WorldWideScience

Sample records for affect mass transport

  1. Wave-induced mass transport affects daily Escherichia coli fluctuations in nearshore water

    Science.gov (United States)

    Ge, Zhongfu; Whitman, Richard L.; Nevers, Meredith B.; Phanikumar, Mantha S.

    2012-01-01

    Characterization of diel variability of fecal indicator bacteria concentration in nearshore waters is of particular importance for development of water sampling standards and protection of public health. Significant nighttime increase in Escherichia coli (E. coli) concentration in beach water, previously observed at marine sites, has also been identified in summer 2000 from fixed locations in waist- and knee-deep waters at Chicago 63rd Street Beach, an embayed, tideless, freshwater beach with low currents at night (approximately 0.015 m s–1). A theoretical model using wave-induced mass transport velocity for advection was developed to assess the contribution of surface waves to the observed nighttime E. coli replenishment in the nearshore water. Using average wave conditions for the summer season of year 2000, the model predicted an amount of E. coli transported from water of intermediate depth, where sediment resuspension occurred intermittently, that would be sufficient to have elevated E. coli concentration in the surf and swash zones as observed. The nighttime replenishment of E. coli in the surf and swash zones revealed here is an important phase in the cycle of diel variations of E. coli concentration in nearshore water. According to previous findings in Ge et al. (Environ. Sci. Technol. 2010, 44, 6731–6737), enhanced current circulation in the embayment during the day tends to displace and deposit material offshore, which partially sets up the system by the early evening for a new period of nighttime onshore movement. This wave-induced mass transport effect, although facilitating a significant base supply of material shoreward, can be perturbed or significantly influenced by high currents (orders of magnitude larger than a typical wave-induced mass transport velocity), current-induced turbulence, and tidal forcing.

  2. How AGN and SN Feedback Affect Mass Transport and Black Hole Growth in High-redshift Galaxies

    Science.gov (United States)

    Prieto, Joaquin; Escala, Andrés; Volonteri, Marta; Dubois, Yohan

    2017-02-01

    Using cosmological hydrodynamical simulations, we study the effect of supernova (SN) and active galactic nucleus (AGN) feedback on the mass transport (MT) of gas onto galactic nuclei and the black hole (BH) growth down to redshift z∼ 6. We study the BH growth in relation to the MT processes associated with gravity and pressure torques and how they are modified by feedback. Cosmological gas funneled through cold flows reaches the galactic outer region close to freefall. Then torques associated with pressure triggered by gas turbulent motions produced in the circumgalactic medium by shocks and explosions from SNe are the main source of MT beyond the central ∼100 pc. Due to high concentrations of mass in the central galactic region, gravitational torques tend to be more important at high redshift. The combined effect of almost freefalling material and both gravity and pressure torques produces a mass accretion rate of order ∼ 1 {M}ȯ yr‑1 at approximately parsec scales. In the absence of SN feedback, AGN feedback alone does not affect significantly either star formation or BH growth until the BH reaches a sufficiently high mass of ∼ {10}6 {M}ȯ to self-regulate. SN feedback alone, instead, decreases both stellar and BH growth. Finally, SN and AGN feedback in tandem efficiently quench the BH growth, while star formation remains at the levels set by SN feedback alone, due to the small final BH mass, ∼few times {10}5 {M}ȯ . SNe create a more rarefied and hot environment where energy injection from the central AGN can accelerate the gas further.

  3. Bioreactor Mass Transport Studies

    Science.gov (United States)

    Kleis, Stanley J.; Begley, Cynthia M.

    1997-01-01

    The objectives of the proposed research efforts were to develop both a simulation tool and a series of experiments to provide a quantitative assessment of mass transport in the NASA rotating wall perfused vessel (RWPV) bioreactor to be flown on EDU#2. This effort consisted of a literature review of bioreactor mass transport studies, the extension of an existing scalar transport computer simulation to include production and utilization of the scalar, and the evaluation of experimental techniques for determining mass transport in these vessels. Since mass transport at the cell surface is determined primarily by the relative motion of the cell assemblage and the surrounding fluid, a detailed assessment of the relative motion was conducted. Results of the simulations of the motion of spheres in the RWPV under microgravity conditions are compared with flight data from EDU#1 flown on STS-70. The mass transport across the cell membrane depends upon the environment, the cell type, and the biological state of the cell. Results from a literature review of cell requirements of several scalars are presented. As a first approximation, a model with a uniform spatial distribution of utilization or production was developed and results from these simulations are presented. There were two candidate processes considered for the experimental mass transport evaluations. The first was to measure the dissolution rate of solid or gel beads. The second was to measure the induced fluorescence of beads as a stimulant (for example hydrogen peroxide) is infused into the vessel. Either technique would use video taped images of the process for recording the quantitative results. Results of preliminary tests of these techniques are discussed.

  4. Mass Transport within Soils

    Energy Technology Data Exchange (ETDEWEB)

    McKone, Thomas E.

    2009-03-01

    Contaminants in soil can impact human health and the environment through a complex web of interactions. Soils exist where the atmosphere, hydrosphere, geosphere, and biosphere converge. Soil is the thin outer zone of the earth's crust that supports rooted plants and is the product of climate and living organisms acting on rock. A true soil is a mixture of air, water, mineral, and organic components. The relative proportions of these components determine the value of the soil for agricultural and for other human uses. These proportions also determine, to a large extent, how a substance added to soil is transported and/or transformed within the soil (Spositio, 2004). In mass-balance models, soil compartments play a major role, functioning both as reservoirs and as the principal media for transport among air, vegetation, surface water, deeper soil, and ground water (Mackay, 2001). Quantifying the mass transport of chemicals within soil and between soil and atmosphere is important for understanding the role soil plays in controlling fate, transport, and exposure to multimedia pollutants. Soils are characteristically heterogeneous. A trench dug into soil typically reveals several horizontal layers having different colors and textures. As illustrated in Figure 1, these multiple layers are often divided into three major horizons: (1) the A horizon, which encompasses the root zone and contains a high concentration of organic matter; (2) the B horizon, which is unsaturated, lies below the roots of most plants, and contains a much lower organic carbon content; and (3) the C horizon, which is the unsaturated zone of weathered parent rock consisting of bedrock, alluvial material, glacial material, and/or soil of an earlier geological period. Below these three horizons lies the saturated zone - a zone that encompasses the area below ground surface in which all interconnected openings within the geologic media are completely filled with water. Similarly to the unsaturated

  5. Transport Regimes of Air Masses Affecting the Tropospheric Composition of the Canadian and European Arctic During RACEPAC 2014 and NETCARE 2014/2015

    Science.gov (United States)

    Bozem, H.; Hoor, P. M.; Koellner, F.; Kunkel, D.; Schneider, J.; Schulz, C.; Herber, A. B.; Borrmann, S.; Wendisch, M.; Ehrlich, A.; Leaitch, W. R.; Willis, M. D.; Burkart, J.; Thomas, J. L.; Abbatt, J.

    2015-12-01

    The Arctic is warming much faster than any other place in the world and undergoes a rapid change dominated by a changing climate in this region. The impact of polluted air masses traveling to the Arctic from various remote sources significantly contributes to the observed climate change, in contrast there are additional local emission sources contributing to the level of pollutants (trace gases and aerosol). Processes affecting the emission and transport of these pollutants are not well understood and need to be further investigated. We present aircraft based trace gas measurements in the Arctic during RACEPAC (2014) and NETCARE (2014 and 2015) with the Polar 6 aircraft of Alfred Wegener Institute (AWI) covering an area from 134°W to 17°W and 68°N to 83°N. We focus on cloud, aerosol and general transport processes of polluted air masses into the high Arctic. Based on CO and CO2 measurements and kinematic 10-day back trajectories we analyze the transport regimes prevalent during spring (RACEPAC 2014 and NETCARE 2015) and summer (NETCARE 2014) in the observed region. Whereas the eastern part of the Canadian Arctic is affected by air masses with their origin in Asia, in the central and western parts of the Canadian and European Arctic air masses from North America are predominant at the time of the measurement. In general the more northern parts of the Arctic were relatively unaffected by pollution from mid-latitudes since air masses mostly travel within the polar dome, being quite isolated. Associated mixing ratios of CO and CO2 fit into the seasonal cycle observed at NOAA ground stations throughout the Arctic, but show a more mid-latitudinal characteristic at higher altitudes. The transition is remarkably sharp and allows for a chemical definition of the polar dome. At low altitudes, synoptic disturbances transport polluted air masses from mid-latitudes into regions of the polar dome. These air masses contribute to the Arctic pollution background, but also

  6. Framework for reactive mass transport

    DEFF Research Database (Denmark)

    Jensen, Mads Mønster; Johannesson, Björn; Geiker, Mette Rica

    2014-01-01

    description is coupled to the system. The mass transport is solved by using the finite element method where the chemical equilibrium is solved explicitly by an operator splitting method. The IPHREEQC library is used as chemical equilibrium solver. The equation system, solved by IPHREEQC, is explained...... simulation, showing multi-species ingress with formation of new solid phases in the domain is described and calculated. It is shown that the numerical solution method is capable of solving the reactive mass transport system for the examples considered. (C) 2014 Elsevier B.V. All rights reserved....

  7. Mass Transport in Global Geophysical Fluids

    Science.gov (United States)

    Chao, B. F.

    1999-01-01

    Mass transports occurring in the atmosphere-hydrosphere-solid Earth-core system (the "global geophysical fluids") are important geophysical phenomena. They occur on all temporal and spatial scales. Examples include air mass and ocean circulations, tides, hydrological water redistribution, mantle processes such as post-glacial rebound, earthquakes and tectonic motions, and core geodynamo activities. With only a few exceptions on the Earth surface, the temporal history and spatial pattern of such mass transport are often not amenable to direct observations. Space geodesy techniques, however, have the capability of monitoring certain direct consequences of the mass transport, including Earth's rotation variations, gravitational field variations, and the geocenter motion. These techniques include the very-long-baseline interferometry, satellite laser ranging and Doppler tracking, and the Global Positioning System, all entail global observational networks. While considerable advances have been made in observing and understanding of the dynamics of Earth's rotation, only the lowest-degree gravitational variations have been observed and limited knowledge of geocenter motion obtained. New space missions, projects and initiatives promise to further improve the measurements and hence our knowledge about the global mass transports. The latter contributes to our understanding and modeling capability of the geophysical processes that produce and regulate the mass transports, as well as the solid Earth's response to such changes in constraining the modeling of Earth's mechanical properties.

  8. Conditions and processes affecting radionuclide transport

    Science.gov (United States)

    Simmons, Ardyth M.; Neymark, Leonid A.

    2012-01-01

    Characteristics of host rocks, secondary minerals, and fluids would affect the transport of radionuclides from a previously proposed repository at Yucca Mountain, Nevada. Minerals in the Yucca Mountain tuffs that are important for retarding radionuclides include clinoptilolite and mordenite (zeolites), clay minerals, and iron and manganese oxides and hydroxides. Water compositions along flow paths beneath Yucca Mountain are controlled by dissolution reactions, silica and calcite precipitation, and ion-exchange reactions. Radionuclide concentrations along flow paths from a repository could be limited by (1) low waste-form dissolution rates, (2) low radionuclide solubility, and (3) radionuclide sorption onto geological media.

  9. Oceanic mass transport by mesoscale eddies.

    Science.gov (United States)

    Zhang, Zhengguang; Wang, Wei; Qiu, Bo

    2014-07-18

    Oceanic transports of heat, salt, fresh water, dissolved CO2, and other tracers regulate global climate change and the distribution of natural marine resources. The time-mean ocean circulation transports fluid as a conveyor belt, but fluid parcels can also be trapped and transported discretely by migrating mesoscale eddies. By combining available satellite altimetry and Argo profiling float data, we showed that the eddy-induced zonal mass transport can reach a total meridionally integrated value of up to 30 to 40 sverdrups (Sv) (1 Sv = 10(6) cubic meters per second), and it occurs mainly in subtropical regions, where the background flows are weak. This transport is comparable in magnitude to that of the large-scale wind- and thermohaline-driven circulation.

  10. Delft Mass Transport model DMT-2

    Science.gov (United States)

    Ditmar, Pavel; Hashemi Farahani, Hassan; Inacio, Pedro; Klees, Roland; Zhao, Qile; Guo, Jing; Liu, Xianglin; Sun, Yu; Riva, Ricardo; Ran, Jiangjun

    2013-04-01

    Gravity Recovery And Climate Experiment (GRACE) satellite mission has enormously extended our knowledge of the Earth's system by allowing natural mass transport of various origin to be quantified. This concerns, in particular, the depletion and replenishment of continental water stocks; shrinking of polar ice sheets; deformation of the Earth's crust triggered by large earthquakes, and isostatic adjustment processes. A number of research centers compute models of temporal gravity field variations and mass transport, using GRACE data as input. One of such models - Delft Mass Transport model - is being produced at the Delft University of Technology in collaboration with the GNSS Research Center of Wuhan University. A new release of this model, DMT-2, has been produced on the basis of a new (second) release of GRACE level-1b data. This model consists of a time-series of monthly solutions spanning a time interval of more than 8 years, starting from Feb. 2003. Each solution consists of spherical harmonic coefficients up to degree 120. Both unconstrained and optimally filtered solutions are obtained. The most essential improvements of the DMT-2 model, as compared to its predecessors (DMT-1 and DMT-1b), are as follows: (i) improved estimation and elimination of low-frequency noise in GRACE data, so that strong mass transport signals are not damped; (ii) computation of accurate stochastic models of data noise for each month individually with a subsequent application of frequency-dependent data weighting, which allows statistically optimal solutions to be compiled even if data noise is colored and gradually changes in time; (iii) optimized estimation of accelerometer calibration parameters; (iv) incorporation of degree 1 coefficients estimated with independent techniques; (v) usage of state-of-the-art background models to de-alias GRACE data from rapid mass transport signals (this includes the EOT11a model of ocean tides and the latest release of the AOD1B product describing

  11. The role of mass transport in protein crystallization.

    Science.gov (United States)

    García-Ruiz, Juan Manuel; Otálora, Fermín; García-Caballero, Alfonso

    2016-02-01

    Mass transport takes place within the mesoscopic to macroscopic scale range and plays a key role in crystal growth that may affect the result of the crystallization experiment. The influence of mass transport is different depending on the crystallization technique employed, essentially because each technique reaches supersaturation in its own unique way. In the case of batch experiments, there are some complex phenomena that take place at the interface between solutions upon mixing. These transport instabilities may drastically affect the reproducibility of crystallization experiments, and different outcomes may be obtained depending on whether or not the drop is homogenized. In diffusion experiments with aqueous solutions, evaporation leads to fascinating transport phenomena. When a drop starts to evaporate, there is an increase in concentration near the interface between the drop and the air until a nucleation event eventually takes place. Upon growth, the weight of the floating crystal overcomes the surface tension and the crystal falls to the bottom of the drop. The very growth of the crystal then triggers convective flow and inhomogeneities in supersaturation values in the drop owing to buoyancy of the lighter concentration-depleted solution surrounding the crystal. Finally, the counter-diffusion technique works if, and only if, diffusive mass transport is assured. The technique relies on the propagation of a supersaturation wave that moves across the elongated protein chamber and is the result of the coupling of reaction (crystallization) and diffusion. The goal of this review is to convince protein crystal growers that in spite of the small volume of the typical protein crystallization setup, transport plays a key role in the crystal quality, size and phase in both screening and optimization experiments.

  12. INTERFACIAL MASS TRANSPORT IN OXIDE CRYSTAL GROWTH

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ A space high temperature in situobservation instrument (SHITISOI) is dedicated to visualize and record the whole growth process of oxide crystal in high temperature melts and solutions. Model experiments using transparent liquids such as KNbO3,Li2B4O7+KNbO3 were chosen to investigate effects of interracial mass transport in oxide crystal growth. For the scaling of the coupled velocity, heat and concentration fields in KNbO3 crystal growth, a rotating crystal growth process was performed and the widths of interfacial concentration, heat and momentum transition zones (The "boundary layers") are obtained, which are 7.5×10-a, 8.6×10-2 and 4.4×10-1 cm,respectively. Hence one can expect that interfacial concentration gradient will be confined to a narrow layer and in region of major concentration change at the in terface. In order to study a mechanism based on the interfacial mass transport resulting from hydrodynamics, the growth of KNbO3 grain in high temperature Li2B4O7 and KNbO3 solutin was studied. The result shows that the pivotal feature in the KNbO3 crystal growth is the initiated by KNbO3 solute surface tension gra dient which is caused by the slow diffusion of KNbO3 solutes. Direct comparison of the model predictions and experimental observed phenomena demonstrate the predictive capability of this model.

  13. Selected legal and regulatory concerns affecting domestic energy transportation systems

    Energy Technology Data Exchange (ETDEWEB)

    Schuller, C.R.

    1979-07-01

    This report provides assessments of eight legal and regulatory concerns that may affect energy material transportation in the US during the rest of the century: state authority to regulate nuclear materials transport, divestiture of petroleum pipelines from major integrated oil companies, problems affecting the natural gas transportation system, capabilities of energy transportation systems during emergencies, Federal coal pipeline legislation, ability of Federal agencies to anticipate railroad difficulties, abandonment of uneconomic railroad lines, and impact of the Panama Canal treaty upon US energy transportation. (DLC)

  14. Variables Affecting Two Electron Transport System Assays

    OpenAIRE

    Burton, G. Allen; Lanza, Guy R.

    1986-01-01

    Several methodological variables were critical in two commonly used electron transport activity assays. The dehydrogenase assay based on triphenyl formazan production exhibited a nonlinear relationship between formazan production (dehydrogenase activity) and sediment dilution, and linear formazan production occurred for 1 h in sediment slurries. Activity decreased with increased time of sediment storage at 4°C. Extraction efficiencies of formazan from sediment varied with alcohol type; methan...

  15. Resonance wave pumping: wave mass transport pumping

    Science.gov (United States)

    Carmigniani, Remi; Violeau, Damien; Gharib, Morteza

    2016-11-01

    It has been previously reported that pinching at intrinsic resonance frequencies a valveless pump (or Liebau pump) results in a strong pulsating flow. A free-surface version of the Liebau pump is presented. The experiment consists of a closed tank with a submerged plate separating the water into a free-surface and a recirculation section connected through two openings at each end of the tank. A paddle is placed at an off-centre position at the free-surface and controlled in a heaving motion with different frequencies and amplitudes. Near certain frequencies identified as resonance frequencies through a linear potential theory analysis, the system behaves like a pump. Particle Image Velocimetry (PIV) is performed in the near free surface region and compared with simulations using Volume of Fluid (VOF) method. The mean eulerian mass flux field (ρ) is extracted. It is observed that the flow is located in the vicinity of the surface layer suggesting Stokes Drift (or Wave Mass Transport) is the source of the pumping. A model is developped to extend the linear potential theory to the second order to take into account these observations. The authors would like to acknowledge the Gordon and Betty Moore Foundation for their generous support.

  16. BiP Negatively Affects Ricin Transport

    Directory of Open Access Journals (Sweden)

    Kirsten Sandvig

    2013-05-01

    Full Text Available The AB plant toxin ricin binds both glycoproteins and glycolipids at the cell surface via its B subunit. After binding, ricin is endocytosed and then transported retrogradely through the Golgi to the endoplasmic reticulum (ER. In the ER, the A subunit is retrotranslocated to the cytosol in a chaperone-dependent process, which is not fully explored. Recently two separate siRNA screens have demonstrated that ER chaperones have implications for ricin toxicity. ER associated degradation (ERAD involves translocation of misfolded proteins from ER to cytosol and it is conceivable that protein toxins exploit this pathway. The ER chaperone BiP is an important ER regulator and has been implicated in toxicity mediated by cholera and Shiga toxin. In this study, we have investigated the role of BiP in ricin translocation to the cytosol. We first show that overexpression of BiP inhibited ricin translocation and protected cells against the toxin. Furthermore, shRNA-mediated depletion of BiP enhanced toxin translocation resulting in increased cytotoxicity. BiP-dependent inhibition of ricin toxicity was independent of ER stress. Our findings suggest that in contrast to what was shown with the Shiga toxin, the presence of BiP does not facilitate, but rather inhibits the entry of ricin into the cytosol.

  17. ‘The crab’ transporting LHC dipole cold mass

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    For the careful transport of the LHC dipole magnets a robot, called ‘the crab’ has been specially built. It transports the cold masses between the storage area and assembly hall. These cold masses contain the cooling system and container for the dipole magnet.

  18. Terminology for mass transport and exchange

    DEFF Research Database (Denmark)

    Bassingthwaighte, J B; Chinard, F P; Crone, C

    1986-01-01

    Virtually all fields of physiological research now encompass various aspects of solute transport by convection, diffusion, and permeation across membranes. Accordingly, this set of terms, symbols, definitions, and units is proposed as a means of clear communication among workers in the physiologi...

  19. Real-Time Mass Passenger Transport Network Optimization Problems

    OpenAIRE

    2005-01-01

    The aim of Real-Time Mass Transport Vehicle Routing Problem (MTVRP) is to find a solution to route n vehicles in real time to pick up and deliver m passengers. This problem is described in the context of flexible large-scale mass transportation options that use new technologies for communication among passengers and vehicles. The solution of such a problem is relevant to future transportation options involving large scale real-time routing of shared-ride fleet transit vehicles. However, the g...

  20. Space Geodesy Monitoring Mass Transport in Global Geophysical Fluids

    Science.gov (United States)

    Chao, Benjamin F.

    2004-01-01

    Mass transports occurring in the atmosphere-hydrosphere-cryosphere-solid Earth-core system (the 'global geophysical fluids') are important geophysical phenomena. They occur on all temporal and spatial scales. Examples include air mass and ocean circulations, oceanic and solid tides, hydrological water and idsnow redistribution, mantle processes such as post-glacial rebound, earthquakes and tectonic motions, and core geodynamo activities. The temporal history and spatial pattern of such mass transport are often not amenable to direct observations. Space geodesy techniques, however, have proven to be an effective tool in monitorihg certain direct consequences of the mass transport, including Earth's rotation variations, gravitational field variations, and the geocenter motion. Considerable advances have been made in recent years in observing and understanding of these geodynamic effects. This paper will use several prominent examples to illustrate the triumphs in research over the past years under a 'Moore's law' in space geodesy. New space missions and projects promise to further advance our knowledge about the global mass transports. The latter contributes to our understanding of the geophysical processes that produce and regulate the mass transports, as well as of the solid Earth's response to such changes in terms of Earth's mechanical properties.

  1. Optimal urban networks via mass transportation

    CERN Document Server

    Buttazzo, Giuseppe; Stepanov, Eugene; Solimini, Sergio

    2009-01-01

    Recently much attention has been devoted to the optimization of transportation networks in a given geographic area. One assumes the distributions of population and of services/workplaces (i.e. the network's sources and sinks) are known, as well as the costs of movement with/without the network, and the cost of constructing/maintaining it. Both the long-term optimization and the short-term, "who goes where" optimization are considered. These models can also be adapted for the optimization of other types of networks, such as telecommunications, pipeline or drainage networks. In the monograph we study the most general problem settings, namely, when neither the shape nor even the topology of the network to be constructed is known a priori.

  2. Mass transport through defected bentonite plugs

    Energy Technology Data Exchange (ETDEWEB)

    Oscarson, D.W.; Dixon, D.A.; Hume, H.B

    1996-07-01

    Compacted bentonite-based materials are important barriers in many waste containment strategies. To function as effective barriers, however, these materials must maintain their low water permeability and molecular diffusivity for long periods of time under a variety of environmental conditions. Here we examine the permeability and diffusivity of compacted bentonite plugs that were either slotted, to mimic fractures, parallel to the direction of mass flow or heated at 150 and 250{sup o}C for several weeks at various moisture contents before testing. The dry density of the plugs ranged from about 0.9 to 1.3 Mg/m{sup 3}. The results show that the saturated hydraulic conductivity and diffusivity (for I{sup -} and Cs{sup +}) of the treated or 'defected' bentonite plugs are essentially the same as those of untreated plugs at similar densities. This provides confidence that compacted bentonitic materials can function effectively as barriers for long periods of time under a range of environmental conditions. (author)

  3. Optical Field-Induced Mass Transport in Soft Materials

    Science.gov (United States)

    Teteris, J.; Reinfelde, M.; Aleksejeva, J.; Gertners, U.

    The dependence of the surface relief formation in amorphous chalcogenide (As2S3 and As-S-Se) and Disperse Red 1 dye grafted polyurethane polymer films on the polarization state of holographic recording light beams was studied. It is shown that the direction of lateral mass transport on the film surface is determined by the direction of light electric vector and photoinduced anisotropy in the film. We propose a photoinduced dielectropfhoretic model to explain the photoinduced mass transport in amorphous films. Model is based on the photoinduced softening of the matrix, formation of defects with enhanced or decreased polarizability, and their drift under the electrical field gradient of light.

  4. Selected Topics on Mass Transport in Gas-solid Interactions

    DEFF Research Database (Denmark)

    Somers, Marcel A.J.

    2004-01-01

    The present article is a short review containing examples of the role of mass transport in the solid state during gas-solid interactions. Examples are taken from the authors' research on the interaction of carbon and/or nitrogen with iron-based metals. Topics dealt with are diffusion-controlled d......The present article is a short review containing examples of the role of mass transport in the solid state during gas-solid interactions. Examples are taken from the authors' research on the interaction of carbon and/or nitrogen with iron-based metals. Topics dealt with are diffusion...

  5. Turbulence and mass-transports in stratocumulus clouds

    Science.gov (United States)

    Ghate, Virendra P.

    Boundary layer (BL) stratocumulus clouds are an important factor in the earth's radiation budget due to their high albedo and low cloud top heights. Continental BL stratocumulus clouds are closely coupled to the diurnal cycle and the turbulence in the BL affecting the surface energy and moisture budgets. In this study the turbulence and mass-transport structures in continental BL stratocumulus clouds are studied using data from the Atmospheric Radiation Measurements (ARM)'s Southern Great Plains (SGP) observing facility located at Lamont, Oklahoma. High temporal (4 sec) and spatial (45 m) resolution observations from a vertically pointing 35 GHz cloud Doppler radar were used to obtain the in-cloud vertical velocity probability density function (pdf) in the absence of precipitation size hydrometeors. A total of 70 hours of radar data were analyzed to report half-hourly statistics of vertical velocity variance, skewness, updraft fraction, downdraft and velocity binned mass-flux at five cloud depth normalized levels. The variance showed a general decrease with increase in height in the cloud layer while the skewness is weakly positive in the cloud layer and negative near cloud top. The updraft fraction decreases with height with the decrease mainly occurring in the upper half of the cloud layer. The downdraft fraction increases with decrease in height with the increase being almost linear. The velocity of eddies responsible for maximum mass-transport decreases from of 0.4 ms-1 near cloud base to 0.2 ms-1 near cloud top. The half-hour periods were then classified based on the surface buoyancy flux as stable or unstable and it was found that the variance near cloud top is higher during the stable periods as compared to the unstable periods. Classification was also made based on the cloud depth to BL depth ratio (CBR) being greater or less than 0.3. The variance profile was similar for the classification while the skewness was almost zero during periods with CBR less 0

  6. Mass Transport Through Carbon Nanotube-Polystyrene Bundles

    Science.gov (United States)

    Lin, Rongzhou; Tran, Tuan

    2016-05-01

    Carbon nanotubes have been widely used as test channels to study nanofluidic transport, which has been found to have distinctive properties compared to transport of fluids in macroscopic channels. A long-standing challenge in the study of mass transport through carbon nanotubes (CNTs) is the determination of flow enhancement. Various experimental investigations have been conducted to measure the flow rate through CNTs, mainly based on either vertically aligned CNT membranes or individual CNTs. Here, we proposed an alternative approach that can be used to quantify the mass transport through CNTs. This is a simple method relying on the use of carbon nanotube-polystyrene bundles, which are made of CNTs pulled out from a vertically aligned CNT array and glued together by polystyrene. We experimentally showed by using fluorescent tagging that the composite bundles allowed measureable and selective mass transport through CNTs. This type of composite bundle may be useful in various CNT research areas as they are simple to fabricate, less likely to form macroscopic cracks, and offer a high density of CNT pores while maintaining the aligned morphology of CNTs.

  7. Triple Bioaffinity Mass Spectrometry Concept for Thyroid Transporter Ligands

    NARCIS (Netherlands)

    Aqai, P.; Fryganas, C.; Mizuguchi, M.; Haasnoot, W.; Nielen, M.W.F.

    2012-01-01

    For the analysis of thyroid transporter ligands, a triple bioaffinity mass spectrometry (BioMS) concept was developed, with the aim at three different analytical objectives: rapid screening of any ligand, confirmation of known ligands in accordance with legislative requirements, and identification o

  8. Thermodynamically coupled mass transport processes in a saturated clay

    Energy Technology Data Exchange (ETDEWEB)

    Carnahan, C.L.

    1984-11-01

    Gradients of temperature, pressure, and fluid composition in saturated clays give rise to coupled transport processes (thermal and chemical osmosis, thermal diffusion, ultrafiltration) in addition to the direct processes (advection and diffusion). One-dimensional transport of water and a solute in a saturated clay subjected to mild gradients of temperature and pressure was simulated numerically. When full coupling was accounted for, volume flux (specific discharge) was controlled by thermal osmosis and chemical osmosis. The two coupled fluxes were oppositely directed, producing a point of stagnation within the clay column. Solute flows were dominated by diffusion, chemical osmosis, and thermal osmosis. Chemical osmosis produced a significant flux of solute directed against the gradient of solute concentration; this effect reduced solute concentrations relative to the case without coupling. Predictions of mass transport in clays at nuclear waste repositories could be significantly in error if coupled transport processes are not accounted for. 14 references, 8 figures, 1 table.

  9. Benthic processes affecting contaminant transport in Upper Klamath Lake, Oregon

    Science.gov (United States)

    Kuwabara, James S.; Topping, Brent R.; Carter, James L.; Carlson, Rick A; Parchaso, Francis; Fend, Steven V.; Stauffer-Olsen, Natalie; Manning, Andrew J.; Land, Jennie M.

    2016-09-30

    Executive SummaryMultiple sampling trips during calendar years 2013 through 2015 were coordinated to provide measurements of interdependent benthic processes that potentially affect contaminant transport in Upper Klamath Lake (UKL), Oregon. The measurements were motivated by recognition that such internal processes (for example, solute benthic flux, bioturbation and solute efflux by benthic invertebrates, and physical groundwater-surface water interactions) were not integrated into existing management models for UKL. Up until 2013, all of the benthic-flux studies generally had been limited spatially to a number of sites in the northern part of UKL and limited temporally to 2–3 samplings per year. All of the benthic invertebrate studies also had been limited to the northern part of the lake; however, intensive temporal (weekly) studies had previously been completed independent of benthic-flux studies. Therefore, knowledge of both the spatial and temporal variability in benthic flux and benthic invertebrate distributions for the entire lake was lacking. To address these limitations, we completed a lakewide spatial study during 2013 and a coordinated temporal study with weekly sampling of benthic flux and benthic invertebrates during 2014. Field design of the spatially focused study in 2013 involved 21 sites sampled three times as the summer cyanobacterial bloom developed (that is, May 23, June 13, and July 3, 2013). Results of the 27-week, temporally focused study of one site in 2014 were summarized and partitioned into three periods (referred to herein as pre-bloom, bloom and post-bloom periods), each period involving 9 weeks of profiler deployments, water column and benthic sampling. Partitioning of the pre-bloom, bloom, and post-bloom periods were based on water-column chlorophyll concentrations and involved the following date intervals, respectively: April 15 through June 10, June 17 through August 13, and August 20 through October 16, 2014. To examine

  10. Tau phosphorylation affects its axonal transport and degradation

    Science.gov (United States)

    Rodríguez-Martín, Teresa; Cuchillo-Ibáñez, Inmaculada; Noble, Wendy; Nyenya, Fanon; Anderton, Brian H.; Hanger, Diane P.

    2013-01-01

    Phosphorylated forms of microtubule-associated protein tau accumulate in neurofibrillary tangles in Alzheimer's disease. To investigate the effects of specific phosphorylated tau residues on its function, wild type or phosphomutant tau was expressed in cells. Elevated tau phosphorylation decreased its microtubule binding and bundling, and increased the number of motile tau particles, without affecting axonal transport kinetics. In contrast, reducing tau phosphorylation enhanced the amount of tau bound to microtubules and inhibited axonal transport of tau. To determine whether differential tau clearance is responsible for the increase in phosphomimic tau, we inhibited autophagy in neurons which resulted in a 3-fold accumulation of phosphomimic tau compared with wild type tau, and endogenous tau was unaffected. In autophagy-deficient mouse embryonic fibroblasts, but not in neurons, proteasomal degradation of phosphomutant tau was also reduced compared with wild type tau. Therefore, autophagic and proteasomal pathways are involved in tau degradation, with autophagy appearing to be the primary route for clearing phosphorylated tau in neurons. Defective autophagy might contribute to the accumulaton of tau in neurodegenerative diseases. PMID:23601672

  11. Mass and charge transport in micro and nanofluidic channels

    DEFF Research Database (Denmark)

    Mortensen, Niels Asger; Olesen, Laurits Højgaard; Okkels, Fridolin

    2007-01-01

    and charge transport coefficients that satisfy Onsager relations. In the limit of nonoverlapping Debye layers the transport coefficients are simply expressed in terms of parameters of the electrolyte as well as the hydraulic radiusR ¼ 2A=P with Aand P being the cross-sectional area and perimeter......We consider laminar flow of incompressible electrolytes in long, straight channels driven by pressure and electroosmosis. We use aHilbert space eigenfunction expansion to address the general problem of an arbitrary cross section and obtain general results in linear-response theory for the mass...

  12. Modelling aeolian sand transport using a dynamic mass balancing approach

    Science.gov (United States)

    Mayaud, Jerome R.; Bailey, Richard M.; Wiggs, Giles F. S.; Weaver, Corinne M.

    2017-03-01

    Knowledge of the changing rate of sediment flux in space and time is essential for quantifying surface erosion and deposition in desert landscapes. Whilst many aeolian studies have relied on time-averaged parameters such as wind velocity (U) and wind shear velocity (u*) to determine sediment flux, there is increasing field evidence that high-frequency turbulence is an important driving force behind the entrainment and transport of sand. At this scale of analysis, inertia in the saltation system causes changes in sediment transport to lag behind de/accelerations in flow. However, saltation inertia has yet to be incorporated into a functional sand transport model that can be used for predictive purposes. In this study, we present a new transport model that dynamically balances the sand mass being transported in the wind flow. The 'dynamic mass balance' (DMB) model we present accounts for high-frequency variations in the horizontal (u) component of wind flow, as saltation is most strongly associated with the positive u component of the wind. The performance of the DMB model is tested by fitting it to two field-derived (Namibia's Skeleton Coast) datasets of wind velocity and sediment transport: (i) a 10-min (10 Hz measurement resolution) dataset; (ii) a 2-h (1 Hz measurement resolution) dataset. The DMB model is shown to outperform two existing models that rely on time-averaged wind velocity data (e.g. Radok, 1977; Dong et al., 2003), when predicting sand transport over the two experiments. For all measurement averaging intervals presented in this study (10 Hz-10 min), the DMB model predicted total saltation count to within at least 0.48%, whereas the Radok and Dong models over- or underestimated total count by up to 5.50% and 20.53% respectively. The DMB model also produced more realistic (less 'peaky') time series of sand flux than the other two models, and a more accurate distribution of sand flux data. The best predictions of total sand transport are achieved using

  13. Mass transport in a microchannel bioreactor with a porous wall.

    Science.gov (United States)

    Chen, Xiao Bing; Sui, Yi; Lee, Heow Pueh; Bai, Hui Xing; Yu, Peng; Winoto, S H; Low, Hong Tong

    2010-06-01

    A two-dimensional flow model has been developed to simulate mass transport in a microchannel bioreactor with a porous wall. A two-domain approach, based on the finite volume method, was implemented. For the fluid part, the governing equation used was the Navier-Stokes equation; for the porous medium region, the generalized Darcy-Brinkman-Forchheimer extended model was used. For the porous-fluid interface, a stress jump condition was enforced with a continuity of normal stress, and the mass interfacial conditions were continuities of mass and mass flux. Two parameters were defined to characterize the mass transports in the fluid and porous regions. The porous Damkohler number is the ratio of consumption to diffusion of the substrates in the porous medium. The fluid Damkohler number is the ratio of the substrate consumption in the porous medium to the substrate convection in the fluid region. The concentration results were found to be well correlated by the use of a reaction-convection distance parameter, which incorporated the effects of axial distance, substrate consumption, and convection. The reactor efficiency reduced with reaction-convection distance parameter because of reduced reaction (or flux), and smaller local effectiveness factor due to the lower concentration in Michaelis-Menten type reactions. The reactor was more effective, and hence, more efficient with the smaller porous Damkohler number. The generalized results could find applications for the design of bioreactors with a porous wall.

  14. A Coupled Chemical and Mass Transport Model for Concrete Durability

    DEFF Research Database (Denmark)

    Jensen, Mads Mønster; Johannesson, Björn; Geiker, Mette Rica

    2012-01-01

    curves which is established from a set of mathematical criteria. The chemical degradation is modelled with the geochemical code iphreeqc, which provides a general tool for evaluating different paste compositions. The governing system of equations is solved by the finite element method with a Newton......-Raphson iteration scheme arising from the non-linearity. The overall model is a transient problem, solved using a single parameter formulation. The sorption hysteresis and chemical equilibrium is included as source or sink terms. The advantages with this formulation is that each node in the discrete system has......In this paper a general continuum theory is used to evaluate the service life of cement based materials, in terms of mass transport processes and chemical degradation of the solid matrix. The model established is a reactive mass transport model, based on an extended version of the Poisson...

  15. Miocene mass-transport sediments, Troodos Massif, Cyprus

    Science.gov (United States)

    Lord, A.R.; Harrison, R.W.; BouDagher-Fadel, M.; Stone, B.D.; Varol, O.

    2009-01-01

    Sediment mass-transport layers of submarine origin on the northern and southern flanks of the Troodos ophiolitic massif are dated biostratigraphically as early Miocene and late Miocene, respectively and therefore represent different seismogenic events in the uplift and erosional history of the Troodos terrane. Analysis of such events has potential for documenting Miocene seismic and uplift events regionally in the context of changing stress field directions and plate vectors through time. ?? 2009 The Geologists' Association.

  16. Membranes for nanometer-scale mass fast transport

    Science.gov (United States)

    Bakajin, Olgica; Holt, Jason; Noy, Aleksandr; Park, Hyung Gyu

    2011-10-18

    Nanoporous membranes comprising single walled, double walled, and multiwalled carbon nanotubes embedded in a matrix material were fabricated for fluid mechanics and mass transfer studies on the nanometer scale and commercial applications. Average pore size can be 2 nm to 20 nm, or seven nm or less, or two nanometers or less. The membrane can be free of large voids spanning the membrane such that transport of material such as gas or liquid occurs exclusively through the tubes. Fast fluid, vapor, and liquid transport are observed. Versatile micromachining methods can be used for membrane fabrication. A single chip can comprise multiple membranes. These membranes are a robust platform for the study of confined molecular transport, with applications in liquid and gas separations and chemical sensing including desalination, dialysis, and fabric formation.

  17. RWPV bioreactor mass transport: earth-based and in microgravity

    Science.gov (United States)

    Begley, Cynthia M.; Kleis, Stanley J.

    2002-01-01

    Mass transport and mixing of perfused scalar quantities in the NASA Rotating Wall Perfused Vessel bioreactor are studied using numerical models of the flow field and scalar concentration field. Operating conditions typical of both microgravity and ground-based cell cultures are studied to determine the expected vessel performance for both flight and ground-based control experiments. Results are presented for the transport of oxygen with cell densities and consumption rates typical of colon cancer cells cultured in the RWPV. The transport and mixing characteristics are first investigated with a step change in the perfusion inlet concentration by computing the time histories of the time to exceed 10% inlet concentration. The effects of a uniform cell utilization rate are then investigated with time histories of the outlet concentration, volume average concentration, and volume fraction starved. It is found that the operating conditions used in microgravity produce results that are quite different then those for ground-based conditions. Mixing times for microgravity conditions are significantly shorter than those for ground-based operation. Increasing the differential rotation rates (microgravity) increases the mixing and transport, while increasing the mean rotation rate (ground-based) suppresses both. Increasing perfusion rates enhances mass transport for both microgravity and ground-based cases, however, for the present range of operating conditions, above 5-10 cc/min there are diminishing returns as much of the inlet fluid is transported directly to the perfusion exit. The results show that exit concentration is not a good indicator of the concentration distributions in the vessel. In microgravity conditions, the NASA RWPV bioreactor with the viscous pump has been shown to provide an environment that is well mixed. Even when operated near the theoretical minimum perfusion rates, only a small fraction of the volume provides less than the required oxygen levels

  18. On Matrix-Valued Monge–Kantorovich Optimal Mass Transport

    Science.gov (United States)

    Ning, Lipeng; Georgiou, Tryphon T.; Tannenbaum, Allen

    2016-01-01

    We present a particular formulation of optimal transport for matrix-valued density functions. Our aim is to devise a geometry which is suitable for comparing power spectral densities of multivariable time series. More specifically, the value of a power spectral density at a given frequency, which in the matricial case encodes power as well as directionality, is thought of as a proxy for a “matrix-valued mass density.” Optimal transport aims at establishing a natural metric in the space of such matrix-valued densities which takes into account differences between power across frequencies as well as misalignment of the corresponding principle axes. Thus, our transportation cost includes a cost of transference of power between frequencies together with a cost of rotating the principle directions of matrix densities. The two endpoint matrix-valued densities can be thought of as marginals of a joint matrix-valued density on a tensor product space. This joint density, very much as in the classical Monge–Kantorovich setting, can be thought to specify the transportation plan. Contrary to the classical setting, the optimal transport plan for matrices is no longer supported on a thin zero-measure set. PMID:26997667

  19. Seismic Reflection Characteristics of Naturally-Induced Subsidence Affecting Transportation

    Institute of Scientific and Technical Information of China (English)

    Richard D Miller; Jianghai Xia; Don W Steeples

    2009-01-01

    High-resolution seismic reflections have been used effectively to investigate sinkholes formed from the dissolution of a bedded salt unit found throughout most of Central Kansas. Surface subsidence can have devastating effects on transportation structures. Roads, rails, bridges, and pipeliues can even be dramatically affected by minor ground instability. Areas susceptible to surface subsidence can put public safety at risk. Subsurface expressions significantly larger than surface depressions are consistently observed on seismic images recorded over sinkholes in Kansas. Until subsidence reaches the ground surface, failure appears to be controlled by compressional forces evidenced by faults with reverse orientation. Once a surface depression forms or dissolution of the salt slows or stops, subsidence structures are consistent with a tensional stress environment with prevalent normal faults. Detecting areas of rapid subsidence potential, prior to surface failure, is the ultimate goal of any geotechnical survey where the ground surface is susceptible to settling. Seismic reflection images have helped correlate active subsidence to dormant paleofeatures, project horizontal growth of active sinkholes based on subsurface structures, and appraise the risk of catastrophic failure.

  20. Seismic reflection characteristics of naturally-induced subsidence affecting transportation

    Science.gov (United States)

    Miller, R.D.; Xia, J.; Steeples, D.W.

    2009-01-01

    High-resolution seismic reflections have been used effectively to investigate sinkholes formed from the dissolution of a bedded salt unit found throughout most of Central Kansas. Surface subsidence can have devastating effects on transportation structures. Roads, rails, bridges, and pipelines can even be dramatically affected by minor ground instability. Areas susceptible to surface subsidence can put public safety at risk. Subsurface expressions significantly larger than surface depressions are consistently observed on seismic images recorded over sinkholes in Kansas. Until subsidence reaches the ground surface, failure appears to be controlled by compressional forces evidenced by faults with reverse orientation. Once a surface depression forms or dissolution of the salt slows or stops, subsidence structures are consistent with a tensional stress environment with prevalent normal faults. Detecting areas of rapid subsidence potential, prior to surface failure, is the ultimate goal of any geotechnical survey where the ground surface is susceptible to settling. Seismic reflection images have helped correlate active subsidence to dormant paleofeatures, project horizontal growth of active sinkholes based on subsurface structures, and appraise the risk of catastrophic failure. ?? China University of Geosciences (Wuhan) and Springer-Verlag GmbH 2009.

  1. Updated Delft Mass Transport model DMT-2: computation and validation

    Science.gov (United States)

    Hashemi Farahani, Hassan; Ditmar, Pavel; Inacio, Pedro; Klees, Roland; Guo, Jing; Guo, Xiang; Liu, Xianglin; Zhao, Qile; Didova, Olga; Ran, Jiangjun; Sun, Yu; Tangdamrongsub, Natthachet; Gunter, Brian; Riva, Ricardo; Steele-Dunne, Susan

    2014-05-01

    A number of research centers compute models of mass transport in the Earth's system using primarily K-Band Ranging (KBR) data from the Gravity Recovery And Climate Experiment (GRACE) satellite mission. These models typically consist of a time series of monthly solutions, each of which is defined in terms of a set of spherical harmonic coefficients up to degree 60-120. One of such models, the Delft Mass Transport, release 2 (DMT-2), is computed at the Delft University of Technology (The Netherlands) in collaboration with Wuhan University. An updated variant of this model has been produced recently. A unique feature of the computational scheme designed to compute DMT-2 is the preparation of an accurate stochastic description of data noise in the frequency domain using an Auto-Regressive Moving-Average (ARMA) model, which is derived for each particular month. The benefits of such an approach are a proper frequency-dependent data weighting in the data inversion and an accurate variance-covariance matrix of noise in the estimated spherical harmonic coefficients. Furthermore, the data prior to the inversion are subject to an advanced high-pass filtering, which makes use of a spatially-dependent weighting scheme, so that noise is primarily estimated on the basis of data collected over areas with minor mass transport signals (e.g., oceans). On the one hand, this procedure efficiently suppresses noise, which are caused by inaccuracies in satellite orbits and, on the other hand, preserves mass transport signals in the data. Finally, the unconstrained monthly solutions are filtered using a Wiener filter, which is based on estimates of the signal and noise variance-covariance matrices. In combination with a proper data weighting, this noticeably improves the spatial resolution of the monthly gravity models and the associated mass transport models.. For instance, the computed solutions allow long-term negative trends to be clearly seen in sufficiently small regions notorious

  2. The effect of flow and mass transport in thrombogenesis.

    Science.gov (United States)

    Basmadjian, D

    1990-01-01

    The paper presents a mathematical analysis of the contributions of flow and mass transport to a single reactive event at a blood vessel wall. The intent is to prepare the ground for a comprehensive study of the intertwining of these contributions with the reaction network of the coagulation cascade. We show that in all vessels with local mural activity, or in "large" vessels (d greater than 0.1 mm) with global reactivity, events at the tubular wall can be rigorously described by algebraic equations under steady conditions, or by ordinary differential forms (ODEs) during transient conditions. This opens up important ways for analyzing the combined roles of flow, transport, and coagulation reactions in thrombosis, a task hitherto considered to be completely intractable. We report extensively on the dependence of transport coefficient kL and mural coagulant concentration Cw on flow, vessel geometry, and reaction kinetics. It is shown that for protein transport, kL varies only weakly with shear rate gamma in large vessels, and not at all in the smaller tubes (d less than 10(-2) mm). For a typical protein, kL approximately 10(-3) cm s-1 within a factor of 3 in most geometries, irrespective of the mural reaction kinetics. Significant reductions in kL (1/10-1/1,000) leading to high-coagulant accumulation are seen mainly in stagnant zones vicinal to abrupt expansions and in small elliptical tubules. This is in accord with known physical observations. More unexpected are the dramatic increases in accumulation which can come about through the intervention of an autocatalytic reaction step, with Cw rising sharply toward infinity as the ratio of reaction to transport coefficient approaches unity. Such self-catalyzed reactions have the ability to act as powerful amplifiers of an otherwise modest influence of flow and transport on coagulant concentration. The paper considers as well the effect on mass transport of transient conditions occasioned by coagulation initiation or

  3. Plasma Viscosity with Mass Transport in Spherical ICF Implosion Simulations

    CERN Document Server

    Vold, Erik L; Ortega, Mario I; Moll, Ryan; Fenn, Daniel; Molvig, Kim

    2015-01-01

    The effects of viscosity and small-scale atomic-level mixing on plasmas in inertial confinement fusion (ICF) currently represent challenges in ICF research. Many current ICF hydrodynamic codes ignore the effects of viscosity though recent research indicates viscosity and mixing by classical transport processes may have a substantial impact on implosion dynamics. We have implemented a Lagrange hydrodynamic code in one-dimensional spherical geometry with plasma viscosity and mass transport and including a three temperature model for ions, electrons, and radiation treated in a gray radiation diffusion approximation. The code is used to study ICF implosion differences with and without plasma viscosity and to determine the impacts of viscosity on temperature histories and neutron yield. It was found that plasma viscosity has substantial impacts on ICF shock dynamics characterized by shock burn timing, maximum burn temperatures, convergence ratio, and time history of neutron production rates. Plasma viscosity reduc...

  4. Mass transport model of ions within biofilms under the effect of external field

    Institute of Scientific and Technical Information of China (English)

    WANG Jun; TANG Xue-xi

    2006-01-01

    A mass transport model was developed to predict the transport rate of ions within biofilms, which was experimentally verified using the fluxes ofNH4+ and Ca2+ through the heterotrophic biofilms with the thickness varying from 230 to 1430 μm under the effect of external field in the range of-20 V/m to 60 V/m. It is found that the result predicted by the model is in agreement with the experimentally obtained one, with the error less than 5 percent for the thin biofilms. The error increases with the increase of the biofilm thickness. The transport rate of ions caused by electric migration is affected by the charges, field strength, and biofilm thickness and so on.

  5. Mass transport-related stratal disruption and sedimentary products

    Science.gov (United States)

    Ogata, Kei; Mutti, Emiliano; Tinterri, Roberto

    2010-05-01

    From an outcrop perspective, mass transport deposit are commonly represented by "chaotic" units, characterized by dismembered and internally deformed slide blocks of different sizes and shapes, embedded in a more or less abundant fine-grained matrix. The large amount of data derived from geophysical investigations of modern continental margins have permitted the characterization of the overall geometry of many of these deposits, which, however, remain still relatively poorly described from outcrop studies of collisional basins. Results of this work show that in mass-transport deposits an unsorted, strongly mixed, relatively fine-grained clastic matrix almost invariably occurs in irregularly interconnected patches and pseudo-veins, infilling space between large clasts and blocks. We interpreted the aspect of this matrix as typical of a liquefied mixture of water and sediment, characterized by an extremely high mobility due to overpressured conditions, as evidenced by both lateral and vertical injections. On a much larger scale this kind of matrix is probably represented by the seismically "transparent" facies separating slide blocks of many mass-transport deposits observed in seismic-reflection profiles. The inferred mechanism of matrix production suggests a progressive soft-sediment deformation, linked to different phases of submarine landslide evolution (i.e. triggering, translation, accumulation and post-depositional stages), leading to an almost complete stratal disruption within the chaotic units. From our data we suggest that most submarine landslides move because of the development of ductile shear zones marked by the presence of "overpressured" matrix, both internally and along the basal surface. The matrix acts as a lubricating medium, accommodating friction forces and deformation, thus permitting the differential movement of discrete internal portions and enhancing the submarine slide mobility. Based on our experience, we suggest that this kind of deposit

  6. Mu2e Transport Solenoid Cold-Mass Alignment Issues

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, M. [Fermilab; Ambrosio, G. [Fermilab; Badgley, K. [Fermilab; Bradascio, F. [Fermilab; Brandt, J. [Fermilab; Evbota, D. [Fermilab; Hocker, A. [Fermilab; Lamm, M. [Fermilab; Lombardo, V. [Fermilab; Miller, J. [Boston U.; Nicol, T. [Fermilab; Kutschke, R. [Fermilab; Vellidis, C. [Fermilab; Wands, R. [Fermilab; Wenk, E. [Fermilab

    2016-10-01

    The Muon-to-electron conversion experiment (Mu2e) at Fermilab is designed to explore charged lepton flavor violation. It is composed of three large superconducting solenoids: the Production Solenoid (PS), the Transport Solenoid (TS) and the Detector Solenoid (DS). The TS is formed by two magnets: TS upstream (TSu) and downstream (TSd). Each has its own cryostat and power supply. Tolerance sensitivity studies of the position and angular alignment of each coil in this magnet system were performed in the past with the objective to demonstrate that the magnet design meets all the field requirements. The alignment of the cold-masses is critical to maximize the transmission of muons and to avoid possible backgrounds that would reduce the sensitivity of the experiment. Each TS magnet cold-mass can be individually aligned. In this work, we discuss implications of the alignment of the TS cold-masses in terms of the displacement of the magnetic center. Consideration of the practical mechanical limits are also presented.

  7. Upscaling momentum and mass transport under Knudsen and binary diffusion gas slip conditions

    Science.gov (United States)

    Valdes-Parada, F. J.; Lasseux, D.

    2015-12-01

    Modeling of gas phase flow in porous media is relevant as it is present in a wide variety of applications ranging from nanofluidic systems to subsurface contaminant transport. In this work, we derive a macroscopic model to study slightly compressible gas flow in porous media for conditions in which the tangential fluid velocity undergoes a slip at the solid interface due to Knudsen effects and to mass diffusion in binary conditions. To this end, we use the method of volume averaging to derive the governing equations at the Darcy scale for both mass and momentum transport. The momentum transport model consists on a modification to Darcy's law due to mass dispersion and to total density gradients. For mass transport, the resulting model is the conventional convection-dispersion equation with two correction terms, one affecting convective transport and the second one affecting mass dispersion due to gas compressibility. The macroscopic model reduces to the one reported by Altevogt et al. (2003) for the case in which gas slip is only due to a concentration gradient and to the one by Lasseux et al. (2014) under Knudsen slip conditions. The model is written in terms of effective-medium coefficients that can be predicted from solving the associated closure problems in representative unit cells. For conditions in which the Péclet number is much greater than one and when the Knudsen number is not exceedingly small compared to the unity, our computations show that the predictions of the longitudinal dispersion may reach an error as high as 60% compared to the predictions obtained by ignoring gas slip. Altevogt A.S., Rolston D.E., Whitaker S. New equations for binary gas transport in porous media, Part 1: equation development. Advances in Water Resources, Vol. 26, 695-715, 2003. Lasseux D., Valdés-Parada F.J., Ochoa-Tapia J.A., Goyeau B. A macroscopic model for slightly compressible gas slip-flow in homogeneous porous media. Physics of Fluids, Vol. 26, 053102, 2014.

  8. Benthic processes affecting contaminant transport in Upper Klamath Lake, Oregon

    Science.gov (United States)

    Kuwabara, James S.; Topping, Brent R.; Carter, James L.; Carlson, Rick A; Parchaso, Francis; Fend, Steven V.; Stauffer-Olsen, Natalie; Manning, Andrew J.; Land, Jennie M.

    2016-09-30

    Executive SummaryMultiple sampling trips during calendar years 2013 through 2015 were coordinated to provide measurements of interdependent benthic processes that potentially affect contaminant transport in Upper Klamath Lake (UKL), Oregon. The measurements were motivated by recognition that such internal processes (for example, solute benthic flux, bioturbation and solute efflux by benthic invertebrates, and physical groundwater-surface water interactions) were not integrated into existing management models for UKL. Up until 2013, all of the benthic-flux studies generally had been limited spatially to a number of sites in the northern part of UKL and limited temporally to 2–3 samplings per year. All of the benthic invertebrate studies also had been limited to the northern part of the lake; however, intensive temporal (weekly) studies had previously been completed independent of benthic-flux studies. Therefore, knowledge of both the spatial and temporal variability in benthic flux and benthic invertebrate distributions for the entire lake was lacking. To address these limitations, we completed a lakewide spatial study during 2013 and a coordinated temporal study with weekly sampling of benthic flux and benthic invertebrates during 2014. Field design of the spatially focused study in 2013 involved 21 sites sampled three times as the summer cyanobacterial bloom developed (that is, May 23, June 13, and July 3, 2013). Results of the 27-week, temporally focused study of one site in 2014 were summarized and partitioned into three periods (referred to herein as pre-bloom, bloom and post-bloom periods), each period involving 9 weeks of profiler deployments, water column and benthic sampling. Partitioning of the pre-bloom, bloom, and post-bloom periods were based on water-column chlorophyll concentrations and involved the following date intervals, respectively: April 15 through June 10, June 17 through August 13, and August 20 through October 16, 2014. To examine

  9. Mass transport measurements and modeling for chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Starr, T.L.; Chiang, D.Y.; Fiadzo, O.G.; Hablutzel, N. [Georgia Inst. of Tech., Atlanta, GA (United States). School of Materials Science and Engineering

    1997-12-01

    This project involves experimental and modeling investigation of densification behavior and mass transport in fiber preforms and partially densified composites, and application of these results to chemical vapor infiltration (CVI) process modeling. This supports work on-going at ORNL in process development for fabrication of ceramic matrix composite (CMC) tubes. Tube-shaped composite preforms are fabricated at ORNL with Nextel{trademark} 312 fiber (3M Corporation, St. Paul, MN) by placing and compressing several layers of braided sleeve on a tubular mandrel. In terms of fiber architecture these preforms are significantly different than those made previously with Nicalon{trademark} fiber (Nippon Carbon Corp., Tokyo, Japan) square weave cloth. The authors have made microstructure and permeability measurements on several of these preforms and a few partially densified composites so as to better understand their densification behavior during CVI.

  10. Kinetically influenced terms for solute transport affected by heterogeneous and homogeneous classical reactions

    Science.gov (United States)

    Bahr, J.M.

    1990-01-01

    This paper extends a four-step derivation procedure, previously presented for cases of transport affected by surface reactions, to transport problems involving homogeneous reactions. Derivations for these classes of reactions are used to illustrate the manner in which mathematical differences between reaction classes are reflected in the mathematical derivation procedures required to identify kinetically influenced terms. Simulation results for a case of transport affected by a single solution phase complexation reaction and for a case of transport affected by a precipitation-dissolution reaction are used to demonstrate the nature of departures from equilibrium-controlled transport as well as the use of kinetically influenced terms in determining criteria for the applicability of the local equilibrium assumption. A final derivation for a multireaction problem demonstrates the application of the generalized procedure to a case of transport affected by reactions of several classes. -from Author

  11. Mass and charge transport in IPMC actuators with fractal interfaces

    Science.gov (United States)

    Chang, Longfei; Wu, Yucheng; Zhu, Zicai; Li, Heng

    2016-04-01

    Ionic Polymer-Metal Composite (IPMC) actuators have been attracting a growing interest in extensive applications, which consequently raises the demands on the accuracy of its theoretical modeling. For the last few years, rough landscape of the interface between the electrode and the ionic membrane of IPMC has been well-documented as one of the key elements to ensure a satisfied performance. However, in most of the available work, the interface morphology of IPMC was simplified with structural idealization, which lead to perplexity in the physical interpretation on its interface mechanism. In this paper, the quasi-random rough interface of IPMC was described with fractal dimension and scaling parameters. And the electro-chemical field was modeled by Poisson equation and a properly simplified Nernst-Planck equation set. Then, by simulation with Finite Element Method, a comprehensive analysis on he inner mass and charge transportation in IPMC actuators with different fractal interfaces was provided, which may be further adopted to instruct the performance-oriented interface design for ionic electro-active actuators. The results also verified that rough interface can impact the electrical and mechanical response of IPMC, not only from the respect of the real surface increase, but also from mass distribution difference caused by the complexity of the micro profile.

  12. Atmospheric composition affects heat- and mass-transfer processes

    Science.gov (United States)

    Blakely, R. L.; Nelson, W. G.

    1970-01-01

    For environmental control system functions sensitive to atmospheric composition, components are test-operated in helium-oxygen and nitrogen-oxygen mixtures, pure oxygen, and air. Transient heat- and mass-transfer tests are conducted for carbon dioxide adsorption on molecular sieve and for water vapor adsorption on silica gel.

  13. Mass transportation in diethylmethylammonium trifluoromethanesulfonate for fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Mitsushima, Shigenori, E-mail: mitsushi@ynu.ac.j [Chemical Energy Laboratory, Yokohama National University, Yokohama 240-8501 (Japan); Shinohara, Yoshitsugu; Matsuzawa, Koichi; Ota, Ken-ichiro [Chemical Energy Laboratory, Yokohama National University, Yokohama 240-8501 (Japan)

    2010-09-01

    To use the protonic mesothermal fuel cell without humidification, mass transportation in diethylmethylammonium trifluoromethanesulfonate ([dema][TfO]), trifluoromethanesulfuric acid (TfOH)-added [dema][TfO], and phosphoric acid (H{sub 3}PO{sub 4})-added [dema][TfO] was investigated by electrochemical measurements. The diffusion coefficient and the solubility of oxygen were ca. 10{sup -5} cm{sup 2} s{sup -1} and ca. 10{sup -3} M (=mol dm{sup -3}), respectively. Those of hydrogen were a factor of 10 and one-tenth compared to oxygen, respectively. The permeability, which is a product of the diffusion coefficient and solubility, of oxygen and hydrogen were almost the same for the perfluoroethylenesulfuric acid membrane and the sulfuric acid solution; therefore, these values are suitable for fuel cell applications. On the other hand, a diffusion limiting current was observed for the hydrogen evolution reaction. The current corresponded to ca. 10{sup -10} mol cm{sup -1} s{sup -1} of the permeability, and the diffusion limiting species was the hydrogen carrier species. The TfOH addition enhanced the diffusion limiting current of [dema][TfO], and the H{sub 3}PO{sub 4} addition eliminated the diffusion limit. The hydrogen bonds of H{sub 3}PO{sub 4} or water-added H{sub 3}PO{sub 4} might significantly enhance the transport of the hydrogen carrier species. Therefore, [dema][TfO] based materials are candidates for non-humidified mesothermal fuel cell electrolytes.

  14. The latent fingerprint in mass transport of polycrystalline materials

    Science.gov (United States)

    Thirunavukarasu, Gopinath; Kundu, Sukumar; Chatterjee, Subrata

    2016-02-01

    Herein, a systematic investigation was carried out to reach a rational understanding and to provide information concerning the possible causes for a significant influence of pressure variation in the underlying processes of mass transport in polycrystalline materials. The authors focused their research in solid-state diffusion, a part of the subject "Mass Transport in Solids". Theories on diffusion are the subject by itself which exists as a latent fingerprint in every text of higher learning in interdisciplinary science. In this research, authors prepared sandwich samples of titanium alloy and stainless steel using nickel as an intermediate metal. The samples were processed at three different levels of bonding pressure (3, 4 and 5 MPa) while bonding temperature and bonding time was maintained at 750 °C and 1 h, respectively, throughout the experiments. It was observed that the net flux of atomic diffusion of nickel atoms into Ti-alloy at TiA/Ni interface increased by ~63 % with the rise in the bonding pressure from 3 to 4 MPa, but decreased by ~40 % with the rise in the bonding pressure from 4 to 5 MPa. At the same time, the net flux of atomic diffusion of nickel atoms into stainless steel at Ni/SS interface increased by ~19 % with the rise in the bonding pressure from 3 to 4 MPa, but increased by ~17 % with the rise in the bonding pressure from 4 to 5 MPa. Here authors showed that the pressure variations have different effects at the TiA/Ni interface and Ni/SS interface, and tried to explain the explicit mechanisms operating behind them. In general for sandwich samples processed irrespective of bonding pressure chosen, the net flux of Ni-atoms diffused into SS is greater than that of the net flux of Ni-atoms diffused in Ti-alloy matrix by four orders of magnitude. The calculated diffusivity of Ni-atoms into Ti-alloy reaches its highest value of ~5.083 × 10-19 m2/s for the sandwich sample processed using 4-MPa bonding-pressure, whereas the diffusivity of Ni

  15. Conception for enhanced mass transport in binary nanofluids

    Science.gov (United States)

    Xuan, Yimin

    2009-12-01

    Besides their application in enhancing heat transfer, suspended nanoparticles have been found to improve mass transfer process inside binary nanofluids. The concepts of enhanced mass transfer in binary nanofluids are involved. By means of the heat and mass transfer analogy, the approaches for determining the mass diffusivity and mass transfer coefficient are proposed and discussed.

  16. Estimation of fluid flow and mass transport properties in a natural fracture using laboratory testing system on mass transport in fractured rock (LABROCK)

    Energy Technology Data Exchange (ETDEWEB)

    Yoshino, Naoto; Uchida, Masahiro [Japan Nuclear Cycle Development Inst., Tokai Works, Tokai, Ibaraki (Japan); Satou, Hisashi [Inspection Development Company Ltd., Tokai, Ibaraki (Japan)

    2003-03-01

    The understanding of mass transport and fluid flow properties in natural rock fractures is important for safety assessment of geological disposal of high level nuclear waste. The authors developed advanced tracer test equipment in which a 50-cm cubic scale rock sample was feasible. The mass transport and fluid flow properties in a single fracture were also examined. The relation among hydraulic, transport and mass balance apertures of a natural single fracture were obtained. Heterogeneity of the aperture distribution was evident, as was the possibility of some major flow line perpendicular to the flow direction. Additionally, the relation between normal stress and each aperture was also obtained by loading normal stress on the fracture. In future, measuring the aperture distribution and establishing the model considering fluid flow and mass transport properties in natural rock fractures will be conducted. (author)

  17. Mass transport model through the skin by microencapsulation system.

    Science.gov (United States)

    Carreras, Núria; Alonso, Cristina; Martí, Meritxell; Lis, Manel J

    2015-01-01

    Skin drug delivery can be subdivided into topical and transdermal administration. Transdermal administration can take advantage of chemical and physical strategies that can improve skin permeability and allow drug penetration. In this study, the development of a skin penetration profile was carried out by an in vitro technique for a microencapsulated system of ibuprofen. Release experiments were performed using percutaneous absorption tests to determine the evolution of the principle present in each of the different skin compartments as a function of time. A general kinetic model for a microencapsulated structure as a mass transport system through the skin was applied: [Formula: see text] This model could predict the penetration profile of encapsulated substances through skin from biofunctional textiles as well as estimate the dosage profile of the active principle. The apparent diffusion coefficients found were 1.20 × 10(-7 )cm/s for the stratum corneum and higher for the rest of the skin 6.67 × 10(-6 )cm/s.

  18. First-principles calculations of mass transport in magnesium borohydride

    Science.gov (United States)

    Yu, Chao; Ozolins, Vidvuds

    2013-03-01

    Mg(BH4)2 is a hydrogen storage material which can decompose to release hydrogen in the following reaction: Mg(BH4)2(solid) -->1/6 MgB12H12(solid) + 5/6MgH2(solid) +13/6 H2(gas) --> MgH2(solid) + 2B(solid) + 4H2(gas). However, experiments show that hydrogen release only occurs at temperatures above 300 °C, which severely limits applications in mobile storage. Using density-functional theory calculations, we systematically study bulk diffusion of defects in the reactant Mg(BH4)2 and products MgB12H12 and MgH2 during the first step of the solid-state dehydrogenation reaction. The defect concentrations and concentration gradients are calculated for a variety of defects, including charged vacancies and interstitials. We find that neutral [BH3] vacancies have the highest bulk concentration and concentration gradient in Mg(BH4)2. The diffusion mechanism of [BH3] vacancy in Mg(BH4)2 is studied using the nudged elastic band method. Our results shows that the calculated diffusion barrier for [BH3] vacancies is ~ . 2 eV, suggesting that slow mass transport limits the kinetics of hydrogen desorption.

  19. Magnetic resonance imaging of mass transport and structure inside a phototrophic biofilm.

    Science.gov (United States)

    Ramanan, Baheerathan; Holmes, William M; Sloan, William T; Phoenix, Vernon R

    2013-05-01

    The aim of this study was to utilize magnetic resonance imaging (MRI) to image structural heterogeneity and mass transport inside a biofilm which was too thick for photon based imaging. MRI was used to map water diffusion and image the transport of the paramagnetically tagged macromolecule, Gd-DTPA, inside a 2.5 mm thick cyanobacterial biofilm. The structural heterogeneity of the biofilm was imaged at resolutions down to 22 × 22 μm, enabling the impact of biofilm architecture on the mass transport of both water and Gd-DTPA to be investigated. Higher density areas of the biofilm correlated with areas exhibiting lower relative water diffusion coefficients and slower transport of Gd-DTPA, highlighting the impact of biofilm structure on mass transport phenomena. This approach has potential for shedding light on heterogeneous mass transport of a range of molecular mass molecules in biofilms.

  20. Essays on alternative energy policies affecting the US transportation sector

    Science.gov (United States)

    O'Rear, Eric G.

    This dissertation encompasses three essays evaluating the impacts of different policies targeting the greenhouse gas (GHG) emissions, fuel demands, etc. of the transportation sector. Though there are some similarities across the three chapters, each essay stands alone as an independent work. The 2010 US EPA MARKAL model is used in each essay to evaluate policy effects. Essay 1 focuses on the recent increases in Corporate Average Fuel Economy (CAFE) standards, and the implications of a "rebound effect." These increases are compared to a carbon tax generating similar reductions in system-wide emissions. As anticipated, the largest reductions in fuel use by light-duty vehicles (LDV) and emissions are achieved under CAFE. Consideration of the rebound effect does little to distort CAFE benefits. Our work validates many economists' belief that a carbon tax is a more efficient approach. However, because the tax takes advantage of cheaper abatement opportunities in other sectors, reductions in transportation emissions will be much lower than what we observe with CAFE. Essay 2 compares CAFE increases with what some economists suggest would be a much more "efficient" alternative -- a system-wide oil tax internalizing some environmental externalities. Because oil taxes are likely to be implemented in addition to CAFE standards, we consider a combined policy case reflecting this. Our supplementary analysis approximates the appropriate tax rates to produce similar reductions in oil demands as CAFE (CAFE-equivalent tax rates). We discover that taxes result in greater and more cost-effective reductions in system-wide emissions and net oil imports than CAFE. The current fuel tax system is compared to three versions of a national vehicle miles traveled (VMT) tax charged to all LDVs in Essay 3. VMT taxes directly charge motorists for each mile driven and help to correct the problem of eroding tax revenues given the failure of today's fuel taxes to adjust with inflation. Results

  1. FACTORS AFFECTING MASS MEDIA FP PROGRAMS ON CURRENT USE OF CONTRACEPTION IN BANGLADESH

    OpenAIRE

    Islam, M. Amirul; Kabir, M.

    1998-01-01

    In this paper the significant role of mass media and factors affecting it have been investigated. . Mass media has played an important role in the success of Bangladesh family planning programs. Different mass media are employed to disseminate FP-MCH messages. Evaluation of the impact of mass media exposures on FP-MCH programs would provide new directions and strategy for its effectiveness. In this study a total of 3100 currently married women from all over Bangladesh were interviewed. The ai...

  2. Effects of Mass Fluctuation on Thermal Transport Properties in Bulk Bi2Te3

    Science.gov (United States)

    Huang, Ben; Zhai, Pengcheng; Yang, Xuqiu; Li, Guodong

    2016-10-01

    In this paper, we applied large-scale molecular dynamics and lattice dynamics to study the influence of mass fluctuation on thermal transport properties in bulk Bi2Te3, namely thermal conductivity (K), phonon density of state (PDOS), group velocity (v g), and mean free path (l). The results show that total atomic mass change can affect the relevant vibrational frequency on the micro level and heat transfer rate in the macro statistic, hence leading to the strength variation of the anharmonic phonon processes (Umklapp scattering) in the defect-free Bi2Te3 bulk. Moreover, it is interesting to find that the anharmonicity of Bi2Te3 can be also influenced by atomic differences of the structure such as the mass distribution in the primitive cell. Considering the asymmetry of the crystal structure and interatomic forces, it can be concluded by phonon frequency, lifetime, and velocity calculation that acoustic-optical phonon scattering shows the structure-sensitivity to the mass distribution and complicates the heat transfer mechanism, hence resulting in the low lattice thermal conductivity of Bi2Te3. This study is helpful for designing the material with tailored thermal conductivity via atomic substitution.

  3. Geocenter motion due to surface mass transport from GRACE satellite data

    Science.gov (United States)

    Riva, R. E. M.; van der Wal, W.; Lavallée, D. A.; Hashemi Farahani, H.; Ditmar, P.

    2012-04-01

    Measurements of mass redistribution from satellite gravimetry are insensitive to geocenter motions. However, geocenter motions can be constrained by satellite gravity data alone if we partition mass changes between land and oceans, under the assumption that the ocean is passive (i.e., in gravitational equilibrium with the land load and the solid earth). Here, we make use of 8 years (2003-2010) of optimally filtered monthly GRACE-based solutions produced at TU Delft to determine changes in the land load and the corresponding geocenter motion, through an iterative procedure. We pay particular attention to correcting for signal leakage caused by the limited spatial resolution of GRACE. We also investigate how the choice of a model of glacial isostatic adjustment (GIA) affects the estimated geocenter motion trend due to present-day surface mass transport. Finally, we separate the contribution of ice masses from that of land hydrology and show how they have a different sensitivity to the chosen GIA model and observational time-span.

  4. Role of transportation in the persuasion process: cognitive and affective responses to antidrug narratives.

    Science.gov (United States)

    Banerjee, Smita C; Greene, Kathryn

    2012-01-01

    This study examined transportation effects of first- and third-person narratives as well as the role of transportation in the persuasion process. In particular, the authors evaluated the role of transportation in affecting cognitive and affective responses. Last, they addressed the relation between (a) cognitive and affective responses and (b) antidrug expectancies. Participants were 500 undergraduate students at a large northern university in the United Kingdom who were randomly assigned to 1 of 2 conditions: first- or third-person narratives on cocaine use. The results demonstrated that there was no difference between first- and third-person narratives in terms of transportation. However, overall, greater transportation was associated with more favorable cognitive responses, and more favorable cognitive response was associated with stronger anticocaine expectancies. In terms of affective responses, results indicated the mediating role of sadness and contentment in the association between transportation and anticocaine expectancies. In particular, increased transportation was associated with greater sadness and lower contentment. Lower sadness and contentment were associated with stronger anticocaine expectancies. Important theoretical and empirical implications are discussed.

  5. Mass Conservation in a Chemical Transport Model and its Effect on CO2 and SF6 Simulations

    Science.gov (United States)

    Zhu, Z.; Weaver, C.; Kawa, S. R.; Douglass, A. R.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    Chemical transport models (CTMs) must conserve mass to be useful for applications involving assessment of the effect of various pollutants on the troposphere and stratosphere. Furthermore, calculations of the evolution of constituents such as SF6 are used to evaluate overall model transport, and interpretation of such simulations is clouded if mass conservation is not assured. For realistic simulations or predictions, it is crucial that constituents are not produced or lost by transport or other processes in the CTMs. Analysis of CO2 and SF6 experiments using a CTM shows that problems with mass conservation can seriously degrade the simulations. Failure to conserve mass results from inconsistency of the surface pressure tendency and the divergence of horizontal mass flux when the model is forced by assimilated meteorological data. We have developed an effective method to eliminate the inconsistency by modifying the divergent part of the wind field. The changes in the wind fields are quite small but the impact on mass conservation is large. Parameterizations of physical processes such as convection or turbulent transport can also affect mass conservation. The lack of conservation is small but accumulates when integrations are lengthy such as required for SF6. This lack of conservation is found using winds from either a GCM or from an assimilation system. A simple adjustment removes much of the inaccuracy in the convective parameterization. A CO2 simulation using assimilated winds from the most recent version of the Goddard Earth Observing System Data Assimilation System will be used to illustrate the impact of these transport improvements.

