WorldWideScience

Sample records for affect mass transport

  1. Wave-induced mass transport affects daily Escherichia coli fluctuations in nearshore water

    Science.gov (United States)

    Ge, Zhongfu; Whitman, Richard L.; Nevers, Meredith B.; Phanikumar, Mantha S.

    2012-01-01

    Characterization of diel variability of fecal indicator bacteria concentration in nearshore waters is of particular importance for development of water sampling standards and protection of public health. Significant nighttime increase in Escherichia coli (E. coli) concentration in beach water, previously observed at marine sites, has also been identified in summer 2000 from fixed locations in waist- and knee-deep waters at Chicago 63rd Street Beach, an embayed, tideless, freshwater beach with low currents at night (approximately 0.015 m s–1). A theoretical model using wave-induced mass transport velocity for advection was developed to assess the contribution of surface waves to the observed nighttime E. coli replenishment in the nearshore water. Using average wave conditions for the summer season of year 2000, the model predicted an amount of E. coli transported from water of intermediate depth, where sediment resuspension occurred intermittently, that would be sufficient to have elevated E. coli concentration in the surf and swash zones as observed. The nighttime replenishment of E. coli in the surf and swash zones revealed here is an important phase in the cycle of diel variations of E. coli concentration in nearshore water. According to previous findings in Ge et al. (Environ. Sci. Technol. 2010, 44, 6731–6737), enhanced current circulation in the embayment during the day tends to displace and deposit material offshore, which partially sets up the system by the early evening for a new period of nighttime onshore movement. This wave-induced mass transport effect, although facilitating a significant base supply of material shoreward, can be perturbed or significantly influenced by high currents (orders of magnitude larger than a typical wave-induced mass transport velocity), current-induced turbulence, and tidal forcing.

  2. Transport Regimes of Air Masses Affecting the Tropospheric Composition of the Canadian and European Arctic During RACEPAC 2014 and NETCARE 2014/2015

    Science.gov (United States)

    Bozem, H.; Hoor, P. M.; Koellner, F.; Kunkel, D.; Schneider, J.; Schulz, C.; Herber, A. B.; Borrmann, S.; Wendisch, M.; Ehrlich, A.; Leaitch, W. R.; Willis, M. D.; Burkart, J.; Thomas, J. L.; Abbatt, J.

    2015-12-01

    The Arctic is warming much faster than any other place in the world and undergoes a rapid change dominated by a changing climate in this region. The impact of polluted air masses traveling to the Arctic from various remote sources significantly contributes to the observed climate change, in contrast there are additional local emission sources contributing to the level of pollutants (trace gases and aerosol). Processes affecting the emission and transport of these pollutants are not well understood and need to be further investigated. We present aircraft based trace gas measurements in the Arctic during RACEPAC (2014) and NETCARE (2014 and 2015) with the Polar 6 aircraft of Alfred Wegener Institute (AWI) covering an area from 134°W to 17°W and 68°N to 83°N. We focus on cloud, aerosol and general transport processes of polluted air masses into the high Arctic. Based on CO and CO2 measurements and kinematic 10-day back trajectories we analyze the transport regimes prevalent during spring (RACEPAC 2014 and NETCARE 2015) and summer (NETCARE 2014) in the observed region. Whereas the eastern part of the Canadian Arctic is affected by air masses with their origin in Asia, in the central and western parts of the Canadian and European Arctic air masses from North America are predominant at the time of the measurement. In general the more northern parts of the Arctic were relatively unaffected by pollution from mid-latitudes since air masses mostly travel within the polar dome, being quite isolated. Associated mixing ratios of CO and CO2 fit into the seasonal cycle observed at NOAA ground stations throughout the Arctic, but show a more mid-latitudinal characteristic at higher altitudes. The transition is remarkably sharp and allows for a chemical definition of the polar dome. At low altitudes, synoptic disturbances transport polluted air masses from mid-latitudes into regions of the polar dome. These air masses contribute to the Arctic pollution background, but also

  3. Frontiers in Cancer Nanomedicine: Directing Mass Transport through Biological Barriers

    Science.gov (United States)

    Ferrari, Mauro

    2010-01-01

    The physics of mass transport within body compartments and across biological barriers differentiates cancers from healthy tissues. Variants of nanoparticles can be manufactured in combinatorially large sets, varying only one transport-affecting design parameter at a time. Nanoparticles can also be used as building blocks for systems that perform sequences of coordinated actions, in accordance to a prescribed logic. These are referred to as Logic-Embedded Vectors “(LEV)” in the following. Nanoparticles and LEVs are ideal probes for the determination of mass transport laws in tumors, acting as imaging contrast enhancers, and can be employed for the lesion-selective delivery of therapy. Their size, shape, density and surface chemistry dominate convective transport in the blood stream, margination, cell adhesion, selective cellular uptake, as well as sub-cellular trafficking and localization. As argued here, the understanding of transport differentials in cancer, termed ‘transport oncophysics’ unveils a new promising frontier in oncology: the development of lesion-specific delivery particulates that exploit mass transport differentials to deploy treatment of greater efficacy and reduced side effects. PMID:20079548

  4. Transport Visualization for Studying Mass Transfer and Solute Transport in Permeable Media

    International Nuclear Information System (INIS)

    Roy Haggerty

    2004-01-01

    first such experiments that show mass transfer in porous media in great detail. Experimental and theoretical work in media with pore-scale heterogeneity showed the temporal scale-dependency of mass transfer. Extension of the work into reactive transport, where mass transfer is very important to mixing, suggests a number of promising research directions for constructing better models of reactive transport and provides the experimental tools to develop and test these models. In particular, it is important to determine how the different solute spreading mechanisms in heterogeneous conductivity fields affect the rate and spatial pattern of chemical reaction. The project was conducted collaboratively between Oregon State University, Sandia National Laboratories, and the Massachusetts Institute of Technology. While each institution is submitting a copy of this final report for administrative purposes, the report is the largely the same since the project was a joint effort. This final report will outline the results of work completed and summarize publications and presentations. Manuscripts published or in press are attached, and subsequent publications will follow once published

  5. Ion sampling and transport in Inductively Coupled Plasma Mass Spectrometry

    Science.gov (United States)

    Farnsworth, Paul B.; Spencer, Ross L.

    2017-08-01

    Quantitative accuracy and high sensitivity in inductively coupled plasma mass spectrometry (ICP-MS) depend on consistent and efficient extraction and transport of analyte ions from an inductively coupled plasma to a mass analyzer, where they are sorted and detected. In this review we examine the fundamental physical processes that control ion sampling and transport in ICP-MS and compare the results of theory and computerized models with experimental efforts to characterize the flow of ions through plasma mass spectrometers' vacuum interfaces. We trace the flow of ions from their generation in the plasma, into the sampling cone, through the supersonic expansion in the first vacuum stage, through the skimmer, and into the ion optics that deliver the ions to the mass analyzer. At each stage we consider idealized behavior and departures from ideal behavior that affect the performance of ICP-MS as an analytical tool.

  6. Required momentum, heat, and mass transport experiments for liquid-metal blankets

    International Nuclear Information System (INIS)

    Tillack, M.S.; Sze, D.K.; Abdou, M.A.

    1986-01-01

    Through the effects on fluid flow, many aspects of blanket behavior are affected by magnetohydrodynamic (MHD) effects, including pressure drop, heat transfer, mass transfer, and structural behavior. In this paper, a set of experiments is examined that could be performed in order to reduce the uncertainties in the highly related set of issues dealing with momentum, heat, and mass transport under the influence of a strong magnetic field (i.e., magnetic transport phenomena). By improving our basic understanding and by providing direct experimental data on blanket behavior, these experiments will lead to improved designs and an accurate assessment of the attractiveness of liquid-metal blankets

  7. Data acquisition of mass transport parameters

    International Nuclear Information System (INIS)

    Iwasaki, Riyo; Hama, Katsuhiro; Morikawa, Keita; Hosoya, Shinichi

    2017-02-01

    Tono Geoscience Center of Japan Atomic Energy Agency (JAEA) has been carrying out the Mizunami Underground Research Laboratory (MIU) Project, which is a scientific study understanding the deep geological environment as a basis of research and development for geological disposal of high level radioactive wastes. The aim of the MIU project is to establish comprehensive techniques for the investigation, analysis and assessment of the deep geological environment in fractured crystalline rock, and to develop a range of engineering techniques for deep underground application. This project has three overlapping phases: Surface-based investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III). Currently, the project is being carried out under the Phase III. Mass transport study is mainly performed as part of Phase III project. In Phase III, the goal of mass transport study is to obtain a better understanding of mass transport phenomena in the geological environment as well as to develop technologies for measurement of the mass transport parameters, model construction, numerical analysis and validation of those technologies. This study was planned to understand the influence of the geological characteristics of fracture on the mass transport parameters. This report presents the results of diffusion experiment, observation of polished thin section, sorption experiment and porophysicality measurement. (author)

  8. Mass Transport within Soils

    Energy Technology Data Exchange (ETDEWEB)

    McKone, Thomas E.

    2009-03-01

    Contaminants in soil can impact human health and the environment through a complex web of interactions. Soils exist where the atmosphere, hydrosphere, geosphere, and biosphere converge. Soil is the thin outer zone of the earth's crust that supports rooted plants and is the product of climate and living organisms acting on rock. A true soil is a mixture of air, water, mineral, and organic components. The relative proportions of these components determine the value of the soil for agricultural and for other human uses. These proportions also determine, to a large extent, how a substance added to soil is transported and/or transformed within the soil (Spositio, 2004). In mass-balance models, soil compartments play a major role, functioning both as reservoirs and as the principal media for transport among air, vegetation, surface water, deeper soil, and ground water (Mackay, 2001). Quantifying the mass transport of chemicals within soil and between soil and atmosphere is important for understanding the role soil plays in controlling fate, transport, and exposure to multimedia pollutants. Soils are characteristically heterogeneous. A trench dug into soil typically reveals several horizontal layers having different colors and textures. As illustrated in Figure 1, these multiple layers are often divided into three major horizons: (1) the A horizon, which encompasses the root zone and contains a high concentration of organic matter; (2) the B horizon, which is unsaturated, lies below the roots of most plants, and contains a much lower organic carbon content; and (3) the C horizon, which is the unsaturated zone of weathered parent rock consisting of bedrock, alluvial material, glacial material, and/or soil of an earlier geological period. Below these three horizons lies the saturated zone - a zone that encompasses the area below ground surface in which all interconnected openings within the geologic media are completely filled with water. Similarly to the unsaturated

  9. Mass transport by groundwater

    International Nuclear Information System (INIS)

    Ledoux, E.; Goblet, P.; Jamet, Ph.; De Marsily, G.; Des Orres, P.E.; Lewi, J.

    1991-01-01

    The first analyses of the safety of radioactive waste disposal published in 1970s were mostly of a generic type using the models of radionuclide migration in the geosphere. These simply constructed models gave way to more sophisticated techniques in order to represent better the complexity and diversity of geological media. In this article, it is attempted to review the various concepts used to quantify radionuclide migration and the evolution of their incorporation into the models. First, it was examined how the type of discontinuity occurring in geological media affects the choice of a representative model. The principle of transport in the subsurface was reviewed, and the effect that coupled processes exert to groundwater flow and mass migration was discussed. The processes that act directly to cause groundwater flow were distinguished. The method of validating such models by comparing the results with the geochemical systems in nature was explained. (K.I.)

  10. Texture mapping via optimal mass transport.

    Science.gov (United States)

    Dominitz, Ayelet; Tannenbaum, Allen

    2010-01-01

    In this paper, we present a novel method for texture mapping of closed surfaces. Our method is based on the technique of optimal mass transport (also known as the "earth-mover's metric"). This is a classical problem that concerns determining the optimal way, in the sense of minimal transportation cost, of moving a pile of soil from one site to another. In our context, the resulting mapping is area preserving and minimizes angle distortion in the optimal mass sense. Indeed, we first begin with an angle-preserving mapping (which may greatly distort area) and then correct it using the mass transport procedure derived via a certain gradient flow. In order to obtain fast convergence to the optimal mapping, we incorporate a multiresolution scheme into our flow. We also use ideas from discrete exterior calculus in our computations.

  11. Mass Transport Through Carbon Nanotube-Polystyrene Bundles

    Science.gov (United States)

    Lin, Rongzhou; Tran, Tuan

    2016-05-01

    Carbon nanotubes have been widely used as test channels to study nanofluidic transport, which has been found to have distinctive properties compared to transport of fluids in macroscopic channels. A long-standing challenge in the study of mass transport through carbon nanotubes (CNTs) is the determination of flow enhancement. Various experimental investigations have been conducted to measure the flow rate through CNTs, mainly based on either vertically aligned CNT membranes or individual CNTs. Here, we proposed an alternative approach that can be used to quantify the mass transport through CNTs. This is a simple method relying on the use of carbon nanotube-polystyrene bundles, which are made of CNTs pulled out from a vertically aligned CNT array and glued together by polystyrene. We experimentally showed by using fluorescent tagging that the composite bundles allowed measureable and selective mass transport through CNTs. This type of composite bundle may be useful in various CNT research areas as they are simple to fabricate, less likely to form macroscopic cracks, and offer a high density of CNT pores while maintaining the aligned morphology of CNTs.

  12. Radiochemical measurement of mass transport in sodium

    International Nuclear Information System (INIS)

    Cooper, M.H.; Chiang, S.H.

    1976-01-01

    Mass transport processes in the sodium coolant of Liquid Metal Fast Breeder Reactors (LMFBRs) are significant in determining rates of corrosion and deposition of radioactive nuclides from the fuel cladding, deposition and cold trapping of fission products from defect or failed fuel, carbon and nitrogen redistribution in the containment materials, and removal of impurities by cold trapping or hot trapping. Mass transport between rotating, concentric cylinders in molten sodium has been investigated using a unique radiochemical method. Long-lived (33 year) cesium-137, dissolved in the sodium, decays radioactively emitting a beta to barium-137m, which decays with a short half-life (2.6 minutes) emitting a gamma. Cesium is weakly adsorbed and remains in solution, while the barium is strongly adsorbed on the stainless steel surfaces. Hence, by measuring the barium-137m activity on movable stainless steel surfaces, one can calculate the mass transport to that surface. Mass transfer coefficients in sodium measured by this method are in agreement with published heat transfer correlations when the effect of the volumetric mass source is taken into account. Hence, heat transfer correlations can be confidently utilized by analogy in estimating mass transfer in liquid-metal systems

  13. Space Geodesy Monitoring Mass Transport in Global Geophysical Fluids

    Science.gov (United States)

    Chao, Benjamin F.

    2004-01-01

    Mass transports occurring in the atmosphere-hydrosphere-cryosphere-solid Earth-core system (the 'global geophysical fluids') are important geophysical phenomena. They occur on all temporal and spatial scales. Examples include air mass and ocean circulations, oceanic and solid tides, hydrological water and idsnow redistribution, mantle processes such as post-glacial rebound, earthquakes and tectonic motions, and core geodynamo activities. The temporal history and spatial pattern of such mass transport are often not amenable to direct observations. Space geodesy techniques, however, have proven to be an effective tool in monitorihg certain direct consequences of the mass transport, including Earth's rotation variations, gravitational field variations, and the geocenter motion. Considerable advances have been made in recent years in observing and understanding of these geodynamic effects. This paper will use several prominent examples to illustrate the triumphs in research over the past years under a 'Moore's law' in space geodesy. New space missions and projects promise to further advance our knowledge about the global mass transports. The latter contributes to our understanding of the geophysical processes that produce and regulate the mass transports, as well as of the solid Earth's response to such changes in terms of Earth's mechanical properties.

  14. Electric current induced forward and anomalous backward mass transport

    International Nuclear Information System (INIS)

    Somaiah, Nalla; Sharma, Deepak; Kumar, Praveen

    2016-01-01

    Multilayered test samples were fabricated in form of standard Blech structure, where W was used as the interlayer between SiO 2 substrate and Cu film. Electromigration test was performed at 250 °C by passing an electric current with a nominal density of 3.9  ×  10 10 A m −2 . In addition to the regular electromigration induced mass transport ensuing from the cathode towards the anode, we also observed anomalous mass transport from the anode to the cathode, depleting Cu from the anode as well. We propose an electromigration-thermomigration coupling based reasoning to explain the observed mass transport. (letter)

  15. Optimal partial mass transportation and obstacle Monge-Kantorovich equation

    Science.gov (United States)

    Igbida, Noureddine; Nguyen, Van Thanh

    2018-05-01

    Optimal partial mass transport, which is a variant of the optimal transport problem, consists in transporting effectively a prescribed amount of mass from a source to a target. The problem was first studied by Caffarelli and McCann (2010) [6] and Figalli (2010) [12] with a particular attention to the quadratic cost. Our aim here is to study the optimal partial mass transport problem with Finsler distance costs including the Monge cost given by the Euclidian distance. Our approach is different and our results do not follow from previous works. Among our results, we introduce a PDE of Monge-Kantorovich type with a double obstacle to characterize active submeasures, Kantorovich potential and optimal flow for the optimal partial transport problem. This new PDE enables us to study the uniqueness and monotonicity results for the active submeasures. Another interesting issue of our approach is its convenience for numerical analysis and computations that we develop in a separate paper [14] (Igbida and Nguyen, 2018).

  16. Photo-induced Mass Transport through Polymer Networks

    Science.gov (United States)

    Meng, Yuan; Anthamatten, Mitchell

    2014-03-01

    Among adaptable materials, photo-responsive polymers are especially attractive as they allow for spatiotemporal stimuli and response. We have recently developed a macromolecular network capable of photo-induced mass transport of covalently bound species. The system comprises of crosslinked chains that form an elastic network and photosensitive fluorescent arms that become mobile upon irradiation. We form loosely crosslinked polymer networks by Michael-Addition between multifunctional thiols and small molecule containing acrylate end-groups. The arms are connected to the network by allyl sulfide, that undergoes addition-fragmentation chain transfer (AFCT) in the presence of free radicals, releasing diffusible fluorophore. The networks are loaded with photoinitiator to allow for spatial modulation of the AFCT reactions. FRAP experiments within bulk elastomers are conducted to establish correlations between the fluorophore's diffusion coefficient and experimental variables such as network architecture, temperature and UV intensity. Photo-induced mass transport between two contacted films is demonstrated, and release of fluorophore into a solvent is investigated. Spatial and temporal control of mass transport could benefit drug release, printing, and sensing applications.

  17. Framework for reactive mass transport

    DEFF Research Database (Denmark)

    Jensen, Mads Mønster; Johannesson, Björn; Geiker, Mette Rica

    2014-01-01

    Reactive transport modeling is applicable for a range of porous materials. Here the modeling framework is focused on cement-based materials, where ion diffusion and migration are described by the Poisson-Nernst-Planck equation system. A two phase vapor/liquid flow model, with a sorption hysteresis...... description is coupled to the system. The mass transport is solved by using the finite element method where the chemical equilibrium is solved explicitly by an operator splitting method. The IPHREEQC library is used as chemical equilibrium solver. The equation system, solved by IPHREEQC, is explained...

  18. Dynamic characterization of external and internal mass transport in heterotrophic biofilms from microsensors measurements.

    Science.gov (United States)

    Guimerà, Xavier; Dorado, Antonio David; Bonsfills, Anna; Gabriel, Gemma; Gabriel, David; Gamisans, Xavier

    2016-10-01

    Knowledge of mass transport mechanisms in biofilm-based technologies such as biofilters is essential to improve bioreactors performance by preventing mass transport limitation. External and internal mass transport in biofilms was characterized in heterotrophic biofilms grown on a flat plate bioreactor. Mass transport resistance through the liquid-biofilm interphase and diffusion within biofilms were quantified by in situ measurements using microsensors with a high spatial resolution (mass transport coefficients. The sensitivity of external and internal mass transport resistances to flow conditions within the range of typical fluid velocities over biofilms (Reynolds numbers between 0.5 and 7) was assessed. Estimated external mass transfer coefficients at different liquid phase flow velocities showed discrepancies with studies considering laminar conditions in the diffusive boundary layer near the liquid-biofilm interphase. The correlation of effective diffusivity with flow velocities showed that the heterogeneous structure of biofilms defines the transport mechanisms inside biofilms. Internal mass transport was driven by diffusion through cell clusters and aggregates at Re below 2.8. Conversely, mass transport was driven by advection within pores, voids and water channels at Re above 5.6. Between both flow velocities, mass transport occurred by a combination of advection and diffusion. Effective diffusivities estimated at different biofilm densities showed a linear increase of mass transport resistance due to a porosity decrease up to biofilm densities of 50 g VSS·L(-1). Mass transport was strongly limited at higher biofilm densities. Internal mass transport results were used to propose an empirical correlation to assess the effective diffusivity within biofilms considering the influence of hydrodynamics and biofilm density. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. The effect of mass transport on the graphite/CO2 reaction

    International Nuclear Information System (INIS)

    Stephen, W.J.

    1984-11-01

    The Graphite/CO 2 reaction is strongly inhibited by the reaction product CO and therefore any model for the influence of mass transport on reaction rate should consider this. The problem of internal mass transport alone has been considered in previous notes. This note extends the models to include external mass transport. Results are compared with simple first order reaction with no volume change. The calculations demonstrate that, for strong CO inhibition, external mass transport limits reaction at a much lower rate than for first order kinetics and that the usual concept of three reaction zones corresponding to chemical control, in-pore diffusion control and boundary layer control can be unrealistically idealised. (U.K.)

  20. Shape signature based on Ricci flow and optimal mass transportation

    Science.gov (United States)

    Luo, Wei; Su, Zengyu; Zhang, Min; Zeng, Wei; Dai, Junfei; Gu, Xianfeng

    2014-11-01

    A shape signature based on surface Ricci flow and optimal mass transportation is introduced for the purpose of surface comparison. First, the surface is conformally mapped onto plane by Ricci flow, which induces a measure on the planar domain. Second, the unique optimal mass transport map is computed that transports the new measure to the canonical measure on the plane. The map is obtained by a convex optimization process. This optimal transport map encodes all the information of the Riemannian metric on the surface. The shape signature consists of the optimal transport map, together with the mean curvature, which can fully recover the original surface. The discrete theories of surface Ricci flow and optimal mass transportation are explained thoroughly. The algorithms are given in detail. The signature is tested on human facial surfaces with different expressions accquired by structured light 3-D scanner based on phase-shifting method. The experimental results demonstrate the efficiency and efficacy of the method.

  1. A Coupled Chemical and Mass Transport Model for Concrete Durability

    DEFF Research Database (Denmark)

    Jensen, Mads Mønster; Johannesson, Björn; Geiker, Mette Rica

    2012-01-01

    In this paper a general continuum theory is used to evaluate the service life of cement based materials, in terms of mass transport processes and chemical degradation of the solid matrix. The model established is a reactive mass transport model, based on an extended version of the Poisson-Nernst-...

  2. Phonon transport in a one-dimensional harmonic chain with long-range interaction and mass disorder

    Science.gov (United States)

    Zhou, Hangbo; Zhang, Gang; Wang, Jian-Sheng; Zhang, Yong-Wei

    2016-11-01

    Atomic mass and interatomic interaction are the two key quantities that significantly affect the heat conduction carried by phonons. Here, we study the effects of long-range (LR) interatomic interaction and mass disorder on the phonon transport in a one-dimensional harmonic chain with up to 105 atoms. We find that while LR interaction reduces the transmission of low-frequency phonons, it enhances the transmission of high-frequency phonons by suppressing the localization effects caused by mass disorder. Therefore, LR interaction is able to boost heat conductance in the high-temperature regime or in the large size regime, where the high-frequency modes are important.

  3. Activity-Based Costing Application in an Urban Mass Transport Company

    Directory of Open Access Journals (Sweden)

    Popesko Boris

    2011-12-01

    Full Text Available The purpose of this paper is to provide a basic overview of the application of Activity-Based Costing in an urban mass transport company which operates land public transport via buses and trolleys within the city. The case study was conducted using the Activity-Based Methodology in order to calculate the true cost of individual operations and to measure the profitability of particular transport lines. The case study analysis showed the possible effects of the application of the Activity-Based Costing for an urban mass transport company as well as the limitations of using the ABC methodology in the service industry. With regards to the application of the ABC methodology, the primary limitation of the accuracy of the conclusions is the quality of the non-financial information which had to be gathered throughout the implementation process. A basic limitation of the accurate data acquisition is the nature of the fare system of the transport company which does not allow the identification of the route that is taken by an individual passenger. The study illustrates the technique of ABC in urban mass transport and provides a real company example of information outputs of the ABC system. The users indicated that, the ABC model is very useful for profitability reporting and profit management. Also, the paper shows specific application of the Activity-Based Methodology in conditions of urban mass transport companies with regional specifics.

  4. Selected legal and regulatory concerns affecting domestic energy transportation systems

    International Nuclear Information System (INIS)

    Schuller, C.R.

    1979-07-01

    This report provides assessments of eight legal and regulatory concerns that may affect energy material transportation in the US during the rest of the century: state authority to regulate nuclear materials transport, divestiture of petroleum pipelines from major integrated oil companies, problems affecting the natural gas transportation system, capabilities of energy transportation systems during emergencies, Federal coal pipeline legislation, ability of Federal agencies to anticipate railroad difficulties, abandonment of uneconomic railroad lines, and impact of the Panama Canal treaty upon US energy transportation

  5. A mass conservative numerical solution of vertical water flow and mass transport equations in unsaturated porous media

    International Nuclear Information System (INIS)

    Lim, S.C.; Lee, K.J.

    1993-01-01

    The Galerkin finite element method is used to solve the problem of one-dimensional, vertical flow of water and mass transport of conservative-nonconservative solutes in unsaturated porous media. Numerical approximations based on different forms of the governing equation, although they are equivalent in continuous forms, can result in remarkably different solutions in an unsaturated flow problem. Solutions given by a simple Galerkin method based on the h-based Richards equation yield a large mass balance error and an underestimation of the infiltration depth. With the employment of the ROMV (restoration of main variable) concept in the discretization step, the mass conservative numerical solution algorithm for water flow has been derived. The resulting computational schemes for water flow and mass transport are applied to sandy soil. The ROMV method shows good mass conservation in water flow analysis, whereas it seems to have a minor effect on mass transport. However, it may relax the time-step size restriction and so ensure an improved calculation output. (author)

  6. Three-dimensional two-phase mass transport model for direct methanol fuel cells

    International Nuclear Information System (INIS)

    Yang, W.W.; Zhao, T.S.; Xu, C.

    2007-01-01

    A three-dimensional (3D) steady-state model for liquid feed direct methanol fuel cells (DMFC) is presented in this paper. This 3D mass transport model is formed by integrating five sub-models, including a modified drift-flux model for the anode flow field, a two-phase mass transport model for the porous anode, a single-phase model for the polymer electrolyte membrane, a two-phase mass transport model for the porous cathode, and a homogeneous mist-flow model for the cathode flow field. The two-phase mass transport models take account the effect of non-equilibrium evaporation/ condensation at the gas-liquid interface. A 3D computer code is then developed based on the integrated model. After being validated against the experimental data reported in the literature, the code was used to investigate numerically transport behaviors at the DMFC anode and their effects on cell performance

  7. Mass transport modelling for the electroreduction of CO2 on Cu nanowires

    Science.gov (United States)

    Raciti, David; Mao, Mark; Wang, Chao

    2018-01-01

    Mass transport plays an important role in CO2 reduction electrocatalysis. Albeit being more pronounced on nanostructured electrodes, the studies of mass transport for CO2 reduction have yet been limited to planar electrodes. We report here the development of a mass transport model for the electroreduction of CO2 on Cu nanowire electrodes. Fed with the experimental data from electrocatalytic studies, the local concentrations of CO2, {{{{HCO}}}3}-,{{{{CO}}}3}2- and OH- on the nanostructured electrodes are calculated by solving the diffusion equations with spatially distributed electrochemical reaction terms incorporated. The mass transport effects on the catalytic activity and selectivity of the Cu nanowire electrocatalysts are thus discussed by using the local pH as the descriptor. The established correlations between the electrocatalytic performance and the local pH shows that, the latter does not only determine the acid-base reaction equilibrium, but also regulates the mass transport and reaction kinetics. Based on these findings, the optimal range of local pH for CO2 reduction is discussed in terms of a fine balance among the suppression of hydrogen evolution, improvement of C2 product selectivity and limitation of CO2 supply. Our work highlights the importance of understanding the mass transport effects in interpretation of CO2 reduction electrocatalysis on high-surface-area catalysts.

  8. Excess Vitamin Intake before Starvation does not Affect Body Mass, Organ Mass, or Blood Variables but Affects Urinary Excretion of Riboflavin in Starving Rats.

    Science.gov (United States)

    Moriya, Aya; Fukuwatari, Tsutomu; Shibata, Katsumi

    2013-01-01

    B-vitamins are important for producing energy from amino acids, fatty acids, and glucose. The aim of this study was to elucidate the effects of excess vitamin intake before starvation on body mass, organ mass, blood, and biological variables as well as on urinary excretion of riboflavin in rats. Adult rats were fed two types of diets, one with a low vitamin content (minimum vitamin diet for optimum growth) and one with a sufficient amount of vitamins (excess vitamin diet). Body mass, organ mass, and blood variables were not affected by excess vitamin intake before starvation. Interestingly, urinary riboflavin excretion showed a different pattern. Urine riboflavin in the excess vitamin intake group declined gradually during starvation, whereas it increased in the low vitamin intake group. Excess vitamin intake before starvation does not affect body mass, organ mass, or blood variables but does affect the urinary excretion of riboflavin in starving rats.

  9. A Note on Diffusive Mass Transport.

    Science.gov (United States)

    Haynes, Henry W., Jr.

    1986-01-01

    Current chemical engineering textbooks teach that the driving force for diffusive mass transport in ideal solutions is the gradient in mole fraction. This is only true for ideal solution liquids. Therefore, it is shown that the appropriate driving force for use with ideal gases is the gradient in partial pressure. (JN)

  10. The mass transportation problem in Illinois : a final report

    Science.gov (United States)

    1959-06-01

    Prepared by the State Mass Transportation Commission for the Honorable William G. Stratton, Governor of Illinois and the Honorable Members of the 71st General Assembly. The study contains the findings and recommendations of the Illinois State Mass Tr...

  11. Excess Vitamin Intake before Starvation does not Affect Body Mass, Organ Mass, or Blood Variables but Affects Urinary Excretion of Riboflavin in Starving Rats

    Directory of Open Access Journals (Sweden)

    Aya Moriya

    2013-01-01

    Full Text Available B-vitamins are important for producing energy from amino acids, fatty acids, and glucose. The aim of this study was to elucidate the effects of excess vitamin intake before starvation on body mass, organ mass, blood, and biological variables as well as on urinary excretion of riboflavin in rats. Adult rats were fed two types of diets, one with a low vitamin content (minimum vitamin diet for optimum growth and one with a sufficient amount of vitamins (excess vitamin diet. Body mass, organ mass, and blood variables were not affected by excess vitamin intake before starvation. Interestingly, urinary riboflavin excretion showed a different pattern. Urine riboflavin in the excess vitamin intake group declined gradually during starvation, whereas it increased in the low vitamin intake group. Excess vitamin intake before starvation does not affect body mass, organ mass, or blood variables but does affect the urinary excretion of riboflavin in starving rats.

  12. Institutional issues affecting transportation of nuclear materials

    International Nuclear Information System (INIS)

    Reese, R.T.; Luna, R.E.

    1980-01-01

    The institutional issues affecting transportation of nuclear materials in the United States represent significant barriers to meeting future needs in the transport of radioactive waste materials to their ultimate repository. While technological problems which must be overcome to perform such movements seem to be within the state-of-the-art, the timely resolution of these institutional issues seems less assured. However, the definition of these issues, as attempted in this paper, together with systematic analysis of cause and possible solutions are the essential elements of the Transportation Technology Center's Institutional Issues Program

  13. Optimal Filtering in Mass Transport Modeling From Satellite Gravimetry Data

    Science.gov (United States)

    Ditmar, P.; Hashemi Farahani, H.; Klees, R.

    2011-12-01

    Monitoring natural mass transport in the Earth's system, which has marked a new era in Earth observation, is largely based on the data collected by the GRACE satellite mission. Unfortunately, this mission is not free from certain limitations, two of which are especially critical. Firstly, its sensitivity is strongly anisotropic: it senses the north-south component of the mass re-distribution gradient much better than the east-west component. Secondly, it suffers from a trade-off between temporal and spatial resolution: a high (e.g., daily) temporal resolution is only possible if the spatial resolution is sacrificed. To make things even worse, the GRACE satellites enter occasionally a phase when their orbit is characterized by a short repeat period, which makes it impossible to reach a high spatial resolution at all. A way to mitigate limitations of GRACE measurements is to design optimal data processing procedures, so that all available information is fully exploited when modeling mass transport. This implies, in particular, that an unconstrained model directly derived from satellite gravimetry data needs to be optimally filtered. In principle, this can be realized with a Wiener filter, which is built on the basis of covariance matrices of noise and signal. In practice, however, a compilation of both matrices (and, therefore, of the filter itself) is not a trivial task. To build the covariance matrix of noise in a mass transport model, it is necessary to start from a realistic model of noise in the level-1B data. Furthermore, a routine satellite gravimetry data processing includes, in particular, the subtraction of nuisance signals (for instance, associated with atmosphere and ocean), for which appropriate background models are used. Such models are not error-free, which has to be taken into account when the noise covariance matrix is constructed. In addition, both signal and noise covariance matrices depend on the type of mass transport processes under

  14. Transport and mass exchange processes in sand and gravel aquifers (v.1)

    International Nuclear Information System (INIS)

    Moltyaner, G.

    1990-01-01

    The objectives of this conference were to exchange information on promising field measurement techniques used for the characterization of spatial variability of geologic formations and on new methods used for quantifying the effect of spatial variability on groundwater flow and transport of materials; to discuss novel developments in the theory of transport processes and simulation methods; and to present views and opinions on future initiatives and directions in the design of large-scale field tracer experiments and the development of conceptual and mathematical models of transport and mass exchange processes. The 46 papers presented in these proceedings are divided into six sections: field studies of transport processes; groundwater tracers and novel field measurement techniques; promising methods and field measurement techniques for quantifying the effect of geological heterogeneities on groundwater flow and transport; novel developments in the theory of transport processes; numerical modelling of transport and mass exchange processes; and field and modelling studies of mass exchange processes. (L.L.)

  15. Study on flow and mass transport through fractured soft sedimentary rocks (Contact research)

    International Nuclear Information System (INIS)

    Shimo, Michito; Kumamoto, Sou; Maekawa, Keisuke

    2007-03-01

    It is important for safety assessment of HLW geological disposal to evaluate groundwater flow and mass transport in deep underground accurately. Though it is considered that the mass transport in sedimentary rock occurs in pores between grains mainly, fractures of sedimentary rock can be main paths. The objective of this study is to establish a conceptual model for flow and mass transport in fractured soft sedimentary rock. In previous study, a series of laboratory hydraulic and tracer tests and numerical analyses were carried out using sedimentary rock specimens obtained from Koetoi and Wakkanai formation. Single natural fractured cores and rock block specimen were used for the tests and analyses. The results indicated that the matrix diffusion played an important role for mass transport in the fractured soft sedimentary rocks. In this study, the following two tasks were carried out: (1) laboratory hydraulic and tracer experiments of rock cores of Koetoi and Wakkanai formation obtained at HDB-9, HDB-10 and HDB-11 boreholes and a rock block specimen, Wakkanai formation, obtained at an outcrop in the Horonobe area, (2) a numerical study on the conceptual model of flow and mass transport through fractured soft sedimentary rocks. Non-sorbing tracer experiments using naturally fractured cores and rock block specimens were carried out. Pottasium iodide was used as a tracer. The obtained breakthrough curves were interpreted and fitted by using a numerical simulator, and mass transport parameters, such as longitudinal dispersivity, matrix diffusion coefficient, transport aperture, were obtained. Mass transport simulations using a fracture network model, a continuum model and a double porosity model were performed to study the applicability of continuum model and double porosity model for transport in fractured sedimentary rock. (author)

  16. Overexpression and deletion of phospholipid transfer protein reduce HDL mass and cholesterol efflux capacity but not macrophage reverse cholesterol transport[S

    Science.gov (United States)

    Kuwano, Takashi; Bi, Xin; Cipollari, Eleonora; Yasuda, Tomoyuki; Lagor, William R.; Szapary, Hannah J.; Tohyama, Junichiro; Millar, John S.; Billheimer, Jeffrey T.; Lyssenko, Nicholas N.; Rader, Daniel J.

    2017-01-01

    Phospholipid transfer protein (PLTP) may affect macrophage reverse cholesterol transport (mRCT) through its role in the metabolism of HDL. Ex vivo cholesterol efflux capacity and in vivo mRCT were assessed in PLTP deletion and PLTP overexpression mice. PLTP deletion mice had reduced HDL mass and cholesterol efflux capacity, but unchanged in vivo mRCT. To directly compare the effects of PLTP overexpression and deletion on mRCT, human PLTP was overexpressed in the liver of wild-type animals using an adeno-associated viral (AAV) vector, and control and PLTP deletion animals were injected with AAV-null. PLTP overexpression and deletion reduced plasma HDL mass and cholesterol efflux capacity. Both substantially decreased ABCA1-independent cholesterol efflux, whereas ABCA1-dependent cholesterol efflux remained the same or increased, even though preβ HDL levels were lower. Neither PLTP overexpression nor deletion affected excretion of macrophage-derived radiocholesterol in the in vivo mRCT assay. The ex vivo and in vivo assays were modified to gauge the rate of cholesterol efflux from macrophages to plasma. PLTP activity did not affect this metric. Thus, deviations in PLTP activity from the wild-type level reduce HDL mass and ex vivo cholesterol efflux capacity, but not the rate of macrophage cholesterol efflux to plasma or in vivo mRCT. PMID:28137768

  17. Mass Transport Modeling for The Electroreduction of CO2 on Cu Nanowires.

    Science.gov (United States)

    Raciti, David; Mao, Mark; Wang, Chao

    2017-11-20

    Mass transport plays an important role in the CO2 reduction electrocatalysis. Albeit being more pronounced on nanostructured electrodes, the studies of mass transport for CO2 reduction have yet been limited to planar electrodes. We report here the development of a mass transport model for the electroreduction of CO2 on Cu nanowire electrodes. Fed with the experimental data from electrocatalytic studies, the local concentrations of CO2, HCO3-, CO32- and OH- on the nanostructured electrodes are calculated by solving the diffusion equations with spatially distributed electrochemical reaction terms incorporated. The mass transport effects on the catalytic activity and selectivity of the Cu nanowire electrocatalysts are thus discussed by using the local pH as the descriptor. The established correlations between the electrocatalytic performance and the local pH shows that, the latter does not only determine the acid-base reaction equilibrium, but also regulates the mass transport and reaction kinetics. Based on these findings, the optimal range of local pH for the CO2 reduction is discussed in terms of a fine balance of the suppression of hydrogen evolution, improvement of C2 product selectivity and limitation of CO2 supply. Our work highlights the importance of understanding the mass transport effects in interpretation of the CO2 reduction electrocatalysis on high-surface-area catalysts. © 2017 IOP Publishing Ltd.

  18. Transport and transformation of surface water masses across the ...

    African Journals Online (AJOL)

    Transport and transformation of surface water masses across the Mascarene Plateau during the Northeast Monsoon season. ... Mixing occurs in the central gap between intermediate water masses (Red Sea Water [RSW] and Antarctic Intermediate Water [AAIW]) as well as in the upper waters (Subtropical Surface Water ...

  19. Thickness Optimisation of Textiles Subjected to Heat and Mass Transport during Ironing

    Directory of Open Access Journals (Sweden)

    Korycki Ryszard

    2016-09-01

    Full Text Available Let us next analyse the coupled problem during ironing of textiles, that is, the heat is transported with mass whereas the mass transport with heat is negligible. It is necessary to define both physical and mathematical models. Introducing two-phase system of mass sorption by fibres, the transport equations are introduced and accompanied by the set of boundary and initial conditions. Optimisation of material thickness during ironing is gradient oriented. The first-order sensitivity of an arbitrary objective functional is analysed and included in optimisation procedure. Numerical example is the thickness optimisation of different textile materials in ironing device.

  20. Mass transport in thin supported silica membranes

    NARCIS (Netherlands)

    Benes, Nieck Edwin

    2000-01-01

    In this thesis multi-component mass transport in thin supported amorphous silica membranes is discussed. These membranes are micro-porous, with pore diameters smaller than 4Å and show high fluxes for small molecules (such as hydrogen) combined with high selectivities for these molecules with respect

  1. A model to quantify the resilience of mass railway transportation systems

    International Nuclear Information System (INIS)

    Adjetey-Bahun, Kpotissan; Birregah, Babiga; Châtelet, Eric; Planchet, Jean-Luc

    2016-01-01

    Traditional risk management approaches focus on perturbation events' likelihood and their consequences. However, recent events show that not all perturbation events can be foreseen. The concept of resilience has been introduced to measure not only the system's ability to absorb perturbations, but also its ability to rapidly recover from perturbations. In this work, we propose a simulation-based model for quantifying resilience in mass railway transportation systems by quantifying passenger delay and passenger load as the system's performance indicators. We integrate all subsystems that make up mass railway transportation systems (transportation, power, telecommunication and organisation subsystems) and their interdependencies. The model is applied to the Paris mass railway transportation system. The model's results show that since trains continue running within the system even by decreasing their speed, the system remains resilient. During the normal operation of the system as well as during perturbation, the model shows similarities with reality. The perturbation management plan that consists of setting up temporary train services on part of the impacted line while repairing the failed system's component is considered in this work. We also assess the extent to which some resilient system's capacities (i.e. absorption, adaptation and recovery) can increase the resilience of the system. - Highlights: • The need of resilience quantification models in sociotechnical systems. • We propose a simulation-based model. • This model is applied to Paris mass railway transportation system.

  2. Volumetric vs Mass Velocity in Analyzing Convective-Diffusive Transport Processes in Liquids

    Science.gov (United States)

    Brenner, Howard

    2000-11-01

    Because mass rather than volume is preserved in fluid-mechanical problems involving density changes, a natural predilection exists for quantifying convective-diffusive transport phenomena in terms of a velocity field based upon mass, rather than volume. Indeed, in the classic BSL "Transport Phenomena" textbook, but a single reference exists even to the very concept of a volume velocity, and even then it is relegated to a homework assignment. However, especially when dealing with transport in fluids in which the mass density of the conserved property being transported (e.g., chemical species, internal energy, etc.) is independent of the prevailing pressure, as is largely true in the case of liquids, overwhelming advantages exist is preferring the volume velocity over the more ubiquitous and classical mass velocity. In a generalization of ideas pioneered by D. D. Joseph and co-workers, we outline the reasons for this volumetric velocity preference in a broad general context by identifying a large class of physical problems whose solutions are rendered more accessible by exploiting this unconventional velocity choice.

  3. Membranes for nanometer-scale mass fast transport

    Science.gov (United States)

    Bakajin, Olgica [San Leandro, CA; Holt, Jason [Berkeley, CA; Noy, Aleksandr [Belmont, CA; Park, Hyung Gyu [Oakland, CA

    2011-10-18

    Nanoporous membranes comprising single walled, double walled, and multiwalled carbon nanotubes embedded in a matrix material were fabricated for fluid mechanics and mass transfer studies on the nanometer scale and commercial applications. Average pore size can be 2 nm to 20 nm, or seven nm or less, or two nanometers or less. The membrane can be free of large voids spanning the membrane such that transport of material such as gas or liquid occurs exclusively through the tubes. Fast fluid, vapor, and liquid transport are observed. Versatile micromachining methods can be used for membrane fabrication. A single chip can comprise multiple membranes. These membranes are a robust platform for the study of confined molecular transport, with applications in liquid and gas separations and chemical sensing including desalination, dialysis, and fabric formation.

  4. Mass transfer processes and field-scale transport of organic solutes

    International Nuclear Information System (INIS)

    Brusseau, M.L.

    1990-01-01

    The influence of mass transfer processes, such as sorption/desorption and mass transfer between immiscible liquids and water, on the transport of organic solutes is discussed. Rate-limited sorption of organic solutes caused by a diffusion-constrained mechanism is shown to be significant under laboratory conditions. The significance of the impact of nonequilibrium sorption on field-scale transport is scale dependent. The impact of organic liquids on mass transfer and transport of organic solutes depends upon the nature of the solute and the nature and form of the organic liquid. For example, while retardation of nonionic solutes is decreased in mixed-solvent systems, (i.e. systems comprised of water and a miscible organic liquid or an immiscible liquid present in concentrations below phase separation), the retardation of organic acids may, in some cases, increase with addition of a cosolvent. While the presence of an immiscible liquid existing as a mobile phase will reduce retention of organic solutes, the presence of residual saturation of an immiscible liquid can significantly increase retention. A model is presented that incorporates the effects of retention resulting from residual saturation, as well as nonequilibrium sorption, on the transport of organic solutes. (Author) (70 refs., 3 figs.)

  5. Dusty air masses transport between Amazon Basin and Caribbean Islands

    Science.gov (United States)

    Euphrasie-Clotilde, Lovely; Molinie, Jack; Prospero, Joseph; Feuillard, Tony; Brute, Francenor; Jeannot, Alexis

    2015-04-01

    Depend on the month, African desert dust affect different parts of the North Atlantic Ocean. From December to April, Saharan dust outbreaks are often reported over the amazon basin and from May to November over the Caribbean islands and the southern regions of USA. This annual oscillation of Saharan dust presence, related to the ITCZ position, is perturbed some time, during March. Indeed, over Guadeloupe, the air quality network observed between 2007 and 2012 several dust events during March. In this paper, using HISPLIT back trajectories, we analyzed air masses trajectories for March dust events observed in Guadeloupe, from 2007 to 2012.We observed that the high pressure positions over the Atlantic Ocean allow the transport of dusty air masses from southern region of West Africa to the Caribbean Sea with a path crossing close to coastal region of French Guyana. Complementary investigations including the relationship between PM10 concentrations recorded in two sites Pointe-a-Pitre in the Caribbean, and Cayenne in French Guyana, have been done. Moreover we focus on the mean delay observed between the times arrival. All the results show a link between pathway of dusty air masses present over amazon basin and over the Caribbean region during several event of March. The next step will be the comparison of mineral dust composition for this particular month.

  6. Satellite measurements of aerosol mass and transport

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, R.S.; Kaufman, Y.J.; Mahoney, R.L.

    1984-01-01

    The aerosol optical thickness over land is derived from satellite measurements of the radiance of scattered sunlight. These data are used to estimate the columnar mass density of particulate sulfur on a day with a large amount of sulfur. The horizontal transport of the particulate sulfur is calculated using wing vectors measured with rawins. 33 references, 7 figures, 1 table.

  7. Mass transport in propagating patterns of convection

    International Nuclear Information System (INIS)

    Moses, E.; Steinberg, V.

    1988-01-01

    Recent studies of propagating waves in an oscillatory convection of binary mixtures arise questions about transport properties of this flow. Optical visualization of a field of refraction index due to a shadowgraph technique gives information on the temperature and concentration fields. However, experimental observation of rolls propagating along the cell as travelling waves (TW) does not necessarily imply that mass is transferred hydrodynamically by the convective motion along the cell. One of the possibilities discussed, e.g., is that TW observed is only a phase propagation. The traditional examples of such situations come from the domain of linear, superposition-oriented physics. Acoustic waves transfer momentum and energy, but do not cause the mass to make excursions for their equilibrium point that are larger than the oscillation amplitude. In the case of nonlinear physics we were aware that small amplitude surface waves cause only small oscillatory motion round the equilibrium point, while larger amplitudes can cause the mass to start moving in the direction of the TW. This paper discussed the different possibilities of mass transfer by TW. 27 refs., 20 figs

  8. Momentum, heat, and mass transfer analogy for vertical hydraulic transport of inert particles

    Directory of Open Access Journals (Sweden)

    Jaćimovski Darko R.

    2014-01-01

    Full Text Available Wall-to-bed momentum, heat and mass transfer in vertical liquid-solids flow, as well as in single phase flow, were studied. The aim of this investigation was to establish the analogy among those phenomena. Also, effect of particles concentration on momentum, heat and mass transfer was studied. The experiments in hydraulic transport were performed in a 25.4 mm I.D. cooper tube equipped with a steam jacket, using spherical glass particles of 1.94 mm in diameter and water as a transport fluid. The segment of the transport tube used for mass transfer measurements was inside coated with benzoic acid. In the hydraulic transport two characteristic flow regimes were observed: turbulent and parallel particle flow regime. The transition between two characteristic regimes (γ*=0, occurs at a critical voidage ε≈0.85. The vertical two-phase flow was considered as the pseudofluid, and modified mixture-wall friction coefficient (fw and modified mixture Reynolds number (Rem were introduced for explanation of this system. Experimental data show that the wall-to-bed momentum, heat and mass transfer coefficients, in vertical flow of pseudofluid, for the turbulent regime are significantly higher than in parallel regime. Wall-to-bed, mass and heat transfer coefficients in hydraulic transport of particles were much higher then in single-phase flow for lower Reynolds numbers (Re15000, there was not significant difference. The experimental data for wall-to-bed momentum, heat and mass transfer in vertical flow of pseudofluid in parallel particle flow regime, show existing analogy among these three phenomena. [Projekat Ministarstva nauke Republike Srbije, br. 172022

  9. SITE-94. CAMEO: A model of mass-transport limited general corrosion of copper canisters

    International Nuclear Information System (INIS)

    Worgan, K.J.; Apted, M.J.

    1996-12-01

    This report describes the technical basis for the CAMEO code, which models the general, uniform corrosion of a copper canister either by transport of corrodants to the canister, or by transport of corrosion products away from the canister. According to the current Swedish concept for final disposal of spent nuclear fuels, extremely long containment times are achieved by thick (60-100 mm) copper canisters. Each canister is surrounded by a compacted bentonite buffer, located in a saturated, crystalline rock at a depth of around 500 m below ground level. Three diffusive transport-limited cases are identified for general, uniform corrosion of copper: General corrosion rate-limited by diffusive mass-transport of sulphide to the canister surface under reducing conditions; General corrosion rate-limited by diffusive mass-transport of oxygen to the canister surface under mildly oxidizing conditions; General corrosion rate-limited by diffusive mass-transport of copper chloride away from the canister surface under highly oxidizing conditions. The CAMEO code includes general corrosion models for each of the above three processes. CAMEO is based on the well-tested CALIBRE code previously developed as a finite-difference, mass-transfer analysis code for the SKI to evaluate long-term radionuclide release and transport in the near-field. A series of scoping calculations for the general, uniform corrosion of a reference copper canister are presented

  10. TRANSPORT OF SOLUTES IN THE FIELD AS AFFECTED BY IRRIGATION

    Directory of Open Access Journals (Sweden)

    Alessandro Comegna

    2007-09-01

    Full Text Available This study documents and compares the transport of a conservative solute in near saturated soil profiles under flood and sprinkler irrigation. The experiments were carried out on a clay Vertic-Usthortens soil located near Potenza (Italy. Two 2x2 m2 plots were clipped of their native grass vegetation. After spraying on the surface a Cl- pulse as KCl salt; water was applied in five increments over two months as flood irrigation on the first plot and as sprinkler irrigation on the second one. Chloride resident concentration Cr, was sampled by soil coring at four different days after chemical application. Cr(z,t profiles were analyzed by spatial moment method. The recovered mass of Cl- and location of center of mass were comparable for the two types of irrigation. The spread around the center of mass, however, was higher for the flood-irrigated plot. In the flood-irrigated plot, more mass leached below the depth of 90 cm. The velocity of the center of mass was consistently 10-20% larger than the piston displacement velocity. To evaluate the nature of transport, the Cr(z,t distributions were modelled using quasi-steady solution of convection-dispersion equation(CDE. At the scale of our experiments the profiles of Cl- resident concentration are well-simulated.

  11. Selected Topics on Mass Transport in Gas-solid Interactions

    DEFF Research Database (Denmark)

    Somers, Marcel A.J.

    2004-01-01

    The present article is a short review containing examples of the role of mass transport in the solid state during gas-solid interactions. Examples are taken from the authors' research on the interaction of carbon and/or nitrogen with iron-based metals. Topics dealt with are diffusion-controlled d......The present article is a short review containing examples of the role of mass transport in the solid state during gas-solid interactions. Examples are taken from the authors' research on the interaction of carbon and/or nitrogen with iron-based metals. Topics dealt with are diffusion...... on the kinetics of phenomena in the solid state. Various experimental techniques were applied to investigate these phenomena; it is however beyond the scope of the present article to treat experimental conditions in detail. The interested reader is referred to the original work for in depth discussions...

  12. Coolant Chemistry Control: Oxygen Mass Transport in Lead Bismuth Eutectic

    International Nuclear Information System (INIS)

    Weisenburger, A.; Mueller, G.; Bruzzese, C.; Glass, A.

    2015-01-01

    In lead-bismuth cooled transmutation systems, oxygen, dissolved in the coolant at defined quantities, is required for stable long-term operation by assuring the formation of protective oxide scales on structural steel surfaces. Extracted oxygen must be permanently delivered to the system and distributed in the entire core. Therefore, coolant chemistry control involves detailed knowledge on oxygen mass transport. Beside the different flow regimes a core might have stagnant areas at which oxygen delivery can only be realised by diffusion. The difference between oxygen transport in flow paths and in stagnant zones is one of the targets of such experiments. To investigate oxygen mass transport in flowing and stagnant conditions, a dedicated facility was designed based on computational fluid dynamics (CFD). CFD also was applied to define the position of oxygen sensors and ultrasonic Doppler velocimetry transducers for flow measurements. This contribution will present the test facility, design relevant CFD calculations and results of first tests performed. (authors)

  13. Amplified CPEs enhancement of chorioamnion membrane mass transport by encapsulation in nano-sized PLGA particles.

    Science.gov (United States)

    Azagury, Aharon; Amar-Lewis, Eliz; Appel, Reut; Hallak, Mordechai; Kost, Joseph

    2017-08-01

    Chemical penetration enhancers (CPEs) have long been used for mass transport enhancement across membranes. Many CPEs are used in a solution or gel and could be a solvent. The use of CPEs is mainly limited due to their toxicity/irritation levels. This study presents the evaluation of encapsulated CPEs in nano-sized polymeric particles on the chorioamnion (CA) membrane mass transport. CPEs' mass encapsulated in nanoparticles was decreased by 10,000-fold. Interestingly, this approach resulted in a 6-fold increase in mass transport across the CA. This approach may also be used with other CPEs' base applications necessitating lower CPE concentration. Applying Ultrasound (US) has shown to increase the release rate of and also the mass transport across the CA membrane. It is proposed that encapsulated CPEs penetrate into the CA membrane thus prolonging their exposure, possibly extending their penetration into the CA membrane, while insonation also deepens their penetration into the CA membrane. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. The concept of and factors affecting transport accessibility of seaports

    Directory of Open Access Journals (Sweden)

    Janusz Dąbrowski

    2012-03-01

    Full Text Available Transport accessibility of seaports is a frequently studied area in economic research. In practice, port operators and authorities use it to promote their services and compete in the market. Up to this day, theoretical basis of seaports transport accessibility has not been properly described. The article attempts to systematize and expend the knowledge in this field. New definitions of transport availability from wider and narrower perspectives were suggested; different types of accessibility and their mutual relations were explained. These ideas were complemented by introducing classification of factors affecting transport accessibility of seaports.

  15. Modification of the finite element heat and mass transfer code (FEHMN) to model multicomponent reactive transport

    International Nuclear Information System (INIS)

    Viswanathan, H.S.

    1995-01-01

    The finite element code FEHMN is a three-dimensional finite element heat and mass transport simulator that can handle complex stratigraphy and nonlinear processes such as vadose zone flow, heat flow and solute transport. Scientists at LANL have been developed hydrologic flow and transport models of the Yucca Mountain site using FEHMN. Previous FEHMN simulations have used an equivalent K d model to model solute transport. In this thesis, FEHMN is modified making it possible to simulate the transport of a species with a rigorous chemical model. Including the rigorous chemical equations into FEHMN simulations should provide for more representative transport models for highly reactive chemical species. A fully kinetic formulation is chosen for the FEHMN reactive transport model. Several methods are available to computationally implement a fully kinetic formulation. Different numerical algorithms are investigated in order to optimize computational efficiency and memory requirements of the reactive transport model. The best algorithm of those investigated is then incorporated into FEHMN. The algorithm chosen requires for the user to place strongly coupled species into groups which are then solved for simultaneously using FEHMN. The complete reactive transport model is verified over a wide variety of problems and is shown to be working properly. The simulations demonstrate that gas flow and carbonate chemistry can significantly affect 14 C transport at Yucca Mountain. The simulations also provide that the new capabilities of FEHMN can be used to refine and buttress already existing Yucca Mountain radionuclide transport studies

  16. On the use of mass-conserving wind fields in chemistry-transport models

    Directory of Open Access Journals (Sweden)

    B. Bregman

    2003-01-01

    Full Text Available A new method has been developed that provides mass-conserving wind fields for global chemistry-transport models. In previous global Eulerian modeling studies a mass-imbalance was found between the model mass transport and the surface pressure tendencies. Several methods have been suggested to correct for this imbalance, but so far no satisfactory solution has been found. Our new method solves these problems by using the wind fields in a spherical harmonical form (divergence and vorticity by mimicing the physics of the weather forecast model as closely as possible. A 3-D chemistry-transport model was used to show that the calculated ozone fields with the new processing method agree remarkably better with ozone observations in the upper troposphere and lower stratosphere. In addition, the calculated age of air in the lower stratosphere show better agreement with observations, although the air remains still too young in the extra-tropical stratosphere.

  17. The Sedimentology and Origins of a Giant Mass Transport Deposit: The Nataraja Slide, Arabian Sea

    Science.gov (United States)

    Dailey, S. K.; Clift, P. D.; Kulhanek, D. K.; Calves, G.

    2017-12-01

    The Nataraja Slide was recently discovered by seismic mapping off the west coast of India in the Arabian Sea. Volumetrically estimated to be 19,000 km3, it is the second largest mass transport deposit known on a passive margin. Understanding how this deposit was emplaced is important to constrain how mass wasting affects the bathymetry of sedimentary basins, as well as the effects triggered by such a large event, including tsunamis. The Nataraja Slide was emplaced at 10.8 Ma as a result of collapse of the western India margin, which traveled 550 km into the basin. The deposit has been cored in two locations by the International Ocean Discovery Program (IODP) Expedition 355, where it is 330 m (Site U1456) and 190 m thick (Site U1457). The presence of various deformation structures and the occurrence of a predominantly reworked calcareous nannofossil assemblages are used to define the top of the deposit. The deposit appears to consist of two units at Site U1456 with 22 m of upper Miocene hemipelagic sediment separating them, suggesting emplacement in two large pulses. At both sites, the mass transport deposit has a coarse carbonate-dominated base, composed of clast-supported breccia overlain by massive calcarenite associated with high-energy current transport, and calcilutite. These strata are overlain by steeply inclined, slumped but otherwise coherent pyritized, siliciclastic mudstones and minor volumes of matrix-supported conglomerates, interpreted as debris flows. Emplacement appears to have eroded significant thicknesses of Indus Fan turbidites at Site U1456, as there is a hiatus that is a minimum of 2.5 m.y. at the base. At Site U1457, the slide directly overlies Paleocene reddish mudstones on the eastern flank of the Laxmi Ridge, which likely diverted the sediment to the south in the Laxmi Basin and away from the main Arabian Sea basin. Bulk sediment Nd and Sr isotope geochemistry show a provenance, similar to those of the Tapti and Narmada rivers in western

  18. Study on flow and mass transport through fractured sedimentary rocks (2)

    International Nuclear Information System (INIS)

    Shimo, Michito; Kumamoto, Sou; Karasaki, Kenzi; Sato, Hisashi; Sawada, Atsushi

    2009-03-01

    It is important for safety assessment of HLW geological disposal to understand hydro-geological conditions at the investigation area, and to evaluate groundwater flow and mass transport model and parameters, at each investigation phase. Traditionally, for Neogene sedimentary rock, the grain spacing of sediments has been considered as the dominant migration path. However, fractures of sedimentary rock could act as dominant paths, although they were soft sedimentary rocks. In this study, as part of developing groundwater flow and mass transport evaluation methodologies of such a fractured sedimentary rock' distributed area, we conducted two different scale of studies; 1) core rock sample scale and 2) several kilometer scale. For the core rock sample scale, some of laboratory hydraulic and tracer experiments have conducted using the rock cores with tailored parallel fracture, obtained at pilot borehole drilled in the vicinity of ventilation shaft. From the test results, hydraulic conductivity, diffusion coefficient, transport aperture, dispersion length and etc. was evaluated. Based on these test results, the influence of these parameters onto mass transport behavior of fractures sedimentary rocks was examined. For larger scale, such as several kilometer scale, the regional scale groundwater flow was examined using temperature data observed along the boreholes at Horonobe site. The results show that the low permeable zone between the boreholes might be estimated. (author)

  19. Thermo-fluidic devices and materials inspired from mass and energy transport phenomena in biological system

    Institute of Scientific and Technical Information of China (English)

    Jian XIAO; Jing LIU

    2009-01-01

    Mass and energy transport consists of one of the most significant physiological processes in nature, which guarantees many amazing biological phenomena and activ-ities. Borrowing such idea, many state-of-the-art thermo-fluidic devices and materials such as artificial kidneys, carrier erythrocyte, blood substitutes and so on have been successfully invented. Besides, new emerging technologies are still being developed. This paper is dedicated to present-ing a relatively complete review of the typical devices and materials in clinical use inspired by biological mass and energy transport mechanisms. Particularly, these artificial thermo-fluidic devices and materials will be categorized into organ transplantation, drug delivery, nutrient transport, micro operation, and power supply. Potential approaches for innovating conventional technologies were discussed, corresponding biological phenomena and physical mechan-isms were interpreted, future promising mass-and-energy-transport-based bionic devices were suggested, and prospects along this direction were pointed out. It is expected that many artificial devices based on biological mass and energy transport principle will appear to better improve vari-ous fields related to human life in the near future.

  20. Dynamics and mass transport of solutal convection in a closed porous media system

    Science.gov (United States)

    Wen, Baole; Akhbari, Daria; Hesse, Marc

    2016-11-01

    Most of the recent studies of CO2 sequestration are performed in open systems where the constant partial pressure of CO2 in the vapor phase results in a time-invariant saturated concentration of CO2 in the brine (Cs). However, in some closed natural CO2 reservoirs, e.g., Bravo Dome in New Mexico, the continuous dissolution of CO2 leads to a pressure drop in the gas that is accompanied by a reduction of Cs and thereby affects the dynamics and mass transport of convection in the brine. In this talk, I discuss the characteristics of convective CO2 dissolution in a closed system. The gas is assumed to be ideal and its solubility given by Henry's law. An analytical solution shows that the diffusive base state is no longer self-similar and that diffusive mass transfer declines rapidly. Scaling analysis reveals that the volume ratio of brine and gas η determines the behavior of the system. DNS show that no constant flux regime exists for η > 0 nevertheless, the quantity F /Cs2 remains constant, where F is the dissolution flux. The onset time is only affected by η when the Rayleigh number Ra is small. In this case, the drop in Cs during the initial diffusive regime significantly reduces the effective Ra and therefore delays the onset.

  1. Mass transfer and transport in salt repositories

    International Nuclear Information System (INIS)

    Pigford, T.H.; Chambre, P.L.; Lee, W.W.L.

    1989-02-01

    Salt is a unique rock isolation of nuclear waste because it is ''dry'' and nearly impermeable. In this paper we summarize some mass-transfer and transport analyses of salt repositories. First we analyses brine migration. Heating by high-level waste can cause brine in grain boundaries to move due to pressure-gradients. We analyze brine migration treating salt as a thermoelastic solid and found that brine migration is transient and localized. We use previously developed techniques to estimate release rates from waste packages by diffusion. Interbeds exist in salt and may be conduits for radionuclide migration. We analyze steady-state migration due to brine flow in the interbed, as a function of the Peclet number. Then we analyze transient mass transfer, both into the interbed and directly to salt, due only to diffusion. Finally we compare mass transfer rates of a waste cylinder in granite facing a fracture and in salt facing an interbed. In all cases, numerical illustrations of the analytic solution are given. 10 refs., 4 figs., 3 tabs

  2. Analysis of the contribution of sedimentation to bacterial mass transport in a parallel plate flow chamber

    NARCIS (Netherlands)

    Li, Jiuyi; Busscher, Henk J.; Norde, Willem; Sjollema, Jelmer

    2011-01-01

    In order to investigate bacterium-substratum interactions, understanding of bacterial mass transport is necessary. Comparisons of experimentally observed initial deposition rates with mass transport rates in parallel-plate-flow-chambers (PPFC) predicted by convective-diffusion yielded deposition

  3. Nine years of mass transport data in the eastern boundary of the North Atlantic Subtropical Gyre

    Science.gov (United States)

    Fraile-Nuez, Eugenio; MachíN, Francisco; VéLez-Belchí, Pedro; López-Laatzen, Federico; Borges, Rafael; BeníTez-Barrios, Verónica; HernáNdez-Guerra, Alonso

    2010-09-01

    One of the longest current meter time series in the Lanzarote Passage in the eastern boundary of the North Atlantic Subtropical Gyre has been used to determine and quantify the 9-year mean transport, the inter-annual and seasonal mass transport variability for the three water masses present in the area. Results show North Atlantic Central Water (NACW) flowing southward in the upper levels with a mean mass transport of -0.81 ± 1.48 Sv, Antarctic Intermediate Water (AAIW) flowing northward at intermediate levels with a mean transport of +0.09 ± 0.57 Sv and Mediterranean Water (MW) flowing southward in the deep part of the passage with a mean transport of -0.05 ± 0.17 Sv. Harmonic and wavelet analysis show the presence of a seasonal pattern in the passage for the three water masses. A maximum southward transport in winter and spring has been observed for the NACW followed by a minimum in summer and fall. Near zero values during winter and spring are found for AAIW, with a maximum northward value in summer and a negative value in fall, when this water mass reverses its flow. MW has a similar seasonal pattern to NACW. The vertical structure in the Lanzarote Passage can be approximated by four significant oscillatory modes which cumulatively explain 86.4% of the variance. The strong transport fluctuation found at the seasonal and inter-annual timescales demonstrates that the Eastern Boundary Current transport has a strong impact on meridional overturning estimates, thus indicating that to understand Meridional Overturning Circulation variability, these transport estimates at the eastern Atlantic margin are necessary.

  4. Water mass distributions and transports for the 2014 GEOVIDE cruise in the North Atlantic

    Science.gov (United States)

    García-Ibáñez, Maribel I.; Pérez, Fiz F.; Lherminier, Pascale; Zunino, Patricia; Mercier, Herlé; Tréguer, Paul

    2018-04-01

    We present the distribution of water masses along the GEOTRACES-GA01 section during the GEOVIDE cruise, which crossed the subpolar North Atlantic Ocean and the Labrador Sea in the summer of 2014. The water mass structure resulting from an extended optimum multiparameter (eOMP) analysis provides the framework for interpreting the observed distributions of trace elements and their isotopes. Central Waters and Subpolar Mode Waters (SPMW) dominated the upper part of the GEOTRACES-GA01 section. At intermediate depths, the dominant water mass was Labrador Sea Water, while the deep parts of the section were filled by Iceland-Scotland Overflow Water (ISOW) and North-East Atlantic Deep Water. We also evaluate the water mass volume transports across the 2014 OVIDE line (Portugal to Greenland section) by combining the water mass fractions resulting from the eOMP analysis with the absolute geostrophic velocity field estimated through a box inverse model. This allowed us to assess the relative contribution of each water mass to the transport across the section. Finally, we discuss the changes in the distribution and transport of water masses between the 2014 OVIDE line and the 2002-2010 mean state. At the upper and intermediate water levels, colder end-members of the water masses replaced the warmer ones in 2014 with respect to 2002-2010, in agreement with the long-term cooling of the North Atlantic Subpolar Gyre that started in the mid-2000s. Below 2000 dbar, ISOW increased its contribution in 2014 with respect to 2002-2010, with the increase being consistent with other estimates of ISOW transports along 58-59° N. We also observed an increase in SPMW in the East Greenland Irminger Current in 2014 with respect to 2002-2010, which supports the recent deep convection events in the Irminger Sea. From the assessment of the relative water mass contribution to the Atlantic Meridional Overturning Circulation (AMOC) across the OVIDE line, we conclude that the larger AMOC intensity in

  5. A High-Resolution Model of Water Mass Transformation and Transport in the Weddell Sea

    Science.gov (United States)

    Hazel, J.; Stewart, A.

    2016-12-01

    The ocean circulation around the Antarctic margins has a pronounced impact on the global ocean and climate system. One of these impacts includes closing the global meridional overturning circulation (MOC) via formation of dense Antarctic Bottom Water (AABW), which ventilates a large fraction of the subsurface ocean. AABW is also partially composed of modified Circumpolar Deep Water (CDW), a warm, mid-depth water mass whose transport towards the continent has the potential to induce rapid retreat of marine-terminating glaciers. Previous studies suggest that these water mass exchanges may be strongly influenced by high-frequency processes such as downslope gravity currents, tidal flows, and mesoscale/submesoscale eddy transport. However, evaluating the relative contributions of these processes to near-Antarctic water mass transports is hindered by the region's relatively small scales of motion and the logistical difficulties in taking measurements beneath sea ice.In this study we develop a regional model of the Weddell Sea, the largest established source of AABW. The model is forced by an annually-repeating atmospheric state constructed from the Antarctic Mesoscale Prediction System data and by annually-repeating lateral boundary conditions constructed from the Southern Ocean State Estimate. The model incorporates the full Filchner-Ronne cavity and simulates the thermodynamics and dynamics of sea ice. To analyze the role of high-frequency processes in the transport and transformation of water masses, we compute the model's overturning circulation, water mass transformations, and ice sheet basal melt at model horizontal grid resolutions ranging from 1/2 degree to 1/24 degree. We temporally decompose the high-resolution (1/24 degree) model circulation into components due to mean, eddy and tidal flows and discuss the geographical dependence of these processes and their impact on water mass transformation and transport.

  6. Cable Connected Spinning Spacecraft, 1. the Canonical Equations, 2. Urban Mass Transportation, 3

    Science.gov (United States)

    Sitchin, A.

    1972-01-01

    Work on the dynamics of cable-connected spinning spacecraft was completed by formulating the equations of motion by both the canonical equations and Lagrange's equations and programming them for numerical solution on a digital computer. These energy-based formulations will permit future addition of the effect of cable mass. Comparative runs indicate that the canonical formulation requires less computer time. Available literature on urban mass transportation was surveyed. Areas of the private rapid transit concept of urban transportation are also studied.

  7. Thermodynamically coupled mass transport processes in a saturated clay

    International Nuclear Information System (INIS)

    Carnahan, C.L.

