WorldWideScience

Sample records for affect gene activity

  1. Maternal protein restriction affects gene expression and enzyme activity of intestinal disaccharidases in adult rat offspring

    International Nuclear Information System (INIS)

    This study investigated the consequences of intrauterine protein restriction on the gastrointestinal tract and particularly on the gene expression and activity of intestinal disaccharidases in the adult offspring. Wistar rat dams were fed isocaloric diets containing 6% protein (restricted, n = 8) or 17% protein (control, n = 8) throughout gestation. Male offspring (n = 5-8 in each group) were evaluated at 3 or 16 weeks of age. Maternal protein restriction during pregnancy produced offspring with growth restriction from birth (5.7 ± 0.1 vs 6.3 ± 0.1 g; mean ± SE) to weaning (42.4 ± 1.3 vs 49.1 ± 1.6 g), although at 16 weeks of age their body weight was similar to control (421.7 ± 8.9 and 428.5 ± 8.5 g). Maternal protein restriction also increased lactase activity in the proximal (0.23 ± 0.02 vs 0.15 ± 0.02), medial (0.30 ± 0.06 vs 0.14 ± 0.01) and distal (0.43 ± 0.07 vs 0.07 ± 0.02 U·g-1·min-1) small intestine, and mRNA lactase abundance in the proximal intestine (7.96 ± 1.11 vs 2.38 ± 0.47 relative units) of 3-week-old offspring rats. In addition, maternal protein restriction increased sucrase activity (1.20 ± 0.02 vs 0.91 ± 0.02 U·g-1·min-1) and sucrase mRNA abundance (4.48 ± 0.51 vs 1.95 ± 0.17 relative units) in the duodenum of 16-week-old rats. In conclusion, the present study shows for the first time that intrauterine protein restriction affects gene expression of intestinal enzymes in offspring

  2. Maternal protein restriction affects gene expression and enzyme activity of intestinal disaccharidases in adult rat offspring

    Energy Technology Data Exchange (ETDEWEB)

    Pinheiro, D.F.; Pacheco, P.D.G.; Alvarenga, P.V.; Buratini, J. Jr; Castilho, A.C.S.; Lima, P.F.; Sartori, D.R.S.; Vicentini-Paulino, M.L.M. [Departamento de Fisiologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, SP (Brazil)

    2013-03-15

    This study investigated the consequences of intrauterine protein restriction on the gastrointestinal tract and particularly on the gene expression and activity of intestinal disaccharidases in the adult offspring. Wistar rat dams were fed isocaloric diets containing 6% protein (restricted, n = 8) or 17% protein (control, n = 8) throughout gestation. Male offspring (n = 5-8 in each group) were evaluated at 3 or 16 weeks of age. Maternal protein restriction during pregnancy produced offspring with growth restriction from birth (5.7 ± 0.1 vs 6.3 ± 0.1 g; mean ± SE) to weaning (42.4 ± 1.3 vs 49.1 ± 1.6 g), although at 16 weeks of age their body weight was similar to control (421.7 ± 8.9 and 428.5 ± 8.5 g). Maternal protein restriction also increased lactase activity in the proximal (0.23 ± 0.02 vs 0.15 ± 0.02), medial (0.30 ± 0.06 vs 0.14 ± 0.01) and distal (0.43 ± 0.07 vs 0.07 ± 0.02 U·g{sup -1}·min{sup -1}) small intestine, and mRNA lactase abundance in the proximal intestine (7.96 ± 1.11 vs 2.38 ± 0.47 relative units) of 3-week-old offspring rats. In addition, maternal protein restriction increased sucrase activity (1.20 ± 0.02 vs 0.91 ± 0.02 U·g{sup -1}·min{sup -1}) and sucrase mRNA abundance (4.48 ± 0.51 vs 1.95 ± 0.17 relative units) in the duodenum of 16-week-old rats. In conclusion, the present study shows for the first time that intrauterine protein restriction affects gene expression of intestinal enzymes in offspring.

  3. Activation of tachykinin, neurokinin 3 receptors affects chromatin structure and gene expression by means of histone acetylation.

    Science.gov (United States)

    Thakar, Amit; Sylar, Elise; Flynn, Francis W

    2012-12-01

    The tachykinin, neurokinin 3 receptor (NK3R) is a g-protein coupled receptor that is broadly distributed in the nervous system and exerts its diverse physiological actions through multiple signaling pathways. Despite the role of the receptor system in a range of biological functions, the effects of NK3R activation on chromatin dynamics and gene expression have received limited attention. The present work determined the effects of senktide, a selective NK3R agonist, on chromatin organization, acetylation, and gene expression, using qRT-PCR, in a hypothalamic cell line (CLU 209) that expresses the NK3R. Senktide (1 nM, 10nM) caused a relaxation of chromatin, an increase in global acetylation of histone H3 and H4, and an increase in the expression of a common set of genes involved in cell signaling, cell growth, and synaptic plasticity. Pretreatment with histone acetyltransferase (HAT) inhibitor (garcinol and 2-methylene y-butylactone), that inhibits p300, p300/CREB binding protein (CBP) associated factor (PCAF), and GCN 5, prevented the senktide-induced increase in expression of most, but not all, of the genes upregulated in response to 1 nM and 10nM senktide. Treatment with 100 nM had the opposite effect: a reduction in chromatin relaxation and decreased acetylation. The expression of four genes was significantly decreased and the HAT inhibitor had a limited effect in blocking the upregulation of genes in response to 100 nM senktide. Activation of the NK3R appears to recruit multiple pathways, including acetylation, and possibly histone deactylases, histone methylases, or DNA methylases to affect chromatin structure and gene expression. PMID:22985858

  4. G0/G1 switch gene-2 regulates human adipocyte lipolysis by affecting activity and localization of adipose triglyceride lipase

    OpenAIRE

    Schweiger, Martina; Paar, Margret; Eder, Christina; Brandis, Janina; Moser, Elena; Gorkiewicz, Gregor; Grond, Susanne; Radner, Franz P. W.; Cerk, Ines; Cornaciu, Irina; Oberer, Monika; Kersten, Sander; Zechner, Rudolf; Zimmermann, Robert; Lass, Achim

    2012-01-01

    The hydrolysis of triglycerides in adipocytes, termed lipolysis, provides free fatty acids as energy fuel. Murine lipolysis largely depends on the activity of adipose triglyceride lipase (ATGL), which is regulated by two proteins annotated as comparative gene identification-58 (CGI-58) and G0/G1 switch gene-2 (G0S2). CGI-58 activates and G0S2 inhibits ATGL activity. In contrast to mice, the functional role of G0S2 in human adipocyte lipolysis is poorly characterized. Here we show that overexp...

  5. G0/G1 switch gene-2 regulates human adipocyte lipolysis by affecting activity and localization of adipose triglyceride lipase

    NARCIS (Netherlands)

    Schweiger, M.; Paar, M.; Eder, C.; Brandis, J.; Moser, E.; Gorkiewisz, G.; Grond, S.; Radner, F.P.W.; Cerk, I.; Cornaciu, I.; Oberer, M.; Kersten, A.H.; Zechner, R.; Zimmermann, M.B.; Lass, A.

    2012-01-01

    The hydrolysis of triglycerides in adipocytes, termed lipolysis, provides free fatty acids as energy fuel. Murine lipolysis largely depends on the activity of adipose triglyceride lipase (ATGL)5, which is regulated by two proteins annotated as comparative gene identification-58 (CGI-58) and G0/G1 sw

  6. Activation of tachykinin Neurokinin 3 receptors affects chromatin structure and gene expression by means of histone acetylation

    OpenAIRE

    Thakar, Amit; Sylar, Elise; Flynn, Francis W.

    2012-01-01

    The tachykinin, neurokinin 3 receptor (NK3R) is a g-protein coupled receptor that is broadly distributed in the nervous system and exerts its diverse physiological actions through multiple signaling pathways. Despite the role of the receptor system in a range of biological functions, the effects of NK3R activation on chromatin dynamics and gene expression have received limited attention. The present work determined the effects of senktide, a selective NK3R agonist, on chromatin organization, ...

  7. Colored light-quality selective plastic films affect anthocyanin content, enzyme activities, and the expression of flavonoid genes in strawberry (Fragaria × ananassa) fruit.

    Science.gov (United States)

    Miao, Lixiang; Zhang, Yuchao; Yang, Xiaofang; Xiao, Jinping; Zhang, Huiqin; Zhang, Zuofa; Wang, Yuezhi; Jiang, Guihua

    2016-09-15

    The influence of colored light-quality selective plastic films (red, yellow, green, blue, and white) on the content of anthocyanin, the activities of the related enzymes and the transcripts of the flavonoid gene was studied in developing strawberry fruit. The results indicated that colored films had highly significant effects on the total anthocyanin content (TAC) and proportions of individual anthocyanins. Compared with the white control film, the red and yellow films led to the significant increase of TAC, while the green and blue films caused a decrease of TAC. Colored film treatments also significantly affected the related enzyme activity and the expression of structural genes and transcription factor genes, which suggested that the enhancement of TAC by the red and yellow films might have resulted from the activation of related enzymes and transcription factor genes in the flavonoid pathway. Treatment with red and yellow light-quality selective plastic films might be useful as a supplemental cultivation practice for enhancing the anthocyanin content in developing strawberry fruit. PMID:27080884

  8. An obesity-associated risk allele within the FTO gene affects human brain activity for areas important for emotion, impulse control and reward in response to food images.

    Science.gov (United States)

    Wiemerslage, Lyle; Nilsson, Emil K; Solstrand Dahlberg, Linda; Ence-Eriksson, Fia; Castillo, Sandra; Larsen, Anna L; Bylund, Simon B A; Hogenkamp, Pleunie S; Olivo, Gaia; Bandstein, Marcus; Titova, Olga E; Larsson, Elna-Marie; Benedict, Christian; Brooks, Samantha J; Schiöth, Helgi B

    2016-05-01

    Understanding how genetics influences obesity, brain activity and eating behaviour will add important insight for developing strategies for weight-loss treatment, as obesity may stem from different causes and as individual feeding behaviour may depend on genetic differences. To this end, we examined how an obesity risk allele for the FTO gene affects brain activity in response to food images of different caloric content via functional magnetic resonance imaging (fMRI). Thirty participants homozygous for the rs9939609 single nucleotide polymorphism were shown images of low- or high-calorie food while brain activity was measured via fMRI. In a whole-brain analysis, we found that people with the FTO risk allele genotype (AA) had increased activity compared with the non-risk (TT) genotype in the posterior cingulate, cuneus, precuneus and putamen. Moreover, higher body mass index in the AA genotype was associated with reduced activity to food images in areas important for emotion (cingulate cortex), but also in areas important for impulse control (frontal gyri and lentiform nucleus). Lastly, we corroborate our findings with behavioural scales for the behavioural inhibition and activation systems. Our results suggest that the two genotypes are associated with differential neural processing of food images, which may influence weight status through diminished impulse control and reward processing. PMID:26797854

  9. D-amino acid oxidase activator gene (DAOA) variation affects cerebrospinal fluid homovanillic acid concentrations in healthy Caucasians

    DEFF Research Database (Denmark)

    Andreou, Dimitrios; Saetre, Peter; Werge, Thomas;

    2012-01-01

    The D-amino acid oxidase activator (DAOA) protein regulates the function of D-amino oxidase (DAO), an enzyme that catalyzes the oxidative deamination of D-3,4-dihydroxyphenylalanine (D-DOPA) and D-serine. D-DOPA is converted to L-3,4-DOPA, a precursor of dopamine, whereas D-serine participates in...... dopamine turnover in healthy individuals, suggesting that disturbed dopamine turnover is a possible mechanism behind the observed associations between genetic variation in DAOA and behavioral phenotypes in humans....

  10. Disruption of SRM1, a mitogen-activated protein kinase gene, affects sensitivity to osmotic and ultraviolet stressors in the phytopathogenic fungus Bipolaris oryzae.

    Science.gov (United States)

    Moriwaki, Akihiro; Kubo, Emiko; Arase, Sakae; Kihara, Junichi

    2006-04-01

    Mitogen-activated protein kinases (MAPKs) play key roles in biological processes including differentiation, growth, proliferation, survival, and stress responses. We isolated and characterized the SRM1 gene, which encodes an MAPK related to yeast High-osmolarity glycerol 1 (Hog1), from the rice leaf pathogen Bipolaris oryzae. The deduced amino sequence of the SRM1 gene showed significant homology with Hog1-type MAPK homologues from other phytopathogenic fungi and contained a TGY motif for phosphorylation. The B. oryzae mutants with disruption of the SRM1 gene (Deltasrm1) showed growth inhibition under hyperosmotic, hydrogen peroxide, and UV exposure conditions. The Deltasrm1 mutants showed moderate resistance to dicarboximide and phenylpyrrole fungicides. The Deltasrm1 mutations caused a defect in the expression of the gene that encodes antioxidant enzyme catalase (CAT2) under UV and hyperosmotic conditions. Furthermore, the transcriptional patterns of the three melanin biosynthesis genes (PKS1, THR1, and SCD1) and of a gene of unknown function, uvi-1, which are specifically induced by near-ultraviolet (NUV) radiation, gradually decreased in comparison with the wild-type expression patterns. These results suggest that Srm1 contributes to responses to not only osmostress but also to hydrogen peroxide and UV stress, whereas Srm1 does not appear to regulate directly the expression of genes related to NUV-induced photomorphogenesis. PMID:16553861

  11. Activation tagging of the two closely linked genes LEP and VAS independently affects vascular cell number

    DEFF Research Database (Denmark)

    van der Graaff, Eric; Hooykaas, Paul J J; Keller, Beat

    2002-01-01

    report that in addition to this leafy petiole phenotype, the size of the vascular bundles is increased in all aerial organs in let as a result of an increase in the number of xylem, phloem (pro)cambial and pericycle cells. This vascular phenotype is caused by activation tagging of the two genes VASCULAR......-promoting factor. The activation tagging of VAS only resulted in a specific increase in phloem (pro)cambial and pericycle cells. We conclude that activation tagging of LEP and VAS results in additive phenotypes. Insertional mutants for LEP and VAS display wild-type vascular development, indicating the relevance of...... activation tagging for functional analysis of novel genes involved in plant development....

  12. Activation tagging of the LEAFY PETIOLE gene affects leaf petiole development in Arabidopsis thaliana

    DEFF Research Database (Denmark)

    van der Graaff, Eric; Dulk-Ras, A D; Hooykaas, P J;

    2000-01-01

    In a screen for leaf developmental mutants we have isolated an activator T-DNA-tagged mutant that produces leaves without a petiole. In addition to that leafy petiole phenotype this lettuce (let) mutant shows aberrant inflorescence branching and silique shape. The LEAFY PETIOLE (LEP) gene is...... located close to the right border of the T-DNA insert linked with these dominant phenotypes and encodes a protein with a domain with similarity to the DNA binding domain of members of the AP2/EREBP family of transcription factors. Introduction of the activation-tagged LEP gene in wild-type plants...... conferred all the phenotypic aberrations mentioned above. The leafy petiole phenotype consists of a conversion of the proximal part of the leaf from petiole into leaf blade, which means that leaf development in let is disturbed along the proximodistal axis. Therefore, LEP is involved in either cell division...

  13. A single-nucleotide polymorphism in the human p27kip1 gene (-838C>A affects basal promoter activity and the risk of myocardial infarction

    Directory of Open Access Journals (Sweden)

    Reguero Julian R

    2004-04-01

    Full Text Available Abstract Background Excessive proliferation of vascular smooth muscle cells and leukocytes within the artery wall is a major event in the development of atherosclerosis. The growth suppressor p27kip1 associates with several cyclin-dependent kinase/cyclin complexes, thereby abrogating their capacity to induce progression through the cell cycle. Recent studies have implicated p27kip1 in the control of neointimal hyperplasia. For instance, p27kip1 ablation in apolipoprotein-E-null mice enhanced arterial cell proliferation and accelerated atherogenesis induced by dietary cholesterol. Therefore, p27kip1 is a candidate gene to modify the risk of developing atherosclerosis and associated ischaemic events (i.e., myocardial infarction and stroke. Results In this study we found three common single-nucleotide polymorphisms in the human p27kip1 gene (+326T>G [V109G], -79C>T, and -838C>A. The frequency of -838A carriers was significantly increased in myocardial infarction patients compared to healthy controls (odds ratio [OR] = 1.73, 95% confidence interval [95%CI] = 1.12–2.70. In addition, luciferase reporter constructs driven by the human p27kip1 gene promoter containing A at position -838 had decreased basal transcriptional activity when transiently transfected in Jurkat cells, compared with constructs bearing C in -838 (P = 0.04. Conclusions These data suggest that -838A is associated with reduced p27kip1 promoter activity and increased risk of myocardial infarction.

  14. Toxic Diatom Aldehydes Affect Defence Gene Networks in Sea Urchins

    Science.gov (United States)

    Varrella, Stefano; Ruocco, Nadia; Ianora, Adrianna; Bentley, Matt G.; Costantini, Maria

    2016-01-01

    Marine organisms possess a series of cellular strategies to counteract the negative effects of toxic compounds, including the massive reorganization of gene expression networks. Here we report the modulated dose-dependent response of activated genes by diatom polyunsaturated aldehydes (PUAs) in the sea urchin Paracentrotus lividus. PUAs are secondary metabolites deriving from the oxidation of fatty acids, inducing deleterious effects on the reproduction and development of planktonic and benthic organisms that feed on these unicellular algae and with anti-cancer activity. Our previous results showed that PUAs target several genes, implicated in different functional processes in this sea urchin. Using interactomic Ingenuity Pathway Analysis we now show that the genes targeted by PUAs are correlated with four HUB genes, NF-κB, p53, δ-2-catenin and HIF1A, which have not been previously reported for P. lividus. We propose a working model describing hypothetical pathways potentially involved in toxic aldehyde stress response in sea urchins. This represents the first report on gene networks affected by PUAs, opening new perspectives in understanding the cellular mechanisms underlying the response of benthic organisms to diatom exposure. PMID:26914213

  15. Multiple controls affect arsenite oxidase gene expression in Herminiimonas arsenicoxydans

    Directory of Open Access Journals (Sweden)

    Coppée Jean-Yves

    2010-02-01

    Full Text Available Abstract Background Both the speciation and toxicity of arsenic are affected by bacterial transformations, i.e. oxidation, reduction or methylation. These transformations have a major impact on environmental contamination and more particularly on arsenic contamination of drinking water. Herminiimonas arsenicoxydans has been isolated from an arsenic- contaminated environment and has developed various mechanisms for coping with arsenic, including the oxidation of As(III to As(V as a detoxification mechanism. Results In the present study, a differential transcriptome analysis was used to identify genes, including arsenite oxidase encoding genes, involved in the response of H. arsenicoxydans to As(III. To get insight into the molecular mechanisms of this enzyme activity, a Tn5 transposon mutagenesis was performed. Transposon insertions resulting in a lack of arsenite oxidase activity disrupted aoxR and aoxS genes, showing that the aox operon transcription is regulated by the AoxRS two-component system. Remarkably, transposon insertions were also identified in rpoN coding for the alternative N sigma factor (σ54 of RNA polymerase and in dnaJ coding for the Hsp70 co-chaperone. Western blotting with anti-AoxB antibodies and quantitative RT-PCR experiments allowed us to demonstrate that the rpoN and dnaJ gene products are involved in the control of arsenite oxidase gene expression. Finally, the transcriptional start site of the aoxAB operon was determined using rapid amplification of cDNA ends (RACE and a putative -12/-24 σ54-dependent promoter motif was identified upstream of aoxAB coding sequences. Conclusion These results reveal the existence of novel molecular regulatory processes governing arsenite oxidase expression in H. arsenicoxydans. These data are summarized in a model that functionally integrates arsenite oxidation in the adaptive response to As(III in this microorganism.

  16. Patterns of prokaryotic lateral gene transfers affecting parasitic microbial eukaryotes

    DEFF Research Database (Denmark)

    Alsmark, Cecilia; Foster, Peter G; Sicheritz-Pontén, Thomas;

    2013-01-01

    approach to systematically investigate lateral gene transfer affecting the proteomes of thirteen, mainly parasitic, microbial eukaryotes, representing four of the six eukaryotic super-groups. All of the genomes investigated have been significantly affected by prokaryote-to-eukaryote lateral gene transfers......, dramatically affecting the enzymes of core pathways, particularly amino acid and sugar metabolism, but also providing new genes of potential adaptive significance in the life of parasites. A broad range of prokaryotic donors is involved in such transfers, but there is clear and significant enrichment for...... bacterial groups that share the same habitats, including the human microbiota, as the parasites investigated. CONCLUSIONS: Our data show that ecology and lifestyle strongly influence gene origins and opportunities for gene transfer and reveal that, although the outlines of the core eukaryotic metabolism are...

  17. A polymorphism of the GTP-cyclohydrolase I feedback regulator gene alters transcriptional activity and may affect response to SSRI antidepressants.

    Science.gov (United States)

    McHugh, P C; Joyce, P R; Deng, X; Kennedy, M A

    2011-06-01

    Tetrahydrobiopterin (BH(4)) is an essential cofactor for synthesis of many neurotransmitters including serotonin. In serotonergic neurons, BH(4) is tightly regulated by GTP-cyclohydrolase I feedback regulator (GFRP). Given the pivotal role of the serotonergic system in mood disorders and selective serotonin reuptake inhibitors (SSRIs) antidepressant function, we tested the hypothesis that GFRP gene (GCHFR) variants would modify response to antidepressants in subjects with major depression. Two single nucleotide polymorphisms (rs7164342 and rs7163862) in the GCHFR promoter were identified and occurred as two haplotypes (GA or TT). A multiple regression analysis revealed that homozygous individuals for the TT haplotype were less likely to respond to the SSRI fluoxetine than to the tricyclic antidepressant nortriptyline (P = 0.037). Moreover, the TT haplotype showed a reduced transcription rate in luciferase reporter gene assays, which may impact on BH(4)-mediated neurotransmitter production, thus suggesting a biological process through which GCHFR promoter variants might influence antidepressant response. PMID:20351752

  18. Human activities affecting trace gases and climate

    International Nuclear Information System (INIS)

    The Earth's climate has been in a constant state of change throughout geologic time due to natural perturbations in the global geobiosphere. However, various human activities have the potential to cause future global warming over a relatively short amount of time. These activities, which affect the Earth's climate by altering the concentrations of trace gases in the atmosphere, include energy consumption, particularly fossil-fuel consumption; industrial processes (production and use of chlorofluorocarbons, halons, and chlorocarbons, landfilling of wastes, and cement manufacture); changes in land use patterns, particularly deforestation and biomass burning; and agricultural practices (waste burning, fertilizer usage, rice production, and animal husbandry). Population growth is an important underlying factor affecting the level of growth in each activity. This paper describes how the human activities listed above contribute to atmospheric change, the current pattern of each activity, and how levels of each activity have changed since the early part of this century

  19. Whence Induced Demand: How Access Affects Activity

    OpenAIRE

    Levinson, David; Kanchi, Seshasai

    2000-01-01

    Additional highway capacity, by increasing travel speed, affects the individual share of time within a 24-hour budget allocated to various activities (time spent at and traveling to home, shop, work and other), some activities will be undertaken more, others less. This paper extends previous research that identified and quantified induced demand in terms of vehicle miles traveled, by considering questions of what type of demand is induced and which activities are consequently reduced. This pa...

  20. Physical activity: genes & health

    CERN Multimedia

    2002-01-01

    Carl Johan SUNDBERG is an Associate Professor in Physiology and Licenced Physician. His research focus is Molecular mechanisms involved in the adaptation of human skeletal muscle to physical activity.

  1. Do recreational activities affect coastal biodiversity?

    Science.gov (United States)

    Riera, Rodrigo; Menci, Cristiano; Sanabria-Fernández, José Antonio; Becerro, Mikel A.

    2016-09-01

    Human activities are largely affecting coastal communities worldwide. Recreational perturbations have been overlooked in comparison to other perturbations, yet they are potential threats to marine biodiversity. They affect coastal communities in different ways, underpinning consistent shifts in fish and invertebrates assemblages. Several sites were sampled subjected to varying effects by recreational fishermen (low and high pressure) and scuba divers (low and high) in an overpopulated Atlantic island. Non-consistent differences in ecological, trophic and functional diversity were found in coastal communities, considering both factors ("diving" and "fishing"). Multivariate analyses only showed significant differences in benthic invertebrates between intensively-dived and non-dived sites. The lack of clear trends may be explained by the depletion of coastal resources in the study area, an extensively-affected island by overfishing.

  2. Gene Targeting of Mouse Tardbp Negatively Affects Masp2 Expression

    Science.gov (United States)

    Dib, Samar; Xiao, Shangxi; Miletic, Denise; Robertson, Janice

    2014-01-01

    Amyotrophic Lateral Sclerosis (ALS) is a devastating adult onset neurodegenerative disease affecting both upper and lower motor neurons. TDP-43, encoded by the TARDBP gene, was identified as a component of motor neuron cytoplasmic inclusions in both familial and sporadic ALS and has become a pathological signature of the disease. TDP-43 is a nuclear protein involved in RNA metabolism, however in ALS, TDP-43 is mislocalized to the cytoplasm of affected motor neurons, suggesting that disease might be caused by TDP-43 loss of function. To investigate this hypothesis, we attempted to generate a mouse conditional knockout of the Tardbp gene using the classical Cre-loxP technology. Even though heterozygote mice for the targeted allele were successfully generated, we were unable to obtain homozygotes. Here we show that although the targeting vector was specifically designed to not overlap with Tardbp adjacent genes, the homologous recombination event affected the expression of a downstream gene, Masp2. This may explain the inability to obtain homozygote mice with targeted Tardbp. PMID:24740308

  3. AMPK Activation Affects Glutamate Metabolism in Astrocytes

    DEFF Research Database (Denmark)

    Voss, Caroline Marie; Pajęcka, Kamilla; Stridh, Malin H;

    2015-01-01

    acid (TCA) cycle was studied using high-performance liquid chromatography analysis supplemented with gas chromatography-mass spectrometry technology. It was found that AMPK activation had profound effects on the pathways involved in glutamate metabolism since the entrance of the glutamate carbon...... affected by a reduction of the flux of glutamate derived carbon through the malic enzyme and pyruvate carboxylase catalyzed reactions. Finally, it was found that in the presence of glutamate as an additional substrate, glucose metabolism monitored by the use of tritiated deoxyglucose was unaffected by AMPK...

  4. Mutations in many genes affect aggressive behavior in Drosophila melanogaster

    OpenAIRE

    Zwarts Liesbeth; Edwards Alexis C; Yamamoto Akihiko; Callaerts Patrick; Mackay Trudy FC

    2009-01-01

    Abstract Background Aggressive behavior in animals is important for survival and reproduction. Identifying the underlying genes and environmental contexts that affect aggressive behavior is important for understanding the evolutionary forces that maintain variation for aggressive behavior in natural populations, and to develop therapeutic interventions to modulate extreme levels of aggressive behavior in humans. While the role of neurotransmitters and a few other molecules in mediating and mo...

  5. C-GATE - catalogue of genes affected by transposable elements

    Directory of Open Access Journals (Sweden)

    Rebollo Rita

    2012-05-01

    Full Text Available Abstract Background Functional regulatory sequences are present in many transposable element (TE copies, resulting in TEs being frequently exapted by host genes. Today, many examples of TEs impacting host gene expression can be found in the literature and we believe a new catalogue of such exaptations would be useful for the field. Findings We have established the catalogue of genes affected by transposable elements (C-GATE, which can be found at https://sites.google.com/site/tecatalog/. To date, it holds 221 cases of biologically verified TE exaptations and more than 10,000 in silico TE-gene partnerships. C-GATE is interactive and allows users to include missed or new TE exaptation data. C-GATE provides a graphic representation of the entire library, which may be used for future statistical analysis of TE impact on host gene expression. Conclusions We hope C-GATE will be valuable for the TE community but also for others who have realized the role that TEs may have in their research.

  6. Brain Activity, Personality Traits and Affect: Electrocortical Activity in Reaction to Affective Film Stimuli

    Science.gov (United States)

    Makvand Hosseini, Sh.; Azad Fallah, P.; Rasoolzadeh Tabatabaei, S. K.; Ghannadyan Ladani, S. H.; Heise, C.

    We studied the patterns of activation over the cerebral cortex in reaction to affective film stimuli in four groups of extroverts, introverts, neurotics and emotionally stables. Measures of extraversion and neuroticism were collected and resting EEG was recorded from 40 right handed undergraduate female students (19-23) on one occasion for five 30s periods in baseline condition and in affective states. Mean log-transformed absolute alpha power was extracted from 12 electrode sites and analyzed. Patterns of activation were different in personality groups. Different patterns of asymmetries were observed in personality groups in reaction to affective stimuli. Results were partly consistent with approach and withdrawal model and provided supportive evidence for the role of right frontal asymmetry in negative affects in two groups (introverts and emotionally stables) as well as the role of right central asymmetry (increase on right and decrease on left) in active affective states (anxiety and happiness) in all personality groups. Results were also emphasized on the role of decrease activity relative to baseline in cortical regions (bilaterally in frontal and unilaterally in left parietal and temporal regions) in moderating of positive and negative emotion.

  7. Circadian genes differentially affect tolerance to ethanol in Drosophila

    Science.gov (United States)

    Pohl, Jascha B.; Ghezzi, Alfredo; Lew, Linda K.; Robles, Roseanna B.; Cormack, Lawrence; Atkinson, Nigel S.

    2016-01-01

    Background There is a strong relationship between circadian rhythms and ethanol responses. Ethanol consumption has been shown to disrupt physiological and behavioral circadian rhythms in mammals (Spanagel et al., 2005b). The Drosophila central circadian pacemaker is composed of proteins encoded by the per, tim, cyc, and Clk genes. Using Drosophila mutant analysis we asked whether these central components of the circadian clock make the equivalent contribution towards ethanol tolerance and whether rhythmicity itself is necessary for tolerance. Methods We tested flies carrying mutations in core clock genes for the capacity to acquire ethanol tolerance. Tolerance was assayed by comparing the sedation curves of populations during their first and second sedation. Animals that had acquired tolerance sedated more slowly. Movement was also monitored as the flies breathe the ethanol vapor to determine if other facets of the ethanol response were affected by the mutations. Gas chromatography was used to measure internal ethanol concentration. Constant light was used to non-genetically destabilize the PER and TIM proteins. Results A group of circadian mutations, all of which eliminate circadian rhythms, do not disrupt tolerance identically. Mutations in per, tim, and cyc completely block tolerance. However, a mutation in Clk does not interfere with tolerance. Constant light also disrupts the capacity to acquire tolerance. These lines did not differ in ethanol absorption. Conclusions Mutations affecting different parts of the intracellular circadian clock can block the capacity to acquire rapid ethanol tolerance. However, the role of circadian genes in ethanol tolerance is independent of their role in producing circadian rhythmicity. The interference in the capacity to acquire ethanol tolerance by some circadian mutations is not merely a downstream effect of a nonfunctional circadian clock, instead these circadian genes play an independent role in ethanol tolerance. PMID

  8. FAK and HAS Inhibition Synergistically Decrease Colon Cancer Cell Viability and Affect Expression of Critical Genes

    OpenAIRE

    Heffler, Melissa; Golubovskaya, Vita; Conroy, Jeffrey; Liu, Song; Wang, Dan; Cance, William; Dunn, Kelli B.

    2013-01-01

    Focal adhesion kinase (FAK), hyaluronan (HA), and hyaluronan synthase-3 (HAS3) have been implicated in cancer growth and progression. FAK inhibition with the small molecule inhibitor Y15 decreases colon cancer cell growth in vitro and in vivo. HAS3 inhibition in colon cancer cells decreases FAK expression and activation, and exogenous HA increases FAK activation. We sought to determine the genes affected by HAS and FAK inhibition and hypothesized that dual inhibition would synergistically inh...

  9. Land use type significantly affects microbial gene transcription in soil.

    Science.gov (United States)

    Nacke, Heiko; Fischer, Christiane; Thürmer, Andrea; Meinicke, Peter; Daniel, Rolf

    2014-05-01

    Soil microorganisms play an essential role in sustaining biogeochemical processes and cycling of nutrients across different land use types. To gain insights into microbial gene transcription in forest and grassland soil, we isolated mRNA from 32 sampling sites. After sequencing of generated complementary DNA (cDNA), a total of 5,824,229 sequences could be further analyzed. We were able to assign nonribosomal cDNA sequences to all three domains of life. A dominance of bacterial sequences, which were affiliated to 25 different phyla, was found. Bacterial groups capable of aromatic compound degradation such as Phenylobacterium and Burkholderia were detected in significantly higher relative abundance in forest soil than in grassland soil. Accordingly, KEGG pathway categories related to degradation of aromatic ring-containing molecules (e.g., benzoate degradation) were identified in high abundance within forest soil-derived metatranscriptomic datasets. The impact of land use type forest on community composition and activity is evidently to a high degree caused by the presence of wood breakdown products. Correspondingly, bacterial groups known to be involved in lignin degradation and containing ligninolytic genes such as Burkholderia, Bradyrhizobium, and Azospirillum exhibited increased transcriptional activity in forest soil. Higher solar radiation in grassland presumably induced increased transcription of photosynthesis-related genes within this land use type. This is in accordance with high abundance of photosynthetic organisms and plant-infecting viruses in grassland. PMID:24553913

  10. The Magea gene cluster regulates male germ cell apoptosis without affecting the fertility in mice

    Science.gov (United States)

    Hou, Siyuan; Xian, Li; Shi, Peiliang; Li, Chaojun; Lin, Zhaoyu; Gao, Xiang

    2016-01-01

    While apoptosis is essential for male germ cell development, improper activation of apoptosis in the testis can affect spermatogenesis and cause reproduction defects. Members of the MAGE-A (melanoma antigen family A) gene family are frequently clustered in mammalian genomes and are exclusively expressed in the testes of normal animals but abnormally activated in a wide variety of cancers. We investigated the potential roles of these genes in spermatogenesis by generating a mouse model with a 210-kb genomic deletion encompassing six members of the Magea gene cluster (Magea1, Magea2, Magea3, Magea5, Magea6 and Magea8). Male mice carrying the deletion displayed smaller testes from 2 months old with a marked increase in apoptotic germ cells in the first wave of spermatogenesis. Furthermore, we found that Magea genes prevented stress-induced spermatogenic apoptosis after N-ethyl-N-nitrosourea (ENU) treatment during the adult stage. Mechanistically, deletion of the Magea gene cluster resulted in a dramatic increase in apoptotic germ cells, predominantly spermatocytes, with activation of p53 and induction of Bax in the testes. These observations demonstrate that the Magea genes are crucial in maintaining normal testicular size and protecting germ cells from excessive apoptosis under genotoxic stress. PMID:27226137

  11. Mutant huntingtin downregulates myelin regulatory factor-mediated myelin gene expression and affects mature oligodendrocytes.

    Science.gov (United States)

    Huang, Brenda; Wei, WenJie; Wang, Guohao; Gaertig, Marta A; Feng, Yue; Wang, Wei; Li, Xiao-Jiang; Li, Shihua

    2015-03-18

    Growing evidence indicates that non-neuronal mutant huntingtin toxicity plays an important role in Huntington's disease (HD); however, whether and how mutant huntingtin affects oligodendrocytes, which are vitally important for neural function and axonal integrity, remains unclear. We first verified the presence of mutant huntingtin in oligodendrocytes in HD140Q knockin mice. We then established transgenic mice (PLP-150Q) that selectively express mutant huntingtin in oligodendrocytes. PLP-150Q mice show progressive neurological symptoms and early death, as well as age-dependent demyelination and reduced expression of myelin genes that are downstream of myelin regulatory factor (MYRF or MRF), a transcriptional regulator that specifically activates and maintains the expression of myelin genes in mature oligodendrocytes. Consistently, mutant huntingtin binds abnormally to MYRF and affects its transcription activity. Our findings suggest that dysfunction of mature oligodendrocytes is involved in HD pathogenesis and may also make a good therapeutic target. PMID:25789755

  12. The FRIABLE1 gene product affects cell adhesion in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Lutz Neumetzler

    Full Text Available Cell adhesion in plants is mediated predominantly by pectins, a group of complex cell wall associated polysaccharides. An Arabidopsis mutant, friable1 (frb1, was identified through a screen of T-DNA insertion lines that exhibited defective cell adhesion. Interestingly, the frb1 plants displayed both cell and organ dissociations and also ectopic defects in organ separation. The FRB1 gene encodes a Golgi-localized, plant specific protein with only weak sequence similarities to known proteins (DUF246. Unlike other cell adhesion deficient mutants, frb1 mutants do not have reduced levels of adhesion related cell wall polymers, such as pectins. Instead, FRB1 affects the abundance of galactose- and arabinose-containing oligosaccharides in the Golgi. Furthermore, frb1 mutants displayed alteration in pectin methylesterification, cell wall associated extensins and xyloglucan microstructure. We propose that abnormal FRB1 action has pleiotropic consequences on wall architecture, affecting both the extensin and pectin matrices, with consequent changes to the biomechanical properties of the wall and middle lamella, thereby influencing cell-cell adhesion.

  13. Poly purine.pyrimidine sequences upstream of the beta-galactosidase gene affect gene expression in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Brahmachari Samir K

    2001-10-01

    Full Text Available Abstract Background Poly purine.pyrimidine sequences have the potential to adopt intramolecular triplex structures and are overrepresented upstream of genes in eukaryotes. These sequences may regulate gene expression by modulating the interaction of transcription factors with DNA sequences upstream of genes. Results A poly purine.pyrimidine sequence with the potential to adopt an intramolecular triplex DNA structure was designed. The sequence was inserted within a nucleosome positioned upstream of the β-galactosidase gene in yeast, Saccharomyces cerevisiae, between the cycl promoter and gal 10Upstream Activating Sequences (UASg. Upon derepression with galactose, β-galactosidase gene expression is reduced 12-fold in cells carrying single copy poly purine.pyrimidine sequences. This reduction in expression is correlated with reduced transcription. Furthermore, we show that plasmids carrying a poly purine.pyrimidine sequence are not specifically lost from yeast cells. Conclusion We propose that a poly purine.pyrimidine sequence upstream of a gene affects transcription. Plasmids carrying this sequence are not specifically lost from cells and thus no additional effort is needed for the replication of these sequences in eukaryotic cells.

  14. Overfeeding energy upregulates peroxisome proliferator-activated receptor (PPAR)γ-controlled adipogenic and lipolytic gene networks but does not affect proinflammatory markers in visceral and subcutaneous adipose depots of Holstein cows.

    Science.gov (United States)

    Ji, P; Drackley, J K; Khan, M J; Loor, J J

    2014-01-01

    Our objective was to determine the effects of overfeeding energy on gene expression in mesenteric (MAT), omental (OAT), and subcutaneous (SAT) adipose tissue (AT) from nonpregnant and nonlactating Holstein cows. Eighteen cows were randomly assigned to either a low energy [LE, net energy for lactation (NE(L)) = 1.35 Mcal/kg of dry matter (DM)] or high energy (HE, NE(L) = 1.62 Mcal/kg of DM) diets for 8 wk. Cows were then euthanized and subsamples of MAT, OAT, and SAT were harvested for transcript profiling via quantitative PCR of 34 genes involved in lipogenesis, triacylglycerol (TAG) synthesis, lipolysis, lactate signaling, transcription regulation, and inflammation. The interaction of dietary energy and AT depot was only significant for LPL, which indicated a consistent response among the 3 sites. The expression of key genes related to de novo fatty acid synthesis (FASN) and desaturation (SCD) was upregulated by HE compared with LE. Other genes associated with those processes, such as ACLY, ACACA, ELOVL6, FABP4, GPAM, and LPIN1, were numerically upregulated by HE. The expression of lipolytic (PNPLA2 and ABHD5) genes was upregulated and the antilypolytic lactate receptor HCAR1 was downregulated with HE compared with LE. The putative transcription regulator THRSP was upregulated and the transcription regulator PPARG tended to be upregulated by HE, whereas SREBF1 was downregulated. Among adipocytokines, HE tended to upregulate the expression of CCL2, whereas IL6R was downregulated. Overall, results indicated that overfeeding energy may increase AT mass at least in part by stimulating transcription of the network encompassing key genes associated with de novo synthesis. In response to energy overfeeding, the expression of PPARG rather than SREBF1 was closely associated with most adipogenic or lipogenic genes. However, the transcriptional activity of these regulators needs to be verified to confirm their role in the regulation of adipogenesis or lipogenesis in bovine

  15. Methylation dependent expression of the mom gene of bacteriophage Mu: deletions downstream from the methylation sites affect expression.

    OpenAIRE

    Adley, C C; Bukhari, A I

    1984-01-01

    The expression of the DNA modification gene (mom) of bacteriophage Mu requires the cellular deoxyadenosine methylase (dam) and a transactivation factor from the phage. By hypothesis, the transcription of mom is activated by methylation of three GATC sequences upstream from the mom gene. We have introduced small deletions at a fourth GATC site located about 140 base pairs downstream from the primary methylation region. Some of the deletions severely affect the mom gene expression. We propose f...

  16. Do Real Estate Loans Affect Economic Activity?

    OpenAIRE

    Z. Onder; S.Ozyildirim Gunalay; S. Ozyildirim; Y. Gunalay

    2007-01-01

    Real estate, especially housing, has an important share in the nationís wealth. For example, real estate constitutes 48.8% of total wealth in the world in 1991. Moreover, housing construction and its financing are two important factors that affect economic development in developed and developing countries. Although the mortgage system has been developing in the 1980s and 1990s in the developing economies, the impact of mortgage credits on the economy has been ignored in the literature. The on...

  17. Gene duplication and divergence affecting drug content in Cannabis sativa.

    Science.gov (United States)

    Weiblen, George D; Wenger, Jonathan P; Craft, Kathleen J; ElSohly, Mahmoud A; Mehmedic, Zlatko; Treiber, Erin L; Marks, M David

    2015-12-01

    Cannabis sativa is an economically important source of durable fibers, nutritious seeds, and psychoactive drugs but few economic plants are so poorly understood genetically. Marijuana and hemp were crossed to evaluate competing models of cannabinoid inheritance and to explain the predominance of tetrahydrocannabinolic acid (THCA) in marijuana compared with cannabidiolic acid (CBDA) in hemp. Individuals in the resulting F2 population were assessed for differential expression of cannabinoid synthase genes and were used in linkage mapping. Genetic markers associated with divergent cannabinoid phenotypes were identified. Although phenotypic segregation and a major quantitative trait locus (QTL) for the THCA/CBDA ratio were consistent with a simple model of codominant alleles at a single locus, the diversity of THCA and CBDA synthase sequences observed in the mapping population, the position of enzyme coding loci on the map, and patterns of expression suggest multiple linked loci. Phylogenetic analysis further suggests a history of duplication and divergence affecting drug content. Marijuana is distinguished from hemp by a nonfunctional CBDA synthase that appears to have been positively selected to enhance psychoactivity. An unlinked QTL for cannabinoid quantity may also have played a role in the recent escalation of drug potency. PMID:26189495

  18. Ectomycorrhizal activity as affected by soil liming

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Solbritt

    1996-05-01

    Acidification of the forest soils in southern Sweden due to atmospheric deposition has become evident during recent decades. To counteract further acidification, liming of forests in the most affected areas has been proposed. Most forest trees in the temperate and boreal forest ecosystems live in symbiosis with ectomycorrhizal fungi, and their uptake of mineral nutrients from the soil is greatly influenced by the symbiosis. In this thesis effects of liming on ectomycorrhiza have been studied in relation to effects on root colonization, fungal growth and nitrogen uptake. In field experiments the effects of liming on ectomycorrhizal colonization of root tips were variable, possibly due to different soil types and climatic variations. However, a changed mycorrhizal community structure could be detected. Laboratory studies also showed that the substrate may influence the outcome of lime applications; the nutrient status of the substrate had a marked effect on how mycelial growth was affected by liming. Under the experimental conditions used in the studies presented in this thesis, liming reduced the uptake of nitrogen and phosphorus by both mycorrhizal and non-mycorrhizal plants. The amount of extractable nitrogen and phosphorus in the peat was also reduced by liming. The latter could be due to either microbial or chemical immobilization. The lime induced decrease in nitrogen uptake was stronger in non-mycorrhizal plants than in mycorrhizal plants. Thus, the mycorrhizal plants had a higher ability to deal with the negative effects of liming on nitrogen availability. This was not the case for phosphorus. The lime induced decrease in phosphorus uptake was stronger for mycorrhizal plants, and in the highest lime treatment there was no significant difference between the mycorrhizal and the non-mycorrhizal spruce plants. 76 refs, 2 figs, 1 tab

  19. Ionizing radiation affects active ileal electrolyte transport

    International Nuclear Information System (INIS)

    Exposure to ionizing radiation has pronounced effects on gastrointestinal physiology eliciting the fluid and electrolyte loss of the gastrointestinal syndrome. This study reports on the effect of whole-body cobalt-60 exposure on active electrolyte transport by rabbit ileum in an effort to quantify these changes and to define the mechanism by which electrolyte transport is altered. The short-circuit current (lsc), a measure of active electrolyte transport, was determined for ileal segments isolated from rabbits radiated with 5 to 100 Gy and compared to those from sham irradiated control 1 to 96 hours after exposure. One hour after exposure there was no apparent effect of radiation. However by 24 hours, there was a significant increase in lsc of segments from animals exposed to doses of 7.5 Gy and greater. The lsc remained elevated during the 96 hours for 10 and 12 Gy whereas at 7.5 Gy it returned to control values by 72 hours. The response of the tissue to a secretagogue, theophylline, was reduced 72 hours post-irradiation. By 96 hours after exposure, the response to an actively transported amino acid, alanine, was also reduced. These results indicate that radiation-induced fluid and electrolyte loss is not simply a consequence of denudiation of the intestine but due in part to alterations in cellular transport processes

  20. Biologically active extracts with kidney affections applications

    Science.gov (United States)

    Pascu (Neagu), Mihaela; Pascu, Daniela-Elena; Cozea, Andreea; Bunaciu, Andrei A.; Miron, Alexandra Raluca; Nechifor, Cristina Aurelia

    2015-12-01

    This paper is aimed to select plant materials rich in bioflavonoid compounds, made from herbs known for their application performances in the prevention and therapy of renal diseases, namely kidney stones and urinary infections (renal lithiasis, nephritis, urethritis, cystitis, etc.). This paper presents a comparative study of the medicinal plant extracts composition belonging to Ericaceae-Cranberry (fruit and leaves) - Vaccinium vitis-idaea L. and Bilberry (fruit) - Vaccinium myrtillus L. Concentrated extracts obtained from medicinal plants used in this work were analyzed from structural, morphological and compositional points of view using different techniques: chromatographic methods (HPLC), scanning electronic microscopy, infrared, and UV spectrophotometry, also by using kinetic model. Liquid chromatography was able to identify the specific compounds of the Ericaceae family, present in all three extracts, arbutosid, as well as specific components of each species, mostly from the class of polyphenols. The identification and quantitative determination of the active ingredients from these extracts can give information related to their therapeutic effects.

  1. Affective Response to Physical Activity: Testing for Measurement Invariance of the Physical Activity Affect Scale across Active and Non-Active Individuals

    Science.gov (United States)

    Carpenter, Laura C.; Tompkins, Sara Anne; Schmiege, Sarah J.; Nilsson, Renea; Bryan, Angela

    2010-01-01

    Affective responses to physical activity are assumed to play a role in exercise initiation and maintenance. The Physical Activity Affect Scale measures four dimensions of an individual's affective response to exercise. Group differences in the interpretation of scale items can impact the interpretability of mean differences, underscoring the need…

  2. Gene expression profiling of placentas affected by pre-eclampsia

    DEFF Research Database (Denmark)

    Hoegh, Anne Mette; Borup, Rehannah; Nielsen, Finn Cilius;

    2010-01-01

    expression from pooled samples was analysed by microarrays. Verification of the expression of selected genes was performed using real-time PCR. A surprisingly low number of genes (21 out of 15,000) were identified as differentially expressed. Among these were genes not previously associated with pre......-eclampsia as bradykinin B1 receptor and a 14-3-3 protein, but also genes that have already been connected with pre-eclampsia, for example, inhibin beta A subunit and leptin. A low number of genes were repeatedly identified as differentially expressed, because they may represent the endpoint of a cascade of......Several studies point to the placenta as the primary cause of pre-eclampsia. Our objective was to identify placental genes that may contribute to the development of pre-eclampsia. RNA was purified from tissue biopsies from eleven pre-eclamptic placentas and eighteen normal controls. Messenger RNA...

  3. Environmental polycyclic aromatic hydrocarbons affect androgen receptor activation in vitro

    DEFF Research Database (Denmark)

    Vinggaard, Anne Marie; Hnida, Christina; Larsen, John Christian

    2000-01-01

    of certain PAHs to activate the Ah receptor was assessed in H4IIE liver cancer cells, stably transfected with a luciferase reporter gene system. The positive control 2, 3,7, 8-tetrachlorodibenzodioxin (TCDD) caused a 13-14-fold induction of luciferase activity reaching maximum activity at 0.1 nM. DB...

  4. Environmental polycyclic aromatic hydrocarbons affect androgen receptor activation in vitro

    DEFF Research Database (Denmark)

    Vinggaard, Anne Marie; Hnida, Christina; Larsen, John Christian

    of certain PAHs to activate the Ah receptor was assessed in H4IIE liver cancer cells, stably transfected with a luciferase reporter gene system. The positive control 2, 3,7, 8-tetrachlorodibenzodioxin (TCDD) caused a 13-14-fold induction of luciferase activity reaching maximum activity at 0.1 nM. DB...

  5. Directed mutagenesis affects recombination in Azospirillum brasilense nif genes

    Directory of Open Access Journals (Sweden)

    C.P. Nunes

    2000-12-01

    Full Text Available In order to improve the gene transfer/mutagenesis system for Azospirillum brasilense, gene-cartridge mutagenesis was used to replace the nifD gene with the Tn5 kanamycin resistance gene. The construct was transferred to A. brasilense by electrotransformation. Of the 12 colonies isolated using the suicide plasmid pSUP202 as vector, only four did not show vector integration into the chromosome. Nevertheless, all 12 colonies were deficient in acetylene reduction, indicating an Nif- phenotype. Four Nif- mutants were analyzed by Southern blot, using six different probes spanning the nif and Km r genes and the plasmid vector. Apparently, several recombination events occurred in the mutant genomes, probably caused mainly by gene disruption owing to the mutagenesis technique used: resistance gene-cartridge mutagenesis combined with electrotransformation.Com o objetivo de melhorar os sistemas de transferência gênica e mutagênese para Azospirillum brasilense, a técnica de mutagênese através do uso de um gene marcador ("gene-cartridge mutagenesis" foi utilizada para substituir a região genômica de A. brasilense correspondente ao gene nifD por um segmento de DNA do transposon Tn5 contendo o gene que confere resistência ao antibiótico canamicina. A construção foi transferida para a linhagem de A. brasilense por eletrotransformação. Doze colônias transformantes foram isoladas com o plasmídeo suicida pSUP202 servindo como vetor. Dessas, somente quatro não possuíam o vetor integrado no cromossomo da bactéria. Independentemente da integração ou não do vetor, as 12 colônias foram deficientes na redução do gás acetileno, evidenciando o fenótipo Nif -. Quatro mutantes Nif - foram analisados através da técnica de Southern blot, utilizando-se seis diferentes fragmentos contendo genes nif, de resistência à canamicina e do vetor como sondas. Os resultados sugerem a ocorrência de eventos recombinacionais variados no genoma dos mutantes. A

  6. Gene expression profiling of placentas affected by pre-eclampsia

    DEFF Research Database (Denmark)

    Hoegh, Anne Mette; Borup, Rehannah; Nielsen, Finn Cilius;

    2010-01-01

    Several studies point to the placenta as the primary cause of pre-eclampsia. Our objective was to identify placental genes that may contribute to the development of pre-eclampsia. RNA was purified from tissue biopsies from eleven pre-eclamptic placentas and eighteen normal controls. Messenger RNA...... events effectuated throughout gestation. They were associated with transcriptional regulation and vasoregulative pathways, along with a number of hypothetical proteins and gene sequences with unknown functions....

  7. Maternal obesity affects fetal neurodevelopmental and metabolic gene expression: a pilot study.

    Directory of Open Access Journals (Sweden)

    Andrea G Edlow

    Full Text Available OBJECTIVE: One in three pregnant women in the United States is obese. Their offspring are at increased risk for neurodevelopmental and metabolic morbidity. Underlying molecular mechanisms are poorly understood. We performed a global gene expression analysis of mid-trimester amniotic fluid cell-free fetal RNA in obese versus lean pregnant women. METHODS: This prospective pilot study included eight obese (BMI≥30 and eight lean (BMI<25 women undergoing clinically indicated mid-trimester genetic amniocentesis. Subjects were matched for gestational age and fetal sex. Fetuses with abnormal karyotype or structural anomalies were excluded. Cell-free fetal RNA was extracted from amniotic fluid and hybridized to whole genome expression arrays. Genes significantly differentially regulated in 8/8 obese-lean pairs were identified using paired t-tests with the Benjamini-Hochberg correction (false discovery rate of <0.05. Biological interpretation was performed with Ingenuity Pathway Analysis and the BioGPS gene expression atlas. RESULTS: In fetuses of obese pregnant women, 205 genes were significantly differentially regulated. Apolipoprotein D, a gene highly expressed in the central nervous system and integral to lipid regulation, was the most up-regulated gene (9-fold. Apoptotic cell death was significantly down-regulated, particularly within nervous system pathways involving the cerebral cortex. Activation of the transcriptional regulators estrogen receptor, FOS, and STAT3 was predicted in fetuses of obese women, suggesting a pro-estrogenic, pro-inflammatory milieu. CONCLUSION: Maternal obesity affects fetal neurodevelopmental and metabolic gene expression as early as the second trimester. These findings may have implications for postnatal neurodevelopmental and metabolic abnormalities described in the offspring of obese women.

  8. Identification of a mutation affecting an alanine-alpha-ketoisovalerate transaminase activity in Escherichia coli K-12.

    Science.gov (United States)

    Falkinham, J O

    1979-10-01

    A mutation affecting alanine-alpha-ketoisovalerate transaminase activity has been shown to be cotransducible with ilv gene cluster. The transaminase deficiency results in conditional isoleucine auxotrophy in the presence of alanine. PMID:396446

  9. 16 CFR 801.3 - Activities in or affecting commerce.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Activities in or affecting commerce. 801.3... in or affecting commerce. Section 7A(a)(1) is satisfied if any entity included within the acquiring person, or any entity included within the acquired person, is engaged in commerce or in any...

  10. The ratio of unsaturated fatty acids in biosurfactants affects the efficiency of gene transfection.

    Science.gov (United States)

    Inoh, Yoshikazu; Furuno, Tadahide; Hirashima, Naohide; Kitamoto, Dai; Nakanishi, Mamoru

    2010-10-15

    An unsaturated hydrocarbon chain in phospholipid was reported to affect a phase transition and a fusogenic activity after mixing membranes, and consequently to achieve a high DNA transfection efficiency. We previously showed that a biosurfactant mannosylerythritol lipid-A (MEL-A) enhances the gene transfection efficiency of cationic liposomes. Here, we have studied the effects of unsaturated fatty acid ratio of MEL-A on the physicochemical properties and gene delivery into cells of cationic liposomes using MEL-A with three different unsaturated fatty acid ratios (9.1%, 21.5%, and 46.3%). The gene transfer efficiency of cationic liposomes containing MEL-A (21.5%) was much higher than that of those containing MEL-A (9.1%) and MEL-A (46.3%). MEL-A (21.5%)-containing cationic liposomes induced highly efficient membrane fusion after addition of anionic liposomes and led to subsequent DNA release. Imaging analysis revealed that MEL-A (21.5%)-containing liposomes fused with the plasma membrane and delivered DNA into the nucleus of NIH-3T3 cells, MEL-A (46.3%)-containing liposomes fused with the plasma membrane did not deliver DNA into the nucleus, and MEL-A (9.1%)-containing liposomes neither fused with the plasma membrane nor delivered DNA into the nucleus. Thus, it is understandable that the unsaturated fatty acid ratio of MEL-A strongly influences the gene transfection efficiency of cationic liposomes. PMID:20674726

  11. Novel TetR family transcriptional factor regulates expression of multiple transport-related genes and affects rifampicin resistance in Mycobacterium smegmatis

    OpenAIRE

    Huicong Liu; Min Yang; Zheng-Guo He

    2016-01-01

    Transport-related genes significantly affect bacterial antibiotic resistance. However, the effects of these genes and their regulation of bacterial drug resistance in several mycobacterial species, including the fast-growing Mycobacterium smegmatis, the pathogen M. tuberculosis and M. avium have not been clearly characterized. We identified Ms4022 (MSMEG_4022) as a novel TetR family regulator that activates the expression of seven transport-related genes and affects drug resistance in M. smeg...

  12. Three Genes Which Affect Founding of Aggregations in Polysphondylium Pallidum

    OpenAIRE

    Francis, D.; Shaffer, A.; Smoyer, K.

    1991-01-01

    PN6024 is an extraordinary mutant strain of the cellular slime mold Polysphondylium pallidum, characterized by having defects in many unlinked genes. New strains with altered development appeared spontaneously as aberrant clones of PN6024. Genetic crosses using the macrocyst sexual cycle were used to show that PN6030 (a clone like PN6024 in phenotype) carries mutations at two loci, emm and hge, whereas PN6031 (a clone of altered morphology) carries in addition a mutation at a third locus, mgt...

  13. Genes activated by low dose radiation

    International Nuclear Information System (INIS)

    Gene expression profiles were examined in the mouse kidney and testis in order to investigate the molecular mechanisms of the life span-shortening effect of low dose-rate radiation. C57BL/6J male mice (7-8 wks old) were irradiated by cesium-137 gamma-rays for 485 days at rates of 0, 32, 650 and 13,000 nGy/min and organs were excised out. Gene expression was analyzed with cDNA microarray Illumina Sentrix Mouse-6. In the kidney, 4 genes concerning mitochondrial respiration (oxidative phosphorylation) were found to be up-regulated at the middle and high dose rates (expression level changed in >1.6 folds by irradiation). Significantly modulated genes were in 16 clusters, which exerted elevated expression level dose rate-dependently and found to be categorized in cytoplasm/mitochondria/energy pathways by the database ''Gene Ontology''. In the testis, gene expression pattern was different from that in kidney. Clustering analysis and database revealed that up-regulated genes belonged to ''DNA repair'', ''response to DNA damage'', DNA replication'' and ''Mitotic cell cycles''. Thus low dose radiation can cause the cellular oxidative stress by elevated respiratory activity in the kidney, and a type of emergent biological response in the testis. (R.T.)

  14. How do oil prices affect oilrig activity? : an empirical investigation

    OpenAIRE

    2004-01-01

    Resume "How do oil prices affect oilrig activity? An empirical investigation" by Guro Børnes Ringlund. Supervisors: Knut Einar Rosendahl and Terje Skjerpen. In this thesis, I analyse the relationship between oilrig activity and oil price changes for several oil-producing regions in the world. Rig activity is a preparation for future production of oil, through exploration for new fields or development of existing fields, and is thus an indicator for the future level of oil production. ...

  15. Chromatin structure near transcriptionally active genes

    International Nuclear Information System (INIS)

    Hypersensitive domains are the most prominent features of transcriptionally active chromatin. In the case of the β/sup A/-globin gene, it seems likely that two or more protein factors are capable of binding to the DNA so tightly that the nucleosome is prevented from binding. We have shown that nucleosomes, once bound in the assembly process in vitro, cannot be displaced. The interaction of the 5S gene transcription factor TFIIIA with its target DNA also is blocked by histones, and it has been suggested that the activation of the gene must occur during replication, before histones are reassembled on the DNA. We suppose that a similar mechanism may govern the binding of the hypersensitivity factors. It should be noted that nucleosomes are excluded not only from the sites to which the factors bind, but also from the regions between the two domains and at either side. 12 refs., 6 figs

  16. Senescence-induced ectopic expression of A. tumefaciens ipt gene in wheat delays leaf senescence, increases cytokinin content, nitrate influx and nitrate reductase activity but does not affect grain yield

    Czech Academy of Sciences Publication Activity Database

    Sýkorová, Blanka; Kurešová, G.; Daskalova, S.; Trčková, M.; Hoyerová, Klára; Raimanová, I.; Motyka, Václav; Trávníčková, Alena; Elliott, M. C.; Kamínek, Miroslav

    2008-01-01

    Roč. 59, č. 2 (2008), s. 377-387. ISSN 0022-0957 R&D Projects: GA ČR GA522/02/0530; GA MŠk 1M06030; GA AV ČR(CZ) IAA600380507 Keywords : Cytokinins * grain yield * ipt gene Subject RIV: EF - Botanics Impact factor: 4.001, year: 2008

  17. Mosaicism for the FMR1 gene influences adaptive skills development in fragile X-affected males

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, I.L.; Sudhalter, V.; Nolin, S.L. [New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY (United States)

    1996-08-09

    Fragile X syndrome is one of the most common forms of inherited mental retardation, and the first of a new class of genetic disorders associated with expanded trinucleotide repeats. Previously, we found that about 41% of affected males are mosaic for this mutation in that some of their blood cells have an active fragile X gene and others do not. It has been hypothesized that these mosaic cases should show higher levels of functioning than those who have only the inactive full mutation gene, but previous studies have provided negative or equivocal results. In the present study, the cross-sectional development of communication, self-care, socialization, and motor skills was studied in 46 males with fragile X syndrome under age 20 years as a function of two variables: age and the presence or absence of mosaicism. The rate of adaptive skills development was 2-4 times as great in mosaic cases as in full mutation cases. There was also a trend for cases with autism to be more prevalent in the full-mutation group. These results have implications for prognosis, for the utility of gene or protein replacement therapies for this disorder, and for understanding the association between mental retardation, developmental disorders, and fragile X syndrome. 21 refs., 3 figs.

  18. Gene Risk Factors for Age-Related Brain Disorders May Affect Immune System Function

    Science.gov (United States)

    ... factors for age-related brain disorders may affect immune system function June 17, 2014 Scientists have discovered gene ... risk factors for age-related neurological disorders to immune system functions, such as inflammation, offers new insights into ...

  19. Factors affecting the concordance between orthologous gene trees and species tree in bacteria

    Directory of Open Access Journals (Sweden)

    González Víctor

    2008-10-01

    Full Text Available Abstract Background As originally defined, orthologous genes implied a reflection of the history of the species. In recent years, many studies have examined the concordance between orthologous gene trees and species trees in bacteria. These studies have produced contradictory results that may have been influenced by orthologous gene misidentification and artefactual phylogenetic reconstructions. Here, using a method that allows the detection and exclusion of false positives during identification of orthologous genes, we address the question of whether putative orthologous genes within bacteria really reflect the history of the species. Results We identified a set of 370 orthologous genes from the bacterial order Rhizobiales. Although manifesting strong vertical signal, almost every orthologous gene had a distinct phylogeny, and the most common topology among the orthologous gene trees did not correspond with the best estimate of the species tree. However, each orthologous gene tree shared an average of 70% of its bipartitions with the best estimate of the species tree. Stochastic error related to gene size affected the concordance between the best estimated of the species tree and the orthologous gene trees, although this effect was weak and distributed unevenly among the functional categories. The nodes showing the greatest discordance were those defined by the shortest internal branches in the best estimated of the species tree. Moreover, a clear bias was evident with respect to the function of the orthologous genes, and the degree of divergence among the orthologous genes appeared to be related to their functional classification. Conclusion Orthologous genes do not reflect the history of the species when taken as individual markers, but they do when taken as a whole. Stochastic error affected the concordance of orthologous genes with the species tree, albeit weakly. We conclude that two important biological causes of discordance among

  20. The luxS gene of Streptococcus pyogenes regulates expression of genes that affect internalization by epithelial cells.

    Science.gov (United States)

    Marouni, Mehran J; Sela, Shlomo

    2003-10-01

    The gram-positive pathogen Streptococcus pyogenes was recently reported to possess a homologue of the luxS gene that is responsible for the production of autoinducer 2, which participates in quorum sensing of both gram-positive and gram-negative bacteria. To test the effect of LuxS on streptococcal internalization, a LuxS mutant was constructed in strain SP268, an invasive M3 serotype. Functional analysis of the mutant revealed that it was internalized by HEp-2 cells with higher efficiency than the wild type (wt). Several genes, including hasA (hyaluronic acid synthesis), speB (streptococcal pyrogenic exotoxin B), and csrR (capsule synthesis regulator), a part of a two-component regulatory system, are known to affect the internalization of strain SP268 (J. Jadoun, O. Eyal, and S. Sela, Infect. Immun. 70:462-469, 2002). Therefore, the expression of these genes in the mutant and in the wt was examined. LuxS mutation significantly reduced the mRNA level of speB and increased the mRNA level of emm3. No substantial effect was observed on transcription of hasA and csrR. Yet less hyaluronic acid capsule was expressed in the mutant. Further analysis revealed that luxS is under the regulation of the two-component global regulator CsrR. Our results indicate that LuxS activity in strain SP268 plays an important role in the expression of virulence factors associated with epithelial cell internalization. PMID:14500483

  1. DTNBP1, a schizophrenia susceptibility gene, affects kinetics of transmitter release

    OpenAIRE

    Chen, Xiao-Wei; Feng, Ya-Qin; Hao, Chan-Juan; Guo, Xiao-Li; He, Xin; Zhou, Zhi-Yong; Guo, Ning; Huang, Hong-Ping; Xiong, Wei; Zheng, Hui; Zuo, Pan-Li; Zhang, Claire Xi; Li, Wei; Zhou, Zhuan

    2008-01-01

    Schizophrenia is one of the most debilitating neuropsychiatric disorders, affecting 0.5–1.0% of the population worldwide. Its pathology, attributed to defects in synaptic transmission, remains elusive. The dystrobrevin-binding protein 1 (DTNBP1) gene, which encodes a coiled-coil protein, dysbindin, is a major susceptibility gene for schizophrenia. Our previous results have demonstrated that the sandy (sdy) mouse harbors a spontaneously occurring deletion in the DTNBP1 gene and expresses no dy...

  2. Identification of host genes that affect acquisition of an integrative and conjugative element in Bacillus subtilis

    OpenAIRE

    Johnson, Christopher M; Grossman, Alan D.

    2014-01-01

    Conjugation, a major type of horizontal gene transfer in bacteria, involves transfer of DNA from a donor to a recipient using donor-encoded conjugation machinery. Using a high throughput screen (Tn-seq), we identified genes in recipients that contribute to acquisition of the integrative and conjugative element ICEBs1 by Bacillus subtilis. We found that null mutations in some genes caused an increase, and others a decrease in conjugation efficiency. Some mutations affected conjugation only whe...

  3. DISC1 gene and affective psychopathology: a combined structural and functional MRI study.

    Science.gov (United States)

    Opmeer, Esther M; van Tol, Marie-José; Kortekaas, Rudie; van der Wee, Nic J A; Woudstra, Saskia; van Buchem, Mark A; Penninx, Brenda W; Veltman, Dick J; Aleman, André

    2015-02-01

    The gene Disrupted-In-Schizophrenia-1 (DISC1) has been indicated as a determinant of psychopathology, including affective disorders, and shown to influence prefrontal cortex (PFC) and hippocampus functioning, regions of major interest for affective disorders. We aimed to investigate whether DISC1 differentially modulates brain function during executive and memory processing, and morphology in regions relevant for depression and anxiety disorders (affective disorders). 128 participants, with (n = 103) and without (controls; n = 25) affective disorders underwent genotyping for Ser704Cys (with Cys-allele considered as risk-allele) and structural and functional (f) Magnetic Resonance Imaging (MRI) during visuospatial planning and emotional episodic memory tasks. For both voxel-based morphometry and fMRI analyses, we investigated the effect of genotype in controls and explored genotypeXdiagnosis interactions. Results are reported at p < 0.05 FWE small volume corrected. In controls, Cys-carriers showed smaller bilateral (para)hippocampal volumes compared with Ser-homozygotes, and lower activation in the anterior cingulate cortex (ACC) and dorsolateral PFC during visuospatial planning. In anxiety patients, Cys-carriers showed larger (para)hippocampal volumes and more ACC activation during visuospatial planning. In depressive patients, no effect of genotype was observed and overall, no effect of genotype on episodic memory processing was detected. We demonstrated that Ser704Cys-genotype influences (para)hippocampal structure and functioning the dorsal PFC during executive planning, most prominently in unaffected controls. Results suggest that presence of psychopathology moderates Ser704Cys effects. PMID:25533973

  4. A family with a dystrophin gene mutation specifically affecting dystrophin expression in the heart

    Energy Technology Data Exchange (ETDEWEB)

    Muntoni, F.; Davies, K.; Dubowitz, V. [Royal Postgraduate Medical School, London (United Kingdom)] [and others

    1994-09-01

    We recently described a family with X-linked dilated cardiomyopathy where a large deletion in the muscle promoter region of the dystrophin gene was associated with a severe dilated cardiomyopathy in absence of clinical skeletal muscle involvement. The deletion removed the entire muscle promoter region, the first muscle exon and part of intron 1. The brain and Purkinje cell promoters were not affected by the deletion. Despite the lack of both the muscle promoter and the first muscle exon, dystrophin was detected immunocytochemically in relative high levels in the skeletal muscle of the affected males. We have now found that both the brain and Purkinje cell promoters were transcribed at high levels in the skeletal muscle of these individuals. This phenomenon, that does not occur in normal skeletal muscle, indicates that these two isoforms, physiologically expressed mainly in the central nervous system, can be transcribed and be functionally active in skeletal muscle under specific circumstances. Contrary to what is observed in skeletal muscle, dystrophin was not detected in the heart of one affected male using immunocytochemistry and an entire panel of anti-dystrophin antibodies. This was most likely the cause for the pronounced cardiac fibrosis observed and eventually responsible for the severe cardiac involvement invariably seen in seven affected males. In conclusion, the mutation of the muscle promoter, first muscle exon and part of intron 1 specifically affected expression of dystrophin in the heart. We believe that this deletion removes sequences involved in regulation of dystrophin expression in the heart and are at the moment characterizing other families with X-linked cardiomyopathy secondary to a dystrophinopathy.

  5. Monitoring Affect States during Effortful Problem Solving Activities

    Science.gov (United States)

    D'Mello, Sidney K.; Lehman, Blair; Person, Natalie

    2010-01-01

    We explored the affective states that students experienced during effortful problem solving activities. We conducted a study where 41 students solved difficult analytical reasoning problems from the Law School Admission Test. Students viewed videos of their faces and screen captures and judged their emotions from a set of 14 states (basic…

  6. Bioaerosols from a Food Waste Composting Plant Affect Human Airway Epithelial Cell Remodeling Genes

    Directory of Open Access Journals (Sweden)

    Ming-Wei Chang

    2013-12-01

    Full Text Available The composting procedure in food waste plants generates airborne bioaerosols that have the potential to damage human airway epithelial cells. Persistent inflammation and repair responses induce airway remodeling and damage to the respiratory system. This study elucidated the expression changes of airway remodeling genes in human lung mucoepidermoid NCI-H292 cells exposed to bioaerosols from a composting plant. Different types of microorganisms were detectable in the composting plant, using the agar culture method. Real-time polymerase chain reaction was used to quantify the level of Aspergillus fumigatus and the profile of remodeling genes. The real-time PCR results indicated that the amount of A. fumigatus in the composting hall was less than 102 conidia. The endotoxins in the field bioaerosols were determined using a limulus amebocyte lysate test. The endotoxin levels depended on the type of particulate matter (PM, with coarse particles (2.5–10 μm having higher endotoxin levels than did fine particles (0.5–2.5 μm. After exposure to the conditioned medium of field bioaerosol samples, NCI-H292 cells showed increased pro-inflammatory interleukin (IL-6 release and activated epidermal growth factor receptor (EGFR, transforming growth factor (TGF-β1 and cyclin-dependent kinase inhibitor 1 (p21WAF1/CIP1 gene expression, but not of matrix metallopeptidase (MMP-9. Airborne endotoxin levels were higher inside the composting hall than they were in other areas, and they were associated with PM. This suggested that airborne bioaerosols in the composting plant contained endotoxins and microorganisms besides A. fumigatus that cause the inflammatory cytokine secretion and augment the expression of remodeling genes in NCI-H292 cells. It is thus necessary to monitor potentially hazardous materials from bioaerosols in food composting plants, which could affect the health of workers.

  7. TAM receptors affect adult brain neurogenesis by negative regulation of microglial cell activation1

    OpenAIRE

    Ji, Rui; Tian, Shifu; Lu, Helen J.; LU, QINGJUN; Yan ZHENG; Wang, Xiaomin; Ding, Jixiang; Li, Qiutang; Lu, Qingxian

    2013-01-01

    TAM tyrosine kinases play multiple functional roles including regulation of the target genes important in homeostatic regulation of cytokine receptors or Toll-like receptor-mediated signal transduction pathways. Here, we show that TAM receptors affect adult hippocampal neurogenesis and loss of TAM receptors impair hippocampal neurogenesis, largely attributed to exaggerated inflammatory responses by microglia characterized by increased MAP kinase and NF-κB activation and elevated production of...

  8. Escherichia coli noncoding RNAs can affect gene expression and physiology of Caenorhabditis elegans

    OpenAIRE

    Liu, Huijie; WANG, XUEREN; Wang, Horng-Dar; Wu, JinJing; Ren, Jing; Meng, Lingfeng; Wu, Qingfa; Dong, Hansheng; WU, Jing; Kao, Tzu-Yu; Ge, Qian; Wu, Zheng-xing; Yuh, Chiou-Hwa; Shan, Ge

    2012-01-01

    Food and other environmental factors affect gene expression and behaviour of animals. Differences in bacterial food affect the behaviour and longevity of Caenorhabditis elegans. However, no research has been carried out to investigate whether bacteria could utilize endogenous RNAs to affect C. elegans physiology. Here we show that two Escherichia coli endogenous noncoding RNAs, OxyS and DsrA, impact on the physiology of C. elegans. OxyS downregulates che-2, leading to impairment in C. elegans...

  9. Osmotic stress at the barley root affects expression of circadian clock genes in the shoot.

    Science.gov (United States)

    Habte, Ermias; Müller, Lukas M; Shtaya, Munqez; Davis, Seth J; von Korff, Maria

    2014-06-01

    The circadian clock is an important timing system that controls physiological responses to abiotic stresses in plants. However, there is little information on the effects of the clock on stress adaptation in important crops, like barley. In addition, we do not know how osmotic stress perceived at the roots affect the shoot circadian clock. Barley genotypes, carrying natural variation at the photoperiod response and clock genes Ppd-H1 and HvELF3, were grown under control and osmotic stress conditions to record changes in the diurnal expression of clock and stress-response genes and in physiological traits. Variation at HvELF3 affected the expression phase and shape of clock and stress-response genes, while variation at Ppd-H1 only affected the expression levels of stress genes. Osmotic stress up-regulated expression of clock and stress-response genes and advanced their expression peaks. Clock genes controlled the expression of stress-response genes, but had minor effects on gas exchange and leaf transpiration. This study demonstrated that osmotic stress at the barley root altered clock gene expression in the shoot and acted as a spatial input signal into the clock. Unlike in Arabidopsis, barley primary assimilation was less controlled by the clock and more responsive to environmental perturbations, such as osmotic stress. PMID:24895755

  10. Systematic identification of novel, essential host genes affecting bromovirus RNA replication.

    Directory of Open Access Journals (Sweden)

    Brandi L Gancarz

    Full Text Available Positive-strand RNA virus replication involves viral proteins and cellular proteins at nearly every replication step. Brome mosaic virus (BMV is a well-established model for dissecting virus-host interactions and is one of very few viruses whose RNA replication, gene expression and encapsidation have been reproduced in the yeast Saccharomyces cerevisiae. Previously, our laboratory identified ∼100 non-essential host genes whose loss inhibited or enhanced BMV replication at least 3-fold. However, our isolation of additional BMV-modulating host genes by classical genetics and other results underscore that genes essential for cell growth also contribute to BMV RNA replication at a frequency that may be greater than that of non-essential genes. To systematically identify novel, essential host genes affecting BMV RNA replication, we tested a collection of ∼900 yeast strains, each with a single essential gene promoter replaced by a doxycycline-repressible promoter, allowing repression of gene expression by adding doxycycline to the growth medium. Using this strain array of ∼81% of essential yeast genes, we identified 24 essential host genes whose depleted expression reproducibly inhibited or enhanced BMV RNA replication. Relevant host genes are involved in ribosome biosynthesis, cell cycle regulation and protein homeostasis, among other cellular processes. BMV 2a(Pol levels were significantly increased in strains depleted for a heat shock protein (HSF1 or proteasome components (PRE1 and RPT6, suggesting these genes may affect BMV RNA replication by directly or indirectly modulating 2a(Pol localization, post-translational modification or interacting partners. Investigating the diverse functions of these newly identified essential host genes should advance our understanding of BMV-host interactions and normal cellular pathways, and suggest new modes of virus control.

