein kinase C (PKC) activity has been shown to increase with skeletal muscle contraction, and numerous studies using primarily pharmacological inhibitors have implicated cPKCs in contraction-stimulated glucose uptake. Here, to confirm that cPKC activity is required for contrac...... working on other parts of contraction-induced signaling or the remaining cPKC isoforms are sufficient for stimulating glucose uptake during contractions.......Conventional (c) protein kinase C (PKC) activity has been shown to increase with skeletal muscle contraction, and numerous studies using primarily pharmacological inhibitors have implicated cPKCs in contraction-stimulated glucose uptake. Here, to confirm that cPKC activity is required...... for contraction-stimulated glucose uptake in mouse muscles, contraction-stimulated glucose uptake ex vivo was first evaluated in the presence of three commonly used cPKC inhibitors (calphostin C, Gö-6976, and Gö-6983) in incubated mouse soleus and extensor digitorum longus (EDL) muscles. All potently inhibited...

  9. miR-378 attenuates muscle regeneration by delaying satellite cell activation and differentiation in mice.

    Science.gov (United States)

    Zeng, Ping; Han, Wanhong; Li, Changyin; Li, Hu; Zhu, Dahai; Zhang, Yong; Liu, Xiaohong

    2016-09-01

    Skeletal muscle mass and homeostasis during postnatal muscle development and regeneration largely depend on adult muscle stem cells (satellite cells). We recently showed that global overexpression of miR-378 significantly reduced skeletal muscle mass in mice. In the current study, we used miR-378 transgenic (Tg) mice to assess the in vivo functional effects of miR-378 on skeletal muscle growth and regeneration. Cross-sectional analysis of skeletal muscle tissues showed that the number and size of myofibers were significantly lower in miR-378 Tg mice than in wild-type mice. Attenuated cardiotoxin-induced muscle regeneration in miR-378 Tg mice was found to be associated with delayed satellite cell activation and differentiation. Mechanistically, miR-378 was found to directly target Igf1r in muscle cells both in vitro and in vivo These miR-378 Tg mice may provide a model for investigating the physiological and pathological roles of skeletal muscle in muscle-associated diseases in humans, particularly in sarcopenia. © The Author 2016. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Does solar activity affect human happiness?

    Science.gov (United States)

    Kristoufek, Ladislav

    2018-03-01

    We investigate the direct influence of solar activity (represented by sunspot numbers) on human happiness (represented by the Twitter-based Happiness Index). We construct four models controlling for various statistical and dynamic effects of the analyzed series. The final model gives promising results. First, there is a statistically significant negative influence of solar activity on happiness which holds even after controlling for the other factors. Second, the final model, which is still rather simple, explains around 75% of variance of the Happiness Index. Third, our control variables contribute significantly as well: happiness is higher in no sunspots days, happiness is strongly persistent, there are strong intra-week cycles and happiness peaks during holidays. Our results strongly contribute to the topical literature and they provide evidence of unique utility of the online data.

  11. Wrist muscle activity of khatrah approach in Mameluke technique using traditional bow archery

    Science.gov (United States)

    Ariffin, Muhammad Shahimi; Rambely, Azmin Sham; Ariff, Noratiqah Mohd

    2018-04-01

    An investigation of khatrah technique in archery was carried out. An electromyography (EMG) experiment was conducted towards six wrist muscles which are flexor carpi radialis, extensor carpi ulnaris and extensor digitorum communis for both arms. The maximum voluntary contraction (MVC) and activity data were recorded. The bow arm produced a higher muscle force compared to draw arm muscles during release phase. However, the muscle forces produced by bow arm had a consistency in term of pattern throughout the phases. In conclusion, the forces generated by the professional archer produced a force benchmark at the wrist joint to alleviate the risk of injury.

  12. Effect of generalized joint hypermobility on knee function and muscle activation in children and adults

    DEFF Research Database (Denmark)

    Jensen, Bente Rona; Olesen, Annesofie T.; Pedersen, Mogens Theisen

    2013-01-01

    Introduction: We investigated muscle activation strategy and performance of knee extensor and flexor muscles in children and adults with generalized joint hypermobility (GJH) and compared them with controls. Methods: Muscle activation, torque steadiness, electromechanical delay, and muscle strength...... were evaluated in 39 children and 36 adults during isometric knee extension and flexion. Subjects performed isometric maximum contractions, submaximal contractions at 25% maximum voluntary contraction (MVC), and explosive contractions. Results: Agonist activation was reduced, and coactivation ratio...... was greater in GJH during knee flexion compared with controls. Torque steadiness was impaired in adults with GJH during knee flexion. No effect of GJH was found on muscle strength or electromechanical delay. Correlation analysis revealed an association between GJH severity and function in adults. Conclusions...

  13. Muscle activation timing and balance response in chronic lower back pain patients with associated radiculopathy.

    Science.gov (United States)

    Frost, Lydia R; Brown, Stephen H M

    2016-02-01

    Patients with chronic low back pain and associated radiculopathy present with neuromuscular symptoms both in their lower back and down their leg; however, investigations of muscle activation have so far been isolated to the lower back. During balance perturbations, it is necessary that lower limb muscles activate with proper timing and sequencing along with the lower back musculature to efficiently regain balance control. Patients with chronic low back pain and radiculopathy and matched controls completed a series of balance perturbations (rapid bilateral arm raise, unanticipated and anticipated sudden loading, and rapid rise to toe). Muscle activation timing and sequencing as well as kinetic response to the perturbations were analyzed. Patients had significantly delayed lower limb muscle activation in rapid arm raise trials as compared to controls. In sudden loading trials, muscle activation timing was not delayed in patients; however, some differences in posterior chain muscle activation sequencing were present. Patients demonstrated less anterior-posterior movement in unanticipated sudden loading trials, and greater medial-lateral movement in rise to toe trials. Patients with low back pain and radiculopathy demonstrated some significant differences from control participants in terms of muscle activation timing, sequencing, and overall balance control. The presence of differences between patients and controls, specifically in the lower limb, indicates that radiculopathy may play a role in altering balance control in these patients. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Myosin binding protein-C activates thin filaments and inhibits thick filaments in heart muscle cells.

    Science.gov (United States)

    Kampourakis, Thomas; Yan, Ziqian; Gautel, Mathias; Sun, Yin-Biao; Irving, Malcolm

    2014-12-30

    Myosin binding protein-C (MyBP-C) is a key regulatory protein in heart muscle, and mutations in the MYBPC3 gene are frequently associated with cardiomyopathy. However, the mechanism of action of MyBP-C remains poorly understood, and both activating and inhibitory effects of MyBP-C on contractility have been reported. To clarify the function of the regulatory N-terminal domains of MyBP-C, we determined their effects on the structure of thick (myosin-containing) and thin (actin-containing) filaments in intact sarcomeres of heart muscle. We used fluorescent probes on troponin C in the thin filaments and on myosin regulatory light chain in the thick filaments to monitor structural changes associated with activation of demembranated trabeculae from rat ventricle by the C1mC2 region of rat MyBP-C. C1mC2 induced larger structural changes in thin filaments than calcium activation, and these were still present when active force was blocked with blebbistatin, showing that C1mC2 directly activates the thin filaments. In contrast, structural changes in thick filaments induced by C1mC2 were smaller than those associated with calcium activation and were abolished or reversed by blebbistatin. Low concentrations of C1mC2 did not affect resting force but increased calcium sensitivity and reduced cooperativity of force and structural changes in both thin and thick filaments. These results show that the N-terminal region of MyBP-C stabilizes the ON state of thin filaments and the OFF state of thick filaments and lead to a novel hypothesis for the physiological role of MyBP-C in the regulation of cardiac contractility.

  15. Fueling the engine: induction of AMP-activated protein kinase in trout skeletal muscle by swimming

    NARCIS (Netherlands)

    Magnoni, L.J.; Palstra, A.P.; Planas, J.V.

    2014-01-01

    AMP-activated protein kinase (AMPK) is well known to be induced by exercise and to mediate important metabolic changes in the skeletal muscle of mammals. Despite the physiological importance of exercise as a modulator of energy use by locomotory muscle, the regulation of this enzyme by swimming has

  16. Single dose of fluoxetine increases muscle activation in chronic stroke patients.

    NARCIS (Netherlands)

    van Genderen, Hanneke Irene; Nijlant, Juliette M.M.; van Putten, Michel Johannes Antonius Maria; Movig, Kris L.L.; IJzerman, Maarten Joost

    2009-01-01

    Objectives: This pilot study explores the influence of a single dose of fluoxetine (20 mg) on the muscle activation patterns and functional ability of the muscles in the lower part of the arm in chronic stroke patients. Methods: A crossover, placebo-controlled clinical trial was conducted in 10

  17. Type and intensity of activity and risk of mobility limitation: the mediating role of muscle parameters

    NARCIS (Netherlands)

    Visser, M.; Simonsick, E.M.; Colbert, L.H.; Brach, J.S.; Rubin, S.M.; Kritchevsky, S.B.; Newman, A.B.; Harris, T.B.

    2005-01-01

    2,719 kcal/wk of total physical activity). The study outcome, incident mobility limitation, was defined as two consecutive, semiannual self-reports of any difficulty walking one quarter of a mile or climbing 10 steps. Thigh muscle area, thigh muscle attenuation (a marker of fat infiltration in

  18. Circadian and individual variations in duration of spontaneous activity among ankle muscles of the cat

    NARCIS (Netherlands)

    Hensbergen, E; Kernell, D

    This article concerns the spontaneous motor behavior of cat hindlimb muscles and muscle regions using 24-h electromyographic (EMG) recordings. Previously, we found marked differences in average daily "duty time" (i.e., the percentage of total sampling time filled with EMG activity) between different

  19. Muscle-strengthening and conditioning activities and risk of type 2 diabetes

    DEFF Research Database (Denmark)

    Grøntved, Anders; Pan, An; Mekary, Rania A

    2014-01-01

    BACKGROUND: It is well established that aerobic physical activity can lower the risk of type 2 diabetes (T2D), but whether muscle-strengthening activities are beneficial for the prevention of T2D is unclear. This study examined the association of muscle-strengthening activities with the risk of T2D...... at baseline. Participants reported weekly time spent on resistance exercise, lower intensity muscular conditioning exercises (yoga, stretching, toning), and aerobic moderate and vigorous physical activity (MVPA) at baseline and in 2004/2005. Cox regression with adjustment for major determinants for T2D...... include that muscle-strengthening and conditioning activity and other types of physical activity were assessed by a self-administered questionnaire and that the study population consisted of registered nurses with mostly European ancestry. CONCLUSIONS: Our study suggests that engagement in muscle...

  20. The Influence of Ambulatory Aid on Lower-Extremity Muscle Activation During Gait.

    Science.gov (United States)

    Sanders, Michael; Bowden, Anton E; Baker, Spencer; Jensen, Ryan; Nichols, McKenzie; Seeley, Matthew K

    2018-05-10

    Foot and ankle injuries are common and often require a nonweight-bearing period of immobilization for the involved leg. This nonweight-bearing period usually results in muscle atrophy for the involved leg. There is a dearth of objective data describing muscle activation for different ambulatory aids that are used during the aforementioned nonweight-bearing period. To compare activation amplitudes for 4 leg muscles during (1) able-bodied gait and (2) ambulation involving 3 different ambulatory aids that can be used during the acute phase of foot and ankle injury care. Within-subject, repeated measures. University biomechanics laboratory. Sixteen able-bodied individuals (7 females and 9 males). Each participant performed able-bodied gait and ambulation using 3 different ambulatory aids (traditional axillary crutches, knee scooter, and a novel lower-leg prosthesis). Muscle activation amplitude quantified via mean surface electromyography amplitude throughout the stance phase of ambulation. Numerous statistical differences (P < .05) existed for muscle activation amplitude between the 4 observed muscles, 3 ambulatory aids, and able-bodied gait. For the involved leg, comparing the 3 ambulatory aids: (1) knee scooter ambulation resulted in the greatest vastus lateralis activation, (2) ambulation using the novel prosthesis and traditional crutches resulted in greater biceps femoris activation than knee scooter ambulation, and (3) ambulation using the novel prosthesis resulted in the greatest gastrocnemius activation (P < .05). Generally speaking, muscle activation amplitudes were most similar to able-bodied gait when subjects were ambulating using the knee scooter or novel prosthesis. Type of ambulatory aid influences muscle activation amplitude. Traditional axillary crutches appear to be less likely to mitigate muscle atrophy during the nonweighting, immobilization period that often follows foot or ankle injuries. Researchers and clinicians should consider

  1. Determination of the Timing and Level of Activities of Lumbopelvic Muscles in Response to Postural Perturbations

    Directory of Open Access Journals (Sweden)

    S Ebrahimi Takamjani

    2005-05-01

    Full Text Available Background: One of the most important concerns in orthopedic medicine is the low back. Considering the importance of muscle function in preventing LBT by controlling too much load and stress applied on the spinal joints and ligaments. Materials and Methods: The aim of this research was to determine the timing and level of activities of lumbopelvic muscles in response to postural perturbations caused by unexpected loading of the upper limbs in standing on three different supporting surfaces (neutral, positive slope, negative slope in 20 healthy females 18 to 30 years old ( = 23.20 SD = 2.55 . The electromyographic signals were recorded from the deltoid, gluteus maximus, internal oblique abdominis and lumbar paraspinal muscles of the dominant side of the body to evaluate the onset time, end time, level of muscle activity (RMS and duration of different muscles in one task and one muscle in different tasks. Results: The results showed that the agonists (posterior muscles activated at first to compensate the flexor torque caused by loading and then the antagonists (anterior muscles switched-on to compensate the reaction forces caused by agonist activities. With regards to continuous activity of internal oblique and its attachments via thoracalumbar fascia to the transverse processes of the lumbar vertebrae, it can be considered as one of the major stabilizer muscles of the trunk . Conclusion: Finally the results indicated that supporting surface type didn’t have any effect on timing and scaling of muscle activities in different tasks suggesting that probably spinal and trunk priprioceptors are just responsible for triggering postural responses and they don’t have any role in determining timing and scaling.

  2. Noggin inactivation affects the number and differentiation potential of muscle progenitor cells in vivo

    Science.gov (United States)

    Costamagna, Domiziana; Mommaerts, Hendrik; Sampaolesi, Maurilio; Tylzanowski, Przemko

    2016-01-01

    Inactivation of Noggin, a secreted antagonist of Bone Morphogenetic Proteins (BMPs), in mice leads, among others, to severe malformations of the appendicular skeleton and defective skeletal muscle fibers. To determine the molecular basis of the phenotype, we carried out a histomorphological and molecular analysis of developing muscles Noggin−/− mice. We show that in 18.5 dpc embryos there is a marked reduction in muscle fiber size and a failure of nuclei migration towards the cell membrane. Molecularly, the absence of Noggin results in an increased BMP signaling in muscle tissue as shown by the increase in SMAD1/5/8 phosphorylation, concomitant with the induction of BMP target genes such as Id1, 2, 3 as well as Msx1. Finally, upon removal of Noggin, the number of mesenchymal Pax7+ muscle precursor cells is reduced and they are more prone to differentiate into adipocytes in vitro. Thus, our results highlight the importance of Noggin/BMP balance for myogenic commitment of early fetal progenitor cells. PMID:27573479

  3. Bioelectrical activity of limb muscles during cold shivering of stimulation of the vestibular apparatus

    Science.gov (United States)

    Kuzmina, G. I.

    1980-01-01

    The effects of caloric and electric stimulation of the vestibular receptors on the EMG activity of limb muslces in anesthetized cats during cold induced shivering involved flexor muscles alone. Both types of stimulation suppressed bioelectrical activity more effectively in the ipsilateral muscles. The suppression of shivering activity seems to be due to the increased inhibitory effect of descending labyrinth pathways on the function of flexor motoneurons.

  4. Determination of Magnesium in Needle Biopsy Samples of Muscle Tissue by Means of Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Brune, D; Sjoeberg, H E

    1964-07-15

    Magnesium has been determined by means of neutron-activation analysis in needle biopsy samples of the order of magnitude 1 mg dry weight. The procedure applied was to extract the Mg-27 activity from irradiated muscle tissue with concentrated hydrochloric acid followed by a fast hydroxide precipitation and gamma-spectrometric measurements. The Mg activity was recovered in the muscle tissue samples to (97 {+-} 2) per cent. The sensitivity for the magnesium determination is estimated as 0.3 {mu}g.

  5. Muscle activity during functional coordination training: implications for strength gain and rehabilitation

    DEFF Research Database (Denmark)

    Jørgensen, Marie Birk; Andersen, Lars Louis; Kirk, Niels

    2010-01-01

    The purpose of this study was to evaluate if different types, body positions, and levels of progression of functional coordination exercises can provide sufficiently high levels of muscle activity to improve strength of the neck, shoulder, and trunk muscles. Nine untrained women were familiarized...... to the maximal EMG activity during maximal voluntary contractions, and a p value 60% of maximal EMG activity). Type of exercise played a significant role...

  6. SEMG activity of jaw-closing muscles during biting with different unilateral occlusal supports.

    Science.gov (United States)

    Wang, M-Q; He, J-J; Zhang, J-H; Wang, K; Svensson, P; Widmalm, S E

    2010-09-01

    The aim of this study was to test the hypothesis that experimental and reversible changes of occlusion affect the levels of surface electromyographic (SEMG) activity in the anterior temporalis and masseter areas during unilateral maximal voluntary biting (MVB) in centric and eccentric position. Changes were achieved by letting 21 healthy subjects bite with and without a cotton roll between the teeth. The placement alternated between sides and between premolar and molar areas. The SEMG activity level was lower when biting in eccentric position without than with a cotton roll between teeth (P 0.05). In the anterior temporalis area, the balancing side SEMG activity was lower in eccentric than in centric but only in molar-supported biting (P = 0.026). These results support that the masseter and anterior temporalis muscles have different roles in keeping the mandible in balance during unilateral supported MVB. Changes in occlusal stability achieved by biting with versus without a cotton roll were found to affect the SEMG activity levels.

  7. Biologically active extracts with kidney affections applications

    Science.gov (United States)

    Pascu (Neagu), Mihaela; Pascu, Daniela-Elena; Cozea, Andreea; Bunaciu, Andrei A.; Miron, Alexandra Raluca; Nechifor, Cristina Aurelia

    2015-12-01

    This paper is aimed to select plant materials rich in bioflavonoid compounds, made from herbs known for their application performances in the prevention and therapy of renal diseases, namely kidney stones and urinary infections (renal lithiasis, nephritis, urethritis, cystitis, etc.). This paper presents a comparative study of the medicinal plant extracts composition belonging to Ericaceae-Cranberry (fruit and leaves) - Vaccinium vitis-idaea L. and Bilberry (fruit) - Vaccinium myrtillus L. Concentrated extracts obtained from medicinal plants used in this work were analyzed from structural, morphological and compositional points of view using different techniques: chromatographic methods (HPLC), scanning electronic microscopy, infrared, and UV spectrophotometry, also by using kinetic model. Liquid chromatography was able to identify the specific compounds of the Ericaceae family, present in all three extracts, arbutosid, as well as specific components of each species, mostly from the class of polyphenols. The identification and quantitative determination of the active ingredients from these extracts can give information related to their therapeutic effects.

  8. Muscle activation described with a differential equation model for large ensembles of locally coupled molecular motors.

    Science.gov (United States)

    Walcott, Sam

    2014-10-01

    Molecular motors, by turning chemical energy into mechanical work, are responsible for active cellular processes. Often groups of these motors work together to perform their biological role. Motors in an ensemble are coupled and exhibit complex emergent behavior. Although large motor ensembles can be modeled with partial differential equations (PDEs) by assuming that molecules function independently of their neighbors, this assumption is violated when motors are coupled locally. It is therefore unclear how to describe the ensemble behavior of the locally coupled motors responsible for biological processes such as calcium-dependent skeletal muscle activation. Here we develop a theory to describe locally coupled motor ensembles and apply the theory to skeletal muscle activation. The central idea is that a muscle filament can be divided into two phases: an active and an inactive phase. Dynamic changes in the relative size of these phases are described by a set of linear ordinary differential equations (ODEs). As the dynamics of the active phase are described by PDEs, muscle activation is governed by a set of coupled ODEs and PDEs, building on previous PDE models. With comparison to Monte Carlo simulations, we demonstrate that the theory captures the behavior of locally coupled ensembles. The theory also plausibly describes and predicts muscle experiments from molecular to whole muscle scales, suggesting that a micro- to macroscale muscle model is within reach.