  6. The synergistic effect of ultrasound and chemical penetration enhancers on chorioamnion mass transport.

    Science.gov (United States)

    Azagury, Aharon; Khoury, Luai; Adato, Yair; Wolloch, Lior; Ariel, Ilana; Hallak, Mordechai; Kost, Joseph

    2015-02-28

    In our previous study we proposed the use of chemical penetration enhancers for noninvasive detection of fetus abnormalities that can also be utilized for direct fetal drug delivery. In an attempt to further increase the mass transport rate across the amniotic membrane, thus shortening the procedure and improving the applicability of the proposed procedure, the effect and mechanism of combining ultrasound exposure with chemical penetration enhancers' application were assessed. The combined effect was evaluated in vitro on post-delivery human amniotic membrane and ex vivo on rat's whole amniotic sac. Ultrasound effect has been assessed by dye experiments using a customized image analysis program. Additional insights of ultrasound effect's mechanism on biological membranes are presented. Previously we have determined that chemical penetration enhancers affect the fetal membranes via two mechanisms termed as 'extractors' and 'fluidizers'. In this study, we found that combining ultrasound with a 'fluidizer' CPE (e.g. bupivacaine) results in a synergistic enhancement (90-fold) of fetal membrane's mass transport, while combining ultrasound with 'extractors' (e.g. ethanol and NMP) results in an antagonistic effect. The combined procedure is faster and gain greater accuracy than the applications of sole chemical penetration enhancers.

  7. Mechanisms of mass transport during coalescence-induced microfluidic drop dilution

    Science.gov (United States)

    Wang, William S.; Vanapalli, Siva A.

    2016-10-01

    Confinement-guided coalescence of drops in microfluidic devices is an effective means to manipulate the composition of individual droplets. Recently, Sun et al. [Lab Chip 11, 3949 (2011), 10.1039/c1lc20709a] have shown that coalescence between a long moving plug and an array of parked droplets in a microfluidic network can be used to flexibly manipulate the composition of the static droplet arrays. However, the transport mechanisms underlying this complex dilution process have not been elucidated. In this study, we develop phenomenological models and perform particle-based numerical simulations to identify the key mass transfer mechanisms influencing the concentration profiles of drops during coalescence-induced drop dilution. Motivated by experimental observations, in the simulations we consider (i) advection within the moving plug, (ii) diffusion in the moving plug and parked droplets, (iii) fluid advection due to initiation of coalescence, and (iv) advection in the coalesced plug due to the continuous phase flowing through the gutters in noncircular microchannels. We find that the dilution process is dominated by diffusion, recirculation in the moving plug, and gutter-flow-induced advection, but is only weakly affected by coalescence-induced advection. We show that the control parameters regulating dilution can be divided into those influencing the duration of mass transfer (e.g., plug length and velocity) and those affecting the rate of mass transfer (e.g., diffusion and gutter-flow-induced advection). Finally, we demonstrate that our simulations are able to predict droplet concentration profiles in experiments. The results from this study will allow better design of drop dilution microfluidic devices. Furthermore, the identification of gutter-flow-induced advection as an alternative mass transfer mechanism in two-phase flows could potentially lead to more efficient means of oil recovery from droplets trapped in porous media.

  8. Dynamics and mass transport of solutal convection in a closed porous media system

    Science.gov (United States)

    Wen, Baole; Akhbari, Daria; Hesse, Marc

    2016-11-01

    Most of the recent studies of CO2 sequestration are performed in open systems where the constant partial pressure of CO2 in the vapor phase results in a time-invariant saturated concentration of CO2 in the brine (Cs). However, in some closed natural CO2 reservoirs, e.g., Bravo Dome in New Mexico, the continuous dissolution of CO2 leads to a pressure drop in the gas that is accompanied by a reduction of Cs and thereby affects the dynamics and mass transport of convection in the brine. In this talk, I discuss the characteristics of convective CO2 dissolution in a closed system. The gas is assumed to be ideal and its solubility given by Henry's law. An analytical solution shows that the diffusive base state is no longer self-similar and that diffusive mass transfer declines rapidly. Scaling analysis reveals that the volume ratio of brine and gas η determines the behavior of the system. DNS show that no constant flux regime exists for η > 0 nevertheless, the quantity F /Cs2 remains constant, where F is the dissolution flux. The onset time is only affected by η when the Rayleigh number Ra is small. In this case, the drop in Cs during the initial diffusive regime significantly reduces the effective Ra and therefore delays the onset.

  9. Mass transport and direction dependent battery modeling for accurate on-line power capability prediction

    Energy Technology Data Exchange (ETDEWEB)

    Wiegman, H.L.N. [General Electric Corporate Research and Development, Schenectady, NY (United States)

    2000-07-01

    Some recent advances in battery modeling were discussed with reference to on-line impedance estimates and power performance predictions for aqueous solution, porous electrode cell structures. The objective was to determine which methods accurately estimate a battery's internal state and power capability while operating a charge and sustaining a hybrid electric vehicle (HEV) over a wide range of driving conditions. The enhancements to the Randles-Ershler equivalent electrical model of common cells with lead-acid, nickel-cadmium and nickel-metal hydride chemistries were described. This study also investigated which impedances are sensitive to boundary layer charge concentrations and mass transport limitations. Non-linear impedances were shown to significantly affect the battery's ability to process power. The main advantage of on-line estimating a battery's impedance state and power capability is that the battery can be optimally sized for any application. refs., tabs., figs., append.

  10. Thickness Optimisation of Textiles Subjected to Heat and Mass Transport during Ironing

    Directory of Open Access Journals (Sweden)

    Korycki Ryszard

    2016-09-01

    Full Text Available Let us next analyse the coupled problem during ironing of textiles, that is, the heat is transported with mass whereas the mass transport with heat is negligible. It is necessary to define both physical and mathematical models. Introducing two-phase system of mass sorption by fibres, the transport equations are introduced and accompanied by the set of boundary and initial conditions. Optimisation of material thickness during ironing is gradient oriented. The first-order sensitivity of an arbitrary objective functional is analysed and included in optimisation procedure. Numerical example is the thickness optimisation of different textile materials in ironing device.

  11. Dynamic Behavior and Mass Transport in Polyacrylic Acid Gel by Dynamic Light Scattering

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Dynamic behaviors on polyacrylic acid (PAA) gels and mass (small molecules) transports in the gels have been studied mainly by dynamic light scattering (DLS). The cross-linking degree (fc), monomer concentration (Cm) and temperature of the gels have significant influences on its dynamic behavior and mass transport in the gels. The increase of fc leads to decrease of the mesh sizes of the gels, thus the obstacle of the gels for mass transport is increased. As a result, small molecular diffusion Dk in the gels is decreased. So even if for small molecules, the Dk also is influenced.

  12. Examination of the mass media process and personal factors affecting the assessment of mass media-disseminated health information.

    Science.gov (United States)

    Avcı, Kadriye; Çakır, Tülin; Avşar, Zakir; Üzel Taş, Hanife

    2015-06-01

    This study examined the mass media and personal characteristics leading to health communication inequality as well as the role of certain factors in health communication's mass media process. Using both sociodemographic variables and Maletzke's model as a basis, we investigated the relationship between selected components of the mass communication process, the receiving of reliable health information as a result of health communication, and the condition of its use. The study involved 1853 people in Turkey and was structured in two parts. The first part dealt with questions regarding sociodemographic characteristics, the use of the mass media and the public's ability to obtain health information from it, the public's perception of the trustworthiness of health information, and the state of translating this information into health-promoting behaviours. In the second part, questions related to the mass communication process were posed using a five-point Likert scale. This section tried to establish structural equation modelling using the judgements prepared on the basis of the mass media model. Through this study, it has been observed that sociodemographic factors such as education and age affect individuals' use of and access to communication channels; individuals' trust in and selection of health information from the programme content and their changing health behaviours (as a result of the health information) are related to both their perception of the mass communication process and to sociodemographic factors, but are more strongly related to the former.

  13. Mass transport in carbon gels with tuned porosity

    Directory of Open Access Journals (Sweden)

    N. Job

    2012-12-01

    Full Text Available Diffusional limitations in carbon gel-supportedcatalysts are often encountered despite their openstructure. However, the analysis of mass transportis rarely taken into account in studies dealing withcatalyst preparation and test using thesenanostructured carbons as supports. Any catalyticsystem should be first subject to mass transportanalysis before any conclusion can be drawn aboutrelationships between the physico-chemicalproperties and the measured activity of the catalyst.

  14. STUDY ON THE CONTROLLED MASS TRANSPORT THROUGH POROUS MEMBRANES

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    l introductionMembrane Processes have been applied widely inchemical and biological separation and mass transferoperatioll. Tile mass tfansport tlimugh the membralleis driven either by pressure (sucll as ultrallltration,microfiltration and nanofiltration), or concelltration(diffusion) like dialysis, or by electric field(electrodialysis). While pressure drived Processes areiii-idel}' used for separation pmpose, diffusionprocesses is conllllon in colltrolled release and soluteexchange. Haemodialysis has been ...

  15. Hydrodynamic and Mass Transport Properties of Microfluidic Geometries

    Science.gov (United States)

    2013-12-01

    Bioanalytical Chemistry, 391:2453–2467, 2008. 18 [34] D. Mark, S. Haeberle, G. Roth , F. Von Setten, and R. Zengerle. Microfluidic lab-on-a-chip platforms...Biophysical Journal, 75:583–594, 1998. 23 [81] T. Mason , A. Pineda, C. Wofsy, and B. Goldstein. Effec- tive Rate Models for the Analysis of Transport

  16. Measurements of the transport efficiency of the fragment mass analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Back, B.B.; Blumenthal, D.J.; Davids, C.N. [and others

    1995-08-01

    Extensive calculations of the transport of reaction products were carried out during the design phase of the instrument using the computer code GIOS. These show that the energy acceptance depends strongly on the angular deviation from the optical axis of the instrument. In order to reliably measure cross sections using this instrument it is therefore necessary to verify these calculations empirically.

  17. Water flow induced transport of Pseudomonas fluorescens cells through soil columns as affected by inoculant treatment

    NARCIS (Netherlands)

    Hekman, W.E.; Heijnen, C.E.; Trevors, J.T.; Elsas, van J.D.

    1994-01-01

    Water flow induced transport of Pseudomonas fluorescens cells through soil columns was measured as affected by the inoculant treatment. Bacterial cells were introduced into the topsoil of columns, either encapsulated in alginate beads of different types or mixed with bentonite clay in concentrations

  18. Characterization of oil sands process-affected waters by liquid chromatography orbitrap mass spectrometry.

    Science.gov (United States)

    Pereira, Alberto S; Bhattacharjee, Subir; Martin, Jonathan W

    2013-05-21

    Recovery of bitumen from oil sands in northern Alberta, Canada, occurs by surface mining or in situ thermal recovery, and both methods produce toxic oil sands process-affected water (OSPW). A new characterization strategy for surface mining OSPW (sm-OSPW) and in situ OSPW (is-OSPW) was achieved by combining liquid chromatography with orbitrap mass spectrometry (MS). In electrospray positive and negative ionization modes (ESI(+)/ESI(-)), mass spectral data were acquired with high resolving power (RP > 100,000-190,000) and mass accuracy (method should be further applied to environmental forensic analysis of water in the region.

  19. Systematic characterization of porosity and mass transport and mechanical properties of porous polyurethane scaffolds.

    Science.gov (United States)

    Wang, Yu-Fu; Barrera, Carlos M; Dauer, Edward A; Gu, Weiyong; Andreopoulos, Fotios; Huang, C-Y Charles

    2017-01-01

    One of the key challenges in porous scaffold design is to create a porous structure with desired mechanical function and mass transport properties which support delivery of biofactors and development of function tissue substitute. In recent years, polyurethane (PU) has become one of the most popular biomaterials in various tissue engineering fields. However, there are no studies fully investigating the relations between porosity and both mass transport and mechanical properties of PU porous scaffolds. In this paper, we fabricated PU scaffolds by combining phase inversion and salt (sodium chloride) leaching methods. The tensile and compressive moduli were examined on PU scaffolds fabricated with different PU concentrations (25%, 20% and 15% w/v) and salt/PU weight ratios (9/1, 6/1, 3/1 and 0/1). The mass transport properties of PU scaffolds including hydraulic permeability and glucose diffusivity were also measured. Furthermore, the relationships between the porosity and mass transport and mechanical properties of porous PU scaffold were systemically investigated. The results demonstrated that porosity is a key parameter which governs both mass transport and mechanical properties of porous PU scaffolds. With similar pore sizes, the mass transport and mechanical properties of porous PU scaffold can be described as single functions of porosity regardless of initial PU concentration. The relationships between scaffold porosity and properties can be utilized to facilitate porous PU scaffold fabrication with specific mass transport and mechanical properties. The systematic approach established in this study can be applied to characterization of other biomaterials for scaffold design and fabrication.

  20. Amorphous Photonic Lattices: Band Gaps, Effective Mass and Suppressed Transport

    CERN Document Server

    Rechtsman, Mikael; Dreisow, Felix; Heinrich, Matthias; Keil, Robert; Nolte, Stefan; Segev, Mordechai

    2010-01-01

    We present, theoretically and experimentally, amorphous photonic lattices exhibiting a band-gap yet completely lacking Bragg diffraction: 2D waveguides distributed randomly according to a liquid-like model responsible for the absence of Bragg peaks as opposed to ordered lattices containing disorder, which always exhibit Bragg peaks. In amorphous lattices the bands are comprised of localized states, but we find that defect states residing in the gap are more localized than the Anderson localization length. Finally, we show how the concept of effective mass carries over to amorphous lattices.

  1. Child and Adolescent Affective and Behavioral Distress and Elevated Adult Body Mass Index

    Science.gov (United States)

    McClure, Heather H.; Eddy, J. Mark; Kjellstrand, Jean M.; Snodgrass, J. Josh; Martinez, Charles R., Jr.

    2012-01-01

    Obesity rates throughout the world have risen rapidly in recent decades, and are now a leading cause of morbidity and mortality. Several studies indicate that behavioral and affective distress in childhood may be linked to elevated adult body mass index (BMI). The present study utilizes data from a 20-year longitudinal study to examine the…

  2. Productivity affects the density-body mass relationship of soil fauna communities

    NARCIS (Netherlands)

    Comor, V.N.R.; Thakur, M.P.; Berg, M.P.; Bie, de S.; Prins, H.H.T.; Langevelde, van F.

    2014-01-01

    The productivity of ecosystems and their disturbance regime affect the structure of animal communities. However, it is not clear which trophic levels benefit the most from higher productivity or are the most impacted by disturbance. The density-body mass (DBM) relationship has been shown to reflect

  3. Heat- and mass-transport in aqueous silica nanofluids

    Science.gov (United States)

    Turanov, A. N.; Tolmachev, Yuriy V.

    2009-10-01

    Using the transient hot wire and pulsed field gradient nuclear magnetic resonance methods we determined the thermal conductivity and the solvent self-diffusion coefficient (SDC) in aqueous suspensions of quasi-monodisperse spherical silica nanoparticles. The thermal conductivity was found to increase at higher volume fraction of nanoparticles in accordance with the effective medium theory albeit with a smaller slope. On the other hand, the SDC was found to decrease with nanoparticle volume fraction faster than predicted by the effective medium theory. These deviations can be explained by the presence of an interfacial heat-transfer resistance and water retention by the nanoparticles, respectively. We found no evidence for anomalous enhancement in the transport properties of nanofluids reported earlier by other groups.

  4. Does mechanistic modeling of filter strip pesticide mass balance and degradation processes affect environmental exposure assessments?

    Science.gov (United States)

    Muñoz-Carpena, Rafael; Ritter, Amy; Fox, Garey A; Perez-Ovilla, Oscar

    2015-11-01

    Vegetative filter strips (VFS) are a widely adopted practice for limiting pesticide transport from adjacent fields to receiving waterbodies. The efficacy of VFS depends on site-specific input factors. To elucidate the complex and non-linear relationships among these factors requires a process-based modeling framework. Previous research proposed linking existing higher-tier environmental exposure models with a well-tested VFS model (VFSMOD). However, the framework assumed pesticide mass stored in the VFS was not available for transport in subsequent storm events. A new pesticide mass balance component was developed to estimate surface pesticide residue trapped in the VFS and its degradation between consecutive runoff events. The influence and necessity of the updated framework on acute and chronic estimated environmental concentrations (EECs) and percent reductions in EECs were investigated across three, 30-year U.S. EPA scenarios: Illinois corn, California tomato, and Oregon wheat. The updated framework with degradation predicted higher EECs than the existing framework without degradation for scenarios with greater sediment transport, longer VFS lengths, and highly sorbing and persistent pesticides. Global sensitivity analysis (GSA) assessed the relative importance of mass balance and degradation processes in the context of other input factors like VFS length (VL), organic-carbon sorption coefficient (Koc), and soil and water half-lives. Considering VFS pesticide residue and degradation was not important if single, large runoff events controlled transport, as is typical for higher percentiles considered in exposure assessments. Degradation processes become more important when considering percent reductions in acute or chronic EECs, especially under scenarios with lower pesticide losses.

  5. How historical copper contamination affects soil structure and mobilization and transport of colloids

    DEFF Research Database (Denmark)

    Paradelo, Marcos; Møldrup, Per; Holmstrup, Martin;

    between 0.01 to 0.43 pore volumes, with longer times for the most contaminated point, likely related with its higher soil density and lower air permeability. The copper pollution affected colloid and tracer transport in the soil columns. The release of colloids especially in the most contaminated points......Copper is accumulated in soils due to human activities such as mining industry, agriculture practises, or waste deposals. High concentrations of copper can affect plants and soil organisms, and subsequently the soil structure and its inner space architecture. In this work we investigated the effect...... of copper concentration on the movement of an inert tracer, tritium, and the mobilization and transport of colloid particles in undisturbed soil cores (10 cm diameter and 8 cm height). The cores were sampled along a copper gradient of 21 to 3837 mg Cu kg-1 soil on an abandoned arable soil polluted by copper...

  6. Temporal variability of mass transport across Canary Islands Channels

    Science.gov (United States)

    Marrero-Díaz, Ángeles; Rodríguez-Santana, Ángel; José Machín, Francisco; García-Weil, Luis; Sangrà, Pablo; Vélez-Belchí, Pedro; Fraile-Nuez, Eugenio

    2014-05-01

    The equatorward flowing Canary Current (CC) is the main feature of the circulation in the Canary Islands region. The CC flow perturbation by the Canary Islands originate the Canary Eddy Corridor which is the major pathway for long lived eddies in the subtropical North Atlantic (Sangrà et al., 2009, DSR). Therefore the variability of the CC passing through the Canary Archipelago will have both local and regional importance. Past studies on the CC variability trough the Canary Islands point out a clearly seasonal variability (Fraile-Nuez et al, 2010 (JGR); Hernández-Guerra et al, 2002 (DSR)). However those studies where focused on the eastern islands channels missing the variability through the western island channels which are the main source of long lived eddies. In order to fill this gap from November 2012 until September 2013 we conducted trimonthly surveys crossing the whole islands channels using opportunity ships (Naviera Armas Ferries). XBT and XCTD where launched along the cross channels transects. Additionally a closed box circling the Archipelago was performed on October 2013 as part of the cruise RAPROCAN-2013 (IEO) using also XBT and XCTD. Dynamical variables where derived inferring salinity from S(T,p) analytical relationships for the region updated with new XCTD data. High resolution, vertical sections of temperature, potential density, geostrophic velocity and transport where obtained. Our preliminary results suggest that the CC suffer a noticeable acceleration in those islands channels where eddy shedding is more frequent. They also indicate a clearly seasonal variability of the flows passing the islands channels. With this regard we observed significant differences on the obtained seasonal variability with respect the cited past studies on the eastern islands channel (Lanzarote / Fuerteventura - Africa coast). This work was co-funded by Canary Government (TRAMIC project: PROID20100092) and the European Union (FEDER).

  7. Mass transport in a thin layer of power-law mud under surface waves

    Science.gov (United States)

    Liu, Jie; Bai, Yuchuan; Xu, Dong

    2017-02-01

    The mass transport velocity in a two-layer system is studied theoretically. The wave motion is driven by a periodic pressure load on the free water surface, and mud in the lower layer is described by a power-law rheological model. Perturbation analysis is performed to the second order to find the mean Eulerian velocity. A numerical iteration method is employed to solve the non-linear governing equation at the leading order. The influence of rheological properties on fluid motion characteristics including the flow field, the surface displacement, the mass transport velocity, and the net discharge rates are investigated based on theoretical results. Theoretical analysis shows that under the action of interfacial shearing, a recirculation structure may appear near the interface in the upper water layer. A higher mass transport velocity at the interface does not necessarily mean a higher discharge rate for a pseudo-plastic fluid mud.

  8. Recent Developments in Graphene-Based Membranes: Structure, Mass-Transport Mechanism and Potential Applications.

    Science.gov (United States)

    Sun, Pengzhan; Wang, Kunlin; Zhu, Hongwei

    2016-03-23

    Significant achievements have been made on the development of next-generation filtration and separation membranes using graphene materials, as graphene-based membranes can afford numerous novel mass-transport properties that are not possible in state-of-art commercial membranes, making them promising in areas such as membrane separation, water desalination, proton conductors, energy storage and conversion, etc. The latest developments on understanding mass transport through graphene-based membranes, including perfect graphene lattice, nanoporous graphene and graphene oxide membranes are reviewed here in relation to their potential applications. A summary and outlook is further provided on the opportunities and challenges in this arising field. The aspects discussed may enable researchers to better understand the mass-transport mechanism and to optimize the synthesis of graphene-based membranes toward large-scale production for a wide range of applications.

  9. On the use of mass-conserving wind fields in chemistry-transport models

    Directory of Open Access Journals (Sweden)

    B. Bregman

    2003-01-01

    Full Text Available A new method has been developed that provides mass-conserving wind fields for global chemistry-transport models. In previous global Eulerian modeling studies a mass-imbalance was found between the model mass transport and the surface pressure tendencies. Several methods have been suggested to correct for this imbalance, but so far no satisfactory solution has been found. Our new method solves these problems by using the wind fields in a spherical harmonical form (divergence and vorticity by mimicing the physics of the weather forecast model as closely as possible. A 3-D chemistry-transport model was used to show that the calculated ozone fields with the new processing method agree remarkably better with ozone observations in the upper troposphere and lower stratosphere. In addition, the calculated age of air in the lower stratosphere show better agreement with observations, although the air remains still too young in the extra-tropical stratosphere.

  10. Convective instability and mass transport of diffusion layers in a Hele-Shaw geometry

    CERN Document Server

    Backhaus, Scott; Ecke, R E

    2010-01-01

    We consider experimentally the instability and mass transport of a porous-medium flow in a Hele-Shaw geometry. In an initially stable configuration, a lighter fluid (water) is located over a heavier fluid (propylene glycol). The fluids mix via diffusion with some regions of the resulting mixture being heavier than either pure fluid. Density-driven convection occurs with downward penetrating dense fingers that transport mass much more effectively than diffusion alone. We investigate the initial instability and the quasi steady state. The convective time and velocity scales, finger width, wave number selection, and normalized mass transport are determined for 6,000

  11. Mass Transport in a Thin Layer of Bi-Viscous Mud Under Surface Waves

    Institute of Scientific and Technical Information of China (English)

    NG Chiu-on; FU Sau-chung; BAI Yu-chuan(白玉川)

    2002-01-01

    The mass transport in a thin layer of non-Newtonian bed mud under surface waves is examined with a two-fluidStokes boundary layer model. The mud is assumed to be a bi-viscous fluid, which tends to resist motion for small-appliedstresses, but flows readily when the yield stress is exceeded. Asymptotic expansions suitable for shallow fluid layers areapplied, and the second-order solutions for the mass transport induced by surface progressive waves are obtained numeri-cally. It is found that the stronger the non-Newtonian behavior of the mud, the more pronounced intermittency of theflow. Consequently, the mass transport velocity is diminished in magnitude, and can even become negative (i. e., oppo-site to wave propagation) for a certain range of yield stress.

  12. Single-Molecule Investigations of Morphology and Mass Transport Dynamics in Nanostructured Materials

    Science.gov (United States)

    Higgins, Daniel A.; Park, Seok Chan; Tran-Ba, Khanh-Hoa; Ito, Takashi

    2015-07-01

    Nanostructured materials such as mesoporous metal oxides and phase-separated block copolymers form the basis for new monolith, membrane, and thin film technologies having applications in energy storage, chemical catalysis, and separations. Mass transport plays an integral role in governing the application-specific performance characteristics of many such materials. The majority of methods employed in their characterization provide only ensemble data, often masking the nanoscale, molecular-level details of materials morphology and mass transport. Single-molecule fluorescence methods offer direct routes to probing these characteristics on a single-molecule/single-nanostructure basis. This article provides a review of single-molecule studies focused on measurements of anisotropic diffusion, adsorption, partitioning, and confinement in nanostructured materials. Experimental methods covered include confocal and wide-field fluorescence microscopy. The results obtained promise to deepen our understanding of mass transport mechanisms in nanostructures, thus aiding in the realization of advanced materials systems.

  13. Yeast culture supplement during nursing and transport affects immunity and intestinal microbial ecology of weanling pigs.

    Science.gov (United States)

    Weedman, S M; Rostagno, M H; Patterson, J A; Yoon, I; Fitzner, G; Eicher, S D

    2011-06-01

    The objectives of this study were to determine the influence of a Saccharomyces cerevisiae fermentation product on innate immunity and intestinal microbial ecology after weaning and transport stress. In a randomized complete block design, before weaning and in a split-plot analysis of a 2 × 2 factorial arrangement of yeast culture (YY) and transport (TT) after weaning, 3-d-old pigs (n = 108) were randomly assigned within litter (block) to either a control (NY, milk only) or yeast culture diet (YY; delivered in milk to provide 0.1 g of yeast culture product/kg of BW) from d 4 to 21. At weaning (d 21), randomly, one-half of the NY and YY pigs were assigned to a 6-h transport (NY-TT and YY-TT) before being moved to nursery housing, and the other one-half were moved directly to nursery housing (NY-NT and YY-NT, where NT is no transport). The yeast treatment was a 0.2% S. cerevisiae fermentation product and the control treatment was a 0.2% grain blank in feed for 2 wk. On d 1 before transport and on d 1, 4, 7, and 14 after transport, blood was collected for leukocyte assays, and mesenteric lymph node, jejunal, and ileal tissue, and jejunal, ileal, and cecal contents were collected for Toll-like receptor expression (TLR); enumeration of Escherichia coli, total coliforms, and lactobacilli; detection of Salmonella; and microbial analysis. After weaning, a yeast × transport interaction for ADG was seen (P = 0.05). Transport affected (P = 0.09) ADFI after weaning. Yeast treatment decreased hematocrit (P = 0.04). A yeast × transport interaction was found for counts of white blood cells (P = 0.01) and neutrophils (P = 0.02) and for the neutrophil-to-lymphocyte ratio (P = 0.02). Monocyte counts revealed a transport (P = 0.01) effect. Interactions of yeast × transport (P = 0.001) and yeast × transport × day (P = 0.09) for TLR2 and yeast × transport (P = 0.08) for TLR4 expression in the mesenteric lymph node were detected. Day affected lactobacilli, total coliform, and E

  14. Intra-tumoral heterogeneity of gemcitabine delivery and mass transport in human pancreatic cancer

    Science.gov (United States)

    Koay, Eugene J.; Baio, Flavio E.; Ondari, Alexander; Truty, Mark J.; Cristini, Vittorio; Thomas, Ryan M.; Chen, Rong; Chatterjee, Deyali; Kang, Ya'an; Zhang, Joy; Court, Laurence; Bhosale, Priya R.; Tamm, Eric P.; Qayyum, Aliya; Crane, Christopher H.; Javle, Milind; Katz, Matthew H.; Gottumukkala, Vijaya N.; Rozner, Marc A.; Shen, Haifa; Lee, Jeffrey E.; Wang, Huamin; Chen, Yuling; Plunkett, William; Abbruzzese, James L.; Wolff, Robert A.; Maitra, Anirban; Ferrari, Mauro; Varadhachary, Gauri R.; Fleming, Jason B.

    2014-12-01

    There is substantial heterogeneity in the clinical behavior of pancreatic cancer and in its response to therapy. Some of this variation may be due to differences in delivery of cytotoxic therapies between patients and within individual tumors. Indeed, in 12 patients with resectable pancreatic cancer, we previously demonstrated wide inter-patient variability in the delivery of gemcitabine as well as in the mass transport properties of tumors as measured by computed tomography (CT) scans. However, the variability of drug delivery and transport properties within pancreatic tumors is currently unknown. Here, we analyzed regional measurements of gemcitabine DNA incorporation in the tumors of the same 12 patients to understand the degree of intra-tumoral heterogeneity of drug delivery. We also developed a volumetric segmentation approach to measure mass transport properties from the CT scans of these patients and tested inter-observer agreement with this new methodology. Our results demonstrate significant heterogeneity of gemcitabine delivery within individual pancreatic tumors and across the patient cohort, with gemcitabine DNA incorporation in the inner portion of the tumors ranging from 38 to 74% of the total. Similarly, the CT-derived mass transport properties of the tumors had a high degree of heterogeneity, ranging from minimal difference to almost 200% difference between inner and outer portions of the tumor. Our quantitative method to derive transport properties from CT scans demonstrated less than 5% difference in gemcitabine prediction at the average CT-derived transport value across observers. These data illustrate significant inter-patient and intra-tumoral heterogeneity in the delivery of gemcitabine, and highlight how this variability can be reproducibly accounted for using principles of mass transport. With further validation as a biophysical marker, transport properties of tumors may be useful in patient selection for therapy and prediction of

  15. Thermo-fluidic devices and materials inspired from mass and energy transport phenomena in biological system

    Institute of Scientific and Technical Information of China (English)

    Jian XIAO; Jing LIU

    2009-01-01

    Mass and energy transport consists of one of the most significant physiological processes in nature, which guarantees many amazing biological phenomena and activ-ities. Borrowing such idea, many state-of-the-art thermo-fluidic devices and materials such as artificial kidneys, carrier erythrocyte, blood substitutes and so on have been successfully invented. Besides, new emerging technologies are still being developed. This paper is dedicated to present-ing a relatively complete review of the typical devices and materials in clinical use inspired by biological mass and energy transport mechanisms. Particularly, these artificial thermo-fluidic devices and materials will be categorized into organ transplantation, drug delivery, nutrient transport, micro operation, and power supply. Potential approaches for innovating conventional technologies were discussed, corresponding biological phenomena and physical mechan-isms were interpreted, future promising mass-and-energy-transport-based bionic devices were suggested, and prospects along this direction were pointed out. It is expected that many artificial devices based on biological mass and energy transport principle will appear to better improve vari-ous fields related to human life in the near future.

  16. The Significance of Gas-Phase Mass Transport in Assessment of kchem and Dchem

    DEFF Research Database (Denmark)

    Lohne, Ørjan Fossmark; Søgaard, Martin; Wiik, Kjell

    2013-01-01

    In this work, the validity of electrical conductivity relaxation (ECR) as a method for the assessment of chemical surface exchange, kchem, and bulk diffusion, Dchem, coefficients is investigated with respect to mass transport limitations in the gas phase. A model encompassing both the oxygen...... is evident and modeled apparent activation energies for kchem are shown to decrease significantly. A criteria for the validity of Dchem is introduced while no such measure could be introduced for kchem. The effect of experimental parameters and material properties on mass transport limitations are presented...

  17. Potassium nutrition and water availability affect phloem transport of photosynthetic carbon in eucalypt trees

    Science.gov (United States)

    Epron, Daniel; Cabral, Osvaldo; Laclau, Jean-Paul; Dannoura, Masako; Packer, Ana Paula; Plain, Caroline; Battie-Laclau, Patricia; Moreira, Marcelo; Trivelin, Paulo; Bouillet, Jean-Pierre; Gérant, Dominique; Nouvellon, Yann

    2015-04-01

    Potassium fertilisation strongly affects growth and carbon partitioning of eucalypt on tropical soil that are strongly weathered. In addition, potassium fertilization could be of great interest in mitigating the adverse consequences of drought in planted forests, as foliar K concentrations influence osmotic adjustment, stomatal regulation and phloem loading. Phloem is the main pathway for transferring photosynthate from source leaves to sink organs, thus controlling growth partitioning among the different tree compartments. But little is known about the effect of potassium nutrition on phloem transport of photosynthetic carbon and on the interaction between K nutrition and water availability. In situ 13C pulse labelling was conducted on tropical eucalypt trees (Eucalyptus grandis L.) grown in a trial plantation with plots in which 37% of throughfall were excluded (about 500 mm/yr) using home-made transparent gutters (-W) or not (+W) and plots that received 0.45 mol K m-2 applied as KCl three months after planting (+K) or not (-K). Three trees were labelled in each of the four treatments (+K+W, +K-W, -K+W and -K-W). Trees were labelled for one hour by injecting pure 13CO2 in a 27 m3 whole crown chamber. We estimated the velocity of carbon transfer in the trunk by comparing time lags between the uptake of 13CO2 and its recovery in trunk CO2 efflux recorded by off axis integrated cavity output spectroscopy (Los Gatos Research) in two chambers per tree, one just under the crown and one at the base of the trunk. We analyzed the dynamics of the label recovered in the foliage and in the phloem sap by analysing carbon isotope composition of bulk leaf organic matter and phloem extracts using an isotope ratio mass spectrometer. The velocity of carbon transfer in the trunk and the initial rate 13C disappearance from the foliage were much higher in +K trees than in -K trees with no significant effect of rainfall. The volumetric flow of phloem, roughly estimated by multiplying

  18. Extracellular mass transport considerations for space flight research concerning suspended and adherent in vitro cell cultures

    Science.gov (United States)

    Klaus, David M.; Benoit, Michael R.; Nelson, Emily S.; Hammond, Timmothy G.

    2004-01-01

    Conducting biological research in space requires consideration be given to isolating appropriate control parameters. For in vitro cell cultures, numerous environmental factors can adversely affect data interpretation. A biological response attributed to microgravity can, in theory, be explicitly correlated to a specific lack of weight or gravity-driven motion occurring to, within or around a cell. Weight can be broken down to include the formation of hydrostatic gradients, structural load (stress) or physical deformation (strain). Gravitationally induced motion within or near individual cells in a fluid includes sedimentation (or buoyancy) of the cell and associated shear forces, displacement of cytoskeleton or organelles, and factors associated with intra- or extracellular mass transport. Finally, and of particular importance for cell culture experiments, the collective effects of gravity must be considered for the overall system consisting of the cells, their environment and the device in which they are contained. This does not, however, rule out other confounding variables such as launch acceleration, on orbit vibration, transient acceleration impulses or radiation, which can be isolated using onboard centrifuges or vibration isolation techniques. A framework is offered for characterizing specific cause-and-effect relationships for gravity-dependent responses as a function of the above parameters.

  19. Mass transport properties of Pu/DT mixtures from orbital free molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Kress, Joel David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ticknor, Christopher [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Collins, Lee A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-09-16

    Mass transport properties (shear viscosity and diffusion coefficients) for Pu/DT mixtures were calculated with Orbital Free Molecular Dynamics (OFMD). The results were fitted to simple functions of mass density (for ρ=10.4 to 62.4 g/cm3) and temperature (for T=100 up to 3,000 eV) for Pu/DT mixtures consisting of 100/0, 25/75, 50/50, and 75/25 by number.

  20. Rating mass concentration of airborne dust in the road transport depending on the type of pollution transport routes.

    OpenAIRE

    PÁVEK, Miroslav

    2014-01-01

    In the thesis the values of air pollution re-suspended solid pollutants on the diameter of 10 micrometres (PM10) during the movement of vehicles of different categories of polluted roads routes. Measurements were carried out on three lines of transport operation of various vehicle categories as diverse weight and the type of pollution road. Measured values and analysis results show that the resulting air pollution in the vicinity of the road affects several factors. The main factors include t...

  1. Effects of functional group mass variance on vibrational properties and thermal transport in graphene

    Science.gov (United States)

    Lindsay, L.; Kuang, Y.

    2017-03-01

    Intrinsic thermal resistivity critically depends on features of phonon dispersions dictated by harmonic interatomic forces and masses. Here we present the effects of functional group mass variance on vibrational properties and thermal conductivity (κ ) of functionalized graphene from first-principles calculations. We use graphane, a buckled graphene backbone with covalently bonded hydrogen atoms on both sides, as the base material and vary the mass of the hydrogen atoms to simulate the effect of mass variance from other functional groups. We find nonmonotonic behavior of κ with increasing mass of the functional group and an unusual crossover from acoustic-dominated to optic-dominated thermal transport behavior. We connect this crossover to changes in the phonon dispersion with varying mass which suppress acoustic phonon velocities, but also give unusually high velocity optic modes. Further, we show that out-of-plane acoustic vibrations contribute significantly more to thermal transport than in-plane acoustic modes despite breaking of a reflection-symmetry-based scattering selection rule responsible for their large contributions in graphene. This work demonstrates the potential for manipulation and engineering of thermal transport properties in two-dimensional materials toward targeted applications.

  2. Does body mass index and position of impacted lower third molar affect the postoperative pain intensity?

    Science.gov (United States)

    Matijević, Marko; Uzarević, Zvonimir; Gvozdić, Vlatka; Leović, Dinko; Ivanisević, Zrinka; Matijević-Mikelić, Valentina; Bogut, Irella; Vcev, Aleksandar; Macan, Darko

    2012-12-01

    The main objective of this study was to determine to which extent body mass index and position of impacted lower third molar was affecting the pain intensity in the first seven postoperative days. The study was conducted following the extraction of the lower third molar in 108 patients. Depending on the type of information given to each particular patient, the patients were divided in two groups: the test group where patients were given detailed standard written and verbal instructions and the control group which received only standard written instructions about treatment after surgery. Using canonical discriminant analysis we investigated the influence of body mass index and the position of impacted lower third molar on postoperative pain intensity in two groups of patients. Results of this study showed that the body mass index or the tooth position did not have influence on intensity of postoperative pain. The body mass index and the position of impacted lower third molar do not affect the postoperative pain intensity.

  3. The water mass structure and transports in the Atlantic Subpolar Gyre

    Science.gov (United States)

    García-Ibáñez, Maribel I.; Pardo, Paula C.; Carracedo, Lidia I.; Mercier, Herlé; Lherminier, Pascale; Ríos, Aida F.; Pérez, Fiz F.

    2014-05-01

    The water mass structure, mixing and spreading in the North Atlantic Subpolar Gyre (SPG) were analyzed by means of an extended Optimum MultiParameter (eOMP) approach over the six repeats of the WOCE A25 hydrographic line located at the southern boundary of this gyre. The data includes the Fourex (4x) line taken in 1997 and the five repeat sections of the OVIDE line taken every other year from 2002 to 2010. We proposed 10 water masses, defined by their thermohaline properties (potential temperature and salinity), oxygen and nutrients (nitrate, phosphate and silicate), to resolve the water mass structure of the SPG. The eOMP enables to decompose the transports by water mass quantitatively. Our model provides water mass distributions that are able to reproduce the input data of potential temperature, salinity and silicate with r2>0.997 and of oxygen, nitrate and phosphate with r2>0.96. By combining the velocity field and the water mass structure across each section we provide the relative contribution of each water mass to the Meridional Overturning Circulation (MOC) and we evaluate the water mass transformation in the North Atlantic. The MOC upper limb during OVIDE (2002-2010) is constituted by the northward transports of the central waters (9.4 Sv; 1 Sv = 106 m3 s-1), the Subarctic Intermediate Water (SAIW, 2.8 Sv) and the Subpolar Mode Water (SPMW) of the Iceland Basin (2.1 Sv). The MOC lower limb is constituted by the southward transports of the Iceland-Scotland Overflow Water (ISOW, 2.9 Sv), the Denmark Strait Overflow Water (DSOW, 2.5 Sv), the Polar Intermediate Water (PIW, 0.8 Sv), the Labrador Sea Water (LSW, 3.6 Sv) and the SPMW of the Irminger Sea (4.7 Sv). These results contrast with those obtained for the 1997, cruise developed after a period of high NAO index. The greater MOC strength in 1997 resulted in greater northward transports of central waters (17.5 Sv), while the SAIW transports remained approximately unchanged. The increase of the northward

  4. Diffuse hydrological mass transport through catchments: scenario analysis of coupled physical and biogeochemical uncertainty effects

    Directory of Open Access Journals (Sweden)

    K. Persson

    2011-10-01

    Full Text Available This paper quantifies and maps the effects of coupled physical and biogeochemical variability on diffuse hydrological mass transport through and from catchments. It further develops a scenario analysis approach and investigates its applicability for handling uncertainties about both physical and biogeochemical variability and their different possible cross-correlation. The approach enables identification of conservative assumptions, uncertainty ranges, as well as pollutant/nutrient release locations and situations for which further investigations are most needed in order to reduce the most important uncertainty effects. The present scenario results provide different statistical and geographic distributions of advective travel times for diffuse hydrological mass transport. The geographic mapping can be used to identify potential hotspot areas with large mass loading to downstream surface and coastal waters, as well as their opposite, potential lowest-impact areas within the catchment. Results for alternative travel time distributions show that neglect or underestimation of the physical advection variability, and in particular of those transport pathways with much shorter than average advective solute travel times, can lead to substantial underestimation of pollutant and nutrient loads to downstream surface and coastal waters. This is particularly true for relatively high catchment-characteristic product of average attenuation rate and average advective travel time, for which mass delivery would be near zero under assumed transport homogeneity but can be orders of magnitude higher for variable transport conditions. A scenario of high advection variability, with a significant fraction of relatively short travel times, combined with a relevant average biogeochemical mass attenuation rate, emerges consistently from the present results as a generally reasonable, conservative assumption for estimating maximum diffuse mass loading, when the prevailing

  5. Momentum, heat, and mass transfer analogy for vertical hydraulic transport of inert particles

    Directory of Open Access Journals (Sweden)

    Jaćimovski Darko R.

    2014-01-01

    Full Text Available Wall-to-bed momentum, heat and mass transfer in vertical liquid-solids flow, as well as in single phase flow, were studied. The aim of this investigation was to establish the analogy among those phenomena. Also, effect of particles concentration on momentum, heat and mass transfer was studied. The experiments in hydraulic transport were performed in a 25.4 mm I.D. cooper tube equipped with a steam jacket, using spherical glass particles of 1.94 mm in diameter and water as a transport fluid. The segment of the transport tube used for mass transfer measurements was inside coated with benzoic acid. In the hydraulic transport two characteristic flow regimes were observed: turbulent and parallel particle flow regime. The transition between two characteristic regimes (γ*=0, occurs at a critical voidage ε≈0.85. The vertical two-phase flow was considered as the pseudofluid, and modified mixture-wall friction coefficient (fw and modified mixture Reynolds number (Rem were introduced for explanation of this system. Experimental data show that the wall-to-bed momentum, heat and mass transfer coefficients, in vertical flow of pseudofluid, for the turbulent regime are significantly higher than in parallel regime. Wall-to-bed, mass and heat transfer coefficients in hydraulic transport of particles were much higher then in single-phase flow for lower Reynolds numbers (Re15000, there was not significant difference. The experimental data for wall-to-bed momentum, heat and mass transfer in vertical flow of pseudofluid in parallel particle flow regime, show existing analogy among these three phenomena. [Projekat Ministarstva nauke Republike Srbije, br. 172022

  6. A correction technique for the dispersive effects of mass lumping for transport problems

    KAUST Repository

    Guermond, Jean-Luc

    2013-01-01

    This paper addresses the well-known dispersion effect that mass lumping induces when solving transport-like equations. A simple anti-dispersion technique based on the lumped mass matrix is proposed. The method does not require any non-trivial matrix inversion and has the same anti-dispersive effects as the consistent mass matrix. A novel quasi-lumping technique for P2 finite elements is introduced. Higher-order extensions of the method are also discussed. © 2012 Elsevier B.V.

  7. Aerosol properties and radiative forcing for three air masses transported in Summer 2011 to Sopot, Poland

    Science.gov (United States)

    Rozwadowska, Anna; Stachlewska, Iwona S.; Makuch, P.; Markowicz, K. M.; Petelski, T.; Strzałkowska, A.; Zieliński, T.

    2013-05-01

    Properties of atmospheric aerosols and solar radiation reaching the Earth's surface were measured during Summer 2011 in Sopot, Poland. Three cloudless days, characterized by different directions of incoming air-flows, which are typical transport pathways to Sopot, were used to estimate a radiative forcing due to aerosols present in each air mass.

  8. Next-generation satellite gravimetry for measuring mass transport in the Earth system

    NARCIS (Netherlands)

    Teixeira Encarnação, J.

    2015-01-01

    The main objective of the thesis is to identify the optimal set-up for future satellite gravimetry missions aimed at monitoring mass transport in the Earth’s system.The recent variability of climatic patterns, the spread of arid regions and associ- ated changes in the hydrological cycle, and vigorou

  9. Transport of manure-borne testosterone in soils affected by artificial rainfall events.

    Science.gov (United States)

    Qi, Yong; Zhang, Tian C

    2016-04-15

    Information is very limited on fate and transport of steroidal hormones in soils. In this study, the rainfall simulation tests were conducted with a soil slab reactor to investigate the transport of manure-borne testosterone in a silty-clay loam soil under six controllable operation conditions (i.e., three rainfall intensities and two tillage practices). The properties [e.g., rainwater volume, particle size distribution (PSD)] of the slurry samples collected in runoff and leachate at different time intervals were measured; their correlation with the distribution of testosterone among runoff, leachate and soil matrix was analyzed. The results indicated that more than 88% of the testosterone was held by the applied manure and/or soil matrix even under the rainfall intensity of 100-year return frequency. The runoff facilitated testosterone transport through both dissolved and particle-associated phases, with the corresponding mass ratio being ∼7 to 3. Soil particles collected through runoff were mainly silt-sized aggregates (STA) and clays, indicating the necessity of using partially-dispersed soil particles as testing materials to conduct batch tests (e.g., sorption/desorption). No testosterone was detected at the soil depth >20 cm or in the leachate samples, indicating that transport of testosterone through the soil is very slow when there is no preferential flow. Tillage practice could impede the transport of testosterone in runoff. For the first time, results and the methodologies of this study allow one to quantify the hormone distribution among runoff, leachate and soil matrix at the same time and to obtain a comprehensive picture of the F/T of manure-borne testosterone in soil-water environments.

  10. Behavioural responses to thermal conditions affect seasonal mass change in a heat-sensitive northern ungulate.

    Directory of Open Access Journals (Sweden)

    Floris M van Beest

    Full Text Available BACKGROUND: Empirical tests that link temperature-mediated changes in behaviour (activity and resource selection to individual fitness or condition are currently lacking for endotherms yet may be critical to understanding the effect of climate change on population dynamics. Moose (Alces alces are thought to suffer from heat stress in all seasons so provide a good biological model to test whether exposure to non-optimal ambient temperatures influence seasonal changes in body mass. Seasonal mass change is an important fitness correlate of large herbivores and affects reproductive success of female moose. METHODOLOGY/PRINCIPAL FINDINGS: Using GPS-collared adult female moose from two populations in southern Norway we quantified individual differences in seasonal activity budget and resource selection patterns as a function of seasonal temperatures thought to induce heat stress in moose. Individual body mass was recorded in early and late winter, and autumn to calculate seasonal mass changes (n = 52 over winter, n = 47 over summer. We found large individual differences in temperature-dependent resource selection patterns as well as within and between season variability in thermoregulatory strategies. As expected, individuals using an optimal strategy, selecting young successional forest (foraging habitat at low ambient temperatures and mature coniferous forest (thermal shelter during thermally stressful conditions, lost less mass in winter and gained more mass in summer. CONCLUSIONS/SIGNIFICANCE: This study provides evidence that behavioural responses to temperature have important consequences for seasonal mass change in moose living in the south of their distribution in Norway, and may be a contributing factor to recently observed declines in moose demographic performance. Although the mechanisms that underlie the observed temperature mediated habitat-fitness relationship remain to be tested, physiological state and individual variation in

  11. Investigating Mass Transport Limitations on Xylan Hydrolysis During Dilute Acid Pretreatment of Poplar

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Ashutosh; Pilath, Heid M.; Parent, Yves; Chatterjee, Siddharth G.; Donohoe, Bryon S.; Yarbrough, John M.; Himmel, Michael E.; Nimlos, Mark R.; Johnson, David K.

    2014-04-28

    Mass transport limitations could be an impediment to achieving high sugar yields during biomass pretreatment and thus be a critical factor in the economics of biofuels production. The objective of this work was to study the mass transfer restrictions imposed by the structure of biomass on the hydrolysis of xylan during dilute acid pretreatment of biomass. Mass transfer effects were studied by pretreating poplar wood at particle sizes ranging from 10 micrometers to 10 mm. This work showed a significant reduction in the rate of xylan hydrolysis in poplar when compared to the intrinsic rate of hydrolysis for isolated xylan that is possible in the absence of mass transfer. In poplar samples we observed no significant difference in the rates of xylan hydrolysis over more than two orders of magnitude in particle size. It appears that no additional mass transport restrictions are introduced by increasing particle size from 10 micrometers to 10 mm. This work suggests that the rates of xylan hydrolysis in biomass particles are limited primarily by the diffusion of hydrolysis products out of plant cell walls. A mathematical description is presented to describe the kinetics of xylan hydrolysis that includes transport of the hydrolysis products through biomass into the bulk solution. The modeling results show that the effective diffusion coefficient of the hydrolysis products in the cell wall is several orders of magnitude smaller than typical values in other applications signifying the role of plant cell walls in offering resistance to diffusion of the hydrolysis products.

  12. Mass transport in a porous microchannel for non-Newtonian fluid with electrokinetic effects.

    Science.gov (United States)

    Mondal, Sourav; De, Sirshendu

    2013-03-01

    Quantification of mass transfer in porous microchannel is of paramount importance in several applications. Transport of neutral solute in presence of convective-diffusive EOF having non-Newtonian rheology, in a porous microchannel was presented in this article. The governing mass transfer equation coupled with velocity field was solved along with associated boundary conditions using a similarity solution method. An analytical solution of mass transfer coefficient and hence, Sherwood number were derived from first principles. The corresponding effects of assisting and opposing pressure-driven flow and EOF were also analyzed. The influence of wall permeation, double-layer thickness, rheology, etc. on the mass transfer was also investigated. Permeation at the wall enhanced the mass transfer coefficient more than five times compared to impervious conduit in case of pressure-driven flow assisting the EOF at higher values of κh. Shear thinning fluid exhibited more enhancement of Sherwood number in presence of permeation compared to shear thickening one. The phenomenon of stagnation was observed at a particular κh (∼2.5) in case of EOF opposing the pressure-driven flow. This study provided a direct quantification of transport of a neutral solute in case of transdermal drug delivery, transport of drugs from blood to target region, etc.

  13. A mass-conserving advection scheme for offline simulation of scalar transport in coastal ocean models

    Science.gov (United States)

    Gillibrand, P. A.; Herzfeld, M.

    2016-05-01

    We present a flux-form semi-Lagrangian (FFSL) advection scheme designed for offline scalar transport simulation with coastal ocean models using curvilinear horizontal coordinates. The scheme conserves mass, overcoming problems of mass conservation typically experienced with offline transport models, and permits long time steps (relative to the Courant number) to be used by the offline model. These attributes make the method attractive for offline simulation of tracers in biogeochemical or sediment transport models using archived flow fields from hydrodynamic models. We describe the FFSL scheme, and test it on two idealised domains and one real domain, the Great Barrier Reef in Australia. For comparison, we also include simulations using a traditional semi-Lagrangian advection scheme for the offline simulations. We compare tracer distributions predicted by the offline FFSL transport scheme with those predicted by the original hydrodynamic model, assess the conservation of mass in all cases and contrast the computational efficiency of the schemes. We find that the FFSL scheme produced very good agreement with the distributions of tracer predicted by the hydrodynamic model, and conserved mass with an error of a fraction of one percent. In terms of computational speed, the FFSL scheme was comparable with the semi-Lagrangian method and an order of magnitude faster than the full hydrodynamic model, even when the latter ran in parallel on multiple cores. The FFSL scheme presented here therefore offers a viable mass-conserving and computationally-efficient alternative to traditional semi-Lagrangian schemes for offline scalar transport simulation in coastal models.

  14. Quantitative Analysis of Major Factors Affecting Black Carbon Transport and Concentrations in the Unique Atmospheric Structures of Urban Environment

    Science.gov (United States)

    Liang, Marissa Shuang

    Black carbon (BC) from vehicular emission in transportation is a principal component of particulate matters ≤ 2.5 mum (PM2.5). PM2.5 and other diesel emission pollutants (e.g., NOx) are regulated by the Clean Air Act (CAA) according to the National Ambient Air Quality standards (NAAQS). This doctoral dissertation details a study on transport behaviors of black carbon and PM2.5 from transportation routes, their relations with the atmospheric structure of an urban formation, and their relations with the use of biodiesel fuels. The results have implications to near-road risk assessment and to the development of sustainable transportation solutions in urban centers. The first part of study quantified near-roadside black carbon transport as a function of particulate matter (PM) size and composition, as well as microclimatic variables (temperature and wind fields) at the interstate highway I-75 in northern Cincinnati, Ohio. Among variables examined, wind speed and direction significantly affect the roadside transport of black carbon and hence its effective emission factor. Observed non-Gaussian dispersion occurred during low wind and for wind directions at acute angles or upwind to the receptors, mostly occurring in the morning hours. Meandering of air pollutant mass under thermal inversion is likely the driving force. In contrary, Gaussian distribution predominated in daytime of strong downwinds. The roles of urban atmospheric structure, wind fields, and the urban heat island (UHI) effects were further examined on pollutant dispersion and transport. Spatiotemporal variations of traffic flow, atmospheric structure, ambient temperature and PM2.5 concentration data from 14 EPA-certified NAAQS monitoring stations, were analyzed in relation to land-use in the Cincinnati metropolitan area. The results show a decade-long UHI effects with higher interior temperature than that in exurban, and a prominent nocturnal thermal inversion frequent in urban boundary layer. The

  15. Wave Effect on the Ocean Circulations Through Mass Transport and Wave-Induced Pumping

    Institute of Scientific and Technical Information of China (English)

    BI Fan; WU Kejian

    2014-01-01

    The wave Coriolis-Stokes-Force-modified ocean momentum equations are reviewed in this paper and the wave Stokes transport is pointed out to be part of the ocean circulations. Using the European Centre for Medium-Range Weather Forecasts 40-year reanalysis data (ERA-40 data) and the Simple Ocean Data Assimilation (SODA) version 2.2.4 data, the magnitude of this transport is compared with that of wind-driven Sverdrup transport and a 5-to-10-precent contribution by the wave Stokes transport is found. Both transports are stronger in boreal winter than in summers. The wave effect can be either contribution or cancellation in different seasons. Examination with Kuroshio transport verifies similar seasonal variations. The clarification of the efficient wave boundary condition helps to understand the role of waves in mass transport. It acts as surface wind stress and can be functional down to the bottom of the ageostrophic layer. The pumping velocities resulting from wave-induced stress are zonally distributed and are significant in relatively high latitudes. Further work will focus on the model performance of the wave-stress-changed-boundary and the role of swells in the eastern part of the oceans.

  16. Activity of erdosteine on mucociliary transport in patients affected by chronic bronchitis.

    Science.gov (United States)

    Olivieri, D; Del Donno, M; Casalini, A; D'Ippolito, R; Fregnan, G B

    1991-01-01

    The influence of erdosteine (a mucomodulator endowed with mucolytic and antioxidant properties) on human mucociliary transport (MCT) was investigated in a double-blind placebo controlled study. Sixteen former smokers affected by chronic bronchitis, preselected for their mucociliary responsiveness to an inhaled beta 2-agonist, were divided into two groups (matched by number, sex, age and FEV1%) and orally treated with placebo or erdosteine (300 mg t.i.d.) for 8 days. Their MCT was assessed by the bronchofiberscopy technique just before starting the treatment and at the end of the treatment. The pretreatment mucus transport velocity in these patients was significantly decreased with respect to healthy subjects. The erdosteine treatment induced a significant improvement of MCT while placebo was inactive (mean % variation +/- SE against their baseline values being +60.4 +/- 18.4 and -3.0 +/- 5.9, respectively). This peculiar activity of erdosteine on mucus transport may be of clinical usefulness in chronic bronchitic patients and it can be added to beta 2-agonist to restore the decreased MCT.

  17. Modelling of reactive transport in a sedimentary basin affected by a glaciation/deglaciation event

    Energy Technology Data Exchange (ETDEWEB)

    Bea, S.A.; Mayer, U. [Univ. of British Columbia, Dept. of Earth and Ocean Sciences, Vancouver, BC (Canada); MacQuarrie, K.T.B. [Univ. of New Brunswick, Dept. of Civil Engineering, Fredericton, NB (Canada)

    2011-07-01

    Canada's plan for the long-term care of used nuclear fuel is containment and isolation in a Deep Geologic Repository (DGR) constructed in a suitable sedimentary or crystalline rock formation. In sedimentary basins fluid migration and geochemical conditions may be impacted by multiple interacting processes including density-dependent groundwater flow, solute transport, heat transfer, mechanical loading, and rock-water interactions. Understanding the interactions among these processes is important when assessing the long-term hydrodynamic and geochemical stability of sedimentary basins during glaciation/deglaciation events. To improve the capability to investigate these processes, an enhanced version of the reactive transport code MIN3P (i.e. MIN3P-NWMO) was developed and tested. The processes incorporated in the new model were evaluated by simulating reactive transport in a hypothetical sedimentary basin affected by a simplified glaciation scenario consisting of a single cycle of ice sheet advance and retreat. The simulations are used to provide an illustrative assessment of the hydrogeological and geochemical stability of this sedimentary basin over a time period of 32,500 years. The results suggest a high degree of geochemical stability. (author)

  18. Land use impacts on transport : how land use factors affect travel behavior

    Energy Technology Data Exchange (ETDEWEB)

    Litman, T.

    2005-11-16

    The relationship between land use patterns and travel behaviour was examined with reference to the ability of land use management strategies to achieve transportation planning objectives. The study examined how land use factors such as density, regional accessibility, roadway connectivity affect per capita motor vehicle ownership and use; mode split; non-motorized travel; and accessibility by people who are physically or economically disadvantaged. The social, economic and environmental impacts that result from higher travel were discussed with reference to the degree to which conventional planning accounts for this increased travel. Alternatives for improving mobility in urban and suburban areas were presented. It was concluded that travel behaviour can change by promoting more efficient use of existing roadway capacity, by improving travel options and providing incentives to use alternative transport modes. It was suggested that strategies such as Smart Growth and New Urbanism can be applied in a variety of land use scenarios, including urban, suburban and rural areas to help achieve transportation planning objectives. 122 refs., 16 tabs., 12 figs.

  19. Implications of anthropogenic river stage fluctuations on mass transport in a valley fill aquifer

    Science.gov (United States)

    Boutt, D.F.; Fleming, B.J.

    2009-01-01

    In humid regions a strong coupling between surface water features and groundwater systems may exist. In these environments the exchange of water and solute depends primarily on the hydraulic gradient between the reservoirs. We hypothesize that daily changes in river stage associated with anthropogenic water releases (such as those from a hydroelectric dam) cause anomalous mixing in the near-stream environment by creating large hydraulic head gradients between the stream and adjacent aquifer. We present field observations of hydraulic gradient reversals in a shallow aquifer. Important physical processes observed in the field are explicitly reproduced in a physically based two-dimensional numerical model of groundwater flow coupled to a simplistic surface water boundary condition. Mass transport simulations of a conservative solute introduced into the surface water are performed and examined relative to a stream condition without stage fluctuations. Simulations of 20 d for both fluctuating river stage and fixed high river stage show that more mass is introduced into the aquifer from the stream in the oscillating case even though the net water flux is zero. Enhanced transport by mechanical dispersion leads to mass being driven away from the hydraulic zone of influence of the river. The modification of local hydraulic gradients is likely to be important for understanding dissolved mass transport in near-stream aquifer environments and can influence exchange zone processes under conditions of high-frequency stream stage changes. Copyright 2009 by the American Geophysical Union.

  20. Finite element modeling of mass transport in high-Péclet cardiovascular flows

    Science.gov (United States)

    Hansen, Kirk; Arzani, Amirhossein; Shadden, Shawn

    2016-11-01

    Mass transport plays an important role in many important cardiovascular processes, including thrombus formation and atherosclerosis. These mass transport problems are characterized by Péclet numbers of up to 108, leading to several numerical difficulties. The presence of thin near-wall concentration boundary layers requires very fine mesh resolution in these regions, while large concentration gradients within the flow cause numerical stabilization issues. In this work, we will discuss some guidelines for solving mass transport problems in cardiovascular flows using a stabilized Galerkin finite element method. First, we perform mesh convergence studies in a series of idealized and patient-specific geometries to determine the required near-wall mesh resolution for these types of problems, using both first- and second-order tetrahedral finite elements. Second, we investigate the use of several boundary condition types at outflow boundaries where backflow during some parts of the cardiac cycle can lead to convergence issues. Finally, we evaluate the effect of reducing Péclet number by increasing mass diffusivity as has been proposed by some researchers. This work was supported by the NSF GRFP and NSF Career Award #1354541.

  1. Design of New Electrode Interface to Improve Transport of Atmospheric Pressure Ions into a Mass Spectrometer

    Directory of Open Access Journals (Sweden)

    Francis Beaudry

    2009-01-01

    Full Text Available An intermediate electrode was developed to improve the transfer of ions in atmospheric pressure from a first location, the ion source, to a second location, the mass spectrometer. The new apparatus increase the efficiency of mass analysis of molecular constituents of liquids, including trace analysis of chemical entities, in which an electrospray (ES or IonSpray™ (IS technique is used to produce electrically charged droplets which divide and evaporate to form gaseous ions of the molecular constituents. The gas phase ions are transported to the mass spectrometer by an electric field generated by a new electrode design that separates the two fundamental functions of an electrospray or an IonSpray™, which are the nebulization of charged droplets and the transport of ions into the mass analyzer. The results suggest that the new apparatus provide a gain in signal intensity up to 10 compared with the commercial product. A significant improvement in ion transport results in higher precision and accuracy and/or reduction of the amount of material needed for analysis.

  2. Multiscale mass transport in z~6 galactic discs: fueling black holes

    CERN Document Server

    Prieto, Joaquin

    2015-01-01

    By using AMR cosmological hydrodynamic N-body zoom-in simulations, with the RAMSES code, we studied the mass transport processes onto galactic nuclei from high redshift up to $z\\sim6$. Due to the large dynamical range of the simulations we were able to study the mass accretion process on scales from $\\sim50$ kpc to $\\sim$pc. We studied the BH growth set on the galactic center in relation with the mass transport processes associated to both the Reynolds stress and the gravitational stress on the disc. Such methodology allowed us to identify the main mass transport process as a function of the scales of the problem. We found that in simulations that include radiative cooling and SNe feedback, the SMBH grows at the Eddington limit for some periods of time presenting a $\\langle f_{EDD}\\rangle\\approx 0.5$ through out its evolution. The $\\alpha$ parameter is dominated by the Reynolds term, $\\alpha_R$, with $\\alpha_R\\gg 1$. The gravitational part of the $\\alpha$ parameter, $\\alpha_G$, has an increasing trend toward ...

  3. Mass Transport and Shear Stress as Mediators of Flow Effects on Atherosclerotic Plaque Origin and Growth

    Science.gov (United States)

    Gorder, Riley; Aliseda, Alberto

    2009-11-01

    The carotid artery bifurcation (CAB) is one of the leading site for atherosclerosis, a major cause of mortality and morbidity in the developed world. The specific mechanisms by which perturbed flow at the bifurcation and in the carotid bulge promotes plaque formation and growth are not fully understood. Shear stress, mass transport, and flow residence times are considered dominant factors. Shear stress causes restructuring of endothelial cells at the arterial wall which changes the wall's permeability. Long residence times are associated with enhanced mass transport through increased diffusion of lipids and white blood cells into the arterial wall. Although momentum and mass transfer are traditionally coupled by correlations similar to Reynolds Analogy, the complex flow patterns present in this region due to the pulsatile, transitional, detached flow associated with the complex geometry makes the validity of commonly accepted assumptions uncertain. We create solid models of the CAB from MRI or ultrasound medical images, build flow phantoms on clear polyester resin and use an IOR matching, blood mimicking, working fluid. Using PIV and dye injection techniques the shear stress and scalar transport are experimentally investigated. Our goal is to establish a quantitative relationship between momentum and mass transfer under a wide range of physiologically normal and pathological conditions.

  4. Mass transport of direct methanol fuel cell species in sulfonated poly(ether ether ketone) membranes

    Energy Technology Data Exchange (ETDEWEB)

    Silva, V.S.; Boaventura, M.; Mendes, A.M.; Madeira, L.M. [LEPAE, Chemical Engineering Department, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Ruffmann, B.; Vetter, S.; Nunes, S.P. [GKSS Research Centre, Max-Planck Str., 21502 Geesthacht (Germany)

    2006-05-05

    Homogeneous membranes based on sulfonated poly(ether ether ketone) (sPEEK) with different sulfonation degrees (SD) were prepared and characterized. In order to perform a critical analysis of the SD effect on the polymer barrier and mass transport properties towards direct methanol fuel cell species, proton conductivity, water/methanol pervaporation and nitrogen/oxygen/carbon dioxide pressure rise method experiments are proposed. This procedure allows the evaluation of the individual permeability coefficients in hydrated sPEEK membranes with different sulfonation degrees. Nafion{sup (R)} 112 was used as reference material. DMFC tests were also performed at 50{sup o}C. It was observed that the proton conductivity and the permeability towards water, methanol, oxygen and carbon dioxide increase with the sPEEK sulfonation degree. In contrast, the SD seems to not affect the nitrogen permeability coefficient. In terms of selectivity, it was observed that the carbon dioxide/oxygen selectivity increases with the sPEEK SD. In contrast, the nitrogen/oxygen selectivity decreases. In terms of barrier properties for preventing the DMFC reactants loss, the polymer electrolyte membrane based on the sulfonated poly(ether ether ketone) with SD lower or equal to 71%, although having slightly lower proton conductivity, presented much better characteristics for fuel cell applications compared with the well known Nafion{sup (R)} 112. In terms of the DMFC tests of the studied membranes at low temperature, the sPEEK membrane with SD=71% showed to have similar performance, or even better, as that of Nafion{sup (R)} 112. However, the highest DMFC overall efficiency was achieved using sPEEK membrane with SD=52%. (author)

  5.   Plant Phosphoproteomics: Analysis of Plasma Membrane Transporters by Mass Spectrometry

    DEFF Research Database (Denmark)

    Ye, Juanying; Rudashevskaya, Elena; Young, Clifford

    phosphorylation. Due to the low abundance of phosphoprotein, the specific enrichment prior to MS analysis is necessary. Plant proton pump (H+-ATPase) is an enzyme controls the major transport processes in the plant, such as root nutrient uptake. Moreover, this pump has been proposed to be involved in other......  Phosphorylation is a key regulatory factor in all aspects of eukaryotic biology including the regulation of plant membrane-bound transport proteins. To date, mass spectrometry (MS) has been introduced as powerful technology for study of post translational modifications (PTMs), including protein...

  6. Fuel-mix, fuel efficiency, and transport demand affect prospects for biofuels in northern Europe.

    Science.gov (United States)

    Bright, Ryan M; Strømman, Anders Hammer

    2010-04-01

    Rising greenhouse gas (GHG) emissions in the road transport sector represents a difficult mitigation challenge due to a multitude of intricate factors, namely the dependency on liquid energy carriers and infrastructure lock-in. For this reason, low-carbon renewable energy carriers, particularly second generation biofuels, are often seen as a prominent candidate for realizing reduced emissions and lowered oil dependency over the medium- and long-term horizons. However, the overarching question is whether advanced biofuels can be an environmentally effective mitigation strategy in the face of increasing consumption and resource constraints. Here we develop both biofuel production and road transport consumption scenarios for northern Europe-a region with a vast surplus of forest bioenergy resources-to assess the potential role that forest-based biofuels may play over the medium- and long-term time horizons using an environmentally extended, multiregion input-output model. Through scenarios, we explore how evolving vehicle technologies and consumption patterns will affect the mitigation opportunities afforded by any future supply of forest biofuels. We find that in a scenario involving ambitious biofuel targets, the size of the GHG mitigation wedge attributed to the market supply of biofuels is severely reduced under business-as-usual growth in consumption in the road transport sector. Our results indicate that climate policies targeting the road transport sector which give high emphases to reducing demand (volume), accelerating the deployment of more fuel-efficient vehicles, and promoting altered consumption patterns (structure) can be significantly more effective than those with single emphasis on expanded biofuel supply.

  7. Effects of reservoir heterogeneity on scaling of effective mass transfer coefficient for solute transport.

    Science.gov (United States)

    Leung, Juliana Y; Srinivasan, Sanjay

    2016-09-01

    Modeling transport process at large scale requires proper scale-up of subsurface heterogeneity and an understanding of its interaction with the underlying transport mechanisms. A technique based on volume averaging is applied to quantitatively assess the scaling characteristics of effective mass transfer coefficient in heterogeneous reservoir models. The effective mass transfer coefficient represents the combined contribution from diffusion and dispersion to the transport of non-reactive solute particles within a fluid phase. Although treatment of transport problems with the volume averaging technique has been published in the past, application to geological systems exhibiting realistic spatial variability remains a challenge. Previously, the authors developed a new procedure where results from a fine-scale numerical flow simulation reflecting the full physics of the transport process albeit over a sub-volume of the reservoir are integrated with the volume averaging technique to provide effective description of transport properties. The procedure is extended such that spatial averaging is performed at the local-heterogeneity scale. In this paper, the transport of a passive (non-reactive) solute is simulated on multiple reservoir models exhibiting different patterns of heterogeneities, and the scaling behavior of effective mass transfer coefficient (Keff) is examined and compared. One such set of models exhibit power-law (fractal) characteristics, and the variability of dispersion and Keff with scale is in good agreement with analytical expressions described in the literature. This work offers an insight into the impacts of heterogeneity on the scaling of effective transport parameters. A key finding is that spatial heterogeneity models with similar univariate and bivariate statistics may exhibit different scaling characteristics because of the influence of higher order statistics. More mixing is observed in the channelized models with higher-order continuity. It

  8. Effects of reservoir heterogeneity on scaling of effective mass transfer coefficient for solute transport

    Science.gov (United States)

    Leung, Juliana Y.; Srinivasan, Sanjay

    2016-09-01

    Modeling transport process at large scale requires proper scale-up of subsurface heterogeneity and an understanding of its interaction with the underlying transport mechanisms. A technique based on volume averaging is applied to quantitatively assess the scaling characteristics of effective mass transfer coefficient in heterogeneous reservoir models. The effective mass transfer coefficient represents the combined contribution from diffusion and dispersion to the transport of non-reactive solute particles within a fluid phase. Although treatment of transport problems with the volume averaging technique has been published in the past, application to geological systems exhibiting realistic spatial variability remains a challenge. Previously, the authors developed a new procedure where results from a fine-scale numerical flow simulation reflecting the full physics of the transport process albeit over a sub-volume of the reservoir are integrated with the volume averaging technique to provide effective description of transport properties. The procedure is extended such that spatial averaging is performed at the local-heterogeneity scale. In this paper, the transport of a passive (non-reactive) solute is simulated on multiple reservoir models exhibiting different patterns of heterogeneities, and the scaling behavior of effective mass transfer coefficient (Keff) is examined and compared. One such set of models exhibit power-law (fractal) characteristics, and the variability of dispersion and Keff with scale is in good agreement with analytical expressions described in the literature. This work offers an insight into the impacts of heterogeneity on the scaling of effective transport parameters. A key finding is that spatial heterogeneity models with similar univariate and bivariate statistics may exhibit different scaling characteristics because of the influence of higher order statistics. More mixing is observed in the channelized models with higher-order continuity. It

  9. Estimated lean mass and fat mass differentially affect femoral bone density and strength index but are not FRAX independent risk factors for fracture.

    Science.gov (United States)

    Leslie, William D; Orwoll, Eric S; Nielson, Carrie M; Morin, Suzanne N; Majumdar, Sumit R; Johansson, Helena; Odén, Anders; McCloskey, Eugene V; Kanis, John A

    2014-11-01

    Although increasing body weight has been regarded as protective against osteoporosis and fractures, there is accumulating evidence that fat mass adversely affects skeletal health compared with lean mass. We examined skeletal health as a function of estimated total body lean and fat mass in 40,050 women and 3600 men age ≥50 years at the time of baseline dual-energy X-ray absorptiometry (DXA) testing from a clinical registry from Manitoba, Canada. Femoral neck bone mineral density (BMD), strength index (SI), cross-sectional area (CSA), and cross-sectional moment of inertia (CSMI) were derived from DXA. Multivariable models showed that increasing lean mass was associated with near-linear increases in femoral BMD, CSA, and CSMI in both women and men, whereas increasing fat mass showed a small initial increase in these measurements followed by a plateau. In contrast, femoral SI was relatively unaffected by increasing lean mass but was associated with a continuous linear decline with increasing fat mass, which should predict higher fracture risk. During mean 5-year follow-up, incident major osteoporosis fractures and hip fractures were observed in 2505 women and 180 men (626 and 45 hip fractures, respectively). After adjustment for fracture risk assessment tool (FRAX) scores (with or without BMD), we found no evidence that lean mass, fat mass, or femoral SI affected prediction of major osteoporosis fractures or hip fractures. Findings were similar in men and women, without significant interactions with sex or obesity. In conclusion, skeletal adaptation to increasing lean mass was positively associated with BMD but had no effect on femoral SI, whereas increasing fat mass had no effect on BMD but adversely affected femoral SI. Greater fat mass was not independently associated with a greater risk of fractures over 5-year follow-up. FRAX robustly predicts fractures and was not affected by variations in body composition.

  10. Gluon Transport Equation with Effective Mass and Dynamical Onset of Bose-Einstein Condensation

    CERN Document Server

    Blaizot, Jean-Paul; Liao, Jinfeng

    2015-01-01

    We study the transport equation describing a dense system of gluons, in the small scattering angle approximation, taking into account medium-generated effective masses of the gluons. We focus on the case of overpopulated systems that are driven to Bose-Einstein condensation on their way to thermalization. The presence of a mass modifies the dispersion relation of the gluon, as compared to the massless case, but it is shown that this does not change qualitatively the scaling behavior in the vicinity of the onset.