  11. Factors affecting SFHR gene correction efficiency with single-stranded DNA fragment

    International Nuclear Information System (INIS)

    A 606-nt single-stranded (ss) DNA fragment, prepared by restriction enzyme digestion of ss phagemid DNA, improves the gene correction efficiency by 12-fold as compared with a PCR fragment, which is the conventional type of fragment used in the small fragment homologous replacement method [H. Tsuchiya, H. Harashima, H. Kamiya, Increased SFHR gene correction efficiency with sense single-stranded DNA, J. Gene Med. 7 (2005) 486-493]. To reveal the characteristic features of this gene correction with the ss DNA fragment, the effects on the gene correction in CHO-K1 cells of the chain length, 5'-phosphate, adenine methylation, and transcription were studied. Moreover, the possibility that the ss DNA fragment is integrated into the target DNA was examined with a radioactively labeled ss DNA fragment. The presence of methylated adenine, but not the 5'-phosphate, enhanced the gene correction efficiency, and the optimal length of the ss DNA fragment (∼600 nt) was determined. Transcription of the target gene did not affect the gene correction efficiency. In addition, the target DNA recovered from the transfected CHO-K1 cells was radioactive. The results obtained in this study indicate that length and adenine methylation were important factors affecting the gene correction efficiency, and that the ss DNA fragment was integrated into the double-stranded target DNA

  12. How does the anthropogenic activity affect the spring discharge?

    Science.gov (United States)

    Hao, Yonghong; Zhang, Juan; Wang, Jiaojiao; Li, Ruifang; Hao, Pengmei; Zhan, Hongbin

    2016-09-01

    Karst hydrological process has largely been altered by climate change and human activity. In many places throughout the world, human activity (e.g. groundwater pumping and dewatering from mining) has intensified and surpassed climate change, where human activity becomes the primary factor that affects groundwater system. But it is still largely unclear how the human activity affects spring discharge in magnitude and periodicity. This study investigates the effects of anthropogenic activity on spring discharge, using the Xin'an Springs of China as an example. The Xin'an Spring discharge were divided into two time periods: the pre-development period from 1956 to 1971 and the post-development period from 1972 to 2013. We confirm the dividing time (i.e. 1971) of these two periods using the Wilcoxon rank-sum test. Then the wavelet transform and wavelet coherence were used to analyze the karst hydrological processes for the two periods respectively. We analyze the correlations of precipitation and the Xin'an spring discharge with the monsoons including the Indian Summer Monsoon (ISM) and the West North Pacific Monsoon (WNPM) and the climate teleconnections including El Niño Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO), respectively. The results indicated that the spring discharge was attenuated about 19.63% under the influence of human activity in the Xin'an Springs basin. However, human activity did not alter the size of the resonance frequencies between the spring discharge and the monsoons. In contrast, it reinforced the periodicities of the monsoons-driven spring discharge. It suggested that human has adapted to the major climate periodicities, and human activity had the same rhyme with the primary climate periodicity. In return, human activity enhances the correlation between the monsoons and the spring discharge.

  13. SPL8, an SBP-box gene that affects pollen sac development in Arabidopsis.

    Science.gov (United States)

    Unte, Ulrike S; Sorensen, Anna-Marie; Pesaresi, Paolo; Gandikota, Madhuri; Leister, Dario; Saedler, Heinz; Huijser, Peter

    2003-04-01

    SQUAMOSA PROMOTER BINDING PROTEIN-box genes (SBP-box genes) encode plant-specific proteins that share a highly conserved DNA binding domain, the SBP domain. Although likely to represent transcription factors, little is known about their role in development. In Arabidopsis, SBP-box genes constitute a structurally heterogeneous family of 16 members known as SPL genes. For one of these genes, SPL8, we isolated three independent transposon-tagged mutants, all of which exhibited a strong reduction in fertility. Microscopic analysis revealed that this reduced fertility is attributable primarily to abnormally developed microsporangia, which exhibit premeiotic abortion of the sporocytes. In addition to its role in microsporogenesis, the SPL8 knockout also seems to affect megasporogenesis, trichome formation on sepals, and stamen filament elongation. The SPL8 mutants described help to uncover the roles of SBP-box genes in plant development. PMID:12671094

  14. HIFU-induced gene activation in vitro

    Science.gov (United States)

    Liu, Yunbo; Zhong, Pei; Kon, Takashi; Li, Chuanyuan

    2001-05-01

    This work investigated the inducible gene activation in cancer cells that were sublethally injured during HIFU treatment. HeLa cells were transfected by an adenovirus vector that encodes GFP under the control of hsp70B promoter, leading to about 65% transfection efficiency. A volume of 10 μL transfected HeLa cells in suspension (5×107 cells/ml) were placed at the bottom of a PCR tube so that the cell suspension could be heated to a peak temperature of 50°C, 60°C, and 70°C for 120, 10, and 1 s, respectively, by a focused 1.1-MHz HIFU transducer operated at a peak negative pressure of -2.7 MPa at different duty cycles. One day after HIFU treatment, cell viability was determined to be 63%, 35%, and 18%, respectively, based on Trypan Blue exclusion test. Importantly, in all test groups, inducible GFP expression was detected in about 40%-50% of the surviving cells with GFP intensity increased by 25-fold based on flow cytometry analysis. These results demonstrate that even under the short exposure duration of HIFU treatment, inducible gene expression could be produced in sublethally injured cell population in vitro. Further studies are underway to explore the optimal HIFU condition for gene activation in vivo.

  15. Arabidopsis flower specific defense gene expression patterns affect resistance to pathogens.

    Science.gov (United States)

    Ederli, Luisa; Dawe, Adam; Pasqualini, Stefania; Quaglia, Mara; Xiong, Liming; Gehring, Chris

    2015-01-01

    We investigated whether the Arabidopsis flower evolved protective measures to increase reproductive success. Firstly, analyses of available transcriptome data show that the most highly expressed transcripts in the closed sepal (stage 12) are enriched in genes with roles in responses to chemical stimuli and cellular metabolic processes. At stage 15, there is enrichment in transcripts with a role in responses to biotic stimuli. Comparative analyses between the sepal and petal in the open flower mark an over-representation of transcripts with a role in responses to stress and catalytic activity. Secondly, the content of the biotic defense-associated phytohormone salicylic acid (SA) in sepals and petals is significantly higher than in leaves. To understand whether the high levels of stress responsive transcripts and the higher SA content affect defense, wild-type plants (Col-0) and transgenic plants defective in SA accumulation (nahG) were challenged with the biotrophic fungus Golovinomyces cichoracearum, the causal agent of powdery mildew, and the necrotrophic fungus Botrytis cinerea. NahG leaves were more sensitive than those of Col-0, suggesting that in leaves SA has a role in the defense against biotrophs. In contrast, sepals and petals of both genotypes were resistant to G. cichoracearum, indicating that in the flower, resistance to the biotrophic pathogen is not critically dependent on SA, but likely dependent on the up-regulation of stress-responsive genes. Since sepals and petals of both genotypes are equally susceptible to B. cinerea, we conclude that neither stress-response genes nor increased SA accumulation offers protection against the necrotrophic pathogen. These results are interpreted in the light of the distinctive role of the flower and we propose that in the early stages, the sepal may act as a chemical defense barrier of the developing reproductive structures against biotrophic pathogens. PMID:25750645

  16. Advanced Glycation End-Products affect transcription factors regulating insulin gene expression

    International Nuclear Information System (INIS)

    Advanced Glycation End-Products (AGEs) are generated by the covalent interaction of reducing sugars with proteins, lipids or nucleic acids. AGEs are implicated in diabetic complications and pancreatic β-cell dysfunction. We previously demonstrated that exposure of the pancreatic islet cell line HIT-T15 to high concentrations of AGEs leads to a significant decrease of insulin secretion and content. Insulin gene transcription is positively regulated by the beta cell specific transcription factor PDX-1 (Pancreatic and Duodenal Homeobox-1). On the contrary, the forkhead transcription factor FoxO1 inhibits PDX-1 gene transcription. Activity of FoxO1 is regulated by post-translational modifications: phosphorylation deactivates FoxO1, and acetylation prevents FoxO1 ubiquitination. In this work we investigated whether AGEs affect expression and subcellular localization of PDX-1 and FoxO1. HIT-T15 cells were cultured for 5 days in presence of AGEs. Cells were then lysed and processed for subcellular fractionation. We determined intracellular insulin content, then we assessed the expression and subcellular localization of PDX-1, FoxO1, phosphoFoxO1 and acetylFoxO1. As expected intracellular insulin content was lower in HIT-T15 cells cultured with AGEs. The results showed that AGEs decreased expression and nuclear localization of PDX-1, reduced phosphorylation of FoxO1, and increased expression and acetylation of FoxO1. These results suggest that AGEs decrease insulin content unbalancing transcription factors regulating insulin gene expression.

  17. Arabidopsis flower specific defense gene expression patterns affect resistance to pathogens

    KAUST Repository

    Ederli, Luisa

    2015-02-20

    We investigated whether the Arabidopsis flower evolved protective measures to increase reproductive success. Firstly, analyses of available transcriptome data show that the most highly expressed transcripts in the closed sepal (stage 12) are enriched in genes with roles in responses to chemical stimuli and cellular metabolic processes. At stage 15, there is enrichment in transcripts with a role in responses to biotic stimuli. Comparative analyses between the sepal and petal in the open flower mark an over-representation of transcripts with a role in responses to stress and catalytic activity. Secondly, the content of the biotic defense-associated phytohormone salicylic acid (SA) in sepals and petals is significantly higher than in leaves. To understand whether the high levels of stress responsive transcripts and the higher SA content affect defense, wild-type plants (Col-0) and transgenic plants defective in SA accumulation (nahG) were challenged with the biotrophic fungus Golovinomyces cichoracearum, the causal agent of powdery mildew, and the necrotrophic fungus Botrytis cinerea. NahG leaves were more sensitive than those of Col-0, suggesting that in leaves SA has a role in the defense against biotrophs. In contrast, sepals and petals of both genotypes were resistant to G. cichoracearum, indicating that in the flower, resistance to the biotrophic pathogen is not critically dependent on SA, but likely dependent on the up-regulation of stress-responsive genes. Since sepals and petals of both genotypes are equally susceptible to B. cinerea, we conclude that neither stress-response genes nor increased SA accumulation offers protection against the necrotrophic pathogen. These results are interpreted in the light of the distinctive role of the flower and we propose that in the early stages, the sepal may act as a chemical defense barrier of the developing reproductive structures against biotrophic pathogens.

  18. Functional Dissection of Sugar Signals Affecting Gene Expression in Arabidopsis thaliana

    OpenAIRE

    Sabine Kunz; Edouard Pesquet; Kleczkowski, Leszek A.

    2014-01-01

    Background: Sugars modulate expression of hundreds of genes in plants. Previous studies on sugar signaling, using intact plants or plant tissues, were hampered by tissue heterogeneity, uneven sugar transport and/or inter-conversions of the applied sugars. This, in turn, could obscure the identity of a specific sugar that acts as a signal affecting expression of given gene in a given tissue or cell-type. Methodology/Principal Findings: To bypass those biases, we have developed a novel biologic...

  19. Active house: A contemporary housing model for flood affected population

    Directory of Open Access Journals (Sweden)

    Stratimirović Tatjana

    2015-01-01

    Full Text Available The effectiveness of architectural knowledge in the struggle for a better future can be seen in the attitude that a good design or a good architectural solution, does not belong solely to the privileged ones as an improvement of the basic requirements, rather quite the opposite, that it is created as a response to a need. The goal of physical and emotional wellbeing, combined with a long term strategy for reducing the negative impact of the built environment by converting it into a positive influence upon the natural ecosystem, brings together and advances bioclimatic principles, architectural design and sustainable construction in the contemporary housing model dubbed the Active House. The Active House Workshop was held, as part of a wider student initiative New Housing Models for Flood Affected Population, at the University of Belgrade - Faculty of Architecture. The purpose of the campaign was to provide help to flood affected communities and assistance in efforts for repairing buildings in Serbia, hit by the severe floods of May 2014. Students came up with nine design solutions for small family homes, which incorporate the principles of Active House into existing construction techniques. In an architectural context, when concerning repair work after flooding, the need to consider problems related to contemporary living conditions through the ‘active’ category is seen in a new understanding of nature which allows the replacement of a passive restoration model, with an active models for designing in interaction with the environment.

  20. New thiazolidinediones affect endothelial cell activation and angiogenesis.

    Science.gov (United States)

    Rudnicki, Martina; Tripodi, Gustavo L; Ferrer, Renila; Boscá, Lisardo; Pitta, Marina G R; Pitta, Ivan R; Abdalla, Dulcineia S P

    2016-07-01

    Thiazolidinediones (TZDs) are peroxisome proliferator-activated receptor-γ (PPARγ) agonists used in treating type 2 diabetes that may exhibit beneficial pleiotropic effects on endothelial cells. In this study, we characterized the effects of three new TZDs [GQ-32 (3-biphenyl-4-ylmethyl-5-(4-nitro-benzylidene)-thiazolidine-2,4-dione), GQ-169 (5-(4-chloro-benzylidene)-3-(2,6-dichloro-benzyl)-thiazolidine-2,4-dione), and LYSO-7 (5-(5-bromo-1H-indol-3-ylmethylene)-3-(4-chlorobenzyl)-thiazolidine-2,4-dione)] on endothelial cells. The effects of the new TZDs were evaluated on the production of nitric oxide (NO) and reactive oxygen species (ROS), cell migration, tube formation and the gene expression of adhesion molecules and angiogenic mediators in human umbilical vein endothelial cells (HUVECs). PPARγ activation by new TZDs was addressed with a reporter gene assay. The three new TZDs activated PPARγ and suppressed the tumor necrosis factor α-induced expression of vascular cell adhesion molecule 1 and intercellular adhesion molecule 1. GQ-169 and LYSO-7 also inhibited the glucose-induced ROS production. Although NO production assessed with 4-amino-5-methylamino-2',7'-difluorofluorescein-FM probe indicated that all tested TZDs enhanced intracellular levels of NO, only LYSO-7 treatment significantly increased the release of NO from HUVEC measured by chemiluminescence analysis of culture media. Additionally, GQ-32 and GQ-169 induced endothelial cell migration and tube formation by the up-regulation of angiogenic molecules expression, such as vascular endothelial growth factor A and interleukin 8. GQ-169 also increased the mRNA levels of basic fibroblast growth factor, and GQ-32 enhanced transforming growth factor-β expression. Together, the results of this study reveal that these new TZDs act as partial agonists of PPARγ and modulate endothelial cell activation and endothelial dysfunction besides to stimulate migration and tube formation. PMID:27108791

  1. Two polymorphisms in the glucocorticoid receptor gene directly affect glucocorticoid-regulated gene expression.

    NARCIS (Netherlands)

    H. Russcher (Henk); P. Smit (Pauline); E.L.T. van den Akker (Erica); E.F.C. van Rossum (Liesbeth); A.O. Brinkmann (Albert); F.H. de Jong (Frank); S.W.J. Lamberts (Steven); J.W. Koper (Jan)

    2005-01-01

    textabstractCONTEXT: Interindividual variation in glucocorticoid (GC)-sensitivity can be partly explained by polymorphisms in the GC receptor (GR) gene. The ER22/23EK and N363S polymorphisms have been described to be associated with lower and higher GC sensitivity, respectively. OBJECTIVE AND DESIGN

  2. Environmental layout complexity affects neural activity during navigation in humans.

    Science.gov (United States)

    Slone, Edward; Burles, Ford; Iaria, Giuseppe

    2016-05-01

    Navigating large-scale surroundings is a fundamental ability. In humans, it is commonly assumed that navigational performance is affected by individual differences, such as age, sex, and cognitive strategies adopted for orientation. We recently showed that the layout of the environment itself also influences how well people are able to find their way within it, yet it remains unclear whether differences in environmental complexity are associated with changes in brain activity during navigation. We used functional magnetic resonance imaging to investigate how the brain responds to a change in environmental complexity by asking participants to perform a navigation task in two large-scale virtual environments that differed solely in interconnection density, a measure of complexity defined as the average number of directional choices at decision points. The results showed that navigation in the simpler, less interconnected environment was faster and more accurate relative to the complex environment, and such performance was associated with increased activity in a number of brain areas (i.e. precuneus, retrosplenial cortex, and hippocampus) known to be involved in mental imagery, navigation, and memory. These findings provide novel evidence that environmental complexity not only affects navigational behaviour, but also modulates activity in brain regions that are important for successful orientation and navigation. PMID:26990572

  3. Low-Temperature Affected LC-PUFA Conversion and Associated Gene Transcript Level in Nannochioropsis oculata CS-179

    Institute of Scientific and Technical Information of China (English)

    MA Xiaolei; ZHANG Lin; ZHU Baohua; PAN Kehou; LI Si; YANG Guanpin

    2011-01-01

    Nannochloropsis oculata CS-179,a marine eukaryotic unicellular microalga,is rich in long-chain polyunsaturated fatty acids (LC-PUFAs).Culture temperature affected cell growth and the composition of LC-PUFAs.At an initial cell density of 1.5 × 106cell mL-1,the highest growth was observed at 25 ℃ and the cell density reached 3 × 107 cell mL -1 at the beginning of logarithmic phase.The content of LC-PUFAs varied with culture temperature.The highest content of LC-PUFAs (43.96%) and EPA (36.6%) was gained at 20℃.Real-time PCR showed that the abundance of A6-desaturase gene transcripts was significantly different among 5 culture temperatures and the highest transcript level (1 5℃) of Nanoc-D6D took off at cycle 21.45.The gene transcript of C20-elongase gene was higher at lower temperatures (10,15,and 20℃),and the highest transcript level (20℃) of Nanoc-E took off at cycle 21.18.The highest conversion rate (39.3%) of A6-desaturase was also gained at 20℃.But the conversion rate of Nanoc-E was not detected.The higher content of LC-PUFAs was a result of higher gene transcript level and higher enzyme activity.Compared with C20-elongase gene,A6-desaturase gene transcript and enzyme activity varied significantly with temperature.It will be useful to study the mechanism of how the content of LC-PUFAs is affected by temperature.

  4. Identifying candidate genes affecting developmental time in Drosophila melanogaster: pervasive pleiotropy and gene-by-environment interaction

    Directory of Open Access Journals (Sweden)

    Hasson Esteban

    2008-08-01

    Full Text Available Abstract Background Understanding the genetic architecture of ecologically relevant adaptive traits requires the contribution of developmental and evolutionary biology. The time to reach the age of reproduction is a complex life history trait commonly known as developmental time. In particular, in holometabolous insects that occupy ephemeral habitats, like fruit flies, the impact of developmental time on fitness is further exaggerated. The present work is one of the first systematic studies of the genetic basis of developmental time, in which we also evaluate the impact of environmental variation on the expression of the trait. Results We analyzed 179 co-isogenic single P[GT1]-element insertion lines of Drosophila melanogaster to identify novel genes affecting developmental time in flies reared at 25°C. Sixty percent of the lines showed a heterochronic phenotype, suggesting that a large number of genes affect this trait. Mutant lines for the genes Merlin and Karl showed the most extreme phenotypes exhibiting a developmental time reduction and increase, respectively, of over 2 days and 4 days relative to the control (a co-isogenic P-element insertion free line. In addition, a subset of 42 lines selected at random from the initial set of 179 lines was screened at 17°C. Interestingly, the gene-by-environment interaction accounted for 52% of total phenotypic variance. Plastic reaction norms were found for a large number of developmental time candidate genes. Conclusion We identified components of several integrated time-dependent pathways affecting egg-to-adult developmental time in Drosophila. At the same time, we also show that many heterochronic phenotypes may arise from changes in genes involved in several developmental mechanisms that do not explicitly control the timing of specific events. We also demonstrate that many developmental time genes have pleiotropic effects on several adult traits and that the action of most of them is sensitive

  5. Leukocyte count affects expression of reference genes in canine whole blood samples

    Directory of Open Access Journals (Sweden)

    Dekker Aldo

    2011-02-01

    Full Text Available Abstract Background The dog is frequently used as a model for hematologic human diseases. In this study the suitability of nine potential reference genes for quantitative RT-PCR studies in canine whole blood was investigated. Findings The expression of these genes was measured in whole blood samples of 263 individual dogs, representing 73 different breeds and a group of 40 mixed breed dogs, categorized into healthy dogs and dogs with internal and hematological diseases, and dogs that underwent a surgical procedure. GeNorm analysis revealed that a combination of 5 to 6 of the most stably expressed genes constituted a stable normalizing factor. Evaluation of the expression revealed different ranking of reference genes in Normfinder and GeNorm. The disease category and the white blood cell count significantly affected reference gene expression. Conclusions The discrepancy between the ranking of reference genes in this study by Normfinder and Genorm can be explained by differences between the experimental groups such as "disease category" and "WBC count". This stresses the importance of assessing the expression stability of potential reference genes for gene experiments in canine whole blood anew for each specific experimental condition.

  6. Gene Expression Profiling Identifies Important Genes Affected by R2 Compound Disrupting FAK and P53 Complex

    International Nuclear Information System (INIS)

    Focal Adhesion Kinase (FAK) is a non-receptor kinase that plays an important role in many cellular processes: adhesion, proliferation, invasion, angiogenesis, metastasis and survival. Recently, we have shown that Roslin 2 or R2 (1-benzyl-15,3,5,7-tetraazatricyclo[3.3.1.1~3,7~]decane) compound disrupts FAK and p53 proteins, activates p53 transcriptional activity, and blocks tumor growth. In this report we performed a microarray gene expression analysis of R2-treated HCT116 p53+/+ and p53−/− cells and detected 1484 genes that were significantly up- or down-regulated (p < 0.05) in HCT116 p53+/+ cells but not in p53−/− cells. Among up-regulated genes in HCT p53+/+ cells we detected critical p53 targets: Mdm-2, Noxa-1, and RIP1. Among down-regulated genes, Met, PLK2, KIF14, BIRC2 and other genes were identified. In addition, a combination of R2 compound with M13 compound that disrupts FAK and Mmd-2 complex or R2 and Nutlin-1 that disrupts Mdm-2 and p53 decreased clonogenicity of HCT116 p53+/+ colon cancer cells more significantly than each agent alone in a p53-dependent manner. Thus, the report detects gene expression profile in response to R2 treatment and demonstrates that the combination of drugs targeting FAK, Mdm-2, and p53 can be a novel therapy approach

  7. Mutation in the Monocarboxylate Transporter 12 Gene Affects Guanidinoacetate Excretion but Does Not Cause Glucosuria.

    Science.gov (United States)

    Dhayat, Nasser; Simonin, Alexandre; Anderegg, Manuel; Pathare, Ganesh; Lüscher, Benjamin P; Deisl, Christine; Albano, Giuseppe; Mordasini, David; Hediger, Matthias A; Surbek, Daniel V; Vogt, Bruno; Sass, Jörn Oliver; Kloeckener-Gruissem, Barbara; Fuster, Daniel G

    2016-05-01

    A heterozygous mutation (c.643C>A; p.Q215X) in the monocarboxylate transporter 12-encoding gene MCT12 (also known as SLC16A12) that mediates creatine transport was recently identified as the cause of a syndrome with juvenile cataracts, microcornea, and glucosuria in a single family. Whereas the MCT12 mutation cosegregated with the eye phenotype, poor correlation with the glucosuria phenotype did not support a pathogenic role of the mutation in the kidney. Here, we examined MCT12 in the kidney and found that it resides on basolateral membranes of proximal tubules. Patients with MCT12 mutation exhibited reduced plasma levels and increased fractional excretion of guanidinoacetate, but normal creatine levels, suggesting that MCT12 may function as a guanidinoacetate transporter in vivo However, functional studies in Xenopus oocytes revealed that MCT12 transports creatine but not its precursor, guanidinoacetate. Genetic analysis revealed a separate, undescribed heterozygous mutation (c.265G>A; p.A89T) in the sodium/glucose cotransporter 2-encoding gene SGLT2 (also known as SLC5A2) in the family that segregated with the renal glucosuria phenotype. When overexpressed in HEK293 cells, the mutant SGLT2 transporter did not efficiently translocate to the plasma membrane, and displayed greatly reduced transport activity. In summary, our data indicate that MCT12 functions as a basolateral exit pathway for creatine in the proximal tubule. Heterozygous mutation of MCT12 affects systemic levels and renal handling of guanidinoacetate, possibly through an indirect mechanism. Furthermore, our data reveal a digenic syndrome in the index family, with simultaneous MCT12 and SGLT2 mutation. Thus, glucosuria is not part of the MCT12 mutation syndrome. PMID:26376857

  8. Disruption of amylase genes by RNA interference affects reproduction in the Pacific oyster Crassostrea gigas.

    Science.gov (United States)

    Huvet, Arnaud; Béguel, Jean-Philippe; Cavaleiro, Nathalia Pereira; Thomas, Yoann; Quillien, Virgile; Boudry, Pierre; Alunno-Bruscia, Marianne; Fabioux, Caroline

    2015-06-01

    Feeding strategies and digestive capacities can have important implications for variation in energetic pathways associated with ecological and economically important traits, such as growth or reproduction in bivalve species. Here, we investigated the role of amylase in the digestive processes of Crassostrea gigas, using in vivo RNA interference. This approach also allowed us to investigate the relationship between energy intake by feeding and gametogenesis in oysters. Double-stranded (ds)RNA designed to target the two α-amylase genes A and B was injected in vivo into the visceral mass of oysters at two doses. These treatments caused significant reductions in mean mRNA levels of the amylase genes: -50.7% and -59% mRNA A, and -71.9% and -70.6% mRNA B in 15 and 75 µg dsRNA-injected oysters, respectively, relative to controls. Interestingly, reproductive knock-down phenotypes were observed for both sexes at 48 days post-injection, with a significant reduction of the gonad area (-22.5% relative to controls) and germ cell under-proliferation revealed by histology. In response to the higher dose of dsRNA, we also observed reductions in amylase activity (-53%) and absorption efficiency (-5%). Based on these data, dynamic energy budget modeling showed that the limitation of energy intake by feeding that was induced by injection of amylase dsRNA was insufficient to affect gonadic development at the level observed in the present study. This finding suggests that other driving mechanisms, such as endogenous hormonal modulation, might significantly change energy allocation to reproduction, and increase the maintenance rate in oysters in response to dsRNA injection. PMID:25883379

  9. Social context-induced song variation affects female behavior and gene expression.

    Directory of Open Access Journals (Sweden)

    Sarah C Woolley

    2008-03-01

    Full Text Available Social cues modulate the performance of communicative behaviors in a range of species, including humans, and such changes can make the communication signal more salient. In songbirds, males use song to attract females, and song organization can differ depending on the audience to which a male sings. For example, male zebra finches (Taeniopygia guttata change their songs in subtle ways when singing to a female (directed song compared with when they sing in isolation (undirected song, and some of these changes depend on altered neural activity from a specialized forebrain-basal ganglia circuit, the anterior forebrain pathway (AFP. In particular, variable activity in the AFP during undirected song is thought to actively enable syllable variability, whereas the lower and less-variable AFP firing during directed singing is associated with more stereotyped song. Consequently, directed song has been suggested to reflect a "performance" state, and undirected song a form of vocal motor "exploration." However, this hypothesis predicts that directed-undirected song differences, despite their subtlety, should matter to female zebra finches, which is a question that has not been investigated. We tested female preferences for this natural variation in song in a behavioral approach assay, and we found that both mated and socially naive females could discriminate between directed and undirected song-and strongly preferred directed song. These preferences, which appeared to reflect attention especially to aspects of song variability controlled by the AFP, were enhanced by experience, as they were strongest for mated females responding to their mate's directed songs. We then measured neural activity using expression of the immediate early gene product ZENK, and found that social context and song familiarity differentially modulated the number of ZENK-expressing cells in telencephalic auditory areas. Specifically, the number of ZENK-expressing cells in the

  10. Temperature affects microbial abundance, activity and interactions in anaerobic digestion.

    Science.gov (United States)

    Lin, Qiang; De Vrieze, Jo; Li, Jiabao; Li, Xiangzhen

    2016-06-01

    Temperature is a major factor determining the performance of the anaerobic digestion process. The microbial abundance, activity and interactional networks were investigated under a temperature gradient from 25°C to 55°C through amplicon sequencing, using 16S ribosomal RNA and 16S rRNA gene-based approaches. Comparative analysis of past accumulative elements presented by 16S rRNA gene-based analysis, and the in-situ conditions presented by 16S rRNA-based analysis, provided new insights concerning the identification of microbial functional roles and interactions. The daily methane production and total biogas production increased with temperature up to 50°C, but decreased at 55°C. Increased methanogenesis and hydrolysis at 50°C were main factors causing higher methane production which was also closely related with more well-defined methanogenic and/or related modules with comprehensive interactions and increased functional orderliness referred to more microorganisms participating in interactions. This research demonstrated the importance of evaluating functional roles and interactions of microbial community. PMID:26970926

  11. Insight on Genes Affecting Tuber Development in Potato upon Potato spindle tuber viroid (PSTVd) Infection

    Science.gov (United States)

    Zhang, Runxuan; Bonar, Nicola; Morris, Jenny; Hedley, Pete E.; Bryan, Glenn J.; Kalantidis, Kriton; Hornyik, Csaba

    2016-01-01

    Potato (Solanum tuberosum L) is a natural host of Potato spindle tuber viroid (PSTVd) which can cause characteristic symptoms on developing plants including stunting phenotype and distortion of leaves and tubers. PSTVd is the type species of the family Pospiviroidae, and can replicate in the nucleus and move systemically throughout the plant. It is not well understood how the viroid can affect host genes for successful invasion and which genes show altered expression levels upon infection. Our primary focus in this study is the identification of genes which can affect tuber formation since viroid infection can strongly influence tuber development and especially tuber shape. In this study, we used a large-scale method to identify differentially expressed genes in potato. We have identified defence, stress and sugar metabolism related genes having altered expression levels upon infection. Additionally, hormone pathway related genes showed significant up- or down-regulation. DWARF1/DIMINUTO, Gibberellin 7-oxidase and BEL5 transcripts were identified and validated showing differential expression in viroid infected tissues. Our study suggests that gibberellin and brassinosteroid pathways have a possible role in tuber development upon PSTVd infection. PMID:26937634

  12. Gene-physical activity interactions and their impact on diabetes

    DEFF Research Database (Denmark)

    Oskari Kilpeläinen, Tuomas; Franks, Paul W

    2014-01-01

    Physical activity exerts beneficial effects on glucose homeostasis that are channeled through our genes. Where variation in the target genes of physical activity exists, gene-physical activity interactions may occur, such that individual genetic profiles inflict differing physiological responses to...... an equal bout of physical activity. Individuals with specific genetic profiles are also expected to be more responsive to the beneficial effects of physical activity in the prevention of type 2 diabetes. Identification of such gene-physical activity interactions could give new insights into the...... introduce the reader to the recent advances in the genetics of type 2 diabetes, summarize the current evidence on gene-physical activity interactions in relation to type 2 diabetes, and outline how information on gene-physical activity interactions might help improve the prevention and treatment of type 2...

  13. Activities of Human Gene Nomenclature Committee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-16

    The objective of this project, shared between NIH and DOE, has been and remains to enable the medical genetics communities to use common names for genes that are discovered by different gene hunting groups, in different species. This effort provides consistent gene nomenclature and approved gene symbols to the community at large. This contributes to a uniform and consistent understanding of genomes, particularly the human as well as functional genomics based on comparisons between homologous genes in related species (human and mice).

  14. CHD7 targets active gene enhancer elements to modulate ES cell-specific gene expression.

    Directory of Open Access Journals (Sweden)

    Michael P Schnetz

    2010-07-01

    Full Text Available CHD7 is one of nine members of the chromodomain helicase DNA-binding domain family of ATP-dependent chromatin remodeling enzymes found in mammalian cells. De novo mutation of CHD7 is a major cause of CHARGE syndrome, a genetic condition characterized by multiple congenital anomalies. To gain insights to the function of CHD7, we used the technique of chromatin immunoprecipitation followed by massively parallel DNA sequencing (ChIP-Seq to map CHD7 sites in mouse ES cells. We identified 10,483 sites on chromatin bound by CHD7 at high confidence. Most of the CHD7 sites show features of gene enhancer elements. Specifically, CHD7 sites are predominantly located distal to transcription start sites, contain high levels of H3K4 mono-methylation, found within open chromatin that is hypersensitive to DNase I digestion, and correlate with ES cell-specific gene expression. Moreover, CHD7 co-localizes with P300, a known enhancer-binding protein and strong predictor of enhancer activity. Correlations with 18 other factors mapped by ChIP-seq in mouse ES cells indicate that CHD7 also co-localizes with ES cell master regulators OCT4, SOX2, and NANOG. Correlations between CHD7 sites and global gene expression profiles obtained from Chd7(+/+, Chd7(+/-, and Chd7(-/- ES cells indicate that CHD7 functions at enhancers as a transcriptional rheostat to modulate, or fine-tune the expression levels of ES-specific genes. CHD7 can modulate genes in either the positive or negative direction, although negative regulation appears to be the more direct effect of CHD7 binding. These data indicate that enhancer-binding proteins can limit gene expression and are not necessarily co-activators. Although ES cells are not likely to be affected in CHARGE syndrome, we propose that enhancer-mediated gene dysregulation contributes to disease pathogenesis and that the critical CHD7 target genes may be subject to positive or negative regulation.

  15. Assessment of chitosan-affected metabolic response by peroxisome proliferator-activated receptor bioluminescent imaging-guided transcriptomic analysis.

    Directory of Open Access Journals (Sweden)

    Chia-Hung Kao

    Full Text Available Chitosan has been widely used in food industry as a weight-loss aid and a cholesterol-lowering agent. Previous studies have shown that chitosan affects metabolic responses and contributes to anti-diabetic, hypocholesteremic, and blood glucose-lowering effects; however, the in vivo targeting sites and mechanisms of chitosan remain to be clarified. In this study, we constructed transgenic mice, which carried the luciferase genes driven by peroxisome proliferator-activated receptor (PPAR, a key regulator of fatty acid and glucose metabolism. Bioluminescent imaging of PPAR transgenic mice was applied to report the organs that chitosan acted on, and gene expression profiles of chitosan-targeted organs were further analyzed to elucidate the mechanisms of chitosan. Bioluminescent imaging showed that constitutive PPAR activities were detected in brain and gastrointestinal tract. Administration of chitosan significantly activated the PPAR activities in brain and stomach. Microarray analysis of brain and stomach showed that several pathways involved in lipid and glucose metabolism were regulated by chitosan. Moreover, the expression levels of metabolism-associated genes like apolipoprotein B (apoB and ghrelin genes were down-regulated by chitosan. In conclusion, these findings suggested the feasibility of PPAR bioluminescent imaging-guided transcriptomic analysis on the evaluation of chitosan-affected metabolic responses in vivo. Moreover, we newly identified that downregulated expression of apoB and ghrelin genes were novel mechanisms for chitosan-affected metabolic responses in vivo.

  16. Chronic mild stressors and diet affect gene expression differently in male and female rats.

    Science.gov (United States)

    Liang, Shuwen; Byers, Donna M; Irwin, Louis N

    2007-01-01

    While depression is reportedly more prevalent in women than men, a neurobiological basis for this difference has not been documented. Chronic mild stress (CMS) is a widely recognized animal model, which uses mild and unpredictable environmental stressors to induce depression. Studies of chronic stress, mainly in males, have reported an increase in the relative intake of "comfort food" as a means of counteracting the effects of stress. This study was designed to test the hypothesis that genes for certain neurotrophic factors, stress markers, and appetite regulators would be expressed differentially in male and female rats exposed to chronic, mild stressors with access to a preferred diet. Gene expression for neuropeptide Y was upregulated in females purely in response to stressors, whereas that for the epidermal growth factor receptor (EGFR) and arginine vasopressin (AVP) in males and fatty acid synthase (FASN) in females responded primarily to diet. Genes for brain-derived neurotrophic factor (BDNF), AVP, and the cocaine-amphetamine regulator of transcription (CART) in males, and leptin in females, showed a significant response to the interaction between stressors and diet. Every affected gene showed a different pattern of expression in males and females. This study confirms the intimate relationship between dietary intake and response to stress at the molecular level, and emphasizes the sex- and gene-specific nature of those interactions. Therefore, it supports a neurobiological basis for differences in the affective state response to stress in males and females. PMID:17917078

  17. FACTORS AFFECTED DECARBOXYLATION ACTIVITY OF ENTEROCOCCUS FAECIUM ISOLATED FROM RABBIT

    Directory of Open Access Journals (Sweden)

    František Buňka

    2012-04-01

    Full Text Available Normal 0 21 false false false SK JA X-NONE Biogenic amines (BA are basic nitrogenous compounds formed mainly by decarboxylation of amino acids. There are generated in course of microbial, vegetable and animal metabolisms. The aim of the study was to monitor factors affected production of biogenic amines by Enterococcus faecium, which is found in rabbit meat. Biogenic amines were analyzed by means of UPLC (ultrahigh performance liquid chromatography equipped with a UV/VIS DAD detector. Decarboxylation activity of E. faecium was mainly influenced by the cultivation temperature and the amount of NaCl in this study. E. faecium produced most of the monitored biogenic amines levels: tyramine ˂2500 mg.l-1; putrescine ˂30 mg.l-1; spermidine ˂10 mg.l-1 and cadaverine ˂5 mg.l-1.doi:10.5219/182

  18. Effects related to gene-gene interactions of peroxisome proliferator-activated receptor on essential hypertension

    Institute of Scientific and Technical Information of China (English)

    俞浩

    2013-01-01

    Objective To explore the impact of the gene-gene interaction among the single nucleotide polymorphisms(SNPs) of peroxisome proliferator-activated receptorα/δ/γ on essential hypertension(EH).Methods

  19. Polyphenols from Chilean Propolis and Pinocembrin Reduce MMP-9 Gene Expression and Activity in Activated Macrophages.

    Science.gov (United States)

    Saavedra, Nicolás; Cuevas, Alejandro; Cavalcante, Marcela F; Dörr, Felipe A; Saavedra, Kathleen; Zambrano, Tomás; Abdalla, Dulcineia S P; Salazar, Luis A

    2016-01-01

    Polyphenols from diverse sources have shown anti-inflammatory activity. In the context of atherosclerosis, macrophages play important roles including matrix metalloproteinases synthesis involved in degradation of matrix extracellular components affecting the atherosclerotic plaque stability. We prepared a propolis extract and pinocembrin in ethanol solution. Propolis extract was chemically characterized using LC-MS. The effect of treatments on gene expression and proteolytic activity was measured in vitro using murine macrophages activated with LPS. Cellular toxicity associated with both treatments and the vehicle was determined using MTT and apoptosis/necrosis detection assays. MMP-9 gene expression and proteolytic activity were measured using qPCR and zymography, respectively. Thirty-two compounds were identified in the propolis extract, including pinocembrin among its major components. Treatment with either ethanolic extract of propolis or pinocembrin inhibits MMP-9 gene expression in a dose-dependent manner. Similarly, an inhibitory effect was observed in proteolytic activity. However, the effect showed by ethanolic extract of propolis was higher than the effect of pinocembrin, suggesting that MMP-9 inhibition results from a joint contribution between the components of the extract. These data suggest a potential role of polyphenols from Chilean propolis in the control of extracellular matrix degradation in atherosclerotic plaques. PMID:27119082

  20. Gene Expression Profiling Identifies Important Genes Affected by R2 Compound Disrupting FAK and P53 Complex

    Energy Technology Data Exchange (ETDEWEB)

    Golubovskaya, Vita M., E-mail: Vita.Golubovskaya@roswellpark.org; Ho, Baotran [Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, NY 14263 (United States); Conroy, Jeffrey [Genomics Shared Resource, Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, NY 14263 (United States); Liu, Song; Wang, Dan [Bioinformatics Core Facility, Biostatistics, Roswell Park Cancer Institute, Buffalo, NY 14263 (United States); Cance, William G. [Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, NY 14263 (United States)

    2014-01-21

    Focal Adhesion Kinase (FAK) is a non-receptor kinase that plays an important role in many cellular processes: adhesion, proliferation, invasion, angiogenesis, metastasis and survival. Recently, we have shown that Roslin 2 or R2 (1-benzyl-15,3,5,7-tetraazatricyclo[3.3.1.1~3,7~]decane) compound disrupts FAK and p53 proteins, activates p53 transcriptional activity, and blocks tumor growth. In this report we performed a microarray gene expression analysis of R2-treated HCT116 p53{sup +/+} and p53{sup −/−} cells and detected 1484 genes that were significantly up- or down-regulated (p < 0.05) in HCT116 p53{sup +/+} cells but not in p53{sup −/−} cells. Among up-regulated genes in HCT p53{sup +/+} cells we detected critical p53 targets: Mdm-2, Noxa-1, and RIP1. Among down-regulated genes, Met, PLK2, KIF14, BIRC2 and other genes were identified. In addition, a combination of R2 compound with M13 compound that disrupts FAK and Mmd-2 complex or R2 and Nutlin-1 that disrupts Mdm-2 and p53 decreased clonogenicity of HCT116 p53{sup +/+} colon cancer cells more significantly than each agent alone in a p53-dependent manner. Thus, the report detects gene expression profile in response to R2 treatment and demonstrates that the combination of drugs targeting FAK, Mdm-2, and p53 can be a novel therapy approach.

  1. Linkage of the VNTR/insulin-gene and type I diabetes mellitus: Increased gene sharing in affected sibling pairs

    Energy Technology Data Exchange (ETDEWEB)

    Owerbach, D.; Gabbay, K.H. (Baylor College of Medicine, Houston, TX (United States))

    1994-05-01

    Ninety-six multiplex type I diabetic families were typed at the 5' flanking region of the insulin gene by using a PCR assay that better resolves the VNTR into multiple alleles. Affected sibling pairs shared 2, 1, and 0 VNTR alleles - identical by descent - at a frequency of .47, .45, and .08, respectively, a ratio that deviated from the expected 1:2:1 ratio (P<.001). These results confirm linkage of the chromosome 11p15.5 region with type I diabetes mellitus susceptibility. 20 refs., 2 tabs.

  2. Candidate genes affecting fat deposition, carcass composition and meat quality traits in pigs

    OpenAIRE

    Gandolfi, Greta

    2011-01-01

    Pig meat quality is determined by several parameters, such as lipid content, tenderness, water-holding capacity, pH, color and flavor, that affect consumers’ acceptance and technological properties of meat. Carcass quality parameters are important for the production of fresh and dry-cure high-quality products, in particular the fat deposition and the lean cut yield. The identification of genes and markers associated with meat and carcass quality traits is of prime interest, for the possibilit...

  3. Analysis of the existence of major genes affecting alpaca fiber traits.

    Science.gov (United States)

    Pérez-Cabal, M A; Cervantes, I; Morante, R; Burgos, A; Goyache, F; Gutiérrez, J P

    2010-12-01

    The aim of this study was to determine the presence of major genes for fiber diameter (FD), SD of FD (SDFD), CV of FD, and comfort factor (CF) in Huacaya (HU) and Suri (SU) Peruvian alpaca breeds. Bayesian segregation analyses with relaxed transmission probabilities were performed using 1,906 and 6,592 available records for SU and HU breeds. Evidence for the presence of major genes was statistically supported when the 95% posterior density did not include zero. Significant major genes were found associated with decreased FD, SDFD, CV values, and increased CF values. Additive effects of the major genes were 4.18 and 4.23 μm for FD, 1.67 and 1.61 μm for SDFD, 3.32 and 3.76% for CV, and 15.03 and 14.90% for CF in HU and SU breeds, respectively. Dominance effects were -1.98 and -2.03 μm for FD, -0.88 and -1.11 μm for SDFD, -1.37 and -2.17% for CV, and 13.0 and 11.8% for CF in HU and SU breeds, respectively. Major gene variance was larger than the polygenic variance for all traits. Major gene allelic frequencies for FD, SDFD, and CV ranged from 0.81 to 0.86 for HU breed and from 0.70 to 0.77 for the SU breed and were 0.24 and 0.36, respectively, for CF. It can be concluded that a major gene affecting these traits could be segregating. Then, molecular identification and monitoring of animals carrying favorable genes throughout the worldwide alpaca population would allow for a quick genetic improvement. PMID:20656969

  4. Subinhibitory concentrations of antibiotics affect stress and virulence gene expression in Listeria monocytogenes and cause enhanced stress sensitivity but do not affect Caco‐2 cell invasion

    DEFF Research Database (Denmark)

    Knudsen, Gitte Maegaard; Holch, Anne; Gram, Lone

    2012-01-01

    Antibiotics can act as signal molecules and affect bacterial gene expression, physiology and virulence. The purpose of this study was to determine whether subinhibitory antibiotic concentrations alter gene expression and physiology of Listeria monocytogenes. Using an agar‐based screening assay with...... promoter fusions, 14 of 16 antibiotics induced or repressed expression of one or more stress and/or virulence genes. Despite ampicillin‐induced up‐regulation of PinlA‐lacZ expression, Caco‐2 cell invasion was not affected. Subinhibitory concentrations of ampicillin and tetracycline caused up‐ and down......‐regulation of stress response genes, respectively, but both antibiotics caused increased sensitivity to acid stress. Six combinations of gene‐antibiotic were quantified in broth cultures and five of the six resulted in the same expression pattern as the agar‐based assay. Antibiotics affect virulence and...

  5. Exercise induces transient transcriptional activation of the PGC-1a gene in human skeletal muscle

    DEFF Research Database (Denmark)

    Pilegaard, Henriette; Saltin, Bengt; Neufer, P. Darrell

    Endurance exercise training induces mitochondrial biogenesis in skeletal muscle. The peroxisome proliferator activated receptor co-activator 1a (PGC-1a) has recently been identified as a nuclear factor critical for coordinating the activation of genes required for mitochondrial biogenesis in cell...... despite the lower relative workload. Interestingly, exercise did not affect nuclear respiratory factor 1 (NRF-1) mRNA, a gene induced by PGC-1a in cell culture. HKII, mitochondrial transcription factor A, peroxisome proliferator activated receptor a, and calcineurin Aa and Aß mRNA were elevated (˜2- to 6...

  6. Identification of rare high-risk copy number variants affecting the dopamine transporter gene in mental disorders

    DEFF Research Database (Denmark)

    Hoeffding, Louise K; Duong, Linh T T; Ingason, Andrés;

    2015-01-01

    rare high-risk variants of psychiatric disorders. METHODS: We performed a systematic screening for CNVs affecting SLC6A3 in 761 healthy controls, 672 schizophrenia patients, and 194 patients with bipolar disorder in addition to 253 family members from six large pedigrees affected by mental disorders...... affective disorders. Recently, copy number variants (CNVs) in SLC6A3 have been identified in healthy subjects but so far, the implication of CNVs affecting this gene in psychiatric diseases has not been addressed. AIMS: In the present study, we aimed to investigate whether CNVs affecting SLC6A3 represent...... sizes and two affected several genes in addition to SLC6A3. CONCLUSION: Our findings suggest that rare high-risk CNVs affecting the gene encoding the dopamine transporter contribute to the pathogenesis of schizophrenia and affective disorders....

  7. Identification of Differentially Expressed Genes through Integrated Study of Alzheimer’s Disease Affected Brain Regions

    Science.gov (United States)

    Berretta, Regina; Moscato, Pablo

    2016-01-01

    Background Alzheimer’s disease (AD) is the most common form of dementia in older adults that damages the brain and results in impaired memory, thinking and behaviour. The identification of differentially expressed genes and related pathways among affected brain regions can provide more information on the mechanisms of AD. In the past decade, several studies have reported many genes that are associated with AD. This wealth of information has become difficult to follow and interpret as most of the results are conflicting. In that case, it is worth doing an integrated study of multiple datasets that helps to increase the total number of samples and the statistical power in detecting biomarkers. In this study, we present an integrated analysis of five different brain region datasets and introduce new genes that warrant further investigation. Methods The aim of our study is to apply a novel combinatorial optimisation based meta-analysis approach to identify differentially expressed genes that are associated to AD across brain regions. In this study, microarray gene expression data from 161 samples (74 non-demented controls, 87 AD) from the Entorhinal Cortex (EC), Hippocampus (HIP), Middle temporal gyrus (MTG), Posterior cingulate cortex (PC), Superior frontal gyrus (SFG) and visual cortex (VCX) brain regions were integrated and analysed using our method. The results are then compared to two popular meta-analysis methods, RankProd and GeneMeta, and to what can be obtained by analysing the individual datasets. Results We find genes related with AD that are consistent with existing studies, and new candidate genes not previously related with AD. Our study confirms the up-regualtion of INFAR2 and PTMA along with the down regulation of GPHN, RAB2A, PSMD14 and FGF. Novel genes PSMB2, WNK1, RPL15, SEMA4C, RWDD2A and LARGE are found to be differentially expressed across all brain regions. Further investigation on these genes may provide new insights into the development of AD

  8. Gene expression of peripheral blood mononuclear cells is affected by cold exposure.

    Science.gov (United States)

    Reynés, Bàrbara; García-Ruiz, Estefanía; Oliver, Paula; Palou, Andreu

    2015-10-15

    Because of the discovery of brown adipose tissue (BAT) in humans, there is increased interest in the study of induction of this thermogenic tissue as a basis to combat obesity and related complications. Cold exposure is one of the strongest stimuli able to activate BAT and to induce the appearance of brown-like (brite) adipocytes in white fat depots (browning process). We analyzed the potential of peripheral blood mononuclear cells (PBMCs) to reflect BAT and retroperitoneal white adipose tissue (rWAT) response to 1-wk cold acclimation (4°C) at different ages of rat development (1, 2, 4, and 6 mo). As expected, cold exposure increased fatty acid β-oxidation capacity in BAT and rWAT (increased Cpt1a expression), explaining increased circulating nonesterified free fatty acids and decreased adiposity. Cold exposure increased expression of the key thermogenic gene, Ucp1, in BAT and rWAT, but only in 1-mo-old animals. Additionally, other brown/brite markers were affected by cold during the whole developmental period studied in BAT. However, in rWAT, cold exposure increased studied markers mainly at early age. PBMCs did not express Ucp1, but expressed other brown/brite markers, which were cold regulated. Of particular interest, PBMCs reflected adipose tissue-increased Cpt1a mRNA expression in response to cold (in older animals) and browning induction occurring in rWAT of young animals (1 mo) characterized by increased Cidea expression and by the appearance of a high number of multilocular CIDE-A positive adipocytes. These results provide evidence pointing to PBMCs as an easily obtainable biological material to be considered to perform browning studies with minimum invasiveness. PMID:26246506

  9. Comparison of gene activation by two TAL effectors from Xanthomonas axonopodis pv. manihotis reveals candidate host susceptibility genes in cassava.

    Science.gov (United States)

    Cohn, Megan; Morbitzer, Robert; Lahaye, Thomas; Staskawicz, Brian J

    2016-08-01

    Xanthomonas axonopodis pv. manihotis (Xam) employs transcription activator-like (TAL) effectors to promote bacterial growth and symptom formation during infection of cassava. TAL effectors are secreted via the bacterial type III secretion system into plant cells, where they are directed to the nucleus, bind DNA in plant promoters and activate the expression of downstream genes. The DNA-binding activity of TAL effectors is carried out by a central domain which contains a series of repeat variable diresidues (RVDs) that dictate the sequence of bound nucleotides. TAL14Xam668 promotes virulence in Xam strain Xam668 and has been shown to activate multiple cassava genes. In this study, we used RNA sequencing to identify the full target repertoire of TAL14Xam668 in cassava, which includes over 50 genes. A subset of highly up-regulated genes was tested for activation by TAL14CIO151 from Xam strain CIO151. Although TAL14CIO151 and TAL14Xam668 differ by only a single RVD, they display differential activation of gene targets. TAL14CIO151 complements the TAL14Xam668 mutant defect, implying that shared target genes are important for TAL14Xam668 -mediated disease susceptibility. Complementation with closely related TAL effectors is a novel approach to the narrowing down of biologically relevant susceptibility genes of TAL effectors with multiple targets. This study provides an example of how TAL effector target activation by two strains within a single species of Xanthomonas can be dramatically affected by a small change in RVD-nucleotide affinity at a single site, and reflects the parameters of RVD-nucleotide interaction determined using designer TAL effectors in transient systems. PMID:26575863

  10. Archaeal promoter architecture and mechanism of gene activation

    DEFF Research Database (Denmark)

    Peng, Nan; Ao, Xiang; Liang, Yun Xiang;

    2011-01-01

    Sulfolobus solfataricus and Sulfolobus islandicus contain several genes exhibiting D-arabinose-inducible expression and these systems are ideal for studying mechanisms of archaeal gene expression. At sequence level, only two highly conserved cis elements are present on the promoters: a regulatory...... mechanisms include TFB (transcription factor B) recruitment by the ara-box-binding factor to activate gene expression and modulation of TFB recruitment efficiency to yield differential gene expression....

  11. Abundance and genetic diversity of nifH gene sequences in anthropogenically affected Brazilian mangrove sediments.

    Science.gov (United States)

    Dias, Armando Cavalcante Franco; Pereira e Silva, Michele de Cassia; Cotta, Simone Raposo; Dini-Andreote, Francisco; Soares, Fábio Lino; Salles, Joana Falcão; Azevedo, João Lúcio; van Elsas, Jan Dirk; Andreote, Fernando Dini

    2012-11-01

    Although mangroves represent ecosystems of global importance, the genetic diversity and abundance of functional genes that are key to their functioning scarcely have been explored. Here, we present a survey based on the nifH gene across transects of sediments of two mangrove systems located along the coast line of São Paulo state (Brazil) which differed by degree of disturbance, i.e., an oil-spill-affected and an unaffected mangrove. The diazotrophic communities were assessed by denaturing gradient gel electrophoresis (DGGE), quantitative PCR (qPCR), and clone libraries. The nifH gene abundance was similar across the two mangrove sediment systems, as evidenced by qPCR. However, the nifH-based PCR-DGGE profiles revealed clear differences between the mangroves. Moreover, shifts in the nifH gene diversities were noted along the land-sea transect within the previously oiled mangrove. The nifH gene diversity depicted the presence of nitrogen-fixing bacteria affiliated with a wide range of taxa, encompassing members of the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Firmicutes, and also a group of anaerobic sulfate-reducing bacteria. We also detected a unique mangrove-specific cluster of sequences denoted Mgv-nifH. Our results indicate that nitrogen-fixing bacterial guilds can be partially endemic to mangroves, and these communities are modulated by oil contamination, which has important implications for conservation strategies. PMID:22941088

  12. Gene activation by induced DNA rearrangements

    International Nuclear Information System (INIS)

    A murine cell line (EN/NIH) containing the retroviral vector ZIPNeoSV(x)1 that was modified by deletion of the enhancer elements in the viral long terminal repeats has been used as an assay system to detect induced DNA rearrangements that result in activation of a transcriptionally silent reporter gene encoded by the viral genome. The spontaneous frequency of G418 resistance is less than 10(-7), whereas exposure to the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) or the combination of UV irradiation plus TPA resulted in the emergence of drug resistant cell lines at a frequency of 5 per 10(6) and 67 per 10(6) cells, respectively. In several of the cell lines that were analyzed a low level of amplification of one of the two parental retroviral integrants was observed, whereas in others no alteration in the region of the viral genome was detected. To determine the effect of the SV40 large T antigen on induced DNA rearrangements, EN/NIH cells were transfected with a temperature sensitive (ts) mutant of SV40 T. Transfectants were maintained at the permissive temperature (33 degrees C) for varying periods of time (1-5 days) in order to vary SV40 T antigen exposure, after which they were shifted to 39.5 degrees C for selection in G418. The frequency of emergence of drug resistant cell clones increased with duration of exposure to large T antigen (9-52 per 10(6) cells over 1-5 days, respectively), and all cell lines analyzed demonstrated DNA rearrangements in the region of the neo gene. A novel 18-kilobase pair XbaI fragment was cloned from one cell line which revealed the presence of a 2.0-kilobase pair EcoRI segment containing an inverted duplication which hybridized to neo sequences. It is likely that the observed rearrangement was initiated by the specific binding of large T antigen to the SV40 origin of replication encoded within the viral genome

  13. Relaxation training affects success and activation on a teaching test.

    Science.gov (United States)

    Helin, P; Hänninen, O

    1987-12-01

    We studied the effects of an audiocassette-relaxation training period (ART) and its timing on success at a teaching test (lecture type), on observed tension and on a number of physiological responses. The electrical activity of the upper trapezius muscle (EMG), heart rate (HR) and blood pressure (BP), of female and male instructor candidates, were examined before, during and after the teaching test as well as during its critique. The relaxation period (18 min) was presented either on the preceding night (ARTnt) or immediately before the teaching test (ARTimm). The influence of personality (types A-B and extrovert-introvert) was also studied. ART improved success at the teaching test in both sexes. In males (but not in females), ARTimm decreased EMG level during the test, but ARTnt increased EMG at the test period as compared to the control group. In females, both ARTnt and ARTimm lowered HR more than in the control group. ARTimm lowered systolic BP in both sexes. Personality types affected the ART responses; ART was more beneficial for type A than B subjects. PMID:3325481

  14. Methods for interpreting lists of affected genes obtained in a DNA microarray experiment

    Directory of Open Access Journals (Sweden)

    Hedegaard Jakob

    2009-07-01

    Full Text Available Abstract Background The aim of this paper was to describe and compare the methods used and the results obtained by the participants in a joint EADGENE (European Animal Disease Genomic Network of Excellence and SABRE (Cutting Edge Genomics for Sustainable Animal Breeding workshop focusing on post analysis of microarray data. The participating groups were provided with identical lists of microarray probes, including test statistics for three different contrasts, and the normalised log-ratios for each array, to be used as the starting point for interpreting the affected probes. The data originated from a microarray experiment conducted to study the host reactions in broilers occurring shortly after a secondary challenge with either a homologous or heterologous species of Eimeria. Results Several conceptually different analytical approaches, using both commercial and public available software, were applied by the participating groups. The following tools were used: Ingenuity Pathway Analysis, MAPPFinder, LIMMA, GOstats, GOEAST, GOTM, Globaltest, TopGO, ArrayUnlock, Pathway Studio, GIST and AnnotationDbi. The main focus of the approaches was to utilise the relation between probes/genes and their gene ontology and pathways to interpret the affected probes/genes. The lack of a well-annotated chicken genome did though limit the possibilities to fully explore the tools. The main results from these analyses showed that the biological interpretation is highly dependent on the statistical method used but that some common biological conclusions could be reached. Conclusion It is highly recommended to test different analytical methods on the same data set and compare the results to obtain a reliable biological interpretation of the affected genes in a DNA microarray experiment.

  15. Random isolation of gene activator elements from the human genome.

    OpenAIRE

    Hamada, H

    1986-01-01

    Long-range-acting gene activator elements were randomly isolated from the human genome by functional selection. HeLa cells were transfected with an enhancer trap, a plasmid containing an enhancerless xanthine-guanosine phosphoribosyltransferase (gpt) gene transcribed from the simian virus 40 early promoter, and stably transformed GPT+ cells were selected. From several transformants, human DNA sequences flanking the enhancer trap were cloned. Two gene activators (GA1 and GA2) were found in the...

  16. Transcription factor co-localization patterns affect human cell type-specific gene expression

    Directory of Open Access Journals (Sweden)

    Wang Dennis

    2012-06-01

    Full Text Available Abstract Background Cellular development requires the precise control of gene expression states. Transcription factors are involved in this regulatory process through their combinatorial binding with DNA. Information about transcription factor binding sites can help determine which combinations of factors work together to regulate a gene, but it is unclear how far the binding data from one cell type can inform about regulation in other cell types. Results By integrating data on co-localized transcription factor binding sites in the K562 cell line with expression data across 38 distinct hematopoietic cell types, we developed regression models to describe the relationship between the expression of target genes and the transcription factors that co-localize nearby. With K562 binding sites identifying the predictors, the proportion of expression explained by the models is statistically significant only for monocytic cells (p-valueFOS, TAF1 and YY1 to a sparsely studied gene LRIG2. We also find that the activity of a transcription factor may be different depending on the cell type and the identity of other co-localized factors. Conclusion Our approach shows that gene expression can be explained by a modest number of co-localized transcription factors, however, information on cell-type specific binding is crucial for understanding combinatorial gene regulation.

  17. The Garlic Allelochemical Diallyl Disulfide Affects Tomato Root Growth by Influencing Cell Division, Phytohormone Balance and Expansin Gene Expression

    Science.gov (United States)

    Cheng, Fang; Cheng, Zhihui; Meng, Huanwen; Tang, Xiangwei

    2016-01-01

    Diallyl disulfide (DADS) is a volatile organosulfur compound derived from garlic (Allium sativum L.), and it is known as an allelochemical responsible for the strong allelopathic potential of garlic. The anticancer properties of DADS have been studied in experimental animals and various types of cancer cells, but to date, little is known about its mode of action as an allelochemical at the cytological level. The current research presents further studies on the effects of DADS on tomato (Solanum lycopersicum L.) seed germination, root growth, mitotic index, and cell size in root meristem, as well as the phytohormone levels and expression profile of auxin biosynthesis genes (FZYs), auxin transport genes (SlPINs), and expansin genes (EXPs) in tomato root. The results showed a biphasic, dose-dependent effect on tomato seed germination and root growth under different DADS concentrations. Lower concentrations (0.01–0.62 mM) of DADS significantly promoted root growth, whereas higher levels (6.20–20.67 mM) showed inhibitory effects. Cytological observations showed that the cell length of root meristem was increased and that the mitotic activity of meristematic cells in seedling root tips was enhanced at lower concentrations of DADS. In contrast, DADS at higher concentrations inhibited root growth by affecting both the length and division activity of meristematic cells. However, the cell width of the root meristem was not affected. Additionally, DADS increased the IAA and ZR contents of seedling roots in a dose-dependent manner. The influence on IAA content may be mediated by the up-regulation of FZYs and PINs. Further investigation into the underlying mechanism revealed that the expression levels of tomato EXPs were significantly affected by DADS. The expression levels of EXPB2 and beta-expansin precursor were increased after 3 d, and those of EXP1, EXPB3 and EXLB1 were increased after 5 d of DADS treatment (0.41 mM). This result suggests that tomato root growth may be

  18. The Garlic Allelochemical Diallyl Disulfide Affects Tomato Root Growth by Influencing Cell Division, Phytohormone Balance and Expansin Gene Expression.

    Science.gov (United States)

    Cheng, Fang; Cheng, Zhihui; Meng, Huanwen; Tang, Xiangwei

    2016-01-01

    Diallyl disulfide (DADS) is a volatile organosulfur compound derived from garlic (Allium sativum L.), and it is known as an allelochemical responsible for the strong allelopathic potential of garlic. The anticancer properties of DADS have been studied in experimental animals and various types of cancer cells, but to date, little is known about its mode of action as an allelochemical at the cytological level. The current research presents further studies on the effects of DADS on tomato (Solanum lycopersicum L.) seed germination, root growth, mitotic index, and cell size in root meristem, as well as the phytohormone levels and expression profile of auxin biosynthesis genes (FZYs), auxin transport genes (SlPINs), and expansin genes (EXPs) in tomato root. The results showed a biphasic, dose-dependent effect on tomato seed germination and root growth under different DADS concentrations. Lower concentrations (0.01-0.62 mM) of DADS significantly promoted root growth, whereas higher levels (6.20-20.67 mM) showed inhibitory effects. Cytological observations showed that the cell length of root meristem was increased and that the mitotic activity of meristematic cells in seedling root tips was enhanced at lower concentrations of DADS. In contrast, DADS at higher concentrations inhibited root growth by affecting both the length and division activity of meristematic cells. However, the cell width of the root meristem was not affected. Additionally, DADS increased the IAA and ZR contents of seedling roots in a dose-dependent manner. The influence on IAA content may be mediated by the up-regulation of FZYs and PINs. Further investigation into the underlying mechanism revealed that the expression levels of tomato EXPs were significantly affected by DADS. The expression levels of EXPB2 and beta-expansin precursor were increased after 3 d, and those of EXP1, EXPB3 and EXLB1 were increased after 5 d of DADS treatment (0.41 mM). This result suggests that tomato root growth may be

  19. Transcriptome expression analysis of candidate milk genes affecting cheese-related traits in 2 sheep breeds.

    Science.gov (United States)

    Suárez-Vega, A; Gutiérrez-Gil, B; Arranz, J J

    2016-08-01

    Because ewe milk is principally used for cheese making, its quality is related to its content of total solids and the way in which milk constituents influence cheese yield and determine the technological and organoleptic characteristics of dairy products. Therefore, an in-depth knowledge of the expression levels of milk genes influencing cheese-related traits is essential. In the present study, the milk transcriptome data set of 2 dairy sheep breeds, Assaf and Spanish Churra, was used to evaluate the expression levels of 77 transcripts related to cheese yield and quality traits. For the comparison between both breeds, we selected the RNA sequencing (RNA-Seq) data at d 10 of lactation because this is the time point at which within and between breed differences due to lactation length are minimal. The evaluated genes encode major milk proteins (caseins and whey proteins), endogenous proteases, and enzymes related to fatty acid metabolism and citrate content. Through this analysis, we identified the genes predominantly expressed in each of the analyzed pathways that appear to be key genes for traits related to sheep milk cheese. Among the highly expressed genes in both breeds were the genes encoding caseins and whey proteins (CSN2, CSN3, CSN1S1, ENSOARG00000005099/PAEP, CSN1S2, LALBA), genes related to lipid metabolism (BTN1A1, XDH, FASN, ADFP, SCD, H-FABP, ACSS2), and one endogenous protease (CTSB). Moreover, a differential expression analysis between Churra and Assaf sheep allowed us to identify 7 genes that are significantly differentially expressed between the 2 breeds. These genes were mainly linked to endogenous protease activity (CTSL, CTSK, KLK10, KLK6, SERPINE2). Additionally, there were 2 differentially expressed genes coding for an intracellular fatty acid transporter (FABP4), an intermediate molecule of the citric acid cycle (SUCNR1), and 2 heat shock proteins (HSP70, HSPB8) that could be related to high protein production. The differential expression of

  20. A Cbx8-containing polycomb complex facilitates the transition to gene activation during ES cell differentiation.

    Directory of Open Access Journals (Sweden)

    Catherine Creppe

    2014-12-01

    Full Text Available Polycomb proteins play an essential role in maintaining the repression of developmental genes in self-renewing embryonic stem cells. The exact mechanism allowing the derepression of polycomb target genes during cell differentiation remains unclear. Our project aimed to identify Cbx8 binding sites in differentiating mouse embryonic stem cells. Therefore, we used a genome-wide chromatin immunoprecipitation of endogenous Cbx8 coupled to direct massive parallel sequencing (ChIP-Seq. Our analysis identified 171 high confidence peaks. By crossing our data with previously published microarray analysis, we show that several differentiation genes transiently recruit Cbx8 during their early activation. Depletion of Cbx8 partially impairs the transcriptional activation of these genes. Both interaction analysis, as well as chromatin immunoprecipitation experiments support the idea that activating Cbx8 acts in the context of an intact PRC1 complex. Prolonged gene activation results in eviction of PRC1 despite persisting H3K27me3 and H2A ubiquitination. The composition of PRC1 is highly modular and changes when embryonic stem cells commit to differentiation. We further demonstrate that the exchange of Cbx7 for Cbx8 is required for the effective activation of differentiation genes. Taken together, our results establish a function for a Cbx8-containing complex in facilitating the transition from a Polycomb-repressed chromatin state to an active state. As this affects several key regulatory differentiation genes this mechanism is likely to contribute to the robust execution of differentiation programs.

  1. Orthogonal gene knock out and activation with a catalytically active Cas9 nuclease

    OpenAIRE

    Dahlman, James E.; Abudayyeh, Omar O.; Joung, Julia; Gootenberg, Jonathan S.; Zhang, Feng; Konermann, Silvana

    2015-01-01

    We have developed a CRISPR-based method that uses catalytically active Cas9 and distinct sgRNA constructs to knock out and activate different genes in the same cell. These sgRNAs, with 14 15 bp target sequences and MS2 binding loops, can activate gene expression using an active Cas9 nuclease, without inducing DSBs. We use these ‘dead RNAs’ to perform orthogonal gene knockout and transcriptional activation in human cells.

  2. The flhDC gene affects motility and biofilm formation in Yersinia pseudotuberculosis

    Institute of Scientific and Technical Information of China (English)

    WANG; Yao; DING; LiSha; HU; YangBo; ZHANG; Yong; YANG; BaoYu

    2007-01-01

    The flagella master regulatory gene flhDC of Yersinia pseudotuberculosis serotype Ⅲ (YPⅢ) was mutated by deleting the middle region and replaced by a tetracycline resistant gene, and the subsequent mutant strain named YPⅢ△flhDC was obtained. Swimming assay showed that the swimming motility of the mutant strain was completely abolished. The promoter region of the flagella second-class regulatory gene fliA was fused with the lux box, and was conjugated with the mutant and the parent strains respectively for the first cross. LUCY assay result demonstrated that flhDC regulated the expression of fliA in YPⅢ as reported in E. Coli. Biofilm formation of the mutant strain on abiotic and biotic surfaces was observed and quantified. The results showed that mutation of flhDC decreased biofilm formation on both abiotic and biotic surfaces, and abated the infection on Caenorhabdtis elegans. Our results suggest that mutation of the flagella master regulatory gene flhDC not only abolished the swimming motility, but also affected biofilm formation of YPⅢ on different surfaces. The new function of flhDC identified in this study provides a novel viewpoint for the control of bacterial biofilm formation.

  3. Biased perception about gene technology: How perceived naturalness and affect distort benefit perception.

    Science.gov (United States)

    Siegrist, Michael; Hartmann, Christina; Sütterlin, Bernadette

    2016-01-01

    In two experiments, the participants showed biased responses when asked to evaluate the benefits of gene technology. They evaluated the importance of additional yields in corn fields due to a newly introduced variety, which would increase a farmer's revenues. In one condition, the newly introduced variety was described as a product of traditional breeding; in the other, it was identified as genetically modified (GM). The two experiments' findings showed that the same benefits were perceived as less important for a farmer when these were the result of GM crops compared with traditionally bred crops. Mediation analyses suggest that perceived naturalness and the affect associated with the technology per se influence the interpretation of the new information. The lack of perceived naturalness of gene technology seems to be the reason for the participants' perceived lower benefits of a new corn variety in the gene technology condition compared with the perceptions of the participants assigned to the traditional breeding condition. The strategy to increase the acceptance of gene technology by introducing plant varieties that better address consumer and producer needs may not work because people discount its associated benefits. PMID:26505287

  4. Activity Clinic and Affects in Workplace Conflicts: Transformation through transferential activity

    Directory of Open Access Journals (Sweden)

    Livia Scheller

    2014-04-01

    Full Text Available This paper presents some reflections about an approach in work psychology: the Activity Clinic.After a brief introduction to the conceptual background of the “Activity Clinic”, it covers threedeeply interconnected themes. The first concerns the meaning attributed to the development of theaffects present in the work situation under analysis; the second discusses the reasons for theconflicts that are ultimately due to these affects; the third considers how a method of co-analysisof the activity can lead towards transformation of those conflicts.Our reflections refer to the process engendered by this methodological approach as one of“transferential activity”. The paper explains this process by empirically describing the“transport” of affects involved in the conflicts. The personal interpretation of the cause ofproblems gives way to the understanding that they are due to organizational dysfunction ratherthan to individual personalities. Measures can then be taken to break the deadlocks experiencedboth at the personal and collective level.

  5. Iron Content Affects Lipogenic Gene Expression in the Muscle of Nelore Beef Cattle

    Science.gov (United States)

    Diniz, Wellison Jarles da Silva; Coutinho, Luiz Lehmann; Tizioto, Polyana Cristine; Cesar, Aline Silva Mello; Gromboni, Caio Fernando; Nogueira, Ana Rita Araújo; de Oliveira, Priscila Silva Neubern; de Souza, Marcela Maria

    2016-01-01

    Iron (Fe) is an essential mineral for metabolism and plays a central role in a range of biochemical processes. Therefore, this study aimed to identify differentially expressed (DE) genes and metabolic pathways in Longissimus dorsi (LD) muscle from cattle with divergent iron content, as well as to investigate the likely role of these DE genes in biological processes underlying beef quality parameters. Samples for RNA extraction for sequencing and iron, copper, manganese, and zinc determination were collected from LD muscles at slaughter. Eight Nelore steers, with extreme genomic estimated breeding values for iron content (Fe-GEBV), were selected from a reference population of 373 animals. From the 49 annotated DE genes (FDR<0.05) found between the two groups, 18 were up-regulated and 31 down-regulated for the animals in the low Fe-GEBV group. The functional enrichment analyses identified several biological processes, such as lipid transport and metabolism, and cell growth. Lipid metabolism was the main pathway observed in the analysis of metabolic and canonical signaling pathways for the genes identified as DE, including the genes FASN, FABP4, and THRSP, which are functional candidates for beef quality, suggesting reduced lipogenic activities with lower iron content. Our results indicate metabolic pathways that are partially influenced by iron, contributing to a better understanding of its participation in skeletal muscle physiology. PMID:27532424

  6. Regulation of myelin genes implicated in psychiatric disorders by functional activity in axons

    Directory of Open Access Journals (Sweden)

    Philip R Lee

    2009-06-01

    Full Text Available Myelination is a highly dynamic process that continues well into adulthood in humans. Several recent gene expression studies have found abnormal expression of genes involved in myelination in the prefrontal cortex of brains from patients with schizophrenia and other psychiatric illnesses. Defects in myelination could contribute to the pathophysiology of psychiatric illness by impairing information processing as a consequence of altered impulse conduction velocity and synchrony between cortical regions carrying out higher level cognitive functions. Myelination can be altered by impulse activity in axons and by environmental experience. Psychiatric illness is treated by psychotherapy, behavioral modification, and drugs affecting neurotransmission, raising the possibility that myelinating glia may not only contribute to such disorders, but that activity-dependent effects on myelinating glia could provide one of the cellular mechanisms contributing to the therapeutic effects of these treatments. This review examines evidence showing that genes and gene networks important for myelination can be regulated by functional activity in axons.

  7. Positive affect modulates activity in the visual cortex to images of high calorie foods.

    Science.gov (United States)

    Killgore, William D S; Yurgelun-Todd, Deborah A

    2007-05-01

    Activity within the visual cortex can be influenced by the emotional salience of a stimulus, but it is not clear whether such cortical activity is modulated by the affective status of the individual. This study used functional magnetic resonance imaging (fMRI) to examine the relationship between affect ratings on the Positive and Negative Affect Schedule and activity within the occipital cortex of 13 normal-weight women while viewing images of high calorie and low calorie foods. Regression analyses revealed that when participants viewed high calorie foods, Positive Affect correlated significantly with activity within the lingual gyrus and calcarine cortex, whereas Negative Affect was unrelated to visual cortex activity. In contrast, during presentations of low calorie foods, affect ratings, regardless of valence, were unrelated to occipital cortex activity. These findings suggest a mechanism whereby positive affective state may affect the early stages of sensory processing, possibly influencing subsequent perceptual experience of a stimulus. PMID:17464782

  8. Affect and Subsequent Physical Activity: An Ambulatory Assessment Study Examining the Affect-Activity Association in a Real-Life Context

    Science.gov (United States)

    Niermann, Christina Y. N.; Herrmann, Christian; von Haaren, Birte; van Kann, Dave; Woll, Alexander

    2016-01-01

    Traditionally, cognitive, motivational, and volitional determinants have been used to explain and predict health behaviors such as physical activity. Recently, the role of affect in influencing and regulating health behaviors received more attention. Affects as internal cues may automatically activate unconscious processes of behavior regulation. The aim of our study was to examine the association between affect and physical activity in daily life. In addition, we studied the influence of the habit of being physically active on this relationship. An ambulatory assessment study in 89 persons (33.7% male, 25 to 65 years, M = 45.2, SD = 8.1) was conducted. Affect was assessed in the afternoon on 5 weekdays using smartphones. Physical activity was measured continuously objectively using accelerometers and subjectively using smartphones in the evening. Habit strength was assessed at the beginning of the diary period. The outcomes were objectively and subjectively measured moderate-to-vigorous physical activity (MVPA) performed after work. Multilevel regression models were used to analyze the association between affect and after work MVPA. In addition, the cross-level interaction of habit strength and affect on after work MVPA was tested. Positive affect was positively related to objectively measured and self-reported after work MVPA: the greater the positive affect the more time persons subsequently spent on MVPA. An inverse relationship was found for negative affect: the greater the negative affect the less time persons spent on MVPA. The cross-level interaction effect was significant only for objectively measured MVPA. A strong habit seems to strengthen both the positive influence of positive affect and the negative influence of negative affect. The results of this study confirm previous results and indicate that affect plays an important role for the regulation of physical activity behavior in daily life. The results for positive affect were consistent. However, in

  9. Affect and subsequent physical activity: An ambulatory assessment study examining the affect-activity association in a real-life context

    Directory of Open Access Journals (Sweden)

    Christina eNiermann

    2016-05-01

    Full Text Available Traditionally, cognitive, motivational and volitional determinants have been used to explain and predict health behaviors such as physical activity. Recently, the role of affect in influencing and regulating health behaviors received more attention. Affects as internal cues may automatically activate unconscious processes of behavior regulation. The aim of our study was to examine the association between affect and physical activity in daily life. In addition, we studied the influence of the habit of being physically active on this relationship.An ambulatory assessment study in 89 persons (33.7% male, 25 to 65 years, M=45.2, SD=8.1 was conducted. Affect was assessed in the afternoon on 5 weekdays using smartphones. Physical activity was measured continuously objectively using accelerometers and subjectively using smartphones in the evening. Habit strength was assessed at the beginning of the diary period. The outcomes were objectively and subjectively measured moderate-to-vigorous physical activity (MVPA performed after work. Multilevel regression models were used to analyze the association between affect and after work MVPA. In addition, the cross-level interaction of habit strength and affect on after work MVPA was tested.Positive affect was positively related to objectively measured and self-reported after work MVPA: the greater the positive affect the more time persons subsequently spent on MVPA. An inverse relationship was found for negative affect: the greater the negative affect the less time persons spent on MVPA. The cross-level interaction effect was significant only for objectively measured MVPA. A strong habit seems to strengthen both the positive influence of positive affect and the negative influence of negative affect.The results of this study confirm previous results and indicate that affect plays an important role for the regulation of physical activity behavior in daily life. The results for positive affect were consistent

  10. Affect and Subsequent Physical Activity: An Ambulatory Assessment Study Examining the Affect-Activity Association in a Real-Life Context.