  9. Activation of selected shoulder muscles during unilateral wall and bench press tasks under submaximal isometric effort.

    Science.gov (United States)

    Tucci, Helga T; Ciol, Marcia A; de Araújo, Rodrigo C; de Andrade, Rodrigo; Martins, Jaqueline; McQuade, Kevin J; Oliveira, Anamaria S

    2011-07-01

    Controlled laboratory study. To assess the activation of 7 shoulder muscles under 2 closed kinetic chain (CKC) tasks for the upper extremity using submaximal isometric effort, thus providing relative quantification of muscular isometric effort for these muscles across the CKC exercises, which may be applied to rehabilitation protocols for individuals with shoulder weakness. CKC exercises favor joint congruence, reduce shear load, and promote joint dynamic stability. Additionally, knowledge about glenohumeral and periscapular muscle activity elicited during CKC exercises may help clinicians to design protocols for shoulder rehabilitation. Using surface electromyography, activation level was measured across 7 shoulder muscles in 20 healthy males, during the performance of a submaximal isometric wall press and bench press. Signals were normalized to the maximal voluntary isometric contraction, and, using paired t tests, data were analyzed between the exercises for each muscle. Compared to the wall press, the bench press elicited higher activity for most muscles, except for the upper trapezius. Levels of activity were usually low but were above 20% maximal voluntary isometric contraction for the serratus anterior on both tasks, and for the long head triceps brachii on the bench press. Both the bench press and wall press, as performed in this study, led to relatively low EMG activation levels for the muscles measured and may be considered for use in the early phases of rehabilitation.

  10. CORE MUSCLE ACTIVITY DURING THE CLEAN AND JERK LIFT WITH BARBELL VERSUS SANDBAGS AND WATER BAGS.

    Science.gov (United States)

    Calatayud, Joaquin; Colado, Juan C; Martin, Fernando; Casaña, José; Jakobsen, Markus D; Andersen, Lars L

    2015-11-01

    While the traditional clean and jerk maneuver implies simultaneous participation of a large number of muscle groups, the use of this exercise with some variations to enhance core muscle activity remains uninvestigated. The purpose of this study was to compare the muscle activity during clean and jerk lift when performed with a barbell, sandbag and a water bag at same absolute load. Descriptive, repeated-measures study. Twenty-one young fit male university students (age: 25 ± 2.66 years; height: 180.71 ± 5.42 cm; body mass: 80.32 ± 9.8 kg; body fat percentage: 12.41 ± 3.56 %) participated. Surface electromyographic (EMG) signals were recorded from the anterior deltoid (AD), external oblique (OBLIQ), lumbar erector spinae (LUMB), and gluteus medius (GM) and were expressed as a percentage of the maximum voluntary isometric contraction (MVIC). There were no significantly significant differences for AD muscle activity between conditions, whereas muscle activation values for OBLIQ (60%MVIC), GM (29%MVIC) and LUMB (85%MVIC) were significantly higher during the water bag power clean and jerk maneuver when compared with the other conditions. The clean and jerk is an exercise that may be used to enhance core muscle activity. Performing the maneuver with water bags resulted in higher core muscle activity compared with sandbag and standard barbell versions. 3.

  11. Biologically active extracts with kidney affections applications

    International Nuclear Information System (INIS)

    Pascu, Mihaela; Pascu, Daniela-Elena; Cozea, Andreea; Bunaciu, Andrei A.; Miron, Alexandra Raluca; Nechifor, Cristina Aurelia

    2015-01-01

    Highlights: • The paper highlighted the compositional similarities and differences between the three extracts of bilberry and cranberry fruit derived from the same Ericaceae family. • A method of antioxidant activity, different cellulose membranes, a Whatman filter and Langmuir – kinetic model were used. • Arbutoside presence in all three extracts of bilberry and cranberry fruit explains their use in urinary infections – cystitis and colibacillosis. • Following these research studies, it was established that the fruits of bilberry and cranberry (fruit and leaves) significantly reduce the risk of urinary infections, and work effectively to protect against free radicals and inflammation. - Abstract: This paper is aimed to select plant materials rich in bioflavonoid compounds, made from herbs known for their application performances in the prevention and therapy of renal diseases, namely kidney stones and urinary infections (renal lithiasis, nephritis, urethritis, cystitis, etc.). This paper presents a comparative study of the medicinal plant extracts composition belonging to Ericaceae-Cranberry (fruit and leaves) – Vaccinium vitis-idaea L. and Bilberry (fruit) – Vaccinium myrtillus L. Concentrated extracts obtained from medicinal plants used in this work were analyzed from structural, morphological and compositional points of view using different techniques: chromatographic methods (HPLC), scanning electronic microscopy, infrared, and UV spectrophotometry, also by using kinetic model. Liquid chromatography was able to identify the specific compounds of the Ericaceae family, present in all three extracts, arbutosid, as well as specific components of each species, mostly from the class of polyphenols. The identification and quantitative determination of the active ingredients from these extracts can give information related to their therapeutic effects.

  12. Biologically active extracts with kidney affections applications

    Energy Technology Data Exchange (ETDEWEB)

    Pascu, Mihaela, E-mail: mihhaela_neagu@yahoo.com [SC HOFIGAL S.A., Analytical Research Department, 2 Intr. Serelor, Bucharest-4 042124 (Romania); Politehnica University of Bucharest, Faculty of Applied Chemistry and Material Science, 1-5 Polizu Street, 11061 Bucharest (Romania); Pascu, Daniela-Elena [Politehnica University of Bucharest, Faculty of Applied Chemistry and Material Science, 1-5 Polizu Street, 11061 Bucharest (Romania); Cozea, Andreea [SC HOFIGAL S.A., Analytical Research Department, 2 Intr. Serelor, Bucharest-4 042124 (Romania); Transilvania University of Brasov, Faculty of Food and Tourism, 148 Castle Street, 500036 Brasov (Romania); Bunaciu, Andrei A. [SCIENT – Research Center for Instrumental Analysis, S.C. CROMATEC-PLUS S.R.L., 18 Sos. Cotroceni, Bucharest 060114 (Romania); Miron, Alexandra Raluca; Nechifor, Cristina Aurelia [Politehnica University of Bucharest, Faculty of Applied Chemistry and Material Science, 1-5 Polizu Street, 11061 Bucharest (Romania)

    2015-12-15

    Highlights: • The paper highlighted the compositional similarities and differences between the three extracts of bilberry and cranberry fruit derived from the same Ericaceae family. • A method of antioxidant activity, different cellulose membranes, a Whatman filter and Langmuir – kinetic model were used. • Arbutoside presence in all three extracts of bilberry and cranberry fruit explains their use in urinary infections – cystitis and colibacillosis. • Following these research studies, it was established that the fruits of bilberry and cranberry (fruit and leaves) significantly reduce the risk of urinary infections, and work effectively to protect against free radicals and inflammation. - Abstract: This paper is aimed to select plant materials rich in bioflavonoid compounds, made from herbs known for their application performances in the prevention and therapy of renal diseases, namely kidney stones and urinary infections (renal lithiasis, nephritis, urethritis, cystitis, etc.). This paper presents a comparative study of the medicinal plant extracts composition belonging to Ericaceae-Cranberry (fruit and leaves) – Vaccinium vitis-idaea L. and Bilberry (fruit) – Vaccinium myrtillus L. Concentrated extracts obtained from medicinal plants used in this work were analyzed from structural, morphological and compositional points of view using different techniques: chromatographic methods (HPLC), scanning electronic microscopy, infrared, and UV spectrophotometry, also by using kinetic model. Liquid chromatography was able to identify the specific compounds of the Ericaceae family, present in all three extracts, arbutosid, as well as specific components of each species, mostly from the class of polyphenols. The identification and quantitative determination of the active ingredients from these extracts can give information related to their therapeutic effects.

  13. Trunk muscle activity during different variations of the supine plank exercise

    DEFF Research Database (Denmark)

    Calatayud, Joaquin; Casaña, Jose; Martín, Fernando

    2017-01-01

    Background Exercises providing neuromuscular challenges of the spinal muscles are desired for core stability, which is important for workers with heavy manual labour as well as people recovering from back pain. Purpose This study evaluated whether using a suspended modality increases trunk muscle...... voluntary isometric contraction (MVIC). Results No differences between exercises were found for UP ABS, LOW ABS and OBLIQ muscle activity. The unilateral suspended supine plank provided the highest LUMB activity (20% of MVIC) whiles the bilateral stable supine plank provided the lowest activity (11% of MVIC...

  14. Effects of the belt electrode skeletal muscle electrical stimulation system on lower extremity skeletal muscle activity: Evaluation using positron emission tomography.

    Science.gov (United States)

    Numata, Hitoaki; Nakase, Junsuke; Inaki, Anri; Mochizuki, Takafumi; Oshima, Takeshi; Takata, Yasushi; Kinuya, Seigo; Tsuchiya, Hiroyuki

    2016-01-01

    Lower-extremity muscle weakness in athletes after lower limb trauma or surgery can hinder their return to sports, and the associated muscle atrophy may lead to deterioration in performance after returning to sports. Recently, belt electrode skeletal muscle electrical stimulation (B-SES) which can contract all the lower limb skeletal muscles simultaneously was developed. However, no study has evaluated skeletal muscle activity with B-SES. Since only superficial muscles as well as a limited number of muscles can be investigated using electromyography, we investigated whether positron emission tomography (PET) can evaluate the activity of all the skeletal muscles in the body simultaneously. The purpose of this study was to evaluate the effectiveness of the B-SES system using PET. Twelve healthy males (mean age, 24.3 years) were divided into two groups. The subjects in the control group remained in a sitting position for 10 min, and [(18)F] fluorodeoxyglucose (FDG) was intravenously injected. In the exercise group, subjects exercised using the B-SES system for 20 min daily for three consecutive days as a pre-test exercise. On the measurement day, they exercised for 10 min, received an injection of FDG, and exercised for another 10 min. PET-computed tomography images were obtained in each group 60 min after the FDG injection. Regions of interest were drawn in each lower-extremity muscle. We compared each skeletal muscle metabolism using the standardized uptake value. In the exercise group, FDG accumulation in the gluteus maximus, gluteus medius, gluteus minimus, quadriceps femoris, sartorius, and hamstrings was significantly higher than the muscles in the control (P skeletal muscle activity of the gluteal muscles as well as the most lower-extremity muscles simultaneously. Copyright © 2015 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  15. Upper limb muscle activation during sports video gaming of persons with spinal cord injury.

    Science.gov (United States)

    Jaramillo, Jeffrey P; Johanson, M Elise; Kiratli, B Jenny

    2018-04-04

    Video gaming as a therapeutic tool has largely been studied within the stroke population with some benefits reported in upper limb motor performance, balance, coordination, and cardiovascular status. To date, muscle activation of upper limb muscles in persons with spinal cord injuries (SCI) has not been studied during video game play. In this paper, we provide descriptive and comparative data for muscle activation and strength during gaming for players with tetraplegia and paraplegia, as well as, compare these results with data from traditional arm exercises (ie, biceps curl and shoulder press) with light weights which are commonly prescribed for a home program. Fourteen individuals with chronic SCI (9 tetraplegia, 5 paraplegia). We measured upper limb muscle activation with surface electromyography (EMG) during Wii Sports video game play. Muscle activation was recorded from the playing arm during 4 selected games and normalized to a maximum voluntary contraction (MVC). Heart rate and upper limb motion were recorded simultaneously with EMG. Wilcoxon signed rank tests were used to analyze differences in muscle activation between participants with paraplegia versus tetraplegia and compare gaming with traditional arm exercises with light weights. A Friedman 2-way analysis of variance identified key muscle groups active during game play. Overall muscle activation across the games was not different between those with paraplegia and tetraplegia. Heart rate during video game play for tennis and boxing were on average 10 to 20 beats/minute above resting heart rate. The magnitude of EMG was relatively greater for traditional arm exercises with light weights compared with game play. The selected Wii games were able to elicit upper extremity muscle activation and elevated heart rates for individuals with SCI that may be used to target therapeutic outcomes.

  16. Asymmetry of neck motion and activation of the cervical paraspinal muscles during prone neck extension in subjects with unilateral posterior neck pain.

    Science.gov (United States)

    Park, Kyue-Nam; Kwon, Oh-Yun; Kim, Su-Jung; Kim, Si-Hyun

    2017-01-01

    Although unilateral posterior neck pain (UPNP) is more prevalent than central neck pain, little is known about how UPNP affects neck motion and the muscle activation pattern during prone neck extension. To investigate whether deviation in neck motion and asymmetry of activation of the bilateral cervical paraspinal muscles occur during prone neck extension in subjects with UPNP compared to subjects without UPNP. This study recruited 20 subjects with UPNP and 20 age- and sex-matched control subjects without such pain. Neck motion and muscle onset time during prone neck extension were measured using a three-dimensional motion-analysis system and surface electromyography. The deviation during prone neck extension was greater in the UPNP group than in the controls (p cervical extensor muscle activation in the UPNP group was significantly delayed on the painful side during prone neck extension (p cervical extensors, triggering a need for specific evaluation and exercises in the management of patients with UPNP.

  17. Time course in calpain activity and autolysis in slow and fast skeletal muscle during clenbuterol treatment.

    Science.gov (United States)

    Douillard, Aymeric; Galbes, Olivier; Rossano, Bernadette; Vernus, Barbara; Bonnieu, Anne; Candau, Robin; Py, Guillaume

    2011-02-01

    Calpains are Ca2+ cysteine proteases that have been proposed to be involved in the cytoskeletal remodeling and wasting of skeletal muscle. Cumulative evidence also suggests that β2-agonists can lead to skeletal muscle hypertrophy through a mechanism probably related to calcium-dependent proteolytic enzyme. The aim of our study was to monitor calpain activity as a function of clenbuterol treatment in both slow and fast phenotype rat muscles. For this purpose, for 21 days we followed the time course of the calpain activity and of the ubiquitous calpain 1 and 2 autolysis, as well as muscle remodeling in the extensor digitorum longus (EDL) and soleus muscles of male Wistar rats treated daily with clenbuterol (4 mg·kg-1). A slow to fast fiber shift was observed in both the EDL and soleus muscles after 9 days of treatment, while hypertrophy was observed only in EDL after 9 days of treatment. Soleus muscle but not EDL muscle underwent an early apoptonecrosis phase characterized by hematoxylin and eosin staining. Total calpain activity was increased in both the EDL and soleus muscles of rats treated with clenbuterol. Moreover, calpain 1 autolysis increased significantly after 14 days in the EDL, but not in the soleus. Calpain 2 autolysis increased significantly in both muscles 6 hours after the first clenbuterol injection, indicating that clenbuterol-induced calpain 2 autolysis occurred earlier than calpain 1 autolysis. Together, these data suggest a preferential involvement of calpain 2 autolysis compared with calpain 1 autolysis in the mechanisms underlying the clenbuterol-induced skeletal muscle remodeling.

  18. Muscle activation patterns during walking from transtibial amputees recorded within the residual limb-prosthetic interface

    Directory of Open Access Journals (Sweden)

    Huang Stephanie

    2012-08-01

    Full Text Available Abstract Background Powered lower limb prostheses could be more functional if they had access to feedforward control signals from the user’s nervous system. Myoelectric signals are one potential control source. The purpose of this study was to determine if muscle activation signals could be recorded from residual lower limb muscles within the prosthetic socket-limb interface during walking. Methods We recorded surface electromyography from three lower leg muscles (tibilias anterior, gastrocnemius medial head, gastrocnemius lateral head and four upper leg muscles (vastus lateralis, rectus femoris, biceps femoris, and gluteus medius of 12 unilateral transtibial amputee subjects and 12 non-amputee subjects during treadmill walking at 0.7, 1.0, 1.3, and 1.6 m/s. Muscle signals were recorded from the amputated leg of amputee subjects and the right leg of control subjects. For amputee subjects, lower leg muscle signals were recorded from within the limb-socket interface and from muscles above the knee. We quantified differences in the muscle activation profile between amputee and control groups during treadmill walking using cross-correlation analyses. We also assessed the step-to-step inter-subject variability of these profiles by calculating variance-to-signal ratios. Results We found that amputee subjects demonstrated reliable muscle recruitment signals from residual lower leg muscles recorded within the prosthetic socket during walking, which were locked to particular phases of the gait cycle. However, muscle activation profile variability was higher for amputee subjects than for control subjects. Conclusion Robotic lower limb prostheses could use myoelectric signals recorded from surface electrodes within the socket-limb interface to derive feedforward commands from the amputee’s nervous system.

  19. Neck movement and muscle activity characteristics in female office workers with neck pain.

    Science.gov (United States)

    Johnston, V; Jull, G; Souvlis, T; Jimmieson, N L

    2008-03-01

    Cross-sectional study. To explore aspects of cervical musculoskeletal function in female office workers with neck pain. Evidence of physical characteristics that differentiate computer workers with and without neck pain is sparse. Patients with chronic neck pain demonstrate reduced motion and altered patterns of muscle control in the cervical flexor and upper trapezius (UT) muscles during specific tasks. Understanding cervical musculoskeletal function in office workers will better direct intervention and prevention strategies. Measures included neck range of motion; superficial neck flexor muscle activity during a clinical test, the craniocervical flexion test; and a motor task, a unilateral muscle coordination task, to assess the activity of both the anterior and posterior neck muscles. Office workers with and without neck pain were formed into 3 groups based on their scores on the Neck Disability Index. Nonworking women without neck pain formed the control group. Surface electromyographic activity was recorded bilaterally from the sternocleidomastoid, anterior scalene (AS), cervical extensor (CE) and UT muscles. Workers with neck pain had reduced rotation range and increased activity of the superficial cervical flexors during the craniocervical flexion test. During the coordination task, workers with pain demonstrated greater activity in the CE muscles bilaterally. On completion of the task, the UT and dominant CE and AS muscles demonstrated an inability to relax in workers with pain. In general, there was a linear relationship between the workers' self-reported levels of pain and disability and the movement and muscle changes. These results are consistent with those found in other cervical musculoskeletal disorders and may represent an altered muscle recruitment strategy to stabilize the head and neck. An exercise program including motor reeducation may assist in the management of neck pain in office workers.

  20. Synaptic and functional linkages between spinal premotor interneurons and hand-muscle activity during precision grip

    Directory of Open Access Journals (Sweden)

    Tomohiko eTakei

    2013-04-01

    Full Text Available Grasping is a highly complex movement that requires the coordination of a number of hand joints and muscles. Previous studies showed that spinal premotor interneurons (PreM-INs in the primate cervical spinal cord have divergent synaptic effects on hand motoneurons and that they might contribute to hand-muscle synergies. However, the extent to which these PreM-IN synaptic connections functionally contribute to modulating hand-muscle activity is not clear. In this paper, we explored the contribution of spinal PreM-INs to hand-muscle activation by quantifying the synaptic linkage (SL and functional linkage (FL of the PreM-INs with hand-muscle activities. The activity of 23 PreM-INs was recorded from the cervical spinal cord (C6–T1, with EMG signals measured simultaneously from hand and arm muscles in two macaque monkeys performing a precision grip task. Spike-triggered averages (STAs of rectified EMGs were compiled for 456 neuron–muscle pairs; 63 pairs showed significant post-spike effects (i.e., SL. Conversely, 231 of 456 pairs showed significant cross-correlations between the IN firing rate and rectified EMG (i.e., FL. Importantly, a greater proportion of the neuron–muscle pairs with SL showed FL (43/63 pairs, 68% compared with the pairs without SL (203/393, 52%, and the presence of SL was significantly associated with that of FL. However, a significant number of pairs had SL without FL (SL∩!FL, n = 20 or FL without SL (!SL∩FL, n = 203, and the proportions of these incongruities exceeded the number expected by chance. These results suggested that spinal PreM-INs function to significantly modulate hand-muscle activity during precision grip, but the contribution of other neural structures is also needed to recruit an adequate combination of hand-muscle motoneurons.