  11. Physical factors affecting the transport and fate of colloids in saturated porous media

    Science.gov (United States)

    Bradford, Scott A.; Yates, Scott R.; Bettahar, Mehdi; Simunek, Jirka

    2002-12-01

    Saturated soil column experiments were conducted to explore the influence of colloid size and soil grain size distribution characteristics on the transport and fate of colloid particles in saturated porous media. Stable monodispersed colloids and porous media that are negatively charged were employed in these studies. Effluent colloid concentration curves and the final spatial distribution of retained colloids by the porous media were found to be highly dependent on the colloid size and soil grain size distribution. Relative peak effluent concentrations decreased and surface mass removal by the soil increased when the colloid size increased and the soil median grain size decreased. These observations were attributed to increased straining of the colloids; i.e., blocked pores act as dead ends for the colloids. When the colloid size is small relative to the soil pore sizes, straining becomes a less significant mechanism of colloid removal and attachment becomes more important. Mathematical modeling of the colloid transport experiments using traditional colloid attachment theory was conducted to highlight differences in colloid attachment and straining behavior and to identify parameter ranges that are applicable for attachment models. Simulated colloid effluent curves using fitted first-order attachment and detachment parameters were able to describe much of the effluent concentration data. The model was, however, less adequate at describing systems which exhibited a gradual approach to the peak effluent concentration and the spatial distribution of colloids when significant mass was retained in the soil. Current colloid filtration theory did not adequately predict the fitted first-order attachment coefficients, presumably due to straining in these systems.

  12. Identification of rare high-risk copy number variants affecting the dopamine transporter gene in mental disorders

    DEFF Research Database (Denmark)

    Hoeffding, Louise K; Duong, Linh T T; Ingason, Andrés;

    2015-01-01

    BACKGROUND: The dopamine transporter, also known as solute carrier 6A3 (SLC6A3), plays an important role in synaptic transmission by regulating the reuptake of dopamine in the synapses. In line with this, variations in the gene encoding this transporter have been linked to both schizophrenia...... rare high-risk variants of psychiatric disorders. METHODS: We performed a systematic screening for CNVs affecting SLC6A3 in 761 healthy controls, 672 schizophrenia patients, and 194 patients with bipolar disorder in addition to 253 family members from six large pedigrees affected by mental disorders...... sizes and two affected several genes in addition to SLC6A3. CONCLUSION: Our findings suggest that rare high-risk CNVs affecting the gene encoding the dopamine transporter contribute to the pathogenesis of schizophrenia and affective disorders....

  13. Can transport peak explain the low-mass enhancement of dileptons at RHIC?

    CERN Document Server

    Akamatsu, Yukinao; Hatsuda, Tetsuo; Hirano, Tetsufumi

    2011-01-01

    We propose a novel relation between the low-mass enhancement of dielectrons observed at PHENIX and transport coefficients of QGP such as the charge diffusion constant $D$ and the relaxation time $\\tau_{\\rm J}$. We parameterize the transport peak in the spectral function using the second-order relativistic dissipative hydrodynamics by Israel and Stewart. Combining the spectral function and the full (3+1)-dimensional hydrodynamical evolution with the lattice EoS, theoretical dielectron spectra and the experimental data are compared. Detailed analysis suggests that the low-mass dilepton enhancement originates mainly from the high-temperature QGP phase where there is a large electric charge fluctuation as obtained from lattice QCD simulations.

  14. Can transport peak explain the low-mass enhancement of dileptons at RHIC?

    Science.gov (United States)

    Akamatsu, Y.; Hamagaki, H.; Hatsuda, T.; Hirano, T.

    2011-12-01

    We propose a novel relation between the low-mass enhancement of dielectrons observed at PHENIX and transport coefficients of QGP such as the charge diffusion constant D and the relaxation time τJ. We parameterize the transport peak in the spectral function using the second-order relativistic dissipative hydrodynamics by Israel and Stewart. Combining the spectral function and the full (3+1)-dimensional hydrodynamical evolution with the lattice EoS, theoretical dielectron spectra and the experimental data are compared. Detailed analysis suggests that the low-mass dilepton enhancement originates mainly from the high-temperature QGP phase where there is a large electric charge fluctuation as obtained from lattice QCD simulations.

  15. A Twophase Multirate-Mass Transfer Model for Flow and Transport in Porous Media

    Science.gov (United States)

    Dentz, M.; Tecklenburg, J.; Neuweiler, I.; Carrera, J.

    2015-12-01

    We present an upscaled non-local model for two-phase flow and transport in highly heterogeneous porous media. The media under consideration are characterized by sharp contrasts in the hydraulic properties typical for fractured porous media, for example. A two-scale expansion gives an upscaled flow and transport formulation that models multiratemass transfer between mobile (fracture) and immobile (matrix) medium portions. The evolution of saturation due to viscous dominated flow in the mobile domain and mass exchange with the immobile zones through capillary countercurrent flow. The medium heterogeneity is mapped onto the mass transfer parameters, which are encoded in a memory functionthat describes the non-local flux between mobile and immobile zones. The upscaled model is parameterized by the medium heterogeneity and the distribution of hydraulic parameters. Breakthrough of the displaced fluidshows characteristic heavy tails due to fluid retention in immobile zones.

  16. Computing the time-continuous Optimal Mass Transport Problem without Lagrangian techniques

    CERN Document Server

    Besson, Olivier; Pousin, Jérôme

    2010-01-01

    This work originates from a heart's images tracking which is to generate an apparent continuous motion, observable through intensity variation from one starting image to an ending one both supposed segmented. Given two images p0 and p1, we calculate an evolution process p(t, \\cdot) which transports p0 to p1 by using the optimal extended optical flow. In this paper we propose an algorithm based on a fixed point formulation and a time-space least squares formulation of the mass conservation equation for computing the optimal mass transport problem. The strategy is implemented in a 2D case and numerical results are presented with a first order Lagrange finite element, showing the efficiency of the proposed strategy.

  17. Mass transport in a thin layer of power-law fluid in an Eulerian coordinate system

    Institute of Scientific and Technical Information of China (English)

    刘洁; 白玉川

    2016-01-01

    The mass transport velocity in a thin layer of muddy fluid is studied theoretically. The mud motion is driven by a periodic pressure load on the free surface, and the mud is described by a power-law model. Based on the key assumptions of the shallowness and the small deformation, a perturbation analysis is conducted up to the second order to find the mean Eulerian velocity in an Eulerian coordinate system. The numerical iteration method is adopted to solve these non-linear equations of the leading order. From the numerical results, both the first-order flow fields and the second-order mass transport velocities are examined. The verifications are made by comparing the numerical results with experimental results in the literature, and a good agreement is confirmed.

  18. Ground transport stress affects bacteria in the rumen of beef cattle: A real-time PCR analysis.

    Science.gov (United States)

    Deng, Lixin; He, Cong; Zhou, Yanwei; Xu, Lifan; Xiong, Huijun

    2016-10-03

    Transport stress syndrome often appears in beef cattle during ground transportation, leading to changes in their capacity to digest food due to changes in rumen microbiota. The present study aimed to analyze bacteria before and after cattle transport. Eight Xianan beef cattle were transported over 1000 km. Rumen fluid and blood were sampled before and after transport. Real-time PCR was used to quantify rumen bacteria. Cortisol and adrenocorticotrophic hormone (ACTH) were measured. Cortisol and ACTH were increased on day 1 after transportation and decreased by day 3. Cellulolytic bacteria (Fibrobacter succinogenes and Ruminococcus flavefaciens), Ruminococcus amylophilus and Prevotella albensis were increased at 6 h and declined by 15 days after transport. There was a significant reduction in Succinivibrio dextrinosolvens, Prevotella bryantii, Prevotella ruminicola and Anaerovibrio lipolytica after transport. Rumen concentration of acetic acid increased after transport, while rumen pH and concentrations of propionic and butyric acids were decreased. Body weight decreased by 3 days and increased by 15 days after transportation. Using real-time PCR analysis, we detected changes in bacteria in the rumen of beef cattle after transport, which might affect the growth of cattle after transport.

  19. Peroxy radicals and ozone photochemistry in air masses undergoing long-range transport

    Directory of Open Access Journals (Sweden)

    A. E. Parker

    2009-09-01

    Full Text Available Concentrations of peroxy radicals (HO2iRiO2 in addition to other trace gases were measured onboard the UK Meteorological Office/Natural Environment Research Council British Aerospace 146-300 atmospheric research aircraft during the Intercontinental Transport of Ozone and Precursors (ITOP campaign based at Horta Airport, Faial, Azores (38.58° N, 28.72° W in July/August 2004. The overall peroxy radical altitude profile displays an increase with altitude that is likely to have been impacted by the effects of long-range transport. The peroxy radical altitude profile for air classified as of marine origin shows no discernable altitude profile. A range of air-masses were intercepted with varying source signatures, including those with aged American and Asian signatures, air-masses of biomass burning origin, and those that originated from the east coast of the United States. Enhanced peroxy radical concentrations have been observed within this range of air-masses indicating that long-range transported air-masses traversing the Atlantic show significant photochemical activity. The net ozone production at clear sky limit is in general negative, and as such the summer mid-Atlantic troposphere is at limit net ozone destructive. However, there is clear evidence of positive ozone production even at clear sky limit within air masses undergoing long-range transport, and during ITOP especially between 5 and 5.5 km, which in the main corresponds to a flight that extensively sampled air with a biomass burning signature. Ozone production was NOx limited throughout ITOP, as evidenced by a good correlation (r2=0.72 between P(O3 and NO. Strong positive net ozone production has also been seen in varying source signature air-masses undergoing long-range transport, including but not limited to low-level export events, and export from the east coast of the United States.

  20. Characterization of an electrochemical industrial size filterpress reactor by hydrodynamic and mass transport studies

    OpenAIRE

    Frías Ferrer, Ángel; González García, José; Conesa Ferrer, Juan Antonio; Gadea Ramos, Enrique; Expósito Rodríguez, Eduardo; García García, Vicente; Montiel Leguey, Vicente; Aldaz Riera, Antonio

    2001-01-01

    Comunicación presentada en Tracers and Tracing Methods 2001, Nancy, May 2001. This work deals with the study of the influence of turbulence promoters in hydrodynamic and mass transport behaviour of a filter-press type electrolyser with 3250 cm2 of electrode area (model REIM 3300 supplied by “I.D. Electroquímica”) in undivided configuration. A simple experimental arrangement was used to generate data from electrolytic conductivity measurements in a series of impulse-response exp...

  1. Mass balance inverse modelling of methane in the 1990s using a Chemistry Transport Model

    OpenAIRE

    T. M. Butler; Simmonds, I.; Rayner, P. J.

    2004-01-01

    International audience; A mass balance inverse modelling procedure is applied with a time-dependent methane concentration boundary condition and a chemical transport model to relate observed changes in the surface distribution of methane mixing ratios during the 1990s to changes in its surface sources. The model reproduces essential features of the global methane cycle, such as the latitudinal distribution and seasonal cycle of fluxes, without using a priori knowledge of methane fluxes. A det...

  2. Evaluation and optimization of mass transport of redox species in silicon microwire-array photoelectrodes

    OpenAIRE

    Xiang, Chengxiang; Meng, Andrew C.; Lewis, Nathan S.

    2012-01-01

    Physical integration of a Ag electrical contact internally into a metal/substrate/microstructured Si wire array/oxide/Ag/electrolyte photoelectrochemical solar cell has produced structures that display relatively low ohmic resistance losses, as well as highly efficient mass transport of redox species in the absence of forced convection. Even with front-side illumination, such wire-array based photoelectrochemical solar cells do not require a transparent conducting oxide top contact. In contac...

  3. Mass transport phenomena during solidification in microgravity; preliminary results of the first Mephisto flight experiment

    Science.gov (United States)

    Favier, J. J.; Garandet, J. P.; Rouzaud, A.; Camel, D.

    1994-06-01

    The MEPHISTO space facility flew on the Columbia space shuttle in October 1992. The preliminary scientific results, mainly based on the analysis of the Seebeck signal, are presented in this paper. Valuable information was obtained for both planar and cellular solidification regimes. It is shown that mass transfer in the melt during the flight was principally diffusive; however, even in microgravity, slow growth rates may result in significant convective transport. A tentative interpretation of the Seebeck signal for destabilized interfaces is also proposed.

  4. The Role of Thermal Convection in Heat and Mass Transport in the Subarctic Snow Cover

    Science.gov (United States)

    1991-10-01

    vapor diffusion have been developed (Bader et al. 1939, Yosida et al. 1955, Giddings and LaChapelle 1962, Yen 1963, de Quervain 1972, Palm and...not agree, other authors (Yosida et al. 1955, Yen 1963, de Quervain 1972, Palm and Tveitereid 1979, Fedoseeva and Fedoseev 1988) concluded that the...for the diffusion model to produce the measured mass transport. Yen (1963), de Quervain (1972), Palm and Tveitereid (1979), and Fedoseeva and Fedoseev

  5. The Impact of Microstructure Geometry on the Mass Transport in Artificial Pores: A Numerical Approach

    Directory of Open Access Journals (Sweden)

    Matthias Galinsky

    2014-01-01

    Full Text Available The microstructure of porous materials used in heterogeneous catalysis determines the mass transport inside networks, which may vary over many length scales. The theoretical prediction of mass transport phenomena in porous materials, however, is incomplete and is still not completely understood. Therefore, experimental data for every specific porous system is needed. One possible experimental technique for characterizing the mass transport in such pore networks is pulse experiments. The general evaluation of experimental outcomes of these techniques follows the solution of Fick’s second law where an integral and effective diffusion coefficient is recognized. However, a detailed local understanding of diffusion and sorption processes remains a challenge. As there is lack of proved models covering different length scales, existing classical concepts need to be evaluated with respect to their ability to reflect local geometries on the nanometer level. In this study, DSMC (Direct Simulation Monte Carlo models were used to investigate the impact of pore microstructures on the diffusion behaviour of gases. It can be understood as a virtual pulse experiment within a single pore or a combination of different pore geometries.

  6. Mixing it up: Corals take an active role in mass transport

    Science.gov (United States)

    Fernandez, Vicente; Shapiro, Orr; Brumley, Douglas; Garren, Melissa; Guasto, Jeffrey; Kramarski-Winter, Esti; Vardi, Assaf; Stocker, Roman

    2014-11-01

    The growth and health of reef-building corals are limited by corals' ability to exchange nutrients and oxygen with the surrounding, sometimes quiescent, seawater. Mass transport in coral systems has long been considered to occur passively as a result of molecular diffusion and the ambient fluid flow over the coral. Through a combination of microscale visualization experiments and numerical modeling, we demonstrate instead that motile cilia densely covering the coral surface - previously thought to serve cleaning and feeding purposes- actively stir the coral boundary layer by generating persistent vortices above the coral surface. This active mixing was observed over a variety of corals with differing surface geometries. We have quantified the contribution of ciliary surface vortices to mass transport, finding oxygen flux enhancements of 2 to 3 orders of magnitude under environmentally relevant ambient flow conditions. These results reveal a new, active role of the coral animal in regulating its mass transport by engineering its local hydrodynamic environment, an ability that may have an important role in the evolutionary success of reef corals.

  7. Uptake and transport of roxarsone and its metabolites in water spinach as affected by phosphate supply.

    Science.gov (United States)

    Yao, Lixian; Li, Guoliang; Dang, Zhi; Yang, Baomei; He, Zhaohuan; Zhou, Changmin

    2010-04-01

    Roxarsone (ROX) is widely used as a feed additive in intensive animal production. While an animal is fed with ROX, the As compounds in the manure primarily occur as ROX and its metabolites, including arsenate (As[V]), arsenite (As[III]), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA). Animal manure is commonly land applied with phosphorous fertilizers in China. A pot experiment was conducted to investigate the phytoavailability of ROX, As(V), As(III), MMA, and DMA in water spinach (Ipomoea aquatica), with the soil amended with 0, 0.25, 0.50, 1.0, and 2.0 g PO(4)/kg, respectively, plus 2% (w/w manure/soil) chicken manure (CM) bearing ROX and its metabolites. The results indicate that this species of water spinach cannot accumulate ROX and MMA at detectable levels, but As(V), As(III), and DMA were present in all plant samples. Increased phosphorous decreased the shoot As(V) and As(III) in water spinach but did not affect the root As(V). The shoot DMA and root As(III) and DMA were decreased/increased and then increased/decreased by elevated phosphorous. The total phosphorous content (P) in plant tissue did not correlate with the total As or the three As species in tissues. Arsenate, As(III), and DMA were more easily accumulated in the roots, and phosphate considerably inhibited their upward transport. Dimethylarsinic acid had higher transport efficiency than As(V) and As(III), but As(III) was dominant in tissues. Conclusively, phosphate had multiple effects on the accumulation and transport of ROX metabolites, which depended on their levels. However, proper utilization of phosphate fertilizer can decrease the accumulation of ROX metabolites in water spinach when treated with CM containing ROX and its metabolites.

  8. Exploring Factors Affecting Emergency Medical Services Staffs' Decision about Transporting Medical Patients to Medical Facilities.

    Science.gov (United States)

    Ebrahimian, Abbasali; Seyedin, Hesam; Jamshidi-Orak, Roohangiz; Masoumi, Gholamreza

    2014-01-01

    Transfer of patients in medical emergency situations is one of the most important missions of emergency medical service (EMS) staffs. So this study was performed to explore affecting factors in EMS staffs' decision during transporting of patients in medical situations to medical facilities. The participants in this qualitative study consisted of 18 EMS staffs working in prehospital care facilities in Tehran, Iran. Data were gathered through semistructured interviews. The data were analyzed using a content analysis approach. The data analysis revealed the following theme: "degree of perceived risk in EMS staffs and their patients." This theme consisted of two main categories: (1) patient's condition' and (2) the context of the EMS mission'. The patent's condition category emerged from "physical health statuses," "socioeconomic statuses," and "cultural background" subcategories. The context of the EMS mission also emerged from two subcategories of "characteristics of the mission" and EMS staffs characteristics'. EMS system managers can consider adequate technical, informational, financial, educational, and emotional supports to facilitate the decision making of their staffs. Also, development of an effective and user-friendly checklist and scoring system was recommended for quick and easy recognition of patients' needs for transportation in a prehospital situation.

  9. Exploring Factors Affecting Emergency Medical Services Staffs’ Decision about Transporting Medical Patients to Medical Facilities

    Directory of Open Access Journals (Sweden)

    Abbasali Ebrahimian

    2014-01-01

    Full Text Available Transfer of patients in medical emergency situations is one of the most important missions of emergency medical service (EMS staffs. So this study was performed to explore affecting factors in EMS staffs’ decision during transporting of patients in medical situations to medical facilities. The participants in this qualitative study consisted of 18 EMS staffs working in prehospital care facilities in Tehran, Iran. Data were gathered through semistructured interviews. The data were analyzed using a content analysis approach. The data analysis revealed the following theme: “degree of perceived risk in EMS staffs and their patients.” This theme consisted of two main categories: (1 patient’s condition’ and (2 the context of the EMS mission’. The patent’s condition category emerged from “physical health statuses,” “socioeconomic statuses,” and “cultural background” subcategories. The context of the EMS mission also emerged from two subcategories of “characteristics of the mission” and EMS staffs characteristics’. EMS system managers can consider adequate technical, informational, financial, educational, and emotional supports to facilitate the decision making of their staffs. Also, development of an effective and user-friendly checklist and scoring system was recommended for quick and easy recognition of patients’ needs for transportation in a prehospital situation.

  10. A replacement of the active-site aspartic acid residue 293 in mouse cathepsin D affects its intracellular stability, processing and transport in HEK-293 cells.

    Science.gov (United States)

    Partanen, Sanna; Storch, Stephan; Löffler, Hans-Gerhard; Hasilik, Andrej; Tyynelä, Jaana; Braulke, Thomas

    2003-01-01

    The substitution of an active-site aspartic acid residue by asparagine in the lysosomal protease cathepsin D (CTSD) results in a loss of enzyme activity and severe cerebrocortical atrophy in a novel form of neuronal ceroid lipofuscinosis in sheep [Tyynelä, Sohar, Sleat, Gin, Donnelly, Baumann, Haltia and Lobel (2000) EMBO J. 19, 2786-2792]. In the present study we have introduced the corresponding mutation by replacing aspartic acid residue 293 with asparagine (D293N) into the mouse CTSD cDNA to analyse its effect on synthesis, transport and stability in transfected HEK-293 cells. The complete inactivation of mutant D293N mouse CTSD was confirmed by a newly developed fluorimetric quantification system. Moreover, in the heterologous overexpression systems used, mutant D293N mouse CTSD was apparently unstable and proteolytically modified during early steps of the secretory pathway, resulting in a loss of mass by about 1 kDa. In the affected sheep, the endogenous mutant enzyme was stable but also showed the shift in its molecular mass. In HEK-293 cells, the transport of the mutant D293N mouse CTSD to the lysosome was delayed and associated with a low secretion rate compared with wild-type CTSD. These data suggest that the mutation may result in a conformational change which affects stability, processing and transport of the enzyme. PMID:12350228

  11. How does a low-mass cut-off in the stellar IMF affect the evolution of young star clusters?

    CERN Document Server

    Kouwenhoven, M B N; de Grijs, R; Rose, M; Kim, Sungsoo S

    2014-01-01

    We investigate how different stellar initial mass functions (IMFs) can affect the mass loss and survival of star clusters. We find that IMFs with radically different low-mass cut-offs (between 0.1 and 2 Msun) do not change cluster destruction time-scales as much as might be expected. Unsurprisingly, we find that clusters with more high-mass stars lose relatively more mass through stellar evolution, but the response to this mass loss is to expand and hence significantly slow their dynamical evolution. We also argue that it is very difficult, if not impossible, to have clusters with different IMFs that are initially "the same", since the mass, radius and relaxation times depend on each other and on the IMF in a complex way. We conclude that changing the IMF to be biased towards more massive stars does speed up mass loss and dissolution, but that it is not as dramatic as might be thought.

  12. Monitoring suspended sediment transport in an ice-affected river using acoustic Doppler current profilers

    Science.gov (United States)

    Moore, S. A.; Ghareh Aghaji Zare, S.; Rennie, C. D.; Ahmari, H.; Seidou, O.

    2013-12-01

    Quantifying sediment budgets and understanding the processes which control fluvial sediment transport is paramount to monitoring river geomorphology and ecological habitat. In regions that are subject to freezing there is the added complexity of ice. River ice processes impact flow distribution, water stage and sediment transport. Ice processes typically have the largest impact on sediment transport and channel morphodynamics when ice jams occur during ice cover formation and breakup. Ice jams may restrict flow and cause local acceleration when released. Additionally, ice can mechanically scour river bed and banks. Under-ice sediment transport measurements are lacking due to obvious safety and logistical reasons, in addition to a lack of adequate measurement techniques. Since some rivers can be covered in ice during six months of the year, the lack of data in winter months leads to large uncertainty in annual sediment load calculations. To address this problem, acoustic profilers are being used to monitor flow velocity, suspended sediment and ice processes in the Lower Nelson River, Manitoba, Canada. Acoustic profilers are ideal for under-ice sediment flux measurements since they can be operated autonomously and continuously, they do not disturb the flow in the zone of measurement and acoustic backscatter can be related to sediment size and concentration. In March 2012 two upward-facing profilers (1200 kHz acoustic Doppler current profiler, 546 KHz acoustic backscatter profiler) were installed through a hole in the ice on the Nelson River, 50 km downstream of the Limestone Generating Station. Data were recorded for four months, including both stable cover and breakup periods. This paper presents suspended sediment fluxes calculated from the acoustic measurements. Velocity data were used to infer the vertical distribution of sediment sizes and concentrations; this information was then used in the interpretation of the backscattered intensity data. It was found that

  13. Mass-transport-controlled, large-area, uniform deposition of carbon nanofibers and their application in gas diffusion layers of fuel cells.

    Science.gov (United States)

    Tang, Xian; Xie, Zhiyong; Huang, Qizhong; Chen, Guofen; Hou, Ming; Yi, Baolian

    2015-05-07

    The effect of mass transport on the growth characteristics of large-area vapor-grown carbon nanofibers (CNFs) was investigated by adjusting the substrate deposition angle (α). The catalyst precursor solution was coated onto one side of a 2D porous carbon paper substrate via a decal printing method. The results showed that the CNFs were grown on only one side of the substrate and α was found to significantly affect the growth uniformity. At α = 0°, the growth thickness, the density, the microstructure and the yield of the CNF film were uniform across the substrate surface, whereas the growth uniformity decreased with increasing α, suggesting that the large-area CNF deposition processes were mass-transport-controlled. Computational fluid dynamics simulations of the gas diffusion processes revealed the homogeneous distributions of the carbon-source-gas concentration, pressure, and velocity near the substrate surface at α = 0°, which were the important factors in achieving the mass-transport-limited uniform CNF growth. The homogeneity of the field distributions decreased with increasing α, in accordance with the variation in the growth uniformity with α. When used as a micro-porous layer, the uniform CNF film enabled higher proton exchange membrane fuel cell performance in comparison with commercial carbon black by virtue of its improved electronic and mass-transport properties confirmed by the electrochemical impedance spectroscopy results.

  14. Ssh4, Rcr2 and Rcr1 affect plasma membrane transporter activity in Saccharomyces cerevisiae.

    Science.gov (United States)

    Kota, Jhansi; Melin-Larsson, Monika; Ljungdahl, Per O; Forsberg, Hanna

    2007-04-01

    Nutrient uptake in the yeast Saccharomyces cerevisiae is a highly regulated process. Cells adjust levels of nutrient transporters within the plasma membrane at multiple stages of the secretory and endosomal pathways. In the absence of the ER-membrane-localized chaperone Shr3, amino acid permeases (AAP) inefficiently fold and are largely retained in the ER. Consequently, shr3 null mutants exhibit greatly reduced rates of amino acid uptake due to lower levels of AAPs in their plasma membranes. To further our understanding of mechanisms affecting AAP localization, we identified SSH4 and RCR2 as high-copy suppressors of shr3 null mutations. The overexpression of SSH4, RCR2, or the RCR2 homolog RCR1 increases steady-state AAP levels, whereas the genetic inactivation of these genes reduces steady-state AAP levels. Additionally, the overexpression of any of these suppressor genes exerts a positive effect on phosphate and uracil uptake systems. Ssh4 and Rcr2 primarily localize to structures associated with the vacuole; however, Rcr2 also localizes to endosome-like vesicles. Our findings are consistent with a model in which Ssh4, Rcr2, and presumably Rcr1, function within the endosome-vacuole trafficking pathway, where they affect events that determine whether plasma membrane proteins are degraded or routed to the plasma membrane.

  15. Mass-conservative reconstruction of Galerkin velocity fields for transport simulations

    Science.gov (United States)

    Scudeler, C.; Putti, M.; Paniconi, C.

    2016-08-01

    Accurate calculation of mass-conservative velocity fields from numerical solutions of Richards' equation is central to reliable surface-subsurface flow and transport modeling, for example in long-term tracer simulations to determine catchment residence time distributions. In this study we assess the performance of a local Larson-Niklasson (LN) post-processing procedure for reconstructing mass-conservative velocities from a linear (P1) Galerkin finite element solution of Richards' equation. This approach, originally proposed for a-posteriori error estimation, modifies the standard finite element velocities by imposing local conservation on element patches. The resulting reconstructed flow field is characterized by continuous fluxes on element edges that can be efficiently used to drive a second order finite volume advective transport model. Through a series of tests of increasing complexity that compare results from the LN scheme to those using velocity fields derived directly from the P1 Galerkin solution, we show that a locally mass-conservative velocity field is necessary to obtain accurate transport results. We also show that the accuracy of the LN reconstruction procedure is comparable to that of the inherently conservative mixed finite element approach, taken as a reference solution, but that the LN scheme has much lower computational costs. The numerical tests examine steady and unsteady, saturated and variably saturated, and homogeneous and heterogeneous cases along with initial and boundary conditions that include dry soil infiltration, alternating solute and water injection, and seepage face outflow. Typical problems that arise with velocities derived from P1 Galerkin solutions include outgoing solute flux from no-flow boundaries, solute entrapment in zones of low hydraulic conductivity, and occurrences of anomalous sources and sinks. In addition to inducing significant mass balance errors, such manifestations often lead to oscillations in concentration

  16. Non-steroidal anti-inflammatory drugs affect the methotrexate transport in IEC-6 cells.

    Science.gov (United States)

    Sosogi, Aiko; Gao, Feng; Tomimatsu, Takashi; Hirata, Koji; Horie, Toshiharu

    2003-06-13

    Methotrexate (MTX) is used not only for the cancer chemotherapy but also for the treatment of rheumatic disease, often together with non-steroidal anti-inflammatory drugs (NSAIDs). MTX is actively cotransported with H(+) in the small intestine, mediated by a reduced folate carrier (RFC). The coadministration of some NSAIDs with MTX to rats caused a decrease of MTX absorption through the small intestine. This may be due to the uncoupling effect of oxidative phosphorylation of the NSAIDs. The present study investigated whether flufenamic acid, diclofenac and indomethacin, NSAIDs, decreased ATP content of rat-derived intestinal epithelial cell line IEC-6 cells and affected the MTX transport in IEC-6 cells. The MTX uptake in IEC-6 cells was dependent on medium pH and maximum around pH 4.5-5.5. The MTX uptake was composed of a transport inhibited by 4, 4'-diisothiocyanostilbene-2, 2'-disulfonic acid (DIDS) and a non-saturable one. The DIDS-sensitive component in the MTX uptake showed a saturation kinetics (Michaelis-Menten constant (Km): 3.91 +/- 0.52 microM, Maximum velocity (Vmax): 94.66 +/- 6.56 pmol/mg protein/5 min). The cellular ATP content in IEC-6 cells decreased significantly at 30 min after the cells were started to incubate with the NSAIDs (250 microM flufenamic acid, 500 microM diclofenac and 500 microM indomethacin). The MTX uptake in IEC-6 cells in the presence of the NSAIDs decreased with the reduction of cellular ATP content and showed a good correlation with the ATP content (correlation coefficient: 0.982). Thus it seems likely that the ATP content in IEC-6 cells with the NSAIDs decreased due to the uncoupling effect of oxidative phosphorylation of the NSAIDs, resulting in the inhibition of the secondary active transport of MTX in IEC-6 cells. The present results also suggest that IEC-6 cells are useful to evaluate the drug interaction relating to this carrier system.

  17. Effective Heat and Mass Transport Properties of Anisotropic Porous Ceria for Solar Thermochemical Fuel Generation

    Directory of Open Access Journals (Sweden)

    Sophia Haussener

    2012-01-01

    Full Text Available High-resolution X-ray computed tomography is employed to obtain the exact 3D geometrical configuration of porous anisotropic ceria applied in solar-driven thermochemical cycles for splitting H2O and CO2. The tomography data are, in turn, used in direct pore-level numerical simulations for determining the morphological and effective heat/mass transport properties of porous ceria, namely: porosity, specific surface area, pore size distribution, extinction coefficient, thermal conductivity, convective heat transfer coefficient, permeability, Dupuit-Forchheimer coefficient, and tortuosity and residence time distributions. Tailored foam designs for enhanced transport properties are examined by means of adjusting morphologies of artificial ceria samples composed of bimodal distributed overlapping transparent spheres in an opaque medium.

  18. Mass and charge transport in micro and nano-fluidic channels

    CERN Document Server

    Mortensen, N A; Okkels, F; Bruus, H

    2006-01-01

    We consider laminar flow of incompressible electrolytes in long, straight channels driven by pressure and electro-osmosis. We use a Hilbert space eigenfunction expansion to address the general problem of an arbitrary cross section and obtain general results in linear-response theory for the mass and charge transport coefficients which satisfy Onsager relations. In the limit of non-overlapping Debye layers the transport coefficients are simply expressed in terms of parameters of the electrolyte as well as the hydraulic radius R=2A/P with A and P being the cross-sectional area and perimeter, respectively. In articular, we consider the limits of thin non-overlapping as well as strongly overlapping Debye layers, respectively, and calculate the corrections to the hydraulic resistance due to electro-hydrodynamic interactions.

  19. Analytical solutions for transport processes fluid mechanics, heat and mass transfer

    CERN Document Server

    Brenn, Günter

    2017-01-01

    This book provides analytical solutions to a number of classical problems in transport processes, i.e. in fluid mechanics, heat and mass transfer. Expanding computing power and more efficient numerical methods have increased the importance of computational tools. However, the interpretation of these results is often difficult and the computational results need to be tested against the analytical results, making analytical solutions a valuable commodity. Furthermore, analytical solutions for transport processes provide a much deeper understanding of the physical phenomena involved in a given process than do corresponding numerical solutions. Though this book primarily addresses the needs of researchers and practitioners, it may also be beneficial for graduate students just entering the field. .

  20. ENERGY AND MASS TRANSPORT PROCESSES IN THE GRANULAR BED OF AN INDIRECTLY HEATED ROTARY KILN

    Institute of Scientific and Technical Information of China (English)

    Wolfgang Klose; Arndt-Peter Schinkel

    2004-01-01

    The transport mechanisms of momentum, mass, species, and energy are investigated in detail for the rotary kiln process. The residence time prediction of the granular bed is well improved by considering different flow patterns in the drum. Introducing a mixed flow pattem of the basic slipping and slumping behaviour has the most important effect on the improvement of the residence time prediction. The granular bed is assumed to behave as a Bingham fluid in the active layer of the bed. The transport mechanisms of momentum, species, and energy are modelled on the basis of this assumption and using the kinetic gas theory. Additionally, a mathematical transformation is presented to save computational time. The model results of the temperature field are in very good agreement with experimental data.

  1. Geochemical factors affecting radionuclide transport through near and far fields at a Low-Level Waste Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, D.I.; Seme, R.J. [Pacific Northwest Lab., Richland, WA (United States); Piepkho, M.G. [Westinghouse Hanford Co., Richland, WA (United States)

    1995-03-01

    The concentration of low-level waste (LLW) contaminants in groundwater is determined by the amount of contaminant present in the solid waste, rate of release from the waste and surrounding barriers, and a number of geochemical processes including adsorption, desorption, diffusion, precipitation, and dissolution. To accurately predict radionuclide transport through the subsurface, it is essential that the important geochemical processes affecting radionuclide transport be identified and, perhaps more importantly, accurately quantified and described in a mathematically defensible manner.

  2. A mercury transport and fate model (LM2-mercury) for mass budget assessment of mercury cycling in Lake Michigan

    Science.gov (United States)

    LM2-Mercury, a mercury mass balance model, was developed to simulate and evaluate the transport, fate, and biogeochemical transformations of mercury in Lake Michigan. The model simulates total suspended solids (TSS), disolved organic carbon (DOC), and total, elemental, divalent, ...

  3. Evaluation and optimization of mass transport of redox species in silicon microwire-array photoelectrodes.

    Science.gov (United States)

    Xiang, Chengxiang; Meng, Andrew C; Lewis, Nathan S

    2012-09-25

    Physical integration of a Ag electrical contact internally into a metal/substrate/microstructured Si wire array/oxide/Ag/electrolyte photoelectrochemical solar cell has produced structures that display relatively low ohmic resistance losses, as well as highly efficient mass transport of redox species in the absence of forced convection. Even with front-side illumination, such wire-array based photoelectrochemical solar cells do not require a transparent conducting oxide top contact. In contact with a test electrolyte that contained 50 mM/5.0 mM of the cobaltocenium(+/0) redox species in CH(3)CN-1.0 M LiClO(4), when the counterelectrode was placed in the solution and separated from the photoelectrode, mass transport restrictions of redox species in the internal volume of the Si wire array photoelectrode produced low fill factors and limited the obtainable current densities to 17.6 mA cm(-2) even under high illumination. In contrast, when the physically integrated internal Ag film served as the counter electrode, the redox couple species were regenerated inside the internal volume of the photoelectrode, especially in regions where depletion of the redox species due to mass transport limitations would have otherwise occurred. This behavior allowed the integrated assembly to operate as a two-terminal, stand-alone, photoelectrochemical solar cell. The current density vs. voltage behavior of the integrated photoelectrochemical solar cell produced short-circuit current densities in excess of 80 mA cm(-2) at high light intensities, and resulted in relatively low losses due to concentration overpotentials at 1 Sun illumination. The integrated wire array-based device architecture also provides design guidance for tandem photoelectrochemical cells for solar-driven water splitting.

  4. Food chain transport of nanoparticles affects behaviour and fat metabolism in fish.

    Directory of Open Access Journals (Sweden)

    Tommy Cedervall

    Full Text Available Nano-sized (10(-9-10(-7 m particles offer many technical and biomedical advances over the bulk material. The use of nanoparticles in cosmetics, detergents, food and other commercial products is rapidly increasing despite little knowledge of their effect on organism metabolism. We show here that commercially manufactured polystyrene nanoparticles, transported through an aquatic food chain from algae, through zooplankton to fish, affect lipid metabolism and behaviour of the top consumer. At least three independent metabolic parameters differed between control and test fish: the weight loss, the triglycerides∶cholesterol ratio in blood serum, and the distribution of cholesterol between muscle and liver. Moreover, we demonstrate that nanoparticles bind to apolipoprotein A-I in fish serum in-vitro, thereby restraining them from properly utilising their fat reserves if absorbed through ingestion. In addition to the metabolic effects, we show that consumption of nanoparticle-containing zooplankton affects the feeding behaviour of the fish. The time it took the fish to consume 95% of the food presented to them was more than doubled for nanoparticle-exposed compared to control fish. Since many nano-sized products will, through the sewage system, end up in freshwater and marine habitats, our study provides a potential bioassay for testing new nano-sized material before manufacturing. In conclusion, our study shows that from knowledge of the molecular composition of the protein corona around nanoparticles it is possible to make a testable molecular hypothesis and bioassay of the potential biological risks of a defined nanoparticle at the organism and ecosystem level.

  5. Gibberellins inhibit adventitious rooting in hybrid aspen and Arabidopsis by affecting auxin transport.

    Science.gov (United States)

    Mauriat, Mélanie; Petterle, Anna; Bellini, Catherine; Moritz, Thomas

    2014-05-01

    Knowledge of processes involved in adventitious rooting is important to improve both fundamental understanding of plant physiology and the propagation of numerous plants. Hybrid aspen (Populus tremula × tremuloïdes) plants overexpressing a key gibberellin (GA) biosynthesis gene (AtGA20ox1) grow rapidly but have poor rooting efficiency, which restricts their clonal propagation. Therefore, we investigated the molecular basis of adventitious rooting in Populus and the model plant Arabidopsis. The production of adventitious roots (ARs) in tree cuttings is initiated from the basal stem region, and involves the interplay of several endogenous and exogenous factors. The roles of several hormones in this process have been characterized, but the effects of GAs have not been fully investigated. Here, we show that a GA treatment negatively affects the numbers of ARs produced by wild-type hybrid aspen cuttings. Furthermore, both hybrid aspen plants and intact Arabidopsis seedlings overexpressing AtGA20ox1, PttGID1.1 or PttGID1.3 genes (with a 35S promoter) produce few ARs, although ARs develop from the basal stem region of hybrid aspen and the hypocotyl of Arabidopsis. In Arabidopsis, auxin and strigolactones are known to affect AR formation. Our data show that the inhibitory effect of GA treatment on adventitious rooting is not mediated by perturbation of the auxin signalling pathway, or of the strigolactone biosynthetic and signalling pathways. Instead, GAs appear to act by perturbing polar auxin transport, in particular auxin efflux in hybrid aspen, and both efflux and influx in Arabidopsis.

  6. BIFURCATION OF FLOW AND MASS TRANSPORT IN A CURVED BLOOD VESSEL

    Institute of Scientific and Technical Information of China (English)

    TAN Wenchang(谭文长); WEI Lan(魏兰); ZHAO Yaohua(赵耀华); TAKASHI Masuoka

    2003-01-01

    A numerical analysis of flow and concentration fields of macromolecules in a slightly curved blood vessel was carried out. Based on these results, the effect of the bifurcation of a flow on the mass transport in a curved blood vessel was discussed. The macromolecules turned out to be easier to deposit in the inner part of the curved blood vessel near the critical Dean number. Once the Dean number is higher than the critical number, the bifurcation of the flow appears. This bifurcation can prevent macromolecules from concentrating in the inner part of the curved blood vessel. This result is helpful for understanding the possible correlations between the blood dynamics and atherosclerosis.

  7. Cerebral serotonin transporter binding is inversely related to body mass index

    DEFF Research Database (Denmark)

    Erritzoe, D; Frokjaer, V G; Haahr, M T;

    2010-01-01

    ) in animal models is inversely related to food intake and body weight and some effective anti-obesity agents involve blockade of the serotonin transporter (SERT). We investigated in 60 healthy volunteers body mass index (BMI) and regional cerebral SERT binding as measured with [(11)C]DASB PET. In a linear......Overweight and obesity is a health threat of increasing concern and understanding the neurobiology behind obesity is instrumental to the development of effective treatment regimes. Serotonergic neurotransmission is critically involved in eating behaviour; cerebral level of serotonin (5-HT...... secondary to other dysfunction(s) in the serotonergic transmitter system, such as low baseline serotonin levels, remains to be established....

  8. Identification of biomolecule mass transport and binding rate parameters in living cells by inverse modeling

    Directory of Open Access Journals (Sweden)

    Shirmohammadi Adel

    2006-10-01

    Full Text Available Abstract Background Quantification of in-vivo biomolecule mass transport and reaction rate parameters from experimental data obtained by Fluorescence Recovery after Photobleaching (FRAP is becoming more important. Methods and results The Osborne-Moré extended version of the Levenberg-Marquardt optimization algorithm was coupled with the experimental data obtained by the Fluorescence Recovery after Photobleaching (FRAP protocol, and the numerical solution of a set of two partial differential equations governing macromolecule mass transport and reaction in living cells, to inversely estimate optimized values of the molecular diffusion coefficient and binding rate parameters of GFP-tagged glucocorticoid receptor. The results indicate that the FRAP protocol provides enough information to estimate one parameter uniquely using a nonlinear optimization technique. Coupling FRAP experimental data with the inverse modeling strategy, one can also uniquely estimate the individual values of the binding rate coefficients if the molecular diffusion coefficient is known. One can also simultaneously estimate the dissociation rate parameter and molecular diffusion coefficient given the pseudo-association rate parameter is known. However, the protocol provides insufficient information for unique simultaneous estimation of three parameters (diffusion coefficient and binding rate parameters owing to the high intercorrelation between the molecular diffusion coefficient and pseudo-association rate parameter. Attempts to estimate macromolecule mass transport and binding rate parameters simultaneously from FRAP data result in misleading conclusions regarding concentrations of free macromolecule and bound complex inside the cell, average binding time per vacant site, average time for diffusion of macromolecules from one site to the next, and slow or rapid mobility of biomolecules in cells. Conclusion To obtain unique values for molecular diffusion coefficient and

  9. Association of central serotonin transporter availability and body mass index in healthy Europeans

    DEFF Research Database (Denmark)

    Hesse, Swen; van de Giessen, Elsmarieke; Zientek, Franziska

    2014-01-01

    UNLABELLED: Serotonin-mediated mechanisms, in particular via the serotonin transporter (SERT), are thought to have an effect on food intake and play an important role in the pathophysiology of obesity. However, imaging studies that examined the correlation between body mass index (BMI) and SERT...... are sparse and provided contradictory results. The aim of this study was to further test the association between SERT and BMI in a large cohort of healthy subjects. METHODS: 127 subjects of the ENC DAT database (58 females, age 52 ± 18 years, range 20-83, BMI 25.2 ± 3.8 kg/m(2), range 18.2-41.1) were...

  10. Back to the early Universe by a Monge-Ampere-Kantorovich mass transportation method

    CERN Document Server

    Frisch, U; Mohayaee, R; Sobolevski, A; Frisch, Uriel; Matarrese, Sabino; Mohayaee, Roya; Sobolevski, Andrei

    2002-01-01

    Reconstructing the minute density fluctuations in the early Universe that evolved into a highly clumpy matter distribution, as revealed by the present distribution of luminous matter, constitutes a major challenge of modern cosmology. A number of techniques have been devised in recent years which attempt to achieve this aim by using galaxy positions alone [8 refs.]. However, without knowledge of their velocities, this problem is not well-posed and its solution suffers frequently from lack of uniqueness. Here we make the hypothesis that the map from initial to present locations of mass elements is irrotational. Using recent mathematical work [Brenier], we then relate reconstruction to ``mass transportation'', a well-posed optimisation problem in engineering introduced by Monge in 1781. We propose a new powerful algorithm for unique reconstruction which, when tested against N-body simulations, gives excellent reconstruction down to scales of a few comoving megaparsecs and demonstrates the validity of our hypoth...

  11. Numerical simulation of mass and energy transport phenomena in solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Arpino, F. [Dipartimento di Meccanica, Strutture, Ambiente e Territorio (DiMSAT), University of Cassino, via Di Biasio 43, Cassino (Italy); Massarotti, N. [Dipertimento per le Tecnologie (DiT), University of Naples ' ' Parthenope' ' , Centro Direzionale, isola C4, 80143 Napoli (Italy)

    2009-12-15

    Solid Oxide Fuel Cells (SOFCs) represent a very promising technology for near future energy conversion thanks to a number of advantages, including the possibility of using different fuels. In this paper, a detailed numerical model, based on a general mathematical description and on a finite element Characteristic based Split (CBS) algorithm code is employed to simulate mass and energy transport phenomena in SOFCs. The model predicts the thermodynamic quantity of interest in the fuel cell. Full details of the numerical solution obtained are presented both in terms of heat and mass transfer in the cell and in terms of electro-chemical reactions that occur in the system considered. The results obtained with the present algorithm is compared with the experimental data available in the literature for validation, showing an excellent agreement. (author)

  12. The addition of organic carbon and nitrate affects reactive transport of heavy metals in sandy aquifers

    KAUST Repository

    Satyawali, Yamini

    2011-04-01

    Organic carbon introduction in the soil to initiate remedial measures, nitrate infiltration due to agricultural practices or sulphate intrusion owing to industrial usage can influence the redox conditions and pH, thus affecting the mobility of heavy metals in soil and groundwater. This study reports the fate of Zn and Cd in sandy aquifers under a variety of plausible in-situ redox conditions that were induced by introduction of carbon and various electron acceptors in column experiments. Up to 100% Zn and Cd removal (from the liquid phase) was observed in all the four columns, however the mechanisms were different. Metal removal in column K1 (containing sulphate), was attributed to biological sulphate reduction and subsequent metal precipitation (as sulphides). In the presence of both nitrate and sulphate (K2), the former dominated the process, precipitating the heavy metals as hydroxides and/or carbonates. In the presence of sulphate, nitrate and supplemental iron (Fe(OH)3) (K3), metal removal was also due to precipitation as hydroxides and/or carbonates. In abiotic column, K4, (with supplemental iron (Fe(OH)3), but no nitrate), cation exchange with soil led to metal removal. The results obtained were modeled using the reactive transport model PHREEQC-2 to elucidate governing processes and to evaluate scenarios of organic carbon, sulphate and nitrate inputs. © 2010 Elsevier B.V.

  13. Transcription factor organic cation transporter 1 (OCT-1 affects the expression of porcine Klotho (KL gene

    Directory of Open Access Journals (Sweden)

    Yan Li

    2016-07-01

    Full Text Available Klotho (KL, originally discovered as an aging suppressor, is a membrane protein that shares sequence similarity with the β-glucosidase enzymes. Recent reports showed Klotho might play a role in adipocyte maturation and systemic glucose metabolism. However, little is known about the transcription factors involved in regulating the expression of porcine KL gene. Deletion fragment analysis identified KL-D2 (−418 bp to −3 bp as the porcine KL core promoter. MARC0022311SNP (A or G in KL intron 1 was detected in Landrace × DIV pigs using the Porcine SNP60 BeadChip. The pGL-D2-A and pGL-D2-G were constructed with KL-D2 and the intron fragment of different alleles and relative luciferase activity of pGL3-D2-G was significantly higher than that of pGL3-D2-A in the PK cells and ST cells. This was possibly the result of a change in KL binding ability with transcription factor organic cation transporter 1 (OCT-1, which was confirmed using electrophoretic mobility shift assays (EMSA and chromatin immune-precipitation (ChIP. Moreover, OCT-1 regulated endogenous KL expression by RNA interference experiments. Our study indicates SNP MARC0022311 affects porcine KL expression by regulating its promoter activity via OCT-1.

  14. Flux dependent MeV self-ion-induced effects on Au nanostructures: dramatic mass transport and nanosilicide formation.

    Science.gov (United States)

    Ghatak, J; Umananda Bhatta, M; Sundaravel, B; Nair, K G M; Liou, Sz-Chian; Chen, Cheng-Hsuan; Wang, Yuh-Lin; Satyam, P V

    2008-08-13

    We report a direct observation of dramatic mass transport due to 1.5 MeV Au(2+) ion impact on isolated Au nanostructures of average size ≈7.6 nm and height ≈6.9 nm that are deposited on Si(111) substrate under high flux (3.2 × 10(10)-6.3 × 10(12) ions cm(-2) s(-1)) conditions. The mass transport from nanostructures was found to extend up to a distance of about 60 nm into the substrate, much beyond their size. This forward mass transport is compared with the recoil implantation profiles using SRIM simulation. The observed anomalies with theory and simulations are discussed. At a given energy, the incident flux plays a major role in mass transport and its redistribution. The mass transport is explained on the basis of thermal effects and the creation of rapid diffusion paths in the nanoscale regime during the course of ion irradiation. The unusual mass transport is found to be associated with the formation of gold silicide nano-alloys at subsurfaces. The complexity of the ion-nanostructure interaction process is discussed with a direct observation of melting (in the form of spherical fragments on the surface) phenomena. Transmission electron microscopy, scanning transmission electron microscopy, and Rutherford backscattering spectroscopy methods have been used.

  15. Origin of the mass splitting of azimuthal anisotropies in a multi-phase transport model

    CERN Document Server

    Li, Hanlin; Lin, Zi-Wei; Molnar, Denes; Wang, Fuqiang; Xie, Wei

    2016-01-01

    The mass splitting of azimuthal anisotropy ($v_n$) at low transverse momentum ($p_{\\perp}$) is considered as a hallmark of hydrodynamic collective flow. We investigate a multi-phase transport (AMPT) model where the $v_n$ is mainly generated by the escape mechanism, not of the hydrodynamic flow nature, and where the mass splitting is also observed. This paper provides extensive details to our published work on Au+Au and d+Au collisions at the Relativistic Heavy Ion Collider (arXiv:1601.05390); it also includes new results on p+Pb collisions at the Large Hadron Collider. We demonstrate that the mass splitting of $v_n$ in AMPT partly arises from kinematics in the quark coalescence hadronization process but more dominantly from hadronic rescatterings, even though the contribution from the latter to the overall charged hadron $v_n$ is small. It is also found that hadronic decays reduce the degree of mass splitting. These findings are qualitatively the same as those from hybrid models that combine hydrodynamics wit...

  16. Escaping affect: how motivated emotion regulation creates insensitivity to mass suffering.

    Science.gov (United States)

    Cameron, C Daryl; Payne, B Keith

    2011-01-01

    As the number of people in need of help increases, the degree of compassion people feel for them ironically tends to decrease. This phenomenon is termed the collapse of compassion. Some researchers have suggested that this effect happens because emotions are not triggered by aggregates. We provide evidence for an alternative account. People expect the needs of large groups to be potentially overwhelming, and, as a result, they engage in emotion regulation to prevent themselves from experiencing overwhelming levels of emotion. Because groups are more likely than individuals to elicit emotion regulation, people feel less for groups than for individuals. In Experiment 1, participants displayed the collapse of compassion only when they expected to be asked to donate money to the victims. This suggests that the effect is motivated by self-interest. Experiment 2 showed that the collapse of compassion emerged only for people who were skilled at emotion regulation. In Experiment 3, we manipulated emotion regulation. Participants who were told to down-regulate their emotions showed the collapse of compassion, but participants who were told to experience their emotions did not. We examined the time course of these effects using a dynamic rating to measure affective responses in real time. The time course data suggested that participants regulate emotion toward groups proactively, by preventing themselves from ever experiencing as much emotion toward groups as toward individuals. These findings provide initial evidence that motivated emotion regulation drives insensitivity to mass suffering.

  17. How does the mass transport in disk galaxy models influence the character of orbits?

    CERN Document Server

    Zotos, Euaggelos E

    2015-01-01

    We explore the regular or chaotic nature of orbits of stars moving in the meridional (R,z) plane of an axially symmetric time-dependent disk galaxy model with a central, spherically symmetric nucleus. In particular, mass is linearly transported from the disk to the galactic nucleus, in order to mimic, in a way, the case of self-consistent interactions of an actual N-body simulation. We thus try to unveil the influence of this mass transportation on the different families of orbits of stars by monitoring how the percentage of chaotic orbits, as well as the percentages of orbits of the main regular resonant families, evolve as the galaxy develops a dense and massive nucleus in its core. The SALI method is applied to samples of orbits in order to distinguish safely between ordered and chaotic motion. In addition, a method based on the concept of spectral dynamics is used for identifying the various families of regular orbits and also for recognizing the secondary resonances that bifurcate from them. Our computat...

  18. Facile synthesis of mesostructured ZSM-5 zeolite with enhanced mass transport and catalytic performances

    Science.gov (United States)

    Li, Chao; Ren, Yanqun; Gou, Jinsheng; Liu, Baoyu; Xi, Hongxia

    2017-01-01

    A mesostructured ZSM-5 zeolite with multilamellar structure was successfully synthesized by employing a tetra-headgroup rigid bolaform quaternary ammonium surfactant. It was characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), nitrogen adsorption/desorption isotherms, amines temperature programmed desorption (amines-TPD), and computer simulation. These results indicated that the dual-functional amphiphilic surfactants play a critical role for directing the multilamellar structure with high mesoporosity. The mass transport and catalytic performances of the zeolite were investigated by zero length column (ZLC) technique and aldol condensation reactions to evaluate the structure-property relationship. These results clearly indicated that the mass transport of selected molecules in hierarchical zeolite can be accelerated by introducing mesoporous structure with mesostructure with reduced diffusion length and an overall enhanced resistance against deactivation in reactions involving large molecules. Furthermore, the dual-functional surfactant approach of making hierarchical zeolite with MFI nanosheets framework would open up new opportunities for design and synthesis of hierarchical zeolites with controllable mesoporous structures.

  19. Mass Transport and Turbulence in Gravitationally Unstable Disk Galaxies II: The Effects of Star Formation Feedback

    CERN Document Server

    Goldbaum, Nathan J; Forbes, John C

    2016-01-01

    Self-gravity and stellar feedback are capable of driving turbulence and transporting mass and angular momentum in disk galaxies, but the balance between them is not well understood. In the previous paper in this series, we showed that gravity alone can drive turbulence in galactic disks, regulate their Toomre $Q$ parameters to $\\sim$ 1, and transport mass inwards at a rate sufficient to fuel star formation in the centers of present-day galaxies. In this paper we extend our models to include the effects of star formation feedback. We show that feedback suppresses galaxies' star formation rates by a factor of $\\sim$ 5 and leads to the formation of a multi-phase atomic and molecular ISM. Both the star formation rate and the phase balance produced in our simulations agree well with observations of nearby spirals. After our galaxies reach steady state, we find that the inclusion of feedback actually lowers the gas velocity dispersion slightly compared to the case of pure self-gravity, and also slightly reduces the...

  20. Mass transport aspects of polymer electrolyte fuel cells under two-phase flow conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, D.

    2007-03-27

    This work deals with selected aspects of mass transport phenomena in PEFCs and DMFCs. Emphasis is placed on the implications originating from the occurrence of two-phase flow within these devices. Optimality of supply, distribution, and removal of the fuel, the oxidant, and the reaction products is of utmost importance for the stability, efficiency, and durability of the devices. Being a prerequisite for high current densities while maintaining sufficient voltage, mass transport optimization contributes to the development of cost effective as well as compact designs and hence competitive fuel cells. [German] Die Visualisierung und Quantifizierung von Fluessigwasseransammlungen in Polymerelektrolytmembran-Brennstoffzellen konnte mittels Neutronenradiographie erreicht werden. Dank dieser neuartigen diagnostischen Methode konnte erstmals die Fluessigwasseransammlung in den poroesen Gasdiffusionsschichten direkt nachgewiesen und quantifiziert werden. Die Kombination von Neutronenradiographie mit ortsaufgeloesten Stromdichtemessungen bzw. lokaler Impedanzspektroskopie erlaubte die Korrelation des inhomogenen Fluessigwasseranfalls mit dem lokalen elektrochemischen Leistungsverhalten. Systematische Untersuchungen an Polymerelektrolyt- und Direkt-Methanol-Brennstoffzellen verdeutlichen sowohl den Einfluss von Betriebsbedingungen als auch die Auswirkung von Materialeigenschaften auf die Ausbildung zweiphasiger Stroemungen.

  1. "Who's been feeding in my bed?" Benthivorous fish affect fluvial sediment transport - fact or fairy tale?

    Science.gov (United States)

    Rice, Stephen; Pledger, Andrew; Smith, James; Toone, Julia

    2016-04-01

    Many species of fish are benthivorous - they forage for food in the river bed - and their foraging disturbs, displaces and sorts bed materials with implications for fluvial sediment transport. Flume experiments have confirmed that benthic foraging by Barbel (Barbus barbus (L.)) and Chub (Squalius cephalus (L.)) modifies the structure and topography of water-worked gravels, thereby increasing particle entrainment probabilities and the quantity of sediment mobilised during experimental high flows. Field experiments and observations have demonstrated the impact of foraging on patch-scale bed disturbance, gravel structure, grain displacements and grain-size sorting. Initial ex-situ experiments support the suggestion that in low gradient rivers, shoals of fish like Bream (Abramis brama (L.)) entrain fine bed sediments, adding a biotic surcharge to the suspended sediment flux and modifying bed topography. These results underpin a novel proposal: that there is an aggregate, cumulative effect of benthic foraging on fluvial sediment transport at larger scales, including at scales where the contribution to sediment movement and river channel behaviour generates management concerns. Evaluating this proposal is a long-term goal, which is based on two intermediate objectives: to develop deeper mechanistic understanding of foraging impacts and to establish the spatial and temporal extent of geomorphologically significant feeding behaviours in river systems. The latter is crucial because field data are currently limited to a single reach on one UK river. It is reasonable to hypothesise that foraging impacts are spatially and temporally widespread because obligate and opportunistic benthic feeding is common and fish feed throughout their life. However, the effectiveness of foraging as a geomorphological process is likely to vary with factors including substrate size, fish community composition, food availability, water temperature, river flows and seasonal changes in fish

  2. Imaging ion and molecular transport at subcellular resolution by secondary ion mass spectrometry

    Science.gov (United States)

    Chandra, Subhash; Morrison, George H.

    1995-05-01

    The transport of K+, Na+, and Ca2+ were imaged in individual cells with a Cameca IMS-3f ion microscope. Strict cryogenic frozen freeze-dry sample preparations were employed. Ion redistribution artifacts in conventional chemical preparations are discussed. Cryogenically prepared freeze-fractured freeze-dried cultured cells allowed the three-dimensional ion microscopic imaging of elements. As smaller structures in calcium images can be resolved with the 0.5 [mu]m spatial resolution, correlative techniques are needed to confirm their identity. The potentials of reflected light microscopy, scanning electron microscopy and laser scanning confocal microscopy are discussed for microfeature recognition in freeze-fractured freeze-dried cells. The feasibility of using frozen freeze-dried cells for imaging molecular transport at subcellular resolution was tested. Ion microscopy successfully imaged the transport of the isotopically tagged (13C, 15N) amino acid, -arginine. The labeled amino acid was imaged at mass 28 with a Cs+ primary ion beam as the 28(13C15N)- species. After a 4 h exposure of LLC-PK1 kidney cells to 4 mM labeled arginine, the amino acid was localized throughout the cell with a preferential incorporation into the nucleus and nucleolus. An example is also shown of the ion microscopic imaging of sodium borocaptate, an experimental therapeutic drug for brain tumors, in cryogenically prepared frozen freeze-dried Swiss 3T3 cells.

  3. A heuristic simulation model of Lake Ontario circulation and mass balance transport

    Science.gov (United States)

    McKenna, J.E.; Chalupnicki, M.A.

    2011-01-01

    The redistribution of suspended organisms and materials by large-scale currents is part of natural ecological processes in large aquatic systems but can contribute to ecosystem disruption when exotic elements are introduced into the system. Toxic compounds and planktonic organisms spend various lengths of time in suspension before settling to the bottom or otherwise being removed. We constructed a simple physical simulation model, including the influence of major tributaries, to qualitatively examine circulation patterns in Lake Ontario. We used a simple mass balance approach to estimate the relative water input to and export from each of 10 depth regime-specific compartments (nearshore vs. offshore) comprising Lake Ontario. Despite its simplicity, our model produced circulation patterns similar to those reported by more complex studies in the literature. A three-gyre pattern, with the classic large counterclockwise central lake circulation, and a simpler two-gyre system were both observed. These qualitative simulations indicate little offshore transport along the south shore, except near the mouths of the Niagara River and Oswego River. Complex flow structure was evident, particularly near the Niagara River mouth and in offshore waters of the eastern basin. Average Lake Ontario residence time is 8 years, but the fastest model pathway indicated potential transport of plankton through the lake in as little as 60 days. This simulation illustrates potential invasion pathways and provides rough estimates of planktonic larval dispersal or chemical transport among nearshore and offshore areas of Lake Ontario. ?? 2011 Taylor & Francis.

  4. Solvent-Induced Crystallization in Poly(Ethylene Terephthalate) during Mass Transport

    Science.gov (United States)

    Ouyang, Hao

    2001-03-01

    The solvent transport in poly(ethylene terephthalate) (PET) and related phase transformation were investigated. The data of mass sorption were analyzed according to Harmon¡¦s model for Case I (Fickian), Case II (swelling) and anomalous transport. This transport process in PET is accompanied by the induced crystallization of the original amorphous state. The transformation was studied by wide angle x-ray scattering (WAXS), small angle x-ray scattering (SAXS), Differential Scanning Calorimeter (DSC), density gradient column, and Fourier Transform Infra-Red (FTIR). During this process, the matrix is under a compressive strain that causes different kinetic path of crystallization as compared to that by thermal annealing. This state of strain will assist the development of the solvent-induced crystallization. It also can be explained in terms of the principle of Le Chatelier if the local equilibrium is assumed. The model regarding the crystallization was proposed in terms of the study of long period L, the crystal thickness lc and the thickness of amorphous layer la, obtained from the linear correlation function and interface distribution function.

  5. Analysis of Transportation and Logistics Challenges Affecting the Deployment of Larger Wind Turbines: Summary of Results

    Energy Technology Data Exchange (ETDEWEB)

    Cotrell, J.; Stehly, T.; Johnson, J.; Roberts, J. O.; Parker, Z.; Scott, G.; Heimiller, D.

    2014-01-01

    There is relatively little literature that characterizes transportation and logistics challenges and the associated effects on U.S. wind markets. The objectives of this study were to identify the transportation and logistics challenges, assess the associated impacts, and provide recommendations for strategies and specific actions to address the challenges. The authors primarily relied on interviews with wind industry project developers, original equipment manufacturers, and transportation and logistics companies to obtain the information and industry perspectives needed for this study. They also reviewed published literature on trends and developments in increasing wind turbine size, logistics, and transportation issues.

  6. Peclet number as affected by molecular diffusion controls transient anomalous transport in alluvial aquifer-aquitard complexes

    Science.gov (United States)

    Zhang, Yong; Green, Christopher T.; Tick, Geoffrey R.

    2015-01-01

    This study evaluates the role of the Peclet number as affected by molecular diffusion in transient anomalous transport, which is one of the major knowledge gaps in anomalous transport, by combining Monte Carlo simulations and stochastic model analysis. Two alluvial settings containing either short- or long-connected hydrofacies are generated and used as media for flow and transport modeling. Numerical experiments show that 1) the Peclet number affects both the duration of the power-law segment of tracer breakthrough curves (BTCs) and the transition rate from anomalous to Fickian transport by determining the solute residence time for a given low-permeability layer, 2) mechanical dispersion has a limited contribution to the anomalous characteristics of late-time transport as compared to molecular diffusion due to an almost negligible velocity in floodplain deposits, and 3) the initial source dimensions only enhance the power-law tail of the BTCs at short travel distances. A tempered stable stochastic (TSS) model is then applied to analyze the modeled transport. Applications show that the time-nonlocal parameters in the TSS model relate to the Peclet number, Pe. In particular, the truncation parameter in the TSS model increases nonlinearly with a decrease in Pe due to the decrease of the mean residence time, and the capacity coefficient increases with an increase in molecular diffusion which is probably due to the increase in the number of immobile particles. The above numerical experiments and stochastic analysis therefore reveal that the Peclet number as affected by molecular diffusion controls transient anomalous transport in alluvial aquifer–aquitard complexes.

  7. Mass transport induced by internal Kelvin waves beneath shore-fast ice

    Science.gov (United States)

    StøYlen, Eivind; Weber, Jan Erik H.

    2010-03-01

    A one-layer reduced-gravity model is used to investigate the wave-induced mass flux in internal Kelvin waves along a straight coast beneath shore-fast ice. The waves are generated by barotropic tidal pumping at narrow sounds, and the ice lid introduces a no-slip condition for the horizontal wave motion. The mean Lagrangian fluxes to second order in wave steepness are obtained by integrating the equations of momentum and mass between the material interface and the surface. The mean flow is forced by the conventional radiation stress for internal wave motion, the mean pressure gradient due to the sloping surface, and the frictional drag at the boundaries. The equations that govern the mean fluxes are expressed in terms of mean Eulerian variables, while the wave forcing terms are given by the horizontal divergence of the Stokes flux. Analytical results show that the effect of friction induces a mean Eulerian flux along the coast that is comparable to the Stokes flux. In addition, the horizontal divergence of the total mean flux along the coast induces a small mass flux in the cross-shore direction. This flux changes the mean thickness of the upper layer outside the trapping region and may facilitate geostrophically balanced boundary currents in enclosed basins. This is indeed demonstrated by numerical solutions of the flux equations for confined areas larger than the trapping region. Application of the theory to Arctic waters is discussed, with emphasis on the transport of biological material and pollutants in nearshore regions.

  8. The Sheath Transport Observer for the Redistribution of Mass (STORM) Image

    Science.gov (United States)

    Kuntz, Kip; Collier, Michael; Sibeck, David G.; Porter, F. Scott; Carter, J. A.; Cravens, Thomas; Omidi, N.; Robertson, Ina; Sembay, S.; Snowden, Steven L.

    2008-01-01

    All of the solar wind energy that powers magnetospheric processes passes through the magnetosheath and magnetopause. Global images of the magnetosheath and magnetopause boundary layers will resolve longstanding controversy surrounding fundamental phenomena that occur at the magnetopause and provide information needed to improve operational space weather models. Recent developments showing that soft X-rays (0.15-1 keV) result from high charge state solar wind ions undergoing charge exchange recombination through collisions with exospheric neutral atoms has led to the realization that soft X-ray imaging can provide global maps of the high-density shocked solar wind within the magnetosheath and cusps, regions lying between the lower density solar wind and magnetosphere. We discuss an instrument concept called the Sheath Transport Observer for the Redistribution of Mass (STORM), an X-ray imager suitable for simultaneously imaging the dayside magnetosheath, the magnetopause boundary layers, and the cusps.

  9. The Sheath Transport Observer for the Redistribution of Mass (STORM) Imager

    Science.gov (United States)

    Collier, Michael R.; Sibeck, David G.; Porter, F. Scott; Burch, J.; Carter, J. A.; Cravens, Thomas; Kuntz, Kip; Omidi, N.; Read, A.; Robertson, Ina; Sembay, S.; Snowden, Steven L.

    2010-01-01

    All of the solar wind energy that powers magnetospheric processes passes through the magnetosheath and magnetopause. Global images of the magnetosheath and magnetopause boundary layers will resolve longstanding controversies surrounding fundamental phenomena that occur at the magnetopause and provide information needed to improve operational space weather models. Recent developments showing that soft X-rays (0.15-1 keV) result from high charge state solar wind ions undergoing charge exchange recombination through collisions with exospheric neutral atoms has led to the realization that soft X-ray imaging can provide global maps of the high-density shocked solar wind within the magnetosheath and cusps, regions lying between the lower density solar wind and magnetosphere. We discuss an instrument concept called the Sheath Transport Observer for the Redistribution of Mass (STORM), an X-ray imager suitable for simultaneously imaging the dayside magnetosheath, the magnetopause boundary layers, and the cusps.

  10. Contribution of di-SIA to mass transport in Fe-Cr alloys

    Science.gov (United States)

    Ryabov, V. A.; Pechenkin, V. A.; Molodtsov, V. L.; Terentyev, D.

    2016-04-01

    Molecular dynamics simulations have been performed to study the diffusion characteristics of di-self interstitial atom (di-SIA) in BCC Fe-Cr alloys and corresponding mass transport of Fe and Cratoms in the temperature range 600-1000 K in the alloys with Cr content 5-25 at%, which is relevant for ferritic/martensitic steels. An original treatment is proposed in this work to account for a mixed migration mode composed of the diffusion of the cluster itself and break-up into a pair of independent SIAs. The ratio of self-diffusion coefficients of Cr and Fe is found to exceed unity in Fe-5Cr and Fe-10Cr alloys, which implies that under cascade-producing damage, 3D-migrating small SIA clusters will effectively contribute to the segregation of Cr to neutral and SIA-preferential sinks, eventually causing radiation induced segregation.

  11. Loss of cabin pressure in a military transport: a mass casualty with decompression illnesses.

    Science.gov (United States)

    Johnston, Mickaila J

    2008-04-01

    Presented here is the sudden cabin depressurization of a military C-130 aircraft carrying 66 personnel. They suffered a depressurization from 2134 to 7317 m, resulting in a potential 66-person mass casualty. The aircrew were able to descend to below 3049 m in less than 5 min. They landed in the Kingdom of Bahrain--the nearest hyperbaric recompression facility. Three cases of peripheral neurologic DCS and one case of spinal DCS were identified. Limited manning, unique host nation concerns, and limited available assets led to difficulties in triage, patient transport, and asset allocation. These led to difficult decisions regarding when and for whom to initiate ground level oxygen or hyperbaric recompression therapy.

  12. Solvent-driven electron trapping and mass transport in reduced graphites to access perfect graphene

    Science.gov (United States)

    Vecera, Philipp; Holzwarth, Johannes; Edelthalhammer, Konstantin F.; Mundloch, Udo; Peterlik, Herwig; Hauke, Frank; Hirsch, Andreas

    2016-08-01

    Herein, we report on a significant discovery, namely, the quantitative discharging of reduced graphite forms, such as graphite intercalation compounds, graphenide dispersions and graphenides deposited on surfaces with the simple solvent benzonitrile. Because of its comparatively low reduction potential, benzonitrile is reduced during this process to the radical anion, which exhibits a red colour and serves as a reporter molecule for the quantitative determination of negative charges on the carbon sheets. Moreover, this discovery reveals a very fundamental physical-chemical phenomenon, namely a quantitative solvent reduction induced and electrostatically driven mass transport of K+ ions from the graphite intercalation compounds into the liquid. The simple treatment of dispersed graphenides suspended on silica substrates with benzonitrile leads to the clean conversion to graphene. This unprecedented procedure represents a rather mild, scalable and inexpensive method for graphene production surpassing previous wet-chemical approaches.

  13. Angular momentum transport efficiency in post-main sequence low-mass stars

    CERN Document Server

    Spada, F; Arlt, R; Deheuvels, S

    2016-01-01

    Context. Using asteroseismic techniques, it has recently become possible to probe the internal rotation profile of low-mass (~1.1-1.5 Msun) subgiant and red giant stars. Under the assumption of local angular momentum conservation, the core contraction and envelope expansion occurring at the end of the main sequence would result in a much larger internal differential rotation than observed. This suggests that angular momentum redistribution must be taking place in the interior of these stars. Aims. We investigate the physical nature of the angular momentum redistribution mechanisms operating in stellar interiors by constraining the efficiency of post-main sequence rotational coupling. Methods. We model the rotational evolution of a 1.25 Msun star using the Yale Rotational stellar Evolution Code. Our models take into account the magnetic wind braking occurring at the surface of the star and the angular momentum transport in the interior, with an efficiency dependent on the degree of internal differential rotati...

  14. Mass transport aspects of polymer electrolyte fuel cells under two-phase flow conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, D.

    2007-03-15

    This well-illustrated, comprehensive dissertation by Dr. Ing. Denis Kramer takes an in-depth look at polymer electrolyte fuel cells (PEFC) and the possibilities for their application. First of all, the operating principles of polymer electrolyte fuel cells are described and discussed, whereby thermodynamics aspects and loss mechanisms are examined. The mass transport diagnostics made with respect to the function of the cells are discussed. Field flow geometry, gas diffusion layers and, amongst other things, liquid distribution, the influence of flow direction and the low-frequency behaviour of air-fed PEFCs are discussed. Direct methanol fuel cells are examined, as are the materials chosen. The documentation includes comprehensive mathematical and graphical representations of the mechanisms involved.

  15. Does the Grammatical Count/Mass Distinction Affect Semantic Representations? Evidence from Experiments in English and Japanese

    Science.gov (United States)

    Iwasaki, Noriko; Vinson, David P.; Vigliocco, Gabriella

    2010-01-01

    We investigate linguistic relativity effects by examining whether the grammatical count/mass distinction in English affects English speakers' semantic representations of noun referents, as compared with those of Japanese speakers, whose language does not grammatically distinguish nouns for countability. We used two tasks which are sensitive to…

  16. How uncertainty in socio-economic variables affects large-scale transport model forecasts

    DEFF Research Database (Denmark)

    Manzo, Stefano; Nielsen, Otto Anker; Prato, Carlo Giacomo

    2015-01-01

    time, especially with respect to large-scale transport models. The study described in this paper contributes to fill the gap by investigating the effects of uncertainty in socio-economic variables growth rate projections on large-scale transport model forecasts, using the Danish National Transport...... showed how the model output uncertainty grows over time, reflecting the increase in the uncertainty of the model variables. Furthermore, the resulting uncertainty temporal pattern was neither linear nor similar for the different model outputs investigated. This highlights the importance of investigating...

  17. A Comprehensive Flow, Heat and Mass Transport Uncertainty Quantification in Discrete Fracture Network Systems

    Science.gov (United States)

    Ezzedine, S. M.