    Science.gov (United States)

    Niermann, Christina Y N; Herrmann, Christian; von Haaren, Birte; van Kann, Dave; Woll, Alexander

    2016-01-01

    Traditionally, cognitive, motivational, and volitional determinants have been used to explain and predict health behaviors such as physical activity. Recently, the role of affect in influencing and regulating health behaviors received more attention. Affects as internal cues may automatically activate unconscious processes of behavior regulation. The aim of our study was to examine the association between affect and physical activity in daily life. In addition, we studied the influence of the habit of being physically active on this relationship. An ambulatory assessment study in 89 persons (33.7% male, 25 to 65 years, M = 45.2, SD = 8.1) was conducted. Affect was assessed in the afternoon on 5 weekdays using smartphones. Physical activity was measured continuously objectively using accelerometers and subjectively using smartphones in the evening. Habit strength was assessed at the beginning of the diary period. The outcomes were objectively and subjectively measured moderate-to-vigorous physical activity (MVPA) performed after work. Multilevel regression models were used to analyze the association between affect and after work MVPA. In addition, the cross-level interaction of habit strength and affect on after work MVPA was tested. Positive affect was positively related to objectively measured and self-reported after work MVPA: the greater the positive affect the more time persons subsequently spent on MVPA. An inverse relationship was found for negative affect: the greater the negative affect the less time persons spent on MVPA. The cross-level interaction effect was significant only for objectively measured MVPA. A strong habit seems to strengthen both the positive influence of positive affect and the negative influence of negative affect. The results of this study confirm previous results and indicate that affect plays an important role for the regulation of physical activity behavior in daily life. The results for positive affect were consistent. However, in

  11. The ANK3 gene and facial affect processing: An ERP study.

    Science.gov (United States)

    Zhao, Wan; Zhang, Qiumei; Yu, Ping; Zhang, Zhifang; Chen, Xiongying; Gu, Huang; Zhai, Jinguo; Chen, Min; Du, Boqi; Deng, Xiaoxiang; Ji, Feng; Wang, Chuanyue; Xiang, Yu-Tao; Li, Dawei; Wu, Hongjie; Dong, Qi; Luo, Yuejia; Li, Jun; Chen, Chuansheng

    2016-09-01

    ANK3 is one of the most promising candidate genes for bipolar disorder (BD). A polymorphism (rs10994336) within the ANK3 gene has been associated with BD in at least three genome-wide association studies of BD [McGuffin et al., 2003; Kieseppä, 2004; Edvardsen et al., 2008]. Because facial affect processing is disrupted in patients with BD, the current study aimed to explore whether the BD risk alleles are associated with the N170, an early event-related potential (ERP) component related to facial affect processing. We collected data from two independent samples of healthy individuals (Ns = 83 and 82, respectively) to test the association between rs10994336 and an early event-related potential (ERP) component (N170) that is sensitive to facial affect processing. Repeated-measures analysis of covariance in both samples consistently revealed significant main effects of rs10994336 genotype (Sample I: F (1, 72) = 7.24, P = 0.009; Sample II: F (1, 69) = 11.81, P = 0.001), but no significant interaction of genotype × electrodes (Ps > 0.05) or genotype × emotional conditions (Ps > 0.05). These results suggested that rs10994336 was linked to early ERP component reflecting facial structural encoding during facial affect processing. These results shed new light on the brain mechanism of this risk SNP and associated disorders such as BD. © 2016 Wiley Periodicals, Inc. PMID:27177275

  12. Gestational diabetes mellitus epigenetically affects genes predominantly involved in metabolic diseases.

    Science.gov (United States)

    Ruchat, Stephanie-May; Houde, Andrée-Anne; Voisin, Grégory; St-Pierre, Julie; Perron, Patrice; Baillargeon, Jean-Patrice; Gaudet, Daniel; Hivert, Marie-France; Brisson, Diane; Bouchard, Luigi

    2013-09-01

    Offspring exposed to gestational diabetes mellitus (GDM) have an increased risk for chronic diseases, and one promising mechanism for fetal metabolic programming is epigenetics. Therefore, we postulated that GDM exposure impacts the offspring's methylome and used an epigenomic approach to explore this hypothesis. Placenta and cord blood samples were obtained from 44 newborns, including 30 exposed to GDM. Women were recruited at first trimester of pregnancy and followed until delivery. GDM was assessed after a 75-g oral glucose tolerance test at 24-28 weeks of pregnancy. DNA methylation was measured at>485,000 CpG sites (Infinium HumanMethylation450 BeadChips). Ingenuity Pathway Analysis was conducted to identify metabolic pathways epigenetically affected by GDM. Our results showed that 3,271 and 3,758 genes in placenta and cord blood, respectively, were potentially differentially methylated between samples exposed or not to GDM (p-values down to 1 × 10(-06); none reached the genome-wide significance levels), with more than 25% (n = 1,029) being common to both tissues. Mean DNA methylation differences between groups were 5.7 ± 3.2% and 3.4 ± 1.9% for placenta and cord blood, respectively. These genes were likely involved in the metabolic diseases pathway (up to 115 genes (11%), p-values for pathways = 1.9 × 10(-13)diabetes mellitus p = 4.3 × 10(-11)). Among the differentially methylated genes, 326 in placenta and 117 in cord blood were also associated with newborn weight. Our results therefore suggest that GDM has epigenetic effects on genes preferentially involved in the metabolic diseases pathway, with consequences on fetal growth and development, and provide supportive evidence that DNA methylation is involved in fetal metabolic programming. PMID:23975224

  13. Modeling the Activity of Single Genes

    Science.gov (United States)

    Mjolsness, Eric; Gibson, Michael

    1999-01-01

    The central dogma of molecular biology states that information is stored in DNA, transcribed to messenger RNA (mRNA) and then translated into proteins. This picture is significantly augmentated when we consider the action of certain proteins in regulating transcription. These transcription factors provide a feedback pathway by which genes can regulate one another's expression as mRNA and then as protein. To review: DNA, RNA and proteins have different functions. DNA is the molecular storehouse of genetic information. When cells divide, the DNA is replicated, so that each daughter cell maintains the same genetic information as the mother cell. RNA acts as a go-between from DNA to proteins. Only a single copy of DNA is present, but multiple copies of the same piece of RNA may be present, allowing cells to make huge amounts of protein. In eukaryotes (organisms with a nucleus), DNA is found in the nucleus only. RNA is copied in the nucleus then translocates(moves) outside the nucleus, where it is transcribed into proteins. Along the way, the RNA may be spliced, i.e., may have pieces cut out. RNA then attaches to ribosomes and is translated to proteins. Proteins are the machinery of the cell other than DNA and RNA, all the complex molecules of the cell are proteins. Proteins are specialized machines, each of which fulfills its own task, which may be transporting oxygen, catalyzing reactions, or responding to extracellular signals, just to name a few. One of the more interesting functions a protein may have is binding directly or indirectly to DNA to perform transcriptional regulation, thus forming a closed feedback loop of gene regulation. The structure of DNA and the central dogma were understood in the 50s; in the early 80s it became possible to make arbitrary modifications to DNA and use cellular machinery to transcribe and translate the resulting genes; more recently, genomes (i.e., the complete DNA sequence) of many organisms have been sequenced. This large

  14. In vitro transcription of eukaryotic genes is affected differently by the degree of DNA supercoiling.

    OpenAIRE

    Hirose, S; Suzuki, Y

    1988-01-01

    In a posterior silk gland extract, covalently closed circular (ccc) DNA is in a superhelical state that supports more transcription of fibroin gene than does linear DNA. A HeLa cell extract showed neither the supercoiling activity nor the preference for the transcription of ccc DNA over linear DNA. These activities could be added to the HeLa cell extract. Phosphocellulose fractionation of the posterior silk gland extract yielded a flow-through fraction and a 0.6 M KCl eluate fraction that wer...

  15. Abiotic stresses affect differently the intron splicing and expression of chloroplast genes in coffee plants (Coffea arabica) and rice (Oryza sativa).

    Science.gov (United States)

    Nguyen Dinh, Sy; Sai, Than Zaw Tun; Nawaz, Ghazala; Lee, Kwanuk; Kang, Hunseung

    2016-08-20

    Despite the increasing understanding of the regulation of chloroplast gene expression in plants, the importance of intron splicing and processing of chloroplast RNA transcripts under stress conditions is largely unknown. Here, to understand how abiotic stresses affect the intron splicing and expression patterns of chloroplast genes in dicots and monocots, we carried out a comprehensive analysis of the intron splicing and expression patterns of chloroplast genes in the coffee plant (Coffea arabica) as a dicot and rice (Oryza sativa) as a monocot under abiotic stresses, including drought, cold, or combined drought and heat stresses. The photosynthetic activity of both coffee plants and rice seedlings was significantly reduced under all stress conditions tested. Analysis of the transcript levels of chloroplast genes revealed that the splicing of tRNAs and mRNAs in coffee plants and rice seedlings were significantly affected by abiotic stresses. Notably, abiotic stresses affected differently the splicing of chloroplast tRNAs and mRNAs in coffee plants and rice seedlings. The transcript levels of most chloroplast genes were markedly downregulated in both coffee plants and rice seedlings upon stress treatment. Taken together, these results suggest that coffee and rice plants respond to abiotic stresses via regulating the intron splicing and expression of different sets of chloroplast genes. PMID:27448724

  16. Novel TetR family transcriptional factor regulates expression of multiple transport-related genes and affects rifampicin resistance in Mycobacterium smegmatis.

    Science.gov (United States)

    Liu, Huicong; Yang, Min; He, Zheng-Guo

    2016-01-01

    Transport-related genes significantly affect bacterial antibiotic resistance. However, the effects of these genes and their regulation of bacterial drug resistance in several mycobacterial species, including the fast-growing Mycobacterium smegmatis, the pathogen M. tuberculosis and M. avium have not been clearly characterized. We identified Ms4022 (MSMEG_4022) as a novel TetR family regulator that activates the expression of seven transport-related genes and affects drug resistance in M. smegmatis. Overexpression of Ms4022 inhibited M. smegmatis growth and enhanced mycobacterial resistance to the anti-tuberculosis drug rifampicin (RIF). By contrast, the Ms4022-deleted mycobacterial strain has shown sensitive to RIF. Ms4022 recognized three 19 bp non-palindromic motifs containing a 9 bp conserved region at their 5' end and it directly regulated seven transport-related genes, which affects mycobacterial resistance to RIF. Overexpression of three of seven transport-related genes (Ms1448, Ms1613, and Ms5278) inhibited the growth of M. smegmatis. This study improves our understanding of the function of mycobacterial transport-related genes and their regulation of bacterial drug resistance. PMID:27271013

  17. Nonsense mutations in the human β-globin gene affect mRNA metabolism

    International Nuclear Information System (INIS)

    A number of premature translation termination mutations (nonsense mutations) have been described in the human α- and β-globin genes. Studies on mRNA isolated from patients with β0-thalassemia have shown that for both the β-17 and the β-39 mutations less than normal levels of β-globin mRNA accumulate in peripheral blood cells. (The codon at which the mutation occurs designates the name of the mutation; there are 146 codons in human β-globin mRNA). In vitro studies using the cloned β-39 gene have reproduced this effect in a heterologous transfection system and have suggested that the defect resides in intranuclear metabolism. The authors have asked if this phenomenon of decreased mRNA accumulation is a general property of nonsense mutations and if the effect depends on the location or the type of mutation. Toward this end, they have studied the effect of five nonsense mutations and two missense mutations on the expression of human β-globin mRNA in a heterologous transfection system. In all cases studied, the presence of a translation termination codon correlates with a decrease in the steady-state level of mRNA. The data suggest that the metabolism of a mammalian mRNA is affected by the presence of a mutation that affects translation

  18. Profiling gene expression induced by protease-activated receptor 2 (PAR2 activation in human kidney cells.

    Directory of Open Access Journals (Sweden)

    Jacky Y Suen

    Full Text Available Protease-Activated Receptor-2 (PAR2 has been implicated through genetic knockout mice with cytokine regulation and arthritis development. Many studies have associated PAR2 with inflammatory conditions (arthritis, airways inflammation, IBD and key events in tumor progression (angiogenesis, metastasis, but they have relied heavily on the use of single agonists to identify physiological roles for PAR2. However such probes are now known not to be highly selective for PAR2, and thus precisely what PAR2 does and what mechanisms of downstream regulation are truly affected remain obscure. Effects of PAR2 activation on gene expression in Human Embryonic Kidney cells (HEK293, a commonly studied cell line in PAR2 research, were investigated here by comparing 19,000 human genes for intersecting up- or down-regulation by both trypsin (an endogenous protease that activates PAR2 and a PAR2 activating hexapeptide (2f-LIGRLO-NH(2. Among 2,500 human genes regulated similarly by both agonists, there were clear associations between PAR2 activation and cellular metabolism (1,000 genes, the cell cycle, the MAPK pathway, HDAC and sirtuin enzymes, inflammatory cytokines, and anti-complement function. PAR-2 activation up-regulated four genes more than 5 fold (DUSP6, WWOX, AREG, SERPINB2 and down-regulated another six genes more than 3 fold (TXNIP, RARG, ITGB4, CTSD, MSC and TM4SF15. Both PAR2 and PAR1 activation resulted in up-regulated expression of several genes (CD44, FOSL1, TNFRSF12A, RAB3A, COPEB, CORO1C, THBS1, SDC4 known to be important in cancer. This is the first widespread profiling of specific activation of PAR2 and provides a valuable platform for better understanding key mechanistic roles of PAR2 in human physiology. Results clearly support the development of both antagonists and agonists of human PAR2 as potential disease modifying therapeutic agents.

  19. 78 FR 46418 - Proposed Information Collection (Obligation To Report Factors Affecting Entitlement) Activity...

    Science.gov (United States)

    2013-07-31

    ... AFFAIRS Proposed Information Collection (Obligation To Report Factors Affecting Entitlement) Activity... techniques or the use of other forms of information technology. Title: Obligation to Report Factors Affecting... dependents, may affect the amount of benefit that he or she receives or affect the right to receive...

  20. MEG brain activities reflecting affection for visual food stimuli.

    Science.gov (United States)

    Kuriki, Shinya; Miyamura, Takahiro; Uchikawa, Yoshinori

    2010-01-01

    This study aimed to explore the modulation of alpha rhythm in response to food pictures with distinct affection values. We examined the method to discriminate subject's state, i.e., whether he/she liked the article of food or not, from MEG signals detected over the head. Pictures of familiar foods were used as affective stimuli, while those pictures with complementary color phase were used as non-affective stimuli. Alpha band signals in a narrow frequency window around the spectral peak of individual subjects were wavelet analyzed and phase-locked component to the stimulus onset was obtained as a complex number. The amplitude of the phase-locked component was averaged during 0-1 s after stimulus onset for 30 epochs in a measurement session and across 76 channels of MEG sensor. In statistical test of individual subjects, significant difference was found in the real part of the averaged phase-locked amplitude between the normal-color and reverse-color pictures. These results suggest that affective information processing of food pictures is reflected in the synchronized component of narrow band alpha rhythm. PMID:21096510

  1. Gene Expression Profiles in Paired Gingival Biopsies from Periodontitis-Affected and Healthy Tissues Revealed by Massively Parallel Sequencing

    OpenAIRE

    Davanian, Haleh; Stranneheim, Henrik; Båge, Tove; Lagervall, Maria; Jansson, Leif; Lundeberg, Joakim; Yucel-Lindberg, Tülay

    2012-01-01

    Periodontitis is a chronic inflammatory disease affecting the soft tissue and bone that surrounds the teeth. Despite extensive research, distinctive genes responsible for the disease have not been identified. The objective of this study was to elucidate transcriptome changes in periodontitis, by investigating gene expression profiles in gingival tissue obtained from periodontitis-affected and healthy gingiva from the same patient, using RNA-sequencing. Gingival biopsies were obtained from a d...

  2. How Do Sociodemographics and Activity Participations Affect Activity-Travel? Comparative Study between Women and Men

    Directory of Open Access Journals (Sweden)

    Min Yang

    2014-01-01

    Full Text Available Activity-travel behaviors of women and men are different because they have different social and household responsibilities. However, studies concerning gender differences are mainly limited in developed countries. This paper concentrates on gender role-based differences in activity-travel behavior in a typical developing country, namely, China. Using data from 3656 cases collected through surveys conducted in Shangyu, data processing, method choice, and descriptive analysis were conducted. Binary and ordered logistic regression models segmented by gender were developed to evaluate the mechanism through which individual sociodemographics, household characteristics, and activity participations affect the number of trip chain types and activities for women and men. The results show that women aged 30 to 50 perform less subsistence activities. However, the difference between the different age groups of men is not as significant. In addition, men with bicycles and electric bicycles have more subsistence and maintenance activities, whereas women do not have these attributes. Moreover, women with children under schooling age make more maintenance trip chains but less leisure trip chains and activities, whereas men are free from this influence. Furthermore, both women and men perform more subsistence activities if the duration increases, and men have less influences than women do.

  3. Dietary methanol regulates human gene activity.

    Directory of Open Access Journals (Sweden)

    Anastasia V Shindyapina

    Full Text Available Methanol (MeOH is considered to be a poison in humans because of the alcohol dehydrogenase (ADH-mediated conversion of MeOH to formaldehyde (FA, which is toxic. Our recent genome-wide analysis of the mouse brain demonstrated that an increase in endogenous MeOH after ADH inhibition led to a significant increase in the plasma MeOH concentration and a modification of mRNA synthesis. These findings suggest endogenous MeOH involvement in homeostasis regulation by controlling mRNA levels. Here, we demonstrate directly that study volunteers displayed increasing concentrations of MeOH and FA in their blood plasma when consuming citrus pectin, ethanol and red wine. A microarray analysis of white blood cells (WBC from volunteers after pectin intake showed various responses for 30 significantly differentially regulated mRNAs, most of which were somehow involved in the pathogenesis of Alzheimer's disease (AD. There was also a decreased synthesis of hemoglobin mRNA, HBA and HBB, the presence of which in WBC RNA was not a result of red blood cells contamination because erythrocyte-specific marker genes were not significantly expressed. A qRT-PCR analysis of volunteer WBCs after pectin and red wine intake confirmed the complicated relationship between the plasma MeOH content and the mRNA accumulation of both genes that were previously identified, namely, GAPDH and SNX27, and genes revealed in this study, including MME, SORL1, DDIT4, HBA and HBB. We hypothesized that human plasma MeOH has an impact on the WBC mRNA levels of genes involved in cell signaling.

  4. Silver nanoparticles administered to chicken affect VEGFA and FGF2 gene expression in breast muscle and heart

    DEFF Research Database (Denmark)

    Hotowy, Anna Malgorzata; Sawosz, Ewa; Pineda, Lane Manalili;

    2012-01-01

    Nanoparticles of colloidal silver (AgNano) can influence gene expression. Concerning trials of AgNano application in poultry as antimicrobial and metabolic agents, it is useful to reveal whether they affect the expression of genes crucial for bird development. AgNano were administered to broiler...

  5. Mutation of the Zinc-Binding Metalloprotease Motif Affects Bacteroides fragilis Toxin Activity but Does Not Affect Propeptide Processing

    OpenAIRE

    Franco, Augusto A.; Buckwold, Simy L.; Shin, Jai W.; Ascon, Miguel; Sears, Cynthia L.

    2005-01-01

    To evaluate the role of the zinc-binding metalloprotease in Bacteroides fragilis toxin (BFT) processing and activity, the zinc-binding consensus sequences (H348, E349, H352, G355, H358, and M366) were mutated by site-directed-mutagenesis. Our results indicated that single point mutations in the zinc-binding metalloprotease motif do not affect BFT processing but do reduce or eliminate BFT biologic activity in vitro.

  6. Mutation of the Zinc-Binding Metalloprotease Motif Affects Bacteroides fragilis Toxin Activity but Does Not Affect Propeptide Processing

    Science.gov (United States)

    Franco, Augusto A.; Buckwold, Simy L.; Shin, Jai W.; Ascon, Miguel; Sears, Cynthia L.

    2005-01-01

    To evaluate the role of the zinc-binding metalloprotease in Bacteroides fragilis toxin (BFT) processing and activity, the zinc-binding consensus sequences (H348, E349, H352, G355, H358, and M366) were mutated by site-directed-mutagenesis. Our results indicated that single point mutations in the zinc-binding metalloprotease motif do not affect BFT processing but do reduce or eliminate BFT biologic activity in vitro. PMID:16041055

  7. Stress affects salivary alpha-Amylase activity in bonobos.

    Science.gov (United States)

    Behringer, Verena; Deschner, Tobias; Möstl, Erich; Selzer, Dieter; Hohmann, Gottfried

    2012-01-18

    Salivary alpha-Amylase (sAA) is a starch digesting enzyme. In addition to its function in the context of nutrition, sAA has also turned out to be useful for monitoring sympathetic nervous system activity. Recent studies on humans have found a relationship between intra-individual changes in sAA activity and physical and psychological stress. In studies on primates and other vertebrates, non-invasive monitoring of short-term stress responses is usually based on measurements of cortisol levels, which are indicative of hypothalamic-pituitary-adrenal activity. The few studies that have used both cortisol levels and sAA activity indicate that these two markers may respond differently and independently to different types of stress such that variation in the degree of the activation of different stress response systems might reflect alternative coping mechanisms or individual traits. Here, we present the first data on intra- and inter-individual variation of sAA activity in captive bonobos and compare the results with information from other ape species and humans. Our results indicate that sAA activity in the bonobo samples was significantly lower than in the human samples but within the range of other great ape species. In addition, sAA activity was significantly higher in samples collected at times when subjects had been exposed to stressors (judged by changes in behavioral patterns and cortisol levels) than in samples collected at other times. Our results indicate that bonobos possess functioning sAA and, as in other species, sAA activity is influenced by autonomic nervous system activity. Monitoring sAA activity could therefore be a useful tool for evaluating stress in bonobos. PMID:21945369

  8. Exposure to atrazine affects the expression of key genes in metabolic pathways integral to energy homeostasis in Xenopus laevis tadpoles

    Energy Technology Data Exchange (ETDEWEB)

    Zaya, Renee M., E-mail: renee.zaya@wmich.edu [Great Lakes Environmental and Molecular Sciences Center, Department of Biological Sciences, 3425 Wood Hall, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, MI 49008 (United States); Amini, Zakariya, E-mail: zakariya.amini@wmich.edu [Great Lakes Environmental and Molecular Sciences Center, Department of Biological Sciences, 3425 Wood Hall, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, MI 49008 (United States); Whitaker, Ashley S., E-mail: ashley.s.whitaker@wmich.edu [Great Lakes Environmental and Molecular Sciences Center, Department of Biological Sciences, 3425 Wood Hall, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, MI 49008 (United States); Ide, Charles F., E-mail: charles.ide@wmich.edu [Great Lakes Environmental and Molecular Sciences Center, Department of Biological Sciences, 3425 Wood Hall, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, MI 49008 (United States)

    2011-08-15

    In our laboratory, Xenopus laevis tadpoles exposed throughout development to 200 or 400 {mu}g/L atrazine, concentrations reported to periodically occur in puddles, vernal ponds and runoff soon after application, were smaller and had smaller fat bodies (the tadpole's lipid storage organ) than controls. It was hypothesized that these changes were due to atrazine-related perturbations of energy homeostasis. To investigate this hypothesis, selected metabolic responses to exposure at the transcriptional and biochemical levels in atrazine-exposed tadpoles were measured. DNA microarray technology was used to determine which metabolic pathways were affected after developmental exposure to 400 {mu}g/L atrazine. From these data, genes representative of the affected pathways were selected for assay using quantitative real time polymerase chain reaction (qRT-PCR) to measure changes in expression during a 2-week exposure to 400 {mu}g/L. Finally, ATP levels were measured from tadpoles both early in and at termination of exposure to 200 and 400 {mu}g/L. Microarray analysis revealed significant differential gene expression in metabolic pathways involved with energy homeostasis. Pathways with increased transcription were associated with the conversion of lipids and proteins into energy. Pathways with decreased transcription were associated with carbohydrate metabolism, fat storage, and protein synthesis. Using qRT-PCR, changes in gene expression indicative of an early stress response to atrazine were noted. Exposed tadpoles had significant decreases in acyl-CoA dehydrogenase (AD) and glucocorticoid receptor protein (GR) mRNA after 24 h of exposure, and near-significant (p = 0.07) increases in peroxisome proliferator-activated receptor {beta} (PPAR-{beta}) mRNA by 72 h. Decreases in AD suggested decreases in fatty acid {beta}-oxidation while decreases in GR may have been a receptor desensitization response to a glucocorticoid surge. Involvement of PPAR-{beta}, an energy

  9. Mutation of cytotoxin-associated gene A affects expressions of antioxidant proteins of Hellcobacter pylori

    Institute of Scientific and Technical Information of China (English)

    Zhi-Gang Huang; Guang-Cai Duan; Qing-Tang Fan; Wei-Dong Zhang; Chun-Hua Song; Xue-Yong Huang; Rong-Guang Zhang

    2009-01-01

    AIM: To determine if disruption of the cagA gene of Helicobacter pylori ( H pylori) has an effect on the expression of other proteins at proteome level.METHODS: Construction of a cagA knock out mutant Hp27_. cagA ( cagA-) via homologous recombinat ion wi th the wi ld- type st rain Hp27 ( cagA+) as a recipient was performed. The method of sonicat ion-urea-CHAPS-DTT was employed to extract bacterial proteins from both strains. Soluble proteins were analyzed by two-dimensional electrophoresis (2-DE). Images of 2-DE gels were digitalized and analyzed. Only spots that had a statistical significance in differential expression were selected and analyzed by matrix-assisted laser desorption/ionizationtime of flight mass spectrometry (MALDI-TOF-MS). Biological information was used to search protein database and identify the biological function of proteins. RESULTS: The proteome expressions between wild-type strain and isogenic mutant with the cagA gene knocked-out were compared. Five protein spots with high abundance in bacteria proteins of wild-type strains, down-regulated or absently expressed in bacteria proteins of mutants, were identified and analyzed. From a quantitative point of view, the identified proteins are related to the cagA gene and important antioxidant proteins of H pylori, including alkyl hydroperoxide reductase (Ahp), superoxide dismutase (SOD) and modulator of drug activity (Mda66), respectively, suggesting that cagA is important to maintain the normal activity of antioxidative stress and ensure H pylori persistent colonization in the host. CONCLUSION: cagA gene i s relevant to the expressions of antioxidant proteins of H pylori, which may be a novel mechanism involved in H pylori cagA pathogenesis.

  10. Lung cancer: district active treatment rates affect survival

    OpenAIRE

    CARTMAN, M.; Hatfield, A; Muers, M; Peake, M; Haward, R; Forman, D

    2002-01-01

    Design: A retrospective study of population based data held by the Northern & Yorkshire Cancer Registry and Information Service (NYCRIS), comparing active treatment rates for lung cancer with survival by districts.

  11. Oxidative Activity of Heated Coal Affected by Antypirogens

    Science.gov (United States)

    Torosyan, V. F.; Torosyan, E. S.; Borovikov, I. F.; Yakutova, V. A.

    2016-04-01

    The effect of antypirogens on chemical activity of heated coal is studied. It is proved that ammonium sulfate, calcium phosphate, calcium chloride, calcium nitrate and acid fluoride are the most effective antypirogens.

  12. Technology trends, energy prices affect worldwide rig activity

    International Nuclear Information System (INIS)

    The major worldwide offshore rig markets have improved slightly this year, while the onshore markets generally lagged slightly. Offshore rig utilization rates have remained strong worldwide, with some areas reaching nearly 100%. Total worldwide offshore rig (jack ups, semisubmersible, drillships, submersibles, and barges) utilization was about 86%. Offshore drilling activity is driven primarily by oil and natural gas price expectations. Natural gas prices tend to drive North American offshore drilling activity, including the shallow waters in the Gulf of Mexico. International offshore drilling activity and deepwater projects in the Gulf of Mexico are more closely tied to oil prices. The paper discusses US rig count, directional drilling activity, jack up rig demand, semisubmersibles demand, rig replacement costs, and new construction

  13. Disturbances of electrodynamic activity affect abortion in human

    OpenAIRE

    Jandová, A; Nedbalová, M.; Kobilková, J.; Čoček, A.; Dohnalová, A.; M. Cifra; Pokorný, J.

    2011-01-01

    Biochemical research of biological systems is highly developed, and it has disclosed a spectrum of chemical reactions, genetic processes, and the pathological development of various diseases. The fundamental hypothesis of physical processes in biological systems, in particular of coherent electrically polar vibrations and electromagnetic activity, was formulated by H. Fröhlich; he assumed connection of cancer process with degradation of coherent electromagnetic activity. But the questions of ...

  14. Carbon monoxide affects electrical and contractile activity of rat myocardium

    OpenAIRE

    Porokhnya Maria V; Haertdinov Nail N; Abramochkin Denis V; Zefirov Andrew L; Sitdikova Gusel F

    2011-01-01

    Abstract Background Carbon monoxide (CO) is a toxic gas, which also acts in the organism as a neurotransmitter. It is generated as a by-product of heme breakdown catalyzed by heme oxygenase. We have investigated changes in electrical and contractile activity of isolated rat atrial and ventricular myocardium preparations under the influence of CO. Methods Standard microelectrode technique was used for intracellular registration of electrical activity in isolated preparations of atrial and vent...

  15. Carbon monoxide affects electrical and contractile activity of rat myocardium

    Directory of Open Access Journals (Sweden)

    Porokhnya Maria V

    2011-06-01

    Full Text Available Abstract Background Carbon monoxide (CO is a toxic gas, which also acts in the organism as a neurotransmitter. It is generated as a by-product of heme breakdown catalyzed by heme oxygenase. We have investigated changes in electrical and contractile activity of isolated rat atrial and ventricular myocardium preparations under the influence of CO. Methods Standard microelectrode technique was used for intracellular registration of electrical activity in isolated preparations of atrial and ventricular myocardium. Contractions of atrial myocardial stripes were registered via force transducer. Results CO (10-4 - 10-3 M caused prominent decrease of action potential duration (APD in working atrial myocardium as well as significant acceleration of sinus rhythm. In addition CO reduced force of contractions and other parameters of contractile activity. Inhibitor of heme oxygenase zinc protoporphyrin IX exerts opposite effects: prolongation of action potential, reduction of sinus rhythm rate and enhancement of contractile function. Therefore, endogenous CO, which may be generated in the heart due to the presence of active heme oxygenase, is likely to exert the same effects as exogenous CO applied to the perfusing medium. In ventricular myocardium preparations exogenous CO also induced shortening of action potential, while zinc protoporphyrin IX produced the opposite effect. Conclusions Thus, endogenous or exogenous carbon monoxide may act as an important regulator of electrical and contractile cardiac activity.

  16. Variable gene dispersal conditions and spatial deforestation patterns can interact to affect tropical tree conservation outcomes.

    Directory of Open Access Journals (Sweden)

    Yamini Kashimshetty

    Full Text Available Tropical lowland rain forest (TLRF biodiversity is under threat from anthropogenic factors including deforestation which creates forest fragments of different sizes that can further undergo various internal patterns of logging. Such interventions can modify previous equilibrium abundance and spatial distribution patterns of offspring recruitment and/or pollen dispersal. Little is known about how these aspects of deforestation and fragmentation might synergistically affect TLRF tree recovery demographics and population genetics in newly formed forest fragments. To investigate these TLRF anthropogenic disturbance processes we used the computer program NEWGARDEN (NG, which models spatially-explicit, individual-based plant populations, to simulate 10% deforestation in six different spatial logging patterns for the plant functional type of a long-lived TLRF canopy tree species. Further, each logging pattern was analyzed under nine varying patterns of offspring versus pollen dispersal distances that could have arisen post-fragmentation. Results indicated that gene dispersal condition (especially via offspring had a greater effect on population growth and genetic diversity retention (explaining 98.5% and 88.8% of the variance respectively than spatial logging pattern (0.2% and 4.7% respectively, with 'Near' distance dispersal maximizing population growth and genetic diversity relative to distant dispersal. Within logged regions of the fragment, deforestation patterns closer to fragment borders more often exhibited lower population recovery rates and founding genetic diversity retention relative to more centrally located logging. These results suggest newly isolated fragments have populations that are more sensitive to the way in which their offspring and pollen dispersers are affected than the spatial pattern in which subsequent logging occurs, and that large variation in the recovery rates of different TLRF tree species attributable to altered gene

  17. FIRING PROPERTY OF INFERIOR COLLICULUS NEURONS AFFECTED BY FMR1 GENE MUTATION

    Institute of Scientific and Technical Information of China (English)

    Brittany Mott; SUN Wei

    2014-01-01

    Fragile X syndrome is the most common form of inherited mental retardation affecting up to 1 in 4000 individuals. The syn-drome is induced by a mutation in the FMR1 gene, causing a deficiency in its gene by-product FMRP. Impairment in the nor-mal functioning of FMRP leads to learning and memory deficits and heightened sensitivity to sensory stimuli, including sound (hyperacusis). The molecular basis of fragile X syndrome is thoroughly understood;however, the neural mechanisms underly-ing hyperacusis have not yet been determined. As the inferior colliculus (IC) is the principal midbrain nucleus of the auditory pathway, the current study addresses the questions underlying the neural mechanism of hyperacusis within the IC of fragile X mice. Acute experiments were performed in which electrophysiological recordings of the IC in FMR1-KO and WT mice were measured. Results showed that Q-values for WT were significantly larger than that of FMR-1 KO mice, indicating that WT mice exhibit sharper tuning curves than FMR1-KO mice. We also found the ratio of the monotonic neurons in the KO mice was much higher than the WT mice. These results suggest that lack of FMRP in the auditory system affects the developmental maturation and function of structures within the auditory pathway, and in this case specifically the IC. The dysfunction ob-served within the auditory neural pathway and in particular the IC may be related to the increased susceptibility to sound as seen in individuals with fragile X syndrome. Our study may help on understanding the mechanisms of the fragile X syndrome and hyperacusis.

  18. Neuronal Heterotopias Affect the Activities of Distant Brain Areas and Lead to Behavioral Deficits.

    Science.gov (United States)

    Ishii, Kazuhiro; Kubo, Ken-ichiro; Endo, Toshihiro; Yoshida, Keitaro; Benner, Seico; Ito, Yukiko; Aizawa, Hidenori; Aramaki, Michihiko; Yamanaka, Akihiro; Tanaka, Kohichi; Takata, Norio; Tanaka, Kenji F; Mimura, Masaru; Tohyama, Chiharu; Kakeyama, Masaki; Nakajima, Kazunori

    2015-09-01

    Neuronal heterotopia refers to brain malformations resulting from deficits of neuronal migration. Individuals with heterotopias show a high incidence of neurological deficits, such as epilepsy. More recently, it has come to be recognized that focal heterotopias may also show a range of psychiatric problems, including cognitive and behavioral impairments. However, because focal heterotopias are not always located in the brain areas responsible for the symptoms, the causal relationship between the symptoms and heterotopias remains elusive. In this study, we showed that mice with focal heterotopias in the somatosensory cortex generated by in utero electroporation exhibited spatial working memory deficit and low competitive dominance behavior, which have been shown to be closely associated with the activity of the medial prefrontal cortex (mPFC) in rodents. Analysis of the mPFC activity revealed that the immediate-early gene expression was decreased and the local field potentials of the mPFC were altered in the mice with heterotopias compared with the control mice. Moreover, activation of these ectopic and overlying sister neurons using the DREADD (designer receptor exclusively activated by designer drug) system improved the working memory deficits. These findings suggest that cortical regions containing focal heterotopias can affect distant brain regions and give rise to behavioral abnormalities. Significance statement: Recent studies reported that patients with heterotopias have a variety of clinical symptoms, such as cognitive disturbance, psychiatric symptoms, and autistic behavior. However, the causal relationship between the symptoms and heterotopias remains elusive. Here we showed that mice with focal heterotopias in the somatosensory cortex generated by in utero electroporation exhibited behavioral deficits that have been shown to be associated with the mPFC activity in rodents. The existence of heterotopias indeed altered the neural activities of the mPFC, and

  19. Affected kindred analysis of human X chromosome exomes to identify novel X-linked intellectual disability genes.

    Directory of Open Access Journals (Sweden)

    Tejasvi S Niranjan

    Full Text Available X-linked Intellectual Disability (XLID is a group of genetically heterogeneous disorders caused by mutations in genes on the X chromosome. Deleterious mutations in ~10% of X chromosome genes are implicated in causing XLID disorders in ~50% of known and suspected XLID families. The remaining XLID genes are expected to be rare and even private to individual families. To systematically identify these XLID genes, we sequenced the X chromosome exome (X-exome in 56 well-established XLID families (a single affected male from 30 families and two affected males from 26 families using an Agilent SureSelect X-exome kit and the Illumina HiSeq 2000 platform. To enrich for disease-causing mutations, we first utilized variant filters based on dbSNP, the male-restricted portions of the 1000 Genomes Project, or the Exome Variant Server datasets. However, these databases present limitations as automatic filters for enrichment of XLID genes. We therefore developed and optimized a strategy that uses a cohort of affected male kindred pairs and an additional small cohort of affected unrelated males to enrich for potentially pathological variants and to remove neutral variants. This strategy, which we refer to as Affected Kindred/Cross-Cohort Analysis, achieves a substantial enrichment for potentially pathological variants in known XLID genes compared to variant filters from public reference databases, and it has identified novel XLID candidate genes. We conclude that Affected Kindred/Cross-Cohort Analysis can effectively enrich for disease-causing genes in rare, Mendelian disorders, and that public reference databases can be used effectively, but cautiously, as automatic filters for X-linked disorders.

  20. Association analysis of monoamine oxidase A gene and bipolar affective disorder in Han Chinese

    Directory of Open Access Journals (Sweden)

    Lai Te-Jen

    2008-05-01

    Full Text Available Abstract Background Monoamine oxidase A (MAOA is a mitochondrial enzyme involved in degrading several different biological amines, including serotonin. Although several pieces of evidence suggested that MAOA is important in the etiology of bipolar affective disorder (BPD, associations for markers of the MAOA gene with BPD were not conclusive and the association has not been investigated in Taiwanese population. This study was designed to illustrate the role of MAOA in the etiology of BPD in Han Chinese. Methods Two markers, a dinucleotide polymorphism in exon 2 and a functional uVNTR on the promoter of the MAOA gene, were used to study the genetic association in 108 unrelated patients with BPD and 103 healthy controls. Allelic distributions of two polymorphisms were analyzed and, caused the MAOA located at X chromosome, haplotype association was performed using haplotype unambiguously assigned in male participants. Results While no difference in allelic distributions of two MAOA polymorphisms was found, the risk haplotype 114S was associated with BPD in male patients (P = 0.03. The significance, however, was not found in female patients with 114S haplotype. Conclusion Results from this study suggest that MAOA may have a gender-specific and small effect on the etiology of BPD in Taiwan. Due to the limited sample size, results from this study need to be confirmed in replicates.

  1. Low intensity infrared laser affects expression of oxidative DNA repair genes in mitochondria and nucleus

    Science.gov (United States)

    Fonseca, A. S.; Magalhães, L. A. G.; Mencalha, A. L.; Geller, M.; Paoli, F.

    2014-11-01

    Practical properties and physical characteristics of low intensity lasers have made possible their application to treat soft tissue diseases. Excitation of intracellular chromophores by red and infrared radiation at low energy fluences with increase of mitochondrial metabolism is the basis of the biostimulation effect but free radicals can be produced. DNA lesions induced by free radicals are repaired by the base excision repair pathway. In this work, we evaluate the expression of POLγ and APEX2 genes related to repair of mitochondrial and nuclear DNA, respectively. Skin and muscle tissue of Wistar rats were exposed to low intensity infrared laser at different fluences. One hour and 24 hours after laser exposure, tissue samples were withdrawn for total RNA extraction, cDNA synthesis, and evaluation of POLγ and APEX2 mRNA expression by real time quantitative polymerase chain reaction. Skin and muscle tissue of Wistar rats exposed to laser radiation show different expression of POLγ and APEX2 mRNA depending of the fluence and time after exposure. Our study suggests that a low intensity infrared laser affects expression of genes involved in repair of oxidative lesions in mitochondrial and nuclear DNA.

  2. Sequencing and transcriptional analysis of the Streptococcus thermophilus histamine biosynthesis gene cluster: factors that affect differential hdcA expression

    DEFF Research Database (Denmark)

    Calles-Enríquez, Marina; Hjort, Benjamin Benn; Andersen, Pia Skov;

    2010-01-01

    produce histamine. The hdc clusters of S. thermophilus CHCC1524 and CHCC6483 were sequenced, and the factors that affect histamine biosynthesis and histidine-decarboxylating gene (hdcA) expression were studied. The hdc cluster began with the hdcA gene, was followed by a transporter (hdcP), and ended with...... the hdcB gene, which is of unknown function. The three genes were orientated in the same direction. The genetic organization of the hdc cluster showed a unique organization among the lactic acid bacterial group and resembled those of Staphylococcus and Clostridium species, thus indicating possible...

  3. Selenium status affects selenoprotein expression, reproduction, and F₁ generation locomotor activity in zebrafish (Danio rerio).

    Science.gov (United States)

    Penglase, Sam; Hamre, Kristin; Rasinger, Josef D; Ellingsen, Staale

    2014-06-14

    Se is an essential trace element, and is incorporated into selenoproteins which play important roles in human health. Mammalian selenoprotein-coding genes are often present as paralogues in teleost fish, and it is unclear whether the expression patterns or functions of these fish paralogues reflect their mammalian orthologues. Using the model species zebrafish (Danio rerio; ZF), we aimed to assess how dietary Se affects key parameters in Se metabolism and utilisation including glutathione peroxidase (GPX) activity, the mRNA expression of key Se-dependent proteins (gpx1a, gpx1b, sepp1a and sepp1b), oxidative status, reproductive success and F1 generation locomotor activity. From 27 d until 254 d post-fertilisation, ZF were fed diets with graded levels of Se ranging from deficient ( < 0·10 mg/kg) to toxic (30 mg/kg). The mRNA expression of gpx1a and gpx1b and GPX activity responded in a similar manner to changes in Se status. GPX activity and mRNA levels were lowest when dietary Se levels (0·3 mg/kg) resulted in the maximum growth of ZF, and a proposed bimodal mechanism in response to Se status below and above this dietary Se level was identified. The expression of the sepp1 paralogues differed, with only sepp1a responding to Se status. High dietary Se supplementation (30 mg/kg) decreased reproductive success, while the offspring of ZF fed above 0·3 mg Se/kg diet had lower locomotor activity than the other groups. Overall, the novel finding of low selenoprotein expression and activity coinciding with maximum body growth suggests that even small Se-induced variations in redox status may influence cellular growth rates. PMID:24666596

  4. Early life stress affects limited regional brain activity in depression.

    Science.gov (United States)

    Du, Lian; Wang, Jingjie; Meng, Ben; Yong, Na; Yang, Xiangying; Huang, Qingling; Zhang, Yan; Yang, Lingling; Qu, Yuan; Chen, Zhu; Li, Yongmei; Lv, Fajin; Hu, Hua

    2016-01-01

    Early life stress (ELS) can alter brain function and increases the risk of major depressive disorder (MDD) in later life. This study investigated whether ELS contributes to differences in regional brain activity between MDD patients and healthy controls (HC), as measured by amplitude of low-frequency fluctuation (ALFF)/fractional (f)ALFF. Eighteen first-episode, treatment-naïve MDD patients and HC were assessed with the Childhood Trauma Questionnaire and resting-state functional magnetic resonance imaging. We compared ALFF/fALFF between MDD patients and HC, with or without controlling for ELS, and determined whether ELS level was correlated with regional brain activity in each group. After regressing out ELS, we found that ALFF increased in bilateral amygdala and left orbital/cerebellum, while fALFF decreased in left inferior temporal and right middle frontal gyri in MDD patients relative to controls. ELS positively correlated with regional activity in the left cerebellum in MDD and in the right post-central/inferior temporal/superior frontal cingulate, inferior frontal gyrus and bilateral cerebellum in HC. Our findings indicate that there is only very limited region showing correlation between ELS and brain activity in MDD, while diverse areas in HC, suggesting ELS has few impacts on MDD patients. PMID:27138376

  5. Early life stress affects limited regional brain activity in depression

    Science.gov (United States)

    Du, Lian; Wang, Jingjie; Meng, Ben; Yong, Na; Yang, Xiangying; Huang, Qingling; Zhang, Yan; Yang, Lingling; Qu, Yuan; Chen, Zhu; Li, Yongmei; Lv, Fajin; Hu, Hua

    2016-01-01

    Early life stress (ELS) can alter brain function and increases the risk of major depressive disorder (MDD) in later life. This study investigated whether ELS contributes to differences in regional brain activity between MDD patients and healthy controls (HC), as measured by amplitude of low-frequency fluctuation (ALFF)/fractional (f)ALFF. Eighteen first-episode, treatment-naïve MDD patients and HC were assessed with the Childhood Trauma Questionnaire and resting-state functional magnetic resonance imaging. We compared ALFF/fALFF between MDD patients and HC, with or without controlling for ELS, and determined whether ELS level was correlated with regional brain activity in each group. After regressing out ELS, we found that ALFF increased in bilateral amygdala and left orbital/cerebellum, while fALFF decreased in left inferior temporal and right middle frontal gyri in MDD patients relative to controls. ELS positively correlated with regional activity in the left cerebellum in MDD and in the right post-central/inferior temporal/superior frontal cingulate, inferior frontal gyrus and bilateral cerebellum in HC. Our findings indicate that there is only very limited region showing correlation between ELS and brain activity in MDD, while diverse areas in HC, suggesting ELS has few impacts on MDD patients. PMID:27138376

  6. Inhibition of Nek2 by Small Molecules Affects Proteasome Activity

    Directory of Open Access Journals (Sweden)

    Lingyao Meng

    2014-01-01

    Full Text Available Background. Nek2 is a serine/threonine kinase localized to the centrosome. It promotes cell cycle progression from G2 to M by inducing centrosome separation. Recent studies have shown that high Nek2 expression is correlated with drug resistance in multiple myeloma patients. Materials and Methods. To investigate the role of Nek2 in bortezomib resistance, we ectopically overexpressed Nek2 in several cancer cell lines, including multiple myeloma lines. Small-molecule inhibitors of Nek2 were discovered using an in-house library of compounds. We tested the inhibitors on proteasome and cell cycle activity in several cell lines. Results. Proteasome activity was elevated in Nek2-overexpressing cell lines. The Nek2 inhibitors inhibited proteasome activity in these cancer cell lines. Treatment with these inhibitors resulted in inhibition of proteasome-mediated degradation of several cell cycle regulators in HeLa cells, leaving them arrested in G2/M. Combining these Nek2 inhibitors with bortezomib increased the efficacy of bortezomib in decreasing proteasome activity in vitro. Treatment with these novel Nek2 inhibitors successfully mitigated drug resistance in bortezomib-resistant multiple myeloma. Conclusion. Nek2 plays a central role in proteasome-mediated cell cycle regulation and in conferring resistance to bortezomib in cancer cells. Taken together, our results introduce Nek2 as a therapeutic target in bortezomib-resistant multiple myeloma.

  7. CANPMR syndrome and chromosome 1p32-p31 deletion syndrome coexist in two related individuals affected by simultaneous haplo-insufficiency of CAMTA1 and NIFA genes

    OpenAIRE

    Coci, Emanuele G.; Koehler, Udo; Liehr, Thomas; Stelzner, Armin; Fink, Christian; Langen, Hendrik; Riedel, Joachim

    2016-01-01

    Background Non-progressive cerebellar ataxia with mental retardation (CANPMR, OMIM 614756) and chromosome 1p32-p31 deletion syndrome (OMIM 613735) are two very rare inherited disorders, which are caused by mono-allelic deficiency (haplo-insufficiency) of calmodulin-binding transcription activator 1 (CAMTA1) and, respectively, nuclear factor 1 A (NFIA) genes. The yet reported patients affected by mono-allelic CAMTA1 dysfunction presented with neonatal hypotonia, delayed and ataxic gait, cerebe...

  8. Regulation of drugs affecting striatal cholinergic activity by corticostriatal projections

    International Nuclear Information System (INIS)

    Research demonstrates that the chronic degeneration of the corticostriatal excitatory pathway makes the cholinergic neurons of the striatum insensitive to the neuropharmacological action of a number of different drugs. Female rats were used; they were killed and after the i.v. infusion of tritium-choline precursor, choline acetyltransferase activity was measured. Striatal noradrenaline, dopamine and serotonin content was measured by electrochemical detection coupled with high pressure liquid chromatography. Uptake of tritium-glutamic acid was estimated. The data were analyzed statistically. It is shown that there is evidence that the effects of a number of drugs capable of depressing cholinergic activity through receptor-mediated responses are operative only if the corticostriatal pathway is integral. Neuropharmacological responses in the brain appear to be the result of an interaction between several major neurotransmitter systems

  9. Seasonal Pacing - Match Importance Affects Activity in Professional Soccer

    Science.gov (United States)

    Link, Daniel; de Lorenzo, Michael F.

    2016-01-01

    This research explores the influence of match importance on player activity in professional soccer. Therefore, we used an observational approach and analyzed 1,211 matches of German Bundesliga and 2nd Bundesliga. The importance measurement employed is based on post season consequences of teams involved in a match. This means, if a match result could potentially influence the final rank, and this rank would lead to different consequences for a team, such as qualification for Champions League opposed to qualification for Europe League, then this match is classified as important; otherwise not. Activity was quantified by TOTAL DISTANCE COVERED, SPRINTS, FAST RUNS, DUELS, FOULS and ATTEMPTS. Running parameters were recorded using a semi-automatic optical tracking system, while technical variables were collected by professional data loggers. Based on our importance classification, low important matches occurred at the beginning of round 29. A two-way ANOVA indicates significantly increased FAST RUNS (+4%, d = 0.3), DUELS (+16%, d = 1.0) and FOULS (+36%, d = 1.2) in important matches compared to low important ones. For FAST RUNS and FOULS, this effect only exists in Bundesliga. A comparison of the two leagues show that TOTAL DISTANCE COVERED (+3%, d = 0.9), SPRINTS (+25%, d = 1.4) and FAST RUNS (+15%, d = 1.4) are higher compared to 2nd Bundesliga, whilst FOULS is less in Bundesliga (-7%, d = 0.3). No difference in player activity was found between matches at the beginning of a season (round 1–6) and at the end of a season (round 29–34). We conclude that match importance influences player activity in German professional soccer. The most reasonable explanation is a conscious or unconscious pacing strategy, motivated by preserving abilities or preventing injury. Since this tendency mainly exists in Bundesliga, this may suggest that more skilled players show a higher awareness for the need of pacing. PMID:27281051

  10. Disturbances of electrodynamic activity affect abortion in human

    Czech Academy of Sciences Publication Activity Database

    Jandová, Anna; Nedbalová, M.; Kobilková, J.; Čoček, A.; Dohnalová, A.; Cifra, Michal; Pokorný, Jiří

    Vol. 329. Bristol: IOP, 2011 - (Cifra, M.; Pokorny, J.; Kučera, O.), 012030 ISSN 1742-6588. [9th International Frohlich's Symposium on Electrodynamic Activity of Living Cells - Including Microtubule Coherent Modes and Cancer Cell Physics. Praha (CZ), 01.07.2011-03.07.2011] Institutional research plan: CEZ:AV0Z2067918 Keywords : Biochemical research * Cellular structure * Control groups Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  11. Disturbances of electrodynamic activity affect abortion in animals

    Czech Academy of Sciences Publication Activity Database

    Nedbalová, M.; Jandová, Anna; Dohnalová, A.

    Vol. 329. Bristol: IOP, 2011 - (Cifra, M.; Pokorny, J.; Kučera, O.), 012036 ISSN 1742-6588. [9th International Frohlich's Symposium on Electrodynamic Activity of Living Cells - Including Microtubule Coherent Modes and Cancer Cell Physics. Praha (CZ), 01.07.2011-03.07.2011] Institutional research plan: CEZ:AV0Z20670512 Keywords : Energy supplies * Genetic process * Information transfers Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  12. Seasonal Pacing - Match Importance Affects Activity in Professional Soccer.

    Science.gov (United States)

    Link, Daniel; de Lorenzo, Michael F

    2016-01-01

    This research explores the influence of match importance on player activity in professional soccer. Therefore, we used an observational approach and analyzed 1,211 matches of German Bundesliga and 2nd Bundesliga. The importance measurement employed is based on post season consequences of teams involved in a match. This means, if a match result could potentially influence the final rank, and this rank would lead to different consequences for a team, such as qualification for Champions League opposed to qualification for Europe League, then this match is classified as important; otherwise not. Activity was quantified by TOTAL DISTANCE COVERED, SPRINTS, FAST RUNS, DUELS, FOULS and ATTEMPTS. Running parameters were recorded using a semi-automatic optical tracking system, while technical variables were collected by professional data loggers. Based on our importance classification, low important matches occurred at the beginning of round 29. A two-way ANOVA indicates significantly increased FAST RUNS (+4%, d = 0.3), DUELS (+16%, d = 1.0) and FOULS (+36%, d = 1.2) in important matches compared to low important ones. For FAST RUNS and FOULS, this effect only exists in Bundesliga. A comparison of the two leagues show that TOTAL DISTANCE COVERED (+3%, d = 0.9), SPRINTS (+25%, d = 1.4) and FAST RUNS (+15%, d = 1.4) are higher compared to 2nd Bundesliga, whilst FOULS is less in Bundesliga (-7%, d = 0.3). No difference in player activity was found between matches at the beginning of a season (round 1-6) and at the end of a season (round 29-34). We conclude that match importance influences player activity in German professional soccer. The most reasonable explanation is a conscious or unconscious pacing strategy, motivated by preserving abilities or preventing injury. Since this tendency mainly exists in Bundesliga, this may suggest that more skilled players show a higher awareness for the need of pacing. PMID:27281051

  13. Early life stress affects limited regional brain activity in depression

    OpenAIRE

    Du, Lian; Wang, Jingjie; Meng, Ben; Yong, Na; Yang, Xiangying; Huang, Qingling; Zhang, Yan; Yang, Lingling; Qu, Yuan; Chen, Zhu; Li, Yongmei; Lv, Fajin; Hu, Hua

    2016-01-01

    Early life stress (ELS) can alter brain function and increases the risk of major depressive disorder (MDD) in later life. This study investigated whether ELS contributes to differences in regional brain activity between MDD patients and healthy controls (HC), as measured by amplitude of low-frequency fluctuation (ALFF)/fractional (f)ALFF. Eighteen first-episode, treatment-naïve MDD patients and HC were assessed with the Childhood Trauma Questionnaire and resting-state functional magnetic reso...

  14. Disturbances of electrodynamic activity affect abortion in human

    International Nuclear Information System (INIS)

    Biochemical research of biological systems is highly developed, and it has disclosed a spectrum of chemical reactions, genetic processes, and the pathological development of various diseases. The fundamental hypothesis of physical processes in biological systems, in particular of coherent electrically polar vibrations and electromagnetic activity, was formulated by H. Fröhlich; he assumed connection of cancer process with degradation of coherent electromagnetic activity. But the questions of cellular structures capable of the coherent electrical polar oscillation, mechanisms of energy supply, and the specific role of the endogenous electromagnetic fields in transport, organisation, interactions, and information transfer remained open. The nature of physical disturbances caused by some diseases (including the recurrent abortion in humans and the cancer) was unknown. We have studied the reasons of recurrent abortions in humans by means of the cell mediated immunity (using immunologic active RNA prepared from blood of inbred laboratory mice strain C3H/H2K, infected with the lactate dehydrogenase elevating virus-LD V) and the cytogenetic examination from karyotype pictures. The recurrent abortion group contained women with dg. spontaneous abortion (n = 24) and the control group was composed of 30 healthy pregnant women. Our hypothesis was related to quality of endometrium in relation to nidation of the blastocyst. The energetic insufficiency (ATP) inhibits normal development of fetus and placenta. We hope that these ideas might have impact on further research, which could provide background for effective interdisciplinary cooperation of malignant and non-malignant diseases.

  15. Disturbances of electrodynamic activity affect abortion in human

    Science.gov (United States)

    Jandová, A.; Nedbalová, M.; Kobilková, J.; Čoček, A.; Dohnalová, A.; Cifra, M.; Pokorný, J.

    2011-12-01

    Biochemical research of biological systems is highly developed, and it has disclosed a spectrum of chemical reactions, genetic processes, and the pathological development of various diseases. The fundamental hypothesis of physical processes in biological systems, in particular of coherent electrically polar vibrations and electromagnetic activity, was formulated by H. Fröhlich he assumed connection of cancer process with degradation of coherent electromagnetic activity. But the questions of cellular structures capable of the coherent electrical polar oscillation, mechanisms of energy supply, and the specific role of the endogenous electromagnetic fields in transport, organisation, interactions, and information transfer remained open. The nature of physical disturbances caused by some diseases (including the recurrent abortion in humans and the cancer) was unknown. We have studied the reasons of recurrent abortions in humans by means of the cell mediated immunity (using immunologic active RNA prepared from blood of inbred laboratory mice strain C3H/H2K, infected with the lactate dehydrogenase elevating virus-LD V) and the cytogenetic examination from karyotype pictures. The recurrent abortion group contained women with dg. spontaneous abortion (n = 24) and the control group was composed of 30 healthy pregnant women. Our hypothesis was related to quality of endometrium in relation to nidation of the blastocyst. The energetic insufficiency (ATP) inhibits normal development of fetus and placenta. We hope that these ideas might have impact on further research, which could provide background for effective interdisciplinary cooperation of malignant and non-malignant diseases.

  16. Gene × physical activity interactions in obesity

    DEFF Research Database (Denmark)

    Ahmad, Shafqat; Rukh, Gull; Varga, Tibor V;

    2013-01-01

    Numerous obesity loci have been identified using genome-wide association studies. A UK study indicated that physical activity may attenuate the cumulative effect of 12 of these loci, but replication studies are lacking. Therefore, we tested whether the aggregate effect of these loci is diminished...

  17. Genes of the most conserved WOX clade in plants affect root and flower development in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Moreau Hervé

    2008-10-01

    Full Text Available Abstract Background The Wuschel related homeobox (WOX family proteins are key regulators implicated in the determination of cell fate in plants by preventing cell differentiation. A recent WOX phylogeny, based on WOX homeodomains, showed that all of the Physcomitrella patens and Selaginella moellendorffii WOX proteins clustered into a single orthologous group. We hypothesized that members of this group might preferentially share a significant part of their function in phylogenetically distant organisms. Hence, we first validated the limits of the WOX13 orthologous group (WOX13 OG using the occurrence of other clade specific signatures and conserved intron insertion sites. Secondly, a functional analysis using expression data and mutants was undertaken. Results The WOX13 OG contained the most conserved plant WOX proteins including the only WOX detected in the highly proliferating basal unicellular and photosynthetic organism Ostreococcus tauri. A large expansion of the WOX family was observed after the separation of mosses from other land plants and before monocots and dicots have arisen. In Arabidopsis thaliana, AtWOX13 was dynamically expressed during primary and lateral root initiation and development, in gynoecium and during embryo development. AtWOX13 appeared to affect the floral transition. An intriguing clade, represented by the functional AtWOX14 gene inside the WOX13 OG, was only found in the Brassicaceae. Compared to AtWOX13, the gene expression profile of AtWOX14 was restricted to the early stages of lateral root formation and specific to developing anthers. A mutational insertion upstream of the AtWOX14 homeodomain sequence led to abnormal root development, a delay in the floral transition and premature anther differentiation. Conclusion Our data provide evidence in favor of the WOX13 OG as the clade containing the most conserved WOX genes and established a functional link to organ initiation and development in Arabidopsis, most

  18. Archaeal promoter architecture and mechanism of gene activation.

    Science.gov (United States)

    Peng, Nan; Ao, Xiang; Liang, Yun Xiang; She, Qunxin

    2011-01-01

    Sulfolobus solfataricus and Sulfolobus islandicus contain several genes exhibiting D-arabinose-inducible expression and these systems are ideal for studying mechanisms of archaeal gene expression. At sequence level, only two highly conserved cis elements are present on the promoters: a regulatory element named ara box directing arabinose-inducible expression and the basal promoter element TATA, serving as the binding site for the TATA-binding protein. Strikingly, these promoters possess a modular structure that allows an essentially inactive basal promoter to be strongly activated. The invoked mechanisms include TFB (transcription factor B) recruitment by the ara-box-binding factor to activate gene expression and modulation of TFB recruitment efficiency to yield differential gene expression. PMID:21265754

  19. Gene expression analyses implicate an alternative splicing program in regulating contractile gene expression and serum response factor activity in mice.

    Directory of Open Access Journals (Sweden)

    Twishasri Dasgupta

    Full Text Available Members of the CUG-BP, Elav-like family (CELF regulate alternative splicing in the heart. In MHC-CELFΔ transgenic mice, CELF splicing activity is inhibited postnatally in heart muscle via expression of a nuclear dominant negative CELF protein under an α-myosin heavy chain promoter. MHC-CELFΔ mice develop dilated cardiomyopathy characterized by alternative splicing defects, enlarged hearts, and severe contractile dysfunction. In this study, gene expression profiles in the hearts of wild type, high- and low-expressing lines of MHC-CELFΔ mice were compared using microarrays. Gene ontology and pathway analyses identified contraction and calcium signaling as the most affected processes. Network analysis revealed that the serum response factor (SRF network is highly affected. Downstream targets of SRF were up-regulated in MHC-CELFΔ mice compared to the wild type, suggesting an increase in SRF activity. Although SRF levels remained unchanged, known inhibitors of SRF activity were down-regulated. Conversely, we found that these inhibitors are up-regulated and downstream SRF targets are down-regulated in the hearts of MCKCUG-BP1 mice, which mildly over-express CELF1 in heart and skeletal muscle. This suggests that changes in SRF activity are a consequence of changes in CELF-mediated regulation rather than a secondary result of compensatory pathways in heart failure. In MHC-CELFΔ males, where the phenotype is only partially penetrant, both alternative splicing changes and down-regulation of inhibitors of SRF correlate with the development of cardiomyopathy. Together, these results strongly support a role for CELF-mediated alternative splicing in the regulation of contractile gene expression, achieved in part through modulating the activity of SRF, a key cardiac transcription factor.

  20. Disturbances of electrodynamic activity affect abortion in animals

    International Nuclear Information System (INIS)

    A specific kind of intracellular organelles, the mitochondria, is the place of metabolic energy production by oxidative mechanism. We used cell mediated immunity method for verification of the energy metabolism (ATP production). The antigen (immunological functional RNA) was obtained from blood of inbred laboratory mice strain C3H/H2K, infected with the lactate dehydrogenase elevating virus (LDV) and prepared by the high pressure gel chromatography (HPGC). We have studied the immunological adaptability of LDH viral antigen in 62 pigs (12 parents and 50 piglings). Exitus of piglings was in case of positive imunological response on LDV. The statement results from a comparison of the relative frequency of an incidence of identical findings in male piglets and sows and from identical findings in female piglets and pigs. The efficient elaboration and utilization of energy in cell may be damaged by the changes of energy production systems and also by long-term parasitary depletion of ATP energy. Biological activity is based not only on biochemical but also on biophysical mechanisms. Biophysical processes are also involved in the transfer of information and its processing for making decisions and providing control, which are important parts of biological activity. These experimental results were used for the same study in human.

  1. Root activity, some crops as affected by soil strength

    International Nuclear Information System (INIS)

    To find out the relationship between soil strength and root activity of different crops, the experiment was conducted on Haryana Agricultural University Farm, Hissar. Open drums were placed one foot deep. 5 cm thick densities 1.4 (Control), 1.6 and 1.8 g/cc were placed at 25 cm depth in various drums. Test crops taken were pea, gram, wheat and barley. Bulk density of higher order in combination with low moisture levels resulted in more detrimental effects on root penetration of the crop in general but at some stages significant interaction between bulk density and moisture was observed where low moisture favoured the root entry through the compacted layers of soil. (author)

  2. Identification of novel mutations in HEXA gene in children affected with Tay Sachs disease from India.

    Directory of Open Access Journals (Sweden)

    Mehul Mistri

    Full Text Available Tay Sachs disease (TSD is a neurodegenerative disorder due to β-hexosaminidase A deficiency caused by mutations in the HEXA gene. The mutations leading to Tay Sachs disease in India are yet unknown. We aimed to determine mutations leading to TSD in India by complete sequencing of the HEXA gene. The clinical inclusion criteria included neuroregression, seizures, exaggerated startle reflex, macrocephaly, cherry red spot on fundus examination and spasticity. Neuroimaging criteria included thalamic hyperdensities on CT scan/T1W images of MRI of the brain. Biochemical criteria included deficiency of hexosaminidase A (less than 2% of total hexosaminidase activity for infantile patients. Total leukocyte hexosaminidase activity was assayed by 4-methylumbelliferyl-N-acetyl-β-D-glucosamine lysis and hexosaminidase A activity was assayed by heat inactivation method and 4-methylumbelliferyl-N-acetyl-β-D-glucosamine-6-sulphate lysis method. The exons and exon-intron boundaries of the HEXA gene were bidirectionally sequenced using an automated sequencer. Mutations were confirmed in parents and looked up in public databases. In silico analysis for mutations was carried out using SIFT, Polyphen2, MutationT@ster and Accelrys Discovery Studio softwares. Fifteen families were included in the study. We identified six novel missense mutations, c.340 G>A (p.E114K, c.964 G>A (p.D322N, c.964 G>T (p.D322Y, c.1178C>G (p.R393P and c.1385A>T (p.E462V, c.1432 G>A (p.G478R and two previously reported mutations. c.1277_1278insTATC and c.508C>T (p.R170W. The mutation p.E462V was found in six unrelated families from Gujarat indicating a founder effect. A previously known splice site mutation c.805+1 G>C and another intronic mutation c.672+30 T>G of unknown significance were also identified. Mutations could not be identified in one family. We conclude that TSD patients from Gujarat should be screened for the common mutation p.E462V.

  3. Metal particulate matter components affect gene expression and beat frequency of neonatal rat ventricular myocytes.

    Science.gov (United States)

    Graff, Donald W; Cascio, Wayne E; Brackhan, Joseph A; Devlin, Robert B

    2004-05-01

    Soluble particulate matter (PM) components (e.g., metals) have the potential to be absorbed into the bloodstream and transported to the heart where they might induce the expression of inflammatory cytokines and remodel electrical properties. We exposed cultured rat ventricular myocytes to similar concentrations of two metals [zinc (Zn) and vanadium (V)] found commonly in PM and measured changes in spontaneous beat rate. We found statistically significant reductions in spontaneous beat rate after both short-term (4-hr) and long-term (24-hr) exposures, with a more substantial effect seen with Zn. We also measured the expression of genes associated with inflammation and a number of sarcolemmal proteins associated with electrical impulse conduction. Exposure to Zn or V (6.25-50 microM) for 6 hr produced significant increases in IL-6, IL-1 alpha, heat shock protein 70, and connexin 43 (Cx43). After 24 hr exposure, Zn induced significant changes in the gene expression of Kv4.2 and KvLQt (potassium channel proteins), the alpha 1 subunit of the L-type calcium channel, and Cx43, as well as IL-6 and IL-1 alpha. In contrast, V produced a greater effect on Cx43 and affected only one ion channel (KvLQT1). These results show that exposure of rat cardiac myocytes to noncytotoxic concentrations of Zn and V alter spontaneous beat rate as well as the expression of ion channels and sarcolemmal proteins relevant to electrical remodeling and slowing of spontaneous beat rate, with Zn producing a more profound effect. As such, these data suggest that the cardiac effects of PM are largely determined by the relative metal composition of particles. PMID:15159208

  4. Cobalt in alluvial Egyptian soils as affected by industrial activities

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Twenty-five surface (0-20 cm) soil samples were collected from different locations in Egypt representing non-polluted,moderately and highly polluted soils. The aim of this study was to evaluate total Co content in alluvial soils of Delta in Egypt using the delayed Neturen activation analysis technique (DNAA). The two prominent gamma ray lines at 1173.2 and 1332.5 keV was efficiently used for 60Co determination. Co content in non-polluted soil samples ranged between 13.12 to 23.20 ppm Co with an average of 18.16*4.38 ppm. Cobalt content in moderately polluted soils ranged between 26.5 to 30.00 ppm with an average of 28.3*1.3 ppm. The highest Co levels (ranged from 36 to 64.69 ppm with an average of 51.9*9.5); were observed in soil samples collected from, either highly polluted agricultural soils due to prolonged irrigation with industrial wastewater or surface soil samples from industrial sites.

  5. Sampling frequency affects ActiGraph activity counts

    DEFF Research Database (Denmark)

    Brønd, Jan Christian; Arvidsson, Daniel

    Introduction: The ActiLife Data Analysis Software processes ActiGraph accelerometer data and has a bandpass filter attenuating accelerations falling outside the normal human frequency passband considered to be 0.25-2.5 Hz. This frequency passband disfavour vigorous physical activity that is...... normally performed at frequencies higher than 2.5 Hz. With the ActiGraph model GT3X one has the option to select sample frequency from 30 to 100 Hz. This study investigated the effect of the sampling frequency on the ouput of the bandpass filter.Methods: A synthetic frequency sweep of 0-15 Hz was generated...... in Matlab and sampled at frequencies of 30-100 Hz. Also, acceleration signals during indoor walking and running were sampled at 30 Hz using the ActiGraph GT3X and resampled in Matlab to frequencies of 40-100 Hz. All data was processed with the ActiLife software.Results: Acceleration frequencies...

  6. Tasting calories differentially affects brain activation during hunger and satiety.

    Science.gov (United States)

    van Rijn, Inge; de Graaf, Cees; Smeets, Paul A M

    2015-02-15

    An important function of eating is ingesting energy. Our objectives were to assess whether oral exposure to caloric and non-caloric stimuli elicits discriminable responses in the brain and to determine in how far these responses are modulated by hunger state and sweetness. Thirty women tasted three stimuli in two motivational states (hunger and satiety) while their brain responses were measured using functional magnetic resonance imaging in a randomized crossover design. Stimuli were solutions of sucralose (sweet, no energy), maltodextrin (non-sweet, energy) and sucralose+maltodextrin (sweet, energy). We found no main effect of energy content and no interaction between energy content and sweetness. However, there was an interaction between hunger state and energy content in the median cingulate (bilaterally), ventrolateral prefrontal cortex, anterior insula and thalamus. This indicates that the anterior insula and thalamus, areas in which hunger state and taste of a stimulus are integrated, also integrate hunger state with caloric content of a taste stimulus. Furthermore, in the median cingulate and ventrolateral prefrontal cortex, tasting energy resulted in more activation during satiety compared to hunger. This finding indicates that these areas, which are known to be involved in processes that require approach and avoidance, are also involved in guiding ingestive behavior. In conclusion, our results suggest that energy sensing is a hunger state dependent process, in which the median cingulate, ventrolateral prefrontal cortex, anterior insula and thalamus play a central role by integrating hunger state with stimulus relevance. PMID:25449847

  7. SPL8, an SBP-box gene that affects pollen sac development in Arabidopsis

    OpenAIRE

    Unte, Ulrike S.; Sorensen, Anna-Marie; Pesaresi, Paolo; Gandikota, Madhuri; Leister, Dario; Saedler, Heinz; Huijser, Peter

    2003-01-01

    SQUAMOSA PROMOTER BINDING PROTEIN-box genes (SBP-box genes) encode plant-specific proteins that share a highly conserved DNA binding domain, the SBP domain. Although likely to represent transcription factors, little is known about their role in development. In Arabidopsis, SBP-box genes constitute a structurally heterogeneous family of 16 members known as SPL genes. For one of these genes, SPL8, we isolated three independent transposon-tagged mutants, all of which exhibited a strong reduction...

  8. Threonine affects digestion capacity and hepatopancreatic gene expression of juvenile blunt snout bream (Megalobrama amblycephala).

    Science.gov (United States)

    Habte-Tsion, Habte-Michael; Ren, Mingchun; Liu, Bo; Xie, Jun; Ge, Xianping; Chen, Ruli; Zhou, Qunlan; Pan, Liangkun

    2015-08-28

    The present study conducted a 9-week feeding trial to investigate the effects of threonine (Thr) on the digestion capacity and hepatopancreas gene expression of juvenile blunt snout bream (Megalobrama amblycephala). For this purpose, three tanks (300 litres/tank) were randomly arranged and assigned to each experimental diet. Juvenile fish were fed with diets containing graded Thr levels (0·58, 1·08, 1·58, 2·08 or 2·58 % of the diet) to apparent satiation four times daily. At the end of the feeding trial, the results indicated that hepatopancreas weight, hepatosomatic index, hepatopancreatic protein content, intestinal weight, intestosomatic index and intestinal protein content increased with increasing dietary Thr levels up to 1·58 % and thereafter decreased (Pamylase and lipase elevated as dietary Thr levels increased up to 1·58 % (Pamylase, lipase, target of rapamycin and insulin-like growth factor-I were up-regulated, and the highest values were observed with 1·58 % dietary Thr or 1·58 and 2·08 % dietary Thr, whereas the relative gene expression levels of eukaryotic translation initiation factor 4E-binding protein 2 gradually decreased (P< 0·10) as dietary Thr levels increased up to 1·58 % and thereafter significantly increased (P< 0·05), which could explain that about 1·58 % dietary Thr could improve the growth and development of digestive organs and activities of digestive enzymes of juvenile blunt snout bream. PMID:26202077

  9. Fluoride at non-toxic dose affects odontoblast gene expression in vitro

    International Nuclear Information System (INIS)

    Elevated fluoride intake may lead to local tissue disturbances, known as fluorosis. Towards an understanding of this effect, fluoride-induced molecular responses were analyzed in MO6-G3 cultured odontoblasts cells. NaF at 1 mM changed expression of genes implicated in tissue formation and growth, without affecting cell proliferation or inducing stress factor RNAs. Up to 1 mM NaF, DNA accumulation was not inhibited, whereas at 3 mM, cells detached from their support and did not proliferate. Intracellular structures, characterized by EM, were normal up to 1 mM, but at 3 mM, necrotic features were evident. No sign of apoptotic transformation appeared at any NaF concentration. Fluoride-sensitive genes were identified by microarray analysis; expression levels of selected RNAs were determined by conventional and real-time RT-PCR. At 1 mM fluoride, RNAs encoding the extracellular matrix proteins asporin and fibromodulin, and the cell membrane associated proteins periostin and IMT2A were 10-fold reduced. RNA coding for signaling factor TNF-receptor 9 was diminished to one-third, whereas that for the chemokine Scya-5 was enhanced 2.5-fold. These RNAs are present in vivo in tooth forming cells. This was demonstrated by in situ hybridization and RT-PCR on RNA from dissected tissue samples; for the presence and functioning of fibromodulin in dentin matrix, a more comprehensive study has earlier been performed by others [Goldberg, M., Septier, D., Oldberg, A., Young, M.F., Ameye, L.G., 2006. Fibromodulin deficient mice display impaired collagen fibrillogenesis in predentin as well as altered dentin mineralization and enamel formation. J. Histochem. Cytochem. 54, 525-537]. Expression of most other RNA species, in particular of stress factor coding RNAs, was not altered. It was concluded that fluoride could influence the transcription pattern without inducing cell stress or apoptosis. In odontoblasts in vivo, aberrant expression of these fluoride-sensitive genes may impair the

  10. Folate-related gene variants in Irish families affected by neural tube defects

    Directory of Open Access Journals (Sweden)

    Ridgely eFisk Green

    2013-11-01

    Full Text Available Periconceptional folic acid use can often prevent neural tube defects (NTDs. Variants of genes involved in folate metabolism in mothers and children have been associated with occurrence of NTDs. We identified Irish families with individuals affected by neural tube defects. In these families, we observed that neural tube defects and birth defects overall occurred at a higher rate in the maternal lineage compared with the paternal lineage. The goal of this study was to look for evidence for genetic effects that could explain the discrepancy in the occurrence of these birth defects in the maternal vs. paternal lineage. We genotyped blood samples from 322 individuals from NTD-affected Irish families, identified through their membership in spina bifida associations. We looked for differences in distribution in maternal vs. paternal lineages of five genetic polymorphisms: the DHFR 19bp deletion, MTHFD1 1958G>A, MTHFR 1298A>C, MTHFR 677C>T, and SLC19A1 80A>G. In addition to looking at genotypes individually, we determined the number of genotypes associated with decreased folate metabolism in each relative (risk genotypes and compared the distribution of these genotypes in maternal vs. paternal relatives. Overall, maternal relatives had a higher number of genotypes associated with lower folate metabolism than paternal relatives (p=0.017. We expected that relatives would share the same risk genotype as the individuals with NTDs and/or their mothers. However, we observed that maternal relatives had an over-abundance of any risk genotype, rather than one specific genotype. The observed genetic effects suggest an epigenetic mechanism in which decreased folate metabolism results in epigenetic alterations related to the increased rate of NTDs and other birth defects seen in the maternal lineage. Future studies on the etiology of NTDs and other birth defects could benefit from including multigenerational extended families, in order to explore potential

  11. The Varicella-Zoster Virus Immediate-Early 63 protein affects chromatin controlled gene transcription in a cell-type dependent manner

    Directory of Open Access Journals (Sweden)

    Bontems Sébastien

    2007-10-01

    Full Text Available Abstract Background Varicella Zoster Virus Immediate Early 63 protein (IE63 has been shown to be essential for VZV replication, and critical for latency establishment. The activity of the protein as a transcriptional regulator is not fully clear yet. Using transient transfection assays, IE63 has been shown to repress viral and cellular promoters containing typical TATA boxes by interacting with general transcription factors. Results In this paper, IE63 regulation properties on endogenous gene expression were evaluated using an oligonucleotide-based micro-array approach. We found that IE63 modulates the transcription of only a few genes in HeLa cells including genes implicated in transcription or immunity. Furthermore, we showed that this effect is mediated by a modification of RNA POL II binding on the promoters tested and that IE63 phosphorylation was essential for these effects. In MeWo cells, the number of genes whose transcription was modified by IE63 was somewhat higher, including genes implicated in signal transduction, transcription, immunity, and heat-shock signalling. While IE63 did not modify the basal expression of several NF-κB dependent genes such as IL-8, ICAM-1, and IκBα, it modulates transcription of these genes upon TNFα induction. This effect was obviously correlated with the amount of p65 binding to the promoter of these genes and with histone H3 acetylation and HDAC-3 removal. Conclusion While IE63 only affected transcription of a small number of cellular genes, it interfered with the TNF-inducibility of several NF-κB dependent genes by the accelerated resynthesis of the inhibitor IκBα.