  1. Acclimation temperature affects the metabolic response of amphibian skeletal muscle to insulin.

    Science.gov (United States)

    Petersen, Ann M; Gleeson, Todd T

    2011-09-01

    Frog skeletal muscle mainly utilizes the substrates glucose and lactate for energy metabolism. The goal of this study was to determine the effect of insulin on the uptake and metabolic fate of lactate and glucose at rest in skeletal muscle of the American bullfrog, Lithobates catesbeiana, under varying temperature regimens. We hypothesize that lactate and glucose metabolic pathways will respond differently to the presence of insulin in cold versus warm acclimated frog tissues, suggesting an interaction between temperature and metabolism under varying environmental conditions. We employed radiolabeled tracer techniques to measure in vitro uptake, oxidation, and incorporation of glucose and lactate into glycogen by isolated muscles from bullfrogs acclimated to 5 °C (cold) or 25 °C (warm). Isolated bundles from Sartorius muscles were incubated at 5 °C, 15 °C, or 25 °C, and in the presence and absence of 0.05 IU/mL bovine insulin. Insulin treatment in the warm acclimated and incubated frogs resulted in an increase in glucose incorporation into glycogen, and an increase in intracellular [glucose] of 0.5 μmol/g (Pmuscle. When compared to the warm treatment group, cold acclimation and incubation resulted in increased rates of glucose oxidation and glycogen synthesis, and a reduction in free intracellular glucose levels (Pmuscles from either acclimation group were incubated at an intermediate temperature of 15 °C, insulin's effect on substrate metabolism was attenuated or even reversed. Therefore, a significant interaction between insulin and acclimation condition in controlling skeletal muscle metabolism appears to exist. Our findings further suggest that one of insulin's actions in frog muscle is to increase glucose incorporation into glycogen, and to reduce reliance on lactate as the primary metabolic fuel. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Do stages of menopause affect the outcomes of pelvic floor muscle training?

    Science.gov (United States)

    Tosun, Özge Çeliker; Mutlu, Ebru Kaya; Tosun, Gökhan; Ergenoğlu, Ahmet Mete; Yeniel, Ahmet Özgur; Malkoç, Mehtap; Aşkar, Niyazi; İtil, İsmail Mete

    2015-02-01

    The purpose of our study is to determine whether there is a difference in pelvic floor muscle strength attributable to pelvic floor muscle training conducted during different stages of menopause. One hundred twenty-two women with stress urinary incontinence and mixed urinary incontinence were included in this prospective controlled study. The participants included in this study were separated into three groups according to the Stages of Reproductive Aging Workshop staging system as follows: group 1 (n = 41): stages -3 and -2; group 2 (n = 32): stages +1 and -1; and group 3 (n = 30): stage +2. All three groups were provided an individual home exercise program throughout the 12-week study. Pelvic floor muscle strength before and after the 12-week treatment was measured in all participants (using the PERFECT [power, endurance, number of repetitions, and number of fast (1-s) contractions; every contraction is timed] scheme, perineometry, transabdominal ultrasound, Brink scale, pad test, and stop test). Data were analyzed using analysis of variance. There were no statistically significant differences in pre-exercise training pelvic floor muscle strength parameters among the three groups. After 12 weeks, there were statistically significant increases in PERFECT scheme, Brink scale, perineometry, and ultrasound values. In contrast, there were significant decreases in stop test and 1-hour pad test values observed in the three groups (P = 0.001, dependent t test). In comparison with the other groups, group 1 demonstrated statistically significant improvements in the following postexercise training parameters: power, repetition, speed, Brink vertical displacement, and stop test. The lowest increase was observed in group 2 (P menopause with pelvic floor muscle training, but the rates of increase vary according to the menopausal stage of the participants. Women in the late menopausal transition and early menopause are least responsive to pelvic floor muscle strength training

  3. Low-Force Muscle Activity Regulates Energy Expenditure after Spinal Cord Injury.

    Science.gov (United States)

    Woelfel, Jessica R; Kimball, Amy L; Yen, Chu-Ling; Shields, Richard K

    2017-05-01

    Reduced physical activity is a primary risk factor for increased morbidity and mortality. People with spinal cord injury (SCI) have reduced activity for a lifetime, as they cannot volitionally activate affected skeletal muscles. We explored whether low-force and low-frequency stimulation is a viable strategy to enhance systemic energy expenditure in people with SCI. This study aimed to determine the effects of low stimulation frequency (1 and 3 Hz) and stimulation intensity (50 and 100 mA) on energy expenditure in people with SCI. We also examined the relationship between body mass index and visceral adipose tissue on energy expenditure during low-frequency stimulation. Ten individuals with complete SCI underwent oxygen consumption monitoring during electrical activation of the quadriceps and hamstrings at 1 and 3 Hz and at 50 and 100 mA. We calculated the difference in energy expenditure between stimulation and rest and estimated the number of days that would be necessary to burn 1 lb of body fat (3500 kcal) for each stimulation protocol (1 vs 3 Hz). Both training frequencies induced a significant increase in oxygen consumption above a resting baseline level (P Energy expenditure positively correlated with stimulus intensity (muscle recruitment) and negatively correlated with adiposity (reflecting the insulating properties of adipose tissue). We estimated that 1 lb of body fat could be burned more quickly with 1 Hz training (58 d) as compared with 3 Hz training (87 d) if an identical number of pulses were delivered. Low-frequency stimulation increased energy expenditure per pulse and may be a feasible option to subsidize physical activity to improve metabolic status after SCI.

  4. The Regulation of Skeletal Muscle Active Hyperemia: The Differential Role of Adenosine in Muscles of Varied Fiber Types

    Science.gov (United States)

    1986-04-21

    cyclase mediates the coronary relaxation induced by adenosine. Adenosine-induced relaxation is accompanied by cyclic AMP accumulation in bovine ...and the reaction was started by adding 0.01 ml L-glutamic dehydrogenase ( bovine liver; 1200 U•ml-1 in SO% glycerol and vhosphate buffer; p~ 7.4...Physiol: London 68: 213-237, 1929. Dudley, G.A. and R.L. Terjung. Influence of acidosis on AMP deaTIIinase activity in contracting fast-twitch muscle

  5. Physical activity is associated with retained muscle metabolism in human myotubes challenged with palmitate

    DEFF Research Database (Denmark)

    Green, C J; Bunprajun, T; Pedersen, B K

    2013-01-01

    in satellite cells challenged with palmitate. Although the benefits of physical activity on whole body physiology have been well investigated, this paper presents novel findings that both diet and exercise impact satellite cells directly. Given the fact that satellite cells are important for muscle maintenance......  The aim of this study was to investigate whether physical activity is associated with preserved muscle metabolism in human myotubes challenged with saturated fatty acids. Human muscle satellite cells were isolated from sedentary or active individuals and differentiated into myocytes in culture...... and correlated positively to JNK phosphorylation. In conclusion, muscle satellite cells retain metabolic differences associated with physical activity. Physical activity partially protects myocytes from fatty acid-induced insulin resistance and inactivity is associated with dysregulation of metabolism...

  6. 16 CFR 801.3 - Activities in or affecting commerce.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Activities in or affecting commerce. 801.3... in or affecting commerce. Section 7A(a)(1) is satisfied if any entity included within the acquiring person, or any entity included within the acquired person, is engaged in commerce or in any activity...

  7. Gene expression profiling of porcine skeletal muscle in the early recovery phase following acute physical activity

    DEFF Research Database (Denmark)

    Hansen, Jeanette; Conley, Lene; Hedegaard, Jakob

    2012-01-01

    Acute physical activity elicits changes in gene expression in skeletal muscles to promote metabolic changes and to repair exercise-induced muscle injuries. In the present time-course study, pigs were submitted to an acute bout of treadmill running until near exhaustion to determine the impact...... associated with proteolytic events, such as the muscle-specific E3 ubiquitin ligase atrogin-1, were significantly upregulated, suggesting that protein breakdown, prevention of protein aggregation and stabilization of unfolded proteins are important processes for restoration of cellular homeostasis. We also...... detected an upregulation of genes that are associated with muscle cell proliferation and differentiation, including MUSTN1, ASB5 and CSRP3, possibly reflecting activation, differentiation and fusion of satellite cells to facilitate repair of muscle damage. In addition, exercise increased expression...

  8. Phase reversal of biomechanical functions and muscle activity in backward pedaling.

    Science.gov (United States)

    Ting, L H; Kautz, S A; Brown, D A; Zajac, F E

    1999-02-01

    Computer simulations of pedaling have shown that a wide range of pedaling tasks can be performed if each limb has the capability of executing six biomechanical functions, which are arranged into three pairs of alternating antagonistic functions. An Ext/Flex pair accelerates the limb into extension or flexion, a Plant/Dorsi pair accelerates the foot into plantarflexion or dorsiflexion, and an Ant/Post pair accelerates the foot anteriorly or posteriorly relative to the pelvis. Because each biomechanical function (i.e., Ext, Flex, Plant, Dorsi, Ant, or Post) contributes to crank propulsion during a specific region in the cycle, phasing of a muscle is hypothesized to be a consequence of its ability to contribute to one or more of the biomechanical functions. Analysis of electromyogram (EMG) patterns has shown that this biomechanical framework assists in the interpretation of muscle activity in healthy and hemiparetic subjects during forward pedaling. Simulations show that backward pedaling can be produced with a phase shift of 180 degrees in the Ant/Post pair. No phase shifts in the Ext/Flex and Plant/Dorsi pairs are then necessary. To further test whether this simple yet biomechanically viable strategy may be used by the nervous system, EMGs from 7 muscles in 16 subjects were measured during backward as well as forward pedaling. As predicted, phasing in vastus medialis (VM), tibialis anterior (TA), medial gastrocnemius (MG), and soleus (SL) were unaffected by pedaling direction, with VM and SL contributing to Ext, MG to Plant, and TA to Dorsi. In contrast, phasing in biceps femoris (BF) and semimembranosus (SM) were affected by pedaling direction, as predicted, compatible with their contribution to the directionally sensitive Post function. Phasing of rectus femoris (RF) was also affected by pedaling direction; however, its ability to contribute to the directionally sensitive Ant function may only be expressed in forward pedaling. RF also contributed significantly to

  9. The Masticatory Contractile Load Induced Expression and Activation of Akt1/PKBα in Muscle Fibers at the Myotendinous Junction within Muscle-Tendon-Bone Unit

    Directory of Open Access Journals (Sweden)

    Yüksel Korkmaz

    2010-01-01

    Full Text Available The cell specific detection of enzyme activation in response to the physiological contractile load within muscle-tendon-bone unit is essential for understanding of the mechanical forces transmission from muscle cells via tendon to the bone. The hypothesis that the physiological mechanical loading regulates activation of Akt1/PKBα at Thr308 and at Ser473 in muscle fibers within muscle-tendon-bone unit was tested using quantitative immunohistochemistry, confocal double fluorescence analysis, and immunoblot analysis. In comparison to the staining intensities in peripheral regions of the muscle fibers, Akt1/PKBα was detected with a higher staining intensity in muscle fibers at the myotendinous junction (MTJ areas. In muscle fibers at the MTJ areas, Akt1/PKBα is dually phosphorylated at Thr308 and Ser473. The immunohistochemical results were confirmed by immunoblot analysis. We conclude that contractile load generated by masticatory muscles induces local domain-dependent expression of Akt1/PKBα as well as activation by dually phosphorylation at Thr308 and Ser473 in muscle fibers at the MTJ areas within muscle-tendon-bone unit.

  10. Exploring Muscle Activation during Nordic Walking: A Comparison between Conventional and Uphill Walking.

    Directory of Open Access Journals (Sweden)

    Barbara Pellegrini

    Full Text Available Nordic Walking (NW owes much of its popularity to the benefits of greater energy expenditure and upper body engagement than found in conventional walking (W. Muscle activation during NW is still understudied, however. The aim of the present study was to assess differences in muscle activation and physiological responses between NW and W in level and uphill walking conditions. Nine expert Nordic Walkers (mean age 36.8±11.9 years; BMI 24.2±1.8 kg/m2 performed 5-minute treadmill trials of W and NW at 4 km/h on inclines of 0% and 15%. The electromyographic activity of seven upper body and five leg muscles and oxygen consumption (VO2 were recorded and pole force during NW was measured. VO2 during NW was 22.3% higher at 0% and only 6.9% higher at 15% than during W, while upper body muscle activation was 2- to 15-fold higher under both conditions. Lower body muscle activation was similarly increased during NW and W in the uphill condition, whereas the increase in erector spinae muscle activity was lower during NW than W. The lack of a significant increase in pole force during uphill walking may explain the lower extra energy expenditure of NW, indicating less upper body muscle activation to lift the body against gravity. NW seemed to reduce lower back muscle contraction in the uphill condition, suggesting that walking with poles may reduce effort to control trunk oscillations and could contribute to work production during NW. Although the difference in extra energy expenditure between NW and W was smaller in the uphill walking condition, the increased upper body muscle involvement during exercising with NW may confer additional benefit compared to conventional walking also on uphill terrains. Furthermore, people with low back pain may gain benefit from pole use when walking uphill.

  11. Exploring Muscle Activation during Nordic Walking: A Comparison between Conventional and Uphill Walking.

    Science.gov (United States)

    Pellegrini, Barbara; Peyré-Tartaruga, Leonardo Alexandre; Zoppirolli, Chiara; Bortolan, Lorenzo; Bacchi, Elisabetta; Figard-Fabre, Hélène; Schena, Federico

    2015-01-01

    Nordic Walking (NW) owes much of its popularity to the benefits of greater energy expenditure and upper body engagement than found in conventional walking (W). Muscle activation during NW is still understudied, however. The aim of the present study was to assess differences in muscle activation and physiological responses between NW and W in level and uphill walking conditions. Nine expert Nordic Walkers (mean age 36.8±11.9 years; BMI 24.2±1.8 kg/m2) performed 5-minute treadmill trials of W and NW at 4 km/h on inclines of 0% and 15%. The electromyographic activity of seven upper body and five leg muscles and oxygen consumption (VO2) were recorded and pole force during NW was measured. VO2 during NW was 22.3% higher at 0% and only 6.9% higher at 15% than during W, while upper body muscle activation was 2- to 15-fold higher under both conditions. Lower body muscle activation was similarly increased during NW and W in the uphill condition, whereas the increase in erector spinae muscle activity was lower during NW than W. The lack of a significant increase in pole force during uphill walking may explain the lower extra energy expenditure of NW, indicating less upper body muscle activation to lift the body against gravity. NW seemed to reduce lower back muscle contraction in the uphill condition, suggesting that walking with poles may reduce effort to control trunk oscillations and could contribute to work production during NW. Although the difference in extra energy expenditure between NW and W was smaller in the uphill walking condition, the increased upper body muscle involvement during exercising with NW may confer additional benefit compared to conventional walking also on uphill terrains. Furthermore, people with low back pain may gain benefit from pole use when walking uphill.

  12. Comparison of the electrical activity of trunk core muscles and knee muscles in subjects with and without patellofemoral pain syndrome during gait

    Directory of Open Access Journals (Sweden)

    Raheleh Dorosti

    2017-10-01

    Conclusion: It seems that electromyographic activities of some of core muscles in patients with patellofemoral pain syndrome in comparison with healthy subjects are different. However, there was no differences in electromyographic activities in some of the muscles around the knee between patients and healthy subjects.

  13. The effects of workplace stressors on muscle activity in the neck-shoulder and forearm muscles during computer work: a systematic review and meta-analysis

    NARCIS (Netherlands)

    Eijckelhof, B.H.W.; Huijsmans, M.A.; Bruno-Garza, J.L.; Blatter, B.M.; van Dieen, J.H.; Dennerlein, J.T.; van der Beek, A.J.

    2013-01-01

    Workplace stressors have been indicated to play a role in the development of neck and upper extremity pain possibly through an increase of sustained (low-level) muscle activity. The aim of this review was to study the effects of workplace stressors on muscle activity in the neck-shoulder and forearm

  14. Nitric oxide and Na,K-ATPase activity in rat skeletal muscle.

    Science.gov (United States)

    Juel, C

    2016-04-01

    It has been suggested that nitric oxide (NO) stimulates the Na,K-ATPase in cardiac myocytes. Therefore, the aims of this study were to investigate whether NO increases Na,K-ATPase activity in skeletal muscle and, if that is the case, to identify the underlying mechanism. The study used isolated rat muscle, muscle homogenates and purified membranes as model systems. Na,K-ATPase activity was quantified from phosphate release due to ATP hydrolysis. Exposure to the NO donor spermine NONOate (10 μm) increased the maximal Na,K-ATPase activity by 27% in isolated glycolytic muscles, but had no effect in oxidative muscles. Spermine NONOate increased the maximal Na,K-ATPase activity by 58% (P Na,K-ATPase α-isoform. Incubation with cGMP (1 mm) increased the maximal Na,K-ATPase activity in homogenates from glycolytic muscle by 16% (P Na,K-ATPase in glycolytic skeletal muscle. Direct S-nitrosylation and interference with S-glutathionylation seem to be excluded. In addition, phosphorylation of phospholemman at serine 68 is not involved. Most likely, the NO/cGMP/protein kinase G signalling pathway is involved. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  15. Motor unit activity after eccentric exercise and muscle damage in humans.

    Science.gov (United States)

    Semmler, J G

    2014-04-01

    It is well known that unaccustomed eccentric exercise leads to muscle damage and soreness, which can produce long-lasting effects on muscle function. How this muscle damage influences muscle activation is poorly understood. The purpose of this brief review is to highlight the effect of eccentric exercise on the activation of muscle by the nervous system, by examining the change in motor unit activity obtained from surface electromyography (EMG) and intramuscular recordings. Previous research shows that eccentric exercise produces unusual changes in the EMG–force relation that influences motor performance during isometric, shortening and lengthening muscle contractions and during fatiguing tasks. When examining the effect of eccentric exercise at the single motor unit level, there are substantial changes in recruitment thresholds, discharge rates, motor unit conduction velocities and synchronization, which can last for up to 1 week after eccentric exercise. Examining the time course of these changes suggests that the increased submaximal EMG after eccentric exercise most likely occurs through a decrease in motor unit conduction velocity and an increase in motor unit activity related to antagonist muscle coactivation and low-frequency fatigue. Furthermore, there is a commonly held view that eccentric exercise produces preferential damage to high-threshold motor units, but the evidence for this in humans is limited. Further research is needed to establish whether there is preferential damage to high-threshold motor units after eccentric exercise in humans, preferably by linking changes in motor unit activity with estimates of motor unit size using selective intramuscular recording techniques.

  16. Does metabosensitive afferent fibers activity differ from slow- and fast-twitch muscles?

    Science.gov (United States)

    Caron, Guillaume; Decherchi, Patrick; Marqueste, Tanguy

    2015-09-01

    This study was designed to investigate the metabosensitive afferent response evoked by electrically induced fatigue (EIF), lactic acid (LA) and potassium chloride (KCl) in three muscle types. We recorded the activity of groups III-IV afferents originating from soleus, gastrocnemius and tibialis anterior muscles. Our data showed a same pattern of response in the three muscles after chemical injections, i.e., a bell curve with maximal discharge rate at 1 mM for LA injections and a linear relationship between KCl concentrations and the afferent discharge rate. Furthermore, a stronger response was recorded after EIF in the gastrocnemius muscle compared to the two other muscles. The change in afferent discharge after 1 mM LA injection was higher for the gastrocnemius muscle compared to the response obtained with the corresponding concentration applied in the two other muscles, whereas changes to KCl injections did not dramatically differ between the three muscles. We conclude that anatomical (mass, phenotype, vascularization, receptor and afferent density…) and functional (flexor vs. extensor) differences between muscles could explain the amplitude of these responses.

  17. Transcranial direct current stimulation does not affect lower extremity muscle strength training in healthy individuals

    DEFF Research Database (Denmark)

    Maeda, Kazuhei; Yamaguchi, Tomofumi; Tatemoto, Tsuyoshi

    2017-01-01

    The present study investigated the effects of anodal transcranial direct current stimulation (tDCS) on lower extremity muscle strength training in 24 healthy participants. In this triple-blind, sham-controlled study, participants were randomly allocated to the anodal tDCS plus muscle strength...... training (anodal tDCS) group or sham tDCS plus muscle strength training (sham tDCS) group. Anodal tDCS (2 mA) was applied to the primary motor cortex of the lower extremity during muscle strength training of the knee extensors and flexors. Training was conducted once every 3 days for 3 weeks (7 sessions......). Knee extensor and flexor peak torques were evaluated before and after the 3 weeks of training. After the 3-week intervention, peak torques of knee extension and flexion changed from 155.9 to 191.1 Nm and from 81.5 to 93.1 Nm in the anodal tDCS group. Peak torques changed from 164.1 to 194.8 Nm...