    2010-12-01

    Fractures and fracture networks are the principle pathways for migration of water, heat and mass in enhanced geothermal systems, oil and gas reservoirs, CO2 leakage from saline aquifers, and radioactive and toxic industrial wastes from underground storage repositories. A major issue to overcome when characterizing a fractured reservoir is that of data limitation due to accessibility and affordability. Moreover, the ability to map discontinuities in the rock with available geological and geophysical tools tends to decrease particularly as the scale of the discontinuity goes down. Geological characterization data include measurements of fracture density, orientation, extent, and aperture, and are based on analysis of outcrops, borehole optical and acoustic televiewer logs, aerial photographs, and core samples among others. All of these measurements are taken at the field scale through a very sparse limited number of deep boreholes. These types of data are often reduced to probability distributions function for predictive modeling and simulation in a stochastic framework such as stochastic discrete fracture network. Stochastic discrete fracture network models enable, through Monte Carlo realizations and simulations, for probabilistic assessment of flow and transport phenomena that are not adequately captured using continuum models. Despite the fundamental uncertainties inherited within the probabilistic reduction of the sparse data collected, very little work has been conducted on quantifying uncertainty on the reduced probabilistic distribution functions. In the current study, using nested Monte Carlo simulations, we present the impact of parameter uncertainties of the distribution functions that characterize discrete fracture networks on the flow, heat and mass transport. Numerical results of first, second and third moments, normalized to a base case scenario, are presented and compared to theoretical results extended from percolation theory.

  18. Optimal-mass-transfer-based estimation of glymphatic transport in living brain

    Science.gov (United States)

    Ratner, Vadim; Zhu, Liangjia; Kolesov, Ivan; Nedergaard, Maiken; Benveniste, Helene; Tannenbaum, Allen

    2015-03-01

    It was recently shown that the brain-wide cerebrospinal fluid (CSF) and interstitial fluid exchange system designated the `glymphatic pathway' plays a key role in removing waste products from the brain, similarly to the lymphatic system in other body organs . It is therefore important to study the flow patterns of glymphatic transport through the live brain in order to better understand its functionality in normal and pathological states. Unlike blood, the CSF does not flow rapidly through a network of dedicated vessels, but rather through para-vascular channels and brain parenchyma in a slower time-domain, and thus conventional fMRI or other blood-flow sensitive MRI sequences do not provide much useful information about the desired flow patterns. We have accordingly analyzed a series of MRI images, taken at different times, of the brain of a live rat, which was injected with a paramagnetic tracer into the CSF via the lumbar intrathecal space of the spine. Our goal is twofold: (a) find glymphatic (tracer) flow directions in the live rodent brain; and (b) provide a model of a (healthy) brain that will allow the prediction of tracer concentrations given initial conditions. We model the liquid flow through the brain by the diffusion equation. We then use the Optimal Mass Transfer (OMT) approach to derive the glymphatic flow vector field, and estimate the diffusion tensors by analyzing the (changes in the) flow. Simulations show that the resulting model successfully reproduces the dominant features of the experimental data. Keywords: inverse problem, optimal mass transport, diffusion equation, cerebrospinal fluid flow in brain, optical flow, liquid flow modeling, Monge Kantorovich problem, diffusion tensor estimation

  19. Cold storage affects mortality, body mass, lifespan, reproduction and flight capacity of Praon volucre (Hymenoptera: Braconidae)

    NARCIS (Netherlands)

    Lins, J.C.; Bueno, V.H.P.; Sidney, L.A.; Silva, D.B.; Sampaio, M.V.; Pereira, J.M.; Nomelini, Q.S.S.; Lenteren, van J.C.

    2013-01-01

    The possibility of storing natural enemies at low temperatures is important for the mass production of biological control agents. We evaluated the effect of different periods of cold storage on immature mortality, mummy body mass, lifespan, reproduction and flight capacity of the parasitoid Praon vo

  20. Mass transport around comets and its impact on the seasonal differences in water production rates

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, M.; Altwegg, K.; Thomas, N. [Physikalisches Institut, University of Bern, Sidlerstrasse 5, 3012 Bern (Switzerland); Fougere, N.; Combi, M. R.; Tenishev, V. M. [Atmospheric, Oceanic and Space Sciences, University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109 (United States); Le Roy, L. [Center for Space and Habitability, University of Bern, Sidlerstrasse 5, 3012 Bern (Switzerland)

    2014-06-20

    Comets are surrounded by a thin expanding atmosphere, and although the nucleus' gravity is small, some molecules and grains, possibly with the inclusion of ices, can get transported around the nucleus through scattering (atoms/molecules) and gravitational pull (grains). Based on the obliquity of the comet, it is also possible that volatile material and icy grains get trapped in regions, which are in shadow until the comet passes its equinox. When the Sun rises above the horizon and the surface starts to heat up, this condensed material starts to desorb and icy grains will sublimate off the surface, possibly increasing the comet's neutral gas production rate on the outbound path. In this paper we investigate the mass transport around the nucleus, and based on a simplified model, we derive the possible contribution to the asymmetry in the seasonal gas production rate that could arise from trapped material released from cold areas once they come into sunlight. We conclude that the total amount of volatiles retained by this effect can only contribute up to a few percent of the asymmetry observed in some comets.

  1. Passive mass transport for direct and quantitative SERS detection using purified silica encapsulated metal nanoparticles

    Science.gov (United States)

    Shrestha, Binaya Kumar

    This thesis focuses on understanding implications of nanomaterial quality control and mass transport through internally etched silica coated nanoparticles for direct and quantitative molecular detection using surface enhanced Raman scattering (SERS). Prior to use, bare nanoparticles (partially or uncoated with silica) are removal using column chromatography to improve the quality of these nanomaterials and their SERS reproducibility. Separation of silica coated nanoparticles with two different diameters is achieved using Surfactant-free size exclusion chromatography with modest fractionation. Next, selective molecular transport is modeled and monitored using SERS and evaluated as a function of solution ionic strength, pH, and polarity. Molecular detection is achieved when the analytes first partition through the silica membrane then interact with the metal surface at short distances (i.e., less than 2 nm). The SERS intensities of unique molecular vibrational modes for a given molecule increases as the number of molecules that bind to the metal surface increases and are enhanced via both chemical and electromagnetic enhancement mechanisms as long as the vibrational mode has a component of polarizability tensor along the surface normal. SERS signals increase linearly with molecular concentration until the three-dimensional SERS-active volume is saturated with molecules. Implications of molecular orientation as well as surface selection rules on SERS intensities of molecular vibrational modes are studied to improve quantitative and reproducible SERS detection using internally etched Ag Au SiO2 nanoparticles. Using the unique vibrational modes, SERS intensities for p-aminothiophenol as a function of metal core compositions and plasmonics are studied. By understanding molecular transport mechanisms through internally etched silica matrices coated on metal nanoparticles, important experimental and materials design parameters are learned, which can be subsequently applied

  2. Analysis of Transportation and Logistics Challenges Affecting the Deployment of Larger Wind Turbines: Summary of Results

    Energy Technology Data Exchange (ETDEWEB)

    J. Cotrell, T. Stehly, J. Johnson, J. O. Roberts, Z. Parker, G. Scott, and D. Heimiller

    2014-01-28

    The objectives of this study were to identify the transportation and logistics challenges, assess the associated impacts, and provide recommendations for strategies and specific actions to address the challenges.

  3. Serotonin Transporter Genotype Affects Serotonin 5-HT1A Binding in Primates

    OpenAIRE

    Christian, Bradley T; Wooten, Dustin W; Hillmer, Ansel T.; Tudorascu, Dana L.; Converse, Alexander K.; Moore, Colleen F.; Ahlers, Elizabeth O.; Barnhart, Todd E.; Kalin, Ned H.; Barr, Christina S.; Schneider, Mary L.

    2013-01-01

    Disruption of the serotonin system has been implicated in anxiety and depression and a related genetic variation has been identified that may predispose individuals for these illnesses. The relationship of a functional variation of the serotonin transporter promoter gene (5-HTTLPR) on serotonin transporter binding using in vivo imaging techniques have yielded inconsistent findings when comparing variants for short (s) and long (l) alleles. However, a significant 5-HTTLPR effect on receptor bi...

  4. Interpolation of longitudinal shape and image data via optimal mass transport

    Science.gov (United States)

    Gao, Yi; Zhu, Liang-Jia; Bouix, Sylvain; Tannenbaum, Allen

    2014-03-01

    Longitudinal analysis of medical imaging data has become central to the study of many disorders. Unfortunately, various constraints (study design, patient availability, technological limitations) restrict the acquisition of data to only a few time points, limiting the study of continuous disease/treatment progression. Having the ability to produce a sensible time interpolation of the data can lead to improved analysis, such as intuitive visualizations of anatomical changes, or the creation of more samples to improve statistical analysis. In this work, we model interpolation of medical image data, in particular shape data, using the theory of optimal mass transport (OMT), which can construct a continuous transition from two time points while preserving "mass" (e.g., image intensity, shape volume) during the transition. The theory even allows a short extrapolation in time and may help predict short-term treatment impact or disease progression on anatomical structure. We apply the proposed method to the hippocampus-amygdala complex in schizophrenia, the heart in atrial fibrillation, and full head MR images in traumatic brain injury.

  5. Back to the primordial universe by a monge-ampere-kantorovich mass transportation method

    Science.gov (United States)

    Frisch, U.

    2003-04-01

    The Monge-Kantorovich mass transportation problem dates back to work by Monge in 1781 on how to optimally move earth from one place to another, knowing only the initial and final landscapes, the cost being a prescribed function of the distance travelled by "molecules" of earth. We solve the cosmological reconstruction problem of mapping the present locations of (mostly dark) matter, to their primordial locations, knowing only the current field of mass density, e.g. from a full-sky galaxy catalogue or a numerical simulation. Under the assumption that the map is close to potential, we reduce the problem to solving a nonlinear partial differential equation, originally written by Ampere in 1820, now known as the Monge-Ampere equation. Thanks to recent work by Y. Brenier, this becomes a Monge-Kantorovich problem with quadratic cost function and, in discretised form, an assignment problem: find the pairing between N departure and N arrival points which minimises the sum of the squared distances between paired points. The latter can be solved very efficiently by the auction algorithm of Bertsekas. When tested against N-body cosmological simulations, excellent reconstruction is obtained above a few megaparsecs. Based on the paper Frisch-Matarrese-Mohayaee-Sobolevski Nature 417, 260-262 (16 May 2002).

  6. Mass transport of heavy metal ions and radon in gels used as sealing agents in containment technologies

    Energy Technology Data Exchange (ETDEWEB)

    Lakatos, I.; Bauer, K.; Lakatos-Szabo, J. [Research Lab. for Mining Chemistry, Miskolc-Egyetemvaros (Hungary); Kretzschmar, H.J. [DBI Gas- und Umwelttechnik GmbH, Feiberg (Germany)

    1997-12-31

    The diffusion and hydrodynamic mass transport of multivalent cations, mostly Cr(III) and Cr(VI) ions and radon in polymer/silicate gels and Montanwax emulsions were studied. It was concluded that the self-conforming gels may decrease the hydrodynamic mass transport in porous and fractured media by 4-6 orders of magnitude. In water saturated systems, however, the diffusion transport can be restricted by hydrogels only to a moderate extent. On the other hand, the high and selective retention capacity of gels towards different diffusing species may open new vistas in the sealing technologies. Similar results were obtained for transport phenomena of radon. The almost perfect quenching process of radon and its nuclides in gels and emulsions further enhances the positive effects of the encapsulation methods. The laboratory experiments provided valuable new information to design the different containment technologies.

  7. 41 CFR 102-34.210 - May I use a Government motor vehicle for transportation between places of employment and mass...

    Science.gov (United States)

    2010-07-01

    ... motor vehicle for transportation between places of employment and mass transit facilities? 102-34.210... of employment and mass transit facilities? Yes, you may use a Government motor vehicle for transportation between places of employment and mass transit facilities under the following conditions: (a)...

  8. Mass Transport Deposits in the Santaren Channel: Distribution, Characteristics, and Potential Triggering Mechanisms

    Science.gov (United States)

    Schnyder, J.

    2015-12-01

    Submarine slope failures are a likely cause for tsunami generation along the East U.S. coast. A possible source are the large slope failures along western Great Bahama Bank (GBB). Numerical models simulate tsunami generation and propagation through the Straits of Florida, caused by these Pleistocene mass wasting events. In order to estimate the likelihood and extent of future landslides, distribution, characteristics, and possible triggering mechanisms of previous failures and their associated mass transport deposits (MTD) have to be investigated. In 2013, the University of Hamburg acquired 2D high-resolution multichannel seismic data, multibeam data, and subbottom profiles inside the Santaren Channel, along the slopes of western GBB and Cay Sal Bank (CSB). The two platforms are different in two ways. CSB is part of the Cuban Fold and Thrust Belt while GBB is situated in a tectonically quiet zone. In addition, the slopes of western GBB are on the leeward side of the bank, while the eastern slopes of CSB are in a windward position. Differences in nature and size of mass wasting events between the Cay Sal side and the western GBB side of the dataset show how influential the tectonically active Cuban Fold and Thrust Belt is to the generation of large MTDs in this area. In the study area, the slope failures can be divided in two categories; small-scale in situ failures with high frequencies on the slopes, dominant on the western GBB side, and large landslides with a lower frequency, but higher volumes and transport distances on the toe of the slope and in the basin, dominant on the Cay Sal side. The distribution of in situ failures, such as slump and debris flow alternation, shows the interplay between high and low inner strength of the sediment, respectively. On the other hand, large MTDs caused by submarine landslides suggest movement in an unconfined manner. Internal sediment preconditions derived from sea level oscillations are suggested as triggering mechanisms

  9. Atomistic Simulations of Mass and Thermal Transport in Oxide Nuclear Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Anders D. [Los Alamos National Laboratory; Uberuaga, Blas P. [Los Alamos National Laboratory; Du, Shiyu [Los Alamos National Laboratory; Liu, Xiang-Yang [Los Alamos National Laboratory; Nerikar, Pankaj [IBM; Stanek, Christopher R. [Los Alamos National Laboratory; Tonks, Michael [Idaho National Laboratory; Millet, Paul [Idaho National Laboratory; Biner, Bulent [Idaho National Laboratory

    2012-06-04

    In this talk we discuss simulations of the mass and thermal transport in oxide nuclear fuels. Redistribution of fission gases such as Xe is closely coupled to nuclear fuel performance. Most fission gases have low solubility in the fuel matrix, specifically the insolubility is most pronounced for large fission gas atoms such as Xe, and as a result there is a significant driving force for segregation of gas atoms to grain boundaries or dislocations and subsequently for nucleation of gas bubbles at these sinks. The first step of the fission gas redistribution is diffusion of individual gas atoms through the fuel matrix to existing sinks, which is governed by the activation energy for bulk diffusion. Fission gas bubbles are then formed by either separate nucleation events or by filling voids that were nucleated at a prior stage; in both cases their formation and latter growth is coupled to vacancy dynamics and thus linked to the production of vacancies via irradiation or thermal events. In order to better understand bulk Xe behavior (diffusion mechanisms) in UO{sub 2{+-}x} we first calculate the relevant activation energies using density functional theory (DFT) techniques. By analyzing a combination of Xe solution thermodynamics, migration barriers and the interaction of dissolved Xe atoms with U, we demonstrate that Xe diffusion predominantly occurs via a vacancy-mediated mechanism, though other alternatives may exist in high irradiation fields. Since Xe transport is closely related to diffusion of U vacancies, we have also studied the activation energy for this process. In order to explain the low value of 2.4 eV found for U migration from independent damage experiments (not thermal equilibrium) the presence of vacancy clusters must be included in the analysis. Next a continuum transport model for Xe and U is formulated based on the diffusion mechanisms established from DFT. After combining this model with descriptions of the interaction between Xe and grain

  10. Do seed mass and family affect germination and juvenile performance in Knautia arvensis? A study using failure-time methods

    Science.gov (United States)

    Vange, Vibekke; Heuch, Ivar; Vandvik, Vigdis

    2004-05-01

    Germination and seedling establishment are vulnerable stages in the plant life cycle. We investigated how seed mass and family (progeny origin) affect germination and juvenile performance in the grassland herb Knautia arvensis. Seeds were produced by cross-pollination by hand. The fate of 15 individually weighed seeds from each of 15 plants was followed during a 3-month growth chamber experiment. Progeny origin affected germination, both through seed mass and as an independent factor. Two groups of progenies could be distinguished by having rapid or delayed germination. The two groups had similar mean seed masses, but a positive relationship between seed mass and germination rate could be established only among the rapidly germinating progenies. These biologically relevant patterns were revealed because timing of germination was taken into account in the analyses, not only frequencies. Time-to-event data were analysed with failure-time methods, which gave more stable estimates for the relation between germination and seed mass than the commonly applied logistic regression. Progeny origin and seed mass exerted less impact on later characters like juvenile survival, juvenile biomass, and rosette number. These characters were not affected by the timing of germination under the competition-free study conditions. The decrease in the effect of progeny origin from the seed and germination to the juvenile stages suggests that parental effects other than those contributing to the offspring genotype strongly influenced the offspring phenotype at the earliest life stages. Further, the division of progeny germination patterns into two fairly distinct groups indicates that there was a genetic basis for the variation in stratification requirements among parental plants. Field studies are needed to elucidate effects of different timing of germination in the seasonal grasslands that K. arvensis inhabits.

  11. Perturbation of nucleo-cytoplasmic transport affects size of nucleus and nucleolus in human cells.

    Science.gov (United States)

    Ganguly, Abira; Bhattacharjee, Chumki; Bhave, Madhura; Kailaje, Vaishali; Jain, Bhawik K; Sengupta, Isha; Rangarajan, Annapoorni; Bhattacharyya, Dibyendu

    2016-03-01

    Size regulation of human cell nucleus and nucleolus are poorly understood subjects. 3D reconstruction of live image shows that the karyoplasmic ratio (KR) increases by 30-80% in transformed cell lines compared to their immortalized counterpart. The attenuation of nucleo-cytoplasmic transport causes the KR value to increase by 30-50% in immortalized cell lines. Nucleolus volumes are significantly increased in transformed cell lines and the attenuation of nucleo-cytoplasmic transport causes a significant increase in the nucleolus volume of immortalized cell lines. A cytosol and nuclear fraction swapping experiment emphasizes the potential role of unknown cytosolic factors in nuclear and nucleolar size regulation.

  12. Colonic epithelial ion transport is not affected in patients with diverticulosis

    DEFF Research Database (Denmark)

    Osbak, Philip S; Bindslev, Niels; Poulsen, Steen S;

    2007-01-01

    BACKGROUND: Colonic diverticular disease is a bothersome condition with an unresolved pathogenesis. It is unknown whether a neuroepithelial dysfunction is present. The aim of the study was two-fold; (1) to investigate colonic epithelial ion transport in patients with diverticulosis and (2) to adapt...... (controls) except for diverticulosis in 22 (D-patients). Biopsies were mounted in MUAS chambers with an exposed area of 5 mm2. Electrical responses to various stimulators and inhibitors of ion transport were investigated together with histological examination. The MUAS chamber was easy to use...... with diverticulosis and that the MUAS chamber can be adapted for studies of human colonic endoscopic biopsies. Udgivelsesdato: 2007-null...

  13. Body mass affects seasonal variation in sickness intensity in a seasonally breeding rodent

    Science.gov (United States)

    Carlton, Elizabeth D.; Demas, Gregory E.

    2015-01-01

    ABSTRACT Species that display seasonal variation in sickness intensity show the most intense response in the season during which they have the highest body mass, suggesting that sickness intensity may be limited by an animal's energy stores. Siberian hamsters (Phodopus sungorus) display lower body masses and less intense sickness when housed in short, winter-like days as opposed to long, summer-like days. To determine whether reduced sickness intensity displayed by short-day hamsters is a product of seasonal changes in body mass, we food restricted long-day hamsters so that they exhibited body mass loss that mimicked the natural photoperiod-induced loss of body mass in short-day hamsters. We then experimentally induced sickness with lipopolysaccharide (LPS) and compared sickness responses among long-day food-restricted and long- and short-day ad libitum fed groups, predicting that long-day food-restricted hamsters would show sickness responses comparable to those of short-day ad libitum fed hamsters and attenuated in comparison to long-day ad libitum fed hamsters. We found that long-day food-restricted hamsters showed attenuated LPS-induced anorexia, loss of body mass and hypothermia compared with long-day ad libitum fed animals; however, anorexia remained elevated in long-day food-restricted animals compared with short-day ad libitum fed animals. Additionally, LPS-induced anhedonia and decreases in nest building were not influenced by body mass. Results of hormone assays suggest that cortisol levels could play a role in the attenuation of sickness in long-day food-restricted hamsters, indicating that future research should target the roles of glucocorticoids and natural variation in energy stores in seasonal sickness variation. PMID:25852068

  14. Using mass spectrometry for identification of ABC transporters from Xanthomonas citri and mutants expressed in different growth conditions

    Energy Technology Data Exchange (ETDEWEB)

    Faria, J.N.; Balan, A. [Laboratorio Nacional de Biociencias - LNBIO, Campinas, SP (Brazil); Paes Leme, A.F. [Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas, SP (Brazil)

    2012-07-01

    Full text: Xanthomonas citri is a phytopathogenic bacterium that infects citrus plants causing significant losses for the economy. In our group, we have focused on the identification and characterization of ABC transport proteins of this bacterium, in order to determinate their function for growth in vitro and in vivo, during infection. ABC transporters represent one of the largest families of proteins, which transport since small molecules as ions up to oligopeptides and sugars. In prokaryotic cells many works have reported the ABC transport function in pathogenesis, resistance, biofilm formation, infectivity and DNA repair, but until our knowledge, there is no data related to these transporters and X. citri. So, In order to determinate which transporters are expressed in X. citri, we started a proteomic analysis based on mono and bi-dimensional gels associated to mass spectrometry analyses. After growing X. citri and two different mutants deleted for ssuA and nitA genes in LB and minimum media, cellular extracts were obtained and used for preparation of mono and bi-dimensional gels. Seven bands covering the expected mass of ABC transporter components (20 kDa to 50 kDa) in SDS-PAGE were cut off the gel, treated with trypsin and submitted to the MS for protein identification. The results of 2D gels were good enough and will serve as a standard for development of similar experiments in large scale. (author)

  15. Colloid formation and metal transport through two mixing zones affected by acid mine drainage near Silverton, Colorado

    Science.gov (United States)

    Schemel, L.E.; Kimball, B.A.; Bencala, K.E.

    2000-01-01

    Stream discharges and concentrations of dissolved and colloidal metals (Al, Ca, Cu, Fe, Mg, Mn, Pb, and Zn), SO4, and dissolved silica were measured to identify chemical transformations and determine mass transports through two mixing zones in the Animas River that receive the inflows from Cement and Mineral Creeks. The creeks were the dominant sources of Al, Cu, Fe, and Pb, whereas the upstream Animas River supplied about half of the Zn. With the exception of Fe, which was present in dissolved and colloidal forms, the metals were dissolved in the acidic, high-SO4 waters of Cement Creek (pH 3.8). Mixing of Cement Creek with the Animas River increased pH to near-neutral values and transformed Al and some additional Fe into colloids which also contained Cu and Pb. Aluminium and Fe colloids had already formed in the mildly acidic conditions in Mineral Creek (pH 6.6) upstream of the confluence with the Animas River. Colloidal Fe continued to form downstream of both mixing zones. The Fe- and Al-rich colloids were important for transport of Cu, Pb, and Zn, which appeared to have sorbed to them. Partitioning of Zn between dissolved and colloidal phases was dependent on pH and colloid concentration. Mass balances showed conservative transports for Ca, Mg, Mn, SO4, and dissolved silica through the two mixing zones and small losses (< 10%) of colloidal Al, Fe and Zn from the water column.

  16. A mutation in protein phosphatase 2A regulatory subunit A affects auxin transport in Arabidopsis

    Science.gov (United States)

    Garbers, C.; DeLong, A.; Deruere, J.; Bernasconi, P.; Soll, D.; Evans, M. L. (Principal Investigator)

    1996-01-01

    The phytohormone auxin controls processes such as cell elongation, root hair development and root branching. Tropisms, growth curvatures triggered by gravity, light and touch, are also auxin-mediated responses. Auxin is synthesized in the shoot apex and transported through the stem, but the molecular mechanism of auxin transport is not well understood. Naphthylphthalamic acid (NPA) and other inhibitors of auxin transport block tropic curvature responses and inhibit root and shoot elongation. We have isolated a novel Arabidopsis thaliana mutant designated roots curl in NPA (rcn1). Mutant seedlings exhibit altered responses to NPA in root curling and hypocotyl elongation. Auxin efflux in mutant seedlings displays increased sensitivity to NPA. The rcn1 mutation was transferred-DNA (T-DNA) tagged and sequences flanking the T-DNA insert were cloned. Analysis of the RCN1 cDNA reveals that the T-DNA insertion disrupts a gene for the regulatory A subunit of protein phosphatase 2A (PP2A-A). The RCN1 gene rescues the rcn1 mutant phenotype and also complements the temperature-sensitive phenotype of the Saccharomyces cerevisiae PP2A-A mutation, tpd3-1. These data implicate protein phosphatase 2A in the regulation of auxin transport in Arabidopsis.

  17. Genetic variation in serotonin transporter function affects human fear expression indexed by fear-potentiated startle

    NARCIS (Netherlands)

    Klumpers, F.; Heitland, I.; Oosting, R.S.; Kenemans, J.L.; Baas, J.M.

    2012-01-01

    The serotonin transporter (SERT) plays a crucial role in anxiety. Accordingly, variance in SERT functioning appears to constitute an important pathway to individual differences in anxiety. The current study tested the hypothesis that genetic variation in SERT function is associated with variability

  18. Intestinal microbial affects of yeast products on weaned and transport stressed pigs

    Science.gov (United States)

    Study objectives were to determine effects of a commercially available yeast product (XPC, Diamond-V Mills) and stress of transportation on total Enterobacteriaceae, Escherichia coli, coliforms, and Lactobacilli populations in the intestine of weaning pigs. In a RCB design with a 2 x 2 factorial ar...

  19. How Do Hydrodynamic Instabilities Affect 3D Transport in Geophysical Vortices?

    Science.gov (United States)

    Wang, P.; Ozgokmen, T. M.

    2014-12-01

    Understanding three-dimensional (3D) transport in ocean eddies is important for processes at a variety of scales, ranging from plankton production to climate variability. It is well known that geophysical vortices are subject to various hydrodynamic instabilities. Yet the influence of these instabilities on 3D material transport in vortex systems is not well investigated. Focusing on barotropic, inertial and 3D instabilities, we analyze these instabilities with normal-mode method, and reproduce their characteristics via highly-resolved numerical simulations using a spectral element Navier-Stokes solver. By comparing the simulation results of stable and unstable vortices, we investigate the joint impacts of instabilities on 3D transport through three major aspects: (i) energy transfer, (ii) overturning transport of the secondary circulation, and (iii) rates of vertical exchange and mixing. It is found that instabilities can enhance local nonlinear interactions and cause the kinetic energy wavenumber spectrum to have slopes between the conventional -5/3 and -3 at inertial ranges. The cascade of a new quantity is proposed to explain these non-conventional slopes. One of our main results is the discovery of material exchange between the central vortex and satellite vortices through 3D pathways, called funnels. These funnels modify the concept of elliptic regions that can trap material when confined to 2D dynamics. Thus, we show that a family of vortices, created by the hydrodynamic instabilities of the initially unstable vortex, can still continue to operate in unity in order to complete the 3D transport in these systems. We also show that flow instabilities can double the magnitude of vertical velocity, increase the rate of vertical exchange by an order of magnitude and enhance mixing rate more than 100%.

  20. Mass transfer model of nanoparticle-facilitated contaminant transport in saturated porous media.

    Science.gov (United States)

    Johari, Wan Lutfi Wan; Diamessis, Peter J; Lion, Leonard W

    2010-02-01

    A one-dimensional model has been evaluated for transport of hydrophobic contaminants, such as polycyclic aromatic hydrocarbon (PAH) compounds, facilitated by synthetic amphiphilic polyurethane (APU) nanoparticles in porous media. APU particles synthesized from poly(ethylene glycol)-modified urethane acrylate (PMUA) precursor chains have been shown to enhance the desorption rate and mobility of phenanthrene (PHEN) in soil. A reversible process governed by attachment and detachment rates was considered to describe the PMUA binding in soil in addition to PMUA transport through advection and dispersion. Ultimately, an irreversible second-order PMUA attachment rate in which the fractional soil saturation capacity with PMUA was a rate control was found to be adequate to describe the retention of PMUA particles. A gamma-distributed site model (GS) was used to describe the spectrum of physical/chemical constraints for PHEN transfer from solid to aqueous phases. Instantaneous equilibrium was assumed for PMUA-PHEN interactions. The coupled model for PMUA and PHEN behavior successfully described the enhanced elution profile of PHEN by PMUA. Sensitivity analysis was performed to analyze the significance of model parameters on model predictions. The adjustable parameter alpha in the gamma-distribution shapes the contaminant desorption distribution profile as well as elution and breakthrough curves. Model simulations show the use of PMUA can be also expected to improve the release rate of PHEN in soils with higher organic carbon content. The percentage removal of PHEN mass over time is shown to be influenced by the concentration of PMUA added and this information can be used to optimize cost and time require to accomplish a desired remediation goal.

  1. Dietary energy density affects fat mass in early adolescence and is not modified by FTO variants.

    Directory of Open Access Journals (Sweden)

    Laura Johnson

    Full Text Available BACKGROUND: Dietary energy density (DED does not have a simple linear relationship to fat mass in children, which suggests that some children are more susceptible than others to the effects of DED. Children with the FTO (rs9939609 variant that increases the risk of obesity may have a higher susceptibility to the effects of DED because their internal appetite control system is compromised. We tested the relationship between DED and fat mass in early adolescence and its interaction with FTO variants. METHODS AND FINDINGS: We carried out a prospective analysis on 2,275 children enrolled in the Avon Longitudinal Study of Parents and Children (ALSPAC. Diet was assessed at age 10 y using 3-day diet diaries. DED (kJ/g was calculated excluding drinks. Children were genotyped for the FTO (rs9939609 variant. Fat mass was estimated at age 13 y using the Lunar Prodigy Dual-energy X-ray Absorptiometry scanner. There was no evidence of interaction between DED at age 10 y and the high risk A allele of the FTO gene in relation to fat mass at age 13 y (beta = 0.005, p = 0.51, suggesting that the FTO gene has no effect on the relation between DED at 10 y and fat mass at 13 y. When DED at 10 y and the A allele of FTO were in the same model they were independently related to fat mass at 13 y. Each A allele of FTO was associated with 0.35+/-0.13 kg more fat mass at 13 y and each 1 kJ/g DED at 10 y was associated with 0.16+/-0.06 kg more fat mass at age 13 y, after controlling for misreporting of energy intake, gender, puberty, overweight status at 10 y, maternal education, TV watching, and physical activity. CONCLUSIONS: This study reveals the multi-factorial origin of obesity and indicates that although FTO may put some children at greater risk of obesity, encouraging a low dietary energy density may be an effective strategy to help all children avoid excessive fat gain.

  2. Transport of root-derived CO2 via the transpiration stream affects aboveground tree physiology

    Science.gov (United States)

    Bloemen, J.; McGuire, M. A.; Aubrey, D. P.; Teskey, R. O.; Steppe, K.

    2012-04-01

    Recent research on soil CO2 efflux has shown that belowground autotrophic respiration is largely underestimated using classical net CO2 flux measurements. Aubrey & Teskey (2009) found that in forest ecosystems a substantial portion of the CO2 released from root respiration remained within the root system and was transported aboveground in the stem via the transpiration stream. The magnitude of this upward movement of CO2 from belowground tissues suggested important implications for how we measure above- and belowground respiration. If a considerable fraction of root-respired CO2 is transported aboveground, where it might be fixed in woody and leaf tissues, then we are routinely underestimating the amount of C needed to sustain belowground tissues. In this study, we infused 13C labeled water into the base of field-grown poplar trees as a surrogate for root-respired CO2 to investigate the possible role of root-derived CO2 as substrate for carbon fixation. The label was transported upwards from the base of the tree toward the top. During its ascent, the 13C label was removed from the transpiration stream and fixed by chlorophyll-containing woody (young bark and xylem) and leaf (petiole) tissues. Moreover, based on 13C analysis of gas samples, we observed that up to 88 ± 0.10 % of the label applied was lost to the atmosphere by stem and branch efflux higher in the trees. Given that one-half of root-respired CO2 may follow this internal flux pathway (Aubrey & Teskey, 2009), we calculated that up to 44% of the root-respired CO2 could diffuse to the atmosphere once transported to the stem and branches. Thus, a large portion of CO2 that diffuses out of aboveground tissues may actually result from root respiration. Our results show that CO2 originating belowground can be transported internally to aboveground parts of trees, where it will have an important impact on tree physiology. Internal transport of CO2 indicates that the gas exchange approach to estimating above- and

  3. A Protein Kinase C Phosphorylation Motif in GLUT1 Affects Glucose Transport and is Mutated in GLUT1 Deficiency Syndrome.

    Science.gov (United States)

    Lee, Eunice E; Ma, Jing; Sacharidou, Anastasia; Mi, Wentao; Salato, Valerie K; Nguyen, Nam; Jiang, Youxing; Pascual, Juan M; North, Paula E; Shaul, Philip W; Mettlen, Marcel; Wang, Richard C

    2015-06-04

    Protein kinase C has been implicated in the phosphorylation of the erythrocyte/brain glucose transporter, GLUT1, without a clear understanding of the site(s) of phosphorylation and the possible effects on glucose transport. Through in vitro kinase assays, mass spectrometry, and phosphospecific antibodies, we identify serine 226 in GLUT1 as a PKC phosphorylation site. Phosphorylation of S226 is required for the rapid increase in glucose uptake and enhanced cell surface localization of GLUT1 induced by the phorbol ester 12-O-tetradecanoyl-phorbol-13-acetate (TPA). Endogenous GLUT1 is phosphorylated on S226 in primary endothelial cells in response to TPA or VEGF. Several naturally occurring, pathogenic mutations that cause GLUT1 deficiency syndrome disrupt this PKC phosphomotif, impair the phosphorylation of S226 in vitro, and block TPA-mediated increases in glucose uptake. We demonstrate that the phosphorylation of GLUT1 on S226 regulates glucose transport and propose that this modification is important in the physiological regulation of glucose transport.

  4. Interaction of clothing and body mass index affects validity of air displacement plethysmography in adults

    Science.gov (United States)

    Objective: Examine the effect of alternate clothing schemes on validity of Bod Pod to estimate percent body fat (BF) compared to dual x-ray absorptiometry (DXA), and determine if these effects differ by body mass index (BMI). Design: Cross-sectional Subjects: 132 healthy adults aged 19-81 classifi...

  5. Improved performance of porous bio-anodes in microbial electrolysis cells by enhancing mass and charge transport

    NARCIS (Netherlands)

    Sleutels, T.H.J.A.; Lodder, R.; Hamelers, H.V.M.; Buisman, C.J.N.

    2009-01-01

    To create an efficient MEC high current densities and high coulombic efficiencies are required. The aim of this study was to increase cur-rent densities and coulombic efficiencies by influencing mass and charge transport in porous electrodes by: (i) introduction of a forced flow through the anode to

  6. Allocation, stress tolerance and carbon transport in plants: how does phloem physiology affect plant ecology?

    Science.gov (United States)

    Savage, Jessica A; Clearwater, Michael J; Haines, Dustin F; Klein, Tamir; Mencuccini, Maurizio; Sevanto, Sanna; Turgeon, Robert; Zhang, Cankui

    2016-04-01

    Despite the crucial role of carbon transport in whole plant physiology and its impact on plant-environment interactions and ecosystem function, relatively little research has tried to examine how phloem physiology impacts plant ecology. In this review, we highlight several areas of active research where inquiry into phloem physiology has increased our understanding of whole plant function and ecological processes. We consider how xylem-phloem interactions impact plant drought tolerance and reproduction, how phloem transport influences carbon allocation in trees and carbon cycling in ecosystems and how phloem function mediates plant relations with insects, pests, microbes and symbiotes. We argue that in spite of challenges that exist in studying phloem physiology, it is critical that we consider the role of this dynamic vascular system when examining the relationship between plants and their biotic and abiotic environment.

  7. Transport and reaction processes affecting the attenuation of landfill gas in cover soils

    DEFF Research Database (Denmark)

    Molins, S.; Mayer, K.U.; Scheutz, Charlotte

    2008-01-01

    to exopolymeric substance production, may result in reduced methane attenuation due to limited O2-ingress. Copyright © 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.......Methane and trace organic gases produced in landfill waste are partly oxidized in the top 40 cm of landfill cover soils under aerobic conditions. The balance between the oxidation of landfill gases and the ingress of atmospheric oxygen into the soil cover determines the attenuation of emissions...... of methane, chlorofluorocarbons, and hydrochlorofluorocarbons to the atmosphere. This study was conducted to investigate the effect of oxidation reactions on the overall gas transport regime and to evaluate, the contributions of various gas transport processes on methane attenuation in landfill cover soils...

  8. Proteins affecting thylakoid morphology - the key to understanding vesicle transport in chloroplasts?

    Science.gov (United States)

    Lindquist, Emelie; Aronsson, Henrik

    2014-01-01

    We recently showed that a Rab protein, CPRabA5e (CP = chloroplast localized), is located in chloroplasts of Arabidopsis thaliana where it is involved in various processes, such as thylakoid biogenesis and vesicle transport. Using a yeast two-hybrid method, CPRabA5e was shown to interact with a number of chloroplast proteins, including the CURVATURE THYLAKOID 1A (CURT1A) protein and the light-harvesting chlorophyll a/b binding protein (LHCB1.5). CURT1A has recently been shown to modify thylakoid architecture by inducing membrane curvature in grana, whereas LHCB1.5 is a protein of PSII (Photosystem II) facilitating light capture. LHCB1.5 is imported to chloroplasts and transported to thylakoid membranes using the post-translational Signal Recognition Particle (SRP) pathway. With this information as starting point, we here discuss their subsequent protein-protein interactions, given by the literature and Interactome 3D. CURT1A itself and several of the proteins interacting with CURT1A and LHCB1.5 have relations to vesicle transport and thylakoid morphology, which are also characteristics of cprabA5e mutants. This highlights the previous hypothesis of an alternative thylakoid targeting pathway for LHC proteins using vesicles, in addition to the SRP pathway.

  9. Solid-Oxide Fuel Cell Electrode Microstructures: Making Sense of the Internal Framework Affecting Gas Transport

    Science.gov (United States)

    Hanna, Jeffrey

    Optimal electrodes for solid-oxide fuel cells will combine high porosity for gas diffusion, high phase connectivity for ion and electron conduction, and high surface area for chemical and electrochemical reactions. Tracer-diffusion simulations are used to gain a better understanding of the interplay between microstructure and transport in porous materials. Results indicate that the coefficient of diffusion through a porous medium is a function of the details of the internal geometry (microscopic) and porosity (macroscopic). I report that current solid-oxide fuel cell electrodes produced from high-temperature sintering of ceramic powders severely hinder gas transport because the resulting structures are highly tortuous, complex three-dimensional networks. In addition, poor phase connectivities will assuredly limit ion and electron transport, as well as the density of active sites for power-producing reactions. With new access to a wide range of technologies, micro- and nano-fabrication capabilities, and high-performance materials, there is a new ability to engineer the fuel cell electrode architecture, optimizing the physical processes within, increasing performance, and greatly reducing cost per kilowatt. Even simple packed-sphere and inverse-opal architectures will increase gas diffusion by an order of magnitude, and provide a higher level of connectivity than traditional powder-based structures.

  10. Mass transport phenomena between bubbles and dissolved gases in liquids under reduced gravity conditions

    Science.gov (United States)

    Dewitt, Kenneth J.; Brockwell, Jonathan L.; Yung, Chain-Nan; Chai, An-Ti; Mcquillen, John B.; Sotos, Raymond G.; Neumann, Eric S.

    1988-01-01

    This paper will describe the experimental and analytical work that has been done to establish justification and feasibility for a Shuttle mid-deck experiment involving mass transfer between a gas bubble and a liquid. The experiment involves the observation and measurement of the dissolution of an isolated, immobile gas bubble of specified size and composition in a thermostatted solvent liquid of known concentration in the reduced gravity environment of earth orbit. Methods to generate and deploy the bubble have been successful both in normal gravity using mutually buoyant fluids and under reduced gravity conditions in the NASA Lear Jet. Initialization of the experiment with a bubble of a prescribed size and composition in a liquid of known concentration has been accomplished using the concept of unstable equilibrium. Subsequent bubble dissolution or growth is obtained by a step increase or decrease in the liquid pressure. A numerical model has been developed which simulates the bubble dynamics and can be used to determine molecular parameters by comparison with the experimental data. The primary objective of the experiment is the elimination of convective effects that occur in normal gravity. The results will yield information on transport under conditions of pure diffusion.

  11. Mass Transport in Surface Diffusion of van der Waals Bonded Systems: Boosted by Rotations?

    Science.gov (United States)

    Hedgeland, Holly; Sacchi, Marco; Singh, Pratap; McIntosh, Andrew J; Jardine, Andrew P; Alexandrowicz, Gil; Ward, David J; Jenkins, Stephen J; Allison, William; Ellis, John

    2016-12-01

    Mass transport at a surface is a key factor in heterogeneous catalysis. The rate is determined by excitation across a translational barrier and depends on the energy landscape and the coupling to the thermal bath of the surface. Here we use helium spin-echo spectroscopy to track the microscopic motion of benzene adsorbed on Cu(001) at low coverage (θ ∼ 0.07 ML). Specifically, our combined experimental and computational data determine both the absolute rate and mechanism of the molecular motion. The observed rate is significantly higher by a factor of 3.0 ± 0.1 than is possible in a conventional, point-particle model and can be understood only by including additional molecular (rotational) coordinates. We argue that the effect can be described as an entropic contribution that enhances the population of molecules in the transition state. The process is generally relevant to molecular systems and illustrates the importance of the pre-exponential factor alongside the activation barrier in studies of surface kinetics.

  12. Can a reduction in mass transport occur at invariant segmental time?

    Science.gov (United States)

    Napolitano, Simone; Sferrazza, Michele

    2015-03-01

    The glassy dynamics of polymer melts adsorbed onto solid substrates shows a peculiar confinement effect: a severe reduction in mass transport occurs without a corresponding increase in segmental relaxation time. This phenomenon provides a ``negative violation'' of the Stokes-Einstein (SE) relation, not observed in bulk melts or confined water. Explaining those findings in analogy to the large drop of thermal expansion reported in polymers under 1D confinement, we considered the presence of an interfacial dead layer where tracer diffusivity assumes negligible values. To verify this hypothesis, we performed an extensive investigation of the diffusion of styrene oligomers, acting as tracers, into matrices of high molecular weight polystyrene, irreversibly adsorbed onto aluminum oxide. We demonstrate that the reduced interfacial diffusion is due to larger residence times of the tracers inside the dead layer, tDL. In particular, we show that tDL is directly proportional to the amount of irreversibly adsorbed monomers, a quantity limiting the available space for diffusion. We thus discuss of a dynamic dead layer evolving within the adsorbed layer, and of its role on the dynamics of glassy polymers under confinement and the ``negative violation'' the SE relation.

  13. Mass-conserving tracer transport modelling on a reduced latitude-longitude grid with NIES-TM

    Directory of Open Access Journals (Sweden)

    D. Belikov

    2011-03-01

    Full Text Available The need to perform long-term simulations with reasonable accuracy has led to the development of mass-conservative and efficient numerical methods for solving the transport equation in forward and inverse models. We designed and implemented a flux-form (Eulerian tracer transport algorithm in the National Institute for Environmental Studies Transport Model (NIES TM, which is used for simulating diurnal and synoptic-scale variations of tropospheric long-lived constituents, as well as their seasonal and inter-annual variability. Implementation of the flux-form method requires the mass conservative wind fields. However, the model is off-line and is driven by datasets from a global atmospheric model or data assimilation system, in which vertically integrated mass changes are not in balance with the surface pressure tendency and mass conservation is not achieved. To rectify the mass-imbalance, a flux-correction method is employed. To avoid a singularity near the poles, caused by the small grid size arising from the meridional convergence problem, the proposed model uses a reduced latitude–longitude grid scheme, in which the grid size is doubled several times approaching the poles. This approach overcomes the Courant condition in the Polar Regions, maintains a reasonably high integration time-step, and ensures adequate model performance during simulations. To assess the model performance, we performed global transport simulations for SF6, 222Rn, and CO2. The results were compared with observations available from the World Data Centre for Greenhouse Gases, GLOBALVIEW, and the Hateruma monitoring station, Japan. Overall, the results show that the proposed flux-form version of NIES TM can produce tropospheric tracer transport more realistically than previously possible. The reasons for this improvement are discussed.

  14. How Different kinds of Communication and the Mass Media Affect Tourism.

    Science.gov (United States)

    1984-12-01

    32 1. Hypodermic Needle Model or "Bullet" U ~ Theory ------------------------------------ 33 2. The Two-Step Flow Model or Theory --------- 36...bringing about change in knowledge or attitude [Ref. 20: p. 13]. 1. Hypodermic Needle Model or "Bullet" Theory Following World War I, several...developing. The result of these trends was the emergence of the hypodermic needle model of mass communication or "bullet" theory . This model assumed

  15. Genetic and environmental factors affecting peak bone mass in premenopausal Japanese women

    OpenAIRE

    Hayakawa, Yoshika; Yanagi, Hisako; Hara, Shuichi; Amagai, Hitoshi; Endo, Kazue; Hamaguchi, Hideo; Tomura, Shigeo

    2001-01-01

    The purpose of this study was to examine the relationships between peak bone mass and genetic and environmental factors. We measured whole-body bone mineral density (BMD), lumbar spine BMD, and radius BMD with dual-energy X-ray absorptiometry (DXA) and analyzed eight genetic factors: vitamin D receptor (VDR)-3′, VDR-5′, estrogen receptor (ER), calcitonin receptor (CTR), parathyroid hormone (PTH), osteocalcin (OC), apolipoprotein E (ApoE), and fatty acid binding protein 2 (FABP2) allelic polym...

  16. Temporally dependent pollinator competition and facilitation with mass flowering crops affects yield in co-blooming crops

    Science.gov (United States)

    Grab, Heather; Blitzer, Eleanor J.; Danforth, Bryan; Loeb, Greg; Poveda, Katja

    2017-01-01

    One of the greatest challenges in sustainable agricultural production is managing ecosystem services, such as pollination, in ways that maximize crop yields. Most efforts to increase services by wild pollinators focus on management of natural habitats surrounding farms or non-crop habitats within farms. However, mass flowering crops create resource pulses that may be important determinants of pollinator dynamics. Mass bloom attracts pollinators and it is unclear how this affects the pollination and yields of other co-blooming crops. We investigated the effects of mass flowering apple on the pollinator community and yield of co-blooming strawberry on farms spanning a gradient in cover of apple orchards in the landscape. The effect of mass flowering apple on strawberry was dependent on the stage of apple bloom. During early and peak apple bloom, pollinator abundance and yield were reduced in landscapes with high cover of apple orchards. Following peak apple bloom, pollinator abundance was greater on farms with high apple cover and corresponded with increased yields on these farms. Spatial and temporal overlap between mass flowering and co-blooming crops alters the strength and direction of these dynamics and suggests that yields can be optimized by designing agricultural systems that avoid competition while maximizing facilitation. PMID:28345653

  17. Transcription of hexose transporters of Saccharomyces cerevisiae is affected by change in oxygen provision

    Directory of Open Access Journals (Sweden)

    Ruohonen Laura

    2008-03-01

    Full Text Available Abstract Background The gene family of hexose transporters in Saccharomyces cerevisiae consists of 20 members; 18 genes encoding transporters (HXT1-HXT17, GAL2 and two genes encoding sensors (SNF3, RGT2. The effect of oxygen provision on the expression of these genes was studied in glucose-limited chemostat cultivations (D = 0.10 h-1, pH 5, 30°C. Transcript levels were measured from cells grown in five steady state oxygen levels (0, 0.5, 1, 2.8 and 20.9% O2, and from cells under conditions in which oxygen was introduced to anaerobic cultures or removed from cultures receiving oxygen. Results The expression pattern of the HXT gene family was distinct in cells grown under aerobic, hypoxic and anaerobic conditions. The transcription of HXT2, HXT4 and HXT5 was low when the oxygen concentration in the cultures was low, both under steady state and non-steady state conditions, whereas the expression of HXT6, HXT13 and HXT15/16 was higher in hypoxic than in fully aerobic or anaerobic conditions. None of the HXT genes showed higher transcript levels in strictly anaerobic conditions. Expression of HXT9, HXT14 and GAL2 was not detected under the culture conditions studied. Conclusion When oxygen becomes limiting in a glucose-limited chemostat cultivation, the glucose uptake rate per cell increases. However, the expression of none of the hexose transporter encoding genes was increased in anaerobic conditions. It thus seems that the decrease in the moderately low affinity uptake and consequently the relative increase of high affinity uptake may itself allow the higher specific glucose consumption rate to occur in anaerobic compared to aerobic conditions.

  18. Transportation: Topic Paper E.

    Science.gov (United States)

    National Council on the Handicapped, Washington, DC.

    As one of a series of topic papers assessing federal laws and programs affecting persons with disabilities, this paper reviews the issue of transportation services. In the area of urban mass transit, four relevant pieces of legislation and public transportation accessibility regulations are cited, and cost issues are explored. Paratransit systems,…

  19. From producer to consumer: greenhouse tomato quality as affected by variety, maturity stage at harvest, transport conditions, and supermarket storage.

    Science.gov (United States)

    Verheul, Michèl J; Slimestad, Rune; Tjøstheim, Irene Holta

    2015-05-27

    Possible causes for differences in quality traits at the time of buying were studied in two widely different red tomato types. Three maturity stages were harvested from commercial greenhouses and transferred immediately to controlled environments simulating different storage, transport, and supermarket conditions. Results show significant differences in development of color, fruit firmness, contents of soluble solids (SSC), titratable acids (TTA), phenolics, and carotenoids from harvest to sale, as related to postharvest conditions. Fruit firmness, SSC, and TTA of vine-ripened red cherry tomatoes was 30, 55 and 11% higher than for those harvested at breakers and ripened to red. Temperature, light, UVC radiation, or ethylene during 4 days transport affected tomato quality traits, and differences persisted during 3 weeks of supermarket storage. Ethylene exposure gave a 3.7-fold increase in lycopene content in cherry tomatoes, whereas UVC hormesis revealed a 6-fold increase compared with the control. Results can be used to update recommendations concerning optimal handling.

  20. Development of a multi-species mass transport model for concrete with account to thermodynamic phase equilibriums

    DEFF Research Database (Denmark)

    Hosokawa, Yoshifumi; Yamada, Kazuo; Johannesson, Björn

    2011-01-01

    In this study, a coupled multi-species transport and chemical equilibrium model has been established. The model is capable of predicting time dependent variation of pore solution and solid-phase composition in concrete. Multi-species transport approaches, based on the Poisson–Nernst–Planck (PNP......) theory alone, not involving chemical processes, have no real practical interest since the chemical action is very dominant for cement based materials. Coupled mass transport and chemical equilibrium models can be used to calculate the variation in pore solution and solid-phase composition when using...... by using the PHREEQC program. The coupling between the transport part and chemical part of the problem is tackled by using a sequential operator splitting technique and the calculation results are verified by comparing the elemental spacial distribution in concrete measured by the electron probe...

  1. Simulation of runaway electrons, transport affected by J-TEXT resonant magnetic perturbation

    Science.gov (United States)

    Jiang, Z. H.; Wang, X. H.; Chen, Z. Y.; Huang, D. W.; Sun, X. F.; Xu, T.; Zhuang, G.

    2016-09-01

    The topology of a magnetic field and transport properties of runaway electrons can be changed by a resonant magnetic perturbation field. The J-TEXT magnetic topology can be effectively altered via static resonant magnetic perturbation (SRMP) and dynamic resonant magnetic perturbation (DRMP). This paper studies the effect of resonant magnetic perturbation (RMP) on the confinement of runaway electrons via simulating their drift orbits in the magnetic perturbation field and calculating the orbit losses for different runaway initial energies and different runaway electrons, initial locations. The model adopted is based on Hamiltonian guiding center equations for runaway electrons, and the J-TEXT magnetic turbulences and RMP are taken into account. The simulation indicates that the loss rate of runaway electrons is sensitive to the radial position of electrons. The loss of energetic runaway beam is dominated by the shrinkage of the confinement region. Outside the shrinkage region of the runaway electrons are lost rapidly. Inside the shrinkage region the runaway beam is confined very well and is less sensitive to the magnetic perturbation. The experimental result on the response of runaway transport to the application RMP indicates that the loss of runaway electrons is dominated by the shrinkage of the confinement region, other than the external magnetic perturbation.

  2. Arbuscular mycorrhiza affects nickel translocation and expression of ABC transporter and metallothionein genes in Festuca arundinacea.

    Science.gov (United States)

    Shabani, Leila; Sabzalian, Mohammad R; Mostafavi pour, Sodabeh

    2016-01-01

    Mycorrhizal fungi are key microorganisms for enhancing phytoremediation of soils contaminated with heavy metals. In this study, the effects of the arbuscular mycorrhizal fungus (AMF) Funneliformis mosseae (=Glomus mosseae) on physiological and molecular mechanisms involved in the nickel (Ni) tolerance of tall fescue (Festuca arundinacea = Schedonorus arundinaceus) were investigated. Nickel addition had a pronounced negative effect on tall fescue growth and photosynthetic pigment contents, as well as on AMF colonization. Phosphorus content increased markedly in mycorrhizal plants (M) compared to non-inoculated (NM) ones. However, no significant difference was observed in root carbohydrate content between AMF-inoculated and non-inoculated plants. For both M and NM plants, Ni concentrations in shoots and roots increased according to the addition of the metal into soil, but inoculation with F. mosseae led to significantly lower Ni translocation from roots to the aboveground parts compared to non-inoculated plants. ABC transporter and metallothionein transcripts accumulated to considerably higher levels in tall fescue plants colonized by F. mosseae than in the corresponding non-mycorrhizal plants. These results highlight the importance of mycorrhizal colonization in alleviating Ni-induced stress by reducing Ni transport from roots to shoots of tall fescue plants.

  3. Structure and function of subsurface microbial communities affecting radionuclide transport and bioimmobilization

    Energy Technology Data Exchange (ETDEWEB)

    Kostka, Joel E. [Florida State Univ., Tallahassee, FL (United States); Prakash, Om [Florida State Univ., Tallahassee, FL (United States); Green, Stefan J. [Florida State Univ., Tallahassee, FL (United States); Akob, Denise [Florida State Univ., Tallahassee, FL (United States); Jasrotia, Puja [Florida State Univ., Tallahassee, FL (United States); Kerkhof, Lee [Rutgers Univ., New Brunswick, NJ (United States); Chin, Kuk-Jeong [Georgia State Univ., Atlanta, GA (United States); Sheth, Mili [Georgia State Univ., Atlanta, GA (United States); Keller, Martin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Venkateswaran, Amudhan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Elkins, James G. [Univ. of Illinois, Urbana-Champaign, IL (United States); Stucki, Joseph W. [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2012-05-01

    Our objectives were to: 1) isolate and characterize novel anaerobic prokaryotes from subsurface environments exposed to high levels of mixed contaminants (U(VI), nitrate, sulfate), 2) elucidate the diversity and distribution of metabolically active metal- and nitrate-reducing prokaryotes in subsurface sediments, and 3) determine the biotic and abiotic mechanisms linking electron transport processes (nitrate, Fe(III), and sulfate reduction) to radionuclide reduction and immobilization. Mechanisms of electron transport and U(VI) transformation were examined under near in situ conditions in sediment microcosms and in field investigations. Field sampling was conducted at the Oak Ridge Field Research Center (ORFRC), in Oak Ridge, Tennessee. The ORFRC subsurface is exposed to mixed contamination predominated by uranium and nitrate. In short, we effectively addressed all 3 stated objectives of the project. In particular, we isolated and characterized a large number of novel anaerobes with a high bioremediation potential that can be used as model organisms, and we are now able to quantify the function of subsurface sedimentary microbial communities in situ using state-of-the-art gene expression methods (molecular proxies).

  4. Internal deformation and kinematic indicators within a tripartite mass transport deposit, NW Argentina

    Science.gov (United States)

    Sobiesiak, Matheus S.; Kneller, Ben; Alsop, G. Ian; Milana, Juan Pablo

    2016-10-01

    The role of mass transport deposits (MTDs) in redistributing sediment from the shelf-break to deep water is becoming increasingly apparent and important in the study of basins. While seismic analysis may reveal the general morphology of such deposits, it is unable to provide information on the detailed geometry and kinematics of gravity-driven transport owing to the limits of seismic resolution. Outcrop analysis of ancient MTDs may therefore provide critical observations and data regarding the internal deformation and behavior during slope failure. One such field area where geometry and kinematics are clearly exposed is Cerro Bola in the Paganzo Basin of northwestern Argentina. This 8 km strike section exposes a mid to late Carboniferous succession, comprising fluvio-deltaic sediments, turbidites and MTDs. Our work focuses on the main MTD that is up to 180 m thick and is characterized by a silty matrix, containing sandstone blocks and siltstone rafts. Although we consider a single slope failure as the most likely scenario, a possible double failure might also explain the occurrence of a folded turbidite marker in the upper zone of the MTD. The MTD is host to a variety of deformational features such as folding, boudinage, shear zones, allochthonous strata, and secondary fabrics among others. These deformational features vary in intensity, scale and style, both vertically and laterally across the deposit. The vertical variation is the most notable, and the entire deposit can be subdivided into lower, middle and upper zones according to variations in texture and structures, including sandstone blocks, sand streaks and blebs in the matrix, folding on a variety of scales, and shear zones. The middle part of the MTD is characterized by the abundance of siltstone rafts. Various models are proposed for the origin of blocks and rafts within the MTD: erosion of underlying strata; fragmentation of the original protolith; or a mixture of both. Significantly, specific strain

  5. The putative cannabinoid receptor GPR55 affects osteoclast function in vitro and bone mass in vivo

    OpenAIRE

    Whyte, Lauren S.; Ryberg, Erik; Sims, Natalie A.; Ridge, Susan A.; Mackie, Ken; Greasley, Peter J.; Ross, Ruth A.; Rogers, Michael J

    2009-01-01

    GPR55 is a G protein-coupled receptor recently shown to be activated by certain cannabinoids and by lysophosphatidylinositol (LPI). However, the physiological role of GPR55 remains unknown. Given the recent finding that the cannabinoid receptors CB1 and CB2 affect bone metabolism, we examined the role of GPR55 in bone biology. GPR55 was expressed in human and mouse osteoclasts and osteoblasts; expression was higher in human osteoclasts than in macrophage progenitors. Although the GPR55 agonis...

  6. Colonic epithelial ion transport is not affected in patients with diverticulosis

    Directory of Open Access Journals (Sweden)

    Tilotta Maria C

    2007-09-01

    Full Text Available Abstract Background Colonic diverticular disease is a bothersome condition with an unresolved pathogenesis. It is unknown whether a neuroepithelial dysfunction is present. The aim of the study was two-fold; (1 to investigate colonic epithelial ion transport in patients with diverticulosis and (2 to adapt a miniaturized Modified Ussing Air-Suction (MUAS chamber for colonic endoscopic biopsies. Methods Biopsies were obtained from the sigmoid part of the colon. 86 patients were included. All patients were referred for colonoscopy on suspicion of neoplasia and they were without pathological findings at colonoscopy (controls except for diverticulosis in 22 (D-patients. Biopsies were mounted in MUAS chambers with an exposed area of 5 mm2. Electrical responses to various stimulators and inhibitors of ion transport were investigated together with histological examination. The MUAS chamber was easy to use and reproducible data were obtained. Results Median basal short circuit current (SCC was 43.8 μA·cm-2 (0.8 – 199 for controls and 59.3 μA·cm-2 (3.0 – 177.2 for D-patients. Slope conductance was 77.0 mS·cm-2 (18.6 – 204.0 equal to 13 Ω·cm2 for controls and 96.6 mS·cm-2 (8.4 – 191.4 equal to 10.3 Ω·cm2 for D-patients. Stimulation with serotonin, theophylline, forskolin and carbachol induced increases in SCC in a range of 4.9 – 18.6 μA·cm-2, while inhibition with indomethacin, bumetanide, ouabain and amiloride decreased SCC in a range of 6.5 – 27.4 μA·cm-2, and all with no significant differences between controls and D-patients. Histological examinations showed intact epithelium and lamina propria before and after mounting for both types of patients. Conclusion We conclude that epithelial ion transport is not significantly altered in patients with diverticulosis and that the MUAS chamber can be adapted for studies of human colonic endoscopic biopsies.

  7. Artificial light at night affects body mass but not oxidative status in free-living nestling songbirds: an experimental study

    Science.gov (United States)

    Raap, Thomas; Casasole, Giulia; Costantini, David; Abdelgawad, Hamada; Asard, Han; Pinxten, Rianne; Eens, Marcel

    2016-10-01

    Artificial light at night (ALAN), termed light pollution, is an increasingly important anthropogenic environmental pressure on wildlife. Exposure to unnatural lighting environments may have profound effects on animal physiology, particularly during early life. Here, we experimentally investigated for the first time the impact of ALAN on body mass and oxidative status during development, using nestlings of a free-living songbird, the great tit (Parus major), an important model species. Body mass and blood oxidative status were determined at baseline (=13 days after hatching) and again after a two night exposure to ALAN. Because it is very difficult to generalise the oxidative status from one or two measures we relied on a multi-biomarker approach. We determined multiple metrics of both antioxidant defences and oxidative damage: molecular antioxidants GSH, GSSG; antioxidant enzymes GPX, SOD, CAT; total non-enzymatic antioxidant capacity and damage markers protein carbonyls and TBARS. Light exposed nestlings showed no increase in body mass, in contrast to unexposed individuals. None of the metrics of oxidative status were affected. Nonetheless, our study provides experimental field evidence that ALAN may negatively affect free-living nestlings’ development and hence may have adverse consequences lasting throughout adulthood.

  8. Initial Sediment Transport Model of the Mining-Affected Aries River Basin, Romania

    Science.gov (United States)

    Friedel, Michael J.; Linard, Joshua I.

    2008-01-01

    The Romanian government is interested in understanding the effects of existing and future mining activities on long-term dispersal, storage, and remobilization of sediment-associated metals. An initial Soil and Water Assessment Tool (SWAT) model was prepared using available data to evaluate hypothetical failure of the Valea Sesei tailings dam at the Rosia Poieni mine in the Aries River basin. Using the available data, the initial Aries River Basin SWAT model could not be manually calibrated to accurately reproduce monthly streamflow values observed at the Turda gage station. The poor simulation of the monthly streamflow is attributed to spatially limited soil and precipitation data, limited constraint information due to spatially and temporally limited streamflow measurements, and in ability to obtain optimal parameter values when using a manual calibration process. Suggestions to improve the Aries River basin sediment transport model include accounting for heterogeneity in model input, a two-tier nonlinear calibration strategy, and analysis of uncertainty in predictions.

  9. Parental vitamin deficiency affects the embryonic gene expression of immune-, lipid transport- and apolipoprotein genes

    Science.gov (United States)

    Skjærven, Kaja H.; Jakt, Lars Martin; Dahl, John Arne; Espe, Marit; Aanes, Håvard; Hamre, Kristin; Fernandes, Jorge M. O.

    2016-10-01

    World Health Organization is concerned for parental vitamin deficiency and its effect on offspring health. This study examines the effect of a marginally dietary-induced parental one carbon (1-C) micronutrient deficiency on embryonic gene expression using zebrafish. Metabolic profiling revealed a reduced 1-C cycle efficiency in F0 generation. Parental deficiency reduced the fecundity and a total of 364 genes were differentially expressed in the F1 embryos. The upregulated genes (53%) in the deficient group were enriched in biological processes such as immune response and blood coagulation. Several genes encoding enzymes essential for the 1-C cycle and for lipid transport (especially apolipoproteins) were aberrantly expressed. We show that a parental diet deficient in micronutrients disturbs the expression in descendant embryos of genes associated with overall health, and result in inherited aberrations in the 1-C cycle and lipid metabolism. This emphasises the importance of parental micronutrient status for the health of the offspring.

  10. Long-term transport behavior of psychoactive compounds in sewage-affected groundwater

    Science.gov (United States)

    Nham, Hang Thuy Thi; Greskowiak, Janek; Hamann, Enrico; Meffe, Raffaella; Hass, Ulrike; Massmann, Gudrun

    2016-11-01

    The present study provides a model-based characterization of the long-term transport behavior of five psychoactive compounds (meprobamate, pyrithyldione, primidone, phenobarbital and phenylethylmalonamide) introduced into groundwater via sewage irrigation in Berlin, Germany. Compounds are still present in the groundwater despite the sewage farm closure in the year 1980. Due to the limited information on (i) compound concentrations in the source water and (ii) substance properties, a total of 180 cross-sectional model realizations for each compound were carried out, covering a large range of possible parameter combinations. Results were compared with the present-day contamination patterns in the aquifer and the most likely scenarios were identified based on a number of model performance criteria. The simulation results show that (i) compounds are highly persistent under the present field conditions, and (ii) sorption is insignificant. Thus, back-diffusion from low permeability zones appears as the main reason for the compound retardation.

  11. Different Sorption Approaches and Leachate Fluxes Affecting on Mn2+ Transport through Lateritic Aquifer

    Directory of Open Access Journals (Sweden)

    Srilert Chotpantarat

    2011-01-01

    Full Text Available Problem statement: Contamination of the underlying aquifer beneath a mining area is usually of great concern even when a prevention plan has been implemented. Approach: To assess the potential risk of heavy metal contamination, the simulation of heavy metal transport was carried out with different leachate fluxes and sorption parameters derived from equilibrium models with linear and Langmuir isotherms and chemical non-equilibrium two-site model. The HYDRUS-2D numerical model was applied to simulate the transport of Mn2+ under single- and multi-metal systems with two variable leachate fluxes (0.002 and 0.0026 m day−1 through the lateritic aquifer, approximately 5 km down gradient of the tailing pond. The model assumed that the compacted clay layer of the Tailing Storage Facility (TSF had been cracked and led to contamination of the shallow ground water. Results: The simulation showed that the time required to reach the Thailand drinking water standard at a specific location of Mn2+ for multi-metal system were faster than those for single metal systems, although different models were applied. The Mn2+ concentration fronts derived from simulation with chemical non-equilibrium two-site model came earlier than those of both equilibrium models under single and multi-metal systems. In addition, with a 30% increase in the leachate flux, from 0.002- 0.0026 m/day, the time required to reach the drinking water standard at the nearest well, 1 km downgradient from the source (well 1 decreased. It took about 57 and 106 years (a 17 and 19% decrease, respectively for Mn2+ under multi- and single-metal systems, respectively. Conclusion: In conclusions, sorption parameters and leachate fluxes should be carefully determined and these predictive patterns used as a management tool for planning water well installations under field conditions.

  12. Flow field design and optimization based on the mass transport polarization regulation in a flow-through type vanadium flow battery

    Science.gov (United States)

    Zheng, Qiong; Xing, Feng; Li, Xianfeng; Ning, Guiling; Zhang, Huamin

    2016-08-01

    Vanadium flow battery holds great promise for use in large scale energy storage applications. However, the power density is relatively low, leading to significant increase in the system cost. Apart from the kinetic and electronic conductivity improvement, the mass transport enhancement is also necessary to further increase the power density and reduce the system cost. To better understand the mass transport limitations, in the research, the space-varying and time-varying characteristic of the mass transport polarization is investigated based on the analysis of the flow velocity and reactant concentration in the bulk electrolyte by modeling. The result demonstrates that the varying characteristic of mass transport polarization is more obvious at high SoC or high current densities. To soften the adverse impact of the mass transport polarization, a new rectangular plug flow battery with a plug flow and short flow path is designed and optimized based on the mass transport polarization regulation (reducing the mass transport polarization and improving its uniformity of distribution). The regulation strategy of mass transport polarization is practical for the performance improvement in VFBs, especially for high power density VFBs. The findings in the research are also applicable for other flow batteries and instructive for practical use.

  13. The fabric of Mass Transport Deposits in the Ursa Basin, Gulf of Mexico

    Science.gov (United States)

    Day-Stirrat, R. J.; Flemings, P. B.; Strong, H. E.; Schneider, J.; Sawyer, D. E.; Schleicher, A. M.; Germaine, J. T.

    2009-12-01

    Mass Transport Deposits (MTDs) in the Ursa Basin, Gulf of Mexico, are densified relative to surrounding, undeformed, sediments. MTDs form a large fraction of the stratigraphic record. Their properties control basin fluid flow, impact seismic imaging, and are important for the development of subsea infrastructure. MTD-2 is one outstanding ~50m thick example where at a depth of 104.5mbsf, the porosity is 35%, while the immediate undeformed sediment below has a porosity of 47%. We analyzed the fabric of sediment within and outside, both above and below, of the MTD’s at Ursa. High-resolution x-ray texture goniometry (HRXTG) quantifies the alignment of clay minerals and shows greater basal plane alignment of smectite and illite within the MTDs relative to sediment outside the MTDs. A non-MTD sample immediately below MTD-2 has a weak fabric (m.r.d. = 2.5) whereas samples within the MTD have moderate fabrics (m.r.d. = 3-3.5). Pore throat analysis illustrates that the increase in alignment and the decrease in porosity is associated with a shift in mode pore throat size from 121 to 52 nanometers in the MTD vs. outside of the MTD. SEM images on ion-milled surfaces confirm that large pore throats are lost within the MTD. We interpret that the densification within MTDs is due to sediment remolding during debris flow. Remolding reorients the original clay mineral fabric, resulting in grains that have closer packing, lower porosity, and greater alignment than non-remolded sediments at the same effective stress.

  14. Mass and energy balance of the carbonization of babassu nutshell as affected by temperature

    Directory of Open Access Journals (Sweden)

    Thiago de Paula Protásio

    2014-03-01

    Full Text Available The objective of this work was to evaluate the carbonization yield of babassu nutshell as affected by final temperature, as well as the energy losses involved in the process. Three layers constituting the babassu nut, that is, the epicarp, mesocarp and endocarp, were used together. The material was carbonized, considering the following final temperatures: 450, 550, 650, 750, and 850ºC. The following were evaluated: energy and charcoal yields, pyroligneous liquid, non-condensable gases, and fixed carbon. The use of babassu nutshell can be highly feasible for charcoal production. The yield of charcoal from babassu nutshell carbonization was higher than that reported in the literature for Eucalyptus wood carbonization, considering the final temperature of 450ºC. Charcoal and energy yields decreased more sharply at lower temperatures, with a tendency to stabilize at higher temperatures. The energy yields obtained can be considered satisfactory, with losses between 45 and 52% (based on higher heating value and between 43 and 49% (based on lower heating value at temperatures ranging from 450 to 850ºC, respectively. Yields in fixed carbon and pyroligneous liquid are not affected by the final carbonization temperature.

  15. Chemical form of selenium affects its uptake, transport, and glutathione peroxidase activity in the human intestinal Caco-2 cell model.

    Science.gov (United States)

    Zeng, Huawei; Jackson, Matthew I; Cheng, Wen-Hsing; Combs, Gerald F

    2011-11-01

    Determining the effect of selenium (Se) chemical form on uptake, transport, and glutathione peroxidase activity in human intestinal cells is critical to assess Se bioavailability at nutritional doses. In this study, we found that two sources of L-selenomethionine (SeMet) and Se-enriched yeast each increased intracellular Se content more effectively than selenite or methylselenocysteine (SeMSC) in the human intestinal Caco-2 cell model. Interestingly, SeMSC, SeMet, and digested Se-enriched yeast were transported at comparable efficacy from the apical to basolateral sides, each being about 3-fold that of selenite. In addition, these forms of Se, whether before or after traversing from apical side to basolateral side, did not change the potential to support glutathione peroxidase (GPx) activity. Although selenoprotein P has been postulated to be a key Se transport protein, its intracellular expression did not differ when selenite, SeMSC, SeMet, or digested Se-enriched yeast was added to serum-contained media. Taken together, our data show, for the first time, that the chemical form of Se at nutritional doses can affect the absorptive (apical to basolateral side) efficacy and retention of Se by intestinal cells; but that, these effects are not directly correlated to the potential to support GPx activity.

  16. Desiccation of sediments affects assimilate transport within aquatic plants and carbon transfer to microorganisms.

    Science.gov (United States)

    von Rein, I; Kayler, Z E; Premke, K; Gessler, A

    2016-11-01

    With the projected increase in drought duration and intensity in future, small water bodies, and especially the terrestrial-aquatic interfaces, will be subjected to longer dry periods with desiccation of the sediment. Drought effects on the plant-sediment microorganism carbon continuum may disrupt the tight linkage between plants and microbes which governs sediment carbon and nutrient cycling, thus having a potential negative impact on carbon sequestration of small freshwater ecosystems. However, research on drought effects on the plant-sediment carbon transfer in aquatic ecosystems is scarce. We therefore exposed two emergent aquatic macrophytes, Phragmites australis and Typha latifolia, to a month-long summer drought in a mesocosm experiment. We followed the fate of carbon from leaves to sediment microbial communities with (13) CO2 pulse labelling and microbial phospholipid-derived fatty acid (PLFA) analysis. We found that drought reduced the total amount of carbon allocated to stem tissues but did not delay the transport. We also observed an increase in accumulation of (13) C-labelled sugars in roots and found a reduced incorporation of (13) C into the PLFAs of sediment microorganisms. Drought induced a switch in plant carbon allocation priorities, where stems received less new assimilates leading to reduced starch reserves whilst roots were prioritised with new assimilates, suggesting their use for osmoregulation. There were indications that the reduced carbon transfer from roots to microorganisms was due to the reduction of microbial activity via direct drought effects rather than to a decrease in root exudation or exudate availability.

  17. ABC transporter and metallothionein expression affected by NI and Epichloe endophyte infection in tall fescue.

    Science.gov (United States)

    Mirzahossini, Zahra; Shabani, Leila; Sabzalian, Mohammad R; Sharifi-Tehrani, Majid

    2015-10-01

    Epichloe endophytes are symbiotic fungi which unlike mycorrhiza grow within aerial parts of host plants. The fungi may increase host tolerance to both biotic and abiotic stresses. In this study, the effect of endophyte infection on growth and tolerance, carbohydrate contents and ABC (ABC transporter) and MET (metallothionein) expression in the leaves of tall fescue (Festuca arundinacea) plants cultivated in Ni polluted soil were evaluated. The endophyte infected (E+) and non-infected (E-) fescue plants were cultivated in soil under different Ni concentrations (30, 90 and 180mgkg(-1)). Growth parameters including root, shoot, total biomass, tiller number and total chlorophyll content of plants and H2O2 content of shoots were measured at the end of experiment. Ni translocation to the shoots, carbohydrate contents in roots and expression of ABC and MET of the leaves were also measured after 10 weeks of growth. Results demonstrated the beneficial effect of endophyte association on growth and Ni tolerance of tall fescue under Ni stress through an avoidance mechanism (reduction of Ni accumulation and translocation to the shoots). Endophyte infected plants showed less ABC and MET expression compared to the endophyte free plants. In endophyte free plants, H2O2 production had a significant positive correlation with genes expression, indicating that an increase in H2O2 might be involved in the up-regulation of ABC and MET under Ni stress.