    1984-01-01

    Gradients of temperature, pressure, and fluid composition in saturated clays give rise to coupled transport processes (thermal and chemical osmosis, thermal diffusion, ultrafiltration) in addition to the direct processes (advection and diffusion). One-dimension transport of water and a solute in a saturated clay subjected to mild gradients of temperature and pressure was simulated numerically. When full coupling was accounted for, volume flux (specific discharge) was controlled by thermal osmosis and chemical osmosis. The two coupled fluxes were oppositely directed, producing a point of stagnation within the clay column. Solute flows were dominated by diffusion, chemical osmosis, and thermal osmosis. Chemical osmosis produced a significant flux of solute directed against the gradient of solute concentration; this effect reduced solute concentrations relative to the case without coupling. Predictions of mass transport in clays at nuclear waste repositories could be significantly in error if coupled transport processes are not accounted for. 14 refs., 8 figs

  8. Thermodynamically coupled mass transport processes in a saturated clay

    International Nuclear Information System (INIS)

    Carnahan, C.L.

    1984-11-01

    Gradients of temperature, pressure, and fluid composition in saturated clays give rise to coupled transport processes (thermal and chemical osmosis, thermal diffusion, ultrafiltration) in addition to the direct processes (advection and diffusion). One-dimensional transport of water and a solute in a saturated clay subjected to mild gradients of temperature and pressure was simulated numerically. When full coupling was accounted for, volume flux (specific discharge) was controlled by thermal osmosis and chemical osmosis. The two coupled fluxes were oppositely directed, producing a point of stagnation within the clay column. Solute flows were dominated by diffusion, chemical osmosis, and thermal osmosis. Chemical osmosis produced a significant flux of solute directed against the gradient of solute concentration; this effect reduced solute concentrations relative to the case without coupling. Predictions of mass transport in clays at nuclear waste repositories could be significantly in error if coupled transport processes are not accounted for. 14 references, 8 figures, 1 table

  9. Mass transport thermodynamics in nonisothermal molecular liquid mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Semenov, Semen N [Institute for Biochemical Physics, Russian Academy of Sciences, Moscow (Russian Federation); Schimpf, M E [Department of Chemistry and Biochemistry, Boise State University, Boise, ID (United States)

    2009-10-31

    Mass transport in a nonisothermal binary molecular mixture is systematically discussed in terms of nonequilibrium thermodynamics, which for the first time allows a consistent and unambiguous description of the process. The thermodynamic and hydrodynamic approaches are compared, revealing that nonequilibrium thermodynamics and physicochemical hydrodynamics yield essentially the same results for molecular systems. The applicability limits for the proposed version of the thermodynamic approach are determined for large particles. (methodological notes)

  10. Pre-transport factors affecting the welfare of cattle during road transport for slaughter – a review

    Directory of Open Access Journals (Sweden)

    Veronika Šímová

    2016-01-01

    Full Text Available In terms of animal welfare, transport per se is very important in the course of the transportation process and transport duration is considered as one of the determining factors, however, the phase that precedes the actual transport is also of great importance (and often even more important as to stress induction. This pre-transport phase includes many aspects, such as on-farm handling, rearing conditions, assembly of animals, classifying, weighing, repenning in a new environment, re-grouping, mixing with unfamiliar animals, and handling at loading, which is regarded as the most significant factor affecting animal welfare. Therefore, the present work focuses on the factors that play a role during this phase. Those factors are naturally interconnected and their adverse consecutive effects on animal welfare can hardly be separated.

  11. A correction technique for the dispersive effects of mass lumping for transport problems

    KAUST Repository

    Guermond, Jean-Luc; Pasquetti, Richard

    2013-01-01

    This paper addresses the well-known dispersion effect that mass lumping induces when solving transport-like equations. A simple anti-dispersion technique based on the lumped mass matrix is proposed. The method does not require any non-trivial matrix

  12. Conditions and processes affecting radionuclide transport

    Science.gov (United States)

    Simmons, Ardyth M.; Neymark, Leonid A.

    2012-01-01

    Characteristics of host rocks, secondary minerals, and fluids would affect the transport of radionuclides from a previously proposed repository at Yucca Mountain, Nevada. Minerals in the Yucca Mountain tuffs that are important for retarding radionuclides include clinoptilolite and mordenite (zeolites), clay minerals, and iron and manganese oxides and hydroxides. Water compositions along flow paths beneath Yucca Mountain are controlled by dissolution reactions, silica and calcite precipitation, and ion-exchange reactions. Radionuclide concentrations along flow paths from a repository could be limited by (1) low waste-form dissolution rates, (2) low radionuclide solubility, and (3) radionuclide sorption onto geological media.

  13. Mass Transport: Circulatory System with Emphasis on Nonendothermic Species.

    Science.gov (United States)

    Crossley, Dane A; Burggren, Warren W; Reiber, Carl L; Altimiras, Jordi; Rodnick, Kenneth J

    2016-12-06

    Mass transport can be generally defined as movement of material matter. The circulatory system then is a biological example given its role in the movement in transporting gases, nutrients, wastes, and chemical signals. Comparative physiology has a long history of providing new insights and advancing our understanding of circulatory mass transport across a wide array of circulatory systems. Here we focus on circulatory function of nonmodel species. Invertebrates possess diverse convection systems; that at the most complex generate pressures and perform at a level comparable to vertebrates. Many invertebrates actively modulate cardiovascular function using neuronal, neurohormonal, and skeletal muscle activity. In vertebrates, our understanding of cardiac morphology, cardiomyocyte function, and contractile protein regulation by Ca2+ highlights a high degree of conservation, but differences between species exist and are coupled to variable environments and body temperatures. Key regulators of vertebrate cardiac function and systemic blood pressure include the autonomic nervous system, hormones, and ventricular filling. Further chemical factors regulating cardiovascular function include adenosine, natriuretic peptides, arginine vasotocin, endothelin 1, bradykinin, histamine, nitric oxide, and hydrogen sulfide, to name but a few. Diverse vascular morphologies and the regulation of blood flow in the coronary and cerebral circulations are also apparent in nonmammalian species. Dynamic adjustments of cardiovascular function are associated with exercise on land, flying at high altitude, prolonged dives by marine mammals, and unique morphology, such as the giraffe. Future studies should address limits of gas exchange and convective transport, the evolution of high arterial pressure across diverse taxa, and the importance of the cardiovascular system adaptations to extreme environments. © 2017 American Physiological Society. Compr Physiol 7:17-66, 2017. Copyright © 2017 John

  14. Water mass distributions and transports for the 2014 GEOVIDE cruise in the North Atlantic

    Directory of Open Access Journals (Sweden)

    M. I. García-Ibáñez

    2018-04-01

    Full Text Available We present the distribution of water masses along the GEOTRACES-GA01 section during the GEOVIDE cruise, which crossed the subpolar North Atlantic Ocean and the Labrador Sea in the summer of 2014. The water mass structure resulting from an extended optimum multiparameter (eOMP analysis provides the framework for interpreting the observed distributions of trace elements and their isotopes. Central Waters and Subpolar Mode Waters (SPMW dominated the upper part of the GEOTRACES-GA01 section. At intermediate depths, the dominant water mass was Labrador Sea Water, while the deep parts of the section were filled by Iceland–Scotland Overflow Water (ISOW and North-East Atlantic Deep Water. We also evaluate the water mass volume transports across the 2014 OVIDE line (Portugal to Greenland section by combining the water mass fractions resulting from the eOMP analysis with the absolute geostrophic velocity field estimated through a box inverse model. This allowed us to assess the relative contribution of each water mass to the transport across the section. Finally, we discuss the changes in the distribution and transport of water masses between the 2014 OVIDE line and the 2002–2010 mean state. At the upper and intermediate water levels, colder end-members of the water masses replaced the warmer ones in 2014 with respect to 2002–2010, in agreement with the long-term cooling of the North Atlantic Subpolar Gyre that started in the mid-2000s. Below 2000 dbar, ISOW increased its contribution in 2014 with respect to 2002–2010, with the increase being consistent with other estimates of ISOW transports along 58–59° N. We also observed an increase in SPMW in the East Greenland Irminger Current in 2014 with respect to 2002–2010, which supports the recent deep convection events in the Irminger Sea. From the assessment of the relative water mass contribution to the Atlantic Meridional Overturning Circulation (AMOC across the OVIDE line, we conclude

  15. Modification of the finite element heat and mass transfer code (FEHM) to model multicomponent reactive transport

    International Nuclear Information System (INIS)

    Viswanathan, H.S.

    1996-08-01

    The finite element code FEHMN, developed by scientists at Los Alamos National Laboratory (LANL), is a three-dimensional finite element heat and mass transport simulator that can handle complex stratigraphy and nonlinear processes such as vadose zone flow, heat flow and solute transport. Scientists at LANL have been developing hydrologic flow and transport models of the Yucca Mountain site using FEHMN. Previous FEHMN simulations have used an equivalent Kd model to model solute transport. In this thesis, FEHMN is modified making it possible to simulate the transport of a species with a rigorous chemical model. Including the rigorous chemical equations into FEHMN simulations should provide for more representative transport models for highly reactive chemical species. A fully kinetic formulation is chosen for the FEHMN reactive transport model. Several methods are available to computationally implement a fully kinetic formulation. Different numerical algorithms are investigated in order to optimize computational efficiency and memory requirements of the reactive transport model. The best algorithm of those investigated is then incorporated into FEHMN. The algorithm chosen requires for the user to place strongly coupled species into groups which are then solved for simultaneously using FEHMN. The complete reactive transport model is verified over a wide variety of problems and is shown to be working properly. The new chemical capabilities of FEHMN are illustrated by using Los Alamos National Laboratory's site scale model of Yucca Mountain to model two-dimensional, vadose zone 14 C transport. The simulations demonstrate that gas flow and carbonate chemistry can significantly affect 14 C transport at Yucca Mountain. The simulations also prove that the new capabilities of FEHMN can be used to refine and buttress already existing Yucca Mountain radionuclide transport studies

  16. Mass-conserving tracer transport modelling on a reduced latitude-longitude grid with NIES-TM

    Directory of Open Access Journals (Sweden)

    D. Belikov

    2011-03-01

    Full Text Available The need to perform long-term simulations with reasonable accuracy has led to the development of mass-conservative and efficient numerical methods for solving the transport equation in forward and inverse models. We designed and implemented a flux-form (Eulerian tracer transport algorithm in the National Institute for Environmental Studies Transport Model (NIES TM, which is used for simulating diurnal and synoptic-scale variations of tropospheric long-lived constituents, as well as their seasonal and inter-annual variability. Implementation of the flux-form method requires the mass conservative wind fields. However, the model is off-line and is driven by datasets from a global atmospheric model or data assimilation system, in which vertically integrated mass changes are not in balance with the surface pressure tendency and mass conservation is not achieved. To rectify the mass-imbalance, a flux-correction method is employed. To avoid a singularity near the poles, caused by the small grid size arising from the meridional convergence problem, the proposed model uses a reduced latitude–longitude grid scheme, in which the grid size is doubled several times approaching the poles. This approach overcomes the Courant condition in the Polar Regions, maintains a reasonably high integration time-step, and ensures adequate model performance during simulations. To assess the model performance, we performed global transport simulations for SF6, 222Rn, and CO2. The results were compared with observations available from the World Data Centre for Greenhouse Gases, GLOBALVIEW, and the Hateruma monitoring station, Japan. Overall, the results show that the proposed flux-form version of NIES TM can produce tropospheric tracer transport more realistically than previously possible. The reasons for this improvement are discussed.

  17. Road transport and diet affect metabolic response to exercise in horses.

    Science.gov (United States)

    Connysson, M; Muhonen, S; Jansson, A

    2017-11-01

    This study investigated the effects of transport and diet on metabolic response during a subsequent race-like test in Standardbred horses in training fed a forage-only diet and a 50:50 forage:oats diet. Six trained and raced Standardbred trotter mares were used. Two diets, 1 forage-only diet (FONLY) and 1 diet with 50% of DM intake from forage and 50% from oats (FOATS), were fed for two 29-d periods in a crossover design. At Day 21, the horses were subjected to transport for 100 km before and after they performed an exercise test (transport test [TT]). At Day 26, the horses performed a control test (CT), in which they were kept in their stall before and after the exercise test. Blood samples were collected throughout the study, and heart rate and water intake were recorded. Heart rate and plasma cortisol, glucose, and NEFA concentrations were greater for the TT than for the CT ( = 0.008, = 0.020, = 0.010, and = 0.0002, respectively) but were not affected by diet. Plasma acetate concentration was lower during the TT than during the CT ( = 0.034) and greater for the FONLY than for the FOATS ( = 0.003). There were no overall effects of the TT compared with the CT on total plasma protein concentration (TPP), but TPP was lower with the FONLY than with the FOATS ( = 0.016). There was no overall effect of the TT compared with the CT on water intake, but water intake was greater with the FONLY than the FOATS ( = 0.011). There were no overall effects of transport or diet on BW, plasma lactate, or plasma urea concentration. It was concluded that both transport and diet affect metabolic response during exercise in horses. Aerobic energy supply was most likely elevated by transportation and by the FONLY. The FONLY also decreased exercise-induced effects on extracellular fluid regulation. These results highlight the importance of experimental design in nutrition studies. If the aim is to examine how a diet affects exercise response in competition horses, transport should

  18. Mass transport in bedded salt and salt interbeds

    International Nuclear Information System (INIS)

    Hwang, Y.; Pigford, T.H.; Chambre, P.L.; Lee, W.W.L.

    1989-08-01

    Salt is the proposed host rock for geologic repositories of nuclear waste in several nations because it is nearly dry and probably impermeable. Although experiments and experience at potential salt sites indicate that salt may contain brine, the low porosity, creep, and permeability of salt make it still a good choice for geologic isolation. In this paper we summarize several mass-transfer and transport analyses of salt repositories. The mathematical details are given in our technical reports

  19. Assessment of applications of transport models on regional scale solute transport

    Science.gov (United States)

    Guo, Z.; Fogg, G. E.; Henri, C.; Pauloo, R.

    2017-12-01

    Regional scale transport models are needed to support the long-term evaluation of groundwater quality and to develop management strategies aiming to prevent serious groundwater degradation. The purpose of this study is to evaluate the capacity of previously-developed upscaling approaches to accurately describe main solute transport processes including the capture of late-time tails under changing boundary conditions. Advective-dispersive contaminant transport in a 3D heterogeneous domain was simulated and used as a reference solution. Equivalent transport under homogeneous flow conditions were then evaluated applying the Multi-Rate Mass Transfer (MRMT) model. The random walk particle tracking method was used for both heterogeneous and homogeneous-MRMT scenarios under steady state and transient conditions. The results indicate that the MRMT model can capture the tails satisfactorily for plume transported with ambient steady-state flow field. However, when boundary conditions change, the mass transfer model calibrated for transport under steady-state conditions cannot accurately reproduce the tailing effect observed for the heterogeneous scenario. The deteriorating impact of transient boundary conditions on the upscaled model is more significant for regions where flow fields are dramatically affected, highlighting the poor applicability of the MRMT approach for complex field settings. Accurately simulating mass in both mobile and immobile zones is critical to represent the transport process under transient flow conditions and will be the future focus of our study.

  20. Electrocatalytic performance of fuel cell reactions at low catalyst loading and high mass transport.

    Science.gov (United States)

    Zalitis, Christopher M; Kramer, Denis; Kucernak, Anthony R

    2013-03-28

    An alternative approach to the rotating disk electrode (RDE) for characterising fuel cell electrocatalysts is presented. The approach combines high mass transport with a flat, uniform, and homogeneous catalyst deposition process, well suited for studying intrinsic catalyst properties at realistic operating conditions of a polymer electrolyte fuel cell (PEFC). Uniform catalyst layers were produced with loadings as low as 0.16 μgPt cm(-2) and thicknesses as low as 200 nm. Such ultra thin catalyst layers are considered advantageous to minimize internal resistances and mass transport limitations. Geometric current densities as high as 5.7 A cm(-2)Geo were experimentally achieved at a loading of 10.15 μgPt cm(-2) for the hydrogen oxidation reaction (HOR) at room temperature, which is three orders of magnitude higher than current densities achievable with the RDE. Modelling of the associated diffusion field suggests that such high performance is enabled by fast lateral diffusion within the electrode. The electrodes operate over a wide potential range with insignificant mass transport losses, allowing the study of the ORR at high overpotentials. Electrodes produced a specific current density of 31 ± 9 mA cm(-2)Spec at a potential of 0.65 V vs. RHE for the oxygen reduction reaction (ORR) and 600 ± 60 mA cm(-2)Spec for the peak potential of the HOR. The mass activity of a commercial 60 wt% Pt/C catalyst towards the ORR was found to exceed a range of literature PEFC mass activities across the entire potential range. The HOR also revealed fine structure in the limiting current range and an asymptotic current decay for potentials above 0.36 V. These characteristics are not visible with techniques limited by mass transport in aqueous media such as the RDE.

  1. Irradiation-enhanced and-induced mass transport

    International Nuclear Information System (INIS)

    Rehn, L.E.

    1989-01-01

    Irradiation can be used to enhance diffusion, that is, to increase the rate at which equilibrium is attained, as well as to induce nonequilibrium changes. The main factors influencing whether irradiation will drive a material toward or away from equilibrium are the initial specimen microstructure and geometry, irradiation temperature, and primary recoil spectrum. This paper summarizes known effects of irradiation temperature and primary recoil spectrum on mass transport during irradiation. In comparison to either electron or heavy-ion irradiation, it is concluded that relatively low-energy, light-ion bombardment at intermediate temperatures offers the greatest potential to enhance the rate at which equilibrium is attained. The greatest departures from equilibrium can be expected from irradiation with similar particles at very low temperatures

  2. Multicomponent mass transport model: a model for simulating migration of radionuclides in ground water

    International Nuclear Information System (INIS)

    Washburn, J.F.; Kaszeta, F.E.; Simmons, C.S.; Cole, C.R.

    1980-07-01

    This report presents the results of the development of a one-dimensional radionuclide transport code, MMT2D (Multicomponent Mass Transport), for the AEGIS Program. Multicomponent Mass Transport is a numerical solution technique that uses the discrete-parcel-random-wald (DPRW) method to directly simulate the migration of radionuclides. MMT1D accounts for: convection;dispersion; sorption-desorption; first-order radioactive decay; and n-membered radioactive decay chains. Comparisons between MMT1D and an analytical solution for a similar problem show that: MMT1D agrees very closely with the analytical solution; MMT1D has no cumulative numerical dispersion like that associated with solution techniques such as finite differences and finite elements; for current AEGIS applications, relatively few parcels are required to produce adequate results; and the power of MMT1D is the flexibility of the code in being able to handle complex problems for which analytical solution cannot be obtained. Multicomponent Mass Transport (MMT1D) codes were developed at Pacific Northwest Laboratory to predict the movement of radiocontaminants in the saturated and unsaturated sediments of the Hanford Site. All MMT models require ground-water flow patterns that have been previously generated by a hydrologic model. This report documents the computer code and operating procedures of a third generation of the MMT series: the MMT differs from previous versions by simulating the mass transport processes in systems with radionuclide decay chains. Although MMT is a one-dimensional code, the user is referred to the documentation of the theoretical and numerical procedures of the three-dimensional MMT-DPRW code for discussion of expediency, verification, and error-sensitivity analysis

  3. Simplified semi-analytical model for mass transport simulation in unsaturated zone

    International Nuclear Information System (INIS)

    Sa, Bernadete L. Vieira de; Hiromoto, Goro

    2001-01-01

    This paper describes a simple model to determine the flux of radionuclides released from a concrete vault repository and its implementation through the development of a computer program. The radionuclide leach rate from waste is calculated using a model based on simple first order kinetics and the transport through porous media bellow the waste is determined using a semi-analytical solution of the mass transport equation. Results obtained in the IAEA intercomparison program are also related in this communication. (author)

  4. Performance of intact and partially degraded concrete barriers in limiting mass transport

    International Nuclear Information System (INIS)

    Walton, J.C.

    1992-06-01

    Mass transport through concrete barriers and release rate from concrete vaults are quantitatively evaluated. The thorny issue of appropriate diffusion coefficients for use in performance assessment calculations is covered, with no ultimate solution found. Release from monolithic concrete vaults composed of concrete waste forms is estimated with a semi-analytical solution. A parametric study illustrates the importance of different parameters on release. A second situation of importance is the role of a concrete shell or vault placed around typical waste forms in limiting mass transport. In both situations, the primary factor controlling concrete performance is cracks. The implications of leaching behavior on likely groundwater concentrations is examined. Frequently, lower groundwater concentrations can be expected in the absence of engineered covers that reduce infiltration

  5. Mass transport in Ti0.5Sb2Te3 phase-change nanobridge

    International Nuclear Information System (INIS)

    Ji, Xinglong; Wu, Liangcai; Lv, Shilong; Rao, Feng; Zhu, Min; Song, Zhitang; Zhou, Xilin; Feng, Songlin

    2014-01-01

    Investigation of atomic migration behavior in nanoscale phase-change material is very valuable for phase-change memory applications. In this work, Ti 0.5 Sb 2 Te 3 -based phase-change nanobridges were fabricated and mass transport by atomic migration was studied. A 3-D finite-element simulation on the electrothermal field was introduced to describe the electrothermal environment in the phase-change region. During the nanosecond operation, an obvious compositional distribution resulting from atomic migration was observed in the Ti 0.5 Sb 2 Te 3 phase-change nanobridge. Based on the mass continuity equation, a physical model for mass transport is proposed to illustrate that the density variation during the amorphous-to-crystalline structural transformation is the main reason for the atomic migration in nanoscale Ti 0.5 Sb 2 Te 3 phase-change material

  6. Mass transport and chloride ion complexes in occluded cell

    International Nuclear Information System (INIS)

    Tsuru, T.; Hashimoto, K.; Nishikata, A.; Haruyama, S.

    1989-01-01

    Changes in the transport and the concentration of ions in a model occluded cell are traced during galvanostatic anodic polarization of a mild steel and a stainless steel. Apparent transport numbers of anions and cations, which were estimated from chemical analysis of solution, were different from those calculated from known mobility data. At the initial stage of the polarization, the transport number of chloride ion was almost unity, and then decreased gradually. For the mild steel, the concentration of total chloride ion accumulated in the occluded compartment increased with the anodic charge passed, and the amount of chloride ion complexed with cations also increased. The chloride complex was estimated as FeCl + . For SUS304 stainless steel, the total chloride ion increased, however, the free chloride ion, which responded to an Ag/AgCl electrode remained approximately 2 mol/dm 3 . Therefore, most of the chloride ions transferred into the occluded cell formed complex ions, such as CrCl n 3-n . The number of chloride ion coordinated to ferrous and chromic ions was estimated from the data fo mass transport for the case of the mild steel and the stainless steel. (author) 9 refs., 14 figs

  7. Mass and charge transport in micro and nanofluidic channels

    DEFF Research Database (Denmark)

    Mortensen, Niels Asger; Olesen, Laurits Højgaard; Okkels, Fridolin

    2007-01-01

    and charge transport coefficients that satisfy Onsager relations. In the limit of nonoverlapping Debye layers the transport coefficients are simply expressed in terms of parameters of the electrolyte as well as the hydraulic radiusR ¼ 2A=P with Aand P being the cross-sectional area and perimeter......, respectively. In particular, we consider the limits of thin nonoverlapping as well as strongly overlapping Debye layers, respectively, and calculate the corrections to the hydraulic resistance due to electrohydrodynamic interactions.......We consider laminar flow of incompressible electrolytes in long, straight channels driven by pressure and electroosmosis. We use aHilbert space eigenfunction expansion to address the general problem of an arbitrary cross section and obtain general results in linear-response theory for the mass...

  8. Interannual variability of mass transport in the Canary region from LADCP data

    Science.gov (United States)

    Comas-Rodríguez, Isis; Hernández-Guerra, Alonso; Vélez-Belchí, Pedro; Fraile-Nuez, Eugenio

    2010-05-01

    The variability of the Canary Current is a widely studied topic regarding its role as eastern boundary of the North Atlantic Subtropical Gyre. The Canary region provides indeed an interesting study area in terms of estimating variability scales of the Subtropical Gyre as well as the water masses dynamics. RAPROCAN (RAdial PROfunda de CANarias - Canary deep hydrographic section) is a project based on the reaching of these goals through the obtaining of hydrographic measures during cruises taking place approximately along 29°N, to the North of the Canary Archipelago, twice a year since 2006. The full depth sampling carried out allows the study of temperature and salinity distribution and the calculation of mass transports across the section. The transport estimates are compared to those obtained from previous measurements and estimates in the region. Therefore, transports and their variability through the last decade are quantified. The most significant advance made to previous works is the use of LADCP (Lowered Acoustic Doppler Current Profiler) data informing the initial geostrophic calculations. Thus, corrections are applied to each geostrophic profile considering the reference velocity obtained from LADCP data. ADCP-referenced transport estimates are obtained, providing a successful comparison between the velocity fields obtained from the hydrographic measures. While this work shows the interannual variability observed in winter since 1997, preliminary results confirm previous hypotheses about the magnitude of the Canary Current. Those results including LADCP data also provide new aspects in the circulation distribution across the Canary Archipelago. Also moored current meter data were taken into account in the up close study of the Current through the Lanzarote Passage. Interesting conclusions were drawn that certify the usefulness of LADCP data in referencing geostrophic calculations, while corroborating the results obtained through this methodology. Hence

  9. A correction technique for the dispersive effects of mass lumping for transport problems

    KAUST Repository

    Guermond, Jean-Luc

    2013-01-01

    This paper addresses the well-known dispersion effect that mass lumping induces when solving transport-like equations. A simple anti-dispersion technique based on the lumped mass matrix is proposed. The method does not require any non-trivial matrix inversion and has the same anti-dispersive effects as the consistent mass matrix. A novel quasi-lumping technique for P2 finite elements is introduced. Higher-order extensions of the method are also discussed. © 2012 Elsevier B.V.

  10. Computer codes for three dimensional mass transport with non-linear sorption

    International Nuclear Information System (INIS)

    Noy, D.J.

    1985-03-01

    The report describes the mathematical background and data input to finite element programs for three dimensional mass transport in a porous medium. The transport equations are developed and sorption processes are included in a general way so that non-linear equilibrium relations can be introduced. The programs are described and a guide given to the construction of the required input data sets. Concluding remarks indicate that the calculations require substantial computer resources and suggest that comprehensive preliminary analysis with lower dimensional codes would be important in the assessment of field data. (author)

  11. Traffic lanes for vehicles of mass public passenger transport on city streets

    Directory of Open Access Journals (Sweden)

    Gladović Pavle V.

    2015-01-01

    Full Text Available Some of the basic measures of regulating public mass passenger transport in a city network are the introduction and management of traffic lanes reserved for the public transportation. These traffic lanes are important for several reasons: faster moving and shorter travelling time for the vehicles, reducing operating costs, improving the safety, increasing passenger comfort, maintaining of the timetable quality, etc. In most cities, an intensive use of the public transport is concentrated in the morning and the afternoon peak period. The state of the public transport system during these periods is reflected in the crowds inside the vehicles, long vehicle queues at intersections and at bus stops, which cause congestion on the streets and result in delays of public transport vehicles. This paper provides an overview of the current situation on an example in the city of Belgrade. The capacity and the quality of service for the street surfaces reserved for the public transportation vehicles were analysed on the aforementioned example.

  12. Technology assessment of future intercity passenger transporation systems. Volume 2: Identification of issues affecting intercity transportation

    Science.gov (United States)

    1976-01-01

    Papers on major issues and trends that affect the future of intercity transportation are presented. Specific areas covered include: political, social, technological, institutional, and economic mechanisms, the workings of which determine how future intercity transporation technologies will evolve and be put into service; the major issues of intercity transportation from the point of view of reform, including candidate transporation technologies; and technical analysis of trends affecting the evolution of intercity transportation technologies.

  13. Mass transport in non crystalline metallic alloys

    International Nuclear Information System (INIS)

    Limoge, Y.

    1986-08-01

    In order to improve our understanding of mass transport in non crystalline metallic alloys we have developed indirect studies of diffusion based on electron irradiation and hydrostatic pressure effects upon crystallization. In a first part we present the models of crystallization which are used, then we give the experimental results. The main point is the first experimental measurement of the activation volume for diffusion in a metallic glass: the value of which is roughly one atomic volume. We show also recent quantitative results concerning radiation enhanced diffusion in metallic glasses (FeNi) 8 (PB) 2 and Ni 6 Nb 4 . In a last part we discuss the atomic model needed to explain our results

  14. Kinematics of Mass Transport Deposits revealed by magnetic fabrics

    Science.gov (United States)

    Weinberger, R.; Levi, T.; Alsop, G. I.; Marco, S.

    2017-08-01

    The internal deformation and movement directions of Mass Transport Deposits (MTDs) are key factors in understanding the kinematics and dynamics of their emplacement. Although these are relatively easy to recover from well-bedded sediments, they are more difficult to deduce from massive beds without visible strain markers. In order to test the applicability of using anisotropy of magnetic susceptibility (AMS) to determine MTD movement, we compare AMS fabrics, with structural measurements of visible kinematic indicators. Our case study involves the structural analysis of slumped lake sediments extensively exposed in MTDs within the Dead Sea Basin. Structural analyses of MTDs outcropping for >100 km reveal radial transport directions toward the basin depocenter. We show that the AMS fabrics display the same transport directions as inferred from structural analyses. Based on this similarity, we outline a robust procedure to obtain the transport direction of slumped MTDs from AMS fabrics. Variations in the magnetic fabrics and anisotropies in fold-thrust systems within the slumps match the various structural domains. We therefore suggest that magnetic fabrics and anisotropy variations in drill cores may reflect internal deformation within the slumps rather than different slumps. Obtaining magnetic fabrics from MTDs provides a viable way to infer the transport directions and internal deformation of MTDs and reconstruct the basin depocenter in ancient settings. The present results also have implications beyond the kinematics of MTDs, as their geometry resembles fold-thrust systems in other geological settings, scales, and tectonic environments.

  15. A development of multi-Species mass transport model considering thermodynamic phase equilibrium

    DEFF Research Database (Denmark)

    Hosokawa, Yoshifumi; Yamada, Kazuo; Johannesson, Björn

    2008-01-01

    ) variation in solid-phase composition when using different types of cement, (ii) physicochemical evaluation of steel corrosion initiation behaviour by calculating the molar ratio of chloride ion to hydroxide ion [Cl]/[OH] in pore solution, (iii) complicated changes of solid-phase composition caused......In this paper, a multi-species mass transport model, which can predict time dependent variation of pore solution and solid-phase composition due to the mass transport into the hardened cement paste, has been developed. Since most of the multi-species models established previously, based...... on the Poisson-Nernst-Planck theory, did not involve the modeling of chemical process, it has been coupled to thermodynamic equilibrium model in this study. By the coupling of thermodynamic equilibrium model, the multi-species model could simulate many different behaviours in hardened cement paste such as: (i...

  16. Cellular automaton model of coupled mass transport and chemical reactions

    International Nuclear Information System (INIS)

    Karapiperis, T.

    1994-01-01

    Mass transport, coupled with chemical reactions, is modelled as a cellular automaton in which solute molecules perform a random walk on a lattice and react according to a local probabilistic rule. Assuming molecular chaos and a smooth density function, we obtain the standard reaction-transport equations in the continuum limit. The model is applied to the reactions a + b ↔c and a + b →c, where we observe interesting macroscopic effects resulting from microscopic fluctuations and spatial correlations between molecules. We also simulate autocatalytic reaction schemes displaying spontaneous formation of spatial concentration patterns. Finally, we propose and discuss the limitations of a simple model for mineral-solute interaction. (author) 5 figs., 20 refs

  17. Influence of Capillary Condensation Effects on Mass Transport through Porous Membranes

    Czech Academy of Sciences Publication Activity Database

    Uchytil, Petr; Petričkovič, Roman; Thomas, S.; Siedel-Morgenstern, A.

    2003-01-01

    Roč. 33, č. 3 (2003), s. 273-281 ISSN 1383-5866 R&D Projects: GA ČR GA104/01/0945 Institutional research plan: CEZ:AV0Z4072921 Keywords : capillary condensation * mass transport * gas separation Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.355, year: 2003

  18. Benchmarking of electrolyte mass transport in next generation lithium batteries

    Directory of Open Access Journals (Sweden)

    Jonas Lindberg

    2017-12-01

    Full Text Available Beyond conductivity and viscosity, little is often known about the mass transport properties of next generation lithium battery electrolytes, thus, making performance estimation uncertain when concentration gradients are present, as conductivity only describes performance in the absence of these gradients. This study experimentally measured the diffusion resistivity, originating from voltage loss due to a concentration gradient, together with the ohmic resistivity, obtained from ionic conductivity measurements, hence, evaluating electrolytes both with and without the presence of concentration gradients. Under galvanostatic conditions, the concentration gradients, of all electrolytes examined, developed quickly and the diffusion resistivity rapidly dominated the ohmic resistivity. The electrolytes investigated consisted of lithium salt in: room temperature ionic liquids (RTIL, RTIL mixed organic carbonates, dimethyl sulfoxide (DMSO, and a conventional Li-ion battery electrolyte. At steady state the RTIL electrolytes displayed a diffusion resistivity ~ 20 times greater than the ohmic resistivity. The DMSO-based electrolyte showed mass transport properties similar to the conventional Li-ion battery electrolyte. In conclusion, the results presented in this study show that the diffusion polarization must be considered in applications where high energy and power density are desired.

  19. Effects of reservoir heterogeneity on scaling of effective mass transfer coefficient for solute transport

    Science.gov (United States)

    Leung, Juliana Y.; Srinivasan, Sanjay

    2016-09-01

    Modeling transport process at large scale requires proper scale-up of subsurface heterogeneity and an understanding of its interaction with the underlying transport mechanisms. A technique based on volume averaging is applied to quantitatively assess the scaling characteristics of effective mass transfer coefficient in heterogeneous reservoir models. The effective mass transfer coefficient represents the combined contribution from diffusion and dispersion to the transport of non-reactive solute particles within a fluid phase. Although treatment of transport problems with the volume averaging technique has been published in the past, application to geological systems exhibiting realistic spatial variability remains a challenge. Previously, the authors developed a new procedure where results from a fine-scale numerical flow simulation reflecting the full physics of the transport process albeit over a sub-volume of the reservoir are integrated with the volume averaging technique to provide effective description of transport properties. The procedure is extended such that spatial averaging is performed at the local-heterogeneity scale. In this paper, the transport of a passive (non-reactive) solute is simulated on multiple reservoir models exhibiting different patterns of heterogeneities, and the scaling behavior of effective mass transfer coefficient (Keff) is examined and compared. One such set of models exhibit power-law (fractal) characteristics, and the variability of dispersion and Keff with scale is in good agreement with analytical expressions described in the literature. This work offers an insight into the impacts of heterogeneity on the scaling of effective transport parameters. A key finding is that spatial heterogeneity models with similar univariate and bivariate statistics may exhibit different scaling characteristics because of the influence of higher order statistics. More mixing is observed in the channelized models with higher-order continuity. It

  20. Seasonal difference in brain serotonin transporter binding predicts symptom severity in patients with seasonal affective disorder

    DEFF Research Database (Denmark)

    Mc Mahon, Brenda; Andersen, Sofie B.; Madsen, Martin K.

    2016-01-01

    controls with low seasonality scores and 17 patients diagnosed with seasonal affective disorder were scanned in both summer and winter to investigate differences in cerebral serotonin transporter binding across groups and across seasons. The two groups had similar cerebral serotonin transporter binding...... between summer and winter (Psex-(P = 0.02) and genotype-(P = 0.04) dependent. In the patients with seasonal affective disorder, the seasonal change in serotonin transporter binding was positively associated with change in depressive symptom...

  1. Cerebrospinal and interstitial fluid transport via the glymphatic pathway modeled by optimal mass transport.

    Science.gov (United States)

    Ratner, Vadim; Gao, Yi; Lee, Hedok; Elkin, Rena; Nedergaard, Maiken; Benveniste, Helene; Tannenbaum, Allen

    2017-05-15

    The glymphatic pathway is a system which facilitates continuous cerebrospinal fluid (CSF) and interstitial fluid (ISF) exchange and plays a key role in removing waste products from the rodent brain. Dysfunction of the glymphatic pathway may be implicated in the pathophysiology of Alzheimer's disease. Intriguingly, the glymphatic system is most active during deep wave sleep general anesthesia. By using paramagnetic tracers administered into CSF of rodents, we previously showed the utility of MRI in characterizing a macroscopic whole brain view of glymphatic transport but we have yet to define and visualize the specific flow patterns. Here we have applied an alternative mathematical analysis approach to a dynamic time series of MRI images acquired every 4min over ∼3h in anesthetized rats, following administration of a small molecular weight paramagnetic tracer into the CSF reservoir of the cisterna magna. We use Optimal Mass Transport (OMT) to model the glymphatic flow vector field, and then analyze the flow to find the network of CSF-ISF flow channels. We use 3D visualization computational tools to visualize the OMT defined network of CSF-ISF flow channels in relation to anatomical and vascular key landmarks from the live rodent brain. The resulting OMT model of the glymphatic transport network agrees largely with the current understanding of the glymphatic transport patterns defined by dynamic contrast-enhanced MRI revealing key CSF transport pathways along the ventral surface of the brain with a trajectory towards the pineal gland, cerebellum, hypothalamus and olfactory bulb. In addition, the OMT analysis also revealed some interesting previously unnoticed behaviors regarding CSF transport involving parenchymal streamlines moving from ventral reservoirs towards the surface of the brain, olfactory bulb and large central veins. Copyright © 2017. Published by Elsevier Inc.

  2. MASS TRANSPORT AND TURBULENCE IN GRAVITATIONALLY UNSTABLE DISK GALAXIES. II. THE EFFECTS OF STAR FORMATION FEEDBACK

    Energy Technology Data Exchange (ETDEWEB)

    Goldbaum, Nathan J. [National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, 1205 W. Clark St., Urbana, IL 61801 (United States); Krumholz, Mark R. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2601 (Australia); Forbes, John C., E-mail: ngoldbau@illinois.edu [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2016-08-10

    Self-gravity and stellar feedback are capable of driving turbulence and transporting mass and angular momentum in disk galaxies, but the balance between them is not well understood. In the previous paper in this series, we showed that gravity alone can drive turbulence in galactic disks, regulate their Toomre Q parameters to ∼1, and transport mass inwards at a rate sufficient to fuel star formation in the centers of present-day galaxies. In this paper we extend our models to include the effects of star formation feedback. We show that feedback suppresses galaxies’ star formation rates by a factor of ∼5 and leads to the formation of a multi-phase atomic and molecular interstellar medium. Both the star formation rate and the phase balance produced in our simulations agree well with observations of nearby spirals. After our galaxies reach steady state, we find that the inclusion of feedback actually lowers the gas velocity dispersion slightly compared to the case of pure self-gravity, and also slightly reduces the rate of inward mass transport. Nevertheless, we find that, even with feedback included, our galactic disks self-regulate to Q ∼ 1, and transport mass inwards at a rate sufficient to supply a substantial fraction of the inner disk star formation. We argue that gravitational instability is therefore likely to be the dominant source of turbulence and transport in galactic disks, and that it is responsible for fueling star formation in the inner parts of galactic disks over cosmological times.

  3. The use of the dusty-gas model for the description of mass transport with chemical reaction in porous media

    NARCIS (Netherlands)

    Veldsink, J.W.; Veldsink, J.W.; van Damme, Rudolf M.J.; Versteeg, Geert; van Swaaij, Willibrordus Petrus Maria

    1995-01-01

    In the present study, mass transport accompanied by chemical reactions in porous media is studied according to the Fick model and the dusty-gas model. For mass transport accompanied by a chemical reaction in catalyst structures showing a plane, line, or point of symmetry, the approximate analytical

  4. Drift effect and "negative" mass transport in an inhomogeneous medium: limiting case of a two-component lattice gas.

    Science.gov (United States)

    Lukyanets, Sergei P; Kliushnychenko, Oleksandr V

    2010-11-01

    The mass transport in an inhomogeneous medium is modeled as the limiting case of a two-component lattice gas with excluded volume constraint and one of the components fixed. In the long-wavelength approximation, the density relaxation of mobile particles is governed by diffusion and interaction with a medium inhomogeneity represented by the static component distribution. It is shown that the density relaxation can be locally accompanied by density distribution compression, i.e., the local mass transport directed from low-to high-density regions. The origin of such a "negative" mass transport is shown to be associated with the presence of a stationary drift flow defined by the medium inhomogeneity. In the quasi-one-dimensional case, the compression dynamics manifests itself in the hoppinglike motion of packet front position of diffusing substance due to staged passing through inhomogeneity barriers, and it leads to fragmentation of the packet and retardation of its spreading. The root-mean-square displacement reflects only the averaged packet front dynamics and becomes inappropriate as the transport characteristic in this regime. In the stationary case, the mass transport throughout the whole system may be directed from the boundary with lower concentration towards the boundary with higher concentration. Implications of the excluded volume constraint and particle distinguishability for these effects are discussed.

  5. Global vertical mass transport by clouds - A two-dimensional model study

    International Nuclear Information System (INIS)

    Olofsson, Mats

    1988-05-01

    A two-dimensional global dispersion model, where vertical transport in the troposphere carried out by convective as well as by frontal cloud systems is explicitly treated, is developed from an existing diffusion model. A parameterization scheme for the cloud transport, based on global cloud statistics, is presented. The model has been tested by using Kr-85, Rn-222 and SO 2 as tracers. Comparisons have been made with observed distributions of these tracers, but also with model results without the cloud transport, using eddy diffusion as the primary means of vertical transport. The model results indicate that for trace species with a turnover time of days to weeks, the introduction of cloud-transport gives much more realistic simulations of their vertical distribution. Layers of increased mixing ratio with height, which can be found in real atmosphere, are reproduced in our cloud-transport model profiles, but can never be simulated with a pure eddy diffusion model. The horizontal transport in the model, by advection and eddy diffusion, gives a realistic distribution between the hemispheres of the more long-lived tracers (Kr-85). A combination of vertical transport by convective and frontal cloud systems is shown to improve the model simulations, compared to limiting it to convective transport only. The importance of including cumulus clouds in the convective transport scheme, in addition to the efficient transport by cumulonimbus clouds, is discussed. The model results are shown to be more sensitive to the vertical detrainment distribution profile than to the absolute magnitude of the vertical mass transport. The scavenging processes for SO 2 are parameterized without the introduction of detailed chemistry. An enhanced removal, due to the increased contact with droplets in the in-cloud lifting process, is introduced in the model. (author)

  6. Status of the nation's local mass transportation: performance and conditions. Report to the congress, June 1988. Biennial report

    Energy Technology Data Exchange (ETDEWEB)

    1988-06-01

    This document is the third biennial Report of the Secretary of Transportation to the United States Congress on the current performance and condition of the Nation's public mass-transportation systems. It updates the information and recommendations of the previous report and should be of value to the Congress and the Department for developing policy and program requirements to administer the Federal mass-transportation assistance program.

  7. Next-generation satellite gravimetry for measuring mass transport in the Earth system

    NARCIS (Netherlands)

    Teixeira Encarnação, J.

    2015-01-01

    The main objective of the thesis is to identify the optimal set-up for future satellite gravimetry missions aimed at monitoring mass transport in the Earth’s system.The recent variability of climatic patterns, the spread of arid regions and associ- ated changes in the hydrological cycle, and

  8. Solvent-Induced Crystallization in Poly(Ethylene Terephthalate) during Mass Transport

    Science.gov (United States)

    Ouyang, Hao

    2001-03-01

    The solvent transport in poly(ethylene terephthalate) (PET) and related phase transformation were investigated. The data of mass sorption were analyzed according to Harmon¡¦s model for Case I (Fickian), Case II (swelling) and anomalous transport. This transport process in PET is accompanied by the induced crystallization of the original amorphous state. The transformation was studied by wide angle x-ray scattering (WAXS), small angle x-ray scattering (SAXS), Differential Scanning Calorimeter (DSC), density gradient column, and Fourier Transform Infra-Red (FTIR). During this process, the matrix is under a compressive strain that causes different kinetic path of crystallization as compared to that by thermal annealing. This state of strain will assist the development of the solvent-induced crystallization. It also can be explained in terms of the principle of Le Chatelier if the local equilibrium is assumed. The model regarding the crystallization was proposed in terms of the study of long period L, the crystal thickness lc and the thickness of amorphous layer la, obtained from the linear correlation function and interface distribution function.

  9. The Impact of Microstructure Geometry on the Mass Transport in Artificial Pores: A Numerical Approach

    Directory of Open Access Journals (Sweden)

    Matthias Galinsky

    2014-01-01

    Full Text Available The microstructure of porous materials used in heterogeneous catalysis determines the mass transport inside networks, which may vary over many length scales. The theoretical prediction of mass transport phenomena in porous materials, however, is incomplete and is still not completely understood. Therefore, experimental data for every specific porous system is needed. One possible experimental technique for characterizing the mass transport in such pore networks is pulse experiments. The general evaluation of experimental outcomes of these techniques follows the solution of Fick’s second law where an integral and effective diffusion coefficient is recognized. However, a detailed local understanding of diffusion and sorption processes remains a challenge. As there is lack of proved models covering different length scales, existing classical concepts need to be evaluated with respect to their ability to reflect local geometries on the nanometer level. In this study, DSMC (Direct Simulation Monte Carlo models were used to investigate the impact of pore microstructures on the diffusion behaviour of gases. It can be understood as a virtual pulse experiment within a single pore or a combination of different pore geometries.

  10. Coupled porohyperelastic mass transport (PHEXPT) finite element models for soft tissues using ABAQUS.

    Science.gov (United States)

    Vande Geest, Jonathan P; Simon, B R; Rigby, Paul H; Newberg, Tyler P

    2011-04-01

    Finite element models (FEMs) including characteristic large deformations in highly nonlinear materials (hyperelasticity and coupled diffusive/convective transport of neutral mobile species) will allow quantitative study of in vivo tissues. Such FEMs will provide basic understanding of normal and pathological tissue responses and lead to optimization of local drug delivery strategies. We present a coupled porohyperelastic mass transport (PHEXPT) finite element approach developed using a commercially available ABAQUS finite element software. The PHEXPT transient simulations are based on sequential solution of the porohyperelastic (PHE) and mass transport (XPT) problems where an Eulerian PHE FEM is coupled to a Lagrangian XPT FEM using a custom-written FORTRAN program. The PHEXPT theoretical background is derived in the context of porous media transport theory and extended to ABAQUS finite element formulations. The essential assumptions needed in order to use ABAQUS are clearly identified in the derivation. Representative benchmark finite element simulations are provided along with analytical solutions (when appropriate). These simulations demonstrate the differences in transient and steady state responses including finite deformations, total stress, fluid pressure, relative fluid, and mobile species flux. A detailed description of important model considerations (e.g., material property functions and jump discontinuities at material interfaces) is also presented in the context of finite deformations. The ABAQUS-based PHEXPT approach enables the use of the available ABAQUS capabilities (interactive FEM mesh generation, finite element libraries, nonlinear material laws, pre- and postprocessing, etc.). PHEXPT FEMs can be used to simulate the transport of a relatively large neutral species (negligible osmotic fluid flux) in highly deformable hydrated soft tissues and tissue-engineered materials.

  11. Species Uptake and Mass Transport in Membranes for Vanadium Redox Flow Batteries

    International Nuclear Information System (INIS)

    Elgammal, Ramez A.; Tang, Zhijiang; Sun, Che-Nan; Lawton, Jamie; Zawodzinski, Thomas A.

    2017-01-01

    In this contribution, we provide a synthesis of results to date describing uptake and mass transport of water, vanadium species and protons in Nafion membranes for use as separators in VRFBs. Resistance issues as well as species cross-over are important contributors to performance loss in VRFBs. After a brief discussion of our state-of-the-art cell performance, we consider the uptake and transport of various species through a number of membrane materials. We draw together numerous previous studies and augment them with new data to provide a summary of our present state of understanding of the experimental facts regarding membrane behavior.

  12. Submarine Landslides and Mass-Transport Deposition in the Nankai fore-arc

    Science.gov (United States)

    Strasser, M.; Henry, P.; Kanamatsu, T.; Moe, K.; Moore, G. F.; IODP Expedition 333 Scientists

    2011-12-01

    Multiple lines of evidence exist for a range of sediment mass movement processes within the shallow megasplay fault zone (MSFZ) area and the adjacent slope basin in the outer fore-arc of the Nankai subduction zone, Japan. Diagnostic features observed in 3-D reflection seismic data and in cores from Integrated Ocean Drilling Program (IODP) Expedition 316 document a complex mass movement history spanning at least ˜2.87 million years. Various modes and scales of sediment remobilization can be related to the different morphotectonic settings in which they occurred and allow integration of knowledge on the spatial and temporal distribution of submarine landslides into a holistic reconstruction of the tectonostratigraphic evolution. New data from the most-recent Nankai IODP Expedition 333, which drilled and cored a Pleistocene-to-Holocene succession of the slope-basin seaward of the MSFZ, provides unprecedented details on submarine landslide processes occurring over the last Million year. The slope-basin represents the depocentre for downslope sediment transport and is characterized in 3-D reflection seismic data by several mass-transport deposits (MTDs), including an up to 180 m thick MTD. Here we present D/V Chikyu shipboard results and first post cruise results from Site C0018, including litho- bio- magneto- tephra- and stable isotope-stratigraphy, X-ray computed tomography analysis and physical properties data. Six MTDs were identified from visual core description and X-ray CT-scans. The thickest MTD is also the oldest (emplaced between 0.85 and 1.05 Ma) and it coincides with a lithological transition between a sandy turbidite sequence below, and ash-bearing hemipelagites comprising several MTDs above. Deformation styles within the MTD are heterogeneous: intervals of disturbed sediments are interbedded within intervals inferred to retain original, coherent bedding. In three occurrences the base of the MTD is defined by a shear zone within fine-grained sediments

  13. Mass-corrections for the conservative coupling of flow and transport on collocated meshes

    Energy Technology Data Exchange (ETDEWEB)

    Waluga, Christian, E-mail: waluga@ma.tum.de [Institute for Numerical Mathematics (M2), Technische Universität München, Boltzmannstraße 3, D-85748 Garching bei München (Germany); Wohlmuth, Barbara [Institute for Numerical Mathematics (M2), Technische Universität München, Boltzmannstraße 3, D-85748 Garching bei München (Germany); Rüde, Ulrich [Department of Computer Science 10, University Erlangen–Nuremberg, Cauerstr. 11, D-91058 Erlangen (Germany)

    2016-01-15

    Buoyancy-driven flow models demand a careful treatment of the mass-balance equation to avoid spurious source and sink terms in the non-linear coupling between flow and transport. In the context of finite-elements, it is therefore commonly proposed to employ sufficiently rich pressure spaces, containing piecewise constant shape functions to obtain local or even strong mass-conservation. In three-dimensional computations, this usually requires nonconforming approaches, special meshes or higher order velocities, which make these schemes prohibitively expensive for some applications and complicate the implementation into legacy code. In this paper, we therefore propose a lean and conservatively coupled scheme based on standard stabilized linear equal-order finite elements for the Stokes part and vertex-centered finite volumes for the energy equation. We show that in a weak mass-balance it is possible to recover exact conservation properties by a local flux-correction which can be computed efficiently on the control volume boundaries of the transport mesh. We discuss implementation aspects and demonstrate the effectiveness of the flux-correction by different two- and three-dimensional examples which are motivated by geophysical applications.

  14. Facile synthesis of mesostructured ZSM-5 zeolite with enhanced mass transport and catalytic performances

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chao; Ren, Yanqun [School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641 (China); Gou, Jinsheng [College Material Science and Technology, Beijing Forestry University, Key Laboratory of Wooden Material Science and Application, Ministry of Education, 35 Tsinghua East Road, Haidian District, Beijing 100083 (China); Liu, Baoyu [School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641 (China); Xi, Hongxia, E-mail: cehxxi@scut.edu.cn [School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641 (China)

    2017-01-15

    Highlights: • A mesostructured MFI zeolite was synthesized via dual-functional surfactant approach. • Mass transport was investigated by applying zero length column technique. • The catalyst exhibited excellent catalytic activity and long lifetime. • Gaussian DFT was employed to study the role of surfactant in crystallization process. - Abstract: A mesostructured ZSM-5 zeolite with multilamellar structure was successfully synthesized by employing a tetra-headgroup rigid bolaform quaternary ammonium surfactant. It was characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), nitrogen adsorption/desorption isotherms, amines temperature programmed desorption (amines-TPD), and computer simulation. These results indicated that the dual-functional amphiphilic surfactants play a critical role for directing the multilamellar structure with high mesoporosity. The mass transport and catalytic performances of the zeolite were investigated by zero length column (ZLC) technique and aldol condensation reactions to evaluate the structure-property relationship. These results clearly indicated that the mass transport of selected molecules in hierarchical zeolite can be accelerated by introducing mesoporous structure with mesostructure with reduced diffusion length and an overall enhanced resistance against deactivation in reactions involving large molecules. Furthermore, the dual-functional surfactant approach of making hierarchical zeolite with MFI nanosheets framework would open up new opportunities for design and synthesis of hierarchical zeolites with controllable mesoporous structures.

  15. Facile synthesis of mesostructured ZSM-5 zeolite with enhanced mass transport and catalytic performances

    International Nuclear Information System (INIS)

    Li, Chao; Ren, Yanqun; Gou, Jinsheng; Liu, Baoyu; Xi, Hongxia

    2017-01-01

    Highlights: • A mesostructured MFI zeolite was synthesized via dual-functional surfactant approach. • Mass transport was investigated by applying zero length column technique. • The catalyst exhibited excellent catalytic activity and long lifetime. • Gaussian DFT was employed to study the role of surfactant in crystallization process. - Abstract: A mesostructured ZSM-5 zeolite with multilamellar structure was successfully synthesized by employing a tetra-headgroup rigid bolaform quaternary ammonium surfactant. It was characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), nitrogen adsorption/desorption isotherms, amines temperature programmed desorption (amines-TPD), and computer simulation. These results indicated that the dual-functional amphiphilic surfactants play a critical role for directing the multilamellar structure with high mesoporosity. The mass transport and catalytic performances of the zeolite were investigated by zero length column (ZLC) technique and aldol condensation reactions to evaluate the structure-property relationship. These results clearly indicated that the mass transport of selected molecules in hierarchical zeolite can be accelerated by introducing mesoporous structure with mesostructure with reduced diffusion length and an overall enhanced resistance against deactivation in reactions involving large molecules. Furthermore, the dual-functional surfactant approach of making hierarchical zeolite with MFI nanosheets framework would open up new opportunities for design and synthesis of hierarchical zeolites with controllable mesoporous structures.

  16. Mass transport of heavy metal ions and radon in gels used as sealing agents in containment technologies

    International Nuclear Information System (INIS)

    Lakatos, I.; Bauer, K.; Lakatos-Szabo, J.; Kretzschmar, H.J.

    1997-01-01

    The diffusion and hydrodynamic mass transport of multivalent cations, mostly Cr(III) and Cr(VI) ions and radon in polymer/silicate gels and Montanwax emulsions were studied. It was concluded that the self-conforming gels may decrease the hydrodynamic mass transport in porous and fractured media by 4-6 orders of magnitude. In water saturated systems, however, the diffusion transport can be restricted by hydrogels only to a moderate extent. On the other hand, the high and selective retention capacity of gels towards different diffusing species may open new vistas in the sealing technologies. Similar results were obtained for transport phenomena of radon. The almost perfect quenching process of radon and its nuclides in gels and emulsions further enhances the positive effects of the encapsulation methods. The laboratory experiments provided valuable new information to design the different containment technologies

  17. Mass transport of heavy metal ions and radon in gels used as sealing agents in containment technologies

    Energy Technology Data Exchange (ETDEWEB)

    Lakatos, I.; Bauer, K.; Lakatos-Szabo, J. [Research Lab. for Mining Chemistry, Miskolc-Egyetemvaros (Hungary); Kretzschmar, H.J. [DBI Gas- und Umwelttechnik GmbH, Feiberg (Germany)

    1997-12-31

    The diffusion and hydrodynamic mass transport of multivalent cations, mostly Cr(III) and Cr(VI) ions and radon in polymer/silicate gels and Montanwax emulsions were studied. It was concluded that the self-conforming gels may decrease the hydrodynamic mass transport in porous and fractured media by 4-6 orders of magnitude. In water saturated systems, however, the diffusion transport can be restricted by hydrogels only to a moderate extent. On the other hand, the high and selective retention capacity of gels towards different diffusing species may open new vistas in the sealing technologies. Similar results were obtained for transport phenomena of radon. The almost perfect quenching process of radon and its nuclides in gels and emulsions further enhances the positive effects of the encapsulation methods. The laboratory experiments provided valuable new information to design the different containment technologies.

  18. No association between striatal dopamine transporter binding and body mass index

    DEFF Research Database (Denmark)

    van de Giessen, Elsmarieke; Hesse, Swen; Caan, Matthan W A

    2013-01-01

    Dopamine is one among several neurotransmitters that regulate food intake and overeating. Thus, it has been linked to the pathophysiology of obesity and high body mass index (BMI). Striatal dopamine D(2) receptor availability is lower in obesity and there are indications that striatal dopamine...... transporter (DAT) availability is also decreased. In this study, we tested whether BMI and striatal DAT availability are associated....

  19. Mass transport in fracture media: impact of the random function model assumed for fractures conductivity

    International Nuclear Information System (INIS)

    Capilla, J. E.; Rodrigo, J.; Gomez Hernandez, J. J.

    2003-01-01

    Characterizing the uncertainty of flow and mass transport models requires the definition of stochastic models to describe hydrodynamic parameters. Porosity and hydraulic conductivity (K) are two of these parameters that exhibit a high degree of spatial variability. K is usually the parameter whose variability influence to a more extended degree solutes movement. In fracture media, it is critical to properly characterize K in the most altered zones where flow and solutes migration tends to be concentrated. However, K measurements use to be scarce and sparse. This fact calls to consider stochastic models that allow quantifying the uncertainty of flow and mass transport predictions. This paper presents a convective transport problem solved in a 3D block of fractured crystalline rock. the case study is defined based on data from a real geological formation. As the scarcity of K data in fractures does not allow supporting classical multi Gaussian assumptions for K in fractures, the non multi Gaussian hypothesis has been explored, comparing mass transport results for alternative Gaussian and non-Gaussian assumptions. The latter hypothesis allows reproducing high spatial connectivity for extreme values of K. This feature is present in nature, might lead to reproduce faster solute pathways, and therefore should be modeled in order to obtain reasonably safe prediction of contaminants migration in a geological formation. The results obtained for the two alternative hypotheses show a remarkable impact of the K random function model in solutes movement. (Author) 9 refs

  20. Effect of long-distance transportation on serum metabolic profiles of steer calves.

    Science.gov (United States)

    Takemoto, Satoshi; Tomonaga, Shozo; Funaba, Masayuki; Matsui, Tohru

    2017-12-01

    Long-distance transportation is sometimes inevitable in the beef industry because of the geographic separation of major breeding and fattening areas. Long-distance transportation negatively impacts production and health of cattle, which may, at least partly, result from the disturbance of metabolism during and after transportation. However, alteration of metabolism remains elusive in transported cattle. We investigated the effects of transportation on the metabolomic profiles of Holstein steer calves. Non-targeted analysis of serum concentrations of low molecular weight metabolites was performed by gas chromatography mass spectrometry. Transportation affected 38 metabolites in the serum. A pathway analysis suggested that 26, 10, and 10 pathways were affected immediately after transportation, and 3 and 7 days after transportation, respectively. Some pathways were disturbed only immediately after transportation, likely because of feed and water withdrawal during transit. Nicotinate and nicotinamide metabolism, and citric acid cycle were affected for 3 days after transportation, whereas propionate metabolism, phenylalanine and tyrosine metabolism were affected throughout the experiment. Four pathways were not affected immediately after transportation, but were altered thereafter. These results suggested that many metabolic pathways had marked perturbations during transportation. Metabolites such as citric acid, propionate, tyrosine and niacin can be candidate supplements for mitigating transportation-induced adverse effects. © 2017 Japanese Society of Animal Science.

  1. Mass flow and velocity profiles in Neurospora hyphae: partial plug flow dominates intra-hyphal transport.

    Science.gov (United States)

    Abadeh, Aryan; Lew, Roger R

    2013-11-01

    Movement of nuclei, mitochondria and vacuoles through hyphal trunks of Neurospora crassa were vector-mapped using fluorescent markers and green fluorescent protein tags. The vectorial movements of all three were strongly correlated, indicating the central role of mass (bulk) flow in cytoplasm movements in N. crassa. Profiles of velocity versus distance from the hyphal wall did not match the parabolic shape predicted by the ideal Hagen-Poiseuille model of flow at low Reynolds number. Instead, the profiles were flat, consistent with a model of partial plug flow due to the high concentration of organelles in the flowing cytosol. The intra-hyphal pressure gradients were manipulated by localized external osmotic treatments to demonstrate the dependence of velocity (and direction) on pressure gradients within the hyphae. The data support the concept that mass transport, driven by pressure gradients, dominates intra-hyphal transport. The transport occurs by partial plug flow due to the organelles in the cytosol.

  2. Three-Dimensional Network Model for Coupling of Fracture and Mass Transport in Quasi-Brittle Geomaterials

    Directory of Open Access Journals (Sweden)

    Peter Grassl

    2016-09-01

    Full Text Available Dual three-dimensional networks of structural and transport elements were combined to model the effect of fracture on mass transport in quasi-brittle geomaterials. Element connectivity of the structural network, representing elasticity and fracture, was defined by the Delaunay tessellation of a random set of points. The connectivity of transport elements within the transport network was defined by the Voronoi tessellation of the same set of points. A new discretisation strategy for domain boundaries was developed to apply boundary conditions for the coupled analyses. The properties of transport elements were chosen to evolve with the crack opening values of neighbouring structural elements. Through benchmark comparisons involving non-stationary transport and fracture, the proposed dual network approach was shown to be objective with respect to element size and orientation.

  3. Gluon transport equation with effective mass and dynamical onset of Bose–Einstein condensation

    International Nuclear Information System (INIS)

    Blaizot, Jean-Paul; Jiang, Yin; Liao, Jinfeng

    2016-01-01

    We study the transport equation describing a dense system of gluons, in the small scattering angle approximation, taking into account medium-generated effective masses of the gluons. We focus on the case of overpopulated systems that are driven to Bose–Einstein condensation on their way to thermalization. The presence of a mass modifies the dispersion relation of the gluon, as compared to the massless case, but it is shown that this does not change qualitatively the scaling behavior in the vicinity of the onset.

  4. Mass transport mechanism in the collision of sulphur on medium-weight nuclei

    International Nuclear Information System (INIS)

    Lejeune, A.; Richert, J.

    1980-01-01

    The reactions of 32 S on 59 Co, 65 Cu, 74 Ge, 79 Br, 85 Rb, 89 Y are studied. An explanation for the specific shape of the double differential cross sections as a function of the scattering angle and the mass asymmetry is given in the framework of a transport model. Conclusions about the reaction mechanism are drawn

  5. Peclet number as affected by molecular diffusion controls transient anomalous transport in alluvial aquifer-aquitard complexes

    Science.gov (United States)

    Zhang, Yong; Green, Christopher T.; Tick, Geoffrey R.

    2015-01-01

    This study evaluates the role of the Peclet number as affected by molecular diffusion in transient anomalous transport, which is one of the major knowledge gaps in anomalous transport, by combining Monte Carlo simulations and stochastic model analysis. Two alluvial settings containing either short- or long-connected hydrofacies are generated and used as media for flow and transport modeling. Numerical experiments show that 1) the Peclet number affects both the duration of the power-law segment of tracer breakthrough curves (BTCs) and the transition rate from anomalous to Fickian transport by determining the solute residence time for a given low-permeability layer, 2) mechanical dispersion has a limited contribution to the anomalous characteristics of late-time transport as compared to molecular diffusion due to an almost negligible velocity in floodplain deposits, and 3) the initial source dimensions only enhance the power-law tail of the BTCs at short travel distances. A tempered stable stochastic (TSS) model is then applied to analyze the modeled transport. Applications show that the time-nonlocal parameters in the TSS model relate to the Peclet number, Pe. In particular, the truncation parameter in the TSS model increases nonlinearly with a decrease in Pe due to the decrease of the mean residence time, and the capacity coefficient increases with an increase in molecular diffusion which is probably due to the increase in the number of immobile particles. The above numerical experiments and stochastic analysis therefore reveal that the Peclet number as affected by molecular diffusion controls transient anomalous transport in alluvial aquifer–aquitard complexes.

  6. Long-range transport biomass burning emissions to the Himalayas: insights from high-resolution aerosol mass spectrometer

    Science.gov (United States)

    Xu, J.; Zhang, X.; Liu, Y.; Shichang, K.; Ma, Y.

    2017-12-01

    An intensive measurement was conducted at a remote, background, and high-altitude site (Qomolangma station, QOMS, 4276 m a.s.l.) in the northern Himalayas, using an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) along with other collocated instruments. The field measurement was performed from April 12 to May 12, 2016 to chemically characterize high time-resolved submicron particulate matter (PM1) and obtain the influence of biomass burning emissions to the Himalayas, frequently transported from south Asia during pre-monsoon season. Two high aerosol loading periods were observed during the study. Overall, the average (± 1σ) PM1 mass concentration was 4.44 (± 4.54) µg m-3 for the entire study, comparable with those observed at other remote sites worldwide. Organic aerosols (OA) was the dominant PM1 species (accounting for 54.3% of total PM1 mass on average) and its contribution increased with the increase of total PM1 mass loading. The average size distributions of PM1 species all peaked at an overlapping accumulation mode ( 500 nm), suggesting that aerosol particles were internally well-mixed and aged during long-range transportations. Positive matrix factorization (PMF) analysis on the high-resolution organic mass spectra identified three distinct OA factors, including a biomass burning related OA (BBOA, 43.7%) and two oxygenated OA (Local-OOA and LRT-OOA; 13.9% and 42.4%) represented sources from local emissions and long-range transportations, respectively. Two polluted air mass origins (generally from the west and southwest of QOMS) and two polluted episodes with enhanced PM1 mass loadings and elevated BBOA contributions were observed, respectively, suggesting the important sources of wildfires from south Asia. One of polluted aerosol plumes was investigated in detail to illustrate the evolution of aerosol characteristics at QOMS driving by different impacts of wildfires, air mass origins, meteorological conditions and

  7. Mass transport enhancement in redox flow batteries with corrugated fluidic networks

    Science.gov (United States)

    Lisboa, Kleber Marques; Marschewski, Julian; Ebejer, Neil; Ruch, Patrick; Cotta, Renato Machado; Michel, Bruno; Poulikakos, Dimos

    2017-08-01

    We propose a facile, novel concept of mass transfer enhancement in flow batteries based on electrolyte guidance in rationally designed corrugated channel systems. The proposed fluidic networks employ periodic throttling of the flow to optimally deflect the electrolytes into the porous electrode, targeting enhancement of the electrolyte-electrode interaction. Theoretical analysis is conducted with channels in the form of trapezoidal waves, confirming and detailing the mass transport enhancement mechanism. In dilute concentration experiments with an alkaline quinone redox chemistry, a scaling of the limiting current with Re0.74 is identified, which compares favourably against the Re0.33 scaling typical of diffusion-limited laminar processes. Experimental IR-corrected polarization curves are presented for high concentration conditions, and a significant performance improvement is observed with the narrowing of the nozzles. The adverse effects of periodic throttling on the pumping power are compared with the benefits in terms of power density, and an improvement of up to 102% in net power density is obtained in comparison with the flow-by case employing straight parallel channels. The proposed novel concept of corrugated fluidic networks comes with facile fabrication and contributes to the improvement of the transport characteristics and overall performance of redox flow battery systems.

  8. Effect of mass and charge transport speed and direction in porous anodes on microbial electrolysis cell performance

    NARCIS (Netherlands)

    Sleutels, T.H.J.A.; Hamelers, H.V.M.; Buisman, C.J.N.

    2011-01-01

    The use of porous electrodes like graphite felt as anode material has the potential of achieving high volumetric current densities. High volumetric current densities, however, may also lead to mass transport limitations within these porous materials. Therefore, in this study we investigated the mass

  9. Arabian Night and Sea Story - Biomarkers from a Giant Mass Transport Deposit.

    Science.gov (United States)

    Bratenkov, Sophia; Kulhanek, Denise K.; Clift, Peter D.; George, Simon C.

    2016-04-01

    The study of mass transport deposits (MTDs) is an important field of research due to the potential insights into catastrophic events in the past and modern geohazard threats (e.g. tsunamis). Submarine mass movements are very significant processes in sculpturing the structure of continental margins, particularly in their extent and magnitude that have consequences both in the modern day, as well as in the geological past. An understanding of the complex stratigraphy of a submarine mass transport deposit (MTD) might help in reconstructing the provenance and transport pathways of sedimentary material and thus give important insights into sedimentary dynamics and processes triggering specific events. Drilling operations during International Ocean Discovery Program (IODP) Expedition 355 Arabian Sea Monsoon, which took place during April and May, 2015 cored two sites in Laxmi Basin. Site U1456 was cored to 1109.4 m below seafloor (mbsf), with the oldest recovered rock dated to ~13.5-17.7 Ma. Site U1457 was cored to 1108.6 mbsf, with the oldest rock dated to ~62 Ma. At each site, we cored through ~330 m and ~190 m of MTD material. The MTD layers mainly consist of interbedded lithologies of dark grey claystone, light greenish calcarenite and calcilutite, and conglomerate/breccia, with ages based on calcareous nannofossil and foraminifer biostratigraphy ranging from the Eocene to early Miocene (Pandey et al., 2015). This MTD, known as Nataraja Slide, is the third largest MTD known from the geological record and the second largest on a passive margin. Calvés et al. (2015) identified a potential source area offshore Sourashstra on the Indian continental margin and invoked the single step mass movement model to explain the mechanism of emplacement. Initial shipboard work demonstrated the high variability in total organic carbon and total nitrogen levels in different layers within the MTD, which raises a number of questions related to the source and composition of the organic

  10. Modeling electrokinetic transport in phenol contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Zorn, R.; Haus, R.; Czurda, K. [Dept. of Applied Geology, Univ. Karlsruhe (Germany)

    2001-07-01

    Numerical simulations are compared to laboratory experiments of electroremediation in soils contaminated by phenolic pollutants. The developing pH affects the electrokinetic transport behaviour of phenol. It is found that a water chemistry model must be included in an electrokinetic mass transport model to describe the process of electroremediation more accurately, if no buffering system is used at the electrodes. In the case of controlling the pH at the electrode compartments only a simplified chemical reaction model must be included in the numerical code to match the experimental phenolic transport. (orig.)

  11. A two-dimensional, two-phase mass transport model for liquid-feed DMFCs

    International Nuclear Information System (INIS)

    Yang, W.W.; Zhao, T.S.