  18. CaMKII content affects contractile, but not mitochondrial, characteristics in regenerating skeletal muscle

    NARCIS (Netherlands)

    Eilers, W.; Jaspers, R.T.; de Haan, A.; Ferrié, C.; Valdivieso, P.; Flueck, M.

    2014-01-01

    Background: The multi-meric calcium/calmodulin-dependent protein kinase II (CaMKII) is the main CaMK in skeletal muscle and its expression increases with endurance training. CaMK family members are implicated in contraction-induced regulation of calcium handling, fast myosin type IIA expression and

  19. Iduronic Acid in chondroitin/dermatan sulfate affects directional migration of aortic smooth muscle cells

    NARCIS (Netherlands)

    Bartolini, B.; Thelin, M.A.; Svensson, L.; Ghiselli, G.; Kuppevelt, T.H. van; Malmstrom, A.; Maccarana, M.

    2013-01-01

    Aortic smooth muscle cells produce chondroitin/dermatan sulfate (CS/DS) proteoglycans that regulate extracellular matrix organization and cell behavior in normal and pathological conditions. A unique feature of CS/DS proteoglycans is the presence of iduronic acid (IdoA), catalyzed by two DS

  20. Changes in contractile activation characteristics of rat fast and slow skeletal muscle fibres during regeneration.

    Science.gov (United States)

    Gregorevic, Paul; Plant, David R; Stupka, Nicole; Lynch, Gordon S

    2004-07-15

    Damaged skeletal muscle fibres are replaced with new contractile units via muscle regeneration. Regenerating muscle fibres synthesize functionally distinct isoforms of contractile and regulatory proteins but little is known of their functional properties during the regeneration process. An advantage of utilizing single muscle fibre preparations is that assessment of their function is based on the overall characteristics of the contractile apparatus and regulatory system and as such, these preparations are sensitive in revealing not only coarse, but also subtle functional differences between muscle fibres. We examined the Ca(2+)- and Sr(2+)-activated contractile characteristics of permeabilized fibres from rat fast-twitch (extensor digitorum longus) and slow-twitch (soleus) muscles at 7, 14 and 21 days following myotoxic injury, to test the hypothesis that fibres from regenerating fast and slow muscles have different functional characteristics to fibres from uninjured muscles. Regenerating muscle fibres had approximately 10% of the maximal force producing capacity (P(o)) of control (uninjured) fibres, and an altered sensitivity to Ca(2+) and Sr(2+) at 7 days post-injury. Increased force production and a shift in Ca(2+) sensitivity consistent with fibre maturation were observed during regeneration such that P(o) was restored to 36-45% of that in control fibres by 21 days, and sensitivity to Ca(2+) and Sr(2+) was similar to that of control (uninjured) fibres. The findings support the hypothesis that regenerating muscle fibres have different contractile activation characteristics compared with mature fibres, and that they adopt properties of mature fast- or slow-twitch muscle fibres in a progressive manner as the regeneration process is completed.

  1. Ecdysteroids affect in vivo protein metabolism of the flight muscle of the tobacco hornworm (Manduca sexta)

    Science.gov (United States)

    Tischler, M. E.; Wu, M.; Cook, P.; Hodsden, S.

    1990-01-01

    Ecdysteroid growth promotion of the dorsolongitudinal flight muscle of Manduca sexta was studied by measuring in vivo protein metabolism using both "flooding-dose" and "non-carrier" techniques. These procedures differ in that the former method includes injection of non-labelled phenylalanine (30 micromoles/insect) together with the [3H]amino acid. Injected radioactivity plateaued in the haemolymph within 7 min. With the flooding-dose method, haemolymph and intramuscular specific radioactivities were similar between 15 min and 2 h. Incorporation of [3H]phenylalanine into muscle protein was linear with either method between 30 and 120 min. Fractional rates (%/12 h) of synthesis with the flooding-dose technique were best measured after 1 h because of the initial delay in radioactivity equilibration. Estimation of body phenylalanine turnover with the non-carrier method showed 24-53%/h which was negligible with the flooding-dose method. Since the two methods yielded similar rates of protein synthesis, the large injection of non-labelled amino acid did not alter the rate of synthesis. Because the flooding-dose technique requires only a single time point measurement, it is the preferred method. The decline and eventual cessation of flight-muscle growth was mostly a consequence of declining protein synthesis though degradation increased between 76-86 h before eclosion and was relatively rapid. This decline in muscle growth could be prevented by treating pupae with 20-hydroxyecdysone (10 micrograms/insect). Protein accretion was promoted by a decline of up to 80% in protein breakdown, which was offset in part by a concurrent though much smaller decrease in protein synthesis. Therefore, ecdysteroids may increase flight-muscle growth by inhibiting proteolysis.

  2. Alternate rhythmic vibratory stimulation of trunk muscles affects walking cadence and velocity in Parkinson's disease.

    Science.gov (United States)

    De Nunzio, Alessandro M; Grasso, Margherita; Nardone, Antonio; Godi, Marco; Schieppati, Marco

    2010-02-01

    During the administration of timed bilateral alternate vibration to homonymous leg or trunk muscles during quiet upright stance, Parkinsonian (PD) patients undergo cyclic antero-posterior and medio-lateral transfers of the centre of foot pressure. This event might be potentially exploited for improving gait in these patients. Here, we tested this hypothesis by applying alternate muscle vibration during walking in PD. Fifteen patients and 15 healthy subjects walked on an instrumented walkway under four conditions: no vibration (no-Vib), and vibration of tibialis anterior (TA-Vib), soleus (Sol-Vib) and erector spinae (ES-Vib) muscles of both sides. Trains of vibration (internal frequency 100 Hz) were delivered to right and left side at alternating frequency of 10% above preferred step cadence. During vibration, stride length, cadence and velocity increased in both patients and healthy subjects, significantly so for ES-Vib. Stance and swing time tended to decrease. Width of support base increased with Sol-Vib or TA-Vib, but was unaffected by ES-Vib. Alternate ES vibration enhances gait velocity in PD. The stronger effect of ES over leg muscle vibration might depend on the relevance of the proprioceptive inflow from the trunk muscles and on the absence of adverse effects on the support base width. Trunk control is defective in PD. The effect of timed vibratory stimulation on gait suggests the potential use of trunk proprioceptive stimulation for tuning the central pattern generators for locomotion in PD. Copyright (c) 2009 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  3. The effects of Pilates breathing trainings on trunk muscle activation in healthy female subjects: a prospective study.

    Science.gov (United States)

    Kim, Sung-Tae; Lee, Joon-Hee

    2017-02-01

    [Purpose] To investigate the effects of Pilates breathing on trunk muscle activation. [Subjects and Methods] Twenty-eight healthy female adults were selected for this study. Participants' trunk muscle activations were measured while they performed curl-ups, chest-head lifts, and lifting tasks. Pilates breathing trainings were performed for 60 minutes per each session, 3 times per week for 2 weeks. Post-training muscle activations were measured by the same methods used for the pre-training muscle activations. [Results] All trunk muscles measured in this study had increased activities after Pilates breathing trainings. All activities of the transversus abdominis/internal abdominal oblique, and multifidus significantly increased. [Conclusion] Pilates breathing increased activities of the trunk stabilizer muscles. Activation of the trunk muscle indicates that practicing Pilates breathing while performing lifting tasks will reduce the risk of trunk injuries.

  4. Regulation of the muscle fiber microenvironment by activated satellite cells during hypertrophy

    Science.gov (United States)

    Fry, Christopher S.; Lee, Jonah D.; Jackson, Janna R.; Kirby, Tyler J.; Stasko, Shawn A.; Liu, Honglu; Dupont-Versteegden, Esther E.; McCarthy, John J.; Peterson, Charlotte A.

    2014-01-01

    Our aim in the current study was to determine the necessity of satellite cells for long-term muscle growth and maintenance. We utilized a transgenic Pax7-DTA mouse model, allowing for the conditional depletion of > 90% of satellite cells with tamoxifen treatment. Synergist ablation surgery, where removal of synergist muscles places functional overload on the plantaris, was used to stimulate robust hypertrophy. Following 8 wk of overload, satellite cell-depleted muscle demonstrated an accumulation of extracellular matrix (ECM) and fibroblast expansion that resulted in reduced specific force of the plantaris. Although the early growth response was normal, an attenuation of hypertrophy measured by both muscle wet weight and fiber cross-sectional area occurred in satellite cell-depleted muscle. Isolated primary myogenic progenitor cells (MPCs) negatively regulated fibroblast ECM mRNA expression in vitro, suggesting a novel role for activated satellite cells/MPCs in muscle adaptation. These results provide evidence that satellite cells regulate the muscle environment during growth.—Fry, C. S., Lee, J. D., Jackson, J. R., Kirby, T. J., Stasko, S. A., Liu, H., Dupont-Versteegden, E. E., McCarthy, J. J., Peterson, C. A. Regulation of the muscle fiber microenvironment by activated satellite cells during hypertrophy. PMID:24376025

  5. Mitochondrial oxidative enzyme activity in individual fibre types in hypo- and hyperthyroid rat skeletal muscles.

    Science.gov (United States)

    Johnson, M A; Turnbull, D M

    1984-04-01

    Quantitative cytochemical and biochemical techniques have been used in combination to study the response of mitochondrial oxidative enzymes in individual muscle fibre types to hypo- and hyperthyroidism. Hypothyroidism resulted in decreased activity of succinate dehydrogenase (SDH), L-glycerol-3-phosphate dehydrogenase (L-GPDH), and D-3-hydroxybutyrate dehydrogenase (D-HBDH) in all fibre types of both slow-twitch soleus and fast-twitch extensor digitorum longus (e.d.l.) muscles. In hyperthyroidism, only L-GPDH activity increased in e.d.l. but more marked increases were seen in soleus muscles, which also showed increased SDH activity. In addition to these alterations in the enzyme activity in individual fibre types the metabolic profile of the muscle is further modified by the hormone-induced interconversion of slow- to fast-twitch fibres and vice versa.

  6. COMPARISON OF HAMSTRING MUSCLE ACTIVATION DURING HIGH-SPEED RUNNING AND VARIOUS HAMSTRING STRENGTHENING EXERCISES

    Science.gov (United States)

    Solheim, Jens Asmund Brevik; Bencke, Jesper

    2017-01-01

    Purpose/Background Several studies have examined the effect of hamstring strength exercises upon hamstring strains in team sports that involve many sprints. However, there has been no cross comparison among muscle activation of these hamstring training exercises with actual sprinting. Therefore, the aim of this study was to examine different hamstring exercises and compare the muscle activity in the hamstring muscle group during various exercises with the muscular activity produced during maximal sprints. Methods Twelve male sports students (age 25 ± 6.2 years, 1.80 ± 7.1 m, body mass 81.1 ± 15.6 kg) participated in this study. Surface EMG electrodes were placed on semimembranosus, semitendinosus and biceps femoris to measure muscle activity during seven hamstrings exercises and sprinting together with 3D motion capture to establish at what hip and knee angles maximal muscle activation (EMG) occurs. Maximal EMG activity during sprints for each muscle was used in order to express each exercise as a percentage of max activation during sprinting. Results The main findings were that maximal EMG activity of the different hamstring exercises were on average between 40-65% (Semitendinosus), 18-40% (biceps femoris) and 40-75% (Semimembranosus) compared with the max EMG activity in sprints, which were considered as 100%. The laying kick together with the Nordic hamstring exercises and its variations had the highest muscle activations, while the cranes showed the lowest muscle activation (in all muscles) together with the standing kick for the semimembranosus. In addition, angles at which the peak EMG activity of the hamstring muscle occurs were similar for the Nordic hamstring exercises and different for the two crane exercises (hip angle), standing kick (hip angle) and the laying kick (knee angle) compared with the sprint. Conclusions Nordic hamstring exercises with its variation together with the laying kick activates the hamstrings at high levels and

  7. Stretch activates myosin light chain kinase in arterial smooth muscle

    International Nuclear Information System (INIS)

    Barany, K.; Rokolya, A.; Barany, M.

    1990-01-01

    Stretching of porcine carotid arterial muscle increased the phosphorylation of the 20 kDa myosin light chain from 0.23 to 0.68 mol [32P]phosphate/mol light chain, whereas stretching of phorbol dibutyrate treated muscle increased the phosphorylation from 0.30 to 0.91 mol/mol. Two-dimensional gel electrophoresis followed by two-dimensional tryptic phosphopeptide mapping was used to identify the enzyme involved in the stretch-induced phosphorylation. Quantitation of the [32P]phosphate content of the peptides revealed considerable light chain phosphorylation by protein kinase C only in the phorbol dibutyrate treated arterial muscle, whereas most of the light chain phosphorylation was attributable to myosin light chain kinase. Upon stretch of either the untreated or treated muscle, the total increment in [32P]phosphate incorporation into the light chain could be accounted for by peptides characteristic for myosin light chain kinase catalyzed phosphorylation, demonstrating that the stretch-induced phosphorylation is caused by this enzyme exclusively

  8. Activation of respiratory muscles during weaning from mechanical ventilation.

    Science.gov (United States)

    Walterspacher, Stephan; Gückler, Julia; Pietsch, Fabian; Walker, David Johannes; Kabitz, Hans-Joachim; Dreher, Michael

    2017-04-01

    Respiratory muscle dysfunction is a key component of weaning failure. Balancing respiratory muscle loading and unloading by applying different ventilation modes along with spontaneous breathing episodes are established weaning strategies. However, the effects of body positioning on the respiratory muscles during weaning remains unclear. This study aimed at assessing respiratory drive by surface electromyography (EMG) of the diaphragm (EMG dia ) and parasternal muscles (EMG para ) in tracheotomized patients during prolonged weaning in 3 randomized body positions-supine, 30° semirecumbent, and 80° sitting-during mechanical ventilation and spontaneous breathing. Nine patients were included for analysis. Cardiorespiratory parameters (heart rate, blood pressure, arterial oxygen saturation, dyspnea) did not change under each condition (all P>.05). EMG para and EMG dia did not change under mechanical ventilation (both P>.05). EMG dia changed under spontaneous breathing from supine to sitting (0.45±0.26 vs 0.32±0.19; P=.012) and between semirecumbent to sitting (0.41±0.23 vs 0.32±0.19; P=.039), whereas EMG para did not change. This is the first study to show that body positioning influences respiratory drive to the diaphragm in tracheotomized patients with prolonged weaning from mechanical ventilation during unassisted breathing. Sitting position reduces respiratory drive compared with semirecumbent and supine positioning and might therefore be favored during spontaneous breathing trials. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Muscle Activation during Push-Ups with Different Suspension Training Systems.

    Science.gov (United States)

    Calatayud, Joaquin; Borreani, Sebastien; Colado, Juan C; Martín, Fernando F; Rogers, Michael E; Behm, David G; Andersen, Lars L

    2014-09-01

    The purpose of this study was to analyze upper extremity and core muscle activation when performing push-ups with different suspension devices. Young fit male university students (n = 29) performed 3 push-ups each with 4 different suspension systems. Push-up speed was controlled using a metronome and testing order was randomized. Average amplitude of the electromyographic root mean square of Triceps Brachii, Upper Trapezius, Anterior Deltoid, Clavicular Pectoralis, Rectus Abdominis, Rectus Femoris, and Lumbar Erector Spinae was recorded. Electromyographic signals were normalized to the maximum voluntary isometric contraction (MVIC). Electromyographic data were analyzed with repeated-measures analysis of variance with a Bonferroni post hoc. Based upon global arithmetic mean of all muscles analyzed, the suspended push-up with a pulley system provided the greatest activity (37.76% of MVIC; p push-up with a pulley system also provided the greatest triceps brachii, upper trapezius, rectus femoris and erector lumbar spinae muscle activation. In contrast, more stable conditions seem more appropriate for pectoralis major and anterior deltoid muscles. Independent of the type of design, all suspension systems were especially effective training tools for reaching high levels of rectus abdominis activation. Key PointsCompared with standard push-ups on the floor, suspended push-ups increase core muscle activation.A one-anchor system with a pulley is the best option to increase TRICEP, TRAPS, LUMB and FEM muscle activity.More stable conditions such as the standard push-up or a parallel band system provide greater increases in DELT and PEC muscle activation.A suspended push-up is an effective method to achieve high muscle activity levels in the ABS.

  10. POST-EXERCISE MUSCLE GLYCOGEN REPLETION IN THE EXTREME: EFFECT OF FOOD ABSENCE AND ACTIVE RECOVERY

    Directory of Open Access Journals (Sweden)

    Paul A. Fournier

    2004-09-01

    Full Text Available Glycogen plays a major role in supporting the energy demands of skeletal muscles during high intensity exercise. Despite its importance, the amount of glycogen stored in skeletal muscles is so small that a large fraction of it can be depleted in response to a single bout of high intensity exercise. For this reason, it is generally recommended to ingest food after exercise to replenish rapidly muscle glycogen stores, otherwise one's ability to engage in high intensity activity might be compromised. But what if food is not available? It is now well established that, even in the absence of food intake, skeletal muscles have the capacity to replenish some of their glycogen at the expense of endogenous carbon sources such as lactate. This is facilitated, in part, by the transient dephosphorylation-mediated activation of glycogen synthase and inhibition of glycogen phosphorylase. There is also evidence that muscle glycogen synthesis occurs even under conditions conducive to an increased oxidation of lactate post-exercise, such as during active recovery from high intensity exercise. Indeed, although during active recovery glycogen resynthesis is impaired in skeletal muscle as a whole because of increased lactate oxidation, muscle glycogen stores are replenished in Type IIa and IIb fibers while being broken down in Type I fibers of active muscles. This unique ability of Type II fibers to replenish their glycogen stores during exercise should not come as a surprise given the advantages in maintaining adequate muscle glycogen stores in those fibers that play a major role in fight or flight responses

  11. Changed activation, oxygenation, and pain response of chronically painful muscles to repetitive work after training interventions: a randomized controlled trial

    DEFF Research Database (Denmark)

    Søgaard, Karen; Blangsted, Anne Katrine; Nielsen, Pernille Kofoed

    2012-01-01

    The aim of this randomized controlled trial was to assess changes in myalgic trapezius activation, muscle oxygenation, and pain intensity during repetitive and stressful work tasks in response to 10 weeks of training. In total, 39 women with a clinical diagnosis of trapezius myalgia were randomly...... levels of pain. SST lowered the relative EMG amplitude by 36%, and decreased pain during resting and working conditions by 52 and 38%, respectively, without affecting trapezius oxygenation. In conclusion, GFT performed as leg-bicycling decreased pain development during repetitive work tasks, possibly due...... assigned to: (1) general fitness training performed as leg-bicycling (GFT); (2) specific strength training of the neck/shoulder muscles (SST) or (3) reference intervention without physical exercise. Electromyographic activity (EMG), tissue oxygenation (near infrared spectroscopy), and pain intensity were...

  12. Upper Limb Muscle and Brain Activity in Light Assembly Task on Different Load Levels

    Science.gov (United States)

    Zadry, Hilma Raimona; Dawal, Siti Zawiah Md.; Taha, Zahari

    2010-10-01

    A study was conducted to investigate the effect of load on upper limb muscles and brain activities in light assembly task. The task was conducted at two levels of load (Low and high). Surface electromyography (EMG) was used to measure upper limb muscle activities of twenty subjects. Electroencephalography (EEG) was simultaneously recorded with EMG to record brain activities from Fz, Pz, O1 and O2 channels. The EMG Mean Power Frequency (MPF) of the right brachioradialis and the left upper trapezius activities were higher on the high-load task compared to low-load task. The EMG MPF values also decrease as time increases, that reflects muscle fatigue. Mean power of the EEG alpha bands for the Fz-Pz channels were found to be higher on the high-load task compared to low-load task, while for the O1-O2 channels, they were higher on the low-load task than on the high-load task. These results indicated that the load levels effect the upper limb muscle and brain activities. The high-load task will increase muscle activities on the right brachioradialis and the left upper tapezius muscles, and will increase the awareness and motivation of the subjects. Whilst the low-load task can generate drowsiness earlier. It signified that the longer the time and the more heavy of the task, the subjects will be more fatigue physically and mentally.