  18. The sucrose transporter SlSUT2 from tomato interacts with brassinosteroid functioning and affects arbuscular mycorrhiza formation.

    Science.gov (United States)

    Bitterlich, Michael; Krügel, Undine; Boldt-Burisch, Katja; Franken, Philipp; Kühn, Christina

    2014-06-01

    Mycorrhizal plants benefit from the fungal partners by getting better access to soil nutrients. In exchange, the plant supplies carbohydrates to the fungus. The additional carbohydrate demand in mycorrhizal plants was shown to be balanced partially by higher CO2 assimilation and increased C metabolism in shoots and roots. In order to test the role of sucrose transport for fungal development in arbuscular mycorrhizal (AM) tomato, transgenic plants with down-regulated expression of three sucrose transporter genes were analysed. Plants that carried an antisense construct of SlSUT2 (SlSUT2as) repeatedly exhibited increased mycorrhizal colonization and the positive effect of plants to mycorrhiza was abolished. Grafting experiments between transgenic and wild-type rootstocks and scions indicated that mainly the root-specific function of SlSUT2 has an impact on colonization of tomato roots with the AM fungus. Localization of SISUT2 to the periarbuscular membrane indicates a role in back transport of sucrose from the periarbuscular matrix into the plant cell thereby affecting hyphal development. Screening of an expression library for SlSUT2-interacting proteins revealed interactions with candidates involved in brassinosteroid (BR) signaling or biosynthesis. Interaction of these candidates with SlSUT2 was confirmed by bimolecular fluorescence complementation. Tomato mutants defective in BR biosynthesis were analysed with respect to mycorrhizal symbiosis and showed indeed decreased mycorrhization. This finding suggests that BRs affect mycorrhizal infection and colonization. If the inhibitory effect of SlSUT2 on mycorrhizal growth involves components of BR synthesis and of the BR signaling pathway is discussed.

  19. Late Sleeping Affects Sleep Duration and Body Mass Index in Adolescents

    Directory of Open Access Journals (Sweden)

    Rajesh G.Kathrotia1,

    2010-03-01

    Full Text Available During adolescence, there is a tendency to sleep late andsleep less because of altered psychosocial and life-stylechanges. Recent studies have demonstrated the link betweensleeping less and gaining weight in children, adolescents, andadults. We studied the effect of late sleeping and sleepingless on body mass index (BMI in medical college freshmen.All participants were adolescents (104 male and 38 femaleadolescents, mean age 17.77±0.79 years. After obtaininginformed consent, they filled out a questionnaire about theirsleeping habits. Height and weight were measured after abrief history taking and clinical examination. BMI increasedsignificantly with decrease in total sleep duration and withdelayed bedtime. Late sleeping individuals (after midnighthad significantly less sleep duration (6.78 hours v 7.74 hours,P<0.001, more day time sleepiness (85.2% v 69.3%,P=0.033 and more gap between dinner time and going tosleep (234.16 min v 155.45 min, P<0.001. Increased BMI inlate sleepers may be explained by low physical activity duringthe day caused by excess sleepiness and increased calorieintake with a gap of 5-6 hours between dinner and sleep.Sleep habits of late sleeping and sleeping less contribute toincrease BMI in adolescents.

  20. How body mass and lifestyle affect juvenile biomass production in placental mammals.

    Science.gov (United States)

    Sibly, Richard M; Grady, John M; Venditti, Chris; Brown, James H

    2014-02-22

    In mammals, the mass-specific rate of biomass production during gestation and lactation, here called maternal productivity, has been shown to vary with body size and lifestyle. Metabolic theory predicts that post-weaning growth of offspring, here termed juvenile productivity, should be higher than maternal productivity, and juveniles of smaller species should be more productive than those of larger species. Furthermore because juveniles generally have similar lifestyles to their mothers, across species juvenile and maternal productivities should be correlated. We evaluated these predictions with data from 270 species of placental mammals in 14 taxonomic/lifestyle groups. All three predictions were supported. Lagomorphs, perissodactyls and artiodactyls were very productive both as juveniles and as mothers as expected from the abundance and reliability of their foods. Primates and bats were unproductive as juveniles and as mothers, as expected as an indirect consequence of their low predation risk and consequent low mortality. Our results point the way to a mechanistic explanation for the suite of correlated life-history traits that has been called the slow-fast continuum.

  1. Optical conductivity and optical effective mass in a high-mobility organic semiconductor: Implications for the nature of charge transport

    KAUST Repository

    Li, Yuan

    2014-12-03

    We present a multiscale modeling of the infrared optical properties of the rubrene crystal. The results are in very good agreement with the experimental data that point to nonmonotonic features in the optical conductivity spectrum and small optical effective masses. We find that, in the static-disorder approximation, the nonlocal electron-phonon interactions stemming from low-frequency lattice vibrations can decrease the optical effective masses and lead to lighter quasiparticles. On the other hand, the charge-transport and infrared optical properties of the rubrene crystal at room temperature are demonstrated to be governed by localized carriers driven by inherent thermal disorders. Our findings underline that the presence of apparently light carriers in high-mobility organic semiconductors does not necessarily imply bandlike transport.

  2. Residual Stress Relaxation Induced by Mass Transport Through Interface of the Pd/SrTiO3

    Directory of Open Access Journals (Sweden)

    Nazarpour S

    2010-01-01

    Full Text Available Abstract Metal interconnections having a small cross-section and short length can be subjected to very large mass transport due to the passing of high current densities. As a result, nonlinear diffusion and electromigration effects which may result in device failure and electrical instabilities may be manifested. Various thicknesses of Pd were deposited over SrTiO3 substrate. Residual stress of the deposited film was evaluated by measuring the variation of d-spacing versus sin2ψ through conventional X-ray diffraction method. It has been found that the lattice misfit within film and substrate might be relaxed because of mass transport. Besides, the relation between residual intrinsic stress and oxygen diffusion through deposited film has been expressed. Consequently, appearance of oxide intermediate layer may adjust interfacial characteristics and suppress electrical conductivity by increasing electron scattering through metallic films.

  3. An inexact Newton method for fully-coupled solution of the Navier-Stokes equations with heat and mass transport

    Energy Technology Data Exchange (ETDEWEB)

    Shadid, J.N.; Tuminaro, R.S. [Sandia National Labs., Albuquerque, NM (United States); Walker, H.F. [Utah State Univ., Logan, UT (United States). Dept. of Mathematics and Statistics

    1997-02-01

    The solution of the governing steady transport equations for momentum, heat and mass transfer in flowing fluids can be very difficult. These difficulties arise from the nonlinear, coupled, nonsymmetric nature of the system of algebraic equations that results from spatial discretization of the PDEs. In this manuscript the authors focus on evaluating a proposed nonlinear solution method based on an inexact Newton method with backtracking. In this context they use a particular spatial discretization based on a pressure stabilized Petrov-Galerkin finite element formulation of the low Mach number Navier-Stokes equations with heat and mass transport. The discussion considers computational efficiency, robustness and some implementation issues related to the proposed nonlinear solution scheme. Computational results are presented for several challenging CFD benchmark problems as well as two large scale 3D flow simulations.

  4. STRUCTURE AND FUNCTION OF SUBSURFACE MICROBIAL COMMUNITIES AFFECTING RADIONUCLIDE TRANSPORT AND BIOIMMOBILIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Joel E. Kostka; Lee Kerkhof; Kuk-Jeong Chin; Martin Keller; Joseph W. Stucki

    2011-06-15

    The objectives of this project were to: (1) isolate and characterize novel anaerobic prokaryotes from subsurface environments exposed to high levels of mixed contaminants (U(VI), nitrate, sulfate), (2) elucidate the diversity and distribution of metabolically active metal- and nitrate-reducing prokaryotes in subsurface sediments, and (3) determine the biotic and abiotic mechanisms linking electron transport processes (nitrate, Fe(III), and sulfate reduction) to radionuclide reduction and immobilization. Mechanisms of electron transport and U(VI) transformation were examined under near in situ conditions in sediment microcosms and in field investigations at the Oak Ridge Field Research Center (ORFRC), in Oak Ridge, Tennessee, where the subsurface is exposed to mixed contamination predominated by uranium and nitrate. A total of 20 publications (16 published or 'in press' and 4 in review), 10 invited talks, and 43 contributed seminars/ meeting presentations were completed during the past four years of the project. PI Kostka served on one proposal review panel each year for the U.S. DOE Office of Science during the four year project period. The PI leveraged funds from the state of Florida to purchase new instrumentation that aided the project. Support was also leveraged by the PI from the Joint Genome Institute in the form of two successful proposals for genome sequencing. Draft genomes are now available for two novel species isolated during our studies and 5 more genomes are in the pipeline. We effectively addressed each of the three project objectives and research highlights are provided. Task I - Isolation and characterization of novel anaerobes: (1) A wide range of pure cultures of metal-reducing bacteria, sulfate-reducing bacteria, and denitrifying bacteria (32 strains) were isolated from subsurface sediments of the Oak Ridge Field Research Center (ORFRC), where the subsurface is exposed to mixed contamination of uranium and nitrate. These isolates which

  5. STRUCTURE AND FUNCTION OF SUBSURFACE MICROBIAL COMMUNITIES AFFECTING RADIONUCLIDE TRANSPORT AND BIOIMMOBILIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Joel E. Kostka; Lee Kerkhof; Kuk-Jeong Chin; Martin Keller; Joseph W. Stucki

    2011-06-15

    The objectives of this project were to: (1) isolate and characterize novel anaerobic prokaryotes from subsurface environments exposed to high levels of mixed contaminants (U(VI), nitrate, sulfate), (2) elucidate the diversity and distribution of metabolically active metal- and nitrate-reducing prokaryotes in subsurface sediments, and (3) determine the biotic and abiotic mechanisms linking electron transport processes (nitrate, Fe(III), and sulfate reduction) to radionuclide reduction and immobilization. Mechanisms of electron transport and U(VI) transformation were examined under near in situ conditions in sediment microcosms and in field investigations at the Oak Ridge Field Research Center (ORFRC), in Oak Ridge, Tennessee, where the subsurface is exposed to mixed contamination predominated by uranium and nitrate. A total of 20 publications (16 published or 'in press' and 4 in review), 10 invited talks, and 43 contributed seminars/ meeting presentations were completed during the past four years of the project. PI Kostka served on one proposal review panel each year for the U.S. DOE Office of Science during the four year project period. The PI leveraged funds from the state of Florida to purchase new instrumentation that aided the project. Support was also leveraged by the PI from the Joint Genome Institute in the form of two successful proposals for genome sequencing. Draft genomes are now available for two novel species isolated during our studies and 5 more genomes are in the pipeline. We effectively addressed each of the three project objectives and research highlights are provided. Task I - Isolation and characterization of novel anaerobes: (1) A wide range of pure cultures of metal-reducing bacteria, sulfate-reducing bacteria, and denitrifying bacteria (32 strains) were isolated from subsurface sediments of the Oak Ridge Field Research Center (ORFRC), where the subsurface is exposed to mixed contamination of uranium and nitrate. These isolates which

  6. Mass Transport Complexes in bacini confinati a controllo strutturale: l'Unità Epiligure di Specchio (Appennino Settentrionale)

    OpenAIRE

    Ogata, Kei

    2010-01-01

    Il recente incremento dell’esplorazione geofisica dei margini continentali e il concomitante sviluppo di tecnologie d’indagine, sismiche ed acustiche, sempre più accurate, hanno rivelato la comune presenza di vasti accumuli di sedimenti rimobilizzati a causa di franamenti sottomarini, e comunemente identificati con il termine di Mass Transport Deposit o Complex (MTD e MTC, rispettivamente). Attualmente, queste unità sono intensamente studiate non solo per ragioni strettamente scientifiche,...

  7. Predictive data-derived Bayesian statistic-transport model and simulator of sunken oil mass

    Science.gov (United States)

    Echavarria Gregory, Maria Angelica

    -processing tasks proper of a basic GIS-like software. The result is a predictive Bayesian multi-modal Gaussian model, SOSim (Sunken Oil Simulator) Version 1.0rcl, operational for use with limited, randomly-sampled, available subjective and numeric data on sunken oil concentrations and locations in relatively flat-bottomed bays. The SOSim model represents a new approach, coupling a Lagrangian modeling technique with predictive Bayesian capability for computing unconditional probabilities of mass as a function of space and time. The approach addresses the current need to rapidly deploy modeling capability without readily accessible information on ocean bottom currents. Contributions include (1) the development of the apparently first pollutant transport model for computing unconditional relative probabilities of pollutant location as a function of time based on limited available field data alone; (2) development of a numerical method of computing concentration profiles subject to curved, continuous or discontinuous boundary conditions; (3) development combinatorial algorithms to compute unconditional multimodal Gaussian probabilities not amenable to analytical or Markov-Chain Monte Carlo integration due to high dimensionality; and (4) the development of software modules, including a core module containing the developed Bayesian functions, a wrapping graphical user interface, a processing and operating interface, and the necessary programming components that lead to an open-source, stand-alone, executable computer application (SOSim -- Sunken Oil Simulator). Extensions and refinements are recommended, including the addition of capability for accepting available information on bathymetry and maybe bottom currents as Bayesian prior information, the creation of capability of modeling continuous oil releases, and the extension to tracking of suspended oil (3-D). Keywords: sunken oil, Bayesian, Gaussian, model, stochastic, emergency response, recovery, statistical model, multimodal.

  8. In-situ TEM-investigations of mass transport in ``near-bamboo'' Al-interconnects due to electromigration

    Science.gov (United States)

    Heinen, Dirk; Schroeder, Herbert; Schilling, Werner

    1998-01-01

    Electromigration (EM)-driven mass transport in "near-bamboo" Al-lines, which consist mostly of "blocking grains," is an important topic of research on ULSI-metallizations. Because the most easy diffusion path, i.e. grain boundaries parallel to the line, is suppressed in bamboo-like Al-lines other paths have to be considered. In this work two other possible paths of diffusion were examined by in-situ observations in a transmission electron microscope (TEM). For these experiments a special sample holder had to be constructed. One path is EM-driven intragranular diffusion in Al-lines. In this experiment, inert gas-filled voids with a mean diameter of about 10 nm, so-called bubbles, which were created after gas implantation and annealing of the Al-lines, serve as indicators of mass (or vacancy) transport. The in-situ EM-tests reveal no intragranular void motion over a period of more than 100 h at current densities of 1-1.75 MA/cm2 and temperatures of 150-225 °C. This leads to an estimation of the maximum void diffusion velocity which was compared with calculated values of surface and volume diffusion controlled void motion, respectively. The second point of interest was the behavior of dislocations in Al-lines under an applied EM-force. The importance of their observed motion for intragranular mass transport will be discussed.

  9. Experimental and theoretical aspects of studying themodynamics and mass transport in polymer-solvent systems

    Science.gov (United States)

    Davis, Peter Kennedy

    Mass transport and thermodynamics in polymer-solvent systems are two key areas of importance to the polymer industry. Numerous processes including polymerization reactors, membrane separations, foam production, devolatilization processes, film and coating drying, supercritical extractions, drug delivery, and even nano-technology require fundamental phase equilibria and diffusion information. Although such information is vital in equipment design and optimization, acquisition and modeling of these data are still in the research and development stages. This thesis is rather diverse as it addresses many realms of this broad research area. From high pressure to low pressure, experimental to theoretical, and infinite dilution to finite concentration, the thesis covers a wide range of topics that are of current importance to the industrial and academic polymer community. Chapter 1 discusses advances in the development of a new volumetric sorption pressure decay technique to make phase equilibrium and diffusion measurements in severe temperature-pressure environments. Chapter 2 provides the derivations and results of a new completely predictive Group Contribution Lattice Fluid Equation of State for multi-component polymer-solvent systems. The remaining four chapters demonstrate advances in the modeling of inverse gas chromatography (IGC) experiments. IGC has been used extensively of the last 50 years to make low pressure sorption and diffusion measurements at infinitely dilute and finite solvent concentrations. Chapter 3 proposes a new IGC experiment capable of obtaining ternary vapor-liquid equilibria in polymer-solvent-solvent systems. Also in that chapter, an extensive derivation is provided for a continuum model capable of describing the results of such an experiment. Chapter 4 presents new data collected on a packed column IGC experiment and a new model that can be used with those experimental data to obtain diffusion and partition coefficients. Chapter 5 addresses a

  10. Sedimentary and structural controls on seismogenic slumping within mass transport deposits from the Dead Sea Basin

    Science.gov (United States)

    Alsop, G. I.; Marco, S.; Weinberger, R.; Levi, T.

    2016-10-01

    Comparatively little work has been undertaken on how sedimentary environments and facies changes can influence detailed structural development in slump sheets associated with mass transport deposits (MTDs). The nature of downslope deformation at the leading edge of MTDs is currently debated in terms of frontally emergent, frontally confined and open-toed models. An opportunity to study and address these issues occurs within the Dead Sea Basin, where six individual slump sheets (S1-S6) form MTDs in the Late Pleistocene Lisan Formation. All six slumps, which are separated from one another by undeformed beds, are traced towards the NE for up to 1 km, and each shows a change in sedimentary facies from detrital-rich in the SW, to more aragonite-rich in the NE. The detrital-rich facies is sourced predominantly from the rift margin 1.5 km further SW, while the aragonite-rich facies represents evaporitic precipitation in the hyper saline Lake Lisan. The stacked system of MTDs translates downslope towards the NE and follows a pre-determined sequence controlled by the sedimentary facies. Each individual slump roots downwards into underlying detrital-rich layers and displays a greater detrital content towards the SW, which is marked by increasing folding, while increasing aragonite content towards the NE is associated with more discrete thrusts. The MTDs thin downslope towards the NE, until they pass laterally into undeformed beds at the toe. The amount of contraction also reduces downslope from a maximum of 50% to < 10% at the toe, where upright folds form diffuse 'open-toed' systems. We suggest that MTDs are triggered by seismic events, facilitated by detrital-rich horizons, and controlled by palaeoslope orientation. The frequency of individual failures is partially controlled by local environmental influences linked to detrital input and should therefore be used with some caution in more general palaeoseismic studies. We demonstrate that MTDs display 'open toes' where

  11. Maternal separation affects dopamine transporter function in the Spontaneously Hypertensive Rat: An in vivo electrochemical study

    Directory of Open Access Journals (Sweden)

    Womersley Jacqueline S

    2011-12-01

    Full Text Available Abstract Background Attention-deficit/hyperactivity disorder (ADHD is a developmental disorder characterised by symptoms of inattention, impulsivity and hyperactivity. The spontaneously hypertensive rat (SHR is a well-characterised model of this disorder and has been shown to exhibit dopamine dysregulation, one of the hypothesised causes of ADHD. Since stress experienced in the early stages of life can have long-lasting effects on behaviour, it was considered that early life stress may alter development of the dopaminergic system and thereby contribute to the behavioural characteristics of SHR. It was hypothesized that maternal separation would alter dopamine regulation by the transporter (DAT in ways that distinguish SHR from control rat strains. Methods SHR and control Wistar-Kyoto (WKY rats were subjected to maternal separation for 3 hours per day from postnatal day 2 to 14. Rats were tested for separation-induced anxiety-like behaviour followed by in vivo chronoamperometry to determine whether changes had occurred in striatal clearance of dopamine by DAT. The rate of disappearance of ejected dopamine was used as a measure of DAT function. Results Consistent with a model for ADHD, SHR were more active than WKY in the open field. SHR entered the inner zone more frequently and covered a significantly greater distance than WKY. Maternal separation increased the time that WKY spent in the closed arms and latency to enter the open arms of the elevated plus maze, consistent with other rat strains. Of note is that, maternal separation failed to produce anxiety-like behaviour in SHR. Analysis of the chronoamperometric data revealed that there was no difference in DAT function in the striatum of non-separated SHR and WKY. Maternal separation decreased the rate of dopamine clearance (k-1 in SHR striatum. Consistent with this observation, the dopamine clearance time (T100 was increased in SHR. These results suggest that the chronic mild stress of

  12. Groundwater contributions to metal transport in a small river affected by mining and smelting waste.

    Science.gov (United States)

    Coynel, Alexandra; Schäfer, Jörg; Dabrin, Aymeric; Girardot, Naïg; Blanc, Gérard

    2007-08-01

    The Riou Mort watershed, strongly affected by former coal mining and Zn ore treatment, has been the major source of the historical polymetallic pollution of the Lot-Garonne-Gironde fluvial-estuarine system. Two decades after the end of ore treatment, the former industrial area still contributes important amounts of metals/metalloids from various, partly unidentified, sources to the downstream river system. This study presents the high spatial variability of metal/metalloid (Cd, Zn, As, Sb, U, V) concentrations in water and suspended particulate matter (SPM) from eight observation sites during a short, intense flood event. Despite important dilution effects, the observed concentration levels at the different sites suggested additional Cd and Zn inputs, probably from polluted groundwater. This formerly unknown metal source was then localized and characterized by sampling water and SPM along two longitudinal profiles during different hydrological situations. Groundwater inputs of "truly dissolved" (treatment of the polluted groundwater), that are expected to strongly reduce dissolved Cd and Zn emissions into the Riou Mort River.

  13. Fusarium Oxysporum Volatiles Enhance Plant Growth Via Affecting Auxin Transport and Signaling.

    Science.gov (United States)

    Bitas, Vasileios; McCartney, Nathaniel; Li, Ningxiao; Demers, Jill; Kim, Jung-Eun; Kim, Hye-Seon; Brown, Kathleen M; Kang, Seogchan

    2015-01-01

    Volatile organic compounds (VOCs) have well-documented roles in plant-plant communication and directing animal behavior. In this study, we examine the less understood roles of VOCs in plant-fungal relationships. Phylogenetically and ecologically diverse strains of Fusarium oxysporum, a fungal species complex that often resides in the rhizosphere of assorted plants, produce volatile compounds that augment shoot and root growth of Arabidopsis thaliana and tobacco. Growth responses of A. thaliana hormone signaling mutants and expression patterns of a GUS reporter gene under the auxin-responsive DR5 promoter supported the involvement of auxin signaling in F. oxysporum volatile-mediated growth enhancement. In addition, 1-naphthylthalamic acid, an inhibitor of auxin efflux, negated F. oxysporum volatile-mediated growth enhancement in both plants. Comparison of the profiles of volatile compounds produced by F. oxysporum strains that differentially affected plant growth suggests that the relative compositions of both growth inhibitory and stimulatory compounds may determine the degree of plant growth enhancement. Volatile-mediated signaling between fungi and plants may represent a potentially conserved, yet mostly overlooked, mechanism underpinning plant-fungus interactions and fungal niche adaption.

  14. Fusarium oxysporum volatiles enhance plant growth via affecting auxin transport and signaling

    Directory of Open Access Journals (Sweden)

    Vasileios eBitas

    2015-11-01

    Full Text Available Volatile organic compounds (VOCs have well-documented roles in plant-plant communication and directing animal behavior. In this study, we examine the less understood roles of VOCs in plant-fungal relationships. Phylogenetically and ecologically diverse strains of Fusarium oxysporum, a fungal species complex that often resides in the rhizosphere of assorted plants, produce volatile compounds that augment shoot and root growth of Arabidopsis thaliana and tobacco. Growth responses of A. thaliana hormone signaling mutants and expression patterns of a GUS reporter gene under the auxin-responsive DR5 promoter supported the involvement of auxin signaling in F. oxysporum volatile-mediated growth enhancement. In addition, 1-naphthylthalamic acid, an inhibitor of auxin efflux, negated F. oxysporum volatile-mediated growth enhancement in both plants. Comparison of the profiles of volatile compounds produced by F. oxysporum strains that differentially affected plant growth suggests that the relative compositions of both growth inhibitory and stimulatory compounds may determine the degree of plant growth enhancement. Volatile-mediated signaling between fungi and plants may represent a potentially conserved, yet mostly overlooked, mechanism underpinning plant-fungus interactions and fungal niche adaption.

  15. Copper Toxicity Affects Photosystem II Electron Transport at the Secondary Quinone Acceptor, QB1

    Science.gov (United States)

    Mohanty, Narendranath; Vass, Imre; Demeter, Sándor

    1989-01-01

    The nature of Cu2+ inhibition of photosystem II (PSII) photochemistry in pea (Pisum sativum L.) thylakoids was investigated monitoring Hill activity and light emission properties of photosystem II. In Cu2+-inhibited thylakoids, diphenyl carbazide addition does not relieve the loss of Hill activity. The maximum yield of fluorescence induction restored by hydroxylamine in Tris-inactivated thylakoids is markedly reduced by Cu2+. This suggests that Cu2+ does not act on the donor side of PSII but on the reaction center of PSII or on components beyond. Thermoluminescence and delayed luminescence studies show that charge recombination between the positively charged intermediate in water oxidation cycle (S2) and negatively charged primary quinone acceptor of pSII (QA−) is largely unaffected by Cu2+. The S2QB− charge recombination, however, is drastically inhibited which parallels the loss of Hill activity. This indicates that Cu2+ inhibits photosystem II photochemistry primarily affecting the function of the secondary quinone electron acceptor, QB. We suggest that Cu2+ does not block electron flow between the primary and secondary quinone acceptor but modifies the QB site in such a way that it becomes unsuitable for further photosystem II photochemistry. PMID:16666731

  16. Ozone-surface interactions: Investigations of mechanisms, kinetics, mass transport, and implications for indoor air quality

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, Glenn Charles [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    In this dissertation, results are presented of laboratory investigations and mathematical modeling efforts designed to better understand the interactions of ozone with surfaces. In the laboratory, carpet and duct materials were exposed to ozone and measured ozone uptake kinetics and the ozone induced emissions of volatile organic compounds. To understand the results of the experiments, mathematical methods were developed to describe dynamic indoor aldehyde concentrations, mass transport of reactive species to smooth surfaces, the equivalent reaction probability of whole carpet due to the surface reactivity of fibers and carpet backing, and ozone aging of surfaces. Carpets, separated carpet fibers, and separated carpet backing all tended to release aldehydes when exposed to ozone. Secondary emissions were mostly n-nonanal and several other smaller aldehydes. The pattern of emissions suggested that vegetable oils may be precursors for these oxidized emissions. Several possible precursors and experiments in which linseed and tung oils were tested for their secondary emission potential were discussed. Dynamic emission rates of 2-nonenal from a residential carpet may indicate that intermediate species in the oxidation of conjugated olefins can significantly delay aldehyde emissions and act as reservoir for these compounds. The ozone induced emission rate of 2-nonenal, a very odorous compound, can result in odorous indoor concentrations for several years. Surface ozone reactivity is a key parameter in determining the flux of ozone to a surface, is parameterized by the reaction probability, which is simply the probability that an ozone molecule will be irreversibly consumed when it strikes a surface. In laboratory studies of two residential and two commercial carpets, the ozone reaction probability for carpet fibers, carpet backing and the equivalent reaction probability for whole carpet were determined. Typically reaction probability values for these materials were 10

  17. Ozone-surface interactions: Investigations of mechanisms, kinetics, mass transport, and implications for indoor air quality

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, Glenn C.

    1999-12-01

    In this dissertation, results are presented of laboratory investigations and mathematical modeling efforts designed to better understand the interactions of ozone with surfaces. In the laboratory, carpet and duct materials were exposed to ozone and measured ozone uptake kinetics and the ozone induced emissions of volatile organic compounds. To understand the results of the experiments, mathematical methods were developed to describe dynamic indoor aldehyde concentrations, mass transport of reactive species to smooth surfaces, the equivalent reaction probability of whole carpet due to the surface reactivity of fibers and carpet backing, and ozone aging of surfaces. Carpets, separated carpet fibers, and separated carpet backing all tended to release aldehydes when exposed to ozone. Secondary emissions were mostly n-nonanal and several other smaller aldehydes. The pattern of emissions suggested that vegetable oils may be precursors for these oxidized emissions. Several possible precursors and experiments in which linseed and tung oils were tested for their secondary emission potential were discussed. Dynamic emission rates of 2-nonenal from a residential carpet may indicate that intermediate species in the oxidation of conjugated olefins can significantly delay aldehyde emissions and act as reservoir for these compounds. The ozone induced emission rate of 2-nonenal, a very odorous compound, can result in odorous indoor concentrations for several years. Surface ozone reactivity is a key parameter in determining the flux of ozone to a surface, is parameterized by the reaction probability, which is simply the probability that an ozone molecule will be irreversibly consumed when it strikes a surface. In laboratory studies of two residential and two commercial carpets, the ozone reaction probability for carpet fibers, carpet backing and the equivalent reaction probability for whole carpet were determined. Typically reaction probability values for these materials were 10

  18. Groundwater contributions to metal transport in a small river affected by mining and smelting waste

    Energy Technology Data Exchange (ETDEWEB)

    Coynel, A.; Schafer, J.; Dabrin, A.; Girardot, N.; Blanc, G. [University of Bordeaux, Talence (France)

    2007-08-15

    The Riou Mort watershed, strongly affected by former coal mining and ZEE ore treatment, has been the major source of the historical polymetallic pollution of the Lot-Garonne-Gironde fluvial-estuarine system. Two decades after the end of ore treatment, the former industrial area still contributes important amounts of metals/metalloids from various, partly unidentified, sources to the downstream river system. This study presents the high spatial variability of metal/metalloid (Cd, Zn, As, Sb, U, V) concentrations in water and suspended particulate matter (SPM) from eight observation sites during a short, intense flood event. Despite important dilution effects, the observed concentration levels at the different sites suggested additional Cd and Zn inputs, probably from polluted groundwater. This formerly unknown metal source was then localized and characterized by sampling water and SPM along two longitudinal profiles during different hydrological situations. Groundwater inputs of 'truly dissolved' (<0.02pm) Cd and Zn occurred along -200m, contributing 43% and 28% to the total annual (2004) Cd and Zn fluxes in the Riou Mort River. The estimated groundwater concentrations of Cd and Zn (2500-6700 and 83,000-170,000 mu g1{sup -1}, respectively) in the source zone were consistent with values measured in samples from the near aquifer (5400-13,000 and 200,000-400,000 mu g1{sup -1}). The present work induced concrete remediation actions (pumping and treatment of the polluted groundwater), that are expected to strongly reduce dissolved Cd and Zn emissions into the Riou Mort River.

  19. Co-transport of polycyclic aromatic hydrocarbons by motile microorganisms leads to enhanced mass transfer under diffusive conditions.

    Science.gov (United States)

    Gilbert, Dorothea; Jakobsen, Hans H; Winding, Anne; Mayer, Philipp

    2014-04-15

    The environmental chemodynamics of hydrophobic organic chemicals (HOCs) are often rate-limited by diffusion in stagnant boundary layers. This study investigated whether motile microorganisms can act as microbial carriers that enhance mass transfer of HOCs through diffusive boundary layers. A new experimental system was developed that allows (1) generation of concentration gradients of HOCs under the microscope, (2) exposure and direct observation of microorganisms in such gradients, and (3) quantification of HOC mass transfer. Silicone O-rings were integrated into a Dunn chemotaxis chamber to serve as sink and source for polycyclic aromatic hydrocarbons (PAHs). This resulted in stable concentration gradients in water (>24 h). Adding the model organism Tetrahymena pyriformis to the experimental system enhanced PAH mass transfer up to hundred-fold (benzo[a]pyrene). Increasing mass transfer enhancement with hydrophobicity indicated PAH co-transport with the motile organisms. Fluorescence microscopy confirmed such transport. The effective diffusivity of T. pyriformis, determined by video imaging microscopy, was found to exceed molecular diffusivities of the PAHs up to four-fold. Cell-bound PAH fractions were determined to range from 28% (naphthalene) to 92% (pyrene). Motile microorganisms can therefore function as effective carriers for HOCs under diffusive conditions and might significantly enhance mobility and availability of HOCs.

  20. Transport of Chemical Vapors from Subsurface Sources to Atmosphere as Affected by Shallow Subsurface and Atmospheric Conditions

    Science.gov (United States)

    Rice, A. K.; Smits, K. M.; Hosken, K.; Schulte, P.; Illangasekare, T. H.

    2012-12-01

    Understanding the movement and modeling of chemical vapor through unsaturated soil in the shallow subsurface when subjected to natural atmospheric thermal and mass flux boundary conditions at the land surface is of importance to applications such as landmine detection and vapor intrusion into subsurface structures. New, advanced technologies exist to sense chemical signatures at the land/atmosphere interface, but interpretation of these sensor signals to make assessment of source conditions remains a challenge. Chemical signatures are subject to numerous interactions while migrating through the unsaturated soil environment, attenuating signal strength and masking contaminant source conditions. The dominant process governing movement of gases through porous media is often assumed to be Fickian diffusion through the air phase with minimal or no quantification of other processes contributing to vapor migration, such as thermal diffusion, convective gas flow due to the displacement of air, expansion/contraction of air due to temperature changes, temporal and spatial variations of soil moisture and fluctuations in atmospheric pressure. Soil water evaporation and interfacial mass transfer add to the complexity of the system. The goal of this work is to perform controlled experiments under transient conditions of soil moisture, temperature and wind at the land/atmosphere interface and use the resulting dataset to test existing theories on subsurface gas flow and iterate between numerical modeling efforts and experimental data. Ultimately, we aim to update conceptual models of shallow subsurface vapor transport to include conditionally significant transport processes and inform placement of mobile sensors and/or networks. We have developed a two-dimensional tank apparatus equipped with a network of sensors and a flow-through head space for simulation of the atmospheric interface. A detailed matrix of realistic atmospheric boundary conditions was applied in a series of

  1. The signaling protein MucG negatively affects the production and the molecular mass of alginate in Azotobacter vinelandii.

    Science.gov (United States)

    Ahumada-Manuel, Carlos Leonel; Guzmán, Josefina; Peña, Carlos; Quiroz-Rocha, Elva; Espín, Guadalupe; Núñez, Cinthia

    2017-02-01

    Azotobacter vinelandii is a soil bacterium that produces the polysaccharide alginate. In this work, we identified a miniTn5 mutant, named GG9, which showed increased alginate production of higher molecular mass, and increased expression of the alginate biosynthetic genes algD and alg8 when compared to its parental strain. The miniTn5 was inserted within ORF Avin07920 encoding a hypothetical protein. Avin07910, located immediately downstream and predicted to form an operon with Avin07920, encodes an inner membrane multi-domain signaling protein here named mucG. Insertional inactivation of mucG resulted in a phenotype of increased alginate production of higher molecular mass similar to that of mutant GG9. The MucG protein contains a periplasmic and putative HAMP and PAS domains, which are linked to GGDEF and EAL domains. The last two domains are potentially involved in the synthesis and degradation, respectively, of bis-(3'-5')-cyclic dimeric GMP (c-di-GMP), a secondary messenger that has been reported to be essential for alginate production. Therefore, we hypothesized that the negative effect of MucG on the production of this polymer could be explained by the putative phosphodiesterase activity of the EAL domain. Indeed, we found that alanine replacement mutagenesis of the MucG EAL motif or deletion of the entire EAL domain resulted in increased alginate production of higher molecular mass similar to the GG9 and mucG mutants. To our knowledge, this is the first reported protein that simultaneous affects the production of alginate and its molecular mass.

  2. Thermocline circulation and ventilation of the East/Japan Sea, part I: Water-mass characteristics and transports

    Science.gov (United States)

    You, Yuzhu; Chang, Kyung-Il; Yun, Jae-Yul; Kim, Kyung-Ryul

    2010-07-01

    three other major convection sites of the world's oceans, the Gulf of Lions, Labrador Sea and Greenland Sea, showing some common and distinctive features, especially the extremely low salinity of the EJS. Water-mass properties on neutral density surfaces are analyzed with the water-mass Turner angle (WTu) and circulation and transport are deducted from geostrophic calculations. From the 15-year mean hydrography, a basin-wide net annual mean transport of about 2.10±0.29 Sv (1 Sv=10 6 m 3 s -1) is estimated with summer and winter transports of 2.56±0.36 and 1.63±0.23 Sv, respectively. This transport is slightly less than the annual mean transport of the Tsushima Current at the KTS, 2.4 Sv from cable and 2.3 Sv from other direct current meter and geostrophic methods but matches the ±14% error bar of ±0.29 Sv adjusted by ±150 dbar from the reference level of 800 dbar. This error bar is close to the error of ±0.34 Sv determined from water-mass conservation residual in a separated study. Three mechanisms are discovered to explain the seasonal difference in the Tsushima Current transports: the stronger winter Ekman pumping, outcropping and southward crossing flow. During winter, the Tsushima Current branches are imposed under strong wind stress curl in the Ulleung Basin and Yamato Basin, showing a doubling Ekman downwelling transport, partly weakening the Tsushima Current flow in the eastern boundary. Meanwhile the thermocline isopycnal surfaces outcrop in winter, reducing volume transport due to reduced space and thickness. The southward currents in the southern Ulleung Basin and Yamato Basin are perpendicular to the Tsushima Current branches west of Japan, which weakens the eastern boundary current in winter.

  3. Sintering kinetics and mass transport in ceramic engobes; Cinetica de sinterizacion y transporte de masa en engobes ceramicos por el metodo Pechini

    Energy Technology Data Exchange (ETDEWEB)

    Dal Bo, M.; Boschi, A. O.; Hotza, D.

    2013-10-01

    This work is concerned to study the sintering rate and mass transport mechanism in ceramic engobes. Specimens of engobes were prepared from a determined formulation by slip casting. Sintering was carried in two steps: (i) at constant heating rate of 7.5 degree centigrade/min and (ii) with an isothermal treatment, during 120 min. According to the dilatometric curves obtained with the engobe sintering during isothermal treatment, the dominant sintering mechanism and the rate of reactions, between the 775 and 975 degree centigrade, were determined. The results showed that between 775 and 800 degree centigrade, the sintering rate can be described by ln[d({Delta}L/L{sub 0})/dt] = -5.64 + 1.77.E10{sup -}3T. At higher temperatures, from 850 to 975 degree centigrade, this rate can be expressed by ln[d({Delta}L/L{sub 0})/ dt] = -30.73 + 3.E10{sup -}2T. The dominant transport mass mechanisms were the grain rearrangement, solution-precipitation and grain boundaries reaction. (Author)

  4. Zebrafish ift57, ift88, and ift172 intraflagellar transport mutants disrupt cilia but do not affect hedgehog signaling.

    Science.gov (United States)

    Lunt, Shannon C; Haynes, Tony; Perkins, Brian D

    2009-07-01

    Cilia formation requires intraflagellar transport (IFT) proteins. Recent studies indicate that mammalian Hedgehog (Hh) signaling requires cilia. It is unclear, however, if the requirement for cilia and IFT proteins in Hh signaling represents a general rule for all vertebrates. Here we examine zebrafish ift57, ift88, and ift172 mutants and morphants for defects in Hh signaling. Although ift57 and ift88 mutants and morphants contained residual maternal protein, the cilia were disrupted. In contrast to previous genetic studies in mouse, mutations in zebrafish IFT genes did not affect the expression of Hh target genes in the neural tube and forebrain and had no quantitative effect on Hh target gene expression. Zebrafish IFT mutants also exhibited no dramatic changes in the craniofacial skeleton, somite formation, or motor neuron patterning. Thus, our data indicate the requirement for cilia in the Hh signal transduction pathway may not represent a universal mechanism in vertebrates.

  5. Fundamentals of Biomedical Transport Processes

    CERN Document Server

    Miller, Gerald

    2010-01-01

    Transport processes represent important life-sustaining elements in all humans. These include mass transfer processes, including gas exchange in the lungs, transport across capillaries and alveoli, transport across the kidneys, and transport across cell membranes. These mass transfer processes affect how oxygen and carbon dioxide are exchanged in your bloodstream, how metabolic waste products are removed from your blood, how nutrients are transported to tissues, and how all cells function throughout the body. A discussion of kidney dialysis and gas exchange mechanisms is included. Another elem

  6. Mass transport deposits as witness of Holocene seismic activity on the Ligurian margin, Western Mediterranean (ASTARTE project)

    Science.gov (United States)

    Samalens, Kevin; Cattaneo, Antonio; Migeon, Sébastien

    2016-04-01

    The Ligurian Margin (Western Mediterranean) is at the transition between the Southern Alpes and the Liguro-Provençal margin and it is one of the most seismic areas of France. Several historic earthquakes have been indexed; the strongest, on February 23rd, 1887, occurred offshore Menton and Imperia and also caused a tsunami wave. Its equivalent magnitude has been estimated between 6 and 6.5. In addition, a moderate recurrent seismicity shakes the margin. The aim of this study is to understand the link between seismic activity and slope destabilization, and to identify the sedimentary deposits resulting from mass transport or turbidity currents. During Malisar (Geoazur laboratory), Prisme 2 and Prisme 3 (Ifremer) cruises, bathymetry, seafloor imagery (SAR), geophysics data (CHIRP SYSIF and high resolution seismics), and sediment cores have been acquired on the continental slope, focussing on canyons and submarine landslides, and in the basin. These data record numerous mass transport deposits (slump, debrites) in the different physiographic areas of the margin. To search for evidences of past Ligurian margin seismicity during the Holocene, we focused on the northeast part of the margin, the Finale area. We identified and sampled acoustically transparent Mass Transport Deposits up to 20-m thick in the bottom of three coaleshing canyons: Noli, Pora and Centa canyons from W to E in the area offshore Finale Ligure. We also recovered an MTD in the collecting deeper canyon system. MTDs in cores appear as sediment with different degrees of deformation (tilted blocks, slump, debrites) and are topped by hemipelagites. The radiocarbon age of the top of MTDs can be considered synchronous and centered around 4900 yr BP. Mass wasting occurring over more than 50 km of the Ligurian margin could indicate that an earthquake stroke the Finale area sector at that time.

  7. Mass flux into the Nanga Parbat-Haramosh massif: Orogen-parallel transport, lower crustal flow, or both?

    Science.gov (United States)

    Whipp, D. M.; Beaumont, C.; Braun, J.

    2011-12-01

    Relative to most of the Himalaya, the Nanga Parbat-Haramosh massif requires an additional mass flux into its base to balance extreme rates of surface denudation (>10 mm/a) over the last ~2-3 Ma. One proposed source is middle to lower crustal flow into the massif (e.g., Zeitler et al., 2001), which while likely inactive elsewhere along strike, may be sustainable by very rapid surface denudation, a high geothermal gradient, and thermal weakening of rocks beneath the syntaxes. An alternative source is orogen-parallel (OP) transport due to oblique convergence and strain partitioning along the Himalayan arc (e.g., Seeber and Pêcher, 1998). Several observations including (1) predominantly orogen-normal slip on the frontal thrusts deduced from seismic events, (2) OP extension accommodated on orogen-normal structures, and (3) distributed and segmented strike-slip faulting trending parallel to the arc are consistent with strain partitioning and OP mass transport. A key question is can this mechanism supply sufficient mass to the Nanga Parbat syntaxis, or is local channel flow required? We explore mass transport into the western Himalayan syntaxis region using lithospheric-scale 3D mechanical and coupled thermo-mechanical models of an arcuate orogen. The crust is either frictional plastic or power-law viscous, with a constant low viscosity lower crust present in some experiments. Applied velocity boundary conditions are transmitted to the base of the crust by a strong frictional plastic mantle lithosphere, and mantle detachment/subduction drives formation of a bivergent, arcuate orogen. To assess the magnitude of mass transport from strain partitioning, we first explore purely mechanical experiments featuring a 5-km-high Tibet-like plateau above a weak lower crust and with a frictional plastic decollement that dips at 10° beneath the incipient orogen, similar to the Himalayan basal detachment. Preliminary results show gravitational feedback from the plateau drives

  8. Implications for Ecosystem Services of Watershed Processes that affect the Transport and Transformations of Mercury in an Adirondack Stream Basin

    Science.gov (United States)

    Burns, D. A.; Riva-Murray, K.; Bradley, P. M.

    2012-12-01

    Mercury (Hg) is a potent neurotoxin that can affect the health of humans and wildlife through the ingestion of methyl Hg. Mercury contamination of ecosystems originates from human activities such as mining, coal burning and other industrial emissions, and the use of Hg-containing products. Natural sources such as volcanic and geothermal emissions and the weathering of Hg-bearing minerals also contribute to Hg contamination, but are believed to be minor sources in most ecosystems. Various ecosystem disturbances including fires, forest harvesting, and the submergence of land by impoundment may also contribute to Hg ecosystem contamination by mobilizing stores that have previously originated from the sources described above. Mercury from a mix of regional and global emissions sources is transported in the atmosphere to remote landscapes that are distant from local emissions sources. The Adirondacks of New York State is a forested, mountainous region characterized by abundant lakes and streams, and is distant from local emissions sources. Recreational fishing, wildlife viewing, hiking, and hunting are valued ecosystem services in this region. Here, we report on the relevance to ecosystem services of findings based on five years of Hg data collection of stream water, groundwater, invertebrates, and fish in the upper Hudson River basin in the central part of the Adirondack region. The New York State Dept. of Health has issued fish consumption advisories for the entire Adirondacks based on elevated levels previously measured in lakes and rivers of this region. Our work seeks improved understanding and models of the landscape sources and watershed processes that control the transformation of Hg to its methyl form (MeHg), the transport of MeHg to streams, and bioaccumulation of MeHg in aquatic food webs. Mean annual atmospheric Hg deposition was 6.3 μg/m2/yr during 2007-09, compared to mean annual filtered total Hg stream yields of 1.66 μg/m2/yr and filtered MeHg stream

  9. Gradual conditioning of non-Gaussian transmissivity fields to flow and mass transport data: 2. Demonstration on a synthetic aquifer

    Science.gov (United States)

    Llopis-Albert, Carlos; Capilla, José E.

    2009-06-01

    SummaryIn the first paper of this series a methodology for the generation of non-Gaussian transmissivity fields conditional to flow, mass transport and secondary data was presented. This methodology, referred to as the gradual conditioning (GC) method, constitutes a new and advanced powerful approach in the field of stochastic inverse modelling. It is based on gradually changing an initial transmissivity ( T) field, conditioned only to T and secondary data, to honour flow and transport measured data. The process is based on combining the initial T field with other seed T fields in successive iterations maintaining the stochastic structure of T, previously inferred from data. The iterative procedure involves the minimization of a penalty function which depends on one parameter, and is made up by the weighted summation of the square deviations among flow and/or transport variables, and the corresponding known measurements. The GC method leads gradually to a final simulated field, uniformly converging to a better reproduction of conditioning data as more iterations are performed. The methodology is now demonstrated on a synthetic aquifer in a non-multi-Gaussian stochastic framework. First, an initial T field is simulated, and retained as reference T field. With prescribed head boundary conditions, transient flow created by an abstraction well and a mass solute plume migrating through the formation, a long-term and large scale hypothetical tracer experiment is run in this reference synthetic aquifer. Then T, piezometric head ( h), solute concentration ( c) and travel time ( τ) are sampled at a limited number of points, and for different time steps where applicable. Using this limited amount of information the GC method is applied, conditioning to different sets of these sampled data and model results are compared to those from the reference synthetic aquifer. Results demonstrate the ability and robustness of the GC method to include different types of data without

  10. Commuter exposure to black carbon, carbon monoxide, and noise in the mass transport khlong boats of Bangkok, Thailand

    Science.gov (United States)

    Ziegler, A. D.; Velasco, E.; Ho, K. J.

    2013-12-01

    Khlong (canal) boats are a unique mass transport alternative in the congested city of Bangkok. Canals and rivers provide exclusive transit-ways for reducing the commuting time of thousands of city residents daily. However, as a consequence of the service characteristics and boats design and state of repair, they can represent a potential public health risk and an important source of black carbon and greenhouse gases. This work quantifies commuter exposure to black carbon, CO and noise when waiting for and travelling in these diesel fueled boats. Exposure to toxic pollutants and acute noise is similar or worse than for other transportation modes. Mean black carbon concentrations observed at one busy pier and along the main canal were much higher than ambient concentrations at sites impacted by vehicular traffic. Concentrations of CO were similar to those reported for roadside areas of Bangkok. The equivalent continuous sound levels registered at the landing pier were similar to those reported for roadsides, but values recorded inside the boats were significantly higher. We believe that the boat service is a viable alternative mode of mass transport, but public safety could be improved to provide a high quality service, comparable to modern rail systems or emerging bus rapid transit systems. These investments would also contribute to reduce the emission of black carbon and other greenhouse and toxic pollutants.

  11. Mass spectrometry-based method to investigate the natural selectivity of sucrose as the sugar transport form for plants.

    Science.gov (United States)

    Yuan, Hang; Wu, Yile; Liu, Wu; Liu, Yan; Gao, Xiang; Lin, Jinming; Zhao, Yufen

    2015-04-30

    Sucrose is the carbon skeletons and energy vector for plants, which is important for plants growth. Among thousands of disaccharides in Nature, why chose sucrose for plants? In this paper, we analyzed the intrinsic structural characteristics of four sucrose isomers with different glycosidic linkage by mass spectrometry (MS) technique. Our results show that sucrose has the most labile glycosidic bond compared with other three isomers, which is helpful for releasing glucose and fructose unit. Besides, sucrose has the most stable integral structure, which is hard to dehydrate and degrade into fragments through losing one or three even four-carbon units, just as its three isomers. In other words, sucrose is more easily holds an integral structure during the transport process, whenever it is necessary, and sucrose can be cleaved into glucose and fructose easily. Besides, we also investigate the internal relationship of sucrose with K(+) by tandem mass spectrometry and viscosity measurement. The related results have shown that the K(+) can stabilize sucrose to a greater extent than the Na(+). Furthermore, under the same conditions, K(+) ions reduce the viscosity of sucrose-water system much more than Na(+). These results suggest that K(+) is a better co-transporter for sucrose. Of course, the transport of sucrose in plants is a very complicated process, which is involved in many proteins. This paper directly accounts for the basic structure feature of sucrose, and the results discovered could provide the novel insight for the answer why Nature chose sucrose for plants.

  12. Serotonin transporter 5HTTLPR polymorphism and affective disorders: no evidence of association in a large European multicenter study.

    Science.gov (United States)

    Mendlewicz, Julien; Massat, Isabelle; Souery, Daniel; Del-Favero, Jurgen; Oruc, Lilijana; Nöthen, Markus M; Blackwood, Douglas; Muir, Walter; Battersby, Sharon; Lerer, Beny; Segman, Ronen H; Kaneva, Radka; Serretti, Alessandro; Lilli, Roberta; Lorenzi, Christian; Jakovljevic, Miro; Ivezic, Sladana; Rietschel, Marcella; Milanova, Vihra; Van Broeckhoven, Christine

    2004-05-01

    The available data from preclinical and pharmacological studies on the role of the serotonin transporter (5-HTT) support the hypothesis that a dysfunction in brain serotonergic system activity contributes to the vulnerability to affective disorders (AD). 5-HTT is the major site of serotonin reuptake into the presynaptic neuron, and it has been shown that the polymorphic repeat polymorphism in the 5-HTT promotor region (5-HTTLPR) may affect gene-transcription activity. 5-HTT maps to chromosome 17 at position 17q11.17-q12, and the 5-HTTLPR polymorphisms have been extensively investigated in AD with conflicting results. The present study tested the genetic contribution of the 5-HTTLPR polymorphism in a large European multicenter case-control sample, including 539 unipolar (UPAD), 572 bipolar patients (BPAD), and 821 controls (C). Our European collaboration has led to efforts to optimize a methodology that attenuates some of the major limitations of the case-control association approach. No association was found with primary psychiatric diagnosis (UPAD and BPAD) and with phenotypic traits (family history of AD, suicidal attempt, and presence of psychotic features). Our negative findings are not attributable to the lack of statistical power, and may contribute to clarify the role of 5-HTTLPR polymorphism in AD.

  13. Observations of mesoscale and boundary-layer scale circulations affecting dust transport and uplift over the Sahara

    Directory of Open Access Journals (Sweden)

    J. H. Marsham

    2008-12-01

    Full Text Available Observations of the Saharan boundary layer, made during the GERBILS field campaign, show that mesoscale land surface temperature variations (which were related to albedo variations induced mesoscale circulations. With weak winds along the aircraft track, land surface temperature anomalies with scales of greater than 10 km are shown to significantly affect boundary-layer temperatures and winds. Such anomalies are expected to affect the vertical mixing of the dusty and weakly stratified Saharan Residual Layer (SRL. Mesoscale variations in winds are also shown to affect dust loadings in the boundary layer.

    Using the aircraft observations and data from the COSMO model, a region of local dust uplift, with strong along-track winds, was identified in one low-level flight. Large eddy model (LEM simulations based on this location showed linearly organised boundary-layer convection. Calculating dust uplift rates from the LEM wind field showed that the boundary-layer convection increased uplift by approximately 30%, compared with the uplift rate calculated neglecting the convection. The modelled effects of boundary-layer convection on uplift are shown to be larger when the boundary-layer wind is decreased, and most significant when the mean wind is below the threshold for dust uplift and the boundary-layer convection leads to uplift which would not otherwise occur.

    Both the coupling of albedo features to the atmosphere on the mesoscale, and the enhancement of dust uplift by boundary-layer convection are unrepresented in many climate models, but may have significant impacts on the vertical transport and uplift of desert dust. Mesoscale effects in particular tend to be difficult to parametrise.

  14. Climatology of wintertime long-distance transport of surface-layer air masses arriving urban Beijing in 2001-2012

    Science.gov (United States)

    Chen, Bin; Xiang-De, XU

    2017-02-01

    In this study, the FLEXPART-WRF coupled modeling system is used to conduct 12-year Lagrangian modeling over Beijing, China, for the winters of 2001-2012. Based on large trajectory tracking ensembles, the long-range air transport properties, in terms of geographic source regions within the atmospheric planetary boundary layer (PBL) and large-scale ventilation, and its association with air quality levels were quantified from a climatological perspective. The results show the following: (1) The air masses residing in the near-surface layer over Beijing potentially originate from broader atmospheric boundary-layer regions, which cover vast areas with the backward tracking time elapsed. However, atmospheric transport from northeastern China and, to a lesser extent, from the surrounding regions of Beijing is important. (2) The evolution of air quality over Beijing is negatively correlated with large-scale ventilation conditions, particularly at a synoptic timescale. Thus, the simple but robust backward-trajectory ventilation (BV) index defined in this study could facilitate operational forecasting of severe air pollution events. (3) By comparison, the relatively short-range transport occurring over transport timescales of less than 3 days from southern and southeastern Beijing and its surrounding areas plays a vital role in the formation of severe air pollution events during the wintertime. (4) Additionally, an interannual trend analysis suggests that the geographic sources and ventilation conditions also changed, at least over the last decade, corresponding to the strength variability of the winter East Asian monsoon.

  15. Numerical simulations of water flow and contaminants transport near mining wastes disposed in a fractured rock mass

    Institute of Scientific and Technical Information of China (English)

    Ben Abdelghani Farouk; Aubertin Michel; Simon Richard; Therrien René

    2015-01-01

    A numerical tool, called Hydro-Geosphere, was used to simulate unsaturated water flow and contami-nants migration around an open pit filled with mining wastes. Numerical simulations had been carried out to assess the influence of various factors on water flow and solute transport in and around the surface openings including recharge, properties of the waste material and presence of fractures in the surround-ing rock mass. The effect of the regional hydraulic gradient was also investigated. The analyses were con-ducted by simulating various 2D cases using experimentally obtained material properties and controlled boundary conditions. The effects of the hydrogeological properties of the filling material (i.e., water reten-tion curve and hydraulic conductivity function), fracture network characteristics and conductivity of the joints were assessed. The results illustrate that fractures control water flow and contaminants transport around the waste disposal area. A fracture network can desaturate the system and improve the regional gradient effect.

  16. Understanding the structure, dynamics, and mass transport properties of self assembling peptide hydrogels for injectable, drug delivery applications

    Science.gov (United States)

    Branco, Monica Cristina

    hydrogels as a function of peptide sequence and concentration. Changes in nanoscale dynamics and structure inherently lead to substantial differences in bulk properties, such as the elastic modulus and network mesh size. Learning how the material properties of the gels influence the transport rate of therapeutics through the hydrogel is essential to the development of delivery vehicles. The remainder of the thesis focuses on correlating the mesh sizes of MAX1 and MAX8 gels to the diffusion and mass transport properties of model dextran and protein probes. Here, work is centered on how peptide charge and concentration, as well as probe structure, in particular hydrodynamic diameter and charge, dictate the temporal release of model probes from the peptide hydrogels. Experiments include self diffusion studies and bulk release experiments with model dextrans and proteins from gels before and after syringe delivery. Overall, this thesis will demonstrate the importance of understanding material properties from the nanoscale up to the macroscale for application based design. With this approach, better and specific development of self-assembling peptide materials can be achieved, allowing for the rational engineering of peptide sequences to form hydrogels appropriate for specific drug delivery applications.

  17. Real-time monitoring of mass-transport-related enzymatic reaction kinetics in a nanochannel-array reactor.

    Science.gov (United States)

    Li, Su-Juan; Wang, Chen; Wu, Zeng-Qiang; Xu, Jing-Juan; Xia, Xing-Hua; Chen, Hong-Yuan

    2010-09-01

    To understand the fundamentals of enzymatic reactions confined in micro-/nanosystems, the construction of a small enzyme reactor coupled with an integrated real-time detection system for monitoring the kinetic information is a significant challenge. Nano-enzyme array reactors were fabricated by covalently linking enzymes to the inner channels of a porous anodic alumina (PAA) membrane. The mechanical stability of this nanodevice enables us to integrate an electrochemical detector for the real-time monitoring of the formation of the enzyme reaction product by sputtering a thin Pt film on one side of the PAA membrane. Because the enzymatic reaction is confined in a limited nanospace, the mass transport of the substrate would influence the reaction kinetics considerably. Therefore, the oxidation of glucose by dissolved oxygen catalyzed by immobilized glucose oxidase was used as a model to investigate the mass-transport-related enzymatic reaction kinetics in confined nanospaces. The activity and stability of the enzyme immobilized in the nanochannels was enhanced. In this nano-enzyme reactor, the enzymatic reaction was controlled by mass transport if the flux was low. With an increase in the flux (e.g., >50 microL min(-1)), the enzymatic reaction kinetics became the rate-determining step. This change resulted in the decrease in the conversion efficiency of the nano-enzyme reactor and the apparent Michaelis-Menten constant with an increase in substrate flux. This nanodevice integrated with an electrochemical detector could help to understand the fundamentals of enzymatic reactions confined in nanospaces and provide a platform for the design of highly efficient enzyme reactors. In addition, we believe that such nanodevices will find widespread applications in biosensing, drug screening, and biochemical synthesis.

  18. Final Report: Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems for Transportation Applications (2012-2016)

    Energy Technology Data Exchange (ETDEWEB)

    James, Brian David [Strategic Analysis Inc., Arlington, VA (United States); Huya-Kouadio, Jennie Moton [Strategic Analysis Inc., Arlington, VA (United States); Houchins, Cassidy [Strategic Analysis Inc., Arlington, VA (United States); DeSantis, Daniel Allen [Strategic Analysis Inc., Arlington, VA (United States)

    2016-09-01

    This report summarizes project activities for Strategic Analysis, Inc. (SA) Contract Number DE-EE0005236 to the U.S. Department of Energy titled “Transportation Fuel Cell System Cost Assessment”. The project defined and projected the mass production costs of direct hydrogen Proton Exchange Membrane fuel cell power systems for light-duty vehicles (automobiles) and 40-foot transit buses. In each year of the five-year contract, the fuel cell power system designs and cost projections were updated to reflect technology advances. System schematics, design assumptions, manufacturing assumptions, and cost results are presented.

  19. Effect of reduced renal mass on renal ammonia transporter family, Rh C glycoprotein and Rh B glycoprotein, expression.

    Science.gov (United States)

    Kim, Hye-Young; Baylis, Chris; Verlander, Jill W; Han, Ki-Hwan; Reungjui, Sirirat; Handlogten, Mary E; Weiner, I David

    2007-10-01

    Kidneys can maintain acid-base homeostasis, despite reduced renal mass, through adaptive changes in net acid excretion, of which ammonia excretion is the predominant component. The present study examines whether these adaptations are associated with changes in the ammonia transporter family members, Rh B glycoprotein (Rhbg) and Rh C glycoprotein (Rhcg). We used normal Sprague-Dawley rats and a 5/6 ablation-infarction model of reduced renal mass; control rats underwent sham operation. After 1 wk, glomerular filtration rate, assessed as creatinine clearance, was decreased, serum bicarbonate was slightly increased, and Na(+) and K(+) were unchanged. Total urinary ammonia excretion was unchanged, but urinary ammonia adjusted for creatinine clearance, an index of per nephron ammonia metabolism, increased significantly. Although reduced renal mass did not alter total Rhcg protein expression, both light microscopy and immunohistochemistry with quantitative morphometric analysis demonstrated hypertrophy of both intercalated cells and principal cells in the cortical and outer medullary collecting duct that was associated with increased apical and basolateral Rhcg polarization. Rhbg expression, analyzed using immunoblot analysis, immunohistochemistry, and measurement of cell-specific expression, was unchanged. We conclude that altered subcellular localization of Rhcg contributes to adaptive changes in single-nephron ammonia metabolism and maintenance of acid-base homeostasis in response to reduced renal mass.

  20. Mass and Momentum Transport in Microcavities for Diffusion-Dominant Cell Culture Applications

    Science.gov (United States)

    Yew, Alvin G.; Pinero, Daniel; Hsieh, Adam H.; Atencia, Javier

    2012-01-01

    For the informed design of microfluidic devices, it is important to understand transport phenomena at the microscale. This letter outlines an analytically-driven approach to the design of rectangular microcavities extending perpendicular to a perfusion microchannel for microfluidic cell culture devices. We present equations to estimate the spatial transition from advection- to diffusion-dominant transport inside cavities as a function of the geometry and flow conditions. We also estimate the time required for molecules, such as nutrients or drugs to travel from the microchannel to a given depth into the cavity. These analytical predictions can facilitate the rational design of microfluidic devices to optimize and maintain long-term, physiologically-based culture conditions with low fluid shear stress.

  1. COMPUTER SIMULATION OF NON-NEWTONIAN FLOW AND MASS TRANSPORT THROUGH CORONARY ARTERIAL STENOSIS

    Institute of Scientific and Technical Information of China (English)

    李新宇; 温功碧; 李丁

    2001-01-01

    A numerical analysis of Newtonian and non-Newtonian flow in an axi-symmetric tube with a local constriction simulating a stenosed artery under steady and pulsatile flow conditions was carried out. Based on these results, the concentration fields of LDL ( low density lipoprotein ) and Albumin were discussed. According to the results, in great details the macromolecule transport influences of wall shear stress, non-Newtonian fluid character and the scale of the molecule etc are given. The results of Newtonian fluid flow and non Newtonian fluid flow , steady flow and pulsatile flow are compared. These investigations can provide much valuable information about the correlation between the flow properties, the macromolecule transport and the development of atherosclerosis.

  2. Optimal-mass-transfer-based estimation of glymphatic transport in living brain

    OpenAIRE

    2015-01-01

    It was recently shown that the brain-wide cerebrospinal fluid (CSF) and interstitial fluid exchange system designated the ‘glymphatic pathway’ plays a key role in removing waste products from the brain, similarly to the lymphatic system in other body organs1,2. It is therefore important to study the flow patterns of glymphatic transport through the live brain in order to better understand its functionality in normal and pathological states. Unlike blood, the CSF does not flow rapidly through ...

  3. The Role of Angular Momentum Transport in Establishing the Accretion Rate--Protostellar Mass Correlation

    CERN Document Server

    DeSouza, Alexander L

    2016-01-01

    We model the mass accretion rate $\\dot{M}$ to stellar mass $M_*$ correlation that has been inferred from observations of intermediate to upper mass T Tauri stars---that is $\\dot{M} \\propto M_*^{1.3 \\pm 0.3}$. We explain this correlation within the framework of quiescent disk evolution, in which accretion is driven largely by gravitational torques acting in the bulk of the mass and volume of the disk. Stresses within the disk arise from the action of gravitationally driven torques parameterized in our 1D model in terms of Toomre's $Q$ criterion. We do not model the hot inner sub-AU scale region of the disk that is likely stable according to this criterion, and appeal to other mechanisms to remove or redistribute angular momentum and allow accretion onto the star. Our model has the advantage of agreeing with large-scale angle-averaged values from more complex nonaxisymmetric calculations. The model disk transitions from an early phase (dominated by initial conditions inherited from the burst mode of accretion) ...

  4. The role of angular momentum transport in establishing the accretion rate-protostellar mass correlation

    Science.gov (United States)

    DeSouza, Alexander L.; Basu, Shantanu

    2017-02-01

    We model the mass accretion rate M˙ to stellar mass M* correlation that has been inferred from observations of intermediate to upper mass T Tauri stars-that is M˙ ∝ M*1.3±0.3. We explain this correlation within the framework of quiescent disk evolution, in which accretion is driven largely by gravitational torques acting in the bulk of the mass and volume of the disk. Stresses within the disk arise from the action of gravitationally driven torques parameterized in our 1D model in terms of Toomre's Q criterion. We do not model the hot inner sub-AU scale region of the disk that is likely stable according to this criterion, and appeal to other mechanisms to remove or redistribute angular momentum and allow accretion onto the star. Our model has the advantage of agreeing with large-scale angle-averaged values from more complex nonaxisymmetric calculations. The model disk transitions from an early phase (dominated by initial conditions inherited from the burst mode of accretion) into a later self-similar mode characterized by a steeper temporal decline in M˙. The models effectively reproduce the spread in mass accretion rates that have been observed for protostellar objects of 0.2 M⊙ ≤ M* ≤ 3.0 M⊙, such as those found in the ρ Ophiuchus and Taurus star forming regions. We then compare realistically sampled populations of young stellar objects produced by our model to their observational counterparts. We find these populations to be statistically coincident, which we argue is evidence for the role of gravitational torques in the late time evolution of quiescent protostellar disks.

  5. Characterization of an electrochemical pilot-plant filter-press reactor by hydrodynamic and mass transport studies

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Garcia, J.; Frias, A.; Exposito, E.; Montiel, V.; Aldaz, A.; Conesa, J.A.

    2000-05-01

    This work deals with the study of the influence of turbulence promoters in the hydrodynamic and mass transport behavior of a pilot-plant filter-press electrolyzer (a homemade UA200.08 with a 200 cm{sup 2} electrode area) in an undivided configuration. A simple experimental arrangement was used to generate data from electrolytic conductivity measurements in a series of impulse-response experiments. The presence and type of turbulence promoters influence the flow distribution inside the reactor. A new design of a model (presented in a previous work) has been used to analyze the residence time distributions. In this study a new parameter, the turbulence factor, given as N{sub {alpha}}{Phi}{sub {beta}}, was employed to classify the turbulence promoters. The optimization of the parameters indicates that the correct model is dispersed plug-flow behavior with a low axial dispersion that considers exchange between the dead and main zones of the reactor. It is also very interesting to highlight that the information obtained by means of the turbulence factors is similar to that obtained from the values of the mass transport coefficients measured using the limiting current technique.

  6. Turbulent coherent-structure dynamics in a natural surface storage zone: Mechanisms of mass and momentum transport in rivers

    Science.gov (United States)

    Escauriaza, Cristian; Sandoval, Jorge; Mignot, Emmanuel; Mao, Luca

    2016-11-01

    Turbulent flows developed in surface storage zones (SSZ) in rivers control many physical and biogeochemical processes of contaminants in the water. These regions are characterized by low velocities and long residence times, which favor particle deposition, nutrient uptake, and flow interactions with reactive sediments. The dynamics of the flow in SSZ is driven by a shear layer that induces multiple vortical structures with a wide range of temporal and spatial scales. In this work we study the flow in a lateral SSZ of the Lluta River, a high-altitude Andean stream (4,000 masl), with a Re=45,800. We describe the large-scale turbulent coherent structures using field measurements and 3D numerical simulations. We measure the bed topography, instantaneous 3D velocities at selected points, the mean 2D free-surface velocity field, and arsenic concentration in the sediment. Numerical simulations of the flow are also performed using a DES turbulence model. We focus on the mass and momentum transport processes, analyzing the statistics of mass exchange and residence times in the SSZ. With this information we provide new insights on the flow and transport processes between the main channel and the recirculating region in natural conditions. Supported by Fondecyt 1130940.

  7. Environmental Conditions Influence Induction of Key ABC-Transporter Genes Affecting Glyphosate Resistance Mechanism in Conyza canadensis.

    Science.gov (United States)

    Tani, Eleni; Chachalis, Demosthenis; Travlos, Ilias S; Bilalis, Dimitrios

    2016-04-20

    Conyza canadensis has been reported to be the most frequent weed species that evolved resistance to glyphosate in various parts of the world. The objective of the present study was to investigate the effect of environmental conditions (temperature and light) on the expression levels of the EPSPS gene and two major ABC-transporter genes (M10 and M11) on glyphosate susceptible (GS) and glyphosate resistant (GR) horseweed populations, collected from several regions across Greece. Real-time PCR was conducted to determine the expression level of the aforementioned genes when glyphosate was applied at normal (1×; 533 g·a.e.·ha(-1)) and high rates (4×, 8×), measured at an early one day after treatment (DAT) and a later stage (four DAT) of expression. Plants were exposed to light or dark conditions, at three temperature regimes (8, 25, 35 °C). GR plants were made sensitive when exposed to 8 °C with light; those sensitized plants behaved biochemically (shikimate accumulation) and molecularly (expression of EPSPS and ABC-genes) like the GS plants. Results from the current study show the direct link between the environmental conditions and the induction level of the above key genes that likely affect the efficiency of the proposed mechanism of glyphosate resistance.

  8. Environmental Conditions Influence Induction of Key ABC-Transporter Genes Affecting Glyphosate Resistance Mechanism in Conyza canadensis

    Directory of Open Access Journals (Sweden)

    Eleni Tani

    2016-04-01

    Full Text Available Conyza canadensis has been reported to be the most frequent weed species that evolved resistance to glyphosate in various parts of the world. The objective of the present study was to investigate the effect of environmental conditions (temperature and light on the expression levels of the EPSPS gene and two major ABC-transporter genes (M10 and M11 on glyphosate susceptible (GS and glyphosate resistant (GR horseweed populations, collected from several regions across Greece. Real-time PCR was conducted to determine the expression level of the aforementioned genes when glyphosate was applied at normal (1×; 533 g·a.e.·ha−1 and high rates (4×, 8×, measured at an early one day after treatment (DAT and a later stage (four DAT of expression. Plants were exposed to light or dark conditions, at three temperature regimes (8, 25, 35 °C. GR plants were made sensitive when exposed to 8 °C with light; those sensitized plants behaved biochemically (shikimate accumulation and molecularly (expression of EPSPS and ABC-genes like the GS plants. Results from the current study show the direct link between the environmental conditions and the induction level of the above key genes that likely affect the efficiency of the proposed mechanism of glyphosate resistance.

  9. Impact of the loss of caveolin-1 on lung mass and cholesterol metabolism in mice with and without the lysosomal cholesterol transporter, Niemann-Pick type C1.

    Science.gov (United States)

    Mundy, Dorothy I; Lopez, Adam M; Posey, Kenneth S; Chuang, Jen-Chieh; Ramirez, Charina M; Scherer, Philipp E; Turley, Stephen D

    2014-07-01

    Caveolin-1 (Cav-1) is a major structural protein in caveolae in the plasma membranes of many cell types, particularly endothelial cells and adipocytes. Loss of Cav-1 function has been implicated in multiple diseases affecting the cardiopulmonary and central nervous systems, as well as in specific aspects of sterol and lipid metabolism in the liver and intestine. Lungs contain an exceptionally high level of Cav-1. Parameters of cholesterol metabolism in the lung were measured, initially in Cav-1-deficient mice (Cav-1(-/-)), and subsequently in Cav-1(-/-) mice that also lacked the lysosomal cholesterol transporter Niemann-Pick C1 (Npc1) (Cav-1(-/-):Npc1(-/-)). In 50-day-old Cav-1(-/-) mice fed a low- or high-cholesterol chow diet, the total cholesterol concentration (mg/g) in the lungs was marginally lower than in the Cav-1(+/+) controls, but due to an expansion in their lung mass exceeding 30%, whole-lung cholesterol content (mg/organ) was moderately elevated. Lung mass (g) in the Cav-1(-/-):Npc1(-/-) mice (0.356±0.022) markedly exceeded that in their Cav-1(+/+):Npc1(+/+) controls (0.137±0.009), as well as in their Cav-1(-/-):Npc1(+/+) (0.191±0.013) and Cav-1(+/+):Npc1(-/-) (0.213±0.022) littermates. The corresponding lung total cholesterol contents (mg/organ) in mice of these genotypes were 6.74±0.17, 0.71±0.05, 0.96±0.05 and 3.12±0.43, respectively, with the extra cholesterol in the Cav-1(-/-):Npc1(-/-) and Cav-1(+/+):Npc1(-/-) mice being nearly all unesterified (UC). The exacerbation of the Npc1 lung phenotype and increase in the UC level in the Cav-1(-/-):Npc1(-/-) mice imply a regulatory role of Cav-1 in pulmonary cholesterol metabolism when lysosomal sterol transport is disrupted.

  10. Basic coaxial mass driver construction and testing. [for eventual moon-space manufacturing site magnetic transport

    Science.gov (United States)

    Fine, K.

    1977-01-01

    A basic coaxial mass driver has been constructed by a group of students to verify performance predictions in the acceleration range envisaged for the first lunar device. The bucket is guided by four copper tubes which also supply direct current excitation for its single aluminum coil, and is accelerated by twenty coaxial coils along a 2 m track, followed by a deceleration section. The coils are individually energized by electrolytic photoflash capacitors triggered by solid state switches on the basis of bucket position.

  11. Transport and diffusion using a diagnostic mesoscale model employing mass and total energy conservation constraints

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, R E; Cederwall, R T; Ohmstede, W D; aufm Kampe, W

    1976-01-01

    Several steps are described that have been taken to advance the method of ''interpolation'' associated with meteorological measurements. These newer methods incorporate some physical constraints into the interpolation. It is the intent of this paper to qualitatively describe early fruits of a joint project at Brookhaven National Laboratory and White Sands Missile Range which has as its objective the formulation of a numerical objective methodology for reconstructing the meteorological fields suitable for the exercise of meso/regional scale transport, chemical and radioactive transformation, and diffusion models.

  12. Mass Transport Vehicle Routing Problem (MTVRP) and the Associated Network Design Problem (MTNDP)

    OpenAIRE

    2005-01-01

    This research studies a new class of dynamic problem MTVRP where n vehicles are routed in real time in a fast varying environment to pickup and deliver m passengers when both n and m are big. The problem is very relevant to future transportation options involving large scale real-time routing of shared-ride fleet transit vehicles. Traditionally, dynamic routing solutions were found as static approximations for smaller-scale problems or using local heuristics for the larger-scale ones. General...

  13. Modeling mass transport in aquifers: The distributed-source problem. Research report, July 1988-June 1990

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, S.E.