    2007-01-01

    A two-dimensional, isothermal two-phase mass transport model for a liquid-feed direct methanol fuel cell (DMFC) is presented in this paper. The two-phase mass transport in the anode and cathode porous regions is formulated based on the classical multiphase flow in porous media without invoking the assumption of constant gas pressure in the unsaturated porous medium flow theory. The two-phase flow behavior in the anode flow channel is modeled by utilizing the drift-flux model, while in the cathode flow channel the homogeneous mist-flow model is used. In addition, a micro-agglomerate model is developed for the cathode catalyst layer. The model also accounts for the effects of both methanol and water crossover through the membrane. The comprehensive model formed by integrating those in the different regions is solved numerically using a home-written computer code and validated against the experimental data in the literature. The model is then used to investigate the effects of various operating and structural parameters, such as methanol concentration, anode flow rate, porosities of both anode and cathode electrodes, the rate of methanol crossover, and the agglomerate size, on cell performance

  12. Ion-neutral transport through quadrupole interfaces of mass-spectrometer systems

    International Nuclear Information System (INIS)

    Jugroot, M.; Groth, C.P.T.; Thomson, B.A.; Baranov, V.; Collings, B.A.; French, J.B.

    2004-01-01

    The transport of free ions through highly under-expanded jet flows of neutral gases and in the presence of applied electric fields is investigated by continuum-based numerical simulations. In particular, numerical results are described which are relevant to ion flows occurring in quadrupole interfaces of mass spectrometer systems. A five-moment mathematical model and parallel multi-block numerical solution procedure is developed for predicting the ion transport. The model incorporates the effects of ion-neutral collision processes and is used in conjunction with a Navier-Stokes model and flow solver for the neutral gas to examine the key influences controlling the ion motion. The effects of the neutral gas flow, electric fields (both dc and rf), and flow field geometry on ion mobility are carefully assessed. The capability of controlling the charged particle motions through a combination of directed neutral flow and applied electric field is demonstrated for these high-speed, hypersonic, jet flows. (author)

  13. An assessment of transportation issues under exceptional conditions : the case of the mass media and the Northridge Earthquake

    Science.gov (United States)

    1998-05-01

    This study explores how the mass media covered transportation issues following the 1994 Northridge earthquake. The mass media were a vital channel for travel information, and they provided considerable information to the public about the safety of tr...

  14. Nanoparticle Traffic on Helical Tracks: Thermophoretic Mass Transport through Carbon Nanotubes

    DEFF Research Database (Denmark)

    Schoen, Philipp A.E.; Walther, Jens Honore; Arcidiacono, Salvatore

    2006-01-01

    Using molecular dynamics simulations, we demonstrate and quantify thermophoretic motion of solid gold nanoparticles inside carbon nanotubes subject to wall temperature gradients ranging from 0.4 to 25 K/nm. For temperature gradients below 1 K/nm, we find that the particles move "on tracks......" in a predictable fashion as they follow unique helical orbits depending on the geometry of the carbon nanotubes. These findings markedly advance our knowledge of mass transport mechanisms relevant to nanoscale applications....

  15. Chemistry and mass transport of iodine in containment

    International Nuclear Information System (INIS)

    Beahm, E.C.; Weber, C.F.; Kress, T.S.; Shockley, W.E.; Daish, S.R.

    1988-01-01

    TRENDS is a computer code for modeling behavior of iodine in containment. It tracks both chemical and physical changes and features such as calculation of radiation dose rates in water pools , radiolysis effects, hydrolysis, and deposition/revaporization on aerosols and structural surfaces. Every attempt has been made to account for all significant processes. Reaction rate constants for iodine hydrolysis and radiolysis were obtained by a variable algorithm that gives values closely modeling experimental data. TRENDS output provides the distribution of iodine in containment and release from containment as a function of time during a severe accident sequence. Initial calculations with TRENDS have shown that the amount of volatile iodine released from containment is sensitive to the value of the liquid-gas (evaporation) mass transport coefficient for I 2 . 7 refs., 4 figs., 3 tabs

  16. Urban Mass Transportation.

    Science.gov (United States)

    Mervine, K. E.

    This bibliography is part of a series of Environmental Resource Packets prepared under a grant from EXXON Education Foundation. The most authoritative and accessible references in the urban transportation field are reviewed. The authors, publisher, point of view, level, and summary are given for each reference. The references are categorized…

  17. Mass gathering medicine: a predictive model for patient presentation and transport rates.

    Science.gov (United States)

    Arbon, P; Bridgewater, F H; Smith, C

    2001-01-01

    This paper reports on research into the influence of environmental factors (including crowd size, temperature, humidity, and venue type) on the number of patients and the patient problems presenting to first-aid services at large, public events in Australia. Regression models were developed to predict rates of patient presentation and of transportation-to-a-hospital for future mass gatherings. To develop a data set and predictive model that can be applied across venues and types of mass gathering events that is not venue or event specific. Data collected will allow informed event planning for future mass gatherings for which health care services are required. Mass gatherings were defined as public events attended by in excess of 25,000 people. Over a period of 12 months, 201 mass gatherings attended by a combined audience in excess of 12 million people were surveyed throughout Australia. The survey was undertaken by St. John Ambulance Australia personnel. The researchers collected data on the incidence and type of patients presenting for treatment and on the environmental factors that may influence these presentations. A standard reporting format and definition of event geography was employed to overcome the event-specific nature of many previous surveys. There are 11,956 patients in the sample. The patient presentation rate across all event types was 0.992/1,000 attendees, and the transportation-to-hospital rate was 0.027/1,000 persons in attendance. The rates of patient presentations declined slightly as crowd sizes increased. The weather (particularly the relative humidity) was related positively to an increase in the rates of presentations. Other factors that influenced the number and type of patients presenting were the mobility of the crowd, the availability of alcohol, the event being enclosed by a boundary, and the number of patient-care personnel on duty. Three regression models were developed to predict presentation rates at future events. Several

  18. Apparent directional mass-transfer capacity coefficients in three-dimensional anisotropic heterogeneous aquifers under radial convergent transport

    Science.gov (United States)

    Pedretti, D.; Fernàndez-Garcia, D.; Sanchez-Vila, X.; Bolster, D.; Benson, D. A.

    2014-02-01

    Aquifer hydraulic properties such as hydraulic conductivity (K) are ubiquitously heterogeneous and typically only a statistical characterization can be sought. Additionally, statistical anisotropy at typical characterization scales is the rule. Thus, regardless of the processes governing solute transport at the local (pore) scale, transport becomes non-Fickian. Mass-transfer models provide an efficient tool that reproduces observed anomalous transport; in some cases though, these models lack predictability as model parameters cannot readily be connected to the physical properties of aquifers. In this study, we focus on a multirate mass-transfer model (MRMT), and in particular the apparent capacity coefficient (β), which is a strong indicator of the potential of immobile zones to capture moving solute. We aim to find if the choice of an apparent β can be phenomenologically related to measures of statistical anisotropy. We analyzed an ensemble of random simulations of three-dimensional log-transformed multi-Gaussian permeability fields with stationary anisotropic correlation under convergent flow conditions. It was found that apparent β also displays an anisotropic behavior, physically controlled by the aquifer directional connectivity, which in turn is controlled by the anisotropic correlation model. A high hydraulic connectivity results in large β values. These results provide new insights into the practical use of mass-transfer models for predictive purposes.

  19. Mass transport aspects of polymer electrolyte fuel cells under two-phase flow conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, D.

    2007-03-27

    This work deals with selected aspects of mass transport phenomena in PEFCs and DMFCs. Emphasis is placed on the implications originating from the occurrence of two-phase flow within these devices. Optimality of supply, distribution, and removal of the fuel, the oxidant, and the reaction products is of utmost importance for the stability, efficiency, and durability of the devices. Being a prerequisite for high current densities while maintaining sufficient voltage, mass transport optimization contributes to the development of cost effective as well as compact designs and hence competitive fuel cells. [German] Die Visualisierung und Quantifizierung von Fluessigwasseransammlungen in Polymerelektrolytmembran-Brennstoffzellen konnte mittels Neutronenradiographie erreicht werden. Dank dieser neuartigen diagnostischen Methode konnte erstmals die Fluessigwasseransammlung in den poroesen Gasdiffusionsschichten direkt nachgewiesen und quantifiziert werden. Die Kombination von Neutronenradiographie mit ortsaufgeloesten Stromdichtemessungen bzw. lokaler Impedanzspektroskopie erlaubte die Korrelation des inhomogenen Fluessigwasseranfalls mit dem lokalen elektrochemischen Leistungsverhalten. Systematische Untersuchungen an Polymerelektrolyt- und Direkt-Methanol-Brennstoffzellen verdeutlichen sowohl den Einfluss von Betriebsbedingungen als auch die Auswirkung von Materialeigenschaften auf die Ausbildung zweiphasiger Stroemungen.

  20. Psychostimulants affect dopamine transmission through both dopamine transporter-dependent and independent mechanisms

    Science.gov (United States)

    dela Peña, Ike; Gevorkiana, Ruzanna; Shi, Wei-Xing

    2015-01-01

    The precise mechanisms by which cocaine and amphetamine-like psychostimulants exert their reinforcing effects are not yet fully defined. It is widely believed, however, that these drugs produce their effects by enhancing dopamine neurotransmission in the brain, especially in limbic areas such as the nucleus accumbens, by inducing dopamine transporter-mediated reverse transport and/or blocking dopamine reuptake though the dopamine transporter. Here, we present the evidence that aside from dopamine transporter, non-dopamine transporter-mediated mechanisms also participate in psychostimulant-induced dopamine release and contribute to the behavioral effects of these drugs, such as locomotor activation and reward. Accordingly, psychostimulants could increase norepinephrine release in the prefrontal cortex, the latter then alters the firing pattern of dopamine neurons resulting in changes in action potential-dependent dopamine release. These alterations would further affect the temporal pattern of dopamine release in the nucleus accumbens, thereby modifying information processing in that area. Hence, a synaptic input to a nucleus accumbens neuron may be enhanced or inhibited by dopamine depending on its temporal relationship to dopamine release. Specific temporal patterns of dopamine release may also be required for certain forms of synaptic plasticity in the nucleus accumbens. Together, these effects induced by psychostimulants, mediated through a non-dopamine transporter-mediated mechanism involving norepinephrine and the prefrontal cortex, may also contribute importantly to the reinforcing properties of these drugs. PMID:26209364

  1. The transport and distribution of 3H-ABA affected by al sress on soybean seedig

    International Nuclear Information System (INIS)

    Chen Guang; Sun Yang; Pang Jinduo

    2010-01-01

    A hydroponic experiment combining radioisotope techniques was carried out to understand the effect of Al stress on the transport and the distribution of 3 H-ABA by using Jilin70, a soybean variety of Al resistance. The transport and distribution of ABA affected by Al stress on soybean seedling were studied with radioisotope technique. The results showed that ABA could be transported up or down in soybean seedling. The stress of Al accelerated the transport of ABA and enhanced the distribution of ABA in the roots by Al stress. The paper present the foundation for the mechanisms of ABA under Al stress in plant. (authors)

  2. Examination of the mass media process and personal factors affecting the assessment of mass media-disseminated health information.

    Science.gov (United States)

    Avcı, Kadriye; Çakır, Tülin; Avşar, Zakir; Üzel Taş, Hanife

    2015-06-01

    This study examined the mass media and personal characteristics leading to health communication inequality as well as the role of certain factors in health communication's mass media process. Using both sociodemographic variables and Maletzke's model as a basis, we investigated the relationship between selected components of the mass communication process, the receiving of reliable health information as a result of health communication, and the condition of its use. The study involved 1853 people in Turkey and was structured in two parts. The first part dealt with questions regarding sociodemographic characteristics, the use of the mass media and the public's ability to obtain health information from it, the public's perception of the trustworthiness of health information, and the state of translating this information into health-promoting behaviours. In the second part, questions related to the mass communication process were posed using a five-point Likert scale. This section tried to establish structural equation modelling using the judgements prepared on the basis of the mass media model. Through this study, it has been observed that sociodemographic factors such as education and age affect individuals' use of and access to communication channels; individuals' trust in and selection of health information from the programme content and their changing health behaviours (as a result of the health information) are related to both their perception of the mass communication process and to sociodemographic factors, but are more strongly related to the former. © The Author(s) 2014.

  3. The influence of mass transfer on solute transport in column experiments with an aggregated soil

    Science.gov (United States)

    Roberts, Paul V.; Goltz, Mark N.; Summers, R. Scott; Crittenden, John C.; Nkedi-Kizza, Peter

    1987-06-01

    The spreading of concentration fronts in dynamic column experiments conducted with a porous, aggregated soil is analyzed by means of a previously documented transport model (DFPSDM) that accounts for longitudinal dispersion, external mass transfer in the boundary layer surrounding the aggregate particles, and diffusion in the intra-aggregate pores. The data are drawn from a previous report on the transport of tritiated water, chloride, and calcium ion in a column filled with Ione soil having an average aggregate particle diameter of 0.34 cm, at pore water velocities from 3 to 143 cm/h. The parameters for dispersion, external mass transfer, and internal diffusion were predicted for the experimental conditions by means of generalized correlations, independent of the column data. The predicted degree of solute front-spreading agreed well with the experimental observations. Consistent with the aggregate porosity of 45%, the tortuosity factor for internal pore diffusion was approximately equal to 2. Quantitative criteria for the spreading influence of the three mechanisms are evaluated with respect to the column data. Hydrodynamic dispersion is thought to have governed the front shape in the experiments at low velocity, and internal pore diffusion is believed to have dominated at high velocity; the external mass transfer resistance played a minor role under all conditions. A transport model such as DFPSDM is useful for interpreting column data with regard to the mechanisms controlling concentration front dynamics, but care must be exercised to avoid confounding the effects of the relevant processes.

  4. FEFLOW finite element modeling of flow, mass and heat transport in porous and fractured media

    CERN Document Server

    Diersch, Hans-Jörg G

    2013-01-01

    Placing advanced theoretical and numerical methods in the hands of modeling practitioners and scientists, this book explores the FEFLOW system for solving flow, mass and heat transport processes in porous and fractured media. Offers applications and exercises.

  5. Multiple nucleon transfer in damped nuclear collisions. [Lectures, mass charge, and linear and angular momentum transport

    Energy Technology Data Exchange (ETDEWEB)

    Randrup, J.

    1979-07-01

    This lecture discusses a theory for the transport of mass, charge, linear, and angular momentum and energy in damped nuclear collisions, as induced by multiple transfer of individual nucleons. 11 references.

  6. Sintering kinetics and mass transport in ceramic engobes; Cinetica de sinterizacion y transporte de masa en engobes ceramicos por el metodo Pechini

    Energy Technology Data Exchange (ETDEWEB)

    Dal Bo, M.; Boschi, A. O.; Hotza, D.

    2013-10-01

    This work is concerned to study the sintering rate and mass transport mechanism in ceramic engobes. Specimens of engobes were prepared from a determined formulation by slip casting. Sintering was carried in two steps: (i) at constant heating rate of 7.5 degree centigrade/min and (ii) with an isothermal treatment, during 120 min. According to the dilatometric curves obtained with the engobe sintering during isothermal treatment, the dominant sintering mechanism and the rate of reactions, between the 775 and 975 degree centigrade, were determined. The results showed that between 775 and 800 degree centigrade, the sintering rate can be described by ln[d({Delta}L/L{sub 0})/dt] = -5.64 + 1.77.E10{sup -}3T. At higher temperatures, from 850 to 975 degree centigrade, this rate can be expressed by ln[d({Delta}L/L{sub 0})/ dt] = -30.73 + 3.E10{sup -}2T. The dominant transport mass mechanisms were the grain rearrangement, solution-precipitation and grain boundaries reaction. (Author)

  7. Chemical mass transport between fluid fine tailings and the overlying water cover of an oil sands end pit lake

    Science.gov (United States)

    Dompierre, Kathryn A.; Barbour, S. Lee; North, Rebecca L.; Carey, Sean K.; Lindsay, Matthew B. J.

    2017-06-01

    Fluid fine tailings (FFT) are a principal by-product of the bitumen extraction process at oil sands mines. Base Mine Lake (BML)—the first full-scale demonstration oil sands end pit lake (EPL)—contains approximately 1.9 × 108 m3 of FFT stored under a water cover within a decommissioned mine pit. Chemical mass transfer from the FFT to the water cover can occur via two key processes: (1) advection-dispersion driven by tailings settlement; and (2) FFT disturbance due to fluid movement in the water cover. Dissolved chloride (Cl) was used to evaluate the water cover mass balance and to track mass transport within the underlying FFT based on field sampling and numerical modeling. Results indicated that FFT was the dominant Cl source to the water cover and that the FFT is exhibiting a transient advection-dispersion mass transport regime with intermittent disturbance near the FFT-water interface. The advective pore water flux was estimated by the mass balance to be 0.002 m3 m-2 d-1, which represents 0.73 m of FFT settlement per year. However, the FFT pore water Cl concentrations and corresponding mass transport simulations indicated that advection rates and disturbance depths vary between sample locations. The disturbance depth was estimated to vary with location between 0.75 and 0.95 m. This investigation provides valuable insight for assessing the geochemical evolution of the water cover and performance of EPLs as an oil sands reclamation strategy.

  8. An application of the 'end-point' method to the minimum critical mass problem in two group transport theory

    International Nuclear Information System (INIS)

    Williams, M.M.R.

    2003-01-01

    A two group integral equation derived using transport theory, which describes the fuel distribution necessary for a flat thermal flux and minimum critical mass, is solved by the classical end-point method. This method has a number of advantages and in particular highlights the changing behaviour of the fissile mass distribution function in the neighbourhood of the core-reflector interface. We also show how the reflector thermal flux behaves and explain the origin of the maximum which arises when the critical size is less than that corresponding to minimum critical mass. A comparison is made with diffusion theory and the necessary and somewhat artificial presence of surface delta functions in the fuel distribution is shown to be analogous to the edge transients that arise naturally in transport theory

  9. Methane transport and emissions from soil as affected by water table and vascular plants.

    Science.gov (United States)

    Bhullar, Gurbir S; Iravani, Majid; Edwards, Peter J; Olde Venterink, Harry

    2013-09-08

    The important greenhouse gas (GHG) methane is produced naturally in anaerobic wetland soils. By affecting the production, oxidation and transport of methane to the atmosphere, plants have a major influence upon the quantities emitted by wetlands. Different species and functional plant groups have been shown to affect these processes differently, but our knowledge about how these effects are influenced by abiotic factors such as water regime and temperature remains limited. Here we present a mesocosm experiment comparing eight plant species for their effects on internal transport and overall emissions of methane under contrasting hydrological conditions. To quantify how much methane was transported internally through plants (the chimney effect), we blocked diffusion from the soil surface with an agar seal. We found that graminoids caused higher methane emissions than forbs, although the emissions from mesocosms with different species were either lower than or comparable to those from control mesocosms with no plant (i.e. bare soil). Species with a relatively greater root volume and a larger biomass exhibited a larger chimney effect, though overall methane emissions were negatively related to plant biomass. Emissions were also reduced by lowering the water table. We conclude that plant species (and functional groups) vary in the degree to which they transport methane to the atmosphere. However, a plant with a high capacity to transport methane does not necessarily emit more methane, as it may also cause more rhizosphere oxidation of methane. A shift in plant species composition from graminoids to forbs and/or from low to high productive species may lead to reduction of methane emissions.

  10. Materials with engineered mesoporosity for programmed mass transport

    Science.gov (United States)

    Gough, Dara V.

    Transport in nanostructured materials is of great interest for scientists in various fields, including molecular sequestration, catalysis, artificial photosynthesis and energy storage. This thesis will present work on the transport of molecular and ionic species in mesoporous materials (materials with pore sizes between 2 and 50 nm). Initially, discussion will focus on the synthesis of mesoporous ZnS nanorattles and the size selected mass transport of small molecules through the mesopores. Discussion will then shift of exploration of cation exchange and electroless plating of metals to alter the mesoporous hollow sphere (MHS) materials and properties. The focus of discussion will then shift to the transport of ions into and out of a hierarchically structured gold electrode. Finally, a model gamma-bactiophage was developed to study the electromigration of charged molecules into and out of a confined geometry. A catalytically active biomolecular species was encapsulated within the central cavity of ZnS MHS. Both the activity of the encapsulated enzyme and the size-selective transport through the wall of the MHS were verified through the use of a common fluorogen, hydrogen peroxide, and sodium azide. Additionally, the protection of the enzyme was shown through size-selected blocking of a protease. The mesoporous hollow sphere system introduces size-selectivity to catalyzed chemical reactions; future work may include variations in pore sizes, and pore wall chemical functionalization. The pore size in ZnS mesoporous hollow spheres is controlled between 2.5 and 4.1 nm through swelling of the lyotropic liquid crystal template. The incorporation of a swelling agent is shown to linearly vary the hexagonal lyotropic liquid crystalline phase, which templates the mesopores, while allowing the high fidelity synthesis of mesoporous hollow spheres. Fluorescnently labeled ssDNA was utilized as a probe to explore the change in mesopore permeability afforded by the swollen template

  11. Identification of biomolecule mass transport and binding rate parameters in living cells by inverse modeling

    Directory of Open Access Journals (Sweden)

    Shirmohammadi Adel

    2006-10-01

    Full Text Available Abstract Background Quantification of in-vivo biomolecule mass transport and reaction rate parameters from experimental data obtained by Fluorescence Recovery after Photobleaching (FRAP is becoming more important. Methods and results The Osborne-Moré extended version of the Levenberg-Marquardt optimization algorithm was coupled with the experimental data obtained by the Fluorescence Recovery after Photobleaching (FRAP protocol, and the numerical solution of a set of two partial differential equations governing macromolecule mass transport and reaction in living cells, to inversely estimate optimized values of the molecular diffusion coefficient and binding rate parameters of GFP-tagged glucocorticoid receptor. The results indicate that the FRAP protocol provides enough information to estimate one parameter uniquely using a nonlinear optimization technique. Coupling FRAP experimental data with the inverse modeling strategy, one can also uniquely estimate the individual values of the binding rate coefficients if the molecular diffusion coefficient is known. One can also simultaneously estimate the dissociation rate parameter and molecular diffusion coefficient given the pseudo-association rate parameter is known. However, the protocol provides insufficient information for unique simultaneous estimation of three parameters (diffusion coefficient and binding rate parameters owing to the high intercorrelation between the molecular diffusion coefficient and pseudo-association rate parameter. Attempts to estimate macromolecule mass transport and binding rate parameters simultaneously from FRAP data result in misleading conclusions regarding concentrations of free macromolecule and bound complex inside the cell, average binding time per vacant site, average time for diffusion of macromolecules from one site to the next, and slow or rapid mobility of biomolecules in cells. Conclusion To obtain unique values for molecular diffusion coefficient and

  12. How historical copper contamination affects soil structure and mobilization and transport of colloids

    DEFF Research Database (Denmark)

    Paradelo, Marcos; Møldrup, Per; Holmstrup, Martin

    between 0.01 to 0.43 pore volumes, with longer times for the most contaminated point, likely related with its higher soil density and lower air permeability. The copper pollution affected colloid and tracer transport in the soil columns. The release of colloids especially in the most contaminated points...

  13. Poleward energy transport: is the standard definition physically relevant at all time scales?

    Science.gov (United States)

    Liang, Minyi; Czaja, Arnaud; Graversen, Rune; Tailleux, Remi

    2018-03-01

    Poleward energy transport in the atmosphere and oceans constitutes an important branch of the global energy budget, and its role in the climate system has been the subject of many studies. In the atmosphere, the transport is affected by "eddies" and large scale meridional cells, both with zero net mass transport across latitude circles, but also partly by processes associated with a net transport of mass across latitude circles. The latter must cease to operate in steady state, but they may be significant when time variability of the heat budget is considered. Indeed, examination of reanalysis data on short (daily to monthly) timescales shows that mass variations on these timescales result in surprisingly large fluctuations (in excess of 10^{15} W = 1 PW) in the poleward heat transport. These fluctuations are referred to as "extensive", for they primarily alter the mass integrated energy of the region considered, but not its averaged value. It is suggested that extensive fluctuations mask more meaningful climate signals present in the heat transport variability on monthly and interannual timescales, and a new formulation is proposed to isolate the latter. This new formulation is applied successfully to reanalysis data and climate model simulations.

  14. Effects of radiation transport on mass ablation rate and conversion efficiency in numerical simulations of inertial confinement fusion

    International Nuclear Information System (INIS)

    Gupta, N.K.

    2002-01-01

    The effects of radiation transport on hydrodynamic parameters of laser produced plasmas are studied. LTE and non-LTE atomic models are used to calculate multi group opacities and emissivities. Screened hydrogenic atom model is used to calculate the energy levels. The population densities of neutral to fully ionized ions are obtained by solving the steady state rate equations. Radiation transport is treated in multi-group diffusion or Sn method. A comparison is made between 1 and 100 group radiation transport and LTE and non-LTE models. For aluminium, multi group radiation transport leads to much higher mass ablation as compared to the 1 group and no radiation transport cases. This in turn leads to higher ablation pressures. However, for gold gray approximation gives higher mass ablation as compared to multi group simulations. LTE conversion efficiency of laser light into x-rays is more than the non-LTE estimates. For LTE as well as non-LTE cases, the one group approximation over-predicts the conversion efficiency Multi group non-LTE simulations predict that the conversion efficiency increases with laser intensity up to a maximum and then it decreases. (author)

  15. Mass-transport deposits and the advantages of a real three-dimensional perspective (Invited)

    Science.gov (United States)

    Moscardelli, L. G.; Wood, L. J.

    2010-12-01

    Mass-transport deposits (MTDs) form a significant component of the stratigraphic record in ancient and modern deepwater basins worldwide. However, the difficulties encountered when performing direct observations of these submarine units, the limited area covered by geophysical surveys acquired by research institutions, and the often surficial nature of seafloor data collected by federal agencies represent major hurdles in understanding submarine mass-movement dynamics. Three-dimensional seismic reflectivity imaging, drawn mainly from energy exploration in deepwater regions of the world, has allowed researchers to describe the architecture of MTDs at unprecedented spatial and temporal scales. In this talk, we present observations made using thousands of square kilometers of three-dimensional seismic data acquired by the oil and gas industry in offshore Trinidad, Morocco, and the Gulf of Mexico, where MTDs are a common occurrence in the stratigraphic record. Detailed mapping of MTD architecture has allowed us to better understand the role that MTDs have in continental-margin evolution. Morphometric data obtained from the mapping of MTDs is used to model tsunamigenic waves and their potential affect of coastal areas. The effect of low permeability MTDs on reservoir and aquifer fluid behavior has important implications, enhancing the economic importance of understanding the occurrence and distribution of these deposits. The recognition of MTD processes and morphology leads to new understanding of the processes possibly active in shaping other planets. Such analogs speak to a possible deepwater origin for features on Mars previously attributed to subaerial events. As industry-quality 3D seismic data become increasingly available to academic institutions, current studies become important bell weathers for future analysis of MTDs and processes in oceans of this planet and beyond.

  16. Multicomponent mass transport model: theory and numerical implementation (discrete-parcel-random-walk version)

    International Nuclear Information System (INIS)

    Ahlstrom, S.W.; Foote, H.P.; Arnett, R.C.; Cole, C.R.; Serne, R.J.

    1977-05-01

    The Multicomponent Mass Transfer (MMT) Model is a generic computer code, currently in its third generation, that was developed to predict the movement of radiocontaminants in the saturated and unsaturated sediments of the Hanford Site. This model was designed to use the water movement patterns produced by the unsaturated and saturated flow models coupled with dispersion and soil-waste reaction submodels to predict contaminant transport. This report documents the theorical foundation and the numerical solution procedure of the current (third) generation of the MMT Model. The present model simulates mass transport processes using an analog referred to as the Discrete-Parcel-Random-Walk (DPRW) algorithm. The basic concepts of this solution technique are described and the advantages and disadvantages of the DPRW scheme are discussed in relation to more conventional numerical techniques such as the finite-difference and finite-element methods. Verification of the numerical algorithm is demonstrated by comparing model results with known closed-form solutions. A brief error and sensitivity analysis of the algorithm with respect to numerical parameters is also presented. A simulation of the tritium plume beneath the Hanford Site is included to illustrate the use of the model in a typical application. 32 figs

  17. Methane transport and emissions from soil as affected by water table and vascular plants

    OpenAIRE

    Bhullar, Gurbir S; Iravani, Majid; Edwards, Peter J; Olde Venterink, Harry

    2013-01-01

    Background: The important greenhouse gas (GHG) methane is produced naturally in anaerobic wetland soils. By affecting the production, oxidation and transport of methane to the atmosphere, plants have a major influence upon the quantities emitted by wetlands. Different species and functional plant groups have been shown to affect these processes differently, but our knowledge about how these effects are influenced by abiotic factors such as water regime and temperature remains limited. Here...

  18. Mass Measles Vaccination Campaign in Aila Cyclone-Affected Areas of West Bengal, India: An In-depth Analysis and Experiences

    Directory of Open Access Journals (Sweden)

    Sarmila Mallik

    2011-12-01

    Full Text Available Disaster-affected populations are highly vulnerable to outbreaks of measles. Therefore, a mass vaccination against measles was conducted in Aila cyclone-affected blocks of West Bengal, India in July 2009. The objectives of the present report were to conduct an in depth analysis of the campaign, and to discuss the major challenges. A block level micro-plan, which included mapping of the villages, health facilities, temporary settlements of disaster-affected population, communications available, formation of vaccination team, information education communication, vaccine storage, waste disposal, surveillance for adverse events following immunization, supervision and monitoring was developed. The rate of six months to five years old children, who were vaccinated by measles vaccine, was 70.7% and that of those who received one dose of vitamin A was 71.3%. Wastage factor for vaccine doses and auto-disable syringes were 1.09 and 1.07, respectively. Only 13 cases of adverse events following immunization were reported. An average of 0.91 puncture-proof containers per vaccination session was used. Despite the major challenges faced due to difficult to reach areas, inadequate infrastructure, manpower and communication, problems of vaccine storage and transport, the campaign achieved a remarkable success regarding measles vaccine coverage, improvements of cold chain infrastructure, formulating an efficient surveillance and reporting system for adverse events following immunization, building self-confidence of the stakeholders

  19. Mass Measles Vaccination Campaign in Aila Cyclone-Affected Areas of West Bengal, India: An In-depth Analysis and Experiences

    Science.gov (United States)

    Mallik, Sarmila; Mandal, Pankaj Kumar; Ghosh, Pramit; Manna, Nirmalya; Chatterjee, Chitra; Chakrabarty, Debadatta; Bagchi, Saumendra Nath; Dasgupta, Samir

    2011-01-01

    Disaster-affected populations are highly vulnerable to outbreaks of measles. Therefore, a mass vaccination against measles was conducted in Aila cyclone-affected blocks of West Bengal, India in July 2009. The objectives of the present report were to conduct an in depth analysis of the campaign, and to discuss the major challenges. A block level micro-plan, which included mapping of the villages, health facilities, temporary settlements of disaster-affected population, communications available, formation of vaccination team, information education communication, vaccine storage, waste disposal, surveillance for adverse events following immunization, supervision and monitoring was developed. The rate of six months to five years old children, who were vaccinated by measles vaccine, was 70.7% and that of those who received one dose of vitamin A was 71.3%. Wastage factor for vaccine doses and auto-disable syringes were 1.09 and 1.07, respectively. Only 13 cases of adverse events following immunization were reported. An average of 0.91 puncture-proof containers per vaccination session was used. Despite the major challenges faced due to difficult to reach areas, inadequate infrastructure, manpower and communication, problems of vaccine storage and transport, the campaign achieved a remarkable success regarding measles vaccine coverage, improvements of cold chain infrastructure, formulating an efficient surveillance and reporting system for adverse events following immunization, building self-confidence of the stakeholders, and developing a biomedical waste disposal system. PMID:23115416

  20. Mass Measles Vaccination Campaign in Aila Cyclone-Affected Areas of West Bengal, India: An In-depth Analysis and Experiences.

    Science.gov (United States)

    Mallik, Sarmila; Mandal, Pankaj Kumar; Ghosh, Pramit; Manna, Nirmalya; Chatterjee, Chitra; Chakrabarty, Debadatta; Bagchi, Saumendra Nath; Dasgupta, Samir

    2011-12-01

    Disaster-affected populations are highly vulnerable to outbreaks of measles. Therefore, a mass vaccination against measles was conducted in Aila cyclone-affected blocks of West Bengal, India in July 2009. The objectives of the present report were to conduct an in depth analysis of the campaign, and to discuss the major challenges. A block level micro-plan, which included mapping of the villages, health facilities, temporary settlements of disaster-affected population, communications available, formation of vaccination team, information education communication, vaccine storage, waste disposal, surveillance for adverse events following immunization, supervision and monitoring was developed. The rate of six months to five years old children, who were vaccinated by measles vaccine, was 70.7% and that of those who received one dose of vitamin A was 71.3%. Wastage factor for vaccine doses and auto-disable syringes were 1.09 and 1.07, respectively. Only 13 cases of adverse events following immunization were reported. An average of 0.91 puncture-proof containers per vaccination session was used. Despite the major challenges faced due to difficult to reach areas, inadequate infrastructure, manpower and communication, problems of vaccine storage and transport, the campaign achieved a remarkable success regarding measles vaccine coverage, improvements of cold chain infrastructure, formulating an efficient surveillance and reporting system for adverse events following immunization, building self-confidence of the stakeholders, and developing a biomedical waste disposal system.

  1. Monoporous micropillar wick structures, I-Mass transport characteristics

    International Nuclear Information System (INIS)

    Ravi, Saitej; Horner, David; Moghaddam, Saeed

    2014-01-01

    This paper is the first of a two-part study concerning the relation between the geometry of micropillar array wicks and their thermohydraulic performance. In this paper, a parametric study of pillar array geometries is conducted, and the efficacies of existing capillary pressure and permeability models in predicting the experimental results are examined. A new method is utilized to independently measure the permeability and capillary pressure of a wick structure. A permeability model based on creeping flow past infinitely long cylinders, corrected to account for the effect of meniscus curvature on mass flow rate through pillar arrays with a limited height, closely predicts the experimental data. Also, a model that relates the capillary pressure to the wick geometry using a thermodynamic approach better predicts the experimental results. The approach adopted by this model involves using a surface energy minimization algorithm to determine the shape of the meniscus within the pillars. These permeability and capillary pressure models were coupled with Darcy's law for fluid flow to obtain an overall expression for flow through micropillar arrays. The overall model is utilized in the second part of this study to determine optimized micropillar wick geometries and the theoretical limits of their performance. - Highlights: • New method for independent measurement of capillary pressure and permeability. • Validated various capillary pressure and permeability models from literature. • Overall model to characterize mass transport capacity of micropillar arrays

  2. Thermal convection loop experiments and analysis of mass transport process in Lithium/Fe-12Cr-1MoVW systems

    International Nuclear Information System (INIS)

    Bell, G.E.C.

    1988-01-01

    Lithium is an attractive coolant and breeder material for first- generation fusion reactor blankets. The compatibility of lithium with structural alloys, in the form of mass transport and deposition, may impose restrictions on blanket operating parameters such as temperature and lithium purity. A ferritic steel, such as Fe-12CrlMoVW, is a candidate for use as a structural alloy in a self-cooled lithium blanket design. Experimental data on mass transport in lithium/Fe-12CrlMoVW were obtained from two thermal convection loops which spanned the fusion relevant temperature range; one operated from 360 to 505/degree/C for 3040 hours and the other from 525 to 655/degree/C for 2510 hours. The experimental effort was supported by analysis of the mechanisms and processes of mass transport and deposition. It was found that mass transport and deposition, as measured by specimen weight change, were not simple functions of temperature for the entire temperature range investigated. The mass transfer behavior and surface morphology at low temperatures were dominated by impurity reactions of nitrogen and carbon in the lithium with the steel. In the experiment between 360 and 505/degree/C, nitrogen levels were sufficient below 450/degree/C to allow the formation of the adherent, protective corrosion product Li 9 CrN 5 . Weight losses in the 360 to 505/degree/C experiment were insensitive to temperature below 450/degree/C. Between 450 and 505/degree/C, the precipitation of carbon in the form of chromium-rich M 23 C 6 (M = Fe or Cr) carbides, due to the formation of Li 9 CrN 5 and corresponding release of carbon, resulted in weight gains for the highest temperature specimens in the experiment. 98 refs., 83 figs., 9 tabs

  3. Using mass spectrometry for identification of ABC transporters from Xanthomonas citri and mutants expressed in different growth conditions

    International Nuclear Information System (INIS)

    Faria, J.N.; Balan, A.; Paes Leme, A.F.

    2012-01-01

    Full text: Xanthomonas citri is a phytopathogenic bacterium that infects citrus plants causing significant losses for the economy. In our group, we have focused on the identification and characterization of ABC transport proteins of this bacterium, in order to determinate their function for growth in vitro and in vivo, during infection. ABC transporters represent one of the largest families of proteins, which transport since small molecules as ions up to oligopeptides and sugars. In prokaryotic cells many works have reported the ABC transport function in pathogenesis, resistance, biofilm formation, infectivity and DNA repair, but until our knowledge, there is no data related to these transporters and X. citri. So, In order to determinate which transporters are expressed in X. citri, we started a proteomic analysis based on mono and bi-dimensional gels associated to mass spectrometry analyses. After growing X. citri and two different mutants deleted for ssuA and nitA genes in LB and minimum media, cellular extracts were obtained and used for preparation of mono and bi-dimensional gels. Seven bands covering the expected mass of ABC transporter components (20 kDa to 50 kDa) in SDS-PAGE were cut off the gel, treated with trypsin and submitted to the MS for protein identification. The results of 2D gels were good enough and will serve as a standard for development of similar experiments in large scale. (author)

  4. Modelling the effect of acoustic waves on the thermodynamics and kinetics of phase transformation in a solution: Including mass transportation.

    Science.gov (United States)

    Haqshenas, S R; Ford, I J; Saffari, N

    2018-01-14

    Effects of acoustic waves on a phase transformation in a metastable phase were investigated in our previous work [S. R. Haqshenas, I. J. Ford, and N. Saffari, "Modelling the effect of acoustic waves on nucleation," J. Chem. Phys. 145, 024315 (2016)]. We developed a non-equimolar dividing surface cluster model and employed it to determine the thermodynamics and kinetics of crystallisation induced by an acoustic field in a mass-conserved system. In the present work, we developed a master equation based on a hybrid Szilard-Fokker-Planck model, which accounts for mass transportation due to acoustic waves. This model can determine the kinetics of nucleation and the early stage of growth of clusters including the Ostwald ripening phenomenon. It was solved numerically to calculate the kinetics of an isothermal sonocrystallisation process in a system with mass transportation. The simulation results show that the effect of mass transportation for different excitations depends on the waveform as well as the imposed boundary conditions and tends to be noticeable in the case of shock waves. The derivations are generic and can be used with any acoustic source and waveform.

  5. Quantifying solute transport processes: are chemically "conservative" tracers electrically conservative?

    Science.gov (United States)

    Singha, Kamini; Li, Li; Day-Lewis, Frederick D.; Regberg, Aaron B.

    2012-01-01

    The concept of a nonreactive or conservative tracer, commonly invoked in investigations of solute transport, requires additional study in the context of electrical geophysical monitoring. Tracers that are commonly considered conservative may undergo reactive processes, such as ion exchange, thus changing the aqueous composition of the system. As a result, the measured electrical conductivity may reflect not only solute transport but also reactive processes. We have evaluated the impacts of ion exchange reactions, rate-limited mass transfer, and surface conduction on quantifying tracer mass, mean arrival time, and temporal variance in laboratory-scale column experiments. Numerical examples showed that (1) ion exchange can lead to resistivity-estimated tracer mass, velocity, and dispersivity that may be inaccurate; (2) mass transfer leads to an overestimate in the mobile tracer mass and an underestimate in velocity when using electrical methods; and (3) surface conductance does not notably affect estimated moments when high-concentration tracers are used, although this phenomenon may be important at low concentrations or in sediments with high and/or spatially variable cation-exchange capacity. In all cases, colocated groundwater concentration measurements are of high importance for interpreting geophysical data with respect to the controlling transport processes of interest.

  6. Factors that affect mass transport from drug eluting stents into the artery wall

    Directory of Open Access Journals (Sweden)

    Walsh Michael T

    2010-03-01

    Full Text Available Abstract Coronary artery disease can be treated by implanting a stent into the blocked region of an artery, thus enabling blood perfusion to distal vessels. Minimally invasive procedures of this nature often result in damage to the arterial tissue culminating in the re-blocking of the vessel. In an effort to alleviate this phenomenon, known as restenosis, drug eluting stents were developed. They are similar in composition to a bare metal stent but encompass a coating with therapeutic agents designed to reduce the overly aggressive healing response that contributes to restenosis. There are many variables that can influence the effectiveness of these therapeutic drugs being transported from the stent coating to and within the artery wall, many of which have been analysed and documented by researchers. However, the physical deformation of the artery substructure due to stent expansion, and its influence on a drugs ability to diffuse evenly within the artery wall have been lacking in published work to date. The paper highlights previous approaches adopted by researchers and proposes the addition of porous artery wall deformation to increase model accuracy.

  7. Pore-scale investigation of mass transport and electrochemistry in a solid oxide fuel cell anode

    Energy Technology Data Exchange (ETDEWEB)

    Grew, Kyle N.; Joshi, Abhijit S.; Peracchio, Aldo A.; Chiu, Wilson K.S. [Department of Mechanical Engineering, University of Connecticut, 191 Auditorium Road, Storrs, CT 06269-3139 (United States)

    2010-04-15

    The development and validation of a model for the study of pore-scale transport phenomena and electrochemistry in a Solid Oxide Fuel Cell (SOFC) anode are presented in this work. This model couples mass transport processes with a detailed reaction mechanism, which is used to model the electrochemical oxidation kinetics. Detailed electrochemical oxidation reaction kinetics, which is known to occur in the vicinity of the three-phase boundary (TPB) interfaces, is discretely considered in this work. The TPB regions connect percolating regions of electronic and ionic conducting phases of the anode, nickel (Ni) and yttria-stabilized zirconia (YSZ), respectively; with porous regions supporting mass transport of the fuel and product. A two-dimensional (2D), multi-species lattice Boltzmann method (LBM) is used to describe the diffusion process in complex pore structures that are representative of the SOFC anode. This diffusion model is discretely coupled to a kinetic electrochemical oxidation mechanism using localized flux boundary conditions. The details of the oxidation kinetics are prescribed as a function of applied activation overpotential and the localized hydrogen and water mole fractions. This development effort is aimed at understanding the effects of the anode microstructure within TPB regions. This work describes the methods used so that future studies can consider the details of SOFC anode microstructure. (author)

  8. Winter and summer monsoon water mass, heat and freshwater transport changes in the Arabian Sea near 8°N

    Science.gov (United States)

    Stramma, Lothar; Brandt, Peter; Schott, Friedrich; Quadfasel, Detlef; Fischer, Jürgen

    The differences in the water mass distributions and transports in the Arabian Sea between the summer monsoon of August 1993 and the winter monsoon of January 1998 are investigated, based on two hydrographic sections along approximately 8°N. At the western end the sections were closed by a northward leg towards the African continent at about 55°E. In the central basin along 8°N the monsoon anomalies of the temperature and density below the surface-mixed layer were dominated by annual Rossby waves propagating westward across the Arabian Sea. In the northwestern part of the basin the annual Rossby waves have much smaller impact, and the density anomalies observed there were mostly associated with the Socotra Gyre. Salinity and oxygen differences along the section reflect local processes such as the spreading of water masses originating in the Bay of Bengal, northward transport of Indian Central Water, or slightly stronger southward spreading of Red Sea Water in August than in January. The anomalous wind conditions of 1997/98 influenced only the upper 50-100 m with warmer surface waters in January 1998, and Bay of Bengal Water covered the surface layer of the section in the eastern Arabian Sea. Estimates of the overturning circulation of the Arabian Sea were carried out despite the fact that many uncertainties are involved. For both cruises a vertical overturning cell of about 4-6 Sv was determined, with inflow below 2500 m and outflow between about 300 and 2500 m. In the upper 300-450 m a seasonally reversing shallow meridional overturning cell appears to exist in which the Ekman transport is balanced by a geostrophic transport. The heat flux across 8°N is dominated by the Ekman transport, yielding about -0.6 PW for August 1993, and 0.24 PW for January 1998. These values are comparable to climatological and model derived heat flux estimates. Freshwater fluxes across 8°N also were computed, yielding northward freshwater fluxes of 0.07 Sv in January 1998 and 0

  9. Residual Stress Relaxation Induced by Mass Transport Through Interface of the Pd/SrTiO3

    Directory of Open Access Journals (Sweden)

    Nazarpour S

    2010-01-01

    Full Text Available Abstract Metal interconnections having a small cross-section and short length can be subjected to very large mass transport due to the passing of high current densities. As a result, nonlinear diffusion and electromigration effects which may result in device failure and electrical instabilities may be manifested. Various thicknesses of Pd were deposited over SrTiO3 substrate. Residual stress of the deposited film was evaluated by measuring the variation of d-spacing versus sin2ψ through conventional X-ray diffraction method. It has been found that the lattice misfit within film and substrate might be relaxed because of mass transport. Besides, the relation between residual intrinsic stress and oxygen diffusion through deposited film has been expressed. Consequently, appearance of oxide intermediate layer may adjust interfacial characteristics and suppress electrical conductivity by increasing electron scattering through metallic films.

  10. Affective neural responses modulated by serotonin transporter genotype in clinical anxiety and depression.

    Directory of Open Access Journals (Sweden)

    Desmond J Oathes

    Full Text Available Serotonin transporter gene variants are known to interact with stressful life experiences to increase chances of developing affective symptoms, and these same variants have been shown to influence amygdala reactivity to affective stimuli in non-psychiatric populations. The impact of these gene variants on affective neurocircuitry in anxiety and mood disorders has been studied less extensively. Utilizing a triallelic assay (5-HTTLPR and rs25531 to assess genetic variation linked with altered serotonin signaling, this fMRI study investigated genetic influences on amygdala and anterior insula activity in 50 generalized anxiety disorder patients, 26 of whom also met DSM-IV criteria for social anxiety disorder and/or major depressive disorder, and 39 healthy comparison subjects. A Group x Genotype interaction was observed for both the amygdala and anterior insula in a paradigm designed to elicit responses in these brain areas during the anticipation of and response to aversive pictures. Patients who are S/L(G carriers showed less activity than their L(A/L(A counterparts in both regions and less activity than S/L(G healthy comparison subjects in the amygdala. Moreover, patients with greater insula responses reported higher levels of intolerance of uncertainty, an association that was particularly pronounced for patients with two LA alleles. A genotype effect was not established in healthy controls. These findings link the serotonin transporter gene to affective circuitry findings in anxiety and depression psychopathology and further suggest that its impact on patients may be different from effects typically observed in healthy populations.

  11. A measurement of hydrogen transport in deuterium discharges using the dynamic response of the effective mass

    International Nuclear Information System (INIS)

    Dudok de Wit, T.; Duval, B.P.; Joye, B.; Lister, J.B.

    1992-02-01

    Particle tagging in a tokamak provides an attractive method for studying transport mechanisms. The injection of test particles at the plasma edge and the subsequent measurement of the evolution of their concentration at the centre can be used to quantify the underlying transport mechanisms. This has been carried out on the TCA tokamak by injecting hydrogen into a deuterium discharge, and simultaneously measuring the temporal evolution of the effective mass and the edge ionisation rate. (author) 3 figs., 9 refs

  12. An analysis of parameters affecting slapdown of transportation packages

    International Nuclear Information System (INIS)

    Bergmann, V.L.; Ammerman, D.J.

    1991-06-01

    In the certification of packages for transport of radioactive material, the issue of slapdown must be addressed. Slapdown is a secondary impact of the body caused by rotational accelerations induced during eccentric primary impact. In this report, several parameters are evaluated that affect slapdown severity of packages for the transport of nuclear material. The nose and tail accelerations in a slapdown event are compared to those experienced by the same cask in a side-drop configuration, in which there is no rotation, for a range of initial impact angles, impact limiter models, and friction coefficients for two existing cask geometries. In some cases, the rotation induced during a shallow-angle impact is sufficient to cause accelerations at the tail during secondary impact to be greater than those at the nose during initial impact. Furthermore, both nose and tail accelerations are often greater than the side-on accelerations. The results described here have been calculated using the code SLAPDOWN, which approximates the impact response of deformable bodies. Finally, SLAPDOWN has been used to estimate the coefficient of friction acting at the nose and tail for one particular cask during one specific slapdown drop test by comparison of results with experimental data. 2 refs., 16 figs., 3 tabs

  13. Land use impacts on transport : how land use factors affect travel behavior

    Energy Technology Data Exchange (ETDEWEB)

    Litman, T.

    2005-11-16

    The relationship between land use patterns and travel behaviour was examined with reference to the ability of land use management strategies to achieve transportation planning objectives. The study examined how land use factors such as density, regional accessibility, roadway connectivity affect per capita motor vehicle ownership and use; mode split; non-motorized travel; and accessibility by people who are physically or economically disadvantaged. The social, economic and environmental impacts that result from higher travel were discussed with reference to the degree to which conventional planning accounts for this increased travel. Alternatives for improving mobility in urban and suburban areas were presented. It was concluded that travel behaviour can change by promoting more efficient use of existing roadway capacity, by improving travel options and providing incentives to use alternative transport modes. It was suggested that strategies such as Smart Growth and New Urbanism can be applied in a variety of land use scenarios, including urban, suburban and rural areas to help achieve transportation planning objectives. 122 refs., 16 tabs., 12 figs.

  14. Five years database of landslides and floods affecting Swiss transportation networks

    Science.gov (United States)

    Voumard, Jérémie; Derron, Marc-Henri; Jaboyedoff, Michel

    2017-04-01

    Switzerland is a country threatened by a lot of natural hazards. Many events occur in built environment, affecting infrastructures, buildings or transportation networks and producing occasionally expensive damages. This is the reason why large landslides are generally well studied and monitored in Switzerland to reduce the financial and human risks. However, we have noticed a lack of data on small events which have impacted roads and railways these last years. This is why we have collect all the reported natural hazard events which have affected the Swiss transportation networks since 2012 in a database. More than 800 roads and railways closures have been recorded in five years from 2012 to 2016. These event are classified into six classes: earth flow, debris flow, rockfall, flood, avalanche and others. Data come from Swiss online press articles sorted by Google Alerts. The search is based on more than thirty keywords, in three languages (Italian, French, German). After verifying that the article relates indeed an event which has affected a road or a railways track, it is studied in details. We get finally information on about sixty attributes by event about event date, event type, event localisation, meteorological conditions as well as impacts and damages on the track and human damages. From this database, many trends over the five years of data collection can be outlined: in particular, the spatial and temporal distributions of the events, as well as their consequences in term of traffic (closure duration, deviation, etc.). Even if the database is imperfect (by the way it was built and because of the short time period considered), it highlights the not negligible impact of small natural hazard events on roads and railways in Switzerland at a national level. This database helps to better understand and quantify this events, to better integrate them in risk assessment.

  15. Electromigration-induced drift in damascene and plasma-etched Al(Cu). II. Mass transport mechanisms in bamboo interconnects

    Science.gov (United States)

    Proost, Joris; Maex, Karen; Delacy, Luc

    2000-01-01

    We have discussed electromigration (EM)-induced drift in polycrystalline damascene versus reactive ion etched (RIE) Al(Cu) in part I. For polycrystalline Al(Cu), mass transport is well documented to occur through sequential stages : an incubation period (attributed to Cu depletion beyond a critical length) followed by the Al drift stage. In this work, the drift behavior of bamboo RIE and damascene Al(Cu) is analyzed. Using Blech-type test structures, mass transport in RIE lines was shown to proceed both by lattice and interfacial diffusion. The dominating mechanism depends on the Cu distribution in the line, as was evidenced by comparing as-patterned (lattice EM) and RTP-annealed (interface EM) samples. The interfacial EM only occurs at metallic interfaces. In that case, Cu alloying was observed to retard Al interfacial mass transport, giving rise to an incubation time. Although the activation energy for the incubation time was found similar to the one controlling Al lattice drift, for which no incubation time was observed, lattice EM is preferred over interfacial EM because it is insensitive to enhancing geometrical effects upon scaling. When comparing interfacial electromigration in RIE with bamboo damascene Al(Cu), with the incubation time rate controlling for both, the higher EM threshold observed for damascene was shown to be insufficient to compensate for its significantly increased Cu depletion rate, contrary to the case of polycrystalline Al(Cu) interconnects. Two factors were demonstrated to contribute. First, there are more metallic interfaces, intrinsically related to the use of wetting or barrier layers in recessed features. Second, specific to this study, the additional formation of TiAl3 at the trench sidewalls further enhanced the Cu depletion rate, and reduced the rate-controlling incubation time. A separate drift study on RIE via-type test structures indicated that it is very difficult to suppress interfacial mass transport in favor of lattice EM

  16. A turbulent transport network model in MULTIFLUX coupled with TOUGH2

    International Nuclear Information System (INIS)

    Danko, G.; Bahrami, D.; Birkholzer, J.T.

    2011-01-01

    A new numerical method is described for the fully iterated, conjugate solution of two discrete submodels, involving (a) a transport network model for heat, moisture, and airflows in a high-permeability, air-filled cavity; and (b) a variably saturated fractured porous medium. The transport network submodel is an integrated-parameter, computational fluid dynamics solver, describing the thermal-hydrologic transport processes in the flow channel system of the cavity with laminar or turbulent flow and convective heat and mass transport, using MULTIFLUX. The porous medium submodel, using TOUGH2, is a solver for the heat and mass transport in the fractured rock mass. The new model solution extends the application fields of TOUGH2 by integrating it with turbulent flow and transport in a discrete flow network system. We present demonstrational results for a nuclear waste repository application at Yucca Mountain with the most realistic model assumptions and input parameters including the geometrical layout of the nuclear spent fuel and waste with variable heat load for the individual containers. The MULTIFLUX and TOUGH2 model elements are fully iterated, applying a programmed reprocessing of the Numerical Transport Code Functionalization model-element in an automated Outside Balance Iteration loop. The natural, convective airflow field and the heat and mass transport in a representative emplacement drift during postclosure are explicitly solved in the new model. The results demonstrate that the direction and magnitude of the air circulation patterns and all transport modes are strongly affected by the heat and moisture transport processes in the surrounding rock, justifying the need for a coupled, fully iterated model solution such as the one presented in the paper.

  17. Ground transport stress affects bacteria in the rumen of beef cattle: A real-time PCR analysis.

    Science.gov (United States)

    Deng, Lixin; He, Cong; Zhou, Yanwei; Xu, Lifan; Xiong, Huijun

    2017-05-01

    Transport stress syndrome often appears in beef cattle during ground transportation, leading to changes in their capacity to digest food due to changes in rumen microbiota. The present study aimed to analyze bacteria before and after cattle transport. Eight Xianan beef cattle were transported over 1000 km. Rumen fluid and blood were sampled before and after transport. Real-time PCR was used to quantify rumen bacteria. Cortisol and adrenocorticotrophic hormone (ACTH) were measured. Cortisol and ACTH were increased on day 1 after transportation and decreased by day 3. Cellulolytic bacteria (Fibrobacter succinogenes and Ruminococcus flavefaciens), Ruminococcus amylophilus and Prevotella albensis were increased at 6 h and declined by 15 days after transport. There was a significant reduction in Succinivibrio dextrinosolvens, Prevotella bryantii, Prevotella ruminicola and Anaerovibrio lipolytica after transport. Rumen concentration of acetic acid increased after transport, while rumen pH and concentrations of propionic and butyric acids were decreased. Body weight decreased by 3 days and increased by 15 days after transportation. Using real-time PCR analysis, we detected changes in bacteria in the rumen of beef cattle after transport, which might affect the growth of cattle after transport. © 2016 Japanese Society of Animal Science.

  18. A numerical study of transient mass transport through a circular hole connecting two semi-infinite media

    International Nuclear Information System (INIS)

    DePaoli, D.W.; Scott, T.C.

    1993-01-01

    A numerical model of transient diffusive mass transfer through a circular hole that connects two semi-infinite media was used as a means of determining potential effects of waste container penetrations on the release of immobilized contaminants into the environment. The finite difference model as developed necessarily includes treatment of mass transport in both the waste and surrounding medium and allows calculation of release rates for cases with and without preferential adsorption and differing diffusivities of the two media. The dimensionless contaminant release rate was found to vary over several orders of magnitude depending on the product of the ratio of the distribution coefficient and the media diffusivities only. As would be intuitively expected, partitioning favoring the surrounding medium and higher relative waste medium diffusivity cause higher transport rates. There was definitely no unexpected enhancement in the release rate in the case of perforations over that of an uncontained waste form

  19. Mass transport measurements and modeling for chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Starr, T.L.; Chiang, D.Y.; Fiadzo, O.G.; Hablutzel, N. [Georgia Inst. of Tech., Atlanta, GA (United States). School of Materials Science and Engineering

    1997-12-01

    This project involves experimental and modeling investigation of densification behavior and mass transport in fiber preforms and partially densified composites, and application of these results to chemical vapor infiltration (CVI) process modeling. This supports work on-going at ORNL in process development for fabrication of ceramic matrix composite (CMC) tubes. Tube-shaped composite preforms are fabricated at ORNL with Nextel{trademark} 312 fiber (3M Corporation, St. Paul, MN) by placing and compressing several layers of braided sleeve on a tubular mandrel. In terms of fiber architecture these preforms are significantly different than those made previously with Nicalon{trademark} fiber (Nippon Carbon Corp., Tokyo, Japan) square weave cloth. The authors have made microstructure and permeability measurements on several of these preforms and a few partially densified composites so as to better understand their densification behavior during CVI.

  20. Two-phase, mass-transport model for direct methanol fuel cells with effect of non-equilibrium evaporation and condensation

    Science.gov (United States)

    Yang, W. W.; Zhao, T. S.

    A two-phase, mass-transport model for liquid-feed direct methanol fuel cells (DMFCs) is developed by taking into account the effect of non-equilibrium evaporation and condensation of methanol and water. The comparison between the present model and other models indicates that the present model yields more reasonable predictions of cell performance. Particularly, it is shown that the models that invoke a thermodynamic-equilibrium assumption between phases will overestimate mass-transport rates of methanol and water, thereby resulting in an inaccurate prediction of cell performance. The parametric study using the present model reveals that the gas coverage at the flow channel-diffusion-layer interface is directly related to the gas-void fraction inside the anode porous region; increasing the gas-void fraction will increase the mass-transfer resistance of methanol and thus lower cell performance. The effects of the geometric dimensions of the cell structure, such as channel width and rib width, on cell performance are also investigated with the model developed in this work.

  1. Terminology for mass transport and exchange

    DEFF Research Database (Denmark)

    Bassingthwaighte, J B; Chinard, F P; Crone, C

    1986-01-01

    Virtually all fields of physiological research now encompass various aspects of solute transport by convection, diffusion, and permeation across membranes. Accordingly, this set of terms, symbols, definitions, and units is proposed as a means of clear communication among workers in the physiologi......Virtually all fields of physiological research now encompass various aspects of solute transport by convection, diffusion, and permeation across membranes. Accordingly, this set of terms, symbols, definitions, and units is proposed as a means of clear communication among workers...... in the physiological, engineering, and physical sciences. The goal is to provide a setting for quantitative descriptions of physiological transport phenomena....

  2. Child and Adolescent Affective and Behavioral Distress and Elevated Adult Body Mass Index

    Science.gov (United States)

    McClure, Heather H.; Eddy, J. Mark; Kjellstrand, Jean M.; Snodgrass, J. Josh; Martinez, Charles R., Jr.

    2012-01-01

    Obesity rates throughout the world have risen rapidly in recent decades, and are now a leading cause of morbidity and mortality. Several studies indicate that behavioral and affective distress in childhood may be linked to elevated adult body mass index (BMI). The present study utilizes data from a 20-year longitudinal study to examine the…

  3. Structural instability of atmospheric flows under perturbations of the mass balance and effect in transport calculations

    International Nuclear Information System (INIS)

    Núñez, M A; Mendoza, R

    2015-01-01

    Several methods to estimate the velocity field of atmospheric flows, have been proposed to the date for applications such as emergency response systems, transport calculations and for budget studies of all kinds. These applications require a wind field that satisfies the conservation of mass but, in general, estimated wind fields do not satisfy exactly the continuity equation. An approach to reduce the effect of using a divergent wind field as input in the transport-diffusion equations, was proposed in the literature. In this work, a linear local analysis of a wind field, is used to show analytically that the perturbation of a large-scale nondivergent flow can yield a divergent flow with a substantially different structure. The effects of these structural changes in transport calculations are illustrated by means of analytic solutions of the transport equation

  4. Stochastic modeling of mass transport in porous media

    International Nuclear Information System (INIS)

    Lim, Seung Cheol; Lee, Kun Jai

    1990-01-01

    The stochastic moments analysis technique is developed to investigate radionuclide migration in geologic porous media. The mechanisms for radionuclide transport are assumed to be advection in the micropore, radioactive decay of the species, and sorption on the pore wall. Two covariance functions of groundwater velocity, retardation factor, and concentration are derived to incorporate the geologic parameter uncertainty in porous media of small medium dispersivity. The parametric studies show that the correlation length of groundwater velocity has significant influence on the migration behavior of radionuclide. Macro dispersivity is dominantly affected by the fluctuation of groundwater velocity, while the fluctuation of retardation factor has a considerable effect on the retarded stochastic velocity. The upper estimated concentration evaluated from this stochastic moments analysis can be used as a practical conservative value for the performance assessment of nuclear waste repository

  5. Study on the factors affecting the quality of public bus transportation service in Bali Province using factor analysis

    Science.gov (United States)

    Susilawati, M.; Nilakusmawati, D. P. E.

    2017-06-01

    The volume of mobility flows are increasing day by day and the condition of the number of people using private transport modes contribute to traffic congestion. With the limited capacity of the road, one of the alternatives solution to reduce congestion is to optimize the use of public transport. The purposes of this study are to determine the factors that influence user’s satisfaction on the quality of public bus transportation service and determine variables that became identifier on the dominant factor affecting user’s satisfaction. The study was conducted for the public bus transportation between districts in the province of Bali, which is among the eight regencies and one municipality, using a questionnaire as a data collection instrument. Service variables determinant of user’s satisfaction in this study, described in 25 questions, which were analyzed using factor analysis. The results showed there were six factors that explain the satisfaction of users of public transport in Bali, with a total diversity of data that can be parsed by 61.436%. These factors are: Safety and comfort, Responsiveness, Capacity, Tangible, Safety, Reliability. The dominant factor affecting public transport user satisfaction is the safety and comfort, with the most influential variable is feeling concerned about the personal safety of users when on the bus.

  6. Optimal-mass-transfer-based estimation of glymphatic transport in living brain

    Science.gov (United States)

    Ratner, Vadim; Zhu, Liangjia; Kolesov, Ivan; Nedergaard, Maiken; Benveniste, Helene; Tannenbaum, Allen

    2015-03-01

    It was recently shown that the brain-wide cerebrospinal fluid (CSF) and interstitial fluid exchange system designated the `glymphatic pathway' plays a key role in removing waste products from the brain, similarly to the lymphatic system in other body organs . It is therefore important to study the flow patterns of glymphatic transport through the live brain in order to better understand its functionality in normal and pathological states. Unlike blood, the CSF does not flow rapidly through a network of dedicated vessels, but rather through para-vascular channels and brain parenchyma in a slower time-domain, and thus conventional fMRI or other blood-flow sensitive MRI sequences do not provide much useful information about the desired flow patterns. We have accordingly analyzed a series of MRI images, taken at different times, of the brain of a live rat, which was injected with a paramagnetic tracer into the CSF via the lumbar intrathecal space of the spine. Our goal is twofold: (a) find glymphatic (tracer) flow directions in the live rodent brain; and (b) provide a model of a (healthy) brain that will allow the prediction of tracer concentrations given initial conditions. We model the liquid flow through the brain by the diffusion equation. We then use the Optimal Mass Transfer (OMT) approach to derive the glymphatic flow vector field, and estimate the diffusion tensors by analyzing the (changes in the) flow. Simulations show that the resulting model successfully reproduces the dominant features of the experimental data. Keywords: inverse problem, optimal mass transport, diffusion equation, cerebrospinal fluid flow in brain, optical flow, liquid flow modeling, Monge Kantorovich problem, diffusion tensor estimation

  7. New particle formation in air mass transported between two measurement sites in Northern Finland

    Directory of Open Access Journals (Sweden)

    M. Komppula

    2006-01-01

    Full Text Available This study covers four years of aerosol number size distribution data from Pallas and Värriö sites 250 km apart from each other in Northern Finland and compares new particle formation events between these sites. In air masses of eastern origin almost all events were observed to start earlier at the eastern station Värriö, whereas in air masses of western origin most of the events were observed to start earlier at the western station Pallas. This demonstrates that particle formation in a certain air mass type depends not only on the diurnal variation of the parameters causing the phenomenon (such as photochemistry but also on some properties carried by the air mass itself. The correlation in growth rates between the two sites was relatively good, which suggests that the amount of condensable vapour causing the growth must have been at about the same level in both sites. The condensation sink was frequently much higher at the downwind station. It seems that secondary particle formation related to biogenic sources dominate in many cases over the particle sinks during the air mass transport between the sites. Two cases of transport from Pallas to Värriö were further analysed with an aerosol dynamics model. The model was able to reproduce the observed nucleation events 250 km down-wind at Värriö but revealed some differences between the two cases. The simulated nucleation rates were in both cases similar but the organic concentration profiles that best reproduced the observations were different in the two cases indicating that divergent formation reactions may dominate under different conditions. The simulations also suggested that organic compounds were the main contributor to new particle growth, which offers a tentative hypothesis to the distinct features of new particles at the two sites: Air masses arriving from the Atlantic Ocean typically spent approximately only ten hours over land before arriving at Pallas, and thus the time for the

  8. Nitrogen transport, transformation, and retention in the Three Gorges Reservoir : A mass balance approach

    NARCIS (Netherlands)

    Ran, Xiangbin; Bouwman, Lex; Yu, Zhigang; Beusen, Arthur; Chen, Hongtao; Yao, Qingzhen

    2017-01-01

    Dam construction in river systems affects the biogeochemistry of nitrogen (N), yet most studies on N cycling in reservoirs do not consider the transformations and retention of the different N species. This study addresses the N inputs, transport, transformations, and retention in the Three Gorges

  9. Numerical simulation of mass and energy transport phenomena in solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Arpino, F. [Dipartimento di Meccanica, Strutture, Ambiente e Territorio (DiMSAT), University of Cassino, via Di Biasio 43, Cassino (Italy); Massarotti, N. [Dipertimento per le Tecnologie (DiT), University of Naples ' ' Parthenope' ' , Centro Direzionale, isola C4, 80143 Napoli (Italy)

    2009-12-15

    Solid Oxide Fuel Cells (SOFCs) represent a very promising technology for near future energy conversion thanks to a number of advantages, including the possibility of using different fuels. In this paper, a detailed numerical model, based on a general mathematical description and on a finite element Characteristic based Split (CBS) algorithm code is employed to simulate mass and energy transport phenomena in SOFCs. The model predicts the thermodynamic quantity of interest in the fuel cell. Full details of the numerical solution obtained are presented both in terms of heat and mass transfer in the cell and in terms of electro-chemical reactions that occur in the system considered. The results obtained with the present algorithm is compared with the experimental data available in the literature for validation, showing an excellent agreement. (author)

  10. The latent fingerprint in mass transport of polycrystalline materials

    Science.gov (United States)

    Thirunavukarasu, Gopinath; Kundu, Sukumar; Chatterjee, Subrata

    2016-02-01

    Herein, a systematic investigation was carried out to reach a rational understanding and to provide information concerning the possible causes for a significant influence of pressure variation in the underlying processes of mass transport in polycrystalline materials. The authors focused their research in solid-state diffusion, a part of the subject "Mass Transport in Solids". Theories on diffusion are the subject by itself which exists as a latent fingerprint in every text of higher learning in interdisciplinary science. In this research, authors prepared sandwich samples of titanium alloy and stainless steel using nickel as an intermediate metal. The samples were processed at three different levels of bonding pressure (3, 4 and 5 MPa) while bonding temperature and bonding time was maintained at 750 °C and 1 h, respectively, throughout the experiments. It was observed that the net flux of atomic diffusion of nickel atoms into Ti-alloy at TiA/Ni interface increased by ~63 % with the rise in the bonding pressure from 3 to 4 MPa, but decreased by ~40 % with the rise in the bonding pressure from 4 to 5 MPa. At the same time, the net flux of atomic diffusion of nickel atoms into stainless steel at Ni/SS interface increased by ~19 % with the rise in the bonding pressure from 3 to 4 MPa, but increased by ~17 % with the rise in the bonding pressure from 4 to 5 MPa. Here authors showed that the pressure variations have different effects at the TiA/Ni interface and Ni/SS interface, and tried to explain the explicit mechanisms operating behind them. In general for sandwich samples processed irrespective of bonding pressure chosen, the net flux of Ni-atoms diffused into SS is greater than that of the net flux of Ni-atoms diffused in Ti-alloy matrix by four orders of magnitude. The calculated diffusivity of Ni-atoms into Ti-alloy reaches its highest value of ~5.083 × 10-19 m2/s for the sandwich sample processed using 4-MPa bonding-pressure, whereas the diffusivity of Ni

  11. Transient Mass and Thermal Transport during Methane Adsorption into the Metal-Organic Framework HKUST-1.

    Science.gov (United States)

    Babaei, Hasan; McGaughey, Alan J H; Wilmer, Christopher E

    2018-01-24

    Methane adsorption into the metal-organic framework (MOF) HKUST-1 and the resulting heat generation and dissipation are investigated using molecular dynamics simulations. Transient simulations reveal that thermal transport in the MOF occurs two orders of magnitude faster than gas diffusion. A large thermal resistance at the MOF-gas interface (equivalent to 127 nm of bulk HKUST-1), however, prevents fast release of the generated heat. The mass transport resistance at the MOF-gas interface is equivalent to 1 nm of bulk HKUST-1 and does not present a bottleneck in the adsorption process. These results provide important insights into the application of MOFs for gas storage applications.

  12. Temperature driven transport of gold nanoparticles physisorbed inside carbon nanotubes

    DEFF Research Database (Denmark)

    Schoen, P.A.E.; Poulikakos, D.; Walther, Jens Honore

    2006-01-01

    We use molecular dynamics simulations to demonstrate the temperature driven mass transport of solid gold nanoparticles, physisorbed inside carbon nanotubes (CNTs). Our results indicate that the nanoparticle experiences a guided motion, in the direction opposite to the direction of the temperature...... affects the nanoparticle motion along the carbon lattice....

  13. Improved performance of porous bio-anodes in microbial electrolysis cells by enhancing mass and charge transport

    NARCIS (Netherlands)

    Sleutels, T.H.J.A.; Lodder, R.; Hamelers, H.V.M.; Buisman, C.J.N.