  13. A novel spatiotemporal muscle activity imaging approach based on the Extended Kalman Filter.

    Science.gov (United States)

    Wang, Jing; Zhang, Yingchun; Zhu, Xiangjun; Zhou, Ping; Liu, Chenguang; Rymer, William Z

    2012-01-01

    A novel spatiotemporal muscle activity imaging (sMAI) approach has been developed using the Extended Kalman Filter (EKF) to reconstruct internal muscle activities from non-invasive multi-channel surface electromyogram (sEMG) recordings. A distributed bioelectric dipole source model is employed to describe the internal muscle activity space, and a linear relationship between the muscle activity space and the sEMG measurement space is then established. The EKF is employed to recursively solve the ill-posed inverse problem in the sMAI approach, in which the weighted minimum norm (WMN) method is utilized to calculate the initial state and a new nonlinear method is developed based on the propagating features of muscle activities to predict the recursive state. A series of computer simulations was conducted to test the performance of the proposed sMAI approach. Results show that the localization error rapidly decreases over 35% and the overlap ratio rapidly increases over 45% compared to the results achieved using the WMN method only. The present promising results demonstrate the feasibility of utilizing the proposed EKF-based sMAI approach to accurately reconstruct internal muscle activities from non-invasive sEMG recordings.

  14. Activated protein C attenuates acute ischaemia reperfusion injury in skeletal muscle.

    LENUS (Irish Health Repository)

    Dillon, J P

    2012-02-03

    Activated protein C (APC) is an endogenous anti-coagulant with anti-inflammatory properties. The purpose of the present study was to evaluate the effects of activated protein C in the setting of skeletal muscle ischaemia reperfusion injury (IRI). IRI was induced in rats by applying rubber bands above the levels of the greater trochanters bilaterally for a period of 2h followed by 12h reperfusion. Treatment groups received either equal volumes of normal saline or activated protein C prior to tourniquet release. Following 12h reperfusion, muscle function was assessed electrophysiologically by electrical field stimulation. The animals were then sacrificed and skeletal muscle harvested for evaluation. Activated protein C significantly attenuated skeletal muscle reperfusion injury as shown by reduced myeloperoxidase content, wet to dry ratio and electrical properties of skeletal muscle. Further in vitro work was carried out on neutrophils isolated from healthy volunteers to determine the direct effect of APC on neutrophil function. The effects of APC on TNF-alpha stimulated neutrophils were examined by measuring CD18 expression as well as reactive oxygen species generation. The in vitro work demonstrated a reduction in CD18 expression and reactive oxygen species generation. We conclude that activated protein C may have a protective role in the setting of skeletal muscle ischaemia reperfusion injury and that this is in part mediated by a direct inhibitory effect on neutrophil activation.

  15. Ground reaction forces, kinematics, and muscle activations during the windmill softball pitch.

    Science.gov (United States)

    Oliver, Gretchen D; Plummer, Hillary

    2011-07-01

    The aims of the present study were to examine quantitatively ground reaction forces, kinematics, and muscle activations during the windmill softball pitch, and to determine relationships between knee valgus and muscle activations, ball velocity and muscle activation as well as ball velocity and ground reaction forces. It was hypothesized that there would be an inverse relationship between degree of knee valgus and muscle activation, a direct relationship between ground reaction forces and ball velocity, and non-stride leg muscle activations and ball velocity. Ten female windmill softball pitchers (age 17.6 ± 3.47 years, stature 1.67 ± 0.07 m, weight 67.4 ± 12.2 kg) participated. Dependent variables were ball velocity, surface electromyographic (sEMG), kinematic, and kinetic data while the participant was the independent variable. Stride foot contact reported peak vertical forces of 179% body weight. There were positive relationships between ball velocity and ground reaction force (r = 0.758, n = 10, P = 0.029) as well as ball velocity and non-stride leg gluteus maximus (r = 0.851, n = 10, P = 0.007) and medius (r = 0.760, n = 10, P = 0.029) muscle activity, while there was no notable relationship between knee valgus and muscle activation. As the windmill softball pitcher increased ball velocity, her vertical ground reaction forces also increased. Proper conditioning of the lumbopelvic-hip complex, including the gluteals, is essential for injury prevention. From the data presented, it is evident that bilateral strength and conditioning of the gluteal muscle group is salient in the windmill softball pitch as an attempt to decrease incidence of injury.

  16. Muscle activity during knee-extension strengthening exercise performed with elastic tubing and isotonic resistance

    DEFF Research Database (Denmark)

    Jakobsen, Markus Due; Sundstrup, Emil; Andersen, Christoffer H

    2012-01-01

    muscle during 10-RM knee-extensions performed with elastic tubing and an isotonic strength training machine. METHODS: 7 women and 9 men aged 28-67 years (mean age 44 and 41 years, respectively) participated. Electromyographic (EMG) activity was recorded in 10 muscles during the concentric and eccentric......BACKGROUND/PURPOSE: While elastic resistance training, targeting the upper body is effective for strength training, the effect of elastic resistance training on lower body muscle activity remains questionable. The purpose of this study was to evaluate the EMG-angle relationship of the quadriceps...... tubing induces similar high (>70% nEMG) quadriceps muscle activity during the concentric contraction phase, but slightly lower during the eccentric contraction phase, as knee extensions performed using an isotonic training machine. During the concentric contraction phase the two different conditions...

  17. Asymmetric activation of temporalis, masseter, and sternocleidomastoid muscles in temporomandibular disorder patients.

    Science.gov (United States)

    Ries, Lilian Gerdi Kittel; Alves, Marcelo Correa; Bérzin, Fausto

    2008-01-01

    The aim of this study was to analyze the symmetry of the electromyographic (EMG) activity of the temporalis, masseter, and sternocleidomastoid (SCM) muscles in volunteers divided into a control group and a temporomandibular disorder (TMD) group. The surface EMG recordings were made during mandibular rest position, maximal intercuspal position, and during the chewing cycle. Normalized EMG waves of paired muscles were compared by computing a percentage overlapping coefficient (POC). The difference between the groups and between the static and dynamic clenching tests was analyzed through repeated measures, ANOVA. Symmetry of the temporalis, masseter, and SCM muscles activity was smaller in the TMD group compared to the control group. The mandibular postures were also significantly different among themselves. The asymmetric activation of jaw and neck muscles was interpreted as a compensatory strategy to achieve stability for the mandibular and cervical systems during masticatory function.

  18. Muscle activity during knee-extension strengthening exercise performed with elastic tubing and isotonic resistance

    DEFF Research Database (Denmark)

    Jakobsen, Markus Due; Sundstrup, Emil; Andersen, Christoffer H

    2012-01-01

    tubing induces similar high (>70% nEMG) quadriceps muscle activity during the concentric contraction phase, but slightly lower during the eccentric contraction phase, as knee extensions performed using an isotonic training machine. During the concentric contraction phase the two different conditions......BACKGROUND/PURPOSE: While elastic resistance training, targeting the upper body is effective for strength training, the effect of elastic resistance training on lower body muscle activity remains questionable. The purpose of this study was to evaluate the EMG-angle relationship of the quadriceps...... muscle during 10-RM knee-extensions performed with elastic tubing and an isotonic strength training machine. METHODS: 7 women and 9 men aged 28-67 years (mean age 44 and 41 years, respectively) participated. Electromyographic (EMG) activity was recorded in 10 muscles during the concentric and eccentric...

  19. Exercise induces transient transcriptional activation of the PGC-1a gene in human skeletal muscle

    DEFF Research Database (Denmark)

    Pilegaard, Henriette; Saltin, Bengt; Neufer, P. Darrell

    2003-01-01

    Endurance exercise training induces mitochondrial biogenesis in skeletal muscle. The peroxisome proliferator activated receptor co-activator 1a (PGC-1a) has recently been identified as a nuclear factor critical for coordinating the activation of genes required for mitochondrial biogenesis in cell...... culture and rodent skeletal muscle. To determine whether PGC-1a transcription is regulated by acute exercise and exercise training in human skeletal muscle, seven male subjects performed 4 weeks of one-legged knee extensor exercise training. At the end of training, subjects completed 3 h of two......-legged knee extensor exercise. Biopsies were obtained from the vastus lateralis muscle of both the untrained and trained legs before exercise and after 0, 2, 6 and 24 h of recovery. Time to exhaustion (2 min maximum resistance), as well as hexokinase II (HKII), citrate synthase and 3-hydroxyacyl...

  20. Work related perceived stress and muscle activity during standardized computer work among female computer users

    DEFF Research Database (Denmark)

    Larsman, P; Thorn, S; Søgaard, K

    2009-01-01

    The current study investigated the associations between work-related perceived stress and surface electromyographic (sEMG) parameters (muscle activity and muscle rest) during standardized simulated computer work (typing, editing, precision, and Stroop tasks). It was part of the European case......-control study, NEW (Neuromuscular assessment in the Elderly Worker). The present cross-sectional study was based on a questionnaire survey and sEMG measurements among Danish and Swedish female computer users aged 45 or older (n=49). The results show associations between work-related perceived stress...... and trapezius muscle activity and rest during standardized simulated computer work, and provide partial empirical support for the hypothesized pathway of stress induced muscle activity in the association between an adverse psychosocial work environment and musculoskeletal symptoms in the neck and shoulder....

  1. Relationships among nocturnal jaw muscle activities, decreased esophageal pH, and sleep positions.

    Science.gov (United States)

    Miyawaki, Shouichi; Tanimoto, Yuko; Araki, Yoshiko; Katayama, Akira; Imai, Mikako; Takano-Yamamoto, Teruko

    2004-11-01

    The purpose of this study was to examine the relationships among nocturnal jaw muscle activities, decreased esophageal pH, and sleep positions. Twelve adult volunteers, including 4 bruxism patients, participated in this study. Portable pH monitoring, electromyography of the temporal muscle, and audio-video recordings were conducted during the night in the subjects' homes. Rhythmic masticatory muscle activity (RMMA) episodes were observed most frequently, with single short-burst episodes the second most frequent. The frequencies of RMMA, single short-burst, and clenching episodes were significantly higher during decreased esophageal pH episodes than those during other times. Both the electromyography and the decreased esophageal pH episodes were most frequently observed in the supine position. These results suggest that most jaw muscle activities, ie, RMMA, single short-burst, and clenching episodes, occur in relation to gastroesophageal reflux mainly in the supine position.

  2. Low-level lasers affect uncoupling protein gene expression in skin and skeletal muscle tissues

    International Nuclear Information System (INIS)

    Canuto, K S; Sergio, L P S; Mencalha, A L; Fonseca, A S; Paoli, F

    2016-01-01

    Wavelength, frequency, power, fluence, and emission mode determine the photophysical, photochemical, and photobiological responses of biological tissues to low-level lasers. Free radicals are involved in these responses acting as second messengers in intracellular signaling processes. Irradiated cells present defenses against these chemical species to avoid unwanted effects, such as uncoupling proteins (UCPs), which are part of protective mechanisms and minimize the effects of free radical generation in mitochondria. In this work UCP2 and UCP3 mRNA gene relative expression in the skin and skeletal muscle tissues of Wistar rats exposed to low-level red and infrared lasers was evaluated. Samples of the skin and skeletal muscle tissue of Wistar rats exposed to low-level red and infrared lasers were withdrawn for total RNA extraction, cDNA synthesis, and the evaluation of gene expression by quantitative polymerase chain reaction. UCP2 and UCP3 mRNA expression was differently altered in skin and skeletal muscle tissues exposed to lasers in a wavelength-dependent effect, with the UCP3 mRNA expression dose-dependent. Alteration on UCP gene expression could be part of the biostimulation effect and is necessary to make cells exposed to red and infrared low-level lasers more resistant or capable of adapting in damaged tissues or diseases. (paper)

  3. Caffeine and contraction synergistically stimulate 5′-AMP-activated protein kinase and insulin-independent glucose transport in rat skeletal muscle

    Science.gov (United States)

    Tsuda, Satoshi; Egawa, Tatsuro; Kitani, Kazuto; Oshima, Rieko; Ma, Xiao; Hayashi, Tatsuya

    2015-01-01

    5′-Adenosine monophosphate-activated protein kinase (AMPK) has been identified as a key mediator of contraction-stimulated insulin-independent glucose transport in skeletal muscle. Caffeine acutely stimulates AMPK in resting skeletal muscle, but it is unknown whether caffeine affects AMPK in contracting muscle. Isolated rat epitrochlearis muscle was preincubated and then incubated in the absence or presence of 3 mmol/L caffeine for 30 or 120 min. Electrical stimulation (ES) was used to evoke tetanic contractions during the last 10 min of the incubation period. The combination of caffeine plus contraction had additive effects on AMPKα Thr172 phosphorylation, α-isoform-specific AMPK activity, and 3-O-methylglucose (3MG) transport. In contrast, caffeine inhibited basal and contraction-stimulated Akt Ser473 phosphorylation. Caffeine significantly delayed muscle fatigue during contraction, and the combination of caffeine and contraction additively decreased ATP and phosphocreatine contents. Caffeine did not affect resting tension. Next, rats were given an intraperitoneal injection of caffeine (60 mg/kg body weight) or saline, and the extensor digitorum longus muscle was dissected 15 min later. ES of the sciatic nerve was performed to evoke tetanic contractions for 5 min before dissection. Similar to the findings from isolated muscles incubated in vitro, the combination of caffeine plus contraction in vivo had additive effects on AMPK phosphorylation, AMPK activity, and 3MG transport. Caffeine also inhibited basal and contraction-stimulated Akt phosphorylation in vivo. These findings suggest that caffeine and contraction synergistically stimulate AMPK activity and insulin-independent glucose transport, at least in part by decreasing muscle fatigue and thereby promoting energy consumption during contraction. PMID:26471759

  4. Caffeine and contraction synergistically stimulate 5'-AMP-activated protein kinase and insulin-independent glucose transport in rat skeletal muscle.

    Science.gov (United States)

    Tsuda, Satoshi; Egawa, Tatsuro; Kitani, Kazuto; Oshima, Rieko; Ma, Xiao; Hayashi, Tatsuya

    2015-10-01

    5'-Adenosine monophosphate-activated protein kinase (AMPK) has been identified as a key mediator of contraction-stimulated insulin-independent glucose transport in skeletal muscle. Caffeine acutely stimulates AMPK in resting skeletal muscle, but it is unknown whether caffeine affects AMPK in contracting muscle. Isolated rat epitrochlearis muscle was preincubated and then incubated in the absence or presence of 3 mmol/L caffeine for 30 or 120 min. Electrical stimulation (ES) was used to evoke tetanic contractions during the last 10 min of the incubation period. The combination of caffeine plus contraction had additive effects on AMPKα Thr(172) phosphorylation, α-isoform-specific AMPK activity, and 3-O-methylglucose (3MG) transport. In contrast, caffeine inhibited basal and contraction-stimulated Akt Ser(473) phosphorylation. Caffeine significantly delayed muscle fatigue during contraction, and the combination of caffeine and contraction additively decreased ATP and phosphocreatine contents. Caffeine did not affect resting tension. Next, rats were given an intraperitoneal injection of caffeine (60 mg/kg body weight) or saline, and the extensor digitorum longus muscle was dissected 15 min later. ES of the sciatic nerve was performed to evoke tetanic contractions for 5 min before dissection. Similar to the findings from isolated muscles incubated in vitro, the combination of caffeine plus contraction in vivo had additive effects on AMPK phosphorylation, AMPK activity, and 3MG transport. Caffeine also inhibited basal and contraction-stimulated Akt phosphorylation in vivo. These findings suggest that caffeine and contraction synergistically stimulate AMPK activity and insulin-independent glucose transport, at least in part by decreasing muscle fatigue and thereby promoting energy consumption during contraction. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological

  5. Affect, exercise, and physical activity among healthy adolescents.

    Science.gov (United States)

    Schneider, Margaret; Dunn, Andrea; Cooper, Daniel

    2009-12-01

    Many adolescents do not meet public health recommendations for moderate-to-vigorous physical activity (MVPA). In studies of variables influencing adolescent MVPA, one that has been understudied is the affective response to exercise. We hypothesized that adolescents with a more positive affective response to acute exercise would be more active. Adolescents (N = 124; 46% male) completed two 30-min exercise tasks (above and below the ventilatory threshold [VT]), and wore ActiGraph accelerometers for 6.5 +/- 0.7 days. Affective valence was assessed before, during, and after each task. A more positive affective response during exercise below the VT was associated with greater participation in MVPA (p positive affective response to exercise will engage in more MVPA. To promote greater participation in MVPA among adolescents, programs should be designed to facilitate a positive affective experience during exercise.

  6. Muscle activation patterns in the Nordic hamstring exercise: Impact of prior strain injury.

    Science.gov (United States)

    Bourne, M N; Opar, D A; Williams, M D; Al Najjar, A; Shield, A J

    2016-06-01

    This study aimed to determine: (a) the spatial patterns of hamstring activation during the Nordic hamstring exercise (NHE); (b) whether previously injured hamstrings display activation deficits during the NHE; and (c) whether previously injured hamstrings exhibit altered cross-sectional area (CSA). Ten healthy, recreationally active men with a history of unilateral hamstring strain injury underwent functional magnetic resonance imaging of their thighs before and after six sets of 10 repetitions of the NHE. Transverse (T2) relaxation times of all hamstring muscles [biceps femoris long head (BFlh); biceps femoris short head (BFsh); semitendinosus (ST); semimembranosus (SM)] were measured at rest and immediately after the NHE and CSA was measured at rest. For the uninjured limb, the ST's percentage increase in T2 with exercise was 16.8%, 15.8%, and 20.2% greater than the increases exhibited by the BFlh, BFsh, and SM, respectively (P hamstring muscles (n = 10) displayed significantly smaller increases in T2 post-exercise than the homonymous muscles in the uninjured contralateral limb (mean difference -7.2%, P = 0.001). No muscles displayed significant between-limb differences in CSA. During the NHE, the ST is preferentially activated and previously injured hamstring muscles display chronic activation deficits compared with uninjured contralateral muscles. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Influence of experimental occlusal discrepancy on masticatory muscle activity during clenching.

    Science.gov (United States)

    Baba, K; Ai, M; Mizutani, H; Enosawa, S

    1996-01-01

    The influence of the experimental occlusal discrepancy on masticatory muscle activity was investigated on 12 subjects. Specially designed occlusal interferences were fabricated and various occlusal states were simulated with their aid. Subjects were asked to carry out eccentric clenching efforts and electromyographic activity of the masseter plus the anterior and posterior temporal muscles was measured. When compared with clenching on the unaltered natural dentition, clenching on the experimental interferences resulted in distinct patterns in the jaw elevator muscles, and the most characteristic change was observed when clenching effort was exerted on the experimental non-working side interference. Electromyographic activity in the anterior and posterior temporal muscles was decreased on the working side and increased on the non-working side and originally unilateral activity pattern with clear dominance on the working side was altered to a bilateral pattern, while that of the masseter muscles remained uninfluenced. Resultant bilateral activity in the anterior and posterior temporal muscles is thought to cause a superior movement of the working side condyle and an inferior movement of the non-working side condyle.