  12. The importance of physical activity and sleep for affect on stressful days: Two intensive longitudinal studies.

    Science.gov (United States)

    Flueckiger, Lavinia; Lieb, Roselind; Meyer, Andrea H; Witthauer, Cornelia; Mata, Jutta

    2016-06-01

    We investigated the potential stress-buffering effect of 3 health behaviors-physical activity, sleep quality, and snacking-on affect in the context of everyday life in young adults. In 2 intensive longitudinal studies with up to 65 assessment days over an entire academic year, students (Study 1, N = 292; Study 2, N = 304) reported stress intensity, sleep quality, physical activity, snacking, and positive and negative affect. Data were analyzed using multilevel regression analyses. Stress and positive affect were negatively associated; stress and negative affect were positively associated. The more physically active than usual a person was on a given day, the weaker the association between stress and positive affect (Study 1) and negative affect (Studies 1 and 2). The better than usual a person's sleep quality had been during the previous night, the weaker the association between stress and positive affect (Studies 1 and 2) and negative affect (Study 2). The association between daily stress and positive or negative affect did not differ as a function of daily snacking (Studies 1 and 2). On stressful days, increasing physical activity or ensuring high sleep quality may buffer adverse effects of stress on affect in young adults. These findings suggest potential targets for health-promotion and stress-prevention programs, which could help reduce the negative impact of stress in young adults. (PsycINFO Database Record PMID:26709860

  13. Gene expression in IFN-g-activated murine macrophages

    Directory of Open Access Journals (Sweden)

    Pereira C.A.

    2004-01-01

    Full Text Available Macrophages are critical for natural immunity and play a central role in specific acquired immunity. The IFN-gamma activation of macrophages derived from A/J or BALB/c mice yielded two different patterns of antiviral state in murine hepatitis virus 3 infection, which were related to a down-regulation of the main virus receptor. Using cDNA hybridization to evaluate mRNA accumulation in the cells, we were able to identify several genes that are differently up- or down-regulated by IFN-gamma in A/J (267 and 266 genes, respectively, up- and down-regulated or BALB/c (297 and 58 genes, respectively, up- and down-regulated mouse macrophages. Macrophages from mice with different genetic backgrounds behave differently at the molecular level and comparison of the patterns of non-activated and IFN-gamma-activated A/J or BALB/c mouse macrophages revealed, for instance, an up-regulation and a down-regulation of genes coding for biological functions such as enzymatic reactions, nucleic acid synthesis and transport, protein synthesis, transport and metabolism, cytoskeleton arrangement and extracellular matrix, phagocytosis, resistance and susceptibility to infection and tumors, inflammation, and cell differentiation or activation. The present data are reported in order to facilitate future correlation of proteomic/transcriptomic findings as well as of results obtained from a classical approach for the understanding of biological phenomena. The possible implication of the role of some of the gene products relevant to macrophage biology can now be further scrutinized. In this respect, a down-regulation of the main murine hepatitis virus 3 receptor gene was detected only in IFN-gamma-activated macrophages of resistant mice.

  14. Youth perceptions of how neighborhood physical environment and peers affect physical activity: a focus group study

    OpenAIRE

    Smith, Alan L.; Troped, Philip J; McDonough, Meghan H; DeFreese, J.D.

    2015-01-01

    Objective There is need for a youth-informed conceptualization of how environmental and social neighborhood contexts influence physical activity. We assessed youths’ perceptions of their neighborhood physical and peer environments as affecting physical activity. Methods Thirty-three students (20 girls; ages 12-14 years) participated in focus groups about the physical environment and peers within their neighborhoods, and their understanding of how they affect physical activity. Results Inducti...

  15. Timing of mTOR activation affects tuberous sclerosis complex neuropathology in mouse models

    Directory of Open Access Journals (Sweden)

    Laura Magri

    2013-09-01

    Tuberous sclerosis complex (TSC is a dominantly inherited disease with high penetrance and morbidity, and is caused by mutations in either of two genes, TSC1 or TSC2. Most affected individuals display severe neurological manifestations – such as intractable epilepsy, mental retardation and autism – that are intimately associated with peculiar CNS lesions known as cortical tubers (CTs. The existence of a significant genotype-phenotype correlation in individuals bearing mutations in either TSC1 or TSC2 is highly controversial. Similar to observations in humans, mouse modeling has suggested that a more severe phenotype is associated with mutation in Tsc2 rather than in Tsc1. However, in these mutant mice, deletion of either gene was achieved in differentiated astrocytes. Here, we report that loss of Tsc1 expression in undifferentiated radial glia cells (RGCs early during development yields the same phenotype detected upon deletion of Tsc2 in the same cells. Indeed, the same aberrations in cortical cytoarchitecture, hippocampal disturbances and spontaneous epilepsy that have been detected in RGC-targeted Tsc2 mutants were observed in RGC-targeted Tsc1 mutant mice. Remarkably, thorough characterization of RGC-targeted Tsc1 mutants also highlighted subventricular zone (SVZ disturbances as well as STAT3-dependent and -independent developmental-stage-specific defects in the differentiation potential of ex-vivo-derived embryonic and postnatal neural stem cells (NSCs. As such, deletion of either Tsc1 or Tsc2 induces mostly overlapping phenotypic neuropathological features when performed early during neurogenesis, thus suggesting that the timing of mTOR activation is a key event in proper neural development.

  16. Momentary Affective States Are Associated with Momentary Volume, Prospective Trends, and Fluctuation of Daily Physical Activity

    Science.gov (United States)

    Kanning, Martina K.; Schoebi, Dominik

    2016-01-01

    Several interventions aiming to enhance physical activity in everyday life showed mixed effects. Affective constructs are thought to potentially support health behavior change. However, little is known about within-subject associations between momentary affect and subsequent physical activity in everyday life. This study analyzed the extent to which three dimensions of affective states (valence, calmness, and energetic arousal) were associated with different components of daily activity trajectories. Sixty-five undergraduates’ students (Age: M = 24.6; SD = 3.2; females: 57%) participated in this study. Physical activity was assessed objectively through accelerometers during 24 h. Affective states assessments were conducted randomly every 45 min using an e-diary with a six-item mood scale that was especially designed for ambulatory assessment. We conducted three-level multi-level analyses to investigate the extent to which momentary affect accounted for momentary volume, prospective trends, and stability vs. fluctuation of physical activity in everyday life. All three affect dimensions were significantly associated with momentary activity volumes and prospective trends over 45 min periods. Physical activity didn’t fluctuate freely, but featured significant autocorrelation across repeated measurements, suggesting some stability of physical activity across 5-min assessments. After adjusting for the autoregressive structure in physical activity assessments, only energetic arousal remained a significant predictor. Feeling energized and awake was associated with an increased momentary volume of activity and initially smaller but gradually growing decreases in subsequent activity within the subsequent 45 min. Although not related to trends in physical activity, higher valence predicted lower stability in physical activity across subsequent 45 min, suggesting more short-term fluctuations in daily activity the more participants reported positive affective valence. The

  17. Early developmental gene enhancers affect subcortical volumes in the adult human brain.

    Science.gov (United States)

    Becker, Martin; Guadalupe, Tulio; Franke, Barbara; Hibar, Derrek P; Renteria, Miguel E; Stein, Jason L; Thompson, Paul M; Francks, Clyde; Vernes, Sonja C; Fisher, Simon E

    2016-05-01

    Genome-wide association screens aim to identify common genetic variants contributing to the phenotypic variability of complex traits, such as human height or brain morphology. The identified genetic variants are mostly within noncoding genomic regions and the biology of the genotype-phenotype association typically remains unclear. In this article, we propose a complementary targeted strategy to reveal the genetic underpinnings of variability in subcortical brain volumes, by specifically selecting genomic loci that are experimentally validated forebrain enhancers, active in early embryonic development. We hypothesized that genetic variation within these enhancers may affect the development and ultimately the structure of subcortical brain regions in adults. We tested whether variants in forebrain enhancer regions showed an overall enrichment of association with volumetric variation in subcortical structures of >13,000 healthy adults. We observed significant enrichment of genomic loci that affect the volume of the hippocampus within forebrain enhancers (empirical P = 0.0015), a finding which robustly passed the adjusted threshold for testing of multiple brain phenotypes (cutoff of P functional biology of identified associations. Hum Brain Mapp 37:1788-1800, 2016. © 2016 Wiley Periodicals, Inc. PMID:26890892

  18. Single nucleotide polymorphism in the tumor necrosis factor-alpha gene affects inflammatory bowel diseases risk

    Institute of Scientific and Technical Information of China (English)

    Lynnette R Ferguson; Claudia Huebner; Ivonne Petermann; Richard B Gearry; Murray L Barclay; Pieter Demmers; Alan McCulloch; Dug Yeo Han

    2008-01-01

    AIM: To investigate the role that single nucleotide polymorphisms (SNPs) in the promoter of the tumour necrosis factor-alpha (TNF-α) gene play in the risk of inflammatory bowel diseases (IBDs) in a New Zealand population, in the context of international studies.METHODS: DNA samples from 388 patients with Crohn's disease (CD), 405 ulcerative colitis (UC), 27 indeterminate colitis (IC) and 201 randomly selected controls, from Canterbury, New Zealand were screened for 3 common polymorphisms in the TNF-α receptor:-238 G→A, -308 G→A and -857C→T, using a TaqmanRassay. A meta-analysis was performed on the data obtained on these polymorphisms combined with that from other published studies.RESULTS: Individuals carrying the -308 G/A allele had a significantly (OR = 1.91, x2 = 17.36, P < 0.0001)increased risk of pancolitis, and a 1.57-fold increased risk (OR = 1.57, x2 = 4.34, P = 0.037) of requiring a bowel resection in UC. Carrying the -857 C/T variantdecreased the risk of ileocolonic CD (OR = 0.56, x2 =4.32, P = 0.037), and the need for a bowel resection(OR = 0.59, x2 = 4.85, P = 0.028). The risk of UC was reduced in individuals who were smokers at diagnosis,(OR = 0.48, x2 = 4.86, P = 0.028).CONCLUSION: TNF-α is a key cytokine known to play a role in inflammatory response, and the locus for the gene is found in the IBD3 region on chromosome 6p21, known to be associated with an increased risk for IBD. The -308 G/A SNP in the TNF-α promoter is functional, and may account in part for the increased UC risk associated with the IBD3 genomic region. The-857 C/T SNP may decrease IBD risk in certain groups.Pharmaco- or nutrigenomic approaches may be desir-able for individuals with such affected genotypes.

  19. Sulfate reducing bacteria and their activities in oil sands process-affected water biofilm.

    Science.gov (United States)

    Liu, Hong; Yu, Tong; Liu, Yang

    2015-12-01

    Biofilm reactors were constructed to grow stratified multispecies biofilm in oil sands process-affected water (OSPW) supplemented with growth medium. The development of sulfate reducing bacteria (SRB) within the biofilm and the biofilm treatment of OSPW were evaluated. The community structure and potential activity of SRB in the biofilm were investigated with H2S microsensor measurements, dsrB gene-based denaturing gradient gel electrophoresis (DGGE), and the real time quantitative polymerase chain reaction (qPCR). Multispecies biofilm with a thickness of 1000 μm was successfully developed on engineered biocarriers. H2S production was observed in the deeper anoxic zone of the biofilm from around 750 μm to 1000 μm below the bulk water-biofilm interface, revealing sulfate reduction in the deeper zone of the stratified biofilm. The biofilm removed chemical oxygen demand (COD), sulfate, and nitrogen. The study expands current knowledge of biofilm treatment of OSPW and the function of anaerobic SRB in OSPW biofilm, and thus provides information for future bioreactor development in the reclamation of OSPW. PMID:26204047

  20. Analysis of the Relationship between Antioxidant Enzyme Gene Polymorphisms and Their Activity in Post-Traumatic Gonarthrosis.

    Science.gov (United States)

    Vnukov, V V; Panina, S B; Milyutina, N P; Krolevets, I V; Zabrodin, M A

    2016-05-01

    Analysis of polymorphisms of genes encoding antioxidant enzymes SOD1 (G7958A), SOD2 (T58C), CAT (C-262T), and GSTP1 (Ile105Val) in 93 patients with post-traumatic gonarthrosis showed that GSTP1 Ile105Val polymorphism is often associated with heterozygous mutation in catalase gene CAT C-262T. In gonarthrosis, catalase activity in peripheral blood mononuclear cells in patients with CT genotype of the C-262T locus of CAT gene more than 2-fold surpassed that in CC genotype and more than 50% surpassed the normal. Changes in the balance of activity of antioxidant enzymes can affect viability of mononuclear cells. PMID:27270931

  1. Calling genotypes from public RNA-sequencing data enables identification of genetic variants that affect gene-expression levels

    NARCIS (Netherlands)

    Deelen, Patrick; Zhernakova, Daria V.; de Haan, Mark; van der Sijde, Marijke; Bonder, Marc Jan; Karjalainen, Juha; van der Velde, K. Joeri; Abbott, Kristin M.; Fu, Jingyuan; Wijmenga, Cisca; Sinke, Richard J.; Swertz, Morris A.; Franke, Lude

    2015-01-01

    Background: RNA-sequencing (RNA-seq) is a powerful technique for the identification of genetic variants that affect gene-expression levels, either through expression quantitative trait locus (eQTL) mapping or through allele-specific expression (ASE) analysis. Given increasing numbers of RNA-seq samp

  2. Association analysis of the monoamine oxidase A gene in bipolar affective disorder by using family-based internal controls

    Energy Technology Data Exchange (ETDEWEB)

    Noethen, M.M.; Eggermann, K.; Propping, P. [Univ. of Bonn (Germany)] [and others

    1995-10-01

    It is well accepted that association studies are a major tool in investigating the contribution of single genes to the development of diseases that do not follow simple Mendelian inheritance pattern (so-called complex traits). Such major psychiatric diseases as bipolar affective disorder and schizophrenia clearly fall into this category of diseases. 7 refs., 1 tab.

  3. Sulfate reducing bacteria and their activities in oil sands process-affected water biofilm

    International Nuclear Information System (INIS)

    Biofilm reactors were constructed to grow stratified multispecies biofilm in oil sands process-affected water (OSPW) supplemented with growth medium. The development of sulfate reducing bacteria (SRB) within the biofilm and the biofilm treatment of OSPW were evaluated. The community structure and potential activity of SRB in the biofilm were investigated with H2S microsensor measurements, dsrB gene-based denaturing gradient gel electrophoresis (DGGE), and the real time quantitative polymerase chain reaction (qPCR). Multispecies biofilm with a thickness of 1000 μm was successfully developed on engineered biocarriers. H2S production was observed in the deeper anoxic zone of the biofilm from around 750 μm to 1000 μm below the bulk water-biofilm interface, revealing sulfate reduction in the deeper zone of the stratified biofilm. The biofilm removed chemical oxygen demand (COD), sulfate, and nitrogen. The study expands current knowledge of biofilm treatment of OSPW and the function of anaerobic SRB in OSPW biofilm, and thus provides information for future bioreactor development in the reclamation of OSPW. - Graphical abstract: The development of sulfate reducing bacteria (SRB) within Oil Sands Process-affected Water (OSPW) biofilm and the biofilm treatment of OSPW were evaluated by Liu and coworkers. Combined microsensor and molecular biology techniques were utilized in this study. Their results demonstrated that multispecies biofilm with a thickness of 1000 μm was successfully developed on engineered biocarriers. H2S production was observed in the deeper anoxic zone of the biofilm from around 750 μm to 1000 μm below the bulk water-biofilm interface, revealing sulfate reduction in the deeper zone of the biofilm. The biofilm removed chemical oxygen demand (COD), sulfate, and nitrogen. - Highlights: • Biofilm in oil sands wastewater was developed on engineered biocarriers. • Bacterial community and in situ activity of SRB were studied in the biofilm. • Sulfate

  4. Sulfate reducing bacteria and their activities in oil sands process-affected water biofilm

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hong; Yu, Tong, E-mail: tong.yu@ualberta.ca; Liu, Yang, E-mail: yang.liu@ualberta.ca

    2015-12-01

    Biofilm reactors were constructed to grow stratified multispecies biofilm in oil sands process-affected water (OSPW) supplemented with growth medium. The development of sulfate reducing bacteria (SRB) within the biofilm and the biofilm treatment of OSPW were evaluated. The community structure and potential activity of SRB in the biofilm were investigated with H{sub 2}S microsensor measurements, dsrB gene-based denaturing gradient gel electrophoresis (DGGE), and the real time quantitative polymerase chain reaction (qPCR). Multispecies biofilm with a thickness of 1000 μm was successfully developed on engineered biocarriers. H{sub 2}S production was observed in the deeper anoxic zone of the biofilm from around 750 μm to 1000 μm below the bulk water-biofilm interface, revealing sulfate reduction in the deeper zone of the stratified biofilm. The biofilm removed chemical oxygen demand (COD), sulfate, and nitrogen. The study expands current knowledge of biofilm treatment of OSPW and the function of anaerobic SRB in OSPW biofilm, and thus provides information for future bioreactor development in the reclamation of OSPW. - Graphical abstract: The development of sulfate reducing bacteria (SRB) within Oil Sands Process-affected Water (OSPW) biofilm and the biofilm treatment of OSPW were evaluated by Liu and coworkers. Combined microsensor and molecular biology techniques were utilized in this study. Their results demonstrated that multispecies biofilm with a thickness of 1000 μm was successfully developed on engineered biocarriers. H{sub 2}S production was observed in the deeper anoxic zone of the biofilm from around 750 μm to 1000 μm below the bulk water-biofilm interface, revealing sulfate reduction in the deeper zone of the biofilm. The biofilm removed chemical oxygen demand (COD), sulfate, and nitrogen. - Highlights: • Biofilm in oil sands wastewater was developed on engineered biocarriers. • Bacterial community and in situ activity of SRB were studied in the

  5. Sublethal gamma irradiation affects reproductive impairment and elevates antioxidant enzyme and DNA repair activities in the monogonont rotifer Brachionus koreanus

    International Nuclear Information System (INIS)

    Highlights: • No mortality within 96 h even at a high intensity (1200 Gy). • A reduced fecundity of Brachionus koreanus at over 150 Gy with a decrease in lifespan. • Dose-dependent ROS increase with GST enzyme activity at sub-lethal doses. • Significant impact on life table parameters, particularly fecundity. • Significant up-regulation of DNA repair-associated genes at sublethal doses. - Abstract: To examine the effects of gamma radiation on marine organisms, we irradiated several doses of gamma ray to the microzooplankton Brachionus koreanus, and measured in vivo and in vitro endpoints including the survival rate, lifespan, fecundity, population growth, gamma ray-induced oxidative stress, and modulated patterns of enzyme activities and gene expressions after DNA damage. After gamma radiation, no individuals showed any mortality within 96 h even at a high intensity (1200 Gy). However, a reduced fecundity (e.g. cumulated number of offspring) of B. koreanus at over 150 Gy was observed along with a slight decrease in lifespan. At 150 Gy and 200 Gy, the reduced fecundity of the rotifers led to a significant decrease in population growth, although in the second generation the population growth pattern was not affected even at 200 Gy when compared to the control group. At sub-lethal doses, reactive oxygen species (ROS) levels dose-dependently increased with GST enzyme activity. In addition, up-regulations of the antioxidant and chaperoning genes in response to gamma radiation were able to recover cellular damages, and life table parameters were significantly influenced, particularly with regard to fecundity. DNA repair-associated genes showed significantly up-regulated expression patterns in response to sublethal doses (150 and 200 Gy), as shown in the expression of the gamma-irradiated B. koreanus p53 gene, suggesting that these sublethal doses were not significantly fatal to B. koreanus but induced DNA damages leading to a decrease of the population size

  6. Sublethal gamma irradiation affects reproductive impairment and elevates antioxidant enzyme and DNA repair activities in the monogonont rotifer Brachionus koreanus

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jeonghoon; Won, Eun-Ji [Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kim, Il-Chan; Yim, Joung Han [Division of Life Sciences, Korea Polar Research Institute, Incheon 406-840 (Korea, Republic of); Lee, Su-Jae [Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Lee, Jae-Seong, E-mail: jslee2@skku.edu [Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2014-10-15

    Highlights: • No mortality within 96 h even at a high intensity (1200 Gy). • A reduced fecundity of Brachionus koreanus at over 150 Gy with a decrease in lifespan. • Dose-dependent ROS increase with GST enzyme activity at sub-lethal doses. • Significant impact on life table parameters, particularly fecundity. • Significant up-regulation of DNA repair-associated genes at sublethal doses. - Abstract: To examine the effects of gamma radiation on marine organisms, we irradiated several doses of gamma ray to the microzooplankton Brachionus koreanus, and measured in vivo and in vitro endpoints including the survival rate, lifespan, fecundity, population growth, gamma ray-induced oxidative stress, and modulated patterns of enzyme activities and gene expressions after DNA damage. After gamma radiation, no individuals showed any mortality within 96 h even at a high intensity (1200 Gy). However, a reduced fecundity (e.g. cumulated number of offspring) of B. koreanus at over 150 Gy was observed along with a slight decrease in lifespan. At 150 Gy and 200 Gy, the reduced fecundity of the rotifers led to a significant decrease in population growth, although in the second generation the population growth pattern was not affected even at 200 Gy when compared to the control group. At sub-lethal doses, reactive oxygen species (ROS) levels dose-dependently increased with GST enzyme activity. In addition, up-regulations of the antioxidant and chaperoning genes in response to gamma radiation were able to recover cellular damages, and life table parameters were significantly influenced, particularly with regard to fecundity. DNA repair-associated genes showed significantly up-regulated expression patterns in response to sublethal doses (150 and 200 Gy), as shown in the expression of the gamma-irradiated B. koreanus p53 gene, suggesting that these sublethal doses were not significantly fatal to B. koreanus but induced DNA damages leading to a decrease of the population size.

  7. Human monoamine oxidase A gene determines levels of enzyme activity.

    OpenAIRE

    Hotamisligil, G S; Breakefield, X O

    1991-01-01

    Monoamine oxidase (MAO) is a critical enzyme in the degradative deamination of biogenic amines throughout the body. Two biochemically distinct forms of the enzyme, A and B, are encoded in separate genes on the human X chromosome. In these studies we investigated the role of the structural gene for MAO-A in determining levels of activity in humans, as measured in cultured skin fibroblasts. The coding sequence of the mRNA for MAO-A was determined by first-strand cDNA synthesis, PCR amplificatio...

  8. CRISPR RNA-guided activation of endogenous human genes

    OpenAIRE

    Maeder, Morgan L.; Linder, Samantha J; Cascio, Vincent M.; Fu, Yanfang; Ho, Quan H; Joung, J Keith

    2013-01-01

    Catalytically inactive CRISPR-associated 9 nuclease (dCas9) can be directed by short guide RNAs (gRNAs) to repress endogenous genes in bacteria and human cells. Here we show that a dCas9-VP64 transcriptional activation domain fusion protein can be directed by single or multiple gRNAs to increase expression of specific endogenous human genes. These results provide an important proof-of-principle that CRISPR-Cas systems can be used to target heterologous effector domains in human cells.

  9. Familial Vulnerability to ADHD Affects Activity in the Cerebellum in Addition to the Prefrontal Systems

    Science.gov (United States)

    Mulder, Martijn J.; Baeyens, Dieter; Davidson, Matthew C.; Casey, B. J.; Van Den Ban, Els; Van Engeland, Herman; Durston, Sarah

    2008-01-01

    The study examines whether cerebellar systems are sensitive to familial risk for ADHD in addition to frontostriatal circuitry. The results conclude that familial vulnerability to ADHD affects activity in both the prefrontal cortex and cerebellum.

  10. Relationship between plasminogen activator inhibitor type-1 (PAI-1 gene polymorphisms and osteoporosis in Turkish women

    Directory of Open Access Journals (Sweden)

    Merih Ozgen

    2012-11-01

    Full Text Available OBJECTIVE: The development of osteoporosis is associated with several risk factors, such as genetic structures that affect bone turnover and bone mass. The impact of genetic structures on osteoporosis is not known. Plasminogen activator inhibitor type-1 regulates the bone matrix and bone balance. This study assessed the correlation between plasminogen activator inhibitor type-1 gene 4G/5G polymorphisms and osteoporosis in a population of Turkish women. METHODS: A total of 195 postmenopausal female patients who were diagnosed with osteoporosis (Group I based on bone mineral density measurements via dual-energy x-ray absorptiometry and 90 females with no osteoporosis (Group II were included in this study. Correlations between PAI-1 gene 4G/5G polymorphisms and osteoporosis were investigated through the identification of PAI-1 gene 4G/5G polymorphism genotypes using the polymerase chain reaction. RESULTS: No significant differences in the genotype and allele frequency of 4G/5G plasminogen activator inhibitor type-1 polymorphisms were observed between the two groups, and both groups exhibited the most frequently observed 4G5G genotype. CONCLUSION: No correlation between the development of osteoporosis in the female Turkish population and 4G/5G plasminogen activator inhibitor type-1 gene polymorphisms was observed.

  11. A Comprehensive Insight into Tetracycline Resistant Bacteria and Antibiotic Resistance Genes in Activated Sludge Using Next-Generation Sequencing

    OpenAIRE

    Kailong Huang; Junying Tang; Xu-Xiang Zhang; Ke Xu; Hongqiang Ren

    2014-01-01

    In order to comprehensively investigate tetracycline resistance in activated sludge of sewage treatment plants, 454 pyrosequencing and Illumina high-throughput sequencing were used to detect potential tetracycline resistant bacteria (TRB) and antibiotic resistance genes (ARGs) in sludge cultured with different concentrations of tetracycline. Pyrosequencing of 16S rRNA gene revealed that tetracycline treatment greatly affected the bacterial community structure of the sludge. Nine genera cons...

  12. Factors affecting the concordance between orthologous gene trees and species tree in bacteria

    OpenAIRE

    González Víctor; Castillo-Ramírez Santiago

    2008-01-01

    Abstract Background As originally defined, orthologous genes implied a reflection of the history of the species. In recent years, many studies have examined the concordance between orthologous gene trees and species trees in bacteria. These studies have produced contradictory results that may have been influenced by orthologous gene misidentification and artefactual phylogenetic reconstructions. Here, using a method that allows the detection and exclusion of false positives during identificat...

  13. Age and Diet Affect Gene Expression Profile in Canine Skeletal Muscle

    OpenAIRE

    Middelbos, Ingmar S.; Brittany M Vester; Lisa K Karr-Lilienthal; Schook, Lawrence B; Swanson, Kelly S.

    2009-01-01

    We evaluated gene transcription in canine skeletal muscle (biceps femoris) using microarray analysis to identify effects of age and diet on gene expression. Twelve female beagles were used (six 1-year olds and six 12-year olds) and they were fed one of two experimental diets for 12 months. One diet contained primarily plant-based protein sources (PPB), whereas the second diet contained primarily animal-based protein sources (APB). Affymetrix GeneChip Canine Genome Arrays were used to hybridiz...

  14. Differences in the evolutionary history of disease genes affected by dominant or recessive mutations

    OpenAIRE

    Albà M Mar; Furney Simon J; López-Bigas Núria

    2006-01-01

    Abstract Background Global analyses of human disease genes by computational methods have yielded important advances in the understanding of human diseases. Generally these studies have treated the group of disease genes uniformly, thus ignoring the type of disease-causing mutations (dominant or recessive). In this report we present a comprehensive study of the evolutionary history of autosomal disease genes separated by mode of inheritance. Results We examine differences in protein and coding...

  15. Physical Activity in Adolescents — Barriers and Impact on Depressed Affect

    OpenAIRE

    Langguth, Nadine

    2016-01-01

    Adolescence is a high-risk period for physical inactivity as well as depressed affect, both related to various short-, mid-, and long-term negative consequences for adolescents' physical and mental health. Therefore, this developmental period is ideally suited for studying the association between change processes of everyday physical activity and change processes of depressed affect within person by applying an intensive longitudinal design. Given that physical activity substantially decrease...

  16. A Mutation Affecting the Regulation of a Seca-Lacz Fusion Defines a New Sec Gene

    OpenAIRE

    Riggs, P. D.; Derman, A. I.; Beckwith, J

    1988-01-01

    It was shown previously that the secA gene of Escherichia coli is derepressed in cells that have a defect in protein export. Here it is demonstrated that the β-galactosidase produced by a secA-lacZ gene fusion strain is regulated in the same way. Studies on the fusion strain reveal that the promoter or a site involved in regulation of the secA gene is located considerably upstream from the structural gene. The properties of the fusion strain provide a new selection for mutants that are defect...

  17. Preconceptional paternal glycidamide exposure affects embryonic gene expression: Single embryo gene expression study following in vitro fertilization

    Czech Academy of Sciences Publication Activity Database

    Brevik, A..; Rusňáková, Vendula; Duale, N.; Slagsvold, H.H.; Olsen, A.-K.; Storeng, R.; Kubista, Mikael; Brunborg, G.; Lindeman, B.

    2011-01-01

    Roč. 32, č. 4 (2011), s. 463-471. ISSN 0890-6238 R&D Projects: GA AV ČR(CZ) IAA500520809 Institutional research plan: CEZ:AV0Z50520701 Keywords : Single-cell gene expression * Glycidamide * Acrylamide Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.226, year: 2011

  18. Phenotypic instability of Arabidopsis alleles affecting a disease Resistance gene cluster

    Directory of Open Access Journals (Sweden)

    Richards Eric J

    2008-04-01

    Full Text Available Abstract Background Three mutations in Arabidopsis thaliana strain Columbia – cpr1, snc1, and bal – map to the RPP5 locus, which contains a cluster of disease Resistance genes. The similar phenotypes, gene expression patterns, and genetic interactions observed in these mutants are related to constitutive activation of pathogen defense signaling. However, these mutant alleles respond differently to various conditions. Exposure to mutagens, such as ethyl methanesulfonate (EMS and γ-irradiation, induce high frequency phenotypic instability of the bal allele. In addition, a fraction of the bal and cpr1 alleles segregated from bal × cpr1 F1 hybrids also show signs of phenotypic instability. To gain more insight into the mechanism of phenotypic instability of the bal and cpr1 mutations, we systematically compared the behavior of these unusual alleles with that of the missense gain-of-function snc1 allele in response to DNA damage or passage through F1 hybrids. Results We found that the cpr1 allele is similar to the bal allele in its unstable behavior after EMS mutagenesis. For both the bal and cpr1 mutants, destabilization of phenotypes was observed in more than 10% of EMS-treated plants in the M1 generation. In addition, exceptions to simple Mendelian inheritance were identified in the M2 generation. Like cpr1 × bal F1 hybrids, cpr1 × snc1 F1 hybrids and bal × snc1 F1 hybrids exhibited dwarf morphology. While only dwarf F2 plants were produced from bal × snc1 F1 hybrids, about 10% wild-type F2 progeny were produced from cpr1 × snc1 F1 hybrids, as well as from cpr1 × bal hybrids. Segregation analysis suggested that the cpr1 allele in cpr1 × snc1 crosses was destabilized during the late F1 generation to early F2 generation. Conclusion With exposure to EMS or different F1 hybrid contexts, phenotypic instability is induced for the bal and cpr1 alleles, but not for the snc1 allele. Our results suggest that the RPP5 locus can adopt different

  19. Gene activation regresses atherosclerosis, promotes health, and enhances longevity

    Directory of Open Access Journals (Sweden)

    Luoma Pauli V

    2010-07-01

    Full Text Available Abstract Background Lifestyle factors and pharmacological compounds activate genetic mechanisms that influence the development of atherosclerotic and other diseases. This article reviews studies on natural and pharmacological gene activation that promotes health and enhances longevity. Results Living habits including healthy diet and regular physical activity, and pharmacotherapy, upregulate genes encoding enzymes and apolipoprotein and ATP-binding cassette transporters, acting in metabolic processes that promote health and increase survival. Cytochrome P450-enzymes, physiological factors in maintaining cholesterol homeostasis, generate oxysterols for the elimination of surplus cholesterol. Hepatic CTP:phosphocholine cytidylyltransferase-α is an important regulator of plasma HDL-C level. Gene-activators produce plasma lipoprotein profile, high HDL-C, HDL2-C and HDL-C/cholesterol ratio, which is typical of low risk of atherosclerotic disease, and also of exceptional longevity together with reduced prevalence of cardiovascular, metabolic and other diseases. High HDL contributes to protection against inflammation, oxidation and thrombosis, and associates with good cognitive function in very old people. Avoiding unhealthy stress and managing it properly promotes health and increases life expectancy. Conclusions Healthy living habits and gene-activating xenobiotics upregulate mechanisms that produce lipoprotein pattern typical of very old people and enhance longevity. Lipoprotein metabolism and large HDL2 associate with the process of living a very long life. Major future goals for health promotion are the improving of commitment to both wise lifestyle choices and drug therapy, and further the developing of new and more effective and well tolerated drugs and treatments.

  20. Leukocyte count affects expression of reference genes in canine whole blood samples

    NARCIS (Netherlands)

    Piek, C.J.; Brinkhof, B.; Rothuizen, J.; Dekker, A.; Penning, L.C.

    2011-01-01

    Background The dog is frequently used as a model for hematologic human diseases. In this study the suitability of nine potential reference genes for quantitative RT-PCR studies in canine whole blood was investigated. Findings The expression of these genes was measured in whole blood samples of 263 i

  1. The circadian clock-associated gene zea mays gigantea1 affects maize developmental transitions

    Science.gov (United States)

    The circadian clock is the internal timing mechanism that allows plants to make developmental decisions in accordance with environmental conditions. The genes of the maize circadian clock are not well defined. Gigantea (gi) genes are conserved across flowering plants, including maize. In model plant...

  2. Gene expression in gut symbiotic organ of stinkbug affected by extracellular bacterial symbiont.

    Directory of Open Access Journals (Sweden)

    Ryo Futahashi

    Full Text Available The bean bug Riptortus pedestris possesses a specialized symbiotic organ in a posterior region of the midgut, where numerous crypts harbor extracellular betaproteobacterial symbionts of the genus Burkholderia. Second instar nymphs orally acquire the symbiont from the environment, and the symbiont infection benefits the host by facilitating growth and by occasionally conferring insecticide resistance. Here we performed comparative transcriptomic analyses of insect genes expressed in symbiotic and non-symbiotic regions of the midgut dissected from Burkholderia-infected and uninfected R. pedestris. Expression sequence tag analysis of cDNA libraries and quantitative reverse transcription PCR identified a number of insect genes expressed in symbiosis- or aposymbiosis-associated patterns. For example, genes up-regulated in symbiotic relative to aposymbiotic individuals, including many cysteine-rich secreted protein genes and many cathepsin protease genes, are likely to play a role in regulating the symbiosis. Conversely, genes up-regulated in aposymbiotic relative to symbiotic individuals, including a chicken-type lysozyme gene and a defensin-like protein gene, are possibly involved in regulation of non-symbiotic bacterial infections. Our study presents the first transcriptomic data on gut symbiotic organ of a stinkbug, which provides initial clues to understanding of molecular mechanisms underlying the insect-bacterium gut symbiosis and sheds light on several intriguing commonalities between endocellular and extracellular symbiotic associations.

  3. Identification of common regulators of genes in co-expression networks affecting muscle and meat properties.

    Directory of Open Access Journals (Sweden)

    Siriluck Ponsuksili

    Full Text Available Understanding the genetic contributions behind skeletal muscle composition and metabolism is of great interest in medicine and agriculture. Attempts to dissect these complex traits combine genome-wide genotyping, expression data analyses and network analyses. Weighted gene co-expression network analysis (WGCNA groups genes into modules based on patterns of co-expression, which can be linked to phenotypes by correlation analysis of trait values and the module eigengenes, i.e. the first principal component of a given module. Network hub genes and regulators of the genes in the modules are likely to play an important role in the emergence of respective traits. In order to detect common regulators of genes in modules showing association with meat quality traits, we identified eQTL for each of these genes, including the highly connected hub genes. Additionally, the module eigengene values were used for association analyses in order to derive a joint eQTL for the respective module. Thereby major sites of orchestrated regulation of genes within trait-associated modules were detected as hotspots of eQTL of many genes of a module and of its eigengene. These sites harbor likely common regulators of genes in the modules. We exemplarily showed the consistent impact of candidate common regulators on the expression of members of respective modules by RNAi knockdown experiments. In fact, Cxcr7 was identified and validated as a regulator of genes in a module, which is involved in the function of defense response in muscle cells. Zfp36l2 was confirmed as a regulator of genes of a module related to cell death or apoptosis pathways. The integration of eQTL in module networks enabled to interpret the differentially-regulated genes from a systems perspective. By integrating genome-wide genomic and transcriptomic data, employing co-expression and eQTL analyses, the study revealed likely regulators that are involved in the fine-tuning and synchronization of genes with

  4. Identification of common regulators of genes in co-expression networks affecting muscle and meat properties.

    Science.gov (United States)

    Ponsuksili, Siriluck; Siengdee, Puntita; Du, Yang; Trakooljul, Nares; Murani, Eduard; Schwerin, Manfred; Wimmers, Klaus

    2015-01-01

    Understanding the genetic contributions behind skeletal muscle composition and metabolism is of great interest in medicine and agriculture. Attempts to dissect these complex traits combine genome-wide genotyping, expression data analyses and network analyses. Weighted gene co-expression network analysis (WGCNA) groups genes into modules based on patterns of co-expression, which can be linked to phenotypes by correlation analysis of trait values and the module eigengenes, i.e. the first principal component of a given module. Network hub genes and regulators of the genes in the modules are likely to play an important role in the emergence of respective traits. In order to detect common regulators of genes in modules showing association with meat quality traits, we identified eQTL for each of these genes, including the highly connected hub genes. Additionally, the module eigengene values were used for association analyses in order to derive a joint eQTL for the respective module. Thereby major sites of orchestrated regulation of genes within trait-associated modules were detected as hotspots of eQTL of many genes of a module and of its eigengene. These sites harbor likely common regulators of genes in the modules. We exemplarily showed the consistent impact of candidate common regulators on the expression of members of respective modules by RNAi knockdown experiments. In fact, Cxcr7 was identified and validated as a regulator of genes in a module, which is involved in the function of defense response in muscle cells. Zfp36l2 was confirmed as a regulator of genes of a module related to cell death or apoptosis pathways. The integration of eQTL in module networks enabled to interpret the differentially-regulated genes from a systems perspective. By integrating genome-wide genomic and transcriptomic data, employing co-expression and eQTL analyses, the study revealed likely regulators that are involved in the fine-tuning and synchronization of genes with trait

  5. PARP1 gene knock-out increases resistance to retinal degeneration without affecting retinal function.

    Directory of Open Access Journals (Sweden)

    Ayse Sahaboglu

    Full Text Available Retinitis pigmentosa (RP is a group of inherited neurodegenerative diseases affecting photoreceptors and causing blindness in humans. Previously, excessive activation of enzymes belonging to the poly-ADP-ribose polymerase (PARP group was shown to be involved in photoreceptor degeneration in the human homologous rd1 mouse model for RP. Since there are at least 16 different PARP isoforms, we investigated the exact relevance of the predominant isoform - PARP1 - for photoreceptor cell death using PARP1 knock-out (KO mice. In vivo and ex vivo morphological analysis using optic coherence tomography (OCT and conventional histology revealed no major alterations of retinal phenotype when compared to wild-type (wt. Likewise, retinal function as assessed by electroretinography (ERG was normal in PARP1 KO animals. We then used retinal explant cultures derived from wt, rd1, and PARP1 KO animals to test their susceptibility to chemically induced photoreceptor degeneration. Since photoreceptor degeneration in the rd1 retina is triggered by a loss-of-function in phosphodiesterase-6 (PDE6, we used selective PDE6 inhibition to emulate the rd1 situation on non-rd1 genotypes. While wt retina subjected to PDE6 inhibition showed massive photoreceptor degeneration comparable to rd1 retina, in the PARP1 KO situation, cell death was robustly reduced. Together, these findings demonstrate that PARP1 activity is in principle dispensable for normal retinal function, but is of major importance for photoreceptor degeneration under pathological conditions. Moreover, our results suggest that PARP dependent cell death or PARthanatos may play a major role in retinal degeneration and highlight the possibility to use specific PARP inhibitors for the treatment of RP.

  6. In situ exposure to low herbicide concentrations affects microbial population composition and catabolic gene frequency in an aerobic shallow aquifer

    DEFF Research Database (Denmark)

    de Lipthay, J.R.; Tuxen, Nina; Johnsen, Kaare;

    2003-01-01

    probable number assays, and their presence was only detected in herbicide-exposed sediments. Similarly, PCR analysis showed that the 2,4-dichlorophe-noxyacetic acid degradation pathway genes tfdA and tfdB (10(2) to 10(3) gene copies g(-1) sediment) were only detected in sediments from contaminated areas of...... the aquifer. PCR-restriction fragment length polymorphism measurements demonstrated the presence of different populations of tfd genes, suggesting that the in situ herbicide degradation was caused by the activity of a heterogeneous population of phenoxy acid degraders. The number of Pseudomonas...

  7. Over-expression of XIST, the Master Gene for X Chromosome Inactivation, in Females With Major Affective Disorders

    Directory of Open Access Journals (Sweden)

    Baohu Ji

    2015-08-01

    Research in context: Due to lack of biological markers, diagnosis and treatment of psychiatric disorders are subjective. There is utmost urgency to identify biomarkers for clinics, research, and drug development. We found that XIST and KDM5C gene expression may be used as a biological marker for diagnosis of major affective disorders in a significantly large subset of female patients from the general population. Our studies show that over-expression of XIST and some X-linked escapee genes may be a common mechanism for development of psychiatric disorders between the patients with rare genetic diseases (XXY or XXX and the general population of female psychiatric patients.

  8. Factors affecting susceptibility to RNA interference in Haemonchus contortus and in vivo silencing of an H11 aminopeptidase gene.

    Science.gov (United States)

    Samarasinghe, Buddhini; Knox, David P; Britton, Collette

    2011-01-01

    Gene silencing by RNA interference (RNAi) has been applied very successfully to Caenorhabditis elegans to study gene function but has proven less effective in parasitic nematodes. In the sheep gastrointestinal nematode Haemonchus contortus, previous studies demonstrated reproducible silencing of β-tubulin but not of other genes targeted. Here we aimed to examine whether the level of target transcript or site of gene expression influence susceptibility to RNAi by soaking. Target genes represented by a high number of expressed sequence tags (ESTs) in the H. contortus L3 stage were not reproducibly silenced. In contrast, four out of six genes putatively expressed in the intestine, excretory cell or amphids were consistently silenced by RNAi. This suggests that genes expressed in sites accessible to the environment are more likely to be susceptible to RNAi by soaking. Silenced genes included those encoding the highly protective gut aminopeptidase H11, secretory protein Hc-ASP-1, β-tubulin and homologues of aquaporin and RNA helicase. To determine whether RNAi silencing of H11 could mimic H11 vaccination in reducing worm and egg counts, we examined the in vivo effects of H11 RNAi. This is the first, to our knowledge, in vivo study of RNAi in an animal parasitic nematode. RNAi of the H11 gene in infective larvae prior to infection resulted in a 57% reduction in faecal egg count (FEC), 40% reduction in worm burden and 64% decrease in aminopeptidase activity compared with pre-soaking in control dsRNA. Thus, in this study we have established that RNAi is a valid and feasible approach to identify essential gene function. However, using current methods, this may be limited to genes expressed in accessible sites. PMID:20699100

  9. Adaptation of muscle gene expression to changes in contractile activity

    Science.gov (United States)

    Booth, F. W.; Babij, P.; Thomason, D. B.; Wong, T. S.; Morrison, P. R.

    1987-01-01

    A review of the existing literature regarding the effects of different types of physical activities on the gene expression of adult skeletal muscles leads us to conclude that each type of exercise training program has, as a result, a different phenotype, which means that there are multiple mechanisms, each producing a unique phenotype. A portion of the facts which support this position is presented and interpreted here. [Abstract translated from the original French by NASA].

  10. Pro198Leu polymorphism affects the selenium status and GPx activity in response to Brazil nut intake.

    Science.gov (United States)

    Cardoso, Bárbara R; Busse, Alexandre L; Hare, Dominic J; Cominetti, Cristiane; Horst, Maria A; McColl, Gawain; Magaldi, Regina M; Jacob-Filho, Wilson; Cozzolino, Silvia M F

    2016-02-01

    Selenoproteins play important roles in antioxidant mechanisms, and are thus hypothesised to have some involvement in the pathology of certain types of dementia. Mild cognitive impairment (MCI) and Alzheimer's disease (AD) are both thought to involve impaired biological activity of certain selenoproteins. Previously, supplementation with a selenium-rich Brazil nut (Bertholletia excelsa) has shown potential in reducing cognitive decline in MCI patients, and could prove to be a safe and effective nutritional approach early in the disease process to slow decline. Here, we have conducted a pilot study that examined the effects of a range of single nucleotide polymorphisms (SNPs) in genes encoding the selenoproteins glutathione peroxidase (GPX1) and selenoprotein P (SEPP) in response to selenium supplementation via dietary Brazil nuts, including selenium status, oxidative stress parameters and GPX1 and SEPP gene expression. Our data suggest that GPX1 Pro198Leu rs1050450 genotypes may differentially affect the selenium status and GPx activity. Moreover, rs7579 and rs3877899 SNPs in SEPP gene, as well as GPX1 rs1050450 genotypes can influence the expression of GPX1 and SEPP mRNA in response to Brazil nuts intake. This small study gives cause for larger investigations into the role of these SNPs in both the selenium status and response to selenium dietary intake, especially in chronic degenerative conditions like MCI and AD. PMID:26661784

  11. Identification of a splicing coactivator gene that affects the production of ochratoxin a in Aspergillus carbonarius

    Directory of Open Access Journals (Sweden)

    Lígia Uno Lunardi

    2009-11-01

    Full Text Available Ochratoxin A is a mycotoxin produced by some fungi species. Among them, Aspergillus carbonarius is considered a powerful producer. Genes involved in the ochratoxin A biosynthesis pathway have been identified in some producer species. However, there are few studies that purpose to identify these genes in A. carbonarius. The use of insertion mutants to identify genes associated with certain properties has been increased in the literature. In this work, the region of T-DNA integration was investigated in one A. carbonarius ochratoxin-defective mutant previously obtained by Agrobacterium tumefaciens-mediated transformation, in order to find an association between interrupted gene and the biosynthesis of ochratoxin A. The integration occurred in a gene that possibly encodes a splicing coactivator protein. The analysis of the relative expression of the splicing coativator gene from A. carbonarius wild type strain in four different media showed high correlation between the transcript levels and the ochratoxin A production.A ocratoxina A é uma micotoxina frequentemente encontrada em uma grande variedade de produtos alimentares e apresenta efeitos nefrotóxicos e potencial carcinogênico para animais e humanos. É naturalmente produzida por algumas espécies fúngicas, como Aspergillus carbonarius, que é considerado um potente produtor. Apesar disso, o número de estudos que visam identificar genes que são essenciais para a biossíntese de ocratoxina em A. carbonarius é ainda reduzido. Um mutante de A. carbonarius com baixa produção de ocratoxina A previamente obtido por transformação mediada por Agrobacterium tumefaciens foi investigado com o objetivo de encontrar uma associação entre o gene interrompido e a biossíntese desta micotoxina. Os resultados mostraram a ocorrência de uma junção não exata entre o T-DNA e o DNA genômico do fungo durante o evento de integração. A integração do T-DNA no genoma do mutante T188 provocou dele

  12. Mod5 protein binds to tRNA gene complexes and affects local transcriptional silencing

    OpenAIRE

    Pratt-Hyatt, Matthew; Pai, Dave A.; Haeusler, Rebecca A.; Wozniak, Glenn G.; Good, Paul D.; Miller, Erin L.; McLeod, Ian X.; Yates, John R.; Hopper, Anita K.; Engelke, David R.

    2013-01-01

    This study provides new insight into the requirements for observed silencing of RNA polymerase II transcription near tRNA genes. Mod5 is a conserved tRNA modification enzyme found in both the nucleus and cytoplasm, although it only modifies tRNAs in the cytoplasm. Mod5 is required for silencing near tRNA genes, and it is bound to both nuclear tRNA gene complexes and nuclear pre-tRNA transcripts. Possible mechanisms for this form of RNA-mediated transcriptional silencing are discussed.

  13. Identification of a mutation in the CHAT gene of Old Danish Pointing Dogs affected with congenital myasthenic syndrome

    DEFF Research Database (Denmark)

    Proschowsky, Helle Friis; Flagstad, Annette; Cirera, Susanna; Jørgensen, Claus Bøttcher; Fredholm, Merete

    2007-01-01

    The presence of a recessive inherited muscle disease in Old Danish Pointing Dogs has been well known for years. Comparisons of this disease with myasthenic diseases of other dog breeds and humans have pointed toward a defect in the synthesis of the neurotransmitter acetylcholine possibly due to...... decreased activity of the enzyme choline acetyltransferase. We sequenced exons 5-18 of the gene encoding choline acetyltransferase (CHAT) in 2 affected and 2 unaffected dogs and identified a G to A missense mutation in exon 6. The mutation causes a valine to methionine substitution and segregates in...

  14. Identification of Common Regulators of Genes in Co-Expression Networks Affecting Muscle and Meat Properties

    OpenAIRE

    Siriluck Ponsuksili; Puntita Siengdee; Yang Du; Nares Trakooljul; Eduard Murani; Manfred Schwerin; Klaus Wimmers

    2015-01-01

    Understanding the genetic contributions behind skeletal muscle composition and metabolism is of great interest in medicine and agriculture. Attempts to dissect these complex traits combine genome-wide genotyping, expression data analyses and network analyses. Weighted gene co-expression network analysis (WGCNA) groups genes into modules based on patterns of co-expression, which can be linked to phenotypes by correlation analysis of trait values and the module eigengenes, i.e. the first princi...

  15. Identification of Novel Mutations in HEXA Gene in Children Affected with Tay Sachs Disease from India

    OpenAIRE

    Mehul Mistri; Tamhankar, Parag M; Frenny Sheth; Daksha Sanghavi; Pratima Kondurkar; Swapnil Patil; Susan Idicula-Thomas; Sarita Gupta; Jayesh Sheth

    2012-01-01

    Tay Sachs disease (TSD) is a neurodegenerative disorder due to β-hexosaminidase A deficiency caused by mutations in the HEXA gene. The mutations leading to Tay Sachs disease in India are yet unknown. We aimed to determine mutations leading to TSD in India by complete sequencing of the HEXA gene. The clinical inclusion criteria included neuroregression, seizures, exaggerated startle reflex, macrocephaly, cherry red spot on fundus examination and spasticity. Neuroimaging criteria included thala...

  16. Enrichment of SNPs in Functional Categories Reveals Genes Affecting Complex Traits.

    Science.gov (United States)

    Zhao, Huiying; Fan, Dongsheng; Nyholt, Dale R; Yang, Yuedong

    2016-08-01

    Genome-wide association studies (GWAS) have indicated potential to identify heritability of common complex phenotypes, but traditional approaches have limited ability to detect hiding signals because single SNP has weak effect size accounting for only a small fraction of overall phenotypic variations. To improve the power of GWAS, methods have been developed to identify truly associated genes by jointly testing effects of all SNPs. However, equally considering all SNPs within a gene might dilute strong signals of SNPs in real functional categories. Here, we observed a consistent pattern on enrichment of significant SNPs in eight functional categories across six phenotypes, with the highest enrichment in coding and both UTR regions while the lowest enrichment in the intron. Based on the pattern of SNP enrichment in functional categories, we developed a new approach for detecting gene associations on traits (DGAT) by selecting the most significant functional category and then using SNPs within it to assess gene associations. The method was found to be robust in type I error rate on simulated data, and to have mostly higher power in detecting associated genes for three different diseases than other methods. Further analysis indicated ability of the DGAT to detect novel genes. The DGAT is available by http://sparks-lab.org/server/DGAT. PMID:27113629

  17. Identification of genes affecting expression of phosphoglycerate kinase on the surface of group B streptococcus.

    Science.gov (United States)

    Boone, Tyler J; Tyrrell, Gregory J

    2012-04-01

    Group B streptococcal phosphoglycerate kinase (GBS-PGK), a glycolytic enzyme, has previously been identified on the surface of group B streptococcus (GBS). To identify genes involved in surface expression of GBS-PGK, we performed Tn917 mutagenesis followed by quantification of PGK expressed on the GBS surface. Tn917 mutagenesis identified 4 genes (sag0966, sag0979, sag0980, and sag1003) that when disrupted, alter expression of GBS-PGK on the bacterial surface. Three of the identified genes were localized to a region of the GBS genome containing genes (sag0973-sag0977) predicted to be involved in resistance to antimicrobial peptides. One mutant isolate, designated NCS13sag1003::Tn917, was found to have increased sensitivity to the antimicrobial peptides bacitracin and nisin. In addition, all of the mutant strains assayed were found to have decreased β-hemolysis. In conclusion, we have identified genes involved in surface expression of GBS-PGK. These genes also appear to be involved in antimicrobial peptide resistance and regulate expression of the β-hemolysin. PMID:22444251

  18. The luxS Gene of Streptococcus pyogenes Regulates Expression of Genes That Affect Internalization by Epithelial Cells

    OpenAIRE

    Marouni, Mehran J.; Sela, Shlomo

    2003-01-01

    The gram-positive pathogen Streptococcus pyogenes was recently reported to possess a homologue of the luxS gene that is responsible for the production of autoinducer 2, which participates in quorum sensing of both gram-positive and gram-negative bacteria. To test the effect of LuxS on streptococcal internalization, a LuxS mutant was constructed in strain SP268, an invasive M3 serotype. Functional analysis of the mutant revealed that it was internalized by HEp-2 cells with higher efficiency th...

  19. Sequencing and transcriptional analysis of the streptococcus thermophilus histamine biosynthesis gene cluster: Factors that affect differential hdca expression

    OpenAIRE

    Calles-Enríquez, Marina; Hjort Eriksen, Benjamin; Skov Andersen, Pia; Rattray, F.; Johansen, Annette H.; Fernández García, María; Ladero Losada, Víctor Manuel; Álvarez González, Miguel Ángel

    2010-01-01

    Histamine, a toxic compound that is formed by the decarboxylation of histidine through the action of microbial decarboxylases, can accumulate in fermented food products. From a total of 69 Streptococcus thermophilus strains screened, two strains, CHCC1524 and CHCC6483, showed the capacity to produce histamine. The hdc clusters of S. thermophilus CHCC1524 and CHCC6483 were sequenced, and the factors that affect histamine biosynthesis and histidine-decarboxylating gene (hdcA) expression were st...

  20. Subinhibitory concentrations of perilla oil affect the expression of secreted virulence factor genes in Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Jiazhang Qiu

    Full Text Available BACKGROUND: The pathogenicity of staphylococcus aureus is dependent largely upon its ability to secrete a number of virulence factors, therefore, anti-virulence strategy to combat S. aureus-mediated infections is now gaining great interest. It is widely recognized that some plant essential oils could affect the production of staphylococcal exotoxins when used at subinhibitory concentrations. Perilla [Perilla frutescens (L. Britton], a natural medicine found in eastern Asia, is primarily used as both a medicinal and culinary herb. Its essential oil (perilla oil has been previously demonstrated to be active against S. aureus. However, there are no data on the influence of perilla oil on the production of S. aureus exotoxins. METHODOLOGY/PRINCIPAL FINDINGS: A broth microdilution method was used to determine the minimum inhibitory concentrations (MICs of perilla oil against S. aureus strains. Hemolysis, tumour necrosis factor (TNF release, Western blot, and real-time RT-PCR assays were performed to evaluate the effects of subinhibitory concentrations of perilla oil on exotoxins production in S. aureus. The data presented here show that perilla oil dose-dependently decreased the production of α-toxin, enterotoxins A and B (the major staphylococcal enterotoxins, and toxic shock syndrome toxin 1 (TSST-1 in both methicillin-sensitive S. aureus (MSSA and methicillin-resistant S. aureus (MRSA. CONCLUSIONS/SIGNIFICANCE: The production of α-toxin, SEA, SEB, and TSST-1 in S. aureus was decreased by perilla oil. These data suggest that perilla oil may be useful for the treatment of S. aureus infections when used in combination with β-lactam antibiotics, which can increase exotoxins production by S. aureus at subinhibitory concentrations. Furthermore, perilla oil could be rationally applied in food systems as a novel food preservative both to inhibit the growth of S. aureus and to repress the production of exotoxins, particularly staphylococcal enterotoxins.

  1. Mutations in Exons of the CYP17- Ⅱ Gene Affect Sex Steroid Concentration in Male Japanese Flounder (Paralichthys olivaceus)

    Institute of Scientific and Technical Information of China (English)

    MA Ruiqin; HU Jian; HAN Weiguo; ZHANG Jianan; WANG Qingqing; YUAN Yuren; LIU Qun; HE Feng; WEN Haishen; LI Jifang; SHI Bao; SHI Dan; LIU Miao; MU Weijie; ZHANG Yuanqing

    2012-01-01

    As a specific gene of fish,cytochrome P450c 17-Ⅱ (CYP17-Ⅱ) gene plays a key role in the growth,development and reproduction level of fish.In this study,the single-stranded conformational polymorphism (SSCP) technique was used to characterize polymorphisms within the coding region of CYP17- Ⅱ gene in a population of 75 male Japanese flounder (Paralichthys olivaceus).Three single nucleotide polymorphisms (SNPs) were identified in CYP17-Ⅱ gene of Japanese flounder.They were c.G594A (p.G188R),c.G939A and c.G1502A (p.G490D).SNP1 (c.G594A),located in exon 4 of CYP17-Ⅱ gene,was significantly associated with gonadosomatic index (GSI).Individuals with genotype GG of SNP1 had significantly lower GSI (P<0.05) than those with genotype AA or AG.SNP2 (c.G939A) located at the CpG island of CYP17-Ⅱ gene.The mutation changed the methylation of exon 6.Individuals with genotype AA of SNP2 had significantly lower serum testosterone (T) level and hepatosomatic index (HSI) compared to those with genotype GG.The results suggested that SNP2 could influence the reproductive endocrine of male Japanese flounder.However,the SNP3 (c.G 1502A) located in exon 9 did not affect the four measured reproductive traits.This study showed that CYP17-Ⅱgene could be a potentially useful candidate gene for the research of genetic breeding and physiological aspects of Japanese flounder.

  2. Regulation of Drug Disposition Gene Expression in Pregnant Mice with Car Receptor Activation

    Directory of Open Access Journals (Sweden)

    Amanda S. Bright

    2016-07-01

    Full Text Available More than half of pregnant women use prescription medications in order to maintain both maternal and fetal health. The constitutive androstane receptor (Car critically affects the disposition of chemicals by regulating the transcription of genes encoding metabolic enzymes and transporters. However, the effects of Car activation on chemical disposition during pregnancy are unclear. This study aims to determine the degree to which pregnancy alters the expression of drug metabolizing enzymes and transporters in response to the pharmacological activation of Car. To test this, pregnant C57BL/6 mice were administered IP doses of vehicle, or a potent Car agonist, TCPOBOP, on gestation days 14, 15 and 16. Hepatic mRNA and protein expression of Car target genes (phase I, II and transporters were quantified on gestation day 17. Pregnancy-related changes, such as induction of Cyp2b10, Ugt1a1 and Sult1a1 and repression of Ugt1a6, Gsta1, Gsta2 and Mrp6, were observed. Interestingly, the induction of Cyp2b10, Gsta1, Gsta2 and Mrp2–4 mRNAs by TCPOBOP was attenuated in maternal livers suggesting that Car activation is impeded by the biochemical and/or physiological changes that occur during gestation. Taken together, these findings suggest that pregnancy and pharmacological activation of Car can differentially regulate the expression of drug metabolism and transport genes.

  3. THE STUDY OF FACTORS AFFECTING THE ACTIVITY OF MEAT ANTIOXIDANT SYSTEM

    OpenAIRE

    Patrakova, I.; Gurinovich, G.

    2015-01-01

    Oxidation of lipids and myoglobin in raw meat are interrelated processes that affect the overall meat quality. The intensity of oxidation processes in meat raw material is regulated by its own antioxidant system (catalase, peroxidase, glutathione, etc.), the activity of which should be considered in the development of new technological solutions. Oxidation of lipids and myoglobin, directly affect the quality and safety of meat products, and reducing of the intensity of these processes contrib...

  4. Genome-wide functional screen identifies a compendium of genes affecting sensitivity to tamoxifen

    Science.gov (United States)

    Mendes-Pereira, Ana M.; Sims, David; Dexter, Tim; Fenwick, Kerry; Assiotis, Ioannis; Kozarewa, Iwanka; Mitsopoulos, Costas; Hakas, Jarle; Zvelebil, Marketa; Lord, Christopher J.; Ashworth, Alan

    2012-01-01

    Therapies that target estrogen signaling have made a very considerable contribution to reducing mortality from breast cancer. However, resistance to tamoxifen remains a major clinical problem. Here we have used a genome-wide functional profiling approach to identify multiple genes that confer resistance or sensitivity to tamoxifen. Combining whole-genome shRNA screening with massively parallel sequencing, we have profiled the impact of more than 56,670 RNA interference reagents targeting 16,487 genes on the cellular response to tamoxifen. This screen, along with subsequent validation experiments, identifies a compendium of genes whose silencing causes tamoxifen resistance (including BAP1, CLPP, GPRC5D, NAE1, NF1, NIPBL, NSD1, RAD21, RARG, SMC3, and UBA3) and also a set of genes whose silencing causes sensitivity to this endocrine agent (C10orf72, C15orf55/NUT, EDF1, ING5, KRAS, NOC3L, PPP1R15B, RRAS2, TMPRSS2, and TPM4). Multiple individual genes, including NF1, a regulator of RAS signaling, also correlate with clinical outcome after tamoxifen treatment. PMID:21482774

  5. Thyrotropin releasing hormone (TRH) affects gene expression in pancreatic beta-cells.

    Science.gov (United States)

    Luo, LuGuang; Yano, Naohiro

    2005-01-01

    Thyrotropin-releasing hormone (TRH), originally identified as a hypothalamic hormone, is expressed in the pancreas. The peptide has been shown to control glycemia, although the role of TRH in the pancreas has not yet been clarified. In quiescent INS-1 cells (rat immortalized beta-cell line), 200 nM of TRH for 24 hours significantly increased insulin levels in the culture medium and in cell extracts. In studies with gene array technology where about 60% to 75% of the 1081 genes were detected, TRH significantly stimulated multiple groups of gene expressions, including G-protein-coupled receptor and related signaling, such as insulin secretion, endoplasmic reticulum traffic mechanisms, cell-cycle regulators, protein turnover factors, DNA recombination, and growth factors. Noticeably, TRH suppressed the genes of proapoptotic Bcl-2-associated protein X, Bcl-xL/ Bcl-2-associated death promoter, and Fas. The multiple gene expressions in response to TRH in pancreatic cells suggest that the changed microenvironment brought about by TRH may influence beta-cellfunction. PMID:16392621

  6. ER stress-inducible factor CHOP affects the expression of hepcidin by modulating C/EBPalpha activity.

    Directory of Open Access Journals (Sweden)

    Susana J Oliveira

    Full Text Available Endoplasmic reticulum (ER stress induces a complex network of pathways collectively termed the unfolded protein response (UPR. The clarification of these pathways has linked the UPR to the regulation of several physiological processes. However, its crosstalk with cellular iron metabolism remains unclear, which prompted us to examine whether an UPR affects the expression of relevant iron-related genes. For that purpose, the HepG2 cell line was used as model and the UPR was activated by dithiothreitol (DTT and homocysteine (Hcys. Here, we report that hepcidin, a liver secreted hormone that shepherds iron homeostasis, exhibits a biphasic pattern of expression following UPR activation: its levels decreased in an early stage and increased with the maintenance of the stress response. Furthermore, we show that immediately after stressing the ER, the stress-inducible transcription factor CHOP depletes C/EBPalpha protein pool, which may in turn impact on the activation of hepcidin transcription. In the later period of the UPR, CHOP levels decreased progressively, enhancing C/EBPalpha-binding to the hepcidin promoter. In addition, analysis of ferroportin and ferritin H revealed that the transcript levels of these iron-genes are increased by the UPR signaling pathways. Taken together, our findings suggest that the UPR can have a broad impact on the maintenance of cellular iron homeostasis.

  7. Retinoic acid differentially affects in vitro proliferation, differentiation and mineralization of two fish bone-derived cell lines: different gene expression of nuclear receptors and ECM proteins.

    Science.gov (United States)

    Fernández, Ignacio; Tiago, Daniel M; Laizé, Vincent; Leonor Cancela, M; Gisbert, Enric

    2014-03-01

    Retinoic acid (RA), the main active metabolite of vitamin A, regulates vertebrate morphogenesis through signaling pathways not yet fully understood. Such process involves the specific activation of retinoic acid and retinoid X receptors (RARs and RXRs), which are nuclear receptors of the steroid/thyroid hormone receptor superfamily. Teleost fish are suitable models to study vertebrate development, such as skeletogenesis. Cell systems capable of in vitro mineralization have been developed for several fish species and may provide new insights into the specific cellular and molecular events related to vitamin A activity in bone, complementary to in vivo studies. This work aims at investigating the in vitro effects of RA (0.5 and 12.5 μM) on proliferation, differentiation and extracellular matrix (ECM) mineralization of two gilthead seabream bone-derived cell lines (VSa13 and VSa16), and at identifying molecular targets of its action through gene expression analysis. RA induced phenotypic changes and cellular proliferation was inhibited in both cell lines in a cell type-dependent manner (36-59% in VSa13 and 17-46% in VSa16 cells). While RA stimulated mineral deposition in VSa13 cell cultures (50-62% stimulation), it inhibited the mineralization of extracellular matrix in VSa16 cells (11-57% inhibition). Expression of hormone receptor genes (rars and rxrs), and extracellular matrix-related genes such as matrix and bone Gla proteins (mgp and bglap), osteopontin (spp1) and type I collagen (col1a1) were differentially regulated upon exposure to RA in proliferating, differentiating and mineralizing cultures of VSa13 and VSa16 cells. Altogether, our results show: (i) RA affects proliferative and mineralogenic activities in two fish skeletal cell types and (ii) that during phenotype transitions, specific RA nuclear receptors and bone-related genes are differentially expressed in a cell type-dependent manner. PMID:24291400

  8. Affective response to a loved one's pain: insula activity as a function of individual differences.

    Directory of Open Access Journals (Sweden)

    Viridiana Mazzola

    Full Text Available Individual variability in emotion processing may be associated with genetic variation as well as with psychological predispositions such as dispositional affect styles. Our previous fMRI study demonstrated that amygdala reactivity was independently predicted by affective-cognitive styles (phobic prone or eating disorders prone and genotype of the serotonin transporter in a discrimination task of fearful facial expressions. Since the insula is associated with the subjective evaluation of bodily states and is involved in human feelings, we explored whether its activity could also vary in function of individual differences. In the present fMRI study, the association between dispositional affects and insula reactivity has been examined in two groups of healthy participants categorized according to affective-cognitive styles (phobic prone or eating disorders prone. Images of the faces of partners and strangers, in both painful and neutral situations, were used as visual stimuli. Interaction analyses indicate significantly different activations in the two groups in reaction to a loved one's pain: the phobic prone group exhibited greater activation in the left posterior insula. These results demonstrate that affective-cognitive style is associated with insula activity in pain empathy processing, suggesting a greater involvement of the insula in feelings for a certain cohort of people. In the mapping of individual differences, these results shed new light on variability in neural networks of emotion.

  9. Gene 33/Mig-6, a Transcriptionally Inducible Adapter Protein That Binds GTP-Cdc42 and Activates SAPK/JNK*

    Science.gov (United States)

    Makkinje, Anthony; Quinn, Deborah A.; Chen, Ang; Cadilla, Carmen L.; Force, Thomas; Bonventre, Joseph V.; Kyriakis, John M.

    2013-01-01

    Chronic stresses, including the mechanical strain caused by hypertension or excess pulmonary ventilation pressure, lead to important clinical consequences, including hypertrophy and acute respiratory distress syndrome. Pathologic hypertrophy contributes to decreased organ function and, ultimately, organ failure; and cardiac and diabetic renal hypertrophy are major causes of morbidity and morality in the developed world. Likewise, acute respiratory distress syndrome is a serious potential side effect of mechanical pulmonary ventilation. Whereas the deleterious effects of chronic stress are well established, the molecular mechanisms by which these stresses affect cell function are still poorly characterized. gene 33 (also called mitogen-inducible gene-6, mig-6) is an immediate early gene that is transcriptionally induced by a divergent array of extra-cellular stimuli. The physiologic function of Gene 33 is unknown. Here we show that gene 33 mRNA levels increase sharply in response to a set of commonly occurring chronic stress stimuli: mechanical strain, vasoactive peptides, and diabetic nephropathy. Induction of gene 33 requires the stress-activated protein kinases (SAPKs)/c-Jun NH2-terminal kinases. This expression pattern suggests that gene 33 is a potential marker for diabetic nephropathy and other pathologic responses to persistent sublethal stress. The structure of Gene 33 indicates an adapter protein capable of binding monomeric GTPases of the Rho subfamily. Consistent with this, Gene 33 interacts in vivo and, in a GTP-dependent manner, in vitro with Cdc42Hs; and transient expression of Gene 33 results in the selective activation of the SAPKs. These results imply a reciprocal, positive feedback relationship between Gene 33 expression and SAPK activation. Expression of Gene 33 at sufficient levels may enable a compensatory reprogramming of cellular function in response to chronic stress, which may have pathophysiological consequences. PMID:10749885

  10. Environmental Conditions Influence Induction of Key ABC-Transporter Genes Affecting Glyphosate Resistance Mechanism in Conyza canadensis

    Science.gov (United States)

    Tani, Eleni; Chachalis, Demosthenis; Travlos, Ilias S.; Bilalis, Dimitrios

    2016-01-01

    Conyza canadensis has been reported to be the most frequent weed species that evolved resistance to glyphosate in various parts of the world. The objective of the present study was to investigate the effect of environmental conditions (temperature and light) on the expression levels of the EPSPS gene and two major ABC-transporter genes (M10 and M11) on glyphosate susceptible (GS) and glyphosate resistant (GR) horseweed populations, collected from several regions across Greece. Real-time PCR was conducted to determine the expression level of the aforementioned genes when glyphosate was applied at normal (1×; 533 g·a.e.·ha−1) and high rates (4×, 8×), measured at an early one day after treatment (DAT) and a later stage (four DAT) of expression. Plants were exposed to light or dark conditions, at three temperature regimes (8, 25, 35 °C). GR plants were made sensitive when exposed to 8 °C with light; those sensitized plants behaved biochemically (shikimate accumulation) and molecularly (expression of EPSPS and ABC-genes) like the GS plants. Results from the current study show the direct link between the environmental conditions and the induction level of the above key genes that likely affect the efficiency of the proposed mechanism of glyphosate resistance. PMID:27104532

  11. Environmental Conditions Influence Induction of Key ABC-Transporter Genes Affecting Glyphosate Resistance Mechanism in Conyza canadensis.

    Science.gov (United States)

    Tani, Eleni; Chachalis, Demosthenis; Travlos, Ilias S; Bilalis, Dimitrios

    2016-01-01

    Conyza canadensis has been reported to be the most frequent weed species that evolved resistance to glyphosate in various parts of the world. The objective of the present study was to investigate the effect of environmental conditions (temperature and light) on the expression levels of the EPSPS gene and two major ABC-transporter genes (M10 and M11) on glyphosate susceptible (GS) and glyphosate resistant (GR) horseweed populations, collected from several regions across Greece. Real-time PCR was conducted to determine the expression level of the aforementioned genes when glyphosate was applied at normal (1×; 533 g·a.e.·ha(-1)) and high rates (4×, 8×), measured at an early one day after treatment (DAT) and a later stage (four DAT) of expression. Plants were exposed to light or dark conditions, at three temperature regimes (8, 25, 35 °C). GR plants were made sensitive when exposed to 8 °C with light; those sensitized plants behaved biochemically (shikimate accumulation) and molecularly (expression of EPSPS and ABC-genes) like the GS plants. Results from the current study show the direct link between the environmental conditions and the induction level of the above key genes that likely affect the efficiency of the proposed mechanism of glyphosate resistance. PMID:27104532

  12. New Target Genes for the Peroxisome Proliferator-Activated Receptor-γ (PPARγ Antitumour Activity: Perspectives from the Insulin Receptor

    Directory of Open Access Journals (Sweden)

    Daniela P. Foti

    2009-01-01

    Full Text Available The insulin receptor (IR plays a crucial role in mediating the metabolic and proliferative functions triggered by the peptide hormone insulin. There is considerable evidence that abnormalities in both IR expression and function may account for malignant transformation and tumour progression in some human neoplasias, including breast cancer. PPARγ is a ligand-activated, nuclear hormone receptor implicated in many pleiotropic biological functions related to cell survival and proliferation. In the last decade, PPARγ agonists—besides their known action and clinical use as insulin sensitizers—have proved to display a wide range of antineoplastic effects in cells and tissues expressing PPARγ, leading to intensive preclinical research in oncology. PPARγ and activators affect tumours by different mechanisms, involving cell proliferation and differentiation, apoptosis, antiinflammatory, and antiangiogenic effects. We recently provided evidence that PPARγ and agonists inhibit IR by non canonical, DNA-independent mechanisms affecting IR gene transcription. We conclude that IR may be considered a new PPARγ “target” gene, supporting a potential use of PPARγ agonists as antiproliferative agents in selected neoplastic tissues that overexpress the IR.

  13. Silencing of genes involved in Anaplasma marginale-tick interactions affects the pathogen developmental cycle in Dermacentor variabilis

    Directory of Open Access Journals (Sweden)

    Almazán Consuelo

    2009-07-01

    Full Text Available Abstract Background The cattle pathogen, Anaplasma marginale, undergoes a developmental cycle in ticks that begins in gut cells. Transmission to cattle occurs from salivary glands during a second tick feeding. At each site of development two forms of A. marginale (reticulated and dense occur within a parasitophorous vacuole in the host cell cytoplasm. However, the role of tick genes in pathogen development is unknown. Four genes, found in previous studies to be differentially expressed in Dermacentor variabilis ticks in response to infection with A. marginale, were silenced by RNA interference (RNAi to determine the effect of silencing on the A. marginale developmental cycle. These four genes encoded for putative glutathione S-transferase (GST, salivary selenoprotein M (SelM, H+ transporting lysosomal vacuolar proton pump (vATPase and subolesin. Results The impact of gene knockdown on A. marginale tick infections, both after acquiring infection and after a second transmission feeding, was determined and studied by light microscopy. Silencing of these genes had a different impact on A. marginale development in different tick tissues by affecting infection levels, the densities of colonies containing reticulated or dense forms and tissue morphology. Salivary gland infections were not seen in any of the gene-silenced ticks, raising the question of whether these ticks were able to transmit the pathogen. Conclusion The results of this RNAi and light microscopic analyses of tick tissues infected with A. marginale after the silencing of genes functionally important for pathogen development suggest a role for these molecules during pathogen life cycle in ticks.

  14. JMJD2A attenuation affects cell cycle and tumourigenic inflammatory gene regulation in lipopolysaccharide stimulated neuroectodermal stem cells.