    2009-01-01

    To create an efficient MEC high current densities and high coulombic efficiencies are required. The aim of this study was to increase cur-rent densities and coulombic efficiencies by influencing mass and charge transport in porous electrodes by: (i) introduction of a forced flow through the anode to

  14. ABC transporters affect the elimination and toxicity of CdTe quantum dots in liver and kidney cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Mingli; Yin, Huancai; Bai, Pengli [CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163 (China); Miao, Peng [CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Deng, Xudong [Department of Chemical Engineering, McMaster University, Hamilton, Ontario, L8S 4L7 (Canada); Xu, Yingxue [CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Hu, Jun [CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163 (China); Yin, Jian, E-mail: yinj@sibet.ac.cn [CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163 (China)

    2016-07-15

    This paper aimed to investigate the role of adenosine triphosphate-binding cassette (ABC) transporters on the efflux and the toxicity of nanoparticles in liver and kidney cells. In this study, we synthesized CdTe quantum dots (QDs) that were monodispersed and emitted green fluorescence (maximum peak at 530 nm). Such QDs tended to accumulate in human hepatocellular carcinoma cells (HepG2), human kidney cells 2 (HK-2), and Madin-Darby canine kidney (MDCK) cells, and cause significant toxicity in all the three cell lines. Using specific inhibitors and inducers of P-glycoprotein (Pgp) and multidrug resistance associated proteins (Mrps), the cellular accumulation and subsequent toxicity of QDs in HepG2 and HK-2 cells were significantly affected, while only slight changes appeared in MDCK cells, corresponding well with the functional expressions of ABC transporters in cells. Moreover, treatment of QDs caused concentration- and time- dependent induction of ABC transporters in HepG2 and HK-2 cells, but such phenomenon was barely found in MDCK cells. Furthermore, the effects of CdTe QDs on ABC transporters were found to be greater than those of CdCl{sub 2} at equivalent concentrations of cadmium, indicating that the effects of QDs should be a combination of free Cd{sup 2+} and specific properties of QDs. Overall, these results indicated a strong dependence between the functional expressions of ABC transporters and the efflux of QDs, which could be an important reason for the modulation of QDs toxicity by ABC transporters. - Highlights: • ABC transporters contributed actively to the cellular efflux of CdTe quantum dots. • ABC transporters affected the cellular toxicity of CdTe quantum dots. • Treatment of CdTe quantum dots induced the gene expression of ABC transporters. • Free Cd{sup 2+} should be partially involved in the effects of QDs on ABC transporters. • Cellular efflux of quantum dots could be an important modulator for its toxicity.

  15. Mass and charge transport in IPMC actuators with fractal interfaces

    Science.gov (United States)

    Chang, Longfei; Wu, Yucheng; Zhu, Zicai; Li, Heng

    2016-04-01

    Ionic Polymer-Metal Composite (IPMC) actuators have been attracting a growing interest in extensive applications, which consequently raises the demands on the accuracy of its theoretical modeling. For the last few years, rough landscape of the interface between the electrode and the ionic membrane of IPMC has been well-documented as one of the key elements to ensure a satisfied performance. However, in most of the available work, the interface morphology of IPMC was simplified with structural idealization, which lead to perplexity in the physical interpretation on its interface mechanism. In this paper, the quasi-random rough interface of IPMC was described with fractal dimension and scaling parameters. And the electro-chemical field was modeled by Poisson equation and a properly simplified Nernst-Planck equation set. Then, by simulation with Finite Element Method, a comprehensive analysis on he inner mass and charge transportation in IPMC actuators with different fractal interfaces was provided, which may be further adopted to instruct the performance-oriented interface design for ionic electro-active actuators. The results also verified that rough interface can impact the electrical and mechanical response of IPMC, not only from the respect of the real surface increase, but also from mass distribution difference caused by the complexity of the micro profile.

  16. An inexact Newton method for fully-coupled solution of the Navier-Stokes equations with heat and mass transport

    Energy Technology Data Exchange (ETDEWEB)

    Shadid, J.N.; Tuminaro, R.S. [Sandia National Labs., Albuquerque, NM (United States); Walker, H.F. [Utah State Univ., Logan, UT (United States). Dept. of Mathematics and Statistics

    1997-02-01

    The solution of the governing steady transport equations for momentum, heat and mass transfer in flowing fluids can be very difficult. These difficulties arise from the nonlinear, coupled, nonsymmetric nature of the system of algebraic equations that results from spatial discretization of the PDEs. In this manuscript the authors focus on evaluating a proposed nonlinear solution method based on an inexact Newton method with backtracking. In this context they use a particular spatial discretization based on a pressure stabilized Petrov-Galerkin finite element formulation of the low Mach number Navier-Stokes equations with heat and mass transport. The discussion considers computational efficiency, robustness and some implementation issues related to the proposed nonlinear solution scheme. Computational results are presented for several challenging CFD benchmark problems as well as two large scale 3D flow simulations.

  17. Light extinction by fine atmospheric particles in the White Mountains region of New Hampshire and its relationship to air mass transport.

    Science.gov (United States)

    Slater, John F; Dibb, Jack E; Keim, Barry D; Talbot, Robert W

    2002-03-27

    Chemical, optical, and physical measurements of fine aerosols (aerodynamic diameter mass origin. Filter-based, 24-h integrated samples were collected and analyzed for major inorganic ions, as well as organic (OC), elemental (EC), and total carbon. Light scattering and light absorption coefficients were measured at 5-min intervals using an integrating nephelometer and a light absorption photometer. Fine particle number density was measured with a condensation particle counter. Air mass origins and transport patterns were investigated through the use of 3-day backward trajectories and a synoptic climate classification system. Two distinct transport regimes were observed: (1) flow from the north/northeast (N/NE) occurred during 9 out of 18 sample-days; and (2) flow from the west/southwest (W/SW) occurred 8 out of 18 sample-days. All measured and derived aerosol and meteorological parameters were separated into two categories based on these different flow scenarios. During W/SW flow, higher values of aerosol chemical concentration, absorption and scattering coefficients, number density, and haziness were observed compared to N/NE flow. The highest level of haziness was associated with the climate classification Frontal Atlantic Return, which brought polluted air into the region from the mid-Atlantic corridor. Fine particle mass scattering efficiencies of (NH4)2SO4 and OC were 5.35 +/- 0.42 m2 g(-1) and 1.56 +/- 0.40 m2 g(-1), respectively, when transport was out of the N/NE. When transport was from the W/SW the values were 4.94 +/- 0.68 m2 g(-1) for (NH4)2SO4 and 2.18 +/- 0.91 m2 g(-1) for OC. EC mass absorption efficiency when transport was from the N/NE was 9.66 +/- 1.06 m2 g(-1) and 10.80 +/- 1.76 m2 g(-1) when transport was from the W/SW. Results from this work can be used to predict visual air quality in the White Mountain National Forest based on a forecasted synoptic climate classification and its associated visibility.

  18. An analysis of parameters affecting slapdown of transportation packages

    International Nuclear Information System (INIS)

    Bergmann, V.L.; Ammerman, D.J.

    1991-01-01

    Several parameters affecting the accelerations experienced by packages for the transport of nuclear material during eccentric impact are evaluated. Eccentric impact on one end of a cask causes rotation leading to secondary impact, referred to as slapdown, at the other end. In a slapdown event, the rotational acceleration during the primary impact can cause accelerations at the nose and tail which are greater than those during a side-on impact. Slapdown can also cause acceleration at the tail during the secondary impact to be more severe than at the nose during primary impact. Both of these effects are investigated for two casks geometries. Other parameters evaluated are the characteristics of impact limiters and friction between the impact limiter the impacted surface. Results were obtained using SLAPDOWN, a code which models the impact response of deformable bodies. 2 refs., 11 figs

  19. Monthly Variation of Taiwan Strait Through-flow Transports and Associated Water Masses

    Science.gov (United States)

    Jan, S.; Sheu, D.; Kuo, H.

    2005-05-01

    Through-flow transports and associated water masses are analyzed using current data measured by bottom-mounted and ship-board ADCP (1999-2001) across the central Taiwan Strait and strait-wide hydrographic data acquired from 79 CTD survey cruises (1986-2003). The East Asian monsoon, from southwest in July to August and northeast in October to March, controls the transport fluctuation which peaks in August (2.34 Sv northward), is hampered by the northeast monsoon after September and diminishes to the minimum (0.26 Sv southward) in December. The standard deviation of the calculated transport ranges from 0.56 to 1.05 Sv during northeast monsoon months and is relatively small in other months. A cluster analysis together with conventional T-S diagrams identifies the saline and warm Kuroshio Branch Water (KBW), the less saline South China Sea Surface Water (SCSSW), the brackish and cold China Coastal Water (CCW), the saline Subsurface Water (SW) (depth > 100 m) and the Diluted Coastal Water (DCW). The majority of the northward transport in summer carries the SCSSW to the East China Sea. Meanwhile, the DCW appears off the northwest bank of the strait and the SW resides in the bottom layer of a deep trench in the southeastern strait. The onset of the northeast monsoon in September drives the CCW from the Yangtze river mouth to the northern strait. In the southern strait, the northward-moving KBW replaces the SCSSW and meets the southward-intruding CCW in the middle strait during November to April.

  20. Worker safety for occupations affected by the use, transportation and storage of radioactive and hazardous materials

    International Nuclear Information System (INIS)

    1994-07-01

    A study group under the auspices of the National Conference of State Legislatures (NCSL) Labor Committee and the High-level Radioactive Waste/Hazardous Materials Transportation Task Force examined worker protection and safety programs for occupations affected by the use, transportation and storage of radioactive and hazardous materials. Concern about the risks posed to people who live along spent nuclear fuel transportation routes has led to demands for redundant inspections of the transported spent fuel. It would also be prudent to examine the radiological risk to the inspectors themselves before state of federal regulations are promulgated which require redundant inspections. Other workers may also come close to a spent fuel cask during normal operations. The dose rate to which these inspectors and handlers are exposed is higher than the dose rate to which any other group is exposed during incident-free truck transportation and higher than the dose rate to the drivers when they are in the truck cab. This report consists of miscellaneous papers covering topics related to determining radiation doses to workers involved in the transport of radioactive materials

  1. Quantitative Analysis of Major Factors Affecting Black Carbon Transport and Concentrations in the Unique Atmospheric Structures of Urban Environment

    Science.gov (United States)

    Liang, Marissa Shuang

    Black carbon (BC) from vehicular emission in transportation is a principal component of particulate matters ≤ 2.5 mum (PM2.5). PM2.5 and other diesel emission pollutants (e.g., NOx) are regulated by the Clean Air Act (CAA) according to the National Ambient Air Quality standards (NAAQS). This doctoral dissertation details a study on transport behaviors of black carbon and PM2.5 from transportation routes, their relations with the atmospheric structure of an urban formation, and their relations with the use of biodiesel fuels. The results have implications to near-road risk assessment and to the development of sustainable transportation solutions in urban centers. The first part of study quantified near-roadside black carbon transport as a function of particulate matter (PM) size and composition, as well as microclimatic variables (temperature and wind fields) at the interstate highway I-75 in northern Cincinnati, Ohio. Among variables examined, wind speed and direction significantly affect the roadside transport of black carbon and hence its effective emission factor. Observed non-Gaussian dispersion occurred during low wind and for wind directions at acute angles or upwind to the receptors, mostly occurring in the morning hours. Meandering of air pollutant mass under thermal inversion is likely the driving force. In contrary, Gaussian distribution predominated in daytime of strong downwinds. The roles of urban atmospheric structure, wind fields, and the urban heat island (UHI) effects were further examined on pollutant dispersion and transport. Spatiotemporal variations of traffic flow, atmospheric structure, ambient temperature and PM2.5 concentration data from 14 EPA-certified NAAQS monitoring stations, were analyzed in relation to land-use in the Cincinnati metropolitan area. The results show a decade-long UHI effects with higher interior temperature than that in exurban, and a prominent nocturnal thermal inversion frequent in urban boundary layer. The

  2. Analysis of the behavior of tubular-type equipment for nuclear waste treatment: sensitivities of the parameters affecting mass transfer yield

    International Nuclear Information System (INIS)

    Yoo, Jae Hyung; Lee, Byung Jik; Shim, Joon Bo; Kim, Eung Ho

    2007-01-01

    It was intended in this study to investigate the effects of various parameters on the chemical reaction or mass transfer yield in a tubular-type nuclear waste treatment equipment. Since such equipment. as a tubular reactor, multistage solvent extractor, and adsorption column, accompany chemical reaction or mass transfer along the fluid-flowing direction, mathematical modeling for each equipment was carried out first. Then their behaviors of the chemical reaction or mass transfer were predicted through computer simulations. The inherent major parameters for each equipment were chosen and their sensitivities affecting the reaction or mass transfer yield were analyzed. For the tubular reactor, the effects of axial diffusion coefficient and reaction rate constant on the reaction yield were investigated. As for the multistage solvent extractor, the back mixing of continuous phase and the distribution coefficient between fluid and solvent were considered as the major parameters affecting the extraction yield as well as concentration profiles throughout the axial direction of the extractor. For the adsorption column, the equilibrium constant between fluid and adsorbent surface. and the overall mass transfer coefficient between the two phases were taken as the major factors that affect the adsorption rate

  3. Concept on groundwater flow and mass transport through heterogeneous porous media and application to in-situ test analysis

    International Nuclear Information System (INIS)

    Hatanaka, Koichiro; Umeki, Hiroyuki.

    1995-01-01

    Generally, geological media is modelled as porous or fractured media depending on their characteristics. Since the channels of groundwater flow and the transport paths are determined by the heterogeneity of the geological media, quantitative understanding of the heterogeneity is an important issue for modelling flow and transport processes through them. Therefore, it becomes popular way to develop statistical identification approaches of the heterogeneous field by using data from in-situ test and conduct validation studies of flow and transport models through the field by comparing with observed data. In this report, the theories of the identification approach and the concept on groundwater flow and mass transport are explained briefly and the application to tracer tests conducted at Grimsel test site, Switzerland, are described. (author)

  4. Chemical characterization of long-range transport biomass burning emissions to the Himalayas: insights from high-resolution aerosol mass spectrometry

    Science.gov (United States)

    Zhang, Xinghua; Xu, Jianzhong; Kang, Shichang; Liu, Yanmei; Zhang, Qi

    2018-04-01

    An intensive field measurement was conducted at a remote, background, high-altitude site (Qomolangma Station, QOMS, 4276 m a.s.l.) in the northern Himalayas, using an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) along with other collocated instruments. The field measurement was performed from 12 April to 12 May 2016 to chemically characterize the high time-resolved submicron particulate matter (PM1) and obtain the dynamic processes (emissions, transport, and chemical evolution) of biomass burning (BB), frequently transported from South Asia to the Himalayas during pre-monsoon season. Overall, the average (±1σ) PM1 mass concentration was 4.44 (±4.54) µg m-3 for the entire study, which is comparable with those observed at other remote sites worldwide. Organic aerosol (OA) was the dominant PM1 species (accounting for 54.3 % of total PM1 on average) followed by black carbon (BC) (25.0 %), sulfate (9.3 %), ammonium (5.8 %), nitrate (5.1 %), and chloride (0.4 %). The average size distributions of PM1 species all peaked at an overlapping accumulation mode (˜ 500 nm), suggesting that aerosol particles were internally well-mixed and aged during long-range transport. Positive matrix factorization (PMF) analysis on the high-resolution organic mass spectra identified three distinct OA factors, including a BB-related OA (BBOA, 43.7 %), a nitrogen-containing OA (NOA, 13.9 %) and a more-oxidized oxygenated OA (MO-OOA, 42.4 %). Two polluted episodes with enhanced PM1 mass loadings and elevated BBOA contributions from the west and southwest of QOMS during the study were observed. A typical BB plume was investigated in detail to illustrate the chemical evolution of aerosol characteristics under distinct air mass origins, meteorological conditions, and atmospheric oxidation processes.

  5. Effective Heat and Mass Transport Properties of Anisotropic Porous Ceria for Solar Thermochemical Fuel Generation

    Directory of Open Access Journals (Sweden)

    Sophia Haussener

    2012-01-01

    Full Text Available High-resolution X-ray computed tomography is employed to obtain the exact 3D geometrical configuration of porous anisotropic ceria applied in solar-driven thermochemical cycles for splitting H2O and CO2. The tomography data are, in turn, used in direct pore-level numerical simulations for determining the morphological and effective heat/mass transport properties of porous ceria, namely: porosity, specific surface area, pore size distribution, extinction coefficient, thermal conductivity, convective heat transfer coefficient, permeability, Dupuit-Forchheimer coefficient, and tortuosity and residence time distributions. Tailored foam designs for enhanced transport properties are examined by means of adjusting morphologies of artificial ceria samples composed of bimodal distributed overlapping transparent spheres in an opaque medium.

  6. Optical conductivity and optical effective mass in a high-mobility organic semiconductor: Implications for the nature of charge transport

    KAUST Repository

    Li, Yuan

    2014-12-03

    We present a multiscale modeling of the infrared optical properties of the rubrene crystal. The results are in very good agreement with the experimental data that point to nonmonotonic features in the optical conductivity spectrum and small optical effective masses. We find that, in the static-disorder approximation, the nonlocal electron-phonon interactions stemming from low-frequency lattice vibrations can decrease the optical effective masses and lead to lighter quasiparticles. On the other hand, the charge-transport and infrared optical properties of the rubrene crystal at room temperature are demonstrated to be governed by localized carriers driven by inherent thermal disorders. Our findings underline that the presence of apparently light carriers in high-mobility organic semiconductors does not necessarily imply bandlike transport.

  7. Optical conductivity and optical effective mass in a high-mobility organic semiconductor: Implications for the nature of charge transport

    KAUST Repository

    Li, Yuan; Yi, Yuanping; Coropceanu, Veaceslav; Bredas, Jean-Luc

    2014-01-01

    We present a multiscale modeling of the infrared optical properties of the rubrene crystal. The results are in very good agreement with the experimental data that point to nonmonotonic features in the optical conductivity spectrum and small optical effective masses. We find that, in the static-disorder approximation, the nonlocal electron-phonon interactions stemming from low-frequency lattice vibrations can decrease the optical effective masses and lead to lighter quasiparticles. On the other hand, the charge-transport and infrared optical properties of the rubrene crystal at room temperature are demonstrated to be governed by localized carriers driven by inherent thermal disorders. Our findings underline that the presence of apparently light carriers in high-mobility organic semiconductors does not necessarily imply bandlike transport.

  8. Separation Method for Oxygen Mass Transport Coefficient in Two Phase Porous Air Electrodes - Transport in Gas and Solid Polymer or Liquid Electrolyte Phases

    Science.gov (United States)

    2013-08-06

    of the problem studied Proton exchange membrane fuel cells ( PEMFCs ) are the most promising candidate systems for alternative electricity...characteristic. The limiting current can be used as a tool to study mass transport phenomena in PEMFC because it can provide experimental data for the...coefficient for PEMFCs under in situ conditions based on the galvanostatic discharge of a cell with an interrupted reactant supply. The results indicated

  9. Electroneutrality and ionic interactions in the modeling of mass transport in dilute electrochemical systems

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Swarnavo, E-mail: ss927@cornell.edu [School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14850 (United States); Aquino, Wilkins, E-mail: wa27@cornell.edu [School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14850 (United States)

    2011-10-01

    Highlights: > A simple ionic transport model including Coulombic interactions is proposed. > A connection between electroneutrality and Onsager's cross-flux terms is established. > Interionic flux densities are obtained from a constrained variational statement. > The numerical stiffness of the classical P-N-P system is bypassed using our proposed approach. - Abstract: We propose a simple, but novel mathematical and numerical approach to describe mass transport in dilute solutions, taking into consideration ionic interactions. Our proposed approach treats fluxes due to ionic interactions as additional unknowns in the transport equation. Through variational arguments, we derive a simple expression for these ionic fluxes in terms of the electroneutrality condition, which allows for a straightforward treatment of the new unknowns. Furthermore, a finite element formulation based on our mathematical model is presented. Finally, using the distribution of the interionic flux density and an energy dissipation function, we show that besides properly capturing flow due to ionic interactions, our model can also describe independent ionic flow as predicted by the conventional Nernst-Planck equation in regions where ionic interactions are weak.

  10. Numerical simulation of heat and mass transport during hydration of Portland cement mortar in semi-adiabatic and steam curing conditions

    OpenAIRE

    Hernandez-Bautista, E.; Bentz, D. P.; Sandoval-Torres, S.; de Cano-Barrita, P. F. J.

    2016-01-01

    A model that describes hydration and heat-mass transport in Portland cement mortar during steam curing was developed. The hydration reactions are described by a maturity function that uses the equivalent age concept, coupled to a heat and mass balance. The thermal conductivity and specific heat of mortar with water-to-cement mass ratio of 0.30 was measured during hydration, using the Transient Plane Source method. The parameters for the maturity equation and the activation energy were obtaine...

  11. Plasma viscosity with mass transport in spherical inertial confinement fusion implosion simulations

    Energy Technology Data Exchange (ETDEWEB)

    Vold, E. L.; Molvig, K. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Joglekar, A. S. [University of Michigan, Ann Arbor, Michigan 48109 (United States); Ortega, M. I. [University of New Mexico, Albuquerque, New Mexico 87131 (United States); Moll, R. [University of California, Santa Cruz, California 95064 (United States); Fenn, D. [Florida State University, Tallahassee, Florida 32306 (United States)

    2015-11-15

    The effects of viscosity and small-scale atomic-level mixing on plasmas in inertial confinement fusion (ICF) currently represent challenges in ICF research. Many current ICF hydrodynamic codes ignore the effects of viscosity though recent research indicates viscosity and mixing by classical transport processes may have a substantial impact on implosion dynamics. We have implemented a Lagrangian hydrodynamic code in one-dimensional spherical geometry with plasma viscosity and mass transport and including a three temperature model for ions, electrons, and radiation treated in a gray radiation diffusion approximation. The code is used to study ICF implosion differences with and without plasma viscosity and to determine the impacts of viscosity on temperature histories and neutron yield. It was found that plasma viscosity has substantial impacts on ICF shock dynamics characterized by shock burn timing, maximum burn temperatures, convergence ratio, and time history of neutron production rates. Plasma viscosity reduces the need for artificial viscosity to maintain numerical stability in the Lagrangian formulation and also modifies the flux-limiting needed for electron thermal conduction.

  12. Mass transport of soluble species through backfill into surrounding rock

    International Nuclear Information System (INIS)

    Kang, Chul Hyung; Park, Hun Hwee

    1992-01-01

    Some soluble species may not be solubility-limited or congruent-released with the matrix species. For example, during the operation of the nuclear reactor, the fission products can be accumulated in the fuel-cladding gap, void, and grain boundaries of the fuel rods. In the waste package for spent-fuel placed in a geologic repository, the high solubility species of these fission products accumulated in the 'gap', e.g. cesium or iodine are expected to dissolve rapidly when ground water penetrates fuel rods. The time and space dependent mass transport for high solubility nuclides in the gap is analyzed, and its numerical illustrations are demonstrated. The approximate solution that is valid for all times is developed, and validated by comparison with an asymptotic solution and the solution obtained by the numerical inversion of Laplace transform covering the entire time span. (Author)

  13. A Coupled Chemical and Mass Transport Model for Concrete Durability

    DEFF Research Database (Denmark)

    Jensen, Mads Mønster; Johannesson, Björn; Geiker, Mette Rica

    2012-01-01

    -Raphson iteration scheme arising from the non-linearity. The overall model is a transient problem, solved using a single parameter formulation. The sorption hysteresis and chemical equilibrium is included as source or sink terms. The advantages with this formulation is that each node in the discrete system has...... their individual sorption hysteresis isotherm which is of great importance when describing non fully water saturated system e.g. caused by time depended boundary conditions. Chemical equilibrium is also established in each node of the discrete system, where the rate of chemical degradation is determined.......g. charge balance, from the mass transport calculation could cause the above mentioned numerical problems. Two different test cases are studied, the sorption hysteresis in different depth of the sample, caused by time depended boundary condition and the chemical degradation of the solid matrix in a ten year...

  14. Water flow induced transport of Pseudomonas fluorescens cells through soil columns as affected by inoculant treatment

    NARCIS (Netherlands)

    Hekman, W.E.; Heijnen, C.E.; Trevors, J.T.; Elsas, van J.D.

    1994-01-01

    Water flow induced transport of Pseudomonas fluorescens cells through soil columns was measured as affected by the inoculant treatment. Bacterial cells were introduced into the topsoil of columns, either encapsulated in alginate beads of different types or mixed with bentonite clay in concentrations

  15. Analytical solution and simplified analysis of coupled parent-daughter steady-state transport with multirate mass transfer

    Science.gov (United States)

    R. Haggerty

    2013-01-01

    In this technical note, a steady-state analytical solution of concentrations of a parent solute reacting to a daughter solute, both of which are undergoing transport and multirate mass transfer, is presented. Although the governing equations are complicated, the resulting solution can be expressed in simple terms. A function of the ratio of concentrations, In (daughter...

  16. Geoelectrical Measurement of Multi-Scale Mass Transfer Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Day-Lewis, Frederick David [US Geological Survey, Storrs, CT (United States); Singha, Kamini [Colorado School of Mines, Golden, CO (United States); Johnson, Timothy C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Haggerty, Roy [Oregon State Univ., Corvallis, OR (United States); Binley, Andrew [Lancaster Univ. (United Kingdom); Lane, John W. [US Geological Survey, Storrs, CT (United States)

    2014-11-25

    Mass transfer affects contaminant transport and is thought to control the efficiency of aquifer remediation at a number of sites within the Department of Energy (DOE) complex. An improved understanding of mass transfer is critical to meeting the enormous scientific and engineering challenges currently facing DOE. Informed design of site remedies and long-term stewardship of radionuclide-contaminated sites will require new cost-effective laboratory and field techniques to measure the parameters controlling mass transfer spatially and across a range of scales. In this project, we sought to capitalize on the geophysical signatures of mass transfer. Previous numerical modeling and pilot-scale field experiments suggested that mass transfer produces a geoelectrical signature—a hysteretic relation between sampled (mobile-domain) fluid conductivity and bulk (mobile + immobile) conductivity—over a range of scales relevant to aquifer remediation. In this work, we investigated the geoelectrical signature of mass transfer during tracer transport in a series of controlled experiments to determine the operation of controlling parameters, and also investigated the use of complex-resistivity (CR) as a means of quantifying mass transfer parameters in situ without tracer experiments. In an add-on component to our grant, we additionally considered nuclear magnetic resonance (NMR) to help parse mobile from immobile porosities. Including the NMR component, our revised study objectives were to: 1. Develop and demonstrate geophysical approaches to measure mass-transfer parameters spatially and over a range of scales, including the combination of electrical resistivity monitoring, tracer tests, complex resistivity, nuclear magnetic resonance, and materials characterization; and 2. Provide mass-transfer estimates for improved understanding of contaminant fate and transport at DOE sites, such as uranium transport at the Hanford 300 Area. To achieve our objectives, we implemented a 3

  17. Geochemical factors affecting radionuclide transport through near and far fields at a Low-Level Waste Disposal Site

    International Nuclear Information System (INIS)

    Kaplan, D.I.; Seme, R.J.; Piepkho, M.G.

    1995-03-01

    The concentration of low-level waste (LLW) contaminants in groundwater is determined by the amount of contaminant present in the solid waste, rate of release from the waste and surrounding barriers, and a number of geochemical processes including adsorption, desorption, diffusion, precipitation, and dissolution. To accurately predict radionuclide transport through the subsurface, it is essential that the important geochemical processes affecting radionuclide transport be identified and, perhaps more importantly, accurately quantified and described in a mathematically defensible manner

  18. Does winter region affect spring arrival time and body mass of king eiders in northern Alaska?

    Science.gov (United States)

    Powell, Abby N.; Oppel, Steffen

    2009-01-01

    Events during the non-breeding season may affect the body condition of migratory birds and influence performance during the following breeding season. Migratory birds nesting in the Arctic often rely on endogenous nutrients for reproductive efforts, and are thus potentially subject to such carry-over effects. We tested whether king eider (Somateria spectabilis) arrival time and body mass upon arrival at breeding grounds in northern Alaska were affected by their choice of a winter region in the Bering Sea. We captured birds shortly after arrival on breeding grounds in early June 2002–2006 at two sites in northern Alaska and determined the region in which individuals wintered using satellite telemetry or stable isotope ratios of head feathers. We used generalized linear models to assess whether winter region explained variation in arrival body mass among individuals by accounting for sex, site, annual variation, and the date a bird was captured. We found no support for our hypothesis that either arrival time or arrival body mass of king eiders differed among winter regions. We conclude that wintering in different regions in the Bering Sea is unlikely to have reproductive consequences for king eiders in our study areas.

  19. DsSWEET17, a Tonoplast-Localized Sugar Transporter from Dianthus spiculifolius, Affects Sugar Metabolism and Confers Multiple Stress Tolerance in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Aimin Zhou

    2018-05-01

    Full Text Available Plant SWEETs (Sugars Will Eventually be Exported Transporters affect the growth of plants by regulating the transport of sugar from source to sink and its intracellular transport between different organelles. In this study, DsSWEET17 from Dianthus spiculifolius was identified and characterized. Real-time quantitative PCR analysis revealed that the expression of DsSWEET17 was affected by exogenous application of fructose and glucose as well as under salt, osmotic, and oxidation stress. Colocalization experiments showed that the DsSWEET17-GFP (green fluorescent protein fusion protein was localized to the FM4-64-labeled tonoplasts in Arabidopsis. Compared to the wild type, the transgenic Arabidopsis seedlings overexpressing DsSWEET17 had longer roots, greater fresh weight, and a faster root growth upon exogenous application of fructose. Furthermore, transgenic Arabidopsis seedlings had significantly higher fructose accumulation than was observed for the wild-type seedlings. The analysis of root length revealed that transgenic Arabidopsis had higher tolerance to salt, osmotic, and oxidative stresses. Taken together, our results suggest that DsSWEET17 may be a tonoplast sugar transporter, and its overexpression affects sugar metabolism and confers multiple stress tolerance in Arabidopsis.

  20. DsSWEET17, a Tonoplast-Localized Sugar Transporter from Dianthus spiculifolius, Affects Sugar Metabolism and Confers Multiple Stress Tolerance in Arabidopsis.

    Science.gov (United States)

    Zhou, Aimin; Ma, Hongping; Feng, Shuang; Gong, Shufang; Wang, Jingang

    2018-05-24

    Plant SWEETs (Sugars Will Eventually be Exported Transporters) affect the growth of plants by regulating the transport of sugar from source to sink and its intracellular transport between different organelles. In this study, DsSWEET17 from Dianthus spiculifolius was identified and characterized. Real-time quantitative PCR analysis revealed that the expression of DsSWEET17 was affected by exogenous application of fructose and glucose as well as under salt, osmotic, and oxidation stress. Colocalization experiments showed that the DsSWEET17-GFP (green fluorescent protein) fusion protein was localized to the FM4-64-labeled tonoplasts in Arabidopsis . Compared to the wild type, the transgenic Arabidopsis seedlings overexpressing DsSWEET17 had longer roots, greater fresh weight, and a faster root growth upon exogenous application of fructose. Furthermore, transgenic Arabidopsis seedlings had significantly higher fructose accumulation than was observed for the wild-type seedlings. The analysis of root length revealed that transgenic Arabidopsis had higher tolerance to salt, osmotic, and oxidative stresses. Taken together, our results suggest that DsSWEET17 may be a tonoplast sugar transporter, and its overexpression affects sugar metabolism and confers multiple stress tolerance in Arabidopsis .

  1. A heuristic simulation model of Lake Ontario circulation and mass balance transport

    Science.gov (United States)

    McKenna, J.E.; Chalupnicki, M.A.

    2011-01-01

    The redistribution of suspended organisms and materials by large-scale currents is part of natural ecological processes in large aquatic systems but can contribute to ecosystem disruption when exotic elements are introduced into the system. Toxic compounds and planktonic organisms spend various lengths of time in suspension before settling to the bottom or otherwise being removed. We constructed a simple physical simulation model, including the influence of major tributaries, to qualitatively examine circulation patterns in Lake Ontario. We used a simple mass balance approach to estimate the relative water input to and export from each of 10 depth regime-specific compartments (nearshore vs. offshore) comprising Lake Ontario. Despite its simplicity, our model produced circulation patterns similar to those reported by more complex studies in the literature. A three-gyre pattern, with the classic large counterclockwise central lake circulation, and a simpler two-gyre system were both observed. These qualitative simulations indicate little offshore transport along the south shore, except near the mouths of the Niagara River and Oswego River. Complex flow structure was evident, particularly near the Niagara River mouth and in offshore waters of the eastern basin. Average Lake Ontario residence time is 8 years, but the fastest model pathway indicated potential transport of plankton through the lake in as little as 60 days. This simulation illustrates potential invasion pathways and provides rough estimates of planktonic larval dispersal or chemical transport among nearshore and offshore areas of Lake Ontario. ?? 2011 Taylor & Francis.

  2. Affection of blood supply of focal hepatic mass on apparent diffusion coefficient of the lesions

    International Nuclear Information System (INIS)

    Chen Zaizhi; Wu Yulin; Xu Zhongfei; Yang Zhenghan; Chen Min; Zhou Cheng; Xie Jingxia

    2002-01-01

    Objective: To investigate the affection of lesion blood supply on apparent diffusion coefficient (ADC) of focal hepatic mass. Methods: Diffusion-weighted imaging (DWI) with different b values was performed in 87 patients with 159 focal hepatic lesions. ADCs of lesion, liver, spleen, gallbladder were measured in every case. Results: On DWI with small b value and small b value remainder, ADCs were affected by blood perfusion of tissues or lesions. The mean ADC of hypervascular lesions was significantly higher than that of hypovascular lesions on DWI with small b value, and hemoangiomas got the highest mean ADC. The mean ADC of hepatic cysts was not affected by b value. Conclusion: Blood perfusion affects ADC of tissue or focal hepatic lesion, particularly on DWI with small b value, and to some degree, DWI and ADC can reflect the blood supply of focal hepatic lesion

  3. Electrical transport, electrothermal transport, and effective electron mass in single-crystalline In2O3 films

    Science.gov (United States)

    Preissler, Natalie; Bierwagen, Oliver; Ramu, Ashok T.; Speck, James S.

    2013-08-01

    A comprehensive study of the room-temperature electrical and electrothermal transport of single-crystalline indium oxide (In2O3) and indium tin oxide (ITO) films over a wide range of electron concentrations is reported. We measured the room-temperature Hall mobility μH and Seebeck coefficient S of unintentionally doped and Sn-doped high-quality, plasma-assisted molecular-beam-epitaxy-grown In2O3 for volume Hall electron concentrations nH from 7×1016 cm-3 (unintentionally doped) to 1×1021 cm-3 (highly Sn-doped, ITO). The resulting empirical S(nH) relation can be directly used in other In2O3 samples to estimate the volume electron concentration from simple Seebeck coefficient measurements. The mobility and Seebeck coefficient were modeled by a numerical solution of the Boltzmann transport equation. Ionized impurity scattering and polar optical phonon scattering were found to be the dominant scattering mechanisms. Acoustic phonon scattering was found to be negligible. Fitting the temperature-dependent mobility above room temperature of an In2O3 film with high mobility allowed us to find the effective Debye temperature (ΘD=700 K) and number of phonon modes (NOPML=1.33) that best describe the polar optical phonon scattering. The modeling also yielded the Hall scattering factor rH as a function of electron concentration, which is not negligible (rH≈1.4) at nondegenerate electron concentrations. Fitting the Hall-scattering-factor corrected concentration-dependent Seebeck coefficient S(n) for nondegenerate samples to the numerical solution of the Boltzmann transport equation and to widely used, simplified equations allowed us to extract an effective electron mass of m*=(0.30±0.03)me (with free electron mass me). The modeled mobility and Seebeck coefficient based on polar optical phonon and ionized impurity scattering describes the experimental results very accurately up to electron concentrations of 1019 cm-3, and qualitatively explains a mobility plateau or local

  4. FACTORS THAT AFFECT TRANSPORT MODE PREFERENCE FOR GRADUATE STUDENTS IN THE NATIONAL UNIVERSITY OF MALAYSIA BY LOGIT METHOD

    Directory of Open Access Journals (Sweden)

    ALI AHMED MOHAMMED

    2013-06-01

    Full Text Available A study was carried out to examine the perceptions and preferences of students on choosing the type of transportation for their travels in university campus. This study focused on providing personal transport users road transport alternatives as a countermeasure aimed at shifting car users to other modes of transportation. Overall 456 questionnaires were conducted to develop a choice of transportation mode preferences. Consequently, Logit model and SPSS were used to identify the factors that affect the determination of the choice of transportation mode. Results indicated that by reducing travel time by 70% the amount of private cars users will be reduced by 84%, while reduction the travel cost was found to be highly improving the public modes of utilization. This study revealed positive aspects is needed to shift travellers from private modes to public. The positive aspect contributes to travel time and travel cost reduction, hence improving the services, whereby contributing to sustainability.

  5. Colloid formation and metal transport through two mixing zones affected by acid mine drainage near Silverton, Colorado

    Science.gov (United States)

    Schemel, L.E.; Kimball, B.A.; Bencala, K.E.

    2000-01-01

    Stream discharges and concentrations of dissolved and colloidal metals (Al, Ca, Cu, Fe, Mg, Mn, Pb, and Zn), SO4, and dissolved silica were measured to identify chemical transformations and determine mass transports through two mixing zones in the Animas River that receive the inflows from Cement and Mineral Creeks. The creeks were the dominant sources of Al, Cu, Fe, and Pb, whereas the upstream Animas River supplied about half of the Zn. With the exception of Fe, which was present in dissolved and colloidal forms, the metals were dissolved in the acidic, high-SO4 waters of Cement Creek (pH 3.8). Mixing of Cement Creek with the Animas River increased pH to near-neutral values and transformed Al and some additional Fe into colloids which also contained Cu and Pb. Aluminium and Fe colloids had already formed in the mildly acidic conditions in Mineral Creek (pH 6.6) upstream of the confluence with the Animas River. Colloidal Fe continued to form downstream of both mixing zones. The Fe- and Al-rich colloids were important for transport of Cu, Pb, and Zn, which appeared to have sorbed to them. Partitioning of Zn between dissolved and colloidal phases was dependent on pH and colloid concentration. Mass balances showed conservative transports for Ca, Mg, Mn, SO4, and dissolved silica through the two mixing zones and small losses (water column.

  6. Eutectic fusion used for the survey of transport of mass in metallic solutions

    International Nuclear Information System (INIS)

    Savane, Y.S.; Katty, S.; Balde, M.L.; Cisse, S.; Rogov, V.I.

    1997-09-01

    The phenomenon of eutectic fusion could be used for the survey of transport of mass in metallic solutions, which allows to determine the part of the ionic conductibility in the solutions. The survey done in the system In 2 Bi Bi-In at a temperature of 72 deg. C with a current of 4A allowed to find a ionic current of 2,6.10 -3 which constitutes about 0,07% of the total current. So the part of ionic conductibility in the eutectic fusion of the system In 2 Bi Bi-In is of 0,07%. (author)

  7. Chemical characterization of long-range transport biomass burning emissions to the Himalayas: insights from high-resolution aerosol mass spectrometry

    Directory of Open Access Journals (Sweden)

    X. Zhang

    2018-04-01

    Full Text Available An intensive field measurement was conducted at a remote, background, high-altitude site (Qomolangma Station, QOMS, 4276 m a.s.l. in the northern Himalayas, using an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS along with other collocated instruments. The field measurement was performed from 12 April to 12 May 2016 to chemically characterize the high time-resolved submicron particulate matter (PM1 and obtain the dynamic processes (emissions, transport, and chemical evolution of biomass burning (BB, frequently transported from South Asia to the Himalayas during pre-monsoon season. Overall, the average (±1σ PM1 mass concentration was 4.44 (±4.54 µg m−3 for the entire study, which is comparable with those observed at other remote sites worldwide. Organic aerosol (OA was the dominant PM1 species (accounting for 54.3 % of total PM1 on average followed by black carbon (BC (25.0 %, sulfate (9.3 %, ammonium (5.8 %, nitrate (5.1 %, and chloride (0.4 %. The average size distributions of PM1 species all peaked at an overlapping accumulation mode (∼ 500 nm, suggesting that aerosol particles were internally well-mixed and aged during long-range transport. Positive matrix factorization (PMF analysis on the high-resolution organic mass spectra identified three distinct OA factors, including a BB-related OA (BBOA, 43.7 %, a nitrogen-containing OA (NOA, 13.9 % and a more-oxidized oxygenated OA (MO-OOA, 42.4 %. Two polluted episodes with enhanced PM1 mass loadings and elevated BBOA contributions from the west and southwest of QOMS during the study were observed. A typical BB plume was investigated in detail to illustrate the chemical evolution of aerosol characteristics under distinct air mass origins, meteorological conditions, and atmospheric oxidation processes.

  8. Peritoneal Fluid Transport rather than Peritoneal Solute Transport Associates with Dialysis Vintage and Age of Peritoneal Dialysis Patients

    Directory of Open Access Journals (Sweden)

    Jacek Waniewski

    2016-01-01

    Full Text Available During peritoneal dialysis (PD, the peritoneal membrane undergoes ageing processes that affect its function. Here we analyzed associations of patient age and dialysis vintage with parameters of peritoneal transport of fluid and solutes, directly measured and estimated based on the pore model, for individual patients. Thirty-three patients (15 females; age 60 (21–87 years; median time on PD 19 (3–100 months underwent sequential peritoneal equilibration test. Dialysis vintage and patient age did not correlate. Estimation of parameters of the two-pore model of peritoneal transport was performed. The estimated fluid transport parameters, including hydraulic permeability (LpS, fraction of ultrasmall pores (αu, osmotic conductance for glucose (OCG, and peritoneal absorption, were generally independent of solute transport parameters (diffusive mass transport parameters. Fluid transport parameters correlated whereas transport parameters for small solutes and proteins did not correlate with dialysis vintage and patient age. Although LpS and OCG were lower for older patients and those with long dialysis vintage, αu was higher. Thus, fluid transport parameters—rather than solute transport parameters—are linked to dialysis vintage and patient age and should therefore be included when monitoring processes linked to ageing of the peritoneal membrane.

  9. Peritoneal Fluid Transport rather than Peritoneal Solute Transport Associates with Dialysis Vintage and Age of Peritoneal Dialysis Patients

    Science.gov (United States)

    Waniewski, Jacek; Antosiewicz, Stefan; Baczynski, Daniel; Poleszczuk, Jan; Pietribiasi, Mauro; Lindholm, Bengt; Wankowicz, Zofia

    2016-01-01

    During peritoneal dialysis (PD), the peritoneal membrane undergoes ageing processes that affect its function. Here we analyzed associations of patient age and dialysis vintage with parameters of peritoneal transport of fluid and solutes, directly measured and estimated based on the pore model, for individual patients. Thirty-three patients (15 females; age 60 (21–87) years; median time on PD 19 (3–100) months) underwent sequential peritoneal equilibration test. Dialysis vintage and patient age did not correlate. Estimation of parameters of the two-pore model of peritoneal transport was performed. The estimated fluid transport parameters, including hydraulic permeability (LpS), fraction of ultrasmall pores (α u), osmotic conductance for glucose (OCG), and peritoneal absorption, were generally independent of solute transport parameters (diffusive mass transport parameters). Fluid transport parameters correlated whereas transport parameters for small solutes and proteins did not correlate with dialysis vintage and patient age. Although LpS and OCG were lower for older patients and those with long dialysis vintage, αu was higher. Thus, fluid transport parameters—rather than solute transport parameters—are linked to dialysis vintage and patient age and should therefore be included when monitoring processes linked to ageing of the peritoneal membrane. PMID:26989432

  10. Transporters affecting biochemical test results: Creatinine-drug interactions.

    Science.gov (United States)

    Chu, X; Bleasby, K; Chan, G H; Nunes, I; Evers, R

    2016-11-01

    Creatinine is eliminated by the kidneys through a combination of glomerular filtration and active transport. Drug-induced increases in serum creatinine (SCr) and/or reduced creatinine renal clearance are used as a marker for acute kidney injury. However, inhibition of active transport of creatinine can result in reversible and, therefore, benign increases in SCr levels. Herein, the transporters involved in creatinine clearance are discussed, in addition to limitations of using creatinine as a biomarker for kidney damage. © 2016 American Society for Clinical Pharmacology and Therapeutics.

  11. Multiscale modeling of fluid flow and mass transport

    Science.gov (United States)

    Masuoka, K.; Yamamoto, H.; Bijeljic, B.; Lin, Q.; Blunt, M. J.

    2017-12-01

    In recent years, there are some reports on a simulation of fluid flow in pore spaces of rocks using Navier-Stokes equations. These studies mostly adopt a X-ray CT to create 3-D numerical grids of the pores in micro-scale. However, results may be of low accuracy when the rock has a large pore size distribution, because pores, whose size is smaller than resolution of the X-ray CT may be neglected. We recently found out by tracer tests in a laboratory using a brine saturated Ryukyu limestone and inject fresh water that a decrease of chloride concentration took longer time. This phenomenon can be explained due to weak connectivity of the porous networks. Therefore, it is important to simulate entire pore spaces even those of very small sizes in which diffusion is dominant. We have developed a new methodology for multi-level modeling for pore scale fluid flow in porous media. The approach is to combine pore-scale analysis with Darcy-flow analysis using two types of X-ray CT images in different resolutions. Results of the numerical simulations showed a close match with the experimental results. The proposed methodology is an enhancement for analyzing mass transport and flow phenomena in rocks with complicated pore structure.

  12. Simulation of methyl tert-butyl ether (MTBE) transport to ground water from immobile sources of gasoline in the vadose zone

    Science.gov (United States)

    Lahvis, M.A.; Rehmann, L.C.

    1999-01-01

    The mathematical model, R-UNSAT, developed to simulate the transport of benzene and MTBE in representative sand and clay hydrogeologic systems was evaluated. The effects on groundwater were simulated for small, chronic-, and single-volume releases of gasoline trapped in unsaturated soil. Hydrocarbon biodegradation was simulated by using a dual Monod-type kinetics model that includes oxygen and the reactive constituents. MTBE was assumed to be non-reactive. For MTBE, infiltration had the greatest effect on transport to groundwater. Infiltration also affected mass losses of MTBE to the atmosphere, particularly, in fine-grained soils. Depth to groundwater and soil type primarily affected travel times of MTBE to groundwater, but could affect mass-loading rates to groundwater if infiltration is insignificant. For benzene, transport to groundwater was significant only if the depth to the water table was groundwater were generally smaller for benzene than for MTBE by more than two orders of magnitude. Thus, water that recharges an aquifer beneath a spill can be enriched in MTBE relative to benzene when compared to the composition of water in equilibrium with gasoline.

  13. A mercury transport and fate model (LM2-mercury) for mass budget assessment of mercury cycling in Lake Michigan

    Science.gov (United States)

    LM2-Mercury, a mercury mass balance model, was developed to simulate and evaluate the transport, fate, and biogeochemical transformations of mercury in Lake Michigan. The model simulates total suspended solids (TSS), disolved organic carbon (DOC), and total, elemental, divalent, ...

  14. Extracellular mass transport considerations for space flight research concerning suspended and adherent in vitro cell cultures.

    Science.gov (United States)

    Klaus, David M; Benoit, Michael R; Nelson, Emily S; Hammond, Timmothy G

    2004-03-01

    Conducting biological research in space requires consideration be given to isolating appropriate control parameters. For in vitro cell cultures, numerous environmental factors can adversely affect data interpretation. A biological response attributed to microgravity can, in theory, be explicitly correlated to a specific lack of weight or gravity-driven motion occurring to, within or around a cell. Weight can be broken down to include the formation of hydrostatic gradients, structural load (stress) or physical deformation (strain). Gravitationally induced motion within or near individual cells in a fluid includes sedimentation (or buoyancy) of the cell and associated shear forces, displacement of cytoskeleton or organelles, and factors associated with intra- or extracellular mass transport. Finally, and of particular importance for cell culture experiments, the collective effects of gravity must be considered for the overall system consisting of the cells, their environment and the device in which they are contained. This does not, however, rule out other confounding variables such as launch acceleration, on orbit vibration, transient acceleration impulses or radiation, which can be isolated using onboard centrifuges or vibration isolation techniques. A framework is offered for characterizing specific cause-and-effect relationships for gravity-dependent responses as a function of the above parameters.

  15. How does the Mass Transport in Disk Galaxy Models Influence the Character of Orbits?

    Directory of Open Access Journals (Sweden)

    Zotos Euaggelos E.

    2014-12-01

    Full Text Available We explore the regular or chaotic nature of orbits of stars moving in the meridional (R, z plane of an axially symmetric time-dependent disk galaxy model with a central, spherically symmetric nucleus. In particular, mass is linearly transported from the disk to the galactic nucleus, in order to mimic, in a way, the case of self-consistent interactions of an actual N-body simulation. We thus try to unveil the influence of this mass transportation on the different families of orbits of stars by monitoring how the percentage of chaotic orbits, as well as the percentages of orbits of the main regular resonant families, evolve as the galaxy develops a dense and massive nucleus in its core. The SALI method is applied to samples of orbits in order to distinguish safely between ordered and chaotic motion. In addition, a method based on the concept of spectral dynamics is used for identifying the various families of regular orbits and also for recognizing the secondary resonances that bifurcate from them. Our computations strongly suggest that the amount of the observed chaos is substantially increased as the nucleus becomes more massive. Furthermore, extensive numerical calculations indicate that there are orbits which change their nature from regular to chaotic and vice versa and also orbits which maintain their orbital character during the galactic evolution. The present outcomes are compared to earlier related work.

  16. Transportation studies: 40-MM collider dipole magnets

    International Nuclear Information System (INIS)

    Daly, E.

    1992-01-01

    Several fully functional 40-mm Collider Dipole Magnets (CDM) were instrumented with accelerometers to monitor shock and vibration loads during transport. The magnets were measured with optical tooling telescopes before and after transport. Changes in mechanical alignment due to shipping and handling were determined. The mechanical stability of the cryogen lines were checked using the same method. Field quality and dipole angle were measured warm before and after transport to determine changes in these parameters. Power spectra were calculated for accelerometers located on the cold mass, vacuum vessel, and trailer bed. Where available, plots of field quality and dipole roll both before and after were created. Shipping loads measured were largest in the vertical direction, where most of the structural deformation of the magnet was evident. It was not clear that magnetic performance was affected by the shipping and handling environment

  17. A thermodynamic/mass-transport model for the release of ruthenium from irradiated fuel

    International Nuclear Information System (INIS)

    Garisto, F.; Iglesias, F.C.; Hunt, C.E.L.

    1990-01-01

    Some postulated nuclear reactor accidents lead to fuel failures and hence release of fission products into the primary heat transport system (PHTS). To determine the consequences of such accidents, it is important to understand the behavior of fission products both in the PHTS and in the reactor containment building. Ruthenium metal has a high boiling point and is nonvolatile under reducing conditions. However, under oxidizing conditions ruthenium can form volatile oxides at relatively low temperatures and, hence, could escape from failed fuel and enter the containment building. The ruthenium radioisotope Ru-106 presents a potentially significant health risk if it is released outside the reactor containment building. Consequently, it is important to understand the behavior of ruthenium during a nuclear reactor accident. The authors review the thermodynamic behavior of ruthenium at high temperatures. The qualitative behavior of ruthenium, predicted using thermodynamic calculations, is then compared with experimental results from the Chalk River Nuclear Laboratories (CRNL). Finally, a simple thermodynamic/mass-transport model is proposed to explain the release behavior of ruthenium in a steam atmosphere

  18. Additively manufactured metallic porous biomaterials based on minimal surfaces : A unique combination of topological, mechanical, and mass transport properties

    NARCIS (Netherlands)

    Bobbert, F S L; Lietaert, K; Eftekhari, A A; Pouran, B; Ahmadi, S M; Weinans, H; Zadpoor, A A

    2017-01-01

    Porous biomaterials that simultaneously mimic the topological, mechanical, and mass transport properties of bone are in great demand but are rarely found in the literature. In this study, we rationally designed and additively manufactured (AM) porous metallic biomaterials based on four different

  19. Key factors of low carbon development strategy for sustainable transport

    Science.gov (United States)

    Thaveewatanaseth, K.; Limjirakan, S.

    2018-02-01

    Cities become more vulnerable to climate change impacts causing by urbanization, economic growth, increasing of energy consumption and carbon dioxide (CO2) emissions. People who live in the cities have already been affected from the impacts in terms of socioeconomic and environmental aspects. Sustainable transport plays the key role in CO2 mitigation and contributes positive impacts on sustainable development for the cities. Several studies in megacities both in developed and developing countries support that mass transit system is an important transportation mode in CO2 mitigation and sustainable transport development. This paper aims to study key factors of low carbon development strategy for sustainable transport. The Bangkok Mass Rapid Transit System (MRT) located in Bangkok was the study area. Data collection was using semi-structured in-depth interview protocol with thirty respondents consisting of six groups i.e. governmental agencies, the MRT operators, consulting companies, international organizations, non-profit organizations, and experts. The research findings highlighted the major factors and supplemental elements composing of institution and technical capacity, institutional framework, policy setting and process, and plan of implementation that would support more effective strategic process for low carbon development strategy (LCDS) for sustainable transport. The study would highly recommend on readiness of institution and technical capacities, stakeholder mapping, high-level decision- makers participation, and a clear direction of the governmental policies that are strongly needed in achieving the sustainable transport.

  20. Technical issues affecting the transport of dual purpose casks

    International Nuclear Information System (INIS)

    Sanders, T.L.; Ottinger, C.A.; Brimhall, J.L.; Gilbert, E.R.; Jones, R.H.

    1989-01-01

    Approximately 60,000 metric tons of uranium (MTU) spent fuel will be discharged by the projected 2003 startup date of a federal disposal system. Of this, approximately 15,000 MTU will require storage outside existing or projected pool storage capabilities (Orvis et al., 1984). At-reactor dry storage of spent fuel, including vault, caisson, and cask systems, is being considered as an alternative to accommodate this excess fuel. Two dry storage cask concepts are among those under consideration. One involves placing spent fuel in storage-only casks (SOC) until a monitored retrievable storage (MRS) facility or repository is open, when the spent fuel would be transferred to a transport-only cask (TOC) for shipment. The second option, the dual purpose or transportable storage cask (TSC), is a system that would serve for both storage and later transport. To carry out its purpose, a TSC must be shipped directly from a storage facility to a disposal facility without first being opened to evaluate the cask or the fuel. To assure that both the fuel and the cask are in a transportable condition after 20 to 40 years of storage requires: (1) a definition of expected storage conditions; (2) an assessment of the impact of expected storage conditions on the reliability of the components and functions of the TSC during transport; and (3) the development of an overall TSC system design and operational strategy which ensures that TSC transport reliability compares to that of a transport-only cask. The later requirement is related to defining what appropriate design features, pre-shipment inspection, and/or alternative fuel and cask monitoring requirements are necessary during long-term storage to ensure the cask will meet transport performance requirements during later transport. 8 refs., 1 fig., 1 tab

  1. Microbial air quality in mass transport buses and work-related illness among bus drivers of Bangkok Mass Transit Authority.

    Science.gov (United States)

    Luksamijarulkul, Pipat; Sundhiyodhin, Viboonsri; Luksamijarulkul, Soavalug; Kaewboonchoo, Orawan

    2004-06-01

    The air quality in mass transport buses, especially air-conditioned buses may affect bus drivers who work full time. Bus numbers 16, 63, 67 and 166 of the Seventh Bus Zone of Bangkok Mass Transit Authority were randomly selected to investigate for microbial air quality. Nine air-conditioned buses and 2-4 open-air buses for each number of the bus (36 air-conditioned buses and 12 open-air buses) were included. Five points of in-bus air samples in each studied bus were collected by using the Millipore A ir Tester Totally, 180 and 60 air samples collected from air-conditioned buses and open-air buses were cultured for bacterial and fungal counts. The bus drivers who drove the studied buses were interviewed towards histories of work-related illness while working. The results revealed that the mean +/- SD of bacterial counts in the studied open-air buses ranged from 358.50 +/- 146.66 CFU/m3 to 506 +/- 137.62 CFU/m3; bus number 16 had the highest level. As well as the mean +/- SD of fungal counts which ranged from 93.33 +/- 44.83 CFU/m3 to 302 +/- 294.65 CFU/m3; bus number 166 had the highest level. Whereas, the mean +/- SD of bacterial counts in the studied air-conditioned buses ranged from 115.24 +/- 136.01 CFU/m3 to 244.69 +/- 234.85 CFU/m3; bus numbers 16 and 67 had the highest level. As well as the mean +/- SD of fungal counts which rangedfrom 18.84 +/- 39.42 CFU/m3 to 96.13 +/- 234.76 CFU/m3; bus number 166 had the highest level. When 180 and 60 studied air samples were analyzed in detail, it was found that 33.33% of the air samples from open-air buses and 6.11% of air samples from air-conditioned buses had a high level of bacterial counts (> 500 CFU/m3) while 6.67% of air samples from open-air buses and 2.78% of air samples from air-conditioned buses had a high level of fungal counts (> 500 CFU/m3). Data from the history of work-related illnesses among the studied bus drivers showed that 91.67% of open-air bus drivers and 57.28% of air-conditioned bus drivers had

  2. MASS TRANSPORT PROPERTIES OF A FLOW-THROUGH ELECTROLYTIC REACTOR USING A POROUS ELECTRODE: PERFORMANCE AND FIGURES OF MERIT FOR Pb(II REMOVAL

    Directory of Open Access Journals (Sweden)

    Bertazzoli R.

    1998-01-01

    Full Text Available The removal of lead from an acid borate-nitrate solution containing Pb(II was used to characterize the mass transport properties of an electrolytic reactor with reticulated vitreous carbon cathodes, operated in the flow-through mode. Current potential curves recorded at a rotating vitreous carbon disc electrode were used to determine the diffusion coefficient for Pb(II under the conditions of the experiments. The performance and figures of merit of the electrolytic reactor were investigated by using different flowrates and cathode porosities. Dimensionless Sherwood and Reynolds numbers were correlated to characterize the mass transport properties of the reactor, and they were fitted to the equation Sh=24Re0.32Sc0.33.

  3. Commuter exposure to black carbon, carbon monoxide, and noise in the mass transport khlong boats of Bangkok, Thailand

    Science.gov (United States)

    Ziegler, A. D.; Velasco, E.; Ho, K. J.

    2013-12-01

    Khlong (canal) boats are a unique mass transport alternative in the congested city of Bangkok. Canals and rivers provide exclusive transit-ways for reducing the commuting time of thousands of city residents daily. However, as a consequence of the service characteristics and boats design and state of repair, they can represent a potential public health risk and an important source of black carbon and greenhouse gases. This work quantifies commuter exposure to black carbon, CO and noise when waiting for and travelling in these diesel fueled boats. Exposure to toxic pollutants and acute noise is similar or worse than for other transportation modes. Mean black carbon concentrations observed at one busy pier and along the main canal were much higher than ambient concentrations at sites impacted by vehicular traffic. Concentrations of CO were similar to those reported for roadside areas of Bangkok. The equivalent continuous sound levels registered at the landing pier were similar to those reported for roadsides, but values recorded inside the boats were significantly higher. We believe that the boat service is a viable alternative mode of mass transport, but public safety could be improved to provide a high quality service, comparable to modern rail systems or emerging bus rapid transit systems. These investments would also contribute to reduce the emission of black carbon and other greenhouse and toxic pollutants.

  4. Final Report: Geoelectrical Measurement of Multi-Scale Mass Transfer Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Haggerty, Roy [Oregon State Univ., Corvallis, OR (United States); Day-Lewis, Fred [U.S. Geological Survey, Storrs, CT (United States); Singha, Kamini [Colorado School of Mines, Golden, CO (United States); Johnson, Timothy [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Binley, Andrew [Lancaster Univ. (United Kingdom); Lane, John [U.S. Geological Survey, Storrs, CT (United States)

    2014-03-20

    Mass transfer affects contaminant transport and is thought to control the efficiency of aquifer remediation at a number of sites within the Department of Energy (DOE) complex. An improved understanding of mass transfer is critical to meeting the enormous scientific and engineering challenges currently facing DOE. Informed design of site remedies and long-term stewardship of radionuclide-contaminated sites will require new cost-effective laboratory and field techniques to measure the parameters controlling mass transfer spatially and across a range of scales. In this project, we sought to capitalize on the geophysical signatures of mass transfer. Previous numerical modeling and pilot-scale field experiments suggested that mass transfer produces a geoelectrical signature—a hysteretic relation between sampled (mobile-domain) fluid conductivity and bulk (mobile + immobile) conductivity—over a range of scales relevant to aquifer remediation. In this work, we investigated the geoelectrical signature of mass transfer during tracer transport in a series of controlled experiments to determine the operation of controlling parameters, and also investigated the use of complex-resistivity (CR) as a means of quantifying mass transfer parameters in situ without tracer experiments. In an add-on component to our grant, we additionally considered nuclear magnetic resonance (NMR) to help parse mobile from immobile porosities. Including the NMR component, our revised study objectives were to: 1. Develop and demonstrate geophysical approaches to measure mass-transfer parameters spatially and over a range of scales, including the combination of electrical resistivity monitoring, tracer tests, complex resistivity, nuclear magnetic resonance, and materials characterization; and 2. Provide mass-transfer estimates for improved understanding of contaminant fate and transport at DOE sites, such as uranium transport at the Hanford 300 Area. To achieve our objectives, we implemented a 3

  5. Coal lumps vs. electrons: How do Chinese bulk energy transport decisions affect the global steam coal market?

    International Nuclear Information System (INIS)

    Paulus, Moritz; Trüby, Johannes

    2011-01-01

    This paper demonstrates the ways in which different Chinese bulk energy transport strategies affect the future steam coal market in China and in the rest of the world. An increase in Chinese demand for steam coal will lead to a growing need for additional domestic infrastructure as production hubs and demand centers are spatially separated, and domestic transport costs could influence the future Chinese steam coal supply mix. If domestic transport capacity is available only at elevated costs, Chinese power generators could turn to the global trade markets and further increase steam coal imports. Increased Chinese imports could then yield significant changes in steam coal market economics on a global scale. This effect is analyzed in China, where coal is mainly transported by railway, and in another setting where coal energy is transported as electricity. For this purpose, a spatial equilibrium model for the global steam coal market has been developed. One major finding is that if coal is converted into electricity early in the supply chain, worldwide marginal costs of supply are lower than if coal is transported via railway. Furthermore, China's dependence on international imports is significantly reduced in this context. Allocation of welfare changes particularly in favor of Chinese consumers while rents of international producers decrease.

  6. Technical issues affecting the transport of dual purpose casks

    International Nuclear Information System (INIS)

    Sanders, T.L.; Ottinger, C.A.; Brimhall, J.L.; Gilbert, E.R.; Jones, R.H.

    1989-01-01

    Spent fuel storage pools at many nuclear reactors in the US have already or will soon be filled to maximum capacity. Approximately 50,000 metric tons of uranium (MTU) spent fuel will be discharged by the projected 2003 start-up date of a federal disposal system. Of this, approximately 6,000 MTU will require storage outside existing or projected pool storage capabilities (DOE, 1988). At-reactor dry storage of spent fuel, including vault, caisson, and cask systems, is being considered as an alternative to accommodate this excess fuel. Two dry storage cask concepts are among those under consideration. One involves placing spent fuel in storage-only casks (SOC) until a monitored retrievable storage (MRS) facility or repository is open when the spent fuel would be transferred to a transport-only cask (TOC) for shipment. The second option, the dual purpose or transportable storage cask (TSC), is a system that would serve for both storage and later transport without requiring the spent fuel to be unloaded. To carry out its purpose, a TSC must be shipped directly from a storage facility to a disposal facility without first being opened to evaluate the cask or the fuel. To assure that both the fuel and the cask are in a transportable condition after 20 to 40 years of storage requires: (1) a definition of expected storage conditions; (2) an assessment of the impact of expected storage conditions on the reliability of the components and functions of the TSC during transport; and (3) the development of an overall TSC system design and operational strategy which ensures that TSC transport reliability meets or exceeds that of a transport-only cask. The later requirement is related to defining what appropriate design features, pre-shipment inspections, and/or alternative fuel and cask monitoring requirements are necessary during long-term storage to ensure the cask will meet transport requirements during later transport

  7. Effect of light-load resistance exercise on postprandial amino acid transporter expression in elderly men

    DEFF Research Database (Denmark)

    Agergaard, Jakob; Bülow, Jacob; Jensen, Jacob K

    2017-01-01

    An impaired amino acid sensing is associated with age-related loss of skeletal muscle mass. We tested whether light-load resistance exercise (LL-RE) affects postprandial amino acid transporter (AAT) expression in aging skeletal muscle. Untrained, healthy men (age: +65 years) were subjected to 13 h...

  8. Microphysics of mass-transport in coupled droplet-pairs at low Reynolds number and the role of convective dynamics

    Science.gov (United States)

    Dong, Qingming; Sau, Amalendu

    2016-06-01

    Interfacial mass-transport and redistribution in the micro-scale liquid droplets are important in diverse fields of research interest. The role of the "inflow" and the "outflow" type convective eddy-pairs in the entrainment of outer solute and internal relocation are examined for different homogeneous and heterogeneous water droplet pairs appearing in a tandem arrangement. Two micro-droplets of pure (rain) water interact with an oncoming outer air stream (Re ≤ 100) contaminated by uniformly distributed SO2. By virtue of separation/attachment induced non-uniform interfacial shear-stress gradient, the well-defined inflow/outflow type pairs of recirculating eddy-based convective motion quickly develops, and the eddies effectively attract/repel the accumulated outer solute and control the physical process of mass-transport in the droplet-pair. The non-uniformly shear-driven flow interaction and bifurcation of the circulatory internal flow lead to growth of important micro-scale "secondary" eddies which suitably regroup with the adjacent "primary" one to create the sustained inflow/outflow type convective dynamics. The presently derived flow characteristics and in-depth analysis help to significantly improve our understanding of the micro-droplet based transport phenomena in a wider context. By tuning "Re" (defined in terms of the droplet diameter and the average oncoming velocity of the outer air) and gap-ratio "α," the internal convective forcing and the solute entrainment efficiency could be considerably enhanced. The quantitative estimates for mass entrainment, convective strength, and saturation characteristics for different coupled micro-droplet pairs are extensively examined here for 0.2 ≤ α ≤ 2.0 and 30 ≤ Re ≤ 100. Interestingly, for the compound droplets, with suitably tuned radius-ratio "B" (of upstream droplet with respect to downstream one) the generated "inflow" type coherent convective dynamics helped to significantly augment the centre

  9. Mass transport in low permeability rocks under the influence of coupled thermomechanical and hydrochemical effects - an overview

    International Nuclear Information System (INIS)

    Tsang, C.F.

    1984-10-01

    The present paper gives a general overview of mass transport in low permeability rocks under the coupled thermomechanical and hydrochemical effects associated with a nuclear waste repository. A classification of coupled processes is given. Then an ess is presented. example of a coupled process is presented. Discussions of coupled processes based on a recent LBL Panel meeting are summarized. 5 references, 3 figures, 4 tables

  10. Study of point defects in non crystalline alloys by high temperature mass transport experiments

    International Nuclear Information System (INIS)

    Limoge, Y.

    1986-09-01

    We present in this communication the results of new experiments designed to study the mass transport mechanism in non-crystalline metallic alloys. They are based on the isothermal measurement of the crystallization kinetics, either without constraint or under electron irradiation or hydrostatic pressure. These experiments show that in the alloys studied, (FeNi) 8 (Pb) 2 and Ni 6 Nb 4 ), irradiation enhances the diffusion on the one hand, and on the other that there exist an activation volume for diffusion, of the order of one atomic volume. We discuss then the atomic model of diffusion needed to explain our results

  11. Zinc Transport Differs in Rat Spermatogenic Cell Types and Is Affected by Treatment with Cyclophosphamide1

    Science.gov (United States)

    Downey, Anne Marie; Hales, Barbara F.; Robaire, Bernard

    2016-01-01

    Adequate zinc levels are required for proper cellular functions and for male germ cell development. Zinc transport is accomplished by two families of zinc transporters, the ZIPs and the ZnTs, that increase and decrease cytosolic zinc levels, respectively. However, very little is known about zinc transport in the testis. Furthermore, whether cytotoxic agents such as cyclophosphamide (CPA), a known male germ cell toxicant, can affect zinc transport and homeostasis is unknown. We examined zinc transporter expression and zinc transport in pachytene spermatocytes (PS) and round spermatids (RS) in a normal state and after exposure to CPA. We observed differences in the expression of members of the ZnT and ZIP families in purified populations of PS and RS. We also observed that RS accumulate more zinc over time than PS. The expression of many zinc binding genes was altered after CPA treatment. Interestingly, we found that the expression levels of ZIP5 and ZIP14 were increased in PS from animals treated daily with 6 mg/kg CPA for 4 wk but not in RS. This up-regulation led to an increase in zinc uptake in PS but not in RS from treated animals compared to controls. These data suggest that CPA treatment may alter zinc homeostasis in male germ cells leading to an increased need for zinc. Altered zinc homeostasis may disrupt proper germ cell development and contribute to infertility and effects on progeny. PMID:27281708

  12. The Sheath Transport Observer for the Redistribution of Mass (STORM) Image

    Science.gov (United States)

    Kuntz, Kip; Collier, Michael; Sibeck, David G.; Porter, F. Scott; Carter, J. A.; Cravens, Thomas; Omidi, N.; Robertson, Ina; Sembay, S.; Snowden, Steven L.

    2008-01-01

    All of the solar wind energy that powers magnetospheric processes passes through the magnetosheath and magnetopause. Global images of the magnetosheath and magnetopause boundary layers will resolve longstanding controversy surrounding fundamental phenomena that occur at the magnetopause and provide information needed to improve operational space weather models. Recent developments showing that soft X-rays (0.15-1 keV) result from high charge state solar wind ions undergoing charge exchange recombination through collisions with exospheric neutral atoms has led to the realization that soft X-ray imaging can provide global maps of the high-density shocked solar wind within the magnetosheath and cusps, regions lying between the lower density solar wind and magnetosphere. We discuss an instrument concept called the Sheath Transport Observer for the Redistribution of Mass (STORM), an X-ray imager suitable for simultaneously imaging the dayside magnetosheath, the magnetopause boundary layers, and the cusps.

  13. The Sheath Transport Observer for the Redistribution of Mass (STORM) Imager

    Science.gov (United States)

    Collier, Michael R.; Sibeck, David G.; Porter, F. Scott; Burch, J.; Carter, J. A.; Cravens, Thomas; Kuntz, Kip; Omidi, N.; Read, A.; Robertson, Ina; hide

    2010-01-01

    All of the solar wind energy that powers magnetospheric processes passes through the magnetosheath and magnetopause. Global images of the magnetosheath and magnetopause boundary layers will resolve longstanding controversies surrounding fundamental phenomena that occur at the magnetopause and provide information needed to improve operational space weather models. Recent developments showing that soft X-rays (0.15-1 keV) result from high charge state solar wind ions undergoing charge exchange recombination through collisions with exospheric neutral atoms has led to the realization that soft X-ray imaging can provide global maps of the high-density shocked solar wind within the magnetosheath and cusps, regions lying between the lower density solar wind and magnetosphere. We discuss an instrument concept called the Sheath Transport Observer for the Redistribution of Mass (STORM), an X-ray imager suitable for simultaneously imaging the dayside magnetosheath, the magnetopause boundary layers, and the cusps.