  8. Control of upper airway muscle activity in younger versus older men during sleep onset

    Science.gov (United States)

    Fogel, Robert B; White, David P; Pierce, Robert J; Malhotra, Atul; Edwards, Jill K; Dunai, Judy; Kleverlaan, Darci; Trinder, John

    2003-01-01

    Pharyngeal dilator muscles are clearly important in the pathophysiology of obstructive sleep apnoea syndrome (OSA). We have previously shown that the activity of both the genioglossus (GGEMG) and tensor palatini (TPEMG) are decreased at sleep onset, and that this decrement in muscle activity is greater in the apnoea patient than in healthy controls. We have also previously shown this decrement to be greater in older men when compared with younger ones. In order to explore the mechanisms responsible for this decrement in muscle activity nasal continuous positive airway pressure (CPAP) was applied to reduce negative pressure mediated muscle activation. We then investigated the effect of sleep onset (transition from predominantly α to predominantly θ EEG activity) on ventilation, upper airway muscle activation and upper airway resistance (UAR) in middle-aged and younger healthy men. We found that both GGEMG and TPEMG were reduced by the application of nasal CPAP during wakefulness, but that CPAP did not alter the decrement in activity in either muscle seen in the first two breaths following an α to θ transition. However, CPAP prevented both the rise in UAR at sleep onset that occurred on the control night, and the recruitment in GGEMG seen in the third to fifth breaths following the α to θ transition. Further, GGEMG was higher in the middle-aged men than in the younger men during wakefulness and was decreased more in the middle-aged men with the application of nasal CPAP. No differences were seen in TPEMG between the two age groups. These data suggest that the initial sleep onset reduction in upper airway muscle activity is due to loss of a ‘wakefulness’ stimulus, rather than to loss of responsiveness to negative pressure. In addition, it suggests that in older men, higher wakeful muscle activity is due to an anatomically more collapsible upper airway with more negative pressure driven muscle activation. Sleep onset per se does not appear to have a greater

  9. Oblique abdominal muscle activity in response to external perturbations when pushing a cart.

    Science.gov (United States)

    Lee, Yun-Ju; Hoozemans, Marco J M; van Dieën, Jaap H

    2010-05-07

    Cyclic activation of the external and internal oblique muscles contributes to twisting moments during normal gait. During pushing while walking, it is not well understood how these muscles respond to presence of predictable (cyclic push-off forces) and unpredictable (external) perturbations that occur in pushing tasks. We hypothesized that the predictable perturbations due to the cyclic push-off forces would be associated with cyclic muscle activity, while external perturbations would be counteracted by cocontraction of the oblique abdominal muscles. Eight healthy male subjects pushed at two target forces and two handle heights in a static condition and while walking without and with external perturbations. For all pushing tasks, the median, the static (10th percentile) and the peak levels (90th percentile) of the electromyographic amplitudes were determined. Linear models with oblique abdominal EMGs and trunk angles as input were fit to the twisting moments, to estimate trunk stiffness. There was no significant difference between the static EMG levels in pushing while walking compared to the peak levels in pushing while standing. When pushing while walking, the additional dynamic activity was associated with the twisting moments, which were actively modulated by the pairs of oblique muscles as in normal gait. The median and static levels of trunk muscle activity and estimated trunk stiffness were significantly higher when perturbations occurred than without perturbations. The increase baseline of muscle activity indicated cocontraction of the antagonistic muscle pairs. Furthermore, this cocontraction resulted in an increased trunk stiffness around the longitudinal axis. Copyright 2010 Elsevier Ltd. All rights reserved.

  10. Muscle activation patterns of the upper and lower extremity during the windmill softball pitch.

    Science.gov (United States)

    Oliver, Gretchen D; Plummer, Hillary A; Keeley, David W

    2011-06-01

    Fast-pitch softball has become an increasingly popular sport for female athletes. There has been little research examining the windmill softball pitch in the literature. The purpose of this study was to describe the muscle activation patterns of 3 upper extremity muscles (biceps, triceps, and rhomboids [scapular stabilizers]) and 2 lower extremity muscles (gluteus maximus and medius) during the 5 phases of the windmill softball pitch. Data describing muscle activation were collected on 7 postpubescent softball pitchers (age 17.7 ± 2.6 years; height 169 ± 5.4 cm; mass 69.1 ± 5.4 kg). Surface electromyographic data were collected using a Myopac Jr 10-channel amplifier (RUN Technologies Scientific Systems, Laguna Hills, CA, USA) synchronized with The MotionMonitor™ motion capture system (Innovative Sports Training Inc, Chicago IL, USA) and presented as a percent of maximum voluntary isometric contraction. Gluteus maximus activity reached (196.3% maximum voluntary isometric contraction [MVIC]), whereas gluteus medius activity was consistent during the single leg support of phase 3 (101.2% MVIC). Biceps brachii activity was greatest during phase 4 of the pitching motion. Triceps brachii activation was consistently >150% MVIC throughout the entire pitching motion, whereas the scapular stabilizers were most active during phase 2 (170.1% MVIC). The results of this study indicate the extent to which muscles are activated during the windmill softball pitch, and this knowledge can lead to the development of proper preventative and rehabilitative muscle strengthening programs. In addition, clinicians will be able to incorporate strengthening exercises that mimic the timing of maximal muscle activation most used during the windmill pitching phases.

  11. Muscle activation patterns and motor anatomy of Anna's hummingbirds Calypte anna and zebra finches Taeniopygia guttata.

    Science.gov (United States)

    Donovan, Edward R; Keeney, Brooke K; Kung, Eric; Makan, Sirish; Wild, J Martin; Altshuler, Douglas L

    2013-01-01

    Flying animals exhibit profound transformations in anatomy, physiology, and neural architecture. Although much is known about adaptations in the avian skeleton and musculature, less is known about neuroanatomy and motor unit integration for bird flight. Hummingbirds are among the most maneuverable and specialized of vertebrate fliers, and two unusual neuromuscular features have been previously reported: (1) the pectoralis major has a unique distribution pattern of motor end plates (MEPs) compared with all other birds and (2) electromyograms (EMGs) from the hummingbird's pectoral muscles, the pectoralis major and the supracoracoideus, show activation bursts composed of one or a few spikes that appear to have a very consistent pattern. Here, we place these findings in a broader context by comparing the MEPs, EMGs, and organization of the spinal motor neuron pools of flight muscles of Anna's hummingbird Calypte anna, zebra finches Taeniopygia guttata, and, for MEPs, several other species. The previously shown MEP pattern of the hummingbird pectoralis major is not shared with its closest taxonomic relative, the swift, and appears to be unique to hummingbirds. MEP arrangements in previously undocumented wing muscles show patterns that differ somewhat from other avian muscles. In the parallel-fibered strap muscles of the shoulder, MEP patterns appear to relate to muscle length, with the smallest muscles having fibers that span the entire muscle. MEP patterns in pennate distal wing muscles were the same regardless of size, with tightly clustered bands in the middle portion of the muscle, not evenly distributed bands over the muscle's entire length. Muscle activations were examined during slow forward flight in both species, during hovering in hummingbirds, and during slow ascents in zebra finches. The EMG bursts of a wing muscle, the pronator superficialis, were highly variable in peak number, size, and distribution across wingbeats for both species. In the pectoralis

  12. Increased sternocleidomastoid, but not trapezius, muscle activity in response to increased chewing load.

    Science.gov (United States)

    Häggman-Henrikson, Birgitta; Nordh, Erik; Eriksson, Per-Olof

    2013-10-01

    Previous findings, during chewing, that boluses of larger size and harder texture result in larger amplitudes of both mandibular and head-neck movements suggest a relationship between increased chewing load and incremental recruitment of jaw and neck muscles. The present report evaluated jaw (masseter and digastric) and neck [sternocleidomastoid (SCM) and trapezius] muscle activity during the chewing of test foods of different sizes and textures by 10 healthy subjects. Muscle activity was recorded by surface electromyography and simultaneous mandibular and head movements were recorded using an optoelectronic technique. Each subject performed continuous jaw-opening/jaw-closing movements whilst chewing small and large boluses of chewing gum and rubber silicone (Optosil). For jaw opening/jaw closing without a bolus, SCM activity was recorded for jaw opening concomitantly with digastric activity. During chewing, SCM activity was recorded for jaw closing concomitantly with masseter activity. Trapezius activity was present in some, but not all, cycles. For the masseter and SCM muscles, higher activity was seen with larger test foods, suggesting increased demand and recruitment of these muscles in response to an increased chewing load. This result reinforces the previous notion of a close functional connection between the jaw and the neck motor systems in jaw actions and has scientific and clinical significance for studying jaw function and dysfunction. © 2013 Eur J Oral Sci.

  13. Metabolic stabilization of acetylcholine receptors in vertebrate neuromuscular junction by muscle activity

    International Nuclear Information System (INIS)

    Rotzler, S.; Brenner, H.R.

    1990-01-01

    The effects of muscle activity on the growth of synaptic acetylcholine receptor (AChR) accumulations and on the metabolic AChR stability were investigated in rat skeletal muscle. Ectopic end plates induced surgically in adult soleus muscle were denervated early during development when junctional AChR number and stability were still low and, subsequently, muscles were either left inactive or they were kept active by chronic exogenous stimulation. AChR numbers per ectopic AChR cluster and AChR stabilities were estimated from the radioactivity and its decay with time, respectively, of end plate sites whose AChRs had been labeled with 125 I-alpha-bungarotoxin (alpha-butx). The results show that the metabolic stability of the AChRs in ectopic clusters is reversibly increased by muscle activity even when innervation is eliminated very early in development. 1 d of stimulation is sufficient to stabilize the AChRs in ectopic AChR clusters. Muscle stimulation also produced an increase in the number of AChRs at early denervated end plates. Activity-induced cluster growth occurs mainly by an increase in area rather than in AChR density, and for at least 10 d after denervation is comparable to that in normally developing ectopic end plates. The possible involvement of AChR stabilization in end plate growth is discussed

  14. Experimentally induced masseter-pain changes masseter but not sternocleidomastoid muscle-related activity during mastication.

    Science.gov (United States)

    Pasinato, Fernanda; Santos-Couto-Paz, Clarissa C; Zeredo, Jorge Luis Lopes; Macedo, Sergio Bruzadelli; Corrêa, Eliane C R

    2016-12-01

    The aim of this study was to verify the effects of induced masseter-muscle pain on the amplitude of muscle activation, symmetry and coactivation of jaw- and neck-muscles during mastication. Twenty-eight male volunteers, mean age±SD 20.6±2.0years, participated in this study. Surface electromyography of the masseter and sternocleidomastoid (SCM) muscles was performed bilaterally during mastication of a gummy candy before and after injections of monosodium glutamate solution and isotonic saline solution. As a result, we observed a decrease in the amplitude of activation of the masseter muscle on the working side (p=0.009; d=0.34) and a reduction in the asymmetry between the working and the balancing side during mastication (p=0.007; d=0.38). No changes were observed either on the craniocervical electromyographic variables. In conclusion, experimentally induced pain reduced the masseter muscle activation on the working side, thereby reducing the physiological masseters' recruitment asymmetry between the two sides during mastication. No effects on SCM activity were detected. These results may partly explain the initial maladaptative changes underlying TMD conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. A fully resolved fluid-structure-muscle-activation model for esophageal transport

    Science.gov (United States)

    Kou, Wenjun; Bhalla, Amneet P. S.; Griffith, Boyce E.; Johnson, Mark; Patankar, Neelesh A.

    2013-11-01

    Esophageal transport is a mechanical and physiological process that transfers the ingested food bolus from the pharynx to the stomach through a multi-layered esophageal tube. The process involves interactions between the bolus, esophageal wall composed of mucosal, circular muscle (CM) and longitudinal muscle (LM) layers, and neurally coordinated muscle activation including CM contraction and LM shortening. In this work, we present a 3D fully-resolved model of esophageal transport based on the immersed boundary method. The model describes the bolus as a Newtonian fluid, the esophageal wall as a multi-layered elastic tube represented by springs and beams, and the muscle activation as a traveling wave of sequential actuation/relaxation of muscle fibers, represented by springs with dynamic rest lengths. Results on intraluminal pressure profile and bolus shape will be shown, which are qualitatively consistent with experimental observations. Effects of activating CM contraction only, LM shortening only or both, for the bolus transport, are studied. A comparison among them can help to identify the role of each type of muscle activation. The support of grant R01 DK56033 and R01 DK079902 from NIH is gratefully acknowledged.

  16. Lower Extremity Muscle Activation and Kinematics of Catchers When Throwing Using Various Squatting and Throwing Postures

    Directory of Open Access Journals (Sweden)

    Yi-Chien Peng, Kuo-Cheng Lo, Lin-Hwa Wang

    2015-09-01

    Full Text Available This study investigated the differences in joint motions and muscle activities of the lower extremities involved in various squatting postures. The motion capture system with thirty-one reflective markers attached on participants was used for motion data collection. The electromyography system was applied over the quadriceps, biceps femoris, tibialis anterior, and gastrocnemius muscles of the pivot and stride leg. The joint extension and flexion in wide squatting are greater than in general squatting (p = 0.005. Knee joint extension and flexion in general squatting are significantly greater than in wide squatting (p = 0.001. The adduction and abduction of the hip joint in stride passing are significantly greater than in step squatting (p = 0.000. Furthermore, the adduction and abduction of the knee joint in stride passing are also significantly greater than in step squatting (p = 0.000. When stride passing is performed, the muscle activation of the hamstring of the pivot foot in general squatting is significantly greater than in wide squatting (p < 0.05, and this difference continues to the stride period. Most catchers use a general or wide squatting width, exclusive of a narrow one. Therefore, the training design for strengthening the lower extremity muscles should consider the appropriateness of the common squat width to enhance squat-up performance. For lower limb muscle activation, wide squatting requires more active gastrocnemius and tibialis anterior muscles. Baseball players should extend the knee angle of the pivot foot before catching the ball.

  17. Human brain activity associated with painful mechanical stimulation to muscle and bone.

    Science.gov (United States)

    Maeda, Lynn; Ono, Mayu; Koyama, Tetsuo; Oshiro, Yoshitetsu; Sumitani, Masahiko; Mashimo, Takashi; Shibata, Masahiko

    2011-08-01

    The purpose of this study was to elucidate the central processing of painful mechanical stimulation to muscle and bone by measuring blood oxygen level-dependent signal changes using functional magnetic resonance imaging (fMRI). Twelve healthy volunteers were enrolled. Mechanical pressure on muscle and bone were applied at the right lower leg by an algometer. Intensities were adjusted to cause weak and strong pain sensation at either target site in preliminary testing. Brain activation in response to mechanical nociceptive stimulation targeting muscle and bone were measured by fMRI and analyzed. Painful mechanical stimulation targeting muscle and bone activated the common areas including bilateral insula, anterior cingulate cortex, posterior cingulate cortex, secondary somatosensory cortex (S2), inferior parietal lobe, and basal ganglia. The contralateral S2 was more activated by strong stimulation than by weak stimulation. Some areas in the basal ganglia (bilateral putamen and caudate nucleus) were more activated by muscle stimulation than by bone stimulation. The putamen and caudate nucleus may have a more significant role in brain processing of muscle pain compared with bone pain.

  18. Noradrenaline spillover during exercise in active versus resting skeletal muscle in man

    DEFF Research Database (Denmark)

    Savard, G; Strange, S; Kiens, Bente

    1987-01-01

    Increases in plasma noradrenaline (NA) concentration occur during moderate to heavy exercise in man. This study was undertaken to examine the spillover of NA from both resting and contracting skeletal muscle during exercise. Six male subjects performed one-legged knee-extension so that all...... in the exercising leg than in the resting leg both during 50% and 100% leg exercise. These results suggest that contracting skeletal muscle may contribute to a larger extent than resting skeletal muscle to increasing the level of plasma NA during exercise. Contractile activity may influence the NA spillover from...

  19. ANGIOTENSIN-CONVERTING ENZYME GENOTYPE AFFECTS SKELETAL MUSCLE STRENGTH IN ELITE ATHLETES

    Directory of Open Access Journals (Sweden)

    Aldo Matos Costa

    2009-09-01

    Full Text Available Previous studies have associated angiotensin-converting enzyme (ACE D allele with variability in the skeletal muscle baseline strength, though conclusions have been inconsistent across investigations. The purpose of this study was to examine the possible association between ACE genotype and skeletal muscle baseline strength in elite male and female athletes involved in different event expertise. A group of 58 elite athletes, designated as Olympic candidates, were studied: 35 swimmers (19 males and 16 females, 18.8 ± 3.2 years and 23 triathletes (15 males and 8 females, 18.7 ± 3.0 years. The athletes were classified as: short (< 200m and middle (400m to 1500m distance athletes, respectively. For each subject the grip strength in both hands was measure using an adjustable mechanical hand dynamometer. The maximum height in both squat jump (SJ and counter movement jump (CMJ were also assessed, using a trigonometric carpet (Ergojump Digitime 1000; Digitest, Jyvaskyla, Finland. DNA extraction was obtained with Chelex 100® and genotype determination by PCR-RFLP methods. Both males and females showed significantly higher right grip strength in D allele carriers compared to II homozygote's. We found that allelic frequency differs significantly by event distance specialization in both genders (p < 0.05. In fact, sprinter D allele carriers showed the superior scores in nearly all strength measurements (p < 0.05, in both genders. Among endurance athletes, the results also demonstrated that female D allele carriers exhibited the higher performance right grip and CMJ scores (p < 0.05. In conclusion, the ACE D allele seems associated with skeletal muscle baseline strength in elite athletes, being easily identified in females

  20. Changes in extracellular muscle volume affect heart rate and blood pressure responses to static exercise

    Science.gov (United States)

    Baum, K.; Essfeld, D.; Stegemann, J.

    To investigate the effect of μg-induced peripheral extracellular fluid reductions on heart rate and blood pressure during isometric exercise, six healthy male subjects performed three calf ergometer test with different extracellular volumes of working muscles. In all tests, body positions during exercise were identical (supine with the knee joint flexed to 900). After a pre-exercise period of 25 min, during which calf volumes were manipulated, subjects had to counteract an external force of 180 N for 5 min. During the pre-exercise period three different protocols were applied. Test A: Subjects rested in the exercise position; test B: Body position was the same as in A but calf volume was increased by venous congestion (cuffs inflated to 80 mm Hg); test C: Calf volumes were decreased by a negative hydrostatic pressure (calves about 40 cm above heart level with the subjects supine). To clamp the changed calf volumes in tests B and C, cuffs were inflated to 300 mm Hg 5 min before the onset of exercise. This occlusion was maintained until termination of exercise. Compared to tests A and B, the reduced volume of test C led to significant increases in heart rate and blood pressure during exercise. Oxygen uptake did not exceed resting levels in B and C until cuffs were deflated, indicating that exclusively calf muscles contributed to the neurogenic peripheral drive. It is concluded that changes in extracellular muscle volume have to be taken into account when comparing heart rate and blood pressure during lg- and μg- exercise.

  1. Botulinum toxin-induced facial muscle paralysis affects amygdala responses to the perception of emotional expressions: preliminary findings from an A-B-A design

    OpenAIRE

    Kim, M Justin; Neta, Maital; Davis, F Caroline; Ruberry, Erika J; Dinescu, Diana; Heatherton, Todd F; Stotland, Mitchell A; Whalen, Paul J

    2014-01-01

    Background It has long been suggested that feedback signals from facial muscles influence emotional experience. The recent surge in use of botulinum toxin (BTX) to induce temporary muscle paralysis offers a unique opportunity to directly test this ?facial feedback hypothesis.? Previous research shows that the lack of facial muscle feedback due to BTX-induced paralysis influences subjective reports of emotional experience, as well as brain activity associated with the imitation of emotional fa...

  2. 2-Deoxyglucose autoradiography of single motor units: labelling of individual acutely active muscle fibers

    International Nuclear Information System (INIS)

    Toop, J.; Burke, R.E.; Dum, R.P.; O'Donovan, M.J.; Smith, C.B.

    1982-01-01

    2-Deoxy-D-[1- 14 C]glucose (2DG) was given intravenously during repetitive stimulation of single motor units in adult cats and autoradiographs were made of frozen sections of the target muscles in order to evaluate methods designed to improve the spatial resolution of [ 14 C]2DG autoradiography. With the modifications used, acutely active muscle fibers, independently identified by depletion of intrafiber glycogen, were associated with highly localized accumulations of silver grains over the depleted fibers. The results indicate that [ 14 C]2DG autoradiography can successfully identify individual active muscle fibers and might in principle be used to obtain quantitative data about rates of glucose metabolism in single muscle fibers of defined histochemical type. The modifications may be applicable also to other tissues to give improved spatial resolution with [ 14 C]-labeled metabolic markers. (Auth.)

  3. RAPID KNEE-EXTENSIONS TO INCREASE QUADRICEPS MUSCLE ACTIVITY IN PATIENTS WITH TOTAL KNEE ARTHROPLASTY

    DEFF Research Database (Denmark)

    Husted, Rasmus Skov; Wilquin, Lousia; Jakobsen, Thomas Linding

    2017-01-01

    rapid knee-extensions were associated with greater voluntary quadriceps muscle activity during an experimental strength training session, compared to that elicited using slow knee-extensions. STUDY DESIGN: A randomized cross-over study. METHODS: Twenty-four patients (age 66.5) 4-8 weeks post total knee...... agonist muscle activity, especially if the exercise is conducted using rapid muscle contractions. PURPOSE: The purpose of this study was to examine if patients with total knee arthroplasty could perform rapid knee-extensions using a 10 RM load four to eight weeks after surgery, and the degree to which...... arthroplasty randomly performed one set of five rapid, and one set of five slow knee-extensions with the operated leg, using a load of their 10 repetition maximum, while surface electromyography recordings were obtained from the vastus medialis and lateralis of the quadriceps muscle. RESULTS: Data from 23...