    Science.gov (United States)

    Das, Amitabh; Chai, Jin Choul; Jung, Kyoung Hwa; Das, Nando Dulal; Kang, Sung Chul; Lee, Young Seek; Seo, Hyemyung; Chai, Young Gyu

    2014-11-01

    JMJD2A is a lysine trimethyl-specific histone demethylase that is highly expressed in a variety of tumours. The role of JMJD2A in tumour progression remains unclear. The objectives of this study were to identify JMJD2A-regulated genes and understand the function of JMJD2A in p53-null neuroectodermal stem cells (p53(-/-) NE-4Cs). We determined the effect of LPS as a model of inflammation in p53(-/-) NE-4Cs and investigated whether the epigenetic modifier JMJD2A alter the expression of tumourigenic inflammatory genes. Global gene expression was measured in JMJD2A knockdown (kd) p53(-/-) NE-4Cs and in LPS-stimulated JMJD2A-kd p53(-/-) NE-4C cells. JMJD2A attenuation significantly down-regulated genes were Cdca2, Ccnd2, Ccnd1, Crebbp, IL6rα, and Stat3 related with cell cycle, proliferation, and inflammatory-disease responses. Importantly, some tumour-suppressor genes including Dapk3, Timp2 and TFPI were significantly up-regulated but were not affected by silencing of the JMJD2B. Furthermore, we confirmed the attenuation of JMJD2A also down-regulated Cdca2, Ccnd2, Crebbp, and Rest in primary NSCs isolated from the forebrains of E15 embryos of C57/BL6J mice with effective p53 inhibitor pifithrin-α (PFT-α). Transcription factor (TF) motif analysis revealed known binding patterns for CDC5, MYC, and CREB, as well as three novel motifs in JMJD2A-regulated genes. IPA established molecular networks. The molecular network signatures and functional gene-expression profiling data from this study warrants further investigation as an effective therapeutic target, and studies to elucidate the molecular mechanism of JMJD2A-kd-dependent effects in neuroectodermal stem cells should be performed. PMID:25193078

  15. Behavioral meaningful opioidergic stimulation activates kappa receptor gene expression

    Directory of Open Access Journals (Sweden)

    E. Teodorov

    2012-10-01

    Full Text Available The periaqueductal gray (PAG has been reported to be a location for opioid regulation of pain and a potential site for behavioral selection in females. Opioid-mediated behavioral and physiological responses differ according to the activity of opioid receptor subtypes. The present study investigated the effects of the peripheral injection of the kappa-opioid receptor agonist U69593 into the dorsal subcutaneous region of animals on maternal behavior and on Oprk1 gene activity in the PAG of female rats. Female Wistar rats weighing 200-250 g at the beginning of the study were randomly divided into 2 groups for maternal behavior and gene expression experiments. On day 5, pups were removed at 7:00 am and placed in another home cage that was distant from their mother. Thirty minutes after removing the pups, the dams were treated with U69593 (0.15 mg/kg, sc or 0.9% saline (up to 1 mL/kg and after 30 min were evaluated in the maternal behavior test. Latencies in seconds for pup retrieval, grouping, crouching, and full maternal behavior were scored. The results showed that U69593 administration inhibited maternal behavior (P < 0.05 because a lower percentage of kappa group dams showed retrieval of first pup, retrieving all pups, grouping, crouching and displaying full maternal behavior compared to the saline group. Opioid gene expression was evaluated using real-time reverse-transcription polymerase chain reaction (RT-PCR. A single injection of U69593 increased Oprk1 PAG expression in both virgin (P < 0.05 and lactating female rats (P < 0.01, with no significant effect on Oprm1 or Oprd1 gene activity. Thus, the expression of kappa-opioid receptors in the PAG may be modulated by single opioid receptor stimulation and behavioral meaningful opioidergic transmission in the adult female might occur simultaneously to specific changes in gene expression of kappa-opioid receptor subtype. This is yet another alert for the complex role of the opioid system in

  16. Behavioral meaningful opioidergic stimulation activates kappa receptor gene expression

    International Nuclear Information System (INIS)

    The periaqueductal gray (PAG) has been reported to be a location for opioid regulation of pain and a potential site for behavioral selection in females. Opioid-mediated behavioral and physiological responses differ according to the activity of opioid receptor subtypes. The present study investigated the effects of the peripheral injection of the kappa-opioid receptor agonist U69593 into the dorsal subcutaneous region of animals on maternal behavior and on Oprk1 gene activity in the PAG of female rats. Female Wistar rats weighing 200-250 g at the beginning of the study were randomly divided into 2 groups for maternal behavior and gene expression experiments. On day 5, pups were removed at 7:00 am and placed in another home cage that was distant from their mother. Thirty minutes after removing the pups, the dams were treated with U69593 (0.15 mg/kg, sc) or 0.9% saline (up to 1 mL/kg) and after 30 min were evaluated in the maternal behavior test. Latencies in seconds for pup retrieval, grouping, crouching, and full maternal behavior were scored. The results showed that U69593 administration inhibited maternal behavior (P < 0.05) because a lower percentage of U69593 group dams showed retrieval of first pup, retrieving all pups, grouping, crouching and displaying full maternal behavior compared to the saline group. Opioid gene expression was evaluated using real-time reverse-transcription polymerase chain reaction (RT-PCR). A single injection of U69593 increased Oprk1 PAG expression in both virgin (P < 0.05) and lactating female rats (P < 0.01), with no significant effect on Oprm1 or Oprd1 gene activity. Thus, the expression of kappa-opioid receptors in the PAG may be modulated by single opioid receptor stimulation and behavioral meaningful opioidergic transmission in the adult female might occur simultaneously to specific changes in gene expression of kappa-opioid receptor subtype. This is yet another alert for the complex role of the opioid system in female

  17. Behavioral meaningful opioidergic stimulation activates kappa receptor gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Teodorov, E. [Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Paulo, SP (Brazil); Ferrari, M.F.R. [Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP (Brazil); Fior-Chadi, D.R. [Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP (Brazil); Camarini, R. [Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP (Brazil); Felício, L.F. [Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP (Brazil)

    2012-06-01

    The periaqueductal gray (PAG) has been reported to be a location for opioid regulation of pain and a potential site for behavioral selection in females. Opioid-mediated behavioral and physiological responses differ according to the activity of opioid receptor subtypes. The present study investigated the effects of the peripheral injection of the kappa-opioid receptor agonist U69593 into the dorsal subcutaneous region of animals on maternal behavior and on Oprk1 gene activity in the PAG of female rats. Female Wistar rats weighing 200-250 g at the beginning of the study were randomly divided into 2 groups for maternal behavior and gene expression experiments. On day 5, pups were removed at 7:00 am and placed in another home cage that was distant from their mother. Thirty minutes after removing the pups, the dams were treated with U69593 (0.15 mg/kg, sc) or 0.9% saline (up to 1 mL/kg) and after 30 min were evaluated in the maternal behavior test. Latencies in seconds for pup retrieval, grouping, crouching, and full maternal behavior were scored. The results showed that U69593 administration inhibited maternal behavior (P < 0.05) because a lower percentage of U69593 group dams showed retrieval of first pup, retrieving all pups, grouping, crouching and displaying full maternal behavior compared to the saline group. Opioid gene expression was evaluated using real-time reverse-transcription polymerase chain reaction (RT-PCR). A single injection of U69593 increased Oprk1 PAG expression in both virgin (P < 0.05) and lactating female rats (P < 0.01), with no significant effect on Oprm1 or Oprd1 gene activity. Thus, the expression of kappa-opioid receptors in the PAG may be modulated by single opioid receptor stimulation and behavioral meaningful opioidergic transmission in the adult female might occur simultaneously to specific changes in gene expression of kappa-opioid receptor subtype. This is yet another alert for the complex role of the opioid system in female

  18. In vivo gene delivery of urokinase-type plasminogen activator with regulatable lentivirus induces behavioural changes in chronic cocaine administration

    OpenAIRE

    Bahi, Amine; Boyer, Frederic; Gumy, Christèle; Kafri, Tal; Dreyer, Jean-Luc

    2005-01-01

    Serine proteases play a key function in extracellular processes affecting central nervous system plasticity. Recently, the role of extracellular proteolytic processes in regulating synaptic structure and function has been described. However, to date direct evidence linking extracellular serine protease activity with drug-related behavioural changes has not been documented. Importantly, in a screening for genes induced after drug treatment we found that urokinase plasminogen-type activator (uP...

  19. An indication of major genes affecting hip and elbow dysplasia in four Finnish dog populations

    NARCIS (Netherlands)

    Maki, K.; Janss, L.L.G.; Groen, A.F.; Liinamo, A.E.; Ojala, M.

    2004-01-01

    The aim of the study was to assess the possible existence of major genes influencing hip and elbow dysplasia in four dog populations. A Bayesian segregation analysis was performed separately on each population. In total, 34 140 dogs were included in the data set. Data were analysed with both a polyg

  20. Integration of transcriptome and whole genomic resequencing data to identify key genes affecting swine fat deposition.

    Directory of Open Access Journals (Sweden)

    Kai Xing

    Full Text Available Fat deposition is highly correlated with the growth, meat quality, reproductive performance and immunity of pigs. Fatty acid synthesis takes place mainly in the adipose tissue of pigs; therefore, in this study, a high-throughput massively parallel sequencing approach was used to generate adipose tissue transcriptomes from two groups of Songliao black pigs that had opposite backfat thickness phenotypes. The total number of paired-end reads produced for each sample was in the range of 39.29-49.36 millions. Approximately 188 genes were differentially expressed in adipose tissue and were enriched for metabolic processes, such as fatty acid biosynthesis, lipid synthesis, metabolism of fatty acids, etinol, caffeine and arachidonic acid and immunity. Additionally, many genetic variations were detected between the two groups through pooled whole-genome resequencing. Integration of transcriptome and whole-genome resequencing data revealed important genomic variations among the differentially expressed genes for fat deposition, for example, the lipogenic genes. Further studies are required to investigate the roles of candidate genes in fat deposition to improve pig breeding programs.

  1. Cognitive Functioning in Affected Sibling Pairs with ADHD: Familial Clustering and Dopamine Genes

    Science.gov (United States)

    Loo, Sandra K.; Rich, Erika Carpenter; Ishii, Janeen; McGough, James; McCracken, James; Nelson, Stanley; Smalley, Susan L.

    2008-01-01

    Background: This paper examines familiality and candidate gene associations of cognitive measures as potential endophenotypes in attention-deficit/hyperactivity disorder (ADHD). Methods: The sample consists of 540 participants, aged 6 to 18, who were diagnosed with ADHD from 251 families recruited for a larger genetic study of ADHD. All members of…

  2. Sheeppox virus kelch-like gene SPPV-019 affects virus virulence

    Science.gov (United States)

    Sheeppox virus (SPPV), a member of the Capripoxvirus genus of the Poxviridae, is the etiologic agent of a significant disease of sheep in the developing world. Genomic analysis of pathogenic and vaccine capripoxviruses identified genes with potential roles in virulence and host-range, including thr...

  3. Salmonella induces prominent gene expression in rat colon, which is affected by dietary fructo-oligosaccharides

    NARCIS (Netherlands)

    Rodenburg, G.C.H.; Keijer, J.; Kramer, E.H.M.; Roosing, S.; Vink, C.; Katan, M.B.; Meer, van der R.; Bovee-Oudenhoven, I.M.J.

    2007-01-01

    Background Salmonella enteritidis is suggested to translocate in the small intestine. In vivo it induces gene expression changes in the ileal mucosa and Peyer's patches. Stimulation of Salmonella translocation by dietary prebiotics fermented in colon suggests involvement of the colon as well. Howeve

  4. Allelic Dropout in the ENG Gene, Affecting the Results of Genetic Testing in Hereditary Hemorrhagic Telangiectasia

    DEFF Research Database (Denmark)

    Tørring, Pernille M; Kjeldsen, A.D.; Ousager, L.B.;

    2012-01-01

    Background: Hereditary hemorrhagic telangiectasia (HHT) is an autosomal-dominant vascular disorder with three disease-causing genes identified to date: ENG, ACVRL1, and SMAD4. We report an HHT patient with allelic dropout that on routine sequence analysis for a known mutation in the family (c.817...

  5. Identification of genes affecting the response of tomato and Arabidopsis upon powdery mildew infection

    NARCIS (Netherlands)

    Gao, D.

    2014-01-01

      Many plant species are hosts of powdery mildew fungi, including Arabidopsis and economically important crops such as wheat, barley and tomato. Resistance has been explored using induced mutagenesis and natural variation in the plant species. The isolated genes encompass loss-of-function susc

  6. Do GnRH analogues directly affect human endometrial epithelial cell gene expression?

    KAUST Repository

    Zhang, Xiaomei

    2010-03-04

    We examined whether Gonadotrophin-releasing hormone (GnRH) analogues [leuprolide acetate (LA) and ganirelix acetate (GA)] modulate gene expression in Ishikawa cells used as surrogate for human endometrial epithelial cells in vitro. The specific aims were: (i) to study the modulatory effect of GnRH analogues by RT-PCR [in the absence and presence of E2 and P4, and cyclic adenosine monophos-phate (cAMP)] on mRNA expression of genes modulated during the window of implantation in GnRH analogues/rFSH-treated assisted reproductive technology cycles including OPTINEURIN (OPTN), CHROMATIN MODIFYING PROTEIN (CHMP1A), PROSAPOSIN (PSAP), IGFBP-5 and SORTING NEXIN 7 (SNX7), and (ii) to analyze the 5\\'-flanking regions of such genes for the presence of putative steroid-response elements [estrogen-response elements (EREs) and P4-response element (PREs)]. Ishikawa cells were cytokeratin+/vimentin2 and expressed ERa,ERb, PR and GnRH-R proteins. At 6 and 24 h, neither LA nor GA alone had an effect on gene expression. GnRH analogues alone or following E2 and/or P4 co-incubation for 24 h also had no effect on gene expression, but P4 significantly increased expression of CHMP1A.E2 + P4 treatment for 4 days, alone or followed by GA, had no effect, but E2 + P4 treatment followed by LA significantly decreased IGFBP-5 expression. The addition of 8-Br cAMP did not modify gene expression, with the exception of IGFBP-5 that was significantly increased. The GnRH analogues did not modify intracellular cAMP levels. We identified conserved EREs for OPN, CHMP1A, SNX7 and PSAP and PREs for SNX7. We conclude that GnRH analogues appear not to have major direct effects on gene expression of human endo-metrial epithelial cells in vitro. © The Author 2010. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org.

  7. Mechanical stress activates Smad pathway through PKCδ to enhance interleukin-11 gene transcription in osteoblasts.

    Directory of Open Access Journals (Sweden)

    Shinsuke Kido

    Full Text Available BACKGROUND: Mechanical stress rapidly induces ΔFosB expression in osteoblasts, which binds to interleukin (IL-11 gene promoter to enhance IL-11 expression, and IL-11 enhances osteoblast differentiation. Because bone morphogenetic proteins (BMPs also stimulate IL-11 expression in osteoblasts, there is a possibility that BMP-Smad signaling is involved in the enhancement of osteoblast differentiation by mechanical stress. The present study was undertaken to clarify whether mechanical stress affects BMP-Smad signaling, and if so, to elucidate the role of Smad signaling in mechanical stress-induced enhancement of IL-11 gene transcription. METHODOLOGY/PRINCIPAL FINDINGS: Mechanical loading by fluid shear stress (FSS induced phosphorylation of BMP-specific receptor-regulated Smads (BR-Smads, Smad1/5, in murine primary osteoblasts (mPOBs. FSS rapidly phosphorylated Y311 of protein kinase C (PKCδ, and phosphorylated PKCδ interacted with BR-Smads to phosphorylate BR-Smads. Transfection of PKCδ siRNA or Y311F mutant PKCδ abrogated BR-Smads phosphorylation and suppressed IL-11 gene transcription enhanced by FSS. Activated BR-Smads bound to the Smad-binding element (SBE of IL-11 gene promoter and formed complex with ΔFosB/JunD heterodimer via binding to the C-terminal region of JunD. Site-directed mutagenesis in the SBE and the AP-1 site revealed that both SBE and AP-1 sites were required for full activation of IL-11 gene promoter by FSS. CONCLUSIONS/SIGNIFICANCE: These results demonstrate that PKCδ-BR-Smads pathway plays an important role in the intracellular signaling in response to mechanical stress, and that a cross-talk between PKCδ-BR-Smads and ΔFosB/JunD pathways synergistically stimulates IL-11 gene transcription in response to mechanical stress.

  8. Glucocorticoids affect 24 h clock genes expression in human adipose tissue explant cultures.

    Directory of Open Access Journals (Sweden)

    Purificación Gómez-Abellán

    Full Text Available AIMS: to examine firstly whether CLOCK exhibits a circadian expression in human visceral (V and subcutaneous (S adipose tissue (AT in vitro as compared with BMAL1 and PER2, and secondly to investigate the possible effect of the glucocorticoid analogue dexamethasone (DEX on positive and negative clock genes expression. SUBJECTS AND METHODS: VAT and SAT biopsies were obtained from morbid obese women (body mass index ≥ 40 kg/m(2 (n = 6. In order to investigate rhythmic expression pattern of clock genes and the effect of DEX on CLOCK, PER2 and BMAL1 expression, control AT (without DEX and AT explants treated with DEX (2 hours were cultured during 24 h and gene expression was analyzed at the following times: 10:00 h, 14:00 h, 18:00 h, 22:00 h, 02:00 h and 06:00 h, using qRT-PCR. RESULTS: CLOCK, BMAL1 and PER2 expression exhibited circadian patterns in both VAT and SAT explants that were adjusted to a typical 24 h sinusoidal curve. PER2 expression (negative element was in antiphase with respect to CLOCK and in phase with BMAL1 expression (both positive elements in the SAT (situation not present in VAT. A marked effect of DEX exposure on both positive and negative clock genes expression patterns was observed. Indeed, DEX treatment modified the rhythmicity pattern towards altered patterns with a period lower than 24 hours in all genes and in both tissues. CONCLUSIONS: 24 h patterns in CLOCK and BMAL1 (positive clock elements and PER2 (negative element mRNA levels were observed in human adipose explants. These patterns were altered by dexamethasone exposure.

  9. Excessive ammonia inhibited transcription of MsU2 gene and furthermore affected accumulation distribution of allantoin and amino acids in alfalfa Medicago sativa

    Institute of Scientific and Technical Information of China (English)

    WANG Li; JIANG Lin-lin; Nomura Mika; Tajima Shigeyuki; CHENG Xian-guo

    2015-01-01

    In legume plants, uricase gene (Nodulin-35) plays a positive role in metabolism of ureide and amide compounds in symbiotic nitrogen-ifxing in the nodules. In this study, a pot experiment was performed to examine the effects of ammonium application on the transcription of MsU2 gene and distribution of major nitrogen compounds in alfalfa Medicago sativa. Data showed that alfalfa plant has a signiifcant difference in contents of nitrogen compounds in xylem saps compared with soybean plant, and belongs to typical amide type legume plants with little ureide accumulation, and the accumulation of asparagines and ureide in the tissues of alfalfa is mainly gathered in the nodules. Northern blotting showed that excessive ammonium signiifcantly inhibited the transcription of MsU2 gene in the nodules and roots, and mRNA accumulation of MsU2 gene in the plants exposed to excessive ammonium decreased gradual y with culture time extension, indicating that application of ammonium signiifcantly inhibited the transcription of MsU2 gene in the alfalfa plants. Although the application of exces-sive ammonium increased the contents of amino acids in various tissues of alfalfa, the accumulation of al antoin relfecting the strength of uricase activity is remarkably reduced in the xylem saps, stems and nodules when alfalfa plants exposed to excessive ammonium, suggesting that application of excessive ammonium generated a negative effect on symbiosis ifxing-nitrogen system due to inhibition of ammonium ion on uricase activity in the nodules of alfalfa. This result seems to imply that application of excessive ammonium in legume plants should not be proposed to avoid affecting the ability of ifxing nitrogen in the nodules of legume plants, and reasonable dose of ammonium should be recommended to effectively utilize the ifxed N from atmosphere in legume plant production.

  10. WRKY Transcription Factors Involved in Activation of SA Biosynthesis Genes

    Directory of Open Access Journals (Sweden)

    Bol John F

    2011-05-01

    Full Text Available Abstract Background Increased defense against a variety of pathogens in plants is achieved through activation of a mechanism known as systemic acquired resistance (SAR. The broad-spectrum resistance brought about by SAR is mediated through salicylic acid (SA. An important step in SA biosynthesis in Arabidopsis is the conversion of chorismate to isochorismate through the action of isochorismate synthase, encoded by the ICS1 gene. Also AVRPPHB SUSCEPTIBLE 3 (PBS3 plays an important role in SA metabolism, as pbs3 mutants accumulate drastically reduced levels of SA-glucoside, a putative storage form of SA. Bioinformatics analysis previously performed by us identified WRKY28 and WRKY46 as possible regulators of ICS1 and PBS3. Results Expression studies with ICS1 promoter::β-glucuronidase (GUS genes in Arabidopsis thaliana protoplasts cotransfected with 35S::WRKY28 showed that over expression of WRKY28 resulted in a strong increase in GUS expression. Moreover, qRT-PCR analyses indicated that the endogenous ICS1 and PBS3 genes were highly expressed in protoplasts overexpressing WRKY28 or WRKY46, respectively. Electrophoretic mobility shift assays indentified potential WRKY28 binding sites in the ICS1 promoter, positioned -445 and -460 base pairs upstream of the transcription start site. Mutation of these sites in protoplast transactivation assays showed that these binding sites are functionally important for activation of the ICS1 promoter. Chromatin immunoprecipitation assays with haemagglutinin-epitope-tagged WRKY28 showed that the region of the ICS1 promoter containing the binding sites at -445 and -460 was highly enriched in the immunoprecipitated DNA. Conclusions The results obtained here confirm results from our multiple microarray co-expression analyses indicating that WRKY28 and WRKY46 are transcriptional activators of ICS1 and PBS3, respectively, and support this in silico screening as a powerful tool for identifying new components of stress

  11. Alteration of membrane phospholipid methylation by adenosine analogs does not affect T lymphocyte activation

    International Nuclear Information System (INIS)

    Membrane phospholipid methylation has been described during activation of various immune cells. Moreover recent data indicated modulation of immune cells functions by adenosine. As S-adenosyl-methionine and S-adenosyl-homocysteine are adenosine analogs and modulators of transmethylation reactions, the effects of SAH and SAM were investigated on membrane phospholipid methylation and lymphocyte activation. SAM was shown to induce the membrane phospholipid methylation as assessed by the 3Hmethyl-incorporation in membrane extract. This effect was inhibited by SAH. In contrast SAM and SAH did not affect the phytohemagglutinin-induced proliferative response of peripheral blood mononuclear cells. SAH neither modified the early internalization of membrane CD3 antigens nor did it prevent the late expression of HLA-DR antigens on lymphocytes activated by phytohemagglutinin. These results indicate that in vitro alteration of phospholipid methylation does not affect subsequent steps of human T lymphocyte activation and proliferation

  12. Factors affecting uptake of an education and physical activity programme for newly diagnosed type 2 diabetes.

    OpenAIRE

    Visram, S.; Bremner, A.S.; Harrington, B.E.; Hawthorne, G

    2008-01-01

    Background: Intensive lifestyle intervention involving weight reduction and moderate physical activity has been shown to help regulate, and even prevent, type 2 diabetes. Aim: This study sought to explore factors affecting uptake of an education and physical activity programme for those diagnosed with type 2 diabetes. Method: Focus group discussions were conducted with individuals who completed the programme and semi-structured interviews were conducted with those who decline...

  13. CES1 genetic variation affects the activation of angiotensin-converting enzyme inhibitors.

    Science.gov (United States)

    Wang, X; Wang, G; Shi, J; Aa, J; Comas, R; Liang, Y; Zhu, H-J

    2016-06-01

    The aim of the study was to determine the effect of carboxylesterase 1 (CES1) genetic variation on the activation of angiotensin-converting enzyme inhibitor (ACEI) prodrugs. In vitro incubation study of human liver, intestine and kidney s9 fractions demonstrated that the ACEI prodrugs enalapril, ramipril, perindopril, moexipril and fosinopril are selectively activated by CES1 in the liver. The impact of CES1/CES1VAR and CES1P1/CES1P1VAR genotypes and diplotypes on CES1 expression and activity on enalapril activation was investigated in 102 normal human liver samples. Neither the genotypes nor the diplotypes affected hepatic CES1 expression and activity. Moreover, among several CES1 nonsynonymous variants studied in transfected cell lines, the G143E (rs71647871) was a loss-of-function variant for the activation of all ACEIs tested. The CES1 activity on enalapril activation in human livers with the 143G/E genotype was approximately one-third of that carrying the 143G/G. Thus, some functional CES1 genetic variants (for example, G143E) may impair ACEI activation, and consequently affect therapeutic outcomes of ACEI prodrugs. PMID:26076923

  14. Identification of Cellular Genes Affecting the Infectivity of Foot-and-Mouth Disease Virus▿

    OpenAIRE

    Maria E. Piccone; Feng, Yanan; Chang, Annie C. Y.; Mosseri, Ronen; Lu, Quan; Gerald F. Kutish; Lu, Zhiqiang; Burrage, Thomas G.; Gooch, Christina; Rock, Daniel L.; Cohen, Stanley N.

    2009-01-01

    Foot-and-mouth disease virus (FMDV) produces one of the most infectious of all livestock diseases, causing extensive economic loss in areas of breakout. Like other viral pathogens, FMDV recruits proteins encoded by host cell genes to accomplish the entry, replication, and release of infectious viral particles. To identify such host-encoded proteins, we employed an antisense RNA strategy and a lentivirus-based library containing approximately 40,000 human expressed sequence tags (ESTs) to rand...

  15. Genome-wide functional screen identifies a compendium of genes affecting sensitivity to tamoxifen

    OpenAIRE

    Mendes-Pereira, Ana M.; Sims, David; Dexter, Tim; Fenwick, Kerry; Assiotis, Ioannis; Kozarewa, Iwanka; Mitsopoulos, Costas; Hakas, Jarle; Zvelebil, Marketa; Lord, Christopher J; Ashworth, Alan

    2011-01-01

    Therapies that target estrogen signaling have made a very considerable contribution to reducing mortality from breast cancer. However, resistance to tamoxifen remains a major clinical problem. Here we have used a genome-wide functional profiling approach to identify multiple genes that confer resistance or sensitivity to tamoxifen. Combining whole-genome shRNA screening with massively parallel sequencing, we have profiled the impact of more than 56,670 RNA interference reagents targeting 16,4...

  16. Schizophrenia susceptibility alleles are enriched for alleles that affect gene expression in adult human brain

    OpenAIRE

    Richards, Alexander L.; Jones, Lesley; Moskvina, Valentina; Kirov, George; Gejman, Pablo V.; Levinson, Douglas F.; Sanders, Alan R; Purcell, Shaun; Visscher, Peter M.; Craddock, Nick; Owen, Michael J.; Holmans, Peter; O’Donovan, Michael C

    2011-01-01

    It is widely thought that alleles that influence susceptibility to common diseases, including schizophrenia, will frequently do so through effects on gene expression. Since only a small proportion of the genetic variance for schizophrenia has been attributed to specific loci, this remains an unproven hypothesis. The International Schizophrenia Consortium (ISC) recently reported a substantial polygenic contribution to that disorder, and that schizophrenia risk alleles are enriched among SNPs s...

  17. Low-dose radiation affects cardiac physiology: gene networks and molecular signaling in cardiomyocytes.

    Science.gov (United States)

    Coleman, Matthew A; Sasi, Sharath P; Onufrak, Jillian; Natarajan, Mohan; Manickam, Krishnan; Schwab, John; Muralidharan, Sujatha; Peterson, Leif E; Alekseyev, Yuriy O; Yan, Xinhua; Goukassian, David A

    2015-12-01

    There are 160,000 cancer patients worldwide treated with particle radiotherapy (RT). With the advent of proton, and high (H) charge (Z) and energy (E) HZE ionizing particle RT, the cardiovascular diseases risk estimates are uncertain. In addition, future deep space exploratory-type missions will expose humans to unknown but low doses of particle irradiation (IR). We examined molecular responses using transcriptome profiling in left ventricular murine cardiomyocytes isolated from mice that were exposed to 90 cGy, 1 GeV proton ((1)H) and 15 cGy, 1 GeV/nucleon iron ((56)Fe) over 28 days after exposure. Unsupervised clustering analysis of gene expression segregated samples according to the IR response and time after exposure, with (56)Fe-IR showing the greatest level of gene modulation. (1)H-IR showed little differential transcript modulation. Network analysis categorized the major differentially expressed genes into cell cycle, oxidative responses, and transcriptional regulation functional groups. Transcriptional networks identified key nodes regulating expression. Validation of the signal transduction network by protein analysis and gel shift assay showed that particle IR clearly regulates a long-lived signaling mechanism for ERK1/2, p38 MAPK signaling and identified NFATc4, GATA4, STAT3, and NF-κB as regulators of the response at specific time points. These data suggest that the molecular responses and gene expression to (56)Fe-IR in cardiomyocytes are unique and long-lasting. Our study may have significant implications for the efforts of National Aeronautics and Space Administration to develop heart disease risk estimates for astronauts and for patients receiving conventional and particle RT via identification of specific HZE-IR molecular markers. PMID:26408534

  18. Niche Expansion in Bacteria: Can Infectious Gene Exchange Affect the Rate of Evolution?

    OpenAIRE

    Evans, Ralph

    1986-01-01

    Recombination occurs by infectious gene transfer in bacteria, at rates much lower than recombination by sexual reproduction in other organisms. Thus, recombination may accelerate evolution in bacteria only under restricted conditions, such as occur when mutations at several loci are required for the evolution of an expanded ecological niche. Mathematical ("chemostat") models of several such cases—evolution of independence from three limiting essential or "interactive-essential" resources; evo...

  19. Reduced Environmental Redox Potential Affects Both Transcription and Expression of the Pap Pili Gene

    OpenAIRE

    Maluszynska, G. M.; Magnusson, K.-E.; Rosenquist, Å.

    2011-01-01

    Pyelonephritis-associated pili (pap) gene expression is subject to a phase variation control mechanism by which cells alternate between two pili-expression states, viz. a 'phase-off (pili-) and a 'phase-on' (pili+) state. During interaction with a host, Escherichia coli encounter various environmental redox conditions. We have addressed the question of whether bacteria are able to respond to this environmental signal by regulating pap pili biogenesis, a crucial colonisation factor in pyelonep...

  20. Candidate gene expression affects intramuscular fat content and fatty acid composition in pigs.

    Science.gov (United States)

    Wang, Wei; Xue, Wenda; Jin, Bangquan; Zhang, Xixia; Ma, Fei; Xu, Xiaofeng

    2013-02-01

    The objective of this study was to correlate the expression pattern of candidate genes with the intramuscular fat (IMF) content and fatty acid composition of the Longissimus dorsi muscle of Duroc × Shanzhu commercial crossbred pigs. Animals of both sexes were slaughtered at a body weight of about 90 kg. The IMF content and fatty acid composition of the Longissimus dorsi muscle were measured and correlated with candidate genes mRNA expression (AdPLA, ADRB3, LEPR, MC4R, PPARγ, PPARα, LPL, PEPCK, and SCD). Females presented higher IMF content (p < 0.05) than males. The total saturated fatty acid (SFA) in males was greater (p < 0.01), whereas the total monounsaturated fatty acid (MUFA) (p < 0.01) and polyunsaturated fatty acid (PUFA) (p < 0.05) were lower than in females. The expressions of AdPLA, MC4R, PEPCK, and SCD correlated with the IMF content (p < 0.05). AdPLA showed a positive association with MUFA and a negative association with SFA (p < 0.05). LEPR and MC4R were both positively and significantly associated with C18:3 and C20:0 (p < 0.05). PPARα and PPARγ were negatively correlated with SFA, and PPARγ was positively associated with MUFA (p < 0.05). LPL was positively associated with MUFA and negatively associated with SFA (p < 0.05). PEPCK was negatively correlated with PUFA (p < 0.05). SCD was positively associated with MUFA (p < 0.05). The revealed correlations may confirm that these candidate genes are important for fat deposition and fatty acid composition in pigs, and the evaluation and use of these genes may be useful for improving porcine meat quality. PMID:23275256

  1. The Caenorhabditis elegans Gene mfap-1 Encodes a Nuclear Protein That Affects Alternative Splicing

    OpenAIRE

    Long Ma; Xiaoyang Gao; Jintao Luo; Liange Huang; Yanling Teng; H Robert Horvitz

    2012-01-01

    RNA splicing is a major regulatory mechanism for controlling eukaryotic gene expression. By generating various splice isoforms from a single pre-mRNA, alternative splicing plays a key role in promoting the evolving complexity of metazoans. Numerous splicing factors have been identified. However, the in vivo functions of many splicing factors remain to be understood. In vivo studies are essential for understanding the molecular mechanisms of RNA splicing and the biology of numerous RNA splicin...

  2. Low-level lasers affect uncoupling protein gene expression in skin and skeletal muscle tissues

    Science.gov (United States)

    Canuto, K. S.; Sergio, L. P. S.; Paoli, F.; Mencalha, A. L.; Fonseca, A. S.

    2016-03-01

    Wavelength, frequency, power, fluence, and emission mode determine the photophysical, photochemical, and photobiological responses of biological tissues to low-level lasers. Free radicals are involved in these responses acting as second messengers in intracellular signaling processes. Irradiated cells present defenses against these chemical species to avoid unwanted effects, such as uncoupling proteins (UCPs), which are part of protective mechanisms and minimize the effects of free radical generation in mitochondria. In this work UCP2 and UCP3 mRNA gene relative expression in the skin and skeletal muscle tissues of Wistar rats exposed to low-level red and infrared lasers was evaluated. Samples of the skin and skeletal muscle tissue of Wistar rats exposed to low-level red and infrared lasers were withdrawn for total RNA extraction, cDNA synthesis, and the evaluation of gene expression by quantitative polymerase chain reaction. UCP2 and UCP3 mRNA expression was differently altered in skin and skeletal muscle tissues exposed to lasers in a wavelength-dependent effect, with the UCP3 mRNA expression dose-dependent. Alteration on UCP gene expression could be part of the biostimulation effect and is necessary to make cells exposed to red and infrared low-level lasers more resistant or capable of adapting in damaged tissues or diseases.

  3. Elements of Design-Based Science Activities That Affect Students' Motivation

    Science.gov (United States)

    Jones, Brett D.; Chittum, Jessica R.; Akalin, Sehmuz; Schram, Asta B.; Fink, Jonathan; Schnittka, Christine; Evans, Michael A.; Brandt, Carol

    2015-01-01

    The primary purpose of this study was to examine the ways in which a 12-week after-school science and engineering program affected middle school students' motivation to engage in science and engineering activities. We used current motivation research and theory as a conceptual framework to assess 14 students' motivation through questionnaires,…

  4. Watered depressions as ecological phenomena in regions affected by mining activities

    International Nuclear Information System (INIS)

    This paper presents the results of the importance of mine watered depressions in a landscape affected by mining activities (model localities - Louky nad Olsi, Orlova and Horni Sucha, Karvina district) from an ecological point of view - conservation and formation of wetland and water ecosystems, genetic resources and biodiversity conservation

  5. Porcine E. coli: virulence-associated genes, resistance genes and adhesion and probiotic activity tested by a new screening method.

    Directory of Open Access Journals (Sweden)

    Peter Schierack

    Full Text Available We established an automated screening method to characterize adhesion of Escherichia coli to intestinal porcine epithelial cells (IPEC-J2 and their probiotic activity against infection by enteropathogenic E. coli (EPEC. 104 intestinal E. coli isolates from domestic pigs were tested by PCR for the occurrence of virulence-associated genes, genes coding for resistances to antimicrobial agents and metals, and for phylogenetic origin by PCR. Adhesion rates and probiotic activity were examined for correlation with the presence of these genes. Finally, data were compared with those from 93 E. coli isolates from wild boars. Isolates from domestic pigs carried a broad variety of all tested genes and showed great diversity in gene patterns. Adhesions varied with a maximum of 18.3 or 24.2 mean bacteria adherence per epithelial cell after 2 or 6 hours respectively. Most isolates from domestic pigs and wild boars showed low adherence, with no correlation between adhesion/probiotic activity and E. coli genes or gene clusters. The gene sfa/foc, encoding for a subunit of F1C fimbriae did show a positive correlative association with adherence and probiotic activity; however E. coli isolates from wild boars with the sfa/foc gene showed less adhesion and probiotic activity than E. coli with the sfa/foc gene isolated from domestic pigs after 6 hour incubation. In conclusion, screening porcine E. coli for virulence associated genes genes, adhesion to intestinal epithelial cells, and probiotic activity revealed a single important adhesion factor, several probiotic candidates, and showed important differences between E. coli of domestic pigs and wild boars.

  6. Activity of cGMP-Dependent Protein Kinase (PKG) Affects Sucrose Responsiveness and Habituation in "Drosophila melanogaster"

    Science.gov (United States)

    Scheiner, Ricarda; Sokolowski, Marla B.; Erber, Joachim

    2004-01-01

    The cGMP-dependent protein kinase (PKG) has many cellular functions in vertebrates and insects that affect complex behaviors such as locomotion and foraging. The "foraging" ("for") gene encodes a PKG in "Drosophila melanogaster." Here, we demonstrate a function for the "for" gene in sensory responsiveness and nonassociative learning. Larvae of the…

  7. Conditions that alter intracellular cAMP levels affect expression of the cAMP phosphodiesterase gene in Dictyostelium.

    OpenAIRE

    Riley, B B; Barclay, S L

    1990-01-01

    We examined expression of the Dictyostelium cAMP phosphodiesterase (PDE) gene under conditions that alter intracellular cAMP levels during in vitro differentiation of wild-type strain V12M2 and a sporogenous derivative, HB200. In control cultures, cellular PDE activity peaked at 6 hr and declined by 8 hr, while secreted PDE activity continued to increase through 8 hr. Lowering intracellular cAMP levels with caffeine or progesterone increased cellular and secreted PDE activities 2-fold, increa...

  8. Novel somatic mutations in large granular lymphocytic leukemia affecting the STAT-pathway and T-cell activation

    International Nuclear Information System (INIS)

    T-cell large granular lymphocytic (T-LGL) leukemia is a clonal disease characterized by the expansion of mature CD3+CD8+ cytotoxic T cells. It is often associated with autoimmune disorders and immune-mediated cytopenias. Our recent findings suggest that up to 40% of T-LGL patients harbor mutations in the STAT3 gene, whereas STAT5 mutations are present in 2% of patients. In order to identify putative disease-causing genetic alterations in the remaining T-LGL patients, we performed exome sequencing from three STAT mutation-negative patients and validated the findings in 113 large granular lymphocytic (LGL) leukemia patients. On average, 11 CD8+ LGL leukemia cell-specific high-confidence nonsynonymous somatic mutations were discovered in each patient. Interestingly, all patients had at least one mutation that affects either directly the STAT3-pathway (such as PTPRT) or T-cell activation (BCL11B, SLIT2 and NRP1). In all three patients, the STAT3 pathway was activated when studied by RNA expression or pSTAT3 analysis. Screening of the remaining 113 LGL leukemia patients did not reveal additional patients with same mutations. These novel mutations are potentially biologically relevant and represent rare genetic triggers for T-LGL leukemia, and are associated with similar disease phenotype as observed in patients with mutations in the STAT3 gene

  9. RNA-Seq reveals 10 novel promising candidate genes affecting milk protein concentration in the Chinese Holstein population.

    Science.gov (United States)

    Li, Cong; Cai, Wentao; Zhou, Chenghao; Yin, Hongwei; Zhang, Ziqi; Loor, Juan J; Sun, Dongxiao; Zhang, Qin; Liu, Jianfeng; Zhang, Shengli

    2016-01-01

    Paired-end RNA sequencing (RNA-Seq) was used to explore the bovine transcriptome from the mammary tissue of 12 Chinese Holstein cows with 6 extremely high and 6 low phenotypic values for milk protein percentage. We defined the differentially expressed transcripts between the two comparison groups, extremely high and low milk protein percentage during the peak lactation (HP vs LP) and during the non-lactating period (HD vs LD), respectively. Within the differentially expressed genes (DEGs), we detected 157 at peak lactation and 497 in the non-lactating period with a highly significant correlation with milk protein concentration. Integrated interpretation of differential gene expression indicated that SERPINA1, CLU, CNTFR, ERBB2, NEDD4L, ANG, GALE, HSPA8, LPAR6 and CD14 are the most promising candidate genes affecting milk protein concentration. Similarly, LTF, FCGR3A, MEGF10, RRM2 and UBE2C are the most promising candidates that in the non-lactating period could help the mammary tissue prevent issues with inflammation and udder disorders. Putative genes will be valuable resources for designing better breeding strategies to optimize the content of milk protein and also to provide new insights into regulation of lactogenesis. PMID:27254118

  10. Affective dysfunction in a mouse model of Rett syndrome: Therapeutic effects of environmental stimulation and physical activity.

    Science.gov (United States)

    Kondo, Mari A; Gray, Laura J; Pelka, Gregory J; Leang, Sook-Kwan; Christodoulou, John; Tam, Patrick P L; Hannan, Anthony J

    2016-02-01

    Rett syndrome (RTT) is a neurodevelopmental disorder associated with mutations in the X-linked gene encoding methyl-CpG-binding protein 2 (MeCP2) and consequent dysregulation of brain maturation. Patients suffer from a range of debilitating physical symptoms, however, behavioral and emotional symptoms also severely affect their quality of life. Here, we present previously unreported and clinically relevant affective dysfunction in the female heterozygous Mecp2(tm1Tam) mouse model of RTT (129sv and C57BL6 mixed background). The affective dysfunction and aberrant anxiety-related behavior of the Mecp2(+/-) mice were found to be reversible with environmental enrichment (EE) from 4 weeks of age. The effect of exercise alone (via wheel running) was also explored, providing the first evidence that increased voluntary physical activity in an animal model of RTT is beneficial for some phenotypes. Mecp2(+/-) mutants displayed elevated corticosterone despite decreased Crh expression, demonstrating hypothalamic-pituitary-adrenal axis dysregulation. EE of Mecp2(+/-) mice normalized basal serum corticosterone and hippocampal BDNF protein levels. The enrichment-induced rescue appears independent of the transcriptional regulation of the MeCP2 targets Bdnf exon 4 and Crh. These findings provide new insight into the neurodevelopmental role of MeCP2 and pathogenesis of RTT, in particular the affective dysfunction. The positive outcomes of environmental stimulation and physical exercise have implications for the development of therapies targeting the affective symptoms, as well as behavioral and cognitive dimensions, of this devastating neurodevelopmental disorder. PMID:26019053

  11. Gene activation by triplex-forming oligonucleotide coupled to the activating domain of protein VP16.

    OpenAIRE

    Kuznetsova, S.; Ait-Si-Ali, S; Nagibneva, I; Troalen, F; Le Villain, J P; Harel-Bellan, A; Svinarchuk, F

    1999-01-01

    Triplex-forming oligonucleotides (TFOs) are generally designed to inhibit transcription or DNA replication but can be used for more diverse purposes. Here we have designed a chimera peptide-TFO able to activate transcription from a target gene. The designed hybrid molecule contains a triplex-forming sequence, linked through a phosphoroamidate bond to several minimal transcriptional activation domains derived from Herpes simplex virus protein 16 (VP16). We show here that this TFO-peptide chime...

  12. Local overexpression of Su(H)-MAPK variants affects Notch target gene expression and adult phenotypes in Drosophila.

    Science.gov (United States)

    Auer, Jasmin S; Nagel, Anja C; Schulz, Adriana; Wahl, Vanessa; Preiss, Anette

    2015-12-01

    In Drosophila, Notch and EGFR signalling pathways are closely intertwined. Their relationship is mostly antagonistic, and may in part be based on the phosphorylation of the Notch signal transducer Suppressor of Hairless [Su(H)] by MAPK. Su(H) is a transcription factor that together with several cofactors regulates the expression of Notch target genes. Here we address the consequences of a local induction of three Su(H) variants on Notch target gene expression. To this end, wild-type Su(H), a phospho-deficient Su(H) (MAPK-) (ko) and a phospho-mimetic Su(H) (MAPK-ac) isoform were overexpressed in the central domain of the wing anlagen. The expression of the Notch target genes cut, wingless, E(spl)m8-HLH and vestigial, was monitored. For the latter two, reporter genes were used (E(spl)m8-lacZ, vg (BE) -lacZ). In general, Su(H) (MAPK-) (ko) induced a stronger response than wild-type Su(H), whereas the response to Su(H) (MAPK-ac) was very weak. Notch target genes cut, wingless and vg (BE) -lacZ were ectopically activated, whereas E(spl)m8-lacZ was repressed by overexpression of Su(H) proteins. In addition, in epistasis experiments an activated form of the EGF-receptor (DER (act) ) or the MAPK (rl (SEM) ) and individual Su(H) variants were co-overexpressed locally, to compare the resultant phenotypes in adult flies (thorax, wings and eyes) as well as to assay the response of the Notch target gene cut in cell clones. PMID:26702412

  13. Local overexpression of Su(H)-MAPK variants affects Notch target gene expression and adult phenotypes in Drosophila

    Science.gov (United States)

    Auer, Jasmin S.; Nagel, Anja C.; Schulz, Adriana; Wahl, Vanessa; Preiss, Anette

    2015-01-01

    In Drosophila, Notch and EGFR signalling pathways are closely intertwined. Their relationship is mostly antagonistic, and may in part be based on the phosphorylation of the Notch signal transducer Suppressor of Hairless [Su(H)] by MAPK. Su(H) is a transcription factor that together with several cofactors regulates the expression of Notch target genes. Here we address the consequences of a local induction of three Su(H) variants on Notch target gene expression. To this end, wild-type Su(H), a phospho-deficient Su(H)MAPK-ko and a phospho-mimetic Su(H)MAPK-ac isoform were overexpressed in the central domain of the wing anlagen. The expression of the Notch target genes cut, wingless, E(spl)m8-HLH and vestigial, was monitored. For the latter two, reporter genes were used (E(spl)m8-lacZ, vgBE-lacZ). In general, Su(H)MAPK-ko induced a stronger response than wild-type Su(H), whereas the response to Su(H)MAPK-ac was very weak. Notch target genes cut, wingless and vgBE-lacZ were ectopically activated, whereas E(spl)m8-lacZ was repressed by overexpression of Su(H) proteins. In addition, in epistasis experiments an activated form of the EGF-receptor (DERact) or the MAPK (rlSEM) and individual Su(H) variants were co-overexpressed locally, to compare the resultant phenotypes in adult flies (thorax, wings and eyes) as well as to assay the response of the Notch target gene cut in cell clones. PMID:26702412

  14. Common inversion polymorphism at 17q21.31 affects expression of multiple genes in tissue-specific manner

    Directory of Open Access Journals (Sweden)

    de Jong Simone

    2012-09-01

    Full Text Available Abstract Background Chromosome 17q21.31 contains a common inversion polymorphism of approximately 900 kb in populations with European ancestry. Two divergent MAPT haplotypes, H1 and H2 are described with distinct linkage disequilibrium patterns across the region reflecting the inversion status at this locus. The MAPT H1 haplotype has been associated with progressive supranuclear palsy, corticobasal degeneration, Parkinson’s disease and Alzheimer’s disease, while the H2 is linked to recurrent deletion events associated with the 17q21.31 microdeletion syndrome, a disease characterized by developmental delay and learning disability. Results In this study, we investigate the effect of the inversion on the expression of genes in the 17q21.31 region. We find the expression of several genes in and at the borders of the inversion to be affected; specific either to whole blood or different regions of the human brain. The H1 haplotype was found to be associated with an increased expression of LRRC37A4, PLEKH1M and MAPT. In contrast, a decreased expression of MGC57346, LRRC37A and CRHR1 was associated with H1. Conclusions Studies thus far have focused on the expression of MAPT in the inversion region. However, our results show that the inversion status affects expression of other genes in the 17q21.31 region as well. Given the link between the inversion status and different neurological diseases, these genes may also be involved in disease pathology, possibly in a tissue-specific manner.

  15. Virus-induced gene silencing of pea CHLI and CHLD affects tetrapyrrole biosynthesis, chloroplast development and the primary metabolic network.

    Science.gov (United States)

    Luo, Tao; Luo, Sha; Araújo, Wagner L; Schlicke, Hagen; Rothbart, Maxi; Yu, Jing; Fan, Tingting; Fernie, Alisdair R; Grimm, Bernhard; Luo, Meizhong

    2013-04-01

    The first committed and highly regulated step of chlorophyll biosynthesis is the insertion of Mg(2+) into protoporphyrin IX, which is catalyzed by Mg chelatase that consists of CHLH, CHLD and CHLI subunits. In this study, CHLI and CHLD genes were suppressed by virus-induced gene silencing (VIGS-CHLI and VIGS-CHLD) in pea (Pisum sativum), respectively. VIGS-CHLI and VIGS-CHLD plants both showed yellow leaf phenotypes with the reduced Mg chelatase activity and the inactivated synthesis of 5-aminolevulinic acid. The lower chlorophyll accumulation correlated with undeveloped thylakoid membranes, altered chloroplast nucleoid structure, malformed antenna complexes and compromised photosynthesis capacity in the yellow leaf tissues of the VIGS-CHLI and VIGS-CHLD plants. Non-enzymatic antioxidant contents and the activities of antioxidant enzymes were altered in response to enhanced accumulation of reactive oxygen species (ROS) in the chlorophyll deficient leaves of VIGS-CHLI and VIGS-CHLD plants. Furthermore, the results of metabolite profiling indicate a tight correlation between primary metabolic pathways and Mg chelatase activity. We also found that CHLD induces a feedback-regulated change of the transcription of photosynthesis-associated nuclear genes. CHLD and CHLI silencing resulted in a rapid reduction of photosynthetic proteins. Taken together, Mg chelatase is not only a key regulator of tetrapyrrole biosynthesis but its activity also correlates with ROS homeostasis, primary interorganellar metabolism and retrograde signaling in plant cells. PMID:23416492

  16. Sonme Factors that Affect the Free Radical-scavenging Activity of Tea Extracts

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Some factors that affect the free radical-scavenging activety of two tea extracts were studied in vitro. It was found that concentration of tea extract or heating tea extract or treating with activated carbon and diatomite all had obvious effect on the scavenging activety of green tea extract ,but heating or treating with diaomite had less effect on the scavenging activity of black tea extract. Ascorbic acid, for having synergic effect with tea extracts, could enhance the scavenging activity of tea extracts markedly, and the contrary was cupric ion. Reducing sugars such as fructose and glucose also had some syncrgic effect to tea extracts.

  17. Antifungal activity of different natural dyes against traditional products affected fungal pathogens

    Institute of Scientific and Technical Information of China (English)

    R Mari selvam; AJA Ranjit Singh; K Kalirajan

    2012-01-01

    Objective: In the present study to evaluate the anti fungal activity of natural dyes against traditional products affected fungal pathogens. Methods: Many traditional craft products affected fungal pathogens were isolated using potato dextrose agar medium. The isolated fungus were identified by morphological and microscopically characterization using Alexopolus manual. 50μl of Turmeric, Terminalli, Guava and Henna natural dyes were poured into the wells of the culture plates. If antifungal activity was present on the plates, it was indicated by an inhibition zone surrounding the well containing the natural dye. Result: At a dose level of 50μl of terminalli dye was able to inhibit the growth of all the fungi tested. The absorbance rate of natural dyes analyzed by UV Spectrophotometer. The absorbance rate is high in terminalli (2.266) and turmeric (2.255). Conclusions: Natural dyes were bound with traditional products to give good colour and good antimicrobial activity against isolated fungal pathogens.

  18. Physical activity and affect in elementary school children’s daily lives

    Directory of Open Access Journals (Sweden)

    JanKühnhausen

    2013-07-01

    Full Text Available A positive influence of physical activity (PA on affect has been shown in numerous studies. However, this relationship has not yet been studied in the daily life of children. We present a part of the FLUX study that attempts to contribute to filling that gap. To this end, a proper way to measure PA and affect in the daily life of children is needed. In pre-studies of the FLUX study, we were able to show that affect can be measured in children with self-report items that are answered using smartphones. In the current article, we show that it is feasible to objectively measure children’s PA with accelerometers for a period of several weeks and report descriptive information on the amount of activity of 51 children from 3rd and 4th grade. Additionally, we investigate the influence of daily PA on daily affect in children. Mixed effects models show no effect of PA on any of the four measured dimensions of affect. We discuss that this might be due to effects taking place at shorter time intervals, which can be investigated in future analyses.

  19. Polymorphisms in positional candidate genes on BTA14 and BTA26 affect carcass quality in beef cattle.

    Science.gov (United States)

    Marques, E; Nkrumah, J D; Sherman, E L; Moore, S S

    2009-08-01

    Several studies have reported the presence of carcass quality QTL on BTA14 and BTA26, with no specific genes being conclusively linked as their cause. The aim of this study was to identify polymorphisms in genes known to affect lipid metabolism in other species and to assess their association with carcass quality traits. Two genes located on BTA14, 2,4 dienoyl CoA reductase 1 (DECR1) and core binding factor, runt domain, alpha subunit 2, translocated to 1 gene (CBFA2T1), have been previously evaluated in other species and found to contain polymorphisms influencing lipid metabolism. A gene on BTA26, fibroblast growth factor 8 (FGF8), has in recent studies been linked to several QTL affecting obesity in mice, indicating its potential for regulating adiposity in other species. Sequencing analysis identified 9 polymorphisms in DECR1, 4 in CBFA2T1, and 4 in FGF8. Multiple sequence alignment of DECR1 among cattle, humans, and mice showed that 4 of these mutations lie in conserved regions across these species. Using 464 Angus, Charolais, and crossbred animals produced associations with ultrasound marbling score (CBFA2T1, P = 0.019), ultrasound backfat (DECR1, P = 0.012), carcass backfat (FGF8, P = 0.004), and lean meat yield (FGF8, P = 0.005). Quantitative trait loci analysis including a set of previously genotyped markers on BTA14, and 1 DECR1 polymorphism resulted in several significant QTL peaks: ultrasound backfat (UBF) at 91 cM, lean meat yield at 86 cM, carcass gradefat at 15 cM, and yield grade at 87 cM, all at the P yield at 2 cM and for yield grade at 25 cM, both at P < 0.01, and for carcass backfat at 25 cM (P < 0.05). Removal of FGF8 SNP in further analysis resulted in the disappearance of the carcass backfat QTL. These results suggest that polymorphisms discovered in DECR1, CBFA2T1, and FGF8 may play a role in the lipid metabolism pathway affecting carcass quality traits in beef cattle. However, further studies are needed to confirm that these polymorphisms

  20. Nonsense mutations in the human beta-globin gene affect mRNA metabolism.

    OpenAIRE

    Baserga, S J; Benz, E J

    1988-01-01

    A number of premature translation termination mutations (nonsense mutations) have been described in the human alpha- and beta-globin genes. Studies on mRNA isolated from patients with beta zero-thalassemia have shown that for both the beta-17 and the beta-39 mutations less than normal levels of beta-globin mRNA accumulate in peripheral blood cells. (The codon at which the mutation occurs designates the name of the mutation; there are 146 codons in human beta-globin mRNA.) In vitro studies usi...

  1. Fat mass- and obesity-associated gene Fto affects the dietary response in mouse white adipose tissue

    OpenAIRE

    Justiina Ronkainen; Tuija J. Huusko; Raija Soininen; Eleonora Mondini; Francesca Cinti; Mäkelä, Kari A.; Miia Kovalainen; Karl-Heinz Herzig; Marjo-Riitta Järvelin; Sylvain Sebert; Savolainen, Markku J.; Tuire Salonurmi

    2015-01-01

    Common variants of human fat mass- and obesity-associated gene Fto have been linked with higher body mass index, but the biological explanation for the link has remained obscure. Recent findings suggest that these variants affect the homeobox protein IRX3. Here we report that FTO has a role in white adipose tissue which modifies its response to high-fat feeding. Wild type and Fto-deficient mice were exposed to standard or high-fat diet for 16 weeks after which metabolism, behavior and white a...

  2. Mutant Huntingtin Downregulates Myelin Regulatory Factor-Mediated Myelin Gene Expression and Affects Mature Oligodendrocytes

    OpenAIRE

    Huang, Brenda; Wei, Wenjie; Wang, Guohao; Gaertig, Marta A.; Feng, Yue; Wang, Wei; Li, Xiao-Jiang; Li, Shihua

    2015-01-01

    Growing evidence indicates that non-neuronal mutant huntingtin toxicity plays an important role in Huntington’s disease (HD); however, whether and how mutant huntingtin affects oligodendrocytes, which are vitally important for neural function and axonal integrity, remain unclear. We first verified the presence of mutant huntingtin in oligodendrocytes in HD140Q knock-in mice. We then established transgenic mice (PLP-150Q) that selectively express mutant huntingtin in oligodendrocytes. PLP-150Q...

  3. Expression Variants of the Lipogenic AGPAT6 Gene Affect Diverse Milk Composition Phenotypes in Bos taurus

    OpenAIRE

    Littlejohn, Mathew D; Kathryn Tiplady; Thomas Lopdell; Law, Tania A.; Andrew Scott; Chad Harland; Ric Sherlock; Kristen Henty; Vlad Obolonkin; Klaus Lehnert; Alistair Macgibbon; Spelman, Richard J; Stephen R. Davis; Snell, Russell G.

    2014-01-01

    Milk is composed of a complex mixture of lipids, proteins, carbohydrates and various vitamins and minerals as a source of nutrition for young mammals. The composition of milk varies between individuals, with lipid composition in particular being highly heritable. Recent reports have highlighted a region of bovine chromosome 27 harbouring variants affecting milk fat percentage and fatty acid content. We aimed to further investigate this locus in two independent cattle populations, consisting o...

  4. The callipyge mutation and other genes that affect muscle hypertrophy in sheep

    OpenAIRE

    Cockett Noelle E; Smit Maria A; Bidwell Christopher A; Segers Karin; Hadfield Tracy L; Snowder Gary D; Georges Michel; Charlier Carole

    2005-01-01

    Abstract Genetic strategies to improve the profitability of sheep operations have generally focused on traits for reproduction. However, natural mutations exist in sheep that affect muscle growth and development, and the exploitation of these mutations in breeding strategies has the potential to significantly improve lamb-meat quality. The best-documented mutation for muscle development in sheep is callipyge (CLPG), which causes a postnatal muscle hypertrophy that is localized to the pelvic l...

  5. JMJD2A attenuation affects cell cycle and tumourigenic inflammatory gene regulation in lipopolysaccharide stimulated neuroectodermal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Das, Amitabh, E-mail: amitabhdas.kn@gmail.com [Department of Bionanotechnology, Hanyang University, Seoul 133-791 (Korea, Republic of); Chai, Jin Choul, E-mail: jincchai@gmail.com [Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do (Korea, Republic of); Jung, Kyoung Hwa, E-mail: khjung2@gmail.com [Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do (Korea, Republic of); Das, Nando Dulal, E-mail: nando.hu@gmail.com [Clinical Research Centre, Inha University School of Medicine, Incheon 400-711 (Korea, Republic of); Kang, Sung Chul, E-mail: gujiju11@gmail.com [Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do (Korea, Republic of); Lee, Young Seek, E-mail: yslee@hanyang.ac.kr [Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do (Korea, Republic of); Seo, Hyemyung, E-mail: hseo@hanyang.ac.kr [Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do (Korea, Republic of); Chai, Young Gyu, E-mail: ygchai@hanyang.ac.kr [Department of Bionanotechnology, Hanyang University, Seoul 133-791 (Korea, Republic of); Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do (Korea, Republic of)

    2014-11-01

    JMJD2A is a lysine trimethyl-specific histone demethylase that is highly expressed in a variety of tumours. The role of JMJD2A in tumour progression remains unclear. The objectives of this study were to identify JMJD2A-regulated genes and understand the function of JMJD2A in p53-null neuroectodermal stem cells (p53{sup −/−} NE-4Cs). We determined the effect of LPS as a model of inflammation in p53{sup −/−} NE-4Cs and investigated whether the epigenetic modifier JMJD2A alter the expression of tumourigenic inflammatory genes. Global gene expression was measured in JMJD2A knockdown (kd) p53{sup −/−} NE-4Cs and in LPS-stimulated JMJD2A-kd p53{sup −/−} NE-4C cells. JMJD2A attenuation significantly down-regulated genes were Cdca2, Ccnd2, Ccnd1, Crebbp, IL6rα, and Stat3 related with cell cycle, proliferation, and inflammatory-disease responses. Importantly, some tumour-suppressor genes including Dapk3, Timp2 and TFPI were significantly up-regulated but were not affected by silencing of the JMJD2B. Furthermore, we confirmed the attenuation of JMJD2A also down-regulated Cdca2, Ccnd2, Crebbp, and Rest in primary NSCs isolated from the forebrains of E15 embryos of C57/BL6J mice with effective p53 inhibitor pifithrin-α (PFT-α). Transcription factor (TF) motif analysis revealed known binding patterns for CDC5, MYC, and CREB, as well as three novel motifs in JMJD2A-regulated genes. IPA established molecular networks. The molecular network signatures and functional gene-expression profiling data from this study warrants further investigation as an effective therapeutic target, and studies to elucidate the molecular mechanism of JMJD2A-kd-dependent effects in neuroectodermal stem cells should be performed. - Highlights: • Significant up-regulation of epigenetic modifier JMJD2A mRNA upon LPS treatment. • Inhibition of JMJD2A attenuated key inflammatory and tumourigenic genes. • Establishing IPA based functional genomics in JMJD2A-attenuated p53{sup

  6. JMJD2A attenuation affects cell cycle and tumourigenic inflammatory gene regulation in lipopolysaccharide stimulated neuroectodermal stem cells

    International Nuclear Information System (INIS)

    JMJD2A is a lysine trimethyl-specific histone demethylase that is highly expressed in a variety of tumours. The role of JMJD2A in tumour progression remains unclear. The objectives of this study were to identify JMJD2A-regulated genes and understand the function of JMJD2A in p53-null neuroectodermal stem cells (p53−/− NE-4Cs). We determined the effect of LPS as a model of inflammation in p53−/− NE-4Cs and investigated whether the epigenetic modifier JMJD2A alter the expression of tumourigenic inflammatory genes. Global gene expression was measured in JMJD2A knockdown (kd) p53−/− NE-4Cs and in LPS-stimulated JMJD2A-kd p53−/− NE-4C cells. JMJD2A attenuation significantly down-regulated genes were Cdca2, Ccnd2, Ccnd1, Crebbp, IL6rα, and Stat3 related with cell cycle, proliferation, and inflammatory-disease responses. Importantly, some tumour-suppressor genes including Dapk3, Timp2 and TFPI were significantly up-regulated but were not affected by silencing of the JMJD2B. Furthermore, we confirmed the attenuation of JMJD2A also down-regulated Cdca2, Ccnd2, Crebbp, and Rest in primary NSCs isolated from the forebrains of E15 embryos of C57/BL6J mice with effective p53 inhibitor pifithrin-α (PFT-α). Transcription factor (TF) motif analysis revealed known binding patterns for CDC5, MYC, and CREB, as well as three novel motifs in JMJD2A-regulated genes. IPA established molecular networks. The molecular network signatures and functional gene-expression profiling data from this study warrants further investigation as an effective therapeutic target, and studies to elucidate the molecular mechanism of JMJD2A-kd-dependent effects in neuroectodermal stem cells should be performed. - Highlights: • Significant up-regulation of epigenetic modifier JMJD2A mRNA upon LPS treatment. • Inhibition of JMJD2A attenuated key inflammatory and tumourigenic genes. • Establishing IPA based functional genomics in JMJD2A-attenuated p53−/− NE4C cells. • Finding JMJD2

  7. Heranças familiares: entre os genes e os afetos Family heirlooms: between genes and affects

    Directory of Open Access Journals (Sweden)

    Fabiana Aparecida Almeida Lawall

    2012-06-01

    Full Text Available Sabe-se que o câncer de mama é uma patologia que afeta um número considerável de mulheres e levanta diversos questionamentos entre os profissionais da saúde. A história familiar é considerada um fator de risco e os profissionais das diversas áreas da saúde apontam-na como fator decisivo na determinação de aspectos relativos ao processo de adoecimento. Entretanto, a história familiar é abordada de maneiras distintas pelos diferentes profissionais, de acordo com o enfoque tomado. O presente artigo propõe uma leitura global da história familiar considerando as diversas "heranças" que atravessam e constituem o sujeito. A partir da análise de instrumentos como o heredograma e o genograma, observa-se que, enquanto o saber médico se ocupa de uma história familiar que está previamente determinada por fatores genéticos e, portanto, pouco acessível à intervenções preventivas, o saber psicológico busca o que há de particular na história familiar do sujeito e na maneira como este se insere na trama das relações que compõem essa história. Desse modo, abre-se a possibilidade de re-significar essa história e de encontrar uma outra via que não a do adoecer. Propicia-se, a partir daí, um espaço de discussão onde saberes e práticas interdisciplinares possam se complementar na perspectiva de uma integralidade na prevenção e promoção da saúde.It is known that breast cancer is a pathology that affects a considerable number of women and gives rise to many interrogations amongst health professionals . Family history is considered a risk factor and professionals from all health branches point it as a decisive factor in determining multiple aspects related to sickness processes. However, family history is approached in different ways by different professionals, according to the focus that is given. The present article proposes a global view of the family history by taking into account the multiple "heritages" that cross and

  8. Phosphorylation influences the binding of the yeast RAP1 protein to the upstream activating sequence of the PGK gene.

    OpenAIRE

    Tsang, J S; Henry, Y A; Chambers, A.; Kingsman, A J; Kingsman, S M

    1990-01-01

    Yeast repressor activator protein 1 (RAP1) binds in vitro to specific DNA sequences that are found in diverse genetic elements. Expression of the yeast phosphoglycerate kinase gene (PGK) requires the binding of RAP1 to the activator core sequence within the upstream activating sequence (UAS) of PGK. A DNA fragment Z+ which contains the activator core sequence of the PGK(UAS) has been shown to bind RAP1. Here we report that phosphatase treatment of RAP1 affected its binding to the PGK(UAS) but...

  9. Cattle activities affect abundance and activity of nitrifying and denitrifying microbial communities in upland soil

    Czech Academy of Sciences Publication Activity Database

    Chroňáková, Alica; Radl, V.; Čuhel, Jiří; Gattinger, A.; Šimek, Miloslav; Elhottová, Dana; Schloter, M.

    Uppsala : Swedish University of Agriculture Sciences, 2007. [Achievements of COST 856. Denitrification and related aspects. Final meeting of the ESF COST Action 856 /14./. 05.12.2007-08.12.2007, Uppsala] Institutional research plan: CEZ:AV0Z60660521 Keywords : cattle activities * nitrifying and denitrifying microbial communities * upland soil Subject RIV: EH - Ecology, Behaviour

  10. Does cypermethrin affect enzyme activity, respiration rate and walking behavior of the maize weevil (Sitophilus zeamais)?

    Institute of Scientific and Technical Information of China (English)

    Ronnie Von Santos Veloso; Eliseu José G.Pereira; Raul Narciso C.Guedes; Maria Goreti A.Oliveira

    2013-01-01

    Insecticides cause a range of sub-lethal effects on targeted insects,which are frequently detrimental to them.However,targeted insects are able to cope with insecticides within sub-lethal ranges,which vary with their susceptibility.Here we assessed the response of three strains of the maize weevil Sitophilus zeamais Motschulsky (Coleoptera:Curculionidae) to sub-lethal exposure to the pyrethoid insecticide cypermethrin.We expected enzyme induction associated with cypermethrin resistance since it would aid the resistant insects in surviving such exposure.Lower respiration rate and lower activity were also expected in insecticide-resistant insects since these traits are also likely to favor survivorship under insecticide exposure.Curiously though,cypermethrin did not affect activity of digestive and energy metabolism enzymes,and even reduced the activity of some enzymes (particularly for cellulase and cysteine-proteinase activity in this case).There was strain variation in response,which may be (partially) related to insecticide resistance in some strains.Sub-lethal exposure to cypermethrin depressed proteolytic and mainly cellulolytic activity in the exposed insects,which is likely to impair their fitness.However,such exposure did not affect respiration rate and walking behavior of the insects (except for the susceptible strain where walking activity was reduced).Walking activity varies with strain and may minimize insecticide exposure,which should be a concern,particularly if associated with (physiological) insecticide resistance.

  11. The tep1 gene of Sinorhizobium meliloti coding for a putative transmembrane efflux protein and N-acetyl glucosamine affect nod gene expression and nodulation of alfalfa plants

    Directory of Open Access Journals (Sweden)

    Soto María

    2009-01-01

    Full Text Available Abstract Background Soil bacteria collectively known as Rhizobium, characterized by their ability to establish beneficial symbiosis with legumes, share several common characteristics with pathogenic bacteria when infecting the host plant. Recently, it was demonstrated that a fadD mutant of Sinorhizobium meliloti is altered in the control of swarming, a type of co-ordinated movement previously associated with pathogenicity, and is also impaired in nodulation efficiency on alfalfa roots. In the phytopathogen Xanthomonas campestris, a fadD homolog (rpfB forms part of a cluster of genes involved in the regulation of pathogenicity factors. In this work, we have investigated the role in swarming and symbiosis of SMc02161, a S. meliloti fadD-linked gene. Results The SMc02161 locus in S. meliloti shows similarities with members of the Major Facilitator Superfamily (MFS of transporters. A S. meliloti null-mutant shows increased sensitivity to chloramphenicol. This indication led us to rename the locus tep1 for transmembrane efflux protein. The lack of tep1 does not affect the appearance of swarming motility. Interestingly, nodule formation efficiency on alfalfa plants is improved in the tep1 mutant during the first days of the interaction though nod gene expression is lower than in the wild type strain. Curiously, a nodC mutation or the addition of N-acetyl glucosamine to the wild type strain lead to similar reductions in nod gene expression as in the tep1 mutant. Moreover, aminosugar precursors of Nod factors inhibit nodulation. Conclusion tep1 putatively encodes a transmembrane protein which can confer chloramphenicol resistance in S. meliloti by expelling the antibiotic outside the bacteria. The improved nodulation of alfalfa but reduced nod gene expression observed in the tep1 mutant suggests that Tep1 transports compounds which influence nodulation. In contrast to Bradyrhizobium japonicum, we show that in S. meliloti there is no feedback regulation

  12. Dexamethasone acutely regulates endocrine parameters in stallions and subsequently affects gene expression in testicular germ cells.

    Science.gov (United States)

    Ing, N H; Brinsko, S P; Curley, K O; Forrest, D W; Love, C C; Hinrichs, K; Vogelsang, M M; Varner, D D; Welsh, T H

    2015-01-01

    Testicular steroidogenesis and spermatogenesis are negatively impacted by stress-related hormones such as glucocorticoids. The effects of two injections of a therapeutic dose of dexamethasone (a synthetic glucocorticoid, 0.1mg/kg; i.v.) given 24h apart to each of three stallions were investigated and compared to three saline-injected control stallions. Dexamethasone decreased circulating concentrations of cortisol by 50% at 24h after the initial injection. Serum testosterone decreased by a maximum of 94% from 4 to 20h after the initial injection of dexamethasone. Semen parameters of the dexamethasone-treated stallions were unchanged in the subsequent two weeks. Two weeks after treatment, stallions were castrated. Functional genomic analyses of the testes revealed that, of eight gene products analyzed, dexamethasone depressed concentrations of heat shock protein DNAJC4 and sperm-specific calcium channel CATSPER1 mRNAs by more than 60%. Both genes are expressed in germ cells during spermiogenesis and have been related to male fertility in other species, including humans. This is the first report of decreased DNAJC4 and CATSPER1 mRNA concentrations in testes weeks after dexamethasone treatment. Concentrations of these mRNAs in sperm may be useful as novel markers of fertility in stallions. PMID:25487569

  13. Interplay of gene expression noise and ultrasensitive dynamics affects bacterial operon organization.

    Directory of Open Access Journals (Sweden)

    J Christian J Ray

    Full Text Available Bacterial chromosomes are organized into polycistronic cotranscribed operons, but the evolutionary pressures maintaining them are unclear. We hypothesized that operons alter gene expression noise characteristics, resulting in selection for or against maintaining operons depending on network architecture. Mathematical models for 6 functional classes of network modules showed that three classes exhibited decreased noise and 3 exhibited increased noise with same-operon cotranscription of interacting proteins. Noise reduction was often associated with a decreased chance of reaching an ultrasensitive threshold. Stochastic simulations of the lac operon demonstrated that the predicted effects of transcriptional coupling hold for a complex network module. We employed bioinformatic analysis to find overrepresentation of noise-minimizing operon organization compared with randomized controls. Among constitutively expressed physically interacting protein pairs, higher coupling frequencies appeared at lower expression levels, where noise effects are expected to be dominant. Our results thereby suggest an important role for gene expression noise, in many cases interacting with an ultrasensitive switch, in maintaining or selecting for operons in bacterial chromosomes.

  14. Coordinate activation of inflammatory gene networksalveolar destruction and neonatal death in AKNA deficient mice

    Institute of Scientific and Technical Information of China (English)

    Wenbin Ma; Woong-Kyung Suh; Hitoshi Okada; Tak W Mak; Yang Zhou; Michael R Blackburn; Hector Martinez-Valdez; Blanca Ortiz-Quintero; Roberto Rangel; Morgan R McKeller; Sara Herrera-Rodriguez; Eliseo F Castillo; Kimberly S Schluns; Mary Hall; Huiyuan Zhang

    2011-01-01

    Gene expression can be regulated by chromatin modifiers,transcription factors and proteins that modulate DNA architecture.Among the latter,AT-hook transcription factors have emerged as multifaceted regulators that can activate or repress broad A/T-rich gene networks.Thus,alterations of AT-hook genes could affect the transcription of multiple genes causing global cell dysfunction.Here we report that targeted deletions of mouse AKNA,a hypothetical AT-hook-like transcription factor,sensitize mice to pathogen-induced inflammation and cause sudden neonatal death.Compared with wild-type littermates,AKNA KO mice appeared weak,failedto thrive and most died by postnatal day 10.Systemic inflammation,predominantly in the lungs,was accompanied by enhanced leukocyte infiltration and alveolar destruction.Cytologic,immunohistochemical and molecular analyses revealed CD11b+Gr1+ neutrophils as major tissue infiltrators,neutrophilic granule protein,cathelin-related antimicrobial peptide and S100A8/9 as neutrophil-specific chemoattracting factors,interleukin-1β and interferon-γ as proinflammatory mediators,and matrix metalloprotease 9 as a plausible proteolytic trigger of alveolar damage.AKNA KO bone marrow transplants in wildtype recipients reproduced the severe pathogen-induced reactions and confirmed the involvement of neutrophils in acute inflammation.Moreover,promoter/reporter experiments showed that AKNA could act as a gene repressor.Our results support the concept of coordinated pathway-specific gene regulation functions modulating the intensity of inflammatory responses,reveal neutrophils as prominent mediators of acute inflammation and suggest mechanisms underlying the triggering of acute and potentially fatal immune reactions.

  15. Studies of Some Parameters Affecting The Efficiency and Accuracy of The Neutron Activation Analysis Technique

    International Nuclear Information System (INIS)

    The present studies deal with the optimum physical conditions which seriously affect the neutron activation analysis technique efficiency. An experimental work for the efficiency calibration of hyper pure germanium detectors especially for environmental studies is presented. This work showed that the tested parameters, under consideration, distance, mass and measured time, reveal a significant effect on the obtained data. These results, intern, affect the accuracy of the measurements. Further work on the test of other parameters is planned in our laboratory using special treatments and applying special computer programs

  16. The role of genetic sex in affect regulation and expression of GABA-related genes across species

    Directory of Open Access Journals (Sweden)

    Marianne eSeney

    2013-09-01

    Full Text Available Although circulating hormones and inhibitory gamma-amino butyric acid (GABA-related factors are known to affect mood, considerable knowledge gaps persist for biological mechanisms underlying the female bias in mood disorders. Here, we combine human and mouse studies to investigate sexual dimorphism in the GABA system in the context of major depressive disorder (MDD and then use a genetic model to dissect the role of sex-related factors in GABA-related gene expression and anxiety-/depressive-like behaviors in mice. First, using meta-analysis of gene array data in human postmortem brain (N = 51 MDD subjects, 50 controls, we show that the previously-reported down-regulation in MDD of somatostatin (SST, a marker of a GABA neuron subtype, is significantly greater in women with MDD. Second, using gene co-expression network analysis in control human subjects (N = 214; 2 frontal cortex regions and expression quantitative trait loci mapping (N = 170 subjects, we show that expression of SST and the GABA-synthesizing enzymes glutamate decarboxylase 67 (GAD67 and GAD65 are tightly co-regulated and influenced by X-chromosome genetic polymorphisms. Third, using a rodent genetic model (Four Core Genotypes (FCG mice, in which genetic and gonadal sex are artificially dissociated (N ≥ 12/group, we show that genetic sex (i.e. X/Y chromosome influences both gene expression (lower Sst, Gad67, Gad65 in XY mice and anxiety-like behaviors (higher in XY mice. This suggests that in an intact male animal, the observed behavior represents the outcomes of male genetic sex increasing and male-like testosterone decreasing anxiety-like behaviors. Gonadal sex was the only factor influencing depressive-like behavior (gonadal males < gonadal females. Collectively, these combined human and mouse studies provide mechanistic insight into sexual dimorphism in mood disorders, and specifically demonstrate an unexpected role for XY genetic sex on GABA-related genes and anxiety

  17. AAV-mediated gene transfer of the obesity-associated gene Etv5 in rat midbrain does not affect energy balance or motivated behavior.

    Directory of Open Access Journals (Sweden)

    Arjen J Boender

    Full Text Available Several genome-wide association studies have implicated the transcription factor E-twenty- six version 5 (Etv5 in the regulation of body mass index. Further substantiating the role of Etv5 in feeding behavior are the findings that targeted disruption of Etv5 in mice leads to decreased body weight gain and that expression of Etv5 is decreased in the ventral tegmental area and substantia nigra pars compacta (VTA/SNpc after food restriction. As Etv5 has been suggested to influence dopaminergic neurotransmission by driving the expression of genes that are responsible for the synthesis and release of dopamine, we investigated if expression levels of Etv5 are dependent on nutritional state and subsequently influence the expression levels of tyrosine hydroxylase. While it was shown that Etv5 expression in the VTA/SNpc increases after central administration of leptin and that Etv5 was able to drive expression of tyrosine hydroxylase in vitro, AAV-mediated gene transfer of Etv5 into the VTA/SNpc of rats did not alter expression of tyrosine hydroxylase in vivo. Moreover, AAV-mediated gene transfer of Etv5 in the VTA/SNpc did not affect measures of energy balance or performances in a progressive ratio schedule. Thus, these data do not support a role for increased expression of Etv5 in the VTA/SNpc in the regulation of feeding behavior.