  14. Estimating the effects of the transboundary transport and local emissions of atmospheric pollutants in South Korea during KORUS-AQ campaign

    Science.gov (United States)

    Lee, S.; Koo, J. H.; Hong, J.; Choi, M.; Kim, J.; Lim, H.; Holben, B. N.; Eck, T. F.; Ahn, J. Y.; Park, J.; Kim, S. K.

    2017-12-01

    The air quality of South Korea, located in the east of China, is affected by persistent westerlies, showing the relationship to the emission in upwind region. High aerosol concentration in South Korea is also attributed to local emissions. Particularly, the industrial complex and power plants are concentrated in the Chungcheongnam-do (CN), located by the southwest part of Seoul Metropolitan Area (SMA). In this study, we evaluate the contribution of both the transboundary transport of Chinese pollutants and local emissions in the CN to the air quality in South Korea during Korea-US Air Quality (KORUS-AQ) campaign, 1 May to 12 June in 2016. Based on the information of aerosol optical depth (AOD) obtained from ground-based Aerosol Robotic NETwork (AERONET) sunphotometer and surface in-situ Particulate Matter (PM) measurements at 19 stations, high and low aerosol pollution cases are classified first. Then, 2-day back-trajectories are calculated using National Ocean and Atmospheric Administration (NOAA) HYbrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model at each AERONET site to investigate whether transport pattern is different in accordance with the classified cases about aerosol amounts. As a result, we find the distinct pathway of air-mass transport from eastern China; When high AOD is observed at station located in the western coast of South Korea, air masses are directly transported from Shandong peninsular to the Korean peninsula. In contrast, air masses are mostly transported from northwestern or northern China during the period of low AOD conditions. When PM2.5 detected at SMA sites is greater than Korean government criteria (50 micrograms per cubic meter for 24-hour average PM2.5), SMA sites are mostly affected by air mass flows through the CN area. These results indicate that transport pattern can be different vertically and surface aerosol concentration has different transport pattern from the transport pattern related to the variation of

  15. Mass transport aspects of polymer electrolyte fuel cells under two-phase flow conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, D.

    2007-03-15

    This well-illustrated, comprehensive dissertation by Dr. Ing. Denis Kramer takes an in-depth look at polymer electrolyte fuel cells (PEFC) and the possibilities for their application. First of all, the operating principles of polymer electrolyte fuel cells are described and discussed, whereby thermodynamics aspects and loss mechanisms are examined. The mass transport diagnostics made with respect to the function of the cells are discussed. Field flow geometry, gas diffusion layers and, amongst other things, liquid distribution, the influence of flow direction and the low-frequency behaviour of air-fed PEFCs are discussed. Direct methanol fuel cells are examined, as are the materials chosen. The documentation includes comprehensive mathematical and graphical representations of the mechanisms involved.

  16. Porous media fluid flow, heat, and mass transport model with rock stress coupling

    International Nuclear Information System (INIS)

    Runchal, A.K.

    1980-01-01

    This paper describes the physical and mathematical basis of a general purpose porous media flow model, GWTHERM. The mathematical basis of the model is obtained from the coupled set of the classical governing equations for the mass, momentum and energy balance. These equations are embodied in a computational model which is then coupled externally to a linearly elastic rock-stress model. This coupling is rather exploratory and based upon empirical correlations. The coupled model is able to take account of time-dependent, inhomogeneous and anisotropic features of the hydrogeologic, thermal and transport phenomena. A number of applications of the model have been made. Illustrations from the application of the model to nuclear waste repositories are included

  17. Exploring Factors Affecting Emergency Medical Services Staffs' Decision about Transporting Medical Patients to Medical Facilities

    OpenAIRE

    Ebrahimian, Abbasali; Seyedin, Hesam; Jamshidi-Orak, Roohangiz; Masoumi, Gholamreza

    2014-01-01

    Transfer of patients in medical emergency situations is one of the most important missions of emergency medical service (EMS) staffs. So this study was performed to explore affecting factors in EMS staffs’ decision during transporting of patients in medical situations to medical facilities. The participants in this qualitative study consisted of 18 EMS staffs working in prehospital care facilities in Tehran, Iran. Data were gathered through semistructured interviews. The data were analyzed u...

  18. The role of mass transport pathway in wormholelike mesoporous carbon for supercapacitors.

    Science.gov (United States)

    Liang, Yeru; Liang, Fengxue; Li, Zhenghui; Wu, Dingcai; Yan, Fangyu; Li, Siyu; Fu, Ruowen

    2010-09-28

    In the present paper, we demonstrate the importance of the role of a mass transport pathway (MTP) in wormholelike mesoporous carbon (WMC) through studying the ion diffusion behaviors within two different wormholelike mesopore networks with and without MTP. Our results reveal that the introduction of MTP is very helpful in improving ion diffusion properties. The as-prepared WMC with a MTP of ca. 9.7 nm exhibits notably better electric double layer performance as compared to the conventional WMC without a MTP. For example, even at the quick sweep rate of 50 mV s(-1), the surface specific capacitance of the former is 21.6 microF cm(-2), which is almost 4 times as high as that of the latter (5.5 microF cm(-2)).

  19. Contaminant transport in soils and its significance in the design of waste management facilities

    International Nuclear Information System (INIS)

    Barbour, S.L.; Krahn, J.

    1984-01-01

    Transport of contaminants in soils is governed by advection, dispersion, geochemical mass transfer and decay in the case of radioactive materials. Advection is the process whereby the contaminant is being carried along by moving water. Dispersion arises from mechanical mixing due to velocity distributions between soil particles and molecular diffusion. Geochemical mass transfer retards the migration because of adsorption and/or precipitation. Decay results in a decrease of contaminant concentrations for radioactive materials. Studies on the effectiveness of a cutoff wall in granular soils beneath a tailings dyke show that the most important parameter is the groundwater flow velocity. It not only controls the advective transport but also directly affects the dispersive component and the attenuation that may be obtained through adsorption and decay

  20. Integration of transport concepts for risk assessment of pesticide erosion.

    Science.gov (United States)

    Yang, Xiaomei; Van Der Zee, Sjoerd E A T M; Gai, Lingtong; Wesseling, Jan G; Ritsema, Coen J; Geissen, Violette

    2016-05-01

    Environmental contamination by agrochemicals has been a large problem for decades. Pesticides are transported in runoff and remain attached to eroded soil particles, posing a risk to water and soil quality and human health. We have developed a parsimonious integrative model of pesticide displacement by runoff and erosion that explicitly accounts for water infiltration, erosion, runoff, and pesticide transport and degradation in soil. The conceptual framework was based on broadly accepted assumptions such as the convection-dispersion equation and lognormal distributions of soil properties associated with transport, sorption, degradation, and erosion. To illustrate the concept, a few assumptions are made with regard to runoff in relatively flat agricultural fields: dispersion is ignored and erosion is modelled by a functional relationship. A sensitivity analysis indicated that the total mass of pesticide associated with soil eroded by water scouring increased with slope, rain intensity, and water field capacity of the soil. The mass of transported pesticide decreased as the micro-topography of the soil surface became more distinct. The timing of pesticide spraying and rate of degradation before erosion negatively affected the total amount of transported pesticide. The mechanisms involved in pesticide displacement, such as runoff, infiltration, soil erosion, and pesticide transport and decay in the topsoil, were all explicitly accounted for, so the mathematical complexity of their description can be high, depending on the situation. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Computational analysis of coupled fluid, heat, and mass transport in ferrocyanide single-shell tanks: FY 1994 interim report. Ferrocyanide Tank Safety Project

    International Nuclear Information System (INIS)

    McGrail, B.P.

    1994-11-01

    A computer modeling study was conducted to determine whether natural convection processes in single-shell tanks containing ferrocyanide wastes could generate localized precipitation zones that significantly concentrate the major heat-generating radionuclide, 137 Cs. A computer code was developed that simulates coupled fluid, heat, and single-species mass transport on a regular, orthogonal finite-difference grid. The analysis showed that development of a ''hot spot'' is critically dependent on the temperature dependence for the solubility of Cs 2 NiFe(CN) 6 or CsNaNiFe(CN) 6 . For the normal case, where solubility increases with increasing temperature, the net effect of fluid flow, heat, and mass transport is to disperse any local zones of high heat generation rate. As a result, hot spots cannot physically develop for this case. However, assuming a retrograde solubility dependence, the simulations indicate the formation of localized deposition zones that concentrate the 137 Cs near the bottom center of the tank where the temperatures are highest. Recent experimental studies suggest that Cs 2 NiFe(CN) 6 (c) does not exhibit retrograde solubility over the temperature range 25 degree C to 90 degree C and NaOH concentrations to 5 M. Assuming these preliminary results are confirmed, no natural mass transport process exists for generating a hot spot in the ferrocyanide single-shell tanks

  2. Revised legislation affecting the transport of radioactive materials

    International Nuclear Information System (INIS)

    Rowlands, R.P.

    1976-01-01

    The revised edition of the model Regulations for the safe transport of radioactive materials (1973, Vienna, International Atomic Energy Agency Safety Series no.6) has acted as the basis for the conditions of carriage and regulatory requirements in Great Britain. The changes introduced in this revised edition are discussed, and the current Regulations and Codes of Practice covering U.K. and international transport by road, sea, rail and air reviewed. (U.K.)

  3. Heat and Moisture Transport and Storage Parameters of Bricks Affected by the Environment

    Science.gov (United States)

    Kočí, Václav; Čáchová, Monika; Koňáková, Dana; Vejmelková, Eva; Jerman, Miloš; Keppert, Martin; Maděra, Jiří; Černý, Robert

    2018-05-01

    The effect of external environment on heat and moisture transport and storage properties of the traditional fired clay brick, sand-lime brick and highly perforated ceramic block commonly used in the Czech Republic and on their hygrothermal performance in building envelopes is analyzed by a combination of experimental and computational techniques. The experimental measurements of thermal, hygric and basic physical parameters are carried out in the reference state and after a 3-year exposure of the bricks to real climatic conditions of the city of Prague. The obtained results showed that after 3 years of weathering the porosity of the analyzed bricks increased up to five percentage points which led to an increase in liquid and gaseous moisture transport parameters and a decrease in thermal conductivity. Computational modeling of hygrothermal performance of building envelopes made of the studied bricks was done using both reference and weather-affected data. The simulated results indicated an improvement in the annual energy balances and a decrease in the time-of-wetness functions as a result of the use of data obtained after the 3-year exposure to the environment. The effects of weathering on both heat and moisture transport and storage parameters of the analyzed bricks and on their hygrothermal performance were found significant despite the occurrence of warm winters in the time period of 2012-2015 when the brick specimens were exposed to the environment.

  4. Gene expression of the zinc transporter ZIP14 (SLC39a14) is affected by weight loss and metabolic status and associates with PPARγ in human adipose tissue and 3T3-L1 pre-adipocytes

    DEFF Research Database (Denmark)

    Juul, Trine Maxel; Smidt, Kamille; Larsen, Agnete

    2015-01-01

    of clinical importance, including body mass index, triglyceride, and insulin resistance, were inversely correlated with ZIP14. During early adipogensis an up-regulation of ZIP14 gene expression was found. PPARγ gene expression was positively correlated with the ZIP14 gene expression in both adipose tissue......BACKGROUND: The expansion and function of adipose tissue are important during the development of insulin resistance and inflammation in obesity. Zinc dyshomeostasis is common in obese individuals. In the liver, zinc influx transporter ZIP14, affects proliferation and glucose metabolism but the role...

  5. Mass balance and isotope effects during nitrogen transport through septic tank systems with packed-bed (sand) filters

    Science.gov (United States)

    Hinkle, S.R.; Böhlke, J.K.; Fisher, L.H.

    2008-01-01

    Septic tank systems are an important source of NO3- to many aquifers, yet characterization of N mass balance and isotope systematics following septic tank effluent discharge into unsaturated sediments has received limited attention. In this study, samples of septic tank effluent before and after transport through single-pass packed-bed filters (sand filters) were evaluated to elucidate mass balance and isotope effects associated with septic tank effluent discharge to unsaturated sediments. Chemical and isotopic data from five newly installed pairs and ten established pairs of septic tanks and packed-bed filters serving single homes in Oregon indicate that aqueous solute concentrations are affected by variations in recharge (precipitation, evapotranspiration), NH4+ sorption (primarily in immature systems), nitrification, and gaseous N loss via NH3 volatilization and(or) N2 or N2O release during nitrification/denitrification. Substantial NH4+ sorption capacity was also observed in laboratory columns with synthetic effluent. Septic tank effluent ??15N-NH4+ values were almost constant and averaged + 4.9??? ?? 0.4??? (1 ??). In contrast, ??15N values of NO3- leaving mature packed-bed filters were variable (+ 0.8 to + 14.4???) and averaged + 7.2??? ?? 2.6???. Net N loss in the two networks of packed-bed filters was indicated by average 10-30% decreases in Cl--normalized N concentrations and 2-3??? increases in ??15N, consistent with fractionation accompanying gaseous N losses and corroborating established links between septic tank effluent and NO3- in a local, shallow aquifer. Values of ??18O-NO3- leaving mature packed-bed filters ranged from - 10.2 to - 2.3??? (mean - 6.4??? ?? 1.8???), and were intermediate between a 2/3 H2O-O + 1/3 O2-O conceptualization and a 100% H2O-O conceptualization of ??18O-NO3- generation during nitrification.

  6. Coulombic interactions during advection-dominated transport of ions in porous media

    DEFF Research Database (Denmark)

    Muniruzzaman, Muhammad; Stolze, Lucien; Rolle, Massimo

    2017-01-01

    bench-scale experiments and numerical simulations. The investigation aims at quantifying the key role of small-scale electrostatic interactions in flow-through systems, especially when advection is the dominant mass-transfer process. Considering dilute solutions of strong electrolytes (e.g., MgCl2......Solute transport of charged species in porous media is significantly affected by the electrochemical migration term resulting from the charge-induced interactions among dissolved ions and with solid surfaces. Therefore, the characterization of such Coulombic interactions and their effect...... on multicomponent ionic transport is of critical importance for assessing the fate of charged solutes in porous media. In this work we present a detailed investigation of the electrochemical effects during conservative multicomponent ionic transport in homogeneous and heterogeneous domains by means of laboratory...

  7. Behavioural responses to thermal conditions affect seasonal mass change in a heat-sensitive northern ungulate.

    Directory of Open Access Journals (Sweden)

    Floris M van Beest

    Full Text Available BACKGROUND: Empirical tests that link temperature-mediated changes in behaviour (activity and resource selection to individual fitness or condition are currently lacking for endotherms yet may be critical to understanding the effect of climate change on population dynamics. Moose (Alces alces are thought to suffer from heat stress in all seasons so provide a good biological model to test whether exposure to non-optimal ambient temperatures influence seasonal changes in body mass. Seasonal mass change is an important fitness correlate of large herbivores and affects reproductive success of female moose. METHODOLOGY/PRINCIPAL FINDINGS: Using GPS-collared adult female moose from two populations in southern Norway we quantified individual differences in seasonal activity budget and resource selection patterns as a function of seasonal temperatures thought to induce heat stress in moose. Individual body mass was recorded in early and late winter, and autumn to calculate seasonal mass changes (n = 52 over winter, n = 47 over summer. We found large individual differences in temperature-dependent resource selection patterns as well as within and between season variability in thermoregulatory strategies. As expected, individuals using an optimal strategy, selecting young successional forest (foraging habitat at low ambient temperatures and mature coniferous forest (thermal shelter during thermally stressful conditions, lost less mass in winter and gained more mass in summer. CONCLUSIONS/SIGNIFICANCE: This study provides evidence that behavioural responses to temperature have important consequences for seasonal mass change in moose living in the south of their distribution in Norway, and may be a contributing factor to recently observed declines in moose demographic performance. Although the mechanisms that underlie the observed temperature mediated habitat-fitness relationship remain to be tested, physiological state and individual variation in

  8. Behavioural responses to thermal conditions affect seasonal mass change in a heat-sensitive northern ungulate.

    Science.gov (United States)

    van Beest, Floris M; Milner, Jos M

    2013-01-01

    Empirical tests that link temperature-mediated changes in behaviour (activity and resource selection) to individual fitness or condition are currently lacking for endotherms yet may be critical to understanding the effect of climate change on population dynamics. Moose (Alces alces) are thought to suffer from heat stress in all seasons so provide a good biological model to test whether exposure to non-optimal ambient temperatures influence seasonal changes in body mass. Seasonal mass change is an important fitness correlate of large herbivores and affects reproductive success of female moose. Using GPS-collared adult female moose from two populations in southern Norway we quantified individual differences in seasonal activity budget and resource selection patterns as a function of seasonal temperatures thought to induce heat stress in moose. Individual body mass was recorded in early and late winter, and autumn to calculate seasonal mass changes (n = 52 over winter, n = 47 over summer). We found large individual differences in temperature-dependent resource selection patterns as well as within and between season variability in thermoregulatory strategies. As expected, individuals using an optimal strategy, selecting young successional forest (foraging habitat) at low ambient temperatures and mature coniferous forest (thermal shelter) during thermally stressful conditions, lost less mass in winter and gained more mass in summer. This study provides evidence that behavioural responses to temperature have important consequences for seasonal mass change in moose living in the south of their distribution in Norway, and may be a contributing factor to recently observed declines in moose demographic performance. Although the mechanisms that underlie the observed temperature mediated habitat-fitness relationship remain to be tested, physiological state and individual variation in thermal tolerance are likely contributory factors. Climate-related effects on animal

  9. Architecture for improved mass transport and system performance in redox flow batteries

    Science.gov (United States)

    Houser, Jacob; Pezeshki, Alan; Clement, Jason T.; Aaron, Douglas; Mench, Matthew M.

    2017-05-01

    In this work, electrochemical performance and parasitic losses are combined in an overall system-level efficiency metric for a high performance, all-vanadium redox flow battery. It was found that pressure drop and parasitic pumping losses are relatively negligible for high performance cells, i.e., those capable of operating at a high current density while at a low flow rate. Through this finding, the Equal Path Length (EPL) flow field architecture was proposed and evaluated. This design has superior mass transport characteristics in comparison with the standard serpentine and interdigitated designs at the expense of increased pressure drop. An Aspect Ratio (AR) design is discussed and evaluated, which demonstrates decreased pressure drop compared to the EPL design, while maintaining similar electrochemical performance under most conditions. This AR design is capable of leading to improved system energy efficiency for flow batteries of all chemistries.

  10. Technologies for climate change mitigation - transport sector

    Energy Technology Data Exchange (ETDEWEB)

    Salter, R.; Newman, P. (Curtin Univ. Sustainability Policy (CUSP) Institute, Perth, WA (Australia)); Dhar, S. (UNEP Risoe Centre, Roskilde (Denmark))

    2011-03-15

    The options outlined in this guidebook are designed to assist you in the process of developing transport services and facilities in your countries and localities - transport that better serves people's needs and enhances their lives while at the same time producing fewer greenhouse gas emissions. This is a new challenge, as previously improving transport generally led to increased greenhouse gases. The challenge now is to provide transport that: 1) is cheaper, more extensive and better quality 2) reduces pollution, congestion, traffic accidents and other threats to health and wellbeing 3) is accessible to all 4) supports economic development 5) reduces greenhouse emissions overall. This can be achieved if: 1) mass transit, walking and cycling are supported and encouraged, and integrated in a way that allows seamless multimodal travel, including networks of taxis, auto-rickshaws and small buses. 2) the mass transit services - including trains, buses and light-rail - are frequent, extensive, attractive, comfortable, affordable and faster than alternatives, with features like integrated ticketing and real time information accessible through mobile phones and other sources 3) private vehicle use and air travel are discouraged through pricing and other demand management measures, and through the availability of better alternative modes 4) there is support for the adoption of cleaner, lower carbon fuels and technologies and better maintenance practices for all transport modes, including private vehicles, water transport, auto-rickshaws and freight vehicles 5) the overall need for travel is reduced through the development of denser localities with more mixed land use and better access to mass transit (which reduces overall travel in ways that will be explained) 6) travel space is better managed to give higher priority to more sustainable transport modes, to promote safety, and to prevent traffic from adversely affecting residents and businesses. As you address these

  11. Technologies for climate change mitigation - transport sector

    Energy Technology Data Exchange (ETDEWEB)

    Salter, R; Newman, P [Curtin Univ. Sustainability Policy (CUSP) Institute, Perth, WA (Australia); Dhar, S [UNEP Risoe Centre, Roskilde (Denmark)

    2011-03-15

    The options outlined in this guidebook are designed to assist you in the process of developing transport services and facilities in your countries and localities - transport that better serves people's needs and enhances their lives while at the same time producing fewer greenhouse gas emissions. This is a new challenge, as previously improving transport generally led to increased greenhouse gases. The challenge now is to provide transport that: 1) is cheaper, more extensive and better quality 2) reduces pollution, congestion, traffic accidents and other threats to health and wellbeing 3) is accessible to all 4) supports economic development 5) reduces greenhouse emissions overall. This can be achieved if: 1) mass transit, walking and cycling are supported and encouraged, and integrated in a way that allows seamless multimodal travel, including networks of taxis, auto-rickshaws and small buses. 2) the mass transit services - including trains, buses and light-rail - are frequent, extensive, attractive, comfortable, affordable and faster than alternatives, with features like integrated ticketing and real time information accessible through mobile phones and other sources 3) private vehicle use and air travel are discouraged through pricing and other demand management measures, and through the availability of better alternative modes 4) there is support for the adoption of cleaner, lower carbon fuels and technologies and better maintenance practices for all transport modes, including private vehicles, water transport, auto-rickshaws and freight vehicles 5) the overall need for travel is reduced through the development of denser localities with more mixed land use and better access to mass transit (which reduces overall travel in ways that will be explained) 6) travel space is better managed to give higher priority to more sustainable transport modes, to promote safety, and to prevent traffic from adversely affecting residents and businesses. As you address these

  12. Effect of Mass Transport in the Synthesis of Partially Acetylated Dendrimer: Implications for Functional Ligand–Nanoparticle Distributions

    OpenAIRE

    Mullen, Douglas G.; Borgmeier, Emilee L.; Fang, Ming; McNerny, Daniel Q.; Desai, Ankur; Baker, James R.; Orr, Bradford G.; Holl, Mark M. Banaszak

    2010-01-01

    Partial acetylation of the amine-terminated poly(amidoamine) dendrimer has been used in the preparation of dendrimer particles conjugated with a wide variety of functional ligands including targeting moieties, therapeutic agents, and dye molecules. The effectiveness of mass transport during the partial acetylation reaction was found to have a major effect on subsequent distributions of dendrimer–ligand components and to be a major source of inconsistency between batches. This study has broad ...

  13. Anisotropic spin transport affected by competition between spin orbit interaction and Zeeman effect in an InGaAs based wire

    International Nuclear Information System (INIS)

    Nitta, Junsaku; Moulis, Sylvain; Kohda, Makoto

    2011-01-01

    Spin transport affected by competition between Zeeman effect and spin-orbit interaction (SOI) is investigated in order to check a proposed method to deduce the Rashba SOI α and Dresselhaus SOI β ratio. The experimentally obtained ratio α/β of the present sample is about 4 from angle dependence of magnetoconductance under in-plane magnetic field. The proposed method to detect the ratio by transport measurement is promising although further improvement of sample fabrication and measurement is required.

  14. Serotonin transporter gene-linked polymorphism affects detection of facial expressions.

    Directory of Open Access Journals (Sweden)

    Ai Koizumi

    Full Text Available Previous studies have demonstrated that the serotonin transporter gene-linked polymorphic region (5-HTTLPR affects the recognition of facial expressions and attention to them. However, the relationship between 5-HTTLPR and the perceptual detection of others' facial expressions, the process which takes place prior to emotional labeling (i.e., recognition, is not clear. To examine whether the perceptual detection of emotional facial expressions is influenced by the allelic variation (short/long of 5-HTTLPR, happy and sad facial expressions were presented at weak and mid intensities (25% and 50%. Ninety-eight participants, genotyped for 5-HTTLPR, judged whether emotion in images of faces was present. Participants with short alleles showed higher sensitivity (d' to happy than to sad expressions, while participants with long allele(s showed no such positivity advantage. This effect of 5-HTTLPR was found at different facial expression intensities among males and females. The results suggest that at the perceptual stage, a short allele enhances the processing of positive facial expressions rather than that of negative facial expressions.

  15. Modeling the influence of coupled mass transfer processes on mass flux downgradient of heterogeneous DNAPL source zones.

    Science.gov (United States)

    Yang, Lurong; Wang, Xinyu; Mendoza-Sanchez, Itza; Abriola, Linda M

    2018-04-01

    Sequestered mass in low permeability zones has been increasingly recognized as an important source of organic chemical contamination that acts to sustain downgradient plume concentrations above regulated levels. However, few modeling studies have investigated the influence of this sequestered mass and associated (coupled) mass transfer processes on plume persistence in complex dense nonaqueous phase liquid (DNAPL) source zones. This paper employs a multiphase flow and transport simulator (a modified version of the modular transport simulator MT3DMS) to explore the two- and three-dimensional evolution of source zone mass distribution and near-source plume persistence for two ensembles of highly heterogeneous DNAPL source zone realizations. Simulations reveal the strong influence of subsurface heterogeneity on the complexity of DNAPL and sequestered (immobile/sorbed) mass distribution. Small zones of entrapped DNAPL are shown to serve as a persistent source of low concentration plumes, difficult to distinguish from other (sorbed and immobile dissolved) sequestered mass sources. Results suggest that the presence of DNAPL tends to control plume longevity in the near-source area; for the examined scenarios, a substantial fraction (43.3-99.2%) of plume life was sustained by DNAPL dissolution processes. The presence of sorptive media and the extent of sorption non-ideality are shown to greatly affect predictions of near-source plume persistence following DNAPL depletion, with plume persistence varying one to two orders of magnitude with the selected sorption model. Results demonstrate the importance of sorption-controlled back diffusion from low permeability zones and reveal the importance of selecting the appropriate sorption model for accurate prediction of plume longevity. Large discrepancies for both DNAPL depletion time and plume longevity were observed between 2-D and 3-D model simulations. Differences between 2- and 3-D predictions increased in the presence of

  16. Modeling the influence of coupled mass transfer processes on mass flux downgradient of heterogeneous DNAPL source zones

    Science.gov (United States)

    Yang, Lurong; Wang, Xinyu; Mendoza-Sanchez, Itza; Abriola, Linda M.

    2018-04-01

    Sequestered mass in low permeability zones has been increasingly recognized as an important source of organic chemical contamination that acts to sustain downgradient plume concentrations above regulated levels. However, few modeling studies have investigated the influence of this sequestered mass and associated (coupled) mass transfer processes on plume persistence in complex dense nonaqueous phase liquid (DNAPL) source zones. This paper employs a multiphase flow and transport simulator (a modified version of the modular transport simulator MT3DMS) to explore the two- and three-dimensional evolution of source zone mass distribution and near-source plume persistence for two ensembles of highly heterogeneous DNAPL source zone realizations. Simulations reveal the strong influence of subsurface heterogeneity on the complexity of DNAPL and sequestered (immobile/sorbed) mass distribution. Small zones of entrapped DNAPL are shown to serve as a persistent source of low concentration plumes, difficult to distinguish from other (sorbed and immobile dissolved) sequestered mass sources. Results suggest that the presence of DNAPL tends to control plume longevity in the near-source area; for the examined scenarios, a substantial fraction (43.3-99.2%) of plume life was sustained by DNAPL dissolution processes. The presence of sorptive media and the extent of sorption non-ideality are shown to greatly affect predictions of near-source plume persistence following DNAPL depletion, with plume persistence varying one to two orders of magnitude with the selected sorption model. Results demonstrate the importance of sorption-controlled back diffusion from low permeability zones and reveal the importance of selecting the appropriate sorption model for accurate prediction of plume longevity. Large discrepancies for both DNAPL depletion time and plume longevity were observed between 2-D and 3-D model simulations. Differences between 2- and 3-D predictions increased in the presence of

  17. Pendulum mass affects the measurement of articular friction coefficient.

    Science.gov (United States)

    Akelman, Matthew R; Teeple, Erin; Machan, Jason T; Crisco, Joseph J; Jay, Gregory D; Fleming, Braden C

    2013-02-01

    Friction measurements of articular cartilage are important to determine the relative tribologic contributions made by synovial fluid or cartilage, and to assess the efficacy of therapies for preventing the development of post-traumatic osteoarthritis. Stanton's equation is the most frequently used formula for estimating the whole joint friction coefficient (μ) of an articular pendulum, and assumes pendulum energy loss through a mass-independent mechanism. This study examines if articular pendulum energy loss is indeed mass independent, and compares Stanton's model to an alternative model, which incorporates viscous damping, for calculating μ. Ten loads (25-100% body weight) were applied in a random order to an articular pendulum using the knees of adult male Hartley guinea pigs (n=4) as the fulcrum. Motion of the decaying pendulum was recorded and μ was estimated using two models: Stanton's equation, and an exponential decay function incorporating a viscous damping coefficient. μ estimates decreased as mass increased for both models. Exponential decay model fit error values were 82% less than the Stanton model. These results indicate that μ decreases with increasing mass, and that an exponential decay model provides a better fit for articular pendulum data at all mass values. In conclusion, inter-study comparisons of articular pendulum μ values should not be made without recognizing the loads used, as μ values are mass dependent. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Some factors affecting radiative heat transport in PWR cores

    International Nuclear Information System (INIS)

    Hall, A.N.

    1989-04-01

    This report discusses radiative heat transport in Pressurized Water Reactor cores, using simple models to illustrate basic features of the transport process. Heat transport by conduction and convection is ignored in order to focus attention on the restrictions on radiative heat transport imposed by the geometry of the heat emitting and absorbing structures. The importance of the spacing of the emitting and absorbing structures is emphasised. Steady state temperature distributions are found for models of cores which are uniformly heated by fission product decay. In all of the models, a steady state temperature distribution can only be obtained if the central core temperature is in excess of the melting point of UO 2 . It has recently been reported that the MIMAS computer code, which takes into account radiative heat transport, has been used to model the heat-up of the Three Mile Island-2 reactor core, and the computations indicate that the core could not have reached the melting point of UO 2 at any time or any place. We discuss this result in the light of the calculations presented in this paper. It appears that the predicted stabilisation of the core temperatures at ∼ 2200 0 C may be a consequence of the artificially large spacing between the radial rings employed in the MIMAS code, rather than a result of physical significance. (author)

  19. The roles of transportation and transportation hubs in the propagation of influenza and coronaviruses: a systematic review.

    Science.gov (United States)

    Browne, Annie; Ahmad, Sacha St-Onge; Beck, Charles R; Nguyen-Van-Tam, Jonathan S

    2016-01-01

    Respiratory viruses spread in humans across wide geographical areas in short periods of time, resulting in high levels of morbidity and mortality. We undertook a systematic review to assess the evidence that air, ground and sea mass transportation systems or hubs are associated with propagating influenza and coronaviruses. Healthcare databases and sources of grey literature were searched using pre-defined criteria between April and June 2014. Two reviewers screened all identified records against the protocol, undertook risk of bias assessments and extracted data using a piloted form. Results were analysed using a narrative synthesis. Forty-one studies met the eligibility criteria. Risk of bias was high in the observational studies, moderate to high in the reviews and moderate to low in the modelling studies. In-flight influenza transmission was identified substantively on five flights with up to four confirmed and six suspected secondary cases per affected flight. Five studies highlighted the role of air travel in accelerating influenza spread to new areas. Influenza outbreaks aboard cruise ships affect 2-7% of passengers. Influenza transmission events have been observed aboard ground transport vehicles. High heterogeneity between studies and the inability to exclude other sources of infection means that the risk of influenza transmission from an index case to other passengers cannot be accurately quantified. A paucity of evidence was identified describing severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome coronavirus transmission events associated with transportation systems or hubs. Air transportation appears important in accelerating and amplifying influenza propagation. Transmission occurs aboard aeroplanes, at the destination and possibly at airports. Control measures to prevent influenza transmission on cruise ships are needed to reduce morbidity and mortality. There is no recent evidence of sea transport accelerating influenza

  20. A systematic review of factors affecting driving and public transportation among youth and young adults with acquired brain injury.

    Science.gov (United States)

    Lindsay, Sally; Stoica, Andrei

    2017-01-01

    Although many people with an acquired brain injury (ABI) encounter difficulties with executive functioning and memory which could negatively affect driving, few people are assessed for fitness to drive after injury. The purpose of this systematic review was to synthesize the literature on factors affecting driving and public transportation among youth and young adults with ABI, post injury. Seven databases were systematically searched for articles from 1980 to 2016. Studies were screened independently by two researchers who performed the data extraction. Study quality was appraised using the Standard Quality Assessment Criteria (Kmet) for evaluating primary research from a variety of fields. Of the 6577 studies identified in the search, 25 met the inclusion criteria, which involved 1527 participants with ABI (mean age = 25.1) across eight countries. Six studies focused on driving assessment and fitness to drive, ten on driving performance or risk of accidents and nine studies explored issues related to accessing or navigating public transportation. Quality assessment of the included studies ranged from 0.60 to 0.95. Our findings highlight several gaps in clinical practice and research along with a critical need for enhanced fitness to drive assessments and transportation-related training for young people with ABI.

  1. Mass transport of direct methanol fuel cell species in sulfonated poly(ether ether ketone) membranes

    International Nuclear Information System (INIS)

    Silva, V.S.; Ruffmann, B.; Vetter, S.; Boaventura, M.; Mendes, A.M.; Madeira, L.M.; Nunes, S.P.

    2006-01-01

    Homogeneous membranes based on sulfonated poly(ether ether ketone) (sPEEK) with different sulfonation degrees (SD) were prepared and characterized. In order to perform a critical analysis of the SD effect on the polymer barrier and mass transport properties towards direct methanol fuel cell species, proton conductivity, water/methanol pervaporation and nitrogen/oxygen/carbon dioxide pressure rise method experiments are proposed. This procedure allows the evaluation of the individual permeability coefficients in hydrated sPEEK membranes with different sulfonation degrees. Nafion[reg] 112 was used as reference material. DMFC tests were also performed at 50 deg. C. It was observed that the proton conductivity and the permeability towards water, methanol, oxygen and carbon dioxide increase with the sPEEK sulfonation degree. In contrast, the SD seems to not affect the nitrogen permeability coefficient. In terms of selectivity, it was observed that the carbon dioxide/oxygen selectivity increases with the sPEEK SD. In contrast, the nitrogen/oxygen selectivity decreases. In terms of barrier properties for preventing the DMFC reactants loss, the polymer electrolyte membrane based on the sulfonated poly(ether ether ketone) with SD lower or equal to 71%, although having slightly lower proton conductivity, presented much better characteristics for fuel cell applications compared with the well known Nafion[reg] 112. In terms of the DMFC tests of the studied membranes at low temperature, the sPEEK membrane with SD = 71% showed to have similar performance, or even better, as that of Nafion[reg] 112. However, the highest DMFC overall efficiency was achieved using sPEEK membrane with SD = 52%

  2. Digestion of a single meal affects gene expression of ion and ammonia transporters and glutamine synthetase activity in the gastrointestinal tract of freshwater rainbow trout.

    Science.gov (United States)

    Bucking, Carol; Wood, Chris M

    2012-04-01

    Experiments on freshwater rainbow trout, Oncorhynchus mykiss, demonstrated how digestion affected the transcriptional expression of gastrointestinal transporters following a single satiating meal (~3% body mass ration) after a 1-week fast. Quantitative real-time polymerase chain reaction was employed to measure the relative mRNA expression of three previously cloned and sequenced transporters [H(+)-K(+)-ATPase (HKA), Na(+)/HCO(3)(-) cotransporter (NBC), and the Rhesus glycoprotein (Rhbg1; an ammonia transporter)] over a 24-h time course following feeding. Plasma total ammonia increased about threefold from pre-feeding levels to 288 μmol l(-1), whereas total ammonia levels in chyme supernatant reached a sixfold higher value (1.8 mmol l(-1)) than plasma levels. Feeding did not appear to have a statistically significant effect on the relative mRNA expression of the gastric HKA or Rhbg1. However, the relative mRNA expression of gastric NBC was increased 24 h following the ingestion of a meal. Along the intestinal tract, feeding increased the relative mRNA expression of Rhbg1, but had no effect on the expression of NBC. Expression of the gastric HKA was undetectable in the intestinal tract of freshwater rainbow trout. Digestion increased the activity of glutamine synthetase in the posterior intestine at 12 and 24 h following feeding. This study is among the first to show that there are digestion-associated changes in gene expression and enzyme activity in the gastrointestinal tract of teleost fish illustrating the dynamic plasticity of this organ. These post-prandial changes occur over the relative short-term duration of digesting a single meal.

  3. The specchio unit (northern apennines, Italy): An ancient mass transport complex originated from near-coastal areas in an intra-slope setting

    NARCIS (Netherlands)

    Ogata, Kei; Tinterri, Roberto; Pini, Gian Andrea; Mutti, Emiliano

    2012-01-01

    Within the Eocene-Oligocene syn-orogenic deposits of the Epiligurian succession (Northern Apennines of Italy), a field-based study of the Specchio Unit (lower Rupelian) reveals that this complex is made up of three distinct but amalgamated mass-transport deposits (MTDs), the largest of which reaches

  4. Development of a multi-species mass transport model for concrete with account to thermodynamic phase equilibriums

    DEFF Research Database (Denmark)

    Hosokawa, Yoshifumi; Yamada, Kazuo; Johannesson, Björn

    2011-01-01

    different types of cements. For example, the physicochemical evaluation of steel corrosion initiation can be studied by calculating the molar ratio of chloride ion to hydroxide ion in the pore solution. The model can, further, for example, calculate changes of solid-phase composition caused......) theory alone, not involving chemical processes, have no real practical interest since the chemical action is very dominant for cement based materials. Coupled mass transport and chemical equilibrium models can be used to calculate the variation in pore solution and solid-phase composition when using...

  5. Comparison of one-, two-, and three-dimensional models for mass transport of radionuclides

    International Nuclear Information System (INIS)

    Prickett, T.A.; Voorhees, M.L.; Herzog, B.L.

    1980-02-01

    This technical memorandum compares one-, two-, and three-dimensional models for studying regional mass transport of radionuclides in groundwater associated with deep repository disposal of high-level radioactive wastes. In addition, this report outlines the general conditions for which a one- or two-dimensional model could be used as an alternate to a three-dimensional model analysis. The investigation includes a review of analytical and numerical models in addition to consideration of such conditions as rock and fluid heterogeneity, anisotropy, boundary and initial conditions, and various geometric shapes of repository sources and sinks. Based upon current hydrologic practice, each review is taken separately and discussed to the extent that the researcher can match his problem conditions with the minimum number of model dimensions necessary for an accurate solution

  6. Plasma Transport at the Magnetospheric Flank Boundary. Final report

    International Nuclear Information System (INIS)

    Otto, Antonius

    2012-01-01

    Progress is highlighted in these areas: 1. Model of magnetic reconnection induced by three-dimensional Kelvin Helmholtz (KH) modes at the magnetospheric flank boundary; 2. Quantitative evaluation of mass transport from the magnetosheath onto closed geomagnetic field for northward IMF; 3. Comparison of mass transfer by cusp reconnection and Flank Kelvin Helmholtz modes; 4. Entropy constraint and plasma transport in the magnetotail - a new mechanism for current sheet thinning; 5. Test particle model for mass transport onto closed geomagnetic field for northward IMF; 6. Influence of density asymmetry and magnetic shear on (a) the linear and nonlinear growth of 3D Kelvin Helmholtz (KH) modes, and (b) three-dimensional KH mediated mass transport; 7. Examination of entropy and plasma transport in the magnetotail; 8. Entropy change and plasma transport by KH mediated reconnection - mixing and heating of plasma; 9. Entropy and plasma transport in the magnetotail - tail reconnection; and, 10. Wave coupling at the magnetospheric boundary and generation of kinetic Alfven waves

  7. Multi-layer membrane model for mass transport in a direct ethanol fuel cell using an alkaline anion exchange membrane

    Science.gov (United States)

    Bahrami, Hafez; Faghri, Amir

    2012-11-01

    A one-dimensional, isothermal, single-phase model is presented to investigate the mass transport in a direct ethanol fuel cell incorporating an alkaline anion exchange membrane. The electrochemistry is analytically solved and the closed-form solution is provided for two limiting cases assuming Tafel expressions for both oxygen reduction and ethanol oxidation. A multi-layer membrane model is proposed to properly account for the diffusive and electroosmotic transport of ethanol through the membrane. The fundamental differences in fuel crossover for positive and negative electroosmotic drag coefficients are discussed. It is found that ethanol crossover is significantly reduced upon using an alkaline anion exchange membrane instead of a proton exchange membrane, especially at current densities higher than 500 A m

  8. Switch-loop flexibility affects transport of large drugs by the promiscuous AcrB multidrug efflux transporter.

    Science.gov (United States)

    Cha, Hi-jea; Müller, Reinke T; Pos, Klaas M

    2014-08-01

    Multidrug efflux transporters recognize a variety of structurally unrelated compounds for which the molecular basis is poorly understood. For the resistance nodulation and cell division (RND) inner membrane component AcrB of the AcrAB-TolC multidrug efflux system from Escherichia coli, drug binding occurs at the access and deep binding pockets. These two binding areas are separated by an 11-amino-acid-residue-containing switch loop whose conformational flexibility is speculated to be essential for drug binding and transport. A G616N substitution in the switch loop has a distinct and local effect on the orientation of the loop and on the ability to transport larger drugs. Here, we report a distinct phenotypical pattern of drug recognition and transport for the G616N variant, indicating that drug substrates with minimal projection areas of >70 Å(2) are less well transported than other substrates. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  9. Influence of a thermal gradient on water-rock interactions and mass transport in geologic media (marine pelagic clay)

    International Nuclear Information System (INIS)

    Seyfried, W.E. Jr.

    1985-01-01

    A brief outline of the role of thermodiffusional processes in mass transport and sediment alteration for a sediment/seawater system that is subjected to a thermal gradient and maximum temperature and pressure condition, such as in a subseabed repository is presented. The author underscores the need to investigate the effect of basic physical and chemical parameters on Soret coefficients for various electrolyte fluids. Such experiments will require the design and development of unique hydrothermal apparatus

  10. Transport of copper as affected by titania nanoparticles in soil columns

    Energy Technology Data Exchange (ETDEWEB)

    Fang Jing [School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012 (China); Shan Xiaoquan, E-mail: xiaoquan@rcees.ac.cn [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China); Wen Bei [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China); Lin Jinming [Department of Chemistry, Tsinghua University, Beijing 100084 (China); Owens, Gary [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA 5095 (Australia); Zhou Shuairen [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China)

    2011-05-15

    The effects of TiO{sub 2} nanoparticles on the transport of Cu through four different soil columns were studied. For two soils (HB and DX), TiO{sub 2} nanoparticles acted as a Cu carrier and facilitated the transport of Cu. For a third soil (BJ) TiO{sub 2} nanoparticles also facilitated Cu transport but to a much lesser degree, but for a fourth soil (HLJ) TiO{sub 2} nanoparticles retarded the transport of Cu. Linear correlation analysis indicated that soil properties rather than sorption capacities for Cu primary governed whether TiO{sub 2} nanoparticles-facilitated Cu transport. The TiO{sub 2}-associated Cu of outflow in the Cu-contaminated soil columns was significantly positively correlated with soil pH and negatively correlated with CEC and DOC. During passage through the soil columns 46.6-99.9% of Cu initially adsorbed onto TiO{sub 2} could be 'stripped' from nanoparticles depending on soil, where Cu desorption from TiO{sub 2} nanoparticles increased with decreasing flow velocity and soil pH. - Highlights: > TiO{sub 2} nanoparticles could facilitate or retard the transport of Cu in soils. > Soil properties primarily governed TiO{sub 2}-facilitated Cu transport. > Cu initially adsorbed onto TiO{sub 2} could be 'stripped' duing transport. - TiO{sub 2} nanoparticles play an important role in mediating and transporting Cu in soil columns.

  11. Chemical composition of air masses transported from Asia to the U.S. West Coast during ITCT 2K2: Fossil fuel combustion versus biomass-burning signatures

    Science.gov (United States)

    de Gouw, J. A.; Cooper, O. R.; Warneke, C.; Hudson, P. K.; Fehsenfeld, F. C.; Holloway, J. S.; Hübler, G.; Nicks, D. K., Jr.; Nowak, J. B.; Parrish, D. D.; Ryerson, T. B.; Atlas, E. L.; Donnelly, S. G.; Schauffler, S. M.; Stroud, V.; Johnson, K.; Carmichael, G. R.; Streets, D. G.

    2004-12-01

    As part of the Intercontinental Transport and Chemical Transformation experiment in 2002 (ITCT 2K2), a National Oceanic and Atmospheric Administration (NOAA) WP-3D research aircraft was used to study the long-range transport of Asian air masses toward the west coast of North America. During research flights on 5 and 17 May, strong enhancements of carbon monoxide (CO) and other species were observed in air masses that had been transported from Asia. The hydrocarbon composition of the air masses indicated that the highest CO levels were related to fossil fuel use. During the flights on 5 and 17 May and other days, the levels of several biomass-burning indicators increased with altitude. This was true for acetonitrile (CH3CN), methyl chloride (CH3Cl), the ratio of acetylene (C2H2) to propane (C3H8), and, on May 5, the percentage of particles measured by the particle analysis by laser mass spectrometry (PALMS) instrument that were attributed to biomass burning based on their carbon and potassium content. An ensemble of back-trajectories, calculated from the U.S. west coast over a range of latitudes and altitudes for the entire ITCT 2K2 period, showed that air masses from Southeast Asia and China were generally observed at higher altitudes than air from Japan and Korea. Emission inventories estimate the contribution of biomass burning to the total emissions to be low for Japan and Korea, higher for China, and the highest for Southeast Asia. Combined with the origin of the air masses versus altitude, this qualitatively explains the increase with altitude, averaged over the whole ITCT 2K2 period, of the different biomass-burning indicators.

  12. Carbonate Channel-Levee Systems Influenced by Mass-Transport Deposition, Browse Basin, Australia

    Science.gov (United States)

    Dunlap, D.; Janson, X.; Sanchez-Phelps, C.; Covault, J. A.

    2017-12-01

    Submarine channels are primary conduits for clastic sediment transport to deep-water basins, thereby controlling the location of marine depocenters and sediment bypass. The evolution and depositional character of submarine channels have broad implications to sediment dispersal, sediment quality, and hydrocarbon exploration potential. Siliciclastic channel systems have been extensively studied in modern environments, seismic and outcrop; however, carbonate channel-levee deposits have only recently been explored. Here we utilize newly released high-resolution (90 Hz) seismic-reflection data from the Australian Browse Basin to document the influence of mass-transport complex (MTC) deposition on the stratigraphic architecture of carbonate channel-levee systems. The 2014 vintage seismic survey is 2500 km2 and hosts numerous large Miocene-age carbonate channel-levee complexes basinward of the shelf edge. Regional horizons and individual channel forms were mapped. Channels range from 200-300 m wide and are bounded by high-relief levee-overbank wedges (>100 ms TWTT). These channels extend across the survey area >70 km. The leveed-channels were sourced from middle and late Miocene slope gullies linked to platform carbonates. Slope-attached and locally derived MTC's are evident throughout the Miocene section likely related to periods of basin inversion and shelf-edge gully incision. We interpret that regionally extensive (>1000 km2) slope-attached MTC's can shut down a channel-levee system and trigger the initiation of a new system, whereas more locally derived (wasting and turbidity currents, which informs depositional models of carbonate slope systems and calls for re-evaluation of the controls on stratigraphic patterns in mixed siliciclastic-carbonate deep-water basins.

  13. Analysis of diffusive mass transport in a cracked buffer

    International Nuclear Information System (INIS)

    Garisto, N.C.; Garisto, F.

    1989-11-01

    In the disposal vault design for the Canadian Nuclear Fuel Waste Management Program, cylindrical containers of used nuclear fuel would be placed in vertical boreholes in rock and surrounded with a bentonite-based buffer material. The buffer is expected to absorb and/or retard radionuclides leaching from the fuel after the containers fail. There is some evidence, however, that the buffer may be susceptible to cracking. In this report we investigate numerically the consequences of cracking on uranium diffusion through the buffer. The derivation of the mass-transport equations and the numerical solution method are presented for the solubility-limited diffusion of uranium in a cracked buffer system for both swept-away and semi-impermeable boundary conditions at the rock-buffer interface. The results indicate that for swept-away boundary conditions the total uranium flux through the cracked buffer system is, as expected, greater than through the uncracked buffer. The effect of the cracks is strongly dependent on the ratio D/D eff , where D and D eff are the pore-water and the effective buffer diffusion coefficient, respectively. However, although a decrease in D eff enhances the effect of cracks on the total cumulative flux (relative to the uncracked buffer), it also decreases the total cumulative flux through the cracked buffer system (relative to a cracked buffer with a larger D eff value). Finally, for semi-impermeable boundary conditions, the effect of cracks on the total radionuclide flux is relatively small

  14. Modelling the resilience of rail passenger transport networks affected by large-scale disruptive events : the case of HSR (high speed rail)

    NARCIS (Netherlands)

    Janic, M.

    2018-01-01

    This paper deals with modelling the dynamic resilience of rail passenger transport networks affected by large-scale disruptive events whose impacts deteriorate the networks’ planned infrastructural, operational, economic, and social-economic performances represented by the selected indicators.

  15. Loss of lean body mass affects low bone mineral density in patients with rheumatoid arthritis - results from the TOMORROW study.

    Science.gov (United States)

    Okano, Tadashi; Inui, Kentaro; Tada, Masahiro; Sugioka, Yuko; Mamoto, Kenji; Wakitani, Shigeyuki; Koike, Tatsuya; Nakamura, Hiroaki

    2017-11-01

    Osteoporosis is one of the complications for patients with rheumatoid arthritis (RA). Rheumatoid cachexia, the loss of lean body mass, is another. However, the relationship between decreased lean body mass and reduced bone mineral density (BMD) in patients with RA has not been well studied. This study included 413 participants, comprising 208 patients with RA and 205 age- and sex-matched healthy volunteers. Clinical data, BMD, bone metabolic markers (BMM) and body composition, such as lean body mass and percent fat, were collected. Risk factors for osteoporosis in patients with RA including the relationship BMD and body composition were analyzed. Patients with RA showed low BMD and high BMM compared with controls. Moreover, lean body mass was lower and percent fat was higher in patients with RA. Lean body mass correlated positively and percent fat negatively with BMD. Lean body mass was a positive and disease duration was a negative independent factor for BMD in multivariate statistical analysis. BMD and lean body mass were significantly lower in patients with RA compared to healthy controls. Lean body mass correlated positively with BMD and decreased lean body mass and disease duration affected low BMD in patients with RA. [UMIN Clinical Trials Registry, http://www.umin.ac.jp/ctr/ , UMIN000003876].

  16. Federal and state regulatory schemes affecting liability for high-level waste transportation incidents: opportunities for clarification and amendment

    International Nuclear Information System (INIS)

    Friel, L.E.; Livingston-Behan, E.A.

    1985-01-01

    The Price-Anderson Act of 1957 provides extensive public liability coverage in the event of a serious accident involving the transportation of nuclear materials to or from certain federally-licensed, or federal contractor-operated facilities. While actual liability for a nuclear incident and the extent of damages are usually determined by state law, the Act establishes a comprehensive system for the payment of such damages. Despite the federally-mandated scheme for liability coverage several aspects of the Act's application to transportation to a permanent repository have not yet been settled and are open to various interpretations. Some areas of uncertainty apply not only to future waste transport to a repository, but also to current transportation activities, and include: coverage for emergency response and clean-up costs; coverage for precautionary evacuations; and the federal government's financial liability. The need to address liability issues is also increasingly recognized at the state level. The state laws which are used to determine liability and the extent of damages in the event of a transportation accident vary widely among states and significantly affect the compensation that an injured person will receive under the provisions of the Price-Anderson Act. Areas of state law deserving special attention include: standards for determining liability; statutes of limitations; standards for proof of causation; state sovereign immunity statutes; and recovery of unique emergency response costs

  17. Methylammonium-resistant mutants of Nicotiana plumbaginifolia are affected in nitrate transport.

    Science.gov (United States)

    Godon, C; Krapp, A; Leydecker, M T; Daniel-Vedele, F; Caboche, M

    1996-02-25

    This work reports the isolation and preliminary characterization of Nicotiana plumbaginifolia mutants resistant to methylammonium. Nicotiana plumbaginifolia plants cannot grow on low levels of nitrate in the presence of methylammonium. Methylammonium is not used as a nitrogen source, although it can be efficiently taken up by Nicotiana plumbaginifolia cells and converted into methylglutamine, an analog of glutamine. Glutamine is known to repress the expression of the enzymes that mediate the first two steps in the nitrate assimilatory pathway, nitrate reductase (NR) and nitrite reductase (NiR). Methylammonium has therefore been used, in combination with low concentrations of nitrate, as a selective agent in order to screen for mutants in which the nitrate pathway is de-repressed. Eleven semi-dominant mutants, all belonging to the same complementation group, were identified. The mutant showing the highest resistance to methylammonium was not affected either in the utilization of ammonium, accumulation of methylammonium or in glutamine synthase activity. A series of experiments showed that utilization of nitrite by the wild-type and the mutant was comparable, in the presence or the absence of methylammonium, thus suggesting that the mutation specifically affected nitrate transport or reduction. Although NR mRNA levels were less repressed by methylammonium treatment of the wild-type than the mutant, NR activities of the mutant remained comparable with or without methylammonium, leading to the hypothesis that modified expression of NR is probably not responsible for resistance to methylammonium. Methylammonium inhibited nitrate uptake in the wild-type but had only a limited effect in the mutant. The implications of these results are discussed.

  18. Excess Vitamin Intake before Starvation does not Affect Body Mass, Organ Mass, or Blood Variables but Affects Urinary Excretion of Riboflavin in Starving Rats

    OpenAIRE

    Moriya, Aya; Fukuwatari, Tsutomu; Shibata, Katsumi

    2013-01-01

    B-vitamins are important for producing energy from amino acids, fatty acids, and glucose. The aim of this study was to elucidate the effects of excess vitamin intake before starvation on body mass, organ mass, blood, and biological variables as well as on urinary excretion of riboflavin in rats. Adult rats were fed two types of diets, one with a low vitamin content (minimum vitamin diet for optimum growth) and one with a sufficient amount of vitamins (excess vitamin diet). Body mass, organ ma...

  19. Proceedings of the twenty third national heat and mass transfer conference and first international ISHMT-ASTFE heat and mass transfer conference: souvenir and book of abstracts

    International Nuclear Information System (INIS)

    2015-01-01

    The conference covered various aspects of heat and mass transfer like Aero-thermodynamics, Atmospheric flows, Biological heat and mass transfer, Combustion and reactive flows, Cryogenics, Electronic and photonic cooling, Energy engineering, Environmental engineering, Experimental techniques, Heat transfer enhancement, Heat transfer equipment's, Heat transfer in nuclear applications, Mass transfer, Materials processing and manufacturing, Microscale and nanoscale transport, Multiphase transport and phase change, Multi mode heat transfer, Numerical methods, Refrigeration and air conditioning, Space heat transfer, Transport phenomena in porous media, and Turbulent transport. Papers relevant to INIS are indexed separately

  20. Mass Transport Properties of LiD-U Mixtures from Orbital FreeMolecular Dynamics Simulations and a Pressure-Matching Mixing Rule

    International Nuclear Information System (INIS)

    Burakovsky, Leonid; Kress, Joel D.; Collins, Lee A.

    2012-01-01

    Mass transport properties for LiD-U mixtures were calculated using a pressure matching mixture rule for the mixing of LiD and of U properties simulated with Orbital Free Molecular Dynamics (OFMD). The mixing rule was checked against benchmark OFMD simulations for the fully interacting three-component (Li, D, U) system. To obtain transport coefficients for LiD-U mixtures of different (LiD) x U (1-x) compositions as functions of temperature and mixture density is a tedious task. Quantum molecular dynamics (MD) simulations can be employed, as in the case LiD or U. However, due to the presence of the heavy constituent U, such simulations proceed so slowly that only a limited number of numerical data points in the (x, ρ, T) phase space can be obtained. To finesse this difficulty, transport coefficients for a mixture can be obtained using a pressure-matching mixing rule discussed. For both LiD and U, the corresponding transport coefficients were obtained earlier from quantum molecular dynamics simulations. In these simulations, the quantum behavior of the electrons was represented using an orbital free (OF) version of density functional theory, and ions were advanced in time using classical molecular dynamics. The total pressure of the system, P = nk B T/V + P e , is the sum of the ideal gas pressure of the ions plus the electron pressure. The mass self-diffusion coefficient for species α, D α , the mutual diffusion coefficient for species α and β, Dαβ, and the shear viscosity, η, are computed from the appropriate autocorrelation function. The details of similar QMD calculations on LiH are described in Ref. [1] for 0.5 eV < T < 3 eV, and in Ref. [2] for 2 eV < T < 6 eV.

  1. Murt user's guide: A hybrid Lagrangian-Eulerian finite element model of multiple-pore-region solute transport through subsurface media

    International Nuclear Information System (INIS)

    Gwo, J.P.; Jardine, P.M.; Yeh, G.T.; Wilson, G.V.

    1995-04-01

    Matrix diffusion, a diffusive mass transfer process,in the structured soils and geologic units at ORNL, is believe to be an important subsurface mass transfer mechanism; it may affect off-site movement of radioactive wastes and remediation of waste disposal sites by locally exchanging wastes between soil/rock matrix and macropores/fractures. Advective mass transfer also contributes to waste movement but is largely neglected by researchers. This report presents the first documented 2-D multiregion solute transport code (MURT) that incorporates not only diffusive but also advective mass transfer and can be applied to heterogeneous porous media under transient flow conditions. In this report, theoretical background is reviewed and the derivation of multiregion solute transport equations is presented. Similar to MURF (Gwo et al. 1994), a multiregion subsurface flow code, multiplepore domains as suggested by previous investigators (eg, Wilson and Luxmoore 1988) can be implemented in MURT. Transient or steady-state flow fields of the pore domains can be either calculated by MURF or by modelers. The mass transfer process is briefly discussed through a three-pore-region multiregion solute transport mechanism. Mass transfer equations that describe mass flux across pore region interfaces are also presented and parameters needed to calculate mass transfer coefficients detailed. Three applications of MURT (tracer injection problem, sensitivity analysis of advective and diffusive mass transfer, hillslope ponding infiltration and secondary source problem) were simulated and results discussed. Program structure of MURT and functions of MURT subroutiness are discussed so that users can adapt the code; guides for input data preparation are provided in appendices

  2. Columnar aerosol optical and radiative properties according to season and air mass transport pattern over East Asia.

    Science.gov (United States)

    Noh, Young M; Müller, Detlef; Lee, Hanlim; Lee, Kwonho; Kim, Young Joon

    2012-08-01

    The column-integrated optical and radiative properties of aerosols in the downwind area of East Asia were investigated based on sun/sky radiometer measurements performed from February 2004 to June 2005 at Gwangju (35.23° N, 126.84° E) and Anmyeon (36.54° N, 126.33° E), Korea. The observed aerosol data were analyzed for differences among three seasons: spring (March-May), summer (June-August), and autumn/winter (September-February). The data were also categorized into five types depending on the air mass origin in arriving in the measurement sites: (a) from a northerly direction in spring (S(N)), (b) from a westerly direction in spring (S(W)), (c) cases with a low Ångström exponent (air mass origin. The forcing efficiency in summer was -131.7 and -125.6 W m(-2) at the surface in Gwangju and Anmyeon, respectively. These values are lower than those under the atmospheric conditions of spring and autumn/winter. The highest forcing efficiencies in autumn/winter were -214.3 and -255.9 W m(-2) at the surface in Gwangju and Anmyeon, respectively, when the air mass was transported from westerly directions.

  3. Evaluation of cloud convection and tracer transport in a three-dimensional chemical transport model

    Directory of Open Access Journals (Sweden)

    W. Feng

    2011-06-01

    Full Text Available We investigate the performance of cloud convection and tracer transport in a global off-line 3-D chemical transport model. Various model simulations are performed using different meteorological (reanalyses (ERA-40, ECMWF operational and ECMWF Interim to diagnose the updraft mass flux, convective precipitation and cloud top height.

    The diagnosed upward mass flux distribution from TOMCAT agrees quite well with the ECMWF reanalysis data (ERA-40 and ERA-Interim below 200 hPa. Inclusion of midlevel convection improves the agreement at mid-high latitudes. However, the reanalyses show strong convective transport up to 100 hPa, well into the tropical tropopause layer (TTL, which is not captured by TOMCAT. Similarly, the model captures the spatial and seasonal variation of convective cloud top height although the mean modelled value is about 2 km lower than observed.

    The ERA-Interim reanalyses have smaller archived upward convective mass fluxes than ERA-40, and smaller convective precipitation, which is in better agreement with satellite-based data. TOMCAT captures these relative differences when diagnosing convection from the large-scale fields. The model also shows differences in diagnosed convection with the version of the operational analyses used, which cautions against using results of the model from one specific time period as a general evaluation.

    We have tested the effect of resolution on the diagnosed modelled convection with simulations ranging from 5.6° × 5.6° to 1° × 1°. Overall, in the off-line model, the higher model resolution gives stronger vertical tracer transport, however, it does not make a large change to the diagnosed convective updraft mass flux (i.e., the model results using the convection scheme fail to capture the strong convection transport up to 100 hPa as seen in the archived convective mass fluxes. Similarly, the resolution of the forcing winds in the higher resolution CTM does not make a

  4. Geoelectrical Measurement of Multi-Scale Mass Transfer Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Day-Lewis, Frederick; Singha, Kamini; Haggerty, Roy; Johnson, Tim; Binley, Andrew; Lane, John

    2014-01-16

    Mass transfer affects contaminant transport and is thought to control the efficiency of aquifer remediation at a number of sites within the Department of Energy (DOE) complex. An improved understanding of mass transfer is critical to meeting the enormous scientific and engineering challenges currently facing DOE. Informed design of site remedies and long-term stewardship of radionuclide-contaminated sites will require new cost-effective laboratory and field techniques to measure the parameters controlling mass transfer spatially and across a range of scales. In this project, we sought to capitalize on the geophysical signatures of mass transfer. Previous numerical modeling and pilot-scale field experiments suggested that mass transfer produces a geoelectrical signature—a hysteretic relation between sampled (mobile-domain) fluid conductivity and bulk (mobile + immobile) conductivity—over a range of scales relevant to aquifer remediation. In this work, we investigated the geoelectrical signature of mass transfer during tracer transport in a series of controlled experiments to determine the operation of controlling parameters, and also investigated the use of complex-resistivity (CR) as a means of quantifying mass transfer parameters in situ without tracer experiments. In an add-on component to our grant, we additionally considered nuclear magnetic resonance (NMR) to help parse mobile from immobile porosities. Including the NMR component, our revised study objectives were to: 1. Develop and demonstrate geophysical approaches to measure mass-transfer parameters spatially and over a range of scales, including the combination of electrical resistivity monitoring, tracer tests, complex resistivity, nuclear magnetic resonance, and materials characterization; and 2. Provide mass-transfer estimates for improved understanding of contaminant fate and transport at DOE sites, such as uranium transport at the Hanford 300 Area. To achieve our objectives, we implemented a 3

  5. Analysis of the contribution of sedimentation to bacterial mass transport in a parallel plate flow chamber Part II : Use of fluorescence imaging

    NARCIS (Netherlands)

    Li, Jiuyi; Busscher, Henk J.; van der Mei, Henny C.; Norde, Willem; Krom, Bastiaan P.; Sjollema, Jelmer

    2011-01-01

    Using a new phase-contrast microscopy-based method of analysis, sedimentation has recently been demonstrated to be the major mass transport mechanism of bacteria towards substratum surfaces in a parallel plate flow chamber (J. Li, H.J. Busscher, W. Norde, J. Sjollema, Colloid Surf. B. 84 (2011)76).

  6. Mass transport around comets and its impact on the seasonal differences in water production rates

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, M.; Altwegg, K.; Thomas, N. [Physikalisches Institut, University of Bern, Sidlerstrasse 5, 3012 Bern (Switzerland); Fougere, N.; Combi, M. R.; Tenishev, V. M. [Atmospheric, Oceanic and Space Sciences, University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109 (United States); Le Roy, L. [Center for Space and Habitability, University of Bern, Sidlerstrasse 5, 3012 Bern (Switzerland)

    2014-06-20

    Comets are surrounded by a thin expanding atmosphere, and although the nucleus' gravity is small, some molecules and grains, possibly with the inclusion of ices, can get transported around the nucleus through scattering (atoms/molecules) and gravitational pull (grains). Based on the obliquity of the comet, it is also possible that volatile material and icy grains get trapped in regions, which are in shadow until the comet passes its equinox. When the Sun rises above the horizon and the surface starts to heat up, this condensed material starts to desorb and icy grains will sublimate off the surface, possibly increasing the comet's neutral gas production rate on the outbound path. In this paper we investigate the mass transport around the nucleus, and based on a simplified model, we derive the possible contribution to the asymmetry in the seasonal gas production rate that could arise from trapped material released from cold areas once they come into sunlight. We conclude that the total amount of volatiles retained by this effect can only contribute up to a few percent of the asymmetry observed in some comets.

  7. Water and solute transport in agricultural soils predicted by volumetric clay and silt contents

    DEFF Research Database (Denmark)

    Karup, Dan; Møldrup, Per; Paradelo Pérez, Marcos

    2016-01-01

    tracer mass could be well fitted to an analytical solution to the classical convection-dispersion equation. Both cumulative tracer mass and concentration as a function of time were hereby reasonable well predicted from the simple inputs of bulk density, clay and silt contents, and applied tracer mass......Solute transport through the soil matrix is heterogeneous and greatly affected by soil texture, soil structure, and macropore networks. This study examined the relationship between tracer breakthrough characteristics, soil hydraulic properties, and basic soil properties. Hundred...... of the soil structure rather than the actual formation of macropores causing preferential flow. The arrival times of 5 % and up to 50 % of the tracer mass were found to be strongly correlated with volumetric fines content. The hereby predicted tracer concentration breakthrough points up to 50% of applied...

  8. Lithium mass transport in ceramic breeder materials

    International Nuclear Information System (INIS)

    Blackburn, P.E.; Johnson, C.E.

    1990-01-01

    The objective of this activity is to measure the lithium vaporization from lithium oxide breeder material under differing temperature and moisture partial pressure conditions. Lithium ceramics are being investigated for use as tritium breeding materials. The lithium is readily converted to tritium after reacting with a neutron. With the addition of 1000 ppM H 2 to the He purge gas, the bred tritium is readily recovered from the blanket as HT and HTO above 400 degree C. Within the solid, tritium may also be found as LiOT which may transport lithium to cooler parts of the blanket. The pressure of LiOT(g), HTO(g), or T 2 O(g) above Li 2 O(s) is the same as that for reactions involving hydrogen. In our experiments we were limited to the use of hydrogen. The purpose of this work is to investigate the transport of LiOH(g) from the blanket material. 8 refs., 1 fig., 3 tabs

  9. Comparison of mass transport using average and transient rainfall boundary conditions

    International Nuclear Information System (INIS)

    Duguid, J.O.; Reeves, M.

    1976-01-01

    A general two-dimensional model for simulation of saturated-unsaturated transport of radionuclides in ground water has been developed and is currently being tested. The model is being applied to study the transport of radionuclides from a waste-disposal site where field investigations are currently under way to obtain the necessary model parameters. A comparison of the amount of tritium transported is made using both average and transient rainfall boundary conditions. The simulations indicate that there is no substantial difference in the transport for the two conditions tested. However, the values of dispersivity used in the unsaturated zone caused more transport above the water table than has been observed under actual conditions. This deficiency should be corrected and further comparisons should be made before average rainfall boundary conditions are used for long-term transport simulations

  10. Heat and mass transfer during the warming of a bottle of beer - doi: 10.4025/actascitechnol.v32i2.8273

    OpenAIRE

    Monteiro, Cláudio Vinicius Barbosa; UEM; Righetto, Aderson Roberto; Universidade Estadual de Maringá; Souza, Leonardo César de; Universidade Estadual de Maringá; Paraíso, Paulo Roberto; UEM; Jorge, Luiz Mario de Matos; UEM

    2010-01-01

    The warming of a bottle of beer during a Friday evening happy hour directly involves transport phenomena, such as mass transfer due to condensation of air humidity on the bottle surface and heat transfer from the ambient to the bottle, which occurs by free convection and water condensation. Both processes happen simultaneously and are directly associated with the heat and mass transfer coefficients involved, which are affected by the ambient humidity and temperature. Several runs were made in...

  11. The impact of the transient uptake flux on bioaccumulation : Linear adsorption and first-order internalisation coupled with spherical semi-infinite mass transport

    NARCIS (Netherlands)

    Galceran, J.; Monné, J.; Puy, J.; Leeuwen, van H.P.

    2004-01-01

    The uptake of a chemical species (such as an organic molecule or a toxic metal ion) by an organism is modelled considering linear pre-adsorption followed by a first-order internalisation. The active biosurface is supposed to be spherical or semi-spherical and the mass transport in the medium is

  12. 14 CFR 23.659 - Mass balance.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Mass balance. 23.659 Section 23.659 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... Surfaces § 23.659 Mass balance. The supporting structure and the attachment of concentrated mass balance...

  13. Thermal, chemical, and mass transport processes induced in abyssal sediments by the emplacement of nuclear wastes: Experimental and modelling results

    International Nuclear Information System (INIS)

    McVey, D.F.; Erickson, K.L.; Seyfried, W.E. Jr.

    1983-01-01

    In this chapter the authors discuss the current status of heat and mass transport studies in the marine red clay sediments that are being considered as a nuclear waste isolation medium and review analytical and experimental studies. Calculations based on numerical models indicate that for a maximum allowable sediment-canister interface temperatures of 200 0 to 250 0 C, the sediment can absorb about 1.5kW initial power from waste buried 30 m in the sediment in a canister that is 3 m long and 0.3 m in diameter. The resulting fluid displacement due to convections is found to be small, less than 1 m. Laboratory studies of the geochemical effects induced by heating sediment-seawater mixtures indicate that the canister and waste form should be designed to resist a hot, relatively acidic oxidizing environment. Since the thermally altered sediment volume of about 5.5 m/sup 3/ is small relative to the sediment volume overlying the canister, the acid and oxidizing conditions should significantly affect the properties of the far field only if thermodiffusional process (Soret effect) prove to be significant. If thermodiffusional effects are important, however, near-field chemistry will differ considerably from that predicted from results of constant temperature sediment-seawater interaction experiments

  14. Characterization of chemical agent transport in paints.

    Science.gov (United States)

    Willis, Matthew P; Gordon, Wesley; Lalain, Teri; Mantooth, Brent

    2013-09-15

    A combination of vacuum-based vapor emission measurements with a mass transport model was employed to determine the interaction of chemical warfare agents with various materials, including transport parameters of agents in paints. Accurate determination of mass transport parameters enables the simulation of the chemical agent distribution in a material for decontaminant performance modeling. The evaluation was performed with the chemical warfare agents bis(2-chloroethyl) sulfide (distilled mustard, known as the chemical warfare blister agent HD) and O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (VX), an organophosphate nerve agent, deposited on to two different types of polyurethane paint coatings. The results demonstrated alignment between the experimentally measured vapor emission flux and the predicted vapor flux. Mass transport modeling demonstrated rapid transport of VX into the coatings; VX penetrated through the aliphatic polyurethane-based coating (100 μm) within approximately 107 min. By comparison, while HD was more soluble in the coatings, the penetration depth in the coatings was approximately 2× lower than VX. Applications of mass transport parameters include the ability to predict agent uptake, and subsequent long-term vapor emission or contact transfer where the agent could present exposure risks. Additionally, these parameters and model enable the ability to perform decontamination modeling to predict how decontaminants remove agent from these materials. Published by Elsevier B.V.