  4. Rapid knee-extensions to increase quadriceps muscle activity in patients with total knee arthroplasty

    DEFF Research Database (Denmark)

    Husted, Rasmus Skov; Wilquin, Lousia; Jakobsen, Thomas Linding

    2017-01-01

    rapid knee-extensions were associated with greater voluntary quadriceps muscle activity during an experimental strength training session, compared to that elicited using slow knee-extensions. STUDY DESIGN: A randomized cross-over study. METHODS: Twenty-four patients (age 66.5) 4-8 weeks post total knee...... agonist muscle activity, especially if the exercise is conducted using rapid muscle contractions. PURPOSE: The purpose of this study was to examine if patients with total knee arthroplasty could perform rapid knee-extensions using a 10 RM load four to eight weeks after surgery, and the degree to which...... arthroplasty randomly performed one set of five rapid, and one set of five slow knee-extensions with the operated leg, using a load of their 10 repetition maximum, while surface electromyography recordings were obtained from the vastus medialis and lateralis of the quadriceps muscle. RESULTS: Data from 23...

  5. Effect of sprint cycle training on activities of antioxidant enzymes in human skeletal muscle

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Apple, F. S.; Sjödin, B.

    1996-01-01

    (P anaerobic capacity in the trained muscle. The present study demonstrates that intermittent sprint cycle training that induces an enhanced capacity for anaerobic energy generation also improves......The effect of intermittent sprint cycle training on the level of muscle antioxidant enzyme protection was investigated. Resting muscle biopsies, obtained before and after 6 wk of training and 3, 24, and 72 h after the final session of an additional 1 wk of more frequent training, were analyzed...... for activities of the antioxidant enzymes glutathione peroxidase (GPX), glutathione reductase (GR), and superoxide dismutase (SOD). Activities of several muscle metabolic enzymes were determined to assess the effectiveness of the training. After the first 6-wk training period, no change in GPX, GR, or SOD...

  6. Evaluation of Myoelectric Activity of Paraspinal Muscles in Adolescents with Idiopathic Scoliosis during Habitual Standing and Sitting

    Directory of Open Access Journals (Sweden)

    Garcia Kwok

    2015-01-01

    Full Text Available There is a number of research work in the literature that have applied sEMG biofeedback as an instrument for muscle rehabilitation. Therefore, sEMG is a good tool for this research work and is used to record the myoelectric activity in the paraspinal muscles of those with AIS during habitual standing and sitting. After the sEMG evaluation, the root-mean-square (RMS sEMG values of the paraspinal muscles in the habitual postures reflect the spinal curvature situation of the PUMC Type Ia and IIc subjects. Both groups have a stronger average RMS sEMG value on the convex side of the affected muscle regions. Correction to posture as instructed by the physiotherapist has helped the subjects to achieve a more balanced RMS sEMG ratio in the trapezius and latissimus dorsi regions; the erector spinae in the thoracic region and/or erector spinae in the lumbar region. It is, therefore, considered that with regular practice of the suggested positions, those with AIS can use motor learning to achieve a more balanced posture. Consequently, the findings can be used in less intrusive early orthotic intervention and provision of care to those with AIS.

  7. Evaluation of Myoelectric Activity of Paraspinal Muscles in Adolescents with Idiopathic Scoliosis during Habitual Standing and Sitting.

    Science.gov (United States)

    Kwok, Garcia; Yip, Joanne; Cheung, Mei-Chun; Yick, Kit-Lun

    2015-01-01

    There is a number of research work in the literature that have applied sEMG biofeedback as an instrument for muscle rehabilitation. Therefore, sEMG is a good tool for this research work and is used to record the myoelectric activity in the paraspinal muscles of those with AIS during habitual standing and sitting. After the sEMG evaluation, the root-mean-square (RMS) sEMG values of the paraspinal muscles in the habitual postures reflect the spinal curvature situation of the PUMC Type Ia and IIc subjects. Both groups have a stronger average RMS sEMG value on the convex side of the affected muscle regions. Correction to posture as instructed by the physiotherapist has helped the subjects to achieve a more balanced RMS sEMG ratio in the trapezius and latissimus dorsi regions; the erector spinae in the thoracic region and/or erector spinae in the lumbar region. It is, therefore, considered that with regular practice of the suggested positions, those with AIS can use motor learning to achieve a more balanced posture. Consequently, the findings can be used in less intrusive early orthotic intervention and provision of care to those with AIS.

  8. Effect of instruction, surface stability, and load intensity on trunk muscle activity.

    Science.gov (United States)

    Bressel, Eadric; Willardson, Jeffrey M; Thompson, Brennan; Fontana, Fabio E

    2009-12-01

    The aim of this study was to assess the effect of verbal instruction, surface stability, and load intensity on trunk muscle activity levels during the free weight squat exercise. Twelve trained males performed a free weight squat under four conditions: (1) standing on stable ground lifting 50% of their 1-repetition maximum (RM), (2) standing on a BOSU balance trainer lifting 50% of their 1-RM, (3) standing on stable ground lifting 75% of their 1-RM, and (4) receiving verbal instructions to activate the trunk muscles followed by lifting 50% of their 1-RM. Surface EMG activity from muscles rectus abdominis (RA), external oblique (EO), transversus abdominis/internal oblique (TA/IO), and erector spinae (ES) were recorded for each condition and normalized for comparisons. Muscles RA, EO, and TA/IO displayed greater peak activity (39-167%) during squats with instructions compared to the other squat conditions (P=0.04-0.007). Peak EMG activity of muscle ES was greater for the 75% 1-RM condition than squats with instructions or lifting 50% of 1-RM (P=0.04-0.02). The results indicate that if the goal is to enhance EMG activity of the abdominal muscles during a multi-joint squat exercise then verbal instructions may be more effective than increasing load intensity or lifting on an unstable surface. However, in light of other research, conscious co-activation of the trunk muscles during the squat exercise may lead to spinal instability and hazardous compression forces in the lumbar spine.

  9. Differences in feedforward trunk muscle activity in subgroups of patients with mechanical low back pain.

    Science.gov (United States)

    Silfies, Sheri P; Mehta, Rupal; Smith, Sue S; Karduna, Andrew R

    2009-07-01

    To investigate alterations in trunk muscle timing patterns in subgroups of patients with mechanical low back pain (MLBP). Our hypothesis was that subjects with MLBP would demonstrate delayed muscle onset and have fewer muscles functioning in a feedforward manner than the control group. We further hypothesized that we would find differences between subgroups of our patients with MLBP, grouped according to diagnosis (segmental instability and noninstability). Case-control. Laboratory. Forty-three patients with chronic MLBP (25 instability, 18 noninstability) and 39 asymptomatic controls. Not applicable. Surface electromyography was used to measure onset time of 10 trunk muscles during a self-perturbation task. Trunk muscle onset latency relative to the anterior deltoid was calculated and the number of muscles functioning in feedforward determined. Activation timing patterns (Pfeedforward (P=.02; eta=.30; 1-beta=.83) were statistically different between patients with MLBP and controls. The control group activated the external oblique, lumbar multifidus, and erector spinae muscles in a feedforward manner. The heterogeneous MLBP group did not activate the trunk musculature in feedforward, but responded with significantly delayed activations. MLBP subgroups demonstrated significantly different timing patterns. The noninstability MLBP subgroup activated trunk extensors in a feedforward manner, similar to the control group, but significantly earlier than the instability subgroup. Lack of feedforward activation of selected trunk musculature in patients with MLBP may result in a period of inefficient muscular stabilization. Activation timing was more impaired in the instability than the noninstability MLBP subgroup. Training specifically for recruitment timing may be an important component of the rehabilitation program.

  10. Melanocortin 4 Receptor Activation Attenuates Mitochondrial Dysfunction in Skeletal Muscle of Diabetic Rats.

    Science.gov (United States)

    Zhang, Hao-Hao; Liu, Jiao; Qin, Gui-Jun; Li, Xia-Lian; Du, Pei-Jie; Hao, Xiao; Zhao, Di; Tian, Tian; Wu, Jing; Yun, Meng; Bai, Yan-Hui

    2017-11-01

    A previous study has confirmed that the central melanocortin system was able to mediate skeletal muscle AMP-activated protein kinase (AMPK) activation in mice fed a high-fat diet, while activation of the AMPK signaling pathway significantly induced mitochondrial biogenesis. Our hypothesis was that melanocortin 4 receptor (MC4R) was involved in the development of skeletal muscle injury in diabetic rats. In this study, we treated diabetic rats intracerebroventricularly with MC4R agonist R027-3225 or antagonist SHU9119, respectively. Then, we measured the production of reactive oxygen species (ROS), the levels of malondialdehyde (MDA) and glutathione (GSH), the mitochondrial DNA (mtDNA) content and mitochondrial biogenesis, and the protein levels of p-AMPK, AMPK, peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α), sirtuin 1 (SIRT1), and manganese superoxide dismutase (MnSOD) in the skeletal muscle of diabetic rats. The results showed that there was significant skeletal muscle injury in the diabetic rats along with serious oxidative stress and decreased mitochondrial biogenesis. Treatment with R027-3225 reduced oxidative stress and induced mitochondrial biogenesis in skeletal muscle, and also activated the AMPK-SIRT1-PGC-1α signaling pathway. However, diabetic rats injected with MC4R antagonist SHU9119 showed an aggravated oxidative stress and mitochondrial dysfunction in skeletal muscle. In conclusion, our results revealed that MC4R activation was able to attenuate oxidative stress and mitochondrial dysfunction in skeletal muscle induced by diabetes partially through activating the AMPK-SIRT1-PGC-1α signaling pathway. J. Cell. Biochem. 118: 4072-4079, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. Physical activity and negative affective reactivity in daily life.

    Science.gov (United States)

    Puterman, Eli; Weiss, Jordan; Beauchamp, Mark R; Mogle, Jacqueline; Almeida, David M

    2017-12-01

    The results from experimental studies indicate that physically active individuals remain calmer and report less anxiety after the induction of a standardized stressor. The current study extends this research to real life, and examines whether daily physical activity attenuates negative affect that occurs in response to naturally occurring daily stressors. The current study used data from the second wave of the National Study of Daily Experiences, a sub-study of the second wave of the Midlife in the United States Study (MIDUS-II) of 2,022 individuals aged 33-84 questioned nightly for eight consecutive days about their general affect and affective responses to stressful events and their engagement in physical activity. Results indicated that while negative affect is significantly elevated on days with stressful events compared to days free of events in all individuals, these effects are attenuated in those who remain physically active when compared to those who were underactive. This was also true for any day participants were physically active. Importantly, negative affect in response to any specific stressor was reduced the closer in time that the stressor occurred to the bout of exercise in underactive participants, while, in active participants, negative affect in response to any stressor remained low throughout the entire day that participants reported that they were active. Given the significant mental and physical health implications of elevated affective reactivity observed in previous studies, the current study sheds further light on the importance of remaining physically active in times of stress. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  12. Iduronic acid in chondroitin/dermatan sulfate affects directional migration of aortic smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Barbara Bartolini

    Full Text Available Aortic smooth muscle cells produce chondroitin/dermatan sulfate (CS/DS proteoglycans that regulate extracellular matrix organization and cell behavior in normal and pathological conditions. A unique feature of CS/DS proteoglycans is the presence of iduronic acid (IdoA, catalyzed by two DS epimerases. Functional ablation of DS-epi1, the main epimerase in these cells, resulted in a major reduction of IdoA both on cell surface and in secreted CS/DS proteoglycans. Downregulation of IdoA led to delayed ability to re-populate wounded areas due to loss of directional persistence of migration. DS-epi1-/- aortic smooth muscle cells, however, had not lost the general property of migration showing even increased speed of movement compared to wild type cells. Where the cell membrane adheres to the substratum, stress fibers were denser whereas focal adhesion sites were fewer. Total cellular expression of focal adhesion kinase (FAK and phospho-FAK (pFAK was decreased in mutant cells compared to control cells. As many pathological conditions are dependent on migration, modulation of IdoA content may point to therapeutic strategies for diseases such as cancer and atherosclerosis.

  13. Novel Mechanism of Plasma Prekallikrein (PK) Activation by Vascular Smooth Muscle Cells: Evidence of the presence of PK Activator

    OpenAIRE

    Keum, Joo-Seob; Jaffa, Miran A; Luttrell, Louis M; Jaffa, Ayad A.

    2014-01-01

    The contribution of plasma prekallikrein (PK) to vascular remodeling is becoming increasingly recognized. Plasma PK is activated when the zymogen PK is digested to an active enzyme by activated factor XII (FXII). Here, we present our findings that vascular smooth muscle cells (VSMC) activate plasma PK in the absence of FXII. Extracted plasma membrane and cytosolic fractions of VSMCs activate PK, but the rate of PK activation was greater by the membrane fraction. FXII neutralizing antibody did...

  14. Distal muscle activity alterations during the stance phase of gait in restless leg syndrome (RLS) patients.

    Science.gov (United States)

    Dafkin, Chloe; Green, Andrew; Olivier, Benita; McKinon, Warrick; Kerr, Samantha

    2018-05-01

    To assess if there is a circadian variation in electromyographical (EMG) muscle activity during gait in restless legs syndrome (RLS) patients and healthy control participants. Gait assessment was done in 14 RLS patients and 13 healthy control participants in the evening (PM) and the morning (AM). Muscle activity was recorded bilaterally from the tibialis anterior (TA), lateral gastrocnemius (GL), rectus femoris (RF) and biceps femoris (BF) muscles. A circadian variation during the stance phase in only TA (PM > AM, p  Controls, p < 0.05) during early stance and decreased GL activity (RLS < Controls, p < 0.01) during terminal stance in comparison to control participants in the evening. No other significant differences were noted between RLS patients and control participants. Activation of GL during the swing phase was noted in 79% of RLS patients and in 23% of control participants in the morning compared to 71% and 38% in the evening, respectively. EMG muscle activity shows no circadian variation in RLS patients. Evening differences in gait muscle activation patterns between RLS patients and control participants are evident. These results extend our knowledge about alterations in spinal processing during gait in RLS. A possible explanation for these findings is central pattern generator sensitization caused by increased sensitivity in cutaneous afferents in RLS patients. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Evaluation of methods for extraction of the volitional EMG in dynamic hybrid muscle activation

    Directory of Open Access Journals (Sweden)

    Mizrahi Joseph

    2006-11-01

    Full Text Available Abstract Background Hybrid muscle activation is a modality used for muscle force enhancement, in which muscle contraction is generated from two different excitation sources: volitional and external, by means of electrical stimulation (ES. Under hybrid activation, the overall EMG signal is the combination of the volitional and ES-induced components. In this study, we developed a computational scheme to extract the volitional EMG envelope from the overall dynamic EMG signal, to serve as an input signal for control purposes, and for evaluation of muscle forces. Methods A "synthetic" database was created from in-vivo experiments on the Tibialis Anterior of the right foot to emulate hybrid EMG signals, including the volitional and induced components. The database was used to evaluate the results obtained from six signal processing schemes, including seven different modules for filtration, rectification and ES component removal. The schemes differed from each other by their module combinations, as follows: blocking window only, comb filter only, blocking window and comb filter, blocking window and peak envelope, comb filter and peak envelope and, finally, blocking window, comb filter and peak envelope. Results and conclusion The results showed that the scheme including all the modules led to an excellent approximation of the volitional EMG envelope, as extracted from the hybrid signal, and underlined the importance of the artifact blocking window module in the process. The results of this work have direct implications on the development of hybrid muscle activation rehabilitation systems for the enhancement of weakened muscles.

  16. Insulin receptor binding and protein kinase activity in muscles of trained rats

    International Nuclear Information System (INIS)

    Dohm, G.L.; Sinha, M.K.; Caro, J.F.

    1987-01-01

    Exercise has been shown to increase insulin sensitivity, and muscle is quantitatively the most important tissue of insulin action. Since the first step in insulin action is the binding to a membrane receptor, the authors postulated that exercise training would change insulin receptors in muscle and in this study they have investigated this hypothesis. Female rats initially weighing ∼ 100 g were trained by treadmill running for 2 h/day, 6 days/wk for 4 wk at 25 m/min (0 grade). Insulin receptors from vastus intermedius muscles were solubilized by homogenizing in a buffer containing 1% Triton X-100 and then partially purified by passing the soluble extract over a wheat germ agglutinin column. The 4 wk training regimen resulted in a 65% increase in citrate synthase activity in red vastus lateralis muscle, indicating an adaptation to exercise [ 125 I]. Insulin binding by the partially purified receptor preparations was approximately doubled in muscle of trained rats at all insulin concentrations, suggesting an increase in the number of receptors. Training did not alter insulin receptor structure as evidenced by electrophoretic mobility under reducing and nonreducing conditions. Basal insulin receptor protein kinase activity was higher in trained than untrained animals and this was likely due to the greater number of receptors. However, insulin stimulation of the protein kinase activity was depressed by training. These results demonstrate that endurance training does alter receptor number and function in muscle and these changes may be important in increasing insulin sensitivity after exercise training

  17. Asthmatic airway smooth muscle CXCL10 production: mitogen-activated protein kinase JNK involvement

    Science.gov (United States)

    Alrashdan, Yazan A.; Alkhouri, Hatem; Chen, Emily; Lalor, Daniel J.; Poniris, Maree; Henness, Sheridan; Brightling, Christopher E.; Burgess, Janette K.; Armour, Carol L.; Ammit, Alaina J.

    2012-01-01

    CXCL10 (IP10) is involved in mast cell migration to airway smooth muscle (ASM) bundles in asthma. We aimed to investigate the role of cytokine-induced MAPK activation in CXCL10 production by ASM cells from people with and without asthma. Confluent growth-arrested ASM cells were treated with inhibitors of the MAPKs ERK, p38, and JNK and transcription factor NF-κB, or vehicle, and stimulated with IL-1β, TNF-α, or IFN-γ, alone or combined (cytomix). CXCL10 mRNA and protein, JNK, NF-κB p65 phosphorylation, and Iκ-Bα protein degradation were assessed using real-time PCR, ELISA, and immunoblotting, respectively. Cytomix, IL-1β, and TNF-α induced CXCL10 mRNA expression more rapidly in asthmatic than nonasthmatic ASM cells. IL-1β and/or TNF-α combined with IFN-γ synergistically increased asthmatic ASM cell CXCL10 release. Inhibitor effects were similar in asthmatic and nonasthmatic cells, but cytomix-induced release was least affected, with only JNK and NF-κB inhibitors halving it. Notably, JNK phosphorylation was markedly less in asthmatic compared with nonasthmatic cells. However, in both, the JNK inhibitor SP600125 reduced JNK phosphorylation and CXCL10 mRNA levels but did not affect CXCL10 mRNA stability or Iκ-Bα degradation. Together, the JNK and NF-κB inhibitors completely inhibited their CXCL10 release. We concluded that, in asthmatic compared with nonasthmatic ASM cells, JNK activation was reduced and CXCL10 gene expression was more rapid following cytomix stimulation. However, in both, JNK activation did not regulate early events leading to NF-κB activation. Thus JNK and NF-κB provide independent therapeutic targets for limiting CXCL10 production and mast cell migration to the ASM in asthma. PMID:22387292

  18. Assessment of muscle function using hybrid PET/MRI: comparison of 18F-FDG PET and T2-weighted MRI for quantifying muscle activation in human subjects

    International Nuclear Information System (INIS)

    Haddock, Bryan; Holm, Soeren; Poulsen, Jakup M.; Enevoldsen, Lotte H.; Larsson, Henrik B.W.; Kjaer, Andreas; Suetta, Charlotte

    2017-01-01

    The aim of this study was to determine the relationship between relative glucose uptake and MRI T 2 changes in skeletal muscles following resistance exercise using simultaneous PET/MRI scans. Ten young healthy recreationally active men (age 21 - 28 years) were injected with 18 F-FDG while activating the quadriceps of one leg with repeated knee extension exercises followed by hand-grip exercises for one arm. Immediately following the exercises, the subjects were scanned simultaneously with 18 F-FDG PET/MRI and muscle groups were evaluated for increases in 18 F-FDG uptake and MRI T 2 values. A significant linear correlation between 18 F-FDG uptake and changes in muscle T 2 (R 2 = 0.71) was found. for both small and large muscles and in voxel to voxel comparisons. Despite large intersubject differences in muscle recruitment, the linear correlation between 18 F-FDG uptake and changes in muscle T 2 did not vary among subjects. This is the first assessment of skeletal muscle activation using hybrid PET/MRI and the first study to demonstrate a high correlation between 18 F-FDG uptake and changes in muscle T 2 with physical exercise. Accordingly, it seems that changes in muscle T 2 may be used as a surrogate marker for glucose uptake and lead to an improved insight into the metabolic changes that occur with muscle activation. Such knowledge may lead to improved treatment strategies in patients with neuromuscular pathologies such as stroke, spinal cord injuries and muscular dystrophies. (orig.)