  18. Transcriptional regulation of the presenilin-1 gene controls gamma-secretase activity.

    Science.gov (United States)

    Lee, Sebum; Das, Hriday K

    2010-01-01

    Inhibition of basal JNK activity by JNK inhibitor SP600125 or JNK1siRNA repressed presenilin-1 (PS1) expression in SK-N-SH cells by augmenting the level of p53, a repressor of the PS1 gene (1). We now showed that repression of PS1 transcription by JNK inhibitor SP600125 inhibited gamma-secretase mediated processing of amyloid precursor protein (APP) resulting in the accumulation of C99 fragment and the reduction of secreted Abeta40 level without altering the expression of nicastrin (NCT). Co-treatment of cells with SP600125 and p53 inhibitor, pifithrin-alpha, partially nullified the suppressive effects of SP610025 on PS1 expression and secreted Abeta40 level. Suppression of JNK1 by JNK1siRNA also decreased Abeta40 level. Furthermore, overexpression of the repressors p53, ZNF237 and CHD3 of the PS1 gene also suppressed the processing of APP through repression of PS1 transcription by deacetylation of histone at the PS1 promoter. Transcriptional activator Ets2 increased PS1 protein and secreted Abeta40 levels without affecting the expression of NCT by activating PS1 transcription via hyper-acetylation of histone at the PS1 promoter. Therefore, regulation of PS1 transcription modulates gamma-secretase activity. PMID:20036849

  19. Multiplicative and Additive Modulation of Neuronal Tuning with Population Activity Affects Encoded Information.

    Science.gov (United States)

    Arandia-Romero, Iñigo; Tanabe, Seiji; Drugowitsch, Jan; Kohn, Adam; Moreno-Bote, Rubén

    2016-03-16

    Numerous studies have shown that neuronal responses are modulated by stimulus properties and also by the state of the local network. However, little is known about how activity fluctuations of neuronal populations modulate the sensory tuning of cells and affect their encoded information. We found that fluctuations in ongoing and stimulus-evoked population activity in primate visual cortex modulate the tuning of neurons in a multiplicative and additive manner. While distributed on a continuum, neurons with stronger multiplicative effects tended to have less additive modulation and vice versa. The information encoded by multiplicatively modulated neurons increased with greater population activity, while that of additively modulated neurons decreased. These effects offset each other so that population activity had little effect on total information. Our results thus suggest that intrinsic activity fluctuations may act as a "traffic light" that determines which subset of neurons is most informative. PMID:26924437

  20. Electron donors and co-contaminants affect microbial community composition and activity in perchlorate degradation.

    Science.gov (United States)

    Guan, Xiangyu; Xie, Yuxuan; Wang, Jinfeng; Wang, Jing; Liu, Fei

    2015-04-01

    Although microbial reduction of perchlorate (ClO4(-)) is a promising and effective method, our knowledge on the changes in microbial communities during ClO4(-) degradation is limited, especially when different electron donors are supplied and/or other contaminants are present. Here, we examined the effects of acetate and hydrogen as electron donors and nitrate and ammonium as co-contaminants on ClO4(-) degradation by anaerobic microcosms using six treatments. The process of degradation was divided into the lag stage (SI) and the accelerated stage (SII). Quantitative PCR was used to quantify four genes: pcrA (encoding perchlorate reductase), cld (encoding chlorite dismutase), nirS (encoding copper and cytochrome cd1 nitrite reductase), and 16S rRNA. While the degradation of ClO4(-) with acetate, nitrate, and ammonia system (PNA) was the fastest with the highest abundance of the four genes, it was the slowest in the autotrophic system (HYP). The pcrA gene accumulated in SI and played a key role in initiating the accelerated degradation of ClO4(-) when its abundance reached a peak. Degradation in SII was primarily maintained by the cld gene. Acetate inhibited the growth of perchlorate-reducing bacteria (PRB), but its effect was weakened by nitrate (NO3(-)), which promoted the growth of PRB in SI, and therefore, accelerated the ClO4(-) degradation rate. In addition, ammonia (NH4(+)), as nitrogen sources, accelerated the growth of PRB. The bacterial communities' structure and diversity were significantly affected by electron donors and co-contaminants. Under heterotrophic conditions, both ammonia and nitrate promoted Azospira as the most dominant genera, a fact that might significantly influence the rate of ClO4(-) natural attenuation by degradation. PMID:25382499

  1. Zinc Affects Differently Growth, Photosynthesis, Antioxidant Enzyme Activities and Phytochelatin Synthase Expression of Four Marine Diatoms

    Directory of Open Access Journals (Sweden)

    Thi Le Nhung Nguyen-Deroche

    2012-01-01

    Full Text Available Zinc-supplementation (20 μM effects on growth, photosynthesis, antioxidant enzyme activities (superoxide dismutase, ascorbate peroxidase, catalase, and the expression of phytochelatin synthase gene were investigated in four marine diatoms (Amphora acutiuscula, Nitzschia palea, Amphora coffeaeformis and Entomoneis paludosa. Zn-supplementation reduced the maximum cell density. A linear relationship was found between the evolution of gross photosynthesis and total chlorophyll content. The Zn treatment decreased the electron transport rate except in A. coffeaeformis and in E. paludosa at high irradiance. A linear relationship was found between the efficiency of light to evolve oxygen and the size of the light-harvesting antenna. The external carbonic anhydrase activity was stimulated in Zn-supplemented E. paludosa but was not correlated with an increase of photosynthesis. The total activity of the antioxidant enzymes did not display any clear increase except in ascorbate peroxidase activity in N. palea. The phytochelatin synthase gene was identified in the four diatoms, but its expression was only revealed in N. palea, without a clear difference between control and Zn-supplemented cells. Among the four species, A. paludosa was the most sensitive and A. coffeaeformis, the most tolerant. A. acutiuscula seemed to be under metal starvation, whereas, to survive, only N. palea developed several stress responses.

  2. Activation of transforming potential of the human insulin receptor gene

    International Nuclear Information System (INIS)

    A retrovirus containing part of the human insulin receptor (hIR) gene was constructed by replacing ros sequences in the avian sarcoma virus UR2 with hIR cDNA sequences coding for 46 amino acids of the extracellular domain and the entire transmembrane and cytoplasmic domains of the β subunit of hIR. The resulting virus, named UIR, contains the hIR sequence fused to the 5' portion of the UR2 gag gene coding for p19. UIR is capable of transforming chicken embryo fibroblasts and promoting formation of colonies in soft agar; however, it does not form tumors in vivo. A variant that arose from the parental UIR is capable of efficiently inducing sarcomas in vivo. UIR-transformed cells exhibit higher rates of glucose uptake and growth than normal cells. The 4-kilobase UIR genome codes for a membrane-associated, glycosylated gag-hIR fusion protein of 75 kDa designated P75/sup gag-hir/. P75/sup gag-hir/ contains a protein tyrosine kinase activity that is capable of undergoing autophosphorylation and of phosphorylating foreign substrates in vitro; it is phosphorylated at both serine and tyrosine residues in vivo

  3. Activation of transforming potential of the human insulin receptor gene

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L.H.; Lin, B.; Jong, S.M.J.; Dixon, D.; Ellis, L.; Roth, R.A.; Rutter, W.J.

    1987-08-01

    A retrovirus containing part of the human insulin receptor (hIR) gene was constructed by replacing ros sequences in the avian sarcoma virus UR2 with hIR cDNA sequences coding for 46 amino acids of the extracellular domain and the entire transmembrane and cytoplasmic domains of the ..beta.. subunit of hIR. The resulting virus, named UIR, contains the hIR sequence fused to the 5' portion of the UR2 gag gene coding for p19. UIR is capable of transforming chicken embryo fibroblasts and promoting formation of colonies in soft agar; however, it does not form tumors in vivo. A variant that arose from the parental UIR is capable of efficiently inducing sarcomas in vivo. UIR-transformed cells exhibit higher rates of glucose uptake and growth than normal cells. The 4-kilobase UIR genome codes for a membrane-associated, glycosylated gag-hIR fusion protein of 75 kDa designated P75/sup gag-hir/. P75/sup gag-hir/ contains a protein tyrosine kinase activity that is capable of undergoing autophosphorylation and of phosphorylating foreign substrates in vitro; it is phosphorylated at both serine and tyrosine residues in vivo

  4. Three faces of recombination activating gene 1 (RAG1) mutations.

    Science.gov (United States)

    Patiroglu, Turkan; Akar, Himmet Haluk; Van Der Burg, Mirjam

    2015-12-01

    Severe combined immune deficiency (SCID) is a group of genetic disorder associated with development of T- and/or B-lymphocytes. Recombination-activating genes (RAG1/2) play a critical role on VDJ recombination process that leads to the production of a broad T-cell receptor (TCR) and B-cell receptor (BCR) repertoire in the development of T and B cells. RAG1/2 genes mutations result in various forms of primary immunodeficiency, ranging from classic SCID to Omenn syndrome (OS) to atypical SCID with such as granuloma formation and autoimmunity. Herein, we reported 4 patients with RAG1 deficiency: classic SCID was seen in two patients who presented with recurrent pneumonia and chronic diarrhoea, and failure to thrive. OS was observed in one patient who presented with chronic diarrhoea, skin rash, recurrent lower respiratory infections, and atypical SCID was seen in one patient who presented with Pyoderma gangrenosum (PG) and had novel RAG1 mutation. PMID:26689875

  5. Housing conditions and sacrifice protocol affect neural activity and vocal behavior in a songbird species, the zebra finch (Taeniopygia guttata).

    Science.gov (United States)

    Elie, Julie Estelle; Soula, Hédi Antoine; Trouvé, Colette; Mathevon, Nicolas; Vignal, Clémentine

    2015-12-01

    Individual cages represent a widely used housing condition in laboratories. This isolation represents an impoverished physical and social environment in gregarious animals. It prevents animals from socializing, even when auditory and visual contact is maintained. Zebra finches are colonial songbirds that are widely used as laboratory animals for the study of vocal communication from brain to behavior. In this study, we investigated the effect of single housing on the vocal behavior and the brain activity of male zebra finches (Taeniopygia guttata): male birds housed in individual cages were compared to freely interacting male birds housed as a social group in a communal cage. We focused on the activity of septo-hypothalamic regions of the "social behavior network" (SBN), a set of limbic regions involved in several social behaviors in vertebrates. The activity of four structures of the SBN (BSTm, medial bed nucleus of the stria terminalis; POM, medial preoptic area; lateral septum; ventromedial hypothalamus) and one associated region (paraventricular nucleus of the hypothalamus) was assessed using immunoreactive nuclei density of the immediate early gene Zenk (egr-1). We further assessed the identity of active cell populations by labeling vasotocin (VT). Brain activity was related to behavioral activities of birds like physical and vocal interactions. We showed that individual housing modifies vocal exchanges between birds compared to communal housing. This is of particular importance in the zebra finch, a model species for the study of vocal communication. In addition, a protocol that daily removes one or two birds from the group affects differently male zebra finches depending of their housing conditions: while communally-housed males changed their vocal output, brains of individually housed males show increased Zenk labeling in non-VT cells of the BSTm and enhanced correlation of Zenk-revealed activity between the studied structures. These results show that

  6. Knockdown of the coenzyme Q synthesis gene Smed-dlp1 affects planarian regeneration and tissue homeostasis.

    Science.gov (United States)

    Shiobara, Yumiko; Harada, Chiaki; Shiota, Takeshi; Sakamoto, Kimitoshi; Kita, Kiyoshi; Tanaka, Saeko; Tabata, Kenta; Sekie, Kiyoteru; Yamamoto, Yorihiro; Sugiyama, Tomoyasu

    2015-12-01

    The freshwater planarian is a model organism used to study tissue regeneration that occupies an important position among multicellular organisms. Planarian genomic databases have led to the identification of genes that are required for regeneration, with implications for their roles in its underlying mechanism. Coenzyme Q (CoQ) is a fundamental lipophilic molecule that is synthesized and expressed in every cell of every organism. Furthermore, CoQ levels affect development, life span, disease and aging in nematodes and mice. Because CoQ can be ingested in food, it has been used in preventive nutrition. In this study, we investigated the role of CoQ in planarian regeneration. Planarians synthesize both CoQ9 and rhodoquinone 9 (RQ9). Knockdown of Smed-dlp1, a trans-prenyltransferase gene that encodes an enzyme that synthesizes the CoQ side chain, led to a decrease in CoQ9 and RQ9 levels. However, ATP levels did not consistently decrease in these animals. Knockdown animals exhibited tissue regression and curling. The number of mitotic cells decreased in Smed-dlp1 (RNAi) animals. These results suggested a failure in physiological cell turnover and stem cell function. Accordingly, regenerating planarians died from lysis or exhibited delayed regeneration. Interestingly, the observed phenotypes were partially rescued by ingesting food supplemented with α-tocopherol. Taken together, our results suggest that oxidative stress induced by reduced CoQ9 levels affects planarian regeneration and tissue homeostasis. PMID:26516985

  7. The cancer gene WWOX behaves as an inhibitor of SMAD3 transcriptional activity via direct binding

    International Nuclear Information System (INIS)

    The WW domain containing protein WWOX has been postulated to behave as a tumor suppressor in breast and other cancers. Expression of this protein is lost in over 70% of ER negative tumors. This prompted us to investigate the phenotypic and gene expression effects of loss of WWOX expression in breast cells. Gene expression microarrays and standard in vitro assays were performed on stably silenced WWOX (shRNA) normal breast cells. Bioinformatic analyses were used to identify gene networks and transcriptional regulators affected by WWOX silencing. Co-immunoprecipitations and GST-pulldowns were used to demonstrate a direct interaction between WWOX and SMAD3. Reporter assays, ChIP, confocal microscopy and in silico analyses were employed to determine the effect of WWOX silencing on TGFβ-signaling. WWOX silencing affected cell proliferation, motility, attachment and deregulated expression of genes involved in cell cycle, motility and DNA damage. Interestingly, we detected an enrichment of targets activated by the SMAD3 transcription factor, including significant upregulation of ANGPTL4, FST, PTHLH and SERPINE1 transcripts. Importantly, we demonstrate that the WWOX protein physically interacts with SMAD3 via WW domain 1. Furthermore, WWOX expression dramatically decreases SMAD3 occupancy at the ANGPTL4 and SERPINE1 promoters and significantly quenches activation of a TGFβ responsive reporter. Additionally, WWOX expression leads to redistribution of SMAD3 from the nuclear to the cytoplasmic compartment. Since the TGFβ target ANGPTL4 plays a key role in lung metastasis development, we performed a meta-analysis of ANGPTL4 expression relative to WWOX in microarray datasets from breast carcinomas. We observed a significant inverse correlation between WWOX and ANGPTL4. Furthermore, the WWOXlo/ANGPTL4hi cluster of breast tumors is enriched in triple-negative and basal-like sub-types. Tumors with this gene expression signature could represent candidates for anti-TGFβ targeted

  8. Transcriptionally active and inactive genes are similarly modified by chemical carcinogens or X-ray in normal human fibroblasts

    International Nuclear Information System (INIS)

    Chemical carcinogens and ionizing radiation induce DNA modifications and strand breaks in cells. This damage is reported to be affected by chromatin proteins or chromatin of a higher structure order. To compare the sensitivity of transcriptionally active and inactive genes on chromatin toward DNA-damaging agents, we treated normal human fibroblasts (WI-38) cells with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), X-ray, 4-hydroxyaminoquinoline 1-oxide or N-acetoxy-2-acetylaminofluorene, and high molecular weight DNA was isolated. After digestion with EcoRI to completion, the DNA was electrophoresed on an alkaline agarose gel, blotted on a nitrocellulose filter and hybridized with a transcriptionally active gene probe (human type I(α2) procollagen gene) or an inactive gene probe (human β-globin gene). The results show that both genes are similarly modified by these agents. Repair of DNA damage caused by MNNG also occurred similarly in collagen and β-globin genes after removal of MNNG. (Auth.)

  9. Grapevine Rootstocks Differentially Affect the Rate of Ripening and Modulate Auxin-Related Genes in Cabernet Sauvignon Berries.

    Science.gov (United States)

    Corso, Massimiliano; Vannozzi, Alessandro; Ziliotto, Fiorenza; Zouine, Mohamed; Maza, Elie; Nicolato, Tommaso; Vitulo, Nicola; Meggio, Franco; Valle, Giorgio; Bouzayen, Mondher; Müller, Maren; Munné-Bosch, Sergi; Lucchin, Margherita; Bonghi, Claudio

    2016-01-01

    In modern viticulture, grafting commercial grapevine varieties on interspecific rootstocks is a common practice required for conferring resistance to many biotic and abiotic stresses. Nevertheless, the use of rootstocks to gain these essential traits is also known to impact grape berry development and quality, although the underlying mechanisms are still poorly understood. In grape berries, the onset of ripening (véraison) is regulated by a complex network of mobile signals including hormones such as auxins, ethylene, abscisic acid, and brassinosteroids. Recently, a new rootstock, designated M4, was selected based on its enhanced tolerance to water stress and medium vigor. This study investigates the effect of M4 on Cabernet Sauvignon (CS) berry development in comparison to the commercial 1103P rootstock. Physical and biochemical parameters showed that the ripening rate of CS berries is faster when grafted onto M4. A multifactorial analysis performed on mRNA-Seq data obtained from skin and pulp of berries grown in both graft combinations revealed that genes controlling auxin action (ARF and Aux/IAA) represent one of main categories affected by the rootstock genotype. Considering that the level of auxin tightly regulates the transcription of these genes, we investigated the behavior of the main gene families involved in auxin biosynthesis and conjugation. Molecular and biochemical analyses confirmed a link between the rate of berry development and the modulation of auxin metabolism. Moreover, the data indicate that this phenomenon appears to be particularly pronounced in skin tissue in comparison to the flesh. PMID:26904046

  10. Grapevine Rootstocks Differentially Affect the Rate of Ripening and Modulate Auxin-Related Genes in Cabernet Sauvignon Berries

    Science.gov (United States)

    Corso, Massimiliano; Vannozzi, Alessandro; Ziliotto, Fiorenza; Zouine, Mohamed; Maza, Elie; Nicolato, Tommaso; Vitulo, Nicola; Meggio, Franco; Valle, Giorgio; Bouzayen, Mondher; Müller, Maren; Munné-Bosch, Sergi; Lucchin, Margherita; Bonghi, Claudio

    2016-01-01

    In modern viticulture, grafting commercial grapevine varieties on interspecific rootstocks is a common practice required for conferring resistance to many biotic and abiotic stresses. Nevertheless, the use of rootstocks to gain these essential traits is also known to impact grape berry development and quality, although the underlying mechanisms are still poorly understood. In grape berries, the onset of ripening (véraison) is regulated by a complex network of mobile signals including hormones such as auxins, ethylene, abscisic acid, and brassinosteroids. Recently, a new rootstock, designated M4, was selected based on its enhanced tolerance to water stress and medium vigor. This study investigates the effect of M4 on Cabernet Sauvignon (CS) berry development in comparison to the commercial 1103P rootstock. Physical and biochemical parameters showed that the ripening rate of CS berries is faster when grafted onto M4. A multifactorial analysis performed on mRNA-Seq data obtained from skin and pulp of berries grown in both graft combinations revealed that genes controlling auxin action (ARF and Aux/IAA) represent one of main categories affected by the rootstock genotype. Considering that the level of auxin tightly regulates the transcription of these genes, we investigated the behavior of the main gene families involved in auxin biosynthesis and conjugation. Molecular and biochemical analyses confirmed a link between the rate of berry development and the modulation of auxin metabolism. Moreover, the data indicate that this phenomenon appears to be particularly pronounced in skin tissue in comparison to the flesh. PMID:26904046

  11. A high protein diet during pregnancy affects hepatic gene expression of energy sensing pathways along ontogenesis in a porcine model.

    Directory of Open Access Journals (Sweden)

    Michael Oster

    Full Text Available In rodent models and in humans the impact of gestational diets on the offspring's phenotype was shown experimentally and epidemiologically. The underlying programming of fetal development was shown to be associated with an increased risk of degenerative diseases in adulthood, including the metabolic syndrome. There are clues that diet-dependent modifications of the metabolism during fetal life can persist until adulthood. This leads to the hypothesis that the offspring's transcriptomes show short-term and long-term changes depending on the maternal diet. To this end pregnant German landrace gilts were fed either a high protein diet (HP, 30% CP or an adequate protein diet (AP, 12% CP throughout pregnancy. Hepatic transcriptome profiles of the offspring were analyzed at prenatal (94 dpc and postnatal stages (1, 28, 188 dpn. Depending on the gestational dietary exposure, mRNA expression levels of genes related to energy metabolism, N-metabolism, growth factor signaling pathways, lipid metabolism, nucleic acid metabolism and stress/immune response were affected either in a short-term or in a long-term manner. Gene expression profiles at fetal stage 94 dpc were almost unchanged between the diets. The gestational HP diet affected the hepatic expression profiles at prenatal and postnatal stages. The effects encompassed a modulation of the genome in terms of an altered responsiveness of energy and nutrient sensing pathways. Differential expression of genes related to energy production and nutrient utilization contribute to the maintenance of development and growth performance within physiological norms, however the modulation of these pathways may be accompanied by a predisposition for metabolic disturbances up to adult stages.

  12. The callipyge mutation and other genes that affect muscle hypertrophy in sheep

    Directory of Open Access Journals (Sweden)

    Cockett Noelle E

    2005-12-01

    Full Text Available Abstract Genetic strategies to improve the profitability of sheep operations have generally focused on traits for reproduction. However, natural mutations exist in sheep that affect muscle growth and development, and the exploitation of these mutations in breeding strategies has the potential to significantly improve lamb-meat quality. The best-documented mutation for muscle development in sheep is callipyge (CLPG, which causes a postnatal muscle hypertrophy that is localized to the pelvic limbs and loin. Enhanced skeletal muscle growth is also observed in animals with the Carwell (or rib-eye muscling mutation, and a double-muscling phenotype has been documented for animals of the Texel sheep breed. However, the actual mutations responsible for these muscular hypertrophy phenotypes in sheep have yet to be identified, and further characterization of the genetic basis for these phenotypes will provide insight into the biological control of muscle growth and body composition.

  13. SOME IMPORTANT FACTORS AFFECTING EVOLUTION OF ACTIVITY BASED COSTING (ABC SYSTEM IN EGYPTIAN MANUFACTURING FIRMS

    Directory of Open Access Journals (Sweden)

    Karim MAMDOUH ABBAS

    2014-04-01

    Full Text Available The present investigation aims to determine the factors affecting evolution of Activity Based Costing (ABC system in Egyptian case. The study used the survey method to describe and analyze these factors in some Egyptian firms. The population of the study is Egyptian manufacturing firms. Accordingly, the number of received questionnaires was 392 (23 Egyptian manufacturing firms in the first half of 2013. Finally, the study stated some influencing factors for evolution this system (ABC in Egyptian manufacturing firms.

  14. Critical Success Factors Affecting e-commerce Activities of Small and Medium Enterprises

    OpenAIRE

    Ozgur Dogerlioglu; Volkan Cosgun

    2012-01-01

    Electronic commerce is redefining business and customer relationships, business processes, even sometimes restructuring the whole industry by providing new distribution channel, new delivery methods, new payment methods and new medium for communication. The aim of this study was to explore the critical success factors that affect e-commerce activities of Small and Medium -sized Enterprises (SMEs). In this study, a model has been developed based on previous researches and a questionnaire...

  15. Compensatory premotor activity during affective face processing in subclinical carriers of a single mutant Parkin allele

    OpenAIRE

    Anders, Silke; Sack, Benjamin; Pohl, Anna; Münte, Thomas; Pramstaller, Peter; Klein, Christine; Binkofski, Ferdinand

    2012-01-01

    Patients with Parkinson's disease suffer from significant motor impairments and accompanying cognitive and affective dysfunction due to progressive disturbances of basal ganglia–cortical gating loops. Parkinson's disease has a long presymptomatic stage, which indicates a substantial capacity of the human brain to compensate for dopaminergic nerve degeneration before clinical manifestation of the disease. Neuroimaging studies provide evidence that increased motor-related cortical activity can ...

  16. Factors affecting hospital stay in psychiatric patients: the role of active comorbidity

    OpenAIRE

    Douzenis, Athanassios; Seretis, Dionysios; Nika, Stella; Nikolaidou, Paraskevi; Papadopoulou, Athanassia; Rizos, Emmanouil N; Christodoulou, Christos; Tsopelas, Christos; Mitchell, Dominic; Lykouras, Lefteris

    2012-01-01

    Background Research on length of stay (LOS) of psychiatric inpatients is an under-investigated issue. In this naturalistic study factors which affect LOS of two groups of patients were investigated, focusing on the impact on LOS of medical comorbidity severe enough to require referral. Methods Active medical comorbidity was quantified using referral as the criterion. The study sample consisted of 200 inpatients with the diagnosis of schizophrenia and 228 inpatients suffering from bipolar diso...

  17. SOME IMPORTANT FACTORS AFFECTING EVOLUTION OF ACTIVITY BASED COSTING (ABC) SYSTEM IN EGYPTIAN MANUFACTURING FIRMS

    OpenAIRE

    Karim MAMDOUH ABBAS

    2014-01-01

    The present investigation aims to determine the factors affecting evolution of Activity Based Costing (ABC) system in Egyptian case. The study used the survey method to describe and analyze these factors in some Egyptian firms. The population of the study is Egyptian manufacturing firms. Accordingly, the number of received questionnaires was 392 (23 Egyptian manufacturing firms) in the first half of 2013. Finally, the study stated some influencing factors for evolution this system (ABC) in Eg...

  18. Methyl jasmonate and miconazole differently affect arteminisin production and gene expression in Artemisia annua suspension cultures.

    Science.gov (United States)

    Caretto, S; Quarta, A; Durante, M; Nisi, R; De Paolis, A; Blando, F; Mita, G

    2011-01-01

    Artemisia annua L. is a herb traditionally used for treatment of fevers. The glandular trichomes of this plant accumulate, although at low levels, artemisinin, which is highly effective against malaria. Due to the great importance of this compound, many efforts have been made to improve knowledge on artemisinin production both in plants and in cell cultures. In this study, A. annua suspension cultures were established in order to investigate the effects of methyl jasmonate (MeJA) and miconazole on artemisinin biosynthesis. Twenty-two micro molar MeJA induced a three-fold increase of artemisinin production in around 30 min; while 200 μm miconazole induced a 2.5-fold increase of artemisinin production after 24 h, but had severe effects on cell viability. The influence of these treatments on expression of biosynthetic genes was also investigated. MeJA induced up-regulation of CYP71AV1, while miconazole induced up-regulation of CPR and DBR2. PMID:21143725

  19. Interleukin-1 gene polymorphism disease activity and bone mineral metabolism in rheumatoid arthritis

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    .Conclution Polymorphisms of the IL-β gene may affect the RA occurrence. Carriage of IL-1β2 polymorphisms is associated with more active disease in RA and the presence of both the IL-1α2 and the IL-1β1 allele in RA influences bone resorption.

  20. ERK1 and ERK2 mitogen-activated protein kinases affect Ras-dependent cell signaling differentially

    Directory of Open Access Journals (Sweden)

    Bonini Chiara

    2006-06-01

    Full Text Available Abstract Background The mitogen-activated protein (MAP kinases p44ERK1 and p42ERK2 are crucial components of the regulatory machinery underlying normal and malignant cell proliferation. A currently accepted model maintains that ERK1 and ERK2 are regulated similarly and contribute to intracellular signaling by phosphorylating a largely common subset of substrates, both in the cytosol and in the nucleus. Results Here, we show that ablation of ERK1 in mouse embryo fibroblasts and NIH 3T3 cells by gene targeting and RNA interference results in an enhancement of ERK2-dependent signaling and in a significant growth advantage. By contrast, knockdown of ERK2 almost completely abolishes normal and Ras-dependent cell proliferation. Ectopic expression of ERK1 but not of ERK2 in NIH 3T3 cells inhibits oncogenic Ras-mediated proliferation and colony formation. These phenotypes are independent of the kinase activity of ERK1, as expression of a catalytically inactive form of ERK1 is equally effective. Finally, ectopic expression of ERK1 but not ERK2 is sufficient to attenuate Ras-dependent tumor formation in nude mice. Conclusion These results reveal an unexpected interplay between ERK1 and ERK2 in transducing Ras-dependent cell signaling and proliferation. Whereas ERK2 seems to have a positive role in controlling normal and Ras-dependent cell proliferation, ERK1 probably affects the overall signaling output of the cell by antagonizing ERK2 activity.

  1. Evidence for a genetic association between alleles of monoamine oxidase A gene and bipolar affective disorder

    Energy Technology Data Exchange (ETDEWEB)

    Lim, L.C.C.; Sham, P.; Castle, D. [Institute of Psychiatry, London (United Kingdom)] [and others

    1995-08-14

    We present evidence of a genetic association between bipolar disorder and alleles at 3 monoamine oxidase A (MAOA) markers, but not with alleles of a monoamine oxidase B (MAOB) polymorphism. The 3 MAOA markers, including one associated with low MAOA activity, show strong allelic association with each other but surprisingly not with MAOB. Our results are significantly only for females, though the number of males in our sample is too small to draw any definite conclusions. Our data is consistent with recent reports of reduced MAOA activity in patients with abnormal behavioral phenotypes. The strength of the association is weak, but significant, which suggests that alleles at the MAOA locus contribute to susceptibility to bipolar disorder rather than being a major determinant. 58 refs., 1 fig., 3 tabs.

  2. The affect of industrial activities on zinc in alluvial Egyptian soil determined using neutron activation analysis

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Thirty-two surface (0-20 cm) soil samples were collected from different locations in Egypt representing non-polluted,moderately and highly polluted soils.The aim of this study was to evaluate total Zn content in alluvial soils of Nile Delta in Egypt by using the delayed neutron activation analysis technique (DNAA),in the irradiation facilities of the first Egyptian research reactor (ET-RR-1).The gamma-ray spectra were recorded with a hyper pure germanium detection system.The well resolved gamma-ray peak at 1116.0 kev was efficiently used for 65Zn content determination.Zn content in non-polluted soil samples ranged between 74.1 and 103.8 ppm with an average of 98.5 + 5.1 ppm.Zn content in moderately polluted soils ranged between 136.0 and 232.5 ppm with an average of 180.1 + 32.6 ppm.The highest Zn levels ranging from 240.0 and 733.0 ppm with an average of 410.3 + 54.4 ppm,were observed in soil samples collected from,either highly polluted agricultural soils exposed to prolonged irrigation with industrial wastewater or surface soil samples from industrial sites.

  3. Loss of σI affects heat-shock response and virulence gene expression in Bacillus anthracis.

    Science.gov (United States)

    Kim, Jenny Gi Yae; Wilson, Adam C

    2016-02-01

    The pathogenesis of Bacillus anthracis depends on several virulence factors, including the anthrax toxin. Loss of the alternative sigma factor σI results in a coordinate decrease in expression of all three toxin subunits. Our observations suggest that loss of σI alters the activity of the master virulence regulator AtxA, but atxA transcription is unaffected by loss of σI. σI-containing RNA polymerase does not appear to directly transcribe either atxA or the toxin gene pagA. As in Bacillus subtilis, loss of σI in B. anthracis results in increased sensitivity to heat shock and transcription of sigI, encoding σI, is induced by elevated temperature. Encoded immediately downstream of and part of a bicistronic message with sigI is an anti-sigma factor, RsgI, which controls σI activity. Loss of RsgI has no direct effect on virulence gene expression. sigI appears to be expressed from both the σI and σA promoters, and transcription from the σA promoter is likely more significant to virulence regulation. We propose a model in which σI can be induced in response to heat shock, whilst, independently, σI is produced under non-heat-shock, toxin-inducing conditions to indirectly regulate virulence gene expression. PMID:26744224

  4. Diversity and Distribution of Arsenic-Related Genes Along a Pollution Gradient in a River Affected by Acid Mine Drainage.

    Science.gov (United States)

    Desoeuvre, Angélique; Casiot, Corinne; Héry, Marina

    2016-04-01

    Some microorganisms have the capacity to interact with arsenic through resistance or metabolic processes. Their activities contribute to the fate of arsenic in contaminated ecosystems. To investigate the genetic potential involved in these interactions in a zone of confluence between a pristine river and an arsenic-rich acid mine drainage, we explored the diversity of marker genes for arsenic resistance (arsB, acr3.1, acr3.2), methylation (arsM), and respiration (arrA) in waters characterized by contrasted concentrations of metallic elements (including arsenic) and pH. While arsB-carrying bacteria were representative of pristine waters, Acr3 proteins may confer to generalist bacteria the capacity to cope with an increase of contamination. arsM showed an unexpected wide distribution, suggesting biomethylation may impact arsenic fate in contaminated aquatic ecosystems. arrA gene survey suggested that only specialist microorganisms (adapted to moderately or extremely contaminated environments) have the capacity to respire arsenate. Their distribution, modulated by water chemistry, attested the specialist nature of the arsenate respirers. This is the first report of the impact of an acid mine drainage on the diversity and distribution of arsenic (As)-related genes in river waters. The fate of arsenic in this ecosystem is probably under the influence of the abundance and activity of specific microbial populations involved in different As biotransformations. PMID:26603631

  5. Carboxyl-modified single-walled carbon nanotubes negatively affect bacterial growth and denitrification activity

    Science.gov (United States)

    Zheng, Xiong; Su, Yinglong; Chen, Yinguang; Wan, Rui; Li, Mu; Wei, Yuanyuan; Huang, Haining

    2014-07-01

    Single-walled carbon nanotubes (SWNTs) have been used in a wide range of fields, and the surface modification via carboxyl functionalization can further improve their physicochemical properties. However, whether carboxyl-modified SWNT poses potential risks to microbial denitrification after its release into the environment remains unknown. Here we present the possible effects of carboxyl-modified SWNT on the growth and denitrification activity of Paracoccus denitrificans (a model denitrifying bacterium). It was found that carboxyl-modified SWNT were present both outside and inside the bacteria, and thus induced bacterial growth inhibition at the concentrations of 10 and 50 mg/L. After 24 h of exposure, the final nitrate concentration in the presence of 50 mg/L carboxyl-modified SWNT was 21-fold higher than that in its absence, indicating that nitrate reduction was substantially suppressed by carboxyl-modified SWNT. The transcriptional profiling revealed that carboxyl-modified SWNT led to the transcriptional activation of the genes encoding ribonucleotide reductase in response to DNA damage and also decreased the gene expressions involved in glucose metabolism and energy production, which was an important reason for bacterial growth inhibition. Moreover, carboxyl-modified SWNT caused the significant down-regulation and lower activity of nitrate reductase, which was consistent with the decreased efficiency of nitrate reduction.

  6. Phosphoribosyl pyrophosphate synthetase activity affects growth and riboflavin production in Ashbya gossypii

    Directory of Open Access Journals (Sweden)

    Revuelta José L

    2008-09-01

    Full Text Available Abstract Background Phosphoribosyl pyrophosphate (PRPP is a central compound for cellular metabolism and may be considered as a link between carbon and nitrogen metabolism. PRPP is directly involved in the de novo and salvage biosynthesis of GTP, which is the immediate precursor of riboflavin. The industrial production of this vitamin using the fungus Ashbya gossypii is an important biotechnological process that is strongly influenced by substrate availability. Results Here we describe the characterization and manipulation of two genes of A. gossypii encoding PRPP synthetase (AGR371C and AGL080C. We show that the AGR371C and AGL080C gene products participate in PRPP synthesis and exhibit inhibition by ADP. We also observed a major contribution of AGL080C to total PRPP synthetase activity, which was confirmed by an evident growth defect of the Δagl080c strain. Moreover, we report the overexpression of wild-type and mutant deregulated isoforms of Agr371cp and Agl080cp that significantly enhanced the production of riboflavin in the engineered A. gossypii strains. Conclusion It is shown that alterations in PRPP synthetase activity have pleiotropic effects on the fungal growth pattern and that an increase in PRPP synthetase enzymatic activity can be used to enhance riboflavin production in A. gossypii.

  7. Identification of Residues of SARS-CoV nsp1 That Differentially Affect Inhibition of Gene Expression and Antiviral Signaling

    Science.gov (United States)

    Jauregui, Andrew R.; Savalia, Dhruti; Lowry, Virginia K.; Farrell, Cara M.; Wathelet, Marc G.

    2013-01-01

    An epidemic of Severe Acute Respiratory Syndrome (SARS) led to the identification of an associated coronavirus, SARS-CoV. This virus evades the host innate immune response in part through the expression of its non-structural protein (nsp) 1, which inhibits both host gene expression and virus- and interferon (IFN)-dependent signaling. Thus, nsp1 is a promising target for drugs, as inhibition of nsp1 would make SARS-CoV more susceptible to the host antiviral defenses. To gain a better understanding of nsp1 mode of action, we generated and analyzed 38 mutants of the SARS-CoV nsp1, targeting 62 solvent exposed residues out of the 180 amino acid protein. From this work, we identified six classes of mutants that abolished, attenuated or increased nsp1 inhibition of host gene expression and/or antiviral signaling. Each class of mutants clustered on SARS-CoV nsp1 surface and suggested nsp1 interacts with distinct host factors to exert its inhibitory activities. Identification of the nsp1 residues critical for its activities and the pathways involved in these activities should help in the design of drugs targeting nsp1. Significantly, several point mutants increased the inhibitory activity of nsp1, suggesting that coronaviruses could evolve a greater ability to evade the host response through mutations of such residues. PMID:23658627

  8. Developmental methoxychlor exposure affects multiple reproductive parameters and ovarian folliculogenesis and gene expression in adult rats

    International Nuclear Information System (INIS)

    Methoxychlor (MXC) is an organochlorine pesticide with estrogenic, anti-estrogenic, and anti-androgenic properties. To investigate whether transient developmental exposure to MXC could cause adult ovarian dysfunction, we exposed Fischer rats to 20 μg/kg/day (low dose; environmentally relevant dose) or 100 mg/kg/day (high dose) MXC between 19 days post coitum and postnatal day 7. Multiple reproductive parameters, serum hormone levels, and ovarian morphology and molecular markers were examined from prepubertal through adult stages. High dose MXC accelerated pubertal onset and first estrus, reduced litter size, and increased irregular cyclicity (P < 0.05). MXC reduced superovulatory response to exogenous gonadotropins in prepubertal females (P < 0.05). Rats exposed to high dose MXC had increasing irregular estrous cyclicity beginning at 4 months of age, with all animals showing abnormal cycles by 6 months. High dose MXC reduced serum progesterone, but increased luteinizing hormone (LH). Follicular composition analysis revealed an increase in the percentage of preantral and early antral follicles and a reduction in the percentage of corpora lutea in high dose MXC-treated ovaries (P < 0.05). Immunohistochemical staining and quantification of the staining intensity showed that estrogen receptor β was reduced by high dose MXC while anti-Mullerian hormone was upregulated by both low- and high dose MXC in preantral and early antral follicles (P < 0.05). High dose MXC significantly reduced LH receptor expression in large antral follicles (P < 0.01), and down-regulated cytochrome P450 side-chain cleavage. These results demonstrated that developmental MXC exposure results in reduced ovulation and fertility and premature aging, possibly by altering ovarian gene expression and folliculogenesis

  9. Aurora kinase B activity is modulated by thyroid hormone during transcriptional activation of pituitary genes

    OpenAIRE

    Tardáguila, Manuel; González-Gugel, Elena; Sánchez-Pacheco, Aurora

    2011-01-01

    Covalent histone modifications clearly play an essential role in ligand-dependent transcriptional regulation by nuclear receptors. One of the predominant mechanisms used by nuclear receptors to activate or repress target-gene transcription is the recruitment of coregulatory factors capable of covalently modify the amino terminal ends of histones. Here we show that the thyroid hormone (T3) produces a rapid increase in histone H3Ser10 phosphorylation (H3Ser10ph) concomitant to the rapid displac...

  10. Inducible expression pattern of rice Bowman-Birk inhibitor gene Os WIP1-2 and its protease inhibitory activity

    Institute of Scientific and Technical Information of China (English)

    CHEN Jun; LIU Jing; GUO Lei; QU Lijia; CHEN Zhangliang; GU Hongya

    2004-01-01

    The WIP1-2 gene was cloned from rice. It belongs to the Bowman-Birk inhibitor gene family. Northern blot showed that expression of this gene was induced by wounding and jasmonic acid (JA). It indicates that the OsWIP1 gene plays an important role in the rice defense system. The OsWIP1-2 was cloned into pET28a and expressed in E. Coli. Its expressed product was purified in the form of fusion protein and tested for the inhibitory activities against trypsin and chymotrypsin. It was found that the fusion protein could inhibit chymotrypsin, but not trypsin. It was also found that the His tag at its C-terminal affected its inhibitory activity significantly. The fusion protein with a natural C-terminal had the inhibitory activity, while no inhibitory activity was detected in the fusion protein with a (His)6-tag at its C-terminal. This implies that extra amino acid residues at the C-terminal of OsWIP1-2 may interfere with its correct folding. The inhibitory assay indicated that the members of rice Bowman-Birk inhibitor gene family probably differentiated both in their structure and function.

  11. Characteristics of the activity-affect association in inactive people: an ambulatory assessment study in daily life.

    Directory of Open Access Journals (Sweden)

    BirteVon Haaren

    2013-04-01

    Full Text Available Acute and regular exercise as well as physical activity is related to wellbeing and positive affect. Recent studies have shown that even daily, unstructured physical activities increase positive affect. However, the attempt to achieve adherence to physical activity or exercise in inactive people through public health interventions has often been unsuccessful. Most studies analyzing the activity-affect association in daily life, did not report participants´ habitual activity behavior. Thus, samples included active and inactive people, but they did not necessarily exhibit the same affective reactions to physical activity in daily life. Therefore the present study investigated whether the association between physical activity and subsequent affective state in daily life can also be observed in inactive individuals. We conducted a pilot study with 29 inactive university students (mean age 21.3 yrs ± 1.7 using the method of ambulatory assessment. Affect was assessed via electronic diary and physical activity was measured with accelerometers. Participants had to rate affect every two hours on a six item bipolar scale reflecting the three basic mood dimensions energetic arousal, valence and calmness. We calculated activity intensity level (mean Metabolic Equivalent (MET value and the amount of time spent in light activity over the last 15 minutes before every diary prompt and conducted within-subject correlations. We did not find significant associations between activity intensity and the three mood dimensions. Due to the high variability in within-subject correlations we conclude that not all inactive people show the same affective reactions to physical activity in daily life. Analyzing the physical activity-affect association of inactive people was difficult due to little variance and distribution of the assessed variables. Interactive assessment and randomized controlled trials might help solving these problems. Future studies should examine

  12. Exposure to GSM 900 MHz electromagnetic fields affects cerebral cytochrome c oxidase activity

    International Nuclear Information System (INIS)

    The world-wide and rapidly growing use of mobile phones has raised serious concerns about the biological and health-related effects of radio frequency (RF) radiation, particularly concerns about the effects of RFs upon the nervous system. The goal of this study was conducted to measure cytochrome oxidase (CO) levels using histochemical methods in order to evaluate regional brain metabolic activity in rat brain after exposure to a GSM 900 MHz signal for 45 min/day at a brain-averaged specific absorption rate (SAR) of 1.5 W/Kg or for 15 min/day at a SAR of 6 W/Kg over seven days. Compared to the sham and control cage groups, rats exposed to a GSM signal at 6 W/Kg showed decreased CO activity in some areas of the prefrontal and frontal cortex (infralimbic cortex, prelimbic cortex, primary motor cortex, secondary motor cortex, anterior cingulate cortex areas 1 and 2 (Cg1 and Cg2)), the septum (dorsal and ventral parts of the lateral septal nucleus), the hippocampus (dorsal field CA1, CA2 and CA3 of the hippocampus and dental gyrus) and the posterior cortex (retrosplenial agranular cortex, primary and secondary visual cortex, perirhinal cortex and lateral entorhinal cortex). However, the exposure to GSM at 1.5 W/Kg did not affect brain activity. Our results indicate that 6 W/Kg GSM 900 MHz microwaves may affect brain metabolism and neuronal activity in rats

  13. Deiodinase knockdown affects zebrafish eye development at the level of gene expression, morphology and function.

    Science.gov (United States)

    Houbrechts, Anne M; Vergauwen, Lucia; Bagci, Enise; Van Houcke, Jolien; Heijlen, Marjolein; Kulemeka, Bernard; Hyde, David R; Knapen, Dries; Darras, Veerle M

    2016-03-15

    Retinal development in vertebrates relies extensively on thyroid hormones. Their local availability is tightly controlled by several regulators, including deiodinases (Ds). Here we used morpholino technology to explore the roles of Ds during eye development in zebrafish. Transcriptome analysis at 3 days post fertilization (dpf) revealed a pronounced effect of knockdown of both T4-activating Ds (D1D2MO) or knockdown of T3-inactivating D3 (D3bMO) on phototransduction and retinoid recycling. This was accompanied by morphological defects (studied from 1 to 7 dpf) including reduced eye size, disturbed retinal lamination and strong reduction in rods and all four cone types. Defects were more prominent and persistent in D3-deficient fish. Finally, D3-deficient zebrafish larvae had disrupted visual function at 4 dpf and were less sensitive to a light stimulus at 5 dpf. These data demonstrate the importance of TH-activating and -inactivating Ds for correct zebrafish eye development, and point to D3b as a central player. PMID:26802877

  14. Search for gene mutations affecting protein structure in children of A-bomb survivors, 2

    International Nuclear Information System (INIS)

    Children who were born between May 1, 1946 and April 1, 1971 to survivor(s) exposed to A-bombing within 2,000 m from the hypocenter in Hiroshima and Nagasaki were selected as exposed group; their sex- and age-matched children born to survivor(s) who were exposed at 2,500 m or farther were selected as control group. When these children were in junior high school, mutation of protein structure was examined by using electrophoresis and by determining red cell enzymes with decreased activity and heat-unstable red cell enzymes. Electrophoretic study revealed a ''rare type of protein mutation'' in 635 of 12,242 individuals in the exposed group and in 448 of 10,154 individuals in the control group. The number of locuses in all proteins examined was calculated. The number of locuses per protein was corrected using the rate of parents' mutation type, and relative number of locuses were obtained. As a result, there was no difference in the mutation frequency per locus and generation between the exposed and control groups. Among children having red cell enzymes with decreased activity, mutant in triose phosphate isomerase was detected in one child in the exposed group, in whom electrophoretic pattern was normal and red cell enzymes were stable to heat. Heat-unstable red cell enzymes were seen in 9 children and their parents. However, family survey revealed genetic mutation in all instances irrespective of A-bombing. (Namekawa, K.)

  15. Mutations in the human adenosine deaminase gene that affect protein structure and RNA splicing

    International Nuclear Information System (INIS)

    Adenosine deaminase deficiency is one cause of the genetic disease severe combined immunodeficiency. To identify mutations responsible for ADA deficiency, the authors synthesized cDNAs to ADA mRNAs from two cell lines, GM2756 and GM2825A, derived from ADA-deficient immunodeficient patients. Sequence analysis of GM2756 cDNA clones revealed a different point mutation in each allele that causes amino acid changes of alanine to valine and arginine to histidine. One allele of GM2825A also has a point mutation that causes an alanine to valine substitution. The other allele of GM2825A was found to produce an mRNA in which exon 4 had been spliced out but had no other detrimental mutations. S1 nuclease mapping of GM2825A mRNA showed equal abundance of the full-length ADA mRNA and the ADA mRNA that was missing exon 4. Several of the ADA cDNA clones extended 5' of the major initiation start site, indicating multiple start sites for ADA transcription. The point mutations in GM2756 and GM2825A and the absence of exon 4 in GM2825A appear to be directly responsible for the ADA deficiency. Comparison of a number of normal and mutant ADA cDNA sequences showed a number of changes in the third base of codons. These change do not affect the amino acid sequence. Analyses of ADA cDNAs from different cell lines detected aberrant RNA species that either included intron 7 or excluded exon 7. Their presence is a result of aberrant splicing of pre-mRNAs and is not related to mutations that cause ADA deficiency

  16. Distinct promoter activation mechanisms modulate noise-driven HIV gene expression

    Science.gov (United States)

    Chavali, Arvind K.; Wong, Victor C.; Miller-Jensen, Kathryn

    2015-12-01

    Latent human immunodeficiency virus (HIV) infections occur when the virus occupies a transcriptionally silent but reversible state, presenting a major obstacle to cure. There is experimental evidence that random fluctuations in gene expression, when coupled to the strong positive feedback encoded by the HIV genetic circuit, act as a ‘molecular switch’ controlling cell fate, i.e., viral replication versus latency. Here, we implemented a stochastic computational modeling approach to explore how different promoter activation mechanisms in the presence of positive feedback would affect noise-driven activation from latency. We modeled the HIV promoter as existing in one, two, or three states that are representative of increasingly complex mechanisms of promoter repression underlying latency. We demonstrate that two-state and three-state models are associated with greater variability in noisy activation behaviors, and we find that Fano factor (defined as variance over mean) proves to be a useful noise metric to compare variability across model structures and parameter values. Finally, we show how three-state promoter models can be used to qualitatively describe complex reactivation phenotypes in response to therapeutic perturbations that we observe experimentally. Ultimately, our analysis suggests that multi-state models more accurately reflect observed heterogeneous reactivation and may be better suited to evaluate how noise affects viral clearance.

  17. H3K36ac Is an Evolutionary Conserved Plant Histone Modification That Marks Active Genes.

    Science.gov (United States)

    Mahrez, Walid; Arellano, Minerva Susana Trejo; Moreno-Romero, Jordi; Nakamura, Miyuki; Shu, Huan; Nanni, Paolo; Köhler, Claudia; Gruissem, Wilhelm; Hennig, Lars

    2016-03-01

    In eukaryotic cells, histones are subject to a large number of posttranslational modifications whose sequential or combinatorial action affects chromatin structure and genome function. We identified acetylation at Lys-36 in histone H3 (H3K36ac) as a new chromatin modification in plants. The H3K36ac modification is evolutionary conserved in seed plants, including the gymnosperm Norway spruce (Picea abies) and the angiosperms rice (Oryza sativa), tobacco (Nicotiana tabacum), and Arabidopsis (Arabidopsis thaliana). In Arabidopsis, H3K36ac is highly enriched in euchromatin but not in heterochromatin. Genome-wide chromatin immunoprecipitation sequencing experiments revealed that H3K36ac peaks at the 5' end of genes, mainly on the two nucleosomes immediately distal to the transcription start site, independently of gene length. H3K36ac overlaps with H3K4me3 and the H2A.Z histone variant. The histone acetyl transferase GCN5 and the histone deacetylase HDA19 are required for H3K36ac homeostasis. H3K36ac and H3K36me3 show negative crosstalk, which is mediated by GCN5 and the histone methyl transferase SDG8. Although H3K36ac is associated with gene activity, we did not find a linear relationship between H3K36ac and transcript levels, suggesting that H3K36ac is a binary indicator of transcription. PMID:26764380

  18. Cannabinoid Modulation of Frontolimbic Activation and Connectivity During Volitional Regulation of Negative Affect.

    Science.gov (United States)

    Gorka, Stephanie M; Phan, K Luan; Lyons, Maryssa; Mori, Shoko; Angstadt, Mike; Rabinak, Christine A

    2016-06-01

    Behavioral and brain research indicates that administration of Δ(9)-tetrahydrocannabinol (THC) alters threat perception and enhances the suppression of conditioned fear responses via modulation of the frontolimbic circuit. No prior studies, however, have examined whether THC also affects volitional forms of emotion processing such as cognitive reappraisal. The aim of the current study was therefore to examine the effects of THC on frontolimbic activation and functional connectivity during cognitive reappraisal in a sample of healthy adults. The study was a randomized, double-blind, placebo-controlled, between-subject design and all participants ingested either an oral dose of synthetic THC (n=41) or placebo (n=37) before completion of an emotion regulation task during functional magnetic resonance imaging (fMRI). Functional connectivity was assessed using generalized psychophysiological interaction (gPPI) analyses. Results indicated that although there were no group differences in self-reported attenuation of negative affect during cognitive reappraisal, relative to placebo, THC increased amygdala activation and reduced amygdala and dorsolateral prefrontal cortex (dlPFC) functional coupling during cognitive reappraisal of emotionally negative pictures. This suggests that in addition to automatic emotional processes, THC affects frontolimbic functioning during cognitive reappraisal. PMID:26647971

  19. A proteome study of secreted prostatic factors affecting osteoblastic activity: identification and characterisation of cyclophilin A

    DEFF Research Database (Denmark)

    Andersen, H; Jensen, Ole Nørregaard; Eriksen, E F

    2003-01-01

    )] of control. IGF-I did not significantly affect these decreases. Cyclophilin A alone or in combination with IGF-I did not have any effect on differentiation (assessed by measuring the activity of alkaline phosphatase (ALP)). In conclusion, these results suggest cyclophilin A is not involved in the......Prostate cancer cells metastasise to bone causing a predominantly osteosclerotic response. It has previously been shown that PC3 cells secrete factors which stimulate the mitogenic activity of human bone marrow stromal (hBMS) cells. Some of these mitogens have been found to be proteins with a...... molecular weight between 20 and 30 kDa. Even though a number of investigations have been performed to identify the osteoblastic mitogenic factor or factors produced by prostate cancer cells, it is still unknown what causes the mitogenic activation of osteoblasts. Therefore, the aim of this study was to...

  20. Ways of experiencing participation and factors affecting the current activity level after non-reconstructed ACL injury

    OpenAIRE

    Österberg, Annika; Kvist, Joanna; Abrandt Dahlgren, Madeleine

    2011-01-01

    Current assessment methods after an ACL injury do not consider how the individuals themselves experience their participation in activities or what factors they think have affected their current activity level.

  1. Biofilm activity and sludge characteristics affected by exogenous N-acyl homoserine lactones in biofilm reactors.

    Science.gov (United States)

    Hu, Huizhi; He, Junguo; Liu, Jian; Yu, Huarong; Zhang, Jie

    2016-07-01

    This study verified the effect of N-acyl homoserine lactone (AHL) concentrations on mature biofilm systems. Three concentrations of an AHL mixture were used in the batch test. Introducing of 5nM AHLs significantly increased biofilm activity and increased sludge characteristics, which resulted in better pollutant removal performance, whereas exogenous 50nM and 500nM AHLs limited pollutant removal, especially COD and nitrogen removal. To further identify how exogenous signal molecular affects biofilm system nitrogen removal, analyzing of nitrifying bacteria through real-time polymerase chain reaction (RT-PCR) revealed that these additional signal molecules affect nitrifying to total bacteria ratio. In addition, the running state of the system was stable during 15days of operation without an AHL dose, which suggests that the changes in the system due to AHL are irreversible. PMID:27030953

  2. Mutations that abrogate transactivational activity of the feline leukemia virus long terminal repeat do not affect virus replication

    International Nuclear Information System (INIS)

    The U3 region of the LTR of oncogenic Moloney murine leukemia virus (Mo-MuLV) and feline leukemia viruses (FeLV) have been previously reported to activate expression of specific cellular genes in trans, such as MHC class I, collagenase IV, and MCP-1, in an integration-independent manner. It has been suggested that transactivation of these specific cellular genes by leukemia virus U3-LTR may contribute to the multistage process of leukemogenesis. The U3-LTR region, necessary for gene transactivational activity, also contains multiple transcription factor-binding sites that are essential for normal virus replication. To dissect the promoter activity and the gene transactivational activity of the U3-LTR, we conducted mutational analysis of the U3-LTR region of FeLV-A molecular clone 61E. We identified minimal nucleotide substitution mutants on the U3 LTR that did not disturb transcription factor-binding sites but abrogated its ability to transactivate the collagenase gene promoter. To determine if these mutations actually have altered any uncharacterized important transcription factor-binding site, we introduced these U3-LTR mutations into the full-length infectious molecular clone 61E. We demonstrate that the mutant virus was replication competent but could not transactivate cellular gene expression. These results thus suggest that the gene transactivational activity is a distinct property of the LTR and possibly not related to its promoter activity. The cellular gene transactivational activity-deficient mutant FeLV generated in this study may also serve as a valuable reagent for testing the biological significance of LTR-mediated cellular gene activation in the tumorigenesis caused by leukemia viruses

  3. Phenotypes and gene expression profiles of Saccharopolyspora erythraea rifampicin-resistant (rif mutants affected in erythromycin production

    Directory of Open Access Journals (Sweden)

    Bicciato Silvio

    2009-03-01

    Full Text Available Abstract Background There is evidence from previous works that bacterial secondary metabolism may be stimulated by genetic manipulation of RNA polymerase (RNAP. In this study we have used rifampicin selection as a strategy to genetically improve the erythromycin producer Saccharopolyspora erythraea. Results Spontaneous rifampicin-resistant (rif mutants were isolated from the parental strain NRRL2338 and two rif mutations mapping within rpoB, S444F and Q426R, were characterized. With respect to the parental strain, S444F mutants exhibited higher respiratory performance and up to four-fold higher final erythromycin yields; in contrast, Q426R mutants were slow-growing, developmental-defective and severely impaired in erythromycin production. DNA microarray analysis demonstrated that these rif mutations deeply changed the transcriptional profile of S. erythraea. The expression of genes coding for key enzymes of carbon (and energy and nitrogen central metabolism was dramatically altered in turn affecting the flux of metabolites through erythromycin feeder pathways. In particular, the valine catabolic pathway that supplies propionyl-CoA for biosynthesis of the erythromycin precursor 6-deoxyerythronolide B was strongly up-regulated in the S444F mutants, while the expression of the biosynthetic gene cluster of erythromycin (ery was not significantly affected. In contrast, the ery cluster was down-regulated ( Conclusion Rifampicin selection is a simple and reliable tool to investigate novel links between primary and secondary metabolism and morphological differentiation in S. erythraea and to improve erythromycin production. At the same time genome-wide analysis of expression profiles using DNA microarrays allowed information to be gained about the mechanisms underlying the stimulatory/inhibitory effects of the rif mutations on erythromycin production.

  4. Low intensity infrared laser affects expression of oxidative DNA repair genes in mitochondria and nucleus

    International Nuclear Information System (INIS)

    Practical properties and physical characteristics of low intensity lasers have made possible their application to treat soft tissue diseases. Excitation of intracellular chromophores by red and infrared radiation at low energy fluences with increase of mitochondrial metabolism is the basis of the biostimulation effect but free radicals can be produced. DNA lesions induced by free radicals are repaired by the base excision repair pathway. In this work, we evaluate the expression of POLγ and APEX2 genes related to repair of mitochondrial and nuclear DNA, respectively. Skin and muscle tissue of Wistar rats were exposed to low intensity infrared laser at different fluences. One hour and 24 hours after laser exposure, tissue samples were withdrawn for total RNA extraction, cDNA synthesis, and evaluation of POLγ and APEX2 mRNA expression by real time quantitative polymerase chain reaction. Skin and muscle tissue of Wistar rats exposed to laser radiation show different expression of POLγ and APEX2 mRNA depending of the fluence and time after exposure. Our study suggests that a low intensity infrared laser affects expression of genes involved in repair of oxidative lesions in mitochondrial and nuclear DNA. (paper)

  5. Variation in the Williams syndrome GTF2I gene and anxiety proneness interactively affect prefrontal cortical response to aversive stimuli.

    Science.gov (United States)

    Jabbi, M; Chen, Q; Turner, N; Kohn, P; White, M; Kippenhan, J S; Dickinson, D; Kolachana, B; Mattay, V; Weinberger, D R; Berman, K F

    2015-01-01

    Characterizing the molecular mechanisms underlying the heritability of complex behavioral traits such as human anxiety remains a challenging endeavor for behavioral neuroscience. Copy-number variation (CNV) in the general transcription factor gene, GTF2I, located in the 7q11.23 chromosomal region that is hemideleted in Williams syndrome and duplicated in the 7q11.23 duplication syndrome (Dup7), is associated with gene-dose-dependent anxiety in mouse models and in both Williams syndrome and Dup7. Because of this recent preclinical and clinical identification of a genetic influence on anxiety, we examined whether sequence variation in GTF2I, specifically the single-nucleotide polymorphism rs2527367, interacts with trait and state anxiety to collectively impact neural response to anxiety-laden social stimuli. Two hundred and sixty healthy adults completed the Tridimensional Personality Questionnaire Harm Avoidance (HA) subscale, a trait measure of anxiety proneness, and underwent functional magnetic resonance imaging (fMRI) while matching aversive (fearful or angry) facial identity. We found an interaction between GTF2I allelic variations and HA that affects brain response: in individuals homozygous for the major allele, there was no correlation between HA and whole-brain response to aversive cues, whereas in heterozygotes and individuals homozygous for the minor allele, there was a positive correlation between HA sub-scores and a selective dorsolateral prefrontal cortex (DLPFC) responsivity during the processing of aversive stimuli. These results demonstrate that sequence variation in the GTF2I gene influences the relationship between trait anxiety and brain response to aversive social cues in healthy individuals, supporting a role for this neurogenetic mechanism in anxiety. PMID:26285132

  6. GA-responsive dwarfing gene Rht12 affects the developmental and agronomic traits in common bread wheat.

    Directory of Open Access Journals (Sweden)

    Liang Chen

    Full Text Available Opportunities exist for replacing reduced height (Rht genes Rht-B1b and Rht-D1b with alternative dwarfing genes, such as the gibberellin-responsive gene Rht12, for bread wheat improvement. However, a comprehensive understanding of the effects and mode of action of Rht12 is lacking. In the present study, the effects of Rht12 were characterized by analyzing its effects on seeding vigour, seedling roots, leaf and stem morphology, spike development and carbohydrate assimilation and distribution. This was carried out in the four genotypes of F2:3 lines derived from a cross between Ningchun45 and Karcagi (12 in two experiments of autumn sowing and spring sowing. Rht12 significantly decreased stem length (43%∼48% for peduncle and leaf length (25%∼30% for flag leaf while the thickness of the internode walls and width of the leaves were increased. Though the final plant stature was shortened (40% by Rht12, the seedling vigour, especially coleoptile length and root traits at the seedling stage, were not affected adversely. Rht12 elongated the duration of the spike development phase, improved the proportion of spike dry weight at anthesis and significantly increased floret fertility (14% in the autumn sowing experiment. However, Rht12 delayed anthesis date by around 5 days and even the dominant Vrn-B1 allele could not compensate this negative effect. Additionally, grain size was reduced with the ability to support spike development after anthesis decreased in Rht12 lines. Finally, grain yield was similar between the dwarf and tall lines in the autumn sowing experiment. Thus, Rht12 could substantially reduce plant height without altering seeding vigour and significantly increase spikelet fertility in the favourable autumn sowing environment. The successful utilization of Rht12 in breeding programs will require careful selection since it might delay ear emergence. Nonetheless, the potential exists for wheat improvement by using Rht12.

  7. Environmental noise levels affect the activity budget of the Florida manatee

    Science.gov (United States)

    Miksis-Olds, Jennifer L.; Donaghay, Percy L.; Miller, James H.; Tyack, Peter L.

    2005-09-01

    Manatees inhabit coastal bays, lagoons, and estuaries because they are dependent on the aquatic vegetation that grows in shallow waters. Food requirements force manatees to occupy the same areas in which human activities are the greatest. Noise produced from human activities has the potential to affect these animals by eliciting responses ranging from mild behavioral changes to extreme aversion. This study quantifies the behavioral responses of manatees to both changing levels of ambient noise and transient noise sources. Results indicate that elevated environmental noise levels do affect the overall activity budget of this species. The proportion of time manatees spend feeding, milling, and traveling in critical habitats changed as a function of noise level. More time was spent in the directed, goal-oriented behaviors of feeding and traveling, while less time was spent milling when noise levels were highest. The animals also responded to the transient noise of approaching vessels with changes in behavioral state and movements out of the geographical area. This suggests that manatees detect and respond to changes in environmental noise levels. Whether these changes legally constitute harassment and produce biologically significant effects need to be addressed with hypothesis-driven experiments and long-term monitoring. [For Animal Bioacoustics Best Student Paper Award.

  8. Soil acidity as affecting micronutrients concentration, nitrato reductase enzyme activity and yield in upland rice plants

    Directory of Open Access Journals (Sweden)

    Edemar Moro

    2013-12-01

    Full Text Available The lowest grain yield of rice under no-tillage system (NTS in relation to the conventional system may be due to the predominance nitrate in the soil and the low nitrate reductase activity. Another reason may be caused by micronutrient deficiency because of superficially soil acidity corrections. Therefore, the objective of this study was to evaluate the changes caused by soil pH in the N forms in the soil, micronutrients concentration in rice plants, nitrate reductase activity, yield of rice and its components. The experiment was performed in a greenhouse conditions. The experimental design was a completely randomized in a factorial three (levels of soil acidity x five (micronutrients sources with four replications. The addition of micronutrients does not affect levels of nitrate and ammonium in the soil; soil acidity significantly affects levels of nitrate and ammonium in the soil, concentration of micronutrients in rice plants and crop yield and its components; medium soil acidity (pH 5.5 result in medium to high levels of Cu and Fe, medium level of Zn and Mn, high nitrate reductase activity, resulting in higher dry matter, tillers, panicles, spikelets, weight of 100 grains and hence grain yield.

  9. Affective and physiological responses to the suffering of others: compassion and vagal activity.

    Science.gov (United States)

    Stellar, Jennifer E; Cohen, Adam; Oveis, Christopher; Keltner, Dacher

    2015-04-01

    Compassion is an affective response to another's suffering and a catalyst of prosocial behavior. In the present studies, we explore the peripheral physiological changes associated with the experience of compassion. Guided by long-standing theoretical claims, we propose that compassion is associated with activation in the parasympathetic autonomic nervous system through the vagus nerve. Across 4 studies, participants witnessed others suffer while we recorded physiological measures, including heart rate, respiration, skin conductance, and a measure of vagal activity called respiratory sinus arrhythmia (RSA). Participants exhibited greater RSA during the compassion induction compared with a neutral control (Study 1), another positive emotion (Study 2), and a prosocial emotion lacking appraisals of another person's suffering (Study 3). Greater RSA during the experience of compassion compared with the neutral or control emotion was often accompanied by lower heart rate and respiration but no difference in skin conductance. In Study 4, increases in RSA during compassion positively predicted an established composite of compassion-related words, continuous self-reports of compassion, and nonverbal displays of compassion. Compassion, a core affective component of empathy and prosociality, is associated with heightened parasympathetic activity. PMID:25621856

  10. Conditional deletion of the relaxin receptor gene in cells of smooth muscle lineage affects lower reproductive tract in pregnant mice.

    Science.gov (United States)

    Kaftanovskaya, Elena M; Huang, Zaohua; Lopez, Carolina; Conrad, Kirk; Agoulnik, Alexander I

    2015-04-01

    Relaxin hormone secreted into the circulation during pregnancy was discovered through its effects on pubic symphysis relaxation and parturition. Genetic inactivation of the relaxin gene or its cognate relaxin family peptide receptor 1 (RXFP1) in mice caused failure of parturition and mammary nipple enlargement, as well as increased collagen fiber density in the cervix and vagina. However, the relaxin effect on discrete cells and tissues has yet to be determined. Using transgenic mice with a knockin LacZ reporter in the Rxfp1 allele, we showed strong expression of this gene in vaginal and cervical stromal cells, as well as pubic ligament cells. We produced a floxed Rxfp1 allele that was used in combination with the Tagln-cre transgene to generate mice with a smooth muscle-specific gene knockout. In pregnant females, the ROSA26 reporter activated by Tagln-cre was detected in smooth muscle cells of the cervix, vagina, uterine artery, and in cells of the pubic symphysis. In late pregnant females with conditional gene ablation, the length of pubic symphysis was significantly reduced compared with wild-type or heterozygous Rxfp1(+/-) females. Denser collagen content was revealed by Masson trichrome staining in reproductive tract organs, uterine artery, and pubic symphysis. The cervical and vaginal epithelium was less developed than in heterozygous or wild-type females, although nipple size was normal and the dams were able to nurse their pups. In summary, our data indicate that relaxin/RXFP1 signaling in smooth muscle cells is important for normal collagen turnover and relaxation of the pubic symphysis during pregnancy. PMID:25715795

  11. Do government brochures affect physical activity cognition? A pilot study of Canada's physical activity guide to healthy active living.

    Science.gov (United States)

    Kliman, Aviva M; Rhodes, Ryan

    2008-08-01

    Health Canada has published national physical activity (PA) guidelines, which are included in their 26-page Physical Activity Guide to Healthy Active Living (CPAG). To date, the use of CPAG as a motivational instrument for PA promotion has not been evaluated. The purpose of this study was to determine whether reading CPAG 1) increased motivational antecedents to engage in regular PA, and 2) increased regular PA intention and behaviour over 1 month. Participants included 130 randomly sampled Canadian adults (18 years or older) who were randomly mailed pack ages consisting of either 1) a questionnaire and a copy of CPAG, or 2) a questionnaire. Questionnaire items pertained to participants' sociodemographics, previous PA behaviours (Godin Leisure-Time Questionnaire) and PA motivation (theory of planned behaviour). Participants were then sent a follow-up questionnaire pertaining to their PA behaviours throughout the previous month. Results revealed significant interactions between the guide condition and previous activity status on instrumental behavioural beliefs about strength activities and subjective norms about endurance activities (p behavioural control) and outcomes (intention, behaviour) seem unaffected. PMID:18825580

  12. Pim-1 kinase inhibits the activation of reporter gene expression in Elk-1 and c-Fos reporting systems but not the endogenous gene expression: an artifact of the reporter gene assay by transient co-transfection

    Directory of Open Access Journals (Sweden)

    Yan B.

    2006-01-01

    Full Text Available We have studied the molecular mechanism and signal transduction of pim-1, an oncogene encoding a serine-threonine kinase. This is a true oncogene which prolongs survival and inhibits apoptosis of hematopoietic cells. In order to determine whether the effects of Pim-1 occur by regulation of the mitogen-activated protein kinase pathway, we used a transcriptional reporter assay by transient co-transfection as a screening method. In this study, we found that Pim-1 inhibited the Elk-1 and NFkappaB transcriptional activities induced by activation of the mitogen-activated protein kinase cascade in reporter gene assays. However, Western blots showed that the induction of Elk-1-regulated expression of endogenous c-Fos was not affected by Pim-1. The phosphorylation and activation of neither Erk1/2 nor Elk-1 was influenced by Pim-1. Also, in the gel shift assay, the pattern of endogenous NFkappaB binding to its probe was not changed in any manner by Pim-1. These data indicate that Pim-1 does not regulate the activation of Erk1/2, Elk-1 or NFkappaB. These contrasting results suggest a pitfall of the transient co-transfection reporter assay in analyzing the regulation of transcription factors outside of the chromosome context. It ensures that results from reporter gene expression assay should be verified by study of endogenous gene expression.

  13. Novel missense mutation in the GALNS gene in an affected patient with severe form of mucopolysaccharidosis type IVA.

    Science.gov (United States)

    Seyedhassani, Seyed Mohammad; Hashemi-Gorji, Feyzollah; Yavari, Mahdieh; Mirfakhraie, Reza

    2015-10-23

    Mucopolysaccharidosis type IVA (MPS IVA), also known as Morquio A, is an autosomal recessive disorder characterized by a deficiency of N-acetylgalactosamine-6-sulfate sulfatase (GALNS), which causes major skeletal and connective tissue abnormalities and affects multiple organ systems. In this study, one MPS IVA patient with a severe form from consanguine large Iranian family has been investigated. To find a mutation, all of the 14 exons and intron-exon junctions of GALNS gene were sequenced. Sequencing results were analyzed using bioinformatic analysis in order to predict probable pathogenic effect of the variant. One novel homozygous missense mutation in exon 5, c.542A>G (p.Y181C), was found in the proband. That was predicted as being probably pathogenic by bioinformatics analysis. Segregation and familial study confirmed this pathogenic mutation. In conclusion, we have identified the novel mutation responsible for MPS IVA in an Iranian patient to assist in the diagnosis, genetic counseling and prenatal diagnosis of the affected families. PMID:26276046

  14. Looking for reward in all the wrong places: dopamine receptor gene polymorphisms indirectly affect aggression through sensation-seeking.

    Science.gov (United States)

    Chester, David S; DeWall, C Nathan; Derefinko, Karen J; Estus, Steven; Lynam, Donald R; Peters, Jessica R; Jiang, Yang

    2016-10-01

    Individuals with genotypes that code for reduced dopaminergic brain activity often exhibit a predisposition toward aggression. However, it remains largely unknown how dopaminergic genotypes may increase aggression. Lower-functioning dopamine systems motivate individuals to seek reward from external sources such as illicit drugs and other risky experiences. Based on emerging evidence that aggression is a rewarding experience, we predicted that the effect of lower-functioning dopaminergic functioning on aggression would be mediated by tendencies to seek the environment for rewards. Caucasian female and male undergraduates (N = 277) were genotyped for five polymorphisms of the dopamine D2 receptor (DRD2) gene; they reported their previous history of aggression and their dispositional reward-seeking. Lower-functioning DRD2 profiles were associated with greater sensation-seeking, which then predicted greater aggression. Our findings suggest that lower-functioning dopaminergic activity puts individuals at risk for violence because it motivates them to experience aggression's hedonically rewarding qualities. PMID:26592425

  15. Activation of an enhancerless gene by chromosomal integration.

    OpenAIRE

    Hamada, H

    1986-01-01

    Expression of enhancerless (E-) and enhancer-containing (E+) genes that are chromosomally integrated was examined. An E- plasmid (pE-cat) containing a chloramphenicol acetyltransferase (cat) gene linked to the simian virus 40 (SV40) early promoter or its E+ counterpart plasmid (pE+-cat) containing the SV40 enhancer was cotransfected into thymidine kinase (TK)-deficient L cells with a cloned tk gene. A number of TK+ transformants were isolated, and expression of the cointegrated cat gene in th...

  16. Stability of Anthocyanins from Rubus glaucus and Solanum betaceum as affected by Temperature and Water Activity

    Directory of Open Access Journals (Sweden)

    Garzon Monroy Gloria Astrid

    2009-12-01

    Full Text Available The stability of sprayed-dried microencapsulated anthocyanins from Andes berry (Rubus glaucus and Tamarillo (Solanum betaceum, as affected by storage time, water activity (Aw and temperature was compared. The fruits were osmotically dehydrated with ethanol and the anthocyanin extract was microencapsulated with maltodextrin DE 20 by spray drying. Half life of the anthocyanins; changes in color, total phenolics, and antioxidant activity of the powders, were analyzed during storage at two different temperatures (25 °C and 40 °C and two Aw levels (0.20 and 0.35. A decrease in monomeric anthocyanin was observed in both samples. The half life of the Andes berry pigments ranged between 11 and 32 days while the half life of the tamarillo pigments ranged between 9 and 21 days. A darkening effect occurred in both samples as a result of storage time.  The antioxidant activity decreased while the phenolic content increased with time. Antioxidant activity of Andes berry samples was highly correlated with anthocyanin content and total phenolic content while the antioxidant activity of tamarillo samples was highly correlated with total phenolic content. These results would be useful in developing applications for spray-dried anthocyanin as powdered food-grade colorants.

  17. Experimental evidence that livestock grazing intensity affects the activity of a generalist predator

    Science.gov (United States)

    Villar, Nacho; Lambin, Xavier; Evans, Darren; Pakeman, Robin; Redpath, Steve

    2013-05-01

    Grazing by domestic ungulates has substantial impacts on ecosystem structure and composition. In grasslands of the northern hemisphere, livestock grazing limits populations of small mammals, which are a main food source for a variety of vertebrate predators. However, no experimental studies have described the impact of livestock grazing on vertebrate predators. We experimentally manipulated sheep and cattle grazing intensity in the Scottish uplands to test its impact on a relatively abundant small mammal, the field vole (Microtus agrestis), and its archetypal generalist predator, the red fox (Vulpes vulpes). We demonstrate that ungulate grazing had a strong consistent negative impact on both vole densities and indices of fox activity. Ungulate grazing did not substantially affect the relationship between fox activity and vole densities. However, the data suggested that, as grazing intensity increased i) fox activity indices tended to be higher when vole densities were low, and ii) the relationship between fox activity and vole density was weaker. All these patterns are surprising given the relative small scale of our experiment compared to large red fox territories in upland habitats of Britain, and suggest that domestic grazing intensity causes a strong response in the activity of generalist predators important for their conservation in grassland ecosystems.