  15. N-linked glycans do not affect plasma membrane localization of multidrug resistance protein 4 (MRP4) but selectively alter its prostaglandin E2 transport activity.

    Science.gov (United States)

    Miah, M Fahad; Conseil, Gwenaëlle; Cole, Susan P C

    2016-01-22

    Multidrug resistance protein 4 (MRP4) is a member of subfamily C of the ATP-binding cassette superfamily of membrane transport proteins. MRP4 mediates the ATP-dependent efflux of many endogenous and exogenous solutes across the plasma membrane, and in polarized cells, it localizes to the apical or basolateral plasma membrane depending on the tissue type. MRP4 is a 170 kDa glycoprotein and here we show that MRP4 is simultaneously N-glycosylated at Asn746 and Asn754. Furthermore, confocal immunofluorescence studies showed that N-glycans do not affect MRP4's apical membrane localization in polarized LLC-PK1 cells or basolateral membrane localization in polarized MDCKI cells. However, vesicular transport assays showed that N-glycans differentially affect MRP4's ability to transport prostaglandin E2, but not estradiol glucuronide. Together these data indicate that N-glycosylation at Asn746 and Asn754 is not essential for plasma membrane localization of MRP4 but cause substrate-selective effects on its transport activity. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Transportation Sector Model of the National Energy Modeling System. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model. The NEMS Transportation Model comprises a series of semi-independent models which address different aspects of the transportation sector. The primary purpose of this model is to provide mid-term forecasts of transportation energy demand by fuel type including, but not limited to, motor gasoline, distillate, jet fuel, and alternative fuels (such as CNG) not commonly associated with transportation. The current NEMS forecast horizon extends to the year 2010 and uses 1990 as the base year. Forecasts are generated through the separate consideration of energy consumption within the various modes of transport, including: private and fleet light-duty vehicles; aircraft; marine, rail, and truck freight; and various modes with minor overall impacts, such as mass transit and recreational boating. This approach is useful in assessing the impacts of policy initiatives, legislative mandates which affect individual modes of travel, and technological developments. The model also provides forecasts of selected intermediate values which are generated in order to determine energy consumption. These elements include estimates of passenger travel demand by automobile, air, or mass transit; estimates of the efficiency with which that demand is met; projections of vehicle stocks and the penetration of new technologies; and estimates of the demand for freight transport which are linked to forecasts of industrial output. Following the estimation of energy demand, TRAN produces forecasts of vehicular emissions of the following pollutants by source: oxides of sulfur, oxides of nitrogen, total carbon, carbon dioxide, carbon monoxide, and volatile organic compounds.

  17. Aquaporin Expression and Water Transport Pathways inside Leaves Are Affected by Nitrogen Supply through Transpiration in Rice Plants

    Directory of Open Access Journals (Sweden)

    Lei Ding

    2018-01-01

    Full Text Available The photosynthetic rate increases under high-N supply, resulting in a large CO2 transport conductance in mesophyll cells. It is less known that water movement is affected by nitrogen supply in leaves. This study investigated whether the expression of aquaporin and water transport were affected by low-N (0.7 mM and high-N (7 mM concentrations in the hydroponic culture of four rice varieties: (1 Shanyou 63 (SY63, a hybrid variant of the indica species; (2 Yangdao 6 (YD6, a variant of indica species; (3 Zhendao 11 (ZD11, a hybrid variant of japonica species; and (4 Jiuyou 418 (JY418, another hybrid of the japonica species. Both the photosynthetic and transpiration rate were increased by the high-N supply in the four varieties. The expressions of aquaporins, plasma membrane intrinsic proteins (PIPs, and tonoplast membrane intrinsic protein (TIP were higher in high-N than low-N leaves, except in SY63. Leaf hydraulic conductance (Kleaf was lower in high-N than low-N leaves in SY63, while Kleaf increased under high-N supply in the YD6 variant. Negative correlations were observed between the expression of aquaporin and the transpiration rate in different varieties. Moreover, there was a significant negative correlation between transpiration rate and intercellular air space. In conclusion, the change in expression of aquaporins could affect Kleaf and transpiration. A feedback effect of transpiration would regulate aquaporin expression. The present results imply a coordination of gas exchange with leaf hydraulic conductance.

  18. Atmospheric occurrence, transport and gas-particle partitioning of polychlorinated biphenyls over the northwestern Pacific Ocean

    Science.gov (United States)

    Wu, Zilan; Lin, Tian; Li, Zhongxia; Li, Yuanyuan; Guo, Tianfeng; Guo, Zhigang

    2017-10-01

    Ship-board air samples were collected during March to May 2015 from the East China Sea (ECS) to the northwestern Pacific Ocean (NWP) to explore the atmospheric occurrence and gas-particle partitioning of polychlorinated biphenyls (PCBs) when the westerly East Asian Monsoon prevailed. Total PCB concentrations in the atmosphere ranged from 56.8 to 261 pg m-3. Higher PCB levels were observed off the coast and minor temperature-induced changes showed that continuous emissions from East Asia remain as an important source to the regional atmosphere. A significant relationship between Koa (octanol-air partition coefficient) and KP (gas-particle partition coefficient) for PCBs was observed under continental air masses, suggesting that land-derived organic aerosols affected the PCB gas-particle partitioning after long-range transport, while an absence of this correlation was identified in marine air masses. The PCB partitioning cannot be fully explained by the absorptive mechanism as the predicted KP were found to be 2-3 orders of magnitude lower than the measured Kp, while the prediction was closely matched when soot adsorption was considered. The results suggested the importance of soot carbon as a transport medium for PCBs during their long-range transport and considerable impacts of continental outflows on PCBs across the downwind area. The estimated transport mass of particulate PCBs into the ECS and NWP totals 2333 kg during the spring, constituting ca. 17% of annual emission inventories of unintentionally produced PCB in China.

  19. Comparison of mass transfer coefficient approach and Nernst-Planck formulation in the reactive transport modeling of Co, Ni, and Ag removal by mixed-bed ion-exchange resins

    International Nuclear Information System (INIS)

    Bachet, Martin; Jauberty, Loic; De Windt, Laurent; Dieuleveult, Caroline de; Tevissen, Etienne

    2014-01-01

    Experiments performed under chemical and flow conditions representative of pressurized water reactors (PWR) primary fluid purification by ion exchange resins (Amberlite IRN9882) are modeled with the OPTIPUR code, considering 1D reactive transport in the mixed-bed column with convective/dispersive transport between beads and electro-diffusive transport within the boundary film around the beads. The effectiveness of the purification in these dilute conditions is highly related to film mass transfer restrictions, which are accounted for by adjustment of a common mass transfer coefficient (MTC) on the experimental initial leakage or modeling of species diffusion through the bead film by the Nernst-Planck equation. A detailed analysis of the modeling against experimental data shows that the Nernst-Planck approach with no adjustable parameters performs as well as, or better than, the MTC approach, particularly to simulate the chromatographic elution of silver by nickel and the subsequent enrichment of the solution in the former metal. (authors)

  20. Reactive solute transport in an asymmetrical fracture-rock matrix system

    Science.gov (United States)

    Zhou, Renjie; Zhan, Hongbin

    2018-02-01

    The understanding of reactive solute transport in a single fracture-rock matrix system is the foundation of studying transport behavior in the complex fractured porous media. When transport properties are asymmetrically distributed in the adjacent rock matrixes, reactive solute transport has to be considered as a coupled three-domain problem, which is more complex than the symmetric case with identical transport properties in the adjacent rock matrixes. This study deals with the transport problem in a single fracture-rock matrix system with asymmetrical distribution of transport properties in the rock matrixes. Mathematical models are developed for such a problem under the first-type and the third-type boundary conditions to analyze the spatio-temporal concentration and mass distribution in the fracture and rock matrix with the help of Laplace transform technique and de Hoog numerical inverse Laplace algorithm. The newly acquired solutions are then tested extensively against previous analytical and numerical solutions and are proven to be robust and accurate. Furthermore, a water flushing phase is imposed on the left boundary of system after a certain time. The diffusive mass exchange along the fracture/rock matrixes interfaces and the relative masses stored in each of three domains (fracture, upper rock matrix, and lower rock matrix) after the water flushing provide great insights of transport with asymmetric distribution of transport properties. This study has the following findings: 1) Asymmetric distribution of transport properties imposes greater controls on solute transport in the rock matrixes. However, transport in the fracture is mildly influenced. 2) The mass stored in the fracture responses quickly to water flushing, while the mass stored in the rock matrix is much less sensitive to the water flushing. 3) The diffusive mass exchange during the water flushing phase has similar patterns under symmetric and asymmetric cases. 4) The characteristic distance

  1. Influence of mass transport towards deactivation in tert-butyl-source driven isobutane/2-butene alkylation

    Energy Technology Data Exchange (ETDEWEB)

    Aschauer, S.J.; Jess, A. [Bayreuth Univ. (Germany). Dept. of Chemical Engineering

    2011-07-01

    The deactivation of i-butane/trans-2-butene alkylation using tert-butyl-halide promoted ionic liquid catalysts is studied.Here, the mass transport was modified by varying the feed rate and the type of promoter addition. The experimental data show that the deactivation increases with increasing feed rate. Moreover, a biliquid foam is formed when feed rates above 1 g/min are adjusted. As the results indicate a strong influence of the biliquid foam and its formation on deactivation, both aspects are also discussed.When the promoter is added to the feed mixture an increase of conversion with time on stream is observed. A deactivation in continuous promoter addition mode could not be noted in the investigated time-on-stream range. (orig.)

  2. Association of central serotonin transporter availability and body mass index in healthy Europeans

    DEFF Research Database (Denmark)

    Hesse, Swen; van de Giessen, Elsmarieke; Zientek, Franziska

    2014-01-01

    UNLABELLED: Serotonin-mediated mechanisms, in particular via the serotonin transporter (SERT), are thought to have an effect on food intake and play an important role in the pathophysiology of obesity. However, imaging studies that examined the correlation between body mass index (BMI) and SERT...... are sparse and provided contradictory results. The aim of this study was to further test the association between SERT and BMI in a large cohort of healthy subjects. METHODS: 127 subjects of the ENC DAT database (58 females, age 52 ± 18 years, range 20-83, BMI 25.2 ± 3.8 kg/m(2), range 18.2-41.1) were...... associated in the thalamus, but not in the midbrain. In the ROI-analysis, the interaction between gender and BMI showed a trend with higher correlation coefficient for men in the midbrain albeit not significant (0.033SBRm(2)/kg, p=0.1). CONCLUSIONS: The data are in agreement with previous PET findings...

  3. Biomonitor-Reflection of Large-Distance Air Mass Transported Trace Elements

    NARCIS (Netherlands)

    Henriques Vieira, B.J.

    2017-01-01

    The present thesis’ topic is the biomonitoring of atmospheric trace elements with attention focused on the long-range transported trace elements. The aim was to provide improved understanding of aerosol characteristics under the atmospheric transport dynamics of Central North Atlantic at different

  4. Procedure of non-contacting local mass density and mass density distribution measurements

    International Nuclear Information System (INIS)

    Menzel, M.; Winkler, K.

    1985-01-01

    The invention has been aimed at a procedure of non-contacting local mass density and/or mass density distribution measurements i.e. without the interfering influence of sensors or probes. It can be applied to installations, apparatuses and pipings of chemical engineering, to tank constructions and transportation on extreme temperature and/or pressure conditions and aggressive media influences respectively. The procedure has utilized an ionizing quantum radiation whereby its unknown weakening and scattering is compensated by a suitable combination of scattering and transmission counter rate measurements in such a way that the local mass densities and the mass density distribution respectively are determinable

  5. Simulation of uranium transport with variable temperature and oxidation potential: The computer program THCC [Thermo-Hydro-Chemical Coupling

    International Nuclear Information System (INIS)

    Carnahan, C.L.

    1986-12-01

    A simulator of reactive chemical transport has been constructed with the capabilities of treating variable temperatures and variable oxidation potentials within a single simulation. Homogeneous and heterogeneous chemical reactions are simulated at temperature-dependent equilibrium, and changes of oxidation states of multivalent elements can be simulated during transport. Chemical mass action relations for formation of complexes in the fluid phase are included explicitly within the partial differential equations of transport, and a special algorithm greatly simplifies treatment of reversible precipitation of solid phases. This approach allows direct solution of the complete set of governing equations for concentrations of all aqueous species and solids affected simultaneously by chemical and physical processes. Results of example simulations of transport, along a temperature gradient, of uranium solution species under conditions of varying pH and oxidation potential and with reversible precipitation of uraninite and coffinite are presented. The examples illustrate how inclusion of variable temperature and oxidation potential in numerical simulators can enhance understanding of the chemical mechanisms affecting migration of multivalent waste elements

  6. The Impact of Intelligent Transportation System Implementations on the Sustainable Growth of Passenger Transport in EU Regions

    Directory of Open Access Journals (Sweden)

    Ewa Stawiarska

    2018-04-01

    Full Text Available This article discusses original studies that demonstrate the relation between developed elements of the transportation network (road system density; railway system density; number of regional railway and bus connections, length of regional railway and bus connections, online accessibility to transportation services and other services related to the development of IT techniques to benefit mass transit and the regional GNP. A new development relative to preceding studies (as quoted is that the correlation coefficients calculated do not indicate any essential interrelations between elements of the transport system, or even the number of regional passenger transport services and regional GNP. A determination of the remaining data interrelations indicated the elements of the network which are considered essential to the development of mass transit, as resulting from a study carried out for the first time in 2015 for the Górnośląska-Zagłębioska Metropolis. Considering the fact that the number of railway connections has proven to be the most important determinant of the overall number of passenger transport services, the second part of the article presents studies that focus on the modeling of the railway network, applying the graph theory (extensively applied for ITS. Selected optimized models were analyzed and assessed in terms of possible implementability of specific improvements and the resultant growth in the number of passenger transport services. The research method applied was not novel, but the conclusions drawn from it were surprising, as they indicated that an optimized network of railway connections would not cause any significant increase in the number of passenger transport services. Successive surveys (supplementing statistical analyses have confirmed the importance of ITS in increasing the share of mass transit in overall transit. (1 The study was carried out in Polish regions, with particular emphasis on Silesia. (2 Its

  7. 14 CFR 29.659 - Mass balance.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Mass balance. 29.659 Section 29.659... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Rotors § 29.659 Mass balance. (a) The rotor... flutter at any speed up to the maximum forward speed. (b) The structural integrity of the mass balance...

  8. Exploring Factors Affecting Emergency Medical Services Staffs' Decision about Transporting Medical Patients to Medical Facilities.

    Science.gov (United States)

    Ebrahimian, Abbasali; Seyedin, Hesam; Jamshidi-Orak, Roohangiz; Masoumi, Gholamreza

    2014-01-01

    Transfer of patients in medical emergency situations is one of the most important missions of emergency medical service (EMS) staffs. So this study was performed to explore affecting factors in EMS staffs' decision during transporting of patients in medical situations to medical facilities. The participants in this qualitative study consisted of 18 EMS staffs working in prehospital care facilities in Tehran, Iran. Data were gathered through semistructured interviews. The data were analyzed using a content analysis approach. The data analysis revealed the following theme: "degree of perceived risk in EMS staffs and their patients." This theme consisted of two main categories: (1) patient's condition' and (2) the context of the EMS mission'. The patent's condition category emerged from "physical health statuses," "socioeconomic statuses," and "cultural background" subcategories. The context of the EMS mission also emerged from two subcategories of "characteristics of the mission" and EMS staffs characteristics'. EMS system managers can consider adequate technical, informational, financial, educational, and emotional supports to facilitate the decision making of their staffs. Also, development of an effective and user-friendly checklist and scoring system was recommended for quick and easy recognition of patients' needs for transportation in a prehospital situation.

  9. Mass loading of Hg in the Monte Amiata mining district, Southern Tuscany (Italy)

    OpenAIRE

    Rimondi V.; Costagliola P.; Gray J. E.; Lattanzi P.; Nannucci M.; Salvadori A.; Vaselli O.

    2013-01-01

    Mercury (Hg) transport in natural environments is of concern because Hg bioaccumulates in the food web. Particularly methyl-Hg is the form of Hg of major concern as it is highly toxic to humans and is ingested through food consumption, dominantly fish. Quantification of Hg mass loads in watersheds draining Hg mine districts allows (1) the identification of sources of contamination, (2) the evaluation of the effect of Hg on the environment, and (3) the identification of processes affecting Hg ...

  10. Quantification of segregation and mass transport in InxGa1-xASGaAs Stranski-Krastanow layers

    International Nuclear Information System (INIS)

    Rosenauer, A.; Gerthsen, D.; Van Dyck, D.; Arzberger, M.; Boehm, G.; Abstreiter, G.

    2001-01-01

    We report on transmission electron microscopy (TEM) and photoluminescence (PL) spectroscopy measurement of mass transport and segregation in InAs Stranski-Krastanow layers grown on GaAs(001) by molecular beam epitaxy at growth temperatures of 480 and 530 deg. C. Plan-view TEM reveals regularly shaped islands with a density of 7.8x10 10 cm -2 (480 deg. C) and 1.5x10 10 cm -2 (530 deg. C), respectively. Uncapped islands were investigated by strain state analysis of electron wave functions reconstructed from high-resolution TEM images. In-concentration profiles of the islands were obtained by the measurement of lattice-parameter profiles of the islands and the application of finite-element calculations. We find that the islands contain Ga-atoms with a percentage of 50% (480 deg. C) and 67% (530 deg. C). The capped InAs-layers were investigated with PL and TEM. In agreement with TEM, PL indicates a smaller and deeper potential well of the islands grown at 480 deg. C. Concentration profiles of the wetting layers were measured with TEM using the composition evaluation of lattice fringe images method, clearly revealing segregation profiles. The obtained segregation efficiency of In-atoms is 0.77±0.02 (480 deg. C) and 0.82±0.02 (530 deg. C). As an explanation for the strong mass transport of Ga from the substrate to the islands we show that the segregation of In atoms during the growth of the binary InAs can lead to the generation of vacancies in the metal sublattice. The vacancies are filled by Ga-atoms migrating along the surface or by a diffusion of the vacancies from the wetting layer and the islands into the GaAs buffer, leading to a unidirectional diffusion of Ga atoms from the buffer into the Stranski-Krastanow layer

  11. VIVITRON beam transport

    International Nuclear Information System (INIS)

    Nadji, A.

    1989-07-01

    The VIVITRON is a new 35 MV particle accelerator which presents a great number of innovations. One of the major problem is the beam transport in this electrostatic machine of 50 m length for ions with masses between 1 and 200. Our work consisted in the study of various experimental and theoretical aspects of the beam transport in Tandem accelerators from the ion source to the analysing magnet. Calculations of the beam optics were performed with a Strasbourg version of the computer code Transport. They allowed us to optimize the beam transport parameters of the VIVITRON elements. Special attention has been focused on the design of the charge state selector to be installed in the terminal of the new machine. Beam transmission measurements were carried out in the Strasbourg MP 10 Tandem accelerator for ions beams of masses between 1 and 127 and for terminal voltages from 9 to 15 MV. Partial and total transmissions were obtained and explanations of the beam losses were proposed in terms of the vacuum pressure and/or the optics of the beam accelerator system. The results have been extrapolated to the VIVITRON for which the best working conditions are now clearly defined [fr

  12. Monitoring mass transport in heterogeneously catalyzed reactions by field-gradient NMR for assessing reaction efficiency in a single pellet

    Science.gov (United States)

    Buljubasich, L.; Blümich, B.; Stapf, S.

    2011-09-01

    An important aspect in assessing the performance of a catalytically active reactor is the accessibility of the reactive sites inside the individual pellets, and the mass transfer of reactants and products to and from these sites. Optimal design often requires a suitable combination of micro- and macropores in order to facilitate mass transport inside the pellet. In an exothermic reaction, fluid exchange between the pellet and the surrounding medium is enhanced by convection, and often by the occurrence of gas bubbles. Determining mass flow in the vicinity of a pellet thus represents a parameter for quantifying the reaction efficiency and its dependence on time or external reaction conditions. Field gradient Nuclear Magnetic Resonance (NMR) methods are suggested as a tool for providing parameters sensitive to this mass flow in a contact-free and non-invasive way. For the example of bubble-forming hydrogen peroxide decomposition in an alumina pellet, the dependence of the mean-squared displacement of fluid molecules on spatial direction, observation time and reaction time is presented, and multi-pulse techniques are employed in order to separate molecular displacements from coherent and incoherent motion on the timescale of the experiment. The reaction progress is followed until the complete decomposition of H 2O 2.

  13. Three-Dimensional Transport Modeling for Proton Exchange Membrane(PEM Fuel Cell with Micro Parallel Flow Field

    Directory of Open Access Journals (Sweden)

    Sang Soon Hwang

    2008-03-01

    Full Text Available Modeling and simulation for heat and mass transport in micro channel are beingused extensively in researches and industrial applications to gain better understanding of thefundamental processes and to optimize fuel cell designs before building a prototype forengineering application. In this study, we used a single-phase, fully three dimensionalsimulation model for PEMFC that can deal with both anode and cathode flow field forexamining the micro flow channel with electrochemical reaction. The results show thathydrogen and oxygen were solely supplied to the membrane by diffusion mechanism ratherthan convection transport, and the higher pressure drop at cathode side is thought to becaused by higher flow rate of oxygen at cathode. And it is found that the amount of water incathode channel was determined by water formation due to electrochemical reaction pluselectro-osmotic mass flux directing toward the cathode side. And it is very important tomodel the back diffusion and electro-osmotic mass flux accurately since the two flux wasclosely correlated each other and greatly influenced for determination of ionic conductivityof the membrane which directly affects the performance of fuel cell.

  14. Three-Dimensional Transport Modeling for Proton Exchange Membrane(PEM) Fuel Cell with Micro Parallel Flow Field.

    Science.gov (United States)

    Lee, Pil Hyong; Han, Sang Seok; Hwang, Sang Soon

    2008-03-03

    Modeling and simulation for heat and mass transport in micro channel are beingused extensively in researches and industrial applications to gain better understanding of thefundamental processes and to optimize fuel cell designs before building a prototype forengineering application. In this study, we used a single-phase, fully three dimensionalsimulation model for PEMFC that can deal with both anode and cathode flow field forexamining the micro flow channel with electrochemical reaction. The results show thathydrogen and oxygen were solely supplied to the membrane by diffusion mechanism ratherthan convection transport, and the higher pressure drop at cathode side is thought to becaused by higher flow rate of oxygen at cathode. And it is found that the amount of water incathode channel was determined by water formation due to electrochemical reaction pluselectro-osmotic mass flux directing toward the cathode side. And it is very important tomodel the back diffusion and electro-osmotic mass flux accurately since the two flux wasclosely correlated each other and greatly influenced for determination of ionic conductivityof the membrane which directly affects the performance of fuel cell.

  15. Evaluation of chemical transport model predictions of primary organic aerosol for air masses classified by particle-component-based factor analysis

    OpenAIRE

    C. A. Stroud; M. D. Moran; P. A. Makar; S. Gong; W. Gong; J. Zhang; J. G. Slowik; J. P. D. Abbatt; G. Lu; J. R. Brook; C. Mihele; Q. Li; D. Sills; K. B. Strawbridge; M. L. McGuire

    2012-01-01

    Observations from the 2007 Border Air Quality and Meteorology Study (BAQS-Met 2007) in Southern Ontario, Canada, were used to evaluate predictions of primary organic aerosol (POA) and two other carbonaceous species, black carbon (BC) and carbon monoxide (CO), made for this summertime period by Environment Canada's AURAMS regional chemical transport model. Particle component-based factor analysis was applied to aerosol mass spectrometer measurements made at one urban site (Windsor, ON) and two...

  16. Knock-down of a tonoplast localized low-affinity nitrate transporter OsNPF7.2 affects rice growth under high nitrate ssupply

    Directory of Open Access Journals (Sweden)

    Rui Hu

    2016-10-01

    Full Text Available The large nitrate transporter 1/peptide transporter family (NPF has been shown to transport diverse substrates, including nitrate, amino acids, peptides, phytohormones, and glucosinolates. However, the rice (Oryza sativa root-specific expressed member OsNPF7.2 has not been characterized. Here, our data show that OsNPF7.2 is a tonoplast localized low-affinity nitrate transporter, and affects rice growth under high nitrate supply. The expression analysis showed that OsNPF7.2 was mainly expressed in the elongation and maturation zones of roots, especially in the root sclerenchyma, cortex and stele. It was also induced by high concentrations of nitrate. Subcellular localization analysis showed that OsNPF7.2 was localized on the tonoplast of large and small vacuoles. Heterogenous expression in Xenopus laevis oocytes suggested that OsNPF7.2 was a low-affinity nitrate transporter. Knock-down of OsNPF7.2 retarded rice growth under high concentrations of nitrate. Therefore, we deduce that OsNPF7.2 plays a role in intracellular allocation of nitrate in roots, and thus influences rice growth under high nitrate supply.

  17. Heat and mass transfer during the warming of a bottle of beer - doi: 10.4025/actascitechnol.v32i2.8273

    Directory of Open Access Journals (Sweden)

    Cláudio Vinicius Barbosa Monteiro

    2010-07-01

    Full Text Available The warming of a bottle of beer during a Friday evening happy hour directly involves transport phenomena, such as mass transfer due to condensation of air humidity on the bottle surface and heat transfer from the ambient to the bottle, which occurs by free convection and water condensation. Both processes happen simultaneously and are directly associated with the heat and mass transfer coefficients involved, which are affected by the ambient humidity and temperature. Several runs were made in several ambient conditions by exposing a cold bottle of beer to varied temperature and humidity and measuring the temperature of beer and the mass of water condensed on the bottle surface over time. From these measures, a theoretical and experimental methodology was developed and applied for the evaluation of the heat and mass transfer coefficients that govern this process. Both the relative humidity and ambient temperature exert a significant influence on the convective heat transfer coefficient. However, the mass transfer coefficient is affected only by the temperature.

  18. Mass loads of dissolved and particulate mercury and other trace elements in the Mt. Amiata mining district, Southern Tuscany (Italy)

    Science.gov (United States)

    Rimondi, V.; Costagliola, P.; Gray, J.E.; Lattanzi, P.; Nannucci, M.; Paolieri, M.; Salvadori, A.

    2014-01-01

    Total dissolved and particulate mercury (Hg), arsenic (As), and antimony (Sb) mass loads were estimated in different seasons (March and September 2011 and March 2012) in the Paglia River basin (PRB) (central Italy). The Paglia River drains the Mt. Amiata Hg district, one of the largest Hg-rich regions worldwide. Quantification of Hg, As, and Sb mass loads in this watershed allowed (1) identification of the contamination sources, (2) evaluation of the effects of Hg on the environment, and (3) determination of processes affecting Hg transport. The dominant source of Hg in the Paglia River is runoff from Hg mines in the Mt. Amiata region. The maximum Hg mass load was found to be related to runoff from the inactive Abbadia San Salvatore Mine (ASSM), and up to 30 g day−1 of Hg, dominantly in the particulate form, was transported both in high and low flow conditions in 2011. In addition, enrichment factors (EFs) calculated for suspended particulate matter (SPM) were similar in different seasons indicating that water discharge controls the quantities of Hg transported in the PRB, and considerable Hg was transported in all seasons studied. Overall, as much as 11 kg of Hg are discharged annually in the PRB and this Hg is transported downstream to the Tiber River, and eventually to the Mediterranean Sea. Similar to Hg, maximum mass loads for As and Sb were found in March 2011, when as much as 190 g day−1 each of As and Sb were measured from sites downstream from the ASSM. Therefore, the Paglia River represents a significant source of Hg, Sb, and As to the Mediterranean Sea.

  19. Measurement of Membrane Characteristics Using the Phenomenological Equation and the Overall Mass Transport Equation in Ion-Exchange Membrane Electrodialysis of Saline Water

    Directory of Open Access Journals (Sweden)

    Yoshinobu Tanaka

    2012-01-01

    Full Text Available The overall membrane pair characteristics included in the overall mass transport equation are understandable using the phenomenological equations expressed in the irreversible thermodynamics. In this investigation, the overall membrane pair characteristics (overall transport number , overall solute permeability , overall electro-osmotic permeability and overall hydraulic permeability were measured by seawater electrodialysis changing current density, temperature and salt concentration, and it was found that occasionally takes minus value. For understanding the above phenomenon, new concept of the overall concentration reflection coefficient ∗ is introduced from the phenomenological equation. This is the aim of this investigation. ∗ is defined for describing the permselectivity between solutes and water molecules in the electrodialysis system just after an electric current interruption. ∗ is expressed by the function of and . ∗ is generally larger than 1 and is positive, but occasionally ∗ becomes less than 1 and becomes negative. Negative means that ions are transferred with water molecules (solvent from desalting cells toward concentrating cells just after an electric current interruption, indicating up-hill transport or coupled transport between water molecules and solutes.

  20. How uncertainty in socio-economic variables affects large-scale transport model forecasts

    DEFF Research Database (Denmark)

    Manzo, Stefano; Nielsen, Otto Anker; Prato, Carlo Giacomo

    2015-01-01

    A strategic task assigned to large-scale transport models is to forecast the demand for transport over long periods of time to assess transport projects. However, by modelling complex systems transport models have an inherent uncertainty which increases over time. As a consequence, the longer...... the period forecasted the less reliable is the forecasted model output. Describing uncertainty propagation patterns over time is therefore important in order to provide complete information to the decision makers. Among the existing literature only few studies analyze uncertainty propagation patterns over...

  1. Location-dependent coronary artery diffusive and convective mass transport properties of a lipophilic drug surrogate measured using nonlinear microscopy.

    Science.gov (United States)

    Keyes, Joseph T; Simon, Bruce R; Vande Geest, Jonathan P

    2013-04-01

    Arterial wall mass transport properties dictate local distribution of biomolecules or locally delivered dugs. Knowing how these properties vary between coronary artery locations could provide insight into how therapy efficacy is altered between arterial locations. We introduced an indocarbocyanine drug surrogate to the lumens of left anterior descending and right coronary (LADC; RC) arteries from pigs with or without a pressure gradient. Interstitial fluorescent intensity was measured on live samples with multiphoton microscopy. We also measured binding to porcine coronary SMCs in monoculture. Diffusive transport constants peaked in the middle sections of the LADC and RC arteries by 2.09 and 2.04 times, respectively, compared to the proximal and distal segments. There was no statistical difference between the average diffusivity value between LADC and RC arteries. The convection coefficients had an upward trend down each artery, with the RC being higher than the LADC by 3.89 times. This study demonstrates that the convective and diffusive transport of lipophilic molecules changes between the LADC and the RC arteries as well as along their length. These results may have important implications in optimizing drug delivery for the treatment of coronary artery disease.

  2. Defoliating Insect Mass Outbreak Affects Soil N Fluxes and Tree N Nutrition in Scots Pine Forests.

    Science.gov (United States)

    Grüning, Maren M; Simon, Judy; Rennenberg, Heinz; L-M-Arnold, Anne

    2017-01-01

    Biotic stress by mass outbreaks of defoliating pest insects does not only affect tree performance by reducing its photosynthetic capacity, but also changes N cycling in the soil of forest ecosystems. However, how insect induced defoliation affects soil N fluxes and, in turn, tree N nutrition is not well-studied. In the present study, we quantified N input and output fluxes via dry matter input, throughfall, and soil leachates. Furthermore, we investigated the effects of mass insect herbivory on tree N acquisition (i.e., organic and inorganic 15 N net uptake capacity of fine roots) as well as N pools in fine roots and needles in a Scots pine ( Pinus sylvestris L.) forest over an entire vegetation period. Plots were either infested by the nun moth ( Lymantria monacha L.) or served as controls. Our results show an increased N input by insect feces, litter, and throughfall at the infested plots compared to controls, as well as increased leaching of nitrate. However, the additional N input into the soil did not increase, but reduce inorganic and organic net N uptake capacity of Scots pine roots. N pools in the fine roots and needles of infested trees showed an accumulation of total N, amino acid-N, protein-N, and structural N in the roots and the remaining needles as a compensatory response triggered by defoliation. Thus, although soil N availability was increased via surplus N input, trees did not respond with an increased N acquisition, but rather invested resources into defense by accumulation of amino acid-N and protein-N as a survival strategy.

  3. Effects of clamping force on the water transport and performance of a PEM (proton electrolyte membrane) fuel cell with relative humidity and current density

    International Nuclear Information System (INIS)

    Cha, Dowon; Ahn, Jae Hwan; Kim, Hyung Soon; Kim, Yongchan

    2015-01-01

    The clamping force should be applied to a proton electrolyte membrane (PEM) fuel cell due to its structural characteristics. The clamping force affects the ohmic and mass transport resistances in the PEM fuel cell. In this study, the effects of the clamping force on the water transport and performance characteristics of a PEM fuel cell are experimentally investigated with variations in the relative humidity and current density. The water transport characteristics were analyzed by calculating the net drag coefficient. The ohmic resistance decreased with the increase in the clamping force due to the reduced contact resistance and more even membrane hydration. However, the mass transport resistance increased with the increase in the clamping force due to the gas diffusion layer compression. The net drag coefficient decreased with the increase in the clamping force due to high water back-diffusion. Additionally, the relationship between the total resistance and the net drag coefficient was investigated. - Highlights: • Effects of clamping force on the performance of a PEM fuel cell are investigated. • Water transport characteristics are analyzed using net drag coefficient. • Ohmic resistance decreased with clamping force, but mass transport resistance increased. • Net drag coefficient decreased with the increase in clamping force. • Total resistance was significantly degraded for a net drag coefficient below 0.2.

  4. The impact of medium architecture of alluvial settings on non-Fickian transport

    Science.gov (United States)

    Zhang, Yong; Green, Christopher T.; Fogg, Graham E.

    2013-01-01

    The influence of heterogeneous architecture of alluvial aquifers on non-Fickian transport is explored using the Monte Carlo approach. More than two thousand high-resolution hydrofacies models representing seven groups of alluvial settings are built to test the effects of varying facies proportions, mean length and its anisotropy ratio, juxtapositional tendencies, and sub-facies heterogeneity. Results show that the volumetric fraction (P(Z)) of floodplain layers classified by their thicknesses Z controls the non-Fickian tailing of tracer transport at late times. A simple quantitative relationship SBTC≈SP(Z)/2-1 is built based on a multi-rate mass transfer analysis, where SBTC is the slope of the power-law portion of tracer breakthrough curve, and SP(Z) denotes the slope of the power-law portion of the distribution of P(Z) which can be measured, e.g., in core logs. At early times, the mean length of hydrofacies affects the non-Fickian tailing by controlling the channeling of flow in high-permeability non-floodplain materials and the sequestration in surrounding low-permeability floodplain layers. The competition between channeling and sequestration generates complex pre-asymptotic features, including sublinear growth of plume mean displacement, superlinear growth of plume variance, and skewed mass distribution. Those observations of the influence of medium heterogeneity on tracer transport at early and late times may lead to development of nonlocal transport models that can be parameterized using measurable aquifer characteristics.

  5. Impact of nuclear 'pasta' on neutrino transport in collapsing stellar cores

    International Nuclear Information System (INIS)

    Sonoda, Hidetaka; Watanabe, Gentaro; Sato, Katsuhiko; Takiwaki, Tomoya; Yasuoka, Kenji; Ebisuzaki, Toshikazu

    2007-01-01

    Nuclear 'pasta', nonspherical nuclei in dense matter, is predicted to occur in collapsing supernova cores. We show how pasta phases affect the neutrino transport cross section via weak neutral current using several nuclear models. This is the first calculation of the neutrino opacity of the phases with rod-like and slab-like nuclei taking account of finite temperature effects, which are well described by the quantum molecular dynamics. We also show that pasta phases can occupy 10-20% of the mass of supernova cores in the later stage of the collapse

  6. Photoperiodic regulation of the sucrose transporter StSUT4 affects the expression of circadian-regulated genes and ethylene production

    Directory of Open Access Journals (Sweden)

    Izabela eChincinska

    2013-02-01

    Full Text Available Several recent publications report different subcellular localisation of members of the SUT4 subfamily of sucrose transporters. The physiological function of SUT4 sucrose transporters is still not entirely clarified as down-regulation of members of the SUT4 clade had very different effects in rice, poplar and potato. Here, we provide new data on the localization and function of the Solanaceous StSUT4 protein, further elucidating involvement in the onset of flowering, tuberization and in the shade avoidance syndrome of potato plants.Induction of early flowering and tuberization in SUT4-inhibited potato plants correlates with increased sucrose export from leaves and increased sucrose and starch accumulation in terminal sink organs such as developing tubers. SUT4 does not only affect the expression of gibberellin and ethylene biosynthetic enzymes, but also the rate of ethylene synthesis in potato. In SUT4-inhibited plants, the ethylene production no longer follows a diurnal rhythm, leading to the assumption that StSUT4 controls circadian gene expression, potentially by regulating sucrose export from leaves. Furthermore, SUT4 expression affects clock-regulated genes such as StFT, StSOC1 and StCO, which might also be involved in a photoperiod-dependently controlled tuberization. A model is proposed in which StSUT4 controls a phloem-mobile signalling molecule generated in leaves which together with enhanced sucrose export affects developmental switches in apical meristems. SUT4 seems to link photoreceptor-perceived information about the light quality and day length, with phytohormone biosynthesis and the expression of circadian genes.

  7. Spin Transport in Semiconductor heterostructures

    International Nuclear Information System (INIS)

    Marinescu, Domnita Catalina

    2011-01-01

    The focus of the research performed under this grant has been the investigation of spin transport in magnetic semiconductor heterostructures. The interest in these systems is motivated both by their intriguing physical properties, as the physical embodiment of a spin-polarized Fermi liquid, as well as by their potential applications as spintronics devices. In our work we have analyzed several different problems that affect the spin dynamics in single and bi-layer spin-polarized two-dimensional (2D) systems. The topics of interests ranged from the fundamental aspects of the electron-electron interactions, to collective spin and charge density excitations and spin transport in the presence of the spin-orbit coupling. The common denominator of these subjects is the impact at the macroscopic scale of the spin-dependent electron-electron interaction, which plays a much more subtle role than in unpolarized electron systems. Our calculations of several measurable parameters, such as the excitation frequencies of magneto-plasma modes, the spin mass, and the spin transresistivity, propose realistic theoretical estimates of the opposite-spin many-body effects, in particular opposite-spin correlations, that can be directly connected with experimental measurements.

  8. PORFLO - a continuum model for fluid flow, heat transfer, and mass transport in porous media. Model theory, numerical methods, and computational tests

    International Nuclear Information System (INIS)

    Runchal, A.K.; Sagar, B.; Baca, R.G.; Kline, N.W.

    1985-09-01

    Postclosure performance assessment of the proposed high-level nuclear waste repository in flood basalts at Hanford requires that the processes of fluid flow, heat transfer, and mass transport be numerically modeled at appropriate space and time scales. A suite of computer models has been developed to meet this objective. The theory of one of these models, named PORFLO, is described in this report. Also presented are a discussion of the numerical techniques in the PORFLO computer code and a few computational test cases. Three two-dimensional equations, one each for fluid flow, heat transfer, and mass transport, are numerically solved in PORFLO. The governing equations are derived from the principle of conservation of mass, momentum, and energy in a stationary control volume that is assumed to contain a heterogeneous, anisotropic porous medium. Broad discrete features can be accommodated by specifying zones with distinct properties, or these can be included by defining an equivalent porous medium. The governing equations are parabolic differential equations that are coupled through time-varying parameters. Computational tests of the model are done by comparisons of simulation results with analytic solutions, with results from other independently developed numerical models, and with available laboratory and/or field data. In this report, in addition to the theory of the model, results from three test cases are discussed. A users' manual for the computer code resulting from this model has been prepared and is available as a separate document. 37 refs., 20 figs., 15 tabs

  9. Re-assessing Present Day Global Mass Transport and Glacial Isostatic Adjustment From a Data Driven Approach

    Science.gov (United States)

    Wu, X.; Jiang, Y.; Simonsen, S.; van den Broeke, M. R.; Ligtenberg, S.; Kuipers Munneke, P.; van der Wal, W.; Vermeersen, B. L. A.

    2017-12-01

    Determining present-day mass transport (PDMT) is complicated by the fact that most observations contain signals from both present day ice melting and Glacial Isostatic Adjustment (GIA). Despite decades of progress in geodynamic modeling and new observations, significant uncertainties remain in both. The key to separate present-day ice mass change and signals from GIA is to include data of different physical characteristics. We designed an approach to separate PDMT and GIA signatures by estimating them simultaneously using globally distributed interdisciplinary data with distinct physical information and a dynamically constructed a priori GIA model. We conducted a high-resolution global reappraisal of present-day ice mass balance with focus on Earth's polar regions and its contribution to global sea-level rise using a combination of ICESat, GRACE gravity, surface geodetic velocity data, and an ocean bottom pressure model. Adding ice altimetry supplies critically needed dual data types over the interiors of ice covered regions to enhance separation of PDMT and GIA signatures, and achieve half an order of magnitude expected higher accuracies for GIA and consequently ice mass balance estimates. The global data based approach can adequately address issues of PDMT and GIA induced geocenter motion and long-wavelength signatures important for large areas such as Antarctica and global mean sea level. In conjunction with the dense altimetry data, we solved for PDMT coefficients up to degree and order 180 by using a higher-resolution GRACE data set, and a high-resolution a priori PDMT model that includes detailed geographic boundaries. The high-resolution approach solves the problem of multiple resolutions in various data types, greatly reduces aliased errors from a low-degree truncation, and at the same time, enhances separation of signatures from adjacent regions such as Greenland and Canadian Arctic territories.

  10. A radiotracer study on the volatilization and transport effects of thermochemical reagents used in the analysis of alumina powders by slurry electrothermal vaporization inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Peschel, Birgit U.; Herdering, Wilhelm; Broekaert, Jose A.C.

    2007-01-01

    A neutron-activated Al 2 O 3 powder SRM 699 (NIST) containing the γ-radiation emitting radionuclides 51 Cr, 59 Fe, 60 Co and 65 Zn has been used to study the influence of thermochemical reagents on the volatilization and transport efficiency for these trace elements in electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) of Al 2 O 3 powders. From the signals in the γ-spectra for the radiotracers it has been found that less than 2% of the elements Cr, Fe, Co and Zn is left back in a graphite furnace from Al 2 O 3 powders at 2200 deg. C even without addition of a thermochemical reagent and the latter even was found to decrease the volatilization efficiencies. The recovery for the radiotracers on filters at the end of the transport tube as measured from the signals in the γ-spectra, however, was found to increase in most cases (i.e. from about 10% to more than 20%) when Pd(NO 3 ) 2 , Pd(NO 3 ) 2 + Mg(NO 3 ) 2 , PdCl 2 , IrCl 3 , SnCl 2 , AgCl, NaF, NH 4 Cl and NH 4 F were added at amounts generally used in electrothermal vaporization inductively coupled plasma mass spectrometry. However, when adding higher amounts as stoichiometrically required for a complete halogenation of the sample matrix in the case of AgCl, C 8 F 15 O 2 Na, IrCl 3 or PdCl 2 the transport efficiencies considerably decrease again. As shown in the case of NH 4 Cl the amount of thermochemical reagent used has to be optimized so as to obtain maximum analyte transport efficiencies. A comparison of the influence of NH 4 Cl on the transport efficiencies with its influence on the ETV-ICP-MS signals for Fe demonstrates the importance of transport efficiency changes for the effects of thermochemical reagents in electrothermal vaporization inductively coupled plasma mass spectrometry

  11. Magnetic method for stimulating transport in fluids

    Science.gov (United States)

    Martin, James E.; Solis, Kyle J.

    2016-10-18

    A method for producing mass and heat transport in fluids, wherein the method does not rely on conventional convection, that is, it does not require gravity, a thermal gradient, or a magnetic field gradient. This method gives rise to a unique class of vigorous, field-controllable flow patterns termed advection lattices. The advection lattices can be used to transport heat and/or mass in any desired direction using only magnetic fields.

  12. Transport phenomena in multiphase flows

    CERN Document Server

    Mauri, Roberto

    2015-01-01

    This textbook provides a thorough presentation of the phenomena related to the transport of mass, momentum and energy.  It lays all the basic physical principles, then for the more advanced readers, it offers an in-depth treatment with advanced mathematical derivations and ends with some useful applications of the models and equations in specific settings. The important idea behind the book is to unify all types of transport phenomena, describing them within a common framework in terms of cause and effect, respectively represented by the driving force and the flux of the transported quantity. The approach and presentation are original in that the book starts with a general description of transport processes, providing the macroscopic balance relations of fluid dynamics and heat and mass transfer, before diving into the mathematical realm of continuum mechanics to derive the microscopic governing equations at the microscopic level. The book is a modular teaching tool and can be used either for an introductory...

  13. Interfacial Water-Transport Effects in Proton-Exchange Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kienitz, Brian; Yamada, Haruhiko; Nonoyama, Nobuaki; Weber, Adam

    2009-11-19

    It is well known that the proton-exchange membrane is perhaps the most critical component of a polymer-electrolyte fuel cell. Typical membranes, such as Nafion(R), require hydration to conduct efficiently and are instrumental in cell water management. Recently, evidence has been shown that these membranes might have different interfacial morphology and transport properties than in the bulk. In this paper, experimental data combined with theoretical simulations will be presented that explore the existence and impact of interfacial resistance on water transport for Nafion(R) 21x membranes. A mass-transfer coefficient for the interfacial resistance is calculated from experimental data using different permeation cells. This coefficient is shown to depend exponentially on relative humidity or water activity. The interfacial resistance does not seem to exist for liquid/membrane or membrane/membrane interfaces. The effect of the interfacial resistance is to flatten the water-content profiles within the membrane during operation. Under typical operating conditions, the resistance is on par with the water-transport resistance of the bulk membrane. Thus, the interfacial resistance can be dominant especially in thin, dry membranes and can affect overall fuel-cell performance.

  14. ADVANCES IN ZERO ENERGY TRANSPORTATION SYSTEMS

    OpenAIRE

    Ahmad, Othman

    2017-01-01

    Hyperloop mass transportation systems are activelydeveloped at the moment. They represent the forefront development of the ZeroEnergy Transportation systems where air drag is minimized by travelling in avacuum and friction is reduced by non-contact bearings. Hyperloop supportersare confident that the cost of their transportation systems would be lowcompared to existing transportation systems because of the low loss andtherefore low energy consumption as well as other cost-saving techniquesdoc...

  15. Optimal urban networks via mass transportation

    CERN Document Server

    Buttazzo, Giuseppe; Stepanov, Eugene; Solimini, Sergio

    2009-01-01

    Recently much attention has been devoted to the optimization of transportation networks in a given geographic area. One assumes the distributions of population and of services/workplaces (i.e. the network's sources and sinks) are known, as well as the costs of movement with/without the network, and the cost of constructing/maintaining it. Both the long-term optimization and the short-term, "who goes where" optimization are considered. These models can also be adapted for the optimization of other types of networks, such as telecommunications, pipeline or drainage networks. In the monograph we study the most general problem settings, namely, when neither the shape nor even the topology of the network to be constructed is known a priori.

  16. Exploring Factors Affecting Emergency Medical Services Staffs’ Decision about Transporting Medical Patients to Medical Facilities

    Directory of Open Access Journals (Sweden)

    Abbasali Ebrahimian

    2014-01-01

    Full Text Available Transfer of patients in medical emergency situations is one of the most important missions of emergency medical service (EMS staffs. So this study was performed to explore affecting factors in EMS staffs’ decision during transporting of patients in medical situations to medical facilities. The participants in this qualitative study consisted of 18 EMS staffs working in prehospital care facilities in Tehran, Iran. Data were gathered through semistructured interviews. The data were analyzed using a content analysis approach. The data analysis revealed the following theme: “degree of perceived risk in EMS staffs and their patients.” This theme consisted of two main categories: (1 patient’s condition’ and (2 the context of the EMS mission’. The patent’s condition category emerged from “physical health statuses,” “socioeconomic statuses,” and “cultural background” subcategories. The context of the EMS mission also emerged from two subcategories of “characteristics of the mission” and EMS staffs characteristics’. EMS system managers can consider adequate technical, informational, financial, educational, and emotional supports to facilitate the decision making of their staffs. Also, development of an effective and user-friendly checklist and scoring system was recommended for quick and easy recognition of patients’ needs for transportation in a prehospital situation.

  17. Mass-transport limitation to in-cloud reaction rates: Implications of new accommodation coefficient measurements

    International Nuclear Information System (INIS)

    Schwartz, S.E.

    1988-10-01

    Although it has been recognized for some time that the rate of reactive uptake of gases in cloudwater can depend on the value of the mass-accommodation coefficient (α) describing interfacial mass transport (MT), definitive evaluation of such rates is only now becoming possible with the availability of measurements of α for gases of atmospheric interest at air-water interfaces. Examination of MT limitation to the rate of in-cloud aqueous-phase oxidation of SO 2 by O 3 and H 2 O 2 shows that despite the low value of α/sub O3/ (5 /times/ 10/sup /minus/4/), interfacial MT of this species is not limiting under essentially all conditions of interest; the high values of α for SO 2 (≥ 0.2) and H 2 O 2 (≥ 0.08) indicate no interfacial MT limitation for these species also. Although gas- and aqueous-phase MT can be limiting under certain extremes of conditions, treating the system as under chemical kinetic control is generally an excellent approximation. Interfacial MT limitation also is found not to hinder the rate of H 2 O 2 formation by aqueous-phase disproportionation of HO 2 . Finally, the rapid uptake of N 2 O 5 by cloud droplets implies that the yield of aqueous HNO 3 from in-cloud gas-phase oxidation of NO 2 by O 3 can be substantial even under daytime conditions. This report consists of copies of viewgraphs prepared for this presentation

  18. Ring waves as a mass transport mechanism in air-driven core-annular flows.

    Science.gov (United States)

    Camassa, Roberto; Forest, M Gregory; Lee, Long; Ogrosky, H Reed; Olander, Jeffrey

    2012-12-01

    Air-driven core-annular fluid flows occur in many situations, from lung airways to engineering applications. Here we study, experimentally and theoretically, flows where a viscous liquid film lining the inside of a tube is forced upwards against gravity by turbulent airflow up the center of the tube. We present results on the thickness and mean speed of the film and properties of the interfacial waves that develop from an instability of the air-liquid interface. We derive a long-wave asymptotic model and compare properties of its solutions with those of the experiments. Traveling wave solutions of this long-wave model exhibit evidence of different mass transport regimes: Past a certain threshold, sufficiently large-amplitude waves begin to trap cores of fluid which propagate upward at wave speeds. This theoretical result is then confirmed by a second set of experiments that show evidence of ring waves of annular fluid propagating over the underlying creeping flow. By tuning the parameters of the experiments, the strength of this phenomenon can be adjusted in a way that is predicted qualitatively by the model.

  19. Nanoengineered membranes for controlled transport

    Science.gov (United States)

    Doktycz, Mitchel J [Oak Ridge, TN; Simpson, Michael L [Knoxville, TN; McKnight, Timothy E [Greenback, TN; Melechko, Anatoli V [Oak Ridge, TN; Lowndes, Douglas H [Knoxville, TN; Guillorn, Michael A [Knoxville, TN; Merkulov, Vladimir I [Oak Ridge, TN

    2010-01-05

    A nanoengineered membrane for controlling material transport (e.g., molecular transport) is disclosed. The membrane includes a substrate, a cover definining a material transport channel between the substrate and the cover, and a plurality of fibers positioned in the channel and connected to an extending away from a surface of the substrate. The fibers are aligned perpendicular to the surface of the substrate, and have a width of 100 nanometers or less. The diffusion limits for material transport are controlled by the separation of the fibers. In one embodiment, chemical derivitization of carbon fibers may be undertaken to further affect the diffusion limits or affect selective permeability or facilitated transport. For example, a coating can be applied to at least a portion of the fibers. In another embodiment, individually addressable carbon nanofibers can be integrated with the membrane to provide an electrical driving force for material transport.

  20. Final Report: Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems for Transportation Applications (2012-2016)

    Energy Technology Data Exchange (ETDEWEB)

    James, Brian David [Strategic Analysis Inc., Arlington, VA (United States); Huya-Kouadio, Jennie Moton [Strategic Analysis Inc., Arlington, VA (United States); Houchins, Cassidy [Strategic Analysis Inc., Arlington, VA (United States); DeSantis, Daniel Allen [Strategic Analysis Inc., Arlington, VA (United States)

    2016-09-01

    This report summarizes project activities for Strategic Analysis, Inc. (SA) Contract Number DE-EE0005236 to the U.S. Department of Energy titled “Transportation Fuel Cell System Cost Assessment”. The project defined and projected the mass production costs of direct hydrogen Proton Exchange Membrane fuel cell power systems for light-duty vehicles (automobiles) and 40-foot transit buses. In each year of the five-year contract, the fuel cell power system designs and cost projections were updated to reflect technology advances. System schematics, design assumptions, manufacturing assumptions, and cost results are presented.

  1. The effect of long-range air mass transport pathways on PM10 and NO2 concentrations at urban and rural background sites in Ireland: Quantification using clustering techniques.

    Science.gov (United States)

    Donnelly, Aoife A; Broderick, Brian M; Misstear, Bruce D

    2015-01-01

    The specific aims of this paper are to: (i) quantify the effects of various long range transport pathways nitrogen dioxide (NO2) and particulate matter with diameter less than 10μm (PM10) concentrations in Ireland and identify air mass movement corridors which may lead to incidences poor air quality for application in forecasting; (ii) compare the effects of such pathways at various sites; (iii) assess pathways associated with a period of decreased air quality in Ireland. The origin of and the regions traversed by an air mass 96h prior to reaching a receptor is modelled and k-means clustering is applied to create air-mass groups. Significant differences in air pollution levels were found between air mass cluster types at urban and rural sites. It was found that easterly or recirculated air masses lead to higher NO2 and PM10 levels with average NO2 levels varying between 124% and 239% of the seasonal mean and average PM10 levels varying between 103% and 199% of the seasonal mean at urban and rural sites. Easterly air masses are more frequent during winter months leading to higher overall concentrations. The span in relative concentrations between air mass clusters is highest at the rural site indicating that regional factors are controlling concentration levels. The methods used in this paper could be applied to assist in modelling and forecasting air quality based on long range transport pathways and forecast meteorology without the requirement for detailed emissions data over a large regional domain or the use of computationally demanding modelling techniques.

  2. Kinetics and mass-transfer phenomena in anaerobic granular sludge.

    Science.gov (United States)

    Gonzalez-Gil, G; Seghezzo, L; Lettinga, G; Kleerebezem, R

    2001-04-20

    The kinetic properties of acetate-degrading methanogenic granular sludge of different mean diameters were assessed at different up-flow velocities (V(up)). Using this approach, the influence of internal and external mass transfer could be estimated. First, the apparent Monod constant (K(S)) for each data set was calculated by means of a curve-fitting procedure. The experimental results revealed that variations in the V(up) did not affect the apparent K(S)-value, indicating that external mass-transport resistance normally can be neglected. With regard to the granule size, a clear increase in K(S) was found at increasing granule diameters. The experimental data were further used to validate a dynamic mathematical biofilm model. The biofilm model was able to describe reaction-diffusion kinetics in anaerobic granules, using a single value for the effective diffusion coefficient in the granules. This suggests that biogas formation did not influence the diffusion-rates in the granular biomass. Copyright 2001 John Wiley & Sons, Inc.

  3. Microfluidic Transduction Harnesses Mass Transport Principles to Enhance Gene Transfer Efficiency.

    Science.gov (United States)

    Tran, Reginald; Myers, David R; Denning, Gabriela; Shields, Jordan E; Lytle, Allison M; Alrowais, Hommood; Qiu, Yongzhi; Sakurai, Yumiko; Li, William C; Brand, Oliver; Le Doux, Joseph M; Spencer, H Trent; Doering, Christopher B; Lam, Wilbur A

    2017-10-04

    Ex vivo gene therapy using lentiviral vectors (LVs) is a proven approach to treat and potentially cure many hematologic disorders and malignancies but remains stymied by cumbersome, cost-prohibitive, and scale-limited production processes that cannot meet the demands of current clinical protocols for widespread clinical utilization. However, limitations in LV manufacture coupled with inefficient transduction protocols requiring significant excess amounts of vector currently limit widespread implementation. Herein, we describe a microfluidic, mass transport-based approach that overcomes the diffusion limitations of current transduction platforms to enhance LV gene transfer kinetics and efficiency. This novel ex vivo LV transduction platform is flexible in design, easy to use, scalable, and compatible with standard cell transduction reagents and LV preparations. Using hematopoietic cell lines, primary human T cells, primary hematopoietic stem and progenitor cells (HSPCs) of both murine (Sca-1 + ) and human (CD34 + ) origin, microfluidic transduction using clinically processed LVs occurs up to 5-fold faster and requires as little as one-twentieth of LV. As an in vivo validation of the microfluidic-based transduction technology, HSPC gene therapy was performed in hemophilia A mice using limiting amounts of LV. Compared to the standard static well-based transduction protocols, only animals transplanted with microfluidic-transduced cells displayed clotting levels restored to normal. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  4. RTSTEP regional transportation simulation tool for emergency planning - final report.

    Energy Technology Data Exchange (ETDEWEB)

    Ley, H.; Sokolov, V.; Hope, M.; Auld, J.; Zhang, K.; Park, Y.; Kang, X. (Energy Systems)

    2012-01-20

    Large-scale evacuations from major cities during no-notice events - such as chemical or radiological attacks, hazardous material spills, or earthquakes - have an obvious impact on large regions rather than on just the directly affected area. The scope of impact includes the accommodation of emergency evacuation traffic throughout a very large area; the planning of resources to respond appropriately to the needs of the affected population; the placement of medical supplies and decontamination equipment; and the assessment and determination of primary escape routes, as well as routes for incoming emergency responders. Compared to events with advance notice, such as evacuations based on hurricanes approaching an affected area, the response to no-notice events relies exclusively on pre-planning and general regional emergency preparedness. Another unique issue is the lack of a full and immediate understanding of the underlying threats to the population, making it even more essential to gain extensive knowledge of the available resources, the chain of command, and established procedures. Given the size of the area affected, an advanced understanding of the regional transportation systems is essential to help with the planning for such events. The objectives of the work described here (carried out by Argonne National Laboratory) is the development of a multi-modal regional transportation model that allows for the analysis of different evacuation scenarios and emergency response strategies to build a wealth of knowledge that can be used to develop appropriate regional emergency response plans. The focus of this work is on the effects of no-notice evacuations on the regional transportation network, as well as the response of the transportation network to the sudden and unusual demand. The effects are dynamic in nature, with scenarios changing potentially from minute to minute. The response to a radiological or chemical hazard will be based on the time-delayed dispersion of

  5. Strong drifts effects on neoclassical transport

    International Nuclear Information System (INIS)

    Tessarotto, M.; Gregoratto, D.; White, R.B.

    1996-01-01

    It is well known that strong drifts play an important role in plasma equilibrium, stability and confinement A significant example concerns, in particular for tokamak plasmas, the case of strong toroidal differential rotation produced by E x B drift which is currently regarded as potentially important for its influence in equilibrium, stability and transport. In fact, theoretically, it has been found that shear flow can substantially affect the stability of microinstabilities as well modify substantially transport. Recent experimental observations of enhanced confinement and transport regimes in Tokamaks, show, however, evidence of the existence of strong drifts in the plasma core. These are produced not only by the radial electric field [which gives rise to the E x B drift], but also by density [N s ], temperature [T s ] and mass flow [V = ωRe var-phi , with e var-phi the toroidal unit vector, R the distance for the symmetry axis of the torus and ω being the toroidal angular rotation velocity] profiles which are suitably steep. This implies that, in a significant part of the plasma core, the relevant scale lengths of the gradients [of N s , T s , ω], i.e., respectively L N , L T and L ω can be as large as the radial scale length characterizing the banana orbits, L b . Interestingly enough, the transport estimates obtained appear close or even lower than the predictions based on the simplest neoclassical model. However, as is well known, the latter applies, in a strict sense only in the case of weak drifts and also ignoring even the contribution of shear flow related to strong E x B drift. Thus a fundamental problem appears the extension of neoclassical transport theory to include the effect of strong drifts in Tokamak confinement systems. The goal of this investigation is to develop a general formulation of neoclassical transport embodying such important feature

  6. Defoliating Insect Mass Outbreak Affects Soil N Fluxes and Tree N Nutrition in Scots Pine Forests

    Directory of Open Access Journals (Sweden)

    Maren M. Grüning

    2017-06-01

    Full Text Available Biotic stress by mass outbreaks of defoliating pest insects does not only affect tree performance by reducing its photosynthetic capacity, but also changes N cycling in the soil of forest ecosystems. However, how insect induced defoliation affects soil N fluxes and, in turn, tree N nutrition is not well-studied. In the present study, we quantified N input and output fluxes via dry matter input, throughfall, and soil leachates. Furthermore, we investigated the effects of mass insect herbivory on tree N acquisition (i.e., organic and inorganic 15N net uptake capacity of fine roots as well as N pools in fine roots and needles in a Scots pine (Pinus sylvestris L. forest over an entire vegetation period. Plots were either infested by the nun moth (Lymantria monacha L. or served as controls. Our results show an increased N input by insect feces, litter, and throughfall at the infested plots compared to controls, as well as increased leaching of nitrate. However, the additional N input into the soil did not increase, but reduce inorganic and organic net N uptake capacity of Scots pine roots. N pools in the fine roots and needles of infested trees showed an accumulation of total N, amino acid-N, protein-N, and structural N in the roots and the remaining needles as a compensatory response triggered by defoliation. Thus, although soil N availability was increased via surplus N input, trees did not respond with an increased N acquisition, but rather invested resources into defense by accumulation of amino acid-N and protein-N as a survival strategy.

  7. Ion beam properties after mass filtering with a linear radiofrequency quadrupole

    International Nuclear Information System (INIS)

    Ferrer, R.; Kwiatkowski, A.A.; Bollen, G.; Lincoln, D.L.; Morrissey, D.J.; Pang, G.K.; Ringle, R.; Savory, J.; Schwarz, S.

    2014-01-01

    The properties of ion beams passing through a linear radiofrequency quadrupole mass filter were investigated with special attention to their dependence on the mass resolving power. Experimentally, an increase of the transverse emittance was observed as the mass-to-charge selectivity of the mass filter was raised. The experimental behavior was confirmed by beam transport simulations. -- Highlights: • The ion-optical properties of a Quadrupole Mass Filter (QMF) are presented. • Measured beam emittances follow a trend to larger values for smaller A/Q ratios and increasing mass resolution. • The experimental behavior was confirmed by beam transport simulations. • The use of a QMF for mass filtering comes at the cost of emittance growth of the ion beam

  8. Mass Transfer Limited Enhanced Bioremediation at Dnapl Source Zones: a Numerical Study

    Science.gov (United States)

    Kokkinaki, A.; Sleep, B. E.

    2011-12-01

    The success of enhanced bioremediation of dense non-aqueous phase liquids (DNAPLs) relies on accelerating contaminant mass transfer from the organic to the aqueous phase, thus enhancing the depletion of DNAPL source zones compared to natural dissolution. This is achieved by promoting biological activity that reduces the contaminant's aqueous phase concentration. Although laboratory studies have demonstrated that high reaction rates are attainable by specialized microbial cultures in DNAPL source zones, field applications of the technology report lower reaction rates and prolonged remediation times. One possible explanation for this phenomenon is that the reaction rates are limited by the rate at which the contaminant partitions from the DNAPL to the aqueous phase. In such cases, slow mass transfer to the aqueous phase reduces the bioavailability of the contaminant and consequently decreases the potential source zone depletion enhancement. In this work, the effect of rate limited mass transfer on bio-enhanced dissolution of DNAPL chlorinated ethenes is investigated through a numerical study. A multi-phase, multi-component groundwater transport model is employed to simulate DNAPL mass depletion for a range of source zone scenarios. Rate limited mass transfer is modeled by a linear driving force model, employing a thermodynamic approach for the calculation of the DNAPL - water interfacial area. Metabolic reductive dechlorination is modeled by Monod kinetics, considering microbial growth and self-inhibition. The model was utilized to identify conditions in which mass transfer, rather than reaction, is the limiting process, as indicated by the bioavailability number. In such cases, reaction is slower than expected, and further increase in the reaction rate does not enhance mass depletion. Mass transfer rate limitations were shown to affect both dechlorination and microbial growth kinetics. The complex dynamics between mass transfer, DNAPL transport and distribution, and

  9. Evaluation of mass transport property using natural uranium-series and thorium-series nuclides in the Toki Granite

    International Nuclear Information System (INIS)

    Hama, Katsuhiro

    2016-07-01

    The Mizunami Underground Research Laboratory (MIU) project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host crystalline rock at Mizunami City in Gifu Prefecture, central Japan. The project proceeds in three overlapping phases, 'Phase I: Surface-based investigation Phase', 'Phase II: Construction Phase' and 'Phase III: Operation Phase'. As a part of the Phase III investigation, the mass transport property has been evaluated by using natural uranium-series and thorium-series nuclides in the Toki Granite. In this report, the compilation of existing data and preliminary evaluation was carried out. (author)

  10. Potassium nutrition and water availability affect phloem transport of photosynthetic carbon in eucalypt trees

    Science.gov (United States)

    Epron, Daniel; Cabral, Osvaldo; Laclau, Jean-Paul; Dannoura, Masako; Packer, Ana Paula; Plain, Caroline; Battie-Laclau, Patricia; Moreira, Marcelo; Trivelin, Paulo; Bouillet, Jean-Pierre; Gérant, Dominique; Nouvellon, Yann

    2015-04-01

    Potassium fertilisation strongly affects growth and carbon partitioning of eucalypt on tropical soil that are strongly weathered. In addition, potassium fertilization could be of great interest in mitigating the adverse consequences of drought in planted forests, as foliar K concentrations influence osmotic adjustment, stomatal regulation and phloem loading. Phloem is the main pathway for transferring photosynthate from source leaves to sink organs, thus controlling growth partitioning among the different tree compartments. But little is known about the effect of potassium nutrition on phloem transport of photosynthetic carbon and on the interaction between K nutrition and water availability. In situ 13C pulse labelling was conducted on tropical eucalypt trees (Eucalyptus grandis L.) grown in a trial plantation with plots in which 37% of throughfall were excluded (about 500 mm/yr) using home-made transparent gutters (-W) or not (+W) and plots that received 0.45 mol K m-2 applied as KCl three months after planting (+K) or not (-K). Three trees were labelled in each of the four treatments (+K+W, +K-W, -K+W and -K-W). Trees were labelled for one hour by injecting pure 13CO2 in a 27 m3 whole crown chamber. We estimated the velocity of carbon transfer in the trunk by comparing time lags between the uptake of 13CO2 and its recovery in trunk CO2 efflux recorded by off axis integrated cavity output spectroscopy (Los Gatos Research) in two chambers per tree, one just under the crown and one at the base of the trunk. We analyzed the dynamics of the label recovered in the foliage and in the phloem sap by analysing carbon isotope composition of bulk leaf organic matter and phloem extracts using an isotope ratio mass spectrometer. The velocity of carbon transfer in the trunk and the initial rate 13C disappearance from the foliage were much higher in +K trees than in -K trees with no significant effect of rainfall. The volumetric flow of phloem, roughly estimated by multiplying

  11. Basic study on mass transportation systems in buildings by means of multiple-cage elevators; Junkangata erebeta ni yoru biru nai tairyo yuso sisutemu no kiso kento

    Energy Technology Data Exchange (ETDEWEB)

    Fujino, A.; Tobita, T. [Hitachi, Ltd., Tokyo (Japan); Nakagawa, K. [Shimizu Corporation, Tokyo (Japan)

    1997-06-20

    From the viewpoints of realization of mass transportation, improvement of space factor in buildings, transportation systems in buildings are surveyed to compare the characteristics. Then, a loop-type independently-driven multiple-cage elevator (circulating elevator) system is proposed to estimate its transportation capacity, and necessary data for realizing transportation capacity higher than twice that of the conventional elevator are presented. As regards operational control, a high efficient control method is proposed which can restrain needless stops particular to the multiple-cage system and improve the waiting time and round trip time, and the result of the investigation by simulation is reported. Basic operation method of the loop-type elevator is determined, and the transportation capacity is estimated by simulation. The application in which the loop-type elevator can exhibit the best performance is its use in 15 floor-class buildings or for local bank zones in large-scale buildings in a system combined with the shuttle system. 9 refs., 12 figs., 5 tabs.

  12. Soil Resources Area Affects Herbivore Health

    Directory of Open Access Journals (Sweden)

    Chad M. Dacus

    2011-06-01

    Full Text Available Soil productivity effects nutritive quality of food plants, growth of humans and animals, and reproductive health of domestic animals. Game-range surveys sometimes poorly explained variations in wildlife populations, but classification of survey data by major soil types improved effectiveness. Our study evaluates possible health effects of lower condition and reproductive rates for wild populations of Odocoileus virginianus Zimmerman (white-tailed deer in some physiographic regions of Mississippi. We analyzed condition and reproductive data for 2400 female deer from the Mississippi Department of Wildlife, Fisheries, and Parks herd health evaluations from 1991–1998. We evaluated age, body mass (Mass, kidney mass, kidney fat mass, number of corpora lutea (CL and fetuses, as well as fetal ages. Region affected kidney fat index (KFI, which is a body condition index, and numbers of fetuses of adults (P ≤ 0.001. Region affected numbers of CL of adults (P ≤ 0.002. Mass and conception date (CD were affected (P ≤ 0.001 by region which interacted significantly with age for Mass (P ≤ 0.001 and CD (P < 0.04. Soil region appears to be a major factor influencing physical characteristics of female deer.

  13. The transportation institutional plan: Cooperative planning for NWPA transportation

    International Nuclear Information System (INIS)

    Denny, S.H.; Livingston-Behan, E.A.