    1990-08-01

    A new methodology to model the time and space evolution of groundwater variables in a system of acquifers when certain components of the model, such as the geohydrologic information, the boundary conditions, the magnitude and variability of the sources or physical parameters are uncertain and defined in stochastic terms. This facilitates a more realistic statistical representation of groundwater flow and groundwater pollution forecasting for either the saturated or the unsaturated zone. The method is based on applications of modern mathematics to the solution of the resulting stochastic transport equations. The procedure exhibits considerable advantages over the existing stochastic modeling techniques.

  14. Single-cell mass spectrometry reveals small molecules that affect cell fates in the 16-cell embryo.

    Science.gov (United States)

    Onjiko, Rosemary M; Moody, Sally A; Nemes, Peter

    2015-05-26

    Spatial and temporal changes in molecular expression are essential to embryonic development, and their characterization is critical to understand mechanisms by which cells acquire different phenotypes. Although technological advances have made it possible to quantify expression of large molecules during embryogenesis, little information is available on metabolites, the ultimate indicator of physiological activity of the cell. Here, we demonstrate that single-cell capillary electrophoresis-electrospray ionization mass spectrometry is able to test whether differential expression of the genome translates to the domain of metabolites between single embryonic cells. Dissection of three different cell types with distinct tissue fates from 16-cell embryos of the South African clawed frog (Xenopus laevis) and microextraction of their metabolomes enabled the identification of 40 metabolites that anchored interconnected central metabolic networks. Relative quantitation revealed that several metabolites were differentially active between the cell types in the wild-type, unperturbed embryos. Altering postfertilization cytoplasmic movements that perturb dorsal development confirmed that these three cells have characteristic small-molecular activity already at cleavage stages as a result of cell type and not differences in pigmentation, yolk content, cell size, or position in the embryo. Changing the metabolite concentration caused changes in cell movements at gastrulation that also altered the tissue fates of these cells, demonstrating that the metabolome affects cell phenotypes in the embryo.

  15. Large-Eddy Simulation of pollutant dispersion around a cubical building: analysis of the turbulent mass transport mechanism by unsteady concentration and velocity statistics.

    Science.gov (United States)

    Gousseau, P; Blocken, B; van Heijst, G J F

    2012-08-01

    Pollutant transport due to the turbulent wind flow around buildings is a complex phenomenon which is challenging to reproduce with Computational Fluid Dynamics (CFD). In the present study we use Large-Eddy Simulation (LES) to investigate the turbulent mass transport mechanism in the case of gas dispersion around an isolated cubical building. Close agreement is found between wind-tunnel measurements and the computed average and standard deviation of concentration in the wake of the building. Since the turbulent mass flux is equal to the covariance of velocity and concentration, we perform a detailed statistical analysis of these variables to gain insight into the dispersion process. In particular, the fact that turbulent mass flux in the streamwise direction is directed from the low to high levels of mean concentration (counter-gradient mechanism) is explained. The large vortical structures developing around the building are shown to play an essential role in turbulent mass transport.

  16. Scalar arguments of the mathematical functions defining molecular and turbulent transport of heat and mass in compressible fluids

    Science.gov (United States)

    Kowalski, Andrew S.; Argüeso, Daniel

    2011-11-01

    The advection-diffusion equations defining control volume conservation laws in micrometeorological research are analysed to resolve discrepancies in their appropriate scalar variables for heat and mass transport. A scalar variable that is conserved during vertical motions enables the interpretation of turbulent mixing as ‘diffusion’. Gas-phase heat advection is shown to depend on gradients in the potential temperature (θ), not the temperature (T). Since conduction and radiation depend on T, advection-diffusion of heat depends on gradients of both θ and T. Conservation of θ (the first Law of Thermodynamics) requires including a pressure covariance term in the definition of the turbulent heat flux. Mass advection and diffusion are universally agreed to depend directly on gradients in the gas ‘concentration’ (c), a nonetheless ambiguous term. Depending upon author, c may be defined either as a dimensionless proportion or as a dimensional density, with non-trivial differences for the gas phase. Analyses of atmospheric law, scalar conservation and similarity theory demonstrate that mass advection-diffusion in gases depends on gradients, not in density but rather in a conserved proportion. Flux-tower researchers are encouraged to respect the meteorological tradition of writing conservation equations in terms of scalar variables that are conserved through simple air motions.

  17. [The nuclear matrix proteins (mol. mass 38 and 50 kDa) are transported by chromosomes in mitosis].

    Science.gov (United States)

    Murasheva, M I; Chentsov, Iu S

    2010-01-01

    It was shown by immunofluorescence method that serum M68 and serum K43 from patients with autoimmune disease stain interphase nuclei and periphery of mitotic chromosomes of pig kidney cells. Western blotting reveals the polypeptide with mol. mass of 50 kDa in serum M68, and the polypeptide with mol. mass of 38 kDa in serum K43. In the nuclear protein matrix, the antibodies to protein with mol. mass of 38 kDa stained only nucleolar periphery, while the antibodies to the protein with mol. mass of 50 kDa stained both the nucleolar periphery and all the interphase nucleus. It shows that among all components of nuclear protein matrix (lamina, internuclear network, residual nucleoli) only nucleolar periphery contains the 38 kDa protein, while the 50 kDa protein is a part of residual nucleolar periphery and takes part in nuclear protein network formation. In the interphase cells, both proteins were in situ localized in the nuclei, but one of them with mol. mass of 50 kDa was in the form of small clearly outlined granules, while the other (38 kDa) was in the form of small bright granules against the background of diffusely stained nuclei. Both proteins were also revealed as continuous ring around nucleolar periphery. During all mitotic stages, the 50 kDa protein was seen on the chromosomal periphery as a cover, and the 38 kDa protein formed separate fragments and granules around them. After nuclear and chromosome decondensation induced by hypotonic treatment, both antibodies stain interphase nuclei in diffuse manner, but in mitotic cells they stained the surface of the swollen chromosomes. The polypeptide with mol. mass of 50 kDa maintained strong connection with chromosome periphery both in norm and under condition of decondensation induced by hypotonic treatment and at subsequent recondensation in isotonic medium. In contrast, the protein with mol. mass of 38 kDa partially lost the contact with a chromosome during recondensation appearing also in the form of granules in

  18. Comparing Theory and Experiment for Analyte Transport in the First Vacuum Stage of the Inductively Coupled Plasma Mass Spectrometer

    Science.gov (United States)

    Zachreson, Matthew R.

    The inductively coupled plasma mass spectrometer (ICP-MS) has been used in laboratories for many years. The majority of the improvements to the instrument have been done empirically through trial and error. A few fluid models have been made, which have given a general description of the flow through the mass spectrometer interface. However, due to long mean free path effects and other factors, it is very difficult to simulate the flow details well enough to predict how changing the interface design will change the formation of the ion beam. Towards this end, Spencer et al. developed FENIX, a direct simulation Monte Carlo algorithm capable of modeling this transitional flow through the mass spectrometer interface, the transitional flow from disorganized plasma to focused ion beam. Their previous work describes how FENIX simulates the neutral ion flow. While understanding the argon flow is essential to understanding the ICP-MS, the true goal is to improve its analyte detection capabilities. In this work, we develop a model for adding analyte to FENIX and compare it to previously collected experimental data. We also calculate how much ambipolar fields, plasma sheaths, and electron-ion recombination affect the ion beam formation. We find that behind the sampling interface there is no evidence of turbulent mixing. The behavior of the analyte seems to be described simply by convection and diffusion. Also, ambipolar field effects are small and do not significantly affect ion beam formation between the sampler and skimmer cones. We also find that the plasma sheath that forms around the sampling cone does not significantly affect the analyte flow downstream from the skimmer. However, it does thermally insulate the electrons from the sampling cone, which reduces ion-electron recombination. We also develop a model for electron-ion recombination. By comparing it to experimental data, we find that significant amounts of electron-ion recombination occurs just downstream from the

  19. The Transport of Mass, Energy, and Entropy in Cryogenic Support Struts for Engineering Design

    Science.gov (United States)

    Elchert, J. P.

    2012-01-01

    Engineers working to understand and reduce cryogenic boil-off must solve a. variety of transport problems. An important class of nonlinear problems involves the thermal and mechanical design of cryogenic struts. These classic problems are scattered about the literature and typically require too many resources to obtain. So, to save time for practicing engineers, the author presents this essay. Herein, a variety of new, old, and revisited analytical and finite difference solutions of the thermal problem are covered in this essay, along with commentary on approach and assumptions, This includes a few thermal radiation and conduction combined mode solution with a discussion on insulation, optimum emissivity, and geometrical phenomenon. Solutions to cooling and heat interception problems are also presented, including a discussion of the entropy generation. And the literature on the combined mechanical and thermal design of cryogenic support struts is reviewed with an introduction to the associated numerical methods.

  20. A CONSERVATIVE COUPLED FLOW/TRANSPORT MODEL WITH ZERO MASS ERROR

    Institute of Scientific and Technical Information of China (English)

    BAI Lu-hai; JIN Sheng

    2009-01-01

    A fully conservative form applied to a coupled system of two-dimensional water flow and solute motion is presented. A cell-centred finite volume method based on Roe's approximate Riemann solver with unstructured grids is formulated. The bed slope source terms are discretized following an upwind approach and a semi-implicit treatment is used for the friction source terms. The centered discretization of the diffusion terms is in an implicit way. It is shown that this numerical technique reproduces almost exactly the steady state of still water and enables to achieve zero numerical errors in unsteady flow over configurations with strong variations on bed slope. The model ensures a global conservation and positive values of both water level and solute concentration. Numerical results show the effectiveness of the model in solute transport over real complex geometries.

  1. The Transport of Mass, Energy, and Entropy in Cryogenic Support Struts for Engineering Design

    Science.gov (United States)

    Elchert, J. P.

    2012-01-01

    Engineers working to understand and reduce cryogenic boil-off must solve a variety of transport problems. An important class of nonlinear problems involves the thermal and mechanical design of cryogenic struts. These classic problems are scattered about the literature and typically require too many resources to obtain. So, to save time for practicing engineers, the author presents this essay. Herein, a variety of new, old, and revisited analytical and finite difference solutions of the thermal problem are covered in this essay, along with commentary on approach and assumptions. This includes a few thermal radiation and conduction combined mode solutions with a discussion on insulation, optimum emissivity, and geometrical phenomenon. Solutions to cooling and heat interception problems are also presented, including a discussion of the entropy generation. The literature on the combined mechanical and thermal design of cryogenic support struts is reviewed with an introduction to the associated numerical methods.

  2. Quantifying the contribution of long-range transport to Particulate Matter (PM mass loadings at a suburban site in the North-Western Indo Gangetic Plain (IGP

    Directory of Open Access Journals (Sweden)

    H. Pawar

    2015-04-01

    Full Text Available Many sites in the densely populated Indo Gangetic Plain (IGP frequently exceed the national ambient air quality standard (NAAQS of 100 μg m−3 for 24 h average PM10 and 60 μg m−3 for 24 h average PM2.5 mass loadings, exposing residents to hazardous levels of PM throughout the year. We quantify the contribution of long range transport to elevated PM levels and the number of exceedance events through a back trajectory climatology analysis of air masses arriving at the IISER Mohali Atmospheric Chemistry facility (30.667° N, 76.729° E; 310 m a.m.s.l. for the period August 2011–June 2013. Air masses arriving at the receptor site were classified into 6 clusters, which represent synoptic scale air mass transport patterns and the average PM mass loadings and number of exceedance events associated with each air mass type were quantified for each season. Long range transport from the west leads to significant enhancements in the average coarse mode PM mass loadings during all seasons. The contribution of long range transport from the west and south west (Source region: Arabia, Thar desert, Middle East and Afghanistan to coarse mode PM varied between 9 and 57% of the total PM10−2.5 mass. Local pollution episodes (wind speed −1 contributed to enhanced coarse mode PM only during winter season. South easterly air masses (Source region: Eastern IGP were associated with significantly lower coarse mode PM mass loadings during all seasons. For fine mode PM too, transport from the west usually leads to increased mass loadings during all seasons. Local pollution episodes contributed to enhanced PM2.5 mass loadings during winter and summer season. South easterly air masses were associated with significantly lower PM2.5 mass loadings during all seasons. Using simultaneously measured gas phase tracers we demonstrate that most PM2.5 originated from combustion sources. The fraction of days in each season during which the PM mass loadings exceeded the

  3. Nanofluidic Transport over a Curved Surface with Viscous Dissipation and Convective Mass Flux

    Science.gov (United States)

    Mehmood, Zaffar; Iqbal, Z.; Azhar, Ehtsham; Maraj, E. N.

    2017-03-01

    This article is a numerical investigation of boundary layer flow of nanofluid over a bended stretching surface. The study is carried out by considering convective mass flux condition. Contribution of viscous dissipation is taken into the account along with thermal radiation. Suitable similarity transformations are employed to simplify the system of nonlinear partial differential equations into a system of nonlinear ordinary differential equations. Computational results are extracted by means of a shooting method embedded with a Runge-Kutta Fehlberg technique. Key findings include that velocity is a decreasing function of curvature parameter K. Moreover, Nusselt number decreases with increase in curvature of the stretching surface while skin friction and Sherwood number enhance with increase in K.

  4. Characteristics, sources, and transport of aerosols measured in spring 2008 during the aerosol, radiation, and cloud processes affecting Arctic Climate (ARCPAC) Project

    Science.gov (United States)

    Brock, C. A.; Cozic, J.; Bahreini, R.; Froyd, K. D.; Middlebrook, A. M.; McComiskey, A.; Brioude, J.; Cooper, O. R.; Stohl, A.; Aikin, K. C.; de Gouw, J. A.; Fahey, D. W.; Ferrare, R. A.; Gao, R.-S.; Gore, W.; Holloway, J. S.; Hübler, G.; Jefferson, A.; Lack, D. A.; Lance, S.; Moore, R. H.; Murphy, D. M.; Nenes, A.; Novelli, P. C.; Nowak, J. B.; Ogren, J. A.; Peischl, J.; Pierce, R. B.; Pilewskie, P.; Quinn, P. K.; Ryerson, T. B.; Schmidt, K. S.; Schwarz, J. P.; Sodemann, H.; Spackman, J. R.; Stark, H.; Thomson, D. S.; Thornberry, T.; Veres, P.; Watts, L. A.; Warneke, C.; Wollny, A. G.

    2011-03-01

    We present an overview of the background, scientific goals, and execution of the Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC) project of April 2008. We then summarize airborne measurements, made in the troposphere of the Alaskan Arctic, of aerosol particle size distributions, composition, and optical properties and discuss the sources and transport of the aerosols. The aerosol data were grouped into four categories based on gas-phase composition. First, the background troposphere contained a relatively diffuse, sulfate-rich aerosol extending from the top of the sea-ice inversion layer to 7.4 km altitude. Second, a region of depleted (relative to the background) aerosol was present within the surface inversion layer over sea-ice. Third, layers of dense, organic-rich smoke from open biomass fires in southern Russia and southeastern Siberia were frequently encountered at all altitudes from the top of the inversion layer to 7.1 km. Finally, some aerosol layers were dominated by components originating from fossil fuel combustion. Of these four categories measured during ARCPAC, the diffuse background aerosol was most similar to the average springtime aerosol properties observed at a long-term monitoring site at Barrow, Alaska. The biomass burning (BB) and fossil fuel layers were present above the sea-ice inversion layer and did not reach the sea-ice surface during the course of the ARCPAC measurements. The BB aerosol layers were highly scattering and were moderately hygroscopic. On average, the layers produced a noontime net heating of ~0.1 K day-1 between 3 and 7 km and a slight cooling at the surface. The ratios of particle mass to carbon monoxide (CO) in the BB plumes, which had been transported over distances >5000 km, were comparable to the high end of literature values derived from previous measurements in wildfire smoke. These ratios suggest minimal precipitation scavenging and removal of the BB particles between the time they were

  5. Characteristics, sources, and transport of aerosols measured in spring 2008 during the aerosol, radiation, and cloud processes affecting Arctic Climate (ARCPAC Project

    Directory of Open Access Journals (Sweden)

    C. A. Brock

    2011-03-01

    Full Text Available We present an overview of the background, scientific goals, and execution of the Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC project of April 2008. We then summarize airborne measurements, made in the troposphere of the Alaskan Arctic, of aerosol particle size distributions, composition, and optical properties and discuss the sources and transport of the aerosols. The aerosol data were grouped into four categories based on gas-phase composition. First, the background troposphere contained a relatively diffuse, sulfate-rich aerosol extending from the top of the sea-ice inversion layer to 7.4 km altitude. Second, a region of depleted (relative to the background aerosol was present within the surface inversion layer over sea-ice. Third, layers of dense, organic-rich smoke from open biomass fires in southern Russia and southeastern Siberia were frequently encountered at all altitudes from the top of the inversion layer to 7.1 km. Finally, some aerosol layers were dominated by components originating from fossil fuel combustion.

    Of these four categories measured during ARCPAC, the diffuse background aerosol was most similar to the average springtime aerosol properties observed at a long-term monitoring site at Barrow, Alaska. The biomass burning (BB and fossil fuel layers were present above the sea-ice inversion layer and did not reach the sea-ice surface during the course of the ARCPAC measurements. The BB aerosol layers were highly scattering and were moderately hygroscopic. On average, the layers produced a noontime net heating of ~0.1 K day−1 between 3 and 7 km and a slight cooling at the surface. The ratios of particle mass to carbon monoxide (CO in the BB plumes, which had been transported over distances >5000 km, were comparable to the high end of literature values derived from previous measurements in wildfire smoke. These ratios suggest minimal precipitation scavenging and removal of the BB

  6. Characteristics, sources, and transport of aerosols measured in spring 2008 during the aerosol, radiation, and cloud processes affecting Arctic climate (ARCPAC project

    Directory of Open Access Journals (Sweden)

    C. A. Brock

    2010-11-01

    Full Text Available We present an overview of the background, scientific goals, and execution of the Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC project of April 2008. We then summarize airborne measurements, made in the troposphere of the Alaskan Arctic, of aerosol particle size distributions, composition, and optical properties and discuss the sources and transport of the aerosols. The aerosol data were grouped into four categories based on gas-phase composition. First, the background troposphere contained a relatively diffuse, sulfate-rich aerosol extending from the top of the sea-ice inversion layer to 7.4 km altitude. Second, a region of depleted (relative to the background aerosol was present within the surface inversion layer over sea-ice. Third, layers of dense, organic-rich smoke from open biomass fires in Southern Russia and Southeastern Siberia were frequently encountered at all altitudes from the top of the inversion layer to 7.1 km. Finally, some aerosol layers were dominated by components originating from fossil fuel combustion.

    Of these four categories measured during ARCPAC, the diffuse background aerosol was most similar to the average springtime aerosol properties observed at a long-term monitoring site at Barrow, Alaska. The biomass burning (BB and fossil fuel layers were present above the sea-ice inversion layer and did not reach the sea-ice surface during the course of the ARCPAC measurements. The BB aerosol layers were highly scattering and were moderately hygroscopic. On average, the layers produced a noontime net heating of ~0.1 K day−1 between 2 and 7 km and a~slight cooling at the surface. The ratios of particle mass to carbon monoxide (CO in the BB plumes, which had been transported over distances >5000 km, were comparable to the high end of literature values derived from previous measurements in fresh wildfire smoke. These ratios suggest minimal precipitation scavenging and removal of

  7. Systematic variation of prosthetic foot spring affects center-of-mass mechanics and metabolic cost during walking.

    Science.gov (United States)

    Zelik, Karl E; Collins, Steven H; Adamczyk, Peter G; Segal, Ava D; Klute, Glenn K; Morgenroth, David C; Hahn, Michael E; Orendurff, Michael S; Czerniecki, Joseph M; Kuo, Arthur D

    2011-08-01

    Lower-limb amputees expend more energy to walk than non-amputees and have an elevated risk of secondary disabilities. Insufficient push-off by the prosthetic foot may be a contributing factor. We aimed to systematically study the effect of prosthetic foot mechanics on gait, to gain insight into fundamental prosthetic design principles. We varied a single parameter in isolation, the energy-storing spring in a prototype prosthetic foot, the controlled energy storage and return (CESR) foot, and observed the effect on gait. Subjects walked on the CESR foot with three different springs. We performed parallel studies on amputees and on non-amputees wearing prosthetic simulators. In both groups, spring characteristics similarly affected ankle and body center-of-mass (COM) mechanics and metabolic cost. Softer springs led to greater energy storage, energy return, and prosthetic limb COM push-off work. But metabolic energy expenditure was lowest with a spring of intermediate stiffness, suggesting biomechanical disadvantages to the softest spring despite its greater push-off. Disadvantages of the softest spring may include excessive heel displacements and COM collision losses. We also observed some differences in joint kinetics between amputees and non-amputees walking on the prototype foot. During prosthetic push-off, amputees exhibited reduced energy transfer from the prosthesis to the COM along with increased hip work, perhaps due to greater energy dissipation at the knee. Nevertheless, the results indicate that spring compliance can contribute to push-off, but with biomechanical trade-offs that limit the degree to which greater push-off might improve walking economy.

  8. Numerical evaluation of oxide growth in metallic support microstructures of Solid Oxide Fuel Cells and its influence on mass transport

    DEFF Research Database (Denmark)

    Reiss, Georg; Frandsen, Henrik Lund; Persson, Åsa Helen

    2015-01-01

    -temperature corrosion theory, and the required model parameters can be retrieved by standard corrosion weight gain measurements. The microstructure is reconstructed from X-ray computed tomography, and converted into a computational grid. The influence of the changing microstructure on the fuel cell performance...... is evaluated by determining an effective diffusion coefficient and the equivalent electrical area specific resistance (ASR) due to diffusion over time. It is thus possible to assess the applicability (in terms of corrosion behaviour) of potential metallic supports without costly long-term experiments......-term performance of the SOFCs. In order to understand the implications of the corrosion on the mass-transport through the metallic support, a corrosion model is developed that is capable of determining the change of the porous microstructure due to oxide scale growth. The model is based on high...

  9. Distinct synoptic patterns and air masses responsible for long-range desert dust transport and sea spray in Palermo, Italy

    Science.gov (United States)

    Dimitriou, K.; Paschalidou, A. K.; Kassomenos, P. A.

    2016-09-01

    Undoubtedly, anthropogenic emissions carry a large share of the risk posed on public health by particles exposure in urban areas. However, natural emissions, in the form of desert dust and sea spray, are well known to contribute significantly to the PM load recorded in many Mediterranean environments, posing an extra risk burden on public health. In the present paper, we examine the synoptic climatology in a background station in Palermo, Italy, through K-means clustering of the mean sea-level pressure (MSLP) maps, in an attempt to associate distinct synoptic patterns with increased PM10 levels. Four-day backward trajectory analysis is then applied, in order to study the origins and pathways of air masses susceptible of PM10 episodes. It is concluded that a number of atmospheric patterns result in several kind of flows, namely south, west, and slow-moving/stagnant flows, associated with long-range dust transport and sea spray.

  10. Different Levels of Eccentric Resistance during Eight Weeks of Training Affect Muscle Strength and Lean Tissue Mass

    Science.gov (United States)

    English, K. L.; Loehr, J. A.; Lee, S. M. C.; Laughlin, M. S.; Hagan, R. D.

    2008-01-01

    .3%) groups. All groups significantly increased HR strength pre- to posttraining (33%: 7.5 +/- 6.1%; 66%: 6.6 +/- 3.7%; 100%: 12.2 +/- 1.8%; 138%: 11.0 +/- 6.4%) except for the 0% (4.9 +/- 9.1%) group. There were no differences between groups. LLM increased significantly pre- to post-training in only the 138% group; there were no differences between groups. CONCLUSIONS: Eight wks of lower body resistive exercise training with eccentric overload resulted in greater increases in LP strength than training with eccentric loads of 66% or less. Post-training HR strength was not affected by eccentric training load, perhaps because of the predominance of Type I fibers typical in the gastrocnemius. Only 138% eccentric training significantly increased LLM. PRACTICAL APPLICATIONS: For athletes or others desiring to maximize muscle strength and hypertrophy gains, training with eccentric loads greater than 100% of concentric resistance will provide greater increases in muscle strength and lean tissue mass in some muscle groups. In a rehabilitation or geriatric exercise setting that places primary emphasis on program adherence and moderate strength gains, training with an eccentric underload may provide strength increases comparable to those of traditional 1:1 training but with less muscle soreness and physiologic insult to the patient, but this has yet to be proven.

  11. EHD-driven mass transport enhancement in surface dielectric barrier discharges

    Science.gov (United States)

    Taglioli, M.; Shaw, A.; Wright, A.; FitzPatrick, B.; Neretti, G.; Seri, P.; Borghi, C. A.; Iza, F.

    2016-12-01

    Surface dielectric barrier discharges (S-DBDs) have received renewed attention in recent years for their potential application in emerging biomedical, environmental and agricultural applications. In most of these applications, the plasma is not in direct contact with the substrate being treated and the transport of reactive species from the plasma to the substrate is typically assumed to be controlled by diffusion. Here, we demonstrate that generally this is not the case and that electrohydrodynamic (EHD) forces can produce jets that enhance the delivery of these species, thereby influencing the efficacy of the S-DBD device. In particular, we have studied the degradation of potassium indigotrisulfonate solutions exposed to S-DBDs generated in devices with annular electrodes of diameters varying between 10 mm and 50 mm. All the devices were driven at constant linear power density (watts per cm of plasma length) and although local plasma properties remained the same in all the devices, a three-fold efficacy enhancement was observed for devices of diameter ~30 mm due to EHD effects.

  12. Investigating the Effects of Anisotropic Mass Transport on Dendrite Growth in High Energy Density Lithium Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Jinwang; Tartakovsky, Alexandre M.; Ferris, Kim F.; Ryan, Emily M.

    2016-01-01

    Dendrite formation on the electrode surface of high energy density lithium (Li) batteries causes safety problems and limits their applications. Suppressing dendrite growth could significantly improve Li battery performance. Dendrite growth and morphology is a function of the mixing in the electrolyte near the anode interface. Most research into dendrites in batteries focuses on dendrite formation in isotropic electrolytes (i.e., electrolytes with isotropic diffusion coefficient). In this work, an anisotropic diffusion reaction model is developed to study the anisotropic mixing effect on dendrite growth in Li batteries. The model uses a Lagrangian particle-based method to model dendrite growth in an anisotropic electrolyte solution. The model is verified by comparing the numerical simulation results with analytical solutions, and its accuracy is shown to be better than previous particle-based anisotropic diffusion models. Several parametric studies of dendrite growth in an anisotropic electrolyte are performed and the results demonstrate the effects of anisotropic transport on dendrite growth and morphology, and show the possible advantages of anisotropic electrolytes for dendrite suppression.

  13. Water injection into vapor- and liquid-dominated reservoirs: Modeling of heat transfer and mass transport

    Energy Technology Data Exchange (ETDEWEB)

    Pruess, K.; Oldenburg, C.; Moridis, G.; Finsterle, S. [Lawrence Berkeley National Lab., CA (United States)

    1997-12-31

    This paper summarizes recent advances in methods for simulating water and tracer injection, and presents illustrative applications to liquid- and vapor-dominated geothermal reservoirs. High-resolution simulations of water injection into heterogeneous, vertical fractures in superheated vapor zones were performed. Injected water was found to move in dendritic patterns, and to experience stronger lateral flow effects than predicted from homogeneous medium models. Higher-order differencing methods were applied to modeling water and tracer injection into liquid-dominated systems. Conventional upstream weighting techniques were shown to be adequate for predicting the migration of thermal fronts, while higher-order methods give far better accuracy for tracer transport. A new fluid property module for the TOUGH2 simulator is described which allows a more accurate description of geofluids, and includes mineral dissolution and precipitation effects with associated porosity and permeability change. Comparisons between numerical simulation predictions and data for laboratory and field injection experiments are summarized. Enhanced simulation capabilities include a new linear solver package for TOUGH2, and inverse modeling techniques for automatic history matching and optimization.

  14. Impact of internal transport on the convective mass transfer from a droplet into a submerging falling film

    Science.gov (United States)

    Landel, Julien R.; Thomas, Amalia; McEvoy, Harry; Dalziel, Stuart B.

    2015-11-01

    We investigate the convective mass transfer of dilute passive tracers contained in small viscous drops into a submerging falling film. This problem has applications in industrial cleaning, domestic dishwashers, and decontamination of hazardous material. The film Peclet number is very high, whereas the drop Peclet number varies from 0.1 to 1. The characteristic transport time in the drop is much larger than in the film. We model the mass transfer using an analogy with Newton's law of cooling. This empirical model is supported by an analytical model solving the quasi-steady two-dimensional advection-diffusion equation in the film that is coupled with a time-dependent one-dimensional diffusion equation in the drop. We find excellent agreement between our experimental data and the two models, which predict an exponential decrease in time of the drop concentration. The transport characteristic time is related to the drop diffusion time scale, as diffusion within the drop is the limiting process. Our theoretical model not only predicts the well-known relationship between the Sherwood number and the external Reynolds number in the case of a well-mixed drop Sh ~ Re1/3, it also predicts a correction in the case of a non-uniform drop concentration. The correction depends on Re, the film Schmidt number, the drop aspect ratio and the diffusivity ratio between the two phases. This prediction is in good agreement with experimental data. This material is based upon work supported by the Defense Threat Reduction Agency under Contract No. HDTRA1-12-D-0003-0001.

  15. Significant variations of trace gas composition and aerosol properties at Mt. Cimone during air mass transport from North Africa – contributions from wildfire emissions and mineral dust

    Directory of Open Access Journals (Sweden)

    P. Cristofanelli

    2009-03-01

    Full Text Available High levels of trace gas (O3 and CO and aerosol (BC, fine and coarse particles concentrations, as well as high scattering coefficient (σs values, were recorded at the regional GAW-WMO station of Mt. Cimone (MTC, 2165 m a.s.l., Italy during the period 26–30 August 2007. Analysis of air-mass circulation, aerosol chemical characterization and trace gas and aerosol emission ratios (ERs, showed that high O3 and aerosol levels were likely linked to (i the transport of anthropogenic pollution from Northern Italy, and (ii the advection of air masses rich in mineral dust and biomass burning (BB products from North Africa. In particular, during the advection of air masses from North Africa, the CO and aerosol levels (CO: 175 ppbv, BC: 1015 ng/m3, fine particle: 83.8 cm−3, σs: 84.5 Mm−1 were even higher than during the pollution event (CO: 138 ppbv, BC: 733 ng/m3, fine particles: 41.5 cm−3, σs: 44.9 Mm−1. Moreover, despite the presence of mineral dust able to significantly affect the O3 concentration, the analysis of ERs showed that the BB event represented an efficient source of fine aerosol particles (e.g. BC, but also of the O3 recorded at MTC. The results suggest that events of mineral dust mobilization and wildfire emissions over North Africa could significantly influence radiative properties (as deduced from σs observations at MTC and air quality over the Mediterranean basin and Northern Italy. Since in the future it is expected that wildfire and Saharan dust transport frequency could increase in the Mediterranean basin due to more frequent and severe droughts, similar events will possibly play an important role in influencing the climate and the tropospheric composition over South Europe.

  16. High energy efficiency and high power density proton exchange membrane fuel cells: Electrode kinetics and mass transport

    Science.gov (United States)

    Srinivasan, Supramaniam; Velev, Omourtag A.; Parthasathy, Arvind; Manko, David J.; Appleby, A. John

    1991-01-01

    The development of proton exchange membrane (PEM) fuel cell power plants with high energy efficiencies and high power densities is gaining momentum because of the vital need of such high levels of performance for extraterrestrial (space, underwater) and terrestrial (power source for electric vehicles) applications. Since 1987, considerable progress has been made in achieving energy efficiencies of about 60 percent at a current density of 200 mA/sq cm and high power densities (greater than 1 W/sq cm) in PEM fuel cells with high (4 mg/sq cm) or low (0.4 mg/sq cm) platinum loadings in electrodes. The following areas are discussed: (1) methods to obtain these high levels of performance with low Pt loading electrodes - by proton conductor impregnation into electrodes, localization of Pt near front surface; (2) a novel microelectrode technique which yields electrode kinetic parameters for oxygen reduction and mass transport parameters; (3) demonstration of lack of water transport from anode to cathode; (4) modeling analysis of PEM fuel cell for comparison with experimental results and predicting further improvements in performance; and (5) recommendations of needed research and development for achieving the above goals.

  17. Long-term climatology of air mass transport through the Tropical Tropopause Layer (TTL during NH winter

    Directory of Open Access Journals (Sweden)

    K. Krüger

    2007-09-01

    Full Text Available A long-term climatology of air mass transport through the tropical tropopause layer (TTL is presented, covering the period from 1962–2005. The transport through the TTL is calculated with a Lagrangian approach using radiative heating rates as vertical velocities in an isentropic trajectory model. We demonstrate the improved performance of such an approach compared to previous studies using vertical winds from meteorological analyses. Within the TTL, the averaged diabatic ascent is 0.5 K/day during Northern Hemisphere (NH winters 1992–2001, close to observations from the tape recorder. Climatological maps show a cooling and strengthening of this part of the residual circulation during the late 1990s and early 2000s compared to the long-term mean. Lagrangian cold point (LCP fields show systematic differences for varying time periods and natural forcing components. The interannual variability of LCP temperature and density fields are found to be influenced by volcanic eruptions, ENSO, QBO and the solar cycle. The coldest and driest TTL is reached during QBOE and La Niña over the western Pacific, whereas during volcanic eruptions, El Niño and QBOW it is warmer and less dry.

  18. Long-term climatology of air mass transport through the Tropical Tropopause Layer (TTL during NH winter

    Directory of Open Access Journals (Sweden)

    K. Krüger

    2008-02-01

    Full Text Available A long-term climatology of air mass transport through the tropical tropopause layer (TTL is presented, covering the period from 1962–2005. The transport through the TTL is calculated with a Lagrangian approach using radiative heating rates as vertical velocities in an isentropic trajectory model. We demonstrate the improved performance of such an approach compared to previous studies using vertical winds from meteorological analyses. Within the upper part of the TTL, the averaged diabatic ascent is 0.5 K/day during Northern Hemisphere (NH winters 1992–2001. Climatological maps show a cooling and strengthening of this part of the residual circulation during the 1990s and early 2000s compared to the long-term mean. Lagrangian cold point (LCP fields show systematic differences for varying time periods and natural forcing components. The interannual variability of LCP temperature and density fields is found to be influenced by volcanic eruptions, El Niño Southern Oscillation (ENSO, Quasi-Biennial Oscillation (QBO and the solar cycle. The coldest and driest TTL is reached during QBO easterly phase and La Niña over the western Pacific, whereas during volcanic eruptions, El Niño and QBO westerly phase it is warmer and less dry.

  19. An air-mass trajectory study of the transport of radioactivity from Fukushima to Thessaloniki, Greece and Milan, Italy

    Science.gov (United States)

    Ioannidou, A.; Giannakaki, E.; Manolopoulou, M.; Stoulos, S.; Vagena, E.; Papastefanou, C.; Gini, L.; Manenti, S.; Groppi, F.

    2013-08-01

    Analyses of 131I, 137Cs and 134Cs in airborne aerosols were carried out in daily samples at two different sites of investigation: Thessaloniki, Greece (40° N) and Milan, Italy (45° N) after the Fukushima accident during the period of March-April, 2011. The radionuclide concentrations were determined and studied as a function of time. The 131I concentration in air over Milan and Thessaloniki peaked on April 3-4, 2011, with observed activities 467 μBq m-3 and 497 μBq m-3, respectively. The 134Cs/137Cs activity ratio values in air were around 1 in both regions, related to the burn-up history of the damaged nuclear fuel of the destroyed nuclear reactor. The high 131I/137Cs ratio, observed during the first days after the accident, followed by lower values during the following days, reflects not only the initial release ratio but also the different volatility, attachment and removal of the two isotopes during transportation due to their different physico-chemical properties. No artificial radionuclides could be detected in air after April 28, 2011 in both regions of investigation. The different maxima of airborne 131I and 134,137Cs in these two regions were related to long-range air mass transport from Japan, across the Pacific and to Central Europe. Analysis of backward trajectories was used to confirm the arrival of artificial radionuclides following atmospheric transport and processing. HYSPLIT backward trajectories were applied for the interpretation of activity variations of measured radionuclides.

  20. Models of Mass Transport During Microgravity Crystal Growth of Alloyed Semiconductors in a Magnetic Field

    Science.gov (United States)

    Ma, Nancy

    2003-01-01

    Alloyed semiconductor crystals, such as germanium-silicon (GeSi) and various II-VI alloyed crystals, are extremely important for optoelectronic devices. Currently, high-quality crystals of GeSi and of II-VI alloys can be grown by epitaxial processes, but the time required to grow a certain amount of single crystal is roughly 1,000 times longer than the time required for Bridgman growth from a melt. Recent rapid advances in optoelectronics have led to a great demand for more and larger crystals with fewer dislocations and other microdefects and with more uniform and controllable compositions. Currently, alloyed crystals grown by bulk methods have unacceptable levels of segregation in the composition of the crystal. Alloyed crystals are being grown by the Bridgman process in space in order to develop successful bulk-growth methods, with the hope that the technology will be equally successful on earth. Unfortunately some crystals grown in space still have unacceptable segregation, for example, due to residual accelerations. The application of a weak magnetic field during crystal growth in space may eliminate the undesirable segregation. Understanding and improving the bulk growth of alloyed semiconductors in microgravity is critically important. The purpose of this grant to to develop models of the unsteady species transport during the bulk growth of alloyed semiconductor crystals in the presence of a magnetic field in microgravity. The research supports experiments being conducted in the High Magnetic Field Solidification Facility at Marshall Space Flight Center (MSFC) and future experiments on the International Space Station.

  1. Concentration Dependent Speciation and Mass Transport Properties of Switchable Polarity Solvents

    Energy Technology Data Exchange (ETDEWEB)

    Aaron D. Wilson; Christopher J. Orme

    2014-12-01

    Tertiary amine switchable polarity solvents (SPS) consisting of predominantly water, tertiary amine, and tertiary ammonium and bicarbonate ions were produced at various concentrations for three different amines: N,N-dimethylcyclohexylamine, N,N-dimethyloctylamine, and 1 cyclohexylpiperidine. For all concentrations, physical properties were measured including viscosity, molecular diffusion coefficients, freezing point depression, and density. Based on these measurements a variation on the Mark Houwink equation was developed to predict the viscosity of any tertiary amine SPS as a function of concentration using the amine’s molecular mass. The observed physical properties allowed the identification of solution state speciation of non-osmotic SPS, where the amine to carbonic acid ratio is significantly greater than one. These results indicate that at most concentrations the stoichiometric excess amine is involved in solvating a proton with two amines. The physical properties of osmotic SPS have consistent concentration dependence behavior over a wide range of concentrations; this consistence suggests osmotic pressures based on low concentrations freezing point studies can be reliably extrapolated to higher concentrations.

  2. Thermal transport in a 2D stressed nanostructure with mass gradient

    Directory of Open Access Journals (Sweden)

    R. Barreto

    2015-05-01

    Full Text Available Inspired by some recent molecular dynamics (MD simulations and experiments on suspended graphene nanoribbons, we study a simplified model where the atoms are disposed in a rectangular lattice coupled by nearest neighbor interactions which are quadratic in the interatomic distance. The system has a mechanical strain, and the border atoms are coupled to Langevin thermal baths. Atom masses vary linearly in the longitudinal direction, modeling an isotope or doping distribution. This asymmetry and tension modify thermal properties. Although the atomic interaction is quadratic, the potential is anharmonic in the coordinates. By direct MD simulations and solving Fokker-Planck equations at low temperatures, we can better understand the role of anharmonicities in thermal rectification. We observe an increasing thermal current with an increasing applied mechanical tension. The temperatures and thermal currents vary along the transverse direction. This effect can be useful to establish which parts of the system are more sensitive to thermal damage. We also study thermal rectification as a function of strain and system size. Received: 20 Novembre 2014, Accepted: 17 April 2015; Edited by: C. A. Condat, G. J. Sibona; DOI: http://dx.doi.org/10.4279/PIP.070008 Cite as: R Barreto, M F Carusela, A Mancardo Viotti, A G Monastra, Papers in Physics 7, 070008 (2015

  3. Numerical Studies of the Heat and Mass Transport in the Cerro Prieto Geothermal Field, Mexico

    Science.gov (United States)

    Lippmann, M. J.; Bodavarsson, G. S.

    1983-06-01

    Numerical simulation techniques are employed in studies of the natural flow of heat and mass through the Cerro Prieto reservoir, Mexico and of the effects of exploitation on the field's behavior. The reservoir model is a two-dimensional vertical east to west-southwest cross section, which is based on a recent hydrogeologic model of this geothermal system. The numerical code MULKOM is used in the simulation studies. The steady state pressure and temperature distributions are computed and compared against observed preproduction pressures and temperatures; a reasonable match is obtained. A natural hot water recharge rate of about 1×10-2 kg/s per meter of field length (measured in a north-south direction) is obtained. The model is then used to simulate the behavior of the field during the 1973-1978 production period. The response of the model to fluid extraction agrees to what has been observed in the field or postulated by other authors. There is a decrease in temperatures and pressures in the produced region. No extensive two-phase zone develops in the reservoir because of the strong fluid recharge. Most of the fluid recharging the system comes from colder regions located above and west of the produced reservoir.

  4. Mechanisms of material removal and mass transport in focused ion beam nanopore formation

    Energy Technology Data Exchange (ETDEWEB)

    Das, Kallol, E-mail: das7@illinois.edu; Johnson, Harley T., E-mail: htj@illinois.edu [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, MC-244, Urbana, Illinois 61801 (United States); Freund, Jonathan B., E-mail: jbfreund@illinois.edu [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, MC-244, Urbana, Illinois 61801 (United States); Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, 306 Talbot Laboratory, MC-236, 104 South Wright Street Urbana, Illinois 61801 (United States)

    2015-02-28

    Despite the widespread use of focused ion beam (FIB) processing as a material removal method for applications ranging from electron microscope sample preparation to nanopore processing for DNA sequencing, the basic material removal mechanisms of FIB processing are not well understood. We present the first complete atomistic simulation of high-flux FIB using large-scale parallel molecular dynamics (MD) simulations of nanopore fabrication in freestanding thin films. We focus on the root mechanisms of material removal and rearrangement and describe the role of explosive boiling in forming nanopores. FIB nanopore fabrication is typically understood to occur via sputter erosion. This can be shown to be the case in low flux systems, where individual ion impacts are sufficiently separated in time that they may be considered as independent events. But our detailed MD simulations show that in high flux FIB processing, above a threshold level at which thermal effects become significant, the primary mechanism of material removal changes to a significantly accelerated, thermally dominated process. Under these conditions, the target is heated by the ion beam faster than heat is conducted away by the material, leading quickly to melting, and then continued heating to nearly the material critical temperature. This leads to explosive boiling of the target material with spontaneous bubble formation and coalescence. Mass is rapidly rearranged at the atomistic scale, and material removal occurs orders of magnitude faster than would occur by simple sputtering. While the phenomenology is demonstrated computationally in silicon, it can be expected to occur at lower beam fluxes in other cases where thermal conduction is suppressed due to material properties, geometry, or ambient thermal conditions.

  5. Promoting responsible drinking? A mass media campaign affects implicit but not explicit alcohol-related cognitions and attitudes

    NARCIS (Netherlands)

    Glock, S.; Klapproth, F.; Müller, B.C.N.

    2015-01-01

    Objectives Rigorous tests are not usually applied to determine whether mass media campaigns that promote responsible drinking are useful, that is whether they lead to responsible drinking or not. In two experiments, we investigated the effectiveness of a mass media campaign that runs in Germany sinc

  6. Transport of maternal cholesterol to the fetus is affected by maternal plasma cholesterol concentrations in the golden Syrian hamster.

    Science.gov (United States)

    Burke, Katie T; Colvin, Perry L; Myatt, Leslie; Graf, Gregory A; Schroeder, Friedhelm; Woollett, Laura A

    2009-06-01

    The fetus has a high requirement for cholesterol and synthesizes cholesterol at elevated rates. Recent studies suggest that fetal cholesterol also can be obtained from exogenous sources. The purpose of the current study was to examine the transport of maternal cholesterol to the fetus and determine the mechanism responsible for any cholesterol-driven changes in transport. Studies were completed in pregnant hamsters with normal and elevated plasma cholesterol concentrations. Cholesterol feeding resulted in a 3.1-fold increase in the amount of LDL-cholesterol taken up by the fetus and a 2.4-fold increase in the amount of HDL-cholesterol taken up. LDL-cholesterol was transported to the fetus primarily by the placenta, and HDL-cholesterol was transported by the yolk sac and placenta. Several proteins associated with sterol transport and efflux, including those induced by activated liver X receptor, were expressed in hamster and human placentas: NPC1, NPC1L1, ABCA2, SCP-x, and ABCG1, but not ABCG8. NPC1L1 was the only protein increased in hypercholesterolemic placentas. Thus, increasing maternal lipoprotein-cholesterol concentrations can enhance transport of maternal cholesterol to the fetus, leading to 1) increased movement of cholesterol down a concentration gradient in the placenta, 2) increased lipoprotein secretion from the yolk sac (shown previously), and possibly 3) increased placental NPC1L1 expression.

  7. AtSWEET4, a hexose facilitator, mediates sugar transport to axial sinks and affects plant development.

    Science.gov (United States)

    Liu, Xiaozhu; Zhang, Yan; Yang, Chao; Tian, Zhihong; Li, Jianxiong

    2016-04-22

    Plants transport photoassimilates from source organs to sink tissues through the phloem translocation pathway. In the transport phloem, sugars that escape from the sieve tubes are released into the apoplasmic space between the sieve element/companion cell complex (SE/CC) and phloem parenchyma cells (PPCs) during the process of long-distance transport. The competition for sugar acquisition between SE/CC and adjoining PPCs is mediated by plasma membrane translocators. YFP-tagged AtSWEET4 protein is localized in the plasma membrane, and PromoterAtSWEET4-GUS analysis showed that AtSWEET4 is expressed in the stele of roots and veins of leaves and flowers. Overexpression of AtSWEET4 in Arabidopsis increases plant size and accumulates more glucose and fructose. By contrast, knock-down of AtSWEET4 by RNA-interference leads to small plant size, reduction in glucose and fructose contents, chlorosis in the leaf vein network, and reduction in chlorophyll content in leaves. Yeast assays demonstrated that AtSWEET4 is able to complement both fructose and glucose transport deficiency. Transgenic plants of AtSWEET4 overexpression exhibit higher freezing tolerance and support more growth of bacterium Pseudomonas syringae pv. phaseolicola NPS3121. We conclude that AtSWEET4 plays an important role in mediating sugar transport in axial tissues during plant growth and development.

  8. Failure of unilateral carotid artery ligation to affect pressure-induced interruption of rapid axonal transport in primate optic nerves.

    Science.gov (United States)

    Radius, R L; Schwartz, E L; Anderson, D R

    1980-02-01

    Previous experiments showed that optic nerve axonal transport can be blocked at the level of the lamina cribrosa by elevated intraocular pressure. In an effort to discover if this blockage might be secondary to pressure-induced ischemia, we studied the effect of unilateral common carotid artery ligation upont the pressure-induced interruption of axonal transport. In 13 owl monkeys (Aotus trivirgatus), the right common carotid artery was ligated within the anterior cervical triangle. Three days later, ophtalmodynomometry was performed on all experimental eyes. In nine of the 13 animals, this estimate of ophthalmic artery pressure was 10 to 20 mm Hg less in the right compared to the left eye. Optic nerve axonal transport was studied in right and left eyes during 5 hours of increased intraocular pressure (ocular pressure 35 mm Hg less than mean femoral artery blood pressure). No significant difference in the extent to which the transport mechanisms were interrupted could be demonstrated when comparing right and left eyes of the experimental animals. These observations fail to support a vascular mechanism for this pressure-induced interruption of axonal transport.

  9. Supplemental leucine and isoleucine affect expression of cationic amino acid transporters and myosin, serum concentration of amino acids, and growth performance of pigs.

    Science.gov (United States)

    Cervantes-Ramírez, M; Mendez-Trujillo, V; Araiza-Piña, B A; Barrera-Silva, M A; González-Mendoza, D; Morales-Trejo, A

    2013-01-24

    Leucine (Leu) participates in the activity of cationic amino acid (aa) transporters. Also, branched-chain aa [Leu, isoleucine (Ile), and valine (Val)] share intestinal transporters for absorption. We conducted an experiment with 16 young pigs (body weight of about 16 kg) to determine whether Leu and Ile affect expression of aa transporters b(0,+) and CAT-1 in the jejunum and expression of myosin in muscle, as well as serum concentration of essential aa, and growth performance in pigs. Dietary treatments were: wheat-based diets fortified with Lys, Thr, and Met; basal diet plus 0.50% Leu; basal diet plus 0.50% Ile, and basal diet plus 0.50% Leu and 0.50% Ile. After 28 days, the pigs were sacrificed to collect blood, jejunum, and semitendinosus and longissimus muscle samples. The effects of single and combined addition of Leu and Ile were analyzed. Leu alone or combined with Ile significantly decreased daily weight gain and reduced feed conversion. Leu and Ile, alone or in combination, significantly decreased expression of b(0,+) and significantly increased CAT-1. Ile alone or combined with Leu significantly decreased myosin expression in semitendinosus and significantly decreased it in longissimus muscle. Leu alone significantly decreased Lys, Ile and Thr serum concentrations; Ile significantly decreased Thr serum concentration; combined Leu and Ile significantly decreased Thr and significantly increased Val serum concentration. We conclude that dietary levels of Leu and Ile affect growth performance, expression of aa transporters and myosin, and aa serum concentrations in pigs.

  10. Auxin polar transport of etiolated Ageotropum pea epicotyls is not affected by gravistimulation: Relevance to automorphosis-like growth and development

    Science.gov (United States)

    Miyamoto, Kensuke; Hoshino, Tomoki; Takahashi, Yoshinori; Ueda, Junichi

    There appears to be a close relationship between automorphosis and changes in auxin polar transport due to the fact that microgravity conditions cause both changes in the activity of auxin polar transport and in automorphosis of etiolated Alaska pea epicotyls. In addition, the application of inhibitors of auxin polar transport results in automorphosis-like growth and development. To elucidate the role of auxin polar transport in gravimorphogenesis in etiolated pea seedlings, we have studied the effects of gravistimulation on growth and development, and auxin polar transport in epicotyls of an agravitropic pea mutant " Ageotropum" seedlings and the normal "Alaska" seedlings. When the embryo axes in seeds of Alaska pea were set in a vertical (parallel to the direction of gravity) or a horizontal (vertical to the direction of gravity) position, and allowed to germinate and grow under 1 g conditions in the dark for 3 or 6.5 days, the epicotyls grew upward due to negative gravitropic responses regardless of gravistimulation during seed germination. On the other hand, epicotyls of etiolated Ageotropum pea seedlings showed automorphosis-like bending away from the cotyledons regardless of gravistimulation during seed germination. Automorphosis-like epicotyl bending of etiolated Ageotropum pea seedlings was also unaffected by clinorotation on a three-dimensional (3-D) clinostat. The activity of auxin polar transport in the 2nd internodes of 6.5-d-old etiolated Ageotropum pea seedlings was lower than those of Alaska pea seedlings, and was not affected by clinorotation on a 3-D clinostat or by changes in gravity conditions during seed germination. These findings strongly support our previous studies that showed that normal auxin polar transport is required for the normal graviresponse of epicotyls in etiolated pea seedlings.

  11. Acrylamide increases dopamine levels by affecting dopamine transport and metabolism related genes in the striatal dopaminergic system.

    Science.gov (United States)

    Pan, Xiaoqi; Guo, Xiongxiong; Xiong, Fei; Cheng, Guihong; Lu, Qing; Yan, Hong

    2015-07-01

    Dopaminergic system dysfunction is proved to be a possible mechanism in acrylamide (ACR) -induced neurotoxicity. The neurotransmitter dopamine (DA) has an increasingly important role in the dopaminergic system. Thus, the goal of this study is to evaluate effects of ACR on dopamine and its metabolite levels, dopamine transport and metabolic gene expression in dopaminergic neurons. Male Sprague-Dawley (SD) rats were dosed orally with ACR at 0 (saline), 20, 30, and 40 mg/kg/day for 20 days. Splayed hind limbs, reduced tail flick time and abnormal gait which preceded other neurologic parameters were observed in the above rats. ACR significantly increased dopamine levels, decreased 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanilic acid (HVA) contents in an area dependent manner in rat striatum. Immunohistochemical staining of the striatum revealed that the number of tyrosine hydroxylase (TH) positive cells significantly increased, while monoamine oxidase (MAO) positive cells were drastically reduced, which was consistent with changes in their mRNA and protein expressions. In addition, dopamine transporter (DAT) and vesicular monoamine transporter 2 (VMAT2) expression levels were both down-regulated in the striatum. These results suggest that dopamine levels increase significantly in response to ACR, presumably due to changes in the dopamine transport and metabolism related genes expression in the striatal dopaminergic neurons.

  12. Zinc transporter 7 deficiency affects lipid synthesis in adipocytes by inhibiting insulin-dependent Akt activity and glucose uptake

    Science.gov (United States)

    Mice deficient for zinc transporter 7 (Znt7) are mildly zinc deficient, accompanied with low body weight gain and body fat accumulation. To investigate the underlying mechanism of Znt7 deficiency in body adiposity, we investigated fatty acid composition and insulin sensitivity in visceral (epididyma...

  13. Repeated Cycles of Chronic Intermittent Ethanol Exposure Increases Basal Glutamate in the Nucleus Accumbens of Mice without affecting glutamate transport

    Directory of Open Access Journals (Sweden)

    William C. Griffin

    2015-02-01

    Full Text Available Repeated cycles of chronic intermittent ethanol (CIE exposure increase voluntary consumption of ethanol in mice. Previous work has shown that extracellular glutamate in the nucleus accumbens (NAc is significantly elevated in ethanol dependent mice and that pharmacologically manipulating glutamate concentrations in the NAc will alter ethanol drinking, indicating that glutamate homeostasis plays a crucial role in ethanol drinking in this model. The present studies were designed to measure extracellular glutamate at a time point in which mice would ordinarily be allowed voluntary access to ethanol in the CIE model and, additionally, to measure glutamate transport capacity in the NAc at the same time point. Extracellular glutamate was measured using quantitative microdialysis procedures. Glutamate transport capacity was measured under Na+ dependent and Na+ independent conditions to determine whether the function of excitatory amino acid transporters (EAATs; also known as system XAG or of system Xc- (Glial cysteine-glutamate exchanger was influenced by CIE exposure. The results of the quantitative microdialysis experiment confirm increased extracellular glutamate (~2 –fold in the NAc of CIE exposed mice (i.e. ethanol-dependent compared to non-dependent mice in the NAc, consistent with earlier work. However, the increase in extracellular glutamate was not due to altered transporter function in the NAc of ethanol-dependent mice, because neither Na+ dependent nor Na+ independent glutamate transport was significantly altered by CIE exposure. These findings point to the possibility that hyperexcitability of cortical-striatal pathways underlies the increases in extracellular glutamate found in the nucleus accumbens of ethanol-dependent mice.

  14. Investigation of the shape change of bio-flocs and its influence on mass transport using particle image velocimetry.

    Science.gov (United States)

    Ren, T T; Xiao, F; Sun, W J; Sun, F Y; Lam, K M; Li, X Y

    2014-01-01

    In this laboratory study, an advanced flow visualization technique - particle image velocimetry (PIV) - was employed to investigate the change of shape of activated sludge flocs in water and its influence on the material transport characteristics of the flocs. The continuous shape change of the bio-flocs that occurred within a very short period of time could be captured by the PIV system. The results demonstrate that the fluid turbulence caused the shift of parts of a floc from one side to the other in less than 200 ms. During the continuous shape change, the liquid within the floc was forced out of the floc, which was then refilled with the liquid from the surrounding flow. For the bio-flocs saturated with a tracer dye, it was shown that the dye could be released from the flocs at a faster rate when the flocs were swayed around in water. The experimental results indicate that frequent shape change of bio-flocs facilitates the exchange of fluid and materials between the floc interior and the surrounding water. This mass transfer mechanism can be more important than molecular diffusion and internal permeation to the function and behavior of particle aggregates, including bio-flocs, in natural waters and treatment systems.

  15. Mass-transport deposits and reservoir quality of Upper Cretaceous Chalk within the German Central Graben, North Sea

    Science.gov (United States)

    Arfai, Jashar; Lutz, Rüdiger; Franke, Dieter; Gaedicke, Christoph; Kley, Jonas

    2016-04-01

    The architecture of intra-chalk deposits in the `Entenschnabel' area of the German North Sea is studied based on 3D seismic data. Adapted from seismic reflection characteristics, four types of mass-transport deposits (MTDs) are distinguished, i.e. slumps, slides, channels and frontal splay deposits. The development of these systems can be linked to inversion tectonics and halotectonic movements of Zechstein salt. Tectonic uplift is interpreted to have caused repeated tilting of the sea floor. This triggered large-scale slump deposition during Turonian-Santonian times. Slump deposits are characterised by chaotic reflection patterns interpreted to result from significant stratal distortion. The south-eastern study area is characterised by a large-scale frontal splay complex. This comprises a network of shallow channel systems arranged in a distributive pattern. Several slide complexes are observed near the Top Chalk in Maastrichtian and Danian sediments. These slides are commonly associated with large incisions into the sediments below. Best reservoir properties with high producible porosities are found in the reworked chalk strata, e.g. Danish North Sea, therefore MTDs detected in the study area are regarded as potential hydrocarbon reservoirs and considered as exploration targets.

  16. Mass transport deposits and processes in the north slope of the Xisha Trough, northern South China Sea

    Institute of Scientific and Technical Information of China (English)

    QIN Zhiliang; WU Shiguo; WANG Dawei; LI Wei; GONG Shaojun; MI Lijun; SPENCE George

    2015-01-01

    Triple mass-transport deposits (MTDs) with areas of 625, 494 and 902 km2, respectively, have been identified on the north slope of the Xisha Trough, northern South China Sea margin. Based on high-resolution seismic reflection data and multi-beam bathymetric data, the Quaternary MTDs are characterized by typical geometric shapes and internal structures. Results of slope analysis showed that they are developed in a steep slope ranging from 5° to 35°. The head wall scarps of the MTDs arrived to 50 km in length (from headwall to termination). Their inner structures include well developed basal shear surface, growth faults, stepping lateral scarps, erosion grooves, and frontal thrust deformation. From seismic images, the central deepwater channel system of the Xisha Trough has been filled by interbedded channel-levee deposits and thick MTDs. Therefore, we inferred that the MTDs in the deepwater channel system could be dominated by far-travelled slope failure deposits even though there are local collapses of the trough walls. And then, we drew the two-dimensional process model and three-dimensional structure model diagram of the MTDs. Combined with the regional geological setting and previous studies, we discussed the trigger mechanisms of the triple MTDs.

  17. Laser-perforated carbon paper electrodes for improved mass-transport in high power density vanadium redox flow batteries

    Science.gov (United States)

    Mayrhuber, I.; Dennison, C. R.; Kalra, V.; Kumbur, E. C.

    2014-08-01

    In this study, we demonstrate up to 30% increase in power density of carbon paper electrodes for vanadium redox flow batteries (VRFB) by introducing perforations into the structure of electrodes. A CO2 laser was used to generate holes ranging from 171 to 421 μm diameter, and hole densities from 96.8 to 649.8 holes cm-2. Perforation of the carbon paper electrodes was observed to improve cell performance in the activation region due to thermal treatment of the area around the perforations. Results also demonstrate improved mass transport, resulting in enhanced peak power and limiting current density. However, excessive perforation of the electrode yielded a decrease in performance due to reduced available surface area. A 30% increase in peak power density (478 mW cm-2) was observed for the laser perforated electrode with 234 μm diameter holes and 352.8 holes cm-2 (1764 holes per 5 cm2 electrode), despite a 15% decrease in total surface area compared to the raw un-perforated electrode. Additionally, the effect of perforation on VRFB performance was studied at different flow rates (up to 120 mL min-1) for the optimized electrode architecture. A maximum power density of 543 mW cm-2 was achieved at 120 mL min-1.

  18. Familial Dysautonomia (FD Human Embryonic Stem Cell Derived PNS Neurons Reveal that Synaptic Vesicular and Neuronal Transport Genes Are Directly or Indirectly Affected by IKBKAP Downregulation.

    Directory of Open Access Journals (Sweden)

    Sharon Lefler

    Full Text Available A splicing mutation in the IKBKAP gene causes Familial Dysautonomia (FD, affecting the IKAP protein expression levels and proper development and function of the peripheral nervous system (PNS. Here we found new molecular insights for the IKAP role and the impact of the FD mutation in the human PNS lineage by using a novel and unique human embryonic stem cell (hESC line homozygous to the FD mutation originated by pre implantation genetic diagnosis (PGD analysis. We found that IKBKAP downregulation during PNS differentiation affects normal migration in FD-hESC derived neural crest cells (NCC while at later stages the PNS neurons show reduced intracellular colocalization between vesicular proteins and IKAP. Comparative wide transcriptome analysis of FD and WT hESC-derived neurons together with the analysis of human brains from FD and WT 12 weeks old embryos and experimental validation of the results confirmed that synaptic vesicular and neuronal transport genes are directly or indirectly affected by IKBKAP downregulation in FD neurons. Moreover we show that kinetin (a drug that corrects IKBKAP alternative splicing promotes the recovery of IKAP expression and these IKAP functional associated genes identified in the study. Altogether, these results support the view that IKAP might be a vesicular like protein that might be involved in neuronal transport in hESC derived PNS neurons. This function seems to be mostly affected in FD-hESC derived PNS neurons probably reflecting some PNS neuronal dysfunction observed in FD.

  19. Familial Dysautonomia (FD) Human Embryonic Stem Cell Derived PNS Neurons Reveal that Synaptic Vesicular and Neuronal Transport Genes Are Directly or Indirectly Affected by IKBKAP Downregulation.

    Science.gov (United States)

    Lefler, Sharon; Cohen, Malkiel A; Kantor, Gal; Cheishvili, David; Even, Aviel; Birger, Anastasya; Turetsky, Tikva; Gil, Yaniv; Even-Ram, Sharona; Aizenman, Einat; Bashir, Nibal; Maayan, Channa; Razin, Aharon; Reubinoff, Benjamim E; Weil, Miguel

    2015-01-01

    A splicing mutation in the IKBKAP gene causes Familial Dysautonomia (FD), affecting the IKAP protein expression levels and proper development and function of the peripheral nervous system (PNS). Here we found new molecular insights for the IKAP role and the impact of the FD mutation in the human PNS lineage by using a novel and unique human embryonic stem cell (hESC) line homozygous to the FD mutation originated by pre implantation genetic diagnosis (PGD) analysis. We found that IKBKAP downregulation during PNS differentiation affects normal migration in FD-hESC derived neural crest cells (NCC) while at later stages the PNS neurons show reduced intracellular colocalization between vesicular proteins and IKAP. Comparative wide transcriptome analysis of FD and WT hESC-derived neurons together with the analysis of human brains from FD and WT 12 weeks old embryos and experimental validation of the results confirmed that synaptic vesicular and neuronal transport genes are directly or indirectly affected by IKBKAP downregulation in FD neurons. Moreover we show that kinetin (a drug that corrects IKBKAP alternative splicing) promotes the recovery of IKAP expression and these IKAP functional associated genes identified in the study. Altogether, these results support the view that IKAP might be a vesicular like protein that might be involved in neuronal transport in hESC derived PNS neurons. This function seems to be mostly affected in FD-hESC derived PNS neurons probably reflecting some PNS neuronal dysfunction observed in FD.

  20. Rapid body mass loss affects erythropoiesis and hemolysis but does not impair aerobic performance in combat athletes.

    Science.gov (United States)

    Reljic, D; Feist, J; Jost, J; Kieser, M; Friedmann-Bette, B

    2016-05-01

    Rapid body mass loss (RBML) before competition was found to decrease hemoglobin mass (Hbmass ) in elite boxers. This study aimed to investigate the underlying mechanisms of this observation. Fourteen well-trained combat athletes who reduced body mass before competitions (weight loss group, WLG) and 14 combat athletes who did not practice RBML (control group, CON) were tested during an ordinary training period (t-1), 1-2 days before an official competition (after 5-7 days RBML in WLG, t-2), and after a post-competition period (t-3). In WLG, body mass (-5.5%, range: 2.9-6.8 kg) and Hbmass (-4.1%) were significantly (P < 0.001) reduced after RBML and were still decreased by 1.6% (P < 0.05) and 2.6% (P < 0.001) at t-3 compared with t-1. After RBML, erythropoietin, reticulocytes, haptoglobin, triiodothyronine (FT3 ), and free androgen index (FAI) were decreased compared with t-1 and t-3. An increase occurred in ferritin and bilirubin. Peak treadmill-running performance and VO2peak did not change significantly, but performance at 4-mmol lactate threshold was higher after RBML (P < 0.05). In CON, no significant changes were found in any parameter. Apparently, the significant decrease in Hbmass after RBML in combat athletes was caused by impaired erythropoiesis and increased hemolysis without significant impact on aerobic performance capacity.

  1. The fluidity of the nuclear envelope lipid does not affect the rate of nucleocytoplasmic RNA transport in mammalian liver.

    Science.gov (United States)

    Agutter, P S; Suckling, K E

    1982-03-29

    The effects of in vitro and in vivo modifications of nuclear envelope lipid on DNa leakage and on ATP-stimulated RNA release from isolated rat liver nuclei were investigated. The modifications included corn-oil feeding of the animals to alter the fatty acid composition of the lipids, phospholipase treatment of the isolated nuclei, and extraction of the total lipid with Triton X-100. Significant changes in lipid composition and approximate order parameter values of the spin-label 5-doxylstearate resulted, but there was no significant effect on RNA transport rate. It was concluded that the nuclear envelope lipid does not play any important part in nucleocytoplasmic RNA transport in mammalian liver.

  2. Mass transport in fracture media: impact of the random function model assumed for fractures conductivity; Transporte de masa en medio fracturado: impacto del modelo estocastico de conductividad en las fracturas

    Energy Technology Data Exchange (ETDEWEB)

    Capilla, J. E.; Rodrigo, J.; Gomez Hernandez, J. J.

    2003-07-01

    Characterizing the uncertainty of flow and mass transport models requires the definition of stochastic models to describe hydrodynamic parameters. Porosity and hydraulic conductivity (K) are two of these parameters that exhibit a high degree of spatial variability. K is usually the parameter whose variability influence to a more extended degree solutes movement. In fracture media, it is critical to properly characterize K in the most altered zones where flow and solutes migration tends to be concentrated. However, K measurements use to be scarce and sparse. This fact calls to consider stochastic models that allow quantifying the uncertainty of flow and mass transport predictions. This paper presents a convective transport problem solved in a 3D block of fractured crystalline rock. the case study is defined based on data from a real geological formation. As the scarcity of K data in fractures does not allow supporting classical multi Gaussian assumptions for K in fractures, the non multi Gaussian hypothesis has been explored, comparing mass transport results for alternative Gaussian and non-Gaussian assumptions. The latter hypothesis allows reproducing high spatial connectivity for extreme values of K. This feature is present in nature, might lead to reproduce faster solute pathways, and therefore should be modeled in order to obtain reasonably safe prediction of contaminants migration in a geological formation. The results obtained for the two alternative hypotheses show a remarkable impact of the K random function model in solutes movement. (Author) 9 refs.

  3. Low Night Temperature Affects the Phloem Ultrastructure of Lateral Branches and Raffinose Family Oligosaccharide (RFO) Accumulation in RFO-Transporting Plant Melon (Cucumismelo L.) during Fruit Expansion

    Science.gov (United States)

    Hao, Jinghong; Gu, Fengying; Zhu, Jie; Lu, Shaowei; Liu, Yifei; Li, Yunfei; Chen, Weizhi; Wang, Liping; Fan, Shuangxi; Xian, Cory J.

    2016-01-01

    Due to the importance and complexity of photo assimilate transport in raffinose family oligosaccharide (RFO)-transporting plants such as melon, it is important to study the features of the transport structure (phloem) particularly of the lateral branches connecting the source leaves and the sink fruits, and its responses to environmental challenges. Currently, it is unclear to what extents the cold environmental temperature stress would alter the phloem ultrastructure and RFO accumulation in RFO-transporting plants. In this study, we firstly utilized electron microscopy to investigate the changes in the phloem ultrastructure of lateral branches and RFO accumulation in melons after being subjected to low night temperatures (12°C and 9°C). The results demonstrated that exposure to 9°C and 12°C altered the ultrastructure of the phloem, with the effect of 9°C being more obvious. The most obvious change was the appearance of plasma membrane invaginations in 99% companion cells and intermediary cells. In addition, phloem parenchyma cells contained chloroplasts with increased amounts of starch grains, sparse cytoplasm and reduced numbers of mitochondria. In the intermediary cells, the volume of cytoplasm was reduced by 50%, and the central vacuole was present. Moreover, the treatment at 9°C during the night led to RFO accumulation in the vascular bundles of the lateral branches and fruit carpopodiums. These ultrastructural changes of the transport structure (phloem) following the treatment at 9°C represented adaptive responses of melons to low temperature stresses. Future studies are required to examine whether these responses may affect phloem transport. PMID:27501301

  4. Biogeochemical investigations on processes affecting the transport behaviour of trace elements in the tidal Elbe River; Biogeochemische Prozessuntersuchungen zum Transportverhalten von Spurenelementen in der Tide-Elbe

    Energy Technology Data Exchange (ETDEWEB)

    Hennies, K. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Gewaesserphysik

    1997-12-31

    This work concentrates on distribution and transport of micropollutants in anthropogenically affected estuary systems. Choosing the tidal Elbe River as an example, the influence of microlagae on two important partial processes of the transport regime, the remobilization (a) from undisturbed sediments and (b) from suspended particulate matter, was simulated and quantified in the laboratory. Benthic and planktonic release of Cd, Cu, Pb and Zn into the dissolved phase of the river pelagial were estimated and comparatively evaluated for summer/late summer situation. During that season natural decomposition of suspended particulate matter in the water column thus represents the quantitatively most significant mobilization pathway for particle bound heavy metals in the river section between Hamburg and Glueckstadt. Knowing the composition and heavy metal load of suspended particulate matter, rich in algae, mobilization rates can consequently be calculated for the water column with regard to conditions typical for estuaries. The prognosis of the differing transport behaviour of single heavy metals for greater sections of estuaries is also possible if these rates are implemented into transport-reaction models. (orig.) [Deutsch] Die vorliegende Arbeit befasst sich mit Verteilung und Transport von Spurenschadstoffen in anthropogen belasteten Aestuarsystemen. Am Beispiel der Tide-Elbe wurde der Einfluss von Mikroalgen auf zwei wichtige Teilprozesse des Transportregimes, die Remobilisierung (a) aus ungestoerten Sedimenten und (b) aus suspendierten Schwebstoffen, im Labor simuliert und quantifiziert. Benthische und planktische Freisetzung von Cd, Cu, Pb und Zn in die Loesungsphase des Flusspelagials der Tide-Elbe wurden fuer die Sommer-/Spaetsommer-Situation abgeschaetzt und vergleichend bewertet. Der natuerliche Schwebstoff-Abbau in der Wassersaeule stellt demnach in dieser Jahreszeit im Stromabschnitt zwischen Hamburg und Glueckstadt den quantitativ bedeutsamsten

  5. Personal factors affecting ethical performance in healthcare workers during disasters and mass casualty incidents in Iran: a qualitative study.

    Science.gov (United States)

    Kiani, Mehrzad; Fadavi, Mohsen; Khankeh, Hamidreza; Borhani, Fariba

    2017-02-20

    In emergencies and disasters, ethics are affected by both personal and organizational factors. Given the lack of organizational ethical guidelines in the disaster management system in Iran, the present study was conducted to explain the personal factors affecting ethics and ethical behaviors among disaster healthcare workers. The present qualitative inquiry was conducted using conventional content analysis to analyze the data collected from 21 in-depth unstructured interviews with healthcare workers with an experience of attending one or more fields of disaster. According to the data collected, personal factors can be classified into five major categories, including personal characteristics such as age and gender, personal values, threshold of tolerance, personal knowledge and reflective thinking. Without ethical guidelines, healthcare workers are intensely affected by the emotional climate of the event and guided by their beliefs. A combination of personal characteristics, competences and expertise thus form the basis of ethical conduct in disaster healthcare workers.

  6. How the presence of a gas giant affects the formation of mean-motion resonances between two low-mass planets in a locally isothermal gaseous disc

    Science.gov (United States)

    Podlewska-Gaca, E.; Szuszkiewicz, E.

    2014-03-01

    In this paper we investigate the possibility of a migration-induced resonance locking in systems containing three planets, namely an Earth analogue (1 M⊕), a super-Earth (4 M⊕) and a gas giant (one Jupiter mass). The planets have been listed in order of increasing orbital periods. All three bodies are embedded in a locally isothermal gaseous disc and orbit around a solar mass star. We are interested in answering the following questions: will the low-mass planets form the same resonant structures with each other in the vicinity of the gas giant as in the case when the gas giant is absent? More in general, how will the presence of the gas giant affect the evolution of the two low-mass planets? When there is no gas giant in the system, it has been already shown that if the two low-mass planets undergo a convergent differential migration, they will capture each other in a mean-motion resonance. For the choices of disc parameters and planet masses made in this paper, the formation of the 5:4 resonance in the absence of the Jupiter has been observed in a previous investigation and confirmed here. In this work we add a gas giant on the most external orbit of the system in such a way that its differential migration is convergent with the low-mass planets. We show that the result of this set-up is the speeding up of the migration of the super-Earth and, after that, all three planets become locked in a triple mean-motion resonance. However, this resonance is not maintained due to the low-mass planet eccentricity excitation, a fact that leads to close encounters between planets and eventually to the ejection from the internal orbits of one or both low-mass planets. We have observed that the ejected low-mass planets can leave the system, fall into a star or become the external planet relative to the gas giant. In our simulations the latter situation has been observed for the super-Earth. It follows from the results presented here that the presence of a Jupiter-like planet

  7. An Assessment of Factors Affecting Reactive Transport of Biodegradable BTEX in an Unconfined Aquifer System, Tehran Oil Refinery, Iran

    Directory of Open Access Journals (Sweden)

    A. Agah

    2012-12-01

    Full Text Available Risk-based assessment methods are commonly used at the contaminated sites by hydrocarbon pollutants. This paper presents the results of a two-dimensional finite volume model of reactive transport of biodegradable BTEX which have been developed for the saturated zone of an unconfined aquifer in the Pump station area of Tehran oil refinery, Iran. The model governing equations were numerically solved by modification of a general commercial software called PHOENICS. To reduce costs in general, many input parameters of a model are often approximated based on the used values in the contaminated sites with same conditions. It was not fully recognised the effect of errors in these inputs on modelling outputs. Thus, a sensitivity analysis was carried out to determine the influence of parameters variability on the results of model. For this analysis, the sensitivity of the model to changes in the dispersivity, distribution coefficient, parameters of Monod, Michaelis-Menten, first- and zero- order kinetics modes on the BTEX contaminant plume were examined by performing several simulations. It was found that the model is sensitive to changes in dispersivity and parameters of Michaelis-Menten, first- and zero- order kinetics model. On the other hand, the predictions for plumes assuming Monod kinetics are similar, even if different values for parameterization are chosen. The reason for this insensibility is that degradation is not limited by microbial kinetics in the simulation, but by dispersive mixing. Quantifying the effect of changes in model input parameters on the modelling results is essential when it is desired to recognise which model parameters are more vital on the fate and transport of reactive pollutants. Furthermore, this process can provide an insight into understanding pollutant transportation mechanisms.