  18. A single nucleotide polymorphism in the Bax gene promoter affects transcription and influences retinal ganglion cell death

    Directory of Open Access Journals (Sweden)

    Sheila J Semaan

    2010-03-01

    Full Text Available Pro-apoptotic Bax is essential for RGC (retinal ganglion cell death. Gene dosage experiments in mice, yielding a single wild-type Bax allele, indicated that genetic background was able to influence the cell death phenotype. DBA/2JBax+/− mice exhibited complete resistance to nerve damage after 2 weeks (similar to Bax−/− mice, but 129B6Bax+/− mice exhibited significant cell loss (similar to wild-type mice. The different cell death phenotype was associated with the level of Bax expression, where 129B6 neurons had twice the level of endogenous Bax mRNA and protein as DBA/2J neurons. Sequence analysis of the Bax promoters between these strains revealed a single nucleotide polymorphism (T129B6 to CDBA/2J at position −515. A 1.5- to 2.5-fold increase in transcriptional activity was observed from the 129B6 promoter in transient transfection assays in a variety of cell types, including RGC5 cells derived from rat RGCs. Since this polymorphism occurred in a p53 half-site, we investigated the requirement of p53 for the differential transcriptional activity. Differential transcriptional activity from either 129B6 or DBA/2J Bax promoters were unaffected in p53−/− cells, and addition of exogenous p53 had no further effect on this difference, thus a role for p53 was excluded. Competitive electrophoretic mobility-shift assays identified two DNA–protein complexes that interacted with the polymorphic region. Those forming Complex 1 bound with higher affinity to the 129B6 polymorphic site, suggesting that these proteins probably comprised a transcriptional activator complex. These studies implicated quantitative expression of the Bax gene as playing a possible role in neuronal susceptibility to damaging stimuli.

  19. Single nucleotide polymorphisms linked to mitochondrial uncoupling protein genes UCP2 and UCP3 affect mitochondrial metabolism and healthy aging in female nonagenarians.

    Science.gov (United States)

    Kim, Sangkyu; Myers, Leann; Ravussin, Eric; Cherry, Katie E; Jazwinski, S Michal

    2016-08-01

    Energy expenditure decreases with age, but in the oldest-old, energy demand for maintenance of body functions increases with declining health. Uncoupling proteins have profound impact on mitochondrial metabolic processes; therefore, we focused attention on mitochondrial uncoupling protein genes. Alongside resting metabolic rate (RMR), two SNPs in the promoter region of UCP2 were associated with healthy aging. These SNPs mark potential binding sites for several transcription factors; thus, they may affect expression of the gene. A third SNP in the 3'-UTR of UCP3 interacted with RMR. This UCP3 SNP is known to impact UCP3 expression in tissue culture cells, and it has been associated with body weight and mitochondrial energy metabolism. The significant main effects of the UCP2 SNPs and the interaction effect of the UCP3 SNP were also observed after controlling for fat-free mass (FFM) and physical-activity related energy consumption. The association of UCP2/3 with healthy aging was not found in males. Thus, our study provides evidence that the genetic risk factors for healthy aging differ in males and females, as expected from the differences in the phenotypes associated with healthy aging between the two sexes. It also has implications for how mitochondrial function changes during aging. PMID:26965008

  20. Short-Term Thyroid Hormone Excess Affects the Heart but Does not Affect Adrenal Activity in Rats

    Energy Technology Data Exchange (ETDEWEB)

    Szkudlarek, Ariani Cavazzani, E-mail: arianiinaira@yahoo.com.br; Aldenucci, Bruno; Miyagui, Nelson Itiro; Silva, Ilana Kassouf [Universidade Federal do Paraná, Curitiba, PR (Brazil); Moraes, Rosana Nogueira [Pontifícia Universidade Federal do Paraná, Curitiba, PR (Brazil); Ramos, Helton Estrela [Universidade Federal da Bahia, Salvador, BA (Brazil); Fogaça, Rosalva Tadeu Hochmuller [Universidade Federal do Paraná, Curitiba, PR (Brazil)

    2014-03-15

    Hyperthyroidism (Hy) exerts a broad range of influences on a variety of physiological parameters. Its disruptive effect on cardiovascular system is one of its most remarkable impacts. Moreover, Hy has been clinically associated with stress - induced hyperactivation of the hypothalamic-pituitary-adrenal axis. Evaluate the impact of short-term Hy on cardiac performance and adrenal activity of rats. Induction of Hy in Wistar rats through injections of T3 (150 µg/kg) for 10 days (hyperthyroid group - HG) or vehicle (control group). The cardiovascular performance was evaluated by: echocardiography (ECHO); heart weight/body weight (mg/gr) ratio; contractility of isolated papillary muscles (IPM) and direct measurement of blood pressures. Adrenal activity was evaluated by adrenal weight/body weight (mg/gr) ratio and 24-hour fecal corticosterone (FC) levels on the, 5{sup th} and 10{sup th} days of T3 treatment. In HG, the ECHO showed reduction of the End Systolic and End Diastolic Volumes, Ejection, Total Diastolic and Isovolumic Relaxation Times, Diastolic and Systolic Areas and E/A ratio. Heart Rate, Ejection Fraction and Cardiac Output increased. The heart weight/body weight ratio was higher. Similarly, in IPM, the maximum rate of force decay during relaxation was higher in all extracellular calcium concentrations. Systolic blood pressure (SBP) levels were higher. (p ≤ 0.05). On the other hand, there was no difference in the adrenal weight/body weight ratio or in the 24-hour FC levels. Hy induces positive inotropic, chronotropic and lusitropic effects on the heart by direct effects of T3 and increases SBP. Those alterations are not correlated with changes in the adrenal activity.

  1. Harvest date affects aronia juice polyphenols, sugars, and antioxidant activity, but not anthocyanin stability.

    Science.gov (United States)

    Bolling, Bradley W; Taheri, Rod; Pei, Ruisong; Kranz, Sarah; Yu, Mo; Durocher, Shelley N; Brand, Mark H

    2015-11-15

    The goal of this work was to characterize how the date of harvest of 'Viking' aronia berry impacts juice pigmentation, sugars, and antioxidant activity. Aronia juice anthocyanins doubled at the fifth week of the harvest, and then decreased. Juice hydroxycinnamic acids decreased 33% from the first week, while proanthocyanidins increased 64%. Juice fructose and glucose plateaued at the fourth week, but sorbitol increased 40% to the seventh harvest week. Aronia juice pigment density increased due to anthocyanin concentration, and polyphenol copigmentation did not significantly affect juice pigmentation. Anthocyanin stability at pH 4.5 was similar between weeks. However, addition of quercetin, sorbitol, and chlorogenic acid to aronia anthocyanins inhibited pH-induced loss of color. Sorbitol and citric acid may be partially responsible for weekly variation in antioxidant activity, as addition of these agents inhibited DPPH scavenging 13-30%. Thus, aronia polyphenol and non-polyphenol components contribute to its colorant and antioxidant functionality. PMID:25977015

  2. Heat Shock Protein 90 Indirectly Regulates ERK Activity by Affecting Raf Protein Metabolism

    Institute of Scientific and Technical Information of China (English)

    Fei DOU; Liu-Di YUAN; Jing-Jing ZHU

    2005-01-01

    Extracellular signal-regulated protein kinase (ERK) has been implicated in the pathogenesis of several nerve system diseases. As more and more kinases have been discovered to be the client proteins of the molecular chaperone Hsp90, the use of Hsp90 inhibitors to reduce abnormal kinase activity is a new treatment strategy for nerve system diseases. This study investigated the regulation of the ERK pathway by Hsp90. We showed that Hsp90 inhibitors reduce ERK phosphorylation without affecting the total ERK protein level. Further investigation showed that Raf, the upstream kinase in the Ras-Raf-MEK-ERK pathway,forms a complex with Hsp90 and Hsp70. Treating cells with Hsp90 inhibitors facilitates Raf degradation,thereby down-regulating the activity of ERK.

  3. Noticing relevant problem features: Activating prior knowledge affects problem solving by guiding encoding

    Directory of Open Access Journals (Sweden)

    NoelleMCrooks

    2013-11-01

    Full Text Available This study investigated whether activating elements of prior knowledge can influence how problem solvers encode and solve simple mathematical equivalence problems (e.g., 3 + 4 + 5 = 3 + _. Past work has shown that such problems are difficult for elementary school students (McNeil & Alibali, 2000. One possible reason is that children’s experiences in math classes may encourage them to think about equations in ways that are ultimately detrimental. Specifically, children learn a set of patterns that are potentially problematic (McNeil & Alibali, 2005: the perceptual pattern that all equations follow an “operations = answer” format, the conceptual pattern that the equal sign means “calculate the total,” and the procedural pattern that the correct way to solve an equation is to perform all of the given operations on all of the given numbers. Upon viewing an equivalence problem, knowledge of these patterns may be reactivated, leading to incorrect problem solving. We hypothesized that these patterns may negatively affect problem solving by influencing what people encode about a problems. To test this hypothesis in children would require strengthening their misconceptions, and this could be detrimental to their mathematical development. Therefore, we tested this hypothesis in undergraduate participants. Participants completed either control tasks or tasks that activated their knowledge of the three patterns, and were then asked to reconstruct and solve a set of equivalence problems. Participants in the knowledge activation condition encoded the problems less well than control participants. They also made more errors in solving the problems, and their errors resembled the errors children make when solving equivalence problems. Moreover, encoding performance mediated the effect of knowledge activation on equivalence problem solving. Thus, one way in which experience may affect equivalence problem solving is by influencing what students encode

  4. Procyanidins Negatively Affect the Activity of the Phosphatases of Regenerating Liver.

    Directory of Open Access Journals (Sweden)

    Sven Stadlbauer

    Full Text Available Natural polyphenols like oligomeric catechins (procyanidins derived from green tea and herbal medicines are interesting compounds for pharmaceutical research due to their ability to protect against carcinogenesis in animal models. It is nevertheless still unclear how intracellular pathways are modulated by polyphenols. Monomeric polyphenols were shown to affect the activity of some protein phosphatases (PPs. The three phosphatases of regenerating liver (PRLs are close relatives and promising therapeutic targets in cancer. In the present study we show that several procyanidins inhibit the activity of all three members of the PRL family in the low micromolar range, whereas monomeric epicatechins show weak inhibitory activity. Increasing the number of catechin units in procyanidins to more than three does not further enhance the potency. Remarkably, the tested procyanidins showed selectivity in vitro when compared to other PPs, and over 10-fold selectivity toward PRL-1 over PRL-2 and PRL-3. As PRL overexpression induces cell migration compared to control cells, the effect of procyanidins on this phenotype was studied. Treatment with procyanidin C2 led to a decrease in cell migration of PRL-1- and PRL-3-overexpressing cells, suggesting the compound-dependent inhibition of PRL-promoted cell migration. Treatment with procyanidin B3 led to selective suppression of PRL-1 overexpressing cells, thereby corroborating the selectivity toward PRL-1- over PRL-3 in vitro. Together, our results show that procyanidins negatively affect PRL activity, suggesting that PRLs could be targets in the polypharmacology of natural polyphenols. Furthermore, they are interesting candidates for the development of PRL-1 inhibitors due to their low cellular toxicity and the selectivity within the PRL family.

  5. Inhibition of polyamine oxidase activity affects tumor development during the maize-Ustilago maydis interaction.

    Science.gov (United States)

    Jasso-Robles, Francisco Ignacio; Jiménez-Bremont, Juan Francisco; Becerra-Flora, Alicia; Juárez-Montiel, Margarita; Gonzalez, María Elisa; Pieckenstain, Fernando Luis; García de la Cruz, Ramón Fernando; Rodríguez-Kessler, Margarita

    2016-05-01

    Ustilago maydis is a biotrophic plant pathogenic fungus that leads to tumor development in the aerial tissues of its host, Zea mays. These tumors are the result of cell hypertrophy and hyperplasia, and are accompanied by the reprograming of primary and secondary metabolism of infected plants. Up to now, little is known regarding key plant actors and their role in tumor development during the interaction with U. maydis. Polyamines are small aliphatic amines that regulate plant growth, development and stress responses. In a previous study, we found substantial increases of polyamine levels in tumors. In the present work, we describe the maize polyamine oxidase (PAO) gene family, its contribution to hydrogen peroxide (H2O2) production and its possible role in tumor development induced by U. maydis. Histochemical analysis revealed that chlorotic lesions and maize tumors induced by U. maydis accumulate H2O2 to significant levels. Maize plants inoculated with U. maydis and treated with the PAO inhibitor 1,8-diaminooctane exhibit a notable reduction of H2O2 accumulation in infected tissues and a significant drop in PAO activity. This treatment also reduced disease symptoms in infected plants. Finally, among six maize PAO genes only the ZmPAO1, which encodes an extracellular enzyme, is up-regulated in tumors. Our data suggest that H2O2 produced through PA catabolism by ZmPAO1 plays an important role in tumor development during the maize-U. maydis interaction. PMID:26926794

  6. Detecting microRNA activity from gene expression data.

    LENUS (Irish Health Repository)

    Madden, Stephen F

    2010-01-01

    BACKGROUND: MicroRNAs (miRNAs) are non-coding RNAs that regulate gene expression by binding to the messenger RNA (mRNA) of protein coding genes. They control gene expression by either inhibiting translation or inducing mRNA degradation. A number of computational techniques have been developed to identify the targets of miRNAs. In this study we used predicted miRNA-gene interactions to analyse mRNA gene expression microarray data to predict miRNAs associated with particular diseases or conditions. RESULTS: Here we combine correspondence analysis, between group analysis and co-inertia analysis (CIA) to determine which miRNAs are associated with differences in gene expression levels in microarray data sets. Using a database of miRNA target predictions from TargetScan, TargetScanS, PicTar4way PicTar5way, and miRanda and combining these data with gene expression levels from sets of microarrays, this method produces a ranked list of miRNAs associated with a specified split in samples. We applied this to three different microarray datasets, a papillary thyroid carcinoma dataset, an in-house dataset of lipopolysaccharide treated mouse macrophages, and a multi-tissue dataset. In each case we were able to identified miRNAs of biological importance. CONCLUSIONS: We describe a technique to integrate gene expression data and miRNA target predictions from multiple sources.

  7. Detecting microRNA activity from gene expression data

    LENUS (Irish Health Repository)

    Madden, Stephen F

    2010-05-18

    Abstract Background MicroRNAs (miRNAs) are non-coding RNAs that regulate gene expression by binding to the messenger RNA (mRNA) of protein coding genes. They control gene expression by either inhibiting translation or inducing mRNA degradation. A number of computational techniques have been developed to identify the targets of miRNAs. In this study we used predicted miRNA-gene interactions to analyse mRNA gene expression microarray data to predict miRNAs associated with particular diseases or conditions. Results Here we combine correspondence analysis, between group analysis and co-inertia analysis (CIA) to determine which miRNAs are associated with differences in gene expression levels in microarray data sets. Using a database of miRNA target predictions from TargetScan, TargetScanS, PicTar4way PicTar5way, and miRanda and combining these data with gene expression levels from sets of microarrays, this method produces a ranked list of miRNAs associated with a specified split in samples. We applied this to three different microarray datasets, a papillary thyroid carcinoma dataset, an in-house dataset of lipopolysaccharide treated mouse macrophages, and a multi-tissue dataset. In each case we were able to identified miRNAs of biological importance. Conclusions We describe a technique to integrate gene expression data and miRNA target predictions from multiple sources.

  8. Gene program-specific regulation of PGC-1{alpha} activity

    DEFF Research Database (Denmark)

    Schmidt, Søren F; Mandrup, Susanne

    2011-01-01

    . 1232-1244) demonstrated that phosphorylation of PGC-1α by the p70 ribosomal protein S6 kinase 1 (S6K1) specifically interfered with the interaction between PGC-1α and HNF4α in liver and blocked the coactivation of the gluconeogenic target genes. This demonstrates how independent fine-tuning of gene...

  9. Global gene expression changes of in vitro stimulated human transformed germinal centre B cells as surrogate for oncogenic pathway activation in individual aggressive B cell lymphomas

    Directory of Open Access Journals (Sweden)

    Schrader Alexandra

    2012-12-01

    Full Text Available Abstract Background Aggressive Non-Hodgkin lymphomas (NHL are a group of lymphomas derived from germinal centre B cells which display a heterogeneous pattern of oncogenic pathway activation. We postulate that specific immune response associated signalling, affecting gene transcription networks, may be associated with the activation of different oncogenic pathways in aggressive Non-Hodgkin lymphomas (NHL. Methodology The B cell receptor (BCR, CD40, B-cell activating factor (BAFF-receptors and Interleukin (IL 21 receptor and Toll like receptor 4 (TLR4 were stimulated in human transformed germinal centre B cells by treatment with anti IgM F(ab2-fragments, CD40L, BAFF, IL21 and LPS respectively. The changes in gene expression following the activation of Jak/STAT, NF-кB, MAPK, Ca2+ and PI3K signalling triggered by these stimuli was assessed using microarray analysis. The expression of top 100 genes which had a change in gene expression following stimulation was investigated in gene expression profiles of patients with Aggressive non-Hodgkin Lymphoma (NHL. Results αIgM stimulation led to the largest number of changes in gene expression, affecting overall 6596 genes. While CD40L stimulation changed the expression of 1194 genes and IL21 stimulation affected 902 genes, only 283 and 129 genes were modulated by lipopolysaccharide or BAFF receptor stimulation, respectively. Interestingly, genes associated with a Burkitt-like phenotype, such as MYC, BCL6 or LEF1, were affected by αIgM. Unique and shared gene expression was delineated. NHL-patients were sorted according to their similarity in the expression of TOP100 affected genes to stimulated transformed germinal centre B cells The αIgM gene module discriminated individual DLBCL in a similar manner to CD40L or IL21 gene modules. DLBCLs with low module activation often carry chromosomal MYC aberrations. DLBCLs with high module activation show strong expression of genes involved in cell

  10. A viral gene that activates lytic cycle expression of Kaposi’s sarcoma-associated herpesvirus

    OpenAIRE

    Sun, Ren; Lin, Su-Fang; Gradoville, Lyndle; YUAN, YAN; Zhu, Fanxiu; Miller, George

    1998-01-01

    Herpesviruses exist in two states, latency and a lytic productive cycle. Here we identify an immediate-early gene encoded by Kaposi’s sarcoma-associated herpesvirus (KSHV)/human herpesvirus eight (HHV8) that activates lytic cycle gene expression from the latent viral genome. The gene is a homologue of Rta, a transcriptional activator encoded by Epstein–Barr virus (EBV). KSHV/Rta activated KSHV early lytic genes, including virus-encoded interleukin 6 and polyadenylated nuclear RNA, and a late ...

  11. Muscular activity level during pedalling is not affected by crank inertial load.

    Science.gov (United States)

    Duc, S; Villerius, V; Bertucci, W; Pernin, J N; Grappe, F

    2005-10-01

    The aim of the present study was to investigate the influence of gear ratio (GR) and thus crank inertial load (CIL), on the activity levels of lower limb muscles. Twelve competitive cyclists performed three randomised trials with their own bicycle equipped with a SRM crankset and mounted on an Axiom ergometer. The power output ( approximately 80% of maximal aerobic power) and the pedalling cadence were kept constant for each subject across all trials but three different GR (low, medium and high) were indirectly obtained for each trial by altering the electromagnetic brake of the ergometer. The low, medium and high GR (mean +/- SD) resulted in CIL of 44 +/- 3.7, 84 +/- 6.5 and 152 +/- 17.9 kg.m(2), respectively. Muscular activity levels of the gluteus maximus (GM), the vastus medialis (VM), the vastus lateralis (VL), the rectus femoris (RF), the medial hamstrings (MHAM), the gastrocnemius (GAS) and the soleus (SOL) muscles were quantified and analysed by mean root mean square (RMS(mean)). The muscular activity levels of the measured lower limb muscles were not significantly affected when the CIL was increased approximately four fold. This suggests that muscular activity levels measured on different cycling ergometers (with different GR and flywheel inertia) can be compared among each other, as they are not influenced by CIL. PMID:16032416

  12. Streptomycin affects the growth and photochemical activity of the alga Chlorella vulgaris.

    Science.gov (United States)

    Perales-Vela, Hugo Virgilio; García, Roberto Velasco; Gómez-Juárez, Evelyn Alicia; Salcedo-Álvarez, Martha Ofelia; Cañizares-Villanueva, Rosa Olivia

    2016-10-01

    Antibiotics are increasingly being used in human and veterinary medicine, as well as pest control in agriculture. Recently, their emergence in the aquatic environment has become a global concern. The aim of this study was to evaluate the effect of streptomycin on growth and photosynthetic activity of Chlorella vulgaris after 72h exposure. We found that growth, photosynthetic activity and the content of the D1 protein of photosystem II decreased. Analysis of chlorophyll a fluorescence emission shows a reduction in the energy transfer between the antenna complex and reaction center. Also the activity of the oxygen evolution complex and electron flow between QA and QB were significantly reduced; in contrast, we found an increase in the reduction rate of the acceptor side of photosystem I. The foregoing can be attributed to the inhibition of the synthesis of the D1 protein and perhaps other coded chloroplast proteins that are part of the electron transport chain which are essential for the transformation of solar energy in the photosystems. We conclude that micromolar concentrations of streptomycin can affect growth and photosynthetic activity of Chlorella vulgaris. The accumulation of antibiotics in the environment can become an ecological problem for primary producers in the aquatic environment. PMID:27344399

  13. Rice proteins, extracted by alkali and α-amylase, differently affect in vitro antioxidant activity.

    Science.gov (United States)

    Wang, Zhengxuan; Liu, Ye; Li, Hui; Yang, Lin

    2016-09-01

    Alkali treatment and α-amylase degradation are different processes for rice protein (RP) isolation. The major aim of this study was to determine the influence of two different extraction methods on the antioxidant capacities of RPA, extracted by alkaline (0.2% NaOH), and RPE, extracted by α-amylase, during in vitro digestion for 2h with pepsin and for 3h with pancreatin. Upon pepsin-pancreatin digestion, the protein hydrolysates (RPA-S, RPE-S), which were the supernatants in the absence of undigested residue, and the whole protein digests (RPA, RPE), in which undigested residue remained, were measured. RPE exhibited the stronger antioxidant responses to free radical scavenging activity, metal chelating activity, and reducing power, whereas the weakest antioxidant capacities were produced by RPE-S. In contrast, no significant differences in antioxidant activity were observed between RPA and RPA-S. The present study demonstrated that the in vitro antioxidant responses induced by the hydrolysates and the protein digests of RPs could be affected differently by alkali treatment and α-amylase degradation, suggesting that the extraction is a vital processing step to modify the antioxidant capacities of RPs. The results of the current study indicated that the protein digests, in which undigested residues remained, could exhibit more efficacious antioxidant activity compared to the hydrolysates. PMID:27041309

  14. A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents.

    Science.gov (United States)

    Xu, B J; Chang, S K C

    2007-03-01

    The objective of this study was to investigate how 6 commonly used solvent systems affected the yields of phenolic substances and the antioxidant capacity of extracts from 8 major classes of food legumes. Several antioxidant-related phytochemical compositions, namely, total phenolic content (TPC), total flavonoids content (TFC), and condensed tannins content (CTC), were investigated. In addition, antioxidant activities were tested using 2,2-diphenyl-1-picryhydrazyl (DPPH) free radical scavenging, ferric-reducing antioxidant power (FRAP), and the oxygen radical absorbance capacity (ORAC). The results showed that the 50% acetone extracts exhibited the highest TPC for yellow pea, green pea, chickpea, and yellow soybean. Acidic 70% acetone (+0.5% acetic acid) extracts exhibited the highest TPC, TFC, and FRAP values for black bean, lentil, black soybean, and red kidney bean. The 80% acetone extracts exhibited the highest TFC, CTC, and DPPH-free radical scavenging activity for yellow pea, green pea, chickpea, and yellow soybean. The 70% ethanol extracts exhibited the greatest ORAC value for all selected legumes. These results indicated that solvents with different polarity had significant effects on total phenolic contents, extracted components, and antioxidant activities. High correlations between phenolic compositions and antioxidant activities of legume extracts were observed. The information is of interest to the nutraceutical food/ingredient industries since legumes are a rich source of antioxidants. PMID:17995858

  15. The calcineurin-NFAT pathway controls activity-dependent circadian gene expression in slow skeletal muscle

    OpenAIRE

    Dyar, Kenneth A.; Stefano Ciciliot; Guidantonio Malagoli Tagliazucchi; Giorgia Pallafacchina; Jana Tothova; Carla Argentini; Lisa Agatea; Reimar Abraham; Miika Ahdesmäki; Mattia Forcato; Silvio Bicciato; Stefano Schiaffino; Bert Blaauw

    2015-01-01

    Objective: Physical activity and circadian rhythms are well-established determinants of human health and disease, but the relationship between muscle activity and the circadian regulation of muscle genes is a relatively new area of research. It is unknown whether muscle activity and muscle clock rhythms are coupled together, nor whether activity rhythms can drive circadian gene expression in skeletal muscle. Methods: We compared the circadian transcriptomes of two mouse hindlimb muscles wi...

  16. Polycyclic Aromatic Hydrocarbon Affects Acetic Acid Production during Anaerobic Fermentation of Waste Activated Sludge by Altering Activity and Viability of Acetogen.

    Science.gov (United States)

    Luo, Jingyang; Chen, Yinguang; Feng, Leiyu

    2016-07-01

    Till now, almost all the studies on anaerobic fermentation of waste activated sludge (WAS) for bioproducts generation focused on the influences of operating conditions, pretreatment methods and sludge characteristics, and few considered those of widespread persistent organic pollutants (POPs) in sludge, for example, polycyclic aromatic hydrocarbons (PAHs). Herein, phenanthrene, which was a typical PAH and widespread in WAS, was selected as a model compound to investigate its effect on WAS anaerobic fermentation for short-chain fatty acids (SCFAs) accumulation. Experimental results showed that the concentration of SCFAs derived from WAS was increased in the presence of phenanthrene during anaerobic fermentation. The yield of acetic acid which was the predominant SCFA in the fermentation reactor with the concentration of 100 mg/kg dry sludge was 1.8 fold of that in the control. Mechanism exploration revealed that the present phenanthrene mainly affected the acidification process of anaerobic fermentation and caused the shift of the microbial community to benefit the accumulation of acetic acid. Further investigation showed that both the activities of key enzymes (phosphotransacetylase and acetate kinase) involved in acetic acid production and the quantities of their corresponding encoding genes were enhanced in the presence of phenanthrene. Viability tests by determining the adenosine 5'-triphosphate content and membrane potential confirmed that the acetogens were more viable in anaerobic fermentation systems with phenanthrene, which resulted in the increased production of acetic acid. PMID:27267805

  17. Cardiovascular and Affective Outcomes of Active Gaming: Using the Nintendo Wii as a Cardiovascular Training Tool

    Science.gov (United States)

    Naugle, Keith E.; Naugle, Kelly M.; Wikstrom, Erik A.

    2014-01-01

    Naugle, KE, Naugle, KM, and Wikstrom, EA. Cardiovascular and affective outcomes of active gaming: Using the Nintendo Wii as a cardiovascular training tool. J Strength Cond Res 28(2): 443–451, 2014–Active-video gaming is purported to produce similar cardiovascular responses as aerobic fitness activities. This study compared the emotional and cardiovascular effects of Wii games with those of traditional exercise in college-aged adults with different exercise backgrounds. Specifically, the percentage of heart rate reserve, rate of perceived exertion (RPE), level of enjoyment, and Positive and Negative Affect Schedule scores were compared between subjects who reported exercising frequently at high intensities (high-intensity exerciser group: age = 20.18 years [0.87]; Height = 165.23 cm [9.97]; Mass = 62.37 kg [11.61]), N = 11 and those who exercise more often at lower intensities (low-intensity exercisers group: age = 20.72 years [1.19]; Height = 164.39 cm [8.05]; Mass = 68.04 kg [10.71]), N = 11. The subjects completed six 20-minute exercises sessions: treadmill walking, stationary cycling, and Wii's Tennis, Boxing, Cycling, and Step. The low-intensity exerciser group achieved a greater percentage of heart rate reserve (a) during traditional exercise compared with that during Wii boxing, (b) playing Wii boxing compared with that for Wii tennis, and (c) playing Wii boxing compared with that when the high-intensity exercisers group played any Wii games (p < 0.05). The RPE was greater for boxing and cycling compared with that for tennis and step (p < 0.05). Ratings of enjoyment and the increase in positive emotion were greater for boxing and for tennis compared with those for traditional exercises (p < 0.05). Results suggest that Wii boxing shows the greatest potential as a cardiovascular fitness tool among the Wii games, particularly for individuals who typically exercise at lower intensities. PMID:23660574

  18. Identification and characterization of the activation domain of Ifh1, an activator of model TATA-less genes.

    Science.gov (United States)

    Zhong, Peipei; Melcher, Karsten

    2010-01-29

    In yeast, TATA box-binding protein TBP can be delivered to protein-coding genes by direct interactions with two different coactivators: TFIID, which delivers TBP preferentially to TATA-less promoters, and SAGA, which strongly favors TATA box-containing promoters. Transcriptional activators of SAGA-dependant genes are characterized by prototypic acidic activation domains (ADs) that efficiently recruit SAGA, but not TFIID, to UAS elements even in the absence of a core promoter. In contrast to the well-studied acidic activation domains, little is known about the activation domains of activators of TFIID-dependent genes, even though these genes constitute more than 80% of eukaryotic protein-coding genes. The paradigm for TATA-less genes are the ribosomal protein genes (RPGs). Here we have identified the AD of the RPG activator Ifh1p and demonstrate that a minimal Ifh1 AD represents a new class of AD that significantly differs from acidic ADs in amino acid signature, relative coactivator affinities, and core promoter selectivity. PMID:20059977

  19. Gender differences in association between serotonin transporter gene polymorphism and resting-state EEG activity.

    Science.gov (United States)

    Volf, N V; Belousova, L V; Knyazev, G G; Kulikov, A V

    2015-01-22

    Human brain oscillations represent important features of information processing and are highly heritable. Gender has been observed to affect association between the 5-HTTLPR (serotonin-transporter-linked polymorphic region) polymorphism and various endophenotypes. This study aimed to investigate the effects of 5-HTTLPR on the spontaneous electroencephalography (EEG) activity in healthy male and female subjects. DNA samples extracted from buccal swabs and resting EEG recorded at 60 standard leads were collected from 210 (101 men and 109 women) volunteers. Spectral EEG power estimates and cortical sources of EEG activity were investigated. It was shown that effects of 5-HTTLPR polymorphism on electrical activity of the brain vary as a function of gender. Women with the S/L genotype had greater global EEG power compared to men with the same genotype. In men, current source density was markedly different among genotype groups in only alpha 2 and alpha 3 frequency ranges: S/S allele carriers had higher current source density estimates in the left inferior parietal lobule in comparison with the L/L group. In women, genotype difference in global power asymmetry was found in the central-temporal region. Contrasting L/L and S/L genotype carriers also yielded significant effects in the right hemisphere inferior parietal lobule and the right postcentral gyrus with L/L genotype carriers showing lower current source density estimates than S/L genotype carriers in all but gamma bands. So, in women, the effects of 5-HTTLPR polymorphism were associated with modulation of the EEG activity in a wide range of EEG frequencies. The significance of the results lies in the demonstration of gene by sex interaction with resting EEG that has implications for understanding sex-related differences in affective states, emotion and cognition. PMID:25450956

  20. Factors affecting mobility milestones and activities of daily living after stroke

    International Nuclear Information System (INIS)

    Mobility milestones are elementary movements related to activities of daily living (ADL) and have a significant influence on functional recovery after stroke. This study aimed to identify the factors affecting mobility milestones and to clarify the relationships between mobility milestones and ADL. Participants were in the acute phase after first-ever strokes (ischemic, n=77; hemorrhagic, n=84). Clinical and radiological factors within the first week were determined and their effects on mobility milestones after 4 weeks were analyzed using logistic regression analysis. After 4 weeks the patients were divided into four groups on the basis of sitting balance, standing balance, and walking ability. Then total ADL score was calculated using the Barthel index (BI), and percentage of independent patients in each 10 items of BI was transition rate of ADL for each of the four groups. Patients with ischemic stroke showed the following findings. Sitting balance was affected by severity of lower limb paralysis, consciousness level, and presence of an internal capsule lesion on computed tomography (CT) (R2=0.86); standing balance was influenced by severity of lower limb paralysis and consciousness level (R2=0.72); and walking ability was affected by severity of lower limb paralysis (R2=0.64). Patients with hemorrhagic stroke showed the following findings. Sitting balance was influenced by severity of lower limb paralysis, intraventricular hemorrhage on CT, blood pressure instability, and fever (R2=0.75); standing balance was affected by severity of lower limb paralysis, consciousness level, and presence of an internal capsule lesion (R2=0.58); and walking ability was influenced by severity of lower limb paralysis and presence of an internal capsule lesion (R2=0.70). In both types of stroke, sitting and standing balance and walking ability were directly associated with total ADL score, and sitting and standing balance became independent earlier than ADL. Severity of lower limb

  1. Zearalenone mycotoxin affects immune mediators, MAPK signalling molecules, nuclear receptors and genome-wide gene expression in pig spleen.

    Science.gov (United States)

    Pistol, Gina Cecilia; Braicu, Cornelia; Motiu, Monica; Gras, Mihail Alexandru; Marin, Daniela Eliza; Stancu, Mariana; Calin, Loredana; Israel-Roming, Florentina; Berindan-Neagoe, Ioana; Taranu, Ionelia

    2015-01-01

    The toxicity of zearalenone (ZEA) was evaluated in swine spleen, a key organ for the innate and adaptative immune response. Weaned pigs were fed for 18 days with a control or a ZEA contaminated diet. The effect of ZEA was assessed on wide genome expression, pro- (TNF-α, IL-8, IL-6, IL-1β, IFN-γ) and anti-inflammatory (IL-10, IL-4) cytokines, other molecules involved in inflammatory processes (MMPs/TIMPs), as well as signaling molecules, (p38/JNK1/JNK2-MAPKs) and nuclear receptors (PPARγ/NFkB/AP-1/STAT3/c-JUN). Microarray analysis showed that 46% of total number of differentially expressed genes was involved in cellular signaling pathway, 13% in cytokine network and 10% in the inflammatory response. ZEA increased expression and synthesis of pro- inflammatory (TNF-α, IL-8, IL-6, IL-1β) and had no effect on IFN-γ, IL-4 and IL-10 cytokines in spleen. The inflammatory stimulation might be a consequence of JNK pathway activation rather than of p-38MAPK and NF-kB involvement whose gene and protein expression were suppressed by ZEA action. In summary, our findings indicated the role of ZEA as an immune disruptor at spleen level. PMID:26011631

  2. Zearalenone Mycotoxin Affects Immune Mediators, MAPK Signalling Molecules, Nuclear Receptors and Genome-Wide Gene Expression in Pig Spleen

    Science.gov (United States)

    Pistol, Gina Cecilia; Braicu, Cornelia; Motiu, Monica; Gras, Mihail Alexandru; Marin, Daniela Eliza; Stancu, Mariana; Calin, Loredana; Israel-Roming, Florentina; Berindan-Neagoe, Ioana; Taranu, Ionelia

    2015-01-01

    The toxicity of zearalenone (ZEA) was evaluated in swine spleen, a key organ for the innate and adaptative immune response. Weaned pigs were fed for 18 days with a control or a ZEA contaminated diet. The effect of ZEA was assessed on wide genome expression, pro- (TNF-α, IL-8, IL-6, IL-1β, IFN-γ) and anti-inflammatory (IL-10, IL-4) cytokines, other molecules involved in inflammatory processes (MMPs/TIMPs), as well as signaling molecules, (p38/JNK1/JNK2-MAPKs) and nuclear receptors (PPARγ/NFkB/AP-1/STAT3/c-JUN). Microarray analysis showed that 46% of total number of differentially expressed genes was involved in cellular signaling pathway, 13% in cytokine network and 10% in the inflammatory response. ZEA increased expression and synthesis of pro- inflammatory (TNF-α, IL-8, IL-6, IL-1β) and had no effect on IFN-γ, IL-4 and IL-10 cytokines in spleen. The inflammatory stimulation might be a consequence of JNK pathway activation rather than of p-38MAPK and NF-kB involvement whose gene and protein expression were suppressed by ZEA action. In summary, our findings indicated the role of ZEA as an immune disruptor at spleen level. PMID:26011631

  3. Zearalenone mycotoxin affects immune mediators, MAPK signalling molecules, nuclear receptors and genome-wide gene expression in pig spleen.

    Directory of Open Access Journals (Sweden)

    Gina Cecilia Pistol

    Full Text Available The toxicity of zearalenone (ZEA was evaluated in swine spleen, a key organ for the innate and adaptative immune response. Weaned pigs were fed for 18 days with a control or a ZEA contaminated diet. The effect of ZEA was assessed on wide genome expression, pro- (TNF-α, IL-8, IL-6, IL-1β, IFN-γ and anti-inflammatory (IL-10, IL-4 cytokines, other molecules involved in inflammatory processes (MMPs/TIMPs, as well as signaling molecules, (p38/JNK1/JNK2-MAPKs and nuclear receptors (PPARγ/NFkB/AP-1/STAT3/c-JUN. Microarray analysis showed that 46% of total number of differentially expressed genes was involved in cellular signaling pathway, 13% in cytokine network and 10% in the inflammatory response. ZEA increased expression and synthesis of pro- inflammatory (TNF-α, IL-8, IL-6, IL-1β and had no effect on IFN-γ, IL-4 and IL-10 cytokines in spleen. The inflammatory stimulation might be a consequence of JNK pathway activation rather than of p-38MAPK and NF-kB involvement whose gene and protein expression were suppressed by ZEA action. In summary, our findings indicated the role of ZEA as an immune disruptor at spleen level.

  4. Mutation in the xpsD gene of Xanthomonas axonopodis pv. citri affects cellulose degradation and virulence

    Directory of Open Access Journals (Sweden)

    Juliana Cristina Baptista

    2010-01-01

    Full Text Available The Gram-negative bacterium Xanthomonas axonopodis pv. citri, the causal agent of citrus canker, is a major threat to the citrus industry worldwide. Although this is a leaf spot pathogen, it bears genes highly related to degradation of plant cell walls, which are typically found in plant pathogens that cause symptoms of tissue maceration. Little is known on Xac capacity to cause disease and hydrolyze cellulose. We investigated the contribution of various open reading frames on degradation of a cellulose compound by means of a global mutational assay to selectively screen for a defect in carboxymethyl cellulase (CMCase secretion in X. axonopodis pv. citri. Screening on CMC agar revealed one mutant clone defective in extracellular glycanase activity, out of nearly 3,000 clones. The insertion was located in the xpsD gene, a component of the type II secretion system (T2SS showing an influence in the ability of Xac to colonize tissues and hydrolyze cellulose. In summary, these data show for the first time, that X. axonopodis pv. citri is capable of hydrolyzing cellulose in a T2SS-dependent process. Furthermore, it was demonstrated that the ability to degrade cellulose contributes to the infection process as a whole.

  5. Elevated Gene Copy Number Does Not Always Explain Elevated Amylase Activities in Fishes.

    Science.gov (United States)

    German, Donovan P; Foti, Dolly M; Heras, Joseph; Amerkhanian, Hooree; Lockwood, Brent L

    2016-01-01

    Amylase activity variation in the guts of several model organisms appears to be explained by amylase gene copy number variation. We tested the hypothesis that amylase gene copy number is always elevated in animals with high amylolytic activity. We therefore sequenced the amylase genes and examined amylase gene copy number in prickleback fishes (family Stichaeidae) with different diets including two species of convergently evolved herbivores with the elevated amylase activity phenotype. We found elevated amylase gene copy number (six haploid copies) with sequence variation among copies in one herbivore (Cebidichthys violaceus) and modest gene copy number (two to three haploid copies) with little sequence variation in the remaining taxa, which included herbivores, omnivores, and a carnivore. Few functional differences in amylase biochemistry were observed, and previous investigations showed similar digestibility among the convergently evolved herbivores with differing amylase genetics. Hence, the phenotype of elevated amylase activity can be achieved by different mechanisms (i.e., elevated expression of fewer genes, increased gene copy number, or expression of more efficient amylase proteins) with similar results. Phylogenetic and comparative genomic analyses of available fish amylase genes show mostly lineage-specific duplication events leading to gene copy number variation, although a whole-genome duplication event or chromosomal translocation may have produced multiple amylase copies in the Ostariophysi, again showing multiple routes to the same result. PMID:27327179

  6. Pervasive supply of therapeutic lysosomal enzymes in the CNS of normal and Krabbe-affected non-human primates by intracerebral lentiviral gene therapy.

    Science.gov (United States)

    Meneghini, Vasco; Lattanzi, Annalisa; Tiradani, Luigi; Bravo, Gabriele; Morena, Francesco; Sanvito, Francesca; Calabria, Andrea; Bringas, John; Fisher-Perkins, Jeanne M; Dufour, Jason P; Baker, Kate C; Doglioni, Claudio; Montini, Eugenio; Bunnell, Bruce A; Bankiewicz, Krystof; Martino, Sabata; Naldini, Luigi; Gritti, Angela

    2016-01-01

    Metachromatic leukodystrophy (MLD) and globoid cell leukodystrophy (GLD or Krabbe disease) are severe neurodegenerative lysosomal storage diseases (LSD) caused by arylsulfatase A (ARSA) and galactosylceramidase (GALC) deficiency, respectively. Our previous studies established lentiviral gene therapy (GT) as a rapid and effective intervention to provide pervasive supply of therapeutic lysosomal enzymes in CNS tissues of MLD and GLD mice. Here, we investigated whether this strategy is similarly effective in juvenile non-human primates (NHP). To provide proof of principle for tolerability and biological efficacy of the strategy, we established a comprehensive study in normal NHP delivering a clinically relevant lentiviral vector encoding for the human ARSA transgene. Then, we injected a lentiviral vector coding for the human GALC transgene in Krabbe-affected rhesus macaques, evaluating for the first time the therapeutic potential of lentiviral GT in this unique LSD model. We showed favorable safety profile and consistent pattern of LV transduction and enzyme biodistribution in the two models, supporting the robustness of the proposed GT platform. We documented moderate inflammation at the injection sites, mild immune response to vector particles in few treated animals, no indication of immune response against transgenic products, and no molecular evidence of insertional genotoxicity. Efficient gene transfer in neurons, astrocytes, and oligodendrocytes close to the injection sites resulted in robust production and extensive spreading of transgenic enzymes in the whole CNS and in CSF, leading to supraphysiological ARSA activity in normal NHP and close to physiological GALC activity in the Krabbe NHP, in which biological efficacy was associated with preliminary indication of therapeutic benefit. These results support the rationale for the clinical translation of intracerebral lentiviral GT to address CNS pathology in MLD, GLD, and other neurodegenerative LSD. PMID

  7. Short-term UV-B radiation affects photosynthetic performance and antioxidant gene expression in highbush blueberry leaves.

    Science.gov (United States)

    Inostroza-Blancheteau, Claudio; Acevedo, Patricio; Loyola, Rodrigo; Arce-Johnson, Patricio; Alberdi, Miren; Reyes-Díaz, Marjorie

    2016-10-01

    The impact of increased artificial UV-B radiation on photosynthetic performance, antioxidant and SOD activities and molecular antioxidant metabolism responses in leaves of two highbush blueberry (Vaccinium corymbosum L. cv. Brigitta and Bluegold) genotypes was studied. Plants were grown in a solid substrate and exposed to 0, 0.07, 0.12 and 0.19 W m(-2) of biologically-effective UV-B irradiance for 0-72 h. Our findings show that net photosynthesis (Pn) decreased significantly in Bluegold, accompanied by a reduction in the effective quantum yield (ФPSII) and electron transport rate (ETR), especially at the highest UV-B irradiation. On the other hand, Brigitta showed a better photosynthetic performance, as well as a clear increment in the antioxidant activity response that could be associated with increased superoxide dismutase activity (SOD) in the early hours of induced UV-B stress in all treatments. At the molecular level, the expression of the three antioxidant genes evaluated in both genotypes had a similar tendency. However, ascorbate peroxidase (APX) expression was significantly increased (6-fold) in Bluegold compared to Brigitta. Thus, the reduction of Pn concomitant with a lower photochemical performance and a reduced response of antioxidant metabolism suggest that the Bluegold genotype is more sensitive to UV-B radiation, while Brigitta appears to tolerate better moderate UV-B irradiance in a short-term experiment. PMID:27343876

  8. Amygdala atrophy affects emotion-related activity in face-responsive regions in frontotemporal degeneration.

    Science.gov (United States)

    De Winter, François-Laurent; Van den Stock, Jan; de Gelder, Beatrice; Peeters, Ronald; Jastorff, Jan; Sunaert, Stefan; Vanduffel, Wim; Vandenberghe, Rik; Vandenbulcke, Mathieu

    2016-09-01

    In the healthy brain, modulatory influences from the amygdala commonly explain enhanced activation in face-responsive areas by emotional facial expressions relative to neutral expressions. In the behavioral variant frontotemporal dementia (bvFTD) facial emotion recognition is impaired and has been associated with atrophy of the amygdala. By combining structural and functional MRI in 19 patients with bvFTD and 20 controls we investigated the neural effects of emotion in face-responsive cortex and its relationship with amygdalar gray matter (GM) volume in neurodegeneration. Voxel-based morphometry revealed decreased GM volume in anterior medio-temporal regions including amygdala in patients compared to controls. During fMRI, we presented dynamic facial expressions (fear and chewing) and their spatiotemporally scrambled versions. We found enhanced activation for fearful compared to neutral faces in ventral temporal cortex and superior temporal sulcus in controls, but not in patients. In the bvFTD group left amygdalar GM volume correlated positively with emotion-related activity in left fusiform face area (FFA). This correlation was amygdala-specific and driven by GM in superficial and basolateral (BLA) subnuclei, consistent with reported amygdalar-cortical networks. The data suggests that anterior medio-temporal atrophy in bvFTD affects emotion processing in distant posterior areas. PMID:27389802

  9. Seagrasses are negatively affected by organic matter loading and Arenicola marina activity in a laboratory experiment.

    Science.gov (United States)

    Govers, Laura L; Pieck, Timon; Bouma, Tjeerd J; Suykerbuyk, Wouter; Smolders, Alfons J P; van Katwijk, Marieke M

    2014-06-01

    When two ecosystem engineers share the same natural environment, the outcome of their interaction will be unclear if they have contrasting habitat-modifying effects (e.g., sediment stabilization vs. sediment destabilization). The outcome of the interaction may depend on local environmental conditions such as season or sediment type, which may affect the extent and type of habitat modification by the ecosystem engineers involved. We mechanistically studied the interaction between the sediment-stabilizing seagrass Zostera noltii and the bioturbating and sediment-destabilizing lugworm Arenicola marina, which sometimes co-occur for prolonged periods. We investigated (1) if the negative sediment destabilization effect of A. marina on Z. noltii might be counteracted by positive biogeochemical effects of bioirrigation (burrow flushing) by A. marina in sulfide-rich sediments, and (2) if previously observed nutrient release by A. marina bioirrigation could affect seagrasses. We tested the individual and combined effects of A. marina presence and high porewater sulfide concentrations (induced by organic matter addition) on seagrass biomass in a full factorial lab experiment. Contrary to our expectations, we did not find an effect of A. marina on porewater sulfide concentrations. A. marina activities affected the seagrass physically as well as by pumping nutrients, mainly ammonium and phosphate, from the porewater to the surface water, which promoted epiphyte growth on seagrass leaves in our experimental set-up. We conclude that A. marina bioirrigation did not alleviate sulfide stress to seagrasses. Instead, we found synergistic negative effects of the presence of A. marina and high sediment sulfide levels on seagrass biomass. PMID:24633960

  10. Cloned yeast and mammalian transcription factor TFIID gene products support basal but not activated metallothionein gene transcription

    International Nuclear Information System (INIS)

    Transcription factor IID (TFIID), the TATA binding factor, is thought to play a key role in the regulation of eukaryotic transcriptional initiation. The authors studied the role of TFIID in the transcription of the yeast metallothionein gene, which is regulated by the copper-dependent activator protein ACE1. Both basal and induced transcription of the metallothionein gene require TFIID and a functional TATA binding site. Crude human and mouse TFIID fractions, prepared from mammalian cells, respond to stimulation by ACE1, In contrast, human and yeast TFIID proteins expressed from the cloned genes do not respond to ACE1, except in the presence of what germ or yeast total cell extracts. These results indicate that the cloned TFIID gene products lack a component(s) or modifications(s) that is required for regulated as compared to basal transription

  11. DMPD: Activation of lymphokine genes in T cells: role of cis-acting DNA elements thatrespond to T cell activation signals. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 1492121 Activation of lymphokine genes in T cells: role of cis-acting DNA elements ...html) (.csml) Show Activation of lymphokine genes in T cells: role of cis-acting ...DNA elements thatrespond to T cell activation signals. PubmedID 1492121 Title Activation of lymphokine genes in T cells: role

  12. Progranulin Mutations Affects Brain Oscillatory Activity in Fronto-Temporal Dementia

    Science.gov (United States)

    Moretti, Davide V.; Benussi, Luisa; Fostinelli, Silvia; Ciani, Miriam; Binetti, Giuliano; Ghidoni, Roberta

    2016-01-01

    Background: Mild cognitive impairment (MCI) is a clinical stage indicating a prodromal phase of dementia. This practical concept could be used also for fronto-temporal dementia (FTD). Progranulin (PGRN) has been recently recognized as a useful diagnostic biomarker for fronto-temporal lobe degeneration (FTLD) due to GRN null mutations. Electroencephalography (EEG) is a reliable tool in detecting brain networks changes. The working hypothesis of the present study is that EEG oscillations could detect different modifications among FTLD stages (FTD-MCI versus overt FTD) as well as differences between GRN mutation carriers versus non-carriers in patients with overt FTD. Materials and Methods: EEG in all patients and PGRN dosage in patients with a clear FTD were detected. The cognitive state has been investigated through mini mental state examination (MMSE). Results: MCI-FTD showed a significant lower spectral power in both alpha and theta oscillations as compared to overt FTD. GRN mutations carriers affected by FTLD show an increase in high alpha and decrease in theta oscillations as compared to non-carriers. Conclusion: EEG frequency rhythms are sensible to different stage of FTD and could detect changes in brain oscillatory activity affected by GRN mutations. PMID:26973510

  13. Transcriptome and Gene Ontology (GO) Enrichment Analysis Reveals Genes Involved in Biotin Metabolism That Affect l-Lysine Production in Corynebacterium glutamicum

    OpenAIRE

    Hong-Il Kim; Jong-Hyeon Kim; Young-Jin Park

    2016-01-01

    Corynebacterium glutamicum is widely used for amino acid production. In the present study, 543 genes showed a significant change in their mRNA expression levels in l-lysine-producing C. glutamicum ATCC21300 than that in the wild-type C. glutamicum ATCC13032. Among these 543 differentially expressed genes (DEGs), 28 genes were up- or downregulated. In addition, 454 DEGs were functionally enriched and categorized based on BLAST sequence homologies and gene ontology (GO) annotations using the Bl...

  14. Does Mixed Reimbursement Schemes Affect Hospital Activity and Productivity? An Analysis of the Case of Denmark

    DEFF Research Database (Denmark)

    Hansen, Xenia Brun; Bech, Mickael; Jakobsen, Mads Leth;

    2013-01-01

    literature with a deeper understanding of such mixed reimbursement systems as well as empirically by identifying key design factors that determines the incentives embedded in such a mixed model. Furthermore, we describe how incentives vary in different designs of the mixed reimbursement scheme and assess...... whether different incentives affects the performance of hospitals regarding activity and productivity differently. Information on Danish reimbursement schemes has been collected from documents provided by the regional governments and through interviews with regional administrations. The data cover the...... period from 2007-2010. A theoretical framework identified the key factors in an ABF/block grant model to be the proportion of the national Diagnosis-Related Group (DRG) tariff above and below a predefined production target (i.e. the baseline); baseline calculations; the presence of kinks/ceilings; and...

  15. For love or money? How activation of relational versus instrumental concerns affects reactions to decision-making procedures

    OpenAIRE

    Ståhl, Tomas; Vermunt, Riël; Ellemers, Naomi

    2007-01-01

    We investigate how the direct activation of relational versus instrumental concerns affects reactions to decisions made by an authority. It is demonstrated that when instrumental concerns are experimentally induced, people's evaluations of the authority (Studies 1 and 2) as well as their intentions to protest (Study 3) are more strongly affected by how the procedures used by the authority affect anticipated outcomes (i.e., whether procedures are favorably or unfavorably inaccurate) than when ...

  16. Carbohydrate restricted recovery from long term endurance exercise does not affect gene responses involved in mitochondrial biogenesis in highly trained athletes

    DEFF Research Database (Denmark)

    Jensen, Line; Gejl, Kasper D; Ørtenblad, Niels;

    2015-01-01

    The aim was to determine if the metabolic adaptations, particularly PGC-1α and downstream metabolic genes were affected by restricting CHO following an endurance exercise bout in trained endurance athletes. A second aim was to compare baseline expression level of these genes to untrained. Elite......; nevertheless, the gene expression was not different between groups. Glycogen and most gene expression levels returned to baseline by 24 h in both CHO and H2O. Baseline mRNA expression of NRF-1, COX-IV, GLUT4 and PPAR-α gene targets were higher in trained compared to untrained. Additionally, the proportion of...... type I muscle fibers positively correlated with baseline mRNA for PGC-1α, TFAM, NRF-1, COX-IV, PPAR-α, and GLUT4 for both trained and untrained. CHO restriction during recovery from glycogen depleting exercise does not improve the mRNA response of markers of mitochondrial biogenesis. Further, baseline...

  17. Stress affects theta activity in limbic networks and impairs novelty-induced exploration and familiarization

    Directory of Open Access Journals (Sweden)

    Luis Jacinto

    2013-10-01

    Full Text Available Exposure to a novel environment triggers the response of several brain areas that regulate emotional behaviors. Here, we studied theta oscillations within the hippocampus (HPC-amygdala (AMY-medial prefrontal cortex (mPFC network in exploration of a novel environment and subsequent familiarization through repeated exposures to that same environment; in addition, we assessed how concomitant stress exposure could disrupt this activity and impair both behavioral processes. Local field potentials were simultaneously recorded from dorsal and ventral hippocampus (dHPC and vHPC respectively, basolateral amygdala (BLA and mPFC in freely behaving rats while they were exposed to a novel environment, then repeatedly re-exposed over the course of 3 weeks to that same environment and, finally, on re-exposure to a novel unfamiliar environment. A longitudinal analysis of theta activity within this circuit revealed a reduction of vHPC and BLA theta power and vHPC-BLA theta coherence through familiarization which was correlated with a return to normal exploratory behavior in control rats. In contrast, a persistent over-activation of the same brain regions was observed in stressed rats that displayed impairments in novel exploration and familiarization processes. Importantly, we show that stress also affected intra-hippocampal synchrony and heightened the coherence between vHPC and BLA. In summary, we demonstrate that modulatory theta activity in the aforementioned circuit, namely in the vHPC and BLA, is correlated with the expression of anxiety in novelty-induced exploration and familiarization in both normal and pathological conditions.

  18. Geochemical study of stream waters affected by mining activities in the SE Spain

    Science.gov (United States)

    Garcia-Lorenzo, Maria Luz; Perez-Sirvent, Carmen; Martinez-Sanchez, Maria Jose; Bech, Jaime

    2015-04-01

    Water pollution by dissolved metals in mining areas has mainly been associated with the oxidation of sulphide-bearing minerals exposed to weathering conditions, resulting in low quality effluents of acidic pH and containing a high level of dissolved metals. According to transport process, three types of pollution could be established: a) Primary contamination, formed by residues placed close to the contamination sources; b) Secondary contamination, produced as a result of transport out of its production areas; c) Tertiary contamination. The aim of this work was to study trace element in water samples affected by mining activities and to apply the MINTEQ model for calculating aqueous geochemical equilibria. The studied area constituted an important mining centre for more than 2500 years, ceasing activity in 1991. The ore deposits of this zone have iron, lead and zinc as the main metal components. As a result, a lot of contaminations sources, formed by mining steriles, waste piles and foundry residues are present. For this study, 36 surficial water samples were collected after a rain episode in 4 different areas. In these samples, the trace element content was determined by by flame atomic absorption spectrometry (Fe and Zn), electrothermal atomization atomic absorption spectrometry (Pb and Cd), atomic fluorescence spectrometry (As) and ICP-MS for Al. MINTEQA2 is a geochemical equilibrium speciation model capable of computing equilibria among the dissolved, adsorbed, solid, and gas phases in an environmental setting and was applied to collected waters. Zone A: A5 is strongly influenced by tailing dumps and showed high trace element content. In addition, is influenced by the sea water and then showed high bromide, chloride, sodium and magnesium content, together with a basic pH. The MINTEQ model application suggested that Zn and Cd could precipitate as carbonate (hidrocincite, smithsonite and otavite). A9 also showed acid pH and high trace element content; is

  19. Effect of FTO Gene and Physical Activity Interaction on Trunk Fat Percentage Among the Newfoundland Population

    OpenAIRE

    Payne, Anthony; Cahill, Farrell; Sun, Guang; Loredo-Osti, J. Concepción; Abarin, Taraneh

    2014-01-01

    OBJECTIVE To explore the effect of FTO gene and physical activity interaction on trunk fat percentage. DESIGN AND METHODS Subjects are 3,004 individuals from Newfoundland and Labrador whose trunk fat percentage and physical activity were recorded, and who were genotyped for 11 single-nucleotide polymorphisms (SNPs) in the FTO gene. Subjects were stratified by gender. Multiple tests and multiple regressions were used to analyze the effects of physical activity, variants of FTO, age, and their ...

  20. Effect of Hyp delivery system on PKCα activity: What will happen after pkcα gene silencing and Hyp photo-activation?

    Science.gov (United States)

    Misuth, Matus; Joniova, Jaroslava; Ferencakova, Michaela; Miskovsky, Pavol; Nadova, Zuzana

    2015-08-01

    Low density lipoproteins (LDL) are considered as suitable natural in vivo delivery system for hydrophobic photosensitizers (pts) such as hypericin (Hyp) and it was shown that over expression of LDL-receptors in tumor cells can be used for specific targeting. Activation of pts by irradiation results in a formation of reactive oxygen species (ROS) at the place of light application and starts destructive mechanism. PKCα plays a key role in the cell survival and its overexpression was observed in glioma cell lines. In the present study we aim to present the effectivity of the pts delivery in the glioma cells and consequences of silencing pkcα gene on cell death/survival after Hyp photo-activation. Pts can be delivered through two pathways: endocytosis - when cells are incubated with LDL/Hyp complex and Hyp transport through cellular membrane without any carrier. Preliminary results show that incubation of cells with or without LDL leads to PKCα activation. Photo-activated Hyp seems to be more effective in terms of apoptosis induction when compared to photo-activated LDL/Hyp complex. We have evaluated the influence of photo-activated Hyp on cell death in non-transfected and transfected (PKCα-) human glioma cells (U87-MG). Level of ROS production and type of cell death was notably affected by silencing pkca gene resulting in significant increase of necrosis after Hyp photo-activation.

  1. Fur-mediated activation of gene transcription in the human pathogen Neisseria gonorrhoeae.

    Science.gov (United States)

    Yu, Chunxiao; Genco, Caroline Attardo

    2012-04-01

    It is well established that the ferric uptake regulatory protein (Fur) functions as a transcriptional repressor in diverse microorganisms. Recent studies demonstrated that Fur also functions as a transcriptional activator. In this study we defined Fur-mediated activation of gene transcription in the sexually transmitted disease pathogen Neisseria gonorrhoeae. Analysis of 37 genes which were previously determined to be iron induced and which contained putative Fur boxes revealed that only 30 of these genes exhibited reduced transcription in a gonococcal fur mutant strain. Fur-mediated activation was established by examining binding of Fur to the putative promoter regions of 16 Fur-activated genes with variable binding affinities observed. Only ∼50% of the newly identified Fur-regulated genes bound Fur in vitro, suggesting that additional regulatory circuits exist which may function through a Fur-mediated indirect mechanism. The gonococcal Fur-activated genes displayed variable transcription patterns in a fur mutant strain, which correlated with the position of the Fur box in each (promoter) region. These results suggest that Fur-mediated direct transcriptional activation is fulfilled by multiple mechanisms involving either competing with a repressor or recruiting RNA polymerase. Collectively, our studies have established that gonococcal Fur functions as an activator of gene transcription through both direct and indirect mechanisms. PMID:22287521

  2. Affected Kindred Analysis of Human X Chromosome Exomes to Identify Novel X-Linked Intellectual Disability Genes

    OpenAIRE

    Niranjan, Tejasvi S.; Skinner, Cindy; May, Melanie; Turner, Tychele; Rose, Rebecca; Stevenson, Roger; Schwartz, Charles E.; Wang, Tao

    2015-01-01

    X-linked Intellectual Disability (XLID) is a group of genetically heterogeneous disorders caused by mutations in genes on the X chromosome. Deleterious mutations in ~10% of X chromosome genes are implicated in causing XLID disorders in ~50% of known and suspected XLID families. The remaining XLID genes are expected to be rare and even private to individual families. To systematically identify these XLID genes, we sequenced the X chromosome exome (X-exome) in 56 well-established XLID families ...

  3. Factors affecting antimicrobial activity of MUC7 12-mer, a human salivary mucin-derived peptide

    Directory of Open Access Journals (Sweden)

    Bobek Libuse A

    2007-11-01

    60°C did not affect the activity. Conclusion MUC7 12-mer peptide is effective anticandidal agent at physiological concentrations of variety of ions in the oral cavity. These results suggest that, especially in combination with EDTA, it could potentially be applied as an alternative therapeutic agent for the treatment of human oral candidiasis.

  4. Presence of activating KRAS mutations correlates significantly with expression of tumour suppressor genes DCN and TPM1 in colorectal cancer

    Directory of Open Access Journals (Sweden)

    Rems Miran

    2009-08-01

    Full Text Available Abstract Background Despite identification of the major genes and pathways involved in the development of colorectal cancer (CRC, it has become obvious that several steps in these pathways might be bypassed by other as yet unknown genetic events that lead towards CRC. Therefore we wanted to improve our understanding of the genetic mechanisms of CRC development. Methods We used microarrays to identify novel genes involved in the development of CRC. Real time PCR was used for mRNA expression as well as to search for chromosomal abnormalities within candidate genes. The correlation between the expression obtained by real time PCR and the presence of the KRAS mutation was investigated. Results We detected significant previously undescribed underexpression in CRC for genes SLC26A3, TPM1 and DCN, with a suggested tumour suppressor role. We also describe the correlation between TPM1 and DCN expression and the presence of KRAS mutations in CRC. When searching for chromosomal abnormalities, we found deletion of the TPM1 gene in one case of CRC, but no deletions of DCN and SLC26A3 were found. Conclusion Our study provides further evidence of decreased mRNA expression of three important tumour suppressor genes in cases of CRC, thus implicating them in the development of this type of cancer. Moreover, we found underexpression of the TPM1 gene in a case of CRCs without KRAS mutations, showing that TPM1 might serve as an alternative path of development of CRC. This downregulation could in some cases be mediated by deletion of the TPM1 gene. On the other hand, the correlation of DCN underexpression with the presence of KRAS mutations suggests that DCN expression is affected by the presence of activating KRAS mutations, lowering the amount of the important tumour suppressor protein decorin.

  5. CIPK23 is involved in iron acquisition of Arabidopsis by affecting ferric chelate reductase activity.

    Science.gov (United States)

    Tian, Qiuying; Zhang, Xinxin; Yang, An; Wang, Tianzuo; Zhang, Wen-Hao

    2016-05-01

    Iron deficiency is one of the major limiting factors affecting quality and production of crops in calcareous soils. Numerous signaling molecules and transcription factors have been demonstrated to play a regulatory role in adaptation of plants to iron deficiency. However, the mechanisms underlying the iron deficiency-induced physiological processes remain to be fully dissected. Here, we demonstrated that the protein kinase CIPK23 was involved in iron acquisition. Lesion of CIPK23 rendered Arabidopsis mutants hypersensitive to iron deficiency, as evidenced by stronger chlorosis in young leaves and lower iron concentration than wild-type plants under iron-deficient conditions by down-regulating ferric chelate reductase activity. We found that iron deficiency evoked an increase in cytosolic Ca(2+) concentration and the elevated Ca(2+) would bind to CBL1/CBL9, leading to activation of CIPK23. These novel findings highlight the involvement of calcium-dependent CBL-CIPK23 complexes in the regulation of iron acquisition. Moreover, mutation of CIPK23 led to changes in contents of mineral elements, suggesting that CBL-CIPK23 complexes could be as "nutritional sensors" to sense and regulate the mineral homeostasis in Arabisopsis. PMID:26993237

  6. Novel function of perforin in negatively regulating CD4+T cell activation by affecting calcium signaling

    Institute of Scientific and Technical Information of China (English)

    Enguang Bi; Kairui Mao; Jia Zou; Yuhan Zheng; Bing Sun; Chunjian Huang; Yu Hu; Xiaodong Wu; Weiwen Deng; Guomei Lin; Zhiduo Liu; Lin Tian; Shuhui Sun

    2009-01-01

    Perforin is a pore-forming protein engaged mainly in mediating target T cell death and is employed by cytotoxic Tlymphocytes (CTLs) and natural killer cells. However, whether it also plays a role in conventional CD4+ T cell func-tion remains unclear. Here we report that in perforin-deficient (PKO) mice, CD4+ T cells are hyperproliferative in response to T cell receptor (TCR) stimulation. This feature of hyperproliferation is accompanied by the enhancement both in cell division and in IL-2 secretion. It seems that the perforin deficiency does not influence T cell development in thymus spleen and lymph node. In vivo, perforin deficiency results in increased antigen-specific T cell prolifera-tion and antibody production. Furthermore, PKO mice are more susceptible to experimental autoimmune uveitis. To address the molecular mechanism, we found that after TCR stimulation, CD44 T cells from PKO mice display an increased intracellular calcium flux and subsequently enhance activation of transcription factor NFATI. Our results indicate that perforin plays a negative role in regulating CD4+ T cell activation and immune response by affecting TCR-dependent Ca2+ signaling.

  7. Interfering with activity in the dorsomedial prefrontal cortex via TMS affects social impressions updating.

    Science.gov (United States)

    Ferrari, Chiara; Vecchi, Tomaso; Todorov, Alexander; Cattaneo, Zaira

    2016-08-01

    In our everyday social interactions we often need to deal with others' unpredictable behaviors. Integrating unexpected information in a consistent representation of another agent is a cognitively demanding process. Several neuroimaging studies point to the medial prefrontal cortex (mPFC) as a critical structure in mediating social evaluations. Our aim here was to shed light on the possible causal role of the mPFC in the dynamic process of forming and updating social impressions about others. We addressed this issue by suppressing activity in the mPFC by means of 1 Hz offline transcranial magnetic stimulation (TMS) prior to a task requiring participants to evaluate other agents' trustworthiness after reading about their social behavior. In two different experiments, we found that inhibiting activity in the mPFC increased perceived trustworthiness when inconsistent information about one agent's behavior was provided. In turn, when only negative or positive behaviors of a person were described, TMS over the mPFC did not affect judgments. Our results indicate that the mPFC is causally involved in mediating social impressions updating-at least in cases in which judgment is uncertain due to conflicting information to be processed. PMID:27012713

  8. Emotion Regulation and Excess Weight: Impaired Affective Processing Characterized by Dysfunctional Insula Activation and Connectivity

    Science.gov (United States)

    Mata, Fernanda; Martínez-Zalacaín, Ignacio; Cano, Marta; Contreras-Rodríguez, Oren; Fernández-Aranda, Fernando; Yucel, Murat; Soriano-Mas, Carles; Verdejo-García, Antonio

    2016-01-01

    Emotion-regulation strategies are understood to influence food intake. This study examined the neurophysiological underpinnings of negative emotion processing and emotion regulation in individuals with excess weight compared to normal-weight controls. Fifteen participants with excess-weight (body mass index >25) and sixteen normal-weight controls (body mass index 18–25) performed an emotion-regulation task during functional magnetic resonance imaging. Participants were exposed to 24 negative affective or neutral pictures that they were instructed to Observe (neutral pictures), Maintain (sustain the emotion elicited by negative pictures) or Regulate (down-regulate the emotion provoked by negative pictures through previously trained reappraisal techniques). When instructed to regulate negative emotions by means of cognitive reappraisal, participants with excess weight displayed persistently heightened activation in the right anterior insula. Decreased responsivity was also found in right anterior insula, the orbitofrontal cortex and cerebellum during negative emotion experience in participants with excess weight. Psycho-physiological interaction analyses showed that excess-weight participants had decreased negative functional coupling between the right anterior insula and the right dlPFC, and the bilateral dmPFC during cognitive reappraisal. Our findings support contentions that excess weight is linked to an abnormal pattern of neural activation and connectivity during the experience and regulation of negative emotions, with the insula playing a key role in these alterations. We posit that ineffective regulation of emotional states contributes to the acquisition and preservation of excess weight. PMID:27003840

  9. Cardiovascular and affective outcomes of active gaming: using the nintendo wii as a cardiovascular training tool.

    Science.gov (United States)

    Naugle, Keith E; Naugle, Kelly M; Wikstrom, Erik A

    2014-02-01

    Active-video gaming is purported to produce similar cardiovascular responses as aerobic fitness activities. This study compared the emotional and cardiovascular effects of Wii games with those of traditional exercise in college-aged adults with different exercise backgrounds. Specifically, the percentage of heart rate reserve, rate of perceived exertion (RPE), level of enjoyment, and Positive and Negative Affect Schedule scores were compared between subjects who reported exercising frequently at high intensities (high-intensity exerciser group: age = 20.18 years [0.87]; Height = 165.23 cm [9.97]; Mass = 62.37 kg [11.61]), N = 11 and those who exercise more often at lower intensities (low-intensity exercisers group: age = 20.72 years [1.19]; Height = 164.39 cm [8.05]; Mass = 68.04 kg [10.71]), N = 11. The subjects completed six 20-minute exercises sessions: treadmill walking, stationary cycling, and Wii's Tennis, Boxing, Cycling, and Step. The low-intensity exerciser group achieved a greater percentage of heart rate reserve (a) during traditional exercise compared with that during Wii boxing, (b) playing Wii boxing compared with that for Wii tennis, and (c) playing Wii boxing compared with that when the high-intensity exercisers group played any Wii games (p positive emotion were greater for boxing and for tennis compared with those for traditional exercises (p games, particularly for individuals who typically exercise at lower intensities. PMID:23660574

  10. Defective active silicon uptake affects some components of rice resistance to brown spot.

    Science.gov (United States)

    Dallagnol, Leandro J; Rodrigues, Fabrício A; Mielli, Mateus V B; Ma, Jian F; Datnoff, Lawrence E

    2009-01-01

    Rice is known to accumulate high amounts of silicon (Si) in plant tissue, which helps to decrease the intensity of many economically important rice diseases. Among these diseases, brown spot, caused by the fungus Bipolaris oryzae, is one of the most devastating because it negatively affects yield and grain quality. This study aimed to evaluate the importance of active root Si uptake in rice for controlling brown spot development. Some components of host resistance were evaluated in a rice mutant, low silicon 1 (lsi1), defective in active Si uptake, and its wild-type counterpart (cv. Oochikara). Plants were inoculated with B. oryzae after growing for 35 days in a hydroponic culture amended with 0 or 2 mMol Si. The components of host resistance evaluated were incubation period (IP), relative infection efficiency (RIE), area under brown spot progress curve (AUBSPC), final lesion size (FLS), rate of lesion expansion (r), and area under lesion expansion progress curve (AULEPC). Si content from both Oochikara and lsi1 in the +Si treatment increased in leaf tissue by 219 and 178%, respectively, over the nonamended controls. Plants from Oochikara had 112% more Si in leaf tissue than plants from lsi1. The IP of brown spot from Oochikara increased approximately 6 h in the presence of Si and the RIE, AUBSPC, FLS, r, and AULEPC were significantly reduced by 65, 75, 33, 36, and 35%, respectively. In the presence of Si, the IP increased 3 h for lsi1 but the RIE, AUBSPC, FLS, r, and AULEPC were reduced by only 40, 50, 12, 21, and 12%, respectively. The correlation between Si leaf content and IP was significantly positive but Si content was negatively correlated with RIE, AUBSPC, FLS, r, and AULEPC. Single degree-of-freedom contrasts showed that Oochikara and lsi1 supplied with Si were significantly different from those not supplied with Si for all components of resistance evaluated. This result showed that a reduced Si content in tissues of plants from lsi1 dramatically affected

  11. The potential of denitrification for the stabilization of activated sludge processes affected by low alkalinity problems

    Directory of Open Access Journals (Sweden)

    Heike Hoffmann

    2007-03-01

    Full Text Available In this study, the problems provoked by nitrification of wastewater with low alkalinity were analyzed in a pilot sequencing batch activated sludge reactor (SBR. Decrease in pH resulted in disappearence of protozoa. De-flocculation of the activated sludge floc started below pH 6.5, resulting in enhanced effluent turbidity and loss of bacteria. Nitrification efficiency was affected below pH 6.2. The denitrification activity was not sufficient to keep up the pH, due to a low C/N ratio of the wastewater. Based on alkalinity and ammonia concentration of the wastewater and the necessary denitrification rate to prevent operational problems, was developed a prognostic diagram. The applicability of this diagram was tested for the SBR with excellent results. The diagram could be applied to optimize the operation of wastewater treatment plants affected by problems with low alkalinity wastewater.Os problemas provocados pela nitrificação no esgoto com baixa alcalinidade foram analisados num reator piloto do tipo lodos ativados seqüencial por batelada (RSB, alimentado por esgoto urbano. A diminuição do pH se mostrou em três níveis: com pH de 6,8 - 6,0 os protozoários, responsáveis para a filtração da fase liquida, desaparecerem; os flocos de lodos ativados começaram a se destruir abaixo pH 6,5 resultando em elevação da turbidez no efluente final e abaixo de pH 6,2-6,0 a nitrificação foi afetada. A influência da desnitrificação para manter o pH foi analisada. Devido a baixa relação C:N no esgoto pré-tratado, a desnitrificação não se mostrou suficiente para manter o pH estável. Este trabalho apresenta o cálculo da alcalinidade que considera a influência da nitrificação e desnitrificação, de acordo com os resultados obtidos no RSB. Baseado nesse cálculo, foi desenvolvida uma recomendação na forma gráfica para usar em ETE´s afetadas por baixa alcalinidade.

  12. Molecular spectrum of BRAF, NRAS and KRAS gene mutations in plasma cell dyscrasias: implication for MEK-ERK pathway activation.

    Science.gov (United States)

    Lionetti, Marta; Barbieri, Marzia; Todoerti, Katia; Agnelli, Luca; Marzorati, Simona; Fabris, Sonia; Ciceri, Gabriella; Galletti, Serena; Milesi, Giulia; Manzoni, Martina; Mazzoni, Mara; Greco, Angela; Tonon, Giovanni; Musto, Pellegrino; Baldini, Luca; Neri, Antonino

    2015-09-15

    Multiple myeloma (MM) is a clinically and genetically heterogeneous plasma cell (PC) malignancy. Whole-exome sequencing has identified therapeutically targetable mutations such as those in the mitogen-activated protein kinase (MAPK) pathway, which are the most prevalent MM mutations. We used deep sequencing to screen 167 representative patients with PC dyscrasias [132 with MM, 24 with primary PC leukemia (pPCL) and 11 with secondary PC leukemia (sPCL)] for mutations in BRAF, NRAS and KRAS, which were respectively found in 12%, 23.9% and 29.3% of cases. Overall, the MAPK pathway was affected in 57.5% of the patients (63.6% of those with sPCL, 59.8% of those with MM, and 41.7% of those with pPCL). The majority of BRAF variants were comparably expressed at transcript level. Additionally, gene expression profiling indicated the MAPK pathway is activated in mutated patients. Finally, we found that vemurafenib inhibition of BRAF activation in mutated U266 cells affected the expression of genes known to be associated with MM. Our data confirm and extend previous published evidence that MAPK pathway activation is recurrent in myeloma; the finding that it is mediated by BRAF mutations in a significant fraction of patients has potentially immediate clinical implications. PMID:26090869

  13. Genetically altering the expression of neutral trehalase gene affects conidiospore thermotolerance of the entomopathogenic fungus Metarhizium acridum

    Directory of Open Access Journals (Sweden)

    Peng Guoxiong

    2011-02-01

    Full Text Available Abstract Background The entomopathogenic fungus Metarhizium acridum has been used as an important biocontrol agent instead of insecticides for controlling crop pests throughout the world. However, its virulence varies with environmental factors, especially temperature. Neutral trehalase (Ntl hydrolyzes trehalose, which plays a role in environmental stress response in many organisms, including M. acridum. Demonstration of a relationship between Ntl and thermotolerance or virulence may offer a new strategy for enhancing conidiospore thermotolerance of entomopathogenic fungi through genetic engineering. Results We selected four Ntl over-expression and four Ntl RNA interference (RNAi transformations in which Ntl expression is different. Compared to the wild-type, Ntl mRNA expression was reduced to 35-66% in the RNAi mutants and increased by 2.5-3.5-fold in the over-expression mutants. The RNAi conidiospores exhibited less trehalase activity, accumulated more trehalose, and were much more tolerant of heat stress than the wild-type. The opposite effects were found in conidiospores of over-expression mutants compared to RNAi mutants. Furthermore, virulence was not altered in the two types of mutants compared to the wild type. Conclusions Ntl controlled trehalose accumulation in M. acridum by degrading trehalose, and thus affected conidiospore thermotolerance. These results offer a new strategy for enhancing conidiospore thermotolerance of entomopathogenic fungi without affecting virulence.