    1987-01-01

    The Transportation Institutional Plan, published in 1986 by the U.S. Department of Energy's Office of Civilian Radioactive Waste Management (OCRWM), defines a process for effective interaction among those who may be affected by transportation activities conducted under provisions of the Nuclear Waste Policy Act of 1982 (NWPA). The Plan describes formal mechanisms for identifying, addressing, and resolving specific transportation issues. An appendix to the Plan includes detailed discussion of the following transportation issues: (1) the transportation of defense waste; (2) prenotification; (3) physical and rail shipments; (4) highway routing; (5) rail routing; (6) inspection and enforcement for highway and rail shipments; (7) emergency response; (8) liability coverage for transportation to NWPA facilities; (9) cask design and testing; (10) overweight truck shipments; (11) rail service analysis; (12) mixture of transportation modes; (13) transportation infrastructure improvements; (14) OCRWM training standards; (15) transportation operational procedures; and (16) State, Tribal, and local regulation of transportation. The OCRWM's intent is to provide an open accounting of planning, to identify opportunities for public involvement in program activities, and to foster communication and negotiation in the cooperative development of a safe, efficient, and cost-effective NWPA transportation program

  14. Several hPepT1-transported drugs are substrates of the Escherichia coli proton-coupled oligopeptide transporter YdgR

    DEFF Research Database (Denmark)

    Prabhala, Bala K; Aduri, Nanda G; Iqbal, Mazhar

    2017-01-01

    transported by hPepT1. The transport of these drugs was evaluated using the prototypical POT YdgR from E. coli. The transport studies were pursued through combining cell-based assays with liquid chromatography-tandem mass spectrometric (LC-MS/MS) analysis. These investigations revealed that YdgR from E. coli...

  15. Switch loop flexibility affects substrate transport of the AcrB efflux pump

    International Nuclear Information System (INIS)

    Muller, Reinke T.; Travers, Timothy; Cha, Hi-jea; Phillips, Joshua L.

    2017-01-01

    The functionally important switch-loop of the trimeric multidrug transporter AcrB separates the access and deep drug binding pockets in every protomer. This loop, comprising 11 amino acid residues, has been shown to be crucial for substrate transport, as drugs have to travel past the loop to reach the deep binding pocket and from there are transported outside the cell via the connected AcrA and TolC channels. It contains four symmetrically arranged glycine residues suggesting that flexibility is a key feature for pump activity. Upon combinatorial substitution of these glycine residues to proline, functional and structural asymmetry was observed. Proline substitutions on the PC1 proximal side completely abolished transport and reduced backbone flexibility of the switch loop, which adopted a conformation restricting the pathway towards the deep binding pocket. Here, two phenylalanine residues located adjacent to the substitution sensitive glycine residues play a role in blocking the pathway upon rigidification of the loop, since the removal of the phenyl rings from the rigid loop restores drug transport activity.

  16. Transient modeling of non-Fickian transport and first-order reaction using continuous time random walk

    Science.gov (United States)

    Burnell, Daniel K.; Hansen, Scott K.; Xu, Jie

    2017-09-01

    Contaminants in groundwater may experience a broad spectrum of velocities and multiple rates of mass transfer between mobile and immobile zones during transport. These conditions may lead to non-Fickian plume evolution which is not well described by the advection-dispersion equation (ADE). Simultaneously, many groundwater contaminants are degraded by processes that may be modeled as first-order decay. It is now known that non-Fickian transport and reaction are intimately coupled, with reaction affecting the transport operator. However, closed-form solutions for these important scenarios have not been published for use in applications. In this paper, we present four new Green's function analytic solutions in the uncoupled, uncorrelated continuous time random walk (CTRW) framework for reactive non-Fickian transport, corresponding to the quartet of conservative tracer solutions presented by Kreft and Zuber (1978) for Fickian transport. These consider pulse injection for both resident and flux concentration combined with detection in both resident and flux concentration. A pair of solutions for resident concentration temporal pulses with detection in both flux and resident concentration is also presented. We also derive the relationship between flux and resident concentration for non-Fickian transport with first-order reaction for this CTRW formulation. An explicit discussion of employment of the new solutions to model transport with arbitrary upgradient boundary conditions as well as mobile-immobile mass transfer is then presented. Using the new solutions, we show that first-order reaction has no effect on the anomalous spatial spreading rate of concentration profiles, but produces breakthrough curves at fixed locations that appear to have been generated by Fickian transport. Under the assumption of a Pareto CTRW transition distribution, we present a variety of numerical simulations including results showing coherence of our analytic solutions and CTRW particle

  17. Transport and Thermohaline Structure in the Western Tropical North Pacific

    Science.gov (United States)

    Schonau, Martha Coakley

    Transport and thermohaline structure of water masses and their respective variability are observed and modeled in the western tropical North Pacific using autonomous underwater gliders, Argo climatology and a numerical ocean state estimate. The North Equatorial Current (NEC) advects subtropical and subpolar water masses into the region that are transported equatorward by the Mindanao Current (MC). Continuous glider observations of these two currents from June 2009 to December 2013 provide absolute geostrophic velocity, water mass structure, and transport. The observations are compared to Argo climatology (Roemmich and Gilson, 2009), wind and precipitation to assess forcing, and annual and interannual variability. Observations are assimilated into a regional ocean state estimate (1/6°) to examine regional transport variability and its relationship to the El Nino-Southern Oscillation phenomena (ENSO). The NEC, described in Chapter 1, is observed along 134.3°E, from 8.5°N to 16.5°N. NEC thermocline transport is relatively constant, with a variable subthermocline transport that is distinguished by countercurrents centered at 9.6°N and 13.1°N. Correlation between thermocline and subthermocline transport is strong. Isopycnals with subducted water masses, the North Pacific Tropical Water and North Pacific Intermediate Water, have the greatest fine-scale thermohaline variance. The NEC advects water masses into the MC, described in Chapter 2, that flows equatorward along the coast of Mindanao. Gliders observed the MC at a mean latitude of 8.5°N. The Mindanao Undercurrent (MUC) persists in the subthermocline offshore of the MC, with a net poleward transport of intermediate water typical of South Pacific origin. The variable subthermocline transport in the MC/MUC has an inverse linear relationship with the Nino 3.4 index and strongly impacts total transport variability. For each the MC and NEC, surface salinity and thermocline depth have a strong relationship with ENSO

  18. The effect of bacterial generation on the transport of radionuclide in porous media

    International Nuclear Information System (INIS)

    Han, B.S.; Lee, K.J.

    1997-01-01

    The purpose of this paper is to provide a methodology to develop a predictive model based on a conceptual three-phase system and to investigate the influence of bacteria and their generation on the radionuclide transport in porous media. The mass balance equations for bacteria, substrate and radionuclide were formulated. To illustrate the model simply, an equilibrium condition was assumed to partition the substrate, bacteria and radionuclide concentrations, between the solid soil matrix, aqueous phase and bacterial surface. From the numerical calculation of radionuclide transport in the presence of bacteria, it was found that the growth of bacterial and supplied primary substrate as a limiting or stimulating growth factor of bacteria are the most important factors of the radionuclide transport. It was also found that, depending on the transport of bacteria, the temporal and spatial distribution of the radionuclide concentration was significantly affected. The model proposed in this study will improve the evaluation of the role of the bacteria to the transport of radionuclide in groundwater systems. Furthermore, this model can be usefully utilized in analyzing the important role of colloidal particulate on the overall performance of radioactive waste safety. (Author)

  19. Specifications for the development of a fully three-dimensional numerical groundwater model for regional mass transport of radionuclides from a deep waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Prickett, T.A.

    1980-04-01

    Specifications are given which are necessary to develop a three-dimensional numerical model capable of simulating regional mass transport of radionuclides from a deep waste repository. The model to be developed will include all of the significant mass transport processes including flow, chemical, and thermal advection, mechanical dispersion, molecular diffusion, ion exchange reactions, and radioactive decay. The model specifications also include that density and viscosity fluid properties be functions of pressure, temperature, and concentration and take into account fluid and geologic heterogenieties by allowing possible assignment of individual values to every block of the model. The model specifications furthermore include the repository shape, input/output information, boundary conditions, and the need for documentation and a user's manual. Model code validation can be accomplished with the included known analytical or laboratory solutions. It is recommended that an existing finite-difference model (developed by INTERCOMP and INTERA, Inc.) be used as a starting point either as an acceptable basic code for modification or as a pattern for the development of a completely different numerical scheme. A ten-step plan is given to outline the general procedure for development of the code.

  20. Specifications for the development of a fully three-dimensional numerical groundwater model for regional mass transport of radionuclides from a deep waste repository

    International Nuclear Information System (INIS)

    Prickett, T.A.

    1980-04-01

    Specifications are given which are necessary to develop a three-dimensional numerical model capable of simulating regional mass transport of radionuclides from a deep waste repository. The model to be developed will include all of the significant mass transport processes including flow, chemical, and thermal advection, mechanical dispersion, molecular diffusion, ion exchange reactions, and radioactive decay. The model specifications also include that density and viscosity fluid properties be functions of pressure, temperature, and concentration and take into account fluid and geologic heterogenieties by allowing possible assignment of individual values to every block of the model. The model specifications furthermore include the repository shape, input/output information, boundary conditions, and the need for documentation and a user's manual. Model code validation can be accomplished with the included known analytical or laboratory solutions. It is recommended that an existing finite-difference model (developed by INTERCOMP and INTERA, Inc.) be used as a starting point either as an acceptable basic code for modification or as a pattern for the development of a completely different numerical scheme. A ten-step plan is given to outline the general procedure for development of the code

  1. Impact of kinetic mass transfer on free convection in a porous medium

    Science.gov (United States)

    Lu, Chunhui; Shi, Liangsheng; Chen, Yiming; Xie, Yueqing; Simmons, Craig T.

    2016-05-01

    We investigate kinetic mass transfer effects on unstable density-driven flow and transport processes by numerical simulations of a modified Elder problem. The first-order dual-domain mass transfer model coupled with a variable-density-flow model is employed to describe transport behavior in porous media. Results show that in comparison to the no-mass-transfer case, a higher degree of instability and more unstable system is developed in the mass transfer case due to the reduced effective porosity and correspondingly a larger Rayleigh number (assuming permeability is independent on the mobile porosity). Given a constant total porosity, the magnitude of capacity ratio (i.e., immobile porosity/mobile porosity) controls the macroscopic plume profile in the mobile domain, while the magnitude of mass transfer timescale (i.e., the reciprocal of the mass transfer rate coefficient) dominates its evolution rate. The magnitude of capacity ratio plays an important role on the mechanism driving the mass flux into the aquifer system. Specifically, for a small capacity ratio, solute loading is dominated by the density-driven transport, while with increasing capacity ratio local mass transfer dominated solute loading may occur at later times. At significantly large times, however, both mechanisms contribute comparably to solute loading. Sherwood Number could be a nonmonotonic function of mass transfer timescale due to complicated interactions of solute between source zone, mobile zone and immobile zone in the top boundary layer, resulting in accordingly a similar behavior of the total mass. The initial assessment provides important insights into unstable density-driven flow and transport in the presence of kinetic mass transfer.

  2. Physically-based impedance modeling of the negative electrode in All-Vanadium Redox Flow Batteries: insight into mass transport issues

    International Nuclear Information System (INIS)

    Zago, M.; Casalegno, A.

    2017-01-01

    Highlights: •Performance losses induced by migration though the porous electrode are negligible. •Convection at carbon fiber results in a linear branch at low frequency in Nyquist plot. •When the reaction is concentrated, diffusion losses though the electrode diminishes. •Diffusion process in the pores becomes more limiting at high current. •Charge transfer resistance decreases with increasing current. -- Abstract: Mass transport of the electrolyte over the porous electrode is one of the most critical issues hindering Vanadium Redox Flow Battery commercialization, leading to increased overpotential at high current and limiting system power density. In this work, a 1D physically based impedance model of Vanadium Redox Flow Battery negative electrode is developed, taking into account electrochemical reactions, convection at carbon fiber, diffusion in the pores and migration and diffusion through electrode thickness. The model is validated with respect to experimental data measured in a symmetric cell hardware, which allows to keep the State of Charge constant during the measurement. The physically based approach permits to elucidate the origin of different impedance features and quantify the corresponding losses. Charge transfer resistance decreases with increasing current and is generally lower compared to the ones related to mass transport phenomena. Migration losses through the porous electrode are negligible, while convection at carbon fiber is relevant and in Nyquist plot results in a linear branch at low frequency. In presence of significant convection losses the reaction tends to concentrate close to the channel: this leads to a reduction of diffusion losses through the electrode, while diffusion process in the pores becomes more limiting.

  3. Phonon-affected steady-state transport through molecular quantum dots

    Czech Academy of Sciences Publication Activity Database

    Koch, T.; Fehske, H.; Loos, Jan

    T151, č. 1 (2012), 1-10 ISSN 0031-8949 Institutional research plan: CEZ:AV0Z10100521 Keywords : the ory of electron ic transport * scattering mechanisms * polarons and electron -phonon interactions Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.032, year: 2012

  4. Smoking cue reactivity across massed extinction trials: negative affect and gender effects.

    Science.gov (United States)

    Collins, Bradley N; Nair, Uma S; Komaroff, Eugene

    2011-04-01

    Designing and implementing cue exposure procedures to treat nicotine dependence remains a challenge. This study tested the hypothesis that gender and negative affect (NA) influence changes in smoking urge over time using data from a pilot project testing the feasibility of massed extinction procedures. Forty-three smokers and ex-smokers completed the behavioral laboratory procedures. All participants were over 17 years old, smoked at least 10 cigarettes daily over the last year (or the year prior to quitting) and had expired CO below 10 ppm at the beginning of the ~4-hour session. After informed consent, participants completed 45 min of baseline assessments, and then completed a series of 12 identical, 5-minute exposure trials with inter-trial breaks. Smoking cues included visual, tactile, and olfactory cues with a lit cigarette, in addition to smoking-related motor behaviors without smoking. After each trial, participants reported urge and negative affect (NA). Logistic growth curve models supported the hypothesis that across trials, participants would demonstrate an initial linear increase followed by a decrease in smoking urge (quadratic effect). Data supported hypothesized gender, NA, and gender×NA effects. Significant linear increases in urge were observed among high and low NA males, but not among females in either NA subgroup. A differential quadratic effect showed a significant decrease in urge for the low NA subgroup, but a non-significant decrease in urge in the high NA group. This is the first study to demonstrate gender differences and the effects of NA on the extinction process using a smoking cue exposure paradigm. Results could guide future cue reactivity research and exposure interventions for nicotine dependence. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Characteristics of movement and factors affecting the choice of mode of transport of community on the bank of Musi River of Palembang City of South Sumatra

    Science.gov (United States)

    Arliansyah, Joni; Hartono, Yusuf; Hastuti, Yulia; Astuti, Rinna

    2017-11-01

    Palembang City is one of the cities having the largest river in Indonesia and it should be able to take advantage of river transportation as an alternative choice. Inadequate availability of river transport facilities and infrastructures makes the people prefer other modes of land transportation rather than using river transportation. In addition, the development planning of river transportation such as the development of river taxi is less successful because it is not yet based on the movement pattern of the origin of the community travel destination. Based on the above matter, this study was conducted. The aim of the study was to find out the characteristics and factors affecting the mode choice of the community living along the bank of Musi River of Palembang City to be the basis of the development of river transportation system in Palembang City. The selected modes were motorcycles, cars, city transports, and ketek (motorized boats). Survey of home interviews was conducted to determine the origin of the destination and characteristics of travel was conducted in 30 villages located on the banks of Musi River. Field survey was conducted to determine the conditions and types of existing river transportation facilities and services. The results show that only 5.3 % of the occurrence movement used river transportation, the rest used motorcycles (69.1%), urban transport (15.9 %) and cars (9.7%), with the travel range less than10 minutes and 10 - 20 minutes as much as 43.2 % and 29 % of the total trips. From the socioeconomic profile of the community, it is found that most of the people living along the Musi River have low and middle incomes with the largest types of jobs as workers, students, shop owner, and housewives. The peak movement time for the movement of river transport occurs at 7:00 - 8:00, 10:00 - 11:00 and 16:00 - 17:00 with the movement of origin of the destination of river transportation is known to be 50% at the traditional market center of Dermaga of

  6. Quantifying pollution transport from the Asian monsoon anticyclone into the lower stratosphere

    Directory of Open Access Journals (Sweden)

    F. Ploeger

    2017-06-01

    Full Text Available Pollution transport from the surface to the stratosphere within the Asian monsoon circulation may cause harmful effects on stratospheric chemistry and climate. Here, we investigate air mass transport from the monsoon anticyclone into the stratosphere using a Lagrangian chemistry transport model. We show how two main transport pathways from the anticyclone emerge: (i into the tropical stratosphere (tropical pipe, and (ii into the Northern Hemisphere (NH extratropical lower stratosphere. Maximum anticyclone air mass fractions reach around 5 % in the tropical pipe and 15 % in the extratropical lowermost stratosphere over the course of a year. The anticyclone air mass fraction correlates well with satellite hydrogen cyanide (HCN and carbon monoxide (CO observations, confirming that pollution is transported deep into the tropical stratosphere from the Asian monsoon anticyclone. Cross-tropopause transport occurs in a vertical chimney, but with the pollutants transported quasi-horizontally along isentropes above the tropopause into the tropics and NH.

  7. Miniature mass analyzer

    CERN Document Server

    Cuna, C; Lupsa, N; Cuna, S; Tuzson, B

    2003-01-01

    The paper presents the concept of different mass analyzers that were specifically designed as small dimension instruments able to detect with great sensitivity and accuracy the main environmental pollutants. The mass spectrometers are very suited instrument for chemical and isotopic analysis, needed in environmental surveillance. Usually, this is done by sampling the soil, air or water followed by laboratory analysis. To avoid drawbacks caused by sample alteration during the sampling process and transport, the 'in situ' analysis is preferred. Theoretically, any type of mass analyzer can be miniaturized, but some are more appropriate than others. Quadrupole mass filter and trap, magnetic sector, time-of-flight and ion cyclotron mass analyzers can be successfully shrunk, for each of them some performances being sacrificed but we must know which parameters are necessary to be kept unchanged. To satisfy the miniaturization criteria of the analyzer, it is necessary to use asymmetrical geometries, with ion beam obl...

  8. Managing the Accessibility on Mass Public Transit: the Case of Hong Kong

    Directory of Open Access Journals (Sweden)

    Siman Tang

    2008-11-01

    Full Text Available Public transit services (PTS improve mobility and accessibility, and reduce car dependence. It is ideal if PTS are financially sustainable, with affordable fares and expedient quality. The success of PTS on accessibility improvement can be reflected by their level of patronage: do travelers choose to use them in lieu of their private cars? PTS in Hong Kong are renowned for their quality and profitability, superbly addressing the accessibility need for the city; they carry over 90% of the 11 million daily trips. A comparison of the per capita train-car and bus-vehicle kilometer run of PTS in Hong Kong with those in London and Singapore, however, suggests that it is not purely the supply that affects the use or accessibility of PTS in Hong Kong. By tracing and analyzing the development of PTS in Hong Kong over the past two decades, we found evidence that the high level of accessibility on mass public transit in the territory can be attributed to the land use policy of developing compact, high-density township, accompanying transport policies of granting high priority to the development of mass transit facilities and providing ways to ensure the financial viability of privately operated PTS, especially the innovative approach of integrating the development of public transport facility and property so as to exploit their synergy. In this paper, we study and highlight elements that contribute to the development of high accessibility on mass public transit in Hong Kong.

  9. Handbook of heat and mass transfer. Volume 2

    International Nuclear Information System (INIS)

    Cheremisinoff, N.P.

    1986-01-01

    This two-volume series, the work of more than 100 contributors, presents advanced topics in industrial heat and mass transfer operations and reactor design technology. Volume 2 emphasizes mass transfer and reactor design. Some of the contents discussed are: MASS TRANSFER PRINCIPLES - Effect of turbulence promoters on mass transfer. Mass transfer principles with homogeneous and heterogeneous reactions. Convective diffusion with reactions in a tube. Transient mass transfer onto small particles and drops. Modeling heat and mass transport in falling liquid films. Heat and mass transfer in film absorption. Multicomponent mass transfer: theory and applications. Diffusion limitation for reaction in porous catalysts. Kinetics and mechanisms of catalytic deactivation. DISTILLATION AND EXTRACTION - Generalized equations of state for process design. Mixture boiling. Estimating vapor pressure from normal boiling points of hydrocarbons. Estimating liquid and vapor molar fractions in distillation columns. Principles of multicomponent distillation. Generalized design methods for multicomponent distillation. Interfacial films in inorganic substances extraction. Liquid-liquid extraction in suspended slugs. MULTIPHASE REACTOR SYSTEMS - Reaction and mass transport in two-phase reactors. Mass transfer and kinetics in three-phase reactors. Estimating liquid film mass transfer coefficients in randomly packed columns. Designing packed tower wet scrubbers - emphasis on nitrogen oxides. Gas absorption in aerated mixers. Axial dispersion and heat transfer in gas-liquid bubble columns. Operation and design of trickle-bed reactors

  10. Application of gamma-ray absorptiometry in the hydraulic transport of solids

    International Nuclear Information System (INIS)

    Fanger, H.U.; Michaelis, W.; Pepelnik, R.; The, H.L.

    1978-01-01

    The paper describes the development and application of advanced γ-ray absorptiometry techniques that may successfully be applied for the non-contact determination of medium density, local space concentrations, particle drift speeds and mass flows in transport systems. This improves the accuracy of density analysis and allows the measurement of the individual solid fraction contents in three-component flows, such as coal and rock or sediment and brine in water. Likewise, solid-air-water mixtures in air-lift systems may be analysed. Sufficient differences in the attenuation coefficients (i.e. mass density and/or chemical Z number) are requisites of this technique. The chemical composition of the components should be constant, more or less, and has to be known. The particle size does not affect the measurement up to a critical value which depends strongly on the material composition and the γ-ray energies used. For measuring the mean drift velocity of particles, a γ-ray transmission device with two equivalent radioactive sources and detectors is utilized. Both gamma-ray gates are arranged in a properly chosen distance, one after the other in the direction of flow. By using cross-correlation analysis, phase shift and mean velocity can be deduced from the dc-current modulations at the detector outputs. At the same time this measuring principle delivers the mean particle size and the size distribution in conveyor flows. Combination of space concentration and drift velocity yields the mass transport per unit time. (HP) [de

  11. The increase in physical performance and gain in lean and fat mass occur in prepubertal children independent of mode of school transportation. One year data from the prospective controlled Pediatric Osteoporosis Prevention (POP) Study

    Science.gov (United States)

    2009-01-01

    Background The aim of this 12-month study in pre-pubertal children was to evaluate the effect of school transportation on gain in lean and fat mass, muscle strength and physical performance. Methods Ninety-seven girls and 133 boys aged 7-9 years from the Malmö Pediatric Osteoporosis Prevention Study were included. Regional lean and fat mass were assessed by dual energy X-ray absorptiometry, isokinetic peak torque of knee extensors and flexors by a computerised dynamometer and physical performance by vertical jump height. Level of physical activity was assessed by accelerometers. The 12-month changes in children who walked or cycled to school were compared with changes in those who travelled by bus or car. Results There were no differences in baseline or annual changes in lean or fat mass gain, muscle strength or physical performance between the two groups. All children reached the internationally recommended level of 60 minutes per day of moderate or high physical activity by accelerometers. Conclusion The choice of school transportation in pre-pubertal children seems not to influence the gain in lean and fat mass, muscle strength or functional ability, probably as the everyday physical activity is so high that the mode of school transportation contributes little to the total level of activity.

  12. Instantaneous sediment transport model for asymmetric oscillatory sheet flow.

    Directory of Open Access Journals (Sweden)

    Xin Chen

    Full Text Available On the basis of advanced concentration and velocity profiles above a mobile seabed, an instantaneous analytical model is derived for sediment transport in asymmetric oscillatory flow. The applied concentration profile is obtained from the classical exponential law based on mass conservation, and asymmetric velocity profile is developed following the turbulent boundary layer theory and the asymmetric wave theory. The proposed model includes two parts: the basic part that consists of erosion depth and free stream velocity, and can be simplified to the total Shields parameter power 3/2 in accordance with the classical empirical models, and the extra vital part that consists of phase-lead, boundary layer thickness and erosion depth. The effects of suspended sediment, phase-lag and asymmetric boundary layer development are considered particularly in the model. The observed instantaneous transport rate proportional to different velocity exponents due to phase-lag is unified and summarised by the proposed model. Both instantaneous and half period empirical formulas are compared with the developed model, using extensive data on a wide range of flow and sediment conditions. The synchronous variation in instantaneous transport rate with free stream velocity and its decrement caused by increased sediment size are predicted correctly. Net transport rates, especially offshore transport rates with large phase-lag under velocity skewed flows, which existing instantaneous type formulas failed to predict, are predicted correctly in both direction and magnitude by the proposed model. Net sediment transport rates are affected not only by suspended sediment and phase-lag, but also by the boundary layer difference between onshore and offshore.

  13. Mutations affecting substrate specificity of the Bacillus subtilis multidrug transporter Bmr.

    OpenAIRE

    Klyachko, K A; Schuldiner, S; Neyfakh, A A

    1997-01-01

    The Bacillus subtilis multidrug transporter Bmr, a member of the major facilitator superfamily of transporters, causes the efflux of a number of structurally unrelated toxic compounds from cells. We have shown previously that the activity of Bmr can be inhibited by the plant alkaloid reserpine. Here we demonstrate that various substitutions of residues Phe143 and Phe306 of Bmr not only reduce its sensitivity to reserpine inhibition but also significantly change its substrate specificity. Cros...

  14. Freight transport and intermodality

    OpenAIRE

    Barbero Mañanes, Eduardo

    2010-01-01

    During recent decades, there has been very substantial growth in the freight transport sector. Freight transport is increasing faster than the economy or passenger transport. Demand is increasing more rapidly than supply and is resulting in environmental and social problems. Increasing congestion, too, is affecting efficient and reliable freight distribution, and consequently having a deleterious effect on local economies. Intermodality is therefore needed to make better use of alternative mo...

  15. Mass transfer effects in feeder flow-accelerated corrosion wall thinning

    International Nuclear Information System (INIS)

    Pietralik, J.

    2008-01-01

    Flow conditions play a dominant role in Flow-Accelerated Corrosion (FAC) under certain conditions, e.g., in CANDU feeders. While chemistry and materials set the overall potential for FAC, flow conditions determine the local distribution of wall thinning. Recent plant data of feeders and laboratory tests confirms that there is a close relationship between local flow conditions, expressed by mass transfer coefficient, and FAC rate in CANDU feeder bends. The knowledge of local effects can be useful for minimizing the number of inspected components, predicting the location of the highest FAC rate for a given piping component, and determining what components or feeders should be replaced. A similar evaluation applies also to FAC in heat transfer equipment such as heat exchangers and steam generators. The objective of this paper is to examine the relationship between FAC rate and local mass transfer parameters. For FAC where the flow is dominant, the FAC rate is proportional to mass flux of ferrous ions. The mass flux is the product of the mass transfer coefficient and the concentration difference, or degree of saturation. The mass transfer coefficient describes the intensity of the transport of corrosion products (ferrous ions) from the oxide-water interface into the bulk water. Therefore, this parameter can be used for predicting the local distribution of FAC rate in the mass-transfer controlled FAC. The degree of saturation reduces the mass flux, thus reducing the FAC rate. This effect can be significant in long piping, e.g., in outlet feeders. The paper presents plant and laboratory evidence for the relationship between local mass transfer conditions and the FAC rate. It shows correlations for mass transfer coefficient in components that are highly susceptible to FAC and most important flow parameters that affect mass transfer coefficient. The role of surface roughness, wall shear stress, and local turbulence is also discussed. (author)

  16. Electric solar wind sail mass budget model

    Directory of Open Access Journals (Sweden)

    P. Janhunen

    2013-02-01

    Full Text Available The electric solar wind sail (E-sail is a new type of propellantless propulsion system for Solar System transportation, which uses the natural solar wind to produce spacecraft propulsion. The E-sail consists of thin centrifugally stretched tethers that are kept charged by an onboard electron gun and, as such, experience Coulomb drag through the high-speed solar wind plasma stream. This paper discusses a mass breakdown and a performance model for an E-sail spacecraft that hosts a mission-specific payload of prescribed mass. In particular, the model is able to estimate the total spacecraft mass and its propulsive acceleration as a function of various design parameters such as the number of tethers and their length. A number of subsystem masses are calculated assuming existing or near-term E-sail technology. In light of the obtained performance estimates, an E-sail represents a promising propulsion system for a variety of transportation needs in the Solar System.

  17. Factors affecting radiation doses from dedicated rail transport of spent reactor fuel

    International Nuclear Information System (INIS)

    Martin, J.E.

    1988-01-01

    This paper reports there are two exposure control concerns associated with the shipment of spent reactor fuel in dedicated trains -- compliance with transportation regulations for maximum allowable radiation levels, and minimizing the dose received by the general public. This article examines the methods used to calculate the dose equivalent rates alongside stationary (transport regulations) and moving trains (public exposure) of various lengths. The factors examined include the source term, the effect of overlapping radiation fields, the speed of the train, and the location of the population relative to the train. Trains made up of series of cars that individually meet transport regulations can, as a whole, exceed transport vehicle dose equivalent rate limits by up to 23% due to overlapping radiation fields. For moving trains and the worst case analyzed -- a person located 20 feet from the tracks and a train speed of 5 mph --- 141 rail cars would have to pass by to deliver a dose equivalent of 1 mrem

  18. A Green's function method for two-dimensional reactive solute transport in a parallel fracture-matrix system

    Science.gov (United States)

    Chen, Kewei; Zhan, Hongbin

    2018-06-01

    The reactive solute transport in a single fracture bounded by upper and lower matrixes is a classical problem that captures the dominant factors affecting transport behavior beyond pore scale. A parallel fracture-matrix system which considers the interaction among multiple paralleled fractures is an extension to a single fracture-matrix system. The existing analytical or semi-analytical solution for solute transport in a parallel fracture-matrix simplifies the problem to various degrees, such as neglecting the transverse dispersion in the fracture and/or the longitudinal diffusion in the matrix. The difficulty of solving the full two-dimensional (2-D) problem lies in the calculation of the mass exchange between the fracture and matrix. In this study, we propose an innovative Green's function approach to address the 2-D reactive solute transport in a parallel fracture-matrix system. The flux at the interface is calculated numerically. It is found that the transverse dispersion in the fracture can be safely neglected due to the small scale of fracture aperture. However, neglecting the longitudinal matrix diffusion would overestimate the concentration profile near the solute entrance face and underestimate the concentration profile at the far side. The error caused by neglecting the longitudinal matrix diffusion decreases with increasing Peclet number. The longitudinal matrix diffusion does not have obvious influence on the concentration profile in long-term. The developed model is applied to a non-aqueous-phase-liquid (DNAPL) contamination field case in New Haven Arkose of Connecticut in USA to estimate the Trichloroethylene (TCE) behavior over 40 years. The ratio of TCE mass stored in the matrix and the injected TCE mass increases above 90% in less than 10 years.

  19. Hydrogen isotope transport across tungsten surfaces exposed to a fusion relevant He ion fluence

    Science.gov (United States)

    Baldwin, M. J.; Doerner, R. P.

    2017-07-01

    Tungsten targets are exposed to controlled sequences of D2 and He, and He and D2 plasma in the Pisces-A linear plasma device, with a view to studying the outward and inward transport of D across a He implanted surface, using thermal desorption mass spectrometry. Differences in transport are interpreted from changes in peak desorption temperature and amplitude for D2 release, compared against that of control targets exposed to just D2 plasma. Desorption data are modeled with Tmap-7 to infer the nature by which He leads to the ‘reduced inventory’ effect for H isotope uptake. A dual segment (surface-30 nm, bulk) W Tmap-7 model is developed, that simulates both plasma exposure and thermal desorption. Good agreement between desorption data and model is found for D2 release from control targets provided that the implanted flux is reduced, similar to that reported by others. For He affected release, the H isotope transport properties of the surface segment are adjusted away from control target bulk values during the computation. Modeling that examines outward D transport through the He implanted layer suggests that a permeation barrier is active, but bubble induced porosity is insufficient to fully explain the barrier strength. Moderately increased diffusional migration energy in the model over the He affected region, however, gives a barrier strength consistent with experiment. The same model, applied to inward transport, predicts the reduced inventory effect, but a further reduction in the implanted D flux is necessary for precise agreement.

  20. Spent fuel critical masses and supportive measurements

    International Nuclear Information System (INIS)

    Toffer, H.; Wells, A.H.

    1987-01-01

    Critical masses for spent fuel are larger than for green fuel and therefore use of the increased masses could result in improved handling, storage, and transport of such materials. To apply spent fuel critical masses requires an assessment of fuel exposure and the corresponding isotopic compositions. The paper discusses several approaches at the Hanford N Reactor in establishing fuel exposure, including a direct measurement of spent to green fuel critical masses. The benefits derived from the use of spent fuel critical masses are illustrated for cask designs at the Nuclear Assurance Corporation. (author)

  1. Variability of Atmospheric Radon-222 and Secondary Aerosol Components in Accordance with Air Mass Transport Pathways at Jeju Island, Korea, during 2011-2014

    International Nuclear Information System (INIS)

    Bu, Jun-Oh; Song, Jung-Min; Kim, Won-Hyung; Kang, Chang-Hee; Chambers, Scott D.; Williams, Alastair G.; Lee, Chulkyu

    2016-01-01

    Real-time monitoring of hourly atmospheric Radon-222 concentration and three daily monitoring of the secondary aerosol components of PM_1_0 were performed throughout 2011-2014 at Gosan station, Jeju Island, in order to characterize their background levels and temporal variation. The annual mean radon and PM_1_0 mass concentrations were 2326 ± 1198 mBq/m"3 and 37.1 ± 19.5 μg/m"3, respectively. Based on cluster analyses of air mass back trajectories, the frequencies of air masses originating from continental China, the Korean Peninsula, and North Pacific Ocean routes were 53, 28, and 19%, respectively. When the air masses were transported to Jeju Island from continental China, the concentrations of radon and secondary aerosol components (nss-SO_4"2"-, NO_3"-, NH_4"+) were relatively high: 2577 mBq/m"3 and 14.4 μg/m"3, respectively. In cases when the air masses have moved from the Korean Peninsula, the corresponding concentrations were 2247 mBq/m"3 and 11.4 μg/m"3, respectively. On the other hand, when the air masses came from the North Pacific Ocean, their radon and secondary aerosol concentrations decreased much further, 1372 mBq/m"3 and 10.5 μg/m"3, respectively. Consequently, the variability of atmospheric radon concentrations at Gosan station might be characterized by synoptic changes in air mass fetch as well as diurnal changes in atmospheric mixing depth.

  2. Multi-scale interactions affecting transport, storage, and processing of solutes and sediments in stream corridors (Invited)

    Science.gov (United States)

    Harvey, J. W.; Packman, A. I.

    2010-12-01

    Surface water and groundwater flow interact with the channel geomorphology and sediments in ways that determine how material is transported, stored, and transformed in stream corridors. Solute and sediment transport affect important ecological processes such as carbon and nutrient dynamics and stream metabolism, processes that are fundamental to stream health and function. Many individual mechanisms of transport and storage of solute and sediment have been studied, including surface water exchange between the main channel and side pools, hyporheic flow through shallow and deep subsurface flow paths, and sediment transport during both baseflow and floods. A significant challenge arises from non-linear and scale-dependent transport resulting from natural, fractal fluvial topography and associated broad, multi-scale hydrologic interactions. Connections between processes and linkages across scales are not well understood, imposing significant limitations on system predictability. The whole-stream tracer experimental approach is popular because of the spatial averaging of heterogeneous processes; however the tracer results, implemented alone and analyzed using typical models, cannot usually predict transport beyond the very specific conditions of the experiment. Furthermore, the results of whole stream tracer experiments tend to be biased due to unavoidable limitations associated with sampling frequency, measurement sensitivity, and experiment duration. We recommend that whole-stream tracer additions be augmented with hydraulic and topographic measurements and also with additional tracer measurements made directly in storage zones. We present examples of measurements that encompass interactions across spatial and temporal scales and models that are transferable to a wide range of flow and geomorphic conditions. These results show how the competitive effects between the different forces driving hyporheic flow, operating at different spatial scales, creates a situation

  3. Nephrologic Impact of Hurricanes Katrina and Rita in Areas Not Directly Affected.

    Science.gov (United States)

    Dossabhoy, Neville R; Qadri, Mashood; Beal, Lauren M

    2015-01-01

    Hurricanes Katrina and Rita resulted in enormous loss of life and disrupted the delivery of health care in areas affected by them. In causing mass movements of patients, natural disasters can overwhelm the resources of nephrology communities in areas not suffering direct damage. The following largely personal account evaluates the impact these hurricanes had upon the nephrology community, patients and health care providers alike, in areas not directly affected by the storms. Mass evacuation of hundreds of dialysis patients to surrounding areas overwhelmed the capacity of local hemodialysis centers. Non-availability of medical records in patients arriving without a supply of their routine medications led to confusion and sub-optimal treatment of conditions such as hypertension and congestive heart failure. Availability of cadaveric organs for transplantation was reduced in the surrounding areas, as the usual lines of communication and transportation were severed for several weeks. All of these issues led to prolong waiting times for patients on the transplant list. The hurricanes severely disrupted usual supply lines of medications to hospitals; certain rare conditions may be seen in higher numbers as a result of the shortages induced. We present the interesting surge in cases of acute kidney injury secondary to use of intravenous immune globulin.

  4. Influence of vapor-mass flux on simultaneous heat and moisture transfer in unsaturated porous media

    International Nuclear Information System (INIS)

    Hartley, J.G.; Boo, J.H.

    1987-01-01

    This paper evaluates the validity of neglecting vapor transport by moisture content gradients (VMG) and liquid transport by temperature gradients (LTG) in coupled heat and moisture transfer in moist porous media. A review of previous work reveals discrepancies between model predictions and experimental data. The results presented here show that these discrepancies result from neglecting VMG. The governing equations which describe the coupled heat and moisture transfer are solved numerically for an infinite slab of an unsaturated porous medium, and existing experimental and empirical data for a moist sandy silt soil are used. Predicted moisture content distributions during dry-out and drying rates are found to be significantly affected by VMG. Accurate results can be obtained when VMG is neglected in the energy equation provided that it is retained in the mass conservation equation

  5. Gibberellins inhibit adventitious rooting in hybrid aspen and Arabidopsis by affecting auxin transport.

    Science.gov (United States)

    Mauriat, Mélanie; Petterle, Anna; Bellini, Catherine; Moritz, Thomas

    2014-05-01

    Knowledge of processes involved in adventitious rooting is important to improve both fundamental understanding of plant physiology and the propagation of numerous plants. Hybrid aspen (Populus tremula × tremuloïdes) plants overexpressing a key gibberellin (GA) biosynthesis gene (AtGA20ox1) grow rapidly but have poor rooting efficiency, which restricts their clonal propagation. Therefore, we investigated the molecular basis of adventitious rooting in Populus and the model plant Arabidopsis. The production of adventitious roots (ARs) in tree cuttings is initiated from the basal stem region, and involves the interplay of several endogenous and exogenous factors. The roles of several hormones in this process have been characterized, but the effects of GAs have not been fully investigated. Here, we show that a GA treatment negatively affects the numbers of ARs produced by wild-type hybrid aspen cuttings. Furthermore, both hybrid aspen plants and intact Arabidopsis seedlings overexpressing AtGA20ox1, PttGID1.1 or PttGID1.3 genes (with a 35S promoter) produce few ARs, although ARs develop from the basal stem region of hybrid aspen and the hypocotyl of Arabidopsis. In Arabidopsis, auxin and strigolactones are known to affect AR formation. Our data show that the inhibitory effect of GA treatment on adventitious rooting is not mediated by perturbation of the auxin signalling pathway, or of the strigolactone biosynthetic and signalling pathways. Instead, GAs appear to act by perturbing polar auxin transport, in particular auxin efflux in hybrid aspen, and both efflux and influx in Arabidopsis. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  6. Angular-momentum transport in nuclear collisions

    International Nuclear Information System (INIS)

    Wolschin, G.; Ayik, S.; Noerenberg, W.

    1978-01-01

    Among the various relaxation processes that can be observed in heavy-ion collisions, the dissipation of relative angular momentum into intrinsic angular momentum of the fragments attracts increasing attention. Here we present a transport theoretical description of angular-momentum and mass transport that allows for a transparent interpretation of the data. (orig.) [de

  7. Climate Change and Transportation

    OpenAIRE

    Yevdokimov, Yuri

    2010-01-01

    As stated at the beginning of this chapter, the relationship between transportation and climate is two-directional. Based on our statistical analysis performed for Canada, we can make some general conclusions about this relationship. On the one hand, transportation is one of the largest contributors to GHG emissions which, in turn, cause various changes in climate. On the other hand, these climate changes negatively affect transportation in terms of its infrastructure and operations. Therefor...

  8. Transport theory of dissipative heavy-ion collisions

    International Nuclear Information System (INIS)

    Norenberg, W.

    1979-01-01

    The lectures present the formulation of a transport theory, the derivation of a practicable transport equation (Fokker-Planck equation) and the evaluation of transport coefficients for dissipative (or deeply inelastic) heavy-ion collisions. The applicability of the theoretical concept is tested with remarkable success in the analyses of various experimental information (mass transfer, angular-momentum dissipation and energy loss). Some critical remarks on the present situation of transport theories are added. Future developments are outlined. (author)

  9. Transport theory of dissipative heavy-ion collisions

    International Nuclear Information System (INIS)

    Noerenberg, W.

    1979-03-01

    The lectures present the formulation of a transport theory, the derivation of a practicable transport equation (Fokker-Planck equation) and the evaluation of transport coefficients for dissipative (or deeply inelastic) heavyion collisions. The applicability of the theoretical concept is tested with remarkable success in the analyses of various experimental informations (mass transfer, angular-momentum dissipation and energy loss). Some critical remarks on the present situation of transport theories are added. Future developments are outlined. (orig.) [de

  10. Anisotropy effect of the clay soil masses on the stress-strain state of transport tunnels

    Directory of Open Access Journals (Sweden)

    Yushkov Boris Semenovich

    2014-09-01

    Full Text Available The article considers the kinds of clay soil mass anisotropy in the form of the spatial heterogeneity of properties of thawed and frozen soils, ambiguity of the frost heaving values and shrinkage in different directions. The questions of anisotropy of the clay soil properties at the positive temperatures are reported. The dependence of the heterogeneity of the physical and mechanical properties of frozen soils from the cryogenic texture, natural arrangement, different types of stratification and interbedding is considered. Indexes of the strength and strain anisotropy are noted. The accounting possibilities of the basic numerical indexes of heaving phenomena from the standpoint of anisotropy of the properties and processes inherent in the freezing through soil are analyzed by substitution in the heaving strain formula. The unevenness of thawed soil shrinkage in vertical and horizontal directions is noted during the freezing of the top layer. The unevenness of shrinkage in different directions is connected with kind of stress and cryogenic texture. Anisotropy of the frost heaving process is considered in the context of one-dimensional and non-one-dimensional problem depending on the amount of the freezing fronts and their direction. There is summarized the effect of anisotropy appearances on the stress-strain state of the transport tunnel. One can conclude that the resulting non-uniformity of heaving and shrinkage in conjunction with anisotropic properties of frozen soils, is a significant component in the complex of power factors determining the optimal design solution of a transport tunnel.

  11. Transportation Improvement Program of the Mid-Ohio Regional Planning Commission

    Science.gov (United States)

    1996-06-20

    The MORPC Transportation Improvement program (TIP) is a staged, multi-year schedule of regionally significant transportation improvements in the Columbus area. The Federal-aid Highway Act of 1962 and the federal Urban Mass Transportation Act of 1964 ...

  12. Characteristics, sources, and transport of aerosols measured in spring 2008 during the aerosol, radiation, and cloud processes affecting Arctic Climate (ARCPAC Project

    Directory of Open Access Journals (Sweden)

    C. A. Brock

    2011-03-01

    Full Text Available We present an overview of the background, scientific goals, and execution of the Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC project of April 2008. We then summarize airborne measurements, made in the troposphere of the Alaskan Arctic, of aerosol particle size distributions, composition, and optical properties and discuss the sources and transport of the aerosols. The aerosol data were grouped into four categories based on gas-phase composition. First, the background troposphere contained a relatively diffuse, sulfate-rich aerosol extending from the top of the sea-ice inversion layer to 7.4 km altitude. Second, a region of depleted (relative to the background aerosol was present within the surface inversion layer over sea-ice. Third, layers of dense, organic-rich smoke from open biomass fires in southern Russia and southeastern Siberia were frequently encountered at all altitudes from the top of the inversion layer to 7.1 km. Finally, some aerosol layers were dominated by components originating from fossil fuel combustion.

    Of these four categories measured during ARCPAC, the diffuse background aerosol was most similar to the average springtime aerosol properties observed at a long-term monitoring site at Barrow, Alaska. The biomass burning (BB and fossil fuel layers were present above the sea-ice inversion layer and did not reach the sea-ice surface during the course of the ARCPAC measurements. The BB aerosol layers were highly scattering and were moderately hygroscopic. On average, the layers produced a noontime net heating of ~0.1 K day−1 between 3 and 7 km and a slight cooling at the surface. The ratios of particle mass to carbon monoxide (CO in the BB plumes, which had been transported over distances >5000 km, were comparable to the high end of literature values derived from previous measurements in wildfire smoke. These ratios suggest minimal precipitation scavenging and removal of the BB

  13. High-throughput tandem mass spectrometry multiplex analysis for newborn urinary screening of creatine synthesis and transport disorders, Triple H syndrome and OTC deficiency.

    Science.gov (United States)

    Auray-Blais, Christiane; Maranda, Bruno; Lavoie, Pamela

    2014-09-25

    Creatine synthesis and transport disorders, Triple H syndrome and ornithine transcarbamylase deficiency are treatable inborn errors of metabolism. Early screening of patients was found to be beneficial. Mass spectrometry analysis of specific urinary biomarkers might lead to early detection and treatment in the neonatal period. We developed a high-throughput mass spectrometry methodology applicable to newborn screening using dried urine on filter paper for these aforementioned diseases. A high-throughput methodology was devised for the simultaneous analysis of creatine, guanidineacetic acid, orotic acid, uracil, creatinine and respective internal standards, using both positive and negative electrospray ionization modes, depending on the compound. The precision and accuracy varied by screening for inherited disorders by biochemical laboratories. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Transportation and public health.

    Science.gov (United States)

    Litman, Todd

    2013-01-01

    This article investigates various ways that transportation policy and planning decisions affect public health and better ways to incorporate public health objectives into transport planning. Conventional planning tends to consider some public health impacts, such as crash risk and pollution emissions measured per vehicle-kilometer, but generally ignores health problems resulting from less active transport (reduced walking and cycling activity) and the additional crashes and pollution caused by increased vehicle mileage. As a result, transport agencies tend to undervalue strategies that increase transport system diversity and reduce vehicle travel. This article identifies various win-win strategies that can help improve public health and other planning objectives.

  15. Initial results with the Berkeley on-line mass separator-RAMA

    International Nuclear Information System (INIS)

    Cerny, J.; Moltz, D.M.; Evans, H.C.; Vieira, D.J.; Parry, R.F.; Wouters, J.M.; Gough, R.A.; Zisman, M.S.

    1977-11-01

    Initial performance is described for a reasonably fast and universal (having little or no chemical selectivity) on-line mass analysis system used to expand capabilities in studying nuclei far from stability. The system is termed RAMA, an acronym for Recoil Atom Mass Analyzer. Basically, this system utilizes the helium-jet method to transport activity to a Sidenius hollow-cathode ion source which is coupled to a mass spectrometer. Initial experiments and planned improvements are discussed. Transport efficiencies of between 10 and 60 percent have routinely been achieved, though the latter is much more typical when conditions are optimized

  16. Unsaturated transport of inorganic cations in undisturbed soil columns

    International Nuclear Information System (INIS)

    Jardine, P.M.; Jacobs, G.K.

    1990-01-01

    The unsaturated transport of Sr, Co, and Ca were studied in undisturbed soil columns (14 x 40 cm) of saprolitic shale to evaluate the significance of time dependent mass transfer and multispecies competitive exchange during transport. Observed breakthrough curves (BTCs) for Sr and Co were delayed relative to nonreactive Br BTC indicating that the former tracers were adsorbed by the soil. Effluent concentrations of Sr and Co were modeled with the classical convective dispersive (CD) equation and nonequilibrium mass transfer considerations did not appear necessary. Cation exchange equilibria relationships obtained from both shake batch and miscible displacement methods adequately described the thermodynamic processes which were prevalent during transport. These results suggest that the preferential transport of a reactive tracer is negligible for the realistic unsaturated conditions used in the study, and that the massive saprolite within the soil is a chemically active constituent during transport of reactive solutes. The implications of these findings for modeling in-situ subsurface contaminant transport are discussed. 7 refs., 9 figs

  17. Transport modeling of sorbing tracers in artificial fractures

    International Nuclear Information System (INIS)

    Keum, Dong Kwon; Baik, Min Hoon; Park, Chung Kyun; Cho, Young Hwan; Hahn, Phil Soo.

    1998-02-01

    This study was performed as part of a fifty-man year attachment program between AECL (Atomic Energy Canada Limited) and KAERI. Three kinds of computer code, HDD, POMKAP and VAMKAP, were developed to predict transport of contaminants in fractured rock. MDDM was to calculate the mass transport of contaminants in a single fracture using a simple hydrodynamic dispersion diffusion model. POMKAP was to predict the mass transport of contaminants by a two-dimensional variable aperture model. In parallel with modeling, the validation of models was also performed through the analysis of the migration experimental data obtained in acrylic plastic and granite artificial fracture system at the Whiteshell laboratories, AECL, Canada. (author). 34 refs., 11 tabs., 76 figs

  18. Transport modeling of sorbing tracers in artificial fractures

    Energy Technology Data Exchange (ETDEWEB)

    Keum, Dong Kwon; Baik, Min Hoon; Park, Chung Kyun; Cho, Young Hwan; Hahn, Phil Soo

    1998-02-01

    This study was performed as part of a fifty-man year attachment program between AECL (Atomic Energy Canada Limited) and KAERI. Three kinds of computer code, HDD, POMKAP and VAMKAP, were developed to predict transport of contaminants in fractured rock. MDDM was to calculate the mass transport of contaminants in a single fracture using a simple hydrodynamic dispersion diffusion model. POMKAP was to predict the mass transport of contaminants by a two-dimensional variable aperture model. In parallel with modeling, the validation of models was also performed through the analysis of the migration experimental data obtained in acrylic plastic and granite artificial fracture system at the Whiteshell laboratories, AECL, Canada. (author). 34 refs., 11 tabs., 76 figs.

  19. Brine transport in porous media self-similar solutions

    NARCIS (Netherlands)

    C.J. van Duijn (Hans); L.A. Peletier (Bert); R.J. Schotting (Ruud)

    1996-01-01

    textabstractIn this paper we analyze a model for brine transport in porous media, which includes a mass balance for the fluid, a mass balance for salt, Darcy's law and an equation of state, which relates the fluid density to the salt mass fraction. This model incorporates the effect of local volume

  20. On the Mass Balance of Asphaltene Precipitation

    DEFF Research Database (Denmark)

    Andersen, Simon Ivar; Lira-Galeana, C.; Stenby, Erling Halfdan

    2001-01-01

    In the evaluation of experimental data as well as in calculation of phase equilibria the necessity of the application of mass balances is obvious. In the case of asphaltenes the colloidal nature of these compounds may highly affect the mass balance. In the present paper several experiments are pe......, and that the material in the second precipitation step was often of higher apparent molecular weight anti had an increased overall absorbance coefficient.......In the evaluation of experimental data as well as in calculation of phase equilibria the necessity of the application of mass balances is obvious. In the case of asphaltenes the colloidal nature of these compounds may highly affect the mass balance. In the present paper several experiments...... indicates that in temperature experiments as well as in solvent series experiments the precipitation of heavy asphaltenes affects the following precipitation of lighter asphaltenes. In both cases the mass balance using standard separation techniques cannot be closed, as less material is precipitated...

  1. Sediment transport through self-adjusting, bedrock-walled waterfall plunge pools

    Science.gov (United States)

    Scheingross, Joel S.; Lamb, Michael P.

    2016-05-01

    Many waterfalls have deep plunge pools that are often partially or fully filled with sediment. Sediment fill may control plunge-pool bedrock erosion rates, partially determine habitat availability for aquatic organisms, and affect sediment routing and debris flow initiation. Currently, there exists no mechanistic model to describe sediment transport through waterfall plunge pools. Here we develop an analytical model to predict steady-state plunge-pool depth and sediment-transport capacity by combining existing jet theory with sediment transport mechanics. Our model predicts plunge-pool sediment-transport capacity increases with increasing river discharge, flow velocity, and waterfall drop height and decreases with increasing plunge-pool depth, radius, and grain size. We tested the model using flume experiments under varying waterfall and plunge-pool geometries, flow hydraulics, and sediment size. The model and experiments show that through morphodynamic feedbacks, plunge pools aggrade to reach shallower equilibrium pool depths in response to increases in imposed sediment supply. Our theory for steady-state pool depth matches the experiments with an R2 value of 0.8, with discrepancies likely due to model simplifications of the hydraulics and sediment transport. Analysis of 75 waterfalls suggests that the water depths in natural plunge pools are strongly influenced by upstream sediment supply, and our model provides a mass-conserving framework to predict sediment and water storage in waterfall plunge pools for sediment routing, habitat assessment, and bedrock erosion modeling.

  2. Transport policy and health inequalities: a health impact assessment of Edinburgh's transport policy.

    Science.gov (United States)

    Gorman, D; Douglas, M J; Conway, L; Noble, P; Hanlon, P

    2003-01-01

    Health impact assessment (HIA) can be used to examine the relationships between inequalities and health. This HIA of Edinburgh's transport policy demonstrates how HIA can examine how different transport policies can affect different population groupings to varying degrees. In this case, Edinburgh's economy is based on tourism, financial services and Government bodies. These need a good transport infrastructure, which maintains a vibrant city centre. A transport policy that promotes walking, cycling and public transport supports this and is also good for health. The HIA suggested that greater spend on public transport and supporting sustainable modes of transport was beneficial to health, and offered scope to reduce inequalities. This message was understood by the City Council and influenced the development of the city's transport and land-use strategies. The paper discusses how HIA can influence public policy.

  3. Does fetal smoke exposure affect childhood bone mass? The Generation R Study

    NARCIS (Netherlands)

    D.H.M. Heppe (Denise); M.C. Medina-Gomez (Carolina); A. Hofman (Albert); F. Rivadeneira Ramirez (Fernando); V.W.V. Jaddoe (Vincent)

    2015-01-01

    textabstractSummary: We assessed the intrauterine influence of maternal smoking on childhood bone mass by comparing parental prenatal and postnatal smoking habits. We observed higher bone mass in children exposed to maternal smoking, explained by higher body weight. Maternal smoking or related

  4. Summer transport patterns affecting the Mohave Power Project emission

    Energy Technology Data Exchange (ETDEWEB)

    Farber, R.J.; Hoffer, T.E.; Green, M.C.; Walsh, P.A. [Southern California Edison, Rosemead, CA (United States)

    1997-03-01

    The Mohave Power Project (MPP) is an isolated 1580-MW coal-fired electric generating plant located in Laughlin, NV. Laughlin is a small desert gambling town situated in the lower Colorado River Valley near the junction of three states: Nevada, California, and Arizona. The location of the MPP is approximately 155 km southwest of the western end of the Grand Canyon National Park and about 240 km southwest from the Grand Canyon Village. This paper describes the summer transport patterns of the MPP emittants using illustrated examples from the Project MOHAVE (measurements of Haze and Visual Effects) 1992 summer intensive study. The intensive study lasted 50 days from mid-July through August and encompassed the major meteorological patterns associated with southwestern US summer meteorology. The MPP emittants were transported towards the Grand Canyon (north to the northeast) during more than 80% of the total hours. Airflow as from the south most of the time due to a combination of the semi-permanent thermal low, differential heating between the Gulf of California and lower Colorado River Valley, and upslope heating of the southern and western slopes of the nearby Colorado Plateau. 14 refs., 12 figs., 2 tabs.

  5. Modeling Fate and Transport of Rotavirus in Surface Flow by Integrating WEPP and a Pathogen Transport Model

    Science.gov (United States)

    Bhattarai, R.; Kalita, P. K.; Davidson, P. C.; Kuhlenschmidt, M. S.

    2012-12-01

    More than 3.5 million people die each year from a water related diseases in this world. Every 20 seconds, a child dies from a water-related illness. Even in a developed country like the United States, there have been at least 1870 outbreaks associated with drinking water during the period of 1920 to 2002, causing 883,806 illnesses. Most of these outbreaks are resulted due to the presence of microbial pathogens in drinking water. Rotavirus infection has been recognized as the most common cause of diarrhea in young children throughout the world. Laboratory experiments conducted at the University of Illinois have demonstrated that recovery of rotavirus has been significantly affected by climatic and soil-surface conditions like slope, soil types, and ground cover. The objective of this study is to simulate the fate and transport of Rotavirus in overland and near-surface flow using a process-based model. In order to capture the dynamics of sediment-bound pathogens, the Water Erosion Prediction Project (WEPP) is coupled with the pathogen transport model. Transport of pathogens in overland flow can be simulated mathematically by including terms for the concentration of the pathogens in the liquid phase (in suspension or free-floating) and the solid phase (adsorbed to the fine solid particles like clay and silt). Advection, adsorption, and decay processes are considered. The mass balance equations are solved using numerical technique to predict spatial and temporal changes in pathogen concentrations in two phases. Outputs from WEPP simulations (flow velocity, depth, saturated conductivity and the soil particle fraction exiting in flow) are transferred as input for the pathogen transport model. Three soil types and three different surface cover conditions have been used in the experimental investigations. Results from these conditions have been used in calibrating and validating the simulation results. Bare surface conditions have produced very good agreement between

  6. Variability of Atmospheric Radon-222 and Secondary Aerosol Components in Accordance with Air Mass Transport Pathways at Jeju Island, Korea, during 2011-2014

    Energy Technology Data Exchange (ETDEWEB)

    Bu, Jun-Oh; Song, Jung-Min; Kim, Won-Hyung; Kang, Chang-Hee [Jeju National University, Jeju (Korea, Republic of); Chambers, Scott D.; Williams, Alastair G. [Australian Nuclear Science and Technology Organisation, Kirrawee DC (Australia); Lee, Chulkyu [Korea Meteorological Administration, Seoul (Korea, Republic of)

    2016-06-15

    Real-time monitoring of hourly atmospheric Radon-222 concentration and three daily monitoring of the secondary aerosol components of PM{sub 10} were performed throughout 2011-2014 at Gosan station, Jeju Island, in order to characterize their background levels and temporal variation. The annual mean radon and PM{sub 10} mass concentrations were 2326 ± 1198 mBq/m{sup 3} and 37.1 ± 19.5 μg/m{sup 3}, respectively. Based on cluster analyses of air mass back trajectories, the frequencies of air masses originating from continental China, the Korean Peninsula, and North Pacific Ocean routes were 53, 28, and 19%, respectively. When the air masses were transported to Jeju Island from continental China, the concentrations of radon and secondary aerosol components (nss-SO{sub 4}{sup 2-}, NO{sub 3}{sup -}, NH{sub 4}{sup +}) were relatively high: 2577 mBq/m{sup 3} and 14.4 μg/m{sup 3}, respectively. In cases when the air masses have moved from the Korean Peninsula, the corresponding concentrations were 2247 mBq/m{sup 3} and 11.4 μg/m{sup 3}, respectively. On the other hand, when the air masses came from the North Pacific Ocean, their radon and secondary aerosol concentrations decreased much further, 1372 mBq/m{sup 3} and 10.5 μg/m{sup 3}, respectively. Consequently, the variability of atmospheric radon concentrations at Gosan station might be characterized by synoptic changes in air mass fetch as well as diurnal changes in atmospheric mixing depth.

  7. Using spatially detailed water-quality data and solute-transport modeling to improve support total maximum daily load development

    Science.gov (United States)

    Walton-Day, Katherine; Runkel, Robert L.; Kimball, Briant A.

    2012-01-01

    Spatially detailed mass-loading studies and solute-transport modeling using OTIS (One-dimensional Transport with Inflow and Storage) demonstrate how natural attenuation and loading from distinct and diffuse sources control stream water quality and affect load reductions predicted in total maximum daily loads (TMDLs). Mass-loading data collected during low-flow from Cement Creek (a low-pH, metal-rich stream because of natural and mining sources, and subject to TMDL requirements) were used to calibrate OTIS and showed spatially variable effects of natural attenuation (instream reactions) and loading from diffuse (groundwater) and distinct sources. OTIS simulations of the possible effects of TMDL-recommended remediation of mine sites showed less improvement to dissolved zinc load and concentration (14% decrease) than did the TMDL (53-63% decrease). The TMDL (1) assumed conservative transport, (2) accounted for loads removed by remediation by subtracting them from total load at the stream mouth, and (3) did not include diffuse-source loads. In OTIS, loads were reduced near their source; the resulting concentration was decreased by natural attenuation and increased by diffuse-source loads during downstream transport. Thus, by not including natural attenuation and loading from diffuse sources, the TMDL overestimated remediation effects at low flow. Use of the techniques presented herein could improve TMDLs by incorporating these processes during TMDL development.

  8. Effects of repeated transport on Holstein calf post-transport behavior and feed intake.

    Science.gov (United States)

    Adams-Progar, A L; Friend, T H; Holub, G A; Krenek, A J; Garey, S M; Terrill, C L

    2015-02-01

    Previous studies have determined that stress causes decreases in feed intake and efficiency in livestock, but the effect of repeated transport on these parameters has not been well studied. This study determined how repeated transport affected calf post-transport behavior, feed intake, ADG, and feed conversion. Thirty-six 4-mo-old Holstein steer calves were housed in groups of 6 with each group randomly assigned to either transport or control treatments. Each calf was assigned to an individual Calan gate feeder and feed intake was recorded daily. Transport calves were transported for 6 h in their groups in a 7.3 by 2.4 m gooseneck trailer divided into 3 compartments, at an average density of 0.87 m/calf, every 7 d for 5 consecutive weeks. After return to their home pens, behavior was recorded for transported calves at 5-min intervals for 1 h. Calf ADG and feed conversion were analyzed in a mixed model ANOVA, whereas feed intake was analyzed as a repeated measure in a mixed model ANOVA. Post-transport, calves followed a pattern of drinking, eating, and then lying down. The highest (82 ± 5% calves) and lowest (0 ± 5% calves) incidences of eating behavior occurred 10 and 60 min post-transport, respectively. Control calves had a higher feed intake than transported calves overall (7.29 ± 0.22 kg for control and 6.91 ± 0.21 kg for transport; = 0.01), for the feeding posttreatment (6.78 ± 0.27 kg for control and 6.01 ± 0.28 kg for transport; = 0.007), and the day after treatment (7.83 ± 0.23 kg for control and 7.08 ± 0.15 kg for transport; = 0.02). Feed intake for the feeding post-transport for transport calves significantly decreased after the second transport but increased with each successive transport ( < 0.0001). Overall, control calves had higher ADG than transported calves (1.34 ± 0.13 kg/d for control and 1.15 ± 0.12 kg/d for transport; = 0.006). No significant difference ( = 0.12) between treatments was detected for feed conversion. These results

  9. Specific Space Transportation Costs to GEO - Past, Present and Future

    Science.gov (United States)

    Koelle, Dietrich E.

    2002-01-01

    The largest share of space missions is going to the Geosynchronous Orbit (GEO); they have the highest commercial importance. The paper first shows the historic trend of specific transportation costs to GEO from 1963 to 2002. It started out with more than 500 000 /kg(2002-value) and has come down to 36 000 /kg. This reduction looks impressive, however, the reason is NOT improved technology or new techniques but solely the growth of GEO payloads`unit mass. The first GEO satellite in 1963 did have a mass of 36 kg mass (BoL) . This has grown to a weight of 1600 kg (average of all GEO satellites) in the year 2000. Mass in GEO after injection is used here instead of GTO mass since the GTO mass depends on the launch site latitude. The specific cost reduction is only due to the "law-of-scale", valid in the whole transportation business: the larger the payload, the lower the specific transportation cost. The paper shows the actual prices of launch services to GTO by the major launch vehicles. Finally the potential GEO transportation costs of future launch systems are evaluated. What is the potential reduction of specific transportation costs if reusable elements are introduced in future systems ? Examples show that cost reductions up to 75 % seem achievable - compared to actual costs - but only with launch systems optimized according to modern principles of cost engineering. 1. 53rd International Astronautical Congress, World Space Congress Houston 2. First Submission 3. Specific Space Transportation Costs to GEO - Past, Present and Future 4. KOELLE, D.E. 5. IAA.1.1 Launch Vehicles' Cost Engineering and Economic Competitiveness 6. D.E. Koelle; A.E. Goldstein 7. One overhead projector and screen 8. Word file attached 9. KOELLE I have approval to attend the Congress. I am not willing to present this paper at the IAC Public Outreach Program.

  10. Approach for domestic preparation of standard material (LSD spike) for isotope dilution mass spectrometry

    International Nuclear Information System (INIS)

    Ishikawa, Fumitaka; Sumi, Mika; Chiba, Masahiko; Suzuki, Toru; Abe, Tomoyuki; Kuno, Yusuke

    2008-01-01

    The accountancy analysis of the nuclear fuel material at Plutonium Fuel Development Center of JAEA is performed by isotope dilution mass spectrometry (IDMS; Isotope Dilution Mass Spectrometry). IDMS requires the standard material called LSD spike (Large Size Dried spike) which is indispensable for the accountancy in the facilities where the nuclear fuel materials are handled. Although the LSD spike and Pu source material have been supplied from foreign countries, the transportation for such materials has been getting more difficult recently. This difficulty may affect the operation of nuclear facilities in the future. Therefore, research and development of the domestic LSD spike and base material has been performed at JAEA. Certification for such standard nuclear materials including spikes produced in Japan is being studied. This report presents the current status and the future plan for the technological development. (author)

  11. Office of Emergency Transportation: Mission and Function

    Energy Technology Data Exchange (ETDEWEB)

    Barry, G W

    1983-08-01

    The Department of Transportation's Office of Emergency Transportation (OET) provides emergency resource management planning for civil transportation in crisis situations. Crises, including the worst-case emergency, war, require management of the department's operating elements: the U.S. Coast Guard, the Federal Aviation Administration, the Urban Mass Transportation Administration, and the Maritime Administration, and coordination with outside transportation agencies. The latter include the Interstate Commerce Commission, the Civil Aeronautics Board, the Corps of Engineers, the Civil Works Rivers and Harbors Division, and the Tennessee Valley Authority. During the 1979 energy crisis, OET served as a communications center to facilitate the national movement of fuel for all transportation modes.

  12. BiP Negatively Affects Ricin Transport

    Directory of Open Access Journals (Sweden)

    Kirsten Sandvig

    2013-05-01

    Full Text Available The AB plant toxin ricin binds both glycoproteins and glycolipids at the cell surface via its B subunit. After binding, ricin is endocytosed and then transported retrogradely through the Golgi to the endoplasmic reticulum (ER. In the ER, the A subunit is retrotranslocated to the cytosol in a chaperone-dependent process, which is not fully explored. Recently two separate siRNA screens have demonstrated that ER chaperones have implications for ricin toxicity. ER associated degradation (ERAD involves translocation of misfolded proteins from ER to cytosol and it is conceivable that protein toxins exploit this pathway. The ER chaperone BiP is an important ER regulator and has been implicated in toxicity mediated by cholera and Shiga toxin. In this study, we have investigated the role of BiP in ricin translocation to the cytosol. We first show that overexpression of BiP inhibited ricin translocation and protected cells against the toxin. Furthermore, shRNA-mediated depletion of BiP enhanced toxin translocation resulting in increased cytotoxicity. BiP-dependent inhibition of ricin toxicity was independent of ER stress. Our findings suggest that in contrast to what was shown with the Shiga toxin, the presence of BiP does not facilitate, but rather inhibits the entry of ricin into the cytosol.

  13. Critical Factors Affecting the Success of Cloning, Expression, and Mass Production of Enzymes by Recombinant E. coli.

    Science.gov (United States)

    Fakruddin, Md; Mohammad Mazumdar, Reaz; Bin Mannan, Khanjada Shahnewaj; Chowdhury, Abhijit; Hossain, Md Nur

    2013-01-01

    E. coli is the most frequently used host for production of enzymes and other proteins by recombinant DNA technology. E. coli is preferable for its relative simplicity, inexpensive and fast high-density cultivation, well-known genetics, and large number of compatible molecular tools available. Despite all these advantages, expression and production of recombinant enzymes are not always successful and often result in insoluble and nonfunctional proteins. There are many factors that affect the success of cloning, expression, and mass production of enzymes by recombinant E. coli. In this paper, these critical factors and approaches to overcome these obstacles are summarized focusing controlled expression of target protein/enzyme in an unmodified form at industrial level.

  14. Assessing factors affecting the thermal properties of a passive thermal refuge using three-dimensional hydrodynamic flow and transport modeling

    Science.gov (United States)

    Decker, Jeremy D.; Swain, Eric D.; Stith, Bradley M.; Langtimm, Catherine A.

    2013-01-01

    Everglades restoration activities may cause changes to temperature and salinity stratification at the Port of the Islands (POI) marina, which could affect its suitability as a cold weather refuge for manatees. To better understand how the Picayune Strand Restoration Project (PSRP) may alter this important resource in Collier County in southwestern Florida, the USGS has developed a three-dimensional hydrodynamic model for the marina and canal system at POI. Empirical data suggest that manatees aggregate at the site during winter because of thermal inversions that provide warmer water near the bottom that appears to only occur in the presence of salinity stratification. To study these phenomena, the environmental fluid dynamics code simulator was used to represent temperature and salinity transport within POI. Boundary inputs were generated using a larger two-dimensional model constructed with the flow and transport in a linked overland-aquifer density-dependent system simulator. Model results for a representative winter period match observed trends in salinity and temperature fluctuations and produce temperature inversions similar to observed values. Modified boundary conditions, representing proposed PSRP alterations, were also tested to examine the possible effect on the salinity stratification and temperature inversion within POI. Results show that during some periods, salinity stratification is reduced resulting in a subsequent reduction in temperature inversion compared with the existing conditions simulation. This may have an effect on POI’s suitability as a passive thermal refuge for manatees and other temperature-sensitive species. Additional testing was completed to determine the important physical relationships affecting POI’s suitability as a refuge.

  15. Transport of Chemical Vapors from Subsurface Sources to Atmosphere as Affected by Shallow Subsurface and Atmospheric Conditions

    Science.gov (United States)

    Rice, A. K.; Smits, K. M.; Hosken, K.; Schulte, P.; Illangasekare, T. H.

    2012-12-01

    Understanding the movement and modeling of chemical vapor through unsaturated soil in the shallow subsurface when subjected to natural atmospheric thermal and mass flux boundary conditions at the land surface is of importance to applications such as landmine detection and vapor intrusion into subsurface structures. New, advanced technologies exist to sense chemical signatures at the land/atmosphere interface, but interpretation of these sensor signals to make assessment of source conditions remains a challenge. Chemical signatures are subject to numerous interactions while migrating through the unsaturated soil environment, attenuating signal strength and masking contaminant source conditions. The dominant process governing movement of gases through porous media is often assumed to be Fickian diffusion through the air phase with minimal or no quantification of other processes contributing to vapor migration, such as thermal diffusion, convective gas flow due to the displacement of air, expansion/contraction of air due to temperature changes, temporal and spatial variations of soil moisture and fluctuations in atmospheric pressure. Soil water evaporation and interfacial mass transfer add to the complexity of the system. The goal of this work is to perform controlled experiments under transient conditions of soil moisture, temperature and wind at the land/atmosphere interface and use the resulting dataset to test existing theories on subsurface gas flow and iterate between numerical modeling efforts and experimental data. Ultimately, we aim to update conceptual models of shallow subsurface vapor transport to include conditionally significant transport processes and inform placement of mobile sensors and/or networks. We have developed a two-dimensional tank apparatus equipped with a network of sensors and a flow-through head space for simulation of the atmospheric interface. A detailed matrix of realistic atmospheric boundary conditions was applied in a series of

  16. Chemical form of selenium affects its uptake, transport, and glutathione peroxidase activity in the human intestinal Caco-2 cell model.