  19. Muscle activity and masticatory efficiency with bilateral extension base removable partial dentures with different cusp angles.

    Science.gov (United States)

    Al-Omiri, Mahmoud K

    2018-03-01

    Whether masticatory efficiency and electromyographic activity are influenced by type of artificial teeth and food is unclear. The purpose of this clinical study was to evaluate the influence of extension base removable partial dentures (RPDs) with different cusp angles: anatomic (33 degrees), semianatomic (20 degrees), and nonanatomic (0 degrees) teeth on masticatory efficiency and muscle activity during the mastication of test foods with different textures. Twelve participants with RPDs were selected to perform masticatory efficiency and electromyographic tests. Surface electromyograms (EMGs) were used to record the activities of the masseter and temporalis muscles during the mastication of different types of test foods. The maximal voltage and duration were measured on the integrated EMG signal in each muscle during food mastication, and the mean reading of both sides was then recorded. Analysis of variance and the Tukey post hoc test were used to perform statistical analyses (α=.05). The masticatory efficiency of RPDs with nonanatomic teeth was significantly inferior to that of RPDs with anatomic and semianatomic teeth (P.05). Also, muscle activity (according to EMG) with RPDs with NA teeth was significantly higher than that with anatomic and semianatomic teeth (P<.05). RPDs with NA teeth were associated with higher EMG muscle activity and reduced masticatory efficiency than anatomic or semianatomic teeth. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  20. Are cervical multifidus muscles active during whiplash and startle? An initial experimental study

    Directory of Open Access Journals (Sweden)

    Carpenter Mark G

    2008-06-01

    Full Text Available Abstract Background The cervical multifidus muscles insert onto the lower cervical facet capsular ligaments and the cervical facet joints are the source of pain in some chronic whiplash patients. Reflex activation of the multifidus muscle during a whiplash exposure could potentially contribute to injuring the facet capsular ligament. Our goal was to determine the onset latency and activation amplitude of the cervical multifidus muscles to a simulated rear-end collision and a loud acoustic stimuli. Methods Wire electromyographic (EMG electrodes were inserted unilaterally into the cervical multifidus muscles of 9 subjects (6M, 3F at the C4 and C6 levels. Seated subjects were then exposed to a forward acceleration (peak acceleration 1.55 g, speed change 1.8 km/h and a loud acoustic tone (124 dB, 40 ms, 1 kHz. Results Aside from one female, all subjects exhibited multifidus activity after both stimuli (8 subjects at C4, 6 subjects at C6. Neither onset latencies nor EMG amplitude varied with stimulus type or spine level (p > 0.13. Onset latencies and amplitudes varied widely, with EMG activity appearing within 160 ms of stimulus onset (for at least one of the two stimuli in 7 subjects. Conclusion These data indicate that the multifidus muscles of some individuals are active early enough to potentially increase the collision-induced loading of the facet capsular ligaments.

  1. Impaired exercise performance and muscle Na(+),K(+)-pump activity in renal transplantation and haemodialysis patients.

    Science.gov (United States)

    Petersen, Aaron C; Leikis, Murray J; McMahon, Lawrence P; Kent, Annette B; Murphy, Kate T; Gong, Xiaofei; McKenna, Michael J

    2012-05-01

    We examined whether abnormal skeletal muscle Na(+),K(+)-pumps underlie impaired exercise performance in haemodialysis patients (HDP) and whether these are improved in renal transplant recipients (RTx). Peak oxygen consumption ( O(2peak)) and plasma [K(+)] were measured during incremental exercise in 9RTx, 10 HDP and 10 healthy controls (CON). Quadriceps peak torque (PT), fatigability (decline in strength during thirty contractions), thigh muscle cross-sectional area (TMCSA) and vastus lateralis Na(+),K(+)-pump maximal activity, content and isoform (α(1)-α(3), β(1)-β(3)) abundance were measured. O(2peak) was 32 and 35% lower in RTx and HDP than CON, respectively (P Na(+),K(+)-pump activity was 28 and 31% lower in RTx and HDP, respectively than CON (P Na(+),K(+)-pump activity (r = 0.45, P = 0.02). O(2peak) and muscle Na(+),K(+)-pump activity were depressed and muscle fatigability increased in HDP, with no difference observed in RTx. These findings are consistent with the possibility that impaired exercise performance in HDP and RTx may be partially due to depressed muscle Na(+),K(+)-pump activity and relative TMCSA.

  2. Effects of Resistance Training on Matrix Metalloproteinase Activity in Skeletal Muscles and Blood Circulation During Aging

    Directory of Open Access Journals (Sweden)

    Ivo V. de Sousa Neto

    2018-03-01

    Full Text Available Aging is a complex, multifactorial process characterized by the accumulation of deleterious effects, including biochemical adaptations of the extracellular matrix (ECM. The purpose of this study was to investigate the effects of 12 weeks of resistance training (RT on metalloproteinase 2 (MMP-2 activity in skeletal muscles and, MMP-2 and MMP-9 activity in the blood circulation of young and old rats. Twenty-eight Wistar rats were randomly divided into four groups (n = 7 per group: young sedentary (YS; young trained (YT, old sedentary (OS, and old trained (OT. The stair climbing RT consisted of one training session every 2 other day, with 8–12 dynamic movements per climb. The animals were euthanized 48 h after the end of the experimental period. MMP-2 and MMP-9 activity was measured by zymography. There was higher active MMP-2 activity in the lateral gastrocnemius and flexor digitorum profundus muscles in the OT group when compared to the OS, YS, and YT groups (p ≤ 0.001. Moreover, there was higher active MMP-2 activity in the medial gastrocnemius muscle in the OT group when compared to the YS and YT groups (p ≤ 0.001. The YS group presented lower active MMP-2 activity in the soleus muscle than the YT, OS, OT groups (p ≤ 0.001. With respect to active MMP-2/9 activity in the bloodstream, the OT group displayed significantly reduced activity (p ≤ 0.001 when compared to YS and YT groups. In conclusion, RT up-regulates MMP-2 activity in aging muscles, while down-regulating MMP-2 and MMP-9 in the blood circulation, suggesting that it may be a useful tool for the maintenance of ECM remodeling.

  3. Comparison of Electromyographic Activity Pattern of Knee Two-Joint Muscles between Youngs and Olders in Gait Different Speeds

    Directory of Open Access Journals (Sweden)

    Hamideh Khodaveisi

    2016-01-01

    Full Text Available Objective: In recent years, it has been focused much attention on gait analysis. Factors such as speed, age and gender affect gait parameters. The purpose of the present study was to compare the electromyographic activity pattern of knee two-joint muscles between younger and older subjects in different gait speeds. Matterials & Methods: The method of current study was analytical cross-sectional method in which 15 healthy young men and 15 old men, were selected conveniently. Electromyographic activity of rectus femoris, biceps femoris, semitendinus and gastrocenemius were recorded during walking with preferred (100%, slow (80% and fast (120% speeds in a 10 meter walkway. Normalized RMSs of muscles were compared using RM-ANOVA and Tokey’s tests by SPSS 18 software. Results: According to results, RMSs of rectus femoris in midstance (P<0.01 and gastrocenemius in loading response (P=0.02 phases in all walking speeds were higher in older subjects than in younger ones, and it increased with speed in both age groups (P<0.01. Biceps femoris RMS in terminal stance at 80% speed, was lower in older subjects than in younger ones (P=0.01 and it increased with walking speed (P=0.01. Semitendinus activity in loading and midstance phases at 120% speed was higher in older subjects than in younger ones (P<0.01, and it increased with speed in both age groups in swing phase (P<0.05. Conclusion: According to the results, older subjects have more muscle co-contraction around knee at high speed in midstance phase than younger subjects. These age-related changes in muscle activity, leads to increase in joint stiffness and stability during single support, and probably play a role in reducing push off power at faster speeds.

  4. One-year high fat diet affects muscle-but not brain mitochondria

    DEFF Research Database (Denmark)

    Joergensen, Tenna; Grunnet, Niels; Quistorff, Bjørn

    2015-01-01

    It is well known that few weeks of high fat (HF) diet may induce metabolic disturbances and mitochondrial dysfunction in skeletalmuscle. However, little is known about the effects of long-term HF exposure and effects on brain mitochondria are unknown. Wistarrats were fed either chow (13E% fat......) or HF diet (60E% fat) for 1 year. The HF animals developed obesity, dyslipidemia, insulinresistance, and dysfunction of isolated skeletal muscle mitochondria: state 3 and state 4 were 30% to 50% increased (P .... Adding also succinate in state 3 resulted in ahigher substrate control ratio (SCR) with PC, but a lower SCR with pyruvate (P mitochondria from the same animal showed no changes with the substrates relevant...

  5. A comparison of muscle activity in concentric and counter movement maximum bench press.

    Science.gov (United States)

    van den Tillaar, Roland; Ettema, Gertjan

    2013-01-01

    The purpose of this study was to compare the kinematics and muscle activation patterns of regular free-weight bench press (counter movement) with pure concentric lifts in the ascending phase of a successful one repetition maximum (1-RM) attempt in the bench press. Our aim was to evaluate if diminishing potentiation could be the cause of the sticking region. Since diminishing potentiation cannot occur in pure concentric lifts, the occurrence of a sticking region in this type of muscle actions would support the hypothesis that the sticking region is due to a poor mechanical position. Eleven male participants (age 21.9 ± 1.7 yrs, body mass 80.7 ± 10.9 kg, body height 1.79 ± 0.07 m) conducted 1-RM lifts in counter movement and in pure concentric bench presses in which kinematics and EMG activity were measured. In both conditions, a sticking region occurred. However, the start of the sticking region was different between the two bench presses. In addition, in four of six muscles, the muscle activity was higher in the counter movement bench press compared to the concentric one. Considering the findings of the muscle activity of six muscles during the maximal lifts it was concluded that the diminishing effect of force potentiation, which occurs in the counter movement bench press, in combination with a delayed muscle activation unlikely explains the existence of the sticking region in a 1-RM bench press. Most likely, the sticking region is the result of a poor mechanical force position.

  6. Post mortem rigor development in the Egyptian goose (Alopochen aegyptiacus) breast muscle (pectoralis): factors which may affect the tenderness.

    Science.gov (United States)

    Geldenhuys, Greta; Muller, Nina; Frylinck, Lorinda; Hoffman, Louwrens C

    2016-01-15

    Baseline research on the toughness of Egyptian goose meat is required. This study therefore investigates the post mortem pH and temperature decline (15 min-4 h 15 min post mortem) in the pectoralis muscle (breast portion) of this gamebird species. It also explores the enzyme activity of the Ca(2+)-dependent protease (calpain system) and the lysosomal cathepsins during the rigor mortis period. No differences were found for any of the variables between genders. The pH decline in the pectoralis muscle occurs quite rapidly (c = -0.806; ultimate pH ∼ 5.86) compared with other species and it is speculated that the high rigor temperature (>20 °C) may contribute to the increased toughness. No calpain I was found in Egyptian goose meat and the µ/m-calpain activity remained constant during the rigor period, while a decrease in calpastatin activity was observed. The cathepsin B, B & L and H activity increased over the rigor period. Further research into the connective tissue content and myofibrillar breakdown during aging is required in order to know if the proteolytic enzymes do in actual fact contribute to tenderisation. © 2015 Society of Chemical Industry.

  7. AICAR administration affects glucose metabolism by upregulating the novel glucose transporter, GLUT8, in equine skeletal muscle.

    Science.gov (United States)

    de Laat, M A; Robinson, M A; Gruntmeir, K J; Liu, Y; Soma, L R; Lacombe, V A

    2015-09-01

    Equine metabolic syndrome is characterized by obesity and insulin resistance (IR). Currently, there is no effective pharmacological treatment for this insidious disease. Glucose uptake is mediated by a family of glucose transporters (GLUT), and is regulated by insulin-dependent and -independent pathways, including 5-AMP-activated protein kinase (AMPK). Importantly, the activation of AMPK, by 5-aminoimidazole-4-carboxamide-1-D-ribofuranoside (AICAR) stimulates glucose uptake in both healthy and diabetic humans. However, whether AICAR promotes glucose uptake in horses has not been established. It is hypothesized that AICAR administration would enhance glucose transport in equine skeletal muscle through AMPK activation. In this study, the effect of an intravenous AICAR infusion on blood glucose and insulin concentrations, as well as on GLUT expression and AMPK activation in equine skeletal muscle (quantified by Western blotting) was examined. Upon administration, plasma AICAR rapidly reached peak concentration. Treatment with AICAR resulted in a decrease (P change in lactate concentration. The ratio of phosphorylated to total AMPK was increased (P managing IR requires investigation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. A comparison of hamstring muscle activity during different screening tests for non-contact ACL injury.

    Science.gov (United States)

    Husted, Rasmus S; Bencke, Jesper; Andersen, Lars L; Myklebust, Grethe; Kallemose, Thomas; Lauridsen, Hanne B; Hölmich, Per; Aagaard, Per; Zebis, Mette K

    2016-06-01

    Reduced ability to activate the medial hamstring muscles during a sports-specific sidecutting movement has been found to be a potential risk factor for non-contact ACL injury. However, whether a reduced ability to activate the medial hamstring muscle is a general neuromuscular phenomenon and thereby observable independently of the type of clinical screening tests used is not known. This cross sectional study investigated the rank correlation of knee joint neuromuscular activity between three different ACL injury risk screening tests. Sixty-two adolescent female elite football and handball players (16.7±1.3years) participated in the study. Using surface electromyography (EMG) assessment, the neuromuscular activity of medial hamstring muscle (semitendinosus, ST), lateral hamstring muscle (biceps femoris, BF) and quadriceps muscle (vastus lateralis, VL) were monitored during three standardized screening tests - i.e. one-legged horizontal hop (OLH), drop vertical jump (DJ) and sidecutting (SC). Neuromuscular pre-activity was measured in the time interval 10ms prior to initial contact on a force plate. For neuromuscular hamstring muscle pre-activity, correlation analysis (Spearman correlation coefficient) showed low-to-moderate correlations between SC and 1) DJ (rs=0.34-0.36, Phamstring pre-activity share some common variance during the examined tests. However, a lack of strong correlation suggests that we cannot generalize one risk factor during one test to another test. The present data demonstrate that one-legged horizontal hop and drop vertical jump testing that are commonly used in the clinical setting does not resemble the specific neuromuscular activity patterns known to exist during sidecutting, a well known high risk movement for non-contact ACL injury. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. AMP kinase expression and activity in human skeletal muscle: effects of immobilization, retraining, and creatine supplementation

    DEFF Research Database (Denmark)

    Eijnde, Bert O.; Derave, Wim; Wojtaszewski, Jørgen

    2005-01-01

    The effects of leg immobilization and retraining in combination with oral creatine intake on muscle AMP-activated protein kinase (AMPK) protein expression and phosphorylation status were investigated. A double-blind trial was performed in young healthy volunteers (n = 22). A cast immobilized...... the right leg for 2 wk, whereafter the knee-extensor muscles of that leg were retrained for 6 wk. Half of the subjects received creatine monohydrate throughout the study (Cr; from 15 g down to 2.5 g daily), and the others ingested placebo (P; maltodextrin). Before and after immobilization and retraining...... that immobilization-induced muscle inactivity for 2 wk does not alter AMPK a1-, a2-, and ß2-subunit expression or a-AMPK phosphorylation status. Furthermore, the present observations indicate that AMPK probably is not implicated in the previously reported beneficial effects of oral creatine supplementation on muscle...

  10. Trunk muscle activation. The effects of torso flexion, moment direction, and moment magnitude.

    Science.gov (United States)

    Lavender, S; Trafimow, J; Andersson, G B; Mayer, R S; Chen, I H

    1994-04-01

    This study was performed to quantify the electromyographic trunk muscle activities in response to variations in moment magnitude and direction while in forward-flexed postures. Recordings were made over eight trunk muscles in 19 subjects who maintained forward-flexed postures of 30 degrees and 60 degrees. In each of the two flexed postures, external moments of 20 Nm and 40 Nm were applied via a chest harness. The moment directions were varied in seven 30 degrees increments to a subject's right side, such that the direction of the applied load ranged from the upper body's anterior midsagittal plane (0 degree) to the posterior midsagittal plane (180 degrees). Statistical analyses yielded significant moment magnitude by moment-direction interaction effects for the EMG output from six of the eight muscles. Trunk flexion by moment-direction interactions were observed in the responses from three muscles. In general, the primary muscle supporting the torso and the applied load was the contralateral (left) erector spinae. The level of electromyographic activity in the anterior muscles was quite low, even with the posterior moment directions.

  11. [Relationship between muscle activity and kinematics of the lower extremity in slow motions of squats in humans].

    Science.gov (United States)

    Khorievin, V I; Horkovenko, A V; Vereshchaka, I V

    2013-01-01

    Squatting can be performed on ankle strategy when ankle joint is flexed more than a hip joint and on hip strategy when large changes occur at the hip joint. The relationships between changes ofjoint angles and electromyogram (EMG) of the leg muscles were studied in five healthy men during squatting that was performed at the ankle and hip strategies with a slow changes in the knee angle of 40 and 60 degrees. It is established that at ankle strategy the ankle muscles were activated ahead of joint angle changes and shifting the center of pressure (CT) on stabilographic platform, whereas activation of the thigh muscles began simultaneously with the change of the joint angles, showing the clear adaptation in successive trials and a linear relationships between the static EMG component and the angle changes of the ankle joint. In the case of hip strategy of squatting the thigh muscles were activated simultaneously with the change in the joint angles and the displacement of CT, whereas the ankle muscles were activated later than the thigh muscles, especially the muscle tibialis anterior, showing some adaptations in consecutive attempts. At the ankle strategy the EMG amplitude was greatest in thigh muscles, reproducing contour of changes in joint angles, whereas the ankle muscles were activated only slightly during changes of joint angles. In the case of hip strategy dominated the EMG amplitude of the muscle tibialis anterior, which was activated when driving down the trunk and fixation of the joint angles that was accompanied by a slight coactivation of the calf muscles with the step-like increase in the amplitude of the EMG of the thigh muscles. Choice of leg muscles to start the squatting on both strategies occurred without a definite pattern, which may indicate the existence of a wide range of options for muscle activity in a single strategy.

  12. Differences in the EMG pattern of lea muscle activation during locomotion in Parkinson's disease

    NARCIS (Netherlands)

    Albani, G; Sandrini, G; Kunig, G; Martin-Soelch, C; Mauro, A; Pignatti, R; Pacchetti, C; Dietz, [No Value; Leenders, KL

    2003-01-01

    In this pilot study, EMG patterns of leg muscle activation were studied in five parkinsonian patients with (B1) and five without (B2) freezing. Gastrocnemius medialis (GM) and tibialis anterior (TA) activity was analysed, by means of surface electromyography (EMG), during treadmill walking at two

  13. Effects of alpha-AMPK knockout on exercise-induced gene activation in mouse skeletal muscle

    DEFF Research Database (Denmark)

    Jørgensen, Sebastian Beck; Wojtaszewski, Jørgen; Viollet, Benoit

    2005-01-01

    We tested the hypothesis that 5'AMP-activated protein kinase (AMPK) plays an important role in regulating the acute, exercise-induced activation of metabolic genes in skeletal muscle, which were dissected from whole-body a2- and a1-AMPK knockout (KO) and wild-type (WT) mice at rest, after treadmi...

  14. Cervico-mandibular muscle activity in females with chronic cervical pain

    OpenAIRE

    T. Lang; R. Parker; T. Burgess

    2013-01-01

    Pathophysiological mechanisms behind pain in chroniccervical musculoskeletal conditions (MSC) in office workers remainunclear. Chronic cervical pain has established links with temporomandibular(TM) disorders. Yet there is no current published evidence to reportwhether individuals with cervical dysfunction exhibit altered masseterand c