  8. Model Simulations of a Field Experiment on Cation Exchange-affected Multicomponent Solute Transport in a Sandy Aquifer

    DEFF Research Database (Denmark)

    Bjerg, Poul Løgstrup; Ammentorp, Hans Christian; Christensen, Thomas Højlund

    1993-01-01

    A large-scale and long-term field experiment on cation exchange in a sandy aquifer has been modelled by a three-dimensional geochemical transport model. The geochemical model includes cation-exchange processes using a Gaines-Thomas expression, the closed carbonate system and the effects of ionic...... of 800 days due to a substantially attenuation in the aquifer. The observed and the predicted breakthrough curves showed a reasonable accordance taking the duration of the experiment into account. However, some discrepancies were observed probably caused by the revealed non-ideal exchange behaviour of K+....

  9. The ASTARTE Mass Transport Deposits data base - a web-based reference for submarine landslide research around Europe

    Science.gov (United States)

    Voelker, D.; De Martini, P. M.; Lastras, G.; Patera, A.; Hunt, J.; Terrinha, P.; Noiva, J.; Gutscher, M. A.; Migeon, S.

    2015-12-01

    EU project ASTARTE (Assessment, STrategy And Risk Reduction for Tsunamis in Europe, Project number: 603839) aims at reaching a higher level of tsunami resilience in the North East Atlantic and Mediterranean (NEAM) region by a combination of field work, experimental work, numerical modeling and technical development. The project is a cooperative work of 26 institutes from 16 countries and links together the description of past tsunamigenic events, the characterization of tsunami sources, the calculation of the impact of such events, and the development of adequate resilience strategies (www.astarte.eu). Within ASTARTE a web-based data base on Mass Transport Deposit (MTD) in the NEAM areas is being created that claims to be the future reference source for this kind of research in Europe. The aim is to integrate every existing scientific reference on the topic and update on new entries every 3 months, hosting information and detailed data, that are crucial e.g for tsunami modeling. A relational database managed by ArcGIS for Desktop 10.3 software has been implemented to allow all partners to collaborate through a common platform for archiving and exchanging data and interpretations, such as MTD typology (slide, slump, debris, turbidite, etc), geometric characteristcs (location, depth, thickness, volume, slope, etc), but also age and dating method and eventually tsunamigenic potential. One of the final goals of the project is the sharing of the archived datasets through a web-based map service that will allow to visualize, question, analyze, and interpret all datasets. The interactive map service will be hosted by ArcGIS Online and will deploy the cloud capabilities of the portal. Any interested users will be able to access the online GIS resources through any Internet browser or ad hoc applications that run on desktop machines, smartphones, or tablets and will be able to use the analytical tools, key tasks, and workflows of the service.

  10. Effect of coal combustion fly ash use in concrete on the mass transport release of constituents of potential concern.

    Science.gov (United States)

    Garrabrants, Andrew C; Kosson, David S; DeLapp, Rossane; van der Sloot, Hans A

    2014-05-01

    Concerns about the environmental safety of coal combustion fly ash use as a supplemental cementitious material have necessitated comprehensive evaluation of the potential for leaching concrete materials containing fly ash used as a cement replacement. Using concrete formulations representative of US residential and commercial applications, test monoliths were made without fly ash replacement (i.e., controls) and with 20% or 45% of the portland cement fraction replaced by fly ash from four coal combustion sources. In addition, microconcrete materials were created with 45% fly ash replacement based on the commercial concrete formulation but with no coarse aggregate and an increased fine aggregate fraction to maintain aggregate-paste interfacial area. All materials were cured for 3 months prior to mass transport-based leach testing of constituents of potential concern (i.e., Sb, As, B, Ba, Cd, Cr, Mo, Pb, Se, Tl and V) according to EPA Method 1315. The cumulative release results were consistent with previously tested samples of concretes and mortars from international sources. Of the 11 constituents tested, only Sb, Ba, B, Cr and V were measured in quantifiable amounts. Microconcretes without coarse aggregate were determined to be conservative surrogates for concrete in leaching assessment since cumulative release from microconcretes were only slightly greater than the associated concrete materials. Relative to control materials without fly ash, concretes and microconcretes with fly ash replacement of cement had increased 28-d and 63-d cumulative release for a limited number 10 comparison cases: 2 cases for Sb, 7 cases for Ba and 1 case for Cr. The overall results suggest minimal leaching impact from fly ash use as a replacement for up to 45% of the cement fraction in typical US concrete formulations; however, scenario-specific assessment based on this leaching evaluation should be used to determine if potential environmental impacts exist.

  11. Energy absorption during impact on the proximal femur is affected by body mass index and flooring surface.

    Science.gov (United States)

    Bhan, Shivam; Levine, Iris C; Laing, Andrew C

    2014-07-18

    Impact mechanics theory suggests that peak loads should decrease with increase in system energy absorption. In light of the reduced hip fracture risk for persons with high body mass index (BMI) and for falls on soft surfaces, the purpose of this study was to characterize the effects of participant BMI, gender, and flooring surface on system energy absorption during lateral falls on the hip with human volunteers. Twenty university-aged participants completed the study with five men and five women in both low BMI (27.5 kg/m(2)) groups. Participants underwent lateral pelvis release experiments from a height of 5 cm onto two common floors and four safety floors mounted on a force plate. A motion-capture system measured pelvic deflection. The energy absorbed during the initial compressive phase of impact was calculated as the area under the force-deflection curve. System energy absorption was (on average) 3-fold greater for high compared to low BMI participants, but no effects of gender were observed. Even after normalizing for body mass, high BMI participants absorbed 1.8-fold more energy per unit mass. Additionally, three of four safety floors demonstrated significantly increased energy absorption compared to a baseline resilient-rolled-sheeting system (% increases ranging from 20.7 to 28.3). Peak system deflection was larger for high BMI persons and for impacts on several safety floors. This study indicates that energy absorption may be a common mechanism underlying the reduced risk of hip fracture for persons with high BMI and for those who fall on soft surfaces.

  12. Population structure and connectivity in the Mediterranean sponge Ircinia fasciculata are affected by mass mortalities and hybridization

    Science.gov (United States)

    Riesgo, A; Pérez-Portela, R; Pita, L; Blasco, G; Erwin, P M; López-Legentil, S

    2016-01-01

    Recent episodes of mass mortalities in the Mediterranean Sea have been reported for the closely related marine sponges Ircinia fasciculata and Ircinia variabilis that live in sympatry. In this context, the assessment of the genetic diversity, bottlenecks and connectivity of these sponges has become urgent in order to evaluate the potential effects of mass mortalities on their latitudinal range. Our study aims to establish (1) the genetic structure, connectivity and signs of bottlenecks across the populations of I. fasciculata and (2) the hybridization levels between I. fasciculata and I. variabilis. To accomplish the first objective, 194 individuals of I. fasciculata from 12 locations across the Mediterranean were genotyped at 14 microsatellite loci. For the second objective, mitochondrial cytochrome c oxidase subunit I sequences of 16 individuals from both species were analyzed along with genotypes at 12 microsatellite loci of 40 individuals coexisting in 3 Mediterranean populations. We detected strong genetic structure along the Mediterranean for I. fasciculata, with high levels of inbreeding in all locations and bottleneck signs in most locations. Oceanographic barriers like the Almeria-Oran front, North-Balearic front and the Ligurian-Thyrrenian barrier seem to be impeding gene flow for I. fasciculata, adding population divergence to the pattern of isolation by distance derived from the low dispersal abilities of sponge larvae. Hybridization between both species occurred in some populations that might be increasing genetic diversity and somewhat palliating the genetic loss caused by population decimation in I. fasciculata. PMID:27599575

  13. Microtubule assembly affects bone mass by regulating both osteoblast and osteoclast functions: stathmin deficiency produces an osteopenic phenotype in mice.

    Science.gov (United States)

    Liu, Hongbin; Zhang, Rongrong; Ko, Seon-Yle; Oyajobi, Babatunde O; Papasian, Christopher J; Deng, Hong-Wen; Zhang, Shujun; Zhao, Ming

    2011-09-01

    Cytoskeleton microtubules regulate various cell signaling pathways that are involved in bone cell function. We recently reported that inhibition of microtubule assembly by microtubule-targeting drugs stimulates osteoblast differentiation and bone formation. To further elucidate the role of microtubules in bone homeostasis, we characterized the skeletal phenotype of mice null for stathmin, an endogenous protein that inhibits microtubule assembly. In vivo micro-computed tomography (µCT) and histology revealed that stathmin deficiency results in a significant reduction of bone mass in adult mice concurrent with decreased osteoblast and increased osteoclast numbers in bone tissues. Phenotypic analyses of primary calvarial cells and bone marrow cells showed that stathmin deficiency inhibited osteoblast differentiation and induced osteoclast formation. In vitro overexpression studies showed that increased stathmin levels enhanced osteogenic differentiation of preosteoblast MC3T3-E1 cells and mouse bone marrow-derived cells and attenuated osteoclast formation from osteoclast precursor Raw264.7 cells and bone marrow cells. Results of immunofluorescent studies indicated that overexpression of stathmin disrupted radial microtubule filaments, whereas deficiency of stathmin stabilized the microtubule network structure in these bone cells. In addition, microtubule-targeting drugs that inhibit microtubule assembly and induce osteoblast differentiation lost these effects in the absence of stathmin. Collectively, these results suggest that stathmin, which alters microtubule dynamics, plays an essential role in maintenance of postnatal bone mass by regulating both osteoblast and osteoclast functions in bone. \\

  14. Elevated seawater PCO₂ differentially affects branchial acid-base transporters over the course of development in the cephalopod Sepia officinalis.

    Science.gov (United States)

    Hu, Marian Y; Tseng, Yung-Che; Stumpp, Meike; Gutowska, Magdalena A; Kiko, Rainer; Lucassen, Magnus; Melzner, Frank

    2011-05-01

    The specific transporters involved in maintenance of blood pH homeostasis in cephalopod molluscs have not been identified to date. Using in situ hybridization and immunohistochemical methods, we demonstrate that Na(+)/K(+)-ATPase (soNKA), a V-type H(+)-ATPase (soV-HA), and Na(+)/HCO(3)(-) cotransporter (soNBC) are colocalized in NKA-rich cells in the gills of Sepia officinalis. mRNA expression patterns of these transporters and selected metabolic genes were examined in response to moderately elevated seawater Pco(2) (0.16 and 0.35 kPa) over a time course of 6 wk in different ontogenetic stages. The applied CO(2) concentrations are relevant for ocean acidification scenarios projected for the coming decades. We determined strong expression changes in late-stage embryos and hatchlings, with one to three log2-fold reductions in soNKA, soNBCe, socCAII, and COX. In contrast, no hypercapnia-induced changes in mRNA expression were observed in juveniles during both short- and long-term exposure. However, a transiently increased ion regulatory demand was evident during the initial acclimation reaction to elevated seawater Pco(2). Gill Na(+)/K(+)-ATPase activity and protein concentration were increased by ~15% during short (2-11 days) but not long-term (42-days) exposure. Our findings support the hypothesis that the energy budget of adult cephalopods is not significantly compromised during long-term exposure to moderate environmental hypercapnia. However, the downregulation of ion regulatory and metabolic genes in late-stage embryos, taken together with a significant reduction in somatic growth, indicates that cephalopod early life stages are challenged by elevated seawater Pco(2).

  15. Application of the SWAT model to an AMD-affected river (Meca River, SW Spain). Estimation of transported pollutant load

    Science.gov (United States)

    Galván, L.; Olías, M.; Fernandez de Villarán, R.; Domingo Santos, J. M.; Nieto, J. M.; Sarmiento, A. M.; Cánovas, C. R.

    2009-10-01

    SummaryThe Meca River is highly contaminated by acid mine drainage coming from the Tharsis mining district, belonging to the Iberian Pyrite Belt. This river is regulated by the Sancho reservoir (58 hm 3), with a pH close to 4.2. In this work, the load transported by the Meca River to the Sancho reservoir has been assessed. Due to the lack of streamflow data, the hydrological behaviour of the Meca River basin has been simulated using the SWAT model. The model has been calibrated against registered daily inflows of the Sancho reservoir (1982-2000), excluding the hydrological years 2000/2001 and 2001/2002 that were kept for the validation. The results were satisfactory; the evaluation coefficients for monthly calibration were: r = 0.85 (Pearson's correlation coefficient), NSE = 0.83 (Nash-Sutcliffe coefficient) and DV = 1.08 (runoff volume deviation). The main uncertainty was the calibration during low water because of the poor accuracy in the measurement of the inputs to the reservoir in these conditions. Discharge and dissolved concentration relationships for different elements were obtained from hydrochemical samplings, which allowed us to estimate the element pollutant load transported to the reservoir: 418 ton/year of Al, 8024 ton/year of SO 4, 121 ton/year of Zn, etc. Based on these loads, concentrations in the reservoir were calculated for some elements. Apart from Mn and Sr, good adjustment between calculated and measured values was observed (±20% for Ca, Co, Li, Mg, Na, Ni, Zn and SO 4). Capsule: Hydrological model combined with water quality data show how pollution by AMD can generate huge loads of contaminants acidifying streams and reservoirs.

  16. MASS TRANSPORT PROPERTIES OF A FLOW-THROUGH ELECTROLYTIC REACTOR USING A POROUS ELECTRODE: PERFORMANCE AND FIGURES OF MERIT FOR Pb(II REMOVAL

    Directory of Open Access Journals (Sweden)

    Bertazzoli R.

    1998-01-01

    Full Text Available The removal of lead from an acid borate-nitrate solution containing Pb(II was used to characterize the mass transport properties of an electrolytic reactor with reticulated vitreous carbon cathodes, operated in the flow-through mode. Current potential curves recorded at a rotating vitreous carbon disc electrode were used to determine the diffusion coefficient for Pb(II under the conditions of the experiments. The performance and figures of merit of the electrolytic reactor were investigated by using different flowrates and cathode porosities. Dimensionless Sherwood and Reynolds numbers were correlated to characterize the mass transport properties of the reactor, and they were fitted to the equation Sh=24Re0.32Sc0.33.

  17. The decay characteristic of $^{22}$Si and its ground-state mass significantly affected by three-nucleon forces

    CERN Document Server

    Xu, X X; Sun, L J; Wang, J S; Lam, Y H; Lee, J; Fang, D Q; Li, Z H; Smirnova, N A; Yuan, C X; Yang, L; Wang, Y T; Li, J; Ma, N R; Wang, K; Zang, H L; Wang, H W; Li, C; Liu, M L; Wang, J G; Shi, C Z; Nie, M W; Li, X F; Li, H; Ma, J B; Ma, P; Jin, S L; Huang, M R; Bai, Z; Yang, F; Jia, H M; Liu, Z H; Wang, D X; Yang, Y Y; Zhou, Y J; Ma, W H; Chen, J; Hu, Z G; Zhang, Y H; Ma, X W; Zhou, X H; Ma, Y G; Xu, H S; Xiao, G Q; Zhang, H Q

    2016-01-01

    The decay of the proton-rich nucleus $^{22}$Si was studied by a silicon array coupled with germanium clover detectors. Nine charged-particle groups are observed and most of them are recognized as $\\beta$-delayed proton emission. A charged-particle group at 5600 keV is identified experimentally as $\\beta$-delayed two-proton emission from the isobaric analog state of $^{22}$Al. Another charged-particle emission without any $\\beta$ particle at the low energy less than 300 keV is observed. The half-life of $^{22}$Si is determined as 27.5 (18) ms. The experimental results of $\\beta$-decay of $^{22}$Si are compared and in nice agreement with shell-model calculations. The mass excess of the ground state of $^{22}$Si deduced from the experimental data shows that three-nucleon (3N) forces with repulsive contributions have significant effects on nuclei near the proton drip line.

  18. In-situ biogas upgrading in thermophilic granular UASB reactor: key factors affecting the hydrogen mass transfer rate

    DEFF Research Database (Denmark)

    Bassani, Ilaria; Kougias, Panagiotis; Angelidaki, Irini

    2016-01-01

    Biological biogas upgrading coupling CO2 with external H2 to form biomethane opens new avenues for sustainable biofuel production. For developing this technology, efficient H2 to liquid transfer is fundamental. This study proposes an innovative setup for in-situ biogas upgrading converting the CO2...... in the biogas into CH4, via hydrogenotrophic methanogenesis. The setup consisted of a granular reactor connected to a separate chamber, where H2 was injected. Different packing materials (rashig rings and alumina ceramic sponge) were tested to increase gas-liquid mass transfer. This aspect was optimized...... by liquid and gas recirculation and chamber configuration. It was shown that by distributing H2 through a metallic diffuser followed by ceramic sponge in a separate chamber, having a volume of 25% of the reactor, and by applying a mild gas recirculation, CO2 content in the biogas dropped from 42 to 10...

  19. In-situ biogas upgrading in thermophilic granular UASB reactor: key factors affecting the hydrogen mass transfer rate.

    Science.gov (United States)

    Bassani, Ilaria; Kougias, Panagiotis G; Angelidaki, Irini

    2016-12-01

    Biological biogas upgrading coupling CO2 with external H2 to form biomethane opens new avenues for sustainable biofuel production. For developing this technology, efficient H2 to liquid transfer is fundamental. This study proposes an innovative setup for in-situ biogas upgrading converting the CO2 in the biogas into CH4, via hydrogenotrophic methanogenesis. The setup consisted of a granular reactor connected to a separate chamber, where H2 was injected. Different packing materials (rashig rings and alumina ceramic sponge) were tested to increase gas-liquid mass transfer. This aspect was optimized by liquid and gas recirculation and chamber configuration. It was shown that by distributing H2 through a metallic diffuser followed by ceramic sponge in a separate chamber, having a volume of 25% of the reactor, and by applying a mild gas recirculation, CO2 content in the biogas dropped from 42 to 10% and the final biogas was upgraded from 58 to 82% CH4 content.

  20. Effects of cold-girdling on flows in the transport phloem in Ricinus communis: is mass flow ihibited?

    NARCIS (Netherlands)

    Peuke, A.D.; Windt, C.W.; As, van H.

    2006-01-01

    The effects of cold girdling of the transport phloem at the hypocotyl of Ricinus communis on solute and water transport were investigated. Effects on the chemical composition of saps of phloem and xylem as well as of stem tissue were studied by conventional techniques and the water flow in the phloe

  1. Evidences for redox reaction driven charge transfer and mass transport in metal-assisted chemical etching of silicon

    Science.gov (United States)

    Kong, Lingyu; Dasgupta, Binayak; Ren, Yi; Mohseni, Parsian K.; Hong, Minghui; Li, Xiuling; Chim, Wai Kin; Chiam, Sing Yang

    2016-11-01

    In this work, we investigate the transport processes governing the metal-assisted chemical etching (MacEtch) of silicon (Si). We show that in the oxidation of Si during the MacEtch process, the transport of the hole charges can be accomplished by the diffusion of metal ions. The oxidation of Si is subsequently governed by a redox reaction between the ions and Si. This represents a fundamentally different proposition in MacEtch whereby such transport is understood to occur through hole carrier conduction followed by hole injection into (or electron extraction from) Si. Consistent with the ion transport model introduced, we showed the possibility in the dynamic redistribution of the metal atoms that resulted in the formation of pores/cracks for catalyst thin films that are ≲30 nm thick. As such, the transport of the reagents and by-products are accomplished via these pores/cracks for the thin catalyst films. For thicker films, we show a saturation in the etch rate demonstrating a transport process that is dominated by diffusion via metal/Si boundaries. The new understanding in transport processes described in this work reconcile competing models in reagents/by-products transport, and also solution ions and thin film etching, which can form the foundation of future studies in the MacEtch process.

  2. Orogen-parallel mass transport along the arcuate Himalayan front into Nanga Parbat and the western Himalayan syntaxis

    Science.gov (United States)

    Whipp, David; Beaumont, Christopher

    2016-04-01

    Along the length of the Himalayan arc, Quaternary rock exhumation rates are highest in the Himalayan syntaxes at the lateral ends of the arc. In the western Himalayan syntaxis, these rates may exceed 10 mm/a over the past 2 Ma, requiring an additional source of crustal mass into this region to maintain the high-elevation topography. We have previously demonstrated that strain partitioning of oblique convergence can produce a significant orogen-parallel mass flux into the syntaxis of a Himalaya-like orogen and balance the rapid rates of surface denudation. However, the magnitude of this orogen parallel mass flux and whether strain is partitioned across the Himalayan thrust front is affected by the strength of the material bounding and within the Himalayan orogenic wedge, the dip angle of the basal detachment and the convergence obliquity angle γ. Strain partitioning is expected for a finite-length Himalaya-like segmented linear orogen with an obliquity of γ = 30 - 40°, but the obliquity angle in the Himalayan arc varies from 0 at the center of the arc to ˜ 40° in the western Himalayan syntaxis region. Thus, the conditions in which strain partitioning will occur may not be met along much of the length of the arc. Though there is clear evidence of strain partitioning in the Himalaya, preliminary results from 3D numerical geodynamic models of an orogen with an arcuate geometry based on the Himalaya suggest strain partitioning does not occur for the same conditions observed in earlier models of segmented linear orogens or orogens with a smaller arc radius. In those models, the proportion of the orogen length with a high obliquity angle was greater, which favors strain partitioning. In numerical experiments of an arcuate Himalayan orogen with weak material (friction angle φ ≤ 5°) at the back of the orogenic wedge, strain partitioning is only observed in the toe of the orogenic wedge (10-15 km from the thrust front) at the western end of the arc, rather than for

  3. The effect of coupled mass transport and internal reforming on modeling of solid oxide fuel cells part II: Benchmarking transient response and dynamic model fidelity assessment

    Science.gov (United States)

    Albrecht, Kevin J.; Braun, Robert J.

    2016-02-01

    One- and 'quasi' two-dimensional (2-D) dynamic, interface charge transport models of a solid oxide fuel cell (SOFC) developed previously in a companion paper, are benchmarked against other models and simulated to evaluate the effects of coupled transport and chemistry. Because the reforming reaction can distort the concentration profiles of the species within the anode, a 'quasi' 2-D model that captures porous media mass transport and electrochemistry is required. The impact of a change in concentration at the triple-phase boundary is twofold wherein the local Nernst potential and anode exchange current densities are influenced, thereby altering the current density and temperature distributions of the cell. Thus, the dynamic response of the cell models are compared, and benchmarked against previous channel-level models to gauge the relative importance of capturing in-situ reforming phenomena on cell performance. Simulation results indicate differences in the transient electrochemical response for a step in current density where the 'quasi' 2-D model predicts a slower rise and fall in cell potential due to the additional volume of the porous media and mass transport dynamics. Delays in fuel flow rate are shown to increase the difference observed in the electrochemical response of the cells.

  4. Left ventricular mass in dialysis patients, determinants and relation with outcome. Results from the COnvective TRansport STudy (CONTRAST.

    Directory of Open Access Journals (Sweden)

    Ira M Mostovaya

    Full Text Available BACKGROUND AND OBJECTIVES: Left ventricular mass (LVM is known to be related to overall and cardiovascular mortality in end stage kidney disease (ESKD patients. The aims of the present study are 1 to determine whether LVM is associated with mortality and various cardiovascular events and 2 to identify determinants of LVM including biomarkers of inflammation and fibrosis. DESIGN SETTING PARTICIPANTS & MEASUREMENTS: Analysis was performed with data of 327 ESKD patients, a subset from the CONvective TRAnsport STudy (CONTRAST. Echocardiography was performed at baseline. Cox regression analysis was used to assess the relation of LVM tertiles with clinical events. Multivariable linear regression models were used to identify factors associated with LVM. RESULTS: Median age was 65 (IQR: 54-73 years, 203 (61% were male and median LVM was 227 (IQR: 183-279 grams. The risk of all-cause mortality (hazard ratio (HR = 1.73, 95% CI: 1.11-2.99, cardiovascular death (HR = 3.66, 95% CI: 1.35-10.05 and sudden death (HR = 13.06; 95% CI: 6.60-107 was increased in the highest tertile (>260 grams of LVM. In the multivariable analysis positive relations with LVM were found for male gender (B = 38.8±10.3, residual renal function (B = 17.9±8.0, phosphate binder therapy (B = 16.9±8.5, and an inverse relation for a previous kidney transplantation (B = -41.1±7.6 and albumin (B = -2.9±1.1. Interleukin-6 (Il-6, high-sensitivity C-reactive protein (hsCRP, hepcidin-25 and connective tissue growth factor (CTGF were not related to LVM. CONCLUSION: We confirm the relation between a high LVM and outcome and expand the evidence for increased risk of sudden death. No relationship was found between LVM and markers of inflammation and fibrosis. TRIAL REGISTRATION: Controlled-Trials.com ISRCTN38365125.

  5. Model calculation of the characteristic mass for convective and diffusive vapor transport in graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bencs, László, E-mail: bencs.laszlo@wigner.mta.hu [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Laczai, Nikoletta [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Ajtony, Zsolt [Institute of Food Science, University of West Hungary, H-9200 Mosonmagyaróvár, Lucsony utca 15–17 (Hungary)

    2015-07-01

    A combination of former convective–diffusive vapor-transport models is described to extend the calculation scheme for sensitivity (characteristic mass — m{sub 0}) in graphite furnace atomic absorption spectrometry (GFAAS). This approach encompasses the influence of forced convection of the internal furnace gas (mini-flow) combined with concentration diffusion of the analyte atoms on the residence time in a spatially isothermal furnace, i.e., the standard design of the transversely heated graphite atomizer (THGA). A couple of relationships for the diffusional and convectional residence times were studied and compared, including in factors accounting for the effects of the sample/platform dimension and the dosing hole. These model approaches were subsequently applied for the particular cases of Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, V and Zn analytes. For the verification of the accuracy of the calculations, the experimental m{sub 0} values were determined with the application of a standard THGA furnace, operating either under stopped, or mini-flow (50 cm{sup 3} min{sup −1}) of the internal sheath gas during atomization. The theoretical and experimental ratios of m{sub 0}(mini-flow)-to-m{sub 0}(stop-flow) were closely similar for each study analyte. Likewise, the calculated m{sub 0} data gave a fairly good agreement with the corresponding experimental m{sub 0} values for stopped and mini-flow conditions, i.e., it ranged between 0.62 and 1.8 with an average of 1.05 ± 0.27. This indicates the usability of the current model calculations for checking the operation of a given GFAAS instrument and the applied methodology. - Highlights: • A calculation scheme for convective–diffusive vapor loss in GFAAS is described. • Residence time (τ) formulas were compared for sensitivity (m{sub 0}) in a THGA furnace. • Effects of the sample/platform dimension and dosing hole on τ were assessed. • Theoretical m{sub 0} of 18 analytes were

  6. Insights into embryo defenses of the invasive apple snail Pomacea canaliculata: egg mass ingestion affects rat intestine morphology and growth.

    Directory of Open Access Journals (Sweden)

    Marcos S Dreon

    2014-06-01

    Full Text Available The spread of the invasive snail Pomacea canaliculata is expanding the rat lungworm disease beyond its native range. Their toxic eggs have virtually no predators and unusual defenses including a neurotoxic lectin and a proteinase inhibitor, presumably advertised by a warning coloration. We explored the effect of egg perivitellin fluid (PVF ingestion on the rat small intestine morphology and physiology.Through a combination of biochemical, histochemical, histopathological, scanning electron microscopy, cell culture and feeding experiments, we analyzed intestinal morphology, growth rate, hemaglutinating activity, cytotoxicity and cell proliferation after oral administration of PVF to rats. PVF adversely affects small intestine metabolism and morphology and consequently the standard growth rate, presumably by lectin-like proteins, as suggested by PVF hemaglutinating activity and its cytotoxic effect on Caco-2 cell culture. Short-term effects of ingested PVF were studied in growing rats. PVF-supplemented diet induced the appearance of shorter and wider villi as well as fused villi. This was associated with changes in glycoconjugate expression, increased cell proliferation at crypt base, and hypertrophic mucosal growth. This resulted in a decreased absorptive surface after 3 days of treatment and a diminished rat growth rate that reverted to normal after the fourth day of treatment. Longer exposure to PVF induced a time-dependent lengthening of the small intestine while switching to a control diet restored intestine length and morphology after 4 days.Ingestion of PVF rapidly limits the ability of potential predators to absorb nutrients by inducing large, reversible changes in intestinal morphology and growth rate. The occurrence of toxins that affect intestinal morphology and absorption is a strategy against predation not recognized among animals before. Remarkably, this defense is rather similar to the toxic effect of plant antipredator strategies

  7. Consumption of different sources of omega-3 polyunsaturated fatty acids by growing female rats affects long bone mass and microarchitecture.

    Science.gov (United States)

    Lukas, Robin; Gigliotti, Joseph C; Smith, Brenda J; Altman, Stephanie; Tou, Janet C

    2011-09-01

    Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) consumption has been reported to improve bone health. However, sources of ω-3 PUFAs differ in the type of fatty acids and structural form. The study objective was to determine the effect of various ω-3 PUFAs sources on bone during growth. Young (age 28d) female Sprague-Dawley rats were randomly assigned (n=10/group) to a high fat 12% (wt) diet consisting of either corn oil (CO) or ω-3 PUFA rich, flaxseed (FO), krill (KO), menhaden (MO), salmon (SO) or tuna (TO) for 8 weeks. Bone mass was assessed by dual-energy X-ray absorptiometry (DXA) and bone microarchitecture by micro-computed tomography (μCT). Bone turnover markers were measured by enzyme immunoassay. Lipid peroxidation was measured by calorimetric assays. Results showed that rats fed TO, rich in docosahexaenoic acid (DHA, 22:6ω-3) had higher (Pacid (ALA, 18:3ω-3), improved bone microarchitecture compared to rats fed CO or SO. Serum osteocalcin was higher (P=0.03) in rats fed FO compared to rats fed SO. Serum osteocalcin was associated with improved trabecular bone microarchitecture. The animal study results suggest consuming a variety of ω-3 PUFA sources to promote bone health during the growth stage.

  8. Titanium Mass-balance Analysis of Paso Robles Soils: Elemental Gains and Losses as Affected by Acid Alteration Fluids

    Science.gov (United States)

    Sutter, Brad; Ming, Douglas W.

    2010-01-01

    The Columbia Hills soils have been exposed to aqueous alteration in alkaline [1] as well as acid conditions [2,3]. The Paso Robles class soils are bright soils that possess the highest S concentration of any soil measured on Mars [2]. Ferric-sulfate detection by Moessbauer analysis indicated that acid solutions were involved in forming these soils [4]. These soils are proposed to have formed by alteration of nearby rock by volcanic hydrothermal or fumarolic activity. The Paso Robles soils consist of the original Paso Robles-disturbed-Pasadena (PR-dist), Paso Robles- PasoLight (PR-PL), Arad-Samra, Arad-Hula, Tyrone- Berker Island1 and Tyrone-MountDarwin [2 ,3. ]Chemical characteristics indicate that the PR-dist and PR-PL soils could be derived from acid weathering of local Wishstone rocks while the Samra and Hula soils are likely derived from local Algonquin-Iroquet rock [3]. The Paso Robles soils were exposed to acidic sulfur bearing fluids; however, little else is known about the chemistry of the alteration fluid and its effects on the alteration of the proposed parent materials. The objectives of this work are to conduct titanium normalized mass-balance analysis to1) assess elemental gains and losses from the parent materials in the formation of the Paso Robles soils and 2) utilize this information to indicate the chemical nature of the alteration fluids.

  9. Gas transport processes in sea ice: How convection and diffusion processes might affect biological imprints, a challenge for modellers

    DEFF Research Database (Denmark)

    Tison, J.-L.; Zhou, Shaola J. G.; Thomas, D. N.

    2012-01-01

    within the sea ice cover, including in the gaseous form. Diffusive processes will become dominant once internal melting is strong enough to stratify the brine network within the ice. In the Kapisilit case, the regular decrease of an internal gas peak intensity due to external forcing during ice growth......Recent data from a year-round survey of landfast sea ice growth in Barrow (Alaska) have shown how O2/N2 and O2/Ar ratios could be used to pinpoint primary production in sea ice and derive net productivity rates from the temporal evolution of the oxygen concentration at a given depth within the sea...... ice cover. These rates were however obtained surmising that neither convection, nor diffusion had affected the gas concentration profiles in the ice between discrete ice core collections. This paper discusses examples from three different field surveys (the above-mentioned Barrow experiment...

  10. The cost of transport of human running is not affected, as in walking, by wide acceleration/deceleration cycles.

    Science.gov (United States)

    Minetti, Alberto E; Gaudino, Paolo; Seminati, Elena; Cazzola, Dario

    2013-02-15

    Although most of the literature on locomotion energetics and biomechanics is about constant-speed experiments, humans and animals tend to move at variable speeds in their daily life. This study addresses the following questions: 1) how much extra metabolic energy is associated with traveling a unit distance by adopting acceleration/deceleration cycles in walking and running, with respect to constant speed, and 2) how can biomechanics explain those metabolic findings. Ten males and ten females walked and ran at fluctuating speeds (5 ± 0, ± 1, ± 1.5, ± 2, ± 2.5 km/h for treadmill walking, 11 ± 0, ± 1, ± 2, ± 3, ± 4 km/h for treadmill and field running) in cycles lasting 6 s. Field experiments, consisting of subjects following a laser spot projected from a computer-controlled astronomic telescope, were necessary to check the noninertial bias of the oscillating-speed treadmill. Metabolic cost of transport was found to be almost constant at all speed oscillations for running and up to ±2 km/h for walking, with no remarkable differences between laboratory and field results. The substantial constancy of the metabolic cost is not explained by the predicted cost of pure acceleration/deceleration. As for walking, results from speed-oscillation running suggest that the inherent within-stride, elastic energy-free accelerations/decelerations when moving at constant speed work as a mechanical buffer for among-stride speed fluctuations, with no extra metabolic cost. Also, a recent theory about the analogy between sprint (level) running and constant-speed running on gradients, together with the mechanical determinants of gradient locomotion, helps to interpret the present findings.

  11. Poultry fat decreased fatty acid transporter protein mRNA expression and affected fatty acid composition in chickens

    Directory of Open Access Journals (Sweden)

    Yuan Jianmin

    2012-05-01

    Full Text Available Abstract Background A study was undertaken to examine the effects of poultry fat (PF compared with those of soybean oil (SBO on intestinal development, fatty acid transporter protein (FATP mRNA expression, and fatty acid composition in broiler chickens. A total of 144 day-old male commercial broilers were randomly allocated to 2 treatment groups (6 replicates of 12 chicks for each treatment and fed isocaloric diets containing 3.0% PF or 2.7% SBO at 0 to 3 wk and 3.8% PF or 3.5% SBO at 4 to 6 wk, respectively. Results PF had no influence on intestinal morphology, weight, or DNA, RNA, or protein concentrations at 2, 4, and 6 wk of age. However, compared with SBO, PF significantly decreased FATP mRNA abundance at 4 wk (P = 0.009 and 6 wk of age (P P = 0.039; and decreased C18:2 (P = 0.015, C18:3 (P P = 0.018, Σ-polyunsaturated fatty acids (Σ-PUFA (P = 0.020, and the proportion of PUFA (P P = 0.010, C18:3 (P P P = 0.005, and the proportion of PUFA (P  Conclusions PF decreases FATP and L-FABP mRNA expression and decreased the proportion of PUFA in the intestinal mucosa and breast muscle.

  12. The Arabidopsis DSO/ABCG11 transporter affects cutin metabolism in reproductive organs and suberin in roots.

    Science.gov (United States)

    Panikashvili, David; Shi, Jian Xin; Bocobza, Samuel; Franke, Rochus Benni; Schreiber, Lukas; Aharoni, Asaph

    2010-05-01

    Apart from its significance in the protection against stress conditions, the cuticular cover is essential for proper development of the diverse surface structures formed on aerial plant organs. This layer mainly consists of a cutin matrix, embedded and overlaid with cuticular waxes. Following their biosynthesis in epidermal cells, cutin and waxes were suggested to be exported across the plasma membrane by ABCG-type transporters such as DSO/ABCG11 to the cell wall and further to extracellular matrix. Here, additional aspects of DSO/ABCG11 function were investigated, predominantly in reproductive organs, which were not revealed in the previous reports. This was facilitated by the generation of a transgenic DSO/ABCG11 silenced line (dso-4) that displayed relatively subtle morphological and chemical phenotypes. These included altered petal and silique morphology, fusion of seeds, and changes in levels of cutin monomers in flowers and siliques. The dso-4 phenotypes corresponded to the strong DSO/ABCG11 gene expression in the embryo epidermis as well as in the endosperm tissues of the developing seeds. Moreover, the DSO/ABCG11 protein displayed polar localization in the embryo protoderm. Transcriptome analysis of the dso-4 mutant leaves and stems showed that reduced DSO/ABCG11 activity suppressed the expression of a large number of cuticle-associated genes, implying that export of cuticular lipids from the plasma membrane is a rate-limiting step in cuticle metabolism. Surprisingly, root suberin composition of dso-4 was altered, as well as root expression of two suberin biosynthetic genes. Taken together, this study provides new insights into cutin and suberin metabolism and their role in reproductive organs and roots development.

  13. Motion of the center of mass in children with spastic hemiplegia: balance, energy transfer, and work performed by the affected leg vs. the unaffected leg.

    Science.gov (United States)

    Feng, Jing; Pierce, Rosemary; Do, K Patrick; Aiona, Michael

    2014-01-01

    Asymmetry between limbs in people with spastic hemiplegic cerebral palsy (HEMI) adversely affects limb coordination and energy generation and consumption. This study compared how the affected leg and the unaffected leg of children with HEMI would differ based on which leg trails. Full-body gait analysis data and force-plate data were analyzed for 31 children (11.9 ± 3.8 years) with HEMI and 23 children (11.1 ± 3.1 years) with typical development (TD). Results showed that peak posterior center of mass-center of pressure (COM-COP) inclination angles of HEMI were smaller than TD when the affected leg trailed but not when the unaffected leg trailed. HEMI showed greater peak medial COM-COP inclination angles and wider step width than TD, no matter which leg trailed. More importantly, when the affected leg of HEMI trailed, it did not perform enough positive work during double support to propel COM motion. Consequently, the unaffected leg had to perform additional positive work during the early portion of single support, which costs more energy. When the unaffected leg trailed, the affected leg performed more negative work during double support; therefore, more positive work was still needed during early single support, but energy efficiency was closer to that of TD. Energy recovery factor was lower when the affected leg trailed than when the unaffected leg trailed; both were lower than TD. These findings suggest that the trailing leg plays a significant role in propelling COM motion during double support, and the 'unaffected' side of HEMI may not be completely unaffected. It is important to strengthen both legs.

  14. Photoperiodic regulation of the sucrose transporter StSUT4 affects the expression of circadian-regulated genes and ethylene production

    Directory of Open Access Journals (Sweden)

    Izabela eChincinska

    2013-02-01

    Full Text Available Several recent publications report different subcellular localisation of members of the SUT4 subfamily of sucrose transporters. The physiological function of SUT4 sucrose transporters is still not entirely clarified as down-regulation of members of the SUT4 clade had very different effects in rice, poplar and potato. Here, we provide new data on the localization and function of the Solanaceous StSUT4 protein, further elucidating involvement in the onset of flowering, tuberization and in the shade avoidance syndrome of potato plants.Induction of early flowering and tuberization in SUT4-inhibited potato plants correlates with increased sucrose export from leaves and increased sucrose and starch accumulation in terminal sink organs such as developing tubers. SUT4 does not only affect the expression of gibberellin and ethylene biosynthetic enzymes, but also the rate of ethylene synthesis in potato. In SUT4-inhibited plants, the ethylene production no longer follows a diurnal rhythm, leading to the assumption that StSUT4 controls circadian gene expression, potentially by regulating sucrose export from leaves. Furthermore, SUT4 expression affects clock-regulated genes such as StFT, StSOC1 and StCO, which might also be involved in a photoperiod-dependently controlled tuberization. A model is proposed in which StSUT4 controls a phloem-mobile signalling molecule generated in leaves which together with enhanced sucrose export affects developmental switches in apical meristems. SUT4 seems to link photoreceptor-perceived information about the light quality and day length, with phytohormone biosynthesis and the expression of circadian genes.

  15. Mixed convective heat and mass transfer analysis for peristaltic transport in an asymmetric channel with Soret and Dufour effects

    Institute of Scientific and Technical Information of China (English)

    F M Abbasi; A Alsaedi; T Hayat

    2014-01-01

    The present investigation addresses the simultaneous effects of heat and mass transfer in the mixed convection peristaltic flow of viscous fluid in an asymmetric channel. The channel walls exhibit the convective boundary conditions. In addition, the effects due to Soret and Dufour are taken into consideration. Resulting problems are solved for the series solutions. Numerical values of heat and mass transfer rates are displayed and studied. Results indicate that the concentration and temperature of the fluid increase whereas the mass transfer rate at the wall decreases with increase of the mass transfer Biot number. Furthermore, it is observed that the temperature decreases with the increase of the heat transfer Biot number.

  16. Evidences for redox reaction driven charge transfer and mass transport in metal-assisted chemical etching of silicon

    OpenAIRE

    Lingyu Kong; Binayak Dasgupta; Yi Ren; Parsian K. Mohseni; Minghui Hong; Xiuling Li; Wai Kin Chim; Sing Yang Chiam

    2016-01-01

    In this work, we investigate the transport processes governing the metal-assisted chemical etching (MacEtch) of silicon (Si). We show that in the oxidation of Si during the MacEtch process, the transport of the hole charges can be accomplished by the diffusion of metal ions. The oxidation of Si is subsequently governed by a redox reaction between the ions and Si. This represents a fundamentally different proposition in MacEtch whereby such transport is understood to occur through hole carrier...

  17. Factors affecting microbial spoilage and shelf-life of chilled vacuum-packed lamb transported to distant markets: a review.

    Science.gov (United States)

    Mills, John; Donnison, Andrea; Brightwell, Gale

    2014-09-01

    Vacuum-packaging and stringent control of storage temperatures enable the export of meat to distant markets, supplying a chilled product that can favourably compete with local fresh meats. To save fuel and reduce emissions, the speed of ships travelling to international markets has decreased resulting in requirement for the shelf-life of chilled lamb to be extended beyond the recognised time of 60-70 days. Growth of microorganisms and ability to cause spoilage of vacuum-packed lamb are dependent on many factors, including the type and initial concentration of spoilage bacteria, meat pH, water activity, availability of substrates, oxygen availability and, most importantly, storage time and temperature of the packaged product. This paper reviews the existing knowledge of the spoilage bacteria affecting vacuum-packed lamb, discusses the impact of these bacteria on product quality, shelf-life and spoilage, and concludes that under specified conditions the shelf-life of chilled lamb can be extended to beyond 70 days.

  18. What have we learned from deterministic geostatistics at highly resolved field sites, as relevant to mass transport processes in sedimentary aquifers?

    Science.gov (United States)

    Ritzi, Robert W.; Soltanian, Mohamad Reza

    2015-12-01

    In the method of deterministic geostatistics (sensu Isaaks and Srivastava, 1988), highly-resolved data sets are used to compute sample spatial-bivariate statistics within a deterministic framework. The general goal is to observe what real, highly resolved, sample spatial-bivariate correlation looks like when it is well-quantified in naturally-occurring sedimentary aquifers. Furthermore, it is to understand how this correlation structure, (i.e. shape and correlation range) is related to independent and physically quantifiable attributes of the sedimentary architecture. The approach has evolved among work by Rubin (1995, 2003), Barrash and Clemo (2002), Ritzi et al. (2004, 2007, 2013), Dai et al. (2005), and Ramanathan et al. (2010). In this evolution, equations for sample statistics have been developed which allow tracking the facies types at the heads and tails of lag vectors. The goal is to observe and thereby understand how aspects of the sedimentary architecture affect the well-supported sample statistics. The approach has been used to study heterogeneity at a number of sites, representing a variety of depositional environments, with highly resolved data sets. What have we learned? We offer and support an opinion that the single most important insight derived from these studies is that the structure of spatial-bivariate correlation is essentially the cross-transition probability structure, determined by the sedimentary architecture. More than one scale of hierarchical sedimentary architecture has been represented in these studies, and a hierarchy of cross-transition probability structures was found to define the correlation structure in all cases. This insight allows decomposing contributions from different scales of the sedimentary architecture, and has led to a more fundamental understanding of mass transport processes including mechanical dispersion of solutes within aquifers, and the time-dependent retardation of reactive solutes. These processes can now be

  19. Pseudomonas aeruginosa capability to recruit zinc under conditions of limited metal availability is affected by inactivation of the ZnuABC transporter

    Science.gov (United States)

    D'Orazio, Melania; Mastropasqua, Maria Chiara; Cerasi, Mauro; Pacello, Francesca; Consalvo, Ada; Chirullo, Barbara; Mortensen, Brittany; Skaar, Eric P.; Ciavardelli, Domenico; Pasquali, Paolo; Battistoni, Andrea

    2015-01-01

    The ability of a large number of bacterial pathogens to multiply in the infected host and cause disease is dependent on their ability to express high affinity zinc importers. In many bacteria ZnuABC, a transporter of the ABC family, plays a central role in the process of zinc uptake in zinc poor environments, including the tissues of the infected host. To initiate an investigation into the relevance of the zinc uptake apparatus for Pseudomonas aeruginosa pathogenicity, we have generated a znuA mutant in the PA14 strain. We have found that this mutant strain displays a limited growth defect in zinc depleted media. The znuA mutant strain is more sensitive than the wild type strain to calprotectin-mediated growth inhibition, but both the strains are highly resistant to this zinc sequestering antimicrobial protein. Moreover, intracellular zinc content is not evidently affected by inactivation of the ZnuABC transporter. These findings suggest that P. aeruginosa is equipped with redundant mechanisms for the acquisition of zinc that might favor P. aeruginosa colonization of environments containing low levels of this metal. Nonetheless, deletion of znuA affects alginate production, reduces the activity of extracellular zinc-containing proteases, including LasA, LasB and Protease IV, and decreases the ability of P. aeruginosa to disseminate during systemic infections. These results indicate that efficient zinc acquisition is critical for the expression of various virulence features typical of P. aeruginosa and that ZnuABC also plays an important role in zinc homeostasis in this microorganism. PMID:25751674

  20. Non-equilibrium and equilibrium sorption with a linear-sorption isotherm during mass transport through an infinite, porous medium: some analytical solutions

    Energy Technology Data Exchange (ETDEWEB)

    Carnahan, C.L.; Remer, J.S.

    1981-04-01

    Analytical solutions have been developed for the problem of solute transport in a steady, three dimensional field of groundwater flow with non-equilibrium mass transfer of a radioactive species between fluid and solid phases and with anisotropic hydrodynamic dispersion. Interphase mass transport is described by a linear rate expression. Solutions are presented also for the case of equilibrium distribution of solute between fluid and solid phases. Three types of release from a point source were considered: instantaneous release of a finite mass of solute, continuous release at an exponentially decaying rate, and release for a finite period of time. Graphical displays of computational results for point-source solutions show the expected variation of sorptive retardation effects progressing from the case of no sorption, through several cases of non-equilibrium sorption, to the case of equilibrium sorption. The point-source solutions can be integrated over finite regions of a space to provide analytical solutions for regions of solute release having finite spatial extents and various geometrical shapes, thus considerably extending the utility of the point-source solutions.

  1. Measurement of Membrane Characteristics Using the Phenomenological Equation and the Overall Mass Transport Equation in Ion-Exchange Membrane Electrodialysis of Saline Water

    Directory of Open Access Journals (Sweden)

    Yoshinobu Tanaka

    2012-01-01

    Full Text Available The overall membrane pair characteristics included in the overall mass transport equation are understandable using the phenomenological equations expressed in the irreversible thermodynamics. In this investigation, the overall membrane pair characteristics (overall transport number , overall solute permeability , overall electro-osmotic permeability and overall hydraulic permeability were measured by seawater electrodialysis changing current density, temperature and salt concentration, and it was found that occasionally takes minus value. For understanding the above phenomenon, new concept of the overall concentration reflection coefficient ∗ is introduced from the phenomenological equation. This is the aim of this investigation. ∗ is defined for describing the permselectivity between solutes and water molecules in the electrodialysis system just after an electric current interruption. ∗ is expressed by the function of and . ∗ is generally larger than 1 and is positive, but occasionally ∗ becomes less than 1 and becomes negative. Negative means that ions are transferred with water molecules (solvent from desalting cells toward concentrating cells just after an electric current interruption, indicating up-hill transport or coupled transport between water molecules and solutes.

  2. Fate of mass-transport deposits in convergent margins: Super- or sub-critical state in accretionary- or non-accretionary slope toes

    Science.gov (United States)

    Ogawa, Y.; Kawamura, K.; Anma, R.

    2011-12-01

    Co-seismic mass-transportation is evidenced by voluminous bathymetric change during subduction type earthquakes of magnitude 8 or 9 class, exemplified by the March 11 2011 Tohoku earthquake in the Japan trench, where 50 m horizontal dislocation with 10 m vertical uplift was detected for the large tsunami(Kawamura et al., this session). On account of such successive mass transportation in the trench slope toe being slid into the grabens at the trench axis of the Pacific plate side lead the continuous migration of the trench slope toward the Honshu arc since the middle Miocene, playing the efficient role for the tectonic erosion (Hilde, 1983 Tectonophysics; von Huene & Lallemand, 1990 GSAB). Previously accreted materials of the former prism are largely exposed in the inner slope along the Japan trench, and the present slope is composed of brecciated, calcareous cemented mudstone and sandstone of middle Miocene age according to the submersible observation and sampling (Ogawa, 2011 Springer Book). Due to this trench migration landward, the island volcanic arc front vastly retreated to the west since the middle Miocene for more than 100 km. Such mass transportation occurred compensating the slope instability due to super-critical state of the slope angle. However, the tectonic erosion process is apt not to be preserved in ancient prisms (or "terranes") because they are entirely lost from the surface by erosion and subduction. On the other hand, many examples of such gravitational mass transportation deposits, slid-slumped deposits, liquefied and injected bodies, which are totally classified as mélanges or chaotic deposits, or olistostromes are preserved in ancient on-land prisms such as in the Shimanto and Miura-Boso accretionary complexes(Yamamoto et al., 2009 Island Arc), because they are preserved by offscraping process during plate subduction. Similar processes are known from the present Nankai prism surface and were observed by submersible and bathymetric survey

  3. Highly porous PEM fuel cell cathodes based on low density carbon aerogels as Pt-support: Experimental study of the mass-transport losses

    Science.gov (United States)

    Marie, Julien; Chenitz, Regis; Chatenet, Marian; Berthon-Fabry, Sandrine; Cornet, Nathalie; Achard, Patrick

    Carbon aerogels exhibiting high porous volumes and high surface areas, differentiated by their pore-size distributions were used as Pt-supports in the cathode catalytic layer of H 2/air-fed PEM fuel cell. The cathodes were tested as 50 cm 2 membrane electrode assemblies (MEAs). The porous structure of the synthesized catalytic layers was impacted by the nanostructure of the Pt-doped carbon aerogels (Pt/CAs). In this paper thus we present an experimental study aiming at establishing links between the porous structure of the cathode catalytic layers and the MEAs performances. For that purpose, the polarization curves of the MEAs were decomposed in 3 contributions: the kinetic loss, the ohmic loss and the mass-transport loss. We showed that the MEAs made with the different carbon aerogels had similar kinetic activities (low current density performance) but very different mass-transport voltage losses. It was found that the higher the pore-size of the initial carbon aerogel, the higher the mass-transport voltage losses. Supported by our porosimetry (N 2-adsorption and Hg-porosimetry) measurement, we interpret this apparent contradiction as the consequence of the more important Nafion penetration into the carbon aeorogel with larger pore-size. Indeed, the catalytic layers made from the larger pore-size carbon aerogel had lower porosities. We thus show in this work that carbon aerogels are materials with tailored nanostructured structure which can be used as model materials for experimentally testing the optimization of the PEM fuel cell catalytic layers.

  4. Computational methods for reactive transport modeling: An extended law of mass-action, xLMA, method for multiphase equilibrium calculations

    Science.gov (United States)

    Leal, Allan M. M.; Kulik, Dmitrii A.; Kosakowski, Georg; Saar, Martin O.

    2016-10-01

    We present an extended law of mass-action (xLMA) method for multiphase equilibrium calculations and apply it in the context of reactive transport modeling. This extended LMA formulation differs from its conventional counterpart in that (i) it is directly derived from the Gibbs energy minimization (GEM) problem (i.e., the fundamental problem that describes the state of equilibrium of a chemical system under constant temperature and pressure); and (ii) it extends the conventional mass-action equations with Lagrange multipliers from the Gibbs energy minimization problem, which can be interpreted as stability indices of the chemical species. Accounting for these multipliers enables the method to determine all stable phases without presuming their types (e.g., aqueous, gaseous) or their presence in the equilibrium state. Therefore, the here proposed xLMA method inherits traits of Gibbs energy minimization algorithms that allow it to naturally detect the phases present in equilibrium, which can be single-component phases (e.g., pure solids or liquids) or non-ideal multi-component phases (e.g., aqueous, melts, gaseous, solid solutions, adsorption, or ion exchange). Moreover, our xLMA method requires no technique that tentatively adds or removes reactions based on phase stability indices (e.g., saturation indices for minerals), since the extended mass-action equations are valid even when their corresponding reactions involve unstable species. We successfully apply the proposed method to a reactive transport modeling problem in which we use PHREEQC and GEMS as alternative backends for the calculation of thermodynamic properties such as equilibrium constants of reactions, standard chemical potentials of species, and activity coefficients. Our tests show that our algorithm is efficient and robust for demanding applications, such as reactive transport modeling, where it converges within 1-3 iterations in most cases. The proposed xLMA method is implemented in Reaktoro, a

  5. Quantifying the loss of methane through secondary gas mass transport (or 'slip') from a micro-porous membrane contactor applied to biogas upgrading.

    Science.gov (United States)

    McLeod, Andrew; Jefferson, Bruce; McAdam, Ewan J

    2013-07-01

    Secondary gas transport during the separation of a binary gas with a micro-porous hollow fibre membrane contactor (HMFC) has been studied for biogas upgrading. In this application, the loss or 'slip' of the secondary gas (methane) during separation is a known concern, specifically since methane possesses the intrinsic calorific value. Deionised (DI) water was initially used as the physical solvent. Under these conditions, carbon dioxide (CO2) and methane (CH4) absorption were dependent upon liquid velocity (V(L)). Whilst the highest CO2 flux was recorded at high V(L), selectivity towards CO2 declined due to low residence times and a diminished gas-side partial pressure, and resulted in slip of approximately 5.2% of the inlet methane. Sodium hydroxide was subsequently used as a comparative chemical absorption solvent. Under these conditions, CO2 mass transfer increased by increasing gas velocity (VG) which is attributed to the excess of reactive hydroxide ions present in the solvent, and the fast conversion of dissolved CO2 to carbonate species reinitiating the concentration gradient at the gas-liquid interface. At high gas velocities, CH4 slip was reduced to 0.1% under chemical conditions. Methane slip is therefore dependent upon whether the process is gas phase or liquid phase controlled, since methane mass transport can be adequately described by Henry's law within both physical and chemical solvents. The addition of an electrolyte was found to further retard CH4 absorption via the salting out effect. However, their applicability to physical solvents is limited since electrolytic concentration similarly impinges upon the solvents' capacity for CO2. This study illustrates the significance of secondary gas mass transport, and furthermore demonstrates that gas-phase controlled systems are recommended where greater selectivity is required.

  6. Effects of citalopram and escitalopram on fMRI response to affective stimuli in healthy volunteers selected by serotonin transporter genotype.

    Science.gov (United States)

    Henry, Michael E; Lauriat, Tara L; Lowen, Steven B; Churchill, Jeffrey H; Hodgkinson, Colin A; Goldman, David; Renshaw, Perry F

    2013-09-30

    This study was designed to assess whether functional magnetic resonance imaging (fMRI) following antidepressant administration (pharmaco-fMRI) is sufficiently sensitive to detect differences in patterns of activation between enantiomers of the same compound. Healthy adult males (n=11) participated in a randomized, double-blind, cross-over trial with three medication periods during which they received citalopram (racemic mixture), escitalopram (S-citalopram alone), or placebo for 2 weeks. All participants had high expression serotonin transporter genotypes. An fMRI scan that included passive viewing of overt and covert affective faces and affective words was performed after each medication period. Activation in response to overt faces was greater following escitalopram than following citalopram in the right insula, thalamus, and putamen when the faces were compared with a fixation stimulus. For the rapid covert presentation, a greater response was observed in the left middle temporal gyrus in the happy versus fearful contrast following escitalopram than following citalopram. Thus, the combination of genomics and fMRI was successful in discriminating between two very similar drugs. However, the pattern of activation observed suggests that further studies are indicated to understand how to optimally combine the two techniques.

  7. Considering an affect regulation framework for examining the association between body dissatisfaction and positive body image in Black older adolescent females: does body mass index matter?

    Science.gov (United States)

    Webb, Jennifer B; Butler-Ajibade, Phoebe; Robinson, Seronda A

    2014-09-01

    The present study provided an initial evaluation of an affect regulation model describing the association between body dissatisfaction and two contemporary measures of positive body image among 247 Black college-bound older adolescent females. We further tested whether possessing a higher body mass index (BMI) would strengthen these associations. Self-reported height and weight were used to calculate BMI. Respondents also completed a culturally-sensitive figure rating scale along with assessments of body appreciation and body image flexibility. Results indicated a robust positive association between the two measures of positive body image; BMI was the strongest predictor of both body appreciation and body image flexibility with body size discrepancy (current minus ideal) contributing incremental variance to both models tested. Implications for improving our understanding of the association between positive and negative body image and bolstering positive body image to promote health-protective behaviors among Black young women at this developmental juncture are discussed.

  8. An omic approach for the identification of oil sands process-affected water compounds using multivariate statistical analysis of ultrahigh resolution mass spectrometry datasets.

    Science.gov (United States)

    Chen, Yuan; McPhedran, Kerry N; Perez-Estrada, Leonidas; Gamal El-Din, Mohamed

    2015-04-01

    Oil sands process-affected water (OSPW) is a major environmental issue due to its acute and chronic toxicity to aquatic life. Advanced oxidation processes are promising treatments to successfully degrade toxic OSPW compounds. This study applied high resolution mass spectrometry to detect over 1000 compounds in OSPW samples after treatments including general ozonation, and ozone with carbonate, tert-butyl-alcohol, carbonate/tert-butyl-alcohol, tetranitromethane, or iron. Hierarchal clustering analysis showed that samples clustered based on sampling time and principal component analysis corroborated these results while also providing information on significant markers responsible for the clustering. Some markers were uniquely present in certain treatment conditions, while others showed variable behaviors in two or more treatments due to the presence of scavengers/catalysts. This advanced approach to monitoring significant changes of markers by using multivariate analysis can be invaluable for future work on OSPW treatment by-products and their potential toxicity to receiving environment organisms.

  9. A random walk solution for modeling solute transport with network reactions and multi-rate mass transfer in heterogeneous systems: Impact of biofilms

    Science.gov (United States)

    Henri, Christopher V.; Fernàndez-Garcia, Daniel

    2015-12-01

    The interplay between the spatial variability of the aquifer hydraulic properties, mass transfer due to sub-grid heterogeneity and chemical reactions often complicates reactive transport simulations. It is well documented that hydro-biochemical properties are ubiquitously heterogeneous and that diffusion and slow advection at the sub-grid scale typically leads to the conceptualization of an aquifer as a multi-porosity system. Within this context, chemical reactions taking place in mobile/immobile water regions can be substantially different between each other. This paper presents a particle-based method that can efficiently simulate heterogeneity, network reactions and multi-rate mass transfer. The approach is based on the development of transition probabilities that describe the likelihood that particles belonging to a given species and mobile/immobile domain at a given time will be transformed into another species and mobile/immobile domain afterwards. The joint effect of mass transfer and sequential degradation is shown to be non-trivial. A characteristic rebound of degradation products can be observed. This late rebound of concentrations is not driven by any change in the flow regime (e.g., pumping ceases in the pump-and-treat remediation strategy) but due to the natural interplay between mass transfer and chemical reactions. To illustrate that the method can simultaneously represent mass transfer, spatially varying properties and network reactions without numerical problems, we have simulated the degradation of tetrachloroethylene (PCE) in a three-dimensional fully heterogeneous aquifer subjected to rate-limited mass transfer. Two types of degradation modes were considered to compare the effect of an active biofilm with that of clay pods present in the aquifer. Results of the two scenarios display significantly differences. Biofilms that promote the degradation of compounds in an immobile region are shown to significantly enhance degradation, rapidly producing

  10. Comparative Label-Free Mass Spectrometric Analysis of Mildly versus Severely Affected mdx Mouse Skeletal Muscles Identifies Annexin, Lamin, and Vimentin as Universal Dystrophic Markers

    Directory of Open Access Journals (Sweden)

    Ashling Holland

    2015-06-01

    Full Text Available The primary deficiency in the membrane cytoskeletal protein dystrophin results in complex changes in dystrophic muscles. In order to compare the degree of secondary alterations in differently affected subtypes of skeletal muscles, we have conducted a global analysis of proteome-wide changes in various dystrophin-deficient muscles. In contrast to the highly degenerative mdx diaphragm muscle, which showed considerable alterations in 35 distinct proteins, the spectrum of mildly to moderately dystrophic skeletal muscles, including interosseus, flexor digitorum brevis, soleus, and extensor digitorum longus muscle, exhibited a smaller number of changed proteins. Compensatory mechanisms and/or cellular variances may be responsible for differing secondary changes in individual mdx muscles. Label-free mass spectrometry established altered expression levels for diaphragm proteins associated with contraction, energy metabolism, the cytoskeleton, the extracellular matrix and the cellular stress response. Comparative immunoblotting verified the differences in the degree of secondary changes in dystrophin-deficient muscles and showed that the up-regulation of molecular chaperones, the compensatory increase in proteins of the intermediate filaments, the fibrosis-related increase in collagen levels and the pathophysiological decrease in calcium binding proteins is more pronounced in mdx diaphragm as compared to the less severely affected mdx leg muscles. Annexin, lamin, and vimentin were identified as universal dystrophic markers.

  11. Transport Phenomena.

    Science.gov (United States)

    McCready, Mark J.; Leighton, David T.

    1987-01-01

    Discusses the problems created in graduate chemical engineering programs when students enter with a wide diversity of understandings of transport phenomena. Describes a two-semester graduate transport course sequence at the University of Notre Dame which focuses on fluid mechanics and heat and mass transfer. (TW)

  12. A Combined Approach Using Transporter-Flux Assays and Mass Spectrometry to Examine Psychostimulant Street Drugs of Unknown Content

    OpenAIRE

    Rosenauer, Rudolf; Luf, Anton; Holy, Marion; Freissmuth, Michael; SCHMID, RAINER; Sitte, Harald H

    2012-01-01

    The illicit consumption of psychoactive compounds may cause short and long-term health problems and addiction. This is also true for amphetamines and cocaine, which target monoamine transporters. In the recent past, an increasing number of new compounds with amphetamine-like structure such as mephedrone or 3,4-methylenedioxypyrovalerone (MDPV) entered the market of illicit drugs. Subtle structural changes circumvent legal restrictions placed on the parent compound. These novel drugs are effec...

  13. New analytical technique for establishing the quality of Soil Organic Matter affected by a wildfire. A first approach using Fourier transform ion cyclotron resonance mass spectrometry

    Science.gov (United States)

    Jiménez-Morillo, Nicasio T.; González-Pérez, José A.; Waggoner, Derek C.; Almendros, Gonzalo; González-Vila, Francisco J.; Hatcher, Patrick G.

    2016-04-01

    Introduction: Fire is one of the most important modulator factors of the environment and the forest. It is able to induce chemical and biological shifts and these, in turn, can alter the physical properties of soil. Generally, fire affects the most reactive fraction, soil organic matter (SOM) (González-Pérez et al., 2004) resulting in changes to several soil properties and functions. To study changes in SOM following a wildfire, researchers can count on several traditional as well as new analytical techniques. One of the most recently employed techniques is Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). This new powerful ultra-high resolution mass spectral technique, together with graphic interpretation tools such as van Krevelen diagrams (Kim et al, 2003), may be used to shed light on alterations caused by the burning of SOM. The objective of this research is to study fire impacts on SOM, using a sandy soil collected under a Cork oak (Quercus suber) in Doñana National Park, Southwest Spain. that was affected by a wildfire in August 2012. Methods: The impact of fire on SOM was studied in various different sieve fractions (coarse, 1-2 mm, and fine, organic matter. The presence of molecular formulas which plot in the aromatic and condensed aromatics regions also indicates that this fraction may have contributions from a second, more recalcitrant, organic carbon pool. The appearance of aromatic and condensed aromatic compounds could suggest that, in this fraction the fire induced condensation processes. In the burnt fine fraction, two different SOM sources of alteration could be identified; i) from microbial origin with high relative intensity of lipid-like and protein-like compounds and ii) fire origin with large amounts of condensed aromatic compounds and a high contribution from the carbohydrate-like compounds region. We suggest that these results indicate both, condensation processes yielding black carbon like materials and additions

  14. Specifications for the development of a fully three-dimensional numerical groundwater model for regional mass transport of radionuclides from a deep waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Prickett, T.A.

    1980-04-01

    Specifications are given which are necessary to develop a three-dimensional numerical model capable of simulating regional mass transport of radionuclides from a deep waste repository. The model to be developed will include all of the significant mass transport processes including flow, chemical, and thermal advection, mechanical dispersion, molecular diffusion, ion exchange reactions, and radioactive decay. The model specifications also include that density and viscosity fluid properties be functions of pressure, temperature, and concentration and take into account fluid and geologic heterogenieties by allowing possible assignment of individual values to every block of the model. The model specifications furthermore include the repository shape, input/output information, boundary conditions, and the need for documentation and a user's manual. Model code validation can be accomplished with the included known analytical or laboratory solutions. It is recommended that an existing finite-difference model (developed by INTERCOMP and INTERA, Inc.) be used as a starting point either as an acceptable basic code for modification or as a pattern for the development of a completely different numerical scheme. A ten-step plan is given to outline the general procedure for development of the code.

  15. The effect of coupled mass transport and internal reforming on modeling of solid oxide fuel cells part I: Channel-level model development and steady-state comparison

    Science.gov (United States)

    Albrecht, Kevin J.; Braun, Robert J.

    2016-02-01

    Dynamic modeling and analysis of solid oxide fuel cell systems can provide insight towards meeting transient response application requirements and enabling an expansion of the operating envelope of these high temperature systems. SOFC modeling for system studies are accomplished with channel-level interface charge transfer models, which implement dynamic conservation equations coupled with additional submodels to capture the porous media mass transport and electrochemistry of the cell. Many of these models may contain simplifications in order to decouple the mass transport, fuel reforming, and electrochemical processes enabling the use of a 1-D model. The reforming reactions distort concentration profiles of the species within the anode, where hydrogen concentration at the triple-phase boundary may be higher or lower than that of the channel altering the local Nernst potential and exchange current density. In part one of this paper series, the modeling equations for the 1-D and 'quasi' 2-D models are presented, and verified against button cell electrochemical and channel-level reforming data. Steady-state channel-level modeling results indicate a 'quasi' 2-D SOFC model predicts a more uniform temperature distribution where differences in the peak cell temperature and maximum temperature gradient are experienced. The differences are most prominent for counter-flow cell with high levels of internal reforming. The transient modeling comparison is discussed in part two of this paper series.

  16. Acclimatory responses of the Daphnia pulex proteome to environmental changes. I. Chronic exposure to hypoxia affects the oxygen transport system and carbohydrate metabolism

    Directory of Open Access Journals (Sweden)

    Madlung Johannes

    2009-04-01

    Full Text Available Abstract Background Freshwater planktonic crustaceans of the genus Daphnia show a remarkable plasticity to cope with environmental changes in oxygen concentration and temperature. One of the key proteins of adaptive gene control in Daphnia pulex under hypoxia is hemoglobin (Hb, which increases in hemolymph concentration by an order of magnitude and shows an enhanced oxygen affinity due to changes in subunit composition. To explore the full spectrum of adaptive protein expression in response to low-oxygen conditions, two-dimensional gel electrophoresis and mass spectrometry were used to analyze the proteome composition of animals acclimated to normoxia (oxygen partial pressure [Po2]: 20 kPa and hypoxia (Po2: 3 kPa, respectively. Results The comparative proteome analysis showed an up-regulation of more than 50 protein spots under hypoxia. Identification of a major share of these spots revealed acclimatory changes for Hb, glycolytic enzymes (enolase, and enzymes involved in the degradation of storage and structural carbohydrates (e.g. cellubiohydrolase. Proteolytic enzymes remained constitutively expressed on a high level. Conclusion Acclimatory adjustments of the D. pulex proteome to hypoxia included a strong induction of Hb and carbohydrate-degrading enzymes. The scenario of adaptive protein expression under environmental hypoxia can be interpreted as a process to improve oxygen transport and carbohydrate provision for the maintenance of ATP production, even during short episodes of tissue hypoxia requiring support from anaerobic metabolism.

  17. Modeling of mass and charge transport in a solid oxide fuel cell anode structure by a 3D lattice Boltzmann approach

    Science.gov (United States)

    Paradis, Hedvig; Andersson, Martin; Sundén, Bengt

    2016-08-01

    A 3D model at microscale by the lattice Boltzmann method (LBM) is proposed for part of an anode of a solid oxide fuel cell (SOFC) to analyze the interaction between the transport and reaction processes and structural parameters. The equations of charge, momentum, heat and mass transport are simulated in the model. The modeling geometry is created with randomly placed spheres to resemble the part of the anode structure close to the electrolyte. The electrochemical reaction processes are captured at specific sites where spheres representing Ni and YSZ materials are present with void space. This work focuses on analyzing the effect of structural parameters such as porosity, and percentage of active reaction sites on the ionic current density and concentration of H2 using LBM. It is shown that LBM can be used to simulate an SOFC anode at microscale and evaluate the effect of structural parameters on the transport processes to improve the performance of the SOFC anode. It was found that increasing the porosity from 30 to 50 % decreased the ionic current density due to a reduction in the number of reaction sites. Also the consumption of H2 decreased with increasing porosity. When the percentage of active reaction sites was increased while the porosity was kept constant, the ionic current density increased. However, the H2 concentration was slightly reduced when the percentage of active reaction sites was increased. The gas flow tortuosity decreased with increasing porosity.

  18. Spring 2009 Water Mass Distribution, Mixing and Transport in the Southern Adriatic after a Low Production of Winter Dense Waters

    Science.gov (United States)

    2013-05-21

    the southern Adriatic basin and meets warm and salty Modified Levantine Intermediate Water (MLIW) coming from the Ionian Sea. This study examine...and fresh intermediate water enters the southern Adriatic basin and meets warm and salty Modified Levantine Intermediate Water (MLIW) coming from the...Spring of 2009 can be observed in T–S space (Triangle 2) in Fig. 2. The saltiness of ADW compared to other Adriatic water masses is heavily influenced by

  19. Impact of heat and mass transfer during the transport of nitrogen in coal porous media on coal mine fires.

    Science.gov (United States)

    Shi, Bobo; Zhou, Fubao

    2014-01-01

    The application of liquid nitrogen injection is an important technique in the field of coal mine fire prevention. However, the mechanism of heat and mass transfer of cryogenic nitrogen in the goaf porous medium has not been well accessed. Hence, the implementation of fire prevention engineering of liquid nitrogen roughly relied on an empirical view. According to the research gap in this respect, an experimental study on the heat and mass transfer of liquid nitrogen in coal porous media was proposed. Overall, the main mechanism of liquid nitrogen fire prevention technology in the coal mine is the creation of an inert and cryogenic atmosphere. Cryogenic nitrogen gas vapor cloud, heavier than the air, would cause the phenomenon of "gravity settling" in porous media firstly. The cryogen could be applicable to diverse types of fires, both in the openings and in the enclosures. Implementation of liquid nitrogen open-injection technique in Yangchangwan colliery achieved the goals of fire prevention and air-cooling. Meanwhile, this study can also provide an essential reference for the research on heat and mass transfer in porous media in the field of thermal physics and engineering.

  20. Personality and serotonin transporter genotype interact with social context to affect immunity and viral set-point in simian immunodeficiency virus disease.

    Science.gov (United States)

    Capitanio, John P; Abel, Kristina; Mendoza, Sally P; Blozis, Shelley A; McChesney, Michael B; Cole, Steve W; Mason, William A

    2008-07-01

    From the beginning of the AIDS epidemic, stress has been a suspected contributor to the wide variation seen in disease progression, and some evidence supports this idea. Not all individuals respond to a stressor in the same way, however, and little is known about the biological mechanisms by which variations in individuals' responses to their environment affect disease-relevant immunologic processes. Using the simian immunodeficiency virus/rhesus macaque model of AIDS, we explored how personality (Sociability) and genotype (serotonin transporter promoter) independently interact with social context (Stable or Unstable social conditions) to influence behavioral expression, plasma cortisol concentrations, SIV-specific IgG, and expression of genes associated with Type I interferon early in infection. SIV viral RNA set-point was strongly and negatively correlated with survival as expected. Set-point was also associated with expression of interferon-stimulated genes, with CXCR3 expression, and with SIV-specific IgG titers. Poorer immune responses, in turn, were associated with display of sustained aggression and submission. Personality and genotype acted independently as well as in interaction with social condition to affect behavioral responses. Together, the data support an "interactionist" perspective [Eysenck, H.J., 1991. Personality, stress and disease: an interactionist perspective. Psychol. Inquiry 2, 221-232] on disease. Given that an important goal of HIV treatment is to maintain viral set-point as low as possible, our data suggest that supplementing anti-retroviral therapy with behavioral or pharmacologic modulation of other aspects of an organism's functioning might prolong survival, particularly among individuals living under conditions of threat or uncertainty.

  1. Flavonoid-mediated inhibition of intestinal ABC transporters may affect the oral bioavailability of drugs, food-borne toxic compounds and bioactive ingredients

    NARCIS (Netherlands)

    Brand, W.; Schutte, M.E.; Bladeren, van P.J.; Rietjens, I.M.C.M.