    Science.gov (United States)

    Zeng, Huawei; Jackson, Matthew I; Cheng, Wen-Hsing; Combs, Gerald F

    2011-11-01

    Determining the effect of selenium (Se) chemical form on uptake, transport, and glutathione peroxidase activity in human intestinal cells is critical to assess Se bioavailability at nutritional doses. In this study, we found that two sources of L-selenomethionine (SeMet) and Se-enriched yeast each increased intracellular Se content more effectively than selenite or methylselenocysteine (SeMSC) in the human intestinal Caco-2 cell model. Interestingly, SeMSC, SeMet, and digested Se-enriched yeast were transported at comparable efficacy from the apical to basolateral sides, each being about 3-fold that of selenite. In addition, these forms of Se, whether before or after traversing from apical side to basolateral side, did not change the potential to support glutathione peroxidase (GPx) activity. Although selenoprotein P has been postulated to be a key Se transport protein, its intracellular expression did not differ when selenite, SeMSC, SeMet, or digested Se-enriched yeast was added to serum-contained media. Taken together, our data show, for the first time, that the chemical form of Se at nutritional doses can affect the absorptive (apical to basolateral side) efficacy and retention of Se by intestinal cells; but that, these effects are not directly correlated to the potential to support GPx activity.

  17. Evaluation of alternative public transportation systems in Izmit urban transportation via axiomatic design method

    Directory of Open Access Journals (Sweden)

    Gülşen AKMAN

    2016-02-01

    Full Text Available In the world and in our country, most of urban transportation is performed by public transportation. Public transportation is a system which provides transportation easiness and opportunity to people, not to vehicles. Therefore, giving priority to public transportation system is necessary in organizing urban transportation. In this study, in order to reduce traffic intensity and to facilitate passenger transportation in Izmit urban transportation, It is tried to determine appropriate public transportation system. For this, firstly, alternatives which could be used for public transportation were determined. These alternatives are metro, metrobus, tram, light rail system and monorail. Afterwards, the variables affecting decision making about public transportation were determined. These variables are cost, transportation line features, vehicle characteristics, sensitivity to environment and customer satisfaction. Lastly, most appropriate public transportation system is proposed by using the axiomatic design method. As a result, light trail system and metrobus are determined as the most appropriate alternatives for Izmit public transportation system.Keywords: Urban transportation, Multi criteria decision making, Axiomatic design

  18. Effects of surface roughening on the mass transport and mechanical properties of ionic polymer-metal composite

    Science.gov (United States)

    Chang, Longfei; Asaka, Kinji; Zhu, Zicai; Wang, Yanjie; Chen, Hualing; Li, Dichen

    2014-06-01

    Ionic Polymer-Metal Composite (IPMC) has been well-documented of being a promising functional material in extensive applications. In its most popular and traditional manufacturing technique, roughening is a key process to ensure a satisfying performance. In this paper, based on a lately established multi-physical model, the effect of roughening process on the inner mass transportation and the electro-active output of IPMC were investigated. In the model, the electro-chemical field was monitored by Poisson equation and a properly simplified Nernst-Planck equation set, while the mechanical field was evaluated on the basis of volume strain effect. Furthermore, with Ramo-Shockley theorem, the out-circuit current and accumulated charge on the electrode were bridged with the inner cation distribution. Besides, nominal current and charge density as well as the curvature of the deformation were evaluated to characterize the performance of IPMC. The simulation was implemented by Finite Element Method with Comsol Multi-physics, based on two groups of geometrical models, those with various rough interface and those with different thickness. The results of how the roughening impact influences on the performance of IPMC were discussed progressively in three aspects, steady-state distribution of local potential and mass concentration, current response and charge accumulation, as well as the curvature of deformation. Detailed explanations for the performance improvement resulted from surface roughening were provided from the micro-distribution point of view, which can be further explored for the process optimization of IPMC.

  19. Helicopter transport: help or hindrance?

    Science.gov (United States)

    Plevin, Rebecca E; Evans, Heather L

    2011-12-01

    Traumatic injury continues to be a significant cause of morbidity and mortality in the year 2011. In addition, the healthcare expenditures and lost years of productivity represent significant economic cost to the affected individuals and their communities. Helicopters have been used to transport trauma patients for the past 40 years, but there are conflicting data on the benefits of helicopter emergency medical service (HEMS) in civilian trauma systems. Debate persists regarding the mortality benefit, cost-effectiveness, and safety of helicopter usage, largely because the studies to date vary widely in design and generalizability to trauma systems serving heterogeneous populations and geography. Strict criteria should be established to determine when HEMS transport is warranted and most likely to positively affect patient outcomes. Individual trauma systems should conduct an assessment of their resources and needs in order to most effectively incorporate helicopter transport into their triage model. Research suggests that HEMS improves mortality in certain subgroups of trauma patients, both after transport from the scene of injury and following interfacility transport. Studies examining the cost-effectiveness of HEMS had mixed results, but the majority found that it is a cost-effective tool. Safety remains an issue of contention with HEMS transport, as helicopters are associated with significant safety risk to the crew and patient. However, this risk may be justified provided there is a substantial mortality benefit to be gained. Recent studies suggest that strict criteria should be established to determine when helicopter transport is warranted and most likely to positively affect patient outcomes. Individual trauma systems should conduct an assessment of their resources and needs in order to most effectively incorporate HEMS into their triage model. This will enable regional hospitals to determine if the costs and safety risks associated with HEMS are worthwhile

  20. From producer to consumer: greenhouse tomato quality as affected by variety, maturity stage at harvest, transport conditions, and supermarket storage.

    Science.gov (United States)

    Verheul, Michèl J; Slimestad, Rune; Tjøstheim, Irene Holta

    2015-05-27

    Possible causes for differences in quality traits at the time of buying were studied in two widely different red tomato types. Three maturity stages were harvested from commercial greenhouses and transferred immediately to controlled environments simulating different storage, transport, and supermarket conditions. Results show significant differences in development of color, fruit firmness, contents of soluble solids (SSC), titratable acids (TTA), phenolics, and carotenoids from harvest to sale, as related to postharvest conditions. Fruit firmness, SSC, and TTA of vine-ripened red cherry tomatoes was 30, 55 and 11% higher than for those harvested at breakers and ripened to red. Temperature, light, UVC radiation, or ethylene during 4 days transport affected tomato quality traits, and differences persisted during 3 weeks of supermarket storage. Ethylene exposure gave a 3.7-fold increase in lycopene content in cherry tomatoes, whereas UVC hormesis revealed a 6-fold increase compared with the control. Results can be used to update recommendations concerning optimal handling.

  1. Transport of reactive and nonreactive solutes

    International Nuclear Information System (INIS)

    Garabedian, S.P.; Leblanc, D.R.

    1990-01-01

    A natural-gradient tracer test was conducted on Cape Cod, Massachusetts, to examine the transport and dispersion of solutes in a sand and gravel aquifer. A nonreactive tracer, bromide, and two reactive tracers, lithium and molybdate, were injected as a pulse in July 1985 and monitored in three dimensions for 3 years as they moved 280 meters downgradient through an array of multilevel samplers. The tracer transport was quantified using spatial moments. The calculated total mass of bromide for each sampling date varied from 86 to 105 percent of the injected mass, and the center of mass moved at a nearly constant horizontal velocity of 0.42 meters per day. The bromide cloud also moved downward about 4 meters, probably because of density-induced sinking and accretion of areal recharge from precipitation. After 200 meters of transport, the bromide cloud was more than 80 meters long but only 14 meters wide and 6 meters thick. The change in longitudinal dispersivity had reached a constant value (0.96 meters). The transverse horizontal and transverse vertical dispersivities were much smaller (1.8 centimeters and 1.5 millimeters, respectively) than the longitudinal value. The lithium and molybdate clouds followed the same path as the bromide cloud, but a significant amount of their mass was adsorbed onto the aquifer sediments, and their rates of movement were retarded about 50 percent relative to the bromide movement. (Author) (5 figs., 23 refs.)

  2. Effect of External Electric Field on Substrate Transport of a Secondary Active Transporter.

    Science.gov (United States)

    Zhang, Ji-Long; Zheng, Qing-Chuan; Yu, Li-Ying; Li, Zheng-Qiang; Zhang, Hong-Xing

    2016-08-22

    Substrate transport across a membrane accomplished by a secondary active transporter (SAT) is essential to the normal physiological function of living cells. In the present research, a series of all-atom molecular dynamics (MD) simulations under different electric field (EF) strengths was performed to investigate the effect of an external EF on the substrate transport of an SAT. The results show that EF both affects the interaction between substrate and related protein's residues by changing their conformations and tunes the timeline of the transport event, which collectively reduces the height of energy barrier for substrate transport and results in the appearance of two intermediate conformations under the existence of an external EF. Our work spotlights the crucial influence of external EFs on the substrate transport of SATs and could provide a more penetrating understanding of the substrate transport mechanism of SATs.

  3. Light Quality Affects Chloroplast Electron Transport Rates Estimated from Chl Fluorescence Measurements.

    Science.gov (United States)

    Evans, John R; Morgan, Patrick B; von Caemmerer, Susanne

    2017-10-01

    Chl fluorescence has been used widely to calculate photosynthetic electron transport rates. Portable photosynthesis instruments allow for combined measurements of gas exchange and Chl fluorescence. We analyzed the influence of spectral quality of actinic light on Chl fluorescence and the calculated electron transport rate, and compared this with photosynthetic rates measured by gas exchange in the absence of photorespiration. In blue actinic light, the electron transport rate calculated from Chl fluorescence overestimated the true rate by nearly a factor of two, whereas there was closer agreement under red light. This was consistent with the prediction made with a multilayer leaf model using profiles of light absorption and photosynthetic capacity. Caution is needed when interpreting combined measurements of Chl fluorescence and gas exchange, such as the calculation of CO2 partial pressure in leaf chloroplasts. © Crown copyright 2017.

  4. Transport at basin scales: 1. Theoretical framework

    Directory of Open Access Journals (Sweden)

    A. Rinaldo

    2006-01-01

    Full Text Available The paper describes the theoretical framework for a class of general continuous models of the hydrologic response including both flow and transport of reactive solutes. The approach orders theoretical results appeared in disparate fields into a coherent theoretical framework for both hydrologic flow and transport. In this paper we focus on the Lagrangian description of the carrier hydrologic runoff and of the processes embedding catchment-scale generation and transport of matter carried by runoff. The former defines travel time distributions, while the latter defines lifetime distributions, here thought of as contact times between mobile and immobile phases. Contact times are assumed to control mass transfer in a well-mixed approximation, appropriate in cases, like in basin-scale transport phenomena, where the characteristic size of the injection areas is much larger than that of heterogeneous features. As a result, we define general mass-response functions of catchments which extend to transport of matter geomorphologic theories of the hydrologic response. A set of examples is provided to clarify the theoretical results towards a computational framework for generalized applications, described in a companion paper.

  5. Mass transfer in nano-fluids: A review

    International Nuclear Information System (INIS)

    Ashrafmansouri, Seyedeh-Saba; Esfahany, Mohsen Nasr

    2014-01-01

    Growing attention has been recently paid to nano-fluids because of their potential for augmenting transfer processes - i.e., heat and mass transfer. Conflicting results have been reported in the literature on mass transfer in nano-fluids. The aim of this paper is to summarize the literature on mass transfer in nano-fluids stating the conflicts and possible reasons. Literature on mass transfer in nano-fluids has been reviewed in two sections. The first section concentrates on surveying mass diffusivity in nano-fluids while the second section focuses on convective mass transfer in nano-fluids. In each section, published articles, type of nano-fluids used, size and concentration range of nanoparticles, measurement methods, maximum observed enhancement, and suggested mass transport mechanisms are summarized. (authors)

  6. Development of transport technique by chilling for melon fly, Bactrocera cucurbitae Coquillett (Diptela: Dephritidae)

    International Nuclear Information System (INIS)

    Tanahara, A.; Kirihara, S.; Kakinohana, H.

    1994-01-01

    To evaluate the effect of chilling on mass-reared melon fly, Bactrocera cucurbitae COQ., groups of adult flies were exposed to 3, 0.5, -2.2 and -3.5°C for 6, 12, 24 and 48h. The recovery and longevity of adult chilled for less than 24h at about 0.5°C was not adversely affected. A special container for chilled flies, which was able to keep the temperature below 10°C for 4h, was designed for their long-distance transport. The longevities of flies using aerial distribution by helicopter and hand release on the ground using the chilled transport container were compared with direct release from an emergence box without chilling at Miyagi Island in Okinawa Prefecture. There were no significant differences in longevity between the three release methods

  7. Transport phenomena II essentials

    CERN Document Server

    REA, The Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Transport Phenomena II covers forced convention, temperature distribution, free convection, diffusitivity and the mechanism of mass transfer, convective mass transfer, concentration

  8. How do changes in warm-phase microphysics affect deep convective clouds?

    Science.gov (United States)

    Chen, Qian; Koren, Ilan; Altaratz, Orit; Heiblum, Reuven H.; Dagan, Guy; Pinto, Lital

    2017-08-01

    Understanding aerosol effects on deep convective clouds and the derived effects on the radiation budget and rain patterns can largely contribute to estimations of climate uncertainties. The challenge is difficult in part because key microphysical processes in the mixed and cold phases are still not well understood. For deep convective clouds with a warm base, understanding aerosol effects on the warm processes is extremely important as they set the initial and boundary conditions for the cold processes. Therefore, the focus of this study is the warm phase, which can be better resolved. The main question is: How do aerosol-derived changes in the warm phase affect the properties of deep convective cloud systems? To explore this question, we used a weather research and forecasting (WRF) model with spectral bin microphysics to simulate a deep convective cloud system over the Marshall Islands during the Kwajalein Experiment (KWAJEX). The model results were validated against observations, showing similarities in the vertical profile of radar reflectivity and the surface rain rate. Simulations with larger aerosol loading resulted in a larger total cloud mass, a larger cloud fraction in the upper levels, and a larger frequency of strong updrafts and rain rates. Enlarged mass both below and above the zero temperature level (ZTL) contributed to the increase in cloud total mass (water and ice) in the polluted runs. Increased condensation efficiency of cloud droplets governed the gain in mass below the ZTL, while both enhanced condensational and depositional growth led to increased mass above it. The enhanced mass loading above the ZTL acted to reduce the cloud buoyancy, while the thermal buoyancy (driven by the enhanced latent heat release) increased in the polluted runs. The overall effect showed an increased upward transport (across the ZTL) of liquid water driven by both larger updrafts and larger droplet mobility. These aerosol effects were reflected in the larger ratio

  9. How do changes in warm-phase microphysics affect deep convective clouds?

    Directory of Open Access Journals (Sweden)

    Q. Chen

    2017-08-01

    Full Text Available Understanding aerosol effects on deep convective clouds and the derived effects on the radiation budget and rain patterns can largely contribute to estimations of climate uncertainties. The challenge is difficult in part because key microphysical processes in the mixed and cold phases are still not well understood. For deep convective clouds with a warm base, understanding aerosol effects on the warm processes is extremely important as they set the initial and boundary conditions for the cold processes. Therefore, the focus of this study is the warm phase, which can be better resolved. The main question is: How do aerosol-derived changes in the warm phase affect the properties of deep convective cloud systems? To explore this question, we used a weather research and forecasting (WRF model with spectral bin microphysics to simulate a deep convective cloud system over the Marshall Islands during the Kwajalein Experiment (KWAJEX. The model results were validated against observations, showing similarities in the vertical profile of radar reflectivity and the surface rain rate. Simulations with larger aerosol loading resulted in a larger total cloud mass, a larger cloud fraction in the upper levels, and a larger frequency of strong updrafts and rain rates. Enlarged mass both below and above the zero temperature level (ZTL contributed to the increase in cloud total mass (water and ice in the polluted runs. Increased condensation efficiency of cloud droplets governed the gain in mass below the ZTL, while both enhanced condensational and depositional growth led to increased mass above it. The enhanced mass loading above the ZTL acted to reduce the cloud buoyancy, while the thermal buoyancy (driven by the enhanced latent heat release increased in the polluted runs. The overall effect showed an increased upward transport (across the ZTL of liquid water driven by both larger updrafts and larger droplet mobility. These aerosol effects were reflected in the

  10. An Inverse Analysis Approach to the Characterization of Chemical Transport in Paints

    Science.gov (United States)

    Willis, Matthew P.; Stevenson, Shawn M.; Pearl, Thomas P.; Mantooth, Brent A.

    2014-01-01

    The ability to directly characterize chemical transport and interactions that occur within a material (i.e., subsurface dynamics) is a vital component in understanding contaminant mass transport and the ability to decontaminate materials. If a material is contaminated, over time, the transport of highly toxic chemicals (such as chemical warfare agent species) out of the material can result in vapor exposure or transfer to the skin, which can result in percutaneous exposure to personnel who interact with the material. Due to the high toxicity of chemical warfare agents, the release of trace chemical quantities is of significant concern. Mapping subsurface concentration distribution and transport characteristics of absorbed agents enables exposure hazards to be assessed in untested conditions. Furthermore, these tools can be used to characterize subsurface reaction dynamics to ultimately design improved decontaminants or decontamination procedures. To achieve this goal, an inverse analysis mass transport modeling approach was developed that utilizes time-resolved mass spectroscopy measurements of vapor emission from contaminated paint coatings as the input parameter for calculation of subsurface concentration profiles. Details are provided on sample preparation, including contaminant and material handling, the application of mass spectrometry for the measurement of emitted contaminant vapor, and the implementation of inverse analysis using a physics-based diffusion model to determine transport properties of live chemical warfare agents including distilled mustard (HD) and the nerve agent VX. PMID:25226346

  11. Transport phenomena in Newtonian fluids a concise primer

    CERN Document Server

    Olsson, Per

    2013-01-01

    This short primer provides a concise and tutorial-style introduction to transport phenomena in Newtonian fluids , in particular the transport of mass, energy and momentum.  The reader will find detailed derivations of the transport equations for these phenomena, as well as selected analytical solutions to the transport equations in some simple geometries. After a brief introduction to the basic mathematics used in the text, Chapter 2, which deals with momentum transport, presents a derivation of the Navier-Stokes-Duhem equation describing the basic flow in a Newtonian fluid.  Also provided at

  12. Peritoneal fluid transport in CAPD patients with different transport rates of small solutes.

    Science.gov (United States)

    Sobiecka, Danuta; Waniewski, Jacek; Weryński, Andrzej; Lindholm, Bengt

    2004-01-01

    Continuous ambulatory peritoneal dialysis (CAPD) patients with high peritoneal solute transport rate often have inadequate peritoneal fluid transport. It is not known whether this inadequate fluid transport is due solely to a too rapid fall of osmotic pressure, or if the decreased effectiveness of fluid transport is also a contributing factor. To analyze fluid transport parameters and the effectiveness of dialysis fluid osmotic pressure in the induction of fluid flow in CAPD patients with different small solute transport rates. 44 CAPD patients were placed in low (n = 6), low-average (n = 13), high-average (n = 19), and high (n = 6) transport groups according to a modified peritoneal equilibration test (PET). The study involved a 6-hour peritoneal dialysis dwell with 2 L 3.86% glucose dialysis fluid for each patient. Radioisotopically labeled serum albumin was added as a volume marker.The fluid transport parameters (osmotic conductance and fluid absorption rate) were estimated using three mathematical models of fluid transport: (1) Pyle model (model P), which describes ultrafiltration rate as an exponential function of time; (2) model OS, which is based on the linear relationship of ultrafiltration rate and overall osmolality gradient between dialysis fluid and blood; and (3) model G, which is based on the linear relationship between ultrafiltration rate and glucose concentration gradient between dialysis fluid and blood. Diffusive mass transport coefficients (K(BD)) for glucose, urea, creatinine, potassium, and sodium were estimated using the modified Babb-Randerson-Farrell model. The high transport group had significantly lower dialysate volume and glucose and osmolality gradients between dialysate and blood, but significantly higher K(BD) for small solutes compared with the other transport groups. Osmotic conductance, fluid absorption rate, and initial ultrafiltration rate did not differ among the transport groups for model OS and model P. Model G yielded

  13. A desk study of surface diffusion and mass transport in clay

    International Nuclear Information System (INIS)

    Cook, A.J.

    1989-01-01

    Research into the properties of clays as barrier materials for nuclear waste disposal has led to the realization that they have important transport properties which are relatively insignificant in most other geological materials. Sorption has always been regarded as a purely retarding mechanism, but laboratory experiments over the past decade have indicated that surface diffusion of sorbed cations is a potentially significant transport mechanism in both compacted montmorillonite, and biotite gneiss. The present desk study about these issues was part of the CEC coordinated project Mirage-Second phase, research area Natural analogues

  14. Ion transport analysis of a high beta-poloidal JT-60U discharge

    International Nuclear Information System (INIS)

    Horton, W.; Tajima, T.; Dong, J.-Q.; Kim, J.-Y.; Kishimoto, Y.

    1997-01-01

    The high beta-poloidal discharge number 17110 in JT-60U (JT-60 Team, IAEA, Vienna, 1993) that developes an internal transport barrier is analysed for the transport of ion energy and momentum. First, the classical ion temperature gradient stability properties are calculated in the absence of sheared plasma flows to establish the L-mode transport level prior to the emergence of the transport barrier. Then the evolving toroidal and poloidal velocity profiles reported by Koide et al (1994 Phys. Rev. Lett. 72 3662) are used to show how the sheared mass flows control the stability and transport. Coupled energy-momentum transport equations predict the creation of a transport barrier. The balance of the steep ion temperature gradient against the magnetic shear and sheared mass flow is calculated for the profiles in the 17110 discharge. (Author)

  15. Mass transfer ranking of polylysine, poly-ornithine and poly-methylene-co-guanidine microcapsule membranes using a single low molecular mass marker

    Directory of Open Access Journals (Sweden)

    Rosinski Stefan

    2003-01-01

    Full Text Available On the long way to clinical transplantable hybrid systems, comprising of cells, acting as immuno-protected bioreactors microencapsulated in a polymeric matrix and delivering desired factors (proteins, hormones, enzymes etc to the patient's body, an important step is the optimization of the microcapsule. This topic includes the selection of a proper coating membrane which could fulfil, first of all, the mass transfer as well as biocompatibility, stability and durability requirements. Three different membranes from polymerised aminoacids, formed around exactly identical alginate gel cores, were considered, concerning their mass transport properties, as potential candidates in this task. The results of the evaluation of the mass ingress and mass transfer coefficient h for the selected low molecular mass marker, vitamin B12, in poly-L-lysine (HPLL poly-L-ornithine (HPLO and poly-methylene-co-guanidine hydrochloride (HPMCG membrane alginate microcapsules demonstrate the advantage of using the mass transfer approach to a preliminary screening of various microcapsule formulations. Applying a single marker and evaluating mass transfer coefficients can help to quickly rank the investigated membranes and microcapsules according to their permeability. It has been demonstrated that HPLL, HPLO and HPMCG microcapsules differ from each other by a factor of two concerning the rate of low molecular mass marker transport. Interesting differences in mass transfer through the membrane in both directions in-out was also found, which could possibly be related to the membrane asymmetry.

  16. Transport of Particle Swarms Through Fractures

    Science.gov (United States)

    Boomsma, E.; Pyrak-Nolte, L. J.

    2011-12-01

    The transport of engineered micro- and nano-scale particles through fractured rock is often assumed to occur as dispersions or emulsions. Another potential transport mechanism is the release of particle swarms from natural or industrial processes where small liquid drops, containing thousands to millions of colloidal-size particles, are released over time from seepage or leaks. Swarms have higher velocities than any individual colloid because the interactions among the particles maintain the cohesiveness of the swarm as it falls under gravity. Thus particle swarms give rise to the possibility that engineered particles may be transported farther and faster in fractures than predicted by traditional dispersion models. In this study, the effect of fractures on colloidal swarm cohesiveness and evolution was studied as a swarm falls under gravity and interacts with fracture walls. Transparent acrylic was used to fabricate synthetic fracture samples with either (1) a uniform aperture or (2) a converging aperture followed by a uniform aperture (funnel-shaped). The samples consisted of two blocks that measured 100 x 100 x 50 mm. The separation between these blocks determined the aperture (0.5 mm to 50 mm). During experiments, a fracture was fully submerged in water and swarms were released into it. The swarms consisted of dilute suspensions of either 25 micron soda-lime glass beads (2% by mass) or 3 micron polystyrene fluorescent beads (1% by mass) with an initial volume of 5μL. The swarms were illuminated with a green (525 nm) LED array and imaged optically with a CCD camera. In the uniform aperture fracture, the speed of the swarm prior to bifurcation increased with aperture up to a maximum at a fracture width of approximately 10 mm. For apertures greater than ~15 mm, the velocity was essentially constant with fracture width (but less than at 10 mm). This peak suggests that two competing mechanisms affect swarm velocity in fractures. The wall provides both drag, which

  17. Reactive transport and mass balance modeling of the Stimson sedimentary formation and altered fracture zones constrain diagenetic conditions at Gale crater, Mars

    Science.gov (United States)

    Hausrath, E. M.; Ming, D. W.; Peretyazhko, T. S.; Rampe, E. B.

    2018-06-01

    On a planet as cold and dry as present-day Mars, evidence of multiple aqueous episodes offers an intriguing view into very different past environments. Fluvial, lacustrine, and eolian depositional environments are being investigated by the Mars Science Laboratory Curiosity in Gale crater, Mars. Geochemical and mineralogical observations of these sedimentary rocks suggest diagenetic processes affected the sediments. Here, we analyze diagenesis of the Stimson formation eolian parent material, which caused loss of olivine and formation of magnetite. Additional, later alteration in fracture zones resulted in preferential dissolution of pyroxene and precipitation of secondary amorphous silica and Ca sulfate. The ability to compare the unaltered parent material with the reacted material allows constraints to be placed on the characteristics of the altering solutions. In this work we use a combination of a mass balance approach calculating the fraction of a mobile element lost or gained, τ, with fundamental geochemical kinetics and thermodynamics in the reactive transport code CrunchFlow to examine the characteristics of multiple stages of aqueous alteration at Gale crater, Mars. Our model results indicate that early diagenesis of the Stimson sedimentary formation is consistent with leaching of an eolian deposit by a near-neutral solution, and that formation of the altered fracture zones is consistent with a very acidic, high sulfate solution containing Ca, P and Si. These results indicate a range of past aqueous conditions occurring at Gale crater, Mars, with important implications for past martian climate and environments.

  18. Mass Psychogenic Illness

    Science.gov (United States)

    ... Outbreaks of mass psychogenic illness show us how stress affects us. Think of how stage fright can cause nausea, shortness of breath, headache, dizziness, a racing heart, a stomachache, or diarrhea. ...

  19. Coupled modelling (transport-reaction) of the fluid-clay interactions and their feed back on the physical properties of the bentonite engineered clay barrier system; Modelisation couplee (transport - reaction) des interactions fluides - argiles et de leurs effets en retour sur les proprietes physiques de barrieres ouvragees en bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Marty, N

    2006-11-15

    The originality of this work is to process feed back effects of mineralogical and chemical modifications of clays, in storage conditions, on their physical properties and therefore on their transport characteristics (porosity, molecular diffusion, permeability). These feed back effects are modelled using the KIRMAT code (Kinetic of Reaction and MAss Transfer) developed from the kinetic code KINDIS by adding the effect of water renewal in the mineral-solution reactive cells. KIRMAT resolves mass balance equations associated with mass transport together with the geochemical reactions in a 1D approach. After 100 000 years of simulated interaction at 100 C, with the fluid of the Callovo-Oxfordian geological level (COX) and with iron provided by the steel overpack corrosion, the montmorillonite of the clay barrier is only partially transformed (into illite, chlorite, saponite...). Only outer parts of the modelled profile seem to be significantly affected by smectite dissolution processes, mainly at the interface with the geological environment. The modifications of physical properties show a closure of the porosity at the boundaries of the barrier, by creating a decrease of mass transport by molecular diffusion, essentially at the interface with the iron. Permeability laws applied to this system show a decrease of the hydraulic conductivity correlated with the porosity evolution. Near the COX, the swelling pressure of the clays from the barrier decreases. In the major part of the modelled profile, the engineered clay barrier system seems to keep its initial physical properties (porosity, molecular diffusion, permeability, swelling pressure) and functionalities. (author)

  20. Observations of mesoscale and boundary-layer scale circulations affecting dust transport and uplift over the Sahara

    Directory of Open Access Journals (Sweden)

    J. H. Marsham

    2008-12-01

    Full Text Available Observations of the Saharan boundary layer, made during the GERBILS field campaign, show that mesoscale land surface temperature variations (which were related to albedo variations induced mesoscale circulations. With weak winds along the aircraft track, land surface temperature anomalies with scales of greater than 10 km are shown to significantly affect boundary-layer temperatures and winds. Such anomalies are expected to affect the vertical mixing of the dusty and weakly stratified Saharan Residual Layer (SRL. Mesoscale variations in winds are also shown to affect dust loadings in the boundary layer.

    Using the aircraft observations and data from the COSMO model, a region of local dust uplift, with strong along-track winds, was identified in one low-level flight. Large eddy model (LEM simulations based on this location showed linearly organised boundary-layer convection. Calculating dust uplift rates from the LEM wind field showed that the boundary-layer convection increased uplift by approximately 30%, compared with the uplift rate calculated neglecting the convection. The modelled effects of boundary-layer convection on uplift are shown to be larger when the boundary-layer wind is decreased, and most significant when the mean wind is below the threshold for dust uplift and the boundary-layer convection leads to uplift which would not otherwise occur.

    Both the coupling of albedo features to the atmosphere on the mesoscale, and the enhancement of dust uplift by boundary-layer convection are unrepresented in many climate models, but may have significant impacts on the vertical transport and uplift of desert dust. Mesoscale effects in particular tend to be difficult to parametrise.

  1. Lab. experiments of mass transfer in the London clay

    International Nuclear Information System (INIS)

    Bourke, P.J.; Gilling, D.; Jefferies, N.L.; Lineham, T.R.; Lever, D.A.

    1989-01-01

    Aqueous phase mass transfer through the rocks surrounding a radioactive waste repository will take place by diffusion and convection. This paper presents a comprehensive set of measurements of the mass transfer characteristics for a single, naturally occurring, clay. These data are compared with the results predicted by mathematical models of mass transport in porous media, in order to build confidence in these models

  2. Coupling of transport and geochemical models

    International Nuclear Information System (INIS)

    Noy, D.J.

    1986-01-01

    This report considers mass transport in the far-field of a radioactive waste repository, and detailed geochemical modelling of the ground-water in the near-field. A parallel approach to this problem of coupling transport and geochemical codes is the subject of another CEC report (ref. EUR 10226). Both studies were carried out in the framework of the CEC project MIRAGE. (Migration of radionuclides in the geosphere)

  3. Dileptons from transport and hydrodynamical models

    International Nuclear Information System (INIS)

    Huovinen, P.; Koch, V.

    2000-01-01

    Transport and hydrodynamical models used to describe the expansion stage of a heavy-ion collision at the CERN SPS give different dilepton spectrum even if they are tuned to reproduce the observed hadron spectra. To understand the origin of this difference we compare the dilepton emission from transport and hydrodynamical models using similar initial states in both models. We find that the requirement of pion number conservation in a hydrodynamical model does not change the dilepton emission. Also the mass distribution from the transport model indicates faster cooling and longer lifetime of the fireball

  4. Estimates of Lagrangian particle transport by wave groups: forward transport by Stokes drift and backward transport by the return flow

    Science.gov (United States)

    van den Bremer, Ton S.; Taylor, Paul H.

    2014-11-01

    Although the literature has examined Stokes drift, the net Lagrangian transport by particles due to of surface gravity waves, in great detail, the motion of fluid particles transported by surface gravity wave groups has received considerably less attention. In practice nevertheless, the wave field on the open sea often has a group-like structure. The motion of particles is different, as particles at sufficient depth are transported backwards by the Eulerian return current that was first described by Longuet-Higgins & Stewart (1962) and forms an inseparable counterpart of Stokes drift for wave groups ensuring the (irrotational) mass balance holds. We use WKB theory to study the variation of the Lagrangian transport by the return current with depth distinguishing two-dimensional seas, three-dimensional seas, infinite depth and finite depth. We then provide dimensional estimates of the net horizontal Lagrangian transport by the Stokes drift on the one hand and the return flow on the other hand for realistic sea states in all four cases. Finally we propose a simple scaling relationship for the transition depth: the depth above which Lagrangian particles are transported forwards by the Stokes drift and below which such particles are transported backwards by the return current.

  5. 77 FR 59840 - Statutory Amendments Affecting Transportation of Agricultural Commodities and Farm Supplies

    Science.gov (United States)

    2012-10-01

    ... transportation of farm supplies from the local farm retailer to the ultimate consumer within a 100 air-mile... wholesalers located at port or terminal facilities to either local farm retailers or farms. (See Question 33...] commodities.'' The exemption created by the Act applies to two types of transportation. The first type is...

  6. Influence of air mass source sector on variations in CO2 mixing ratio at a boreal site in northern Finland

    International Nuclear Information System (INIS)

    Aalto, T.; Hatakka, J.; Viisanen, Y.

    2003-01-01

    CO 2 mixing ratio in air masses coming from different source sectors was studied at Pallas measurement station in Lapland. Source sectors were defined using back trajectories and wind direction measurements. Air masses from the North and West sectors showed an annual variation of 17 ppm, possibly affected by a long range transported marine air. A larger variation of 20 ppm was observed in air masses from the more continental South and East sectors. During late autumn mixing ratios in air masses from the South sector were high in comparison with the other sectors. Different methods for a source sector definition were considered for the site, located in a contoured terrain. 52%-73% of wind direction-based source sector definitions agreed with trajectory- based definitions. However, the number of cases with reliable sector definitions may remain low when considering all observations. Different definition methods can cause differences of the order of 1 ppm in sectorially selected monthly mean CO 2 mixing ratios. (orig.)

  7. A REVIEW ON MASS SPECTROMETRY DETECTORS

    OpenAIRE

    Khatri Neetu; Gupta Ankit; Taneja Ruchi; Bilandi Ajay; Beniwal Prashant

    2012-01-01

    Mass spectrometry is an analytical technique for "weighing" molecules. Obviously, this is not done with a conventional scale or balance. Instead, mass spectrometry is based upon the principle of the motion of a charged particle that is called an ion, in an electric or magnetic field. The mass to charge ratio (m/z) of the ion affects particles motion. Since the charge of an electron is known, the mass to charge ratio (m/z) is a measurement of mass of an ion. Mass spectrometry research focuses ...

  8. Momentum and mass relaxation in heavy-ion collisions

    International Nuclear Information System (INIS)

    Gregoire, C.; Scheuter, F.; Remaud, B.; Sebille, F.

    1984-01-01

    The momentum and mass relaxation are shown to be described by transport equations. The momentum relaxation, which can be studied in the intermediate energy regime by the particle emissions, refers to a microscopic slowing down and diffusion process in the momentum space. The mass relaxation refers to the coupling of the collective mass asymmetry degree of freedom and the intrinsic system. It can be illustrated by the fast fission of light and very heavy systems

  9. Optimal Mass Transport for Statistical Estimation, Image Analysis, Information Geometry, and Control

    Science.gov (United States)

    2017-01-10

    advances on formulating and solving optimal transport problems on discrete spaces (networks) while ensuring robustness of the transportation plan. This...Metric Uncertainty for Spectral Estimation based on Nevanlinna-Pick Interpolation, (with J. Karlsson) Intern. Symp. on the Math . Theory of Networks and...Systems, Melbourne 2012. 22. Geometric tools for the estimation of structured covariances, (with L. Ning, X. Jiang) Intern. Symposium on the Math . Theory

  10. Multiscale modelling of dual-porosity porous media; a computational pore-scale study for flow and solute transport

    Science.gov (United States)

    de Vries, Enno T.; Raoof, Amir; van Genuchten, Martinus Th.

    2017-07-01

    Many environmental and agricultural applications involve the transport of water and dissolved constituents through aggregated soil profiles, or porous media that are structured, fractured or macroporous in other ways. During the past several decades, various process-based macroscopic models have been used to simulate contaminant transport in such media. Many of these models consider advective-dispersive transport through relatively large inter-aggregate pore domains, while exchange with the smaller intra-aggregate pores is assumed to be controlled by diffusion. Exchange of solute between the two domains is often represented using a first-order mass transfer coefficient, which is commonly obtained by fitting to observed data. This study aims to understand and quantify the solute exchange term by applying a dual-porosity pore-scale network model to relatively large domains, and analysing the pore-scale results in terms of the classical dual-porosity (mobile-immobile) transport formulation. We examined the effects of key parameters (notably aggregate porosity and aggregate permeability) on the main dual-porosity model parameters, i.e., the mobile water fraction (ϕm) and the mass transfer coefficient (α). Results were obtained for a wide range of aggregate porosities (between 0.082 and 0.700). The effect of aggregate permeability was explored by varying pore throat sizes within the aggregates. Solute breakthrough curves (BTCs) obtained with the pore-scale network model at several locations along the domain were analysed using analytical solutions of the dual-porosity model to obtain estimates of ϕm and α. An increase in aggregate porosity was found to decrease ϕm and increase α, leading to considerable tailing in the BTCs. Changes in the aggregate pore throat size affected the relative flow velocity between the intra- and inter-aggregate domains. Higher flow velocities within the aggregates caused a change in the transport regime from diffusion dominated to more

  11. Selected factors affecting bone mass in students with diagnosed obesity, aged 7–10 years, from Łódź

    Directory of Open Access Journals (Sweden)

    Anna Łupińska

    2017-12-01

    Full Text Available Introduction: Obesity may be a risk factor for mineralisation and bone structure disorders, contrary to a common belief in its protective effects on bone tissue. Aim: The aim of the study was to assess the relationship between selected risk factors and obesity indicators and bone mass in obese children. Material and methods: The study included 80 children aged between 7 and 10 years with excessive body weight (60 obese and 20 overweight; the reference group included 37 children with body weight appropriate for height. All patients underwent physical examination with anthropometric measurements. Parents were asked to complete a questionnaire. The average daily intake of selected nutrients was analysed using Dieta 2 software package. Densitometry (dual-energy X-ray absorptiometry, DXA was performed in all children to evaluate bone mass. Results: Obese and overweight children had statistically significantly higher total body BMD and total body BMD Z-score compared to control group. Most DXA parameters (except from volumetric bone mineral density were positively correlated with body weight, height and waist circumference. A significant positive correlation was found between physical activity and total body BMD. There was a negative correlation between the average daily intake of proteins, carbohydrates, magnesium and phosphorus in obese children and most DXA parameters (p < 0.05. Conclusions: Bone mass in obese children is positively affected by somatic features (body weight, height, waist circumference and body composition and physical activity, and negatively affected by increased intake of proteins, carbohydrates, phosphorus and magnesium. The calculated volumetric mineral bone density may reflect the actual bone mineral density and prevent DXA overestimation in obese children.

  12. Thermo-diffusion effect on free convection heat and mass transfer in a thermally linearly stratified non-darcy porous media

    KAUST Repository

    Murthy, P.V.S.N.

    2011-12-26

    Thermo-diffusion effect on free convection heat and mass transfer from a vertical surface embedded in a liquid saturated thermally stratified non - Darcy porous medium has been analyzed using a local non-similar procedure. The wall temperature and concentration are constant and the medium is linearly stratified in the vertical direction with respect to the thermal conditions. The fluid flow, temperature and concentration fields are affected by the complex interactions among the diffusion ratio Le, buoyancy ratio N, thermo-diffusion parameter Sr and stratification parameter ?. Non-linear interactions of all these parameters on the convective transport has been analyzed and variation of heat and mass transfer coefficients with thermo-diffusion parameter in the thermally stratified non-Darcy porous media is presented through computer generated plots.

  13. Thermo-diffusion effect on free convection heat and mass transfer in a thermally linearly stratified non-darcy porous media

    KAUST Repository

    Murthy, P.V.S.N.; El-Amin, Mohamed

    2011-01-01

    Thermo-diffusion effect on free convection heat and mass transfer from a vertical surface embedded in a liquid saturated thermally stratified non - Darcy porous medium has been analyzed using a local non-similar procedure. The wall temperature and concentration are constant and the medium is linearly stratified in the vertical direction with respect to the thermal conditions. The fluid flow, temperature and concentration fields are affected by the complex interactions among the diffusion ratio Le, buoyancy ratio N, thermo-diffusion parameter Sr and stratification parameter ?. Non-linear interactions of all these parameters on the convective transport has been analyzed and variation of heat and mass transfer coefficients with thermo-diffusion parameter in the thermally stratified non-Darcy porous media is presented through computer generated plots.

  14. Heat and mass transportation as factor of formation abnormally high stratum pressure (on the example of the east part of Dniper-Donets cavity

    Directory of Open Access Journals (Sweden)

    Vasily Suyarko

    2016-06-01

    Full Text Available On the example of the eastern part of the Dnieper-Donets cavity (DDC considered the role of the heat and mass transportation in the Earth's crust as a factor of the formation of abnormally high stratum pressure (AHPS. Investigated the regularity of the spatial distribution geochemical and positive anomalies of thermal field as indicators of AHPS zones.Established restriction sites abnormally-high reservoir pressure to areas of deep faults activated and drawn schematic map of the distribution of abnormally high reservoir-ticks 

  15. Individual Factors Affecting Self-esteem, and Relationships Among Self-esteem, Body Mass Index, and Body Image in Patients With Schizophrenia.

    Science.gov (United States)

    Oh, EunJung; Song, EunJu; Shin, JungEun

    2017-12-01

    The purposes of this study were to identify correlations between body mass index, body image, and self-esteem in patients with schizophrenia and to analyse the specific factors affecting self-esteem. This study had a descriptive design, utilising a cross-sectional survey. Participants were patients with schizophrenia who were admitted to a mental health facility in South Korea. A total of 180 questionnaires were distributed, and an appropriate total sample size of 167 valid questionnaires was analysed. Self-esteem was significantly correlated with body image, the subscale of appearance orientation, and body areas satisfaction. However, body mass index exhibited no significant correlation with any variable. The variables found to have a significant explanatory power of 21.4% were appearance orientation and body areas satisfaction. The explanatory power of all factors was 33.6%. The self-esteem of patients with schizophrenia was influenced by body mass index and body image. The positive symptoms of schizophrenia can be controlled by medication, whereas negative symptoms can be improved through education and nursing care with medication. Thus, psychiatric nurses should develop education and care programs that contribute to the positive body image and self-esteem of patients with schizophrenia. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Effect of pyrazinamide and probenecid on peritoneal urate transport kinetics during continuous ambulatory peritoneal dialysis.

    Science.gov (United States)

    Spaia, S; Magoula, I; Tsapas, G; Vayonas, G

    2000-01-01

    We administered pyrazinamide (PZA) and probenecid (PB) --two well-known modulators of urate transport via the proximal tubules - to evaluate their impact on urate transport through the peritoneal membrane and to clarify mechanisms affecting peritoneal transport. A continuous ambulatory peritoneal dialysis (CAPD) unit in 2nd Hospital of IKA (Social Services Institute), Greece. In 20 stable CAPD patients, on the study day, a 4-hour, 2-L, 1.36% glucose exchange was performed (control exchange). Pyrazinamide 3 g was given orally and another identical exchange was performed (study exchange). The same protocol was repeated with 2 g PB. KtN, peritoneal clearances of urea, creatinine, and urate for each exchange, and mass transfer area coefficients (MTAC) for the three solutes and their dialysate-to-plasma concentration (D/P) ratios were used to estimate peritoneal transport. Administration of PZA resulted in decreased clearances and MTAC values for the three solutes. The D/P ratio decreased significantly only for urate, indicating a more intense influence of PZA on urate. After PB administration, clearances of urea, creatinine, and urate were increased. MTAC and DIP ratio increased significantly only for urate (p rates.

  17. Seasonal variations of stable isotope in precipitation and moisture transport at Yushu,eastern Tibetan Plateau

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Precipitation δ 18O at Yushu, eastern Tibetan Plateau, shows strong fluctuation and lack of clear seasonality. The seasonal pattern of precipitation stable isotope at Yushu is apparently different from either that of the southwest monsoon region to the south or that of the inland region to the north. This different seasonal pattern probably reflects the shift of different moisture sources. In this paper, we present the spatial comparison of the seasonal patterns of precipitation δ 18O, and calculate the moisture transport flux by using the NCAR/NCEP reanalysis data. This allows us to discuss the relation between moisture transport flux and precipitation δ 18O. This study shows that both the southwest monsoon from south and inland air mass transport from north affected the seasonal precipitation δ 18O at Yushu, eastern Tibetan Plateau. Southwest monsoon brings the main part of the moisture, but southwest transport flux is weaker than in the southern part of the Tibetan Plateau. However, contribution of the inland moisture from north or local evaporation moisture is enhanced. The combined effect is the strong fluctuation of summer precipitation δ 18O at Yushu and comparatively poor seasonality.

  18. The future of transportation in society: Forces of change

    Science.gov (United States)

    Richardson, Barbara C.

    1996-01-01

    The transportation system is a critical element of the social / political / economic system of the United States. Factors influencing the use of transportation technology include technology push, market pull, and external factors. In order for new transportation technology to be successful, it must meet the needs of the market. These needs are diverse and vary almost by individual. Historical trends show great changes in transportation use by mode and origins and destinations of trips. Other important changes in society affecting transportation use include changes in the composition of society by gender, age, national origin, family composition, land use, income, and residential distribution. Changes of these factors in the future and how technology is deployed to meet the changing needs of society will affect the success of transportation technology implementation over the next twenty years.

  19. Lattice Boltzmann method for multi-component, non-continuum mass diffusion

    International Nuclear Information System (INIS)

    Joshi, Abhijit S; Peracchio, Aldo A; Grew, Kyle N; Chiu, Wilson K S

    2007-01-01

    Recently, there has been a great deal of interest in extending the lattice Boltzmann method (LBM) to model transport phenomena in the non-continuum regime. Most of these studies have focused on single-component flows through simple geometries. This work examines an ad hoc extension of a recently developed LBM model for multi-component mass diffusion (Joshi et al 2007 J. Phys. D: Appl. Phys. 40 2961) to model mass diffusion in the non-continuum regime. In order to validate the method, LBM results for ternary diffusion in a two-dimensional channel are compared with predictions of the dusty gas model (DGM) over a range of Knudsen numbers. A calibration factor based on the DGM is used in the LBM to correlate Knudsen diffusivity to pore size. Results indicate that the LBM can be a useful tool for predicting non-continuum mass diffusion (Kn > 0.001), but additional research is needed to extend the range of applicability of the algorithm for a larger parameter space. Guidelines are given on using the methodology described in this work to model non-continuum mass transport in more complex geometries where the DGM is not easily applicable. In addition, the non-continuum LBM methodology can be extended to three-dimensions. An envisioned application of this technique is to model non-continuum mass transport in porous solid oxide fuel cell electrodes

  20. Fuelling tomorrow's transport

    International Nuclear Information System (INIS)

    Cadwallader, S.; Donovan, N.

    1995-11-01

    Fuelling Tomorrow's Transport provides a thorough analysis of key industry trends; developments in technology, fuel use and efficiency; environmental and legislative constraints; and company and governmental policy. It discusses in detail the changes facing the transport industry and analyses how the various technological, political and economic developments will affect the industry into the next century. Key issues addressed include: current and future fuel use in road, marine and aviation transport; growth in the transport sector and the impact on the oil market; likely scenarios for future transport fuelling; the latest developments in alternative fuels and engines, including electricity, natural gas, nuclear power and liquid hydrogen, and the commercial feasibility of these technologies; government policy and current and proposed legislative and fiscal incentives for the development and take-up of alternative fuels and engines; the driving force of the environmental debate; the current research and development programmes of individual companies; and the commercial openings offered by these developments. (author)

  1. A Numerical Model of Anisotropic Mass Transport Through Grain Boundary Networks

    Science.gov (United States)

    Wang, Yibo

    Tin (Sn) thin films are commonly used in electronic circuit applications as coatings on contacts and solders for joining components. It is widely observed, for some such system, that whiskers---long, thin crystalline structures---emerge and grow from the film. The Sn whisker phenomenon has become a highly active research area since Sn whiskers have caused a large amount of damage and loss in manufacturing, military, medical and power industries. Though lead (Pb) addition to Sn has been used to solve this problem for over five decades, the adverse environmental and health effects of Pb have motivated legislation to severely constrain Pb use in society. People are researching and seeking the reasons which cause whiskers and corresponding methods to solve the problem. The contributing factors to cause a Sn whisker are potentially many and much still remains unknown. Better understanding of fundamental driving forces should point toward strategies to improve (a) the accuracy with which we can predict whisker formation, and (b) our ability to mitigate the phenomenon. This thesis summarizes recent important research achievements in understanding Sn whisker formation and growth, both experimentally and theoretically. Focus is then placed on examining the role that anisotropy in grain boundary diffusivity plays in determining whisker characteristics (specifically, whether they form and, if so, where on a surface). To study this aspect of the problem and to enable future studies on stress driven grain boundary diffusion, this thesis presents a numerical anisotropic mass transport model. In addition to presenting details of the model and implementation, model predictions for a set of increasingly complex grain boundary networks are discussed. Preliminary results from the model provide evidence that anisotropic grain boundary diffusion may be a primary driving mechanism in whisker formation.

  2. Onsite well screening with a transportable gas chromatography/mass spectrometer system

    International Nuclear Information System (INIS)

    Rossabi, J.; Eckenrode, B.A.; Owens, B.

    1992-01-01

    The number of hazardous waste site operations continue to multiply. The requirements for efficient chemical assessment and monitoring of these sites become more stringent daily. As more samples are required, the time required for cleanup operations also increases and may make analytical costs prohibitive. Thus improvements in operation efficiency and reduction of cost in evaluating specific sites to minimize or eliminate their toxic effects on the surrounding environment are critical. For many years a formal policy did not exist for the disposal of waste solvents and other chemicals, thus many of these compounds were disposed of ensite. So long as these materials were contained onsite they were not considered to pose a threat to the surrounding environment. We have since determined that many of these compounds found their way into the groundwater. Contaminants such as trichloroethylene and perchloroethylene, which were heavily used for cleaning and degreasing purposes, must be monitored. Groundwater wells can be used to define the location and extent of the migration of any contaminant plume and aid in the determination of required cleanup. The major problem is that monitoring of hundreds of wells may be necessary, requiring several hundred samples on a quarterly basis to characterize the degree and extent of any contamination. Onsite analysis of monitoring wells for this characterization of waste operations could provide time savings and significant cost reduction. Field analyses can provide the required analytical results quickly and at a reduced cost without compromising either sample integrity or data quality. By using onsite analytical instrumentation, such as a field-transportable gas chromatograph/mass spectrometer (GC/MS), screening analyses can be performed to eliminate retturning to the laboratory with meaningless samples. Onsite GC/MS will provide qualitative or semi-quantitative information that can significantly simplify subsequent laboratory analyses

  3. Effects of turbulent hyporheic mixing on reach-scale solute transport

    Science.gov (United States)

    Roche, K. R.; Li, A.; Packman, A. I.

    2017-12-01

    Turbulence rapidly mixes solutes and fine particles into coarse-grained streambeds. Both hyporheic exchange rates and spatial variability of hyporheic mixing are known to be controlled by turbulence, but it is unclear how turbulent mixing influences mass transport at the scale of stream reaches. We used a process-based particle-tracking model to simulate local- and reach-scale solute transport for a coarse-bed stream. Two vertical mixing profiles, one with a smooth transition from in-stream to hyporheic transport conditions and a second with enhanced turbulent transport at the sediment-water interface, were fit to steady-state subsurface concentration profiles observed in laboratory experiments. The mixing profile with enhanced interfacial transport better matched the observed concentration profiles and overall mass retention in the streambed. The best-fit mixing profiles were then used to simulate upscaled solute transport in a stream. Enhanced mixing coupled in-stream and hyporheic solute transport, causing solutes exchanged into the shallow subsurface to have travel times similar to the water column. This extended the exponential region of the in-stream solute breakthrough curve, and delayed the onset of the heavy power-law tailing induced by deeper and slower hyporheic porewater velocities. Slopes of observed power-law tails were greater than those predicted from stochastic transport theory, and also changed in time. In addition, rapid hyporheic transport velocities truncated the hyporheic residence time distribution by causing mass to exit the stream reach via subsurface advection, yielding strong exponential tempering in the in-stream breakthrough curves at the timescale of advective hyporheic transport through the reach. These results show that strong turbulent mixing across the sediment-water interface violates the conventional separation of surface and subsurface flows used in current models for solute transport in rivers. Instead, the full distribution of

  4. Urban development and transport disadvantage: Methodology to evaluate social transport needs in Latin American cities

    OpenAIRE

    Lizarraga, Carmen; Jaramillo, Ciro; Grindlay, Alejandro L.

    2011-01-01

    This article examines the theoretical framework for accessibility, social exclusion and provision of public transport. The socio-economic and urban characteristics of Latin American cities require the creation of specific indices to determine social needs for public transport. In the article an index of social transport needs is drawn up. It can be used to highlight a problem which is severely affecting wide groups in Latin America who suffer social exclusion aggravated by a deficient provisi...

  5. Radiation transport effects in divertor plasmas generated during a tokamak reactor disruption

    International Nuclear Information System (INIS)

    Peterson, R.R.; MacFarlane, J.J.; Wang, P.

    1994-01-01

    Vaporization of material from tokamak divertors during disruptions is a critical issue for tokamak reactors from ITER to commercial power plants. Radiation transport from the vaporized material onto the remaining divertor surface plays an important role in the total mass loss to the divertor. Radiation transport in such a vapor is very difficult to calculate in full detail, and this paper quantifies the sensitivity of the divertor mass loss to uncertainties in the radiation transport. Specifically, the paper presents the results of computer simulations of the vaporization of a graphite coated divertor during a tokamak disruption with ITER CDA parameters. The results show that a factor of 100 change in the radiation conductivity changes the mass loss by more than a factor of two

  6. Effect of Al2Cu precipitates size and mass transport on the polarisation behaviour of age-hardened Al-Si-Cu-Mg alloys in 0.05 M NaCl

    International Nuclear Information System (INIS)

    Vieira, A.C.; Pinto, A.M.; Rocha, L.A.; Mischler, S.

    2011-01-01

    Research highlights: → Influence of the size distribution of Al-Cu phases on the electrochemical behaviour of well defined alloys under controlled mass transport conditions (RDE). → Oxygen reduction occurs only the Al 2 Cu phases. → Thinner Al-Cu grains the oxygen reduction current deviates at high rotation rates from the Levich behaviour. - Abstract: The electrochemical behaviour of age-hardened Al-Si-Cu-Mg alloys was investigated in a 0.05 M NaCl solution under controlled mass transport conditions using a rotating disk electrode. This work aimed at getting better understanding of the effect of the alloy microstructure, in particular the size distribution of Al 2 Cu phase, on the corrosion behaviour of the alloy. Three different size distributions of the Al 2 Cu phase were obtained through appropriate heat treatments. The cathodic reduction of oxygen was found to occur mainly on the Al 2 Cu phases acting as preferential cathodes. Small sized Al 2 Cu phases were found to promote at high rotation rates a transition from a 4 electron to a 2 electron dominated oxygen reduction mechanisms.

  7. 23 CFR 810.210 - Authorization for use and occupancy by mass transit.

    Science.gov (United States)

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Authorization for use and occupancy by mass transit. 810... TRANSPORTATION MASS TRANSIT AND SPECIAL USE HIGHWAY PROJECTS Making Highway Rights-of-Way Available for Mass Transit Projects § 810.210 Authorization for use and occupancy by mass transit. (a) Upon being authorized...

  8. The Coupled Mars Dust and Water Cycles: Understanding How Clouds Affect the Vertical Distribution and Meridional Transport of Dust and Water.

    Science.gov (United States)

    Kahre, M. A.

    2015-01-01

    The dust and water cycles are crucial to the current Martian climate, and they are coupled through cloud formation. Dust strongly impacts the thermal structure of the atmosphere and thus greatly affects atmospheric circulation, while clouds provide radiative forcing and control the hemispheric exchange of water through the modification of the vertical distributions of water and dust. Recent improvements in the quality and sophistication of both observations and climate models allow for a more comprehensive understanding of how the interaction between the dust and water cycles (through cloud formation) affects the dust and water cycles individually. We focus here on the effects of clouds on the vertical distribution of dust and water, and how those vertical distributions control the net meridional transport of water. For this study, we utilize observations of temperature, dust and water ice from the Mars Climate Sounder (MCS) on the Mars Reconnaissance Orbiter (MRO) combined with the NASA ARC Mars Global Climate Model (MGCM). We demonstrate that the magnitude and nature of the net meridional transport of water between the northern and southern hemispheres during NH summer is sensitive to the vertical structure of the simulated aphelion cloud belt. We further examine how clouds influence the atmospheric thermal structure and thus the vertical structure of the cloud belt. Our goal is to identify and understand the importance of radiative/dynamic feedbacks due to the physical processes involved with cloud formation and evolution on the current climate of Mars.

  9. Quantification of the sources of long-range transport of PM2.5 pollution in the Ordos region, Inner Mongolia, China

    International Nuclear Information System (INIS)

    Khuzestani, Reza Bashiri; Schauer, James J.; Wei, Yongjie; Zhang, Lulu; Cai, Tianqi; Zhang, Yang; Zhang, Yuanxun

    2017-01-01

    The Ordos region of Inner Mongolia is rapidly developing and suffers from poor air quality and unhealthy levels of fine particulate matter. PM 2.5 concentrations in the Ordos region were found to exceed 75 μg/m 3 on average, annually, with peak pollution days in excess of 350 μg/m 3 , but local air pollution emissions from surrounding sources are not sufficient to drive pollution levels to these concentrations. The current study was designed to quantify sources of PM 2.5 and assess the local source contributions and effects of regional transport on local pollution. The results show that the Ordos region is primarily impacted by regional long-range transport of pollutants from anthropogenic sources located outside of the Inner Mongolia in Shanxi province areas but is also largely affected by regional dust transported from the deserts located in western Inner Mongolia. The analysis proved that approximately 77% of PM 2.5 mass is transported long-range from the sites exterior to the study area and contributes 59.32 μg/m 3 on average, annually, while the local sources contribute 17.41 μg/m 3 (23%) on annual average to the PM 2.5 mass in the study area. High spatial correlation coefficients (R 2  > 0.6) were observed for most of the factors pointing to the transport of external emissions into the area. Spatial correlation analysis, bivariate polar plots and hybrid trajectory models for industrial and secondary inorganic factors provide evidence for the impact of long-range transport from Shanxi province areas. In addition, the deserts in western Inner Mongolia were found to be the source regions for dust. Finally, our analysis shows that the source of oil combustion and mobile factors are impacted by local sources in the Ordos region; however, some regional impacts from other regions were also observed for mobile source in the area. - Dominance of the regional long-range transport of PM 2.5 sources in the Ordos region. Around 77% of PM 2.5 mass is transported

  10. Post-merger evolution of a neutron star-black hole binary with neutrino transport

    Science.gov (United States)

    Foucart, Francois; O'Connor, Evan; Roberts, Luke; Duez, Matthew D.; Haas, Roland; Kidder, Lawrence E.; Ott, Christian D.; Pfeiffer, Harald P.; Scheel, Mark A.; Szilagyi, Bela

    2015-06-01

    We present a first simulation of the post-merger evolution of a black hole-neutron star binary in full general relativity using an energy-integrated general-relativistic truncated moment formalism for neutrino transport. We describe our implementation of the moment formalism and important tests of our code, before studying the formation phase of an accretion disk after a black hole-neutron star merger. We use as initial data an existing general-relativistic simulation of the merger of a neutron star of mass 1.4 M⊙ with a black hole of mass 7 M⊙ and dimensionless spin χBH=0.8 . Comparing with a simpler leakage scheme for the treatment of the neutrinos, we find noticeable differences in the neutron-to-proton ratio in and around the disk, and in the neutrino luminosity. We find that the electron neutrino luminosity is much lower in the transport simulations, and that both the disk and the disk outflows are less neutron rich. The spatial distribution of the neutrinos is significantly affected by relativistic effects, due to large velocities and curvature in the regions of strongest emission. Over the short time scale evolved, we do not observe purely neutrino-driven outflows. However, a small amount of material (3 ×10-4M⊙ ) is ejected in the polar region during the circularization of the disk. Most of that material is ejected early in the formation of the disk, and is fairly neutron rich (electron fraction Ye˜0.15 - 0.25 ). Through r-process nucleosynthesis, that material should produce high-opacity lanthanides in the polar region, and could thus affect the light curve of radioactively powered electromagnetic transients. We also show that by the end of the simulation, while the bulk of the disk remains neutron rich (Ye˜0.15 - 0.2 and decreasing), its outer layers have a higher electron fraction: 10% of the remaining mass has Ye>0.3 . As that material would be the first to be unbound by disk outflows on longer time scales, and as composition evolution is

  11. Multiscale modeling of transport of grains through granular assemblies

    Directory of Open Access Journals (Sweden)

    Tejada Ignacio G

    2017-01-01

    Full Text Available We investigate the transport of moderately large passive particles through granular assemblies caused by seeping flows. This process can only be described by highly nonlinear continuum models, since the local permeability, the advection and dispersion mechanisms are strongly determined by the concentration of transported particles. Particles may sometimes get temporally trapped and thus proper kinetic mass transfer models are required. The mass transfer depends on the complexity of the porous medium, the kind of interaction forces and the concentration of transported particles. We study these two issues by means of numerical and laboratory experiments. In the laboratory we use an oedo-permeameter to force sand grains to move through a gravel bed under conditions of constant hydraulic pressure drop. To understand the process, numerical experiments were performed to approach particle transport at the grain scale with a fully coupled method. The DEM-PFV combines the discrete element method with a pore scale finite volume formulation to solve the interstitial fluid flow and particle transport problems. These experiments help us to set up a continuum transport model that can be used in a boundary value problem.

  12. Cellular automaton model of mass transport with chemical reactions

    International Nuclear Information System (INIS)

    Karapiperis, T.; Blankleider, B.

    1993-10-01

    The transport and chemical reactions of solutes are modelled as a cellular automaton in which molecules of different species perform a random walk on a regular lattice and react according to a local probabilistic rule. The model describes advection and diffusion in a simple way, and as no restriction is placed on the number of particles at a lattice site, it is also able to describe a wide variety of chemical reactions. Assuming molecular chaos and a smooth density function, we obtain the standard reaction-transport equations in the continuum limit. Simulations on one-and two-dimensional lattices show that the discrete model can be used to approximate the solutions of the continuum equations. We discuss discrepancies which arise from correlations between molecules and how these discrepancies disappear as the continuum limit is approached. Of particular interest are simulations displaying long-time behaviour which depends on long-wavelength statistical fluctuations not accounted for by the standard equations. The model is applied to the reactions a + b ↔ c and a + b → c with homogeneous and inhomogeneous initial conditions as well as to systems subject to autocatalytic reactions and displaying spontaneous formation of spatial concentration patterns. (author) 9 figs., 34 refs

  13. Crashworthiness evaluation of mass transit buses.

    Science.gov (United States)

    2008-11-01

    Mass transit bus systems are an integral part of the national transportation network, serving more than 20.6 billion passenger-miles per year with a relatively low fatality rate. Bus occupant injuries are evenly distributed among crashes on all sides...

  14. Two-phase model of hydrogen transport to optimize nanoparticle catalyst loading for hydrogen evolution reaction

    DEFF Research Database (Denmark)

    Kemppainen, Erno; Halme, Janne; Hansen, Ole

    2016-01-01

    is the evolution and transport of gaseous H2, since HER leads to the continuous formation of H2 bubbles near the electrode. We present a numerical model that includes the transport of both gaseous and dissolved H2, as well as mass exchange between them, and combine it with a kinetic model of HER at platinum (Pt......) nanoparticle electrodes. We study the effect of the diffusion layer thickness and H2 dissolution rate constant on the importance of gaseous transport, and the effect of equilibrium hydrogen coverage and Pt loading on the kinetic and mass transport overpotentials. Gaseous transport becomes significant when...

  15. Chemical factors affecting fission product transport in severe LMFBR accidents

    International Nuclear Information System (INIS)

    Wichner, R.P.; Jolley, R.L.; Gat, U.; Rodgers, B.R.

    1984-10-01

    This study was performed as a part of a larger evaluation effort on LMFBR accident, source-term estimation. Purpose was to provide basic chemical information regarding fission product, sodium coolant, and structural material interactions required to perform estimation of fission product transport under LMFBR accident conditions. Emphasis was placed on conditions within the reactor vessel; containment vessel conditions are discussed only briefly

  16. Examining Changes in Radioxenon Isotope Activity Ratios during Subsurface Transport

    Science.gov (United States)

    Annewandter, Robert

    2014-05-01

    The Non-Proliferation Experiment (NPE) has demonstrated and modelled the usefulness of barometric pumping induced gas transport and subsequent soil gas sampling during On-Site inspections. Generally, gas transport has been widely studied with different numerical codes. However, gas transport of radioxenons and radioiodines in the post-detonation regime and their possible fractionation is still neglected in the open peer-reviewed literature. Atmospheric concentrations of the radioxenons Xe-135, Xe-133m, Xe-133 and Xe-131m can be used to discriminate between civilian releases (nuclear power plants or medical isotope facilities), and nuclear explosion sources. It is based on the multiple isotopic activity ratio method. Yet it is not clear whether subsurface migration of the radionuclides, with eventual release into the atmosphere, can affect the activity ratios due to fractionation. Fractionation can be caused by different mass diffusivities due to mass differences between the radionuclides. Cyclical changes in atmospheric pressure can drive subsurface gas transport. This barometric pumping phenomenon causes an oscillatoric flow in upward trending fractures or highly conductive faults which, combined with diffusion into the porous matrix, leads to a net transport of gaseous components - a so-called ratcheting effect. We use a general purpose reservoir simulator (Complex System Modelling Platform, CSMP++) which is recognized by the oil industry as leading in Discrete Fracture-Matrix (DFM) simulations. It has been applied in a range of fields such as deep geothermal systems, three-phase black oil simulations, fracture propagation in fractured, porous media, and Navier-Stokes pore-scale modelling among others. It is specifically designed to account for structurally complex geologic situation of fractured, porous media. Parabolic differential equations are solved by a continuous Galerkin finite-element method, hyperbolic differential equations by a complementary finite

  17. Soil aggregate stability and rainfall-induced sediment transport on field plots as affected by amendment with organic matter inputs

    Science.gov (United States)

    Shi, Pu; Arter, Christian; Liu, Xingyu; Keller, Martin; Schulin, Rainer

    2017-04-01

    Aggregate stability is an important factor in soil resistance against erosion, and, by influencing the extent of sediment transport associated with surface runoff, it is thus also one of the key factors which determine on- and off-site effects of water erosion. As it strongly depends on soil organic matter, many studies have explored how aggregate stability can be improved by organic matter inputs into the soil. However, the focus of these studies has been on the relationship between aggregate stability and soil organic matter dynamics. How the effects of organic matter inputs on aggregate stability translate into soil erodibility under rainfall impacts has received much less attention. In this study, we performed field plot experiments to examine how organic matter inputs affect aggregate breakdown and surface sediment transport under field conditions in artificial rainfall events. Three pairs of plots were prepared by adding a mixture of grass and wheat straw to one of plots in each pair but not to the other, while all plots were treated in the same way otherwise. The rainfall events were applied some weeks later so that the applied organic residues had sufficient time for decomposition and incorporation into the soil. Surface runoff rate and sediment concentration showed substantial differences between the treatments with and without organic matter inputs. The plots with organic inputs had coarser and more stable aggregates and a rougher surface than the control plots without organic inputs, resulting in a higher infiltration rate and lower transport capacity of the surface runoff. Consequently, sediments exported from the amended plots were less concentrated but more enriched in suspended particles (selective sediment transport. In contrast to the amended plots, there was an increase in the coarse particle fraction (> 250 µm) in the runoff from the plots with no organic matter inputs towards the end of the rainfall events due to emerging bed-load transport

  18. Geographic specificity and positionality of public input in transportation: a rural transportation planning case from Central Texas

    Directory of Open Access Journals (Sweden)

    Greg P. Griffin

    2014-01-01

    Full Text Available Current transportation planning processes often incorporate public input, but the types of engagement techniques can affect the ability of practitioners to meaningfully include local ideas. This study incorporates literature integrating communicative rationality with participatory mapping, supported by a case study focusing on two public engagement techniques. A transportation planning process in Central Texas is evaluated in terms of the geographic specificity and positionality of comments received from open-ended responses on a questionnaire and a facilitated mapping session, and reviews this input for relevance to developing a transportation plan. Although all input received from the public can be valuable in the process, location-based comments may be more actionable by transportation planners. Participants’ perceived roles likely affect their level of engagement, which planners can facilitate to maximize the quality of involvement. Planners are advised to understand the positionality of project stakeholders and professionals, designing involvement methods considering geographic specificity appropriate for each project.

  19. Fluid and mass transport in a single lymphatic blood vessel

    International Nuclear Information System (INIS)

    Bestman, A.R.

    1987-08-01

    The problem considers the single blood vessel model in pulmonary circulation in the presence of gravitation and mass transfer. The tissue surrounding the blood vessel is modelled as a permeable medium distinct from the blood vessel which is a normal free space. On the assumption that the mass concentration varies slowly at the interface between the blood vessel and the tissue, the problem is tackled by asymptotic approximation. A crucial point of the analysis is the dependence of the flow variables on the permeability K of the tissue in a completely arbitrary manner. A primary conjecture of the study is the intimacy of the pathological pulmonary edema and the parameter K. (author). 4 refs

  20. Transport and reaction processes affecting the attenuation of landfill gas in cover soils

    DEFF Research Database (Denmark)

    Molins, S.; Mayer, K.U.; Scheutz, Charlotte

    2008-01-01

    of methane, chlorofluorocarbons, and hydrochlorofluorocarbons to the atmosphere. This study was conducted to investigate the effect of oxidation reactions on the overall gas transport regime and to evaluate, the contributions of various gas transport processes on methane attenuation in landfill cover soils....... For this purpose, a reactive transport model that includes advection and the Dusty Gas Model for simulation of multicomponent gas diffusion was used. The simulations are constrained by data from a series of counter-gradient laboratory experiments. Diffusion typically accounts for over 99% of methane emission...... to the atmosphere. Oxygen supply into the soil column is driven exclusively by diffusion, whereas advection outward offsets part of the diffusive contribution. In the reaction zone, methane consumption reduces the pressure gradient, further decreasing the significance of advection near the top of the column...