  14. Green tea extract suppresses adiposity and affects the expression of lipid metabolism genes in diet-induced obese zebrafish

    Directory of Open Access Journals (Sweden)

    Hasumura Takahiro

    2012-08-01

    Full Text Available Abstract Background Visceral fat accumulation is one of the most important predictors of mortality in obese populations. Administration of green tea extract (GTE can reduce body fat and reduce the risk of obesity-related diseases in mammals. In this study, we investigated the effects and mechanisms of GTE on adiposity in diet-induced obese (DIO zebrafish. Methods Zebrafish at 3.5 to 4.5 months post-fertilization were allocated to four groups: non-DIO, DIO, DIO + 0.0025%GTE, and DIO + 0.0050%GTE. The non-DIO group was fed freshly hatched Artemia once daily (5 mg cysts/fish daily for 40 days. Zebrafish in the three DIO groups were fed freshly hatched Artemia three times daily (60 mg cysts/fish daily. Zebrafish in the DIO + 0.0025%GTE and DIO + 0.0050%GTE groups were exposed to GTE after the start of feeding three times daily for 40 days. Results Three-dimensional microcomputed tomography analysis showed that GTE exposure significantly decreased the volume of visceral but not subcutaneous fat tissue in DIO zebrafish. GTE exposure increased hepatic expression of the lipid catabolism genes ACOX1 (acyl-coenzyme A oxidase 1, palmitoyl, ACADM (acyl-coenzyme A dehydrogenase, c-4 to c-12 straight chain, and PPARA (peroxisome proliferator-activated receptor alpha. GTE exposure also significantly decreased the visceral fat expression of SOCS3 (suppressor of cytokine signaling 3b which inhibits leptin signaling. Conclusions The present results are consistent with those seen in mammals treated with GTE, supporting the validity of studying the effects of GTE in DIO zebrafish. Our results suggest that GTE exerts beneficial effects on adiposity, possibly by altering the expression of lipid catabolism genes and SOCS3.

  15. Posterior versus frontal theta activity indexes approach motivation during affective autobiographical memories.

    Science.gov (United States)

    Walden, K; Pornpattananangkul, N; Curlee, A; McAdams, D P; Nusslock, R

    2015-03-01

    Research has recently identified a promising neurophysiological marker of approach motivation involving posterior versus frontal (Pz - Fz) electroencephalographic (EEG) theta activity PFTA; Wacker, Chavanon, & Stemmler (Journal of Personality and Social Psychology 91:171-187, 2006). Preliminary evidence indicated that PFTA is modulated by dopaminergic activity, thought to underlie appetitive tendencies, and that it indexes self-reported behavioral activation system (BAS) sensitivity. To date, research has largely relied on resting indices of PFTA and has yet to examine the relationship between PFTA and specific approach-related affective states generated by emotionally salient laboratory tasks. Accordingly, the present study evaluated PFTA both at rest and during an ecologically valid autobiographical memory task in which participants recalled personal life experiences involving a goal-striving, an anxious apprehension, a low-point (i.e., difficult), and a neutral memory while EEG data were recorded. In line with prediction, elevated PFTA was observed during both goal-striving and anxious apprehension autobiographical memories. PFTA was particularly elevated during anxious apprehension memories coded as being high on approach-related tendencies. Elevated PFTA during anxious apprehension is consistent with a growing literature indicating that anxious apprehension is associated with elevated approach- and reward-related brain function. Lastly, elevated resting PFTA was positively correlated with self-reported trait anger, a negatively valenced emotion characterized by approach-related tendencies. These results have implications for (a) enhancing our understanding of the neurophysiology of approach-related emotions, (b) establishing PFTA as an index of appetitive motivational states, and (c) clarifying our understanding of the neurophysiology and approach-related tendencies associated with both anxious apprehension and anger. PMID:25245178

  16. Differential gene expression in CD8+ cells exhibiting noncytotoxic anti-HIV activity

    International Nuclear Information System (INIS)

    Suppressive subtractive hybridization with polymerase chain reaction was used to identify the gene(s) associated with the CD8+ cell noncytotoxic anti-HIV response. The differences in gene expression profiles of CD8+ cells from a pair of discordant HIV-positive identical twins were studied. Forty-nine genes were identified as expressed at higher levels in the CD8+ cells from the infected twin that inhibited viral replication. The differential expression of these genes was then evaluated using Q-PCR to determine if this gene expression pattern is evident in CD8+ cells from other HIV-positive subjects showing this antiviral activity. Three genes, including one unknown, were found to have significantly increased expression in antiviral CD8+ cells

  17. Process and genes for expression and overexpression of active [FeFe] hydrogenases

    Science.gov (United States)

    Seibert, Michael; King, Paul W; Ghirardi, Maria Lucia; Posewitz, Matthew C; Smolinski, Sharon L

    2014-09-16

    A process for expression of active [FeFe]-hydrogenase in a host organism that does not contain either the structural gene(s) for [FeFe]-hydrogenases and/or homologues for the maturation genes HydE, HydF and HyG, comprising: cloning the structural hydrogenase gene(s) and/or the maturation genes HydE, HydF and HydG from an organisms that contains these genes into expression plasmids; transferring the plasmids into an organism that lacks a native [FeFe]-hydrogenase or that has a disrupted [FeFe]-hydrogenase and culturing it aerobically; and inducing anaerobiosis to provide [FeFe] hydrogenase biosynthesis and H?2#191 production.

  18. Gene expression during minor genome activation in preimplantation bovine development

    Czech Academy of Sciences Publication Activity Database

    Kaňka, Jiří; Kepková, Kateřina; Němcová, Lucie

    2009-01-01

    Roč. 72, - (2009), s. 572-583. ISSN 0093-691X R&D Projects: GA ČR GA523/06/1226 Institutional research plan: CEZ:AV0Z50450515 Keywords : developmental biology * embryo * gene expression * real-time RT-PCR Subject RIV: GI - Animal Husbandry ; Breeding Impact factor: 2.073, year: 2009

  19. Reductive Dehalogenase Gene Expression as a Biomarker for Physiological Activity of Dehalococcoides spp.

    OpenAIRE

    Lee, Patrick K. H.; David R. Johnson; Holmes, Victor F.; He, Jianzhong; Alvarez-Cohen, Lisa

    2006-01-01

    This study characterizes the transcriptional expression of the reductive dehalogenase (RDase)-encoding tceA and vcrA genes and evaluates their applicability as potential biological markers of Dehalococcoides activity. When Dehalococcoides ethenogenes 195 was provided with trichloroethene (TCE) as the electron acceptor, the expression of the tceA gene increased by 90-fold relative to that in cells starved of chlorinated ethenes, demonstrating that tceA gene expression is indicative of the acti...

  20. The Influence of Family Structure, the TPH2 G-703T and the 5-HTTLPR Serotonergic Genes upon Affective Problems in Children Aged 10-14 Years

    Science.gov (United States)

    Nobile, Maria; Rusconi, Marianna; Bellina, Monica; Marino, Cecilia; Giorda, Roberto; Carlet, Ombretta; Vanzin, Laura; Molteni, Massimo; Battaglia, Marco

    2009-01-01

    Background: Both genetic and psychosocial risk factors influence the risk for depression in development. While the impacts of family structure and of serotonergic polymorphisms upon individual differences for affective problems have been investigated separately, they have never been considered together in a gene-environment interplay perspective.…

  1. Response of oxidative enzyme activities to nitrogen deposition affects soil concentrations of dissolved organic carbon

    Science.gov (United States)

    Waldrop, M.P.; Zak, D.R.

    2006-01-01

    Recent evidence suggests that atmospheric nitrate (NO3- ) deposition can alter soil carbon (C) storage by directly affecting the activity of lignin-degrading soil fungi. In a laboratory experiment, we studied the direct influence of increasing soil NO 3- concentration on microbial C cycling in three different ecosystems: black oak-white oak (BOWO), sugar maple-red oak (SMRO), and sugar maple-basswood (SMBW). These ecosystems span a broad range of litter biochemistry and recalcitrance; the BOWO ecosystem contains the highest litter lignin content, SMRO had intermediate lignin content, and SMBW leaf litter has the lowest lignin content. We hypothesized that increasing soil solution NO 3- would reduce lignolytic activity in the BOWO ecosystem, due to a high abundance of white-rot fungi and lignin-rich leaf litter. Due to the low lignin content of litter in the SMBW, we further reasoned that the NO3- repression of lignolytic activity would be less dramatic due to a lower relative abundance of white-rot basidiomycetes; the response in the SMRO ecosystem should be intermediate. We increased soil solution NO3- concentrations in a 73-day laboratory incubation and measured microbial respiration and soil solution dissolved organic carbon (DOC) and phenolics concentrations. At the end of the incubation, we measured the activity of ??-glucosidase, N-acetyl-glucosaminidase, phenol oxidase, and peroxidase, which are extracellular enzymes involved with cellulose and lignin degradation. We quantified the fungal biomass, and we also used fungal ribosomal intergenic spacer analysis (RISA) to gain insight into fungal community composition. In the BOWO ecosystem, increasing NO 3- significantly decreased oxidative enzyme activities (-30% to -54%) and increased DOC (+32% upper limit) and phenolic (+77% upper limit) concentrations. In the SMRO ecosystem, we observed a significant decrease in phenol oxidase activity (-73% lower limit) and an increase in soluble phenolic concentrations

  2. A large scale survey reveals that chromosomal copy-number alterations significantly affect gene modules involved in cancer initiation and progression

    Directory of Open Access Journals (Sweden)

    Cigudosa Juan C

    2011-05-01

    Full Text Available Abstract Background Recent observations point towards the existence of a large number of neighborhoods composed of functionally-related gene modules that lie together in the genome. This local component in the distribution of the functionality across chromosomes is probably affecting the own chromosomal architecture by limiting the possibilities in which genes can be arranged and distributed across the genome. As a direct consequence of this fact it is therefore presumable that diseases such as cancer, harboring DNA copy number alterations (CNAs, will have a symptomatology strongly dependent on modules of functionally-related genes rather than on a unique "important" gene. Methods We carried out a systematic analysis of more than 140,000 observations of CNAs in cancers and searched by enrichments in gene functional modules associated to high frequencies of loss or gains. Results The analysis of CNAs in cancers clearly demonstrates the existence of a significant pattern of loss of gene modules functionally related to cancer initiation and progression along with the amplification of modules of genes related to unspecific defense against xenobiotics (probably chemotherapeutical agents. With the extension of this analysis to an Array-CGH dataset (glioblastomas from The Cancer Genome Atlas we demonstrate the validity of this approach to investigate the functional impact of CNAs. Conclusions The presented results indicate promising clinical and therapeutic implications. Our findings also directly point out to the necessity of adopting a function-centric, rather a gene-centric, view in the understanding of phenotypes or diseases harboring CNAs.

  3. Metabolic activity of Streptococcus mutans biofilms and gene expression during exposure to xylitol and sucrose.

    Science.gov (United States)

    Decker, Eva-Maria; Klein, Christian; Schwindt, Dimitri; von Ohle, Christiane

    2014-12-01

    The objective of the study was to analyse Streptococcus mutans biofilms grown under different dietary conditions by using multifaceted methodological approaches to gain deeper insight into the cariogenic impact of carbohydrates. S. mutans biofilms were generated during a period of 24 h in the following media: Schaedler broth as a control medium containing endogenous glucose, Schaedler broth with an additional 5% sucrose, and Schaedler broth supplemented with 1% xylitol. The confocal laser scanning microscopy (CLSM)-based analyses of the microbial vitality, respiratory activity (5-cyano-2,3-ditolyl tetrazolium chloride, CTC) and production of extracellular polysaccharides (EPS) were performed separately in the inner, middle and outer biofilm layers. In addition to the microbiological sample testing, the glucose/sucrose consumption of the biofilm bacteria was quantified, and the expression of glucosyltransferases and other biofilm-associated genes was investigated. Xylitol exposure did not inhibit the viability of S. mutans biofilms, as monitored by the following experimental parameters: culture growth, vitality, CTC activity and EPS production. However, xylitol exposure caused a difference in gene expression compared to the control. GtfC was upregulated only in the presence of xylitol. Under xylitol exposure, gtfB was upregulated by a factor of 6, while under sucrose exposure, it was upregulated by a factor of three. Compared with glucose and xylitol, sucrose increased cell vitality in all biofilm layers. In all nutrient media, the intrinsic glucose was almost completely consumed by the cells of the S. mutans biofilm within 24 h. After 24 h of biofilm formation, the multiparametric measurements showed that xylitol in the presence of glucose caused predominantly genotypic differences but did not induce metabolic differences compared to the control. Thus, the availability of dietary carbohydrates in either a pure or combined form seems to affect the

  4. Metabolic activity of Streptococcus mutans biofilms and gene expression during exposure to xylitol and sucrose

    Institute of Scientific and Technical Information of China (English)

    Eva-Maria Decker; Christian Klein; Dimitri Schwindt; Christiane von Ohle

    2014-01-01

    The objective of the study was to analyse Streptococcus mutans biofilms grown under different dietary conditions by using multifaceted methodological approaches to gain deeper insight into the cariogenic impact of carbohydrates. S. mutans biofilms were generated during a period of 24 h in the following media:Schaedler broth as a control medium containing endogenous glucose, Schaedler broth with an additional 5%sucrose, and Schaedler broth supplemented with 1%xylitol. The confocal laser scanning microscopy (CLSM)-based analyses of the microbial vitality, respiratory activity (5-cyano-2,3-ditolyl tetrazolium chloride, CTC) and production of extracellular polysaccharides (EPS) were performed separately in the inner, middle and outer biofilm layers. In addition to the microbiological sample testing, the glucose/sucrose consumption of the biofilm bacteria was quantified, and the expression of glucosyltransferases and other biofilm-associated genes was investigated. Xylitol exposure did not inhibit the viability of S. mutans biofilms, as monitored by the following experimental parameters:culture growth, vitality, CTC activity and EPS production. However, xylitol exposure caused a difference in gene expression compared to the control. GtfC was upregulated only in the presence of xylitol. Under xylitol exposure, gtfB was upregulated by a factor of 6, while under sucrose exposure, it was upregulated by a factor of three. Compared with glucose and xylitol, sucrose increased cell vitality in all biofilm layers. In all nutrient media, the intrinsic glucose was almost completely consumed by the cells of the S. mutans biofilm within 24 h. After 24 h of biofilm formation, the multiparametric measurements showed that xylitol in the presence of glucose caused predominantly genotypic differences but did not induce metabolic differences compared to the control. Thus, the availability of dietary carbohydrates in either a pure or combined form seems to affect the cariogenic potential

  5. Time Evolution of Activity Concentration of Natural Emitters in a Scenario Affected By Previous Phosphogypsum Contamination

    International Nuclear Information System (INIS)

    The estuary formed by the confluence of Tinto and Odiel river-mouths is located in the South of Spain, close to Huelva town. This estuary has been deeply studied through the years because it has a double particularity. On one hand, since the beginning of the 1960s, the estuary has been affected by direct and indirect phosphogypsum (pg.) releases from two phosphoric acid and fertilizers factories that are working in the area. On the other hand, the pyrite mining operations upstream the Odiel and Tinto rivers has caused historically the formation of H2SO4, through oxidation of the natural sulphur deposits, the acidification of the waters and the consequent mobilisation of heavy metals from the mining area to the Huelva estuary. As a consequence, enhancement contamination levels in natural emitters from the 238U series were found in the surroundings of the factories in the previous years to 1998. However, in 1998 the management policy of waste releases drastically changed in the area, and direct discharges to Tinto and Odiel River had to be ceased.A thorough study of the affected zone is being carried out. Riverbed sediments and water samples have been analyzed from four different sampling campaigns in the estuary during the years 1999, 2001, 2002 and 2005. Different radioanalytical techniques have been employed to obtain the activity concentrations of U-isotopes, Th-isotopes, 226Ra, 210Pb and 210Po. Furthermore, the results for the rates of de-contamination of the area are presented. This data will be discussed in order to establish the present status of the contamination in the area, and moreover, to predict the time-evolution of the self-cleaning

  6. Possible role of calcium dependent protein phosphorylation in the modulation of wound induced HRGP gene activation in potatoes after gamma irradiation

    International Nuclear Information System (INIS)

    Hydroxyproline rich glycoprotein (HRGP) gene is induced in both control and gamma irradiated potato tubers after wounding. The enhanced RNA synthesis in response to wounding correlated well with the accumulation of both HRGP gene transcripts and protein. Initially, the level of HRGP gene expression in gamma irradiated potatoes in response to wounding was 30% more than the corresponding controls. After post irradiation storage of 3-5 weeks, HRGP gene expression in response to wounding was significantly lower than the unirradiated samples. This low level of HRGP gene expression in irradiated potatoes was partially retrieved by 5 mM Ca2+ treatment. Prior treatment with trifluoperazine, a calcium channel blocker resulted in 35% reduction in wound induced HRGP gene expression in control potatoes, further providing evidence for the involvement of Ca2+ dependency for HRGP gene activation. A comparative study on in vivo protein phosphorylation induced by wounding in control and irradiated potatoes exhibited significant differences. A good correlation was observed in the modulation of phosphorylation and HRGP gene expression by Ca2+ in irradiated potatoes. Wound induced signal transduction system and subsequent Ca2+ dependent protein phosphorylation for the activation of HRGP gene is affected in potatoes after gamma irradiation, thus impairing the wound healing process adversely. (author). 25 refs., 5 figs

  7. Frontoparietal Attentional Network Activation Differs Between Smokers and Nonsmokers during Affective Cognition

    OpenAIRE

    Froeliger, Brett; Modlin, Leslie A.; Kozink, Rachel V.; Wang, Lihong; Garland, Eric L; Addicott, Merideth A.; McClernon, F. Joseph

    2012-01-01

    Smoking withdrawal-induced disruption of affect and cognition is associated with dysregulated prefrontal brain function although little is known regarding the neural foci of smoker-nonsmoker differences during affective cognition. Thus, the current study utilized fMRI to identify smoker-nonsmoker differences in affective cognition. Thirty-four healthy volunteers (17 smokers, 17 nonsmokers) underwent fMRI during an affective Stroop task (aST). The aST includes emotional cue-reactivity trials, ...

  8. Microarray based analysis of an inherited terminal 3p26.3 deletion, containing only the CHL1 gene, from a normal father to his two affected children

    Directory of Open Access Journals (Sweden)

    Lerone Margherita

    2011-04-01

    Full Text Available Abstract Background terminal deletions of the distal portion of the short arm of chromosome 3 cause a rare contiguous gene disorder characterized by growth retardation, developmental delay, mental retardation, dysmorphisms, microcephaly and ptosis. The phenotype of individuals with deletions varies from normal to severe. It was suggested that a 1,5 Mb minimal terminal deletion including the two genes CRBN and CNTN4 is sufficient to cause the syndrome. In addition the CHL1 gene, mapping at 3p26.3 distally to CRBN and CNTN4, was proposed as candidate gene for a non specific mental retardation because of its high level of expression in the brain. Methods and Results we describe two affected siblings in which array-CGH analysis disclosed an identical discontinuous terminal 3p26.3 deletion spanning less than 1 Mb. The deletion was transmitted from their normal father and included only the CHL1 gene. The two brothers present microcephaly, light mental retardation, learning and language difficulties but not the typical phenotype manifestations described in 3p- syndrome. Conclusion a terminal 3p26.3 deletion including only the CHL1 gene is a very rare finding previously reported only in one family. The phenotype of the affected individuals in the two families is very similar and the deletion has been inherited from an apparently normal parent. As already described for others recurrent syndromes with variable phenotype, these findings are challenging in genetic counselling because of an evident variable penetrance.

  9. Evolution of linked avirulence effectors in Leptosphaeria maculans is affected by genomic environment and exposure to resistance genes in host plants.

    Directory of Open Access Journals (Sweden)

    Angela P Van de Wouw

    Full Text Available Brassica napus (canola cultivars and isolates of the blackleg fungus, Leptosphaeria maculans interact in a 'gene for gene' manner whereby plant resistance (R genes are complementary to pathogen avirulence (Avr genes. Avirulence genes encode proteins that belong to a class of pathogen molecules known as effectors, which includes small secreted proteins that play a role in disease. In Australia in 2003 canola cultivars with the Rlm1 resistance gene suffered a breakdown of disease resistance, resulting in severe yield losses. This was associated with a large increase in the frequency of virulence alleles of the complementary avirulence gene, AvrLm1, in fungal populations. Surprisingly, the frequency of virulence alleles of AvrLm6 (complementary to Rlm6 also increased dramatically, even though the cultivars did not contain Rlm6. In the L. maculans genome, AvrLm1 and AvrLm6 are linked along with five other genes in a region interspersed with transposable elements that have been degenerated by Repeat-Induced Point (RIP mutations. Analyses of 295 Australian isolates showed deletions, RIP mutations and/or non-RIP derived amino acid substitutions in the predicted proteins encoded by these seven genes. The degree of RIP mutations within single copy sequences in this region was proportional to their proximity to the degenerated transposable elements. The RIP alleles were monophyletic and were present only in isolates collected after resistance conferred by Rlm1 broke down, whereas deletion alleles belonged to several polyphyletic lineages and were present before and after the resistance breakdown. Thus, genomic environment and exposure to resistance genes in B. napus has affected the evolution of these linked avirulence genes in L. maculans.

  10. Antifungal Activity of Eucalyptus Oil against Rice Blast Fungi and the Possible Mechanism of Gene Expression Pattern

    Directory of Open Access Journals (Sweden)

    Li-Jun Zhou

    2016-05-01

    Full Text Available Eucalyptus oil possesses a wide spectrum of biological activity, including anti-microbial, fungicidal, herbicidal, acaricidal and nematicidal properties. We studied anti-fungal activities of the leaf oil extracted from Eucalyptus. grandis × E. urophylla. Eleven plant pathogenic fungi were tested based on the mycelium growth rates with negative control. The results showed that Eucalyptus oil has broad-spectrum inhibitory effects toward these fungi. Remarkable morphological and structural alterations of hypha have been observed for Magnaporthe grisea after the treatment. The mRNA genome array of M. grisea was used to detect genes that were differentially expressed in the test strains treated by the Eucalyptus oil than the normal strains. The results showed 1919 genes were significantly affected, among which 1109 were down-regulated and 810 were up-regulated (p < 0.05, absolute fold change >2. According to gene ontology annotation analysis, these differentially expressed genes may cause abnormal structures and physiological function disorders, which may reduce the fungus growth. These results show the oil has potential for use in the biological control of plant disease as a green biopesticide.

  11. Diethylstilbestrol at environmental levels affects the development of early life stage and target gene expression in Japanese Medaka (Oryzias latipes).

    Science.gov (United States)

    Lei, Bingli; Peng, Wei; Li, Wei; Yu, Yingxin; Xu, Jie; Wang, Yipei

    2016-04-01

    In this study, the biologic effects of DES on the early life and adult life stages of Japanese medaka (Oryzias latipes) were evaluated. At the early life stage, the fertilized eggs were exposed to 1-1000 ng/L diethylstilbestrol (DES) for 15 days and the hatched larvae were continually exposed to the same concentrations for an additional 25 days. Significant adverse effects on hatchability, time to hatching and mortality rate occurred at DES concentrations of 100 and 1000 ng/L, while the abnormality (scoliosis and abdominal swelling) rate was significantly increased at 10 ng/L and above. After exposure, the fish were maintained in charcoal-dechlorinated tap water for a further 30 days. Only the male gonadosomatic index (GSI) at 1000 ng/L was significantly increased. At concentrations greater than 1 ng/L, estrogen receptor α (ERα) mRNA in both sexes and vitellogenin-I (Vtg-I) mRNA in males were significantly down-regulated; while Vtg-I mRNA in females was significantly up-regulated. When sexually mature medaka were exposed to 10 and 1000 ng/L DES for 21 days, only the GSI in females was significantly decreased at 1000 ng/L. At 10 and 1000 ng/L, ERα mRNA in both sexes was significantly down-regulated, while Vtg-I mRNA in males was significantly up-regulated. These findings showed that DES at the environmental concentration of 10 ng/L can affect the early life stage development of medaka and alter liver ERα and Vtg-I gene expression. Therefore, if we only focused on these sensitive toxicity endpoints such as ERα and Vtg-I mRNA expression, DES has a strong estrogenic effect on Japanese medaka. PMID:26908245

  12. Transcriptional activation of the mouse obese (ob) gene by CCAAT/enhancer binding protein alpha

    DEFF Research Database (Denmark)

    Hwang, C S; Mandrup, S; MacDougald, O A;

    1996-01-01

    /EBP alpha expression vector into 3T3-L1 cells with a series of 5' truncated ob gene promoter constructs activated reporter gene expression with all constructs containing the proximal C/EBP binding site (nucleotides -55 to -47). Mutation of this site blocked transactivation by C/EBP alpha. Taken together...

  13. A mutation in the dam gene of Vibrio cholerae: 2-aminopurine sensitivity with intact GATC methylase activity

    International Nuclear Information System (INIS)

    Vibrio cholerae mutants sensitive to 2-aminopurine (2AP) but with DNA adenine methylase activity similar to parental cells have been isolated. The mutant strains were sensitive to ultraviolet light (UV), methyl methanesulfonate (MMS) and 9-aminoacridine. The spontaneous mutation frequency of the mutants were not significantly affected. Attempts to isolate dam V. cholerae cells by screening 2AP sensitive cells have not been successful. All the mutant phenotypes could be suppressed by introducing the plasmid pRB103 carrying the dam gene of Escherichia coli into the mutant cells

  14. A tropical coastal lagoon affected by agricultural activities. The importance of radiolabelled pesticide studies

    International Nuclear Information System (INIS)

    The objective of this work was to integrate the results obtained from laboratory and field radiolabelled pesticide studies on an appropriate management model for a tropical coastal lagoon in which diverse human activities (e.g. agriculture, aquaculture, fisheries and tourism) take place. The tropical coastal lagoon studied is surrounded by agricultural fields on which large quantities of pesticides are used, and pesticide residue commonly enter the lagoon as runoff. Information on the distribution and dynamics of these contaminants is necessary for establishing coastal lagoon management. The distribution of pesticide residues in sediments of the lagoon was evaluated and the dynamics of the pesticides (water:sediment partitioning and bioaccumulation) experimentally assessed using 14C labelled pesticides (chlorpyrifos, DDT and parathion) in model ecosystems. The results of these experiments indicate that partitioning between phases (water:sediment) is very rapid, with the half-life varying from a few hours for chlorpyrifos and DDT to up to 8 days for parathion. In the same way, bio-accumulation of the different pesticides is an active process that varied for the different organisms exposed to sublethal pesticide concentrations for 30 days. The results demonstrate that the persistence and the degree of bioaccumulation of pesticides are a threat to the ecosystem, both from the ecological and the economic point of view. Thus, traditional fisheries in the lagoon, shrimp farms and tourism could be seriously affected by their excessive use. Improved environmental management is urgently needed to reduce the risk of these ecological hazards. (author). 24 refs, 3 figs, 1 tab

  15. A review of OECD Nuclear Energy Agency activities related to coupled processes affecting the performance of a nuclear waste repository

    International Nuclear Information System (INIS)

    This paper discusses the Organization for Economic Cooperation and Development (OECD) Nuclear Energy Agency (NEA0) activities related to coupled processes. The scope of these activities affecting the performance of a nuclear waste repository are focused on. They cover two general headings: the development of performance assessment methodologies and the acquisition of field and laboratory data

  16. Molecular analysis of HEXA gene in Argentinean patients affected with Tay-Sachs disease: possible common origin of the prevalent c.459+5A>G mutation.

    Science.gov (United States)

    Zampieri, Stefania; Montalvo, Annalisa; Blanco, Mariana; Zanin, Irene; Amartino, Hernan; Vlahovicek, Kristian; Szlago, Marina; Schenone, Andrea; Pittis, Gabriela; Bembi, Bruno; Dardis, Andrea

    2012-05-15

    Tay-Sachs disease (TSD) is a recessively inherited disorder caused by the deficient activity of hexosaminidase A due to mutations in the HEXA gene. Up to date there is no information regarding the molecular genetics of TSD in Argentinean patients. In the present study we have studied 17 Argentinean families affected by TSD, including 20 patients with the acute infantile form and 3 with the sub-acute form. Overall, we identified 14 different mutations accounting for 100% of the studied alleles. Eight mutations were novel: 5 were single base changes leading to drastic residue changes or truncated proteins, 2 were small deletions and one was an intronic mutation that may cause a splicing defect. Although the spectrum of mutations was highly heterogeneous, a high frequency of the c.459+5G>A mutation, previously described in different populations was found among the studied cohort. Haplotype analysis suggested that in these families the c.459+5G>A mutation might have arisen by a single mutational event. PMID:22441121

  17. Identification of novel target genes specifically activated by deregulated E2F in human normal fibroblasts.

    Science.gov (United States)

    Kitamura, Hodaka; Ozono, Eiko; Iwanaga, Ritsuko; Bradford, Andrew P; Okuno, Junko; Shimizu, Emi; Kurayoshi, Kenta; Kugawa, Kazuyuki; Toh, Hiroyuki; Ohtani, Kiyoshi

    2015-09-01

    The transcription factor E2F is the principal target of the tumor suppressor pRB. E2F plays crucial roles not only in cell proliferation by activating growth-related genes but also in tumor suppression by activating pro-apoptotic and growth-suppressive genes. We previously reported that, in human normal fibroblasts, the tumor suppressor genes ARF, p27(Kip1) and TAp73 are activated by deregulated E2F activity induced by forced inactivation of pRB, but not by physiological E2F activity induced by growth stimulation. In contrast, growth-related E2F targets are activated by both E2F activities, underscoring the roles of deregulated E2F in tumor suppression in the context of dysfunctional pRB. In this study, to further understand the roles of deregulated E2F, we explored new targets that are specifically activated by deregulated E2F using DNA microarray. The analysis identified nine novel targets (BIM, RASSF1, PPP1R13B, JMY, MOAP1, RBM38, ABTB1, RBBP4 and RBBP7), many of which are involved in the p53 and RB tumor suppressor pathways. Among these genes, the BIM gene was shown to be activated via atypical E2F-responsive promoter elements and to contribute to E2F1-mediated apoptosis. Our results underscore crucial roles of deregulated E2F in growth suppression to counteract loss of pRB function. PMID:26201719

  18. BAY 87-2243, a highly potent and selective inhibitor of hypoxia-induced gene activation has antitumor activities by inhibition of mitochondrial complex I

    International Nuclear Information System (INIS)

    The activation of the transcription factor hypoxia-inducible factor-1 (HIF-1) plays an essential role in tumor development, tumor progression, and resistance to chemo- and radiotherapy. In order to identify compounds targeting the HIF pathway, a small molecule library was screened using a luciferase-driven HIF-1 reporter cell line under hypoxia. The high-throughput screening led to the identification of a class of aminoalkyl-substituted compounds that inhibited hypoxia-induced HIF-1 target gene expression in human lung cancer cell lines at low nanomolar concentrations. Lead structure BAY 87-2243 was found to inhibit HIF-1α and HIF-2α protein accumulation under hypoxic conditions in non-small cell lung cancer (NSCLC) cell line H460 but had no effect on HIF-1α protein levels induced by the hypoxia mimetics desferrioxamine or cobalt chloride. BAY 87-2243 had no effect on HIF target gene expression levels in RCC4 cells lacking Von Hippel–Lindau (VHL) activity nor did the compound affect the activity of HIF prolyl hydroxylase-2. Antitumor activity of BAY 87-2243, suppression of HIF-1α protein levels, and reduction of HIF-1 target gene expression in vivo were demonstrated in a H460 xenograft model. BAY 87-2243 did not inhibit cell proliferation under standard conditions. However under glucose depletion, a condition favoring mitochondrial ATP generation as energy source, BAY 87-2243 inhibited cell proliferation in the nanomolar range. Further experiments revealed that BAY 87-2243 inhibits mitochondrial complex I activity but has no effect on complex III activity. Interference with mitochondrial function to reduce hypoxia-induced HIF-1 activity in tumors might be an interesting therapeutic approach to overcome chemo- and radiotherapy-resistance of hypoxic tumors

  19. Trpc2 gene impacts on maternal aggression, accessory olfactory bulb anatomy, and brain activity

    OpenAIRE

    Hasen, Nina S.; Gammie, Stephen C.

    2009-01-01

    The trpc2 gene codes for an ion channel found in the vomeronasal organ (VNO). Studies using the trpc2−/− (KO) mouse have exploited the gene's role in signal transduction to explore the VNO's role in pheromonally-mediated behaviors. To date, no study has evaluated the impact of the trpc2 gene on activity within the brain. Here, we examine the gene's effect on brain regions governing maternal aggression. We intruder-tested lactating dams and then quantified Fos immunoreactivity (Fos-IR) in the ...

  20. Isolation and characterization of the Porphyromonas gingivalis prtT gene, coding for protease activity.

    OpenAIRE

    Otogoto, J; Kuramitsu, H K

    1993-01-01

    The prtT gene, coding for trypsinlike proteolytic activity, has been isolated from Porphyromonas gingivalis ATCC 53977. This gene is present immediately downstream from the sod gene on a 5.9-kb DNA fragment from the organism isolated in Escherichia coli. The complete nucleotide sequence of the gene was determined, and the deduced amino acid sequence of the enzyme corresponds to a 53.9-kDa protein with an estimated pI of 11.85. Gelatin-sodium dodecyl sulfate-polyacrylamide gel electrophoresis ...

  1. Expression activity of the CpTI gene in transgenic rice plants

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@Plant harboured protease inhibitor is a part of the natural plant defense system against insect predation. Plants transformed with foreign plant protease inhibitor genes can enhance resistance to insect pests. So far, at least 20 kinds of plants, including tobacco, rice, tomato, cotton et al., have been transformed with various plant protease inhibitor genes. We have transformed rice with CpTI (cowpea trypsin inhibitor) gene. To assess the range and stability of expression of the CpTI gene, CpTI protein activities were determined in various tissues and at different development stages of transgenic inbred lines.

  2. The 1984 Walter Hubert lecture. Activation of transforming genes in neoplasms.

    OpenAIRE

    Cooper, G M

    1984-01-01

    Cellular oncogenes have been identified by the biological activity of tumour DNAs in transfection assays and/or by homology to the transforming genes of retroviruses. In some tumours, the biological activity, organization or expression of these genes is altered, suggesting that such alterations contribute to the development of neoplastic disease. Experiments leading to the identification of cellular oncogenes are reviewed and our current understanding of the mechanisms by which they induce tr...

  3. IGFBP-2 enhances VEGF gene promoter activity and consequent promotion of angiogenesis by neuroblastoma cells.

    Science.gov (United States)

    Azar, Walid J; Azar, Sheena H X; Higgins, Sandra; Hu, Ji-Fan; Hoffman, Andrew R; Newgreen, Donald F; Werther, George A; Russo, Vincenzo C

    2011-09-01

    IGF binding protein (IGFBP)-2 is one of the most significant genes in the signature of major aggressive cancers. Previously, we have shown that IGFBP-2 enhances proliferation and invasion of neuroblastoma cells, suggesting that IGFBP-2 activates a protumorigenic gene expression program in these cells. Gene expression profiling in human neuroblastoma SK-N-SHEP (SHEP)-BP-2 cells indicated that IGFBP-2 overexpression activated a gene expression program consistent with enhancement of tumorigenesis. Regulation was significant for genes involved in proliferation/survival, migration/adhesion, and angiogenesis, including the up-regulation of vascular endothelial growth factor (VEGF) mRNA (>2-fold). Specific transcriptional activation of the VEGF gene by IGFBP-2 overexpression was demonstrated via cotransfection of a VEGF promoter Luciferase construct in SHEP-BP-2. Cotransfection of VEGF promoter Luciferase construct with IGFBP-2 protein in wild-type SHEP cells indicated that transactivation of VEGF promoter only occurs in the presence of intracellular IGFBP-2. Cell fractionation and immunofluorescence in SHEP-BP-2 cells demonstrated nuclear localization of IGFBP-2. These findings suggest that transcriptional activation of VEGF promoter is likely to be mediated by nuclear IGFBP-2. The levels of secreted VEGF (up to 400 pg/10(6) cells) suggested that VEGF might elicit angiogenic activity. Hence, SHEP-BP-2 cells and control clones cultured in collagen sponge were xenografted onto chick embryo chorioallantoic membrane. Neomicrovascularization was observed by 72 h, solely in the SHEP-BP-2 cell xenografts. In conclusion, our data indicate that IGFBP-2 is an activator of aggressive behavior in cancer cells, involving nuclear entry and activation of a protumorigenic gene expression program, including transcriptional regulation of the VEGF gene and consequent proangiogenic activity of NB cell xenografts in vivo. PMID:21750048

  4. In vitro anti-plasmodial activity of Dicoma anomala subsp. gerrardii (Asteraceae: identification of its main active constituent, structure-activity relationship studies and gene expression profiling

    Directory of Open Access Journals (Sweden)

    van Heerden Fanie R

    2011-10-01

    . Microarray data analysis identified 572 unique genes that were differentially expressed as a result of the treatment and gene ontology analysis identified various biological processes and molecular functions that were significantly affected. Comparison of the dehydrobrachylaenolide treatment transcriptional dataset with a published artesunate (also a sesquiterpene lactone dataset revealed little overlap. These results strengthen the notion that the isolated compound and the artemisinins have differentiated modes of action. Conclusions The novel mode of action of dehydrobrachylaenolide, detected during these studies, will play an ongoing role in advancing anti-plasmodial drug discovery efforts.

  5. Highly efficient EIAV-mediated in utero gene transfer and expression in the major muscle groups affected by Duchenne muscular dystrophy.

    Science.gov (United States)

    Gregory, L G; Waddington, S N; Holder, M V; Mitrophanous, K A; Buckley, S M K; Mosley, K L; Bigger, B W; Ellard, F M; Walmsley, L E; Lawrence, L; Al-Allaf, F; Kingsman, S; Coutelle, C; Themis, M

    2004-07-01

    Gene therapy for Duchenne muscular dystrophy has so far not been successful because of the difficulty in achieving efficient and permanent gene transfer to the large number of affected muscles and the development of immune reactions against vector and transgenic protein. In addition, the prenatal onset of disease complicates postnatal gene therapy. We have therefore proposed a fetal approach to overcome these barriers. We have applied beta-galactosidase expressing equine infectious anaemia virus (EIAV) lentiviruses pseudotyped with VSV-G by single or combined injection via different routes to the MF1 mouse fetus on day 15 of gestation and describe substantial gene delivery to the musculature. Highly efficient gene transfer to skeletal muscles, including the diaphragm and intercostal muscles, as well as to cardiac myocytes was observed and gene expression persisted for at least 15 months after administration of this integrating vector. These findings support the concept of in utero gene delivery for therapeutic and long-term prevention/correction of muscular dystrophies and pave the way for a future application in the clinic. PMID:15141156

  6. HIV-1B gp120 genes from one patient with AIDS dementia complex can affect the secretion of tumor necrosis factor and interleukin in glial cells

    Institute of Scientific and Technical Information of China (English)

    YAN Yu-fen; WANG Zhi-yu; PU Shuang-shuang; WEN Hong-ling; HUANG Tao; SONG Yan-yan; XU Hong-zhi; ZHAO Li

    2011-01-01

    Background HIV-1 infected and immune-activated macrophages and microglia secrete neurotoxins,such as tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β),which play major role in the neuronal death.It has been shown that different HIV-1 variants have varying abilities to elicit secretion of TNF-α by peripheral blood mononuclear cell (PBMC); however,whether the difference of gp120 gene could affect the secretion of TNF-α and IL-1β by glial cells is unknown.The aim of this study was to explore the association between gene diversity and induction of neurotoxic cytokines.Methods In this study,we constructed retroviral vectors MSCV-IRES-GFP/gp120 using HIV-1 gp120 genes isolated from four different tissues of one patient who died of AIDS dementia complex (ADC).Recombinant retroviruses produced by cotransfection of MSCV-IRES-GFP/gp120,pCMV-VSV-G and pUMVC into 293T cells were collected and added into U87 glial cells.Concentrations of TNF-α and IL-1β secreted by transduced U87 cells were assayed with ELISA separately.Results The four HIV-1 gp120 were in the different branch of the neighbor-joining tree.Compared to the pMIG retrovirus (gp120-negative) or U87 cells,all the gp120-positive recombinant retroviruses induced more TNF-α (P <0.01) and IL-1β (P <0.01).In addition,compared with the L/MIG retrovirus,all the three brain gp120-positive recombinant retroviruses induced less TNF-α (P <0.01) and IL-1β (P <0.01).Conclusions HIV-1 gp120 could induce U87 cells secret more TNF-α and IL-1β again.The more important is that difference of HIV-1 gp120,especially cell-tropism may account for the different ability in eliciting secretion of TNF-α and IL-1β,which might supply a novel idea helping understand the pathogenesis of ADC.

  7. Altered gene expression in highly purified enterocytes from patients with active coeliac disease

    Directory of Open Access Journals (Sweden)

    Jackson John

    2008-08-01

    Full Text Available Abstract Background Coeliac disease is a multifactorial inflammatory disorder of the intestine caused by ingestion of gluten in genetically susceptible individuals. Genes within the HLA-DQ locus are considered to contribute some 40% of the genetic influence on this disease. However, information on other disease causing genes is sparse. Since enterocytes are considered to play a central role in coeliac pathology, the aim of this study was to examine gene expression in a highly purified isolate of these cells taken from patients with active disease. Epithelial cells were isolated from duodenal biopsies taken from five coeliac patients with active disease and five non-coeliac control subjects. Contaminating T cells were removed by magnetic sorting. The gene expression profile of the cells was examined using microarray analysis. Validation of significantly altered genes was performed by real-time RT-PCR and immunohistochemistry. Results Enterocyte suspensions of high purity (98–99% were isolated from intestinal biopsies. Of the 3,800 genes investigated, 102 genes were found to have significantly altered expression between coeliac disease patients and controls (p Conclusion This study provides a profile of the molecular changes that occur in the intestinal epithelium of coeliac patients with active disease. Novel candidate genes were revealed which highlight the contribution of the epithelial cell to the pathogenesis of coeliac disease.

  8. Affective regulation of stereotype activation: It’s the (accessible) thought that counts

    OpenAIRE

    Huntsinger, Jeffrey R.; Sinclair, Stacey; Dunn, Elizabeth; Clore, Gerald L.

    2010-01-01

    Extant research demonstrates that positive affect, compared to negative affect, increases stereotyping. In four experiments we explore whether the link between affect and stereotyping depends, critically, on the relative accessibility of stereotype-relevant thoughts and response tendencies. As well as manipulating mood, we measured or manipulated the accessibility of egalitarian response tendencies (Experiments 1-2) and counter-stereotypic thoughts (Experiments 3-4). In the absence of such re...

  9. Plasminogen activator inhibitor type 1 gene polymorphism and sepsis.

    NARCIS (Netherlands)

    Hermans, P.W.M.; Hazelzet, J.A.

    2005-01-01

    Plasminogen activator inhibitor type 1 (PAI-1) is a 50-kilodalton glycoprotein of the serine protease inhibitor family. The primary role of PAI-1 in vivo is the inhibition of both tissue- and urokinase-type plasminogen activators. In addition to this function, PAI-1 acts as an acute-phase protein du

  10. Bifidobacterium bifidum actively changes the gene expression profile induced by Lactobacillus acidophilus in murine dendritic cells.

    Science.gov (United States)

    Weiss, Gudrun; Rasmussen, Simon; Nielsen Fink, Lisbeth; Jarmer, Hanne; Nøhr Nielsen, Birgit; Frøkiaer, Hanne

    2010-01-01

    Dendritic cells (DC) play a pivotal regulatory role in activation of both the innate as well as the adaptive immune system by responding to environmental microorganisms. We have previously shown that Lactobacillus acidophilus induces a strong production of the pro-inflammatory and Th1 polarizing cytokine IL-12 in DC, whereas bifidobacteria do not induce IL-12 but inhibit the IL-12 production induced by lactobacilli. In the present study, genome-wide microarrays were used to investigate the gene expression pattern of murine DC stimulated with Lactobacillus acidophilus NCFM and Bifidobacterium bifidum Z9. L. acidophilus NCFM strongly induced expression of interferon (IFN)-beta, other virus defence genes, and cytokine and chemokine genes related to the innate and the adaptive immune response. By contrast, B. bifidum Z9 up-regulated genes encoding cytokines and chemokines related to the innate immune response. Moreover, B. bifidum Z9 inhibited the expression of the Th1-promoting genes induced by L. acidophilus NCFM and had an additive effect on genes of the innate immune response and Th2 skewing genes. The gene encoding Jun dimerization protein 2 (JDP2), a transcription factor regulating the activation of JNK, was one of the few genes only induced by B. bifidum Z9. Neutralization of IFN-beta abrogated L. acidophilus NCFM-induced expression of Th1-skewing genes, and blocking of the JNK pathway completely inhibited the expression of IFN-beta. Our results indicate that B. bifidum Z9 actively inhibits the expression of genes related to the adaptive immune system in murine dendritic cells and that JPD2 via blocking of IFN-beta plays a central role in this regulatory mechanism. PMID:20548777

  11. Differential gene expression in high- and low-active inbred mice.

    Science.gov (United States)

    Dawes, Michelle; Moore-Harrison, Trudy; Hamilton, Alicia T; Ceaser, Tyrone; Kochan, Kelli J; Riggs, Penny K; Lightfoot, J Timothy

    2014-01-01

    Numerous candidate genes have been suggested in the recent literature with proposed roles in regulation of voluntary physical activity, with little evidence of these genes' functional roles. This study compared the haplotype structure and expression profile in skeletal muscle and brain of inherently high- (C57L/J) and low- (C3H/HeJ) active mice. Expression of nine candidate genes [Actn2, Actn3, Casq1, Drd2, Lepr, Mc4r, Mstn, Papss2, and Glut4 (a.k.a. Slc2a4)] was evaluated via RT-qPCR. SNPs were observed in regions of Actn2, Casq1, Drd2, Lepr, and Papss2; however, no SNPs were located in coding sequences or associated with any known regulatory sequences. In mice exposed to a running wheel, Casq1 (P = 0.0003) and Mstn (P = 0.002) transcript levels in the soleus were higher in the low-active mice. However, when these genes were evaluated in naïve animals, differential expression was not observed, demonstrating a training effect. Among naïve mice, no genes in either tissue exhibited differential expression between strains. Considering that no obvious SNP mechanisms were determined or differential expression was observed, our results indicate that genomic structural variation or gene expression data alone is not adequate to establish any of these genes' candidacy or causality in relation to regulation of physical activity. PMID:24551844

  12. IL-4 dependent alternatively-activated macrophages have a distinctive in vivo gene expression phenotype

    Directory of Open Access Journals (Sweden)

    Guiliano David

    2002-07-01

    Full Text Available Abstract Background "Alternatively-activated" macrophages are found in Th2-mediated inflammatory settings such as nematode infection and allergic pulmonary inflammation. Due in part to a lack of markers, these cells have not been well characterized in vivo and their function remains unknown. Results We have used murine macrophages elicited by nematode infection (NeMφ as a source of in vivo derived alternatively activated macrophages. Using three distinct yet complementary molecular approaches we have established a gene expression profile of alternatively activated macrophages and identified macrophage genes that are regulated in vivo by IL-4. First, genes abundantly expressed were identified by an expressed sequence tag strategy. Second, an array of 1176 known mouse genes was screened for differential expression between NeMφ from wild type or IL-4 deficient mice. Third, a subtractive library was screened to identify novel IL-4 dependent macrophage genes. Differential expression was confirmed by real time RT-PCR analysis. Conclusions Our data demonstrate that alternatively activated macrophages generated in vivo have a gene expression profile distinct from any macrophage population described to date. Several of the genes we identified, including those most abundantly expressed, have not previously been associated with macrophages and thus this study provides unique new information regarding the phenotype of macrophages found in Th2-mediated, chronic inflammatory settings. Our data also provide additional in vivo evidence for parallels between the inflammatory processes involved in nematode infection and allergy.

  13. A gene encoding a new cold-active lipase from an Antarctic isolate of Penicillium expansum.

    Science.gov (United States)

    Mohammed, Suja; Te'o, Junior; Nevalainen, Helena

    2013-08-01

    Cold-active lipases are of significant interest as biocatalysts in industrial processes. We have identified a lipase that displayed activity towards long carbon-chain-p-nitrophenyl substrates (C12-C18) at 25 °C from the culture supernatant of an Antarctic Penicillium expansum strain assigned P. expansum SM3. Zymography revealed a protein band of around 30 kDa with activity towards olive oil. DNA fragments of a lipase gene designated as lipPE were isolated from the genomic DNA of P. expansum SM3 by genomic walking PCR. Subsequently, the complete genomic lipPE gene was amplified using gene-specific primers designed from the 5'- and 3'-regions. Reverse transcription PCR was used to amplify the lipPE cDNA. The deduced amino acid sequence consisted of 285 residues that included a predicted signal peptide. Three peptides identified by LC/MS/MS analysis of the proteins in the culture supernatant of P. expansum were also present in the deduced amino acid sequence of the lipPE gene suggesting that this gene encoded the lipase identified by initial zymogram activity analysis. Full analysis of the nucleotide and the deduced amino acid sequences indicated that the lipPE gene encodes a novel P. expansum lipase. The lipPE gene was expressed in E. coli for further characterization of the enzyme with a view of assessing its suitability for industrial applications. PMID:23779196

  14. Isolation and characterization of the hamster gadd153 gene. Activation of promoter activity by agents that damage DNA

    Energy Technology Data Exchange (ETDEWEB)

    Luethy, J.D.; Fargnoli, J.; Park, J.S.; Fornace, A.J. Jr.; Holbrook, N.J. (National Institute on Aging, Baltimore, MD (USA))

    1990-09-25

    A group of five cDNA clones, representing the gadd genes, were recently isolated from Chinese hamster ovary (CHO) cells as genes induced upon growth arrest and after DNA damage. We have isolated and characterized one of these genes, gadd153. The gene spans five kilobases and contains four exons. The 5'-flanking region of the gene, within 420 base pairs of the transcription initiation site, contains a number of cis elements associated with transcriptional regulation in other genes. These include a Hogness box, ATAAAA, an inverted GCCAAT box; seven SP1 transcription factor binding sites, and an AP-1 site. This region is rich in G + C content (greater than 70%) and contains an unusually long stretch of alternating CpG residues. The 800-base pair region immediately upstream of the transcription start site can drive expression of the bacterial chloramphenicol acetyltransferase (CAT) gene, but only in its endogenous orientation, in three different cell lines: HeLa, CHO, and Jurkat. The gadd153 promoter is strongly activated by methyl methanesulfonate, hydrogen peroxide, and UV irradiation, but not by growth arrest signals. This suggests that separate and very different regulatory pathways are involved in the induction of the gadd153 gene by growth cessation and DNA damage.

  15. Familial Dysautonomia (FD Human Embryonic Stem Cell Derived PNS Neurons Reveal that Synaptic Vesicular and Neuronal Transport Genes Are Directly or Indirectly Affected by IKBKAP Downregulation.

    Directory of Open Access Journals (Sweden)

    Sharon Lefler

    Full Text Available A splicing mutation in the IKBKAP gene causes Familial Dysautonomia (FD, affecting the IKAP protein expression levels and proper development and function of the peripheral nervous system (PNS. Here we found new molecular insights for the IKAP role and the impact of the FD mutation in the human PNS lineage by using a novel and unique human embryonic stem cell (hESC line homozygous to the FD mutation originated by pre implantation genetic diagnosis (PGD analysis. We found that IKBKAP downregulation during PNS differentiation affects normal migration in FD-hESC derived neural crest cells (NCC while at later stages the PNS neurons show reduced intracellular colocalization between vesicular proteins and IKAP. Comparative wide transcriptome analysis of FD and WT hESC-derived neurons together with the analysis of human brains from FD and WT 12 weeks old embryos and experimental validation of the results confirmed that synaptic vesicular and neuronal transport genes are directly or indirectly affected by IKBKAP downregulation in FD neurons. Moreover we show that kinetin (a drug that corrects IKBKAP alternative splicing promotes the recovery of IKAP expression and these IKAP functional associated genes identified in the study. Altogether, these results support the view that IKAP might be a vesicular like protein that might be involved in neuronal transport in hESC derived PNS neurons. This function seems to be mostly affected in FD-hESC derived PNS neurons probably reflecting some PNS neuronal dysfunction observed in FD.

  16. Parathyroid Hormone Increases Activating Transcription Factor 4 Expression and Activity in Osteoblasts: Requirement for Osteocalcin Gene Expression

    OpenAIRE

    Yu, Shibing; Franceschi, Renny T; Luo, Min; Zhang, Xiaoyan; Jiang, Di; Lai, Yumei; Jiang, Yu; Zhang, Jian; Xiao, Guozhi

    2008-01-01

    PTH is an important peptide hormone regulator of calcium homeostasis and osteoblast function. However, its mechanism of action in osteoblasts is poorly understood. Our previous study demonstrated that PTH activates mouse osteocalcin (Ocn) gene 2 promoter through the osteoblast-specific element 1 site, a recently identified activating transcription factor-4 (ATF4) -binding element. In the present study, we examined effects of PTH on ATF4 expression and activity as well as the requirement for A...

  17. Factors affecting hospital stay in psychiatric patients: the role of active comorbidity

    Directory of Open Access Journals (Sweden)

    Douzenis Athanassios

    2012-06-01

    Full Text Available Abstract Background Research on length of stay (LOS of psychiatric inpatients is an under-investigated issue. In this naturalistic study factors which affect LOS of two groups of patients were investigated, focusing on the impact on LOS of medical comorbidity severe enough to require referral. Methods Active medical comorbidity was quantified using referral as the criterion. The study sample consisted of 200 inpatients with the diagnosis of schizophrenia and 228 inpatients suffering from bipolar disorder (type I or II. Jonckheere and Mann–Whitney tests were used to estimate the influence of referrals on LOS, and regression analyses isolated variables associated with LOS separately for each group. Results Half of the patients needed one or more referrals for a non-psychiatric problem. The most common medical condition of patients with bipolar disorder was arterial hypertension. Inpatients with schizophrenia suffered mostly from an endocrine/metabolic disease - 12% of referrals were for Hashimoto’s thyroiditis. A positive linear trend was found between LOS and number of referrals; the effect was greater for schizophrenia patients. The effect of referrals on LOS was verified by regression in both groups. Overall, referred patients showed greater improvement in GAF compared to controls. Conclusions To our knowledge this was the first study to investigate physical comorbidity in psychiatric inpatients using the criterion of referral to medical subspecialties. Comorbidity severe enough to warrant referral is a significant determinant of hospital stay. This insight may prove useful in health care planning. The results show lack of effective community care in the case of schizophrenia and negative symptoms may be the cause of this. Our findings call for more attention to be paid to the general medical needs of inpatients with severe mental health and concurrent severe medical comorbidity.

  18. Plant material as bioaccumulator of arsenic in soils affected by mining activities

    Science.gov (United States)

    Martínez-López, Salvadora; Martínez-Sánchez, Maria Jose; García-Lorenzo, Maria Luz; Pérez-Sirvent, Carmen

    2010-05-01

    arsenic extracted by HCl, with the oxidizable-organic matter and sulfides fraction and with the arsenic extracted by Mehra-Jackson extraction. According to our results, As is accumulated in the leaves of the plants and is linked with iron oxides of these soils affected by mining activities.

  19. Expression of recombination-activating genes and T cell receptor gene recombination in the human T cell leukemia cell line

    Institute of Scientific and Technical Information of China (English)

    ZOU Hong-yun; MA Li; MENG Min-jie; YAO Xin-sheng; LIN Ying; WU Zhen-qiang; HE Xiao-wei; WANG Ju-fang; WANG Xiao-ning

    2007-01-01

    Background Recent studies have suggested that mature T cells can change their specificity through reexpression of recombination-activating genes (RAG) and RAG-mediated V(D)J recombination. This process is named receptor revision and has been observed in mature peripheral T cells from transgenic mice and human donors. However, whether the receptor revision in mature T cells is a random or orientated process remains poorly understood. Here we used the Jurkat human T cell line, which represents a mature stage of T cell development, as a model to investigate the regulation of T cell receptor (TCR) gene recombination.Methods TCR Dβ-Jβ signal joint T cell receptor excision DNA circles (sjTRECs) were determined by nested and seminested PCR. Double-strand DNA breaks at recombination signal sequences (RSSs) in the TCRVβ chain locus were detected by ligation-mediated-PCR. Further analysis of the complementarity-determining region 3 (CDR3) size of the TCRVβ chain was examined by the TCR GeneScan technique.Results RAG1, RAG2, and three crucial components of the nonhomologous DNA end-joining (NHEJ) pathway were readily detected in Jurkat. Characteristics of junctional diversity of Dβ2-Jβ2 signal joints and ds RSS breaks associated with the Dβ25' and Dβ 23' sites were detected in DNA from Jurkat cells. CDR3 size and the gene sequences of the TCRVβ chain did not change during cell proliferation.Conclusions RAG1 and RAG2 and ongoing TCR gene recombination are coexpressed in Jurkat cells, but the ongoing recombination process may not play a role in modification of the TCR repertoire. However, the results suggest that Jurkat could be used as a model for studying the regulation of RAGs and V(D)J recombination and as a "special" model of the coexistence of TCR gene rearrangements and "negative" receptor revision.

  20. Controlling nuclear JAKs and STATs for specific gene activation by IFNγ

    International Nuclear Information System (INIS)

    Highlights: → Gamma interferon (IFNγ) and its receptor subunit, IFNGR1, interact with the promoter region of IFNγ-associated genes along with transcription factor STAT1α. → We show that activated Janus kinases pJAK2 and pJAK1 also associate with IFNGR1 in the nucleus. → The activated Janus kinases are responsible for phosphorylation of tyrosine 41 on histone H3, an important epigenetic event for specific gene activation. -- Abstract: We previously showed that gamma interferon (IFNγ) and its receptor subunit, IFNGR1, interacted with the promoter region of IFNγ-activated genes along with transcription factor STAT1α. Recent studies have suggested that activated Janus kinases pJAK2 and pJAK1 also played a role in gene activation by phosphorylation of histone H3 on tyrosine 41. This study addresses the question of the role of activated JAKs in specific gene activation by IFNγ. We carried out chromatin immunoprecipitation (ChIP) followed by PCR in IFNγ treated WISH cells and showed association of pJAK1, pJAK2, IFNGR1, and STAT1 on the same DNA sequence of the IRF-1 gene promoter. The β-actin gene, which is not activated by IFNγ, did not show this association. The movement of activated JAK to the nucleus and the IRF-1 promoter was confirmed by the combination of nuclear fractionation, confocal microscopy and DNA precipitation analysis using the biotinylated GAS promoter. Activated JAKs in the nucleus was associated with phosphorylated tyrosine 41 on histone H3 in the region of the GAS promoter. Unphosphorylated JAK2 was found to be constitutively present in the nucleus and was capable of undergoing activation in IFNγ treated cells, most likely via nuclear IFNGR1. Association of pJAK2 and IFNGR1 with histone H3 in IFNγ treated cells was demonstrated by histone H3 immunoprecipitation. Unphosphorylated STAT1 protein was associated with histone H3 of untreated cells. IFNγ treatment resulted in its disassociation and then re-association as pSTAT1. The

  1. Paraoxonase 1 gene polymorphism does not affect clopidogrel response variability but is associated with clinical outcome after PCI.

    Directory of Open Access Journals (Sweden)

    Kyung Woo Park

    Full Text Available BACKGROUND: Paraoxonase (PON is a high-density-lipoprotein (HDL associated enzyme with antioxidative and anti-atherogenic property. Its function is associated with coronary artery disease and its activity genetically controlled. We evaluated whether genetic variation of PON-1 is associated with clinical outcome in a large cohort of Korean patients with drug-eluting stents implantation. METHODS: A total of 1676 patients with drug-eluting stent implantation were enrolled in the prospective CROSS-VERIFY cohort from June 2006 to June 2010. We genotyped the PON1-Q192R gene, measured clopidogrel on-treatment platelet reactivity (OPR, and analyzed lipid profiles. The primary endpoint was the composite of cardiac death, myocardial infarction, and stent thrombosis at 12 months. RESULTS: PON-1 genotyping data were available in 1336 patients. Since the Q-allele is associated with decreased PON-activity, we analyzed the outcome between patients with QQ/QR (815 patients, 61% and those with RR-genotype (521 patients, 39%. After adjustment for common cardiac risk factors, the QQ/QR-genotype was an independent predictor of the primary thrombotic endpoint with an 11-fold increased risk (HR 11.6, 95% CI: 1.55-87.0, but not repeat revascularization (HR 1.12, 95% CI: 0.78-1.61. The QQ/QR-genotype was not associated with OPR (QQ/QR: 231±86 PRU vs. RR 236±82 PRU, p = 0.342 but higher small-dense LDL levels (1.20±0.12 mg/dL vs. 0.76±0.15 mg/dL, p = 0.027. The increased risk of thrombotic outcomes was more profound in acute coronary syndrome (ACS patients compared with non-ACS patients. CONCLUSION: PON1 Q-allele is an independent predictor of worse cardiovascular outcome independent of platelet function and is associated with significantly higher levels of small dense LDL-C.

  2. The Thiol Reductase Activity of YUCCA6 Mediates Delayed Leaf Senescence by Regulating Genes Involved in Auxin Redistribution.

    Science.gov (United States)

    Cha, Joon-Yung; Kim, Mi R; Jung, In J; Kang, Sun B; Park, Hee J; Kim, Min G; Yun, Dae-Jin; Kim, Woe-Yeon

    2016-01-01

    Auxin, a phytohormone that affects almost every aspect of plant growth and development, is biosynthesized from tryptophan via the tryptamine, indole-3-acetamide, indole-3-pyruvic acid, and indole-3-acetaldoxime pathways. YUCCAs (YUCs), flavin monooxygenase enzymes, catalyze the conversion of indole-3-pyruvic acid (IPA) to the auxin (indole acetic acid). Arabidopsis thaliana YUC6 also exhibits thiol-reductase and chaperone activity in vitro; these activities require the highly conserved Cys-85 and are essential for scavenging of toxic reactive oxygen species (ROS) in the drought tolerance response. Here, we examined whether the YUC6 thiol reductase activity also participates in the delay in senescence observed in YUC6-overexpressing (YUC6-OX) plants. YUC6 overexpression delays leaf senescence in natural and dark-induced senescence conditions by reducing the expression of SENESCENCE-ASSOCIATED GENE 12 (SAG12). ROS accumulation normally occurs during senescence, but was not observed in the leaves of YUC6-OX plants; however, ROS accumulation was observed in YUC6-OX(C85S) plants, which overexpress a mutant YUC6 that lacks thiol reductase activity. We also found that YUC6-OX plants, but not YUC6-OX(C85S) plants, show upregulation of three genes encoding NADPH-dependent thioredoxin reductases (NTRA, NTRB, and NTRC), and GAMMA-GLUTAMYLCYSTEINE SYNTHETASE 1 (GSH1), encoding an enzyme involved in redox signaling. We further determined that excess ROS accumulation caused by methyl viologen treatment or decreased glutathione levels caused by buthionine sulfoximine treatment can decrease the levels of auxin efflux proteins such as PIN2-4. The expression of PINs is also reduced in YUC6-OX plants. These findings suggest that the thiol reductase activity of YUC6 may play an essential role in delaying senescence via the activation of genes involved in redox signaling and auxin availability. PMID:27242830

  3. Structure of the SLC7A7 Gene and Mutational Analysis of Patients Affected by Lysinuric Protein Intolerance

    OpenAIRE

    Sperandeo, Maria Pia; Bassi, Maria Teresa; Riboni, Mirko; Parenti, Giancarlo; Buoninconti, Anna; Manzoni, Marta; Incerti, Barbara; Larocca, Maria Rosaria; Di Rocco, Maja; Strisciuglio, Pietro; Dianzani, Irma; Parini, Rossella; Candito, Miranda; Endo, Fumio; Ballabio, Andrea

    1999-01-01

    Lysinuric protein intolerance (LPI) is a rare autosomal recessive defect of cationic amino acid transport caused by mutations in the SLC7A7 gene. We report the genomic structure of the gene and the results of the mutational analysis in Italian, Tunisian, and Japanese patients. The SLC7A7 gene consists of 10 exons; sequences of all of the exon-intron boundaries are reported here. All of the mutant alleles were characterized and eight novel mutations were detected, including two missense mutati...

  4. Poly(Dimethylsiloxane) (PDMS) Affects Gene Expression in PC12 Cells Differentiating into Neuronal-Like Cells

    DEFF Research Database (Denmark)

    Lopacinska, Joanna M.; Emnéus, Jenny; Dufva, Martin

    2013-01-01

    accumulated research. In contrast, the experience base is limited for materials used in microfludics chip fabrication. Methods: The effect of different materials (PS, PMMA and perforated PMMA with a piece of PDMS underneath) on the growth and differentiation of PC12 (adrenal phaeochromocytoma) cells into...... contrast, 41 genes showed different expression for PC12 cells differentiating on PMMA as compared to on PS. In contrast, 677 genes showed different expression on PMMA with PDMS underneath as compared with PC12 cells on PS. The differentially expressed genes are involved in neuronal cell development and...

  5. A Comprehensive Insight into Tetracycline Resistant Bacteria and Antibiotic Resistance Genes in Activated Sludge Using Next-Generation Sequencing

    Directory of Open Access Journals (Sweden)

    Kailong Huang

    2014-06-01

    Full Text Available In order to comprehensively investigate tetracycline resistance in activated sludge of sewage treatment plants, 454 pyrosequencing and Illumina high-throughput sequencing were used to detect potential tetracycline resistant bacteria (TRB and antibiotic resistance genes (ARGs in sludge cultured with different concentrations of tetracycline. Pyrosequencing of 16S rRNA gene revealed that tetracycline treatment greatly affected the bacterial community structure of the sludge. Nine genera consisting of Sulfuritalea, Armatimonas, Prosthecobacter, Hyphomicrobium, Azonexus, Longilinea, Paracoccus, Novosphingobium and Rhodobacter were identified as potential TRB in the sludge. Results of qPCR, molecular cloning and metagenomic analysis consistently indicated that tetracycline treatment could increase both the abundance and diversity of the tet genes, but decreased the occurrence and diversity of non-tetracycline ARG, especially sulfonamide resistance gene sul2. Cluster analysis showed that tetracycline treatment at subinhibitory concentrations (5 mg/L was found to pose greater effects on the bacterial community composition, which may be responsible for the variations of the ARGs abundance. This study indicated that joint use of 454 pyrosequencing and Illumina high-throughput sequencing can be effectively used to explore ARB and ARGs in the environment, and future studies should include an in-depth investigation of the relationship between microbial community, ARGs and antibiotics in sewage treatment plant (STP sludge.

  6. Sex, drugs, and rock 'n' roll: hypothesizing common mesolimbic activation as a function of reward gene polymorphisms.

    Science.gov (United States)

    Blum, Kenneth; Werner, Tonia; Carnes, Stefanie; Carnes, Patrick; Bowirrat, Abdalla; Giordano, John; Oscar-Berman, Marlene; Gold, Mark

    2012-01-01

    The nucleus accumbens, a site within the ventral striatum, plays a prominent role in mediating the reinforcing effects of drugs of abuse, food, sex, and other addictions. Indeed, it is generally believed that this structure mandates motivated behaviors such as eating, drinking, and sexual activity, which are elicited by natural rewards and other strong incentive stimuli. This article focuses on sex addiction, but we hypothesize that there is a common underlying mechanism of action for the powerful effects that all addictions have on human motivation. That is, biological drives may have common molecular genetic antecedents, which if impaired, lead to aberrant behaviors. Based on abundant scientific support, we further hypothesize that dopaminergic genes, and possibly other candidate neurotransmitter-related gene polymorphisms, affect both hedonic and anhedonic behavioral outcomes. Genotyping studies already have linked gene polymorphic associations with alcohol and drug addictions and obesity, and we anticipate that future genotyping studies of sex addicts will provide evidence for polymorphic associations with specific clustering of sexual typologies based on clinical instrument assessments. We recommend that scientists and clinicians embark on research coupling the use of neuroimaging tools with dopaminergic agonistic agents to target specific gene polymorphisms systematically for normalizing hyper- or hypo-sexual behaviors. PMID:22641964

  7. Transcriptome and Gene Ontology (GO) Enrichment Analysis Reveals Genes Involved in Biotin Metabolism That Affect l-Lysine Production in Corynebacterium glutamicum.

    Science.gov (United States)

    Kim, Hong-Il; Kim, Jong-Hyeon; Park, Young-Jin

    2016-01-01

    Corynebacterium glutamicum is widely used for amino acid production. In the present study, 543 genes showed a significant change in their mRNA expression levels in l-lysine-producing C. glutamicum ATCC21300 than that in the wild-type C. glutamicum ATCC13032. Among these 543 differentially expressed genes (DEGs), 28 genes were up- or downregulated. In addition, 454 DEGs were functionally enriched and categorized based on BLAST sequence homologies and gene ontology (GO) annotations using the Blast2GO software. Interestingly, NCgl0071 (bioB, encoding biotin synthase) was expressed at levels ~20-fold higher in the l-lysine-producing ATCC21300 strain than that in the wild-type ATCC13032 strain. Five other genes involved in biotin metabolism or transport-NCgl2515 (bioA, encoding adenosylmethionine-8-amino-7-oxononanoate aminotransferase), NCgl2516 (bioD, encoding dithiobiotin synthetase), NCgl1883, NCgl1884, and NCgl1885-were also expressed at significantly higher levels in the l-lysine-producing ATCC21300 strain than that in the wild-type ATCC13032 strain, which we determined using both next-generation RNA sequencing and quantitative real-time PCR analysis. When we disrupted the bioB gene in C. glutamicum ATCC21300, l-lysine production decreased by approximately 76%, and the three genes involved in biotin transport (NCgl1883, NCgl1884, and NCgl1885) were significantly downregulated. These results will be helpful to improve our understanding of C. glutamicum for industrial amino acid production. PMID:27005618

  8. Transcriptome and Gene Ontology (GO Enrichment Analysis Reveals Genes Involved in Biotin Metabolism That Affect l-Lysine Production in Corynebacterium glutamicum

    Directory of Open Access Journals (Sweden)

    Hong-Il Kim

    2016-03-01

    Full Text Available Corynebacterium glutamicum is widely used for amino acid production. In the present study, 543 genes showed a significant change in their mRNA expression levels in l-lysine-producing C. glutamicum ATCC21300 than that in the wild-type C. glutamicum ATCC13032. Among these 543 differentially expressed genes (DEGs, 28 genes were up- or downregulated. In addition, 454 DEGs were functionally enriched and categorized based on BLAST sequence homologies and gene ontology (GO annotations using the Blast2GO software. Interestingly, NCgl0071 (bioB, encoding biotin synthase was expressed at levels ~20-fold higher in the l-lysine-producing ATCC21300 strain than that in the wild-type ATCC13032 strain. Five other genes involved in biotin metabolism or transport—NCgl2515 (bioA, encoding adenosylmethionine-8-amino-7-oxononanoate aminotransferase, NCgl2516 (bioD, encoding dithiobiotin synthetase, NCgl1883, NCgl1884, and NCgl1885—were also expressed at significantly higher levels in the l-lysine-producing ATCC21300 strain than that in the wild-type ATCC13032 strain, which we determined using both next-generation RNA sequencing and quantitative real-time PCR analysis. When we disrupted the bioB gene in C. glutamicum ATCC21300, l-lysine production decreased by approximately 76%, and the three genes involved in biotin transport (NCgl1883, NCgl1884, and NCgl1885 were significantly downregulated. These results will be helpful to improve our understanding of C. glutamicum for industrial amino acid production.

  9. Salty Taste Acuity Is Affected by the Joint Action of αENaC A663T Gene Polymorphism and Available Zinc Intake in Young Women

    OpenAIRE

    Hwayoung Noh; Hee-Young Paik; Jihye Kim; Jayong Chung

    2013-01-01

    Salty taste perception affects salt intake, of which excess amounts is a major public health concern. Gene polymorphisms in salty taste receptors, zinc status and their interaction may affect salty taste perception. In this study, we examined the relationships among the α-epithelial sodium channel (αENaC) A663T genotype, zinc intake, and salty taste perception including salty taste acuity and preference in healthy young adults. The αENaC A663T genotype was determined by the PCR-restriction fr...

  10. Comparative study of human and mouse pregnane X receptor agonistic activity in 200 pesticides using in vitro reporter gene assays

    International Nuclear Information System (INIS)

    The nuclear receptor, pregnane X receptor (PXR), is a ligand-dependent transcription factor that regulates genes involved in xenobiotic metabolism. Recent studies have shown that PXR activation may affect energy metabolism as well as the endocrine and immune systems. In this study, we characterized and compared the agonistic activities of a variety of pesticides against human PXR (hPXR) and mouse PXR (mPXR). We tested the hPXR and mPXR agonistic activity of 200 pesticides (29 organochlorines, 11 diphenyl ethers, 56 organophosphorus pesticides, 12 pyrethroids, 22 carbamates, 12 acid amides, 7 triazines, 7 ureas, and 44 others) by reporter gene assays using COS-7 simian kidney cells. Of the 200 pesticides tested, 106 and 93 activated hPXR and mPXR, respectively, and a total of 111 had hPXR and/or mPXR agonistic activity with greater or lesser inter-species differences. Although all of the pyrethroids and most of the organochlorines and acid amides acted as PXR agonists, a wide range of pesticides with diverse structures also showed hPXR and/or mPXR agonistic activity. Among the 200 pesticides, pyributicarb, pretilachlor, piperophos and butamifos for hPXR, and phosalone, prochloraz, pendimethalin, and butamifos for mPXR, acted as particularly potent activators at low concentrations in the order of 10-8-10-7 M. In addition, we found that several organophosphorus oxon- and pyributicarb oxon-metabolites decreased PXR activation potency compared to their parent compounds. These results suggest that a large number of structurally diverse pesticides and their metabolites possess PXR-mediated transcriptional activity, and their ability to do so varies in a species-dependent manner in humans and mice.

  11. Activation of endocrine-related gene expression in placental choriocarcinoma cell lines following DNA methylation knock-down.

    Science.gov (United States)

    Hogg, K; Robinson, W P; Beristain, A G

    2014-07-01

    Increasingly, placental DNA methylation is assessed as a factor in pregnancy-related complications, yet the transcriptional impact of such findings is not always clear. Using a proliferative in vitro placental model, the effect of DNA methylation loss on gene activation was evaluated at a number of genes selected for being differentially methylated in pre-eclampsia-associated placentae in vivo. We aimed to determine whether reduced DNA methylation at specific loci was associated with transcriptional changes at the corresponding gene, thus providing mechanistic underpinnings for previous clinical findings and to assess the degree of transcriptional response amongst our candidate genes. BeWo and JEG3 choriocarcinoma cells were exposed to 1 μM 5-Aza-2'-deoxycytidine (5-Aza-CdR) or vehicle control for 48 h, and re-plated and cultured for a further 72 h in normal media before cells were harvested for RNA and DNA. Bisulphite pyrosequencing confirmed that DNA methylation was reduced by ∼30-50% points at the selected loci studied in both cell lines. Gene activation, measured by qRT-PCR, was highly variable and transcript specific, indicating differential sensitivity to DNA methylation. Most notably, loss of DNA methylation at the leptin (LEP) promoter corresponded to a 200-fold and 40-fold increase in LEP expression in BeWo and JEG3 cells, respectively (P < 0.01). Transcripts of steroidogenic pathway enzymes CYP11A1 and HSD3B1 were up-regulated ∼40-fold in response to 5-Aza-CdR exposure in BeWo cells (P < 0.01). Other transcripts, including aromatase (CYP19), HSD11B2, inhibin (INHBA) and glucocorticoid receptor (NR3C1) were more moderately, although significantly, affected by loss of associated DNA methylation. These data present a mixed effect of DNA methylation changes at selected loci supporting cautionary interpretation of DNA methylation results in the absence of functional data. PMID:24623739

  12. Efficient subtractive cloning of genes activated by lipopolysaccharide and interferon γ in primary-cultured cortical cells of newborn mice.

    Directory of Open Access Journals (Sweden)

    Osamu Miyauchi

    Full Text Available Innate immune responses play a central role in neuroprotection and neurotoxicity during inflammatory processes that are triggered by pathogen-associated molecular pattern-exhibiting agents such as bacterial lipopolysaccharide (LPS and that are modulated by inflammatory cytokines such as interferon γ (IFNγ. Recent findings describing the unexpected complexity of mammalian genomes and transcriptomes have stimulated further identification of novel transcripts involved in specific physiological and pathological processes, such as the neural innate immune response that alters the expression of many genes. We developed a system for efficient subtractive cloning that employs both sense and antisense cRNA drivers, and coupled it with in-house cDNA microarray analysis. This system enabled effective direct cloning of differentially expressed transcripts, from a small amount (0.5 µg of total RNA. We applied this system to isolation of genes activated by LPS and IFNγ in primary-cultured cortical cells that were derived from newborn mice, to investigate the mechanisms involved in neuroprotection and neurotoxicity in maternal/perinatal infections that cause various brain injuries including periventricular leukomalacia. A number of genes involved in the immune and inflammatory response were identified, showing that neonatal neuronal/glial cells are highly responsive to LPS and IFNγ. Subsequent RNA blot analysis revealed that the identified genes were activated by LPS and IFNγ in a cooperative or distinctive manner, thereby supporting the notion that these bacterial and cellular inflammatory mediators can affect the brain through direct but complicated pathways. We also identified several novel clones of apparently non-coding RNAs that potentially harbor various regulatory functions. Characterization of the presently identified genes will give insights into mechanisms and interventions not only for perinatal infection-induced brain damage, but also for

  13. Expression conservation within the circadian clock of a monocot: natural variation at barley Ppd-H1 affects circadian expression of flowering time genes, but not clock orthologs

    Directory of Open Access Jour