    2006-01-01

    The transcellular transport of ingested food ingredients across the intestinal epithelial barrier is an important factor determining bioavailability upon oral intake. This transcellular transport of many chemicals, food ingredients, drugs or toxic compounds over the intestinal epithelium can be high

  2. Fabrication of a Carbon Nanotube-Embedded Silicon Nitride Membrane for Studies of Nanometer-Scale Mass Transport

    Energy Technology Data Exchange (ETDEWEB)

    Holt, J K; Noy, A; Huser, T; Eaglesham, D; Bakajin, O

    2004-08-25

    A membrane consisting of multiwall carbon nanotubes embedded in a silicon nitride matrix was fabricated for fluid mechanics studies on the nanometer scale. Characterization by tracer diffusion and scanning electron microscopy suggests that the membrane is free of large voids. An upper limit to the diffusive flux of D{sub 2}O of 2.4x10-{sup 8} mole/m{sup 2}-s was determined, indicating extremely slow transport. By contrast, hydrodynamic calculations of water flow across a nanotube membrane of similar specifications predict a much higher molar flux of 1.91 mole/m{sup 2}-s, suggesting that the nanotubes produced possess a 'bamboo' morphology. The carbon nanotube membranes were used to make nanoporous silicon nitride membranes, fabricated by sacrificial removal of the carbon. Nitrogen flow measurements on these structures give a membrane permeance of 4.7x10{sup -4} mole/m{sup 2}-s-Pa at a pore density of 4x10{sup 10} cm{sup -2}. Using a Knudsen diffusion model, the average pore size of this membrane is estimated to be 66 nm, which agrees well with TEM observations of the multiwall carbon nanotube outer diameter. These membranes are a robust platform for the study of confined molecular transport, with applications inseparations and chemical sensing.

  3. Fatty acid intake and rumen fatty acid composition is affected by pre-grazing herbage mass and daily herbage allowance in Holstein dairy cows

    Directory of Open Access Journals (Sweden)

    Rafael A. Palladino

    2014-07-01

    Full Text Available The objective of this study was to investigate the effect of level of pre-grazing herbage mass (HM and daily herbage allowance (DHA on the fatty acid (FA intake and composition of ruminal content of grazing dairy cows. Four rumen fistulated Holstein-Friesian dairy cows were allocated to either a high or low HM (1700 vs 2600 kg DM ha-1 and within herbage mass treatment further allocated to a high or low DHA (20 vs 16 kg of DM cow-1 day-1 in a 4 × 4 Latin square design. Total FA intake and linolenic acid (LNA intake was higher for cows on high DHA (p<0.05. Ruminal oleic acid, linoleic and LNA were not affected by treatments. Ruminal stearic acid (C18:0 and vaccenic acid (VA concentrations were higher at low HM (43.6 and 14.8 g/100 gof FA respectively; p<0.01 compared to high HM (42.0 and 12.5 g/100 gof FA respectively for C18:0 and VA. Cows grazing high DHA had higher ruminal concentration of VA (15.3 g/100 gof FA; p<0.01 than low DHA (12.1 g/100 gof FA. Regarding milk FA composition, only some of the milk FA varied across treatments, being the VA and LNA concentrations higher at low HM (p<0.05. These data suggest that low HM and high DHA, at least within the range studied here, promotes the accumulation of ruminal VA which could be available for subsequent conversion within the mammary gland to the human health promoting c9,t11 isomer of conjugated linoleic acid.

  4. Universal temperature dependence, flux extinction, and the role of 3He impurities in superfluid mass transport through solid 4He.

    Science.gov (United States)

    Vekhov, Ye; Mullin, W J; Hallock, R B

    2014-07-18

    The mass flux, F, carried by as-grown solid (4)He in the range 25.6-26.3 bar rises with falling temperature, and at a concentration-dependent temperature, T(d), the flux decreases sharply within a few mK. We study F as a function of (3)He impurity concentration, χ. We find that T(d) is an increasing function of increasing χ. At temperatures above T(d) the flux has a universal temperature dependence and the flux terminates in a narrow window near a characteristic temperature T(h) ≈ 625 mK, which is independent of χ.

  5. Mass transport of carbon in one and two phase iron-nickel alloys in a temperature gradient

    Energy Technology Data Exchange (ETDEWEB)

    Okafor, I.C.I.; Carlson, O.N.; Martin, D.M.

    1983-10-01

    The flux of carbon atoms induced by an applied temperature gradient on a specimen was investigated for an Fe-32.5 wt pct Ni alloy for six carbon concentrations. Carbon was found to migrate to the higher temperature region in the low carbon single phase alloys. However, in the higher carbon alloys an abrupt jump in carbon concentrations results when a portion of the specimen is in a two-phase region while the portion in the one-phase region exhibits the usual solute migration toward the higher temperature. A value of -12.2 + or - 0.4 kJ mol/sup -1/ was obtained for the heat of transport of carbon in the ..gamma..-phase Fe-Ni alloys for a wide range of carbon concentrations. A model for diffusion and thermotransport in multiphase systems is presented to explain the observed results.

  6. Mass-transport deposit and mélange formation in the Ligurian accretionary complex (NW-Italy) via mutual interactions of tectonic, sedimentary and diapiric processes

    Science.gov (United States)

    Festa, A.; Codegone, G.; Dilek, Y.; Ogata, K.; Pini, G.

    2011-12-01

    Slope instability and material removal from the overriding plate are common in frontal wedges of subduction-accretionary complexes, form mass-transport deposits (MTDs), and play an important role in controlling the internal dynamics of a critical taper Coulomb wedge and its slope instability. We present different examples of ancient MTDs emplaced during the late Cretaceous-Miocene evolution of the External Ligurian accretionary wedge and the related wedge-top basins (Epiligurian Units Auct.) in the NW-Apennines, Italy. These MTDs consist of sedimentary mélanges or olistostromes and display heterogeneous deformation controlled by the degree of sediment consolidation and the velocity of gravitational processes (Festa et al., 2010 IGR; Pini et al., 2011 Springer Book). Decimeter- to meter-thick shear zones associated with localized visco-plastic deformation and highly disturbed rounded and/or subangular blocks randomly distributed in a brecciated matrix form the two end-members of structures. Crosscutting relationships between MTDs and coherent successions, tectonic mélanges - broken formation and injection bodies (shaly-dykes and/or diapirs) allow us to document their time-progressive development, the correlation with tectonic and diapiric processes, and the material redistribution forming polygenic mélanges in the frontal part of the External Ligurian accretionary wedge. Out-of-sequence "megathrust" and strike-slip faulting, fluid overpressure, presence of low-permeable layers and methane-rich fluid circulation in the sedimentary column were the main factors that controlled the emplacement of various MTDs. In all the examples described, mass-transport was closely associated and had mutual interactions with tectonic and diapiric processes (Festa, 2011 GSA Sp Publ). Tectonics played the most prominent role (directly and indirectly), whereas fluid flow and overpressure strongly controlled the mechanical behavior of sediments and facilitated the emplacement of

  7. Momentum, Heat, and Neutral Mass Transport in Convective Atmospheric Pressure Plasma-Liquid Systems and Implications for Aqueous Targets

    CERN Document Server

    Lindsay, Alexander; Slikboer, Elmar; Shannon, Steven; Graves, David

    2015-01-01

    There is a growing interest in the study of plasma-liquid interactions with application to biomedicine, chemical disinfection, agriculture, and other fields. This work models the momentum, heat, and neutral species mass transfer between gas and aqueous phases in the context of a streamer discharge; the qualitative conclusions are generally applicable to plasma-liquid systems. The problem domain is discretized using the finite element method. The most interesting and relevant model result for application purposes is the steep gradients in reactive species at the interface. At the center of where the reactive gas stream impinges on the water surface, the aqueous concentrations of OH and ONOOH decrease by roughly 9 and 4 orders of magnitude respectively within 50 $\\mu$m of the interface. Recognizing the limited penetration of reactive plasma species into the aqueous phase is critical to discussions about the therapeutic mechanisms for direct plasma treatment of biological solutions. Other interesting results fro...

  8. A high-fidelity multiphysics model for the new solid oxide iron-air redox battery part I: Bridging mass transport and charge transfer with redox cycle kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Jin, XF; Zhao, X; Huang, K

    2015-04-15

    A high-fidelity two-dimensional axial symmetrical multi-physics model is described in this paper as an effort to simulate the cycle performance of a recently discovered solid oxide metal-air redox battery (SOMARB). The model collectively considers mass transport, charge transfer and chemical redox cycle kinetics occurring across the components of the battery, and is validated by experimental data obtained from independent research. In particular, the redox kinetics at the energy storage unit is well represented by Johnson-Mehl-Avrami-Kolmogorov (JIVIAK) and Shrinking Core models. The results explicitly show that the reduction of Fe3O4 during the charging cycle limits the overall performance. Distributions of electrode potential, overpotential, Nernst potential, and H-2/H2O-concentration across various components of the battery are also systematically investigated. (C) 2015 Elsevier B.V. All rights reserved.

  9. Characterization of physical mass transport through oil sands fluid fine tailings in an end pit lake: a multi-tracer study

    Science.gov (United States)

    Dompierre, Kathryn A.; Barbour, S. Lee

    2016-06-01

    Soft tailings pose substantial challenges for mine reclamation due to their high void ratios and low shear strengths, particularly for conventional terrestrial reclamation practices. Oil sands mine operators have proposed the development of end pit lakes to contain the soft tailings, called fluid fine tailings (FFT), generated when bitumen is removed from oil sands ore. End pit lakes would be constructed within mined-out pits with FFT placed below the lake water. However, the feasibility of isolating the underlying FFT has yet to be fully evaluated. Chemical constituents of interest may move from the FFT into the lake water via two key processes: (1) advective-diffusive mass transport with upward pore water flow caused by settling of the FFT; and (2) mixing created by wind events or unstable density profiles through the lake water and upper portion of the FFT. In 2013 and 2014, temperature and stable isotopes of water profiles were measured through the FFT and lake water in the first end pit lake developed by Syncrude Canada Ltd. Numerical modelling was undertaken to simulate these profiles to identify the key mechanisms controlling conservative mass transport in the FFT. Shallow mixing of the upper 1.1 m of FFT with lake water was required to explain the observed temperature and isotopic profiles. Following mixing, the re-establishment of both the temperature and isotope profiles required an upward advective flux of approximately 1.5 m/year, consistent with average FFT settling rates measured at the study site. These findings provide important insight on the ability to sequester soft tailings in an end pit lake, and offer a foundation for future research on the development of end pit lakes as an oil sands reclamation strategy.

  10. Loss-of-function mutations in Rab escort protein 1 (REP-1 affect intracellular transport in fibroblasts and monocytes of choroideremia patients.

    Directory of Open Access Journals (Sweden)

    Natalia V Strunnikova

    Full Text Available BACKGROUND: Choroideremia (CHM is a progressive X-linked retinopathy caused by mutations in the CHM gene, which encodes Rab escort protein-1 (REP-1, an escort protein involved in the prenylation of Rabs. Under-prenylation of certain Rabs, as a result of loss of function mutations in REP-1, could affect vesicular trafficking, exocytosis and secretion in peripheral cells of CHM patients. METHODOLOGY/PRINCIPAL FINDINGS: To evaluate this hypothesis, intracellular vesicle transport, lysosomal acidification and rates of proteolytic degradation were studied in monocytes (CD14+ fraction and primary skin fibroblasts from the nine age-matched controls and thirteen CHM patients carrying 10 different loss-of-function mutations. With the use of pHrodo BioParticles conjugated with E. coli, collagen I coated FluoSpheres beads and fluorescent DQ ovalbumin with BODYPY FL dye, we demonstrated for the first time that lysosomal pH was increased in monocytes of CHM patients and, as a consequence, the rates of proteolytic degradation were slowed. Microarray analysis of gene expression revealed that some genes involved in the immune response, small GTPase regulation, transcription, cell adhesion and the regulation of exocytosis were significantly up and down regulated in cells from CHM patients compared to controls. Finally, CHM fibroblasts secreted significantly lower levels of cytokine/growth factors such as macrophage chemoattractant protein-1 (MCP-1, pigment epithelial derived factor (PEDF, tumor necrosis factor (TNF alpha, fibroblast growth factor (FGF beta and interleukin (lL-8. CONCLUSIONS/SIGNIFICANCE: We demonstrated for the first time that peripheral cells of CHM patients had increased pH levels in lysosomes, reduced rates of proteolytic degradation and altered secretion of cytokines. Peripheral cells from CHM patients expose characteristics that were not previously recognized and could used as an alternative models to study the effects of different

  11. A huge renormalization of transport effective mass in the magnetic-polaronic state of EuB{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Glushkov, V. [A.M. Prokhorov General Physics Institute of RAS, 38 Vavilov Street, Moscow 119991 (Russian Federation)], E-mail: glushkov@lt.gpi.ru; Bogach, A.; Demishev, S.; Gon' kov, K.; Ignatov, M.; Khayrullin, Eu.; Samarin, N.; Shubin, A. [A.M. Prokhorov General Physics Institute of RAS, 38 Vavilov Street, Moscow 119991 (Russian Federation); Shitsevalova, N. [Institute for Problems of Materials Science NAS, 3 Krzhizhanovsky Street, 03680 Kiev (Ukraine); Flachbart, K. [Centre of Low Temperature Physics, IEP SAS and IPS FS UPJS, SK-04001 Kosice (Slovakia); Sluchanko, N. [A.M. Prokhorov General Physics Institute of RAS, 38 Vavilov Street, Moscow 119991 (Russian Federation)

    2008-04-01

    The comprehensive study of galvanomagnetic, thermoelectric and magnetic properties was carried out on the single crystals of low carrier density ferromagnetic metal EuB{sub 6} (T{sub C}{approx}13.9 K, T{sub m}=15.8 K) in a wide range of temperatures (1.8-300 K) and magnetic fields (up to 80 kOe). The analysis of the microscopic characteristics estimated from the data revealed a giant renormalization of the charge carriers' effective mass m{sub eff}, which is observed in the paramagnetic state of this compound with strong electron correlations. The gradual decrease of m{sub eff} from the maximum of m{sub eff}{approx}30m{sub eff} detected at T*{approx}80 K to the low temperature values of m{sub eff} (T{<=}T{sub C}){approx}0.2-1m{sub 0} is discussed in terms of the phase separation with the formation of low resistive ferromagnetic nano-sized regions (ferrons) in the dielectric magnetic polaronic state (T>T{sub m}). The observed unusual behavior of m{sub eff} favors recent explanation of the genesis of the metal-insulator transition scenario proposed for La-doped EuB{sub 6} systems [U. Yu, B.I. Min, Phys. Rev. Lett. 94 (2005) 117202.].

  12. A huge renormalization of transport effective mass in the magnetic-polaronic state of EuB 6

    Science.gov (United States)

    Glushkov, V.; Bogach, A.; Demishev, S.; Gon'kov, K.; Ignatov, M.; Khayrullin, Eu.; Samarin, N.; Shubin, A.; Shitsevalova, N.; Flachbart, K.; Sluchanko, N.

    2008-04-01

    The comprehensive study of galvanomagnetic, thermoelectric and magnetic properties was carried out on the single crystals of low carrier density ferromagnetic metal EuB 6 ( TC≈13.9 K, Tm=15.8 K) in a wide range of temperatures (1.8-300 K) and magnetic fields (up to 80 kOe). The analysis of the microscopic characteristics estimated from the data revealed a giant renormalization of the charge carriers’ effective mass meff, which is observed in the paramagnetic state of this compound with strong electron correlations. The gradual decrease of meff from the maximum of meff∼30 meff detected at T*≈80 K to the low temperature values of meff ( T⩽ TC)∼0.2-1 m0 is discussed in terms of the phase separation with the formation of low resistive ferromagnetic nano-sized regions (ferrons) in the dielectric magnetic polaronic state ( T> Tm). The observed unusual behavior of meff favors recent explanation of the genesis of the metal-insulator transition scenario proposed for La-doped EuB 6 systems [U. Yu, B.I. Min, Phys. Rev. Lett. 94 (2005) 117202.].

  13. Fluvial Transport Model from Spatial Distribution Analysis of Libyan Desert Glass Mass on the Great Sand Sea (Southwest Egypt: Clues to Primary Glass Distribution

    Directory of Open Access Journals (Sweden)

    Nancy Jimenez-Martinez

    2015-04-01

    Full Text Available Libyan Desert Glass (LDG is a natural silica-rich melted rock found as pieces scattered over the sand and bedrock of the Western Desert of Egypt, northeast of the Gilf Kebir. In this work, a population mixture analysis serves to relate the present spatial distribution of LDG mass density with the Late Oligocene–Early Miocene fluvial dynamics in the Western Desert of Egypt. This was verified from a spatial distribution model that was predicted from the log-normal kriging method using the LDG–mass-dependent transformed variable, Y(x. Both low- and high-density normal populations (–9.2 < Y(x < –3.5 and –3.8 < Y(x < 2.1, respectively were identified. The low-density population was the result of an ordinary fluvial LDG transport/deposition sequence that was active from the time of the melting process, and which lasted until the end of activity of the Gilf River. The surface distribution of the high-density population allowed us to restrict the source area of the melting process. We demonstrate the importance of this geostatistical study in unveiling the probable location of the point where the melting of surficial material occurred and the role of the Gilf River in the configuration of the observed strewn field.

  14. 正渗透原理及分离传质过程浅析%Forward osmosis membrane process and its mass transport mechanisms

    Institute of Scientific and Technical Information of China (English)

    王亚琴; 徐铜文; 王焕庭

    2013-01-01

    正渗透是一种新兴的膜分离技术,因其低能耗、抗污染、对污染物截留能力广等的潜力,在脱盐、废水处理、农业和电力等领域的应用前景备受瞩目.本文介绍了正渗透概念和原理,通过正渗透传递过程的现象学模型,对浓差极差极化与质量传递的关系作出分析,提出了强化正渗透传质过程的一些建议.%Forward osmosis (FO) is an emerging technology that has attracted numerous attention for its potential applications in many areas, such as desalination, waste water treatment, agriculture, and power generation. FO has shown many advantages over reverse osmosis process in terms of low energy consumption, high rejection of a wide range of contaminants and lower fouling tendency. In this paper the concept and mechanism of FO are presented, and the calculation and determination of the osmotic pressure of solution are discussed. The relationship between concentration polarization and mass transport through the FO membrane on the phenomenological model is analyzed. Some strategies about the enhancement of mass transfer processes of FO operation are suggested. The opportunities and challenges exist side by side in the development of FO technology.

  15. The Leo Archipelago: A System of Earth-Rings for Communications, Mass-Transport to Space, Solar Power, and Control of Global Warming

    CERN Document Server

    Meulenberg, Andrew

    2010-01-01

    A multi-purpose low-earth-orbit system of rings circling the earth - the "LEO ARCHIPELAGO" - is proposed as a means of solving or bypassing many major problems hindering man's quest to get into space. A fiber-optic ring about the earth would be an initial testing and developmental stage for the ring systems, while providing cash-flow through a LEO-based, high-band-width, world-wide communication system. A Low-Earth-Orbit-based space-elevator system, "Sling-on-a-Ring," is proposed as the crucial developmental stage of the LEO Archipelago. Being a LEO-based heavy-mass lifter, rather than earth- or GEO-based, it is much less massive and therefore less costly than other proposed space-elevators. With the advent of lower-cost, higher-mass transport to orbit, the options for further space development (e.g., communications, space solar power, radiation dampers, sun shades, and permanent LEO habitation) are greatly expanded. This paper provides an update of the Sling-on-a-Ring concept in terms of new materials, poten...

  16. Interfacing 3D micro/nanochannels with a branch-shaped reservoir enhances fluid and mass transport

    Science.gov (United States)

    Kumar, Prasoon; Gandhi, Prasanna S.; Majumder, Mainak

    2017-01-01

    Three-dimensional (3D) micro/nanofluidic devices can accelerate progress in numerous fields such as tissue engineering, drug delivery, self-healing and cooling devices. However, efficient connections between networks of micro/nanochannels and external fluidic ports are key to successful applications of 3D micro/nanofluidic devices. Therefore, in this work, the extent of the role of reservoir geometry in interfacing with vascular (micro/nanochannel) networks, and in the enabling of connections with external fluidic ports while maintaining the compactness of devices, has been experimentally and theoretically investigated. A statistical modelling suggested that a branch-shaped reservoir demonstrates enhanced interfacing with vascular networks when compared to other regular geometries of reservoirs. Time-lapse dye flow experiments by capillary action through fabricated 3D micro/nanofluidic devices confirmed the connectivity of branch-shaped reservoirs with micro/nanochannel networks in fluidic devices. This demonstrated a ~2.2-fold enhancement of the volumetric flow rate in micro/nanofluidic networks when interfaced to branch-shaped reservoirs over rectangular reservoirs. The enhancement is due to a ~2.8-fold increase in the perimeter of the reservoirs. In addition, the mass transfer experiments exhibited a ~1.7-fold enhancement in solute flux across 3D micro/nanofluidic devices that interfaced with branch-shaped reservoirs when compared to rectangular reservoirs. The fabrication of 3D micro/nanofluidic devices and their efficient interfacing through branch-shaped reservoirs to an external fluidic port can potentially enable their use in complex applications, in which enhanced surface-to-volume interactions are desirable.

  17. Momentum, heat, and neutral mass transport in convective atmospheric pressure plasma-liquid systems and implications for aqueous targets

    Science.gov (United States)

    Lindsay, Alexander; Anderson, Carly; Slikboer, Elmar; Shannon, Steven; Graves, David

    2015-10-01

    There is a growing interest in the study of plasma-liquid interactions with application to biomedicine, chemical disinfection, agriculture, and other fields. This work models the momentum, heat, and neutral species mass transfer between gas and aqueous phases in the context of a streamer discharge; the qualitative conclusions are generally applicable to plasma-liquid systems. The problem domain is discretized using the finite element method. The most interesting and relevant model result for application purposes is the steep gradients in reactive species at the interface. At the center of where the reactive gas stream impinges on the water surface, the aqueous concentrations of OH and ONOOH decrease by roughly 9 and 4 orders of magnitude respectively within 50 μ m of the interface. Recognizing the limited penetration of reactive plasma species into the aqueous phase is critical to discussions about the therapeutic mechanisms for direct plasma treatment of biological solutions. Other interesting results from this study include the presence of a 10 K temperature drop in the gas boundary layer adjacent to the interface that arises from convective cooling. Though the temperature magnitudes may vary among atmospheric discharge types (different amounts of plasma-gas heating), this relative difference between gas and liquid bulk temperatures is expected to be present for any system in which convection is significant. Accounting for the resulting difference between gas and liquid bulk temperatures has a significant impact on reaction kinetics; factor of two changes in terminal aqueous species concentrations like H2O2, NO2- , and NO3- are observed in this study if the effect of evaporative cooling is not included.

  18. Mass transport of low density lipoprotein in reconstructed hemodynamic environments of human carotid arteries: the role of volume and solute flux through the endothelium.

    Science.gov (United States)

    Kim, Sungho; Giddens, Don P

    2015-04-01

    The accumulation of low density lipoprotein (LDL) in the arterial intima is a critical step in the initiation and progression of atheromatous lesions. In this study we examine subject-specific LDL transport into the intima of carotid bifurcations in three human subjects using a three-pore model for LDL mass transfer. Subject-specific carotid artery computational models were derived using magnetic resonance imaging (MRI) to obtain the geometry and phase-contract MRI (PC-MRI) to acquire pulsatile inflow and outflow boundary conditions for each subject. The subjects were selected to represent a wide range of anatomical configurations and different stages of atherosclerotic development from mild to moderate intimal thickening. A fluid-solid interaction (FSI) model was implemented in the computational fluid dynamics (CFD) approach in order to consider the effects of a compliant vessel on wall shear stress (WSS). The WSS-dependent response of the endothelium to LDL mass transfer was modeled by multiple pathways to include the contributions of leaky junctions, normal junctions, and transcytosis to LDL solute and plasma volume flux from the lumen into the intima. Time averaged WSS (TAWSS) over the cardiac cycle was computed to represent the spatial WSS distribution, and wall thickness (WTH) was determined from black blood MRI (BBMRI) so as to visualize intimal thickening patterns in the bifurcations. The regions which are exposed to low TAWSS correspond to elevated WTH and higher mass and volume flux via the leaky junctions. In all subjects, the maximum LDL solute flux was observed to be immediately downstream of the stenosis, supporting observations that existing atherosclerotic lesions tend to progress in the downstream direction of the stenosis.

  19. The "RTR" medical response system for nuclear and radiological mass-casualty incidents: a functional TRiage-TReatment-TRansport medical response model.

    Science.gov (United States)

    Hrdina, Chad M; Coleman, C Norman; Bogucki, Sandy; Bader, Judith L; Hayhurst, Robert E; Forsha, Joseph D; Marcozzi, David; Yeskey, Kevin; Knebel, Ann R

    2009-01-01

    Developing a mass-casualty medical response to the detonation of an improvised nuclear device (IND) or large radiological dispersal device (RDD) requires unique advanced planning due to the potential magnitude of the event, lack of warning, and radiation hazards. In order for medical care and resources to be collocated and matched to the requirements, a [US] Federal interagency medical response-planning group has developed a conceptual approach for responding to such nuclear and radiological incidents. The "RTR" system (comprising Radiation-specific TRiage, TReatment, TRansport sites) is designed to support medical care following a nuclear incident. Its purpose is to characterize, organize, and efficiently deploy appropriate materiel and personnel assets as close as physically possible to various categories of victims while preserving the safety of responders. The RTR system is not a medical triage system for individual patients. After an incident is characterized and safe perimeters are established, RTR sites should be determined in real-time that are based on the extent of destruction, environmental factors, residual radiation, available infrastructure, and transportation routes. Such RTR sites are divided into three types depending on their physical/situational relationship to the incident. The RTR1 sites are near the epicenter with residual radiation and include victims with blast injuries and other major traumatic injuries including radiation exposure; RTR2 sites are situated in relationship to the plume with varying amounts of residual radiation present, with most victims being ambulatory; and RTR3 sites are collection and transport sites with minimal or no radiation present or exposure risk and a victim population with a potential variety of injuries or radiation exposures. Medical Care sites are predetermined sites at which definitive medical care is given to those in immediate need of care. They include local/regional hospitals, medical centers, other

  20. Ionome and expression level of Si transporter genes (Lsi1, Lsi2, and Lsi6) affected by Zn and Si interaction in maize.

    Science.gov (United States)

    Bokor, Boris; Bokorová, Silvia; Ondoš, Slavomír; Švubová, Renáta; Lukačová, Zuzana; Hýblová, Michaela; Szemes, Tomáš; Lux, Alexander

    2015-05-01

    Zinc (Zn) is an essential microelement involved in various plant physiological processes. However, in excess, Zn becomes toxic and represents serious problem for plants resulting in Zn toxicity symptoms and decreasing biomass production. The effect of high Zn and its combination with silicon (Si) on ionome and expression level of ZmLsi genes was investigated in maize (Zea mays, L; hybrid Novania). Plants were cultivated hydroponically in different treatments: control (C), Zn (800 μM ZnSO4 · 7H2O), Si5 (5 mM of sodium silicate solution), and Si5 + Zn (combination of Zn and Si treatments). Growth of plants cultivated for 10 days was significantly inhibited in the presence of high Zn concentration and also by Zn and Si interaction in plants. Based on principal component analysis (PCA) and mineral element concentration in tissues, root ionome was significantly altered in both Zn and Si5 + Zn treatments in comparison to control. Mineral elements Mn, Fe, Ca, P, Mg, Ni, Co, and K significantly decreased, and Se increased in Zn and Si5 + Zn treatments. Shoot ionome was less affected than root ionome. Concentration of shoot Cu, Mn, and P decreased, and Mo increased in Zn and Si5 + Zn treatments. The PCA also revealed that the responsibility for ionome changes is mainly due to Zn exposure and also, but less, by Si application to Zn stressed plants. Expression level of Lsi1 and Lsi2 genes for the Si influx and efflux transporters was downregulated in roots after Si supply and even more downregulated by Zinc alone and also by Zn and Si interaction. Expression level of shoot Lsi6 gene was differently regulated in the first and second leaf. These results indicate negative effect of high Zn alone and also in interaction with Si on Lsi gene expression level and together with ionomic data, it was shown that homeostatic network of mineral elements was disrupted and caused negative alterations in mineral nutrition of young maize plants.

  1. X-linked dystonia parkinsonism syndrome (XDP, lubag): disease-specific sequence change DSC3 in TAF1/DYT3 affects genes in vesicular transport and dopamine metabolism.

    Science.gov (United States)

    Herzfeld, Thilo; Nolte, Dagmar; Grznarova, Maria; Hofmann, Andrea; Schultze, Joachim L; Müller, Ulrich

    2013-03-01

    X-chromosomal dystonia parkinsonism syndrome (XDP, 'lubag') is associated with sequence changes within the TAF1/DYT3 multiple transcript system. Although most sequence changes are intronic, one, disease-specific single-nucleotide change 3 (DSC3), is located within an exon (d4). Transcribed exon d4 occurs as part of multiple splice variants. These variants include exons d3 and d4 spliced to exons of TAF1, and an independent transcript composed of exons d2-d4. Location of DSC3 in exon d4 and utilization of this exon in multiple splice variants suggest an important role of DSC3 in the XDP pathogenesis. To test this hypothesis, we transfected neuroblastoma cells with four expression constructs, including exons d2-d4 [d2-d4/wild-type (wt) and d2-d4/DSC3] and d3-d4 (d3-d4/wt and d3-d4/DSC3). Expression profiling revealed a dramatic effect of DSC3 on overall gene expression. Three hundred and sixty-two genes differed between cells containing d2-d4/wt and d2-d4/DSC3. Annotation clustering revealed enrichment of genes related to vesicular transport, dopamine metabolism, synapse function, Ca(2+) metabolism and oxidative stress. Two hundred and eleven genes were differentially expressed in d3-d4/wt versus d3-d4/DSC3. Annotation clustering highlighted genes in signal transduction and cell-cell interaction. The data show an important role of physiologically occurring transcript d2-d4 in normal brain function. Interference with this role by DSC3 is a likely pathological mechanism in XDP. Disturbance of dopamine function and of Ca(2+) metabolism can explain abnormal movement; loss of protection against reactive oxygen species may account for the neurodegenerative changes in XDP. Although d3-d4 also affect genes potentially related to neurodegenerative processes, their physiologic role as splice variants of TAF1 awaits further exploration.

  2. Nearshore transport processes affecting the dilution and fate of energy-related contaminants. Progress report, October 1, 1979-September 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Blanton, J. O.

    1980-07-15

    Research was conducted on physical oceanograhic processes off the Georgia Coast. Spatral variations in momentum and salt flux were measured to determine their importance in generating flow and salt transport. Analyses of data are presently underway.

  3. Diagnosis and therapeutic monitoring of inborn errors of creatine metabolism and transport using liquid chromatography-tandem mass spectrometry in urine, plasma and CSF.

    Science.gov (United States)

    Haas, Dorothea; Gan-Schreier, Hongying; Langhans, Claus-Dieter; Anninos, Alexandros; Haege, Gisela; Burgard, Peter; Schulze, Andreas; Hoffmann, Georg F; Okun, Jürgen G

    2014-03-15

    Biochemical detection of inborn errors of creatine metabolism or transport relies on the analysis of three main metabolites in biological fluids: guanidinoacetate (GAA), creatine (CT) and creatinine (CTN). Unspecific clinical presentation of the diseases might be the cause that only few patients have been diagnosed so far. We describe a LC-MS/MS method allowing fast and reliable diagnosis by simultaneous quantification of GAA, CT and CTN in urine, plasma and cerebrospinal fluid (CSF) and established reference values for each material. For quantification deuterated stable isotopes of each analyte were used as internal standards. GAA, CT and CTN were separated by reversed-phase HPLC. The characterization was carried out by scanning the ions of each compound by negative ion tandem mass spectrometry. Butylation is needed to achieve sufficient signal intensity for GAA and CT but it is not useful for analyzing CTN. The assay is linear in a broad range of analyte concentrations usually found in urine, plasma and CSF. Comparison of the "traditional" cation-exchange chromatography and LC-MS/MS showed proportional differences but linear relationships between the two methods. The described method is characterized by high speed and linearity over large concentration ranges comparable to other published LC-MS methods but with higher sensitivity for GAA and CT. In addition, we present the largest reference group ever published for guanidino compounds in all relevant body fluids. Therefore this method is applicable for high-throughput approaches for diagnosis and follow-up of inborn errors of creatine metabolism and transport.

  4. Library screening by means of mass spectrometry (MS) binding assays-exemplarily demonstrated for a pseudostatic library addressing γ-aminobutyric acid (GABA) transporter 1 (GAT1).

    Science.gov (United States)

    Sindelar, Miriam; Wanner, Klaus T

    2012-09-01

    In the present study, the application of mass spectrometry (MS) binding assays as a tool for library screening is reported. For library generation, dynamic combinatorial chemistry (DCC) was used. These libraries can be screened by means of MS binding assays when appropriate measures are taken to render the libraries pseudostatic. That way, the efficiency of MS binding assays to determine ligand binding in compound screening with the ease of library generation by DCC is combined. The feasibility of this approach is shown for γ-aminobutyric acid (GABA) transporter 1 (GAT1) as a target, representing the most important subtype of the GABA transporters. For the screening, hydrazone libraries were employed that were generated in the presence of the target by reacting various sets of aldehydes with a hydrazine derivative that is delineated from piperidine-3-carboxylic acid (nipecotic acid), a common fragment of known GAT1 inhibitors. To ensure that the library generated is pseudostatic, a large excess of the nipecotic acid derivative is employed. As the library is generated in a buffer system suitable for binding and the target is already present, the mixtures can be directly analyzed by MS binding assays-the process of library generation and screening thus becoming simple to perform. The binding affinities of the hits identified by deconvolution were confirmed in conventional competitive MS binding assays performed with single compounds obtained by separate synthesis. In this way, two nipecotic acid derivatives exhibiting a biaryl moiety, 1-{2-[2'-(1,1'-biphenyl-2-ylmethylidene)hydrazine]ethyl}piperidine-3-carboxylic acid and 1-(2-{2'-[1-(2-thiophenylphenyl)methylidene]hydrazine}ethyl)piperidine-3-carboxylic acid, were found to be potent GAT1 ligands exhibiting pK(i) values of 6.186 ± 0.028 and 6.229 ± 0.039, respectively. This method enables screening of libraries, whether generated by conventional chemistry or DCC, and is applicable to all kinds of targets including

  5. Development of an aerosol chemical transport model RAQM2 and predictions of Northeast Asian aerosol mass, size, chemistry, and mixing type

    Directory of Open Access Journals (Sweden)

    M. Kajino

    2012-05-01

    Full Text Available A new aerosol chemical transport model, Regional Air Quality Model 2 (RAQM2, was developed to simulate Asian air quality. We implemented a simple version of a modal-moment aerosol dynamics model (MADMS and achieved a completely dynamic (non-equilibrium solution of a gas-to-particle mass transfer over a wide range of aerosol diameters from 1 nm to super μm. To consider a variety of atmospheric aerosol properties, a category approach was utilized, in which the aerosols were distributed into 4 categories: Aitken mode (ATK, soot-free accumulation mode (ACM, soot aggregates (AGR, and coarse mode (COR. Condensation, evaporation, and Brownian coagulations for each category were solved dynamically. A regional-scale simulation (Δ x = 60 km was performed for the entire year of 2006 covering the Northeast Asian region. Statistical analyses showed that the model reproduced the regional-scale transport and transformation of the major inorganic anthropogenic and natural air constituents within factors of 2 to 5. The modeled PM1/bulk ratios of the chemical components were consistent with the observations, indicating that the simulations of aerosol mixing types were successful. Non-sea salt SO42- mixed with ATK + ACM was the largest at Hedo in summer, whereas it mixed with AGR was substantial in cold seasons. Ninety-eight percent of the modeled NO3- was mixed with sea salt at Hedo, whereas 53.7% of the NO3- was mixed with sea salt at Gosan, located upwind toward the Asian continent. The condensation of HNO3 onto sea salt particles during transport over the ocean makes the difference in the NO3- mixing type at the two sites. Because the aerosol mixing type alters optical properties and cloud condensation nuclei activity, its accurate prediction and evaluation are indispensable for aerosol-cloud-radiation interaction studies.

  6. The novel GLP-1-gastrin dual agonist ZP3022 improves glucose homeostasis and increases β-cell mass without affecting islet number in db/db mice.

    Science.gov (United States)

    Dalbøge, Louise S; Almholt, Dorthe L C; Neerup, Trine S R; Vrang, Niels; Jelsing, Jacob; Fosgerau, Keld

    2014-08-01

    Antidiabetic treatments aiming to preserve or even to increase β-cell mass are currently gaining increased interest. Here we investigated the effect of chronic treatment with the novel glucagon-like peptide-1 (GLP-1)-gastrin dual agonist ZP3022 (HGEGTFTSDLSKQMEEEAVRLFIEWLKN-8Ado-8Ado-YGWLDF-NH2) on glycemic control, β-cell mass and proliferation, and islet number. Male db/db mice were treated with ZP3022, liraglutide, or vehicle for 2, 4, or 8 weeks, with terminal assessment of hemoglobin A1c, basal blood glucose, and plasma insulin concentrations. Pancreata were removed for immunohistochemical staining and stereological quantification of β-cell mass, islet numbers, proliferation, and apoptosis. Treatment with ZP3022 or liraglutide led to a significant improvement in glycemic control. ZP3022 treatment resulted in a sustained increase in β-cell mass after 4 and 8 weeks of treatment, whereas the effect of liraglutide was transient. The expansion in β-cell mass observed in the ZP3022-treated mice appeared to be driven by increased β-cell proliferation in existing islets rather than by formation of new islets, as mean islet mass increased but the number of islets remained constant. Our data demonstrate that the GLP-1-gastrin dual agonist ZP3022 causes a sustained improvement in glycemic control accompanied by an increase in β-cell mass, increased proliferation, and increased mean islet mass. The results highlight that the GLP-1-gastrin dual agonist increases β-cell mass more than liraglutide and that dual agonists could potentially be developed into a new class of antidiabetic treatments.

  7. Sulphate and Chloride-Dependent Potassium Transport in Human Erythrocytes are Affected by Crude Venom from Nematocysts of the Jellyfish Pelagia noctiluca

    Directory of Open Access Journals (Sweden)

    Rossana Morabito

    2013-12-01

    Full Text Available Background: It has been reported that biologically active compounds extracted from Cnidaria venom may induce damage by oxidative stress. Erythrocytes are constantly exposed to oxidative stresses, which can contribute to sulphydril (SH- group oxidation and cell membrane deformability accompanied with activation of K-Cl co-transport and inhibition of anion transport. In this regard, Band 3 protein is responsible for mediating the electroneutral exchange of chloride (Cl- for bicarbonate (HCO3-, particularly in erythrocytes, where it is the most abundant membrane protein. The aim of this study was to elucidate the effect of crude venom extracted from Pelagia noctiluca nematocysts on Band 3 -mediated anion transport in human erythrocytes. Methods: Erythrocytes were tested for SO42- uptake, K+ efflux, glutathione (GSH levels and concentration of SH- groups. Results: The rate constant of SO42- uptake decreased progressively to 58% of control with increasing venom doses, and showed a 28% decrease after 2 mM NEM treatment. These effects can be explained by oxidative stress, which was reflected by decreased GSH levels in venom-treated erythrocytes. Hence, the decreased efficiency of anion transport may be due to changes in Band 3 structure caused by SH-group oxidation and reduced GSH concentration. In addition, an increased Cl--dependent K+ efflux was observed in venom-treated erythrocytes. Conclusion: Our results suggest that crude venom from Pelagia noctiluca alters cell membrane transport in human erythrocytes.

  8. Auxin polar transport of etiolated epicotyls of ageotropum pea seedlings is not affected by gravistimulation: Relevance to automorphosis-like growth and development

    Science.gov (United States)

    Miyamoto, K.; Hoshino, T.; Takahashi, Y.; Ueda, J.

    Both true microgravity conditions in space STS-95 space experiment and simulated ones on a three-dimensional 3-D clinostat have been demonstrated to induce automorphosis in etiolated pea Pisum sativum L cv Alaska seedlings represented as epicotyl bending as well as changes in root growth direction and inhibition of hook formation and to alter the activities of auxin polar transport of epicotyls The fact that the application of inhibitors of auxin polar transport phenocopied automorphosis together with the result of detail kinetic analyses of epicotyl bending on the 3-D clinostat suggests that automorphosis of etiolated pea epicotyls is due to suppression of a negative gravitropic response on 1 g conditions and graviresponse of etiolated pea seedlings under 1 g conditions requires normal activities of auxin polar transport To study the role of auxin polar transport in graviresponse in early growth stage of etiolated pea seedlings effect of gravistimulation on auxin polar transport in epicotyls of Alaska pea seedlings was studied in comparison with that of the agravitropic pea mutant ageotropum seedlings Dry pea seeds whose embryo axes were set in a horizontal position referred to as horizontal position or an inclinational one to the gravity vector referred to as inclinational position allowed to germinate and grow in the dark for 2 5 days Epicotyls of etiolated Alaska pea seedlings grown under horizontal position showed negative gravitropisum due to relatively larger elongation in the proximal side to the cotyledons

  9. [Robbers on board: exposure to violence, insecurity, and other health hazards among mass transportation workers and passengers in Salvador, Bahia, Brazil].

    Science.gov (United States)

    Paes-Machado, Eduardo; Levenstein, Charles

    2002-01-01

    This paper examines the impact of violent crime on working conditions, health, and security for bus drivers and ticket takers in the mass transportation system in Salvador, Bahia, Brazil. The research included 195 interviews with workers, labor union officials, passengers, management, and police. In the last ten years there have been 20,572 robberies in a fleet of 2,400 buses operated by 10,151 workers, with 67 deaths and more than US$500,000 in company losses. Perpetrators are typically poor, unemployed youths, the majority of whom first offenders, seeking easy money primarily for leisure pursuits. The average "take" from such robberies is minimal. The authors observed a pattern of bus robberies as a psychological power game which, for bus workers, apart from physical injuries and fatalities, generates fear, identity conflicts, tense relations with passengers, and labor conflicts involving the recovery of stolen fares and worker and passenger security issues. The article also outlines and evaluates the efficiency of security measures including the use of lethal force by police.

  10. Mass transport in a PEMFC fuel battery using combinations of monopolar plates and reaction-diffusion medium; Transporte de masa en una pila a combustible tipo PEMFC utilizando combinaciones de platos monopolares y medios de difusion de reactivos

    Energy Technology Data Exchange (ETDEWEB)

    Rosas Paleta, M. G. Araceli [Benemerita Universidad Autonoma de Puebla, Puebla, Puebla (Mexico); Bautista Rodriguez, C. Moises [Alter-Energias Puebla, Puebla (Mexico)] email: celso.bautista@thyssenkrupp.com; Rivera Marquez, J. Antonio; Tepale Ochoa, Nancy [Benemerita Universidad Autonoma de Puebla, Puebla, Puebla (Mexico)

    2009-09-15

    The efficiency of a PEMFC fuel battery is limited due to a variety of mass transport-related phenomena that take place while it is operating. The electromotive force of the PEM fuel battery is related to the generation of concentration gradients resulting from the distribution of the reactants on the active sites of the electrode. The reactant gases supplied to the PEMFC are distributed over the diffusion layer of the electrodes through the channels of the polar plates. They then spread toward the active layer where the semi-reactions take place. Another important aspect is the presence of water molecules, a product of the reaction. When they accumulate, they cover the porosity of the electrodes, involving the reduction in the flow of reactants, even at high current density values and, combined with the diffusion phenomena involved, cause the PEMFC to complete cease functioning. The critical parameters for the transport phenomena are porosity, the diameter of the pore in the diffusion layer and the characteristics of the distribution of the reactants. The present works includes an experimental design of two distribution media and two diffusion media of the reactant gases in a PEMFC, involving three case studies. The results show significantly notable interactions between the diameter of the pore, the type of diffusion layer applied and the type of distributor applied. The combination in the second case significantly reduces the ohmic resistance and moderately reduces the diffusion resistances. While the combination in case three notably increases the ohmic resistance, diffusion resistance is significantly reduced. [Spanish] La eficiencia de una pila a combustible tipo PEMFC es limitada por diversos fenomenos de transporte de masa presentes durante su funcionamiento. La fuerza electromotriz de la pila a combustible tipo PEM esta relacionada con la generacion de gradientes de concentracion los cuales se dan como resultado de la distribucion de los reactivos sobre los

  11. Evaluation of chemical transport model predictions of primary organic aerosol for air masses classified by particle component-based factor analysis

    Directory of Open Access Journals (Sweden)

    C. A. Stroud

    2012-09-01

    Full Text Available Observations from the 2007 Border Air Quality and Meteorology Study (BAQS-Met 2007 in Southern Ontario, Canada, were used to evaluate predictions of primary organic aerosol (POA and two other carbonaceous species, black carbon (BC and carbon monoxide (CO, made for this summertime period by Environment Canada's AURAMS regional chemical transport model. Particle component-based factor analysis was applied to aerosol mass spectrometer measurements made at one urban site (Windsor, ON and two rural sites (Harrow and Bear Creek, ON to derive hydrocarbon-like organic aerosol (HOA factors. A novel diagnostic model evaluation was performed by investigating model POA bias as a function of HOA mass concentration and indicator ratios (e.g. BC/HOA. Eight case studies were selected based on factor analysis and back trajectories to help classify model bias for certain POA source types. By considering model POA bias in relation to co-located BC and CO biases, a plausible story is developed that explains the model biases for all three species.

    At the rural sites, daytime mean PM1 POA mass concentrations were under-predicted compared to observed HOA concentrations. POA under-predictions were accentuated when the transport arriving at the rural sites was from the Detroit/Windsor urban complex and for short-term periods of biomass burning influence. Interestingly, the daytime CO concentrations were only slightly under-predicted at both rural sites, whereas CO was over-predicted at the urban Windsor site with a normalized mean bias of 134%, while good agreement was observed at Windsor for the comparison of daytime PM1 POA and HOA mean values, 1.1 μg m−3 and 1.2 μg m−3, respectively. Biases in model POA predictions also trended from positive to negative with increasing HOA values. Periods of POA over-prediction were most evident at the urban site on calm nights due to an overly-stable model surface layer

  12. Evaluation of chemical transport model predictions of primary organic aerosol for air masses classified by particle-component-based factor analysis

    Directory of Open Access Journals (Sweden)

    C. A. Stroud

    2012-02-01

    Full Text Available Observations from the 2007 Border Air Quality and Meteorology Study (BAQS-Met 2007 in southern Ontario (ON, Canada, were used to evaluate Environment Canada's regional chemical transport model predictions of primary organic aerosol (POA. Environment Canada's operational numerical weather prediction model and the 2006 Canadian and 2005 US national emissions inventories were used as input to the chemical transport model (named AURAMS. Particle-component-based factor analysis was applied to aerosol mass spectrometer measurements made at one urban site (Windsor, ON and two rural sites (Harrow and Bear Creek, ON to derive hydrocarbon-like organic aerosol (HOA factors. Co-located carbon monoxide (CO, PM2.5 black carbon (BC, and PM1 SO4 measurements were also used for evaluation and interpretation, permitting a detailed diagnostic model evaluation.

    At the urban site, good agreement was observed for the comparison of daytime campaign PM1 POA and HOA mean values: 1.1 μg m−3 vs. 1.2 μg m−3, respectively. However, a POA overprediction was evident on calm nights due to an overly-stable model surface layer. Biases in model POA predictions trended from positive to negative with increasing HOA values. This trend has several possible explanations, including (1 underweighting of urban locations in particulate matter (PM spatial surrogate fields, (2 overly-coarse model grid spacing for resolving urban-scale sources, and (3 lack of a model particle POA evaporation process during dilution of vehicular POA tail-pipe emissions to urban scales. Furthermore, a trend in POA bias was observed at the urban site as a function of the BC/HOA ratio, suggesting a possible association of POA underprediction for diesel combustion sources. For several time periods, POA overprediction was also observed for sulphate-rich plumes, suggesting that our model POA fractions for the PM2.5 chemical

  13. Potassium nutrition of ectomycorrhizal Pinus pinaster: overexpression of the Hebeloma cylindrosporum HcTrk1 transporter affects the translocation of both K(+) and phosphorus in the host plant.

    Science.gov (United States)

    Garcia, Kevin; Delteil, Amandine; Conéjéro, Geneviève; Becquer, Adeline; Plassard, Claude; Sentenac, Hervé; Zimmermann, Sabine

    2014-02-01

    Mycorrhizal associations are known to improve the hydro-mineral nutrition of their host plants. However, the importance of mycorrhizal symbiosis for plant potassium nutrition has so far been poorly studied. We therefore investigated the impact of the ectomycorrhizal fungus Hebeloma cylindrosporum on the potassium nutrition of Pinus pinaster and examined the involvement of the fungal potassium transporter HcTrk1. HcTrk1 transcripts and proteins were localized in ectomycorrhizas using in situ hybridization and EGFP translational fusion constructs. Importantly, an overexpression strategy was performed on a H. cylindrosporum endogenous gene in order to dissect the role of this transporter. The potassium nutrition of mycorrhizal pine plants was significantly improved under potassium-limiting conditions. Fungal strains overexpressing HcTrk1 reduced the translocation of potassium and phosphorus from the roots to the shoots of inoculated plants in mycorrhizal experiments. Furthermore, expression of HcTrk1 and the phosphate transporter HcPT1.1 were reciprocally linked to the external inorganic phosphate and potassium availability. The development of these approaches provides a deeper insight into the role of ectomycorrhizal symbiosis on host plant K(+) nutrition and in particular, the K(+) transporter HcTrk1. The work augments our knowledge of the link between potassium and phosphorus nutrition via the mycorrhizal pathway.

  14. Development of the RAQM2 aerosol chemical transport model and predictions of the Northeast Asian aerosol mass, size, chemistry, and mixing type

    Directory of Open Access Journals (Sweden)

    M. Kajino

    2012-12-01

    Full Text Available A new aerosol chemical transport model, the Regional Air Quality Model 2 (RAQM2, was developed to simulate the Asian air quality. We implemented a simple version of a triple-moment modal aerosol dynamics model (MADMS and achieved a completely dynamic (non-equilibrium solution of a gas-to-particle mass transfer over a wide range of aerosol diameters from 1 nm to super-μm. To consider a variety of atmospheric aerosol properties, a category approach was utilized in which the aerosols were distributed into four categories: particles in the Aitken mode (ATK, soot-free particles in the accumulation mode (ACM, soot aggregates (AGR, and particles in the coarse mode (COR. The aerosol size distribution in each category is characterized by a single mode. The condensation, evaporation, and Brownian coagulations for each mode were solved dynamically. A regional-scale simulation (Δx = 60 km was performed for the entire year of 2006 covering the Northeast Asian region. The modeled PM1/bulk ratios of the chemical components were consistent with observations, indicating that the simulated aerosol mixing types were consistent with those in nature. The non–sea-salt SO42− mixed with ATK + ACM was the largest at Hedo in summer, whereas the SOSO42− was substantially mixed with AGR in the cold seasons. Ninety-eight percent of the modeled NO3 was mixed with sea salt at Hedo, whereas 53.7% of the NO3 was mixed with sea salt at Gosan, which is located upwind toward the Asian continent. The condensation of HNO3 onto sea salt particles during transport over the ocean accounts for the difference in the NO3 mixing type at the two sites. Because the aerosol mixing type alters the optical properties and cloud condensation nuclei activity, its accurate prediction and evaluation are indispensable for aerosol

  15. A large column analog experiment of stable isotope variations during reactive transport: II. Carbon mass balance, microbial community structure and predation

    Science.gov (United States)

    Druhan, Jennifer L.; Bill, Markus; Lim, HsiaoChien; Wu, Cindy; Conrad, Mark E.; Williams, Kenneth H.; DePaolo, Donald J.; Brodie, Eoin L.

    2014-01-01

    for predator-prey relationships that impact subsurface microbial community dynamics and provides a novel indication of the impact of this relationship on the flux of carbon through a system via the microbial biomass pool. Overall, our approach provides high temporal and spatial sampling resolution at field relevant flow rates, while minimizing effects of mixing and transverse dispersion. The result is a quantitative carbon budget accounting for a diversity of processes that should be considered for inclusion in reactive transport models that aim to predict carbon turnover, nutrient flux, and redox reactions in natural and stimulated subsurface systems. the mobilization of previously stabilized, sediment-bound carbon; a carbon mass balance for a through-flowing sediment column over the course of a 43-day amendment using 13C-labeled acetate; a phylogenetic microbial community structure at turnover of microbial biomass carbon as a secondary cycling pathway. Such a high resolution, combined analysis of microbial populations and the associated carbon mass balance in a through-flowing system at field relevant flow rates provides novel, quantitative insights into the interface between biogeochemical cycling and bulk carbon fluxes in the near-surface environment.

  16. Quantifying the contribution of long-range transport to particulate matter (PM mass loadings at a suburban site in the north-western Indo-Gangetic Plain (NW-IGP

    Directory of Open Access Journals (Sweden)

    H. Pawar

    2015-08-01

    coarse-mode PM only during the winter season. South-easterly air masses (source region: eastern IGP were associated with significantly lower fine- and coarse-mode PM mass loadings during all seasons. The fraction of days in each season during which the PM mass loadings exceeded the national ambient air quality standard was controlled by long-range transport to a much lesser degree. For the local cluster, which represents regional air masses (source region: NW-IGP, the fraction of days during which the national ambient air quality standard (NAAQS of 60 μg m−3 for 24 h average PM2.5 was exceeded varied between 36 % of the days associated with this synoptic-scale transport during the monsoon, and 95 % during post-monsoon and winter seasons; the fraction of days during which the NAAQS of 100 μg m−3 for the 24 h average PM10 was exceeded, varied between 48 % during the monsoon and 98 % during the post-monsoon season. Long-range transport was responsible for both, bringing air masses with a significantly lower fraction of exceedance days from the eastern IGP and air masses with a moderate increase in the fraction of exceedance days from the west (source regions: Arabia, Thar Desert, Middle East and Afghanistan. In order to bring PM mass loadings into compliance with the NAAQS and to reduce the number of exceedance days, mitigation of regional combustion sources in the NW-IGP needs to be given highest priority.

  17. Arctic aerosol life cycle: linking aerosol size distributions observed between 2000 and 2010 with air mass transport and precipitation at Zeppelin station, Ny-Ålesund, Svalbard

    Directory of Open Access Journals (Sweden)

    P. Tunved

    2012-11-01

    Full Text Available In this study we present a qualitative and quantitative assessment of more the 10 yr of aerosol number size distribution data observed in the Arctic environment (Mt Zeppelin (78°56' N, 11°53' E, 474 m a.s.l., Ny Ålesund, Svalbard. We provide statistics on both seasonal and diurnal characteristics of the aerosol observations and conclude that the Arctic aerosol number size distribution and auxiliary parameters such as integral mass and surface have a very pronounced seasonal variation. This seasonal variation seems to be controlled by both dominating source as well as meteorological conditions in general. In principle, three distinctly different periods can be identified during the Arctic year: the haze period characterized by a dominating accumulation mode aerosol (March–May followed by the sunlit summer period with low abundance of accumulation mode particles but high concentration of small particles which likely are recently and locally formed (June–August. The rest of the year is characterized by comparably low concentration of accumulation mode particles and negligible abundance of ultra fine particles (September–February. Minimum aerosol mass and number concentration is usually observed during September/October. We further show that the transition between the different regimes is fast, suggesting rapid change in conditions defining their appearance. A source climatology based on trajectory analysis is provided and it is shown that there is a strong seasonality of dominating source areas, with dominance of Eurasia during the autumn-winter period and dominance of North Atlantic air during the summer months. We also show that new particle formation events seem to be a rather common phenomenon during the Arctic summer, and this is the result of both photochemical production of nucleating/condensing species and low condensation sink. It is also suggested that wet removal play a key role in defining the Arctic aerosol year, and plays a

  18. Making snacking less sinful : (Counter-)moralizing obesity in the public discourse differentially affects food choices of individuals with high and low perceived body mass.

    NARCIS (Netherlands)

    Mulder, Laetitia; Rupp, Deborah; Dijkstra, Arie

    2015-01-01

    Objective: As public discourse surrounding obesity highlights the societal costs of obesity and individual's own responsibility for their weight, being overweight is often framed as immoral. Such 'moralizing' messages about being overweight may be a psychological threat for those with high body mass

  19. How the presence of a gas giant affects the formation of mean-motion resonances between two low-mass planets in a locally isothermal gaseous disc

    CERN Document Server

    Podlewska-Gaca, Edyta

    2013-01-01

    In this paper we investigate the possibility of a migration-induced resonance locking in systems containing three planets, namely an Earth analog, a super-Earth and a gas giant. The planets have been listed in order of increasing orbital periods. All three bodies are embedded in a locally isothermal gaseous disc and orbit around a solar mass star. We are interested in answering the following question: Will the low-mass planets form the same resonant structures with each other in the vicinity of the gas giant as in the case when the gas giant is absent? When there is no gas giant in the system, it has been already shown that if the two low-mass planets undergo a convergent differential migration, they will capture each other in a mean-motion resonance. For the choices of disc parameters and planet masses made in this paper, the formation of the 5:4 resonance in the absence of the Jupiter has been observed. In this work we add a gas giant on the most external orbit of the system in such a way that its different...

  20. How planners' use and non-use of expert knowledge in land use and transport planning affect the goal achievement potential of plans? Experiences from three Scandinavian cities

    DEFF Research Database (Denmark)

    Tennøy, Aud; Hansson, Lisa; Lissandrello, Enza;

    2016-01-01

    the plans (if implemented) contribute to achieve defined objectives, which in this paper concern transition toward more sustainable mobility patterns and reduction of traffic volumes. The expert knowledge in question concerns how land use and transport systems developments influence traffic volumes in urban......Changing urban development in more sustainable directions poses numerous challenges for planning practitioners. Expert knowledge could be helpful for planners aiming at facing up to these challenges by developing innovative ways of meeting seemingly contradictive objectives and solving planning...... their planning problems. Instead, they rely on their embedded professional knowledge, which is sometimes outdated or misleading. It is found that changing towards land use and transport systems developments contributing to more sustainable mobility patterns requires considerable efforts from planning...

  1. Arabidopsis thaliana AtUTr7 Encodes a Golgi-Localized UDP-Glucose/UDP-Galactose Transporter that Affects Lateral Root Emergence

    Institute of Scientific and Technical Information of China (English)

    Michael Handford; Cecilia Rodríguez-Furlán; Lorena Marchant; Marcelo Segura; Daniela Gómez; Elena Alvarez-Buyll; Guang-Yan Xiong; Markus Pauly; Ariel Orellana

    2012-01-01

    Nucleotide sugar transporters (NSTs) are antiporters comprising a gene family that plays a fundamental role in the biosynthesis of complex cell wall polysaccharides and glycoproteins in plants.However,due to the limited number of related mutants that have observable phenotypes,the biological function(s) of most NSTs in cell wall biosynthesis and assembly have remained elusive.Here,we report the characterization of AtUTr7 from Arabidopsis (Arabidopsis thaliana (L.) Heynh.),which is homologous to multi-specific UDP-sugar transporters from Drosophila melanogaster,humans,and Caenorhabditis elegans.We show that AtUTr7 possesses the common structural characteristics conserved among NSTs.Using a green fluorescent protein (GFP) tagged version,we demonstrate that AtUTr7 is localized in the Golgi apparatus.We also show that AtUTr7 is widely expressed,especially in the roots and in specific floral organs.Additionally,the results of an in vitro nucleotide sugar transport assay carried out with a tobacco and a yeast expression system suggest that AtUTr7 is capable of transferring UDP-Gal and UDP-GIc,but not a range of other UDP-and GDP-sugars,into the Golgi lumen.Mutants lacking expression of AtUTr7 exhibited an early proliferation of lateral roots as well as distorted root hairs when cultivated at high sucrose concentrations.Furthermore,the distribution of homogalacturonan with a low degree of methyl esterification differed in lateral root tips of the mutant compared to wild-type plants,although additional analytical procedures revealed no further differences in the composition of the root cell walls.This evidence suggests that the transport of UDP-Gal and UDP-GIc into the Golgi under conditions of high root biomass production plays a role in lateral root and root hair development.

  2. Factors affecting the fate and transport of glyphosate and AMPA into surface waters of agricultural watersheds in the United States and Europe

    Science.gov (United States)

    Coupe, R.; Kalkhoff, S.; Capel, P.; Gregoire, C.

    2012-04-01

    Glyphosate [N-(phosphonomethyl)glycine] is a herbicide used extensively in almost all agricultural and urban areas of the United States and Europe. Although, glyphosate is used widely throughout the world in the production of many crops, it is predominately used in the United States on soybeans, corn, potatoes, and cotton that have been genetically modified to be tolerant to glyphosate. From 1992 to 2007, the agricultural use of glyphosate has increased from less than 10,000 Mg to more than 80,000 Mg, respectively. The greatest areal use is in the midwestern United States where glyphosate is applied on transgenic corn and soybeans. Because of the difficulty and expense in analyzing for glyphosate and AMPA (aminomethylphosphonic acid, a primary glyphosate degradate) in water, there have been only small scale studies on the fate and transport of glyphosate. The characterization of the transport of glyphosate and AMPA on a watershed scale is lacking. Glyphosate and AMPA were frequently detected in the surface waters of 4 agricultural watersheds in studies conducted by the U.S. Geological Survey in the United States and at the Laboratory of Hydrology and Geochemistry of Strasbourg. Two of these basins were located in the midwestern United States where the major crops are corn and soybean, the third is located the lower Mississippi River Basin where the major crops are soybean, corn, rice, and cotton, and the fourth was located near Strasbourg, France where the use of glyphosate was on a vineyard. The load as a percent of use ranged from 0.009 to 0.86 percent and could be related to 3 factors: source strength, hydrology, and flowpath. Glyphosate use in a watershed results in some occurrence in surface water at the part per billion level; however, those watersheds most at risk for the offsite transport of glyphosate are those with high application rates, rainfall that results in overland runoff, and a flowpath that does not include transport through the soil.

  3. Simultaneous determination of gallic acid and gentisic acid in organic anion transporter expressing cells by liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Wang, Li; Halquist, Matthew S; Sweet, Douglas H

    2013-10-15

    In order to elucidate the role of organic anion transporters (OATs) in the renal elimination of gallic acid and gentisic acid, a new, rapid, and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method has been developed and validated for the simultaneous determination of gallic acid and gentisic acid in cell lysate, using Danshensu as the internal standard (IS). After a simple liquid-liquid extraction, the analytes were detected in negative ESI mode using selected reaction monitoring. The precursor-to-product ion transitions (m/z) were 169.0→125.0, 153.1→108.0, and 196.8→135.2 for gallic acid, gentisic acid, and the IS, respectively. Chromatographic separation was achieved on a C18 column using mobile phases consisting of water with 0.1% acetic acid (A) and acetonitrile with 0.05% formic acid. (B) The total run time was 3min and calibration curves were linear over the concentrations of 0.33-2400ng/mL for both compounds (r(2)>0.995). Good precision (between 3.11% and 14.1% RSD) and accuracy (between -12.7% and 11% bias) was observed for quality controls at concentrations of 0.33 (lower limit of quantification), 1, 50, and 2000ng/mL. The mean extraction recovery of gallic acid and gentisic acid was 80.7% and 83.5%, respectively. Results from post-column infusion and post-extraction methods indicated that the analytical method exhibited negligible matrix effects. Finally, this validated assay was successfully applied in a cellular uptake study to determine the intracellular concentrations of gallic acid and gentisic acid in OAT expressing cells.

  4. Loss of hepatocyte-nuclear-factor-4alpha affects colonic ion transport and causes chronic inflammation resembling inflammatory bowel disease in mice.

    Directory of Open Access Journals (Sweden)

    Mathieu Darsigny

    Full Text Available BACKGROUND: Hnf4alpha, an epithelial specific transcriptional regulator, is decreased in inflammatory bowel disease and protects against chemically-induced colitis in mice. However, the precise role of this factor in maintaining normal inflammatory homeostasis of the intestine remains unclear. The aim of this study was to evaluate the sole role of epithelial Hnf4alpha in the maintenance of gut inflammatory homeostasis in mice. METHODOLOGY/PRINCIPAL FINDINGS: We show here that specific epithelial deletion of Hnf4alpha in mice causes spontaneous chronic intestinal inflammation leading to focal areas of crypt dropout, increased cytokines and chemokines secretion, immune cell infiltrates and crypt hyperplasia. A gene profiling analysis in diseased Hnf4alpha null colon confirms profound genetic changes in cell death and proliferative behaviour related to cancer. Among the genes involved in the immune protection through epithelial barrier function, we identify the ion transporter claudin-15 to be down-modulated early in the colon of Hnf4alpha mutants. This coincides with a significant decrease of mucosal ion transport but not of barrier permeability in young animals prior to the manifestation of the disease. We confirm that claudin-15 is a direct Hnf4alpha gene target in the intestinal epithelial context and is down-modulated in mouse experimental colitis and inflammatory bowel disease. CONCLUSION: Our results highlight the critical role of Hnf4alpha to maintain intestinal inflammatory homeostasis during mouse adult life and uncover a novel function for Hnf4alpha in the regulation of claudin-15 expression. This establishes Hnf4alpha as a mediator of ion epithelial transport, an important process for the maintenance of gut inflammatory homeostasis.

  5. Channel size influence on the heat flux density at zero net mass flow in the non-linear transport regime between 1.2 and 2.1 K

    Science.gov (United States)

    Frederking, T. H. K.; Yuan, S. W. K.; Lee, J. M.; Sun, G. S.

    1987-01-01

    Porous media and narrow ducts of simple shape at zero net mass flow (ZNMF) are used to investigate the influence of pore size on the entropy/heat convection rate at ZNMF. The study is relevant to the development of specific types of phase separators. Previous work on heat transport by convection is extended to porous media without mass loss. The experimental results show the influence of pore size on heat flux for permeabilities between 10 to the -8th and 10 to the -6th sq cm. ZNMF plug data are found to be similar to results obtained for vapor liquid phase separation.

  6. Composition-dependent charge transport and temperature-dependent density of state effective mass interpreted by temperature-normalized Pisarenko plot in Bi2-xSbxTe3 compounds

    Science.gov (United States)

    An, Tae-Ho; Lim, Young Soo; Park, Mi Jin; Tak, Jang-Yeul; Lee, Soonil; Cho, Hyung Koun; Cho, Jun-Young; Park, Chan; Seo, Won-Seon

    2016-10-01

    Composition-dependent charge transport and temperature-dependent density of state effective mass-dependent Seebeck coefficient were investigated in Bi2-xSbxTe3 (x = 1.56-1.68) compounds. The compounds were prepared by the spark plasma sintering of high-energy ball-milled powder. High-temperature Hall measurements revealed that the charge transport in the compounds was governed dominantly by phonon scattering and influenced additionally by alloy scattering depending on the amount of Sb. Contrary effects of Sb content on the Seebeck coefficient were discussed in terms of carrier concentration and density of state effective mass, and it was elucidated by temperature-normalized Pisarenko plot for the first time.

  7. CorA, the magnesium/nickel/cobalt transporter, affects virulence and extracellular enzyme production in the soft rot pathogen Pectobacterium carotovorum.

    Science.gov (United States)

    Kersey, Caleb M; Agyemang, Paul A; Dumenyo, C Korsi

    2012-01-01

    Pectobacterium carotovorum (formerly Erwinia carotovora ssp. carotovora) is a phytopathogenic bacterium that causes soft rot disease, characterized by water-soaked soft decay, resulting from the action of cell wall-degrading exoenzymes secreted by the pathogen. Virulence in soft rot bacteria is regulated by environmental factors, host and bacterial chemical signals, and a network of global and gene-specific bacterial regulators. We isolated a mini-Tn5 mutant of P. carotovorum that is reduced in the production of extracellular pectate lyase, protease, polygalacturonase and cellulase. The mutant is also decreased in virulence as it macerates less host tissues than its parent and is severely impaired in multiplication in planta. The inactivated gene responsible for the reduced virulent phenotype was identified as corA. CorA, a magnesium/nickel/cobalt membrane transporter, is the primary magnesium transporter for many bacteria. Compared with the parent, the CorA(-) mutant is cobalt resistant. The mutant phenotype was confirmed in parental strain P. carotovorum by marker exchange inactivation of corA. A functional corA(+) DNA from P. carotovorum restored exoenzyme production and pathogenicity to the mutants. The P. carotovorum corA(+) clone also restored motility and cobalt sensitivity to a CorA(-) mutant of Salmonella enterica. These data indicate that CorA is required for exoenzyme production and virulence in P. carotovorum.

  8. Leucine transport is affected by Bacillus thuringiensis Cry1 toxins in brush border membrane vesicles from Ostrinia nubilalis Hb (Lepidoptera: Pyralidae) and Sesamia nonagrioides Lefebvre (Lepidoptera: Noctuidae) midgut.

    Science.gov (United States)

    Leonardi, M Giovanna; Caccia, Silvia; González-Cabrera, Joel; Ferré, Juan; Giordana, Barbara

    2006-01-01

    The pore-forming activity of Cry1Ab, Cry1Fa and Cry1Ca toxins and their interaction with leucine transport mediated by the K(+)/leucine cotransporter were studied in brush border membrane vesicles (BBMVs) isolated from the midgut of Ostrinia nubilalis and Sesamia nonagrioides. In both species, as in other Lepidoptera, leucine uptake by BBMVs can take place in the absence of cations, but it can also be driven by a K(+) gradient. Experiments with the voltage-sensitive fluorescent dye 3,3'-diethylthiacarbocyanine iodide proved that Cry1Ab, a Bacillus thuringiensis toxin active in vivo, enhanced the membrane permeability to potassium in O. nubilalis BBMVs. This result is in agreement with similar effects observed in S. nonagrioides BBMV incubated with various Cry1 toxins active in vivo. The effect of the above toxins was tested on the initial rate of 0.1 mM: leucine influx. Instead of an increase in leucine influx, a reduction was observed with the Cry1 toxins active in vivo. Cry1Ab and Cry1Fa, but not the inactive toxin Cry1Da, inhibited in a dose-dependent manner leucine uptake both in the absence and in the presence of a K(+) gradient, a clear indication that their effect is independent of the channel formed by the toxins and that this effect is exerted directly on the amino acid transport system.

  9. Modeling Nitrogen Fate and Transport at the Sediment-Water Interface

    Science.gov (United States)

    Diffusive mass transfer at media interfaces exerts control on the fate and transport of pollutants originating from agricultural and urban landscapes and affects the con-ditions of water bodies. Diffusion is essentially a physical process affecting the distribution and fate of va...

  10. Corticosterone in relation to body mass in Adelie penguins (Pygoscelis adeliae) affected by unusual sea ice conditions at Ross Island, Antarctica.

    Science.gov (United States)

    Cockrem, J F; Potter, M A; Candy, E J

    2006-12-01

    Penguins naturally fast each year during breeding and again whilst moulting, and may lose more than 40% of body mass during a fast. Fasting in emperor (Aptenodytes forsteri) and king (Aptenodytes patagonicus) penguins has been divided into three phases, with phase III characterised by an increased rate of body mass loss, increased plasma corticosterone concentrations, and a change in behaviour leading to abandonment of the breeding attempt and return to sea to feed. Initial corticosterone concentrations and corticosterone responses to a handling stressor were measured in the current study to determine if they increase during phase III of fasting in Adelie penguins (Pygoscelis adeliae). The study was conducted in 2001 at the northern Cape Bird colony on Ross Island, Antarctica. Penguin breeding on Ross Island was disrupted in the 2001-2002 summer by a large iceberg (B15A) which stopped the normal movement of sea ice in the Ross Sea. Penguins departing from the Cape Bird colony were lighter than returning or incubating birds (3.39+/-0.10cf. 4.16+/-0.06 and 4.07+/-0.08kg). It is likely that the departing birds were males that had been lighter than normal when they arrived at the colony. Initial plasma corticosterone concentrations were higher in departing than returning or incubating penguins (6.89+/-1.69cf. 2.36+/-0.42 and 1.08+/-0.19ng/ml). Corticosterone responses to handling were also greater in departing penguins. Initial plasma corticosterone, concentrations at 30min and total and corrected integrated corticosterone responses were inversely related to body mass in departing penguins, whereas there were no relationships in arriving penguins. beta-hydroxybutyrate and uric acid concentrations were consistent with departing birds having entered phase III of fasting. The results indicate that corticosterone and corticosterone responses are elevated in phase III of fasting in the Adelie penguin.

  11. Quantitative transporter proteomics by liquid chromatography with tandem mass spectrometry: addressing methodologic issues of plasma membrane isolation and expression-activity relationship.

    Science.gov (United States)

    Kumar, Vineet; Prasad, Bhagwat; Patilea, Gabriela; Gupta, Anshul; Salphati, Laurent; Evers, Raymond; Hop, Cornelis E C A; Unadkat, Jashvant D

    2015-02-01

    To predict transporter-mediated drug disposition using physiologically based pharmacokinetic models, one approach is to measure transport activity and relate it to protein expression levels in cell lines (overexpressing the transporter) and then scale these to via in vitro to in vivo extrapolation (IVIVE). This approach makes two major assumptions. First, that the expression of the transporter is predominantly in the plasma membrane. Second, that there is a linear correlation between expression level and activity of the transporter protein. The present study was conducted to test these two assumptions. We evaluated two commercially available kits that claimed to separate plasma membrane from other cell membranes. The Qiagen Qproteome kit yielded very little protein in the fraction purported to be the plasma membrane. The Abcam Phase Separation kit enriched the plasma membrane but did not separate it from other intracellular membranes. For the Abcam method, the expression level of organic anion-transporting polypeptides (OATP) 1B1/2B1 and breast cancer resistance protein (BCRP) proteins in all subcellular fractions isolated from cells or human liver tissue tracked that of Na⁺-K⁺ ATPase. Assuming that Na⁺-K⁺ ATPase is predominantly located in the plasma membrane, these data suggest that the transporters measured are also primarily located in the plasma membrane. Using short hairpin RNA, we created clones of cell lines with varying degrees of OATP1B1 or BCRP expression level. In these clones, transport activity of OATP1B1 or BCRP was highly correlated with protein expression level (r² > 0.9). These data support the use of transporter expression level data and activity data from transporter overexpressing cell lines for IVIVE of transporter-mediated disposition of drugs.

  12. Temperature driven transport of gold nanoparticles physisorbed inside carbon nanotubes

    DEFF Research Database (Denmark)

    Schoen, P.A.E.; Poulikakos, D.; Walther, Jens Honore

    2006-01-01

    We use molecular dynamics simulations to demonstrate the temperature driven mass transport of solid gold nanoparticles, physisorbed inside carbon nanotubes (CNTs). Our results indicate that the nanoparticle experiences a guided motion, in the direction opposite to the direction of the temperature...... affects the nanoparticle motion along the carbon lattice....

  13. Gene expression of the zinc